

School of Computer Science & Informatics

Cardiff University

Solving N-Puzzle Problem with

Uninformed and Heuristic

Algorithms

Bingjie Lu

Module: CMT403

Supervisor: Yukun Lai

Moderator: Paul L Rosin

October 2022

 1

Abstract

The goal of the research is to use several algorithms to solve the n-puzzle problem.

We intend to use a variety of methods to address this problem, including heuristic

(Simulated Annealing, Iterative Depending A Star, Genetic Algorithm), uninformed

(Breadth-First Search, Depth-First Search). The results of these algorithms will then

be analysed and discussed.

 2

Contents

1. INTRODUCTION ... 4

2. LITERATURE REVIEW ... 6

3. N-PUZZLE .. 8

3.1 SOLVABILITY ... 9

4. THE ALGORITHMS AND IMPLEMENTATIONS .. 11

4.1 THE SYSTEM ARCHITECTURE ... 11

4.1.1 Node, State and Result ... 12

4.1.2 Nodes Factory .. 13

4.1.3 N-Puzzle Runner... 14

4.2 BREADTH FIRST SEARCH (BFS) .. 15

4.3 DEPTH FIRST SEARCH (DFS) .. 17

4.4 ITERATIVE DEEPENING A*（IDA*） ... 19

4.5 SIMULATED ANNEALING ... 22

4.6 GENETIC ALGORITHM ... 25

4.6.1 Individuals, genes, and populations ... 25

4.6.2 Fitness Score ... 26

4.6.3 Selection .. 27

4.6.4 Crossover ... 27

4.6.5 Mutation .. 28

5. RESULT ANALYSIS ... 31

5.1 UNINFORMED ALGORITHMS ... 31

5.2 HEURISTIC ALGORITHMS ... 33

5.2.1 8-puzzle ... 33

5.2.2 15-puzzle ... 34

 3

6. CONCLUSION AND FUTURE WORK .. 37

7. REFLECTION .. 39

REFERENCES ... 42

 4

1. Introduction

The idea of the N-puzzle issue is to identify a series of acts that, when applied to the

starting arrangement, results in a sequential sequence. It is frequently employed in

artificial intelligence algorithms as an example of search tactics. The n-puzzle issue

is frequently used in AI research to evaluate the effectiveness of specific search

algorithms, particularly heuristics, due to its huge solution search space. For each

instance of a combinatorial optimisation issue to be solved, a heuristic algorithm is an

approach based on intuition or experience that offers a workable solution at a

reasonable cost. It's possible that the amount of departure from the ideal answer

won't be known in advance. Although the cost is acceptable, it does not ensure that

the solution is the one that have the greatest value. It is obvious that in heuristic

search, the evaluation of node placements and search tactics are crucial, and the

various algorithms employed can have a significant impact on the effectiveness and

accuracy of the process.

The heuristic algorithm has a variety of forms. According to Kokash (2005), there are

three main categories of heuristic algorithms: simple heuristic algorithms (such as

greedy algorithms and hill climbing), meta-heuristic algorithms (such as tabu

algorithms and genetic algorithms as well as simulated annealing), and hyper-

heuristic algorithms.

This work focuses on the implementation of n-puzzle algorithms, including the

uninformed algorithms breadth-first search, depth-first search, and various popular

heuristics. In the following portions of the paper, a survey of the relevant literature is

presented, followed by a definition of the n-puzzle problem. Then, the specific

mechanics of the algorithms are discussed in detail within experiments. Multiple

algorithms are chosen to assess the n-puzzle issue given identical initial states that

 5

must be solvable. In the concluding section, the outcomes of the experiments are

analysed and summarised.

 6

2. Literature Review

Based on depth-first technique, Korf (1985) introduced depth-first iterative-deepening

algorithm within 15-puzzle. This method is improved by the incorporation of fast-

execution memory functions (Reinefeld and Marsland 1994). The depth-first iterative-

deepening algorithm requires less space and less time than breadth-first search

algorithms and depth-first search algorithms, respectively. (Reinefeld and Marsland

1994; Korf, Reid, & Edelkamp 2001). In addition, Korf and Taylor (1996) introduced a

novel heuristic approach with a reduced net cost. Bauer and Bernard (1994) came up

with a novel heuristic function that combines pair distance and Manhattan distance,

which they then implemented in iterative deepening A*(IDA*). Manzini (1995)

developed a new perimeter search technique that required less time for heuristic

assessments. These based-on-previous-work algorithms have significantly enhanced

the performance of the search.

Mathew, Tabassum, and Ramakrishnan (2013) compare the performance of five

types of algorithms. They discovered that the greedy best-first search achieved the

best performance when the answer was short, whereas A* performed best when the

solution was long. However, the implemented heuristic algorithms were both simple

heuristics; the research did not study any meta- heuristic or hyper-heuristic

algorithms.

Bhasin and Singla constructed a genetic algorithm, a form of meta-heuristic

algorithm, to solve the n-puzzle (2012). Their paper described the advantages of the

Genetic Algorithm and its application. Another type of meta-heuristic method that

might be used to solve the n-puzzle is simulated annealing. They offered an excellent

summary of the convergence theory and evolution of simulated annealing. (1987,

Henderson, Jacobson, & Johnson; 1994, Koulamas et al.)

 7

There are other n-puzzle methods that have not been implemented in this study, and

they require additional investigation. Korf and Schultze (2005) introduced many

changes to the best-first search method in order to lower the algorithm's storage and

time requirements during a large-scale concurrent search for an n-puzzle. In addition,

Drogoul and Dubreuil (1993) proposed a distributed method for solving the n-puzzle

issue that split the n-puzzle into a collection of subgoals. The improved algorithms

were able to solve big n-puzzles, such as those with a size greater than 800, but with

a high probability of inaccuracy due to their enormous space consumption.

Pattern database may be used to n-puzzles with a maximum of 24 puzzles (Korf &

Felner 2002). The pattern database might more precisely estimate the expense of an

n-puzzle (Fenler et al. 2004). It was improved by recording the starting and ending

states, hence lowering storage space consumption (Zhou and Hansen, 2004). Their

contributions might effectively lower the time and space requirements of algorithms

like A*.

 8

3. N-puzzle

Since its invention by Sam Loyd in the 1870s, when it was named the 15-puzzle, the

n-puzzle problem has been a well-known problem for almost a century (Loyd, 1959).

It is extensively used to evaluate the performance of heuristic algorithms based on

their complexity, which makes it quite significant.

Figure 1 Goal State for 8-puzzle

Figure 2 Goal State for 15-puzzle

The n-puzzle problem has several variants, including the 8-puzzle, the 15-puzzle,

and other names such as Gem Puzzle, Boss Puzzle, Game of Fifteen, and Mystic

Square, among many others. It comprises of a board with square tiles of equal size

and quantity, as well as a "blank" area. The board is a square with dimensions of m ×

m, and the number of tiles is N = m2 – 1. Initially, the tiles were arranged at random;

 9

after a series of movements, the tiles should be in the target arrangement (Figure 1

and Figure2). During each round, only empty spaces are available for tile movement.

3.1 Solvability

In many starting situations, the n-puzzle cannot be solved. (1879, Johnson & Story).

As Nilsson (1982) said, there are two types of tile configurations, even and odd, it is

impossible to convert one to the other regardless of how many movements have

been made. The solvability of the problem is explored.

There are total of	(� + 1)! distinct permutations of tiles in the N-puzzle problem,

given that the board contains a total of	� numbered tiles and a blank space. To

represent each permutation, we expand a two-dimensional board to store all the tiles

in a one-dimensional array, representing the numbered tiles as numbers and the

empty spaces as zeros, and storing all the numbers representing the numbered tiles

in order from top to bottom and left to right.

Now we will discuss the concept of inverted numbers. If after position � in an array

and there are � numbers less than him, then the inversion number of location � is �.

Summarizing the inversion numbers at each place in an array yields the array's

inversion number, represented by ���.

Wilbur (2001) has proved lemmas on the solvability of the puzzle, and here are the

two lemmas, which apply to the two cases of n-puzzle with even and odd side

lengths, respectively.

Lemma 1: If a board in an n-puzzle has an odd number of edge lengths, then the

parity of the ��� in both its beginning and end states must be the same for it to be

solvable.

 10

Lemma 2: If the edge length of the board in an N-puzzle is even, then the following

must be true for the puzzle to be solvable:

(���! + Δ	ℎ)	���	2 = ���"	���	2

���! is the ��� of n-puzzle’s initial state, ℎ is the difference between the rows of

blank space at the initial state and the target state (in this project, the row spacing of

the lowest row). ���" 	 is the ��� of the end-state. Both sides of the equation have

identical parity.

 11

4. The Algorithms and Implementations

This article implements five distinct methods to solve the n-puzzle issue. Two of the

algorithms are uninformed. The other three are heuristics: iterative deepening A*,

simulated annealing, and the genetic algorithm. The next section discusses these

algorithms and the system.

4.1 The System architecture

Figure 3 depicts the overall system architecture for this project.

Figure 3 The structure of the system

 12

4.1.1 Node, State and Result

All three classes implement the idea of encapsulation, encapsulating the nodes in the

search tree, the arrangement of the tiles and the result of the search in each case

respectively. The classes’ structures are shown in Figure 4.

Figure 4 Node, State and Result

The ����� represents an arrangement of tiles that stores numbered tiles in a one-

dimensional array of indeterminate length. ���� represents the edge length.

Meanwhile, ����� and ����� record the coordinates of the blank space to facilitate

the movement of the blank space in the algorithm. It also has methods for calculating

���	and displaying the current state.

The ���� is mainly used to represent the position in the search spanning tree, it has

three main functions: storing and predicting cost, indicating the relationship between

 13

parent and child nodes, and storing the direction of movement needed to move to

that child node.

The ������ is used to store the time and step consumption of each algorithm when

searching all inputs. For the input of the Nodes list, it not only statistics the success

and failure rates of the list, but also the overhead of each initial node. The data in the

Result is then shown on the console and recorded.

4.1.2 Nodes Factory

Figure 5 The Structure of NodeFactory

The Node factory is an implementation of the factory pattern in design patterns, its

architecture is shown in Figure 5. First, the factory class uses the �����������()

method, with input parameters the number of nodes and the size of the puzzle, to

create a list of one-dimensional arrays, and then a series of arrays as a permutation

of tiles, which is stored in a text file by shuffling through an array of target states.

Secondly, the node factory can also read a list of tiles by line from a text file using the

method �����������������(). It is worth noting that a Factory corresponds to a file

 14

address, which is determined as an input to the constructor when the Factory is

initialised. The contents of the text file are shown in Figure 6.

Figure 6 The Content of Text File

4.1.3 N-Puzzle Runner

Figure 7 The N-Puzzle Runner

The Figure 7 shows the relationship between ������������� and its internal class

������, as well as the parameters needed to start it. After each launch of the

�������������, the ������������ generates a list of nodes as roots based on the

numbers in the file, instantiates the �������ℎ�, instantiates the ������, and takes

the three as input to run the algorithm until it completes or time limit exceeded.

 15

4.2 Breadth First Search (BFS)

The breadth-first algorithm is a well-known tree search algorithm. It is a kind of

uninformed algorithm. This means that it expands without knowing any information

other than the target state, or the state space. It is also a brute force algorithm for

solving n-puzzle problems, which is an exhaustive method that begins with an initial

state and tries all possible states: all possible states that can be generated by

moving one step from the initial state, states that can be generated by moving two

steps from the initial state, states that can be generated by moving three steps from

the initial state, and so on.

The BFS keeps track of the outcome of each move, and each Node in the BFS has a

single state. Figure 8 depicts all the states that may be formed by travelling two steps

in each of the four directions (ignoring the duplication problem; each node represents

a state); the BFS is extended in the following order: 1->2->3->4->5...->21.

Figure 8 The Search Formed Tree

When extending nodes, the exhaustive enumeration technique encounters an issue

with the duplication of states. Given instance, for an initial state root, after a left slider

action develops a child node, a right slider operation is conducted on the child node

such that the state of the enlarged child node is the same as the state of the root and

 16

the state returns to its initial state. Even though the desired state may be reached in

the long run, such a two-step move should not be present in the optimal solution.

There are two main solutions to the duplication problem produced by expanding child

nodes: first, while moving expanding child nodes, record the way of movement (up

and down, left and right) for each Node, and do not permit the following expansion to

execute the opposite action. For a node obtained via an upward move operation, for

instance, additional downward movements should be banned. Second, using the

open dequeue and closed list, the expanded child node and expanded parent node

are recorded, and all expanded nodes undergo a legality check to verify whether they

have been expanded previously; if so, they cannot be added to the open list. This

guarantees that every node in the open and closed tables is unique.

The BFS in this project will use a combination of an open dequeue and a closed list

to remove duplicates, and the BFS implementation flow is shown in Figure 9.

Figure 9 Breadth-First Search

 17

As seen in the picture, BFS is implemented using an open queue and a closed list,

and the BFS algorithm is a loop. When an expansion occurs, the route cost of the

child node is larger than that of the parent node, hence the number of steps used

during the search does not decrease. When a state with a step cost of � is

dequeued from open, all nodes with a step cost of � − 1 have previously been

dequeued, that is, all states with a step cost less than � have been enumerated and

searched. Therefore, when the BFS algorithm determines a path to the goal state, it

will be the one that requires the fewest steps.

The basic steps of BFS are shown below：

1 open.add(root);

2 while (! open.isEmpty() && ! findTarget){

3 Node parent = open. poll();

4 closed.add(parent);

5 moveAndAddChildToOpen(parent);

6 }

4.3 Depth First Search (DFS)

DFS is another uninformed algorithm and a method of exhaustive search. For each

search, DFS explores as deep as possible into each path until it cannot go to the

next Node that has not been visited, and then starts trying a second path until all the

pathways have been taken. For a search-formed tree, the expansion order of DFS is

very different from that of BFS. As in Figure 8, the expansion order of DFS is

 18

1->2->6->7->8->9->3->10->11->12->13->4...->21. After searching all of node 2's

offspring, that is, nodes 6, 7, 8, and 9, it is time to search node 2's sibling, node 3.

DFS also requires two tables to verify that there are no duplicate states to prevent

dead loops. Unlike BFS, however, the open table is a last-in-first-out stack, ensuring

that every search is conducted in the same direction and that every expansion is as

deep as feasible. Figure 10 illustrates the DFS execution flow.

Figure 10 Depth-First Search Flowchart

DFS provides a plausible option for the next search after each search fails to reach

the next unvisited node, thus the term backtracking. BFS is implemented via looping,

whereas DFS may alternatively be accomplished by recursion.

 19

The basic steps of DFS are shown below：

1 open.push(root);

2 while (! open.isEmpty() && ! findTarget){

3 Node parent = open. pop();

4 closed.add(parent);

5 moveAndPushChildToOpen(parent);

6 }

4.4 Iterative Deepening A*（IDA*）

Iterative deepening A* (IDA*) is an iterative deepening depth-first search variation.

(Korf, Reid, & Edelkamp 2001) A depth-first search is employed. DFS eliminates a

significant amount of child-node growth and reduces space complexity, however it

has a flaw. If the depth of the current path has no upper limit, DFS will be unable to

initiate backtracking and the algorithm will encounter a deadlock. To tackle this issue,

Korf (1985) suggested the iterative deepening depth-first search (IDDFS), in which

the DFS is given a parameter to record the depth (or the number of levels of the

answer tree) each time and the backtracking process is started once the route

reaches a specific depth. The method constantly explores the top levels of the

search-formed tree from the root node at each search, resulting in repeated

expansions of the upper layers, which wastes a considerable deal of search time and

considerably increases the time complexity. IDA* eliminates this deficiency.

Unlike IDDFS, IDA* utilises a recursive method to node expansion by adding a

heuristic evaluation function to each stage of the process to get a 'heuristic

 20

evaluation,' where the path is abandoned if it is anticipated that it would not reach the

end even if it continues. Invoking the heuristic evaluation function is hence also

known as "pruning." Following the completion of the prediction, the state is extended,

and each time it is expanded to a new state, the heuristic is re-evaluated until a

certain number of cycles have been completed.

In this study, the heuristic technique employs the Manhattan distance, where the

heuristic evaluation is the minimal number of predicted steps f(n) to reach the end

state from the present state. The typical iterative deepening depth-first search

employs the search depth as a restriction on the number of searches per recursion,

whereas IDA* does not. Rather, IDA* employs f(n):

�(�) 	= 	ℎ(�) 	+ 	�(�)

where g(n) is the path cost for this loop to the current one, and h(n) is a heuristic

indicator for the predicted value of the current state from the target state.

The IDA*'s DFS triggers termination under two circumstances: 1, the search reaches

the final state, i.e., the optimal path is found; 2, the sum of the number of steps the

algorithm has searched, and the number of heuristic evaluation steps is greater than

the limit, which is initially the predicted number of steps for the root state. However,

when the n-puzzle size is large and the number of moving steps is excessive, the

heuristic evaluation of the initial state is frequently less than the actual number of

steps moved, and at this time, under the limitation of the predicted number of steps

for the initial state, all DFSs are unable to search for the target state. Therefore, the

algorithm must raise the step limit bound after each termination of the DFS, and the

increase strategy used in this project is to update the limit after each termination to

the lowest heuristic evaluations of the DFS that are larger than the bound value. The

procedure is illustrated in Figure 11.

 21

Figure 11 Iterative Deepening A*

The core steps of IDA* are shown blew:

1 for (bound = heuristicCost; bound <= BOUND; bound = dfs(0,

heuristicCost, -1)) {

2 if (pathGot) {

3 return ;

4 }

5 }

The ���() method represents a DFS search, where the parent node of the

initial state is the root node and the last move of the root node is -1, as

distinct from a general move.

 22

4.5 Simulated Annealing

The algorithm simulated annealing (SA) is a greedy algorithm. A greedy algorithm

selects the optimal option for each iteration in the current state to create the optimal

outcome. It focuses on a limited part of the search space, as opposed to the entire

space. In the n-puzzle problem, the parent node at each expansion only considers

the state of its surrounding neighbours, and only the neighbour with the best heuristic

assessment is chosen for swap.

The hill-climbing algorithm is the most well-known greedy algorithm, serving as the

foundation for the simulated annealing approach. In the n-puzzle problem, the

mountain climbing method is implemented by expanding from the starting point,

adding the neighbour with the lowest heuristic cost to the open table at each step,

and continuously updating this open table to form an iterative expansion until no

neighbour with a lower heuristic cost can be found. If the heuristic cost is zero, the

goal state is discovered; nonetheless, the mountain climbing approach is susceptible

to the local optimality problem. Since the greedy algorithm does not examine the

entire, it frequently produces a locally optimal solution, but not necessarily the global

optimum one; it is referred to as "falling into local optima."

Simulated annealing is an improvement on the mountain-climbing approach, which

cannot identify a globally optimum solution but instead climbs the mountain step by

step. Simulated annealing was developed in 1983 (Aydin and Fogarty, 2004)

because it resembles the physical mechanism of solid annealing. Each iteration of

solid annealing consists of heating the solid to the appropriate temperature and then

allowing it to cool gradually. As the temperature rises, the internal particles of a solid

become less ordered and further from the target state, whereas as the solid cools,

 23

the internal particles become progressively more ordered, reaching an equilibrium

state (steady state) at each temperature and a ground state at room temperature

when the orderliness is at its global maximum. Its overall process is comparable to

that of mountain climbing, in which the expansion will choose the collocation with the

optimal heuristic evaluation for expansion. However, the simulated annealing method

introduces a random factor (Bertsimas and Tsitsiklis 1993), a probability � called the

acceptance probability, and � is calculated as follows:

� = # 												1	，													�(� + 1) < �(�)
�!"($%&)!"($)(,										�(� + 1) > �(�)

Where	�(�) is the heuristic evaluation of the current state, �(� + 1) is the heuristic

evaluation of the neighbor state, � is the temperature in the current loop and � is

the acceptance probability of accepting the neighbour state.

The formula indicates that if the heuristic assessment improves, the move will be

accepted for this state (acceptance probability � = 1); if the heuristic evaluation

worsens, it indicates that the state is further from the goal, but the algorithm will not

immediately reject it. It generates a random number �, if ε< �, then the state with the

inferior value is still permitted, — in other words the slightly more expensive point is

accepted; otherwise, the transfer is denied, and so on. The algorithm accepts the

state with a certain probability, but as the temperature drops, the probability of

acceptance � diminishes. The algorithm's flowchart is presented in Figure 12.

 24

Figure 12 Simulated Annealing

The core steps of SA are shown blew:

1 while (temperature > temperature_min) {

2 for (int i = 0; i < LOOP_COUNT; i++) {

3 Node childNode = randomMove(cur);

4 If (SystemWouldAccept){

5 Cur = childNode;

6 } else {

7 continue ;

8 }

 25

9 }

10 }

4.6 Genetic Algorithm

The genetic algorithm is a standard example of an evolutionary algorithm.

Evolutionary algorithms arose from computer simulations of biological systems that

imitated the principles of biological evolution in nature, incorporating the concepts of

evolution and natural selection from biology into search algorithms (Liepins and

Hilliard, 1989). In the search process, the genetic algorithm creates initial values at

random each time and evolves the ideal solution to the issue through three primary

operations: select, crossover, and mutation across N iterations (Davis 1991).

Essentially, it is a simultaneous stochastic global search and optimisation algorithm.

In this part, the fundamental principles of the genetic algorithm are discussed,

followed by an explanation of how these biological theories may be incorporated into

an algorithm, and then the genetic algorithm is implemented.

4.6.1 Individuals, genes, and populations

Individuals, often referred to as chromosomes, represent a single search effort; an

individual is composed of a sequence of genes, each of which represents a single

decision variable for a move issue. Various individuals (chromosomes) constitute a

population, hence the population of solutions consists of multiple solutions to the

problem.

 26

Figure 13 Genes, individuals, population

In the n-puzzle problem, each step is treated as a gene, with 0, 1, 2, and 3 signifying

up, down, left, and right, respectively. An individual (chromosome) is the set of

movements constituting a single attempt along a path of specified length. Figure 13

depicts the various populations and individuals.

4.6.2 Fitness Score

After obtaining a population, the merits of each individual are evaluated, and based

on the results of the evaluation, some good individuals are selected in each

generation, while the less well-adapted individuals are eliminated. As a result, the

chromosome quality improves with each generation, and the solution approaches its

optimal state. This measurement of a species' environmental adaptation is known as

the fitness score.

In this project, the fitness score is the least heuristic cost of each chromosome as it

advances onto slide tiles, which indicates the fewest amount of steps each individual

must take to reach the target state.

 27

4.6.3 Selection

In the parent population, individuals and genes with high fitness are selected for

through the process of selection for replication. This study applied a tournament

selection technique in which the chromosome with the least Manhattan distance

created during each selection move was chosen as the best for the following

generation.

4.6.4 Crossover

The algorithm can choose the best individuals based on fitness score throughout

each iteration, but this is not the end of the process. Each repetition requires the

crossover operation in order to increase the fitness score. This process of creating

child chromosomes from two parent chromosomes is known as a crossover, which

can be classed as a single-point crossover, two-point crossover, concordant

crossover, sequential crossover, or cyclic crossover. The most popular is the single

point crossover, in which the parent chromosome is severed from a randomly

created identical position on each parent chromosome (this position is also called the

mating point) and the severed parent chromosomes are then spliced together to form

the offspring genes. This process is illustrated in Figure 14.

 28

Figure 14 Crossover

4.6.5 Mutation

Crossover guarantees that each evolution leaves excellent genes behind, but it

merely picks and reorders the same set of results; no new genes are added. This

merely guarantees that after N iterations, the computational output approaches the

local optimum solution, but never the global optimal solution. To address this issue,

the genetic algorithm requires an operator known as the mutation.

Figure 15 Mutation

As depicted in Figure 15, when an individual duplicates a gene, there is a small

chance that the gene will change, and this change is completely random, with the

location of the selected gene and the value of the modification being both random,

allowing the global optimum to be discovered beyond the limits of the local optimum.

Following an introduction to the ideas, we may deduce the genetic algorithm's flow as

shown in Figure 16.

 29

Figure 16 Genetic Algorithm Flowchart

This project also enhances the conventional genetic algorithm. Traditional genetic

algorithms keep the best individuals from each iteration to achieve algorithm

convergence. However, when iterations are repeated, the diversity of individuals

reduces, resulting in premature convergence. This project addresses this issue by

establishing a value for the number of iterations during which the best individuals do

not change, as well as a constant constraint K. If the best individuals do not change

during the K generation, the following expansion will eliminate the retention of the

best individuals and crossover but will simply undertake the mutation operation,

thereby developing. The original execution procedure will be replayed after one

generation. This results in a generation of mutation only after each generation of

 30

evolution, thereby compensating for the lack of population variety and preventing

early convergence.

The genetic algorithm requires initial parameterization. In this research, we consider

factors such as population size ����, chromosomal length ������, and the

evolutionary generation limit � for retaining optimum individuals. The values of

these parameters are provided in Table 1.

Table 1 Genetic Algorithm Parameters

 NUMS K LENGTH

8-puzzle 10 10 50

15-puzzle 30 10 100

The core steps of GA are shown blew:

1 while (geneCount < GENERATION) {

2 population = calFitnessInChromosome(state, population);

3 population = sort(population);

4 if (population [0] [chromosome.length - 1] == 0) {

5 return ;

6 }

7 crossover(population);

8 mutation(population);

9 }

 31

5. Result Analysis

To ensure that the project's findings are not impacted by external influences, the

identical setup of a single machine is used, and all algorithms are written in java

version 14.0.2. The operating system used is macOS Big Sur, and the compiler is

IntelliJ IDEA.

5.1 Uninformed Algorithms

We selected the iterative-dependent A star as a sample heuristic approach to

compare with conventional search (breadth-first search, depth-first search). Five

randomly generated identical 8-puzzle states were utilised as input for two

uninformed algorithms and a heuristic algorithm before the search was began.

Multiple identical 8-puzzle entries were used to evaluate three indicators: the number

of nodes created by the method, the time required to search, and the greatest depth

to grow the search-formed tree.

The experimental results are shown in Table 2, where we expand the states into

linear arrays in the order from top to bottom from left to right to represent.

 32

Table 2 Results of 8-puzzle

No

Initial

State

Nodes Generated Time Consumption Depth of Search-

Formed Tree

DFS BFS IDA* DFS BFS IDA* DFS BFS IDA*

1 6, 4, 7,

8, 5, 0,

3, 2, 1

73827

181437

16660

40.911s

721.553s

0.016s

40755

31

31

2 5, 6, 3,

4, 7, 8,

1, 0, 2

26920

100387

4099

3.234s

151.598s

0.015s

14825

23

23

3 2, 4, 3,

0, 8, 7,

5, 1, 6

14085

13617

192

0.694s

1.173s

0.012s

7741

17

17

4 3, 5, 4,

6, 2, 8,

1, 7, 0

4108

81321

771

0.075s

91.395s

0.016s

2256

22

22

5 8, 4, 6,

2, 7, 0,

5, 1, 3

46784

155257

721

14.901s

452.588s

0.013s

25853

25

25

As seen in the table, the depth of the search-formed trees created by depth-first

searches is significantly larger than the depth of those generated by breadth-first

searches. As previously described, breadth-first search grows the tree layer by layer,

ensuring that the shortest path, with the fewest number of steps, is always sought. In

contrast, depth-first search tends to grow in a single direction, and each time a

parent node extends a child node, the search-formed tree deepens by one layer.

Hence, the depth of expansion is sometimes many times that of breadth-first search.

 33

However, as can clearly be observed from the table, the greatest issue with the

breadth-first search approach is that the number of nodes to be searched is

excessively enormous, as every node in each layer is looked for. As the depth of the

search tree's nodes rises, the number of nodes to be searched at each level grows

swiftly and exponentially, and as a result, the storage space required and the time

spent searching both increase exponentially.

The heuristic algorithm IDA* addresses each of these shortcomings. As shown in the

table, IDA* offers benefits over both BFS and DFS since it adds a bound to the

search process to ensure that the depth of the search-formed tree corresponds to the

depth of the shortest path. It may also be used to solve the 15-puzzle, which is a

strength of the heuristic method since it prevents the proliferation of superfluous

nodes and lowers the number of pointless pathways to be examined.

5.2 Heuristic Algorithms

As heuristic algorithms, IDA*, simulated annealing, and genetic algorithms can more

efficiently solve n-puzzle problems. To verify this, we will generate 1000 solvable 8-

puzzle states and 100 solvable 15-puzzle states by the Nodes Factory as initial

states and then count the number of successes, number of failures, success rate,

average number of steps spent on success, and time consumed by the three

heuristics to determine the efficiency of the three algorithms in solving n-puzzles.

5.2.1 8-puzzle

First, we used the 1000 8-puzzle states generated by the Nodes Factory for the three

heuristic algorithms to search. The parameters for the simulated annealing were

 34

attenuation rate of 0.99, loop count of 150, initial temperature of 5, and minimum

temperature of 0.001; the results of these three searches are shown in Table 3.

Table 3 Result of Heuristic Algorithm for 8-puzzle

Algorithm Type Average Steps
Total Time

Consumed
Success Rate

IDA* 2208.499 0.26s 100%

SA 20778.4 4.907s 99.80%

GA 6.26 31.39s 100%

Where average steps denote the average number of times the algorithm grows. In

IDA* and SA, it signifies one blank motion, but in GA, it signifies one population

evolution. In addition, GA has the longest running time, IDA* has the lowest running

time, and SA has the second-longest running time after IDA. Nevertheless,

compared to other heuristics, SA cannot guarantee a 100% success rate. This is due

to SA limiting the number of searches and finishing the process when it anneals to

the lowest temperature. This restriction will affect the success rate while decreasing

the likelihood of dead loops. The total time used by the three heuristics to solve an 8-

puzzle with 1000 puzzles may be even less than the time spent by the uninformed

search to solve a single 8-puzzle. Therefore, we may infer those heuristics solve 8-

puzzle problems significantly better than the uninformed algorithm.

5.2.2 15-puzzle

Second, we utilised 100 15-puzzle beginning states, which were generated by the

Nodes Factory as explained before, for the three heuristic algorithms to search, with

SA adjusted differently based on the attribute attenuation rate: 0.99, 0.999, and

0.9999, respectively, while the remaining parameters remained the same as before.

 35

The outcomes of these three 15-puzzle-solving algorithms are displayed in Table 4

below.

Table 4 The Result of Heuristic Algorithm for 15-puzzle

Algorithm Type Average Number of

Steps

Total Time

Consumption

Successes

Rate

IDA* 6320771.696 589.366s 100%

SA (0.99) 38419.0 3.412 11%

SA (0.999) 39845.442 30．845s 52%

SA (0.9999) 3457833.47 170.534 100%

GA 4200.29 3523.648s 100%

As shown in the table, IDA* can solve the 15-puzzle faster and with fewer searches

than the genetic algorithm. However, the genetic algorithm does not offer a

considerable advantage in solving the issue. The reason for this is that the crossover

operator employed by the genetic algorithm is a global search. It builds a population

of several individuals to initiate a parallel search operation. This enormous number of

global searches precludes the solution from being quickly retrieved within a short

range (8-puzzle and 15-puzzle).

The 15-puzzle sheds further light on SA's lack of success. The effectiveness of

simulated annealing is extremely parameter-dependent. While the attenuation rate is

0.99, the same as when searching for an 8-puzzle, the success rate for solving a 15-

puzzle is just 11%; even when the temperature decay rate is decreased and the

attenuation rate is increased to 0.999, the success rate is still only 52%. Only by

raising the attenuation rate to 0.999 would it be possible to attain a success rate of

one hundred percent, but the time required will also rise dramatically. Consequently,

 36

when solving the n-puzzle issue, SA must adjust the attenuation rate to a number

that strikes a balance between the success rate and the time required. If the settings

are appropriately adjusted, the simulated annealing process is far more effective than

IDA*.

 37

6. Conclusion and Future Work

1） Traditional algorithms such as BFS and DFS perform much worse than the

heuristic algorithm IDA* for solving n-puzzles. Both forms of uninformed search

require a high initial state. During repeatedly attempting the way, they will expand

numerous meaningless nodes, using a great deal of time and space. In addition,

we were aware of the obstacles that standard algorithms would face while

attempting to solve the 15-puzzle issue. In contrast, IDA* is expanded using a

depth-first expansion strategy and a valuation function that works better in both 8-

puzzle and 15-puzzle problems.

2） The attenuation rate has an impact on the performance of the simulated

annealing procedure. If the attenuation rate is low and the temperature decays

too quickly, then the time and step consumption will be considerably less, but the

success rate will be significantly lower. When resolving a low-complexity 8-

puzzle, the algorithm might be given a larger decay rate to decrease time lost. In

the case of the more difficult 15-puzzle, however, if the temperature drops too

quickly, the success percentage would plummet. It is impossible to correctly

locate the desired path. This experiment explored three rates of 0.99, 0.999, and

0.9999. In the future, we will investigate the link between the performance of the

simulated annealing technique and the temperature and decay rate, as well as

optimise the annealing process under 15-puzzle and 24-puzzle conditions.

3） The genetic algorithm performs poorly on the 8-puzzle and 15-puzzle problems,

obtaining neither the best nor the fastest solution. This is since that the genetic

algorithm's crossover operator is a global search. Ture plans include tweaking the

evolutionary algorithm's parameters, applying it to the 24-puzzle, and comparing it

to other heuristic algorithms. Next, we can attempt to build a better chromosome

 38

code, select the optimal number of populations and chromosomal lengths, create

a valuation function that better matches the situation, and enhance the genetic

operator to optimise genetics.

 39

7. Reflection

This challenging project has taught me not only a good deal of useful

technical programming abilities, but also essay writing and literary research

skills.

Initially, I did not attempt to construct a comprehensive system for the

project's architecture, but rather used five distinct Java files to finish the

experiment. This leads to duplicate code and poor user readability. Besides,

the system was necessary to segregate the status of the recording problem

from the Java file used to regulate input. Based on the preceding

considerations, the system must be structured as a modular project to

decrease the coupling between the system's runner, input, and output values.

In addition, it is important to note that the system must be scalable for future

study on 24-puzzle and more complicated issues. I learnt design patterns such

as the factory pattern and the singleton pattern while developing, which

optimised the system to fulfil these specifications. The project was constructed

with the encapsulation of node, state, and result as a primary concern, and the

result is satisfactory.

 40

I also attempted A *'s of the hill climbing method while selecting an n-puzzle

solution, but this presented a formidable obstacle. In these studies, I

discovered that the success rate of the hill climbing algorithm decreased too

rapidly with rising n-puzzle optimum path complexity. Its success rate against

the 8-puzzle was small, preventing the system from counting the number of

steps and time spent, and rendering the trial findings unrepresentative. This is

a compromise made by hill-climbing, a greedy algorithm, to avoid reaching a

local optimal solution. Therefore, I was compelled to employ the simulated

annealing technique as an improvement to hill-climbing in order to achieve

the thesis's objective.

During this study, my capacity to locate and analyse literature has also been

much increased. This essay took much research, reading, and paper

summarization, among other tasks. In the literature review and introduction

sections, I was required to look for relevant publications, extract relevant

material, and summarise it for reference in the appropriate section. This was a

talent that I previously lacked, and I have grown a lot after all these

experiences. Besides, Due to a lack of prior studies in artificial intelligence, I

had to devote a great deal of time to studying n-puzzle and heuristic

algorithms, particularly genetic algorithms. In addition, writing the thesis

presented me with a significant task. As a developer who focuses mostly on

 41

the design and coding of computer systems, I am not accustomed to

performing a great deal of writing. This article has provided me with essential

knowledge in this area.

I have made substantial progress on this topic overall, from having no relevant

basis to creating three heuristic algorithms. In addition, I am satisfied with the

current system design for achieving the objectives. However, during the

project's testing phase, I discovered that there are still several areas that could

be improved. For instance, the construction of a new State needs a deep copy

of an array to be modified afterwards, which improves the code's readability

but consumes a great deal of memory. The topic of whether this would be

different or even better if the expansion was performed on the original array

requires additional exploration. In the future, I will attempt to optimise this

system more and apply it to other challenging puzzle situations.

 42

References

Aydin, M. & Fogarty, T. (2004). A distributed evolutionary simulated annealing algorithm for

combinatorial optimisation problems. Journal of heuristics, 10(3), 269-292.

Bertsimas, D., & Tsitsiklis, J. (1993). Simulated annealing. Statistical science, 8(1), 10-15.

Bhasin, H., & Singla, N. (2012). Genetic based algorithm for N-puzzle problem. International

Journal of Computer Applications, 51(22).

Bauer, B. (1994). The Manhattan pair distance heuristic for the 15-puzzle. Paderborn,

Germany.

Davis, L. (1987). Genetic algorithms and simulated annealing

Davis, T. E. (1991). Toward an extrapolation of the simulated annealing convergence theory

onto the simple genetic algorithm. University of Florida.

Drogoul, A., & Dubreuil, C. (1993, May). A distributed approach to n-puzzle solving.

In Proceedings of the Distributed Artificial Intelligence Workshop.

Felner, A., & Adler, A. (2005, July). Solving the 24 puzzle with instance dependent pattern

databases. In International Symposium on Abstraction, Reformulation, and

Approximation (pp. 248-260). Springer, Berlin, Heidelberg.

Felner, A., Korf, R. E., & Hanan, S. (2004). Additive pattern database heuristics. Journal of

Artificial Intelligence Research, 22, 279-318.

 43

Henderson, D., Jacobson, S. H., & Johnson, A. W. (2003). The theory and practice of

simulated annealing. In Handbook of metaheuristics (pp. 287-319). Springer, Boston, MA.

Johnson, W. W., & Story, W. E. (1879). Notes on the “15” puzzle. American Journal of

Mathematics, 2(4), 397-404.

Koulamas, C., Antony, S. R., & Jaen, R. (1994). A survey of simulated annealing applications

to operations research problems. Omega, 22(1), 41-56.

Kokash, N. (2005). An introduction to heuristic algorithms. Department of Informatics and

Telecommunications, 1-8.

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search. Artificial

intelligence, 27(1), 97-109.

Korf, R. E., & Felner, A. (2002). Disjoint pattern database heuristics. Artificial

intelligence, 134(1-2), 9-22.

Korf, R. E., & Schultze, P. (2005, July). Large-scale parallel breadth-first search. In AAAI (Vol.

5, pp. 1380-1385).

Korf, R. E., & Taylor, L. A. (1996, August). Finding optimal solutions to the twenty-four puzzle.

In Proceedings of the national conference on artificial intelligence (pp. 1202-1207).

Korf, R. E., Reid, M., & Edelkamp, S. (2001). Time complexity of iterative-deepening-

A∗. Artificial Intelligence, 129(1-2), 199-218.

Loyd, S. (1959). Mathematical puzzles (Vol. 1). Courier Corporation.

 44

Liepins, G. E., & Hilliard, M. R. (1989). Genetic algorithms: Foundations and

applications. Annals of operations research, 21(1), 31-57.

Manzini, G. (1995). BIDA∗: an improved perimeter search algorithm. Artificial

Intelligence, 75(2), 347-360.

Mathew, K., Tabassum, M., & Ramakrishnan, M. (2013). Experimental comparison of

uninformed and heuristic AI Algorithms for N puzzle solution. Proceedings of the International

Journal of Digital Information and Wireless Communications, Hongkong, China, 12-14.

Nilsson, N. J. (1982). Principles of artificial intelligence. Springer Science & Business Media.

Reinefeld, A., & Marsland, T. A. (1994). Enhanced iterative-deepening search. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 16(7), 701-710.

Wilbur, E. (2001). Topspin: Solvability of sliding number games. Rose-Hulman Undergraduate

Mathematics Journal, 2(2), 2.

Zhou, R., & Hansen, E. A. (2004, July). Space-efficient memory-based heuristics.

In AAAI (pp. 677-682).

