
CARDIFF UNIVERSITY

SCHOOL OF COMPUTER SCIENCE AND

INFORMATICS

Development and Evaluation of a

Web Application for Creating Click

Tracks with Advanced Rhythmic

Features

Daniel Redly

SEPTEMBER 16, 2022

Supervisor: Prof David Marshall

Student ID: c2074914

Abstract

Musicians sometimes listen to a series of rhythmic pulses known as a click track

while practicing or recording music to make sure they stay in time. Often the music

has a constant tempo, meaning it stays at the same speed, but this is not always

the case. If the music features sections which speed up or slow down, tempo

curves can be used to model the change in tempo over time. Polyrhythms are

another feature of some music that could be incorporated into a click track. On a

basic level, a polyrhythm is when two distinct rhythms are playing at the same time.

Polyrhythms feature in musical genres from around the world such as Afro-Cuban

and Indian Classical music, and can be an effective rhythmic device to make a

song sound more interesting.

Creating a click track for a piece of music with constant tempo is simple, as a

pulse is simply played with a constant interval, however adding polyrhythms and

tempo changes presents new challenges in the creation of click tracks. The aim of

this project was therefore to develop a web application which makes it easy and

convenient for musicians of all levels to create click tracks with advanced rhythmic

features.

An initial version of the web application was developed which allowed users to

create and edit click tracks in the browser as well as download them in a variety of

different formats including MIDI and wav. To place this work into context, a review

was done of some existing literature in the field, particularly on gradual tempo

change. A selection of existing musical applications, especially for the web, were

also examined to see how they implement tempo changes, polyrhythms and other

interesting rhythmic features.

After completing and deploying an initial version of the application, a user eval-

uation survey was sent to fellow students and musicians. 100% of the participants

were able to generate tempo changes which sounded natural, and ten out of the

fifteen participants found the application "fairly easy" to use.

More work was done to improve and expand on the application while user

evaluation took place on the initial version. Firstly, user accounts and a database

were added so that users could save click tracks and come back to them later.

Afterwards, end to end and performance testing were done in an effort to improve

the speed and reliability of the application.

2

Acknowledgements

A special Thank you to my supervisor Prof David Marshall, and to all who partici-

pated in my user survey.

3

Contents

1 Introduction 6

1.1 Keeping Time in Music . 6

1.2 Metronome . 6

1.3 Click Tracks . 6

1.3.1 What is a click track? . 6

1.3.2 Pros and Cons of Click Tracks 7

1.4 Tempo Change . 9

1.5 Time signature and polyrhythms 9

2 Background 11

2.1 Academic Research . 11

2.1.1 Local Tempo and Expressive Deviations 11

2.1.2 Gradual Tempo Change . 11

2.1.3 Polyrhythms . 13

2.2 Existing Software . 14

2.2.1 Music and Rhythm Web applications 14

2.2.2 Digital Audio Workstations 15

2.2.3 Other applications . 16

3 Aims and Objectives 18

3.1 Summary . 18

3.2 Functional Requirements . 18

3.3 Non Functional Requirements . 21

4 Technical Implementation 23

4.1 Overall Structure and Design . 23

4.2 Justification for Chosen Tools . 23

4.3 Development Environment . 24

4.4 Frontend . 24

4.4.1 Frontend Structure . 25

4.4.2 State Management . 25

4.4.3 Audio Playback . 26

4.4.4 User Interface . 26

4.4.5 Rhythm Calculations . 27

4.4.6 Data structure and default values 32

4.4.7 Tempo Visualisation . 33

4

4.4.8 Help Dialogues . 35

4.5 Audio Processing Microservice . 35

4.5.1 Structure . 35

4.5.2 MIDI file creation . 36

4.5.3 Audio file synthesis . 39

4.5.4 Audio file formats . 40

4.5.5 File Upload . 41

4.6 User Management Back-end . 42

4.6.1 Structure . 42

4.6.2 Authentication . 43

4.6.3 TypeScript . 44

4.6.4 Changes to Frontend . 44

4.7 Deployment . 46

4.7.1 Note on the Heroku free tier 49

5 Testing 50

5.1 End to End Testing . 50

5.2 Performance analysis . 51

6 User Evaluation 57

7 Future Improvements 65

7.1 Audio processing in the browser 65

7.2 Beat Detection . 65

7.3 Native Mobile Application . 65

7.4 Container Optimisation . 66

8 Reflection 67

References 68

9 Appendix 74

9.1 GitHub Repositories . 74

9.2 User Survey and Related Documents 74

5

1 Introduction

1.1 Keeping Time in Music

When playing an instrument or singing, it is usually important for a musician to stay

in time, that is to adhere to the intended rhythm of a piece, playing with the correct

tempo. Keeping time is an important skill, especially when playing with other

musicians, and can be learned and practiced by anyone. Musical entrainment

is the phenomenon that allows individuals to coordinate with rhythms from their

environment, for example tapping their foot along to a drum beat or synchronising

with other players in a band [1]. It is defined by McPherson et al [2] as a stable

relationship between external periodic signals and an individual’s internal rhythmic

processes.

The tempo of music is typically measured in beats per minute, commonly

abbreviated to bpm. Inter-Onset-Interval, or IOI, is another measurement of tempo,

representing the time in seconds between two consecutive beats. Therefore the

relation between tempo in bpm and IOI in seconds can be formulated as follows:

Tempobpm =
60

IOI
(1.1)

Both of these terms will be used extensively throughout the project.

1.2 Metronome

Perhaps the simplest way to improve one’s rhythmic skills is to practice to a

metronome, a device which produces a regular pulse to aid the player with keeping

in time. This is usually an auditory pulse, but can often be accompanied by visual

cues too, such as a flashing light or swinging pendulum. A metronome is especially

useful when playing unaccompanied or in an ensemble without a percussionist.

Additionally, musicians often use metronomes for practice to increase the tempo at

which they can play a piece, starting with a very slow tempo and gradually working

their way up [3].

1.3 Click Tracks

1.3.1 What is a click track?

A click track is essentially a prerecorded audio file which plays the same role as a

metronome. The use of a click track is prevalent in recording sessions and live

6

performance, where musicians, most commonly the drummer, listen to it through

in-ear monitors [4]. In the simplest case, the click track is simply a constant

pulse, e.g. 120bpm over the entire song. This is suitable for a large portion of

commercially recorded music today, in which the tempo remains constant for the

duration of a song. For more complex tempo manipulations, however, a Digital

Audio Workstation (DAW) can be used. The details for how this works in different

DAW’s will be explained in Section 2.2.2. For reference, A DAW is an application

for the recording, processing, and editing of digital audio, often replacing pieces of

hardware found in a recording studio [5]. DAW’s, especially in their more recent

incarnations, can often be quite complex and all-encompassing in terms of their

functionality, according to to Reuter [6].

1.3.2 Pros and Cons of Click Tracks

Using a click track, tracks can be recorded independently of one another and mixed

together later, with the assurance that they will be in time with each other. This

would be especially useful when musicians are collaborating on a song remotely.

Sometimes, the drums/percussion can be recorded first, and then other musicians

can record their tracks over the drums instead of using a click track, but a click

track can be very useful for the drummer to record the drum track in the first place.

Additionally click tracks can still be preferable, as they usually use a fairly high

pitched and percussive sound that will easily stand out in the mix to a musician,

making it easier to play in time. Software-based click tracks, especially when

implemented through a modern DAW, also tend to be more flexible than a simple

metronome, as they can incorporate changes in time signature and tempo [7].

There are however limitations to the use of click tracks, especially ones with

constant tempo and time signature. While they are common in contemporary and

especially pop music, there are many musical traditions around the world that do

not follow a constant tempo or regular time signature throughout a piece. In the

world of classical music, where tempo is typically more flexible, the conductor can

be thought of as playing the role of a click track, acting as the cue for all musicians

in an orchestra to stay in time. While some pieces may have gradual and fairly

predictable changes in tempo, such as final ritardandi (the gradual deceleration of

a piece towards the end), another important feature of classical music, especially

from the Romantic era, is rubato, which can be thought of as a push and pull of

timing [8]. The former could be modelled fairly accurately in a click track with some

mathematically defined tempo track as we will see later in Section 2.1.2, but the

latter would present a greater challenge, as tempo fluctuates on a more granular

7

level.

Many people in the music community can be quite critical of click tracks, with

the main criticism being that they tend to stifle individual expression and make

music sound too mechanical or robotic. For example, James Beament [9] has a

quote from his book How we hear music: the relationship between music and the

hearing mechanism which illustrates this sentiment quite effectively:

And many recent recordings of pop music demonstrate how music is

killed by a metronome for they are as square as a draftsman’s T. For

the convenience of recording engineers, each player has to record their

part on a separate track while listening to a click track — a metronome

— and the clicks are then used to synchronize the tracks while the

technicians adjust them to their taste and mix them. I know talented

young musicians who can’t do it; we can understand why. Nothing

compares with a recording of a live performance in which the players

provide each other with the time-framework. if you want to kill a musical

performance, give the player a click track!

Paul Lamere [10], the author of a music technology blog, performed an analysis

on tempo deviations of performances from rock drummers to determine which do

and do not use click tracks . This was done by using the python library remix to

plot beat durations in songs, averaged over a short window. It was quite easy to

tell which performances made use of a click track, as the plots were drastically

different, as shown in Figures 1.1 and 1.2, his plots for Dizzy Miss Lizzie by the

Beatles and One More Time by Britney Spears.

Figure 1.1: Without click track Figure 1.2: With click track

These artists are both appreciated by many people, which suggests that use

of a click track is neither something essential for good music or something which

ruins it, rather it all depends on the specific application.

8

1.4 Tempo Change

Quite often, music will speed up or slow down, and therefore a constant isochronous

pulse is no longer sufficient to act as a click track. Rather than the local tempo

fluctuations discussed in Section 1.3.2, this work will focus more on gradual tempo

changes. In traditional musical vocabulary, an increase in tempo is called an

accelerando or less commonly stringendo, while a decrease is called a ritardando,

or sometimes rallentando [11]. Some famous examples of accelerando include

Edvard Grieg’s In the Hall of the Mountain King and Led Zeppelin’s Stairway to

Heaven. Ritardando is often seen in classical music, especially towards the end of

a piece or sections, as in Albeniz’s Tango or Chopin’s Etude op.10-3 [12].

1.5 Time signature and polyrhythms

A piece of music is typically subdivided into sections called measures which consist

of a certain number of beats, most commonly four. If one tries counting along to

any contemporary pop song, chances are that counting to four will feel most natural,

as it is most likely in 4/4 time. The meaning of this fractional representation will be

explained shortly. For any waltz, however, listeners will naturally find themselves

counting to three, as there are only three beats per measure. At its simplest, a

time signature represents how many beats are played per measure. Sometimes,

the time signature can change in the middle of a piece of music, such as in Pink

Floyd’s song Money, where the song starts off with seven beats per measure but

then switches to four beats per measure as the guitar solo starts.

We might often hear that 4/4 is the most common time signature in most

contemporary Western music, but what does 4/4 actually mean? Formally, time

signature is represented as a fraction, where the numerator represents the number

of beats in a measure, and the denominator represents the type of beat. Most

commonly this is a quarter note, represented by a number 4, but half notes and

eighth notes are not too rare either, represented by numbers 2 and 8 respectively.

Time signatures such as 3/4 and 4/4 are considered to be simple meters, which

means that one pulse corresponds to one count. 6/8, on the other hand, as

well as other time signatures counted in eighth notes are generally compound

meters, where the beat is subdivided. This means that 6/8 is generally felt as 2

pulses, each subdivided into 3 beats [13]. Some well-known examples of music in

compound meter are We Are the Champions by Queen in 6/8 [13], and Claire de

Lune by Claude Debussy in 9/8 [12].

A slightly rarer occurrence, at least in most genres of music, is a polyrhythm, in

9

which two time signatures are playing at once. More specifically, a polyrhythm can

be defined as the simultaneous use of multiple rhythms which are not perceived

to be derived from each other. An example of this would be two measures of the

same length, where one is divded into 4 beats and the other into 3. This would be

called a 3 against 4 polyrhythm [14]. Polyrhythms are especially popular in genres

such as progressive rock and math rock, where there is a strong emphasis on

technical prowess and rhythmic intricacy. Polyrhythms are not to be confused with

polymeters. While the beats in polyrhythms will always align on the downbeat (the

first beat of a measure), polymeters instead consist of two parts of different time

signature but the same tempo, so the beats themselves will occur simultaneously,

but the downbeats will drift out of sync with each other. This difference is illustrated

in Figures 1.3 and 1.4.

Figure 1.3: Basic example of polyrhythm in MuseScore

Figure 1.4: Basic example of polymeter in MuseScore. The placement of accents

in the bass clef on every third note show that this rhythm is in 3/4 time.

10

2 Background

2.1 Academic Research

2.1.1 Local Tempo and Expressive Deviations

Repp [15] conducted extensive research into cognitive representation of musical

time, and found that performances by musicians often contained deviations from

the marked tempo and rhythm from a score, but that they were by no means

random or haphazard. On the contrary it was found that musicians could replicate

these deviations with relatively high precision. Repp proposed that musicians

largely follow an implicit set of rules to generate timing variations from musical

structure, and that listeners also subconsciously expect these rules to be adhered

to. One especially important consideration was that lengthenings were much

more common than shortenings, and are especially common at the end of pieces,

sections of a piece or even the end of a phrase. This perhaps points to the idea of

speech influencing music, since it is typical to slow down or pause at the end of

a sentence when speaking. Many studies indicate a strong relationship between

music and speech perception, such as this one by Hausen et al [16] which found

a robust link between the two. Hannon [17] went further and conducted a study

which showed that the rhythm of music from a given culture is influenced by the

rhythm of its language. This was proven by having listeners attempt to classify

purely instrumental pieces of music based on their language of origin.

Schreiber et al [18] describe the difficulties of quantifying local tempo in their

case study of Chopin’s Mazurkas. For reference, a Mazurka is a traditional

Polish folk dance in 3/4 time [19]. A tempo estimation system powered by a

convolutional neural network called DeepTemp was used. Tempo stability was

analysed for two datasets: the Mazurkas and a second dataset called Ballroom

which was comprised of pop, rock, EDM and ballroom music. It was found that

after normalising the local tempi in the Mazurka dataset, only 15.5% of the local

tempi fell within a typically used tolerance interval of ±4%, compared to 90.9% for

the Ballroom dataset. As part of their background research they cite Repp’s effort

to find a definition of "basic tempo", which compromises between global tempo

and Inter Beat Interval.

2.1.2 Gradual Tempo Change

Berndt [20] states that the change of tempo throughout a piece of music can

be represented by a tempo map, i.e. a sequential list of tempo instructions.

11

Alternatively, a tempo map can be thought of as a sequence of curve segments

mapping symbolic time (number of notes) to tempos. The mean tempo condition is

proposed as a way to model these tempo curves, defined as the relative position

in the score at which half the tempo change has been processed.

Cope et al [21] conducted research into temporal prediction in music with

gradual tempo change, comparing it with already known results for isochronous

temporal prediction experiments. They found that participants were much better at

detecting exaggerations, for example a note played too early in an accelerando

section or a note played too late in a ritardando section.

Some more detailed findings were found by Schulze et al [22], in an experiment

where five volunteers were asked to tap along to a gradually accelerating or

decelerating click track. A different approach to Berndt was taken when modelling

tempo curves, with the use of a somewhat more complex sigmoidal function which

the authors claim was chosen to resemble tempo change in performed music.

Asynchrony trajectories, meaning a plot of the error in timing, were generated.

It was found that these trajectories followed characteristic M and W shapes for

accelerando and ritardando respectively. The explanation given for this is that the

participant is initially late in adjusting to the changing tempo, then after around 6-8

taps they catch up but overcompensate slightly. After this, they tend to fall behind

and overcompensate a second time, but to a lesser degree. This consistent pattern

of error shows that keeping time with changing tempo does not come as naturally

to people, and therefore would be a useful skill to train for the performance of such

music.

Perhaps the most thoroughly researched aspect of tempo curves in music

is the final ritardando, a common expressive device in Western classical music

especially wherein a piece gradually slows down towards the end. Friberg and

Sundberg [23] examined the possible connection between music performance

and locomotion by comparing the final ritardando to a runner slowing down. A

parameter q was proposed as a way to represent curvature. As part of their

experiment they tried modelling tempo change with q values ranging from 1 to

4, which corresponded to quadratic IOI (Inter Onset Interval), linear(x), linear(t),

square root(t) and cubic root(t). The parameter x represents score position, or

simply position of the runner, while t represents time. Linear(t), corresponding

to q = 2 and square root(t), corresponding to q = 3 received the highest ratings.

There is good physical justification for this, as linear(t) alludes to constant braking

force, while square root(t) alludes to constant braking power. This is reminiscent

of a study by Feldman et. al [24], in which the authors examined musical tempo

12

changes modelled with force dynamics. The force profile is integrated to yield a

tempo curve, for example a linearly increasing force produces a quadratic tempo

field. Therefore to produce a tempo curve which is smooth on both ends, that is to

say of cubic order or higher, the tempo profile needs to be of quadratic order or

higher. A key difference with this study is that measures were used as the smallest

unit, whereas Friberg and Sundberg made their measurements on a note by note

basis instead.

A variety of models was reviewed by Honing [25] in 2003, including those of

Friberg and Sundberg, and Feldman et al. The main criticism presented was their

lack of consideration for the details of the musical material’s rhythmic structure.

2.1.3 Polyrhythms

Møller et al [26] performed a study on beat perception in polyrhythms. When

someone listens to a polyrhythm, there are essentially two different rhythms

competing to be heard as the "main" rhythm. It was found that listeners had a

propensity to rhythms divisible by 2, so in a 4 against 3 polyrhythm, for example,

they would be more likely to count to 4 along with it. It was also found that pitch

had a significant effect, with lower pitched rhythms more likely to be heard as the

main rhythm. This could simply be because of the prevalence of bass drum in

contemporary music, so it would be interesting see if subjects from a different

musical background without such a prevalence of bass drum would give the same

results.

Kennedy et al [27] studied the effectiveness of auditory and visual stimuli, as

well as a combination of the two, in training participants to reproduce a simple 3

against 2 polyrhythm. More specifically, this was a bimanual coordination exercise,

meaning the participants were asked to tap the two rhythms simultaneously, one

with each hand. It was found that retention performance for the purely visual

stimulus was inferior. This is unsurprising, as studies before have found that

auditory stimulus is generally more effective for rhythmic entrainment, such as

Hove et al [28], who found that auditory beats resulted in more stable tapping

synchronization when compared to visual flashes. The results of Kennedy’s

study could perhaps be made more meaningful by studying other more complex

polyrhythms, as 3 against 2 is relatively common in contemporary music, so results

could be affected by the participants playing based on memory.

13

2.2 Existing Software

2.2.1 Music and Rhythm Web applications

The landscape for browser based audio applications is changing very rapidly, but

ToneJS comes up often as a popular and up to date audio library. The Web Audio

API, introduced by Google in 2011 has been crucial for much of the subsequent

technical achievements in browser-based audio applications. In their paper from

2015, Roberts et al [29] describe the development of two new libraries built on the

Web Audio API, Gibberish.js and Interface.js, for audio synthesis and creation of

user interfaces for music performance respectively. Though these two libraries

are no longer being maintained, the authors cite ToneJS as a promising new

technology in their related works section.

ToneJS began development in early 2014, while the author Yotam Mann [30]

was working on another project called Echo, as a way to encapsulate and reuse

Web Audio functionality that he had been using for years. The first test of this

library was his next project Jazz.Computer, an interactive song which responds to

a listener’s scrolling, entirely synthesised in the browser with ToneJS.

One example of a very ambitious web application with these new technologies

is the JSS-01 JavaScript Software Synthesizer developed by Michael Kolesidis [31].

He uses among other technologies, ToneJS, and goes so far as to describe it as

"the soul of our project". An even more ambitious project is Kameyama’s [32] online

MIDI editor Signal, which works almost like a DAW (digital audio workstation), and

can even connect to a user’s physical MIDI divices using the Web MIDI API. A

year on from its launch, it has nearly 10,000 users per month [33]. Users are

able to manipulate the tempo of a song very intuitively by drawing curves on a

separate tempo tab. One limitation of this approach is that users will not be able

to mathematically define the tempo curves and it could be hard to replicate them

exactly.

ToneJS was also used by Lesterberg [34] in her Master’s Thesis from 2021 on

developing new musicking technologies, where it is described as being "easy and

intuitive to code".

The most used web audio library however is HowlerJS, which has more features

for general audio playback, such as spatial audio and full codec support [35].

ToneJS seems to be more focused on the creation and synthesis of music from

scratch, however. In his article comparing web audio libraries, Arek Nawo [36]

likens coding with ToneJS to "being a conductor with code as the baton".

Dr Stephane Pigeon [37] has included a Polyrhythm Beat Generator as part of

14

his site myNoise.net. Though it is not explicitly stated, it has likely been achieved

with the php programming language as the url ends in .php. He states that he has

taken inspiration from Sub-Saharan African music, in which the polyrhythms can

create an almost trance-like or hypnotic feeling. The author does acknowledge

that timing drifts can occur after a while depending on the user’s browser and

computing power. An interesting feature of this application is that up to ten different

rhythms can be played simultaneously, where most examples of polyrhythms tend

to only have two simultaneous rhythms.

2.2.2 Digital Audio Workstations

The ability to manipulate tempo in interesting ways is nothing new for DAW’s. In

Petersen’s [38] review of new features added to major DAW’s from 2010, some

form of tempo manipulation was included in the new features for three of these

application: Logic Pro, Cakewalk and PreSonus.In Logic Pro a new feature called

Flex Time was added for timing and tempo manipulation. In Cakewalk, resolution

settings were added for tempo changes, so users could choose to set tempo either

on every beat, every measure or every clip. Meanwhile in PreSonus, functionality

was added for changing tempos within an event.

Tempo manipulation is now a standard and expected feature in any DAW. For

example, even in LMMS, a lightweight open source alternative to commercial

DAWs, the tempo can be automated just like any other property [39]. In Reaper,

another popular and affordable DAW, manipulating tempo is intuitive and flexible,

In fact, Jeff Kaiser [40] has uploaded a tutorial specifically on creating complex

click tracks in Reaper. This tutorial outlines a few different ways to interact with

the tempo. The tempo envelope be edited with standard envelope editing tools.

Alternatively the user has a few existing menu options such as "Insert -> Tempo/-

time signature change marker" and "Gradually transition tempo to next marker".

In Cubase, another DAW, points can be drawn on a tempo track to control tempo

change through time. This works well for MIDI data, and can work for audio tracks

too provided they are quantized to the tempo track [41].

Features for creating polyrhythms in DAWs tend to be less standardised than

those for manipulating tempo curves. Some online resources, such as this article

by Trandafir [42], suggest the approach of finding the lowest common multiple of

the two rhythms and creating the polyrhythms on a grid of that subdivision. For

example, for a 4 against 3 polyrhythm, the user would need to subdivide measures

into 12, with one rhythm being 4 notes of length 3, and the other being e notes

of length 4. An illustration of this concept in MuseScore is shown in Figure 2.1.

15

myNoise.net

While this works fine, it is still quite a bit of work for the user and could certainly be

made easier. Additionally this approach becomes more difficult for polyrhythms

with a less simple ratio, or when more than 2 distinct rhythms are involved, as in

Dr Pigeon’s Polyrhythm Beat Generator discussed in Section 2.2.1.

Figure 2.1: Using the lowest common multiple approach for a 4 against 3

polyrhythm

A different approach is to use a time stretching tool to manipulate the lengths

of notes in a measure, for example making 5 notes fit into a measure in 4/4 time.

Ableton Live seems to be a popular DAW for this approach. In his tutorial for

warping tempo tracks in Ableton Live, Rory PQ [43] explains that any audio sample

can be time-stretched to play in sync with a given tempo. There are in fact six

different warp modes for different types of audio, accounting for factors such as

amount of transients and whether or not to preserve pitch.

2.2.3 Other applications

MuseScore is an open source musical notation editor, and while it does not have

a built in feature for adding tempo curves, a plugin has been developed for it by

Johan Temmernman [44], allowing for both linear and exponential tempo changes,

using the concept of mean tempo condition, which we have already encountered in

Berndt’s research in section 2.1.2. As MuseScore does not explicitly have support

for continuous tempo changes, this had to be achieved by adding a hidden tempo

marker to each note.

A more complex feature which will not be considered for this project is automatic

beat detection. In music with a regular drum beat this can be an easy task, as the

bass drum will almost always play on the downbeat of every measure, and the

snare will often play on the third beat. If a drum kit or similar percussion is not

present on the track, however, this becomes a much harder task. This feature has

been implemented in the Moises App. The publishers claim to have developed

the world’s first Smart Metronome and Audio changer, which can generate click

16

tracks which follow any variation in tempo. They have used AI to achieve this

feature along with other useful tasks for musicians such as separating vocal tracks

from a mix [45]. Mounir et al [46] outline the differences between data-driven and

non data-driven note onset detection (NOD) systems, and state that data-driven

systems have been found to slightly outperform their non data-driven counterparts.

However this is only the case if they are trained using large annotated databases,

with the data needing to be annotated manually.

17

3 Aims and Objectives

3.1 Summary

The main aim of this project is to create a useful and convenient web application

which allows users to create and edit click tracks. To set it apart from other web

based solutions, I aim to add more advanced rhythmic functionality that may

typically be found in a desktop based DAW (Digital Audio Workstation). This will be

done by dividing the track into sections, each of which can be edited individually

through a simple form. A major aim of this project is ensuring that the user can

simply open a url and start editing click tracks, without the need for any downloads

or installations, or to sign up for any account.

The first and most important feature to be implemented will be the ability

to plan out a click track in sections, and to be able to edit and delete these

sections, changing values such as the time signature or number of measures.

The user should have more advanced rhythmic options available to them, such as

polyrhythms and smooth tempo change.

After creating a click track, a user should be able to listen to it directly in the

browser, as well as download it in a variety of file formats. Finally, a user should

be able to sign up for an account so that they can save click tracks they have been

working on to come back to later, but this should be strictly optional, to minimise

any friction to using the application.

3.2 Functional Requirements

1. The user must be able to add a section, to act as the basic building block for

the click track.

(a) The user must be able to add this section to any point in the click track,

for example at the beginning, or between two pre-existing sections, to

allow for more flexibility when creating the click track.

(b) The user must be able to modify the section’s tempo (in bpm), duration

(in measures) and time signature, so that each section can have different

rhythmic properties.

(c) If the user selects the tempo change option, they must be able to

change the starting and ending tempos, as well as the mean tempo

condition, as this allows for the creation of accelerando and ritardando

sections with a variably shaped tempo curve.

18

(d) If the user selects the polyrhythm option, they must be able to select

a different time signature for the second rhythm, in order to have two

distinct rhythms for the polyrhythm.

(e) If the polyrhythm option is not selected, the user must be able to change

the accented beats, so that different notes besides the first beat of every

measure can be played louder.

2. The user must be able to edit a section of a click track to allow more flexibility

in the construction of the click track.

3. The user must be able to delete a section of a click track, so that mistakes

can be easily undone and to allow more flexibility in the construction of the

click track.

(a) The form for editing the section must be pre-populated with the section’s

current data, to make it clear which section the user is editing.

4. The user must be able to toggle help dialogues on and off, as the help

icons might be a nuissance to the user once they are more familiar with the

application.

(a) The toggle for this must always be visible in the upper navbar, so that

the user can easily toggle help icons back on if they are stuck.

5. The user must be able to select samples for playback, so that they can

customise the sound of the click track.

(a) A reasonable sample must be selected by default for the primary sam-

ple, so that the user can listen to their click track right away even if they

do not select any samples.

(b) The user must be able to listen to a sample from the sample selection

menu to preview it, by clicking on the listen icon, so that they will be able

to see whether they want to use that sound before playing the entire

click track.

(c) The user must be able to select a primary sample by clicking on it.

(d) The user should be able to optionally select a second sample, also by

clicking, so that they can play the click track with a different sound for

strong and weak beats or for polyrhythms.

19

(e) The user must be able to deselect the second sample by either clicking

it again, or by selecting a new primary sample, in case they want to go

back to only using one sample.

6. The user must be able to play the click track directly in the browser, so that

the application can easily be used without downloading any files.

(a) This action should only be available to the user if the click track contains

at least one section, to prevent any errors from trying to play an empty

click track.

(b) The user must be able to stop the playback immediately by pressing

the stop button, so that they will not have to close or reload the tab to

stop playback.

7. The user must be able to export the click track to a file to download, so that

they can save it to their device and potentially import it into other applications.

(a) This action should only be available to the user if the click track contains

at least one section, to prevent any errors from trying to export an empty

click track.

(b) The user must have a choice of file formats, including MIDI and at least

one audio file format such as flac or mp3, as MIDI files and audio files

can be useful for different applications.

(c) The user should see a progress bar while the conversion is in progress,

so that they know their request is being processed.

(d) Once finished, the user must be provided with a link to download the

file.

8. The user must be able to view a visualisation of the tempo curve for the

entire track, so that they can see how the tempo changes throughout the

entire track.

9. This action should only be available to the user if the click track contains at

least one section, to prevent any errors from trying to render the visualisation

for an empty click track.

10. The user must be able to toggle the visualisation on and off, so that it does

not take up extra space on the screen when it is not needed.

20

11. When toggled on, the visualisation should include two line charts, one for

symbolic time, the other for physical time, as it will be interesting for the user

to see the difference between the two.

12. The user must be able to create an account to save their click tracks and

come back to them later.

(a) On successful registration, the user must be logged in automatically,

so they can start saving click tracks right away.

(b) The logged in user should now have an option to save a click track to

their account on the main editor page, so that they can continue using

the application in the same way as before, but with the option to save

their click tracks to the server.

(c) The user must be required to select a title when saving the click track,

to prevent click tracks being saved with an empty string as their title.

(d) Saving the click track must save the click track to a database and

redirect the user to a page with a view of all their saved click tracks, so

that they can be confident that it is saved persistently.

(e) On the saved click tracks page, a user must be able to click the "edit"

button on any of the click tracks, which will take them to the editor page

with that click track loaded in.

(f) When editing a click track, the user must be able to click on save

changes, which will update the click track in the database, and redirect

the user back to their saved click tracks page.

(g) The user must be able to delete a click track. Clicking the "delete"

button should first bring up a confirmation dialogue, so that the user

cannot accidentally delete a click track with a single misclick.

(h) Upon confirming, the click track must be deleted from the database.

3.3 Non Functional Requirements

1. The main page should load fast, ideally with TTI (time to interactive) [47] less

than 2 seconds, as studies have shown that the probability for a user to click

away increases by 32% when a page’s load time goes from 1 second to 3

seconds [48].

2. A help icon should show up next to parts of the application that are likely

to need explanation for the user, so that it is easy to find documentation

21

when needed. The help tooltips should be informative without being overly

verbose.

3. The user should be informed about responses to their actions, for instance

through error messages in form fields and alerts at the top of the page, to

maintain a good overall user experience.

4. The layout should be responsive and appear just as good on mobile devices

as on desktops, with the exception of the tempo visualisation, as this requires

a wide viewport for best results.

5. The playback of the click track should start without noticeable latency.

6. The timings of the notes should be precise, as this application could be used

for practicing fast and intricate rhythms.

7. The user should be able to easily distinguish between strong and weak beats,

to make playing along to the click track in any given time signature easier.

22

4 Technical Implementation

4.1 Overall Structure and Design

A significant aspect of the application’s structure is the decoupling of the frontend

and backend. In this particular case, the backend needs to complete two main

functionalities, audio processing and user management, which are quite separate

in their scope, so it was decided to go further with the idea of decoupling and

follow a microservice architecture. This greatly improves the resilience and fault

isolation of the application [49]. For example, if the audio processing microservice

were to crash, users could still edit and play click tracks, as well as log in and save

click tracks to their account. Likewise, if the user management backend crashed,

users could still edit and play click tracks as well as export them to files.

In fact, the application could even be run offline provided the sample files

from Cloudinary were cached, which could be done with service workers. This

would be an important step to transforming the application into a Progressive Web

App (PWA), as the offline experience criteria is stated as "Where connectivity

isn’t strictly required, your app works the same offline as it does online" [50].

Alternatively, the audio files could just be served statically, but this would be a

less flexible option, as in the future I may want to allow users to upload their own

samples to use.

As convenience is a core goal in this project, I ensured that having an ac-

count was purely optional, and that any user, logged in or not, could start editing

clicktracks as soon as they open the application.

4.2 Justification for Chosen Tools

ReactJS was chosen for the frontend as it is well suited to applications with rich

interactivity and complex state management. Additionally it is one of the most

mature and popular frontend frameworks, so has plenty of documentation and

extra libraries to extend its functionality, of which I used a few, including Redux

Toolkit for state management and Formik for managing forms.

For the audio processing microservice, Flask was chosen as the server-side

web framework, mainly as it is a python framework, as python has many excellent

libraries for music processing and analysis, such as librosa, music21 and pydub.

Additionally, flask was chosen over a more "batteries-included" framework such as

Django because of the limited need for traditional web server functionality such as

user management and database access.

23

ExpressJS was chosen for the user management backend, as I am most

familiar with writing typical CRUD APIs with it, after following the excellent Full

Stack Open course from the University of Helsinki.

Finally, Cloudinary was chosen as the solution for static file storage, primarily

due to its generous free tier, as well as its functionality for media transformations,

for example returning an audio clip with modified pitch or volume. Another reason

for choosing Cloudinary is its integrated CDN (content delivery network), which

achieves faster load times on these static files for users around the world. The

integrated CDN is a major advantage it has over competing services such as

Amazon’s S3 Buckets [51].

Figure 4.1 illustrates on a high level how these technologies all link together for

the application.

Figure 4.1: Outline of the technology stack

4.3 Development Environment

One drawback of using a microservice architecture is that it resulted in more

setup when developing locally, as this involved opening three separate terminal

windows and typing commands into each. After learning some basic bash scripting,

however, I was able to set up the development environment, including the docker

container for the audio conversion service (see Section 4.7) by typing only a single

command, shown in Figure 4.2.

4.4 Frontend

User interaction is handled with a frontend built in React. Perhaps the biggest

challenge here was managing state of the application, with many pieces of data

24

Figure 4.2: Shell script for starting the development environment

being accessed by different parts of the application. For this purpose, I used a

state management library called Redux along with its extension Redux Toolkit.

Styling was handled by the Material UI library, eliminating the need to spend too

much time writing CSS.

4.4.1 Frontend Structure

As the frontend was far more complex and feature rich than the backend in this

project, it was especially important to use a well organised and extensible file

structure and adhere to the principal of separation of concerns. All source code

went into the src directory of the project, which itself contained the directories

components, config, reducers, services and utils. The purpose of each directory is

briefly described in Table 1. The idea of directories for services and reducers is

taken from the University of Helsinki’s Full Stack Open course [52].

Directory Purpose

components Stores components, the modular building blocks of the user inter-

face

config Stores constants that can be changed to affect the whole applica-

tion

pages Stores components which take up a full page in the routing system,

i.e. the Main Page or the Login Page

reducers Stores logic for interacting with the application’s global state tree

services Stores logic for communicating with the backend, and potentially

any external APIs in the future

utils Stores various utility functions, but mainly for making calculations

related to click tracks

Table 1: Purpose of directories in the frontend source code

4.4.2 State Management

The state of the application can be visualised at any time in Chrome Devtools by

using the Redux Chrome extension. We can see the global state tree in Figure

25

4.3, which illustrates how the state is comprised of three distinct categories. Each

category was handled by a separate file in the reducers directory. The first reducer,

sections, stores data on the sections of the click track, as well as where the form

for adding or editing sections should be rendered. The latter could also logically

fit into the ui category. The samples reducer keeps track of which samples are

selected, and finally the ui reducer is concerned with the visibility of different ui

elements.

Figure 4.3: Visualisation of the application state in Redux DevTools

4.4.3 Audio Playback

The ToneJS library powered the playing and loading of audio samples. Thanks to

an article by Chris Wilson [53], a mistake I managed to avoid early was using built-

in JavaScript functions such as setInterval() and setTimeout() for scheduling

playback. The execution of their callback functions can be delayed by tens of

milliseconds or more, as they are on the main thread, so can be blocked by any

number of processes such as rendering content or processing HTTP requests.

Instead, it is suggested to use the WebAudio API, which runs in a separate

thread. ToneJS is built on the WebAudio API, so I was confident that the timings

of scheduled notes would be precise. High precision was important, as the

application allows the user to select a tempo as high as 400bpm. With the addition

of polyrhythms, notes become even more dense, and any deviations from the

intended timing would be immediately noticeable.

4.4.4 User Interface

The layout of the user interface was done quite differently from a typical DAW

or sequencer, which will generally have a left to right view of the entire track.

Instead, the layout here is based on sections, organised vertically, which makes

for easier viewing on mobile devices. Information for each section is rendered

26

in a SectionDisplay component, and can be modified by interacting with the

SectionForm component. It was important that the form for adding or editing a

section is rendered in the correct location, to make it clear to the user which section

they are working on. Additionally, the decision was made to display information

concerning the section inside a collapsible accordion component, to allow the

SectionDisplay component to take up less vertical space. Figure 4.4 shows both

of these components in action, with one section displayed in its collapsed state

and the other expanded.

Figure 4.4: Editing a section

An important aspect of the user interface is visual feedback. To this end, a

notification banner at the top of the page was implemented, relaying information

about events to the user, such as a successful login or saving the changes made

to one of their click tracks. Additionally, the Formik library was used on the login

and register forms to help render informative error messages next to relevant form

fields, for instance notifying a user that their password is too short, as in Figure

4.6.

4.4.5 Rhythm Calculations

Throughout most of the development, time signature was represented simply as

beats per measure, with beats always being hardcoded to quarter notes. This

greatly simplified the code for audio processing, but would not provide a good user

27

Figure 4.5: Notification informing the user that their click track has been saved

successfully

Figure 4.6: Error messages displayed on the register form

experience, as musicians are used to a different notation for time signature, that is

a fraction where the numerator represents the number of beats per measure and

the denominator represents the duration of these beats, i.e. 4 for quarter notes

or 8 for eighth notes. Therefore I implemented a selection for the denominator

with the options 2, 4 and 8, as it is very rare to see values other than this in music.

For all calculations and business logic, it was however much easier to always

represent the beats as quarter notes. This lead to the need to recalculate bpm

when displaying it in the user interface. So for example, if a user created a section

in 6/8 time with bpm = 110, internally the program would store the time signature

as 6/4 and double the bpm. When displaying the bpm to the user, it would need to

be multiplied by a factor of 4 / denominator.

28

The function for playing the click track takes an array of times to schedule

the playback of the samples, which meant that these times would need to be

calculated based on the data stored in the section data structure. This was simple

enough for sections with constant tempo, but slightly more complicated for the

sections with tempo change. On a basic level, an empty array was initialised, then

for each section the onset time of each note was calculated, by first calculating the

bpm and then the interval for that note. This means that the resolution for changing

tempo is based on individual beats, similar to the feature in the Cakewalk DAW

described in Section 2.2.2. Additionally, a boolean downBeat value was assigned

based on input from the section form. Finally, an offset time had to be included,

since aside from the first section, the starting time would not be 0 but instead would

be equal to the ending time of the previous section. For that reason, each time the

buildClickTrackSection function is called, it takes startTime as an argument

and returns endTime.

Figure 4.7: Function to build a section of the click track

The variable bpmArray represents the current bpm at each note and is calcu-

lated based on Berndt’s formulation of the mean tempo condition. Berndt [20]

gives the Tempo at an arbitrary symbolic time d in the equation below,

Tempo(d) =

(

d− dm
dm+1 − dm

)p(im)

(t2,m − t1,m) + t1,m (4.1)

where dm and dm+1 are the symbolic times at the beginning and end of the

section, respectively, and t1,m and t2,m are the tempi at the beginning and end of

29

the section. The exponent p(im) is derived from the mean tempo condition im as

shown:

p(im) = ln 0.5/ ln im (4.2)

If we consider a case where the starting time is 0, Equation 4.1 can be simplified

as shown [20]:

Tempo(d) =

(

d

dm+1

)p(im)

(t2,m − t1,m) + t1,m (4.3)

We can see the implementation of Equations 4.2 and 4.3 in the functions

calcExponent and bpmAtCurrentBeat in Figure 4.8. This function can then be

mapped onto each note to obtain the bpm array.

Figure 4.8: Function to calculate the bpm array of a section

The addition of polyrhythms as a feature introduced a new layer of complexity

to calculations, which will be explored below.

Firstly, we can see in Figure 4.9 that in our function getClickTimesPoly, each

section is checked for whether it is a polyrhythm, by checking if the array of rhythms

on it has length greater than one. A different function is called to build that section

depending on the result.

The function to build a polyrhythmic section itself is shown in Figure 4.9, where

we can see that the section data is first split into its two different rhythms, which

are passed as arguments to another function which returns a time array for each

rhythm. Depending on how the different rhythms line up, there can be some extra

times added to the end, so lines 140-144 of Figure 4.9 include logic for removing

them. Finally, and most importantly, the two time arrays are combined with the

combineTimeArrays function. The functionality for this is different depending on

30

Figure 4.9: Function to generate click times taking polyrhythmic sections into

consideration

whether the click track is to be played with one or two distinct samples.

Figure 4.10: Logic for combining time arrays when only one sample is selected for

playback

Let us first consider the case of one sample, shown in Figure 4.10. To start,

the two time arrays are concatenated together, then the resulting array is sorted

in ascending order. Then the downBeat property with a value of true is given to

any duplicate times, essentially creating accents where the notes line up. Finally

duplicate notes are removed by converting the array into a set and then back into

an array.

In the case of two distinct samples, shown in Figure 4.11, we want to achieve

something a bit different. Instead of using the downBeat property, we will instead

use a property secondInstrument to instruct the playback function on which sam-

ple to use. Downbeats will naturally be emphasised due to having two samples

playing simultaneously. Once the downBeat property has been applied, the arrays

are concatenated and sorted as before, only this time duplicates are not deleted,

31

Figure 4.11: Logic for combining time arrays when two samples are selected for

playback

since we want the two different samples to play at the same time. ToneJS requires

that each time given is strictly greater than the previous time though, so a tiny

increment is added to the second sample each time the two rhythms align.

4.4.6 Data structure and default values

The current click track which the user is working on gets stored in the redux store

of the application as an array of Section objects. When adding a new click track

section, default values are displayed in the form. Figure 4.12 shows the JavaScript

object which stores these defaults and also serves to illustrate the data structure

of an individual section.

Figure 4.12: Default Values for a click track section

32

As shown in Figure 4.12, the data for a section is divided into 2 nested objects

to account for possible polyrhthms. The first of these, overallData, includes data

that remains constant for the whole section and is not affected by the individual

rhythms. The second, rhythms, is an array of objects each representing a rhythm,

with the first being the primary rhythm. This allows for polyrhythms to be optional

without including many null variables. Each section is also assigned a universally

unique id (uuid) on creation, to allow for easy and predictable manipulation of the

section list. This is shown in Figure 4.13, where a uuid is generated for a newly

added section in the addSection function, and then is used to look up a section in

the updateSection function.

Figure 4.13: Logic for creating and updating sections in the state

The default values are based on what would be most common in existing music.

A default time signature of 4/4 was an easy decision, as it is by far the most

common time signature in western music. Likewise, tempo was set as constant by

default, at 120bpm, considered a fairly average tempo, and which corresponded to

a neat, round IOI of 0.5 (half a second between notes). Polyrhythms and custom

note accents were also off by default. A JavaScript object saved in a separate file

within the config folder of the app was used to store these default values, so they

could be easily changed at any time.

4.4.7 Tempo Visualisation

Line charts were used to give a visual representation of the tempo throughout

the entire click track, created with the help of the Recharts library. The use

of an existing chart library made it relatively quick to get visualisations into the

application, which was perfect for the time constraint of this project, however for

better performance and more customisation, the tempo curves could be drawn

33

from scratch on an HTML canvas element. The application includes both a chart

in symbolic time, i.e. time measured in notes, and physical time, time measured

in seconds, as this difference can be quite significant, especially for drastic temp

changes. An example of both these charts can be seen in Figure 4.14. This was

one instance in which the responsive design of the application was a bit weaker,

as it was crucial to have a wide viewport to visualise the tempo change throughout

the track, especially for longer tracks. For extra clarity, regions of the charts are

shaded in different colours to represent the sections in the track. In the chart with

symbolic time, vertical lines are also included to represent measures within each

section.

Two different approaches were considered when passing data to the chart

components. The first was to simply plot a point for each note in the click track, and

use the linear line option to connect them, which would still give the appearance of

smooth curves for tempo curve sections with a lot of notes. This would result in

the most accurate charts, but would also require more computing power to plot

each individual point and recalculate them all when any tempo data in the click

track changes. This approach was used for the chart with physical time, to be able

to accurately show the exact bpm of notes at each time. The second approach

was to only give the bare minimum data to plot the sections, and use one of the

built-in curve fitting algorithms provided by Recharts to draw the lines. This bare

minimum data was simply the x and y values at the boundaries between sections

and at the point of mean tempo condition. This approach was used for the chart

with symbolic time, as it is there simply to show the user the overall shape of the

tempo curves, and did not need to have every single intermediate point plotted

with perfect accuracy.

Figure 4.14: Line charts for tempo visualisation

A much smaller line chart was also integrated into the section form component

to help the user visually understand the effect of changing the mean tempo

condition, as show in Figure 4.15. Without it, a slider would not be very indicative

34

at all.

Figure 4.15: Selection of mean tempo condition

4.4.8 Help Dialogues

To provide adequate documentation for users without avoid cluttering up the page,

I decided to implement a help dialogue system where users could hover over a

question mark icon to get more information about a certain part of the application.

These icons could be toggled on or off via a button at the top of the page. This was

an instance in which Redux’s state was useful, as the Boolean value showHelp

was accessed by many different components in the component tree.

4.5 Audio Processing Microservice

4.5.1 Structure

Though this backend service is a significantly smaller codebase than the frontend,

it was still important to structure it in a logical way, with functionality separated

into 5 main python files (not including __init__.py) in the app directory. Since

the backend was used more as a file conversion microservice than a traditional

backend, well established design patterns such as model-view-controller or n-tier

architecture were not relevant here. This made Flask especially well-suited to the

particular use case, since it is lightweight and unopinionated and does not force

the user to adopt any of these structures in the way that a framework such as

Django or Ruby on Rails would.

Since most of the complexity resides in the audio and symbolic music pro-

cessing functions, it was decided to follow a facade design pattern, described by

35

Figure 4.16: Python files used for backend

Gamma et al [54] as providing a higher level interface that makes the subsystem

easier to use. This meant the service could only be interacted with through 4 clearly

named API routes: make_midi(), make_wav(), make_flac() and make_ogg(). This

proved to be a good design decision, as it meant I was able to change the under-

lying algorithms and functionality for these endpoints without having to change

anything on the frontend.

Simply looking at one of the four route handlers, shown in Figure 4.17, can

illustrate how the data flows in the backend. First the data sent from the frontend

is parsed, then passed to the appropriate audio processing function, which resides

in the file audio_processing.py. Behind the scenes, some helper functions from

audio_processing_helpers.py are also called. A filename is returned, which

is then passed to the file upload function, residing in file_management.py. If

successfully uploaded, the url is returned to the route handler, so it can then finally

return the url to the frontend.

Figure 4.17: API route handler for requesting a wav file

4.5.2 MIDI file creation

The music21 python library was heavily used when it came to creating MIDI

files out of the JSON data sent from the frontend. The music21 library allows

for representing a piece of music symbolically in an object oriented way with a

hierarchy of stream > parts > measures > notes and rests, where stream is an

abstract data structure which allows any sort of musical instruction or information

to be stored at any offset. An offset represents a point in time, measured in quarter

notes [55]. For this project parts were used to separate what was played by different

36

instruments as well as for the secondary rhythm of polyrhythms. Measures did not

need to be explicitly defined. Instead, time signature markers were used, which

automatically subdivided the part into measures.

The make_midi_file function is quite lengthy, but pseudocode for it in the case

of of a click track with no polyrhythms is shown in Figure 4.18.

Figure 4.18: Pseudocode for the algorithms to make a MIDI file

I found that music21 was generally quite powerful and intuitive to use, but one

problem which I came across was that changing the volume of notes did not seem

to work, and this was crucial for adding accents to downbeats in the click track.

My solution to this was to use another python library called Mido, which is created

especially for manipulation of MIDI data, generally on a lower level than music21.

Due to the lower level nature, using Mido requires some basic knowledge of how

the MIDI format works. On a basic level, a MIDI file consists of tracks, which are

themselves simply a series of instructions called messages. The messages are

typically only 2-3 bytes long and consist of simple instructions such as NOTE ON

or NOTE OFF along with basic data for properties like pitch and volume, which

37

in MIDI terminology are usually called note number and velocity respectively [56].

In this particular use case, we are interested in the velocity property of these

messages, so once the messages corresponding to accented notes are located, it

is simply a case of directly modifying the velocity property.

This is of course not an ideal solution, as a file is first written to by music21,

then opened again by Mido before being modified and saved one more time, which

is likely not good for performance.

To evaluate that the MIDI files were created correctly, they could be opened

and examined in MuseScore. For click tracks with gradual tempo changes, it

was possible to see all the discrete tempo markings as in Figure 4.21, essentially

achieving the same results as Temmerman’s [44] tempo change plugin discussed

in Section 2.2. Polyrhythms were represented in the MIDI file by stretching the

length of notes in the secondary rhythm so that they would all fit into a measure

the same length as the primary rhythm, essentially recreating Ableton Live’s

time stretch feature discussed in section 2.2.2. For example, in a 5 against 4

polyrhythm, each note of the rhythm in 5 would have a length of 80% of a quarter

note, determined by the ratio 4/5. This is illustrated in Figure 4.19. Using the

approach of lowest common multiple, also mentioned in Section 2.2.2, would work

too, and the extra maths involved would not be a problem since it could all be

calculated automatically, however the stretching approach was chosen as it results

in more readable scores in applications such as MuseScore or Sibelius.

Figure 4.19: MIDI file generated generated from a click track with 5 against 4

polyrhythm, opened in MuseScore

The addition of polyrhythms and multiple instruments certainly added some

complexity to the backend. Fluidsynth could only synthesise a MIDI file with one

soundfont at a time, so constructing a click track with two samples from different

soundfonts required generating a separate MIDI file for the notes played by each

sample, then creating 2 separate audio files and combining them. This was done

through the soundfile module, with the code shown in Figure 4.20, which reads

the data from both audio files into NumPy arrays. These can then be overlayed

38

using the + operator. To play them sequentially, the concat operator would be used

instead.

Figure 4.20: Code for overlaying two audio files

Another potential solution to generating tracks with 2 different samples would

be to create a custom soundfont, as a different sample could be assigned to

each note of the keyboard, not to mention multiple instruments, so this would be

plenty of samples. This would require the use of a gui soundfont editor such as

Polyphone [57], unless an effective way was found to generate a soundfont file

automatically from a collection of samples.

Figure 4.21: MIDI file generated from a click track with accelerando section

4.5.3 Audio file synthesis

Currently, data from the frontend is first converted to MIDI regardless of the

requested file format, with the MIDI file then being used to synthesise audio. This

was not always the case during the development of the application, as the first

approach I tried was to generate wav files directly using the wavfile module of

the ScyPy python library. This worked well for initial simple test cases such as

4 measures of a constant tempo, but problems quickly became apparent. The

initial algorithm was very crude and did not scale well. The first major bug which

occurred happened when notes were too close together. The duration of the

sample itself was longer than the interval between the two click times, so the

generate_silence function was given a negative value, causing the application to

39

crash. This was later fixed by allowing consecutive samples to "cut each other off",

but was far from the end of problems with this approach.

Another attempted solution was to use an external API for converting from MIDI

to audio file formats. While this did work fairly smoothly it lacked in flexibility, as

it was impossible to specify a soundfont file, so the samples used for synthesis

could not be controlled.

The better solution was to use fluidsynth, a command-line-based software

synthesiser with many use cases such as playback and sequencing. The case

relevant to this project was providing a MIDI file and a soundfont file, and getting

an audio file as an output, in this case either a flac or a wav file. At first I tried

using a python library called midi2audio, which acts as a lightweight wrapper for

fluidsynth, but it did not have an option for controlling the volume of the output,

which was coming out far too quiet. Thankfully it was not too difficult to simply

execute fluidsynth directly from the python code using the subprocess module,

using the -g flag to change the gain to 1 instead of its default value of 0.2. This

was achieved using the command shown in Figure 4.22.

Figure 4.22: Command used to generate an audio output file from a MIDI input

file, using fluidsynth

4.5.4 Audio file formats

The three audio file formats available in the initial version of the application are

explained below.

1. WAV - The wav format is uncompressed audio data, and therefore results in

the large filesizes. It is the preferred choice for use when mixing and editing

audio as all the original data is present [58].

2. FLAC - The flac format uses a lossless compression algorithm, resulting in

40

smaller filesizes with no irreversable loss of audio quality. It is popular among

audiophiles and is used for the HD option in some streaming services [59].

3. OGG - The ogg format is an open source format that uses lossy compression,

similar to mp3, to achieve much smaller filesizes than either wav or flac.

Lossy compression does mean that some audio information is irreversibly

lost, but this is rarely noticeable [60]. Ogg files are often used for browser-

based playback, for instance Wikipedia uses ogg files when including audio

samples in their articles.

4.5.5 File Upload

Once either the MIDI or audio file has been created, the final step is to upload it to

Cloudinary and return the url of the uploaded file so that it can be displayed on the

frontend. The function to achieve this is shown in Figure 4.23.

Figure 4.23: Function for uploading a file to Cloudinary

The user-created click tracks do not actually need to be stored persistently

on Cloudinary, as it is just used to serve the file for download. Consequently, it

was possible to save space by automatically deleting a newly uploaded click track

after a predetermined period of time had elapsed. Thanks to this, running out of

the space allocated to a free tier Cloudinary account was no longer a concern.

The implementation for this feature was not completely trivial, as Flask does not

run asynchronously by default, so simply calling time.sleep(30) followed by the

code to delete the track would actually block the entire application for 30 seconds.

Therefore, it was necessary to gain familiarity with the basics of the multiprocessing

module for python, so that this delayed deletion functionality could be started in

parallel as a separate process. The additions to the file uploading functionality are

shown in Figure 4.24.

41

Figure 4.24: Added functionality for deleting the uploaded file after 15 minutes

4.6 User Management Back-end

The user management backend was implemented after the user evaluation, as it

had no impact on the core functionality of the click track editor.

4.6.1 Structure

As this is a backend with more traditional functionality such as CRUD, user authen-

tication and interaction with a database, the Model View Controller (MVC) design

pattern was chosen, with the directory structure shown in Figure 4.25.

Figure 4.25: User management backend directory structure

Only two models were needed, one for users and one for click tracks. The

software has been designed to be easily scaleable though, so adding more models

would be simple. For example in the future if we want the user to be able to

practice along to a click track, and keep track of their performance, another model

42

called UserStats, for instance, could be added.

4.6.2 Authentication

Upon creating an account, a users’s password is hashed using the bcrypt hashing

algorithm with 10 salt rounds. The code for this is shown in Figure 4.26. As bcrypt

salts passwords by default and can be slowed down deliberately by increasing the

number of salt rounds, it is often recommended as the most secure method for

hashing passwords to be stored in a database [61].

Figure 4.26: Code for registering a user

When logging in, the entered password is compared with the password hash in

the database using the bcrypt.compare function. If successful, the server returns

a token which is associated with the user. This token can then be stored in the

browser’s local storage. For requests requiring authentication, the token is sent in

the Authorization header, as shown in Figure 4.27. Back on the server, requests

to protected routes must first pass through tokenExtractor and userExtractor

middleware functions, shown in Figures 4.28 and 4.29, where the token is first

extracted from the request, and then the server tries to decode it and associate it

with an existing user. If either of these steps fails, an appropriate error response is

returned.

Figure 4.27: Code for sending the token in the Authorization header

43

Figure 4.28: tokenExtractor middleware

Figure 4.29: userExtractor middleware

4.6.3 TypeScript

To enable better error handling and more powerful autocomplete in the IDE [62],

the server was written in TypeScript, with the models defined using the typegoose

library. Thanks to the use of TypeScript interfaces and typegoose classes, shown

in Figures 4.30 and 4.31, to create a type system, the server would throw an error

upon receiving malformed or invalid data.

4.6.4 Changes to Frontend

Some additions were needed on the frontend in order for users to access the

features offered from this backend. To start, the pure single page model was

no longer suitable for the application, as there would need to be separate login

and register pages as well as an index view for all of a user’s saved click tracks.

44

Figure 4.30: TypesScript interface for click track section

Figure 4.31: Typegoose class for clicktrack model

All of the routes as well as the routing logic can be seen inside the projects’s

base component App.jsx, shown in Figure 4.32. Therefore, client-side routing

was implemented with the React Router library. Client-side routing is faster than

server-side routing as an entire new page does not need to be downloaded when

navigating to a different url. It also makes it easier to share state between pages

[63]. A new directory entitled pages was created in the source code, to hold pages,

which are still React components, but distinguished as the ones associated with

each route.

The route /myclicktracks, shown in Figure 4.33, is used as an index view

of all the click tracks belonging to the logged in user. When a user clicks on the

edit button for one of these click tracks, they are taken to a route of the form

/myclicktracks/:id, so that it is clear they are editing a specific click track.

More information needed to be stored in the applications global state tree. This

was easy to accomplish thanks to the separation of the state into logical categories

as discussed in Section 4.4.2. A new reducer for users was added, which shows

up as a new branch on the tree visualisation shown in Figure 4.34.

45

Figure 4.32: App component with routing implemented

4.7 Deployment

Separating the frontend and backend allowed for many appealing options for

deploying the frontend, since it was essentially a static site. These options included

Netlify, Render and Vercel, among many others. Vercel was chosen for this

project due to its ease of use and the availability of preview as well as production

deployments.

One challenge when deploying the frontend was dynamically changing the back-

end url to that of the production backend. This was done using the window.location.href

attribute in JavaScript, to check the current URL. Therefore the API url could be

changed dynamically based on whether the production or development version of

the frontend was being used. We can see the solution to both of these challenges

illustrated in Figure 4.35.

Deploying the backend came with a few more challenges. I decided early on to

deploy it to Heroku, due to its free tier and my familiarity with the platform. The

main disadvantage of the free tier is cold starts, meaning the server takes a long

time (3-4 seconds, sometimes even more) to respond if the application has not

received any requests for 30 minutes. This is due to Heroku apps being run in

lightweight Linux containers called dynos, which are powered down during periods

of inactivity to save computing power [64]. Unsurprisingly, this has a negative

effect on user experience. Studies have shown that increasing the load time of a

site from one second to five seconds increases the probability of a user clicking

away by 90% [48]. There exist tools to ping a Heroku application every 30 minutes,

46

Figure 4.33: View of a user’s clicktracks (on a mobile device).

but this will result in the limited number of hours given in the free tier being used

up. Instead a better solution was found. Typically a user would spend some time

creating, editing and previewing a click track, which is all handled by the frontend,

before requesting a file to download. Therefore when the frontend web page is first

opened, it sends a trivial HTTP get request to the server to "wake it up", so by the

time a request for file generation is made, the server is fully up and running. This

was the initial idea at least, but results were inconsistent, as the first file conversion

still took quite long sometimes. Further research revealed that this was due to

HTTP GET requests being cached, so the server was not receiving this initial

"wake up" request. The solution to this was to change to using a POST request,

as POST requests are not cached by default [65].

While a simple deployment of the Flask application to Heroku worked well

at first, a major roadblock occurred when adding the functionality to synthesise

wav and flac files from MIDI, as fluidsynth needed to be installed directly on the

server, not just as a python dependency in requirements.txt. The trade off

for Heroku’s ease of use is that it does not offer this level of control over the

servers, at least on the free tier. An alternative option would be to use a virtual

private server (VPS), but this requires significantly more knowledge and work

to configure properly. In the end, I decided to opt for a third approach which is

increasingly popular in modern backend development, which is containerization.

47

Figure 4.34: Visualisation of the application state after changes to the frontend

Figure 4.35: Functionality for frontend interaction with the audio processing API

I used Docker as the containerization engine, allowing me to write a Dockerfile,

essentially a set of instructions for how to set up a lightweight virtual machine, in

this case with FluidSynth and python installed. The Dockerfile for this application

is shown in Figure 4.36. This gave me full control of the Linux environment in

which the application runs, while still taking advantage of Heroku’s ease of use, as

pushing to the Heroku container registry was quite straightforward, requiring only

the commands shown in Figure 4.37.

Finally, the user management backend was a simple Heroku deployment, as

the process for deploying NodeJS applications is well documented.

To enable communication between the frontend and the two backend services,

cross origin resource sharing (CORS) needed to be enabled. For improved security,

it is possible for a server to implement a whitelist of external origins which can

request resources, as opposed to opening up the server to all external traffic. The

logic for this in the Flask application is shown in Figure 4.38.

48

Figure 4.36: Dockerfile used for setting up the container environment for the python

server

Figure 4.37: Shell script for redeploying the audio microservice

4.7.1 Note on the Heroku free tier

At the time of writing, Heroku has recently announced that they will be ending their

free tier as of the 28th of Novemmber 2022 [66]. Had this been announced earlier,

a different deployment platform would certainly have been chosen for the backend

services of the application. As it stands, these services will continue to run on

Heroku for the immediate future, but migrating them over to a different platform

such as Fly.io, or Render is something I now intend to do after submission.

49

Figure 4.38: CORS whitelist implementation in Flask

5 Testing

5.1 End to End Testing

Given more time to complete the project, I would have liked to implement a

comprehensive suite of unit tests. However due to the limited time frame of the

project, end to end was the testing method of choice. End to end testing also

has many advantages over unit testing, such as testing the interaction between

multiple components and more closely resembling real life situations [67]. With

strong end to end testing in place, I could have more confidence in the reliability of

the application, and therefore focus the user survey on more subjective questions.

Though end to end testing was implemented relatively late in the development of

the application, it was immediately beneficial when adding the last few features, as

I could quickly verify that changes did not break existing functionality without the

need to manually test out all the interactions myself.

Cypress was chosen as the end to end testing library. It works by opening an

automated browser window and performing interactions specified in a spec file to

simulate a user interacting with the website. It is then easy to see which tests, if

any, failed and why.

Since the application needs to be running locally to run Cypress tests on it,

setting up the testing environment requires even more steps than setting up the

development environment, so I extended the dev.sh script from Section 4.3 with

another terminal window to open the cypress tests, as shown in Figure 5.1.

Figure 5.1: Shell script to start the testing environment

To avoid one excessively large file for the tests, I decided to divide them into

testing the ideal functionality, i.e. the general flow of a user interacting with the

application as expected, and testing edge case, i.e. what if the user tries to enter

50

an empty value or a negative value where they are not supposed to? Testing

the edge cases immediately raised some bugs to my attention. For example,

when refactoring the forms to use MaterialUI components, I removed the required

HTML attribute without noticing. This lead to a user being able to clear the number

inputs in the form for adding a new section and submit it, creating sections with

length of 0 measures or tempo of 0 bpm, which was of course undesired. Without

implementing end to end testing, this bug may have gone unnoticed for much

longer.

Figure 5.2: Cypress tests for ideal functionality

In Figure 5.2, we can see the full automated browser window running the

aforementioned test file for ideal functionality. The one failing test is because the

audio processing service still needs some optimisation when dealing with longer

click tracks, so it takes longer than Cypress’s default maximum response time of

4000ms. Figure 5.3 shows just the results of running the test suite for edge cases

(after fixing the bugs which it revealed).

5.2 Performance analysis

The slow response time for longer click tracks was quite disappointing to see, so

some further analysis was done to locate the performance bottleneck. There were

three main areas of the code that I thought could be slowing the performance

down.

1. Creation of the MIDI file

51

Figure 5.3: Cypress tests for edge cases

2. Synthesis of the audio file

3. Upload to Cloudinary

The first thing I wanted to find out was whether more time was taken in the

creation of the MIDI file or in the synthesis of audio files. Since all audio files first

require a MIDI file to be made in the first place, as described in Section 4.5.3,

simply subtracting the time taken to create a MIDI file from the time taken to create

and audio file would give a good estimate of how long the synthesis took. To this

end, I used Cypress to automate the process of exporting 5 times to each file type,

so that a more accurate average could be found of how long each file type takes

to be created. The spec file for this is shown in Figure 5.4.

Run MIDI Wav Flac Ogg

1 1.889 14.625 1.796 4.188

2 1.243 17.58 1.851 4.243

3 1.939 21.533 1.966 3.743

4 1.186 10.505 1.853 3.921

5 1.987 23.902 3.983 3.67

Average 1.6488 17.629 2.2898 3.953

Table 2: Comparison of time taken (in seconds) to generate a file of each format,

for a click track of 20 measures

The results of the first test, shown in Table 2, were very eye-opening in terms

of the difference between flac and wav files. While I knew that flac would always

be faster due to its compression, the extent to which it was faster came as a

shock. Making the assumption that synthesis time could be found by subtracting

the MIDI creation time, we get an average time of 15.98 seconds for wav synthesis,

compared to only 0.641 seconds for flac synthesis, so the wav file synthesis is

52

Figure 5.4: Cypress spec file for timing the file creation of different file formats

nearly 25 times slower on average. This started to make more sense when I

compared the file size of a flac and a wav file generated from the same 30 second

click track. The flac file came to a size of 294kB, while the wav file was a much

larger 5.3mB, or 18 times larger. In light of this, especially taking into account

upload time, it makes sense that the requesting the wav file took 25 times longer.

This large difference in filesize is itself still unexpected though, as multiple sources

online [68], [69], quote the compression ratio for wav to flac as around 50%, so

the wav file should only be twice as large, not 18 times. In the README file of his

repository for the midi2audio python library, Zámečník [70] recommends exporting

to flac over exporting to wav. Perhaps this could be because of an issue with

fluidsynths’s conversion to wav files specifically, although I could find no reference

to this in any official documentation for fluidsynth.

While performing these tests, I stumbled upon another strange error. For click

tracks with more than 20 measures, requesting an ogg file would simply cause

the server to crash without logging any error messages whatsoever. I eventually

tracked down this GitHub issue: https://github.com/bastibe/python-soundfile/

issues/130, suggesting that this may be caused by a bug in the soundfile python

module itself, which is being used to convert form flac to ogg.

Unfortunately due to time constraints these tests were carried out after deploy-

53

https://github.com/bastibe/python-soundfile/issues/130
https://github.com/bastibe/python-soundfile/issues/130

ing the initial version of the application for user evaluation. Surprisingly, none of

the participants in the user evaluation survey seemed to notice these performance

issues and bugs. This will be further discussed in Section 6. In the next release of

the application, however I plan to at least temporarily remove the option for ogg

export, and add a warning that wav export is very slow, with flac recommended

instead. Additionally I will try to find ways to speed up the MIDI file creation too,

as this is actually the main performance bottleneck for creation of audio files in

formats with compression.

To gain more detailed insight I ran another performance test, in which only flac

files were created for click tracks of increasing length, and I timed how much time

was taken up by MIDI file processing, flac synthesis and uploading to Cloudinary. I

increased the number of sections in intervals of 4 from 4 up to 100. Only the first

half of the results, for the sake of brevity, is shown in Table 3. The upload times

varied quite widely, but this is simply due to the weak and patchy WiFi network

that the tests were run on, so these will be disregarded. The first time taken for

flac synthesis should also be disregarded, as it is a very obvious anomaly. This is

almost certainly due to the time taken to load fluidsynth on the server for the first

time, as this test was run right after launching the server. Figure 5.5 shows a plot

with the full dataset. The points for MIDI file creation fit best with a polynomial of

order 2, meaning the algorithm has a time complexity of O(n2), while a linear fit

was suitable for the flac file synthesis, corresponding to a much more acceptable

time complexity of O(n).

Measures MIDI Flac Upload Total

4 0.04 2.846 1.42 4.306

8 0.083 0.113 1.822 2.018

12 0.152 0.218 1.272 1.642

16 0.278 0.214 2.557 3.049

20 0.35 0.313 2.888 3.551

24 0.462 0.312 2.134 2.908

28 0.633 0.413 2.89 3.936

32 0.709 0.413 3.436 4.558

36 0.972 0.413 3.269 4.654

40 1.116 0.513 2.431 4.06

Table 3: Time taken (in seconds) for various parts of flac file export, for click tracks

of increasing length

O(n2) time complexity is of course something to be avoided if at all possible,

so these findings necessitated a closer look at my function for making MIDI files.

54

Figure 5.5: Comparison of time complexity of MIDI file creation and flac synthesis

Upon closer inspection, I hypothesised that it was the code shown in Figure 5.6

which was responsible for this. We can see that on line 68, the code loops through

the list note_bms, which is linearly proportional to the length of the click track.

Inside this loop, on line 71 of Figure 5.6, music21’s offsetMap method is called on

the notes of the click track, which also essentially loops through them. Two nested

loops through a list or array like structure is a typical example of an algorithm with

O(n2) time complexity [71].

Figure 5.6: Code which is likely causing the quadratic time complexity

I will consider two possible options to resolve this issue. The first will be to

rewrite the logic for constructing the MIDI file with music21, avoiding any nested

loops. If this significantly improves performance then the second option will not

need to be considered. If performance is still poor however, it may be beneficial to

use Mido for the entire MIDI file creation process.

A new and improved algorithm for converting to MIDI was created. Instead of

first adding all the notes and rests to the music21 stream object and then looping

through again to add time signature markers, tempo markers and accents, all of

this information was instead added at the same time. This was achieved with a

new helper function for making a section, shown in Figure 5.7. The same test

of generating flac files of different lengths was run again, and we can see from

Figure 5.8 that the performance of the algorithm has improved significantly, with

55

the time complexity now reduced to linear. Additionally, we can see that unlike

in the previous test, the time taken to synthesise the first click track to flac is

not abnormally high. The server was already running for this test, justifying my

hypothesis that the anomaly in the first test was in fact due to the initial load time

for fluidsynth. Finally, I was able to find a way to adjust note volumes with music21,

which was an issue in the first edition of the MIDI creation algorithm (see Section

4.5.2), so Mido could be removed entirely as a dependency, making the application

more lightweight overall.

Figure 5.7: New helper function for translating a section to music21 objects

Figure 5.8: Comparison of time complexity of MIDI file creation and flac synthesis

with the new and improved MIDI creation algorithm

56

6 User Evaluation

A survey with a link to the deployed web application was sent out to university

mailing lists in order for users to evaluate the application. The questionnaire,

recruitment email and participant information sheet can all be found in Section

9.2 of the appendix. The first question of the survey was simply to confirm that

participants were 18 or older, so we will examine the responses to question 2 and

onwards here.

Firstly, we can see from the answers shown in Figure 6.1 that 14/15 of the

users surveyed had played music with a metronome or click track before. Likewise,

14 of them play music in which the tempo changes at least rarely, with the most

common answer being "sometimes". This shows that the sample is fairly typical of

hobby musicians, which are the main target audience of the application. To gain

more insight from musicians who play music with tempo changes often, the user

survey could be promoted in forums for specific genres like progressive rock, math

rock or contemporary classical music, which typically employ a lot of rhythmic

intricacy.

Figure 6.1: Responses to questions 2 and 3 of the user survey

In question 4, participants were required to choose from 5 qualifiers to describe

how easily they could figure out how the application worked. We can see from

Figure 6.2 that 10/15 participants selected "fairly easy", the second best option,

while only one participant selected "difficult" and no participants selected "very

difficult". This is quite satisfactory for a first round of user testing. In subsequent

57

questions which ask about improvements to the application, special attention

will be paid to the answers of the two participants who answered "difficult" and

"neutral".

Figure 6.2: Responses to questions 4 and 5 of the user survey

The results for question 5 came as a pleasant surprise, as 100% of participants

found that they could generate tempo changes that sounded natural. I feared that

maybe some of the more experienced musicians would have answered negatively

to this question, as the simple mean tempo condition approach meant the tempo

curves did not have a smooth start and end. Feldman et al [24] claimed that this

was needed for a natural sounding tempo transition, as discussed in Section 2.1.2.

Perhaps a more open-ended format than a yes or no question could have worked

better here, as a participant who was mostly satisfied with the tempo curves but

still found some minor flaws would likely still answer yes.

In question 6, shown in Figure 6.3, users were given a list of potential uses

for the application and asked to select any that they thought would be relevant to

them. The most common use was to create click tracks for practicing, which is

not surprising, as almost all musicians would regularly practice their instrument,

while not all of them would be in bands or compose original music. The second

most popular use case was for recording original music, and this was in fact a

situation I found myself in that gave me the idea to develop this application in the

first place. Comparatively less participants were interested in using the application

for recording covers, likely because they could simply play along to the original

recording to account for any potential tempo changes.

58

Figure 6.3: Responses to question 6 of the user survey

In question 7, users could optionally give any other use cases that were not

included as an option in question 6. The four responses to this question are shown

in Table 4. Interestingly participantss 1 and 3 both found that the application could

be used to help come up with ideas for compositions, an idea I had not considered

before. Participant 4 would use the application for rehearsals and warm ups for

drumming. It would make sense to perhaps use a very gradually accelerating click

track for a warm up session. Finally, while the tone of participant 2’s response may

not be entirely serious, it still contains some insight, that users will often find a

native mobile app more convenient than a web application. In Section 7.3, a plan

for creating a native version of the application is discussed.

ID Name Response

1 anonymous Interesting polyrhythms can be created easily with the

app so it could be used to construct rhythmic patterns for

compositions.

2 anonymous Nah I’d just use a metronome app on my phone innit. It’s

more convenient, the click sounds phat and it’s paired

with a tuner.

3 anonymous Unexpectedly, I found the tool encouraged me to think

more deeply about the possibilities of changing / com-

bining time signatures, and in turn this produced new

creative ideas. I think it would be useful as a quick way

to prototype the flow of a new composition (or a section

thereof), which may in turn highlight otherwise overlooked

possibilities.

4 anonymous I play drums and use a metronome for rehearsal/warm

up.

Table 4: Other use cases suggested by survey participants

The last two questions of the survey were open-ended questions. In question 8,

59

participants were asked how they would improve existing features of the application.

The responses to question 8 are shown in Table 5. Participant 2 is the one who

rated the application as difficult to use, and from their response to this question it

seems like a lot of the difficulty came from not having a reset button, as they had to

resort to reloading the page to reset the click track. Additionally some more clear

feedback would help when adding sections. Participant 3 also had problems to do

with resetting the page, as well as an error from deleting sections that I was unable

to reproduce. Participant 8 wanted to edit the structure of the click track in a more

visual way, likely closer to how it would be done in a DAW, as they mentioned

ProTools and Cubase sepcifically. This would require quite a bit of extra logic and

restructuring for the application, but perhaps a more achievable feature would

be drag and drop functionality for rearranging the sections. The participant who

previously answered that they would use the application for their drumming warm

up suggested adding the ability to define the length of sections using minutes and

seconds instead of measures, which is logical for a warm up routine. This should

not be too hard to implement, since time in seconds is already calculated in order

to schedule audio events for playback. Finally, adjusting the volume of the click,

suggested by participant 4, would certainly be a helpful addition to the application.

Another user made a similar but more detailed suggestion as an answer to the

next question, so it will be discussed further below.

In question 9, participants were asked which new feature they would most like

to see added to the application. Responses are shown in Table 6.

The list below shows the order in which I would add these new features, starting

with the ones that would be more easily implemented or require less restructuring

of the existing codebase, ending with the more ambitious features.

1. Proper reset facility - This would just require a button to be added which

clears the state of the click track being edited.

2. Example video - An example video could be uploaded to YouTube and linked

with a url on the main page of the application.

3. Swing time - would require an extra input on the SectionForm component,

as well as some extra logic for constructing the click tracks on the frontend

and the audio processing microservice. I would likely take inspiration from

MuseScore’s implementation of swing rhythms, shown in Figure 6.4. For

reference, swing time describes the technique of playing pairs of consecutive

notes with unequal durations. In jazz and blues music this is quite common

and usually the ratio of durations is close to 2:1 [72]. We can see that this

60

ratio is represented as a percentage in MuseScore, so their default value of

60% is logical. It would be important to be able to adjust this value though to

allow for more interesting and experimental rhythmic possibilities.

4. Track volume sliders for main rhythm track and polyrhythm track - This would

likely require using a numerical representation for click volume instead of a

boolean choice of accented or unaccented. Making this change would open

up a lot of other possibilities to do with manipulating volume so this would

definitely be a good addition.

5. Popup tutorial and example - could add logic to the state management for an

example click track. The popup tutorial would require more components on

the frontend but not much added logic or calculation.

6. Ability for users to upload their own samples - Would be fairly easy to

implement on a basic level, but difficult to ensure security and reliability.

Would need robust validation to make sure the uploaded files are of the

correct format and length.

7. Display progress on tempo visualisation graph - definitely achievable but not

as easy as it might sound at first. This is because events on the WebAudio

API run on a separate thread, so yet another timing system, the requestAni-

mationFrame API, is needed to accurately sync visual feedback with audio

events [53].

8. Ability to import audio and MIDI files - Would require implementing MIDI

libraries and audio processing funcionality on the frontend, and possibly

some form of beat detection algorithm if the user wanted to generate the

click track automatically from the imported file.

9. Real time control of the bpm for live performances - would require a rethink in

the structure of the frontend code, as currently all audio events are scheduled

in advance before playing the click track. Scheduling events while playing

is likely the better option anyways, as trying to play very long tracks in the

browser in the current version of the application results in some lag due to

scheduling all the audio events at once.

It is also worth considering what the participants did not request. For instance,

none of the participants requested the addition of user accounts and saving tracks.

This is perhaps indicative of a certain fatigue with constantly creating accounts that

users of the modern web experience. It could also just be because creating and

61

editing a click track is generally a fairly quick task that the users see themselves

doing in one sitting. For more advanced tasks, the users may likely turn to a

DAW. With this information in mind, in future development I will shift my focus

away from the user account features, and prioritise adding functionality to the

editor itself. Perhaps later on, when more complex and interesting rhythmic ideas

can be achieved with the editor, users will then find themselves wanting to save

or perhaps even share their click tracks and then the user account features will

become more important

Another surprise is that none of the users brought up the relative slowness of

file export for longer click tracks. This is likely due to the simple and short nature of

the application testing. In an effort to convince more participants to take part, the

invitation email stated that testing out the click track would only take 10 minutes,

so most participants probably just made short and simple click tracks.

Running an in person workshop where participants could sit down for a longer

time would surely give more insightful results, and allow them to more fully explore

the functionality as well as flaws of the application. This would of course make it

harder to get a good number of participants, so more time would be needed for

recruitment, along with potentially offering some form of compensation.

Figure 6.4: Swing implementation in MuseScore

62

ID Name Responses

1 anonymous No

2 anonymous After clicking ’Add to Start’ for the first time, choosing

parameters and then ’Add this Section’, it wasn’t quite

clear to me whether I had to do anything more to add the

section afterwards. Perhaps it would have been clearer

to me if the section thus created had been displayed in a

more compact form. (I worked it out eventually.) It wasn’t

clear to me how to reset and start again with a completely

empty click track. (<Ctrl>-R worked :-))

3 anonymous When I deleted my rhythms, the whole page disappeared,

but I figured out that I just had to refresh the feed if I

wanted to start again. However, I think it would be helpful

if the page stayed without having to refresh the feed.

4 anonymous Phatter click. allow to adjust volume of the click.

5 anonymous Be able to summit user’s suggestions

6 anonymous It would be nice to have changes made more dynamically,

although this is maybe not a common requirement for

metronomes. I just felt like it’d be good to have a slider or

something?

7 anonymous None

8 anonymous The app is very good as it stands, but I did find I wanted

to edit the structure visually (although the section dialogs

were excellently laid out and easy to work with). Perhaps

the click track itself could be displayed as a "tape track"

(like ProTools, Cubase etc.), with sections added by click-

ing/dragging, and edited by selecting them? This might

be a quicker way to generate such tracks, and enable the

visualisation to be a bigger part of the process.

9 anonymous would be handy to be able to add sections using min-

utes/seconds for length instead of measures. IE If I

wanted to program a warm up routine something like

150 for 5 minutes then 160 for 5 minutes etc.

Table 5: Responses to question 8 of the user survey

63

ID Name Responses

1 anonymous Track volume sliders for the main rhythm track and the

polyrhythm track.

2 anonymous Maybe a proper reset facility?

3 anonymous See above

4 anonymous A short popup tutorial in addition to the help buttons and

maybe an example that you can play around with

5 anonymous An example video of how to use new added features

6 anonymous Add swing time or other similar metronomic variations?

7 anonymous Upload your own sample!

8 anonymous n/a

9 anonymous The opportunity to import a WAV / MIDI file would be

good to see; if creating a click track for an existing piece,

it would be essential to be able to align it with that piece

directly. Also, perhaps some kind of controller could be

used to control the master tempo; that could enable the

separation of BPM from arrangement, and allow a live

musician to "tap" the actual tempo for a more fluid use of

the software. Some coupling could be retained, perhaps

to allow distinct tempo changes to be driven by the app

(and only by the musician once established), and maybe

to "dampen" any controller-driven change (for example,

uneven tapping by the musician themselves). If developed

as a plugin etc., the ability to start and synchronise the

click track by timecode could be desirable, so it could run

in parallel with an existing arrangement or application.

10 anonymous Display progress on Tempo Visualization graph so I can

easily see where I am in the pattern and when the next

change is coming etc.

Table 6: Responses to question 9 of the user survey

64

7 Future Improvements

Besides the features requested by participants in the user evaluation survey

discussed in Section 6, some interesting potential features and improvements to

the application are outlined below.

7.1 Audio processing in the browser

With recent additions to browser based audio functionality, it would actually be

possible to do all the audio processing on the client side, eliminating the need

for a separate python backend. Signal, the web based sequencer mentioned in

Section 2.2, uses the Web MIDI API, for example. However, if I were to expand

the application to include more advanced symbolic musical analysis in the future,

it would still be beneficial to take advantage of the music21 library on the server.

7.2 Beat Detection

Currently the application works well for planning out click tracks, but there is

the potential to do much more and tackle the more challenging problem of beat

detection. Beat detection will likely require analysis and manipulation of raw audio

data in the form of n-dimensional arrays, as well as frequency analysis through

functions such as fast fourier transforms. NumPy is a python library well suited

to these tasks, and is already installed on the python server as a dependency

of music21, so the current application is a good starting point to implement this

feature. There are still many challenges in this field, as humans can intuitively

detect beats much of the time but it is hard to formalise exact conditions for when

a beat occurs, especially in music without percussive instruments. This makes

it a very promising field to apply machine learning to, and many researchers are

attempting this currently.

7.3 Native Mobile Application

Finally, the experience for mobile users could be improved by the development

of a native mobile application. A natural choice for this would be to use React

Native, which would minimise the amount of changes need for the frontend code.

Since the user management backend and the audio processing microservice are

both deployed separately and decoupled from the frontend, they could remain

unchanged.

65

7.4 Container Optimisation

One sub-optimal aspect of the project is the size of the docker image used for the

backend. Typically, lightweight specialized container images are used for hosting

web applications, such as alpine or python:slim [73], however I had difficulty getting

all dependencies working on these images, so chose a basic Ubuntu image which

ended up being around 1.4GB in size. For the moment it has no noticeable effect

on the project, but if the need arose to scale up, this could quickly make hosting

needlessly costly.

66

8 Reflection

The development of this application was a very instructive experience. One

thing I learned was the difficulty of debugging as a codebase grows. The use of

TypeScript for the user management backend certainly helped in this regard, and

given the opportunity to restart this project from scratch I would use TypeScript for

the frontend, where it would be even more beneficial simply due to the scale and

complexity of the frontend.

Though I have plenty of experience playing music, as well as some program-

ming experience, programming with audio was something new for me, and pre-

sented many challenges. On a fundamental level, the element of timing was the

biggest obstacle. In my previous, mostly web-based, programming experience,

the only concern with timing was to make everything as fast as possible, whereas

in audio programming events need to be scheduled at specific times in the future.

Additionally, slight variations in timing can be very noticeable to a user. I am aware

that I have barely scratched the surface in terms of all the techniques and solutions

present in the field of audio programming. Another challenge with working with

audio, or more generally multimedia such as images and videos as well, was the

increased need for optimisation. Since audio data, especially in uncompressed

formats such as wav is quite large in terms of file size, badly optimised code can

quickly slow down an application to unacceptable levels. This has helped me

to appreciate why a lot of lower level audio code needs to be written in faster

languages like C and C++. In most of my previous programming experience with

text and numerical data, optimisation was not as pressing a concern.

A particularly interesting outcome of working on this project was finding a

realistic opportunity to meaningfully contribute to an open source project, which

was always an intimidating prospect for me before, looking at large and complicated

codebases on GitHub. As mentioned in Section 4.5.3, the midi2audio library lacks

the option to control the volume of the output, so I decided to extend the library

with this functionality and make a pull request. The pull request, which at the

time of writing is still awaiting approval, can be found at https://github.com/

bzamecnik/midi2audio/pull/9.

67

https://github.com/bzamecnik/midi2audio/pull/9
https://github.com/bzamecnik/midi2audio/pull/9

References

[1] What is musical entrainment? 2022. URL: https://musicscience.net/

projects/timing/iemp/what-is-musical-entrainment/.

[2] Trevor McPherson et al. “Intrinsic Rhythmicity Predicts Synchronization-

Continuation Entrainment Performance”. In: Scientific Reports 8.1 (2018).

DOI: 10.1038/s41598-018-29267-z. URL: https://www.researchgate.

net/publication/326851075_Intrinsic_Rhythmicity_Predicts_Synchronization-

Continuation_Entrainment_Performance.

[3] Shaun Letang. What Is A Metronome, What Is A Metronome Used For, &

Your Other Related Questions Answered - Music Industry How To. 2022. URL:

https://www.musicindustryhowto.com/what-is-a-metronome-what-is-

a-metronome-used-for-your-other-related-questions-answered/.

[4] Morris Wright. What is A Click Track? 2022. URL: https://www.thedrummerguide.

com/what-is-a-click-track/.

[5] Will Brook-Jones. What is a DAW? 2021. URL: https://blog.andertons.

co.uk/learn/what-is-a-daw.

[6] Anders Reuter. “Who let the DAWs Out? The Digital in a New Generation of

the Digital Audio Workstation”. In: Popular Music and Society 45.2 (2021),

pp. 113–128. DOI: 10.1080/03007766.2021.1972701.

[7] Nick Cesarz. Click Tracks: Are They Useful or Just a Crutch? 2019. URL:

https://drummingreview.com/click-tracks/.

[8] Sidney Prim. Tempo Rubato - Definition and why you should care how its

used! 2017. URL: https://www.libertyparkmusic.com/tempo-rubato/.

[9] James Beament. How we hear music. The Boydell Press, 2005.

[10] Paul Lamere. In search of the click track. 2009. URL: https://musicmachinery.

com/2009/03/02/in-search-of-the-click-track/.

[11] Italian musical terms. 2022. URL: https://www.musicca.com/musical-

terms.

[12] 50 Greats for the Piano. Yamaha, 2000.

[13] West Troiano. What is 6/8 Time Signature? | Liberty Park Music. 2021. URL:

https://www.libertyparkmusic.com/what-is-6-8-time-signature/.

68

https://musicscience.net/projects/timing/iemp/what-is-musical-entrainment/
https://musicscience.net/projects/timing/iemp/what-is-musical-entrainment/
https://doi.org/10.1038/s41598-018-29267-z
https://www.researchgate.net/publication/326851075_Intrinsic_Rhythmicity_Predicts_Synchronization-Continuation_Entrainment_Performance
https://www.researchgate.net/publication/326851075_Intrinsic_Rhythmicity_Predicts_Synchronization-Continuation_Entrainment_Performance
https://www.researchgate.net/publication/326851075_Intrinsic_Rhythmicity_Predicts_Synchronization-Continuation_Entrainment_Performance
https://www.musicindustryhowto.com/what-is-a-metronome-what-is-a-metronome-used-for-your-other-related-questions-answered/
https://www.musicindustryhowto.com/what-is-a-metronome-what-is-a-metronome-used-for-your-other-related-questions-answered/
https://www.thedrummerguide.com/what-is-a-click-track/
https://www.thedrummerguide.com/what-is-a-click-track/
https://blog.andertons.co.uk/learn/what-is-a-daw
https://blog.andertons.co.uk/learn/what-is-a-daw
https://doi.org/10.1080/03007766.2021.1972701
https://drummingreview.com/click-tracks/
https://www.libertyparkmusic.com/tempo-rubato/
https://musicmachinery.com/2009/03/02/in-search-of-the-click-track/
https://musicmachinery.com/2009/03/02/in-search-of-the-click-track/
https://www.musicca.com/musical-terms
https://www.musicca.com/musical-terms
https://www.libertyparkmusic.com/what-is-6-8-time-signature/

[14] Samuel Hunt. Exploring Polyrhythms, Polymeters, and Polytempi with the

Universal Grid Sequencer framework. Creative Technologies Laboratory.

2020, pp. 2–3. URL: https://uwe-repository.worktribe.com/OutputFile/

6829353.

[15] Bruno H. Repp. “Probing the cognitive representation of musical time: Struc-

tural constraints on the perception of timing perturbations”. In: Cognition 44.3

(1992), pp. 241–281. DOI: 10.1016/0010-0277(92)90003-z. URL: https:

//www.sciencedirect.com/science/article/pii/001002779290003Z.

[16] Maija Hausen et al. “Music and speech prosody: a common rhythm”. In:

Frontiers in Psychology 4 (2013). DOI: 10.3389/fpsyg.2013.00566.

[17] Erin E. Hannon. “Perceiving speech rhythm in music: Listeners classify

instrumental songs according to language of origin”. In: Cognition 111.3

(2009), pp. 403–409. DOI: 10.1016/j.cognition.2009.03.003.

[18] Hendrik Schreiber, Frank Zalkow, and Meinard Müller. “Modeling and Esti-

mating Local Tempo: a Case Study on Chopin’s Mazurkas”. In: 21st Inter-

national Society for Music Information Retrieval. International Audio Lab-

oratories, 2020. URL: https : / / www . researchgate . net / publication /

345672488_Modeling_and_Estimating_Local_Tempo_a_Case_Study_on_

Chopin’s_Mazurkas.

[19] Maja Trochimczyk. Mazur (Mazurka) - Polish Music Center. 2018. URL:

https://polishmusic.usc.edu/research/dances/mazur/.

[20] Axel Berndt. “Musical Tempo Curves”. In: International Computer Music Con-

ference. University of Huddersfield, 2011. URL: https://www.researchgate.

net/publication/228844587_Musical_Tempo_Curves.

[21] Thomas E. Cope, Manon Grube, and Timothy D. Griffiths. “Temporal predic-

tions based on a gradual change in tempo”. In: The Journal of the Acoustical

Society of America 131.5 (2012), pp. 4013–4022. DOI: 10.1121/1.3699266.

URL: https://asa.scitation.org/doi/10.1121/1.3699266.

[22] Hans-Henning Schulze, Andreas Cordes, and Dirk Vorberg. “Keeping Syn-

chrony While Tempo Changes: Accelerando and Ritardando”. In: Music

Perception 22.3 (2005), pp. 461–477. DOI: 10.1525/mp.2005.22.3.461.

URL: https://www.jstor.org/stable/10.1525/mp.2005.22.3.461.

69

https://uwe-repository.worktribe.com/OutputFile/6829353
https://uwe-repository.worktribe.com/OutputFile/6829353
https://doi.org/10.1016/0010-0277(92)90003-z
https://www.sciencedirect.com/science/article/pii/001002779290003Z
https://www.sciencedirect.com/science/article/pii/001002779290003Z
https://doi.org/10.3389/fpsyg.2013.00566
https://doi.org/10.1016/j.cognition.2009.03.003
https://www.researchgate.net/publication/345672488_Modeling_and_Estimating_Local_Tempo_a_Case_Study_on_Chopin's_Mazurkas
https://www.researchgate.net/publication/345672488_Modeling_and_Estimating_Local_Tempo_a_Case_Study_on_Chopin's_Mazurkas
https://www.researchgate.net/publication/345672488_Modeling_and_Estimating_Local_Tempo_a_Case_Study_on_Chopin's_Mazurkas
https://polishmusic.usc.edu/research/dances/mazur/
https://www.researchgate.net/publication/228844587_Musical_Tempo_Curves
https://www.researchgate.net/publication/228844587_Musical_Tempo_Curves
https://doi.org/10.1121/1.3699266
https://asa.scitation.org/doi/10.1121/1.3699266
https://doi.org/10.1525/mp.2005.22.3.461
https://www.jstor.org/stable/10.1525/mp.2005.22.3.461

[23] Anders Friberg and Johan Sundberg. “Does music performance allude

to locomotion? A model of final ritardandi derived from measurements of

stopping runners”. In: The Journal of the Acoustical Society of America

105.3 (1999), pp. 1469–1484. DOI: 10.1121/1.426687. URL: https://doi.

org/10.1121/1.426687.

[24] Jacob Feldman, David Epstein, and Whitman Richards. “Force Dynamics of

Tempo Change in Music”. In: Music Perception 10.2 (1992), pp. 185–203.

DOI: 10.2307/40285606. URL: https://www.jstor.org/stable/40285606.

[25] Henkjan Honing. “The Final Ritard: On Music, Motion, and Kinematic Mod-

els”. In: Computer Music Journal 27.3 (2003), pp. 66–72. DOI: 10.1162/

014892603322482538. URL: https://www.jstor.org/stable/3681802.

[26] Cecilie Møller et al. “Beat perception in polyrhythms: Time is structured in

binary units”. In: PLOS ONE 16.8 (2021), pp. 1–24. DOI: 10.1371/journal.

pone.0252174.

[27] Deanna M. Kennedy, Jason B. Boyle, and Charles H. Shea. “The role of

auditory and visual models in the production of bimanual tapping patterns”.

In: Experimental Brain Research 224.4 (2012), pp. 507–518. DOI: 10.1007/

s00221-012-3326-y.

[28] Michael J. Hove et al. “Synchronizing with auditory and visual rhythms: An

fMRI assessment of modality differences and modality appropriateness”. In:

NeuroImage 67 (2013), pp. 313–321. DOI: 10.1016/j.neuroimage.2012.

11.032.

[29] Charles Roberts et al. “Designing Musical Instruments for the Browser”. In:

Computer Music Journal 39.1 (2015), pp. 27–40. DOI: 10.1162/comj_a_

00283. URL: https://www.jstor.org/stable/24265496.

[30] Yotam Mann. Tone.js. 2022. URL: https://yotammann.info/tone.

[31] Michael Kolesidis. JSS-01 | JavaScript Software Synthesizer. 2022.

[32] Ryohei Kameyama. signal - Fully Open-sourced Online MIDI Editor. 2021.

[33] Ryohei Kameyama. I spent five years building a web app, posted it on

Hacker News, and got my first $1. 2022. URL: https://codingcafe.jp/

posts/signal-5yrs.

[34] Mari Lesteberg. “Micro and Macro: Developing New Accessible Musicking

Technologies”. PhD thesis. University of Oslo, 2021.

[35] Dylan Schiemann. Howler.js Audio Library for the Modern Web. 2018. URL:

https://www.infoq.com/news/2018/11/howlerjs-audio-modern-web/.

70

https://doi.org/10.1121/1.426687
https://doi.org/10.1121/1.426687
https://doi.org/10.1121/1.426687
https://doi.org/10.2307/40285606
https://www.jstor.org/stable/40285606
https://doi.org/10.1162/014892603322482538
https://doi.org/10.1162/014892603322482538
https://www.jstor.org/stable/3681802
https://doi.org/10.1371/journal.pone.0252174
https://doi.org/10.1371/journal.pone.0252174
https://doi.org/10.1007/s00221-012-3326-y
https://doi.org/10.1007/s00221-012-3326-y
https://doi.org/10.1016/j.neuroimage.2012.11.032
https://doi.org/10.1016/j.neuroimage.2012.11.032
https://doi.org/10.1162/comj_a_00283
https://doi.org/10.1162/comj_a_00283
https://www.jstor.org/stable/24265496
https://yotammann.info/tone
https://codingcafe.jp/posts/signal-5yrs
https://codingcafe.jp/posts/signal-5yrs
https://www.infoq.com/news/2018/11/howlerjs-audio-modern-web/

[36] Arek Nawo. 9 libraries to kickstart your Web Audio stuff. 2019. URL: https:

//areknawo.com/10-libraries-for-web-audio-stuff/.

[37] Stephane Pigeon. Polyrhythm Pattern Generator - Design Your Own. 2013.

URL: https://mynoise.net/NoiseMachines/polyrhythmBeatGenerator.

php.

[38] George Peterson. “DAWS for Pro Audio Applications”. In: The Mix (Berkeley,

Calif.) 34.10 (2010), pp. 20–25. ISSN: 0164-9957.

[39] 3.3 Toolbar - User Manual. 2022. URL: https://docs.lmms.io/user-

manual/3-navigating-lmms/3.4#3.3.3-tempo-control.

[40] Jeff Kaiser. 9: Creating Complex Click Tracks - Two-Minute (or so) Tutorials

for Reaper DAW. 2021. URL: https://whyreaper.com/tutorial/two-

minute-or-so-tutorials-for-reaper-daw-9-creating-complex-click-

tracks/.

[41] gradual speedup audio. 2014. URL: https://forums.steinberg.net/t/

gradual-speedup-audio/638016.

[42] Leticia Trandafir. How to Use Polyrhythms to Create a Perfect Beat. 2017.

URL: https://flypaper.soundfly.com/produce/how-to-use-polyrhythms-

to-create-a-perfect-beat/.

[43] Rory PQ. How to warp tracks in Ableton Live quickly. 2019. URL: https:

//iconcollective.edu/warp-tracks-in-ableton-live/.

[44] Johan Temmerman. Musescore TempoChanges: How does it work? 2021.

URL: https://jeetee.github.io/MuseScore_TempoChanges/.

[45] Moises Systems, Inc., 2022.

[46] Mina Mounir, Peter Karsmakers, and Toon van Waterschoot. “Musical note

onset detection based on a spectral sparsity measure”. In: EURASIP Journal

on Audio, Speech, and Music Processing 2021.1 (2021). DOI: 10.1186/

s13636- 021- 00214- 7. URL: https://doi.org/10.1186/s13636- 021-

00214-7.

[47] Radimir Bitsov. Time to Interactive: Focusing on the Human-Centric Metrics.

2018. URL: https://calibreapp.com/blog/time-to-interactive.

[48] Nick Galov. 21+ Website Load Time Statistics and Facts for 2022. 2022.

URL: https://webtribunal.net/blog/how-speed-affects-website/.

71

https://areknawo.com/10-libraries-for-web-audio-stuff/
https://areknawo.com/10-libraries-for-web-audio-stuff/
https://mynoise.net/NoiseMachines/polyrhythmBeatGenerator.php
https://mynoise.net/NoiseMachines/polyrhythmBeatGenerator.php
https://docs.lmms.io/user-manual/3-navigating-lmms/3.4#3.3.3-tempo-control
https://docs.lmms.io/user-manual/3-navigating-lmms/3.4#3.3.3-tempo-control
https://whyreaper.com/tutorial/two-minute-or-so-tutorials-for-reaper-daw-9-creating-complex-click-tracks/
https://whyreaper.com/tutorial/two-minute-or-so-tutorials-for-reaper-daw-9-creating-complex-click-tracks/
https://whyreaper.com/tutorial/two-minute-or-so-tutorials-for-reaper-daw-9-creating-complex-click-tracks/
https://forums.steinberg.net/t/gradual-speedup-audio/638016
https://forums.steinberg.net/t/gradual-speedup-audio/638016
https://flypaper.soundfly.com/produce/how-to-use-polyrhythms-to-create-a-perfect-beat/
https://flypaper.soundfly.com/produce/how-to-use-polyrhythms-to-create-a-perfect-beat/
https://iconcollective.edu/warp-tracks-in-ableton-live/
https://iconcollective.edu/warp-tracks-in-ableton-live/
https://jeetee.github.io/MuseScore_TempoChanges/
https://doi.org/10.1186/s13636-021-00214-7
https://doi.org/10.1186/s13636-021-00214-7
https://doi.org/10.1186/s13636-021-00214-7
https://doi.org/10.1186/s13636-021-00214-7
https://calibreapp.com/blog/time-to-interactive
https://webtribunal.net/blog/how-speed-affects-website/

[49] Joe Nemer. Advantages and Disadvantages of Microservices Architecture.

2019. URL: https://cloudacademy.com/blog/microservices-architecture-

challenge-advantage-drawback/.

[50] Sam Richard and Pete LePage. What makes a good Progressive Web App?

2022. URL: https://web.dev/pwa-checklist/.

[51] Lawrence Wagerfield. Cloudinary vs AWS S3 - Are they really comparable?

2022. URL: https://upload.io/blog/cloudinary-vs-s3/.

[52] Matti Luukkainen. Fullstack part6. 2022. URL: https://fullstackopen.com/

en/part6.

[53] Chris Wilson. A tale of two clocks. 2013. URL: https://web.dev/audio-

scheduling/.

[54] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1994.

[55] Dmitri Tymoczko. “Review of Michael Cuthbert, Music21: a Toolkit for Computer-

aided Musicology (http://web.mit.edu/music21/)”. In: Music Theory Online

19.3 (2013). DOI: 10.30535/mto.19.3.11.

[56] Francis Rumsey. Desktop audio technology. 1st ed. Focal Press, 2013.

[57] Polyphone, 2022.

[58] Arthur Fox. WAV Or MP3: Which Is The Superior Audio Format? 2022. URL:

https://mynewmicrophone.com/wav-or-mp3-which-is-the-superior-

audio-format/.

[59] Mark Harris. FLAC: A Superior Lossless Audio Format. 2021. URL: https:

//www.lifewire.com/what-is-flac-audio-format-2438548.

[60] James Nugent. Lossless vs. lossy audio: FLAC, WAV, MP3, and other for-

mats. 2021. URL: https://higherhz.com/lossless-vs-lossy-compression-

audio-formats/.

[61] Dan Arias. Hashing in Action: Understanding bcrypt. 2021. URL: https:

//auth0.com/blog/hashing-in-action-understanding-bcrypt/.

[62] Dominik Grzedzielski. Why you should (probably) use Typescript. 2021.

URL: https://thecodest.co/blog/why- you- should- probably- use-

typescript.

[63] Joel Ross and Mike Freeman. Client-Side Web Development. 2022.

72

https://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
https://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
https://web.dev/pwa-checklist/
https://upload.io/blog/cloudinary-vs-s3/
https://fullstackopen.com/en/part6
https://fullstackopen.com/en/part6
https://web.dev/audio-scheduling/
https://web.dev/audio-scheduling/
https://doi.org/10.30535/mto.19.3.11
https://mynewmicrophone.com/wav-or-mp3-which-is-the-superior-audio-format/
https://mynewmicrophone.com/wav-or-mp3-which-is-the-superior-audio-format/
https://www.lifewire.com/what-is-flac-audio-format-2438548
https://www.lifewire.com/what-is-flac-audio-format-2438548
https://higherhz.com/lossless-vs-lossy-compression-audio-formats/
https://higherhz.com/lossless-vs-lossy-compression-audio-formats/
https://auth0.com/blog/hashing-in-action-understanding-bcrypt/
https://auth0.com/blog/hashing-in-action-understanding-bcrypt/
https://thecodest.co/blog/why-you-should-probably-use-typescript
https://thecodest.co/blog/why-you-should-probably-use-typescript

[64] Elijah Trillionz. Your Heroku App Is Slow to Load Because Of This. 2021.

URL: https://dev.to/elijahtrillionz/your-heroku-app-is-slow-to-

load-because-of-this-4lep.

[65] Cacheable. 2022. URL: https://developer.mozilla.org/en-US/docs/

Glossary/cacheable.

[66] Bob Wise. Heroku’s Next Chapter. 2022. URL: https://blog.heroku.com/

next-chapter.

[67] Dirk Hoekstra. Why Using Cypress Is Better Than Unit Testing. 2019. URL:

https://betterprogramming.pub/why-using-cypress-is-better-than-

unit-testing-e8234229be81.

[68] WAV vs FLAC - Beginners Guide. 2021. URL: https://www.off- the-

beat.com/wav-vs-flac/.

[69] Is FLAC Better Than WAV? Here’s What You Need To Know. URL: https:

//playbutton.co/is-flac-better-than-wav/.

[70] Bohumír Zámečník. midi2audio. 2016.

[71] Ariel Salem. An Easy-To-Use Guide to Big-O Time Complexity. 2017. URL:

https://medium.com/@ariel.salem1989/an-easy-to-use-guide-to-

big-o-time-complexity-5dcf4be8a444.

[72] Megan Lavengood. Open Music Theory. 2nd ed. 2021, p. 515.

[73] Stuart Burns. Use Docker and Alpine Linux to build lightweight contain-

ers. 2020. URL: https : / / www . techtarget . com / searchitoperations /

tutorial / Use - Docker - and - Alpine - Linux - to - build - lightweight -

containers.

73

https://dev.to/elijahtrillionz/your-heroku-app-is-slow-to-load-because-of-this-4lep
https://dev.to/elijahtrillionz/your-heroku-app-is-slow-to-load-because-of-this-4lep
https://developer.mozilla.org/en-US/docs/Glossary/cacheable
https://developer.mozilla.org/en-US/docs/Glossary/cacheable
https://blog.heroku.com/next-chapter
https://blog.heroku.com/next-chapter
https://betterprogramming.pub/why-using-cypress-is-better-than-unit-testing-e8234229be81
https://betterprogramming.pub/why-using-cypress-is-better-than-unit-testing-e8234229be81
https://www.off-the-beat.com/wav-vs-flac/
https://www.off-the-beat.com/wav-vs-flac/
https://playbutton.co/is-flac-better-than-wav/
https://playbutton.co/is-flac-better-than-wav/
https://medium.com/@ariel.salem1989/an-easy-to-use-guide-to-big-o-time-complexity-5dcf4be8a444
https://medium.com/@ariel.salem1989/an-easy-to-use-guide-to-big-o-time-complexity-5dcf4be8a444
https://www.techtarget.com/searchitoperations/tutorial/Use-Docker-and-Alpine-Linux-to-build-lightweight-containers
https://www.techtarget.com/searchitoperations/tutorial/Use-Docker-and-Alpine-Linux-to-build-lightweight-containers
https://www.techtarget.com/searchitoperations/tutorial/Use-Docker-and-Alpine-Linux-to-build-lightweight-containers

9 Appendix

9.1 GitHub Repositories

Initial versions for user evaluation

Clicktrack editor frontend

Audio processing backend

Current versions

Please note that these repositories may receive updates in the future. To see the

source code at the time of submission refer to the attached zip archive.

Clicktrack editor frontend

Audio processing backend

User Management backend

9.2 User Survey and Related Documents

The following pages include the questionnaire and Participant Information Sheet

sent out, as well as the recruitment email itself and the ethical approval from

COMSC SREC.

74

https://github.com/dredly/Advanced-Clicktrack-Editor-Frontend/tree/acfe89e09ac4b80605ec38032a98daceb5cb7eca
https://github.com/dredly/Advanced-Clicktrack-Audio-Backend/tree/b1d766c22563db51cfc34fd65de8605766c3aac7
https://github.com/dredly/Advanced-Clicktrack-Editor-Frontend
https://github.com/dredly/Advanced-Clicktrack-Audio-Backend
https://github.com/dredly/Advanced-Clicktrack-User-Backend

09/09/2022, 22:30 Advanced Clicktrack Web App - User Evaluation

https://forms.office.com/pages/designpagev2.aspx?lang=en-GB&origin=OfficeDotCom&route=Start&sessionid=8b80f94f-945b-… 1/4

* Required

Advanced Clicktrack Web App
- User Evaluation

Form to critically evaluate the usefulness and user experience of an Advanced Clicktrack
web application made for musicians

Initial Questions
Please answer these questions first, before trying out the web app.

Yes

No

I confirm that I am 18 or older * 1.

Yes

No

Have you ever used a metronome or click track when playing music?
*

2.

09/09/2022, 22:30 Advanced Clicktrack Web App - User Evaluation

https://forms.office.com/pages/designpagev2.aspx?lang=en-GB&origin=OfficeDotCom&route=Start&sessionid=8b80f94f-945b-… 2/4

Very often

Sometimes

Rarely

Never

How often do you play or compose pieces of music in which the
tempo changes? *

3.

09/09/2022, 22:30 Advanced Clicktrack Web App - User Evaluation

https://forms.office.com/pages/designpagev2.aspx?lang=en-GB&origin=OfficeDotCom&route=Start&sessionid=8b80f94f-945b-… 3/4

Evaluation of the web app
Please take some time to try creating some click tracks with the application and exploring its
features. You can access the application here: https://clicktrack-redux.vercel.app/

Effortless

Fairly Easy

Neutral

Difficult

Very Difficult

How easy was it to figure out how the application worked? * 4.

Yes

No

Were you able to generate tempo change sections in which the rate of
tempo change felt natural, i.e. like something you would hear in a real
song? *

5.

Constructing a click track to record original music

Constructing a click track to record a cover

Constructing a click track to practice a piece of music

Constructing a click track for live performance with other musicians

Constructing a click track for jam sessions with other musicians

Other

Would you use this application for any of the following? * 6.

09/09/2022, 22:30 Advanced Clicktrack Web App - User Evaluation

https://forms.office.com/pages/designpagev2.aspx?lang=en-GB&origin=OfficeDotCom&route=Start&sessionid=8b80f94f-945b-… 4/4

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms

If you answered "other" to the above question, please elaborate.7.

Do you have any suggestions for how to improve existing features of
the app?

8.

Do you have any suggestions for additional features to be added?9.

Version 1 Date 23/07/2022

PARTICIPANT INFORMATION SHEET

Development and Evaluation of a web application focused on advanced rhythmic features

You are being invited to take part in a research project. Before you decide whether or not to
take part, it is important for you to understand why the research is being undertaken and what

it will involve. Please take time to read the following information carefully and discuss it with
others, if you wish.

Thank you for reading this.

1. What is the purpose of this research project?

I am an MSc Computing student with an interest in music, especially rhythm, and web
development. In this project I aim to develop an application in which users can make click

tracks with advanced rhythmic features such as gradual tempo change and polyrhythms (the
playing of more than one rhythm simultaneously). The aim of the survey is to gather user

feedback on the usefulness of the application and how it could be improved.

2. Why have I been invited to take part?

You have been invited because you are studying Music or play a musical instrument, and
therefore might find this application useful, or at least be able to provide valuable insight into

how it could be made useful.

3. Do I have to take part?

No, your participation in this research project is entirely voluntary and it is up to you to decide

whether or not to take part. If you decide to take part, we will discuss the research project with
you and ask you to sign a consent form. If you decide not to take part, you do not have to
explain your reasons and it will not affect your legal rights. Involvement in this research project

will have no effect on your education or progression through your degree course.

You are free to withdraw your consent to participate in the research project at any time, without
giving a reason, even after signing the consent form.

4. What will taking part involve?

You will be given a link to the application and asked to use it based only on the included

documentation. After this you will be asked to complete a survey about this experience, focused
on ease of use and whether the application would be useful to you. This would be a one-time
commitment of around of 10 minutes testing the application and then around 5 minutes to

answer the questionnaire. This would likely occur during the months of August or September.

5. Will I be paid for taking part?

No. You should understand that any responses you give will be voluntary and you will not
benefit financially now or in the future should this research project lead to the development of

a profitable application.

Version 1 Date 23/07/2022

6. What are the possible benefits of taking part?

There will be no direct advantages or benefits to you from taking part, but your contribution

will help us understand what musicians are looking for in an advanced rhythm application and
how to improve on the existing application.

7. What are the possible risks of taking part?

There shall be no risks in testing or answering the survey.

8. Will my taking part in this research project be kept confidential?

All information collected from (or about) you during the research project will be kept
confidential and any personal information you provide will be managed in accordance with

data protection legislation. Please see ‘What will happen to my Personal Data?’ (below) for
further information.

9. What will happen to my Personal Data?

The only personal data collected will be your responses to the questionnaire, which will be

strictly related to your evaluation of the application.

Cardiff University is the Data Controller and is committed to respecting and protecting your

personal data in accordance with your expectations and Data Protection legislation. Further
information about Data Protection, including:

- your rights
- the legal basis under which Cardiff University processes your personal data for research

- Cardiff University’s Data Protection Policy
- how to contact the Cardiff University Data Protection Officer
- how to contact the Information Commissioner’s Office

may be found at https://www.cardiff.ac.uk/public-information/policies-and-procedures/data-

protection
Your survey responses will be processed during the week starting the 29th of August.
Anonymised information will be kept for a minimum of two weeks but may be published in

support of the research project and/or retained indefinitely, where it is likely to have continuing
value for research purposes.

Personal data and samples collected up until the point of participant can be withdrawn on
request.

10. What happens to the data at the end of the research project?

Overall statistics from the data will be included in the final written dissertation, which may or
may not be published. Additionally, findings from the question on potential improvements to
the application may be used to create a plan for future development. The raw data itself will be

deleted after completion and moderation of the dissertation.

11. What will happen to the results of the research project?

Version 1 Date 23/07/2022

The results of this research could potentially be published from December 2022, after marking

of the dissertation. Participants will not be identified in any report, publication or presentation.

12. What if there is a problem?

If you wish to complain, or have grounds for concerns about any aspect of the manner in which
you have been approached or treated during the course of this research, please contact Prof.

David Marshall of myself, Daniel Redly. If your complaint is not managed to your satisfaction,
please contact Dr. Katarzyna Stawartz: comsc-ethics@cardiff.ac.uk

If you are harmed by taking part in this research project, there are no special compensation
arrangements. If you are harmed due to someone's negligence, you may have grounds for legal

action, but you may have to pay for it.

13. Who is organising and funding this research project?

The research is organised by Prof. David Marshall and MSc student Daniel Redly, through the

School of Computer Science and Informatics. The research is currently not funded.

14. Who has reviewed this research project?

This research project has been reviewed and given a favourable opinion by the School Research
Ethics Committee.

15. Further information and contact details

Should you have any questions relating to this research project, you may contact us during

normal working hours:
Daniel Redly, 07765289285, RedlyDP@cardiff.ac.uk
Prof. David Marshall, +44 (0)29 2087 5318, marshallad@cardiff.ac.uk

Thank you for considering to take part in this research project. If you decide to

participate, you will be given a copy of the Participant Information Sheet and a signed

consent form to keep for your records.

10/09/2022, 09:03 Mail - Daniel Redly - Outlook

https://outlook.office.com/mail/inbox/id/AAQkADUwOGNmNmFhLTk3M2EtNDM3MS05NjlhLTUzNDQzMzMwOWY4OAAQAPcGyO82… 1/2

User evaluation for advanced click track and rhythm web application - for one of
my student's MSc Computing Dissertation Study

David Marshall <MarshallAD@cardiff.ac.uk>
Tue 8/30/2022 3:12 PM

To: DG COMSC MSc <dg.comsc.msc@cardiff.ac.uk>
Cc: DG COMSC T Staff <DG.COMSC.TeachingSchoolStaff@cardiff.ac.uk>;Daniel Redly
<RedlyDP@cardiff.ac.uk>

2 attachments (559 KB)
07_4_Appx3_Templ-PIS.docx; 07_5_Appx4_Templ-Consent-Form.docx;

Dear COMSC MSc Student/MSc Student Supervisor

Please could you help a felow MSc student/one of my MSc students complete his MSc project by
completing a user evaluation for his advanced click track and rhythm web application.

Many thanks

Dave Marshall

> Subject: User evaluation for advanced click track and rhythm web application - for MSc Computing
Dissertation
>
> Dear all,
>
> I am a MSc Computing Student and am looking for volunteers to complete a survey for my
dissertation. I am creating a web application which enables musicians to practice music with tempo
changes. This would include the creation of click tracks (backing track in which a sound is played to
help musicians stay in rhythm), with advanced rhythmic features. These would include gradual and
abrupt tempo changes as well as polyrhythms (more than one different rhythm occurring at once).
>
> In order to assess the quality of this product, I would be really grateful if people with a knowledge
of music could complete this survey.
>
> The survey is short and should take you no longer than 10 minutes to test the application and 5
minutes to complete the survey. All data will be anonymous. A consent form and participant
information sheet have been attached to this email. Please look over them carefully and sign if you
wish to proceed. Below is a link to the survey, which also contains a link to the application itself. The
application and survey both work on mobile as well as desktop devices.
>
>
>
>
>
> Advanced Clicktrack Web App - User Evaluation

> Form to critically evaluate the usefulness and user experience of an Advanced Clicktrack web
application made for musicians:

>

https://forms.office.com/Pages/ResponsePage.aspx?
id=MEu3vWiVVki9vwZ1l3j8vERp536xqKFFv04A4KIObJZURDZPRUNPMkhCWTQ1VlZTV0cyRk9H
QUxCTi4u

> Daniel Redly
>
__

