
CMT403 Project

Create a localhost 3D game with Chinese ink painting rendering style

Cardiff university school of computer science

Author: Haoda.Ye

Superviser: Dr Frank C Langbein

Date: 2022-06-24

Degree: MSc Computing

Abstract

This project aims to create a 3D Multiplayer game with a Chinese ink painting

rendering style in the Unity Game engine. The project's core is to design shaders that

can showcase Chinese ink style and a simple asynchronous local-host network

communication framework. The core of the shader displays the silhouette line of the

model, and the blur samples the ramp texture. The key to the network framework is

the state synchronization of sockets and custom messages. The gameplay is not the

focus of this project, so the game has only limited playability.

Acknowledgement

Many thanks to my supervisor Frank Langbein. He provided a lot of critical advice on

projects and papers. I would also like to give special thanks to those who have made

their code and programming ideas open source on the web. Finally I would like to

thank myself for my efforts and hope I won't lose my love for the game because of

the pressures of future life and work.

Table of Contents:

1. Introduction .. 5

2. Background ... 6

2.1. Choices of Game engine .. 6

2.2. Computer graphics And Real-Time Rendering .. 6

2.2.1. Workflow of Render Pipeline .. 7

2.2.2. Two Common game rendering Styles .. 8

2.2.3. Chinese ink painting and rendering ... 9

2.2.4. Five methods of Silhouette Edge Rendering 9

2.2.5. Average blur and Gaussian blur ... 13

2.3. Networking ... 14

2.3.1. Socket in C# .. 14

2.3.2. State synchronization and frame synchronization 15

2.4. Related systems and components in Unity ... 16

2.4.1. GameObject, Component and Lift Cycle in Unity 16

2.4.2. UGUI,Navigation,Animator .. 17

2.4.3. Material,Texture and Shader ... 18

2.4.4. Unity Asset Store .. 20

3. Design ... 21

3.1. Design Chinese ink render style shader .. 21

3.1.1. model outline/Silhouette .. 21

3.1.2. Diffuse lighting model based on the ramp Texture 22

3.2. Simple Networking Framework base on Socket .. 25

3.3. Game-related functions of client ... 26

3.3.1. Scene control ... 26

3.3.2. Design of User interface (UI) ... 27

3.3.3. character control and combat ... 29

3.4. Problem and solution .. 29

3.4.1. The size of the outline changes with the distance of the view 29

3.4.2. Asset of Environment and character .. 29

4. Implementation .. 31

4.1. Shader .. 31

4.1.1. Outline ... 31

4.1.2. Half Lambert Diffuse with noise .. 32

4.1.3. Seven Options of Blur ... 32

4.1.4. The properties and Preview results of shader 34

4.2. Simple Networking Framework ... 35

4.3. Game-related functions of client ... 37

4.3.1. Scene and UI .. 37

4.3.2. character control and combat ... 41

5. Evaluation ... 42

5.1. Test case 1 : player login to the main city ... 42

5.2. Test case 2 : player win in arena and return to the main city 43

5.3. Shader performance analysis ... 44

5.4. Network performance analysis .. 46

5.5. The graphic effect analysis of Chinese ink style shader 46

6. Following works .. 48

6.1. Break within the Outline ... 48

6.2. Remote servers and networking .. 48

7. Conclusion .. 49

8. Reflection on Learning .. 50

9. Reference ... 51

10. Appendix .. 53

10.1. Free Asset in Unity Asset Store .. 53

1. Introduction

Since the outbreak of the COVID-19 epidemic, many people have had to stay at home

for health. And many mainstream face-to-face entertainment and social activities

have been suspended, such as movies, parties, dinners, and concerts. Under this

scenario, video games have played an increasingly important role in entertainment

and social activities [1]. On the other hand, the increasing number of newly released

games every year is becoming difficult to ignore. According to statistics from the

website “Video Game Insights”, there were 11.7k new games on Steam in 2021,

which has increased by 18.3% compared to last year(9913). It means over 30 games

were released every day [2]. An excellent and unique graphics performance is a

critical factor in standing out in many games. Generally speaking, Providing good

online functionality is also a huge help.A good example is the 2021 Game of the Year

award winner “It takes two”. It is a cooperative multiplayer game with an outstanding

cartoon rendering style [3]. Therefore, this project has two primary aims: 1. To

display a unique render style (Chinese ink painting style), 2. To establish a simple

asynchronous network communication framework. It is worth mentioning that the

project focuses on researching and illustrating how to achieve the above goals from a

technical point of view. There is less effort into gameplay-related features such as

Storytelling, combat, and level design. So the final game of this project will have only

limited playability.

In this project, my personal goal is to expand video game development capabilities,

especially in 3D graphics rendering and network communication. Studies over the

past two decades have pointed out that games are a great medium to bring the

traditional painting to the digital realm [4]. Another personal goal is to let more

people understand and like conventional Chinese painting through video games.

Therefore,the computer graphics and computer network will be the focus of study

and research in project.

Background

This section will contain most of the knowledge and components of this project.

Provide a brief introduction and how they relate to the project.

2.1 Choices of Game engine

The first challenge is to choose the right game engine and language and what

computer environment to develop and run. The first commercial 3D game engine,

Unreal Engine, debuted in 1998 by Epic games, founded by developer Tim

Sweeney[5]. Seven years later, another well-known mature commercial 3D game

engine, Unity, appeared. They both have a lot of features in common: Cross-platform,

Mature active community, Asset store, Support 3D/2D/AR/VR, Visual interface, and

integrated development environment.

Meanwhile, Unity is different from Unreal in several respects. Unity uses the C# as

the scripting language. It is more suitable for developing independent, mobile, or

small and medium-sized games. In contrast, Unreal developers use C++ or the

blueprint to create a game. It may perform better in graphics if the developer has

excellent programming skills and high-definition material.

As was pointed out in the introduction to this paper, this project focus on graphics

and network. Thus, The game engine or language is not the project's core. Because I

have experience with Unity and C# and learning C++ and Unreal from scratch will

take a long time. This project will use Unity 2018.4.12 personal to develop.

2.2 Computer Graphics And Real-Time Rendering

Historically, the term “Computer Graphics” has been used to describe the study of

how to represent graphics on a computer. Tomas(2008) claims that Real-Time

Rendering is the most highly interactive area of computer graphics. Real-Time

Rendering requires displaying many images on the screen with high speed and

frequency so that the user can interact with the computer dynamically[6]. And the

most important thing in video games is the interaction between the player and the

computer. We use the Frame per second(FPS) to indicate the image rate the

computer can show every second. When the FPS is less than 30, most players will

feel a stumble or delay of image. In the Players versus players(PVP) Shooting game,

Players need to have 60 or higher FPS to play the game smoothly.

2.2.1 Workflow of Render Pipeline

The Render pipeline's task is to produce/render a 2D image on the screen based on

the information of a 3D scene. This task is usually done jointly by CPU and GPU.

Tomas(2008) divides the rendering pipeline into the Application Stage, Geometry

Stage, and Rasterizer Stage[6]. Each part is also a miniature pipeline system that also

has multiple stages. The Application stage will output the rendering primitives (point,

line, triangle).

In the mainstream Game Engine, the programmer only needs to deal with the

application stage, and the engine handles the remainder automatically. Most of the

rendering operations in this project are also carried out at this stage. this stage will

describe in more detail later.

Let us turn the stage of geometry and rasterizer for now. In the geometry stage,

Tomas concludes that when the GPU has received the rendering primitive, it will

decide to draw the rendering primitive on the screen or not, how to draw, and where

to draw. After processing the input rendering primitives, the GPU will output the

two-dimensional coordinates in the screen space, color, depth value, and other

information. In the Rasterizer stage, GPU will use the data from the Geometry stage

to generate each pixel on the screen and then render the final image. The GPU

interpolates the vertex-by-vertex data from the geometry stage and processes it

pixel-by-pixel to determine which pixels should be drawn on the screen.

Image from: CG Science for Artists Part 2: The Real-Time Rendering Pipeline, Leonard Teo

2.2.2 Two common game rendering Styles

“In physically based rendering, realism is usually the primary goal. This approach is in

contrast to interactive rendering, which sacrifices realism for high performance and low

latency, or nonphotorealistic rendering, which strives for artistic freedom and

expressiveness”[7] --------- Morgan Kaufmann,2014

General speaking,Mainstream game rendering styles can be divided into Physically

based rendering (PBR) and Non-Photorealistic rendering (NPR).

The goal of PBR is create a photorealistic scene that matches realistic physics as

much as possible.The advantages of using PBR are the game graphics is very close to

the reality observed by the human eye in a variety

of lighting environments. “Call of Duty: Modern

Warfare” is an good example in PBR which has

exploded in sales for a total of 30.71 million

copies in 2020[8][9].

As regards NPR, the purpose is to Implement some special painting or art styles such

as cartoon, watercolor, sketch on computer graphics.In NPR, game developers can

implement some graphics that do not conform to or do not exist in reality to make

the graphics more unique and artistic and

aesthetic. A recent example is “Genshin Impact”

which generated 6.63 million downloads

worldwide with monthly in-app purchase revenues of 176.19 million U.S. Genshin

Impactdollars[10][11].and The Chinese ink painting rendering for this project is also

NPR

2.2.3 Chinese ink painting and rendering

Ink painting, as the name implies, is a painting created using water and ink that has

been mixed to a specific consistency. The history of Chinese ink painting can be

traced back to the Chinese Tang Dynasty (618-907)[14]. Traditional Chinese ink

paintings are often based on the environment of mountains,

rivers, trees, and buildings. Traditional Chinese ink and wash

paintings are often based on the background of mountains,

rivers, trees, and facilities. The painter can use various

proportions of water and ink to make the colors white, black,

and gray. However, Chinese ink painting is not limited to these

colors. Another type of ink painting, called color ink painting,

uses various colors to paint flowers and birds. The painting on the right is a classic

Chinese ink painting.

As well as in traditional painting, there are also video

games that use a rendering similar to Chinese ink

painting, for example. Okami uses color ink painting

and cartoon style to render the game screen. It is a 3D

video game published by Capcom and released in

2006 for the PlayStation 2. And its rendering style has

received widespread acclaim[15]. Unlike the rendering

style in "Okami", the rendering style of this project is closer to traditional Chinese ink

painting and prefers to use fewer colors.

2.2.4 Five methods of Silhouette Edge Rendering

In the following chapter, I present different methods of Silhouette Edge Rendering

based on chapter 10 of Real-Time Rendering, Third Edition, 3rd Edition. In the book,

Thomas proposes five approaches:

(1) Surface Angle Silhouetting: Silhouette line information is obtained from the view

direction and surface normal dot product results. It is Simple and fast but highly

limited. This method requires only one rendering of the model. the problem is that

the width of the silhouette lines in this method varies according to the curvature of

the model's edges. Particularly for large flat models, the silhouette is excessively

thick.

(2) Procedural Geometry Silhouetting

The core of this approach is to render the model twice (2 passes).

In the first rendering, culling the front side of the model renders the back side and

expands each back vertex in a normal direction. For the stroke to work best in

viewing space, the vertices and normal need to be transformed into a viewing area.

The next step is setting the z-value of the normal and then normalizing the modified

normal before expanding the vertices in their direction to obtain the expanded

vertex coordinates. The purpose is to avoid the expanded backside vertices blocking

the front face as much as possible. Finally, the vertices are transformed from

viewpoint space to clipping space.

It then executes a second rendering that removes the back of the model and renders

only the front. This way, the back side will be visible due to the extension of the

vertices. At the same time, the remaining part will be covered by the render result of

the front side because it is the back side and opaque. After completing two renders,

the Silhouette lines are formed.

This method is fast and effective and can be applied to most models with smooth

surfaces, but it has the disadvantage that it is not suitable for models with too few

faces or flat surfaces. If this method is used on the model described above, the

resulting contour line will often appear broken.

(3) Silhouetting by Image Processing

The core of this method is screen post-processing based on edge detection.

Screen post-processing usually refers to a series of operations performed on the

screen image after the scene has been rendered to achieve various visual effects.

The principle of edge detection involves convolving an image with a specific

convolution kernel to obtain the gradient value of the current pixel. The deal

determines whether the current pixel is a boundary point.

The specific process is as follows: firstly, getting the screen image after rendering the

entire scene. Then identify each pixel point in the screen image and whether it is a

boundary point using edge detection. Finally, colored all border points to achieve

Silhouetting effect.

This method can be applied to any model. Especially on objects with sharp edges like

the Cube, it generates perfectly beautiful strokes because of the normal abruptness

at the edges. On the other hand, the disadvantage is obvious. The shader cannot

guarantee the quality of the outline. The outline may appear in undesirable places or

where they are desired but not present. And it is also difficult to manipulate the

details of the lines.

(4) Silhouette Edge Detection

Thomas points out, "A silhouette edge is one in which one of the two neighboring

triangles faces toward the viewer and the other faces away”[6]. So the key to

Silhouette Edge Detection is to determine the relationship between the orientation

of two adjacent triangles of a line. If the connection matches the formula:Dot ��, � ! = ��� ��, �
Then the line is a Silhouette line. ��,�� means the normals of the two adjacent

triangles, and � is the camera's direction (observer) to either vertex on the line.

This method allows for a special styling process for the Silhouette line. And it relies

on the geometry Shader. However, the geometry shader in unity has some

performance and support issues. And Due to outlines being extracted individually

frame by frame, Kalnins thinks the Silhouette line after rendering may jump from

frame to frame[16].

(5) Hybrid Silhouetting.

The last method is a mixture of several of the above. For example, Find the

Silhouette lines at first, then render the model and the Silhouette lines into the

texture, identify them in the texture using image processing, and finally render them

stylistically in image space.

2.2.5 Average blur and Gaussian blur

Average blur (also known as Box blur) is the simplest of the image blur algorithms. It

takes a pixel value and its surrounding pixel values in the original image, calculates

the weighted average of all pixel values, then reassigns the central pixel value with

the average value. The mathematical formula is:

g(i, j) = �(i, j)N布
figure 1 N is the number of pixels sampled.

According to this formula we can calculate the convolution kernel of the average blur

algorithm: 1N ∗ N � ⋯ �⋮ ⋱ ⋮� ⋯ �
In the opinion of Adobe, the renowned graphic image and typography software,

Gaussian blurring uses mathematical functions to blur the image. “As a low-pass filter,

Gaussian blur smoothes uneven pixel values in an image by cutting out the extreme

outliers.”[17]

From a mathematical point of view, the Gaussian blurring process of an image is the

convolution of the image with a normal distribution. Gaussian blur utilizes a

convolutional calculation, and its convolutional kernel is named the Gaussian kernel.

It is a square filter kernel. The calculation of each element in the filter is based on the

following Gaussian equation.G(x) = 12πσ ∗ �−x22σ2 G(x, y) = 12πσ2 ∗ �−(x2+y2)2σ2
figure 2 Gaussian equation in one dimension figure 3 Gaussian equation in two dimension

x is the distance from the start point in the horizontal axis, y is the distance from the start point in
the vertical axis, and σ is the standard deviation of the Gaussian distribution.

figure 4 A simple 3X3 Gaussian blur calculation

2.3 Network

Networking features in online games generally directly impact the player experience

and the company's revenue. A Mature web framework in a Commercial game is often

extremely complex and requires many people to develop and maintain. Therefore, in

this project, we are only looking to implement a simple C# based networking

framework.

2.3.1 Socket in C#

If developers want to communicate between processes on multiple machines, they

must use socket sockets. The socket is a set of APIs based on the TCP/IP protocol. It is

a network application layer that provides developers with a convenient interface to

implement network communication quickly.

The developer must also select a transport layer protocol in the UDP (User Datagram

Protocol) and TCP (Transmission Control Protocol). Both are widely used in different

games, and there is no absolute difference between good and bad. On the one hand,

TCP is more secure than UDP in data transfer. Because TCP requires three handshakes

to establish the network link and other complex mechanisms to ensure the integrity

and security of the data, it causes additional overhead. It is very ineffective in poor

network conditions. On the other hand, UDP takes fewer system memory resources

because it does not need to establish a connection to transfer data. The cost is that

there is no guarantee of data arrival order and data reliability, which can lead to

packet loss problems.

2.3.2 State synchronization and frame synchronization

Frame synchronization is often used in MOBA（Multiplayer online battle arena）or

fighting games, such as League of Legends and Street Fighter. In the game, the socket

will synchronize the player's actions and current frame index with the server and

other players. The overall process is that the client uploads their actions to the server,

which receives them and does not calculate the game behavior but delivers them

directly to all clients. Finally, the local clients calculate results based on the received

actions and display them.

State synchronization is the synchronization of the various states in the game. The

general process is that the client uploads an action to the server, and the server

receives it, calculates, and broadcasts the result of the game behavior. At last, clients

display the content according to the received result. The most widespread

application of state synchronization would be in turn-based games.

Image form Lin Chen [18]

2.4 Related systems and components in Unity

The section below describes the systems and components of Unity involved with this

project. A basic understanding of their concepts and use will help the reader read

this thesis better, particularly considering their importance in the project.

2.4.1 GameObject, Component and MonoBehavior

In Unity, the GameObject is a real object that exists in the game scene and has a

location. It can be a character, an enemy, a builder, or a light source. A GameObject

can also contain other GameObjects in a parent-child relationship. However, the

GameObject is just a container and cannot perform any functions without

components.

The Component is attached to the GameObject. And it controls its properties which

the developer can edit to define the behavior of a GameObject. The Lift Cycle of a

Component is strongly related to a GameObject when the Destroy a GameObject, all

child objects and the corresponding Components are destroyed.

The C# Script is an essential Component in the game. “Most applications need scripts

to respond to input from the player and to arrange for events in the gameplay to

happen when they should. Beyond that, scripts can be used to create graphical

effects, control the physical behavior of objects or even implement a custom AI

system for characters in the game” [19].

All Unity scripts inherit from MonoBehavior class by default, providing several

important Lift Cycle functions. Those functions used in this project are Awake,

OnEnable, Start, FixedUpdate, Update, and OnDestory..

Awake():It is mainly used to initialize parameters. It is called once before a game

object is created.

OnEnable():This function is called when the object becomes enabled and active.The

developer can change this state in the inspector interface or via a script.

Start(): It is very similar to Awake. The difference is that the Awake function is called

immediately after the object is initialized, whereas Start is called after the object is

activated the first time. It is not very safe to initialization in Start When the

initialization of one script needs to depend on another script that has already been

initialized.

FixedUpdate(): Executes its own code at regular intervals. The default time intervals

between calls is 0.02 seconds (50 calls/second).The execution interval is independent

of the performance of the machine. The general choice is to handle operations

related to physical simulation in FixedUpdate.

Update(): Each frame executes its own code after FixedUpdate. However, the time

interval between executions may different because of the performance in various

machine. Generally speaking, the better the hardware of the machine, the more

times the code will be executed in a second in Update.

OnDestory(): It handles the logical behavior of the GameObject after it has been

destroyed . And it is only called when both the GameObject and its parent object are

active (activeSelf==True);

2.4.2 UGUI,Navigation,Animator

There are various Graphical User Interface frameworks available in unity such as

unity's built-in gui, Next-Gen UI, FairyGUI, and unity's new Unity UI (UGUI). As UGUI

is free and the most stable, this project will use UGUI to develop the UI.

“UGUI(Unity UI) is a UI toolkit for developing user interfaces for games and

applications. It is a GameObject-based UI system that uses

Components and the Game View to arrange, position, and

style user interfaces”[20].The common UI controls in UGUI are

Canvas, Text, Image, Button, Toggle, Slider, Scroll Bar, Scroll

View, and Input Field, which will be introduced in detail when

they are used.

Unity's Navigation is used to implement AI pathfinding for game characters. It

simplifies the complex structural relationships in the game scene into intuitive

NavMesh. Then it uses the A-star algorithm on the NavMesh to implement the

shortest route search and Navigation. Using Navigation is often a three-step process.

(1) setting Terrain or obstructions to the NavMesh. (2) baking the NavMesh.(3)

setting characters to the Navigation Agent such as Player, NPC(Non-player character),

and enemy.

Unity's Animator is to assign animation to a GameObject. Another component used

in this project is the Animator Controller, a finite-state machine. The developer can

define a set of states and conditions for the Animator Controller to execute the

corresponding animation clips. And developer controls when and how to blend and

transition between them.

2.4.3 Material,Texture and Shader

“Textures are applied to objects using Materials. Materials use specialised graphics

programs called Shaders to render a texture on the mesh surface. Shaders can

implement lighting and colouring effects to simulate shiny or bumpy surfaces among

many other things.”[19]

Unity use Material to describe shapes, and materials to describe the appearance of

surfaces. Materials, Texture and shaders are closely linked. In other words, the

essence of a material are an instance of a shader and an container of texture.

figure 5 Unity Default PBR Material

The texture is a 2d image used to provide color and detail to the graphic. There are

many textures such as Diffuse texture, Ramp texture, Normal texture, Height texture,

Ambient Occlusion, Noise texture, etc. This project will use Ramp texture and Noise

Texture to achieve lighting effects on the model.

The purpose of ramp textures is to control the color of diffuse reflections. Normally,

the ramp texture is one-dimensional. It can be regarded as a colored line where the

color of each point on the line represents the color or hue of the object that should

be displayed at the corresponding light intensity.

figure 6 A example of Ramp Texture

A noise texture can be thought of as a procedural texture. It is often generated by

computers using certain algorithms. The most commonly used are Perlin noise,

which developers can use to generate more naturalistic noise textures, and Worley

noise, which is often used to simulate porous noise such as stone, water, paper, etc.

figure 7 A example of Perlin noise Texture

Shader used to render computer graphics. It manipulates textures to be generated

on the screen as needed. It is essentially a script in the rendering pipeline that

controls the algorithms used by the GPU to compute image effects.

2.4.4 Unity Asset Store

“The Unity Asset Store contains a library of free and commercial assets that Unity

Technologies and members of the community create. A wide variety of assets are

available, including textures, models, animations, entire project examples, tutorials,

and Editor extensions”[19].

2. Design

3.1 Design and framework of a Chinese ink render style shader

I have divided the core of the Chinese ink and wash style shader into two parts,

model outline/Silhouette and Diffuse lighting model based on the ramp Texture.

3.1.1 model outline/Silhouette

In 2.2.4, I introduced five methods to render outline/ Silhouette and its advantages

and disadvantages. Therefore, I will use the elimination method to select the most

suitable stroke for the Chinese ink style rendering.

The first method to be ruled out is Surface Angle Silhouetting. Although it is very

intuitive and simple, it loses all control over the detail of the stroke. That's not what I

was looking for in a rendering of Chinese ink and washing.

The second method excluded is Silhouette Edge Detection. Although Unity's

geometry shader provides adjacency information (lineadj, triangleadj), Many unity

developers complained that the information was not what they expected. A

user(bgolus) on the unity form points out that "Adjacency data is not supported by

Unity. Adjacency data only really exists in academic papers, and maybe a few hobbies

or custom engines" in 2021. He also presents that shaders that use adjacency

information may have unavoidable performance problems, "A lot of academic papers

that use adjacency data that I've seen don't post any useful performance metrics.

The few that do if you actually look at them often show tens or even hundreds of

milliseconds per frame to render a single mesh that would otherwise be a fraction of

a millisecond to render" [21].

Hybrid Silhouetting is also an excluded option. Because it is very complex to

implement in Unity, it requires a high-level understanding of computer graphics and

much practical experience with the other four methods. It is beyond my current

level.

The choice between the two remaining methods is the most difficult one. On the one

hand, Procedural Geometry Silhouetting is the most mature technique. There are

numerous blogs and discussions about it on the web. It will greatly help me solve the

bugs and technical difficulties I may face. On the other hand, Silhouetting by Image

Processing is the most comprehensive technique. It can be applied to any model and

has the best performance because it only needs to process an image once.

As a Chinese ink rendering style project, I need full control over the

outline/Silhouette for the following Stylistic process. However, Image Processing can

only control the sampling range and the color of the outline/Silhouette in

Silhouetting. Therefore, it is almost impossible to add brushes and blurring effects to

the outline/Silhouette, which does not exist in Procedural Geometry Silhouetting.

Due to my project is not a commercial project, there is no particular need for

performance optimization. My main concern is how to render the Chinese ink

painting style on a computer.

In summary, I will use Procedural Geometry Silhouetting to achieve the model

outline/Silhouette effect. In the following, I will describe the specific process. The

first render/pass is similar to the one described in 2.2.4. but for ink painting style

rendering, I will add noise jamming to the outline/Silhouette by using a noise texture

for sampling. The advantage is the random outline does not change as the viewpoint

changes. If I want to change the effect of the interference, I need to change the noise

texture instead of rewriting the shader. Another difference is that I decide to add a

render/pass in between the original two render/passes. The purpose is to render the

outline/Silhouette again. Unlike the first time, the outline/Silhouette will be slightly

larger than the previous one.

3.1.2 Diffuse lighting model based on the ramp Texture

In the first two renders, the shader is responsible for rendering the model's

outline/silhouette. In the third render/pass, the shader will handle the model's

diffuse lighting based on the ramp and noise texture.

Diffuse lighting in some old games conforms to Lambert's cosine law: the intensity of

light reflected from a surface is directly proportional to the cosine of the angle

between the direction of light and the surface normal.�������� = ������ ∗ �������� ∗ ��� �, ���(�, �)

������ : Colour and intensity of incident light;�������� : Diffuse reflection coefficient of the model material;� : normal of surface;�: Direction of light;

However, It will cause the model to be completely dark and loses the detail in areas

that cannot be reached by the light which looks like a black plane. To solve this

problem, Valve company came up with a technology called "Half Lambert" when

developing the game "Half Life".�������� = ������ ∗ �������� ∗ �. � ∗ ���(�, �) + �. �
With this technique, the resultant range of N*L can be mapped from [-1,1] to [0,1] so

that the backlight area can also have light and dark variations. However, Valve also

mentioning that it is a completely non-physical technique and gives a purely

percieved visual enhancement and is an example of a forgiving lighting model[22].

This project will use the half lambert technique to get the intensity of the reflected

light, then perturbed and mixed value with the UV value of the brush texture to

obtain the final UV value.

Before outputting the final color values, the shader also samples the color values of

the Ramp texture several times and blurs them. If output color values directly

without any blurring, the color levels of the image will be very pronounced because

there is no transition in the edges of the colors. However, the smooth transition of

colors is an essential feature of Chinese ink painting.

In 2.2.5, I introduce two blur methods: Average blur and Gaussian blur. To see the

differences more visually, I display three groups of Material: a control group with no

blurring and experimental groups with average blurring and Gaussian blurring. The

experimental group's independent variable is the sampling range's size.

Control group:

Without blur:

figure 8 A material with ramp texture

Experimental groups:

Average blur:

figure 9 Sampling range：3 figure 10 Sampling range：4 figure 11 Sampling range：5

Gaussian blur:

figure 12 σ=2,Vertical Sampling range：3 figure 13 σ=2，Vertical Sampling range=4 figure 14 σ=2，Vertical sampling range=5

In the image of the control group (figure8), we can find, as indicated previously, that

the color levels of vision will be very pronounced because there is no transition in the

edges of the colors. With the images from the experimental group, we can discover

that both the average blur and the Gaussian blur achieve a good blurring effect. And

their blurring effect will be enhanced as the sampling range is expanded. But when

we examine them more closely, we see that they form blurred areas at the

boundaries of the colors. But whereas in an average blur, the colors within a blurred

area are the same, the Gaussian blur achieves a gradation of colors within a blurred

area. In the above, Gaussian blur is more suitable for Chinese ink style rendering.

3.2 Simple Networking Framework base on Socket

As was pointed out in 2.3.1 and 2.3.2 of this paper. I must choose between UDP and

TCP, state synchronization, and frame synchronization. Due to this project being a

flight game, Data integrity and security are a priority. Therefore, I chose TCP and

state synchronization in the project.

Let us now consider the web framework. It will contain two aspects, server, and

client. Inevitably there is a lot of information exchange between the server and the

client. On the server side, there will be three main sections, one for server-client

interaction based on the socket, one for processing incoming messages, and the last

for storing data from internal server interaction. The client-side will only need the

first two sections.

Socket communication modes are divided into synchronous and asynchronous.

A socket in synchronous mode uses a blocking API. After receiving a socket request,

the server must process it and return it to the client before processing the next

socket request. Therefore, synchronous sockets must be coordinated with multiple

threads to achieve multi-client interaction. Each client that comes online requires a

new thread. But the thread will be idle for two periods: from the connection is

established until the message is sent, and from the message is sent until the

connection is closed. It is a waste of computer computing power.

A socket in asynchronous mode uses a non-blocking API. After receiving a socket

request, the server passes it on to another thread to process it and then continues to

receive the next socket request. It does not need to wait for the previous socket

request to be processed before receiving the next one. In asynchronous mode, the

client is not bound to a thread. Whenever a client requests the server, an idle thread

responds to it. The more clients connected, the more efficient this mode is. Clients

with only 1 or 2 server connections can use the multi-threaded synchronous mode.

On the server side, using the asynchronous method is the optimal choice. This

project will apply an asynchronous communication model on both the client and

server-side for code consistency and maintainability.

3.3 Game-related functions of client

In addition to the network functions for interacting with the server, the client also

implements game-related procedures such as scene control, UI, and character

control and combat.

3.3.1 Scene control

The game has three scenes: the login scene, the main city scene/game lobby, and the

arena scene. Unity provides the SceneManagement class to help developers switch

scenes. Developers can use the scenemanager.loadScene ("SceneName") method to

jump to other scenes. In general, the method of loadScene will destroy all objects

and scripts in the previous scene. If the developer wants to keep some objects or

scripts in the following scene, they need to use the DontDestroyOnLoad() method on

those objects and scripts.

As the name implies, the login scene is responsible for logging players into the game.

When players enter the correct account and log in successfully, the scene will jump

to the main city scene/game lobby, where the player can move the character and see

other online players. In the main city scene/game lobby, the player can click the

arena button to start a match with another player who also clicks the arena button.

When the match starts successfully, both players will jump to the arena scene and

start fighting with each other to win. When one character dies first, both players can

choose to return to the main city scene/game lobby to continue the game. Since the

basic logic of the characters in the main city and arena is the same, the character

management script can be used universally. So when switching between the main

city and arena scenes, I use the DontDestroyOnLoad() method to avoid destroying

the character management script.

3.3.2 UI design

As mentioned earlier, this project will use UGUI to implement the in-game UI. The UI

objects used in the project are Canvas, Text, Image, Button, and Input Field.

Canvas: All UI components depend on Canvas except the Canvas itself. In other words,

it is a container for other UI objects. So other UI components must be children of the

Canvas.

Text: It displays text on the canvas and controls the various properties of the font

(size, style, spacing, alignment).

Image: the key component of UGUI for displaying Sprite

images. In addition to large images such as background

images, the Image component is generally used to display

Image elements in UI. This project will use the image

component to control and represent the character's health bar. First, set the image

type and the Fill Method to Horizontal. Then I control the value of Fill Amount to

reflect the changes in the health bar.

Button: The key component in UGUI handles the player's button-related interactions.

The default Button contains the text and Image components. Image displays the

background Image of the button, and text displays the text content of the button. It

also has many response events. The most important response event is onclick(). The

onClick event is responsible for handling the logic after the user clicks the button.

Input Field: It gets the text information that the user enters through the keyboard.

Usually used to enter account, password, chat information, or input parameters and

so on.

figure 15 UI in game login scene

figure 16 UI in main city

figure 17 UI in arena

3.3.3 character control and combat

In a fighting game, the character must be able to attack and move. My design is that

character movement is bound to the right mouse button. When the player clicks the

right mouse button, the character walks to the clicked position, and when the player

double clicks the right mouse button, the character accelerates to the clicked

position. The left mouse button means that the character is about to attack. When

the character is attacked, there is also a corresponding injury animation.

figure 18 State machine

3.4 Problem and solution

Problems within the design and possible solutions.

3.4.1 The size of the outline changes with the distance of the view

The outline becomes smaller in the current shader design as the camera view moves

away. It means that when the silhouetted object is too far from the camera, the

tracing will be too small to observe. In this project, the outline of a distant mountain

is vital. This problem seriously affects the overall performance of the in-game

Chinese ink rendering.

After a long time of searching, I found that the problem was that the normal used for

vertex extents was homogeneous division. In unity's rendering pipeline, the vertices

output by the vertex shader is converted to clip space via the clip matrix/projection

matrix. In the clip space, the vertices must execute homogeneous division (aka

perspective divided) to get the Normalized Device Coordinates (NDC) for screen

space. The procedure of homogeneous division is not complicated: divide XYZ by W

of the vertex in homogeneous coordinates. Once the normal has been

homogeneously divided, its length is associated with the distance from the camera.

So the solution is not that hard. We convert the normal to a clipped space, then

multiply it by the square root of W.

3.4.3 Asset of Environment and character

As a postgraduate graduation project in computer science school, the project focused

on programming rather than 3D modeling. However, Models of environments and

characters are essential for a game. The shader and web framework without the

model are like a ghost without a form. Therefore, I chose to use free materials and

resources from the unity asset store. Please refer to the appendix for details.

3. Implementation

This section will implement the above design and show the corresponding code or

preview/structure diagram.

4.1 Shader

4.1.1 Outline

The pass needs to fetch the Perlin noise map here to map the vertex, then transform

the normal of the vertex from the model space to camera/view space. Next, we need

to expand the back vertex in the direction of the normals. To prevent the expanded

vertices from blocking the front vertice, I set the Z axis of the normal to 0.01.

Then pass needs to get the coordinates of the vertices in the clip space. The left and

right shift of the silhouette is controlled by offset_pos. To achieve the effect that

outline does not change as the viewpoint changes, the pass need to get the

Normalized Device Coordinates (NDC) of normal. So I use the

TransformViewToProjection() to get the normal coordinates in clip space and then

Divide the resulting value by the square root of W axis of the vertices in clip space. I

then multiply the value of NDC with blur to achieve the normal disturbance effect

and add this value to the X and Y axis of the vertex. I also use the _outline to control

the size of the outline.

figure 19 internal outline

figure 20 Outer outline

4.1.2 HalfLambert Diffuse with noise

figure 21 HalfLambert Diffuse

4.1.3 Blur

There are Seven options of blur:

None, means no blur used in shader.

Average2,Average3,Average4 means blending the colour values within 2,3,4 units of

the origin and its left and right (including the origin)in the ramp texture. The weight

of each vertex is 1/5.

Gaussian2,Gaussian3,Gaussian4 means blending the colour values within 2,3,4 units

of the origin and its left and right (including the origin)in the ramp texture. The

weights of each vertex are calculated according to the Gaussian blur formula

introduced in 2.2.5 .

figure 22 No blur

figure 23 Average blur

figure 24 Gaussian blur when When the σ(standard deviation) is 2

4.1.4 The properties and Preview results of shader

figure 25 Shader properties

figure 26 the default mountain without shader

figure 27 the mountain with shader

4.2 Networking Framework

figure 28 Network Framework Map

The MkAsyncClient.cs is responsible for receiving the message from the server and

sending messages to the server. And MkAsyncServer.cs is accountable for receiving

the message from the client and sending messages to the client. Since the server and

the client are independent, they can only transfer data between them as a byte

stream. Therefore, the sender needs to convert the message to the byte stream

before sending a message. And the receiver needs to convert the received byte

stream back to the previous data format when receiving the message.

I use the Dynamic-link library (DLL) to define and standardize the data format.

Updating individual modules without affecting the rest of the application is much

easier. In Socket.DLL, I separate the head and body of the message. And define the

tools for serialization and deserialization. The receiver will take the different handler

functions based on the head of the message. And the body of the message is the

data parameter that the handler function needs to store or process.

In my original design, MkAsyncClient.cs and MkAsyncServer.cs were not only

responsible for receiving and sending messages but also for all functions related to

the network. According to the single responsibility principle(SRP) proposed by Martin

Robert C in 2003, "A class should have only one reason to change"[23]. It suggests

that a class is responsible for only one responsibility. So, I separate the server and

client functions for processing messages and encapsulate them in two new classes:

The Handler_ClientMessage.cs,Handler_ServerMessage.cs. Not only that, but I also

extracted all the functions on the server that were related to the user data store to a

new class, “UserManager.cs”.

The HandlerThread.cs in the client is the most special class. Because Unity is, by

nature, a single-threaded application, it does not support executing any of Unity's

built-in components and functions in asynchronous functions except for Debug.log().

While the server can run in this case, the client relies on components and functions

such as lifecycle functions, UI, navigation, and animation to make the game playable.

To solve this problem, Handler_ClientMessage.cs does not execute the handler

function but adds it to the task list in HandlerThread.cs. HandlerThread.cs checks

continuously if the task list is empty. If the task list is not empty, all tasks are

executed in the chronological order in which they were added..

4.3 Game-related functions of client

4.3.1 Scene and UI

figure 29 Game flow chart

According to the flowchart(figure 28) above, the first scene the player watch after

opening the game is the login screen.Player need to enter the account and click the

Login button in order to go to the Main city.

figure 30 Game login Panel

When server receive the correct account, server will return the data of user to the

client. The client will create the character and UI of player in the main city scene

based on the received user data.

figure 31 only one player in Main city

When server receive new player login request, server will return the data of user to

all logged-in clients(including the new client). All client will create the character and

UI of player in the main city scene based on the received user data.

figure 32 two player in mian city

Players can move freely around the main city or play in the Arena against other

players by clicking the button in the top right corner. Until matched with another

player, the player can continue to control the character in the main city and the

Arena button will indicate "Waiting" .

figure 33 Matching other players in the arena

Once the match is successfully made, both players will jump to the arena scene and

start the battle.

figure 34 Two player fighting in Arena scene

When either player's character is attacked and its health(HP) has less than or equal

to 0 , the game results will automatically pop up and the player will not be able to
control the character.Players can choose to exit the game or return to the main city
to continue playing.

figure 35 Player win in Arena

figure 36 Player loss in Arena

4.3.2 character control and combat
In order to control the player's character, the client first needs to accept the player's
mouse input. Based on the mouse input, the client sends the corresponding
character request to the server. If the player presses the left mouse button, the
camera shoots a ray in front of it. If the ray collides with an object whose layer is
ground, the position of the collision point is sent to the server. Finally, the server
sends a command to the corresponding client to move the character.

figure 37 Player input manager

The server receives the request and forwards it to the corresponding clients. The
clients then execute the corresponding events and animations of character.

figure 38 Finite state machines for characters

5.Evaluation
This section will evaluate the game. The game is tested under three conditions to see
if it works as expected.

5.1 Test case 1 : player login to the main city
Test Case ID 001 Test Case Description Test the Login Functionality in game
Created By Haoda.Ye Version 1.0

Tester's
Name

Merlin Date Tested 08-08
2022

Test Case
(Pass/Fail/Not
Executed)

Pass

S # Prerequisites: S # Test Data
1 Open the server 1 Account = merlin
2 Normal network environment 2

Test
Scenario

Verify on entering valid Account.the player can login and
control the character in the main city.The Screen resolution
should be 1980*1080.

Step # Step Details Expected Results Actual Results Pass / Fail / Not
executed /
Suspended

1 Open the
MKCodeClient.exe.

Game configuration
should open.

As Expected Pass

2 Unselected the
Windowed,set Screen
resolution at 1980*1080,
start play!

Show Game login
panel.

As Expected Pass

3 Enter the account, and
Click Login.

player is logged in and
jump to main city
scene. The character
and UI of player
Correctly displayed.

As Expected Pass

4 Right click anywhere in
the scene.

the character moves
to the click position.

As Expected.But the UI
over the character's
head will shift when the
character moves
position, but within
acceptable limits.

Pass

5 Other players logging in
and moving characters

Correct display of
other players'
characters and

As Expected.But the UI
over the character's
head will shift when the

pass

movement character moves
position, but within
acceptable limits.

5.2 Test case 2 : player win in arena and return to the main city
Test Case ID 002 Test Case Description player win in arena and return to the main

city
Created By Haoda.Ye Version 1.0

Tester's
Name

Merlin Date Tested 08-08
2022

Test Case
(Pass/Fail/Not
Executed)

Pass

S # Prerequisites: S # Test Data
1 Open the game and Successful login 1
2 Normal network environment 2

Test
Scenario

Verify on entering valid Account.the player can login and
control the character in the main city.The Screen resolution
should be 1980*1080.

Step # Step Details Expected Results Actual Results Pass / Fail / Not
executed /
Suspended

1 Click the Arena Button Button text display
please wait. The
player can still control
the character.

As Expected Pass

2 Match to other players Jump to the arena
scene. The overall
style of the scene is
similar to that of
Chinese ink painting.
And the models and
UI for the main
character and
enemies are
generated correctly.

As Expected.But there
are some small breaks
in the silhouette of the
object.

Pass

3 Double-click the right
mouse button to control
the character to run to
the enemy.

The character appears
in a running
animation and moves
to a position in front
of the enemy

As Expected. Pass

Click the left mouse
button to attack the
enemy.

A character attack
animation appears
first, followed by an
enemy injury
animation and enemy
health reduction in
the UI.

4 The character is attacked
by enemies.

A enemy attack
animation appears
first, followed by an
character injury
animation and
character health
reduction in the UI.

As Expected.But
Sometimes character
attacks appear to hit
enemies, but it don't.

Pass

5 Keep attacking until the
enemy's health is below
or equal to 0.

The game victory
screen appears. The
player loses control of
the character.

As Expected. pass

6 Click the return main
city.

Players return to the
main city. Players can
continue to control
their character or take
part in the arena.

As Expected. pass

5.3 Shader performance analysis

To evaluate the performance of custom shaders. I compared the custom shader to

Unity's default standard shader. I attached both shaders to the same number of

spheres with the same number of vertices to observe the game's frame rate and CPU

usage.

The following pictures on the left mean the result when the ball uses the custom

shader;

the right one means the result when the ball uses Unity's default standard shader.

 1000 balls:

Based on the results of the two images above, we can discover that when the

number of balls is 1000, the game's frame rate and CPU usage with custom shaders

and standard shaders are about the same. The possible reason is that the sample size

is so small that the unity engine automatically balances the difference.

 5000 balls:

If the number of balls is expanded to 5000, there is a significant performance

difference between the two shaders. The graph on the left shows that the game

frame rate and CPU Usage with the custom shader are 60 and 16ms. The graph on

the right indicates a better result. The game frame rate and CPU Usage with the unity

default standard shader are 110 and 9ms.

 10000 balls:

If the number of balls is set to 10,000, the game frame rate and CPU Usage with a

custom shader is 30, 30ms. On the other hand, the game frame rate and CPU Usage

with unity's default standard shader is 60, 16ms.

 Summary:

When the number of objects with Chinese ink style shaders is under 3000, it

performs similarly to those with Unity standard shaders. Otherwise, the performance

of the Chinese ink style shader was 50% worse than the Unity standard shader

in-game frame rate and CPU usage.

The preliminary analysis of the Chinese ink style shader shows that it has some

performance problems in massive objects. It is more suitable for a medium number

of static environmental objects such as forests, mountains and the sun.

5.4 Network performance analysis

Since this project is a technical test demo, it focuses on implementing a simple

network framework rather than an actual online game. The purpose of this project is

to achieve three people online in-game. According to test cases 1 and 2, it can be

concluded that the purpose is basically achieved.

This project uses localhost to build the network framework. Therefore, the main

factors affecting network connection performance are the physical distance between

the server and the client and network conditions.

5.5 The graphic effect analysis of Chinese ink style shader

Looking closely at the images below, I think the shader I designed achieves the effect

I want in general, but much detail still needs to be polished. In particular, there is a

lack of light and dark gradients where the Silhouette lines meet the mountains. I

think the solution is to seek the help of an art professional to create a colour map

based on the model.

6.Following works

6.1. Break within the Outline

During the evaluation, Test Case2 found some breaks in the outline of objects in

game.This issue is mentioned in the introduction of five methods of Silhouette Edge

Rendering (2.2.4).

There are actually two solutions to this problem. The first solution solves this

problem once and for all: use Hybrid Silhouetting instead of Procedural Geometry

Silhouetting. However, limited by my graphics knowledge and programming level, I

cannot implement this method at present. But this approach deserves further

investigation in the future.

Another approach is to use a model with more faces to avoid breaking the strokes.

Currently I'm using the free low-poly model from the Unity Asset Store. If I can work

with a professional art and 3D modeler to make the right models, the results will be

much better.

6.2 Remote servers and networking

At the moment my game is not really networked. The servers are not hosted in the

cloud but are started locally. To play my game, users need to start the server first and

then start multiple clients. The server and clients can only be connected on the same

IP. My thesis supervisor (Frank Langbein) suggested that I should look into the

openstack cluster offered by Cardiff University which may be a solution.

7. Conclusion
In conclusion, the two primary aims of this project are essentially achieved. In

Chinese ink painting style. In aim of Chinese ink painting style,I have built a custom

shader by Silhouetting and blurring. There are a few details to be worked out, but I

have basically achieved the result I was expecting. In term of network,I have

implemented a localhost-based networking framework. But it's still a long way from

most networked games using cloud servers. The game has been evaluated for its

basic playability. The user can control the character and interact with the UI.

8. Reflection on Learning
I have gained a lot of experience and knowledge from this project. Although I have

worked on many unity projects before, this was the most difficult one because the

render and network were the areas I had never tried. In particular, I had to learn

computer graphics and advanced mathematics from scratch in order to implement

the shader with the Chinese ink style. I also design a simple localhost asynchronous

network communication framework without relying on external libraries. In the

process, I gained a deeper understanding of the computer networking knowledge I

had previously studied. But the most important thing I learned was the ability to

represent the code in textual and graphical form. Because in my future job I will not

work alone all the time. The ability to communicate my programming ideas to

colleagues and superiors is extremely important.

Overall, completing this project was not only a great challenge but also a life-long

experience for me.

Reference:

[1] “2021 Essential Facts About the Computer and Video Game Industry”, Entertainment

Software Association, accessed July 26, 2022,

https://www.theesa.com/resource/2021-essential-facts-about-the-video-game-industry/

[2] “Video Game Insights 2021 Market Report”,Video Game Insights, accessed July 26, 2022,

https://vginsights.com/insights/article/video-game-insights-2021-market-report

[3] “2021 GAME OF THE YEAR”, The Game Awards, accessed July 26, 2022,

https://thegameawards.com/nominees/game-of-the-year

[4] "Two methods for creating chinese painting", Ching Chan, E. Akleman and Jianer Chen, 10th

Pacific Conference on Computer Graphics and Applications, 2002. Proceedings., 2002, pp.

403-412, doi: 10.1109/PCCGA.2002.1167884,accessed July 27, 2022

[5] “History of the Unreal Engine”, Imagine Games Network(IGN),accessed July 27,

2022,https://www.ign.com/articles/2010/02/23/history-of-the-unreal-engine

[6] “Real-Time Rendering”,Tomas Akenine-Moller, Eric Haines, Naty Hoffman,2008,CRC Press.

[7] “Physically Based Rendering”, Morgan Kaufmann, 2004, Pages 1-42, ISBN

9780125531801,https://doi.org/10.1016/B978-012553180-1/50003-X.(https://www.sciencedirec

t.com/science/article/pii/B978012553180150003X),Accessed July 28, 2022

[8] “The Highest-Selling Call Of Duty Games, Ranked (& How Much They Sold)”, VEDRAN RADIĆ,

accessed July 30, 2022,

https://gamerant.com/highest-selling-call-of-duty-games-ranked-by-amount-sold-world-at-war-

modern-warfare-black-ops/#:~:text=Developed%20jointly%20by%20Infinity%20Ward,total%20of

%2030.71%20million%20copies.

[9] “Call of Duty: Modern Warfare Wiki Guide”, IGN, accessed July 30, 2022,

https://www.ign.com/wikis/call-of-duty-modern-warfare/

[10] ”Number of Genshin Impact app downloads worldwide from September 2020 to January

2022”,J. Clement, statista, accessed July 30, 2022,

https://www.statista.com/statistics/1251724/genshin-impact-number-of-downloads-worldwide/

[11] “There Is No Reason You Shouldn’t Be Playing ‘Genshin Impact’ For Free”,Paul Tassi,

2020,accessed July 30, 2022,

https://www.theesa.com/resource/2021-essential-facts-about-the-video-game-industry/
https://vginsights.com/insights/article/video-game-insights-2021-market-report
https://thegameawards.com/nominees/game-of-the-year
https://www.ign.com/articles/2010/02/23/history-of-the-unreal-engine
https://gamerant.com/highest-selling-call-of-duty-games-ranked-by-amount-sold-world-at-war-modern-warfare-black-ops/
https://gamerant.com/highest-selling-call-of-duty-games-ranked-by-amount-sold-world-at-war-modern-warfare-black-ops/
https://gamerant.com/highest-selling-call-of-duty-games-ranked-by-amount-sold-world-at-war-modern-warfare-black-ops/
https://www.ign.com/wikis/call-of-duty-modern-warfare/
https://www.statista.com/statistics/1251724/genshin-impact-number-of-downloads-worldwide/

https://www.forbes.com/sites/paultassi/2020/09/29/there-is-no-reason-you-shouldnt-be-playing

-genshin-impact-for-free/?sh=666139595379

[12] ”A study of how Chinese ink painting features can be applied to 3D scenes and models in

real-time rendering”,CAO, M., 2016, Purdue University.

[13] "Two methods for creating chinese painting", Ching Chan, E. Akleman and Jianer Chen,10th

Pacific Conference on Computer Graphics and Applications, 2002. Proceedings., 2002, pp.

403-412, doi: 10.1109/PCCGA.2002.1167884.

[14] "A New Definition of Contemporary Chinese Ink Painting." ,Elkins, James,2015.

[15] CAPCOM CO, LTD. 2006, https://www.okami-game.com/gameinfo.php

[16] “Coherent Stylized Silhouettes”, Kalnins, Robert D., Philip L. Davidson, Lee Markosian, and

Adam Finkelstein,ACM Transactions on Graphics (SIGGRAPH2003), vol. 22, no. 3, pp. 856–861,

2003. Cited on p. 522.

[17] Using Gaussian blur in image processing,Adobe,

https://www.adobe.com/creativecloud/photography/discover/gaussian-blur.html

[18] “Game server synchronization of large amounts of data in a battle”, Lin Chen, February 9,

2021, https://engineering.monstar-lab.com/en/post/2021/02/09/Game-server-Synchronization/

[19] “Unity Manual”, Unity,2021, https://docs.unity3d.com/2021.3/Documentation

[20] “Unity UI: Unity User Interface”,

unity3d.com.2020,https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/index.html

[21] A discussion of Geometry Shader Triangle Adjacency buffer, bgolus, Jan 4,

2021,https://forum.unity.com/threads/geometry-shader-triangle-adjacency-buffer.1032694/

[22] “Half Lambert”, Value, 2017,

https://developer.valvesoftware.com/wiki/Half_Lambert#:~:text=%22Half%20Lambert%22%20lig

hting%20is%20a,of%20a%20forgiving%20lighting%20model.

[23] “The Principles of OOD”, Martin, Robert C, 2003,

http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

https://www.forbes.com/sites/paultassi/2020/09/29/there-is-no-reason-you-shouldnt-be-playing-genshin-impact-for-free/?sh=666139595379
https://www.forbes.com/sites/paultassi/2020/09/29/there-is-no-reason-you-shouldnt-be-playing-genshin-impact-for-free/?sh=666139595379
https://www.adobe.com/creativecloud/photography/discover/gaussian-blur.html
https://engineering.monstar-lab.com/en/post/2021/02/09/Game-server-Synchronization/
https://docs.unity3d.com/2021.3/Documentation
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/index.html
https://forum.unity.com/threads/geometry-shader-triangle-adjacency-buffer.1032694/
https://developer.valvesoftware.com/wiki/Half_Lambert
https://developer.valvesoftware.com/wiki/Half_Lambert
http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Appendix:

1. LowPoly Trees and Rocks Pack, greyRoad Studio,

https://assetstore.unity.com/packages/3d/vegetation/lowpoly-trees-and

-rocks-88376

2. Royal Knight,3dFoin,

https://assetstore.unity.com/packages/3d/characters/humanoids/fantas

y/royal-knight-4542

3. PBR exterior pack: 5 stones,CaptainCatSparrow,

https://assetstore.unity.com/packages/3d/environments/fantasy/pbr-ext

erior-pack-5-stones-117126

https://assetstore.unity.com/packages/3d/vegetation/lowpoly-trees-and-rocks-88376
https://assetstore.unity.com/packages/3d/vegetation/lowpoly-trees-and-rocks-88376
https://assetstore.unity.com/packages/3d/characters/humanoids/fantasy/royal-knight-4542
https://assetstore.unity.com/packages/3d/characters/humanoids/fantasy/royal-knight-4542
https://assetstore.unity.com/packages/3d/environments/fantasy/pbr-exterior-pack-5-stones-117126
https://assetstore.unity.com/packages/3d/environments/fantasy/pbr-exterior-pack-5-stones-117126

