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Abstract

The human brain's visual attention system can quickly select where to gaze in

complex scenes. Saliency prediction methods simulate the visual system of the human

brain with specific algorithms to determine the probability of each pixel in an image

being seen by the human eye. These have achieved good results. However, due to

imperfections in imaging systems and equipment, as well as external factors such as

illumination, digital images can introduce different types of noise during formation,

transmission and storage, resulting in loss of image information. Therefore, in this

project, various types and levels of noise were applied to the CAT2000 dataset and

three models were analysed several times to explore the performance of the models in

the presence of noise.
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Chapter I.

Introduction

1.1 Problems

With the rapid development of information and communication technology,

multimedia technology and the increasing popularity of the Internet, the speed and

scale of information collection and dissemination have reached an unprecedented

level. Humanity is confronted with profound changes in information: firstly, the

volume of data is increasing; secondly, the types of data received are becoming more

and more varied. The increasing expansion of information makes it difficult, if not

impossible, to process this data manually, which requires the technical means of

computers to process large amounts of data quickly, and so artificial intelligence is

born. Artificial intelligence uses computers to simulate specific human thought

processes and intelligent behaviour: learning, reasoning, thinking, planning, etc. It is

considered, along with genetic engineering and nanoscience, to be a frontier

technology with great potential for development. After more than three decades of

rapid development, artificial intelligence has gradually become a discipline in its own

right. Today, AI is widely used in many fields and has achieved excellent results. The

main application areas include image recognition, natural language processing,

robotics, etc. Computer vision is an important branch of artificial intelligence, which

focuses on the use of computers and related devices to simulate biological vision and

process collected images or videos to achieve an understanding of scenes. Computer

vision includes image processing, pattern recognition and image understanding.

Visual saliency analysis, a popular research area in computer vision, has recently been

sought after by researchers.

Visual saliency analysis originated from the study of the human visual system

and its goal is to simulate the working mechanism of the human visual system using

computer vision-related algorithms. The human visual system receives several

hundred megabytes of visual information per second, but its information is processed
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at a rate of only 40 bits per second. Through visual attention mechanisms, humans can

quickly find areas of interest in complex scenes. Early stages produce a unique

subjective perceptual quality - saliency - for each location in a visual scene. The

human brain has evolved to automatically and in real-time calculate saliency for each

location throughout a visual scene. Visual attention is drawn to the salient objects or

regions in the visual scene. The visual attention mechanism directs the human eye to

salient regions in a large amount of data. It allocates resources to prioritise the salient

regions, thus effectively reducing the computational load on the human visual system.

Visual saliency analysis simulates the human visual attention mechanism. Through

the computer's analysis of prominent locations in the visual scene, the computer can

allocate resources to prioritise the processing of prominent areas. This increases the

efficiency of image processing and reduces the time consumed.

Drawing on human visual attention mechanisms and the excellent performance of

neural networks, the researchers have investigated an attention point prediction model

suitable for computer simulation. By using the point-of-gaze prediction model as a

icritical component of information filtering and prioritisation of computational

resources in machine vision systems, they enhance the ability of computer vision

systems to handle large amounts of digital media and improve the utilisation of digital

media resources. In this project, I will analyse the performance of different models

and apply noise to the same models to explore how the models perform under

different noise.

1.2 Aims and Objectives

The aim of this project is:

1. Adding the noises to the data.

2. Performing experiments on deep learning saliency prediction models.

3. Find which models have good generalization ability to noises.

1.3 Scope

The scope of this project includes:
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1. Datasets training and evaluation on CAT2000 [1].

2. Noise applying to datasets.

3. The deep learning tool was built in python 3.7.5 using TensorFlow as the main

library.

4. Evaluating metrics implemented were AUC, CC, and NSS.

1.4 Contributions

To summarise, the contributions of this work include:

1. A comparison of performance among ResNet-based, multi-level VGG-based,

and machine learning-based models.

2. An analysis of the effect of using three different noise methods.

3. An analysis of model performance over different noise-adding methods.

4. Findings of limitations with different models.

1.5 Project Flow Diagram

Fig.1.

Overall Project flow. The circle and the capsule respectively indicate the start and the end.
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1.6 Writing System

This dissertation is organized into six chapters, which are:

 Chapter I. Introduction

Goal, scope, contributions, low diagram, and writing system of project.

 ChapterⅡ. Background Material

Summary of background techniques.

 Chapter III. Methods

Experiment methods and implementation details.

 Chapter IV.Results and Analysis

Analysis and visualization of experiment results.

 Chapter V. Conclusion

Conclusion.

 Chapter VI.Reflection

Descriptions of knowledge and skills gained by the student during this work.
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ChapterⅡ.

Background Material

According to neuropsychology, saliency detection studies can be divided into two

types in terms of what attracts attention: image data-driven bottom-up models and

task-driven top-down models. The bottom-up model is a low-level cognitive process.

The earliest models of saliency detection were bottom-up models, where biological

principles inspired them that regions different from the surrounding environment were

more likely to attract human attention. Most traditional methods typically model the

attention point detection problem at this stage through feature extraction, feature

comparison inference and multi-feature graph fusion. The features referred to here are

low-level or manually calibrated features such as colour, texture, luminance and

colour histograms. The classical algorithm for saliency detection was first proposed

by Itti [3]. They extract three features of the image: luminance, colour and orientation,

and compute an initial map by means of the around-centre contrast principle. Finally,

multiple initial maps were fused to obtain the final saliency map. Inspired by Itti,

many people have improved this framework [4-5]. They either used different features,

different methods of computing saliency maps, or different methods of fusing initial

maps.

2.1 Algorithms Literature Review

Over time, researchers have come to recognise the importance of semantic

information. When people look at an image, they first look at familiar areas, such as

faces and text. Therefore, M. Cerf and A. Borji et al. detected faces, text, cars, etc. in

images as semantic features [6-7]. However, a portion of manually selected objects

cannot represent all semantic information. The application of deep learning in

computer vision has made it possible to extract semantic information in a wide range

of ways. deep features were first used for saliency detection by Qi Zhao et al. [8], who

connected deep features with underlying features as a new feature. Subsequently,
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deep neural networks were explicitly designed for eye-dot detection. To date, most of

the best-performing models for eye-movement point detection have been based on

deep neural network structures. A new direction for eye-point detection has become

adapting the network structure to make it more suitable for eye-point detection and

fusing a priori cues.

Figure 2.1 Examples of eye fixation, the red dots denote the eye fixations.

E Vig et al. proposed the eDN model [9], the first saliency detection model to

apply deep learning. The eDN model was trained on a small-scale database with a

linear combination of three different depth features, and the model used the saliency

features. Insignificant image chunks are used as training samples. Another model that

uses small blocks as the main training unit is the multi-scale convolutional neural

network proposed by Han et al. which proposes a multi-scale convolutional neural

network (MS-CNN) [10]. This model consists of three convolutional neural networks,

each taking blocks of images of different sizes as input and outputting predictions

representing saliency. The final regression layer fuses these three networks. The final

regression layer does the fusion of the three networks. This multi-scale convolutional

network prediction method can effectively extract both the underlying and the higher

level information of an image. However, as the model uses image blocks as input, it

leads to high computational complexity and also makes the model. It also prevents the

model from capturing global information.

Kruthiventi et al. proposed the DeepFix model in 2015 [11], using a fully

convolutional neural network to accomplish end-to-end gaze-point prediction. For the
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first time, the diffusion of convolutional layers was applied to improve the resolution

of images and they took different approaches to fuse the central prior information. A

different approach was taken to fuse the central prior information. It is worth

mentioning that the last convolutional layer of the network with a larger scale

perceptual field can capture the global information to some extent. However, the

zero-padding operation limits the sensitivity of extracting global information. The

larger the perceptual field, the more significant the perceptual field and the more

pronounced the effect. Another reason for DeepFix's success is its pre-training of the

Silicon database, an extensive salinity database [12], whose publication has

contributed significantly to the development of salinity models.

Existing models for gaze point detection have made significant progress in terms

of predictive effectiveness, but two technical challenges remain. The first is the

real-time nature of gaze detection. The first is the real-time nature of gaze point

detection, which is often nested within more complex computer vision systems and

acts as pre-processing. The first is the real-time nature of gaze point detection, which

is often nested within more complex computer vision systems and acts as

pre-processing, so its real-time nature is highly demanding. The time complexity of

the point-of-gaze prediction algorithm is assumed to be too high. In this case, the

pre-processing process will take up a significant amount of time, directly affecting the

performance of the overall computer vision system. The second difficulty is the

accuracy requirement. Again, due to the pre-processing nature of gaze point detection,

high accuracy is a requirement. Otherwise, the results of gaze point detection will

affect the accuracy of the whole system.

2.2 Models Literature Review

Visual attention detection algorithms can be divided into a data-driven bottom-up

model and a task-driven top-down model. This section begins by describing both

types of detection algorithms. Bottom-up models typically use heuristic features such

as contrast, position and texture. These heuristic features are known as priors in
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viewpoint detection, with the contrast prior being the most commonly used one. The

contrast prior includes both local and global contrast. Depending on the contrast

utilised, viewpoint detection algorithms can be divided into local and global contrasts

by feature. Graphical computational methods can be divided into local and global

attention point detection models. The local detection model is sensitive to the image.

Local detection models are sensitive to high-frequency information, such as edges and

noise.

Conversely, only the edges of important targets are often detected and the edges

of important targets are ignored due to the lack of global information. Local detection

models are sensitive to high-frequency information, such as edges and noise. The

opposite is true for the corresponding global detection models.

In contrast, task-driven top-down models typically use external cues to make

predictions, including the actual value of the point of view and similar images. The

so-called external cues include the actual value of the gaze point and similar pictures,

etc. Top-down gaze detection algorithms based on convolutional neural networks are

the mainstay of recent developments. Therefore, this section describes the neural

network-based gaze detection algorithm.

2.2.1 Bottom-up gaze point detection model

Typically, a bottom-up model usually includes the following components:

(1) Extracting features: Common features include contrast, texture, brightness,

colour, etc. Image processing techniques can be used to enhance or transform the

underlying features. The basic units of feature extraction include pixel-based,

block-based, and region-based.

(2) Calculation of feature maps in specific feature dimensions to measure

saliency: feature maps are usually calculated using Gabor filters or more
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sophisticated methods. For example, Itti and Baldi assumed that

information-theoretic concepts are central to saliency and adopted Bayesian

statistical theory to compute the saliency map [15]. Gao et al. used discriminative

pericentric assumption to measure significance [16]. Raj et al. used an entropy

minimization algorithm to select the attention points [17]. Bruce et al. proposed a

self-information model based on an independent component analysis decomposed

self-information model [18], which is consistent with the principle of the sparsity

of cortical cell responses to visual input.

(3) Fusion of various feature maps to obtain the final saliency map: Early

psychological and physiological studies supported fusion approaches such as

linear summation and maximization in the field of saliency detection. The former

linear summation approach was widely used in early gaze point detection models.

The former linear summation approach was widely used in early point-of-gaze

detection models. Later, Itti and Koch proposed different methods to normalize

the feature maps according to their distribution [19]. The composite significance

index combines spatial compactness and significance density.

Bottom-up gaze point detection methods usually run slowly, while manually

calibrated features make gaze point detection systems incapable of detecting semantic

information, which is crucial for gaze point detection.

2.2.2 Top-down Visual Detection model

Task-driven top-down models often use external cues to make predictions,

so-called external cues include the actual value of the point of view and similar

pictures. Learning-based point-of-view detection models are often modelled as a

classification or regression problem. A mapping function is learnt to map

high-dimensional feature vectors and significant scalar values. A typical top-down

approach to viewpoint detection learning involves a learning and testing phase, as
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shown in the figure below.

Fig. 2.2 Illustration of learning-based fixation model. (a) Training stage. (b) Testing stage.

The neural network-based learning model is also a top-down model that can

effectively break through the limitations of traditional top-down learning. It can

effectively break through the limitations of traditional top-down learning methods and

achieve better attention point detection.

E Vig et al. proposed the first application of deep learning for the eDN model [9].

eDN model is trained on a small-scale database, its features include three different

linear combinations of depth features, and the model uses significant and insignificant

image blocks as training samples. Another model that uses small blocks as the basic

unit of training is the multi-scale convolutional neural network (Mr-CNN) proposed

by Han et al. [10]. This model consists of three convolutional neural networks, each

of which uses image blocks of different sizes as input, and the output prediction

values represent the significance. A final regression layer does the fusion of the three

networks. This multi-scale convolutional network method for predicting the point of

attention can effectively extract the image's underlying and higher-level information.

However, since the model uses image blocks as input, it leads to high computational

complexity and, at the same time, prevents the model from capturing global
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information.

Kruthiventi et al. proposed the DeepFix model [11] in 2015, where they used a

fully convolutional neural network to accomplish end-to-end gaze-point prediction.

The diffusion of convolutional layers was applied for the first time to increase the

resolution of images, and they took a different approach to fuse the central prior

information. Cornia et al. proposed ML-NET [13], which fuses features extracted

from different layers in a convolutional neural network. The model consists of three

modules: a feature extraction convolutional neural network, a feature encoding

network, and an a priori learning network. Kruthiventi proposed a deep neural

network for both salient target detection and gaze point detection [14], with both tasks

sharing the initial network part.

Although convolutional neural networks show great ability in extracting semantic

information, for images with bottom-up contrast information attracting attention, the

neural networks are not as effective as traditional gaze point detection algorithms. For

images where the underlying contrast information attracts attention, the neural

network is not as effective as the bottom-up traditional gaze point detection algorithm,

as shown in Figure 2.2.1

Fig. 2.2.1 Examples of the situation that contrast information important than semantic
information, the first line shows images, the second line shows the result maps of the neural

network method

2.3 The basic structure of neural networks

The two-layer neural network structure is the interconnection pattern of early

neural network models, and this interconnection pattern is the simplest hierarchical
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structure. And the neural network structure with three layers and more than three

layers is called a multi-layer neural network structure. All neurons are divided into

several layers according to their functions. Generally, there are the input, hidden, and

output layers. The neurons on the nodes of the input layer receive input patterns from

the external environment and pass them from it to the individual neurons on the

connected hidden layer. The hidden layer is the internal processing layer of the neural

network, and they have no direct connection with the external input and output, so

they are called hidden layers. The pattern transformation capability of the artificial

neural network is mainly reflected in the hidden layer's neurons. The output layer is

used to generate the output of the neural network.

Fig. 2.3 Basic structure of neural network

In figure 2.3, the blue circles represent the inputs to the network, and the circles

marked with "+1" represent the bias cells, which correspond to the intercept terms.

The leftmost layer in the Figure is the input layer, the rightmost layer is the output

layer, and the middle layer is the hidden layer.

2.4 Convolutional Neural Networks

A convolutional neural network (CNN, or ConvNet) is a feed-forward artificial

neural network in which the connections between neurons are inspired by the

organization of the animal visual cortex. The fixed area where a single cortical neuron

responds to a stimulus is called the receptive field, and the receptive fields of different
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neurons partially overlap. The response of a single neuron to a stimulus within the

receptive field can be mathematically simulated using convolutional operations.

Convolutional neural networks are also translation invariant or spatially invariant

artificial neural networks.

Convolutional neural networks consist of a series of different layers and several

commonly features:

(1) Convolution layer: convolution layer is the core part of CNN, and its primary

role is to extract the basic features of the input image. The convolution operation

is the process of multiplying and summing the corresponding elements by sliding

a convolution kernel of appropriate step size between small blocks of input

images with the exact dimensions during the operation. The convolution

operation process is shown in the following Figure, which requires the input 3D

shapes [20] to have the same width, height, and depth. The image is scanned, and

the feature map is obtained using the convolution operation [21]. The

hyperparameters of the convolution layer include the size of the convolution

kernel, the number of kernels, the step size, and whether to fill the

complementary zeros.

Fig 2.4 Convolution operation

(2) Activation function: The role of the activation function is to increase the

expressiveness of the linear model by introducing nonlinear factors. In neural

networks, a linear transformation is still obtained after superimposing each layer

on top of each other. There would be no point in using a deep neural network

model if an activation function is not included in this process [22]. Including an

activation function introduces nonlinearity and enables the network to model

more complex functions. The commonly used activation functions, along with
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their function images and mathematical expressions, are shown in the following

graph.

Fig 2.4.2 Activation function

(3) Pooling layer: The pooling layer is usually found in the middle of two

convolutional layers, mainly to compress the image. The pooling operation,

which can also be called subsampling, can extract local feature information of the

image and reduce the number of parameters of the next convolutional layer while

reducing the size of the feature map, which in turn can reduce the number of

parameters of the whole network, which is very helpful to speed up the network

training [23]. In addition, pooling layers can suppress the overfitting of the

network to a certain extent and accelerate the convergence of the network

parameters.

The everyday pooling operations are max-pooling (maximum pooling),

vanpooling (average pooling), and global pooling (global pooling). Among them,

max-pooling is to extract the feature value of the most prominent feature in the

window, i.e., the maximum value, discarding the others. Vanpooling is to extract the

average value of the features present in the window as the sliding window keeps
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moving. Global pooling is to obtain the global relationship and then output it as a unit

of each feature map.

Fig. 2.4.3 Max pooling with a 2x2 filter and stride =2

(4) Fully connected layer: The fully connected layer acts as a "classifier" in the

whole CNN and is usually applied in the later layers of the CNN. The fully

connected layer is able to fit the image feature information extracted from the

convolutional layer. It is suitable for optimizing the function during training, thus

allowing the whole model to approximate the target to be trained. However, its

parameters are substantial, occupying about 80% of the total network parameters.

In general, the fully connected layer's length, width, and activation function affect

the fully connected layer's performance for the whole network model.

2.5 Visual attention mechanism

The most fundamental problem of visual attention is addressing the selection of

attention, which depends on selecting the "visual object" in the environmental scene.

In the process of target tracking to locate the target position and search to detect the

border size, adding visual attention can improve the focus on the target and thus

obtain more accurate information about the target's position. Visual attention can be
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divided into feature-based, spatial location-based, object-based, and other-based

visual attention. Traditional visual attention is mainly based on spatial location.

Bahdanau[24] first introduced an attention mechanism in natural language processing

to reduce the source sequence length by collecting information over time. The

attention mechanism has thus been widely applied in various aspects, including

computer vision.

Invoking the attention mechanism in computer vision can help the system learn

attention effectively [25] and reduce the possibility of extracting distracting

information from video scenes, which not only saves resources but also improves the

training speed and reduces time consumption. The use of the attention mechanism can

obtain the target of the system's attention region, reduce the interference of

background information to the model, and achieve accurate localization of the target

location. The attention mechanism diagram is shown in Figure 2.5.

Fig.2.5 Visual attention mechanism

2.6 Joint Attention

Joint Attention (JA) is the process of shared attention in which a person makes

visual contact with another person in a three-way interaction by following the

direction of the other person's gaze or gazing at an object and shifting their gaze to

focus on that direction or object. In early communication, infants are able to

distinguish between the interactions of mutual and joint attention by three months of
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age [26]. Joint attention is crucial for language and imitation learning, and observers

can understand joint attention using environmental cues. Grover [27]. proposed a

method to construct a 3D social salience field and locate multiple gaze behaviors in

social scenes from videos captured by head-mounted cameras. In addition, they used

joint attention as a constraint to predict social behaviors in first-person videos, such as

future actions and future gaze directions of individuals in social groups. The predicted

behaviors reflect the individual's physical space that can take the next action by

engaging in joint attention while conforming to social behavior. These works explore

well the detection and application of joint attention in social activities. However, they

focus only on first-person videos and do not extend to ordinary third-person videos.

An example diagram of joint attention is shown in Figure 2.6.

Fig 2.6 Joint Attention Example

The field of Human-Computer Interaction (HCI) enables simple interaction

between humans and machines using natural communication. In HCI communication,

many techniques, as well as unsolved problems, require the introduction of joint

attention for reference, thus becoming a key challenge in achieving the task of joint

human-machine attention and visual tracking with or without external evaluation. The

critical point of this work is how to infer the direction of the human visual gaze and

then control the robot's head turning to reach the interactive communication between

human and machine, forming the final joint.
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The critical point of this work is how to infer the direction of the human visual

gaze and then control the robot's head turning to achieve the interaction between

human and machine to form the final joint attention system. It is interesting to

improve the joint attention in HCI because not only can the robot be controlled to

complete the corresponding commands, but also the robot can learn and detect and

join the continuous joint attention in the environment by itself.

2.7 Visual saliency prediction

The purpose of visual saliency for prediction is to obtain the location of the object

of attention in an image, which depends not only on low-level features in the

environment, such as luminance, colour, texture, etc. but also on high-level features in

the scene information and task demands, such as task drivers and center bias

phenomena. Greenberg [28] proposed a new saliency-based visual attention algorithm

for object acquisition. They automatically extracted visual attention points (PVAs) in

the scene based on saliency attention maps with different features, where each

saliency attention map represents a specific feature domain. A feature selection based

on detection probability, false alarm rate, and repeatability criteria is also used to

select the saliency map's most practical combination of features. Assuming that the

extracted PVAs represent the most visually salient regions of the image, object

acquisition using the visual attention approach has a better performance compared to

other detection algorithms.

Deep learning methods are excellent for learning visual saliency based on their

strong learning ability and ability to incorporate both global and local scenes into their

predictions. Saliency prediction generally includes bottom-up approaches and more

goal-oriented top-down approaches. Bottom-up approaches can be understood as

drawing the target's attention to salient regions of an image due to data-driven

influences, usually using low-level features of the image in contrast to the scene to

calculate the saliency of the region, and thus are primarily used for high-contrast

scenes. The top-down approach is influenced by the subjective consciousness of
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humans and uses specific features of the image part to calculate the saliency under the

control of human consciousness. However, it is difficult to understand the human

brain structure well, and there are always computational shortcomings, so this method

has very few practical applications in vision. An example of saliency prediction is

shown in Figure 2.7.

Fig 2.7 Significance prediction Example

2.8 Colour Space Theory

Colour is the most intuitive visual feature of an image. People can easily identify

the meaning of an image based on its colour characteristics. The colour space is also

called the colour channel. Colours are expressed in different ways in different colour

spaces. Three common colour spaces relevant to this thesis are described below.

2.8.1 RGB Coluor spectrum

The RGB colour space, also known as the three primary colours, is the one that is

most relevant to us in our lives. In the human visual system, all colours presented on

the retina can be represented by a combination of red, green and blue. Currently, most

video display systems use this colour model. The three RGB electron guns emit

different electrons to the phosphor screen, which contains phosphors that sense each

of the three different RGB colours, and the electrons excite the phosphors and

produce different colours of light in linear combinations, thus mixing to produce

different colours. Figure 2.8.1 shows the RGB colour space: at the origin of the
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coordinate system, the component values of RGB are all 0, forming black, and at the

maximum value of RGB is 255, forming white.

Fig 2.8.1 RGB Colour spectrum

2.8.2 HIS Colour Space

The HIS (hue-intensity-saturation) colour space is also a common colour space in

computer technology, which stands for hue, saturation and luminance, respectively.

The HIS colour space is shown in Figure 2.8.2. Hue represents the wavelength

reflected from an object, and generally refers to the colour, which is represented in the

figure by the angle between each axis and the central axis, ranging from 0 to 360

degrees, with different angles representing different colours. Saturation represents the

intensity of the colour and can be expressed as the length of the radius from the

central axis to the coloured point in the diagram. It ranges from 0% to 100% and

represents the ratio of gray to hue. Brightness is the relative lightness or darkness of a

colour, and in the diagram is the height on the vertical axis, with black at the lowest

brightness and white at the highest. The human visual system is more sensitive to

luminance than to colour intensity. Therefore, although the cone model is more

complex, it can better represent the hue, brightness and saturation clearly, that is,

different colours can be accurately displayed with the HIV colour model. Therefore,

the HIV colour space is often used in colour processing.
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Fig 2.8.2 HIS Colour spectrum

2.8.3 LAB Colour Space

LAB is called CIELAB, and any colour in nature can be expressed in LAB space,

where L represents luminance, A represents green to red component, and B represents

blue to yellow component. Compared with RGB and HIS space, LAB space has the

feature of uniformity of visual perception, and the magnitude of change of LAB space

components is basically the same as that of human visual perception, and has the

feature of device-independence. Therefore, LAB has a larger colour range than other

colour spaces, and there is no need to care about overflow when converting colours

from RGB to LAB colour space. Figure 2.3 shows the LAB colour space: the vertical

axis is the luminance axis L, and the horizontal coordinate system represents the green

to red component and the blue to yellow component.

Fig 2.8.3 LAB Colour spectrum
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Chapter III.

Methods

3.1 Model Selection

3.1.1 VGGNet

Due to the widespread use of convolutional neural networks in the field of

computer vision, many researchers started to try to improve the structure of the

network to enhance the performance of neural networks. 2014, Simonyan [29], a

research group at the University of Oxford, proposed a deep neural network series

model VGGNet network architecture (including VGG11, VGG13, VGG16, and

VGG19) and won second place in the ImageNet competition for classification and

first place for localization.

VGGNet has the advantage of using convolutional kernels with smaller fields of

perception (3 × 3 convolutional kernels) instead of more extensive fields of

perception (5 × 5 convolutional kernels or 7 × 7 convolutional kernels), which

reduces the number of parameters while increasing the nonlinearity of the network.

VGGNet also introduces a 1×1 convolutional layer, which can resize the

convolutional kernels to augment or reduce the data, add additional activation

functions to introduce more nonlinearities without changing the input size, and finally,

it can perform up- and down-dimensioning of the feature map. It is also able to

perform dimension raising and lowering operations on the feature map.

The structure of VGG16 is shown in Figure 3.1. It has 16 layers, including 13

convolutional layers and 3 fully connected layers. In the training process of the

network model, the same padding is used, i.e., the size of the output layer is equal to

the size of the input layer, the max-pooling operation is used after each convolutional

layer, and the number of channels of the last three fully connected layers is 4096,
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4096, and 1000 respectively, and then SoftMax is used to output the classification.

Fig 3.1 VGG16 Structure Diagram

3.2 ResNet Network Model

With the continuous research of neural networks, the number of layers of the

network is increasing. The network model is able to extract more complex feature

information (lower, middle, and higher layers). The performance of the network will

be relatively more superior in theory. However, in practice, after the network reaches

a certain depth, the performance of the network shows a decreasing trend instead. One

of the reasons for this is that there is gradient disappearance or gradient explosion,

and the parameters of the network layer cannot be updated because the deeper

network has difficulty in effectively transferring the later gradients to the front

network layer during backpropagation. On the other hand, it is because of the network

degradation problem brought by blindly increasing the network depth.

To solve this problem, Kai-Ming He of Microsoft Research [30] proposed the

residual learning framework ResNet (Deep Residual Network), which solves the

network degradation problem by introducing a residual block, which not only enables

the number of layers of the network can reach more profound, but also makes the

network less challenging to train, and won the championship in the 2015 IamgeNet

The network was awarded the first prize in the 2015 IamgeNet competition. The

structure of the residual block is shown in Figure 3.2

ResNet introduces the concept of identity mapping because it is challenging to fit

a potential expectation mapping H(x) directly, so we can use the residual function F
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(x) to design the network as H(x) = F(x) + x. This can be converted to learn the

residual function F(x) = H(x) - x, and the difficulty will be reduced. The final desired

mapping H(x) can be fitted with F(x) + x. The results show a significant improvement,

and the network is easier to optimize because of the increased depth. When F (x) = 0,

then H(x) = x constitutes a constant mapping. Since this approach reuses the

intermediate feature layers, it can effectively solve the problem of network

degradation.

Fig 3.2 Residual block

Assuming that the layers behind the deep network are continuous mappings, the

deep network can be transformed into a shallow one. ResNet can stack many residual

blocks together at the same time to obtain a deeper neural network structure (e.g., 34,

50, or 152 layers, etc.), and the network structure of ResNet with different depths is

shown in table 3.2.
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Table 3.2 ResNet network structure with different depths

Considering that in the process of network degradation, the external layer

network is trained better than the deep layer network, at this time, passing the features

from the lower layer to the higher layer gives a better network than if only the shallow

layer is used for training.ResNet adopts precisely this strategy and is able to learn

even 152 layers of network structure, about 8 times VGG19, but with low complexity

and easy optimization. The structure diagram of ResNet-50 is shown in Figure. The

structure of ResNet-50 is shown in Figure 3.3.

Fig 3.2.1 ResNet-50 Architecture
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3.3 ML-NET

ML-NET is a model of neural networks with fully convolutional layers, using the

features of different layers in order to efficiently predict saliency maps. This model

also uses the concept of prior, which is a way to define regularities in visual

perception. In their model, it is fully learned and integrated, at the last stage, with the

features of the image extracted. The basic framework for ML-NET is shown in figure

3.3.

Figure 3.2.1 ML-Net Architecture

3.4 Loss Function - KLLoss

KL scatter, also called relative entropy, is used to measure the distance between two

distributions (discrete and continuous). Let p(x) and q(x) be two probability
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distributions of a discrete random variable X; then the KL scatter of p to q is:

For the batch data D(x, y) containing N samples, x is the output of the neural network

and is normalized and logarithmic; y is the actual label (default is a probability), and x

is in the same dimension as y. The loss value L for the nth sample is calculated as

follows:

3.5 Noise

3.5.1 Gaussian noise

Gaussian noise is the most commonly used image noise model and is

mathematically tractable in both the spatial and frequency domains. The expression of

the probability density function of Gaussian noise is:

�(�) =− 1

2��2
�−(�−�)2

2�2 (1)

� is the expected value of z, � and �2 denote the standard deviation and variance

of z, respectively. The probability density function curve of Gaussian noise is shown

in figure 3.9.1
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Fig 3.5.1 The probability density curve of Gaussian noise

We can obtain that z obeys the Gaussian distribution. There is a 70% probability

that its value will fall in [(� - �),(� + �)] and have 95% probability that its value

will fall in [(� - 2�),(� + 2�)].

3.5.2 Impulse noise

There are many kinds of impulse noise, one of them is Salt And Pepper Noise,

which uses minimum or maximum intensity, assuming 8 bits per pixel, and the noise

pixels can only be 0 or 255; the visual effect of this noise is similar to sprinkling

white and black dots on the image, and its probability density function is expressed as

follows:

�(�) = ���(� − �) + ���(� − �) (2)

The probability density curve of the impulse noise is shown in Figure 3.5.2
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Fig 3.5.2 Probability density curve of the impulse noise

If b > a the gray value b will appear as a bright spot in the image, and the gray

value a will appear as a dark spot in the image; if � oor PB is zero, the impulse

noise is called a unipolar pulse; if �� = 0, only bright spot noise exists, which is

called salt noise (positive pulse); if PB = 0, only dark spot noise exists, which is

pepper noise (negative pulse).

3.5.3 Poisson Noise

Since light has quantum effects, there is a statistical rise and fall in the number of

quanta reaching the surface of the photodetector. Therefore, image monitoring has a

granularity, which causes the image contrast to become smaller and the image detail

information to be obscured; we call this measurement uncertainty due to light quanta

as Poisson noise of the image. Like gaussian noise, the probability density function

curve of Poisson noise is shown in Figure:

Fig 3.5.3 Probability density curve of the possion noise
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3.5.4 Speckle noise

Unlike the gaussian noise, the speckle noise does not follow a normal distribution,

and it frequently occurs in medical imaging. The imaging which affected by speckle

noise can be represented by:

�� = ��� (2)

3.6 Datasets

SILICON database: this is the most extensive database available for gaze point

detection [12], which contains a total of 10,000 training images and 5,000 validation

set images, and 5,000 test images for gaze point detection, all selected from the

Microsoft CoCo database [36]. The authors of the SILICON database propose a

mouse. The authors of the SILICON database propose random mouse tracking on

multi-resolution images as an alternative to eye-tracking so that the gaze points in this

database are not recorded by eye-tracking but are simulated by mouse clicks. The

database authors demonstrate a high degree of similarity between the results of

mouse-based gaze point annotation and oculomotor recordings.

CAT2000 database: This database contains 4000 images in 20 categories, including

cartoons, artistic satellite images, low-resolution images, interiors, exteriors, sketches,

etc. There are 200 images in each category. The test set and the training set each have

2000 images in the database, and the actual values of the gaze points corresponding to

the 2000 images in the test set are also not publicly available. The results need to be

uploaded to the MIT saliency benchmark for evaluation.

The MIT saliency Benchmark, mentioned above, is a platform for comparison of
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annotation point detection results maintained by Ali borji, Jack Brown, and others.

The platform aims to provide an up-to-date online saliency model comparison and

database. They evaluate and report the latest saliency detection models, and saliency

truth values are kept confidential to prevent training and fitting to specific databases.

They also provide other gaze-point datasets and acquisition procedures, as well as all

relevant links, so that users get a one-stop resource for easy comparison. The

comparison platform uses the following evaluation criteria: Earth Movers Distance

(EMD), Normalized Scanpath Saliency (NSS), Similarity (SIM), Linear Correlation

Coefficient (CC), The Area under the ROC curve (AUC). According to Bylinskii [39],

the evaluation methods can be classified as location-based and distribution-based,

depending on whether their actual value is represented by the gaze point location or

by a continuous gaze point density map. A brief description of these evaluation

methods follows.

3.7 Matrices

3.7.1 The Area under the ROC curve (AUC)

AUC is the most widely used criterion for the significance map. The area under the

ROC curve (AUC) is the most widely used criterion for the significance map. When

calculating the AUC, the significance map is used as a binary classifier to separate

positive and negative samples under different thresholds. Samples at different

thresholds. The ROC curve is then plotted using the positive and negative favorable

rates at different thresholds, and the AUC is the area under the curve. Many

researchers have designed various AUCs, including AUC-borji, AUC-Judd, and

Stuffed AUC. The difference between AUC-borji and AUC-Judd lies in the way of

calculating positive and negative favorable rates. Stuffed AUC aims to eliminate the

effect of center bias [40].

3.7.2 Normalized Scanpath Saliency
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Normalized Scanpath Saliency (NSS): the NSS is a simple way to calculate the

correlation evaluation of the saliency map with the actual value [41]. It calculates the

average normalized saliency of the gaze points. Given a significant graph

saliency map P and a binary true value map QB labeled with the attention points.

3.7.3 Earth Movers Distance

Earth Movers Distance (EMD): None of the evaluation criteria we have discussed so

far evaluates how far the predicted values are from the actual values in terms of

spatial distance. EMD evaluates the distribution distance between the predicted and

actual images by calculating the minimum cost required for one distribution to match

the other. The EMD evaluates the distribution distance between the predicted image

and the actual image by calculating the minimum cost required for one distribution to

match the other. The calculation is as follows：

3.7.4 Linear Correlation Coefficient (CC)

Linear Correlation Coefficient (CC): The linear correlation coefficient is also known

as the Pearson linear correlation. It measures the linear correlation coefficient between

the prediction and actual value plots. Using P and QD to represent the two plots,

respectively. Then CC can be calculated using the following equation.
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3.8 Gradient descent

Gradient descent is a common first-order optimization method, which is one of

the simplest and most classical methods for solving unconstrained optimization

problems.

3.8.1 Batch gradient descent

Batch gradient descent is a common form of gradient descent that uses the entire

training sample set to compute the gradient of the cost function l() with respect to
parameter  and then updates the parameters.

where η is the learning rate and () denotes the gradient of the function () with

respect to the parameter . Batch gradient descent uses the entire training set in each

iteration. Therefore, it can be updated in the right direction, and eventually

convergence to the extreme value point is guaranteed. However, the same F is slow to

update iterations due to the large amount of data used, which puts a certain pressure

on memory and computation.

3.8.2 Stochastic gradient descent

Stochastic gradient descent considers a randomly selected training sample xi and

label yi from the training sample set in each iteration to perform the parameter update.

Batch gradient descent and random gradient descent are two extremes: one uses all

training samples; the other uses one sample for gradient descent. Naturally, their

advantages and disadvantages are very prominent. In terms of training speed,

stochastic gradient descent is very fast, while batch gradient descent is unsatisfactory

when the training sample set is large. In terms of accuracy, stochastic gradient descent
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uses only one sample to determine the direction of the gradient, which may not be the

optimal direction of descent. In terms of convergence speed, since stochastic gradient

descent considers only one sample per iteration, the gradient direction is highly

variable and does not converge to the local optimal solution quickly. However, in

terms of computational speed, there is no doubt that stochastic gradient descent is

faster.

3.8.3 Mini-batch gradient descent

Mini-batch gradient descent is a compromise between batch gradient descent and

random gradient descent, which performs updates using small batches of N randomly

sampled training samples.

where N is the number of batches. Small batch gradient descent has a more accurate

update direction, i.e., a more stable convergence. In addition the highly optimized

matrix optimization algorithm, which exists in the advanced deep learning library, can

be used to efficiently compute the gradient of small batches.

3.8.4 Adaptive Momentum Estimation

The Adam (Adaptive Momentum Estimation) algorithm [32] is one of the most

mainstream algorithmic optimizers available. It takes into account both the

momentum variable Vt and the exponentially weighted moving average variable Sy of

small batch random gradients squared by elements. The momentum Vt update

formula is shown below:

The variable St update formula is shown below:

The update formula of  is shown below:
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where  is the parameter added to maintain the stability of the coefficients and keep

the denominator from being zero, usually 10−8.  is the parameter at the t-th update.

1 and 2 are hyperparameters with values in the range [0,1), usually 1 is set to 0.9

and 2 is set to 0.999. the Adam algorithm incorporates the ideas of gradient descent,

momentum (SGDm) [33], Adagrad [34], and RMSProp with minor improvements. It

has the advantages of simplicity, small memory requirement, insensitivity to gradient

isometric scaling, large data size, sparse data handling, and easy hyperparameter

tuning.
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Chapter IV.

Results and Analysis

In this chapter, I will perform different experiments with different models to see

the performance of CAT2000 datasets. Then I will apply the three different noises to

the datasets, followed by the experiments with noised data.

4.1 Complexity of Model

There exist two complexity for deep learning models. The time complexity

determines the training/prediction time of the model. If the complexity is too high, it

results in a time-consuming model training and prediction, which neither allows for

fast idea validation and model improvement, nor for fast prediction. The spatial

complexity determines the number of parameters of the model. Due to the limitation

of the curse of dimensionality, the more parameters a model has, the larger the

amount of data required to train the model, and real-life data sets are usually not too

large, which can lead to more overfitting of the model training. In this section, the

complexity of all three Models will be given by using PyTorch library.

Fig 4.1 Complexity of Model code

Fig 4.1.2 Number of Parameters of ResNet(left), VGG(middle),ML-NET(right)

As we can see, the ResNet have the highest parameters. In general, the more

complex the model is, the better the results perform. This is because a complex model

with multiple layers can extract deeper features in the image and optimize the results.
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Therefore, in terms of model complexity, the results of resnet should be the best for

the same conditions.

4.2 Model Performance with Original Data

In this section, I applied different loss functions in different models. The result is

shown in the following tables.

Model Noise KLD NSS SIM

VGG16 None 0.77 0.71 0.67

ResNet50 None 1.54 0.7 0.59

ML-NET None 0.43 0.23 0.71

Table 4.2 Overall results for 3 models

We can see for the KLD value, the ML-NET outperform others, since KLD

measures a given arbitrary distribution is away from the true distribution, the reason

that ML-NET performs the best, is may because the model is more complex than any

others. The similarity performance measured by metrics are nearly the same. However,

the NSS shows the completely different result. The NSS result of ML-NET shows that

the ML-NET performance is behind from the frequency of evaluation, while the VGG

and ResNet did not have significant difference. The following figure shows the

visualization of the result.

Fig 4.2 The line plot for the results.
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In more detail, it can be seen here that ML-NET results are the best overall.

Starting with the model structure, first comparing ResNet and VGG, it can be seen

that the results of VGG are better than those of ResNet. One perspective is that VGG

naturally performs better than ResNet in the saliency detection task, but overfitting

due to the more complex structure of ResNet cannot be ruled out. Then compare VGG

and ML-NET, ML-NET is based on VGG with an added layer of priors for sampling.

It can be seen that the results are significantly improved after adding a layer of priors.

Therefore, it can be considered that the prior layer can play a role in saliency

detection to promote better results.

4.3 Model Performance with Noised Data

Image noise is the random signal disturbance that an image is subjected to when

it is ingested or transmitted, manifested as random variations in image information or

pixel brightness. In this section, we use the gaussian noise, poisson noise and speckle

noise will be applied to all models. After the all the three noises applied to all data.

We can see the photo became unclear as seen in following figure.

Fig 4.3 Different noises
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The result for Gaussian noise is shown in the following table

Model Noise KLD SSIM NSS

ResNet50 Gaussian 1.54 0.31 0.59

VGG16 Gaussian 1.62 0.28 0.61

ML-NET Gaussian 0.96 0.33 0.21

Table 4.3.1 Gaussian noise results for 3 models

It can be seen that the performance of all three models drops significantly after adding

Gaussian noise. Overall, the performance results ML-NET are consistent with the

results without adding noise points.

Model Noise KLD SSIM NSS

ResNet50 Poisson 0.73 0.55 0.73

VGG16 Poisson 0.82 0.57 0.70

ML-NET Poisson 0.42 0.54 0.24

Table 4.3.2 Poisson noise results for 3 models

After adding Poisson, the performance of all three models decreases, but not as much

as guassian. The performanc shows that VGG16 and ResNet50 have better resolution

of poission noise than ML-NET. There are few reasons my cause the difference

between possion noise and Gaussian noise. Firstly, In raw image, the main noise is

two kinds, Gaussian noise and scattered noise, among which, Gaussian noise is the

noise that has no relationship with light intensity, and the average level of noise

(generally 0) remains the same regardless of the pixel value. The other is scattered

noise, because it conforms to Poisson distribution, also known as Poisson noise,

Poisson noise increases with light intensity, the average noise also increases. While

ML-NET adds sampling at the last layer of the model structure, this may cause

ML-NET to be more sensitive to the noise generated by light intensity, resulting in a

decrease in accuracy. Secondly, by deepening the network structure, the network is

able to extract more abstract higher-order features, and VGG16 finally extracts a

512-channel feature map, which means it have strong ability to deal with possion
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noises.

Model Noise KLD SSIM NSS

ResNet50 Speckle 2.46 0.21 0.42

VGG16 Speckle 2.23 0.21 0.65

ML-NET Speckle 0.65 0.42 0.22

Table 4.3.3 Speckle noise results for 3 models

After adding speckle noise, the performance of the three models also dropped

significantly. The decrease of ResNet and VGG16 is especially obvious, while the

decrease of ML-NET is not particularly large. This indicates that ML-NET has an

advantage in the resolution of speckle noise.

Fig 4.3.2 The line plot for the overall result with all noises.

As we can see, the ResNet50 model have strong generalization ability since we can

see there is no significant difference on matrices with different noises. The VGG16

may performs very well in specific metrics, but the noises have huge impacts to the

performance of VGG16. The ML-NET also shows good generalization ability. In
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summary, firstly, the performance of each of the three models decreases after adding

noise, which shows that adding noise does not improve the performance of the

saliency detection task for these three models. Secondly, the ability of impact among

3 noises adding method are poisson>gaussian>speckle. Figure 4.3.2 also shows that

poisson noise has the least impact on the image.
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Chapter V.

Conclusion

The advantages of visual target tracking technology in handling computer vision

tasks are becoming increasingly apparent, not only in a variety of It has a wide range

of applications not only in various fields, but can also be used to analyse some

advanced semantic information. Although visual tracking techniques have contributed

greatly to the advancement of computer vision technology, the current tracking

techniques are not perfect and there are still many problems. One of these problems is

the generalisation of the model. In this task, we use different methods to test the

generalisation ability of the model.

By applying different noises to different deep learning models to recognise salient

objects, the results showed a decrease in overall performance. Specifically, ResNet

was not affected by noise, while its performance was relatively poor compared to the

other models. Therefore, we can conclude that if a model has better generalisation

capabilities, its performance will be sacrificed.

From the final experimental as well as detection results, the noise model

generalisation capability test method proposed in this paper has good results in

tracking target attention as well as detecting joint attention, but there are still some

issues that need to be optimised as follows:

(1) ResNet used in this paper has some advantages in dealing with blurred targets

and image background occlusion, but the ML-NET results are lacking

irreverently.

(2) When using the noise addition method, the intensity is not taken into account

and will be bu'z in the subsequent work

(3) The practical applications are lacking. This paper mainly focuses on algorithm

research in the field of visual target tracking, and when deployed to servers and

some edge devices, it is currently only applied to smaller facilities due to the lack
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of performance of the used devices. In addition, due to the hardware computing

power, the recognition effect is poor for large-scale scenarios.

In view of the above problems, the main future research direction work of this

paper are:

(1) In terms of visual target tracking speed, the algorithm needs to be further

optimized, and some improvements should also be made for fast-moving targets

to ensure that the target location can be accurately located and the visual attention

of the target can be focused.

(2) Adjustment of different intensity of noise for testing.

(3) In terms of practical applications, experiments on servers and edge devices

need to be strengthened to solve the problem of visual tracking detection in

large-scale scenarios.
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Chapter VI.

Reflection

During my studies in the field of deep learning, I gained a lot of knowledge that is

different from machine learning and computer vision. As the basic concepts are based

on mathematics, at the beginning of this project, I studied the basic concepts of MLP

(multi-layer perceptron) and I figured out what is forward and backward propagation.

I also bought a book called "Deep Learning" by Ian Goodfellow. the most important

advantage of this book is that it explains some of the processing methods of deep

learning from the principles section, with an extensive list of some standard formulas

and specific derivations. The first author of the book, Ian Goodfellow, was a former

student of Andrew Ng, and in an interview with Ng, Goodfellow said that it was his

taking a class from Ng that sparked his interest in deep learning.

After I understood the basic concepts of deep learning, I read the deep learning code

and tried to run some basic models myself. By debugging and running the code, I

gained a better understanding of what I had learnt and familiarised myself with how I

should apply the basics in practice. In addition, I read some classic papers such as

LeNet, AlexNet, VGG, etc. in order to get a more accurate understanding of how the

relevant model or method is implemented. All the previous steps were in preparation

for this project. What I have learnt has been fully used during the time I have been

working on this project. Last but not least, I also learnt how to handle images with

different noises and gained experience that I had never had before.
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