
MATLAB Code Breakdown!!

HSV_Threshold.m!!
• Removes green from and image.!!
maskingImage.m!!
• Removes spectators from the image.!!
videoIn.m!!
• Reads in video.!
• Counts number of frames in video.!
• Calculates height and width of video.!
• Uses MatLab function ‘struct’ - which creates or converts information into a structure array - to 

create a struct array ‘im1’ with fields ‘cdata’ and ‘colormap’.!
• Reads every frame one at a time and converts the frame into HSV.!
• Calls HSV_Threshold to remove the green.!
• Calls maskingImage to remove the spectators.!
!
!

!
! !

! ! !!!!

Jelena’s Code Matt’s Code VLFeat
Classify.m K_Means_Clustering.m phow_caltech_18.m

StandardizeImage.m HMM_Train.m

getImageDescriptor.m Find_Features.m

makeVideo.m Find_Training_Hists.m

mask.m

numRucksandMauls.m

numScrums.m

HSV_Threshold.m

maskingImage.m

videoIn.m

makeVideo.m

Offscreen_video_eg.m

text_image.m

videoIn.m

HSV_Threshold.m

maskingImage.m

calls

calls

passes variable 
‘threshMovie to



!!
phow_caltech_18.m!!
• Outputs 5 files!

• tiny-vocab.mat - histogram!
• tiny-hists.mat - histogram!
• tiny-model.mat - info about things learned.!
• tiny-result.mat - results!

• If effect - teaches the machine about images and tests the accuracy, giving a confusion matrix of 
accuracy at the end.!!

standardizeImage.m!!
• resizes the image by converting the image into single precision.!
• imresize(im, [480 NaN]) - resizes the image to have 480 rows.!!
getImageDescriptor.!!
• Accepts a model and an image as arguments.!
• Calls standardizeImage, calculates the height and the width of the image.!
• Calculates the size of the model.vocab.!
• Extracts the ‘phow’ features from the image.!
• Quantises the appearance of the image.!!
classify.m!!
• Calculates whether or not an image is one of the set the machine has been taught.!
• Accepts the model of what the machine has learned and an image to be compared with the 

model.!
!

!

!!!!
numRucksandMauls.m & numScrums.m!!
• Parses an XML file of a match containing tagged information on events looking for Rucks, 

Mauls, Scrums and Lineouts.!
• Finds the start and end times of these events.!
• Removes the events from the original video, by taking individual frames and saving to file - after 

using HSV_Threshold to remove the pitch.!!
makeVideo.m!!
• Accepts a file of images (frames from a video) and generates a video from these frames, and 

outputs it.!

classify.m getImageDescriptor.m standardizeImage.m

calls
calls



!
Offscreen_video_eg.m and tex_image.m!!
• Adding words to the top left hand corner of the frame.!!!!
K_Means_Clustering.m!!
• Needs a video of an event.!
• Reads in frames of video.!
• Calculates the height and the width of a video.!
• Creates a struct array with cdata and colormap values.!
• Removes pitch and spectators from each frame.!
• Generates K-Means Data using VLFeat’s vl_kmeans!
• Plots results.!
• Outputs 3 files:!

• -assign.mat!
• -centre.mat!
• -histogram.mat!!

• In order to make the program work I had to use Jelena’s masking methods as Matt’s were 
causing errors.!

• Does take around an hour to run.!!
HMM_Train.m!!
• Need to b pointed to a file containing data.!
• Loads the data -assign.mat!
• Makes an initial guess of parameters using Q = 7 and O = 7.!
• Uses file mk_stochastic.m from http://www.cs.columbia.edu/~jebara/code/dst/src/

mk_stochastic.m) to ensure that the argument is a stochastic matrix (a stochastic matrix is used 
to describe the transitions of a Markov chain).!

• Uses files dhmm_em.m (finds the ML/MAP of parameters of an HMM with discrete outputs using 
EM) and dhmm_logprob.m (computes the log-likelihood of a dataset using a discrete HMM) to 
improve the guess of parameters and compute likelihood - files come from a HMM Toolbox 
found at - http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm_download.html!

• It then plots the values.!!
Find_Features.m!!
• Classifies each frame of a video based on the cluster training data and compares it to the HMM 

model for that cluster data.!
• Need a video of a match, and to be pointed to a file of data.!
• Loads in video file and calculates number of frames and height and width of video.!
• Generates a Histogram using the number of frames.!
• Uses Jelena’s function getImageDescriptor to populate the Histogram.!
• Loads a ‘Frame centres.mat’ file.!
• Computes KNN - using the cvKnn function from http://sourceforge.net/projects/cvprtoolbox/.!
• Takes a sample of histogram data for every frame.!
• Uses the function dhmm_logprob.m again from the aforementioned HMM Toolbox.!
• Wass originally using the knnclassify.m function from the BioInformatics Toolbox but had to 

change to another KNN classifier.!
• Does take a few minutes to run.!!
Find_Training_Hists.m!

http://www.cs.columbia.edu/~jebara/code/dst/src/mk_stochastic.m
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm_download.html
http://sourceforge.net/projects/cvprtoolbox/


!
• Classifies each frame of a video based on the cluster training data.!
• Needs to be given a video of a match.!
• Loads in video file and calculates number of frames and height and width of video.!
• Generates a Histogram using the number of frames.!
• Uses Jelena’s function getImageDescriptor to populate the Histogram.!
• Ran over night and still hadn’t finished.!


