

TUMBLE LADS:

DEVELOPING AN OBSTACLE

COURSE GAME WITH

NEWTONIAN PHYSICS USING

UNITY GAME ENGINE
A dissertation of a development of an obstacle course game

JULY 11, 2022

Student Name – Evan Smith

Student Number – C2108326

Supervisor – Dr Frank Langbein

I

Evan Smith MSc Advanced Computer Science C2108326

Acknowledgments

I͛ŵ eǆtƌeŵelǇ gƌateful to ŵǇ supeƌǀisoƌ, Dƌ FƌaŶk C. LaŶgďeiŶ foƌ his patieŶĐe aŶd feedďaĐk

throughout the duration of this project. Lastly, I would also thank my family, especially my

parents, brother and sister. They have supported me throughout and kept my spirits and

motivation as well as emotional support.

II

Evan Smith MSc Advanced Computer Science C2108326

Abstract

The classic problem of collision detection involves the intersection between two objects.

This project aims to produce a 2-D prototype that simulates Newtonian physics as well as

the inclusion of a user interface within a game engine. The quantitative research focuses on

both spatial partitioning and bounding volumes that can be used to address the problem,

highlighting both the advantages and disadvantages. Furthermore, a comparison of Unity

and Unreal Engine was conducted, with the key findings from the research determining that

Quadtree was the best method in spatial partitioning with Unity being the suitable game

engine for development. These findings indicate the need for systems to produce collision

detection systems in games that contain multiple collisions. These are measured in

performance such as CPU, memory, and physics 2D when collisions occur. The results show

the prototype is playable however further improvement is necessary for a detailed collision

detection that measures its precision and accuracy.

III

Evan Smith MSc Advanced Computer Science C2108326

Contents

Acknowledgments .. i

Abstract .. ii

Table of Figures ... v

Chapter 1 – Introduction ..vii

Chapter 2 – Literature Review ...ix

2.1 Game Engine Requirements ...ix

2.3 Related Work ... x

2.4 Collision Detection ...xi

2.4.1 Spatial Partitioning ..xi

2.4.3 Bounding Volumes .. xviii

2.5 Game Engines, Features and Comparison .. xxi

2.5.1 Game Engines ... xxi

Game Engine Selection ... xxvii

Chapter 3 – Specification .. xxx

Problem.. xxx

Requirements ... xxx

Physics ... xxxi

UI .. xxxi

Level ... xxxii

Chapter 4 – Design and Implementation .. xxxiii

Overview of Unity .. xxxiii

Physics ... xxxiii

User Interface .. xxxiv

4.1 Software Design .. xxxv

4.1.1 Level Design ... xxxv

4.1.2 UI ... xxxv

4.1.3 Obstacles ... xxxv

4.2 Development ... xxxvii

Physics ... xxxvii

Player .. xxxvii

Rendering .. xlv

User Interface .. xlvii

Chapter 5 – Evaluation ... lv

Collision Detection..lvi

Gameplay .. lxii

IV

Evan Smith MSc Advanced Computer Science C2108326

UI ... lxiv

Chapter 6 – Future Work .. lxix

Chapter 7 – Conclusion ... lxxi

Chapter 8 – Reflection of learning ... lxxii

Chapter 9: References .. lxxiii

Chapter 8: Appendices .. lxxv

V

Evan Smith MSc Advanced Computer Science C2108326

Table of Figures
Figure 1 Application of BSP in Doom .. xvi

Figure 2 Bounding Sphere Intersection .. xviii

Figure 3: AABB Diagram ... xix

Figure 4: Equation of calculating the area of AABB... xix

Figure 5: Diagram OBB.. xx

Figure 6: Unreal Engine Blueprint .. xxiv

Figure 7:Object Collision Property .. xxv

Figure 8: Takeshi's Castle Boulders Course ... xxxvi

Figure 9: Balls from Total Wipeout... xxxvi

Figure 10: Components of the Player .. xxxviii

Figure 11: Creation of the Player Object ... xxxviii

Figure 12: Player Movement Code ..xxxix

Figure 13: Player Jump Code ..xl

Figure 14: Boulder Collision and Knockback Code ... xli

Figure 15: OnTriggerEnter2D collision code ... xlii

Figure 16: Creation of spawn objects ... xlii

Figure 17: Creating boulders ... xliii

Figure 19: Creation of Checkpoints ... xliv

Figure 18: Components of checkpoint .. xliv

Figure 20: Camera Components ... xlv

Figure 21: Camera Implementation .. xlvi

Figure 22: Creating Main Menu ... xlvii

Figure 23: Canvas Components .. xlvii

Figure 24: UI Controller Component ... xlviii

Figure 25: Main Menu Code ... xlviii

Figure 26: Code for Qutting the game ... l

Figure 27: Creating Level Completion Screens.. li

Figure 28: Main Menu ... li

Figure 29: Level Select ... li

Figure 30: Level Completion Screen .. lii

Figure 31: Gameplay UI Objects .. lii

Figure 32: Pause Menu ... lii

Figure 33: Creating Finish Line ..liii

file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651263
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651264
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651272

VI

Evan Smith MSc Advanced Computer Science C2108326

Figure 34: Finish Line Code ...liii

Figure 35: Test Area .. lv

Figure 36: Table of Collision Detection Tests ...lvi

Figure 37: CPU and Rendering Performance Test ... lvii

Figure 38:Phyiscs 2D performance test .. lvii

Figure 39: Memory Test... lvii

Figure 40: Frame 1 of test 1 .. lviii

Figure 41: Frame 2 of Test 1 ... lviii

Figure 42: Frame 3 of Test 1 ... lviii

Figure 43: Frame 4 of Test 1 ... lviii

Figure 44 Frame 1 of Test 2 .. lix

Figure 45: Frame 2 of Test 2 ... lix

Figure 46: Frame 3 of Test 3 ... lix

Figure 47: Frame 4 of Test 2 ... lix

Figure 48: Frame 1 of Test 3 ..lx

Figure 49: Frame 2 of Test 3 ..lx

Figure 50: Frame 3 of Test 3 ..lx

Figure 51: Frame 4 of Test 4 ..lx

Figure 52: Table of Gamplay Tests .. lxiii

Figure 53: Table of Main Menu Tests .. lxiv

Figure 54: Table of Pause Menu Tests .. lxv

Figure 55: Table of Level Completion Tests ... lxvi

Figure 56: Player Jumping Once .. lxvii

Figure 57: Player Jumping Twice .. lxvii

Figure 58: Collision Detection Simulation of 100 boulders .. lxviii

file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651294
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651293
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651296
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651297
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651298
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651299
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651300
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651302
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651303
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651304

VII

Evan Smith MSc Advanced Computer Science C2108326

Chapter 1 – Introduction

The use of the implementation of physics systems within game engines is a crucial feature in

games development. The ability to simulate aspects of Newtonian physics such as collision

detection, gravity and velocity in game time are vital to any game. The popularity of Fall

GuǇs, aŶ oďstaĐle Đouƌse gaŵe iŶspiƌed ďǇ Total Wipeout aŶd Takeshi͛s Castle, aƌose duƌiŶg

the time of the Covid-19 Pandemic. The aim of the project is to develop a game with 2-D

graphics as well as dynamic physics simulations within a game engine of choice. The

objectives include the development of the game in a 2-D environment as well as generating,

storing, managing, and rendering them. Secondly, the prototype must include

implementation of Newtonian physics in game context. Thirdly, a literature review into the

state of the art of physics and game engines is produced.

During the writing of this dissertation, a literature review is conducted into the state-of-the-

art surrounding collision detection that contains two categories, spatial partitioning, and

ďouŶdiŶg ǀoluŵes. UŶitǇ aŶd UŶƌeal EŶgiŶe, tǁo gaŵe eŶgiŶes ĐoŵŵoŶlǇ used iŶ todaǇ͛s

game industry, are compared based on the features that are required for this project, how

each of the game engines functions for each feature and selecting the appropriate option

based on the findings. Other factors will also be considered, such as constraints relating to

this project.

A prototype of the game is developed with the game engine chosen during the literature

review, detailing the components of the physics system within the game engine, the code

written to implement the features and the tests undertaken to determine the success of the

implementation. Finally, the specification is produced, detailing the problem further with a

requirement to address it. An evaluation is conducted to determine the functionality of the

prototype and the necessity for future developments will be determined based on the

improvements required, as well as extensions. The expectations of the findings have been

met where the user interface and level have been developed. The physics aspect has been

met however the prospect of a grid-based detection system failed to materialize. The level is

VIII

Evan Smith MSc Advanced Computer Science C2108326

developed and playable that incorporates both physics and UI with further optimization.

Performance in the aspect of both CPU and memory remained stable only to increase when

collision events arise. Lastly, future learning is determined in relation to the insight and

knowledge gained during the development of the project.

IX

Evan Smith MSc Advanced Computer Science C2108326

Chapter 2 – Literature Review

In this section, the literature review determines the state of the art of the field of

Newtonian physics that includes collision detection as well as the subfields of octree and

quadtree. In addition to the review of the physics aspect in relation to games development,

a comparison of both Unity and Unreal Engine will also be examined in terms of their

features, programming languages and ease of accessibility. One of these will be chosen with

justification provided in the interest of this project.

2.1 Game Engine Requirements

The issues regarding this project are determined by a number of factors, including,

rendering and computational intersection. The development of the game involves a

substantial amount of object intersection during runtime; therefore, a physics system is

required. There are multiple approaches in terms of collision detection, such as spatial

portioning, hit boxes in a 2-D environment and bounding volumes. Without a physics

system, objects will phase through each other, meaning it will carry on. As the game is an

obstacle course game, a collision detection feature is required.

Secondly, the game scene and every update that occurs must be rendered. This means that

rendering times in creating objects during gameplay must be rapid. With the previously

mentioned problem relating to collision detection, it is important to render the objects once

a collision has occurred. In the context of an obstacle course, there could be multiple

collisions between different objects, therefore all objects must be rendered without lags.

With the problem defined in relation to the project, there are works that are related to this

project that solved the issue posed.

X

Evan Smith MSc Advanced Computer Science C2108326

2.3 Related Work

Fall Guys: Ultimate Knockout, developed by Mediatonic was released in 2020 on PC, Xbox,

and PlayStation consoles. It is a 3D multiplayer battle royale game, in which the player must

navigate through a series of multiple objects and mini games to win. At the beginning, 60

players will start and at the end of each round several players who fail to cross the finish line

before a specific cut off or those who came last, will be eliminated. The final round will

determine the winner whereby one player has to capture a crown at the end of the course,

upon obtaining the crown, the player will win the game. The game was inspired by the

JapaŶese gaŵe shoǁ ͞Takeshis͛s Castle͟

Fall Guys was developed using Unity, an open-source game engine that does have a

professional version for studios with features that are not accessible in the individual

version. Unity uses rigid-body dynamics which is a core component of the physics system

within the game engine that allows objects to collide with others instead of phasing through

them. When it comes to the collision detection, ragdoll physics are often used that includes

knock back that occurs when an object moves at a rapid pace, collides with the player and

sends them back.

The main justification of mentioning fall guys is due to the similar nature of this project.

Both projects share same ideas and concepts, however, in connection to the problem, Fall

Guys utilize the same collision detections as what is expected of this project given how the

gaŵeplaǇ ƌuŶs. With Takeshi͛s Đastle also mentioned, it also bears relevance due to the

popularity of obstacle course until 1990 when it ended. Mediatonic took the inspiration of

the show in order to release Fall Guys. The connection between the two examples is

evident.

XI

Evan Smith MSc Advanced Computer Science C2108326

2.4 Collision Detection

Physics systems within game engines are tasked to simulate rigid-body components of a

game object within the game world. In games development, they are simulating real world

elements of physics such as gravity and friction. Collision detection is often described by

Montaut [1] et al as a ͞computational geometry problem͞, the issue of collision detection is

unavoidable; however, the choice remains as to the best algorithm to check for an object

intersection. There are two categories of algorithms that are selected, spatial partitioning

and bounding boxes. Each of these will be examined as well as the algorithms that are

commonly used that apply to both 2D and 3D objects. Pichlmair and Johansen [2] states that

͞IŶ the Đase of a Ϯ-D game, collision shapes are usually either circles, triangles, or rectangles.

In 3-D games, they are often spheres, ďoǆes, oƌ Đapsules͟. Each environment has its own

collision shapes within the game engine. However, there are other alternatives to

accomplish the goal of collision detection. In this section, two categories of collision

detection algorithms are examined.

2.4.1 Spatial Partitioning

Spatial partitioning is procedure which involves a space being divided into two or more

subsets. There are numerous algorithms that can be implemented such as K-d trees, R-trees,

quadtrees and octrees are used to divide the space. The latter two are the main focus in this

category.

2.4.1.1 Quadtrees

Quadtree is a spatial data structure that consists of a node having four children in a two-

dimensional environment. Originally proposed by Finkel and Bently in 1974, the tree was

originally designed ǁith ŵap aŶalogǇ as the Ŷodes ǁeƌe laďelled ͞NE, NW, “W, “E͟. The

algorithm functions as traversing through nodes within the tree including subnodes from

the current node. The concept of the algorithm is similar to an octree. There are many

different types of the algorithm, however the two most common are region based and point

based. Region based is a representation of a quadtree that focuses on a collection of blocks

of a region. As Samet elaborates, this type of quadtree tƌeats the ƌegioŶ as ͞a uŶioŶ of

ŵaǆiŵal sƋuaƌe ďloĐks ;oƌ ďloĐks of aŶǇ desiƌed shapeͿ that ŵaǇ possiďlǇ oǀeƌlap͟. This

means that although the quadtree is a data structure that utilizes blocks in a partition, the

region quadtree is a collection of blocks that are disjointed. Another representation of a

XII

Evan Smith MSc Advanced Computer Science C2108326

quadtree is known as a point quadtree that involves dividing the region into sub-regions

based on the arbitrary point that is classed as the root of the tree. Quadtrees are often used

in collision detection, spatial indexing and computer graphics.

There are three types of nodes within the algorithm, the first of which is the point node that

is used to represent a point within the box of a 2-D space. Secondly, there is an empty node,

this serves as a leaf node to indicate that there is no point within the region that it currently

represents. Thirdly, the region node, which often represents a region that can contain four

child nodes that can either be a point node or an empty node. The algorithm has two phases

- insertion and search. The insertion function consists of recursively determining the best

possible child node to store a point within the data structure. There is a condition within this

function, if the child node is empty then it will be replaced with a point node that represents

the point. When that happens, the insertion is concluded. If the child node is a point node, it

is replaced with a region point and it is set as the current node when it is represented as a

region node. The search aspect is a Boolean function that focuses on checking if the point

exists in the 2-D space. Finding the best child node, a binary condition is presented, if the

child node is empty, the value is 0 or false whereas if the child node is a point node, the

value is 1 or true. Throughout the process, the tree will deepen, populated with nodes with

records stored.

XIII

Evan Smith MSc Advanced Computer Science C2108326

One of the main advantages of using quadtrees is the efficiency of region searching. Kahlon

[3] states that the algoƌithŵ is ǀeƌǇ effiĐieŶt as it ĐaŶ ͞spaƌse thƌough the ŵaps ǀeƌǇ easilǇ

aŶd ƋuiĐklǇ Đoŵpaƌed to otheƌ ŵethods͟. This means that the performance of searching

through the region and nodes, and querying information is useful for aspects of an

application that focuses on spatial data. The main significant disadvantage is the inability to

delete nodes during runtime. Finkel and Bentley [4] states that ͞VeƌǇ diffiĐult to peƌfoƌŵ

deletioŶs fƌoŵ Quad Tƌees͟, ŵeaŶiŶg that nodes that are not required remains within the

data structure. Also the algorithm cannot merge or reinsert nodes, meaning altering nodes

is difficult. In terms of storage, this will require space if the tree deepens with the nodes

that can not be deleted remained. The second disadvantage involves pictures. When

quadtrees are applied to pictures and a comparison takes place that only involves rotations,

it becomes difficult. This is further elaborated by Kahlon [3] where it relates to the

͞Quadtree depiction of such pictures will be so distinct͟.

2.4.1.2 Octree

An octree is described as a three-dimensional binary tree structure within which each octant

contains eight children. It is viewed as an extension of quadtrees due to the concept being

similar and containing extra branches. Octrees are often used in 3-D games due to the extra

dimension. However, it is also used in other applications such as collision detection

simulation and rendering. Octree encoding was pioneered by Donald Meagher at Rensselaer

Polytechnic Institute in 1980. In the aspect of how each node is represented, Meagher [5]

states that ͞eaĐh Ŷode ƌepƌeseŶts a ƌegioŶ of the uŶiǀeƌse aŶd has oŶe oƌ ŵoƌe ǀalues

which defiŶes the ƌegioŶ͟.

XIV

Evan Smith MSc Advanced Computer Science C2108326

The octree divides a 3D space into 2 X 2 X 2 subspaces where n represents the depth of the

octree. An octree stores data within nodes or ͚leaf͛ that is recursively generated throughout

the process. The first node is known as the root node that represents the entire 3-D object

and it generates eight children. The tree is traversed through the nodes as well as

generating nodes. There is a condition here, as if it completely describes the region, it is

often concluded as a terminal node or a leaf and no more sub regions would be created as a

result. Should however the latter occur whereby it does not describe the region, more

octants of the current node are created and the process loops until its termination. Its

structure is described as simplistic, according to Koh, Jayaraman and Zheng [6], ͞Due to the

regular structure of the octree and its relative simplicity in implementation, it is a popular

aĐĐeleƌatioŶ stƌuĐtuƌe used iŶ ŵaŶǇ appliĐatioŶs͟. This means that it is so simple to

implement and apply to 3-D objects that it is used in other applications.

There are advantages and disadvantages of applying octrees. One of the advantages that

was cited by Meagher, is related to the calculations throughout the recursive loop. Meagher

[7] states that partial calculations ĐalĐulated ͞aƌe passed to the loǁeƌ leǀel. “uďstaŶtial

ƌeduĐtioŶs iŶ ĐoŵputatioŶ ĐaŶ ƌesult.͟ This is due to the recursive element of the loop, to

prevent performance from being affected by reducing calculations. The second advantage of

applying octrees involves how objects are represented within the data structure as Meagher

[7] fuƌtheƌ states ͞AŶ aƌďitƌaƌǇ oďject can be represented to the precision of the smallest

Đuďe͟. The Đuďe is a pƌiŵitiǀe shape, meaning it is simple, therefore any object that uses

this data structure can be simplified. If, however there are more complex shapes, new

methods or techniques are not necessarily due to requiring only one set of manipulation

and analysis algorithms. The final advantage is related to the hierarchical structure of the

data tree. Due to the root node being represented as the entire object, Meagher [7] states

that the ͞Nodes at a level together with the higher nodes completely describe the entire

oďjeĐt to the ƌesolutioŶ of that leǀel͟, ŵeaŶiŶg that data stoƌed at the loǁeƌ leǀels ĐaŶ ďe

avoided.

XV

Evan Smith MSc Advanced Computer Science C2108326

There is a significant disadvantage when using octrees, whereby memory is required due to

the processing that takes place. However, the amount required is vast due to the amount of

data to store. Wang [8] et al states that ͞The ƌeĐuƌsiǀelǇ geŶeƌatiŶg and querying operation

makes it very time-ĐoŶsuŵiŶg͟, implying that generating new levels of nodes and query

information takes time. When querying information, this depends on the size of the leaf, if it

is massive, it becomes time consuming, as Wang stated. However, if the size is smaller,

more nodes are generated. The octree will keep expanding deeper, which poses an issue for

the memory as it cannot store huge volumes of data. An explanation regarding how the data

can become massive is that due to the object and the resolution, the more complex the

object and high resolution results in an increase in data. Due to this issue, the algorithm

should terminate based on how deep the octree becomes.

2.4.1.3 KD-Trees

KD- Trees was introduced by Bentley [9] in 1975 to address the problem of retrieving data

within ͞a file F which contains a collection of records͟. A multi-dimensional binary tree

structure, Kd-Trees in practise, is devised by starting at the root node where two children

are then created. Traversing the tree overtime, deepens it, much like octrees and quadtrees.

With the most type of query being region based, it shares the same principle as quadtrees.

In the aspect of storing data, Zhou and Wen [10] states that the data structure is designed

foƌ ͞“toƌiŶg fiŶite eleŵeŶt poiŶt sets iŶ k-diŵeŶsioŶal spaĐe͟. The term k-dimensional refers

to a numbered dimension that the algorithm is applied to, for example, 2-D dimensional

space. In terms of its advantages, the algorithm performs well in terms of efficiency in

regard to storage. Another advantage described by Bentley [9] is that the algorithm is

͞Fleǆiďle eŶough to allow any intersection query. There is no restriction on what the query is

when retrieving data. However, there is an issue with the algorithm, removing root nodes at

the cost of memory. Deleting root nodes from the tree is possible, however, to do so, is

expensive on memory. In contrast to the nature of this project, implementing K-d Trees in a

games context requires memory and to delete root nodes throughout the process will have

a negative impact on performance.

XVI

Evan Smith MSc Advanced Computer Science C2108326

2.4.1.3 Binary Space Partioning

Binary Space Partioning (BSP) is a hierarchical structure tree that is designed to partition the

scene in two, creating two children to store spatial data as well as traversing around the

sub-regions and incrementing nodes. Proposed in 1969, Schumacher [11] et al, stated that

due to the adǀaŶĐes iŶ ďoth Đoŵputeƌs aŶd ĐiƌĐuits, ͞higheƌ-quality images can be

geŶeƌated͟. The studǇ explores the approach to build an image generator in the context of

3-Dimensional computer graphics. In the context of game development, BSP was

implemented primarily in first person shooters, one such example is Doom that was

released in 1993 where the engine (id tech 1) uses the algorithm in the aspect of using

spatial data for a level. In a book written by Sanglard, it explores the theory and practise of

the algorithm in Doom, with Sanglard [12] stating that building the tƌee fƌoŵ the ŵap ͞is to

ƌepeatedlǇ seleĐt a liŶe to split the ŵap iŶ tǁo͟, thus becoming a recursive process of all

subsectors are convex.

Figure 1 Application of BSP in Doom

One of the advantages relates to the performance of the algorithm. Su [13] et al states that

͞ŵaŶǇ algoƌithŵs ǁith B“P tƌee eǆhiďit ďetteƌ peƌfoƌŵaŶĐe thaŶ those ǁithout B“P tƌee͟,

meaning that any algorithm that utilizes the data structure will perform better than

algorithms that do not use it. One of the disadvantages of using the algorithm is due to the

depth of the tree. Much like the previous algorithms discussed, over the time, the tree will

grow, with more nodes that contains data gathered. Should the tree grow too big, storage

and memory are affected. In the games context, this is not beneficial and will present issues

as there will be many object intersections to simulate. The second disadvantage relates to

the ĐoŵpleǆitǇ of the stƌuĐtuƌe. Theƌe aƌe soŵe Đases ǁheƌe the tƌee͛s stƌuĐtuƌe ĐaŶ

become difficult to implement, specifically in this project where the game is always updating

and it is a 2D platform obstacle course, it may become complex.

XVII

Evan Smith MSc Advanced Computer Science C2108326

Traditional octrees are a useful spatial data tree that can be used in 3-D geometry within

game engines. The advantages of this relate to its simplistic hierarchal structure as well as

reduced calculations upon the lower levels, but the issue with its traditional approach

remains one of the storage of data depending on the complexity of the object as well its

resolution. Another type of octree, a linear tree, was later proposed to address the issues.

Per Wang [8] et al, stated that nodes within linear octrees aƌe ͞geŶeƌated fast aŶd it doesŶ͛t

need to change tree greatly when a certain node divides into more small sub-Đuďes͟. The

use of linear octrees improves upon the traditional approach by fast node generation times

as well as how querying is also shortened. Another improvement is how It stores data only

in leaf nodes; therefore data is reduced overall. Both quadtrees and octrees are very useful

data structures, however, in the context of games development, Kd-Trees would be

unsuitable due to the amount of memory that the algorithm can cost, particularly with

deleting root nodes while the game is constantly updating leading to negative impact on

performance. BSP trees are very useful in rendering particularly in first person shooters such

as Doom with the way it handles spatial data in levels however, it is not beneficial to use

them in other aspects of game development such as game development due to the

complexity of the tree.

XVIII

Evan Smith MSc Advanced Computer Science C2108326

2.4.3 Bounding Volumes

A bounding box is where an object is contained within a bounding volume that detects an

intersection with another object. The use of bounding volumes gives the advantage of

accelerating collision queries during runtime. There are many different types of bounding

volumes that are used in the collision detection scenario, with each type specific to a

different object. The three most common types are bounding spheres, axis-aligned

bounding box (AABB) and the oriented bounding box.

2.4.3.1 Bounding Sphere

The bounding sphere is the simplest type as Melero, Aguilera and Feito [14] states, it is

͞very simple to compute and straightforward to determine whether two spheres collide͟.

Bounding spheres can be applied to a spherical object such as a ball that can bounce off

between walls. The detection of the collision refers to the equation utilizing the distance

between the centre of the radius and the sphere of the object. Despite the simplicity of the

structure, the detection accuracy is poor due to the size of the object, that being the

smallest sphere.

Figure 2 Bounding Sphere Intersection

2.4.3.2 Axis-Aligned Bounding Box

The AABB is another simple bounding volume, a 2-D rectangle, the structure of the volume

is simple however, according Gan and Dong [15], iŶ the iŶteƌest of deteĐtioŶ aĐĐuƌaĐǇ, it ͞is

higheƌ thaŶ that of spheƌe͟. This ŵeaŶs that the accuracy of detecting an intersection

between two objects is significantly higher than using a bounding sphere, due to the size of

the object.

XIX

Evan Smith MSc Advanced Computer Science C2108326

Figure 3: AABB Diagram

The detection equation utilizes the minimum and maximum of X,Y,Z where they are the

coordinates of the centre of the box. � ���� = ,ݔ} ≥ ݔ݊�݉ |{ݕ ≥ ݔ ,ݔݔ�݉ ≥ ݕ݊�݉ ≥ ݕ {ݕݔ�݉

Figure 4: Equation of calculating the area of AABB

 The only disadvantage of using this type of bounding volume is that the angle cannot be

changed rather it has to be recalculated, so this is not suitable for collision detections where

the object͛s orientation is different.

2.4.3.3 Oriented Bounding Box

Finally the oriented bounding box (OBB), a 2-D rectangle that was introduced as an

improvement over the AABB with the major difference according to Chaoyang and Fenli [16]

being one of ͞The diƌeĐtioŶ of aƌďitƌaƌiŶess͟ meaning that the rotation of the OBB is

different so it can cover the surface of any cube object in any direction. This results a tighter

fit volume than that of the AABB and again, a higher detection accuracy than both AABB and

the bounding sphere.

XX

Evan Smith MSc Advanced Computer Science C2108326

Figure 5: Diagram OBB

XXI

Evan Smith MSc Advanced Computer Science C2108326

2.5 Game Engines, Features and Comparison

When selecting a game engine for this project, there are several features that are required.

Firstly, a physics system is needed where the issue of collision detection is considered as

objects must not phase through each other during game time. Furthermore, the physics

system must implement other aspects of Newtonian physics such as gravity and velocity.

Secondly, the levels must be rendered including any updates to the scene and with many

collisions that take place, they must be rendered. The comparison framework involves two

of the most popular game engines within the game industry, Unity and Unreal Engine. While

there are multiple other game engines such as Gamemaker studio, Clickteam fusion and

others, the focus is specifically on Unity and Unreal.

2.5.1 Game Engines

2.5.1.1 Unity

Unity, developed and released in 2005 by Unity technologies is a game engine for game

developers to develop and release their projects into the games market. Easily accessible to

independent developers and large game companies, Unity allows development for both 3-D

and 2-D game projects that can be released on multiple platforms such as desktop

(Windows, Linux, OS X), mobile (Android and IOS) and consoles (PS5, Xbox Series X,

Nintendo Switch).

XXII

Evan Smith MSc Advanced Computer Science C2108326

2.5.1.1.1 Development

In the aspect of development, Unity allows developers to use either C#, a scripting language

that takes elements of C and integrates it to the engine, or JavaScript which is an object-

oriented approach, as described. Unity has two integrated development environments (IDE)

that developers can utilize with MonoBehaviour and Visual Studio when creating and

implementing scripts. Bhosale, Kulkarni and Patankar [17] states that using C# scripts

ƌeƋuiƌes attaĐhiŶg ͞individual behavioural scripts to each game component͟ within the

game scene. This allows the data to be passed back and forth between the object within the

game scene and the script applied. In the aspect of debugging, errors would often be listed

within the console window that details the error, the location of the line within the script.

2.5.1.1.2 Physics

The physics system within game engines has a role in regards to making Newtonian physics

look realistic, according to Salama and Elsayad [18] ͞mimic gravity, friction, velocity,

bounciness, mass and other properties͟ allowing a realistic environment during gameplay.

For the physics system, in the interest of object-oriented projects, there are two different

systems that are used, Physx for 3-D environments and Box2D for a 2-D environment. Physx

is a physics engine that is developed by Nvidia that renders the physics components faster

by using the power of the Graphics Processing Unit (GPU). Originally available on dedicated

PhysX cards, it can now be used on GeForce graphics cards that contains CUDA, a

programming language that utilizes multithreading to complete tasks. Other games that

were developed with Physx are Witcher 3: Wild Hunt, Batman Arkham Knight and

Borderlands 2. Box2D is often used in the 2-D environment, developed by Unity

technologies, to simulate colliders, physics material and rigid bodies.

XXIII

Evan Smith MSc Advanced Computer Science C2108326

2.5.1.2 Unreal Engine

Unreal Engine, which was released by Epic Games in 1998, also allows game developers to

create their games and publish them. Projects can be developed in both 2-D and 3-D

environments with 3-D being the more focused environment by developers. Common

games that have been developed with Unreal Engine, include Fortnite, a battle royal

multiplayer third person shooter, Gears of War 3 and Mass Effect 2. Unreal Engine recently

released Unreal Engine 5 to the public in April 2022 to support development for next

generation consoles, that being PlayStation 5, Xbox Series X as well as platforms such as

Windows, Linux and OS X operating systems.

2.5.1.2.1 Development

Developing 2-D and 3-D projects within Unreal, the engine uses C++, an object-oriented

programming language that is an extension to C. Unreal Engine users can use two IDE in the

form of blueprints and Visual Studio. According to Unreal [19], Blueprint visual scripting is a

sĐƌiptiŶg sǇsteŵ that does Ŷot ƌeƋuiƌe eǆteŶsiǀe kŶoǁledge of C++ aŶd usiŶg ͞Node-based

iŶteƌfaĐe to Đƌeate gaŵeplaǇ eleŵeŶts͟. The sǇsteŵ uses aŶ oďjeĐt-oriented approach as it

uses classes and objects and it allows the developer to connect events, functions and data

variables with each other in order to develop behaviour during gameplay. Blueprints is used

to develop levels that incorporate elements such as checkpoints, level-up systems as well

otheƌ aspeĐts of the gaŵe suĐh as HUD͛s, player characters. Developers can use the console

to produce a C++ code alternative to the Blueprint system where Visual Studio IDE is used to

produce and debug errors that occur during execution.

XXIV

Evan Smith MSc Advanced Computer Science C2108326

Figure 6: Unreal Engine Blueprint

2.5.1.2.2 Physics

In line with UŶitǇ͛s ϯ-D integrated physics engine, PhysX is the default collision detection

system that is used to simulate physics systems such as collision detections when they

occur. With regards to collision detection, both objects would Ŷeed a ͞PhǇsiĐsďodǇ͟ aŶd

͞WoƌldDǇŶaŵiĐ͟ tǇpe that ĐoŶtaiŶs a Ŷuŵďeƌ of diffeƌeŶt ƌespoŶses. The tǁo ŵaiŶ

responses are Trace, that includes a camera within the game scene and visibility as well as

object responses that simulate object intersections. With oŶe oďjeĐt͛s ƌespoŶse of ǁoƌld

dynamic being set to block and the other of PhysicsBody also set to block, this would create

a scenario where both objects would collide rather than phase through. This is the most

common example of physics within Unreal Engine.

XXV

Evan Smith MSc Advanced Computer Science C2108326

Figure 7:Object Collision Property

2.5.1.3 Comparison of Game Engines

With both Unity and Unreal Engine, the most developed engines for game development, a

comparison must be made between the two to determine suitability for this project as well

as addressing the problem. Three studies have been used and examined to determine the

advantages and disadvantages of eaĐh eŶgiŶe that is ĐoŵŵoŶlǇ used iŶ todaǇ͛s iŶdustƌǇ.

Study 1

In a comparison study that was conducted by Vohera [20] et al, Unity and Unreal engine

were compared in terms of features such as physics engine, network/multiplayer as well as

documentation, difficulty level and OS support. They found that for beginners, Unity is the

best option as Vohera [20] states that theƌe is ͞Very well-written documentation, several

courses, and ready-made templates͟ to learn from and how each of the eŶgiŶe͛s features

worked. However, the graphics aspect in comparison to Unreal engine is very poor and that

if a project required huge and vastly complicated worlds, the engine would not be suitable.

They found that the use of Unreal Engine it is better suited to developers who have

advanced knowledge and skills. However, the disadvantage of using Unreal Engine is the

requirement of higher hardware due to the graphics aspect of the engine. Overall, from this

study, it appears that Unity is suitable for projects that are not complex and do not require

impressive graphics as well as containing a vast amount of documentation and assets.

XXVI

Evan Smith MSc Advanced Computer Science C2108326

Conversely, Unreal engine is suitable for advanced users and contains a superior graphics

pipeline.

Study 2

The second comparison study was conducted by Sharif who found that in the interest of

physics, both Unreal and Unity are considered the best options, due to the physics engine

Physx that was developed by Nvidia. In relation to AI, Unity and Unreal Engine are also

considered the best for AI development. In the aspect of scripting, Unreal Engine is

considered the superior of the two, Sharif and Ameen [21] claims that Unreal along with

Godot ͞haǀe ŵaŶǇ sĐƌiptiŶg laŶguages that ĐaŶ ǁoƌk ǁith theŵ͟. The programming

language used in Unreal Engine is C++ and Python. With regards to both dimensions (3D and

2D) and development features, they found that Unreal Engine is suitable however the

engine does focus more on 3D development. Finally, in terms of user accessibility, both

Unreal and Unity are the most powerful and can be accessed with documentation and

resources. Overall, it appears Unreal Engine is the best game engine in this regard, mainly

due to the technological advantages in the graphics aspect.

XXVII

Evan Smith MSc Advanced Computer Science C2108326

Study 3

In the third and final study, Christopoulou explores both Unreal and Unity in depth. Both

engines can integrate necessary tools however Unreal has a more complex user interface

whereas in Unity, only a single window is used. Unity developers are required to have

knowledge of C# or JavaScript in order to use the engine whereas Unreal Engine developers

can use the Blueprint visual scripting system that can assist them in creating logic as well as

objects and classes. With the use of resources such as tutorials and assets, both engines

provide developers with many tutorials, with Unity being in the form of text based and

Unreal within video. Unreal Engine however have paid tutorials, so developers who do not

have the funds to access these cannot do so. Unity has better asset stores, with many of

them free and can integrated into a single project, however Unreal requires payment in

order to use them. Finally, Unity has fewer hardware requirements than Unreal Engine

does, a similar comparison that was found in the first study by Vohera. Overall,

Christopoulou and Xinogalos [22] states that Unity is ͞more suitable for beginners͟ due to a

simpler UI, vast amounts of tutorials and resources in the form of assets that do not require

high end hardware however C# or JavaScript is required. Unreal is more suitable for

experienced developers where a steep learning curve is expected. It requires good hardware

due to the graphics output.

Game Engine Selection

With each comparative study examined, conclusions were drawn at the end of each study,

to determine all of the pros and cons of each game engine in the interest of this project. In

an ideal world, Unreal engine would be used due to the technological advantages that it has

over Unity however the decision was made to choose the Unity game engine over Unreal

Engine due to a number of factors that is now examined.

XXVIII

Evan Smith MSc Advanced Computer Science C2108326

Experience

The decision behind the selection of Unity as the game engine of choice is made based on

several factors that are relevant due to the technical skills of the author as well as the

project͛s sĐope. With regard to the technical skills of the author, experience was gained

from using Unity Engine from a previous undergraduate course that involved a module of

developing 3-D games using Unity. C# was learned which is a scripting language that is

integrated into the game engine to utilize the game components such as rigid body and

capsule colliders in scripts. In the aspect of Unreal Engine, the author has also gained

experience with C++, an object oriented paradigm that is used for implementation within

the engine. Due to the lack of experience with Unreal Engine 4/5, there would be a

significant amount of learning with two of the studies highlighting a learning curve, in which

the knowledge required would not be accessible due to the timescale of this project.

Easy to use

Unity is easy to learn whereas Unreal Engine would require more expertise and experience

in order to create prototypes. It is often recommended by several comparison studies that

Unity is a good choice to learn game development before moving on to Unreal Engine.

There is a sufficient amount of documentation in the form of Cookbook - a Unity manual

that can be accessed online only, providing resources and an asset store to use to

implement a prototype. As cited by the studies analysed, Unreal Engine requires a steep

learning curve which is not beneficial for a short development cycle.

Time

The third factor is the timescale for this project, this constraint impacts the project as time

available for development of the prototype is very significantly short. Therefore, learning to

use game engines other than Unity is not possible as it would take too long to learn how

another game engine works, including debugging scripts during runtime and any other new

features of it.

After examining each study conducted, Unity is the best suitable game engine for this

project as highlighted by the three main factors cited in relation to time, accessibility and

previous experience with the engine.

XXIX

Evan Smith MSc Advanced Computer Science C2108326

The problem now defined as well as work that is connected to this project has been

established in the form of Fall Guys. With collision detection considered a classical problem,

the literature review provides a clear state of the art of the physics as well as its subtopics,

spatial partitioning, and bounding volumes. Spatial partitioning in the interest of games

development is now used for collision detection and can be used within game engines as

well as bounding volumes. Unity and Unreal engine were both examined in terms of their

development features and ease of accessibility with the former being chosen for reasons

stated by the author. However, the literature review was very limited due to the low

amount of sources in relation to the nature of this project. Although the original sources

were used, very little in the five year constraint was found. It can be determined that this

decision was both good and bad, mostly for providing a more up to date state of the art at

the expense of few resources. Development and testing can now proceed.

XXX

Evan Smith MSc Advanced Computer Science C2108326

Chapter 3 – Specification

As stated, the literature review has examined the current state of collision detection as well

as its subtopics including spatial partitioning and bounding volumes. The decision was made

to develop a prototype using the latest version of Unity. However, there are several aspects

to consider before applying this approach to the problem. In this section, a specification is

made to address the problem that is the subject of this study.

Problem

The problem that is posed within the literature review is the implementation of a collision

detection system within the game context that can detect object intersections during

gameplay. As highlighted in the research, there are two categories of collision detection in

the form of spatial partitioning and bounding volumes. With Quadtrees and Octrees being

the most common algorithms within the field, Quadtrees would be suitable for a 2D game

as Octrees is more suited for 3D games. There are also further questions about how it can

be implemented within the Unity engine as it will require a few additional elements in order

for the implementation to function as intended. For example, what data types can be used

and which data structure is best to use for both performance and efficiency? The literature

review also establishes that the Unity engine is suitable for this project and that the

prototype has to be developed within a 2-D environment. This includes rendering the level

as well as simulating the physics aspect. Furthermore, a UI must be implemented, this

includes a main menu and a pause menu that involves freezing the gameplay until a button

is pressed. Finally, a level must be constructed that demonstrates both the physics and UI

elements. Due to the time constraints, one level will be developed that contains two or

more obstacles. With the problem now formulated, the requirements can now be identified

to address the problem stated.

Requirements

With the problem above described in detail, the requirements can be formulated to achieve

a solution within the prototype that must be developed. With Unity being the engine of

choice, a prototype must be developed in a 2-D environment that contains physics and UI as

per the aim of the project.

XXXI

Evan Smith MSc Advanced Computer Science C2108326

Physics

As the main element of the gameplay, the physics system implemented would have to

represent an accurate simulation of the laws of real-life physics. For example, when an

obstacle collides with the player, the player will be forced to move backwards due to being

hit. Other aspects such as gravity and velocity will also have to be implemented. The physics

within Unity relies on two main components, a collider, and a rigid body. Colliders are

ĐoŵpoŶeŶts that ĐaŶ ďe iŶ a foƌŵ of a shape that gƌouŶds the oďjeĐt it͛s applied to.

Colliders are used to determine when an object collides with another in a script. The rigid

body is another component that simulates physics within the physics engine in Unity. The

rigid body contains a number of different elements such as mass and freeze rotation. This is

so that the object does not rotate when moving or jumping or ǁheŶ it͛s in collision

detection mode, where two modes are present, continuous and dynamic. These two

components are important for every object as they are responsible for the physics

calculations to take place as well as not phasing through other objects. To determine the

best possible approach of collision detection, Quadtrees will need to be investigated further

to determine the best approach to be implemented.

UI

A part of the aim is to also develop a user interface so that the user can interact when

running the application. The main menu is the first screen they will see and in the majority

of computer games this is where they can adjust their settings. This includes key bindings

and graphics settings as well as start new game files. The main menu will allow the player to

choose a level that can be played or to exit the game. The second aspect of the UI is the

pause screen. In most games, pressing the escape key will freeze gameplay and draw a UI

over it that contains widgets in the form of buttons. The pause menu will be basic, and the

player can pause if they need a break and later resume the game. Finally, the third UI screen

is when the level is completed, and here the level scene will change, and a UI must be

present for the player to return to the main menu. In the case of Fall Guys, a UI will appear

to determine the next level. The design of the UI must be simple and straightforward as well

as assisting in smooth navigation between screens, this can be done using buttons where for

example, when a level is selected and the player presses the button, the level will then be

loaded.

XXXII

Evan Smith MSc Advanced Computer Science C2108326

Level

 A level will be developed, where the player will be required to reach a finish line while

evading obstacles. The level must be playable where the character can move and jump as

well as respawning when knocked off the stage. Two obstacles will be present that are

iŶspiƌed ďǇ Total Wipeout aŶd Takeshi͛s Castle. The leǀel ŵust also iŶĐlude eleŵeŶts suĐh as

checkpoints for when the player is knocked off the level, and they must respawn at the

checkpoint they passed. The level must be rendered without issue to not affect certain parts

where collisions are involved. For example, game lag happens when a frame is not loaded

and it moves onto the next, it breaks the immersion of the player. When the level is fully

developed and tested to ensure that issues that did not appear during playtime also do not

appear within the executable file, the level can be included in the finished executable file

alongside the main menu and the finished UI.

XXXIII

Evan Smith MSc Advanced Computer Science C2108326

Chapter 4 – Design and Implementation

With the specification now formed, the prototype can be designed and developed to meet

the requirements made. In this section, the development of the prototype will be explored

by looking at the implementation of collision detection between objects as well as other

aspects such as user interface, level design and coding practises. Furthermore, testing will

also be carried out simultaneously alongside implementation to ensure that the game

functions as expected.

Overview of Unity

Within Unity, there are many components that are required, the foremost of which is the

physics system, as Box2D is the default system for simulating physics in 2D environments.

This includes two important elements, colliders, which may be box, circle or capsule and

rigid body. This can be used in reference to collision detection when implementing scripts.

The second component is the user interface, this is where the user will interact with the

canvas which contains buttons and toggle buttons. This serves the purpose of transitioning

between menus and gameplay. The third component is rendering, with a lot of objects

within obstacle courses and collisions occurring, it is crucial to render them as smoothly as

possible without lag. Finally, the scripts are produced with C# that takes the components

stated above and uses them to create the gameplay.

Physics

Box2D is the default physics system when developing alpha and beta builds for a game

project. To prevent objects phasing through one and another, there are two main elements

that can be used. Colliders come in a few different shapes depending on the object. The

collider serves to bound everything within the object, the bounding line can be altered

depeŶdiŶg upoŶ the deǀelopeƌ͛s pƌefeƌeŶĐe. However, it can also be used with the rigid

body which is useful to work together. The rigid body connects the object to the physics

engine, with further usage of its position that is given to the object. The final component of

the system is a physics material, applying it to the object that contains two attributes,

friction, and bounciness.

XXXIV

Evan Smith MSc Advanced Computer Science C2108326

User Interface

The user interface in deeper detail, requires two parts, a canvas, and a panel. The canvas, a

parent object, serves a purpose of covering the screen so that the UI can be rendered. The

panel is a component that is included along with the canvas, tasked to group UI controls

that can be accessed by the user. Some of the controls associated with the panel are

buttons which are commonly used in games to transition between gameplay and the user

interface.

Rendering

When the level is loaded, all objects within the game scene are rendered. There are multiple

pipelines that can be used for game development. Examples include Universal Render

Pipeline (URP), High Definition Render Pipeline (HDRP) and Scriptable Render Pipeline (SRP).

The pipeline used is built in that the game engine provides, with options to configure how

the game can be rendered with different paths in addition to command buffers and call-

backs for further development.

Scripting

The scripts within Unity assist in connecting the components in the engine together. For

example, it connects to the physics engine when the player object collides with another

object as well as using the audio system to produce a sound when the player gets knocked

back. The variables created within the scripts enable access to the components in order to

use them. These are often applied to game objects within the scene, regardless of what

components are attached. Interaction between the different components often occur

through scripts and act as a bridge between them. Each component can be viewed as a

small cog in a bigger machine, wherein one component is connected to the other.

Each of the components discussed are essential within the process of software design for

systems to work effectively within an obstacle course game.

XXXV

Evan Smith MSc Advanced Computer Science C2108326

4.1 Software Design

The first stage of the process is to determine how the level, UI and obstacles are designed.

The ideas for these were drawn on paper as an initial method of development.

4.1.1 Level Design

The level design consists of the player using platforms to navigate from start to finish. The

first level serves as a straightforward level that does not contain complex sections that will

challenge the player. The level does not contain high quality graphics but rather simple

objects that can be later improved upon beyond the deadline for this project. The majority

of the level consists of both up and down slopes and small breathe sections in between

obstacles and checkpoints, so that when the player does get knocked off, they can respawn.

The level requires all components specified above.

4.1.2 UI

The user interface design is very straightforward and basic, consisting of buttons and titles

on the screen with the former being the main component for navigation during the game.

With all UI elements, all components are centred to remain consistent and not confuse the

plaǇeƌ͛s ǀisioŶ. The ŵaiŶ ŵeŶu ĐoŶsists of ŵultiple eleŵeŶts suĐh as ďuttoŶs and titles,

there are two buttons, one to select a level, the second to exit the game. When a level is

selected, it is pinned on the top left rather than the middle, thus allowing for the possibility

of adding more levels to extend the game in the future. The finished screen is again, very

simple and straightforward, only a button to take the player back to the main menu.

4.1.3 Obstacles

Ideas for multiple obstacles were designed on paper with each involving a strategy for the

player to apply to succeed. For the purpose of this project, only two obstacles were chosen

that aƌe ǁidelǇ ƌeĐogŶised iŶ Total Wipeout aŶd Takeshi͛s Castle. The first of these is the

boulders, a popular obstacle that requires the player to be concise in their timing of

movement, as failure to do so will result in them being knocked back and possibly off the

level. In reference to the physics element, the boulders are usually moved down a slope that

will head towards the player when they move up. In the show, there are small spaces where

the contestant can move to avoid them, before moving up the slope again. The aim is to

XXXVI

Evan Smith MSc Advanced Computer Science C2108326

replicate it however it must be designed so that the space between the start and the end

are reasonable.

Figure 8: Takeshi's Castle Boulders Course

The second obstacle is the bouncing balls, one that is popular within Total Wipeout. The aim

is for the player to reach the other side without falling off into the water. There are four

balls in total that when jumped upon, it can be challenging to control movement. This is the

final obstacle before the finish line, so the player will have to remain careful as to where

they land. The concept is very simple however, the implementation aspect will consist of

altering how bouncy the balls should be in order for it to be passable.

Figure 9: Balls from Total Wipeout

The design of the prototype remains straightforward due to the time constraints where the

groundwork is designed that can be extended in future work. The graphics can also be

enhanced to add detail however for the nature of this project, the graphics is suitable as the

implementation of physics remains a high priority.

XXXVII

Evan Smith MSc Advanced Computer Science C2108326

4.2 Development

Once the design is completed, the development can begin, referring to the design

preparation and realising it within Unity. Each component contains a section that details

how it has been coded and what each part does within gameplay. Finally, an overview of

how the system operates, what is used and what is given to Unity is documented

Physics

As explained earlier in the design and overview of Unity, the implementation of the physics

aspect of the prototype revolves around the movement and collision of player object and

several other objects, ranging from obstacles such as boulders and bouncing balls to

checkpoints and finish lines. In relation to the overall solution, the ability to simulate

Newtonian physics as realistically as possible is paramount.

Player

The player object is a simple capsule where the design is similar to Fall Guys. The object has

several components that are provided, including Capsule Collider, Rigidbody2D and Player

Controller Script. The capsule collider covers the shape of the object in an event of a

collision with another object. The Rigidbody2D is applied as well as the script that is

responsible for the movement and collisions. The tag is set to ͚player͛ which can be used as

reference in other scripts.

XXXVIII

Evan Smith MSc Advanced Computer Science C2108326

Figure 11: Creation of the Player Object

Figure 10: Components of the Player

XXXIX

Evan Smith MSc Advanced Computer Science C2108326

Figure 12: Player Movement Code

The player controller script is responsible for movement whenever a key is pressed. Player

movement is coded in the interest of horizontal and vertical movement. Horizontal

movement consists of moving left and right, the keys being A and D. When the A key is

pressed, the player will face left, rotating it 180 degrees, and update the velocity vector of

the rigid body component so that the player is moving left. Finally, the constraints of the

rigid body involve freezing rotation so that the player does not fall to the ground. When D is

pressed, the code is reversed, with the player facing and moving right while the constraints

remain the same.

XL

Evan Smith MSc Advanced Computer Science C2108326

Figure 13: Player Jump Code

When it comes to jumping, there are two functions that are required for this. The first

function is a jump that focuses on the ǀeloĐitǇ of the plaǇeƌ͛s rigid body and the movement

vector that attains the x of the velocity component of the rigid body and the jump force

which can be any integer value. The velocity vector is set to the movement vector where the

player will move along the Y axis. The grounded function determines if the player is not in

the air, and he is on the ground. The function is a Boolean, meaning that a true or false

value is returned at the end.

XLI

Evan Smith MSc Advanced Computer Science C2108326

Figure 14: Boulder Collision and Knockback Code

On collision enter is where an intersection between two objects occurs. In this case a

boulder is a common obstacle within the game, using a collision parameter from

Collision2D, a check is made if the game object colliding is a boulder. If it is true, the

knockback has to be implemented, that means the player will be moved backwards to

represent the real-world physics. We start by getting the contact point of where the

collision happened while creating two vector variables, one that stores the player position

and the other a direction vector that determines where the player will be moved when the

collision happened. The player position contains the position of the transform vector of the

player. The direction vector is normalized before it can be used in the calculations. Using the

rigid body component of the player, we get two elements, the velocity vector and inertia.

Finally, we get one more element from the component, AddForce to which we use the

direction vector, the force which is a float and its force Mode. This line of code is important

as it sends the player backwards.

XLII

Evan Smith MSc Advanced Computer Science C2108326

This method only focuses when the object that contains a collider component has

intersected with another object that allows the player to move past it. This method can be

used for pickup items, checkpoints that are placed through the course and other objects

that do not require colliding and not phasing past it.

Figure 15: OnTriggerEnter2D collision code

In the case of checkpoints, this method takes in an argument collider that is connected to a

Collider2D class. Using this parameter we can determine if the collider has intersected with

another game object whose tag is ͚plaǇeƌ͛. This code enables any action to be followed

thƌough ǁheŶ aŶ oďjeĐt ĐoŶŶeĐts to aŶotheƌ oďjeĐt that oŶlǇ has a tag Đalled ͚plaǇeƌ͛.

Figure 16: Creation of spawn objects

The spawn object allows boulders to spawn on a continuous loop throughout the duration

of gameplay. As seeŶ iŶ Takeshi͛s Castle, boulders continuously appear until the contestant

is either knocked out or gets past the obstacle. The concept is relatively easy to understand,

XLIII

Evan Smith MSc Advanced Computer Science C2108326

as an empty game object is created that does not require a sprite but a script, one of which

requires three important components: The prefab of a boulder, the transform of the

͞spaǁŶPos͟ oďjeĐt aŶd a ĐloŶe of the pƌefaď.

Figure 17: Creating boulders

During the design of the level, one of the most common obstacles that is featured on

Takeshi͛s Castle is the slope that contestants must climb while boulders roll down towards

them to knock them off balance. Inspired by this, the first obstacle the player will encounter

is the boulder and in order to succeed they need to time their movements carefully to not

get hit and fall down the slope. The spawn script is used to achieve a loop that continuously

creates a clone of the boulder prefab. The implementation is done in the update function

however this can be created in a function that can be called. A ͞Mytimer͟ variable is

important as it will be used to measure how long the boulder is created. To determine if a

boulder is spawned, an ͚if͛ statement is used to ascertain if the timer variable is less than or

XLIV

Evan Smith MSc Advanced Computer Science C2108326

equal to 0. If it is, the clone variable will instantiate a boulder object from its prefab,

creating it at the position of the spawner object which is empty, and rotate it at its

transform. The destroy function destroys the game object during gameplay, this can

commonly be used when a pickup item is collected by the player therefore it needs to be

removed. The destroy function requires two arguments, the game object which in this

scenario is the clone variable and the time that it should be destroyed, that being 6 seconds.

The boulder will be destroyed every 6 seconds, fulfilling the loop that remains until the level

is completed.

Figure 19: Creation of Checkpoints

The checkpoints serve that the player can pass through and be able to respawn at the

position of the checkpoint instead of the beginning of the level. This contains the

RigidBody2D and a circle collider 2D component. This object does not contain a script as the

code is developed in the player script.

Figure 18: Components of

checkpoint

XLV

Evan Smith MSc Advanced Computer Science C2108326

Rendering

Following from the rendering component of Unity in addition to the design, the camera is

the only component that is related. This is mostly due to the built-in rendering pipeline with

the rendering paths that can be accessed in the camera. The design of the camera revolves

continuously following the player wherever they move.

The camera is one of the important components of the game as it gives the player a view of

the player within the game itself, as well as any objects that come into view. The tag is set to

͚Main Camera͛ by default so that it can be referenced in other scripts that require it. The

position of the camera in the Z axis is moved back by -10 so that it can view the player and

not get too close.

Figure 20: Camera Components

XLVI

Evan Smith MSc Advanced Computer Science C2108326

Figure 21: Camera Implementation

The camera script is designed to have the camera follow the player throughout the level. It

requires two main variables, the player and the camera. As a result of the camera following

the player, it needs to be updated continuously with a new vector value created for its

position. In terms of distance, the z axis of the vector can be subtracted depending on how

far the camera can be from the player.

XLVII

Evan Smith MSc Advanced Computer Science C2108326

User Interface

Following from the design of the user interface, the implementation focuses on the

functionality of the canvas, panel and its elements. Transitions between gameplay and UI

are handled with mouse input, clicking on buttons for change to occur.

Figure 22: Creating Main Menu

Figure 23: Canvas Components

The ŵaiŶ ŵeŶu͛s principal component is a canvas, which allows all of the elements of the UI

to be rendered and to be stored. An option of how it can be rendered is presented to the

user. The second component is a panel which is the next main component that groups all of

the objects such as buttons, texts and images. There are two buttons, one to select a level,

the other to exit the application.

The main menu script deals with the first scene when the executable of the project is

running. Whenever a game is launched, the main menu is the first screen that the player will

see, and they are faced with the decision whether to load the game where they left off or to

change a part of their settings, such as audio volume or sensitivity of the controls. The script

requires several game object variables that connect to the components of the UI such as

buttons, panels and text. These are part of fields that are serialized.

XLVIII

Evan Smith MSc Advanced Computer Science C2108326

Figure 24: UI Controller Component

Figure 25: Main Menu Code

During the start function, the buttons are set up by creating an instance of the button class,

getting the button component of the UI button. The instance variable requires a listener to

XLIX

Evan Smith MSc Advanced Computer Science C2108326

listen for a function that will run when a button is clicked. The ͞AddListener͟ function

requires a parameter in the form of a function.

L

Evan Smith MSc Advanced Computer Science C2108326

Figure 26: Code for Qutting the game

The majority of the functions associated with the script consist of showing and hiding UI

components using the SetActive function. The function requires a Boolean, true or false.

True shows the UI components whereas false hides it. For example, when the back button is

clicked on in the level select window, it needs to hide the components when level select is

present and show the components associated with the main menu. Apart from SetActive,

there are two other functions that are used. The Application.Quit() is a system.generic

library function that when the executable is running, clicking the quit button will allow the

user to quit the application. Finally, in terms of loading levels, an extra library is required in

the form of Scene Management, which provides a number of functions, one of them being

load scene that requires a string parameter where the name of the scene is used.

LI

Evan Smith MSc Advanced Computer Science C2108326

Figure 27: Creating Level Completion Screens

Figure 28: Main Menu

Figure 29: Level Select

LII

Evan Smith MSc Advanced Computer Science C2108326

Figure 30: Level Completion Screen

Figure 31: Gameplay UI Objects

Figure 32: Pause Menu

LIII

Evan Smith MSc Advanced Computer Science C2108326

Figure 33: Creating Finish Line

The finish line is the object the player must reach to finish the level. The finish contains an

empty square object that contains a box collider 2D component that is needed to transition

to the finished level screen.

Figure 34: Finish Line Code

LIV

Evan Smith MSc Advanced Computer Science C2108326

The script only requires an OnTriggerEnter2D method that is similarly used in the player

script. An ͚if͛ statement is crucial to determine the loading of the next scene. If the collider

of the tag is the player, using the scene manager, load the next scene within the build list

that is used in the executable file that contains all the scenes.

LV

Evan Smith MSc Advanced Computer Science C2108326

Chapter 5 – Evaluation

Following examination of the design and development of the prototype, it will be evaluated

with reference to its areas of both success and failure. In this section, an evaluation is

conducted into the performance of the prototype that involves the collision detection,

player movement and UI. Demonstrating the functionality of this, a framework is presented,

highlighting a clear aim that references the previously specified requirements in addition to

the test results, concluding with a brief discussion of these.

Test Area

Figure 35: Test Area

During the implementation, a scene named ͚Test Area͛ is created. The nature of this scene is

to test the functionality of the scripts that will be used in the main prototype. The benefits

of this are to determine if there are errors within the script before it can be applied to the

main game and to fix the issue. It can be used to test and further develop each gameplay

component before it can be added to the level scene so that it can be added to the scene

list when building for an executable file.

LVI

Evan Smith MSc Advanced Computer Science C2108326

Collision Detection

The collision detection phase of the prototype contains two types of methods,

OnTriggerEnter2D and OnCollisionEnter2D. Success depends upon whether any object has

intersected with the player. To measure this, a useful line of code is used, ͞Deďug.Log;Ϳ;͟ is

a line of code that prints a string to the command line that is logged during runtime. This is

useful for debugging lines of command when troubleshooting as well as determining if the

code works as expected.

Collision Detection

Test No Aim Success? Notes

1 The player will collide

with the boulder

obstacle

Yes The player has

collided with the

obstacle

2 When the player has

collided with a killzone

object, the player

would be respawned

at checkpoint

Yes The player has

collided with the

killzone and is

respawned at

checkpoint

3 When the player

collides with a boulder

at a different angle,

the knock back code

will still function

No Although the

knockback works

when both objects are

on the same grounds,

however when this

changes when the

boulder collides with

the player on a slope,

it does not function. It

may be possible to

examine this further.

Figure 36: Table of Collision Detection Tests

LVII

Evan Smith MSc Advanced Computer Science C2108326

Figure 37: CPU and Rendering Performance Test

The performance of the collision detection tests is captured using the profile system within

UŶitǇ. This is ǀeƌǇ useful to deteƌŵiŶe hoǁ the gaŵe͛s peƌfoƌŵaŶĐe is ŵeasured and

whether it needs further optimization. The tests carried out in relation to this are focused

on both CPU, memory and rendering. For the single collision detection that occurs, the

results from the CPU usage indicates that the spikes when they occur mostly relate to the

category of other.

Figure 38:Phyiscs 2D performance test

The aspect of the physics in 2D showed that when a collision is made, the active bodies

aspects increase, as the collision detection is dynamic, this is to be expected. Sleeping

bodies happen right before the collision occurs, this means that any object that is not

moving, is classed as a sleeping object. When a collision occurs, the objects are no longer

sleeping.

Figure 39: Memory Test

LVIII

Evan Smith MSc Advanced Computer Science C2108326

In relation to memory, there is not a huge spike for the memory used overall. The only spike

that occurs during the single collision is GC allocated in Frame. GC (Garbage Collection)

allocation in frame refers to how much managed memory is used during runtime. The spike

only happens when the player is knocked back.

Another test was also conducted into the correctness of the collision detection. These tests

are carried out manually to examine the events where the player collides with an obstacle.

The importance of the test is to determine the success or failure of the collisions and make

note on if more refinement is needed. There are three cases that are standard within the

gameplay.

Test 1

Figure 432: Frame 3 of Test 1

Figure 410: Frame 1 of test 1 Figure 401: Frame 2 of Test 1

Figure 423: Frame 4 of Test 1

LIX

Evan Smith MSc Advanced Computer Science C2108326

This test focuses when both objects are grounded and the angles are the same. Each

image reflects a frame that is recorded. The first frame shows an intersection with both

objects edge present. The collider lines are the same as the edge in order to provide a

tight fit around the object. The second frame shows the player is moved back slightly

fƌoŵ the ďouldeƌ ǁheƌe thiƌd iŵage shoǁs the plaǇeƌ͛s ƌotation is slightly altered. This is

where the knockback effect takes place. The final image however does show a different

result. The player is shown to phase into the boulder, this is due to the knockback code

where the constraints of rotation is removed. To determine a realistic simulation,

alteƌatioŶs to the ďouldeƌ aŶd the plaǇeƌ͛s kŶoĐkďaĐk Đode ŵust ďe ŵade.

Test 2

Figure 44 Frame 1 of Test 2 Figure 46: Frame 2 of Test 2

Figure 45: Frame 3 of Test 3 Figure 47: Frame 4 of Test 2

LX

Evan Smith MSc Advanced Computer Science C2108326

The second test involves a scenario where the player will move up the slope where a

boulder moves down. This is the most common scenario within the level developed. As in

the first test, the first image shows the objects colliding, the second shows the player moved

back by the boulder. The third object shows the knockback code taking effect, rotating the

player slightly where the fourth image shows the player being moved back and rotating. This

result is more realistic than the first test.

Test 3

Figure 498: Frame 1 of Test 3

Figure 489: Frame 2 of Test 3

Figure 50: Frame 3 of Test 3 Figure 51: Frame 4 of Test 4

LXI

Evan Smith MSc Advanced Computer Science C2108326

The third and final test shows the boulder colliding with the player from the top. This is one

of the least common scenarios however it can occur. The first two images shows an

intersection, the third shows the player rotating forward. The final image shows the player

phasing into the boulder. This test failed in this regard as the player should not have phased

through the object. With all of these tests concluded, more work need to be focused on the

knockback as tests 1 and 3 shows that when rotating, the player can phase through the

obstacles. Both the code and the prefabs of the obstacles needs to be changed in order for

the correctness of the collision detection to be accurate.

LXII

Evan Smith MSc Advanced Computer Science C2108326

Gameplay

Gameplay

Test No Aim Success? Notes

1 The boulder will be

created every 6

seconds

No The approach of not

using a clone of the

prefab will cause data

loss where it can

delete the prefab

itself.

Error – ͞Destroying

Assets is not

Permitted to Avoid

Data Loss”

2 The boulder will be

created every 6

seconds

Yes The boulder is created

and destroyed within

the time window

specified. The

approach had to be

altered due to the

failure of the previous

test. Clones of the

prefab was required.

3 When the player

passes the checkpoint,

the position of when

spawning is saved

Yes The position is saved

correctly.

4 When the player

respawns, it respawns

at the last checkpoint

Yes Functions as expected

5 OŶ pƌessiŶg ͞A͟ to

ŵoǀe left, the plaǇeƌ͛s

rotation will change,

Yes Functions as expected

LXIII

Evan Smith MSc Advanced Computer Science C2108326

and the player will

move left.

6 OŶ pƌessiŶg ͞D͟ to

move right, the

plaǇeƌ͛s ƌotatioŶ ǁill

change, and the

player will move right.

Yes Functions as expected

7 On pressing the space

bar, the player will

jump.

Yes Functions as expected

Figure 52: Table of Gamplay Tests

LXIV

Evan Smith MSc Advanced Computer Science C2108326

UI

The user Interface is tested based on if the UI components such as buttons were functioning

as well as scenes that are loaded in the executable file.

Main Menu

Test No Aim Success? Notes

1 On Level select click,

the level select

components must be

loaded.

Yes Everything is displayed

as expected

2 When the quit button

is clicked, the

application must be

closed down

Yes The Application is

closed

3 On Snowy Mountain

button click, the level

must be loaded

Yes The level is loaded,

and the player can

play the level.

4 On pressing the back

button, the Level

select components

must be hidden and

the main menu

components were

shown

Yes The level select

components were

successfully hidden

and the main menu

components were

shown

Figure 53: Table of Main Menu Tests

The tests of the main menu scene and scripts ran without issue, most of the code is mainly

hiding and showing components of the UI where the only code that is different is when

loading the level and quitting the application when running the executable file. This stage is

very straightforward due to the nature of the main menu screen.

LXV

Evan Smith MSc Advanced Computer Science C2108326

Pause Menu

Test No Aim Success? Notes

1 On clicking escape

button, the pause

menu should appear.

Yes Everything is displayed

as expected

2 When the quit button

is clicked, the

gameplay is frozen

Yes The gameplay is

frozen as expected

3 Upon clicking resume

button, the pause

menu should be

hidden

Yes The pause menu is

disappeared as

expected.

4 Upon clicking resume

button, the gameplay

will be unfrozen

Yes The gameplay is

unfrozen, and the

player can continue as

expected.

Figure 54: Table of Pause Menu Tests

The pause menu in this scenario combines elements of gameplay as well as user interface.

When the escape button is pressed, the gameplay using the time element is frozen, with the

UI appearing. Although there is a resume button, it can be stated that a quit button should

also be present as the user may wish to quit the level and select another one. This requires a

little more time than implementing the main menu as gameplay is involved and originally

was not freezing all movement within the scene.

LXVI

Evan Smith MSc Advanced Computer Science C2108326

Level Finished Menu

Test No Aim Success? Notes

1 When the player

reaches the finish line,

the level finished

menu should appear

Yes Collision with the

finish line was

successful and

everything is displayed

as expected

2 When the main menu

button is clicked, the

scene changes to the

main menu

Yes Button click is

functional and the

scene is changed to

main menu,

Figure 55: Table of Level Completion Tests

The level finished menu depends on whether the player has reached the finish line in order

for the scene change to take place. If the code of colliding with the finish line is functional,

the finished level screen will appear. The only operational purpose of this UI is to take the

player back to the main menu. If the game was extended in future work, this will include

more details such as a leader board if more players are playing.

There is an issue that will need to be resolved. The player can jump multiple times which

breaks the game as most games provide only one jump except for a double jump in cases

where skills can be upgraded. There needs to be a limit as to how many times the player can

jump.

LXVII

Evan Smith MSc Advanced Computer Science C2108326

Figure 56: Player Jumping Once

Figure 57: Player Jumping Twice

LXVIII

Evan Smith MSc Advanced Computer Science C2108326

Figure 58: Collision Detection Simulation of 100 boulders

When testing how many collisions can occur at a time, a separate scene was created. This

allowed the player object to collide with 100 boulders. Due to the hardware used for

development, there is no lag in performance.

LXIX

Evan Smith MSc Advanced Computer Science C2108326

Chapter 6 – Future Work

With the evaluation completed and the issues examined, there are several improvements

that can be made to further enhance the prototype as well as extending it further to include

more replay ability. In this section, issues cited within the evaluation can be addressed and a

solution found and furthermore, other components that can be added to the game can be

identified.

There were a few aspects of gameplay that could be improved upon for it to be refined. The

first is the use of a single jump, as with the current version of the prototype, the player can

make multiple jumps which breaks the game as the player can jump their way to the finish

line. If this was released as a game, it would not work. The second aspect is a more realistic

knockback physics when a collision between a player and an obstacle intersects.

With regard to the collision detection aspect of the game, the scripts use the function of the

physics 2D engine of Unity. Due to the level design and the way the gameplay is

implemented, it can handle collisions of more than 100 obstacles at a time, however, if the

game was to receive more development time and is extended, then more optimal solutions

are required. This can be ranged from quadtrees and grid-based detection systems to speed

up the process and reduce computation time. In relation to these solutions stated, a

substantial amount of time was placed into implementing the quadtree and grid-based

detection systems. First, the quadtree can be implemented in languages such as C++ where

many examples of it have been published. In the aspect of Unity, very few examples were

shown, some were over-engineered and become libraries that can be installed and used

which is not suitable for this project.

LXX

Evan Smith MSc Advanced Computer Science C2108326

When trying to create a simple and straightforward version of a quadtree in the interest of

this prototype, the implementation failed due to missing components that were required

for the script to function as expected. Secondly, another method was a grid-based detection

system, one that is used in strategy games such as Civilisation. This requires the use of a grid

and tiles, where the tile contains a box collider that can be used to determine if a player or

obstacle collides, meaning the game object is in the tile. The data structure used for creating

tiles is used in the form of a dictionary that takes two parameters, the object of the script

and a 2D vector of where the tile is generated. In the aspect of the tile script, it requires a

data structure purely for game objects that contains a tag ͚Obstacles͛. A hash set is created

for this, used primarily in C# .NET framework, it functions in the same way as a dictionary

but with a much faster performance. However due to the time constraints of this project,

the remainder of the implementation was not completed. The project will be worked on

past the deadline in order to learn from the shortcomings to implement a better physics

detection system.

In terms of extending the project, once a more suitable collision detection system can be

developed to handle more collisions during gameplay, more AI players can be implemented

to give an element of challenge to the player for finishing first. This means that pathfinding

algorithms such as A*, a modern version of the original Dijkstra algorithm will have to be

implemented. AI can be used if the player plays in solo mode. The second extension is the

use of a multiplayer component where, for example, LAN network can be used to connect

players locally to a game that can consist of more than one level. This requires further

research into developing servers and clients in Unity.

LXXI

Evan Smith MSc Advanced Computer Science C2108326

Chapter 7 – Conclusion

With the conclusion of the evaluation, there are a number of key findings that need to be

explored. In this section, findings from the conclusion are presented in brief detail.

Firstly, the prototype was implemented that contains the specified requirements from the

problem formulation. The results from the evaluation show that the physics implemented

represent a simple object intersection which is beneficial for this stage of development,

however it requires a fully developed collision system in the form of a grid. The user

interface is fully operational and can be used at ease by the user to transition from the

panels to gameplay smoothly. The level that contains the obstacles specified which test the

physics aspect is developed and playable. Overall, the prototype is playable and fully

functioning with grounds for further improvement to enhance the gameplay beyond this

project.

LXXII

Evan Smith MSc Advanced Computer Science C2108326

Chapter 8 – Reflection of learning

Throughout the duration of completing this project, the author learnt a multitude of things.

From researching the current literature to developing the prototype itself, there are many

lessons to learn from the process. In this section, a number of areas are explored in relation

to reflecting upon the work to achieve the aim and objectives of this project.

From conducting the literature review, the author learnt that there were very few papers

that examined both the advantages and disadvantages of each algorithm in relation to

spatial partitioning. There were also very few papers talking about how spatial partitioning

can be used in collision detection. In the last five years, there have been very few literature

resources that have been produced which are relevant to this study and currently there is

still a lack of appropriate resources in the form of conference papers, textbooks and peer-

reviewed journals.

During the implementation of the prototype, research was carried out as to how Quadtrees,

which was examined in the literature review, was implemented within the Unity engine.

During the research process, there were very few accessible examples of quadtrees being

implemented. Although the concepts and ideas of how it can be constructed were noted,

there were very few projects that showed how it worked. However, there were some that

were developed, in a form of its own library that would not suit the project due to its over

engineered aspects.

The final point that was learnt from this process was how to approach aspects of the

implementation phase when it does not go well. For example, with a month of

development, productivity must not be slowed down when there are other aspects of the

prototype to work on. During these phases, morale can become low and therefore this

needs to be avoided and methods need to be introduced to rectify this. All of the issues that

have been identified will be acknowledged and improved upon.

LXXIII

Evan Smith MSc Advanced Computer Science C2108326

Chapter 9: References

[1] Q. L. L. V. P. J. “. J. C. Louis MoŶtaut, ͞CollisioŶ DeteĐtioŶ AĐĐeleƌated: AŶ OptiŵizatioŶ

PeƌspeĐtiǀe,͟ ϭϵ MaǇ ϮϬϮϮ. [OŶliŶe]. Aǀailaďle: https://arxiv.org/abs/2205.09663. [Accessed

24 08 2022].

[2] M. J. MaƌtiŶ PiĐhlŵaiƌ, ͞DesigŶiŶg Gaŵe Feel: A “uƌǀeǇ,͟ IEEE TRANSACTIONS ON GAMES, vol.

14, no. 2, pp. 138 - 152, 2022.

[3] A. T. ‘aŶdeep Kauƌ KahloŶ, ͞QuadTƌee Visualizeƌ,͟ International Journal of Engineering

Research & Technology (IJERT), vol. 11, no. 4, pp. 295-301, 2022.

[4] ‘. A. F. a. J. L. BeŶtleǇ, ͞Quad Tƌees A Data “tƌuĐtuƌe Foƌ ‘etƌieǀal OŶ Coŵposite KeǇs,͟ Acta

Informatica , vol. 4, pp. 1 - 9, 1974.

[5] D. J. ‘. Meagheƌ, ͞OĐtƌee EŶĐodiŶg: A Neǁ TeĐhŶiƋue foƌ the ‘epƌeseŶtatioŶ, MaŶipulatioŶ

and Display of Arbitrary 3-D OďjeĐts ďǇ Coŵputeƌ,͟ Iŵage PƌoĐessiŶg LaďoƌatoƌǇ, ValeŶĐia,

1980.

[6] P. K. J. J. Z. NaimiŶ Koh, ͞TƌuŶĐated oĐtƌee aŶd its appliĐatioŶs,͟ The Visual Computer, vol. 38,

p. 1167–1179, 2022.

[7] D. Meagheƌ, ͞GeoŵetƌiĐ ModelliŶg UsiŶg OĐtƌee EŶĐodiŶg,͟ Computer Graphics and Image

processing, vol. 19, no. 2, pp. 129 - 147, 1982.

[8] Y. Z. G. G. Q. J. Y. W. L. H. Wei WaŶg, ͞A HǇďƌid “patial IŶdeǆiŶg “tƌuĐtuƌe of Massiǀe PoiŶt

Cloud Based on Octree and 3D R*-Tƌee,͟ Applied Sciences, vol. 11, no. 20, pp. 1 - 16, 2021.

[9] J. L. BetleǇ, ͞MultidiŵeŶsioŶal BiŶaƌǇ “eaƌĐh Tƌees Used foƌ AssoĐiatiǀe “eaƌĐhiŶg,͟

Communications of the ACM, vol. 18, no. 9, pp. 509 - 517, 1975.

[10] D. W. Jia)HOU, ͞‘eseaƌĐh oŶ ‘aǇ TƌaĐiŶg Algoƌithŵ aŶd AĐĐeleƌatioŶ TeĐhŶiƋues usiŶg KD-

Tƌee,͟ iŶ 2021 IEEE 6th International Conference on Intelligent Computing and Signal

Processing (ICSP 2021), Xi'an, China, 2021.

[11] B. M. G. W. S. R. Schumacher, Study For Applying Computer-Generated Images to Visual

Simulation, Virginia: Defense Technical Information Center, 1969.

LXXIV

Evan Smith MSc Advanced Computer Science C2108326

[12] F. Sanglard, Game Engine Black Book: Doom, California: CreateSpace Independent Publishing

Platform, 2018.

[13] N. G. Y. T. X.). YaŶseŶ “u, ͞A NoŶ-revisiting genetic algorithm based on a novel binary space

paƌitioŶ tƌee,͟ Information Sciences, vol. 512, pp. 661 - 674, 2020.

[14] Á. A. F. ‘. F. FƌaŶĐisĐo Jaǀieƌ Meleƌo, ͞Fast ĐollisioŶ deteĐtioŶ ďetǁeeŶ high ƌesolutioŶ

polǇgoŶal ŵodels,͟ Computers & Graphics, vol. 83, pp. 97-106, 2019.

[15] Q. D. BaiƋiaŶg GaŶ, ͞AŶ improved optimal algorithm for collision detection of hybrid

hieƌaƌĐhiĐal ďouŶdiŶg ďoǆ,͟ Ϭϭ FeďƌuaƌǇ ϮϬϮϭ. [OŶliŶe]. Aǀailaďle:

https://link.springer.com/article/10.1007/s12065-020-00559-6. [Accessed 2022 08 24].

[16] G. F. GeŶg ChaoǇaŶg, ͞AŶ Iŵpƌoǀed Algoƌithŵ of the CollisioŶ DeteĐtioŶ Based oŶ OBB,͟ iŶ

2018 International Conference on Sensor Network and Computer Engineering (ICSNCE 2018),

Xi͛aŶ, ϮϬϭϴ.

[17] “. K. “. N. P. Tejas Bhosale, ͞ϮD Platfoƌŵeƌ Gaŵe IŶ UŶitǇ EŶgiŶe,͟ International Research

Journal of Engineering and Technology (IRJET), vol. 5, no. 4, pp. 3021 - 3024, 2018.

[18] M. E. ‘aŵiz “alaŵa, ͞BasiĐ eleŵeŶts aŶd ĐhaƌaĐteƌistiĐs of gaŵe eŶgiŶe,͟ Global Journal of

Computer Sciences: Theory and Research, vol. 8, no. 3, pp. 126 - 131, 2018.

[19] EpiĐ Gaŵes, ͞BluepƌiŶts Visual “ĐƌiptiŶg,͟ EpiĐ Gaŵes, [OŶliŶe]. Available:

https://docs.unrealengine.com/5.0/en-US/blueprints-visual-scripting-in-unreal-engine/.

[Accessed 24 August 2022].

[20] H. C. D. C. A. D. V. J. ChaitǇa Voheƌa, ͞Gaŵe EŶgiŶe AƌĐhiteĐtuƌe aŶd Coŵpaƌatiǀe “tudǇ of

DiffeƌeŶt Gaŵe EŶgiŶes,͟ iŶ International Conference on Computing and Networking

Technology (ICCNT), Khargpur, 2021.

[21] “. Y. A. KaƌzaŶ HusseiŶ “haƌif, ͞Gaŵe EŶgiŶes Eǀaluation for Serious Game Development in

EduĐatioŶ,͟ iŶ 2021 International Conference on Software, Telecommunications and Computer

Networks (SoftCOM), Hvar, 2021.

[22] “. X. Eleftheƌia Chƌistopoulou, ͞Oǀeƌǀieǁ aŶd Coŵpaƌatiǀe AŶalǇsis of Gaŵe EŶgiŶes foƌ

Desktop aŶd Moďile DeǀiĐes,͟ International Journal of Serious Games, vol. 4, no. 4, pp. 21 - 35,

2017.

LXXV

Evan Smith MSc Advanced Computer Science C2108326

Chapter 8: Appendices

