CARDIFF

UNIVERSITY

PRIFYSGOL

(AERDY

TUMBLE LADS:
DEVELOPING AN OBSTACLE
COURSE GAME WITH
NEWTONIAN PRYSICS USING
UNITY GAME ENGINE

A dissertation of a development of an obstacle course game
JULY 11, 2022

Student Name — Evan Smith
Student Number — C2108326
Supervisor — Dr Frank Langbein

Acknowledgments

I’'m extremely grateful to my supervisor, Dr Frank C. Langbein for his patience and feedback
throughout the duration of this project. Lastly, | would also thank my family, especially my
parents, brother and sister. They have supported me throughout and kept my spirits and

motivation as well as emotional support.

Evan Smith MSc Advanced Computer Science C2108326

Abstract

The classic problem of collision detection involves the intersection between two objects.
This project aims to produce a 2-D prototype that simulates Newtonian physics as well as
the inclusion of a user interface within a game engine. The quantitative research focuses on
both spatial partitioning and bounding volumes that can be used to address the problem,
highlighting both the advantages and disadvantages. Furthermore, a comparison of Unity
and Unreal Engine was conducted, with the key findings from the research determining that
Quadtree was the best method in spatial partitioning with Unity being the suitable game
engine for development. These findings indicate the need for systems to produce collision
detection systems in games that contain multiple collisions. These are measured in
performance such as CPU, memory, and physics 2D when collisions occur. The results show
the prototype is playable however further improvement is necessary for a detailed collision

detection that measures its precision and accuracy.

Evan Smith MSc Advanced Computer Science C2108326

Contents

ACKNOWIEAGMENTS ..cceiiiiiiiiiiiiiieee eee e e e e eeeeeeeeeeeeeees i
F o - [ot AU TP TP OO UTP T PPPPPPPP i
LI o1 LS =TT = %
Chapter 1 — IntrodUCtioN ..o vii
Chapter 2 — LIterature REVIEWccc i i ix
2.1 Game ENGINE REGQUITEIMENTES ...uuiiiiiiiiiiiiiiiiiee e e e eettiiiiee e e e e e ettt e s e e e eeeeaabaaseeseeeeeesssannassseeaseeessnnns ix
2.3 REIATEA WOTKeeeeeiee ettt e sttt e s st e e e st e e s saree e e s snneeeeenne X
2.4 COlliSION DETECLIONeeeeiiiie ettt ettt e e st e e s e e e s et e e s eenreeeenans Xi
2.4.0 SPatial Partitioning.....cccoeeeeeee e Xi
2.4.3 BOUNAING VOIUMES ... e aaeas Xviii

2.5 Game Engines, Features and COMPAriSONcuviiieieiierieiieirieieeeeeeeeeeeeeeeeeeesvssseeeeeeeerrererreeee.. XXi
2.5.0 GAME ENGINES ettt ettt e ettt s e et e e e e et e e e tta e e etta e e e aa e aaeeaaees XXi
Game Engine Selection ... XXVii
Chapter 3 — Specification ..., XXX
a0 o] 1= oo O PO PP P PP PP PPPPPUPPPP XXX
= To [0 1T =] 0 =] L £ OO P PPN XXX

o 012 ot XXXi

6 L OO PPPPPTTOPPRPIN XXXi
Y] B ST PP PP P PPPPTROPPPPPRPPPRO XXXil
Chapter 4 — Design and Implementation.........cccccooiiii e XXXiii
OVEIVIEW OF UNITY .uuuiiiiiiiiiiiiiiiiiiiiiiiiisetiteesssesssssereees a.a—————aaa.—a—a—aaaaaaeaeaaeasssanssssssssssssssannnnnnnnnnnnn XXXiii

o 012 ot XXXiii
USEI INEEITACE ..ttt ettt e et e e st e e e st b e e e sabeeee s XXXiV

4.1 SOFtWAIE DESIEN .. i e aaaaaaaaaaaaaans XXXV
g I R AV B B LTy - J o (O PPPPPPRPPPRRt XXXV

Lt A U PP PP PP PP PP PPPPPPPPPPPPPPPPPRE XXXV
A.1.3 ODSEACIES ..ttt e e st e e s bt e e s abe e e e e e e abeeeeeaane XXXV

4.2 DEVEIOPIMENT ... e aaaaaaaaaaaaaaaaaaaaaans XXXVii

o] 012 ot XXXVii

o 1YY RO XXXVii

2= Ve 1= TV - xlv
USEE INEEITACE ..ttt ettt e e ettt e e st e e e e et et e e s ebeeeeeeaes xlvii

(O oY oL (T g Tl AV | LT o] o Iv
(001 | T To] T D11 <o £ o] o HANN P PP PP PP PPPPTR Ivi
(CT=T 01T o] F- 1V Ixii

Evan Smith MSc Advanced Computer Science C2108326

LU] PP PP PPO P PPPPPPPRPIRt Ixiv
Chapter 6 = FULUIE WOKK ..cccoiiei e Ixix
Chapter 7 — CoNCIUSION....cci i IXxi
Chapter 8 —Reflection of 1€arning ..., Ixxii
Chapter 9: REfEIENCES oo Ixxiii
Chapter 8: APPENICES ...ccce e Ixxv

Evan Smith MSc Advanced Computer Science C2108326

Table of Figures

Figure 1 Application Of BSP iN DOOMuuuuiiiiiiiiiiiiiiiiiiireerrererererrererereeaeeeeeeeeeraneaeeeeeaeeeeersrae XVi
Figure 2 Bounding SPhere INterseCtionuuuuiiiiiiiiiiiiiiiiiiiiiireireirrerereeaeeeaaeeaaaeeeeeraa.. Xviii
FISUIE 3: AABB DIaBram ...ccceiiiiiiieeeeiieettiiie e e e ettt s e s st tabs s e e e e e eeeabbaa s s e s eeeeeaessssasseeaaaennnnseseanaes Xix
Figure 4: Equation of calculating the area of AABB.............uuuuiiiiiiiiiiiii e Xix
FIgUre 5: DIagram OBB........oouiiiiiieiiii ettt s e e e e ettt asa e e e e e e e eteata e e e eeettaaanaeeeaaees XX
Figure 6: Unreal ENGIiNe BIUEPIINTuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieseieeessereseeeaeaeeeessaaeeaaeeesssssessesseresrnrssnnnns XXiv
Figure 7:0bJect COlliISION PrOPEITY ..uuuuueuuiiiiiiiiiiiiiiiirrriererreerererrreereree raeeeee.erere..—————————————.—————————. XXV
Figure 8: Takeshi's Castle BOUIAEIS COUISE........uuuuuuuuuiiiiiiiiiirriierereerrrrrrrrrrrrrseeeeeeaaeeeeaeaa———e——————————.. XXXVi
Figure 9: Balls from Total WIP@OUL..........uuuuiiiiiiiiiiiiiiiiiiiiiieiierereeesereseeaeaeareeeseaaseaaeerserarsesrnrnrnrrrree XXXVi
Figure 10: Components Of the PIayer...........uuuiiiiiiiiiiiiiiiiiiiiiiiiiiieereereereeeeeeeeeraaeeneerraerrrrrrrarne XXXViii
Figure 11: Creation of the Player ODJECtuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiirrirrrrees e XXXVili
Figure 12: Player MoVEMENT COUR......uuuuuuuiuiiiiiiiiiiiiiiieeirerrrrrrrerrrreresaeeeaea—.....a———————————.a..er.. XXXiX
Figure 13: Player JUMP COOE......uuuuuiiiiiiiiiiiiiitiitetseteteetsrerssrssers aeaaaaaaaaaaa—.————.aaanaeaanneannnnnnnnnnssnnnnnsnnnnnnnn x|
Figure 14: Boulder Collision and KNnockback Codeuuuuuuimiiiiiiiiiiiiiiiiiiiiiiiiiiiniies e xli
Figure 15: ONTriggerEnter2D COlliSION COUEuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiirrrrrrererreeesaaaaeaaeeeaaeaaaeraaaarraaaaae xlii
Figure 16: Creation Of SPAWN ODJECLSuuiiuiiiiiiiiiiiiiiiiiiiriiiirereererrrerere aaaa—a——earraa————————aerararrrrrrrrrrrrne xlii
=W N A O =Y = o To 1 U] o =Y xliii
Figure 19: Creation of CheCKPOINTSuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiierer e eeees e aaaaaaaaanasaannnnnnnnannen xliv
Figure 18: Components of CheCKPOINTuuuiiiiiiiiiiiiiiiiiiiiiiiiirieirrer e eeraaeeeeereaeerrereraererereearees xliv
Figure 20: Camera CoOmMPONENTS.uiiiiiiir ittt e et e et s e e e eabs e e eeta s e eeaataseeeasaaseeeaennnseseennnns xlv
Figure 21: Camera IMpPlemMENTAtioNnuuuuiiiiiiiiiiiiiiiiiiiieriiieereererrees i ...——.——ra——————————————rara———. Xlvi
Figure 22: Creating IMain IMENUiiiiiiii ettt e et e e e e s e e e aan e e e e et e e e eeaaeeeeeaanes xlvii
Figure 23: Canvas COMPONENTS...cuuu ittt ettt e e e et e e e e e e e abe e e e et e e e eataeeee st eeeeaneeeneaanns xlvii
Figure 24: Ul Controller COMPONENTuuuuuiiiiiiiiiiiiiiiiiirerrrrrereeerrererree nea..—.—.————————————....er—————. xlviii
Figure 25: Main MENU COOEuuuuuuiiiiiiiiiiiiiiiiiettetirtrserseesssrers . .a.—————————————.annnnnnnannsnssrsssnssssnnnnnnnnnn xlviii
Figure 26: Code for QUELING the am@.........uuuuuiiiiiiiiiiiiiiiiiiiiii et annaaaaaannanasaannsnnnnsnnnen I
Figure 27: Creating Level COmMPIEtion SCrEENS.........uuuuvurrrriiieiiiiiiiieiiiirirrrrereerreee nenn.a..—————————————————.—... li
T R R S V= 1T o T Y1 =T o 1 li
FIUIE 29: LEVEI SEIECTuuiiiiiiiiiiiiiiiiiitiiititiie et tvtee e e e e e ee e e aaa s e e aaaaaaaasaaaasasassssssssssssssssssssnnnnnnnnnnnnnnnnn li
Figure 30: Level COmMPIEtion SCrEENvvve e e e e e e et e e e e e e e e e e ataae e s lii
Figure 31: Gameplay Ul ObJECES.....coooeiiiiccie e e e e e e e et e e e e e e e e e eeraaaeeaa e lii
FIUIE 32: PAUSE IMIBNU .. ettt e ettt e e e e e ettt e e e e e ettt ea e e e e e ee e e s st an e e eeeeeessessnnannaaaeeesnnnnnaaaaannns lii
Figure 33: Creating FiNiS LINE ... e e e e e e ettt s e e e e e e e e eeaa e eees liii

Evan Smith MSc Advanced Computer Science C2108326

file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651263
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651264
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651272

TR N ¥ e T o T o TN T o TN e Yo = liii
TN I T KT Y =T [OO P PP PPPPPOt Iv
Figure 36: Table of Collision Detection TESES.......uuuuuuuuiiiiiiiiiiiiiiiiiiiiririrrrrrrrreereer———————————————————. Ivi
Figure 37: CPU and Rendering Performance TeST.......cccuuuuuuuuuruiiriiiiiiiiniiiiieiirinaensssnnnnnnnnnnnes Ivii
Figure 38:Phyiscs 2D PerformanCe teSt.......uuuuuuuiuiiiiiiiiiiiiiiiiirerrirrrrrrrrrrreeaaeeaaea.—.——————————————————————. Ivii
FIUIE 39: IMIEIMOIY TOST. i iiiiiiiiiiiee e ettt ettt e e e ettt e e s s ettt s s e e e e e eeeatbba s e s e eeeeeaesbssasseeeaaennnnssseanees Ivii
T N O E o =Y o o T o =T Iviii
=W N T o =Y o o T A o N I T Iviii
U N e o =Y o o T T o N I T Iviii
T U N T o =Y o o T A o =T Iviii
T N Vi Yo o T o I lix
T N L o =Y o T A o N T lix
FIgure 46: Frame 3 OF TEST 3uuuuiiiiiiiiiiiiiiiiiiiitretttetrerereeserreees neeaa————————————————.nannnnneaeernnnnrnnnnnnnnnnnnnnnnnn lix
T N A o = Y o T Ao N T lix
T N o o = Yo o T o T Ix
T N e R =Y o o T A o N T S Ix
Figure 50: Frame 3 OF TEST 3 ...uuuuuiiiiiiiiiiiiiiiiitiitteerreterereeresreeers ae...—————————......naannnannneernnnrennnnrsnnnnnsnnnnnnnn Ix
T N R o =Y o T o N T Ix
Figure 52: Table Of GAmPIlay TESTSuuuuuuuuiiiiiiiiiiiiiiiiieeriererrrrrrereereeeeara.a.——.———.—————————.—...re.—————————. Ixiii
Figure 53: Table of Main IMENU TESTSuuuuuuiiiiiiiiiiiiiiiiirrrierrererereererreeeeean........—...——————————...————————. Ixiv
Figure 54: Table Of PAQUSE IMENU TESTS.....uuuuuuiiiiiiiiiiiiiiiiiierriiirerrerrereereree n....—.——————————————....e——————. Ixv
Figure 55: Table of Level COmMPIEtion TESTSuuuuuuiiiiiiiiiiiiiiieiriiriiirrrerrreerrreeaee.e..e..—.————————————————. Ixvi
Figure 56: Player JUMPING ONCEuuuuuuuiiiiiiiiiiiiirieerrersrereeereeeeereesanaeesnrereeenee..ee..e.rerrrer.. Ixvii
Figure 57: Player JUMPING TWICEuuuuuuuiiiiiiiiiiiiiiiiiiereererereeerereeeeeeearareear..............—.—.rerrr... Ixvii
Figure 58: Collision Detection Simulation of 100 bouldersccccceuueiriiiiiiiiiii e Ixviii

Evan Smith MSc Advanced Computer Science C2108326

file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651294
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651293
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651296
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651297
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651298
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651299
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651300
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651302
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651303
file:///C:/Users/c2108326/Downloads/Dissertation%20Draft%204(1).docx%23_Toc114651304

Vi

Chapter 1 — Introduction

The use of the implementation of physics systems within game engines is a crucial feature in
games development. The ability to simulate aspects of Newtonian physics such as collision
detection, gravity and velocity in game time are vital to any game. The popularity of Fall
Guys, an obstacle course game inspired by Total Wipeout and Takeshi’s Castle, arose during
the time of the Covid-19 Pandemic. The aim of the project is to develop a game with 2-D
graphics as well as dynamic physics simulations within a game engine of choice. The
objectives include the development of the game in a 2-D environment as well as generating,
storing, managing, and rendering them. Secondly, the prototype must include
implementation of Newtonian physics in game context. Thirdly, a literature review into the

state of the art of physics and game engines is produced.

During the writing of this dissertation, a literature review is conducted into the state-of-the-
art surrounding collision detection that contains two categories, spatial partitioning, and
bounding volumes. Unity and Unreal Engine, two game engines commonly used in today’s
game industry, are compared based on the features that are required for this project, how
each of the game engines functions for each feature and selecting the appropriate option
based on the findings. Other factors will also be considered, such as constraints relating to

this project.

A prototype of the game is developed with the game engine chosen during the literature
review, detailing the components of the physics system within the game engine, the code
written to implement the features and the tests undertaken to determine the success of the
implementation. Finally, the specification is produced, detailing the problem further with a
requirement to address it. An evaluation is conducted to determine the functionality of the
prototype and the necessity for future developments will be determined based on the
improvements required, as well as extensions. The expectations of the findings have been
met where the user interface and level have been developed. The physics aspect has been

met however the prospect of a grid-based detection system failed to materialize. The level is

Evan Smith MSc Advanced Computer Science C2108326

VIII

developed and playable that incorporates both physics and Ul with further optimization.
Performance in the aspect of both CPU and memory remained stable only to increase when
collision events arise. Lastly, future learning is determined in relation to the insight and

knowledge gained during the development of the project.

Evan Smith MSc Advanced Computer Science C2108326

Chapter 2 — Literature Review
In this section, the literature review determines the state of the art of the field of

Newtonian physics that includes collision detection as well as the subfields of octree and
guadtree. In addition to the review of the physics aspect in relation to games development,
a comparison of both Unity and Unreal Engine will also be examined in terms of their
features, programming languages and ease of accessibility. One of these will be chosen with

justification provided in the interest of this project.

2.1 Game Engine Requirements

The issues regarding this project are determined by a number of factors, including,
rendering and computational intersection. The development of the game involves a
substantial amount of object intersection during runtime; therefore, a physics system is
required. There are multiple approaches in terms of collision detection, such as spatial
portioning, hit boxes in a 2-D environment and bounding volumes. Without a physics
system, objects will phase through each other, meaning it will carry on. As the game is an

obstacle course game, a collision detection feature is required.

Secondly, the game scene and every update that occurs must be rendered. This means that
rendering times in creating objects during gameplay must be rapid. With the previously
mentioned problem relating to collision detection, it is important to render the objects once
a collision has occurred. In the context of an obstacle course, there could be multiple
collisions between different objects, therefore all objects must be rendered without lags.
With the problem defined in relation to the project, there are works that are related to this

project that solved the issue posed.

Evan Smith MSc Advanced Computer Science C2108326

2.3 Related Work

Fall Guys: Ultimate Knockout, developed by Mediatonic was released in 2020 on PC, Xbox,
and PlayStation consoles. It is a 3D multiplayer battle royale game, in which the player must
navigate through a series of multiple objects and mini games to win. At the beginning, 60
players will start and at the end of each round several players who fail to cross the finish line
before a specific cut off or those who came last, will be eliminated. The final round will
determine the winner whereby one player has to capture a crown at the end of the course,
upon obtaining the crown, the player will win the game. The game was inspired by the

Japanese game show “Takeshis’s Castle”

Fall Guys was developed using Unity, an open-source game engine that does have a
professional version for studios with features that are not accessible in the individual
version. Unity uses rigid-body dynamics which is a core component of the physics system
within the game engine that allows objects to collide with others instead of phasing through
them. When it comes to the collision detection, ragdoll physics are often used that includes
knock back that occurs when an object moves at a rapid pace, collides with the player and

sends them back.

The main justification of mentioning fall guys is due to the similar nature of this project.
Both projects share same ideas and concepts, however, in connection to the problem, Fall
Guys utilize the same collision detections as what is expected of this project given how the
gameplay runs. With Takeshi’s castle also mentioned, it also bears relevance due to the
popularity of obstacle course until 1990 when it ended. Mediatonic took the inspiration of
the show in order to release Fall Guys. The connection between the two examples is

evident.

Evan Smith MSc Advanced Computer Science C2108326

XI

2.4 Collision Detection

Physics systems within game engines are tasked to simulate rigid-body components of a
game object within the game world. In games development, they are simulating real world
elements of physics such as gravity and friction. Collision detection is often described by
Montaut [1] et al as a “computational geometry problem®, the issue of collision detection is
unavoidable; however, the choice remains as to the best algorithm to check for an object
intersection. There are two categories of algorithms that are selected, spatial partitioning
and bounding boxes. Each of these will be examined as well as the algorithms that are
commonly used that apply to both 2D and 3D objects. Pichimair and Johansen [2] states that
“In the case of a 2-D game, collision shapes are usually either circles, triangles, or rectangles.
In 3-D games, they are often spheres, boxes, or capsules”. Each environment has its own
collision shapes within the game engine. However, there are other alternatives to
accomplish the goal of collision detection. In this section, two categories of collision

detection algorithms are examined.

2.4.1 Spatial Partitioning

Spatial partitioning is procedure which involves a space being divided into two or more
subsets. There are numerous algorithms that can be implemented such as K-d trees, R-trees,
guadtrees and octrees are used to divide the space. The latter two are the main focus in this

category.

2.4.1.1 Quadtrees

Quadtree is a spatial data structure that consists of a node having four children in a two-
dimensional environment. Originally proposed by Finkel and Bently in 1974, the tree was
originally designed with map analogy as the nodes were labelled “NE, NW, SW, SE”. The
algorithm functions as traversing through nodes within the tree including subnodes from
the current node. The concept of the algorithm is similar to an octree. There are many
different types of the algorithm, however the two most common are region based and point
based. Region based is a representation of a quadtree that focuses on a collection of blocks
of a region. As Samet elaborates, this type of quadtree treats the region as “a union of
maximal square blocks (or blocks of any desired shape) that may possibly overlap”. This
means that although the quadtree is a data structure that utilizes blocks in a partition, the

region quadtree is a collection of blocks that are disjointed. Another representation of a

Evan Smith MSc Advanced Computer Science C2108326

XII

qguadtree is known as a point quadtree that involves dividing the region into sub-regions
based on the arbitrary point that is classed as the root of the tree. Quadtrees are often used

in collision detection, spatial indexing and computer graphics.

There are three types of nodes within the algorithm, the first of which is the point node that
is used to represent a point within the box of a 2-D space. Secondly, there is an empty node,
this serves as a leaf node to indicate that there is no point within the region that it currently
represents. Thirdly, the region node, which often represents a region that can contain four
child nodes that can either be a point node or an empty node. The algorithm has two phases
- insertion and search. The insertion function consists of recursively determining the best
possible child node to store a point within the data structure. There is a condition within this
function, if the child node is empty then it will be replaced with a point node that represents
the point. When that happens, the insertion is concluded. If the child node is a point node, it
is replaced with a region point and it is set as the current node when it is represented as a
region node. The search aspect is a Boolean function that focuses on checking if the point
exists in the 2-D space. Finding the best child node, a binary condition is presented, if the
child node is empty, the value is 0 or false whereas if the child node is a point node, the
value is 1 or true. Throughout the process, the tree will deepen, populated with nodes with

records stored.

Evan Smith MSc Advanced Computer Science C2108326

XII

One of the main advantages of using quadtrees is the efficiency of region searching. Kahlon
[3] states that the algorithm is very efficient as it can “sparse through the maps very easily
and quickly compared to other methods”. This means that the performance of searching
through the region and nodes, and querying information is useful for aspects of an
application that focuses on spatial data. The main significant disadvantage is the inability to
delete nodes during runtime. Finkel and Bentley [4] states that “Very difficult to perform
deletions from Quad Trees”, meaning that nodes that are not required remains within the
data structure. Also the algorithm cannot merge or reinsert nodes, meaning altering nodes
is difficult. In terms of storage, this will require space if the tree deepens with the nodes
that can not be deleted remained. The second disadvantage involves pictures. When
guadtrees are applied to pictures and a comparison takes place that only involves rotations,
it becomes difficult. This is further elaborated by Kahlon [3] where it relates to the

“Quadtree depiction of such pictures will be so distinct”.

2.4.1.2 Octree

An octree is described as a three-dimensional binary tree structure within which each octant
contains eight children. It is viewed as an extension of quadtrees due to the concept being
similar and containing extra branches. Octrees are often used in 3-D games due to the extra
dimension. However, it is also used in other applications such as collision detection
simulation and rendering. Octree encoding was pioneered by Donald Meagher at Rensselaer
Polytechnic Institute in 1980. In the aspect of how each node is represented, Meagher [5]
states that “each node represents a region of the universe and has one or more values

which defines the region”.

Evan Smith MSc Advanced Computer Science C2108326

XIV

The octree divides a 3D space into 2 X 2 X 2 subspaces where n represents the depth of the
octree. An octree stores data within nodes or ‘leaf’ that is recursively generated throughout
the process. The first node is known as the root node that represents the entire 3-D object
and it generates eight children. The tree is traversed through the nodes as well as
generating nodes. There is a condition here, as if it completely describes the region, it is
often concluded as a terminal node or a leaf and no more sub regions would be created as a
result. Should however the latter occur whereby it does not describe the region, more
octants of the current node are created and the process loops until its termination. Its
structure is described as simplistic, according to Koh, Jayaraman and Zheng [6], “Due to the
regular structure of the octree and its relative simplicity in implementation, it is a popular
acceleration structure used in many applications”. This means that it is so simple to

implement and apply to 3-D objects that it is used in other applications.

There are advantages and disadvantages of applying octrees. One of the advantages that
was cited by Meagher, is related to the calculations throughout the recursive loop. Meagher
[7] states that partial calculations calculated “are passed to the lower level. Substantial
reductions in computation can result.” This is due to the recursive element of the loop, to
prevent performance from being affected by reducing calculations. The second advantage of
applying octrees involves how objects are represented within the data structure as Meagher
[7] further states “An arbitrary object can be represented to the precision of the smallest
cube”. The cube is a primitive shape, meaning it is simple, therefore any object that uses
this data structure can be simplified. If, however there are more complex shapes, new
methods or techniques are not necessarily due to requiring only one set of manipulation
and analysis algorithms. The final advantage is related to the hierarchical structure of the
data tree. Due to the root node being represented as the entire object, Meagher [7] states
that the “Nodes at a level together with the higher nodes completely describe the entire

III

object to the resolution of that level”, meaning that data stored at the lower levels can be

avoided.

Evan Smith MSc Advanced Computer Science C2108326

XV

There is a significant disadvantage when using octrees, whereby memory is required due to
the processing that takes place. However, the amount required is vast due to the amount of
data to store. Wang [8] et al states that “The recursively generating and querying operation
makes it very time-consuming”, implying that generating new levels of nodes and query
information takes time. When querying information, this depends on the size of the leaf, if it
is massive, it becomes time consuming, as Wang stated. However, if the size is smaller,
more nodes are generated. The octree will keep expanding deeper, which poses an issue for
the memory as it cannot store huge volumes of data. An explanation regarding how the data
can become massive is that due to the object and the resolution, the more complex the
object and high resolution results in an increase in data. Due to this issue, the algorithm

should terminate based on how deep the octree becomes.

2.4.1.3 KD-Trees

KD- Trees was introduced by Bentley [9] in 1975 to address the problem of retrieving data
within “a file F which contains a collection of records”. A multi-dimensional binary tree
structure, Kd-Trees in practise, is devised by starting at the root node where two children
are then created. Traversing the tree overtime, deepens it, much like octrees and quadtrees.
With the most type of query being region based, it shares the same principle as quadtrees.
In the aspect of storing data, Zhou and Wen [10] states that the data structure is designed
for “Storing finite element point sets in k-dimensional space”. The term k-dimensional refers
to a numbered dimension that the algorithm is applied to, for example, 2-D dimensional
space. In terms of its advantages, the algorithm performs well in terms of efficiency in
regard to storage. Another advantage described by Bentley [9] is that the algorithm is
“Flexible enough to allow any intersection query. There is no restriction on what the query is
when retrieving data. However, there is an issue with the algorithm, removing root nodes at
the cost of memory. Deleting root nodes from the tree is possible, however, to do so, is
expensive on memory. In contrast to the nature of this project, implementing K-d Trees in a
games context requires memory and to delete root nodes throughout the process will have

a negative impact on performance.

Evan Smith MSc Advanced Computer Science C2108326

XVI

2.4.1.3 Binary Space Partioning

Binary Space Partioning (BSP) is a hierarchical structure tree that is designed to partition the
scene in two, creating two children to store spatial data as well as traversing around the
sub-regions and incrementing nodes. Proposed in 1969, Schumacher [11] et al, stated that
due to the advances in both computers and circuits, “higher-quality images can be
generated”. The study explores the approach to build an image generator in the context of
3-Dimensional computer graphics. In the context of game development, BSP was
implemented primarily in first person shooters, one such example is Doom that was
released in 1993 where the engine (id tech 1) uses the algorithm in the aspect of using
spatial data for a level. In a book written by Sanglard, it explores the theory and practise of
the algorithm in Doom, with Sanglard [12] stating that building the tree from the map “is to
repeatedly select a line to split the map in two”, thus becoming a recursive process of all

subsectors are convex.

' B '
A C
4 = y

Figure 1 Application of BSP in Doom

One of the advantages relates to the performance of the algorithm. Su [13] et al states that
“many algorithms with BSP tree exhibit better performance than those without BSP tree”,
meaning that any algorithm that utilizes the data structure will perform better than
algorithms that do not use it. One of the disadvantages of using the algorithm is due to the
depth of the tree. Much like the previous algorithms discussed, over the time, the tree will
grow, with more nodes that contains data gathered. Should the tree grow too big, storage
and memory are affected. In the games context, this is not beneficial and will present issues
as there will be many object intersections to simulate. The second disadvantage relates to
the complexity of the structure. There are some cases where the tree’s structure can
become difficult to implement, specifically in this project where the game is always updating

and it is a 2D platform obstacle course, it may become complex.

Evan Smith MSc Advanced Computer Science C2108326

XVII

Traditional octrees are a useful spatial data tree that can be used in 3-D geometry within
game engines. The advantages of this relate to its simplistic hierarchal structure as well as
reduced calculations upon the lower levels, but the issue with its traditional approach
remains one of the storage of data depending on the complexity of the object as well its
resolution. Another type of octree, a linear tree, was later proposed to address the issues.
Per Wang [8] et al, stated that nodes within linear octrees are “generated fast and it doesn’t
need to change tree greatly when a certain node divides into more small sub-cubes”. The
use of linear octrees improves upon the traditional approach by fast node generation times
as well as how querying is also shortened. Another improvement is how It stores data only
in leaf nodes; therefore data is reduced overall. Both quadtrees and octrees are very useful
data structures, however, in the context of games development, Kd-Trees would be
unsuitable due to the amount of memory that the algorithm can cost, particularly with
deleting root nodes while the game is constantly updating leading to negative impact on
performance. BSP trees are very useful in rendering particularly in first person shooters such
as Doom with the way it handles spatial data in levels however, it is not beneficial to use
them in other aspects of game development such as game development due to the

complexity of the tree.

Evan Smith MSc Advanced Computer Science C2108326

XVII

2.4.3 Bounding Volumes
A bounding box is where an object is contained within a bounding volume that detects an

intersection with another object. The use of bounding volumes gives the advantage of
accelerating collision queries during runtime. There are many different types of bounding
volumes that are used in the collision detection scenario, with each type specificto a
different object. The three most common types are bounding spheres, axis-aligned

bounding box (AABB) and the oriented bounding box.

2.4.3.1 Bounding Sphere

The bounding sphere is the simplest type as Melero, Aguilera and Feito [14] states, it is
“very simple to compute and straightforward to determine whether two spheres collide”.
Bounding spheres can be applied to a spherical object such as a ball that can bounce off
between walls. The detection of the collision refers to the equation utilizing the distance
between the centre of the radius and the sphere of the object. Despite the simplicity of the
structure, the detection accuracy is poor due to the size of the object, that being the

smallest sphere.

Figure 2 Bounding Sphere Intersection

2.4.3.2 Axis-Aligned Bounding Box
The AABB is another simple bounding volume, a 2-D rectangle, the structure of the volume

is simple however, according Gan and Dong [15], in the interest of detection accuracy, it “is
higher than that of sphere”. This means that the accuracy of detecting an intersection
between two objects is significantly higher than using a bounding sphere, due to the size of

the object.

Evan Smith MSc Advanced Computer Science C2108326

XIX

_Max

Size.y
Size.z

Position Size x
) _____________________________ -

Min

Axis Aligned Bounding Box

Figure 3: AABB Diagram

The detection equation utilizes the minimum and maximum of X,Y,Z where they are the

coordinates of the centre of the box.

R area = {x,y}| minx <x < maxx,miny <y < maxy}
Figure 4: Equation of calculating the area of AABB

The only disadvantage of using this type of bounding volume is that the angle cannot be
changed rather it has to be recalculated, so this is not suitable for collision detections where

the object’s orientation is different.

2.4.3.3 Oriented Bounding Box

Finally the oriented bounding box (OBB), a 2-D rectangle that was introduced as an
improvement over the AABB with the major difference according to Chaoyang and Fenli [16]
being one of “The direction of arbitrariness” meaning that the rotation of the OBB is
different so it can cover the surface of any cube object in any direction. This results a tighter
fit volume than that of the AABB and again, a higher detection accuracy than both AABB and

the bounding sphere.

Evan Smith MSc Advanced Computer Science C2108326

XX

S

ke b

Figure 5: Diagram OBB

Evan Smith MSc Advanced Computer Science C2108326

XXI

2.5 Game Engines, Features and Comparison

When selecting a game engine for this project, there are several features that are required.
Firstly, a physics system is needed where the issue of collision detection is considered as
objects must not phase through each other during game time. Furthermore, the physics

system must implement other aspects of Newtonian physics such as gravity and velocity.

Secondly, the levels must be rendered including any updates to the scene and with many
collisions that take place, they must be rendered. The comparison framework involves two
of the most popular game engines within the game industry, Unity and Unreal Engine. While
there are multiple other game engines such as Gamemaker studio, Clickteam fusion and

others, the focus is specifically on Unity and Unreal.

2.5.1 Game Engines

2.5.1.1 Unity

Unity, developed and released in 2005 by Unity technologies is a game engine for game
developers to develop and release their projects into the games market. Easily accessible to
independent developers and large game companies, Unity allows development for both 3-D
and 2-D game projects that can be released on multiple platforms such as desktop
(Windows, Linux, OS X), mobile (Android and 10S) and consoles (PS5, Xbox Series X,

Nintendo Switch).

Evan Smith MSc Advanced Computer Science C2108326

XXII

2.5.1.1.1 Development

In the aspect of development, Unity allows developers to use either C#, a scripting language
that takes elements of C and integrates it to the engine, or JavaScript which is an object-
oriented approach, as described. Unity has two integrated development environments (IDE)
that developers can utilize with MonoBehaviour and Visual Studio when creating and
implementing scripts. Bhosale, Kulkarni and Patankar [17] states that using C# scripts
requires attaching “individual behavioural scripts to each game component” within the
game scene. This allows the data to be passed back and forth between the object within the
game scene and the script applied. In the aspect of debugging, errors would often be listed

within the console window that details the error, the location of the line within the script.

2.5.1.1.2 Physics

The physics system within game engines has a role in regards to making Newtonian physics
look realistic, according to Salama and Elsayad [18] “mimic gravity, friction, velocity,
bounciness, mass and other properties” allowing a realistic environment during gameplay.
For the physics system, in the interest of object-oriented projects, there are two different
systems that are used, Physx for 3-D environments and Box2D for a 2-D environment. Physx
is a physics engine that is developed by Nvidia that renders the physics components faster
by using the power of the Graphics Processing Unit (GPU). Originally available on dedicated
PhysX cards, it can now be used on GeForce graphics cards that contains CUDA, a
programming language that utilizes multithreading to complete tasks. Other games that
were developed with Physx are Witcher 3: Wild Hunt, Batman Arkham Knight and
Borderlands 2. Box2D is often used in the 2-D environment, developed by Unity

technologies, to simulate colliders, physics material and rigid bodies.

Evan Smith MSc Advanced Computer Science C2108326

XXIII

2.5.1.2 Unreal Engine

Unreal Engine, which was released by Epic Games in 1998, also allows game developers to
create their games and publish them. Projects can be developed in both 2-D and 3-D
environments with 3-D being the more focused environment by developers. Common
games that have been developed with Unreal Engine, include Fortnite, a battle royal
multiplayer third person shooter, Gears of War 3 and Mass Effect 2. Unreal Engine recently
released Unreal Engine 5 to the public in April 2022 to support development for next
generation consoles, that being PlayStation 5, Xbox Series X as well as platforms such as

Windows, Linux and OS X operating systems.

2.5.1.2.1 Development

Developing 2-D and 3-D projects within Unreal, the engine uses C++, an object-oriented
programming language that is an extension to C. Unreal Engine users can use two IDE in the
form of blueprints and Visual Studio. According to Unreal [19], Blueprint visual scripting is a
scripting system that does not require extensive knowledge of C++ and using “Node-based
interface to create gameplay elements”. The system uses an object-oriented approach as it
uses classes and objects and it allows the developer to connect events, functions and data
variables with each other in order to develop behaviour during gameplay. Blueprints is used
to develop levels that incorporate elements such as checkpoints, level-up systems as well
other aspects of the game such as HUD’s, player characters. Developers can use the console
to produce a C++ code alternative to the Blueprint system where Visual Studio IDE is used to

produce and debug errors that occur during execution.

Evan Smith MSc Advanced Computer Science C2108326

XXIV

_() On Corn_m)};énl Begin Overlap (Box)

| L 2: Branch

Overlapped Compaonent T . True [

Other Actor Sandition False D
Other Comp

Other Body Index (O»
From Sweep

Sweep Result

Target
| Get Player Pawn / _ Launch Velocity
> Player Index £| Return Value T T T i \ﬁ| U.DH U.O‘
D » g xvoverride ()
Object Cast Failed [Zoverride [J

As Character

Figure 6: Unreal Engine Blueprint

2.5.1.2.2 Physics

In line with Unity’s 3-D integrated physics engine, PhysX is the default collision detection
system that is used to simulate physics systems such as collision detections when they
occur. With regards to collision detection, both objects would need a “Physicsbody” and
“WorldDynamic” type that contains a number of different responses. The two main
responses are Trace, that includes a camera within the game scene and visibility as well as
object responses that simulate object intersections. With one object’s response of world
dynamic being set to block and the other of PhysicsBody also set to block, this would create
a scenario where both objects would collide rather than phase through. This is the most

common example of physics within Unreal Engine.

Evan Smith MSc Advanced Computer Science C2108326

XXV

£
Collision Enabled (Query and Pl

Ignore Overlap Block
Fo) b

[|
a
|
]
|
|

SoaQEER BB

3
ECB Yes -

4

Figure 7:Object Collision Property

2.5.1.3 Comparison of Game Engines

With both Unity and Unreal Engine, the most developed engines for game development, a
comparison must be made between the two to determine suitability for this project as well
as addressing the problem. Three studies have been used and examined to determine the

advantages and disadvantages of each engine that is commonly used in today’s industry.

Study 1

In a comparison study that was conducted by Vohera [20] et al, Unity and Unreal engine
were compared in terms of features such as physics engine, network/multiplayer as well as
documentation, difficulty level and OS support. They found that for beginners, Unity is the
best option as Vohera [20] states that there is “Very well-written documentation, several
courses, and ready-made templates” to learn from and how each of the engine’s features
worked. However, the graphics aspect in comparison to Unreal engine is very poor and that
if a project required huge and vastly complicated worlds, the engine would not be suitable.
They found that the use of Unreal Engine it is better suited to developers who have
advanced knowledge and skills. However, the disadvantage of using Unreal Engine is the
requirement of higher hardware due to the graphics aspect of the engine. Overall, from this
study, it appears that Unity is suitable for projects that are not complex and do not require

impressive graphics as well as containing a vast amount of documentation and assets.

Evan Smith MSc Advanced Computer Science C2108326

XXVI

Conversely, Unreal engine is suitable for advanced users and contains a superior graphics

pipeline.

Study 2

The second comparison study was conducted by Sharif who found that in the interest of
physics, both Unreal and Unity are considered the best options, due to the physics engine
Physx that was developed by Nvidia. In relation to Al, Unity and Unreal Engine are also
considered the best for Al development. In the aspect of scripting, Unreal Engine is
considered the superior of the two, Sharif and Ameen [21] claims that Unreal along with
Godot “have many scripting languages that can work with them”. The programming
language used in Unreal Engine is C++ and Python. With regards to both dimensions (3D and
2D) and development features, they found that Unreal Engine is suitable however the
engine does focus more on 3D development. Finally, in terms of user accessibility, both
Unreal and Unity are the most powerful and can be accessed with documentation and
resources. Overall, it appears Unreal Engine is the best game engine in this regard, mainly

due to the technological advantages in the graphics aspect.

Evan Smith MSc Advanced Computer Science C2108326

XXVII

Study 3

In the third and final study, Christopoulou explores both Unreal and Unity in depth. Both
engines can integrate necessary tools however Unreal has a more complex user interface
whereas in Unity, only a single window is used. Unity developers are required to have
knowledge of C# or JavaScript in order to use the engine whereas Unreal Engine developers
can use the Blueprint visual scripting system that can assist them in creating logic as well as
objects and classes. With the use of resources such as tutorials and assets, both engines
provide developers with many tutorials, with Unity being in the form of text based and
Unreal within video. Unreal Engine however have paid tutorials, so developers who do not
have the funds to access these cannot do so. Unity has better asset stores, with many of
them free and can integrated into a single project, however Unreal requires payment in
order to use them. Finally, Unity has fewer hardware requirements than Unreal Engine
does, a similar comparison that was found in the first study by Vohera. Overall,
Christopoulou and Xinogalos [22] states that Unity is “more suitable for beginners” due to a
simpler Ul, vast amounts of tutorials and resources in the form of assets that do not require
high end hardware however C# or JavaScript is required. Unreal is more suitable for
experienced developers where a steep learning curve is expected. It requires good hardware

due to the graphics output.

Game Engine Selection

With each comparative study examined, conclusions were drawn at the end of each study,
to determine all of the pros and cons of each game engine in the interest of this project. In
an ideal world, Unreal engine would be used due to the technological advantages that it has
over Unity however the decision was made to choose the Unity game engine over Unreal

Engine due to a number of factors that is now examined.

Evan Smith MSc Advanced Computer Science C2108326

XXVIII

Experience

The decision behind the selection of Unity as the game engine of choice is made based on
several factors that are relevant due to the technical skills of the author as well as the
project’s scope. With regard to the technical skills of the author, experience was gained
from using Unity Engine from a previous undergraduate course that involved a module of
developing 3-D games using Unity. C# was learned which is a scripting language that is
integrated into the game engine to utilize the game components such as rigid body and
capsule colliders in scripts. In the aspect of Unreal Engine, the author has also gained
experience with C++, an object oriented paradigm that is used for implementation within
the engine. Due to the lack of experience with Unreal Engine 4/5, there would be a
significant amount of learning with two of the studies highlighting a learning curve, in which

the knowledge required would not be accessible due to the timescale of this project.

Easy to use

Unity is easy to learn whereas Unreal Engine would require more expertise and experience
in order to create prototypes. It is often recommended by several comparison studies that
Unity is a good choice to learn game development before moving on to Unreal Engine.
There is a sufficient amount of documentation in the form of Cookbook - a Unity manual
that can be accessed online only, providing resources and an asset store to use to
implement a prototype. As cited by the studies analysed, Unreal Engine requires a steep

learning curve which is not beneficial for a short development cycle.

Time

The third factor is the timescale for this project, this constraint impacts the project as time
available for development of the prototype is very significantly short. Therefore, learning to
use game engines other than Unity is not possible as it would take too long to learn how
another game engine works, including debugging scripts during runtime and any other new

features of it.

After examining each study conducted, Unity is the best suitable game engine for this
project as highlighted by the three main factors cited in relation to time, accessibility and

previous experience with the engine.

Evan Smith MSc Advanced Computer Science C2108326

XXIX

The problem now defined as well as work that is connected to this project has been
established in the form of Fall Guys. With collision detection considered a classical problem,
the literature review provides a clear state of the art of the physics as well as its subtopics,
spatial partitioning, and bounding volumes. Spatial partitioning in the interest of games
development is now used for collision detection and can be used within game engines as
well as bounding volumes. Unity and Unreal engine were both examined in terms of their
development features and ease of accessibility with the former being chosen for reasons
stated by the author. However, the literature review was very limited due to the low
amount of sources in relation to the nature of this project. Although the original sources
were used, very little in the five year constraint was found. It can be determined that this
decision was both good and bad, mostly for providing a more up to date state of the art at

the expense of few resources. Development and testing can now proceed.

Evan Smith MSc Advanced Computer Science C2108326

XXX

Chapter 3 — Specification

As stated, the literature review has examined the current state of collision detection as well
as its subtopics including spatial partitioning and bounding volumes. The decision was made
to develop a prototype using the latest version of Unity. However, there are several aspects
to consider before applying this approach to the problem. In this section, a specification is

made to address the problem that is the subject of this study.

Problem

The problem that is posed within the literature review is the implementation of a collision
detection system within the game context that can detect object intersections during
gameplay. As highlighted in the research, there are two categories of collision detection in
the form of spatial partitioning and bounding volumes. With Quadtrees and Octrees being
the most common algorithms within the field, Quadtrees would be suitable for a 2D game
as Octrees is more suited for 3D games. There are also further questions about how it can
be implemented within the Unity engine as it will require a few additional elements in order
for the implementation to function as intended. For example, what data types can be used
and which data structure is best to use for both performance and efficiency? The literature
review also establishes that the Unity engine is suitable for this project and that the
prototype has to be developed within a 2-D environment. This includes rendering the level
as well as simulating the physics aspect. Furthermore, a Ul must be implemented, this
includes a main menu and a pause menu that involves freezing the gameplay until a button
is pressed. Finally, a level must be constructed that demonstrates both the physics and Ul
elements. Due to the time constraints, one level will be developed that contains two or
more obstacles. With the problem now formulated, the requirements can now be identified

to address the problem stated.

Requirements

With the problem above described in detail, the requirements can be formulated to achieve
a solution within the prototype that must be developed. With Unity being the engine of
choice, a prototype must be developed in a 2-D environment that contains physics and Ul as

per the aim of the project.

Evan Smith MSc Advanced Computer Science C2108326

XXXI

Physics

As the main element of the gameplay, the physics system implemented would have to
represent an accurate simulation of the laws of real-life physics. For example, when an
obstacle collides with the player, the player will be forced to move backwards due to being
hit. Other aspects such as gravity and velocity will also have to be implemented. The physics
within Unity relies on two main components, a collider, and a rigid body. Colliders are
components that can be in a form of a shape that grounds the object it’s applied to.
Colliders are used to determine when an object collides with another in a script. The rigid
body is another component that simulates physics within the physics engine in Unity. The
rigid body contains a number of different elements such as mass and freeze rotation. This is
so that the object does not rotate when moving or jumping or when it’s in collision
detection mode, where two modes are present, continuous and dynamic. These two
components are important for every object as they are responsible for the physics
calculations to take place as well as not phasing through other objects. To determine the
best possible approach of collision detection, Quadtrees will need to be investigated further

to determine the best approach to be implemented.

Ul

A part of the aim is to also develop a user interface so that the user can interact when
running the application. The main menu is the first screen they will see and in the majority
of computer games this is where they can adjust their settings. This includes key bindings
and graphics settings as well as start new game files. The main menu will allow the player to
choose a level that can be played or to exit the game. The second aspect of the Ul is the
pause screen. In most games, pressing the escape key will freeze gameplay and draw a Ul
over it that contains widgets in the form of buttons. The pause menu will be basic, and the
player can pause if they need a break and later resume the game. Finally, the third Ul screen
is when the level is completed, and here the level scene will change, and a Ul must be
present for the player to return to the main menu. In the case of Fall Guys, a Ul will appear
to determine the next level. The design of the Ul must be simple and straightforward as well
as assisting in smooth navigation between screens, this can be done using buttons where for
example, when a level is selected and the player presses the button, the level will then be

loaded.

Evan Smith MSc Advanced Computer Science C2108326

XXX

Level

A level will be developed, where the player will be required to reach a finish line while
evading obstacles. The level must be playable where the character can move and jump as
well as respawning when knocked off the stage. Two obstacles will be present that are
inspired by Total Wipeout and Takeshi’s Castle. The level must also include elements such as
checkpoints for when the player is knocked off the level, and they must respawn at the
checkpoint they passed. The level must be rendered without issue to not affect certain parts
where collisions are involved. For example, game lag happens when a frame is not loaded
and it moves onto the next, it breaks the immersion of the player. When the level is fully
developed and tested to ensure that issues that did not appear during playtime also do not
appear within the executable file, the level can be included in the finished executable file

alongside the main menu and the finished Ul.

Evan Smith MSc Advanced Computer Science C2108326

XXX

Chapter 4 — Design and Implementation

With the specification now formed, the prototype can be designed and developed to meet
the requirements made. In this section, the development of the prototype will be explored
by looking at the implementation of collision detection between objects as well as other
aspects such as user interface, level design and coding practises. Furthermore, testing will
also be carried out simultaneously alongside implementation to ensure that the game

functions as expected.

Overview of Unity

Within Unity, there are many components that are required, the foremost of which is the
physics system, as Box2D is the default system for simulating physics in 2D environments.
This includes two important elements, colliders, which may be box, circle or capsule and
rigid body. This can be used in reference to collision detection when implementing scripts.
The second component is the user interface, this is where the user will interact with the
canvas which contains buttons and toggle buttons. This serves the purpose of transitioning
between menus and gameplay. The third component is rendering, with a lot of objects
within obstacle courses and collisions occurring, it is crucial to render them as smoothly as
possible without lag. Finally, the scripts are produced with C# that takes the components

stated above and uses them to create the gameplay.

Physics

Box2D is the default physics system when developing alpha and beta builds for a game
project. To prevent objects phasing through one and another, there are two main elements
that can be used. Colliders come in a few different shapes depending on the object. The
collider serves to bound everything within the object, the bounding line can be altered
depending upon the developer’s preference. However, it can also be used with the rigid
body which is useful to work together. The rigid body connects the object to the physics
engine, with further usage of its position that is given to the object. The final component of
the system is a physics material, applying it to the object that contains two attributes,

friction, and bounciness.

Evan Smith MSc Advanced Computer Science C2108326

XXXIV

User Interface

The user interface in deeper detail, requires two parts, a canvas, and a panel. The canvas, a
parent object, serves a purpose of covering the screen so that the Ul can be rendered. The
panel is a component that is included along with the canvas, tasked to group Ul controls
that can be accessed by the user. Some of the controls associated with the panel are
buttons which are commonly used in games to transition between gameplay and the user

interface.
Rendering

When the level is loaded, all objects within the game scene are rendered. There are multiple
pipelines that can be used for game development. Examples include Universal Render
Pipeline (URP), High Definition Render Pipeline (HDRP) and Scriptable Render Pipeline (SRP).
The pipeline used is built in that the game engine provides, with options to configure how
the game can be rendered with different paths in addition to command buffers and call-

backs for further development.
Scripting

The scripts within Unity assist in connecting the components in the engine together. For
example, it connects to the physics engine when the player object collides with another
object as well as using the audio system to produce a sound when the player gets knocked
back. The variables created within the scripts enable access to the components in order to
use them. These are often applied to game objects within the scene, regardless of what
components are attached. Interaction between the different components often occur
through scripts and act as a bridge between them. Each component can be viewed as a

small cog in a bigger machine, wherein one component is connected to the other.

Each of the components discussed are essential within the process of software design for

systems to work effectively within an obstacle course game.

Evan Smith MSc Advanced Computer Science C2108326

XXXV

4.1 Software Design
The first stage of the process is to determine how the level, Ul and obstacles are designed.

The ideas for these were drawn on paper as an initial method of development.

4.1.1 Level Design

The level design consists of the player using platforms to navigate from start to finish. The
first level serves as a straightforward level that does not contain complex sections that will
challenge the player. The level does not contain high quality graphics but rather simple
objects that can be later improved upon beyond the deadline for this project. The majority
of the level consists of both up and down slopes and small breathe sections in between
obstacles and checkpoints, so that when the player does get knocked off, they can respawn.

The level requires all components specified above.

4.1.2 Ul

The user interface design is very straightforward and basic, consisting of buttons and titles
on the screen with the former being the main component for navigation during the game.
With all Ul elements, all components are centred to remain consistent and not confuse the
player’s vision. The main menu consists of multiple elements such as buttons and titles,
there are two buttons, one to select a level, the second to exit the game. When a level is
selected, it is pinned on the top left rather than the middle, thus allowing for the possibility
of adding more levels to extend the game in the future. The finished screen is again, very

simple and straightforward, only a button to take the player back to the main menu.

4.1.3 Obstacles

Ideas for multiple obstacles were designed on paper with each involving a strategy for the
player to apply to succeed. For the purpose of this project, only two obstacles were chosen
that are widely recognised in Total Wipeout and Takeshi’s Castle. The first of these is the
boulders, a popular obstacle that requires the player to be concise in their timing of
movement, as failure to do so will result in them being knocked back and possibly off the
level. In reference to the physics element, the boulders are usually moved down a slope that
will head towards the player when they move up. In the show, there are small spaces where

the contestant can move to avoid them, before moving up the slope again. The aim is to

Evan Smith MSc Advanced Computer Science C2108326

XXXVI

replicate it however it must be designed so that the space between the start and the end

are reasonable.

Figure 8: Takeshi's Castle Boulders Course
The second obstacle is the bouncing balls, one that is popular within Total Wipeout. The aim
is for the player to reach the other side without falling off into the water. There are four
balls in total that when jumped upon, it can be challenging to control movement. This is the
final obstacle before the finish line, so the player will have to remain careful as to where
they land. The concept is very simple however, the implementation aspect will consist of

altering how bouncy the balls should be in order for it to be passable.

Figure 9: Balls from Total Wipeout

The design of the prototype remains straightforward due to the time constraints where the
groundwork is designed that can be extended in future work. The graphics can also be
enhanced to add detail however for the nature of this project, the graphics is suitable as the

implementation of physics remains a high priority.

Evan Smith MSc Advanced Computer Science C2108326

XXXVII

4.2 Development

Once the design is completed, the development can begin, referring to the design
preparation and realising it within Unity. Each component contains a section that details
how it has been coded and what each part does within gameplay. Finally, an overview of

how the system operates, what is used and what is given to Unity is documented

Physics

As explained earlier in the design and overview of Unity, the implementation of the physics
aspect of the prototype revolves around the movement and collision of player object and
several other objects, ranging from obstacles such as boulders and bouncing balls to
checkpoints and finish lines. In relation to the overall solution, the ability to simulate

Newtonian physics as realistically as possible is paramount.

Player

The player object is a simple capsule where the design is similar to Fall Guys. The object has
several components that are provided, including Capsule Collider, Rigidbody2D and Player
Controller Script. The capsule collider covers the shape of the object in an event of a
collision with another object. The Rigidbody2D is applied as well as the script that is
responsible for the movement and collisions. The tag is set to ‘player’ which can be used as

reference in other scripts.

Evan Smith MSc Advanced Computer Science C2108326

XXXVIII

Rigidbedy 2D

Discrete

Start Awake

Info

ﬂ v Player Controller (Script)

Figure 11: Creation of the Player Object

Impulse

B v Player Cam (Script)

Figure 10: Components of the Player

Evan Smith MSc Advanced Computer Science C2108326

XXXIX

// Update is called once per frame
| void FixedUpdate()
{
TERRLETEETLEER PR E T EE TR AT AT LT LT LT i irifiiiiiid
/{/The horizontal input stores the axis of horizontal in Input
PEERLITEERTI IR LI ERTIREFA TR IR EFA TR T IR F LTI E I T EE P T I EEdi P T i i i iiiddiriiiifisiiis
horizentalInput = Input.Getdxis(“"Horizontal™};
HHALENTER LT LT TR LR EE T T E LT L TR LT T i
///If the Key pressed is A
TEERLETEERTEEEA TR EEE TR LT LD LT LT LT
| if (Input.GetKey(KeyCode.A))
{
HHALENTER LT LT TR LR EE T T E LT L TR LT T i
///Rotate the player to face left
TEERLETEERTEEEA TR EEE TR LT LD LT LT LT
rbPlayer.transform.localRotation = Quaternion.Euler(®, 132, @);
TEERLETEERTEEEA TR EEE TR LT LD LT LT LT
///5et the velocity vector to a nmew vector that contains the horizontal input multiplied by the speed minus 1 and the velocity of y
TERRLETEETLEER PR E T EE TR AT AT LT LT LT i irifiiiiiid
rbPlayer.velocity = new Vector2(horizentalInput * speed - 1, rbPlayer.velocity.y);
TERRLETEETLEER PR E T EE TR AT AT LT LT LT i irifiiiiiid
/{/Freeze the rotation so that it only faces left

HHAETTEETT R T TR LR TR LT R LT TR LR T i T

rbPlayer.constraints = RigidbodyConstraints2D.FreezeRotation;

_ b
IR LT EEL LR LT LT T TR R LT T TR TR T

///If the Key pressed is D
TERRLETEETLEER PR E T EE TR AT AT LT LT LT i irifiiiiiid
| if (Input.GetKey(KeyCode.D))

{
FERREETEERTIEER IR E R EER TR EEEEA LTI R T R LEET R L T TEEAEL T i riiiiiisiisd
///Rotate the player to face right
TERRLETEETLEER PR E T EE TR AT AT LT LT LT i irifiiiiiid
rbPlayer.transform.localRotation = Quaternion.Euler(e, @, @);
TERRLETEETLEER PR E T EE TR AT AT LT LT LT i irifiiiiiid
///5et the velocity vector to a new vector that moves right
FERREETEERTIEER IR E R EER TR EEEEA LTI R T R LEET R L T TEEAEL T i riiiiiisiisd
rbPlayer.velocity = new Vector2(horizontalInput * speed + 1, rbPlayer.velocity.y);
FERREETEERTIEER IR E R EER TR EEEEA LTI R T R LEET R L T TEEAEL T i riiiiiisiisd

//[Freeze the rotation so that it only faces right

LR R TR LR TR LT R LR E i i

rbPlayer.constraints = RigidbodyConstraints2D.FreezeRotation;

}

Figure 12: Player Movement Code

The player controller script is responsible for movement whenever a key is pressed. Player
movement is coded in the interest of horizontal and vertical movement. Horizontal
movement consists of moving left and right, the keys being A and D. When the A key is
pressed, the player will face left, rotating it 180 degrees, and update the velocity vector of
the rigid body component so that the player is moving left. Finally, the constraints of the
rigid body involve freezing rotation so that the player does not fall to the ground. When D is
pressed, the code is reversed, with the player facing and moving right while the constraints

remain the same.

Evan Smith MSc Advanced Computer Science C2108326

XL

void Jump()

{
TR TR TR T R E LT L EET TR
///Create a movement vector to store the x component of the velocity of the rigidbody and its jumpforce
I LT P LR LT

Vector? movement = new Vector2(rbPlayer.velocity.x, jumpforce);
TN LR TE TR TR R T
///set the velocity of the rigidbody to the movement vector
T TR LR TR TR LT T L EE R LT TR

rbPlayer.velocity = movement;

h
TN LR TE TR TR R T

///A function determining if the player is grounded
IR TR LT LT]
public bool isGrounded()

{
LHIETHEE TR TR TP LT
///Create a Collider2D variable that checks if the player is grounded.
///This uses overlapCircle which is a method that takes two parameters, the feet of the player(the position) and the ground layers

TR TR R LR LT R ET R
Collider2D groundCheck = Physics2D.OverlapCircle(feet.position, groundLayers);

TN LR TE TR TR R T

///if the ground check variable is not null

LR TR TR TR LT T LR LT
if(groundCheck != null)

{
TR T TR L TR F LT EE LT LT T
///The player is grounded
T TR TR LT LR TR F L LT EE LT

return true;

¥
TR TR TR LT T
///The player is not grounded

TR TR TR T R E LT L EET TR

return false;

}

Figure 13: Player Jump Code

When it comes to jumping, there are two functions that are required for this. The first
function is a jump that focuses on the velocity of the player’s rigid body and the movement
vector that attains the x of the velocity component of the rigid body and the jump force
which can be any integer value. The velocity vector is set to the movement vector where the
player will move along the Y axis. The grounded function determines if the player is not in
the air, and he is on the ground. The function is a Boolean, meaning that a true or false

value is returned at the end.

Evan Smith MSc Advanced Computer Science C2108326

XLI

public woid OnCeollisionEnter2D({Collision2D collision)

1
if (collision.gameCbject.CompareTag(boulder™))
1
/fget the contact point
ContactPoint2D contactPoint = collision.GetContact(@);
//5tore the player position
Vector2 playerPos = transform.position;
/fcalculate the difference between the point of contact and the player position
Vector?2 dir = contactPoint.point - playerPos;
/fnormalize the vector
dir = -dir.normalized;
/fget the Rigidbody's wvelocity and set it to the new vector
GetComponent<Rigidbody2D>().velocity = new Vectorz2(@, 8);
GetComponent<Rigidbody2D>().inertia = @;
/fAadd the force to the rigidbody so the player is knockedback
GetComponent<Rigidbody2D>().AddForce{dir * force, forceMode);
rbPlayer.constraints = RigidbeodyConstraints2D.None;
¥
¥

Figure 14: Boulder Collision and Knockback Code

On collision enter is where an intersection between two objects occurs. In this case a
boulder is a common obstacle within the game, using a collision parameter from
Collision2D, a check is made if the game object colliding is a boulder. If it is true, the
knockback has to be implemented, that means the player will be moved backwards to
represent the real-world physics. We start by getting the contact point of where the
collision happened while creating two vector variables, one that stores the player position
and the other a direction vector that determines where the player will be moved when the
collision happened. The player position contains the position of the transform vector of the
player. The direction vector is normalized before it can be used in the calculations. Using the
rigid body component of the player, we get two elements, the velocity vector and inertia.
Finally, we get one more element from the component, AddForce to which we use the
direction vector, the force which is a float and its force Mode. This line of code is important

as it sends the player backwards.

Evan Smith MSc Advanced Computer Science C2108326

XLI

This method only focuses when the object that contains a collider component has
intersected with another object that allows the player to move past it. This method can be
used for pickup items, checkpoints that are placed through the course and other objects

that do not require colliding and not phasing past it.

public void OnTriggerEnter2D(Collider2D collider)

{

if(collider.gameObject.tag == "Player”)

{
highlight.SetActive(trus);

Debug.log("Player has collided With Tile: " 4 collider.gameObject.name);
// Debug.log("Player Position X :" + playerPosX);
/! Debug.Log("Player Position Y :" + playerPosY);

}.
Figure 15: OnTriggerEnter2D collision code
In the case of checkpoints, this method takes in an argument collider that is connected to a
Collider2D class. Using this parameter we can determine if the collider has intersected with

another game object whose tag is ‘player’. This code enables any action to be followed

through when an object connects to another object that only has a tag called ‘player’.

Figure 16: Creation of spawn objects

The spawn object allows boulders to spawn on a continuous loop throughout the duration
of gameplay. As seen in Takeshi’s Castle, boulders continuously appear until the contestant

is either knocked out or gets past the obstacle. The concept is relatively easy to understand,

Evan Smith MSc Advanced Computer Science C2108326

XL

as an empty game object is created that does not require a sprite but a script, one of which
requires three important components: The prefab of a boulder, the transform of the

“spawnPos” object and a clone of the prefab.

SILLTLETTLSTLTLSTILS RIS ETTES RIS TESTRIFEISS TR TELSETIES RS ISSTSELTFLIL LIS SFLI TSP LFLL TSR ITT
///Declare variables required
SILLTLETTLSTLTLSTILS RIS ETTES RIS TESTRIFEISS TR TELSETIES RS ISSTSELTFLIL LIS SFLI TSP LFLL TSR ITT
public GameObject boulder; //The original Prefab
public Transform spawner;

GameObject mMyClone;
public GameObject cloneBoulder; //clone of clone
public int spawnlim;

float mytimer = af;
/f Start is called before the first frame update
void Start()

i
f{objspawn();
H
vold Awake()
{
H

/f Update is called once per frame
void Update()
{

mytimer -= Time.deltaTime;

if(mytimer <= @f)
{
J/.l2 -"rJ/JJ -"rJ/J’J ./1";)’} ./1";)’} ./1";)’} ./1";)’} ./1";)’} ./1";)’} ./1";)’} ./1";)’} ./1";)’} ./1";)’} ./1";)’} ./1";;/12fraszraszraszrazf-"raz.l”fraszraz!fraszrazf-"raz.l”-"raz.l”fru'f.;.f!f‘;./f;././-";J”./-";J”./-";J”./-";J”./-";J”./-";J”./;J/.lxu"razf?’razf
///Create a variable that will create a bolder at the position of the spawner object and the rotation
J/.l2 -"rJ/JJ -"rJ/J’J ./1";)’} ./1";)’} ./1";)’} ./1";)’} ./1";)’} ./1";)’} ./1";)’} ./1";)’} ./1";)’} ./1";)’} ./1";)’} ./1";;/12fraszraszraszrazf-"raz.l”fraszraz!fraszrazf-"raz.l”-"raz.l”fru'f.;.f!f‘;./f;././-";J”./-";J”./-";J”./-";J”./-";J”./-";J”./;J/.lxu"razf?’razf
mMyClone = Instantiate(boulder, spawner.position, transform.rotation);
FELELLSELTELESLSLLSEL TS TS TSI EESEETS LTI EETIEL TSI ELLESLSSSELEELELEISALTLT S
///5et the timer to 6 seconds
J'.’.l2 -"r;.’.l” -"r;.’.l” -"r;.’.l” -"r;.’.l” -"r;.’.l” -"r;.’a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a'.’ffra'fffra'fffra'.’.l”fraxffra'f!fraxffra'f!-"ra'.’.l”fra'.’ffra'f!fra'fffrj;.//.J’.’.//.J.’././j;./j;./ja’.’./ja’.’./j;./
mytimer = &;
J'.’.l2 -"r;.’.l” -"r;.’.l” -"r;.’.l” -"r;.’.l” -"r;.’.l” -"r;.’a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a'.’ffra'fffra'fffra'.’.l”fraxffra'f!fraxffra'f!-"ra'.’.l”fra'.’ffra'f!fra'fffrj;.//.J’.’.//.J.’././j;./j;./ja’.’./ja’.’./j;./
///Destroy the clone at every & seconds since created
J'.’.l2 -"r;.’.l” -"r;.’.l” -"r;.’.l” -"r;.’.l” -"r;.’.l” -"r;.’a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a’.’ ./f.a'.’ffra'fffra'fffra'.’.l”fraxffra'f!fraxffra'f!-"ra'.’.l”fra'.’ffra'f!fra'fffrj;.//.J’.’.//.J.’././j;./j;./ja’.’./ja’.’./j;./
Destroy(mMyClone, 6);

¥

Figure 17: Creating boulders

During the design of the level, one of the most common obstacles that is featured on
Takeshi’s Castle is the slope that contestants must climb while boulders roll down towards
them to knock them off balance. Inspired by this, the first obstacle the player will encounter
is the boulder and in order to succeed they need to time their movements carefully to not
get hit and fall down the slope. The spawn script is used to achieve a loop that continuously
creates a clone of the boulder prefab. The implementation is done in the update function
however this can be created in a function that can be called. A “Mytimer” variable is
important as it will be used to measure how long the boulder is created. To determine if a

boulder is spawned, an ‘if’ statement is used to ascertain if the timer variable is less than or

Evan Smith MSc Advanced Computer Science C2108326

XLIV

equal to 0. If it is, the clone variable will instantiate a boulder object from its prefab,
creating it at the position of the spawner object which is empty, and rotate it at its
transform. The destroy function destroys the game object during gameplay, this can
commonly be used when a pickup item is collected by the player therefore it needs to be
removed. The destroy function requires two arguments, the game object which in this
scenario is the clone variable and the time that it should be destroyed, that being 6 seconds.
The boulder will be destroyed every 6 seconds, fulfilling the loop that remains until the level

is completed.

igidbody 2D

Qr 2 ¢ & ¢+ @ mv @~

+ Circle Collider 2D

B ~ Check Point (Script)

Figure 19: Creation of Checkpoints

Figure 18: Components of
checkpoint

The checkpoints serve that the player can pass through and be able to respawn at the
position of the checkpoint instead of the beginning of the level. This contains the
RigidBody2D and a circle collider 2D component. This object does not contain a script as the

code is developed in the player script.

Evan Smith MSc Advanced Computer Science C2108326

XLV

Rendering

Following from the rendering component of Unity in addition to the design, the camera is
the only component that is related. This is mostly due to the built-in rendering pipeline with
the rendering paths that can be accessed in the camera. The design of the camera revolves

continuously following the player wherever they move.

The camera is one of the important components of the game as it gives the player a view of
the player within the game itself, as well as any objects that come into view. The tag is set to
‘Main Camera’ by default so that it can be referenced in other scripts that require it. The
position of the camera in the Z axis is moved back by -10 so that it can view the player and

not get too close.

awGame i Profiler i @ Inspector
W v v Main Camera
T Tag M

Transform

le
v Camera
Everything

Orthographic

ps > Courses T
Display 1

ii v Audio Listener
Add Component

Figure 20: Camera Components

Evan Smith MSc Advanced Computer Science C2108326

XLVI

-/US1NG SYSTEM.LOLLECTIONS;
using System.Collections.Generic;
using UnityEngine;

Slpublic class PlayerCam : MonoBehaviour
{
AR TR TR LT
///Declare variables required
TR TR TR E LR LR T LT LT
public GameObject Player;
public Camera myCam;

// Update is called once per frame
= void Update()

{

LR R TR LR R LT T LT LR T
///5et the position of the camera
///Create a new vector3 that focuses on the x,y and z position of the player while keeping a short distance
P T T
myCam. transform.position = new Vector3(Player.transform.position.x, Player.transform.position.y, Player.transform.position.z - 18);

Figure 21: Camera Implementation

The camera script is designed to have the camera follow the player throughout the level. It
requires two main variables, the player and the camera. As a result of the camera following
the player, it needs to be updated continuously with a new vector value created for its
position. In terms of distance, the z axis of the vector can be subtracted depending on how

far the camera can be from the player.

Evan Smith MSc Advanced Computer Science C2108326

XLVII

User Interface
Following from the design of the user interface, the implementation focuses on the
functionality of the canvas, panel and its elements. Transitions between gameplay and Ul

are handled with mouse input, clicking on buttons for change to occur.

Figure 22: Creating Main Menu

Figure 23: Canvas Components

The main menu’s principal component is a canvas, which allows all of the elements of the Ul
to be rendered and to be stored. An option of how it can be rendered is presented to the
user. The second component is a panel which is the next main component that groups all of
the objects such as buttons, texts and images. There are two buttons, one to select a level,

the other to exit the application.

The main menu script deals with the first scene when the executable of the project is
running. Whenever a game is launched, the main menu is the first screen that the player will
see, and they are faced with the decision whether to load the game where they left off or to
change a part of their settings, such as audio volume or sensitivity of the controls. The script
requires several game object variables that connect to the components of the Ul such as

buttons, panels and text. These are part of fields that are serialized.

Evan Smith MSc Advanced Computer Science C2108326

XLVII

v UlController

Untagged) Default

Add Component

Figure 24: Ul Controller Component

public class MainMenu : MonoBehaviour
1
Jz.l}frfffrff -"rff -"rff -"rff -"rfa"’ /1";4’} /1";4’} /1";4’} /1";4’} /1";4’} f-";.l"’ f-";.l"’ f-";.l"’ f-";.l"’ fl,f'_.," fl,f'_.," f-'r. ZJJ -"I‘JK.I2 -"I‘JK.I2 -"I‘JK.I2 -"rax.l2 -"rax.l2 -"rax.l2 -"rJ‘J.I2 -"rJ‘J.I2 -"rJ‘J.I2 l"rJHJJ l"rJHJJ -"ru'r.a"’ .fu'r.a"’ |/|'f-f"|/|f|'f..l"’ |f|'.;.l"’ Ifl,f'_.," Ifl,f'_.," Ifl,f'_.," .f
///Create serialize fields for the UI components to be used in this script
/J'.IIEJ/J'.II"J/J#I"J/J#?'J/;?'J/}]?’J/f",l'ff",l'ff""ff"’ff",ff"{f.l"’{ff}{f.l"’{f.l"’{fr.l"’{fr.l"’{f z.ll.ll"JJJI.ll"JKJI.ll"JKJI.lI"Jx.ll.ll"JKJI.ll"JJ.II.ll"JHJI.ll"JHJI.lI"JH.II.ll"JHJ'.ll"JHJ'.lI"l'rJ"’lfl'rf"lfl'ff}l(l(f.l"’l{f.l"’{f.l’}{ff}{ff}{
[SerializeField]
public GameObject 1lvl_select;

[SerializeField]
public GameObject quit;

[SerializeField]
public GameObject snowMountainGrp;

[SerializeField]
public GameObject btn_SnowMountain;

[SerializeField]
public GameObject btn_return;

[SerializeField]
public GameObject Panel;

ff start is called before the first frame update
woid Start()
{
SIELIELTELTSLTFLTSETEL S TSI IR S FRSIRET L TRL TGS LT LSS TLET RS FET LRI T RS TRTT ISR PET RIS PET TSP SIS ST TGS E LT
For every button created, create an instance of the button that gets the component of the button
///Add a listener to the button that requires a function
l".l"'l"')"’.l"'l"'}"’.l"l l"rJl.’Jl.l l"rJl.’Jl.l l"rJl.’Jl.l l"rJl.’J’.’ 'lrn"’a’.’ 'lrn"’a’.’ 'lrn'"a’.’ 'lrn'"a’.’ 'lrn'"a’.’ 'lrn"’.l’.’ 'lrn"’.l’.’ 'lrn"’.l’.’ 'lrn"’.l’.’ 'lrn"'.l’.’ 'lrn"'.l’.’ 'lrn"’ "’.l"l -"r "’.l"l ."ra'.’.l"l ."ra'.’.l"l ."ra'.’.l"l ."ra'.’.l"l ."ra'.’.l"l ."ra'.’.l"l ."ra'.’.l"l ."ra'.’.l"l ."ra'.’.l'.ln" Jl.’.l'.ll" f")’.’ 'lrn"'a’.’ 'lrn"’ J’" 'lr'lrn'".l’.’ 'lrn"’.l’.’ 'lrn"'.l’.’ 'lrn"'.l’.’ 'lrn"'.l’.’ f
Button btm = quit.GetComponent<Button>();
btn.onClick.AddListener(Quit);

Button btnlvl = 1vl_select.GetComponent<Button>();
btnlvl.onClick.AddListener(Levelselect);

Button btnReturn = btn_return.GetComponent<Button>();
btnReturn.onClick.AddListener(Back);

Figure 25: Main Menu Code

During the start function, the buttons are set up by creating an instance of the button class,

getting the button component of the Ul button. The instance variable requires a listener to

Evan Smith MSc Advanced Computer Science C2108326

XLIX

listen for a function that will run when a button is clicked. The “AddListener” function

requires a parameter in the form of a function.

Evan Smith MSc Advanced Computer Science C2108326

SIS TSI ST ST T TIPSR EAErY.
SAMuitting the application function
SIS TSI TSS TS TS TSI TSI SIS T LTS EFS TS TSI F S TSP TS TSI FSA S
- wold Quit()
i
SIS TSI FS TSP FS TP AP E i ST FAriirirrsriry.
/i fLog that the player is quitting and quit the application
SIS TSI TSS TS TS TSI TSI SIS T LTS EFS TS TSI F S TSP TS TSI FSA S
Debug.lLog("Player is Quitting™);
Application.Quit()};
¥
SIS TSSTS TSI TS TS TS ST TSI TS LTSS TSI TSI ST T TSP T TSP Ers.
SS/Function for moving back to main menu
LTSI TGS T T EF TSRS d TP i i f i iririd it it i idlrifirrs.
volid Back()
i
SIS TSSTS TSI TS TS TS ST TSI TS LTSS TSI TSI ST T TSP T TSP Ers.
S S /Show the level select component of UI
FELLESTSFS TSI EFI TS TS ST E i TP F i i rr i i i il rrrfrs.
vl _select.SetActive(true);
SIS TSI FS TSP FS TP AP E i ST FAriirirrsriry.
SS/show the quit button
SIS TSI T ST ETS TSI ST TS TS T LTSS TS TSI F S TSP TS FS TS ST F A S
quit.SetActive(trus);
FELSLESTSTSETS TSGR

/S /Hide the snow mountain group in the UI

SELSTITSFSETS TSI TS TS FE TSP SIS TSP FS TS TP FS LS PP AFS.
snowMountainGrp.SetActive(false);

LTSS TSP ET ST TSP i ST PSR T TS TS E AT PSP AP S TP PP AP rrrisy.
/f/Hide the lewvel select button

SIS TSI FS TSP FS TP AP E i ST FAriirirrsriry.
btn_return.sSetaActive(false);

¥
PILEESTES LTI SEES TSI ST TTTIS TSRS EES TSI ISP FES TP 7

/S /Load the Snowy Mountain Lewvel

SIS TSI FS TSP FS TP AP E i ST FAriirirrsriry.
void LoadSnowMitn()

i
PILEESTES LTI SEES TSI ST TTTIS TSRS EES TSI ISP FES TP 7

/i fChange scene to the first lewel

SIS TSI FS TSP FS TP AP E i ST FAriirirrsriry.
SceneManager.LoadScene("Level 17);

¥

Figure 26: Code for Qutting the game

The majority of the functions associated with the script consist of showing and hiding Ul
components using the SetActive function. The function requires a Boolean, true or false.
True shows the Ul components whereas false hides it. For example, when the back button is
clicked on in the level select window, it needs to hide the components when level select is
present and show the components associated with the main menu. Apart from SetActive,
there are two other functions that are used. The Application.Quit() is a system.generic
library function that when the executable is running, clicking the quit button will allow the
user to quit the application. Finally, in terms of loading levels, an extra library is required in
the form of Scene Management, which provides a number of functions, one of them being

load scene that requires a string parameter where the name of the scene is used.

Evan Smith MSc Advanced Computer Science C2108326

LI

YOU FINISHED

Figure 27: Creating Level Completion Screens

Main Menu

Level Select

Figure 28: Main Menu

Main Menu

Mountain

Figure 29: Level Select

Evan Smith MSc Advanced Computer Science C2108326

LIl

YOU FINISHED

Figure 30: Level Completion Screen

Figure 31: Gameplay Ul Objects

Figure 32: Pause Menu

Evan Smith MSc Advanced Computer Science C2108326

LI

Figure 33: Creating Finish Line

The finish line is the object the player must reach to finish the level. The finish contains an
empty square object that contains a box collider 2D component that is needed to transition

to the finished level screen.

1 Flusing System.Collections;

2 using system.Collections.Generic;

3 using UnityEngine;

4 | using UnityEngine.SceneManagement;

5

6 Elpublic class FinishLine : MonoBehaviour

7 ¢

8

g ff start is called before the first frame update

10 El void Start()

11 {

12

13 1

14

15 // Update is called once per frame

16 =] void Update()

17

18

19 1

28

21 El private void OnTriggerEnter2D(Collider2D collider)

22 {

23 LELIETEELEIET LS TET BT LS EETEELELR T IR T ELLELE AL ETTTTIT T T LT TS IETEEL R IR T ERTELdiEdiiiiiiiiisiiesss
24 ///if the collider intersects with the player

25 LELIETEELEIET LS TET BT LS EETEELELR T IR T ELLELE AL ETTTTIT T T LT TS IETEEL R IR T ERTELdiEdiiiiiiiiisiiesss
26 El if(collider.tag == "Player™)

27 {

28 LELIETEELEIET LS TET BT LS EETEELELR T IR T ELLELE AL ETTTTIT T T LT TS IETEEL R IR T ERTELdiEdiiiiiiiiisiiesss
29 //fLoad the scene that is next in the build list, this is reference to the executable file that builds all levels
38 LELIETEELEIET IS TETEEESEETEELELR T IR T ELLELE AL ETTTTIT T T TE T IS IETEEL I IR T ERTELd A Tiiiiiiiisiiesss
31 SceneManager.LoadScene(SceneManager.GetActiveScene().buildIndex + 1);

32 1

33

34

35

36 1

Figure 34: Finish Line Code

Evan Smith MSc Advanced Computer Science C2108326

LIV

The script only requires an OnTriggerEnter2D method that is similarly used in the player
script. An ‘if’ statement is crucial to determine the loading of the next scene. If the collider
of the tag is the player, using the scene manager, load the next scene within the build list

that is used in the executable file that contains all the scenes.

Evan Smith MSc Advanced Computer Science C2108326

LV

Chapter 5 — Evaluation

Following examination of the design and development of the prototype, it will be evaluated
with reference to its areas of both success and failure. In this section, an evaluation is
conducted into the performance of the prototype that involves the collision detection,
player movement and Ul. Demonstrating the functionality of this, a framework is presented,
highlighting a clear aim that references the previously specified requirements in addition to

the test results, concluding with a brief discussion of these.

Test Area

Figure 35: Test Area

During the implementation, a scene named ‘Test Area’ is created. The nature of this scene is
to test the functionality of the scripts that will be used in the main prototype. The benefits
of this are to determine if there are errors within the script before it can be applied to the
main game and to fix the issue. It can be used to test and further develop each gameplay
component before it can be added to the level scene so that it can be added to the scene

list when building for an executable file.

Evan Smith MSc Advanced Computer Science C2108326

Collision Detection

LVI

The collision detection phase of the prototype contains two types of methods,

OnTriggerEnter2D and OnCollisionEnter2D. Success depends upon whether any object has

intersected with the player. To measure this, a useful line of code is used, “Debug.Log();” is

a line of code that prints a string to the command line that is logged during runtime. This is

useful for debugging lines of command when troubleshooting as well as determining if the

code works as expected.

Collision Detection

collides with a boulder
at a different angle,
the knock back code

will still function

Test No Aim Success? Notes

1 The player will collide | Yes The player has
with the boulder collided with the
obstacle obstacle

2 When the player has Yes The player has
collided with a killzone collided with the
object, the player killzone and is
would be respawned respawned at
at checkpoint checkpoint

3 When the player No Although the

knockback works
when both objects are
on the same grounds,
however when this
changes when the
boulder collides with
the player on a slope,
it does not function. It
may be possible to

examine this further.

Figure 36: Table of Collision Detection Tests

Evan Smith

MSc Advanced Computer Science

C2108326

LVII

Figure 37: CPU and Rendering Performance Test

The performance of the collision detection tests is captured using the profile system within
Unity. This is very useful to determine how the game’s performance is measured and
whether it needs further optimization. The tests carried out in relation to this are focused
on both CPU, memory and rendering. For the single collision detection that occurs, the
results from the CPU usage indicates that the spikes when they occur mostly relate to the

category of other.

Figure 38:Phyiscs 2D performance test

The aspect of the physics in 2D showed that when a collision is made, the active bodies
aspects increase, as the collision detection is dynamic, this is to be expected. Sleeping
bodies happen right before the collision occurs, this means that any object that is not
moving, is classed as a sleeping object. When a collision occurs, the objects are no longer

sleeping.

Figure 39: Memory Test

Evan Smith MSc Advanced Computer Science C2108326

LVII

In relation to memory, there is not a huge spike for the memory used overall. The only spike
that occurs during the single collision is GC allocated in Frame. GC (Garbage Collection)
allocation in frame refers to how much managed memory is used during runtime. The spike

only happens when the player is knocked back.

Another test was also conducted into the correctness of the collision detection. These tests
are carried out manually to examine the events where the player collides with an obstacle.
The importance of the test is to determine the success or failure of the collisions and make
note on if more refinement is needed. There are three cases that are standard within the

gameplay.

Test 1

Figure 410: Frame 1 of test 1 Figure 401: Frame 2 of Test 1

Figure 432: Frame 3 of Test 1
Figure 423: Frame 4 of Test 1

Evan Smith MSc Advanced Computer Science C2108326

LIX

This test focuses when both objects are grounded and the angles are the same. Each
image reflects a frame that is recorded. The first frame shows an intersection with both
objects edge present. The collider lines are the same as the edge in order to provide a
tight fit around the object. The second frame shows the player is moved back slightly
from the boulder where third image shows the player’s rotation is slightly altered. This is
where the knockback effect takes place. The final image however does show a different
result. The player is shown to phase into the boulder, this is due to the knockback code
where the constraints of rotation is removed. To determine a realistic simulation,

alterations to the boulder and the player’s knockback code must be made.

Test 2

Figure 44 Frame 1 of Test 2 Figure 46: Frame 2 of Test 2

Figure 45: Frame 3 of Test 3 Figure 47: Frame 4 of Test 2

Evan Smith MSc Advanced Computer Science C2108326

LX

The second test involves a scenario where the player will move up the slope where a
boulder moves down. This is the most common scenario within the level developed. As in
the first test, the first image shows the objects colliding, the second shows the player moved
back by the boulder. The third object shows the knockback code taking effect, rotating the
player slightly where the fourth image shows the player being moved back and rotating. This

result is more realistic than the first test.

Test 3

Figure 498: Frame 1 of Test 3 Figure 489: Frame 2 of Test 3

Figure 50: Frame 3 of Test 3 Figure 51: Frame 4 of Test 4

Evan Smith MSc Advanced Computer Science C2108326

LXI

The third and final test shows the boulder colliding with the player from the top. This is one
of the least common scenarios however it can occur. The first two images shows an
intersection, the third shows the player rotating forward. The final image shows the player
phasing into the boulder. This test failed in this regard as the player should not have phased
through the object. With all of these tests concluded, more work need to be focused on the
knockback as tests 1 and 3 shows that when rotating, the player can phase through the
obstacles. Both the code and the prefabs of the obstacles needs to be changed in order for

the correctness of the collision detection to be accurate.

Evan Smith MSc Advanced Computer Science C2108326

LXII

Gameplay
Gameplay

Test No Aim Success? Notes

1 The boulder will be No The approach of not
created every 6 using a clone of the
seconds prefab will cause data

loss where it can
delete the prefab
itself.

Error — “Destroying
Assets is not
Permitted to Avoid
Data Loss”

2 The boulder will be Yes The boulder is created
created every 6 and destroyed within
seconds the time window

specified. The
approach had to be
altered due to the
failure of the previous
test. Clones of the
prefab was required.

3 When the player Yes The position is saved
passes the checkpoint, correctly.
the position of when
spawning is saved

4 When the player Yes Functions as expected
respawns, it respawns
at the last checkpoint

5 On pressing “A” to Yes Functions as expected
move left, the player’s
rotation will change,

Evan Smith MSc Advanced Computer Science C2108326

LXI1I

and the player will

move left.

On pressing “D” to
move right, the
player’s rotation will

change, and the

player will move right.

Yes

Functions as expected

On pressing the space
bar, the player will

jump.

Yes

Functions as expected

Figure 52: Table of Gamplay Tests

Evan Smith

MSc Advanced Computer Science

C2108326

Ul

LXIV

The user Interface is tested based on if the Ul components such as buttons were functioning

as well as scenes that are loaded in the executable file.

Main Menu

Test No Aim Success? Notes

1 On Level select click, Yes Everything is displayed
the level select as expected
components must be
loaded.

2 When the quit button | Yes The Application is
is clicked, the closed
application must be
closed down

3 On Snowy Mountain Yes The level is loaded,
button click, the level and the player can
must be loaded play the level.

4 On pressing the back Yes The level select
button, the Level components were
select components successfully hidden
must be hidden and and the main menu
the main menu components were
components were shown
shown

Figure 53: Table of Main Menu Tests

The tests of the main menu scene and scripts ran without issue, most of the code is mainly

hiding and showing components of the Ul where the only code that is different is when

loading the level and quitting the application when running the executable file. This stage is

very straightforward due to the nature of the main menu screen.

Evan Smith

MSc Advanced Computer Science

C2108326

LXV

Pause Menu

Test No Aim Success? Notes

1 On clicking escape Yes Everything is displayed
button, the pause as expected
menu should appear.

2 When the quit button | Yes The gameplay is
is clicked, the frozen as expected
gameplay is frozen

3 Upon clicking resume | Yes The pause menu is
button, the pause disappeared as
menu should be expected.
hidden

4 Upon clicking resume | Yes The gameplay is
button, the gameplay unfrozen, and the
will be unfrozen player can continue as

expected.

Figure 54: Table of Pause Menu Tests

The pause menu in this scenario combines elements of gameplay as well as user interface.

When the escape button is pressed, the gameplay using the time element is frozen, with the

Ul appearing. Although there is a resume button, it can be stated that a quit button should

also be present as the user may wish to quit the level and select another one. This requires a

little more time than implementing the main menu as gameplay is involved and originally

was not freezing all movement within the scene.

Evan Smith

MSc Advanced Computer Science

C2108326

LXVI

Level Finished Menu

button is clicked, the
scene changes to the

main menu

Test No Aim Success? Notes
1 When the player Yes Collision with the
reaches the finish line, finish line was
the level finished successful and
menu should appear everything is displayed
as expected
2 When the main menu | Yes Button click is

functional and the
scene is changed to

main menu,

Figure 55: Table of Level Completion Tests

The level finished menu depends on whether the player has reached the finish line in order

for the scene change to take place. If the code of colliding with the finish line is functional,

the finished level screen will appear. The only operational purpose of this Ul is to take the

player back to the main menu. If the game was extended in future work, this will include

more details such as a leader board if more players are playing.

There is an issue that will need to be resolved. The player can jump multiple times which

breaks the game as most games provide only one jump except for a double jump in cases

where skills can be upgraded. There needs to be a limit as to how many times the player can

jump.

Evan Smith

MSc Advanced Computer Science

C2108326

LXVII

Figure 56: Player Jumping Once

Figure 57: Player Jumping Twice

Evan Smith MSc Advanced Computer Science C2108326

LXVII

Figure 58: Collision Detection Simulation of 100 boulders

When testing how many collisions can occur at a time, a separate scene was created. This
allowed the player object to collide with 100 boulders. Due to the hardware used for

development, there is no lag in performance.

Evan Smith MSc Advanced Computer Science C2108326

LXIX

Chapter 6 — Future Work

With the evaluation completed and the issues examined, there are several improvements
that can be made to further enhance the prototype as well as extending it further to include
more replay ability. In this section, issues cited within the evaluation can be addressed and a
solution found and furthermore, other components that can be added to the game can be

identified.

There were a few aspects of gameplay that could be improved upon for it to be refined. The
first is the use of a single jump, as with the current version of the prototype, the player can
make multiple jumps which breaks the game as the player can jump their way to the finish
line. If this was released as a game, it would not work. The second aspect is a more realistic

knockback physics when a collision between a player and an obstacle intersects.

With regard to the collision detection aspect of the game, the scripts use the function of the
physics 2D engine of Unity. Due to the level design and the way the gameplay is
implemented, it can handle collisions of more than 100 obstacles at a time, however, if the
game was to receive more development time and is extended, then more optimal solutions
are required. This can be ranged from quadtrees and grid-based detection systems to speed
up the process and reduce computation time. In relation to these solutions stated, a
substantial amount of time was placed into implementing the quadtree and grid-based
detection systems. First, the quadtree can be implemented in languages such as C++ where
many examples of it have been published. In the aspect of Unity, very few examples were
shown, some were over-engineered and become libraries that can be installed and used

which is not suitable for this project.

Evan Smith MSc Advanced Computer Science C2108326

LXX

When trying to create a simple and straightforward version of a quadtree in the interest of
this prototype, the implementation failed due to missing components that were required
for the script to function as expected. Secondly, another method was a grid-based detection
system, one that is used in strategy games such as Civilisation. This requires the use of a grid
and tiles, where the tile contains a box collider that can be used to determine if a player or
obstacle collides, meaning the game object is in the tile. The data structure used for creating
tiles is used in the form of a dictionary that takes two parameters, the object of the script
and a 2D vector of where the tile is generated. In the aspect of the tile script, it requires a
data structure purely for game objects that contains a tag ‘Obstacles’. A hash set is created
for this, used primarily in C# .NET framework, it functions in the same way as a dictionary
but with a much faster performance. However due to the time constraints of this project,
the remainder of the implementation was not completed. The project will be worked on
past the deadline in order to learn from the shortcomings to implement a better physics

detection system.

In terms of extending the project, once a more suitable collision detection system can be
developed to handle more collisions during gameplay, more Al players can be implemented
to give an element of challenge to the player for finishing first. This means that pathfinding
algorithms such as A*, a modern version of the original Dijkstra algorithm will have to be
implemented. Al can be used if the player plays in solo mode. The second extension is the
use of a multiplayer component where, for example, LAN network can be used to connect
players locally to a game that can consist of more than one level. This requires further

research into developing servers and clients in Unity.

Evan Smith MSc Advanced Computer Science C2108326

LXXI

Chapter 7 — Conclusion
With the conclusion of the evaluation, there are a number of key findings that need to be

explored. In this section, findings from the conclusion are presented in brief detail.

Firstly, the prototype was implemented that contains the specified requirements from the
problem formulation. The results from the evaluation show that the physics implemented
represent a simple object intersection which is beneficial for this stage of development,
however it requires a fully developed collision system in the form of a grid. The user
interface is fully operational and can be used at ease by the user to transition from the
panels to gameplay smoothly. The level that contains the obstacles specified which test the
physics aspect is developed and playable. Overall, the prototype is playable and fully
functioning with grounds for further improvement to enhance the gameplay beyond this

project.

Evan Smith MSc Advanced Computer Science C2108326

LXXII

Chapter 8 — Reflection of learning
Throughout the duration of completing this project, the author learnt a multitude of things.

From researching the current literature to developing the prototype itself, there are many
lessons to learn from the process. In this section, a number of areas are explored in relation

to reflecting upon the work to achieve the aim and objectives of this project.

From conducting the literature review, the author learnt that there were very few papers
that examined both the advantages and disadvantages of each algorithm in relation to
spatial partitioning. There were also very few papers talking about how spatial partitioning
can be used in collision detection. In the last five years, there have been very few literature
resources that have been produced which are relevant to this study and currently there is
still a lack of appropriate resources in the form of conference papers, textbooks and peer-

reviewed journals.

During the implementation of the prototype, research was carried out as to how Quadtrees,
which was examined in the literature review, was implemented within the Unity engine.
During the research process, there were very few accessible examples of quadtrees being
implemented. Although the concepts and ideas of how it can be constructed were noted,
there were very few projects that showed how it worked. However, there were some that
were developed, in a form of its own library that would not suit the project due to its over

engineered aspects.

The final point that was learnt from this process was how to approach aspects of the
implementation phase when it does not go well. For example, with a month of
development, productivity must not be slowed down when there are other aspects of the
prototype to work on. During these phases, morale can become low and therefore this
needs to be avoided and methods need to be introduced to rectify this. All of the issues that

have been identified will be acknowledged and improved upon.

Evan Smith MSc Advanced Computer Science C2108326

LXXII

Chapter 9: References

[1] Q.L L. V.P.J.S.J.C. Louis Montaut, “Collision Detection Accelerated: An Optimization
Perspective,” 19 May 2022. [Online]. Available: https://arxiv.org/abs/2205.09663. [Accessed
24 08 2022].

[2] M. J. Martin Pichlmair, “Designing Game Feel: A Survey,” IEEE TRANSACTIONS ON GAMES, vol.
14, no. 2, pp. 138 - 152, 2022.

[3] A.T.Randeep Kaur Kahlon, “QuadTree Visualizer,” International Journal of Engineering

Research & Technology (IJERT), vol. 11, no. 4, pp. 295-301, 2022.

[4] R.A.F.a.l. L Bentley, “Quad Trees A Data Structure For Retrieval On Composite Keys,” Acta

Informatica, vol. 4, pp. 1-9, 1974.

[5] D.J.R. Meagher, “Octree Encoding: A New Technique for the Representation, Manipulation
and Display of Arbitrary 3-D Objects by Computer,” Image Processing Laboratory, Valencia,
1980.

[6] P.K.J.J.Z. Naimin Koh, “Truncated octree and its applications,” The Visual Computer, vol. 38,

p. 1167-1179, 2022.

[7]1 D. Meagher, “Geometric Modelling Using Octree Encoding,” Computer Graphics and Image

processing, vol. 19, no. 2, pp. 129 - 147, 1982.

[8] Y.Z.G.G.Q.J.Y.W. L. H. Wei Wang, “A Hybrid Spatial Indexing Structure of Massive Point
Cloud Based on Octree and 3D R*-Tree,” Applied Sciences, vol. 11, no. 20, pp. 1 - 16, 2021.

[9] J. L. Betley, “Multidimensional Binary Search Trees Used for Associative Searching,”

Communications of the ACM, vol. 18, no. 9, pp. 509 - 517, 1975.

[10] D. W. Jia ZHOU, “Research on Ray Tracing Algorithm and Acceleration Techniques using KD-
Tree,” in 2021 IEEE 6th International Conference on Intelligent Computing and Signal
Processing (ICSP 2021), Xi'an, China, 2021.

[11] B. M. G. W. S. R. Schumacher, Study For Applying Computer-Generated Images to Visual

Simulation, Virginia: Defense Technical Information Center, 1969.

Evan Smith MSc Advanced Computer Science C2108326

LXXIV

[12] F. Sanglard, Game Engine Black Book: Doom, California: CreateSpace Independent Publishing
Platform, 2018.

[13] N. G. Y. T. X. Z. Yansen Su, “A Non-revisiting genetic algorithm based on a novel binary space

parition tree,” Information Sciences, vol. 512, pp. 661 - 674, 2020.

[14] A. A. F. R. F. Francisco Javier Melero, “Fast collision detection between high resolution

polygonal models,” Computers & Graphics, vol. 83, pp. 97-106, 2019.

[15] Q. D. Baigiang Gan, “An improved optimal algorithm for collision detection of hybrid
hierarchical bounding box,” 01 February 2021. [Online]. Available:
https://link.springer.com/article/10.1007/s12065-020-00559-6. [Accessed 2022 08 24].

[16] G. F. Geng Chaoyang, “An Improved Algorithm of the Collision Detection Based on OBB,” in
2018 International Conference on Sensor Network and Computer Engineering (ICSNCE 2018),
Xi'an, 2018.

[17] S. K. S. N. P. Tejas Bhosale, “2D Platformer Game In Unity Engine,” International Research
Journal of Engineering and Technology (IRJET), vol. 5, no. 4, pp. 3021 - 3024, 2018.

[18] M. E. Ramiz Salama, “Basic elements and characteristics of game engine,” Global Journal of

Computer Sciences: Theory and Research, vol. 8, no. 3, pp. 126 - 131, 2018.

[19] Epic Games, “Blueprints Visual Scripting,” Epic Games, [Online]. Available:
https://docs.unrealengine.com/5.0/en-US/blueprints-visual-scripting-in-unreal-engine/.

[Accessed 24 August 2022].

[20] H. C. D. C. A. D. V.). Chaitya Vohera, “Game Engine Architecture and Comparative Study of
Different Game Engines,” in International Conference on Computing and Networking

Technology (ICCNT), Khargpur, 2021.

[21] S. Y. A. Karzan Hussein Sharif, “Game Engines Evaluation for Serious Game Development in
Education,” in 2021 International Conference on Software, Telecommunications and Computer

Networks (SoftCOM), Hvar, 2021.

[22] S. X. Eleftheria Christopoulou, “Overview and Comparative Analysis of Game Engines for
Desktop and Mobile Devices,” International Journal of Serious Games, vol. 4, no. 4, pp. 21 - 35,

2017.

Evan Smith MSc Advanced Computer Science C2108326

LXXV

Chapter 8: Appendices

Evan Smith MSc Advanced Computer Science C2108326

