
A Web Application for Recording a

Personal Diary with Spaced

Repetition Training

Nyasha Sibanda

MSc Computing

Supervisor: Dr. Alia Abdelmoty

School of Computer Science and Informatics

Cardiff University

 2

Abstract

The proposed project is a web application for recording a personal or study diary,

implementing spaced-repetition training to allow users to better remember important

information and the events of their lives. There are numerous diary apps and websites

currently available, with both online and offline functionality. These programs typically

serve a number of productivity functions, including personal organisation and time

management. These apps are ostensibly designed - at least in part - to help users

remember information. Learners need to access such information during exams,

assignments or complex tasks. Diary-keepers use this information to remind themselves of

the events of their lives, and to keep track of upcoming events.

Current apps allow users to organise their information, but make no effort to help users

recall information they deem important. This project attempts to fulfil this need through the

design and implementation of a web application that allows users to keep an ongoing diary,

processing this information into relatively atomised elements, and generating digital

"flashcards" that users can use to revise the information they enter. These flashcards will

be shown at intervals defined by a spaced-repetition algorithm, to maximise retention of

information while minimising the number of flashcards a user is required to review each

day to retain all the information therein.

 3

Table of Contents

ABSTRACT .. 2

FIGURES ... 6

TABLES ... 7

ACKNOWLEDGEMENTS ... 8

1. INTRODUCTION .. 9

1.1 PROBLEM STATEMENT .. 9

1.1.1 Current tools ... 9

1.1.2 Unserved need: memorisation .. 10

1.2 AIMS AND OBJECTIVES .. 10

1.2.1 Aim of this project ... 10

1.2.2 Primary objectives .. 11

2. BACKGROUND ... 12

2.1 MEMORY, RECALL, DIARY-KEEPING .. 12

2.1.1 Memory and retrieval .. 12

2.1.2 Long-term memory enhancement and diary-keeping .. 14

2.2 SPACED REPETITION ... 15

2.3 CURRENT APPLICATIONS ... 17

2.3.1 – Diary applications ... 17

2.3.2 – Spaced repetition systems .. 19

3. PRODUCT .. 21

3.1 OVERVIEW OF MAJOR COMPONENTS ... 21

3.2 DESIGN AND REQUIREMENTS ... 22

3.2.1 Requirements .. 22

3.2.2 Use-case Diagram .. 25

3.2.3 API endpoints ... 26

3.2.4 Database Schema .. 28

 4

3.3 TECHNOLOGIES .. 30

3.3.1 Backend Server ... 31

3.3.2 Frontend Client ... 33

4. IMPLEMENTATION .. 36

4.1 BACKEND SERVER ... 37

4.1.1 Express ... 37

4.1.2 Routing of API endpoints .. 39

4.1.3 Controllers .. 42

4.1.4 Models .. 44

4.1.5 Flashcard generation .. 45

4.2 FRONTEND CLIENT .. 50

4.2.1 React setup and routing ... 51

4.2.2 Redux: actions, reducers and store .. 53

4.2.3 Component design and modularity .. 55

4.2.4 Sass stylesheets .. 59

5. TESTING ... 61

5.1 TEST DRIVEN DEVELOPMENT .. 61

5.2 USER TESTING ... 63

5.2.1 Key findings .. 64

6. EVALUATION AND CONCLUSION .. 68

6.1 ACHIEVEMENT OF ACCEPTANCE CRITERIA ... 68

6.2 GENERAL EVALUATION ... 72

6.2.1 Key successes ... 72

6.2.2 Areas for improvement ... 72

6.2.3 Future scope ... 73

6.3 PERSONAL REFLECTION ... 74

REFERENCES .. 76

 5

APPENDICES .. 80

WIREFRAMES .. 80

TEST CASE .. 81

DOCUMENTS .. 83

Participant recruitment letter .. 83

Participant post-test questionnaire ... 84

 6

Figures

FIGURE 1 - TYPICAL USE-CASE DIAGRAM .. 25

FIGURE 2 - BACKEND FILE STRUCTURE ... 36

FIGURE 3 - PACKAGE.JSON NPM SCRIPTS .. 36

FIGURE 4 - EXPRESS APPLICATION SETUP .. 37

FIGURE 5 - DATABASE CONNECTION AND MIDDLEWARE SETUP ... 38

FIGURE 6 - PASSPORT SETUP ... 38

FIGURE 7 - ROUTE FOR SERVING STATIC FILES ... 39

FIGURE 8 - CREATING THE WEB SERVER ... 39

FIGURE 9 - EXPRESS ROUTERS .. 40

FIGURE 10 - USER ROUTER ... 41

FIGURE 11 - USER CONTROLLER, GETUSERBYID .. 42

FIGURE 12 - USER CONTROLLER, POSTUSER ... 43

FIGURE 13 - USER MODEL AND SCHEMA .. 44

FIGURE 14 - DIARY ENTRY CONTROLLER, CREATEENTRY .. 45

FIGURE 15 – RUNCARDMAKERSERVICE ... 46

FIGURE 16 - CARDMAKER, MAIN LOOP .. 47

FIGURE 17 - CARDMAKER, PARSEDDIARYENTRIES AND MAKESECTIONSOBJECT ... 48

FIGURE 18 - CARDMAKER, MAKECLOZESENTENCES ... 49

FIGURE 19 - REACT CLIENT, FILE STRUCTURE ... 50

FIGURE 20 - REACT APPLICATION SETUP .. 51

FIGURE 21 - REACT, ROOT COMPONENT ... 51

FIGURE 22 - REACT, MAIN APPLICATION ROUTING ... 52

FIGURE 23 - REACT, DIARY ACTIONS ... 53

FIGURE 24 - REACT, DIARY API UTILS .. 53

FIGURE 25 - REACT, DIARIES REDUCER .. 54

FIGURE 26 - REACT, CONFIGURESTORE ... 54

FIGURE 27 - REACT, DIARIES INDEX (/#/DIARIES) .. 55

FIGURE 28 - REACT, DIARY ENTRY SHOW (/#/DIARIES/:DIARYID/ENTRY/:ENTRYID) .. 55

FIGURE 29 - REACT, DIARY INDEX ITEM ... 56

FIGURE 30 - REACT, DIARIES INDEX GENERATION ... 56

FIGURE 31 - REACT, MARKDOWN TEXT EDITOR, PREVIEW VIEW .. 57

FIGURE 32 - REACT, MARKDOWN TEXT EDITOR, WRITE VIEW ... 57

FIGURE 33 - REACT, FLASHCARD FRONT ... 58

FIGURE 34 - REACT, FLASHCARD BACK .. 58

FIGURE 35 - REACT, CARD ANSWER FUNCTIONS .. 59

FIGURE 36 - SASS, STYLESHEET FOR FLASHCARDS ... 60

 7

FIGURE 37 - TEST FILE STRUCTURE ... 61

FIGURE 38 - TESTING, COMMON.JS .. 62

FIGURE 39 - USER ROUTES TESTS ... 63

FIGURE 40 - TEST OUTPUT, USER ROUTES .. 63

FIGURE 41 – WIREFRAME, REGISTRATION FORM ... 80

FIGURE 42 – WIREFRAME, LOG IN FORM ... 80

FIGURE 43 – WIREFRAME, DIARY INDEX .. 81

Tables

TABLE 1 - TEST CASE 1: USER REGISTRATION .. 81

 8

Acknowledgements

This project would not have been possible without the help of my friends and colleagues on

the MSc Computing course here at Cardiff University; the patient and wise counsel of my

supervisor Dr Alia Abdelmoty; and the heroic efforts of the whole COMSC staff during these

most trying of times.

This project is dedicated, as ever, to my family, for whom everything and anything is worth

doing.

 9

1. Introduction

1.1 Problem Statement

1.1.1 Current tools

The current landscape of diary applications and web services is relatively rich and varied.

Numerous tools exist that allow users to take notes, make diary entries and keep track of

the various events in their lives. These applications broadly fall into four categories,

although most straddle two or more categories in their overall uses.

Personal organisation

These applications focus on the personal organisation of notes, documents and multimedia

including images, audio and video. This is the category most similar to traditional diaries,

which aim to organise and collate the information most important to its users over time,

through frequent periodic input. These applications can also feature tools aimed towards

students – including those studying material outside of formal education institutions – by

structuring their interfaces and categories to easily organise information by subject or their

constituent topics.

Time management

These applications focus on time management, and schedule management. Typically

integrated with in-built calendar functionality – as well as allowing integration with popular

calendar services such as Google Calendar, Microsoft Outlook and Apple iCal – these

services often target professional users. Rather than focusing on past events, as many diary

practices do, these applications are designed to organise the unfolding of future events,

meetings, appointments and other obligations.

Synchronisation

Closely related with the previous category, these applications highlight the ability to

synchronise related data across multiple contexts, and with multiple users. Beyond time

management, these applications can also be used to marshal the input of multiple

otherwise-independent contexts, such as the collaborative work of different users, or the

automated output of disparate online and offline services, such as notifications from web

services.

 10

Long-term tracking

These applications are designed to be used over extended periods of time, in order to track

distinct data-points. They can track quantitative measures, such as a user’s weight or daily

step count; or qualitative measures such as mood. These applications often highlight

automated input methods, such as using health tracking devices like Fitbit or Apple Health

to track the biometric and activity data of users.

1.1.2 Unserved need: memorisation

All of these categories of applications are designed to help their users remember

information that is important to them, either to retain useful information about past events

or to provide structure and reminders about their future plans and obligations. For

students, this includes helping them to organise study materials in such a way as to help

them recall information during assignments or examinations. Outside of study, such

organised information can aid in the performance of complex tasks, particularly where

processes and procedures require adherence to a sequence of complicated actions, or

reference to myriad pieces of information. For traditional diarists, this information allows

them to look back on the events of their lives and serve as a perpetual memento of their

experiences and feelings.

While these applications allow users to organise this information in various ways, they do

not make an effort to help users independently recall important information in their day-to-

day lives. Diaries are useful reminders of information, but serve to effectively ‘offload’

information from the user’s own memory to the application itself. The diaries thus created

are a useful reminder, but not an effective way to help users strengthen and maintain their

own memories long term.1

1.2 Aims and Objectives

1.2.1 Aim of this project

I propose to fulfil this unserved need through the design and implementation of a diary

application that allows users to reinforce their own memories regarding the information

1 The act of writing diary entries does have a beneficial effect on the ability for the writer to

remember information, but without reinforcement, this information will still be hard to retain in long-

term memory.

 11

they write about. This will be a web application that provides for the maintenance of an

ongoing diary, the entries of which will be processed automatically into digital flashcards

that users can study and revise. The study process will use a space-repetition algorithm,

which will maximise the ability for users to retain the information stored within their diaries.

By using spaced repetition, the number of flashcards needed to complete a daily study

session for any particular diary entry will be reduced over time, as flashcards are shown

less frequently. This will allow for the more frequent study of recently added flashcards, or

flashcards that are more frequently misremembered or forgotten.

1.2.2 Primary objectives

The primary objectives of the project are as follows:

• To create a backend web API to allow for the creation, retrieval and deletion of

diaries and diary entries.

• To create a microservice that takes diary entries and processes them into useful

flashcards.

• To create a responsive frontend client with an intuitive user interface.

• To allow users to register an account and authenticate with the web application, and

maintain their own diaries, entries and flashcards.

• To allow users to create and view diaries and entries through the frontend client.

• To allow users to study flashcards through the frontend client.

 12

2. Background

As one of the fundamental processes of the human mind, memory has long served as a

subject of great interest across diverse fields. The study of memory, and its enhancement,

has driven research within – for example – physiology, aiming to understand the biological

systems that bring forth the phenomenon of memory itself; and medical science, with the

aim of restoring or preserving the memory function of sick or injured patients. Research into

the functioning, enhancement or restoration of memory function is well beyond the scope

of this dissertation, but this section aims to provide some context for the proposed solution

to the problem statement.

2.1 Memory, Recall, Diary-keeping

2.1.1 Memory and retrieval

Physiologist Lauralee Sherwood defines memory as ‘the storage of acquired knowledge for

later recall.’2 The concept of memory in computer science borrows its general idea from

that of memory in human physiology – computer memory is used for the storage of

information for manipulation and processing by the CPU and other components of the

computer system.

Computer memory functions as a short-term memory store; it is volatile, designed to be

randomly accessed but not for long-term storage. For this, typical computer systems use

more durable storage media such as hard-disk drives, solid state drives or portable media

such as CDs or DVDs. In much the same way, human memory is often thought to consist of

two closely related but distinct systems: long-term memory (LTM) and short-term memory

(STM, also commonly referred to as working memory (WM)).3 The exact functioning of these

distinct processes is still subject to much debate within the fields of neurology and

physiology; the classic model first proposed by Richard Atkinson and Richard Shiffrin in

1968 of a multi-store memory has come under significant scrutiny since its first

2 Lauralee Sherwood, Human Physiology: From Cells to Systems (Cengage Learning, 2015), 157.

3 Dennis Norris, ‘Short-Term Memory and Long-Term Memory Are Still Different’, Psychological

Bulletin 143, no. 9 (2017): 992–1009, https://doi.org/10.1037/bul0000108.

 13

publication.4 Indeed, some researchers argue that these are not distinct systems at all, but

rather the different functional expressions of the same single memory store; Nathan Rose

et. al. write of the confounding similarities between STM and LTM memory retrieval

function, as an example of the many ways in which the multi-store model is unable to fully

explain the functioning of human memory.5

The study of memory retrieval (and the closely related process of memory encoding) is a

sub-field within memory studies that is of particular interest to this project.6 Numerous

studies aim to expand general understanding of how memory retrieval functions in the

mind, and the as-yet not fully understood capacity for memory retrieval generally. Green et.

al. discuss experimental evidence that ‘memory retrieval can, under favourable

circumstances, proceed with essentially no interference while central resources are

otherwise occupied.’7 Similarly, Einstein et. al. suggest ‘it seems unlikely that most people

normally rely on constant and capacity-consuming processes when faced with [prospective

memory] demands over anything other than brief delays.’8 Both studies suggest that the

innate memory retrieval abilities of neurotypical people are non-demanding mental

processes. Miner et. al. go further, writing that their research suggests ‘there is no

distinction between the fidelity of visual working memory and visual long-term memory, but

4 See, for example, Eugen Tarnow, ‘Why The Atkinson-Shiffrin Model Was Wrong From The

Beginning’, WebmedCentral Neurology 1, no. 10 (2010): 13.

5 Nathan S. Rose et al., ‘Similarities and Differences Between Working Memory and Long-Term

Memory: Evidence From the Levels-of-Processing Span Task’, Journal of Experimental Psychology.

Learning, Memory, and Cognition 36, no. 2 (2010): 471–83, https://doi.org/10.1037/a0018405.

6 For a useful survey of studies on this subject, see Amanda Parker, Edward L. Wilding, and Timothy

J. Bussey, eds., The Cognitive Neuroscience of Memory: Encoding and Retrieval, 1. publ, Studies in

Cognition Series (Hove: Psychology Press, 2002).

7 Collin Green, James C. Johnston, and Eric Ruthruff, ‘Attentional Limits in Memory Retrieval—

Revisited.’, Journal of Experimental Psychology: Human Perception and Performance 37, no. 4

(2011): 1096, https://doi.org/10.1037/a0023095.

8 Gilles O. Einstein et al., ‘Multiple Processes in Prospective Memory Retrieval: Factors Determining

Monitoring Versus Spontaneous Retrieval.’, Journal of Experimental Psychology: General 134, no. 3

(2005): 341, https://doi.org/10.1037/0096-3445.134.3.327. Here, prospective memory refers to

memories related to actions to be performed in the future, such as remembering appointments or

obligations.

 14

instead both memory systems are capable of storing similar incredibly high fidelity

memories under the right circumstances.’9

2.1.2 Long-term memory enhancement and diary-keeping

If short-term memory and long-term memory can be considered, under optimal

circumstances, to be of equivalent – or at least similar – fidelity and ‘accuracy’, and that the

process of memory retrieval can be shown to be a relatively trivial process for the brain to

undertake, it is no surprise that much research has focused on the diagnosis and treatment

of disorders relating to long-term memory, and the general enhancement of these

functions.10 This is an area rich with experimental research. Simons et. al. show how the

ability of dementia patients – with severely degraded long-term memory – to retrieve

memories based on pictorial stimuli provides ‘compelling evidence in favour of the multiple

input model of long-term memory.’11 Frith et. al. provide experimental evidence for high-

intensity exercise being ‘effective in enhancing long-term memory (for both [20 minute]

and [24 hour] follow-up assessments.’12

Of primary interest to this project is the experimental evidence relating to writing and diary-

keeping as memory-enhancement tools. Szőllősi et. al. studied the effect of sleep and

9 Annalise E. Miner, Mark W. Schurgin, and Timothy F. Brady, ‘Is Working Memory Inherently More

“Precise” Than Long-Term Memory? Extremely High Fidelity Visual Long-Term Memories for

Frequently Encountered Objects’, Journal of Experimental Psychology. Human Perception and

Performance 46, no. 8 (2020): 813, https://doi.org/10.1037/xhp0000748.

10 For a general overview of research in this sub-field, see Arseni K. Alexandrov and Lazar M.

Fedoseev, Long-Term Memory Mechanisms, Types and Disorders, Neuroscience Research Progress

Series (Hauppauge, N.Y.: Nova Science Publishers, 2012).

11 J. S. Simons, ‘Recollection-Based Memory in Frontotemporal Dementia: Implications for Theories

of Long-Term Memory’, Brain 125, no. 11 (1 November 2002): 2523,

https://doi.org/10.1093/brain/awf247.

12 Emily Frith, Eveleen Sng, and Paul D. Loprinzi, ‘Randomized Controlled Trial Evaluating the

Temporal Effects of High-Intensity Exercise on Learning, Short-Term and Long-Term Memory, and

Prospective Memory’, European Journal of Neuroscience 46, no. 10 (2017): 2557,

https://doi.org/10.1111/ejn.13719.

 15

circadian rhythm on the ability of participants to retrieve memories recorded in diaries.13

They found that, while the time of day did not affect the ability for participants to retrieve

memories, ‘participants were significantly better at remembering events that had been

recorded in the evening [rather than the following morning] about a month earlier.’14 Ho et.

al. show that a rehabilitation program consisting in part of diary training saw ‘a significant

increase in children’s abilities to perform daily routines that demanded recall of information

and events.’15 Linderholm and Abrams show evidence of the effectiveness of expressive

writing to improve memory and cognition, writing ‘the present experiment showed that

expressive writing about a negative life event gives a boost to long-term memory

performance.’16

The above serves to highlight the growing consensus that writing, and diary-keeping,

provide measurable benefits to the functioning of long-term memory, both to general

populations as well as those with specific clinical needs. This suggests the utility of diary-

keeping tools as a method of enhancing and preserving long-term memory function. The

following section continues this exploration, focusing on spaced repetition training as

another method for improving memory function, and a complement to diary-keeping.

2.2 Spaced Repetition

Spaced repetition training (SRT) has been studied by researchers since at least the late

1970s.17 The concept is relatively straightforward. Firstly, a subject encodes a memory,

13 Ágnes Szőllősi et al., ‘A Diary after Dinner: How the Time of Event Recording Influences Later

Accessibility of Diary Events’, Quarterly Journal of Experimental Psychology 68, no. 11 (November

2015): 2119–24, https://doi.org/10.1080/17470218.2015.1058403.

14 Szőllősi et al., 2123.

15 Joanna Ho et al., ‘Rehabilitation of Everyday Memory Deficits in Paediatric Brain Injury: Self-

Instruction and Diary Training’, Neuropsychological Rehabilitation 21, no. 2 (1 April 2011): 183,

https://doi.org/10.1080/09602011.2010.547345.

16 Tracy Linderholm and Lise Abrams, ‘The Benefits of Expressive Writing on Long-Term Memory

Performance’, in Long-Term Memory: Mechanisms, Types and Disorders (Nova Science Publishers,

2012), 144.

17 A useful brief bibliography of studies on spaced repetition training can be found in Shiri Oren,

Charlene Willerton, and Jeff Small, ‘Effects of Spaced Retrieval Training on Semantic Memory in

 16

either through recording or memorising some piece of information. After an interval, they

attempt to recall that memory. If successful, they wait for a longer interval and recall the

memory again. With each successful retrieval, the interval before the next attempt grows

larger. A failed attempt at retrieval shortens the interval until the next attempt. In this way,

information is measurably stored within long-term memory in a consistent and repeatable

way. Miner et. al. write, ‘It is well known that long-term memory improves with repetition

[...], with a large literature demonstrating this for a variety of materials [...], and many

influential studies asking about how best to space these repetitions to maximize the

improvement in memory.’18

Initially conceived as a therapeutic tool to alleviate the problems of chronic clinical memory

deficits,19 SRT has also gained widespread traction as a tool for memory improvement

within the general population. Pham et. al. show how a card-based mobile application

designed to help teach users English through SRT resulted in ‘better retention and […] also

enabled the learning items to be more appealing to the users.’20 In their student project,

Karch et. al. found similar success with a web application utilising SRT principles to aid

students with the study of histology.21

Alzheimer’s Disease: A Systematic Review’, Journal of Speech, Language & Hearing Research 57, no.

1 (February 2014): 247–48, https://doi.org/10.1044/1092-4388(2013/12-0352).

18 Miner, Schurgin, and Brady, ‘Is Working Memory Inherently More “Precise” Than Long-Term

Memory?’, 814.

19 See Oren, Willerton, and Small, ‘Effects of Spaced Retrieval Training on Semantic Memory in

Alzheimer’s Disease’; Karri S. Hawley et al., ‘A Comparison of Adjusted Spaced Retrieval versus a

Uniform Expanded Retrieval Schedule for Learning a Name–Face Association in Older Adults with

Probable Alzheimer’s Disease’, Journal of Clinical and Experimental Neuropsychology 30, no. 6 (18

July 2008): 639–49, https://doi.org/10.1080/13803390701595495.

20 Xuan-Lam Pham et al., ‘Card-Based Design Combined with Spaced Repetition: A New Interface for

Displaying Learning Elements and Improving Active Recall’, Computers & Education 98 (July 2016):

142, https://doi.org/10.1016/j.compedu.2016.03.014.

21 Dominik Karch et al., ‘Efficiency of Web Application and Spaced Repetition Algorithms as an Aid in

Preparing to Practical Examination of Histology: PS195’, Porto Biomedical Journal 2, no. 5

(September 2017): 187–88, https://doi.org/10.1016/j.pbj.2017.07.030.

 17

The above studies highlight the popularity of SRT as a study method. Numerous other

empirical studies demonstrate the effectiveness of the method for the retention of

educational information by students in various subjects, particularly highly fact-based

disciplines like STEM subjects.22 It has also proven especially useful in second-language

acquisition, where large quantities of vocabulary words and their definitions must be

learned by students.23 The use of computer software in particular has attracted notable

academic attention, particularly as an automated and relatively straightforward way for

users to study and manipulate their bank of information for study purposes.24

The preceding two sections have provided some of the academic context for this project, as

it relates to the effectiveness of diary-keeping and SRT for the improvement of long-term

memory function. The next section will provide an overview of the current landscape for

consumer software products that are most closely related to this dissertation project.

2.3 Current Applications

2.3.1 – Diary applications

Numerous diary applications already exist on the market, targeting a variety of needs and

use-cases. Three such applications will be discussed here, but this is in no way an

22 Diane Persellin, A Concise Guide to Improving Student Learning: Six Evidence-Based Principles and

How to Apply Them, First edition. (Sterling, Virginia: Stylus, 2014); Anton Lambers and Adrian J.

Talia, ‘Spaced Repetition Learning as a Tool for Orthopedic Surgical Education: A Prospective Cohort

Study on a Training Examination’, Journal of Surgical Education 78, no. 1 (2021): 134–39,

https://doi.org/10.1016/j.jsurg.2020.07.002.

23 Aroline E. Seibert Hanson and Christina M. Brown, ‘Enhancing L2 Learning through a Mobile

Assisted Spaced-Repetition Tool: An Effective but Bitter Pill?’, Computer Assisted Language Learning

33, no. 1–2 (2 January 2020): 133–55, https://doi.org/10.1080/09588221.2018.1552975.

24 Siddharth Reddy et al., ‘Unbounded Human Learning: Optimal Scheduling for Spaced Repetition’,

vol. 13-17-, KDD ’16 (ACM, 2016), 1815–24, https://doi.org/10.1145/2939672.2939850; Wisam

Al-Rawi, Lauren Easterling, and Paul C. Edwards, ‘Development of a Mobile Device Optimized Cross

Platform-Compatible Oral Pathology and Radiology Spaced Repetition System for Dental Education’,

Journal of Dental Education 79, no. 4 (2015): 439–47, https://doi.org/10.1002/j.0022-

0337.2015.79.4.tb05902.x.

 18

exhaustive list of current options – rather, they should serve as examples of existing

functionality.

One popular diary-keeping application is Day One.25 Available for the Apple ecosystem,

across macOS and iOS, the app has a focus on easy journaling that can be as compact or

prosaic as the user intends. It features markdown as a text formatting approach, as well as

integration for rich metadata and tags. It can also incorporate images, audio and other

multimedia, as well as integration with social media services such as Instagram. For

retrospective entry viewing, the app provides an ‘on this day’ function, showing entries

from the current calendar date in previous years.

Another popular application is Diarium.26 It shares many features with Day One, including

integrations with other popular web services via public APIs, the use of rich metadata and

multimedia and structures views for reliving previous diary entries. Unlike Day One, Diarium

is available across a broader spectrum of operating systems, including macOS, iOS,

Windows and Android. Both apps also include synchronisation over the cloud, to keep and

retrieve diary entries across multiple devices.

Another application is Grid Diary, available for macOS, iOS and Android.27 This application

aims to solve the issue of writer’s block, by providing prescribed templates and structures

to lower the barrier to creating journal entries. It is named for its grid format, which

provides a clear structure for the creation of entries and prospective plans. It also provides

a library of writing prompts, which ostensibly allow for users to engage more easily with

their memories as they write.

All three applications provide a strong emphasis on the act of creating diaries and diary

entries. Their focus is primarily on the writing and journaling process, providing numerous

ways to embed rich information and metadata into entries, often automatically.

Fundamentally, they act as data stores, with diary entries – whilst being organised and

filtered according to the metadata included – acting as static entities to be browsed in a

relatively freeform manner after the act of writing them. None of these apps make claims or

25 ‘Day One: Your Journal for Life’, accessed 27 September 2021, https://dayoneapp.com/.

26 ‘Diarium, by Timo Partl’, accessed 27 September 2021, https://timopartl.com/#diarium.

27 ‘Grid Diary: The Simplest Way to Get Started with Keeping a Diary | Grid Diary’, accessed 27

September 2021, https://griddiaryapp.com/.

 19

efforts to enable users to remember their entries independently of the application, beyond

the ability to look them up within the system.

2.3.2 – Spaced repetition systems

SRT is often presented instead as a ‘spaced repetition system’ (SRS). Generally speaking,

SRS is an implementation of an SRT regime, typically prescribed by the application in

question, although some provide elements of customisation with regards to the specific

intervals used.

 By far the most prominent SRS application is Anki.28 Anki uses digital flashcards that are

created directly within the application; each card has a ‘front’ and ‘back’ side, where the

front contains a prompt for the user to respond to, and the back contains the desired

answer. Users then self-report their answer as correct or incorrect, and the interval until

the next time that card is shown is increased/decreased depending on that answer and the

spacing regime that the user has selected for the current deck of flashcards. Collections of

user-created flashcards for a wide variety of subjects are made available online for

download.29 User progress can be made and synced across a variety of devices, including

macOS, iOS, Android and Windows, as well as an online web application.

Another web application is Memrise.30 Here, material is organised into ‘courses’, with much

less focus on self-generated unstructured content than Anki’s flashcard creation tools.

Memrise has a clear focus on language learning in particular, although courses exist for a

variety of other subjects as well. Courses can be user created, although many of the most

popular courses are curated by Memrise itself, providing a much more prescribed and

seemingly authoritative approach than Anki, whose shared flashcards are wholly user made

and only ranked according to user feedback. Content can be answered by typing directly

into the application, with the written response of the user graded against expected

answers.

Both applications – and indeed virtually all other SRS implementations – are targeted

towards learners, either those engaged in self-study or students within educational

28 ‘Anki - Powerful, Intelligent Flashcards’, accessed 4 October 2021, https://apps.ankiweb.net/.

29 ‘Shared Decks - AnkiWeb’, accessed 4 October 2021, https://ankiweb.net/shared/decks/.

30 Memrise, ‘Learn a Language. Meet the World. | Memrise’, accessed 4 October 2021,

https://www.memrise.com.

 20

institutions who require structured study and revision material. Neither provide any direct

interface between freeform study notes and the flashcards; instead, flashcards must either

be manually created directly within the service, or users must find appropriate pre-existing

collections to use.

Two applications do exist that allow users to create flashcards using Markdown-like text

editors, rather than through specific flashcard-creation interfaces. Mochi is an SRS

application that uses Markdown to format the front and reverse of cards.31 It is compatible

with Anki flashcards, allowing users to import cards created in that system. As can thus be

expected, beyond the use of Markdown as a formatting tool, it largely emulates the

functionality of already-existing SRS tools. Remnote is a study application that allows users

to create freeform study notes, incorporating metadata such as cross referencing and in-

depth organisation.32 Using a highly structured formatting style, flashcards can be created

from excerpts of this text, according to the needs of the student.

Both of these apps still require flashcards to be specifically created – either through a

dedicated flashcard creation interface like Mochi, or by selecting specific sections and

sentences in Remnote. Like all SRS applications previously mentioned, both also are

squarely aimed at students and learners.

31 ‘Mochi — Spaced Repetition Made Easy’, accessed 4 October 2021, https://mochi.cards/.

32 ‘RemNote | The Best Way to Remember and Organize What You Learn’, accessed 4 October 2021,

https://www.remnote.io/.

 21

3. Product

The design of this application will primarily involve three major components:

• A diary keeping component, where users enter the primary information for their

diary and interact with it as a normal diary.

• A flashcard revision component, where users review flashcards based on their diary

entries, according to the schedule maintained by the spaced repetition system.

• A flashcard generation component, where diary entries are automatically processed

into flashcards, based on user-customisable criteria.

3.1 Overview of Major Components

3.1.1 – Diary keeping

This component will largely function like a conventional diary-keeping application. As the

focus of this application is remembering information, rather than productivity or personal

management, the focus will be on the note-taking experience.

While users will be able to create notes in their own preferred style and format, information

and templates will be provided to assist the flashcard generation process by structuring

data in a more easily processed way. The text editor will feature Markdown support,

allowing users to format their notes while providing further context clues for the processing

of this data.

3.1.2 – Flashcard revision

This component will focus on the management and revision of the flashcards generated by

the application. Upon addition to the schedule, users can review the generated cards and

edit them to be more useful for their needs. Ideally, the system will produce cards that are

usable without further editing.

New cards will be reviewed in the order they are added, and then scheduled for revision

later after being reviewed the first time. After the specified interval (each card has an

interval attached to it), the card will be shown again. The user will recall the information the

card is prompting, and specify whether they remember it or not. If they do, the card is

rescheduled with a longer interval; if not, the card is rescheduled with a shorter interval.

More easily remembered information is not prompted for increasing periods of time, while

difficult to remember information is more frequently reinforced.

 22

3.1.3 – Flashcard generation

This component will process the diary entries and notes entered by the user and generate

flashcards. The primary flashcard format will be cloze sentences/passages, where users

will see a portion of their diary entry with one or more missing words and will be prompted

to fill the blanks.33

To create these cards, diary entries will be split into their component sentences and

paragraphs, and key words will be identified, such as by:

• Privileging words in emphasising punctuation (e.g. words in "double-quotes", bold

or italics) or grammar (e.g. Capitalised Words, ALL-CAPS WORDS, etc.)

• Filtering out high frequency words, and certain parts of speech such as interjections,

conjunctions and pronouns.

• Parsing markdown-formatted text, such as lists, code snippets, headings,

blockquotes.

Generated cards are then scheduled for revision, or to be further edited/refined by the user.

3.2 Design and Requirements

3.2.1 Requirements

Functional requirements

• Authentication

o Users need to be able to register and log in

o Acceptance criteria:
The registration and log-in functions are clearly visible and usable from the
home screen.

• Single Sign-On

o Users should be able to log into the system once to access all parts of the
program.

33 Cloze testing – also colloquially known as gap-fill or fill-the-blanks questions – are often used

across different disciplines to measure text comprehension and aid in memorisation. Suzanne Kleijn,

Henk Pander Maat, and Ted Sanders, ‘Cloze Testing for Comprehension Assessment: The HyTeC-

Cloze’, Language Testing 36, no. 4 (October 2019): 553–72,

https://doi.org/10.1177/0265532219840382.

 23

o Acceptance criteria:

After logging in, the user can access the diary and study pages.

• User Accounts

o Users can have user accounts, to organise all their data.

o Acceptance criteria:

Users have exclusive access to their own diaries, entries and flashcards, and
cannot see those made by other users.

• Diary and Entry Creation

o Users need to be able to create diaries and write diary entries

o Acceptance criteria:

Users can create a diary and a diary entry for that diary.

• Markdown Text Editor

o Users can create freeform diary entries using a markdown text editor

o Acceptance criteria:

The interface for creating a diary entry allows for rich text, and the ability for
users to preview their entries before posting them.

• Diary Entry Metadata

o Metadata like dates, locations and mood should be added with entries.

o Acceptance criteria:

Users can add a date, location and mood to each diary entry during creation.

• Diary Viewing

o Users must be able to read through their diary like a traditional chronological
diary

o Acceptance criteria:

Users can select diary entries and see them displayed with their formatting.

• Card Generation

o Diary entries need to be converted to cards

o Acceptance criteria:

§ Flashcards are automatically generated for a new diary entry if a user
choose to create flashcards.

§ Flashcards consist of a front-side, which has a prompt, and a back-
side, which has the solution that the user should remember.

• Automatic Card Generation

o Using markdown syntax, metadata and other methods, cards are generated
from the diary entries.

o Acceptance criteria:

Generated flashcards use information from the diary entry in their body.

• Study

 24

o Users can study their cards

o Acceptance criteria:

§ Users can choose a diary or diary entry and study only the associated
flashcards.

§ Flashcards should be shown one after another.

§ Users can select if they remembered or forgot the information on the
back-side of the card.

• Scheduling of cards

o Cards are scheduled using an SRT algorithm

o Acceptance criteria:

Flashcards are scheduled to be due for study at increasing intervals when
users remember them, or to be shown sooner if they forget.

Non-functional requirements

• Usable interface

o The application should be simple to use with no prior instruction

o Acceptance criteria:

§ Users can register, create a diary and a diary entry, and study the
generated flashcards without external direction.

§ Any required instructions should be present in the application.

• Responsiveness

o The application should be responsive and work on a range of devices.

o Acceptance criteria:

Users can use the application on a desktop computer, laptop or smartphone.

 25

3.2.2 Use-case Diagram

Figure 1 - Typical use-case diagram

The above use-case diagram shows the typical usage of the application by a user. Included

in the diagram are follower arrows, indicating steps/activities that must be performed in

order. In other words, flashcards can only be studied after they have been generated,

which in turn can only happen once a diary entry has been created, and so on.

<< follows >>

 26

3.2.3 API endpoints

The backend server of the application will use a RESTful API to manage the flow of data

from the database through to the user, and to standardise the communication between the

frontend React application and the server’s functionality. Below is a list of API endpoints

made available by the server, as well as a brief description of each endpoint’s purpose and

the specific controller methods they call.

• Users
o GET /api/users/current

§ Returns information for currently logged-in user.
§ Method: UserController.getCurrentlyLoggedInUser

o GET /api/users/:id

§ Returns user information.
§ Method: UserController.getUserById(id)

o POST /api/users/register

§ Signs up a new user and logs them in.
§ Method: UserController.postUser

o POST /api/users/login

§ Logs in a user
§ Method: UserController.loginUser

o PUT /api/users/:id

§ Updates user information.
§ Method: UserController.updateUserInfo

• Diaries
o GET /api/diaries/

§ Returns all diaries for currently logged-in user.
§ Method: DiaryController.getUserDiaries

o GET /api/diaries/:id

§ Returns a diary.
§ Method: DiaryController.getDiary(id)

o POST /api/diaries/

§ Creates a new diary.
§ Method: DiaryController.createDiary

o PUT /api/diaries/:id

§ Updates diary information (not needed for MVP).
§ Method: DiaryController.updateDiary(id)

o DELETE /api/diaries/:id

§ Deletes a diary.
§ Method: DiaryController.deleteDiary(id)

• DiaryEntries
o GET /api/diaries/:id/entries

§ Returns all diaries for a specific diary by diary ID.
§ Method: DiaryEntryController.getDiaryEntries(id)

o GET /api/entries/

§ Returns all diary entries for a user.
§ Method: DiaryEntryController.getUserEntries

 27

o GET /api/entries/:id

§ Returns a diary entry by ID.
§ Method: DiaryEntryController.getEntry(id)

o POST /api/diaries/:id/newentry

§ Creates a new entry for a specific diary by diary ID.
§ Method: DiaryEntryController.createEntry(id)

o PUT /api/entries/:id

§ Updates diary entry information (not needed for MVP).
§ Method: DiaryEntryController.updateEntry(id)

o DELETE /api/entries/:id

§ Deletes a diary entry.
§ Method: DiaryEntryController.deleteEntry(id)

• Flashcards
o GET /api/diaries/:id/flashcards

§ Returns all flashcards for a specific diary by diary ID.
§ Method: FlashcardController.getDiaryFlashcards(id)

o GET /api/diaries/:id/flashcards/due

§ Returns all flashcards due for study, for a specific diary by diary ID.
§ Method: FlashcardController.getDiaryDueFlashcards(id)

o GET /api/entries/:id/flashcards

§ Returns all flashcards for a specific diary entry by entry ID.
§ Method: FlashcardController.getEntryFlashcards(id)

o GET /api/entries/:id/flashcards/due

§ Returns all flashcards due for study, for a specific diary entry by entry
ID.

§ Method: FlashcardController.getEntryDueFlashcards(id)
o GET /api/flashcards/

§ Returns all flashcards for a user.
§ Method: FlashcardController.getUserFlashcards

o GET /api/flashcards/due

§ Returns all flashcards due for study, for a user.
§ Method: FlashcardController.getDueUserFlashcards

o GET /api/flashcards/:id

§ Returns a flashcard by ID.
§ Method: FlashcardController.getFlashcard(id)

o POST /api/entries/:id/newflashcard

§ Creates a new flashcard for a specific diary entry by entry ID (not
directly used in MVP).

§ Method: FlashcardController.createFlashcard(id)
o PUT /api/flashcards/:id

§ Updates flashcard information.
§ Method: FlashcardController.updateFlashcard(id)

o DELETE /api/flashcards/:id

§ Deletes a flashcard.
§ Method: FlashcardController.deleteFlashcard(id)

 28

3.2.4 Database Schema

This section outlines the database schema for the application. These schema model the

different entity components of the application, including their internal references to one

another.

User

Property Data type Unique? Required? Details

username string yes yes 3-30 characters long

firstName string no yes

lastName string no yes

email string yes yes

password string no yes
Automatically

generated hash34

birthday date no no

Diary

Property Data type Unique? Required? Details

title string yes yes

userId objectId no yes Reference to User

34 During user registration, the password provided by the user will be automatically passed through a

hashing algorithm, and the resulting hash will be stored in the database. At no point will plain-text

passwords be stored in the database.

 29

DiaryEntry

Property Data type Unique? Required? Details

date date no yes

Automatically

defaults to current

date, can be edited.

title string no no

content string no yes
Markdown-formatted

text string

location string no no

mood string no no Enumerated list

diaryId objectId no yes Reference to Diary

userId objectId no yes Reference to User

Flashcard

Property Data type Unique? Required? Details

entryDate date no yes
Date of the original

DiaryEntry

type string no yes

Automatically

assigned: ‘fill-the-

blanks’, ‘mood’,

‘location’ or ‘date’

frontSide string no yes
Markdown-formatted

text

backSide string yes yes
Markdown-formatted

text

diaryId objectId no yes Reference to Diary

userId objectId no yes Reference to User

diaryEntryId objectId no yes
Reference to

DiaryEntry

 30

contextUp array no no

Array of nearby

sentences from the

original DiaryEntry,

in order from

closest to furthest,

going higher up the

card. (Only for

‘fill-the-blanks’

questions)

contextDown array no no

Array of nearby

sentences from the

original DiaryEntry,

in order from

closest to furthest,

going lower down the

card. (Only for

‘fill-the-blanks’

questions)

correctStreak integer no yes

Increases by one

each time card is

answered correctly;

resets to zero if

answered

incorrectly.

Defaults to zero.

nextDue date no yes

Date that the card

is due to be

reviewed again.

Defaults to card’s

creation time.

3.3 Technologies

For the technical implementation of this project, a number of modern web technologies

were chosen, including:

• NodeJS and ExpressJS for the primary backend services, and the RESTful API.

• ReactJS for the frontend user interface, along with a WYSIWYG Markdown text

editor.

• MongoDB as a non-relational database to store loosely-structured data for diary

entries and flashcards.

• Visual Studio Code for development, and Git for source and version control.

 31

Rudimentary natural language processing was considered, to further enhance the

application's ability to produce useful flashcards, but due to the high likelihood of requiring

considerably more time and computing resources for relatively slight gain, this approach

was dismissed. Furthermore, the viability and usefulness of the system will be made

suitably clear with a simpler approach to processing text. Instead, a generalised

algorithmic approach was chosen, detailed further in Section 4.

The application was split into two major components: a backend web server, and a frontend

web client that communicates with the server via a RESTful API. In order to harmonise the

development process as much as possible, JavaScript was chosen as the primary

development language throughout.

3.3.1 Backend Server

The design of the web server followed the principles of RESTful API design.

Representational state transfer (REST) is a paradigm that prescribes how resources

distributed on the Internet can be accessed and shared through consistent and

standardised implementations. An API – or application programming interface – is the

means by which computers and software can communicate with one another; each

component part of a software application, its classes and libraries, expose methods that

can be called to utilise the capability of that software. RESTful APIs are web APIs that use

HTTP methods – such as GET, POST, DELETE and PUT – as the interface by which to call

the methods of the software on a web server. Web servers implement API endpoints at

different URLs, that can be called with these HTTP methods. A GET request to a particular

URL may have a different effect to a POST request to that same URL, as they are

implemented as different endpoints. This approach creates a unified style that most public

web APIs implement, in order to facilitate smooth communications between systems and

reduce false assumptions about the purpose of an endpoint. Rather than returning HTML

documents for display directly in the browser, RESTful APIs will typically respond with data

that can be used and processed further by client programs, usually as JavaScript Object

Notation (JSON) documents (these are textual representations of JavaScript objects that

can be directly parsed into actual JavaScript objects – or similar structures for other

programming languages – for use by other programs).

 32

The web server was written in Express.js, described as a ‘fast, unopinionated, minimalist

web framework.’35 It is a JavaScript library designed for delivering web applications running

on Node.js, a JavaScript runtime.36 As stated, it takes a minimalist approach to delivering

resources to web clients, with no built-in model-view-controller framework found in more

full-featured frameworks such as Flask or Ruby on Rails. This presents a challenge, as it is

not sufficient in and of itself to develop a web application, but it provides a transparent and

easily configured API interface for the creation of applications using a variety of other

libraries and frameworks in tandem. Third-party libraries (also known as packages) were

managed in the backend using Node Package Manager (NPM), which is included with

standard Node.js installations and links to the NPM software registry, through which

packages can be installed and maintained.37

Express.js and Node.js are two elements of the so-called MERN software stack, with which

this web application was built. The other two elements are React.js, discussed further in

section 3.2.2, and MongoDB. MongoDB is a NoSQL database program, closely tied into an

online platform (named MongoDB Atlas) for serving database records via API.38 A NoSQL

database is one that does not use structured query language, typically also referred to as a

‘non-relational’ database. Rather than storing records in tables, with relationships defined

by primary and foreign keys columns in those tables, MongoDB uses atomic documents

that closely resemble JSON. A document-based database was chosen for this project as it

most closely resembles the structure of diaries and flashcards – while there are

relationships between diaries, their entries, and the flashcards derived from those entries,

each of these elements is interacted with by the user in relative isolation. The extensibility

of document-based databases – which do not require a fixed schema for their documents –

also means that different entries and flashcards can have more or fewer fields of data,

without affecting the overall integrity of the system.

35 ‘Express - Node.Js Web Application Framework’, accessed 5 October 2021,

https://expressjs.com/.

36 Node.js, ‘Node.Js’, Node.js, accessed 5 October 2021, https://nodejs.org/en/.

37 ‘Npm’, accessed 7 October 2021, https://www.npmjs.com/.

38 ‘The Most Popular Database for Modern Apps’, MongoDB, accessed 5 October 2021,

https://www.mongodb.com.

 33

In order to interact most efficiently with Express.js, the interface with MongoDB was made

through another library, Mongoose. Mongoose allows for object-data modelling within

JavaScript and Express, allowing MongoDB documents to be represented as JavaScript

objects with defined characteristics.39 These objects – defined by Mongoose ‘models’, an

implementation of the modelling aspect of the MVC paradigm – were constructed using

schemas, defining the attributes that each object would contain, and thus the fields within

the MongoDB documents created. By interacting and processing documents in the server

through Mongoose, the process of validating and type-casting data was made robust and

systematic.

For user authentication, a variety of libraries were chosen. Bcrypt.js is a JavaScript

implementation of Niels Provos and David Mazières’s bcrypt hashing function.40 The

detasils of the function are beyond the scope of this report, but its general appeal as a

secure password hashing function derive from its inherent ability to scale its complexity as

general computing power increases. Traditional hashing functions are generally complex

enough to provide security against contemporary attackers, but as computational power

grows (which it does exponentially over time, per Moore’s Law), they become easier to

decrypt through brute-force attacks or other methods. Bcrypt.js is trivial to incorporate into

wider applications such as this project. Once a user is logged in, they are provided with a

web token through the libraries Passport-jwt, which is an authentication strategy for the

wider middleware library Passport.41 This web token contains an encrypted representation

of the basic user information required by the frontend client, as well as serving as an

authorisation token for any requests to the server that can only be made by authenticated

users. These web tokens expire after a certain amount of time.

3.3.2 Frontend Client

The frontend web client was also built in JavaScript, using the React framework.42 Frontend

frameworks such as React – as well as others including Vue and Angular – provide libraries

39 ‘Mongoose ODM v6.0.9’, accessed 5 October 2021, https://mongoosejs.com/.

40 Niels Provos and David Mazières, ‘A Future-Adaptable Password Scheme’, n.d., 13.

41 ‘Passport’, npm, accessed 6 October 2021, https://www.npmjs.com/package/passport.

42 ‘React – A JavaScript Library for Building User Interfaces’, accessed 6 October 2021,

https://reactjs.org/.

 34

that allow for the programmatic manipulation of the HTML and CSS displayed in the

browser. It does this by leveraging the document-object model (DOM), which treats

individual elements within HTML documents as software objects, forming a tree structure.

JavaScript code can then add, edit or delete elements from the DOM programmatically,

resulting in the dynamic alteration of the displayed web page.

React takes this concept further by being explicitly component-based. Where HTML uses

standardised, atomic elements (such as or <input>), React allows for the freeform

creation of components comprised of programmatically generated HTML content. For

example, a <LoginForm> component could be created from multiple <input> elements

nested within a <input> element. This <LoginForm> component could then be added to

other React components, with different attributes passed to it in the form of ‘props’ (short

for properties). This component-based approach allows for a frontend website to be

developed using strong programming principles such as the separation of concerns, non-

repeating of similar code, and a single-source of truth for widely-used functions and data.

React Router is a library that gives React access to the browser URL (through the Location

interface of the main Window object in the DOM).43 By wrapping the entire application in a

<Router> component (provided by React Router), constituent components can access

information in the current URL, and display DOM elements related to the current path. It

also provides the ability to redirect based on the presence or absence of authentication

information; as such, attempting to access protected routes can result in a redirect to a

login page, for example.

React communicates with the server by sending HTTP requests to the API endpoints

described above. This is accomplished through a library called Axios, which provides an

abstraction above the XMLHttpRequest interface built into JavaScript.44 Through Axios, a

React app can make an HTTP request to a web server and receive JSON data. This data can

then be used to generate further DOM changes, and change the state of the React

application.

43 ‘React Router: Declarative Routing for React’, ReactRouterWebsite, accessed 6 October 2021,

https://reacttraining.com/react-router; ‘Location - Web APIs | MDN’, accessed 6 October 2021,

https://developer.mozilla.org/en-US/docs/Web/API/Location.

44 ‘Axios’, accessed 6 October 2021, https://axios-http.com/.

 35

Having individual React components send HTTP requests through Axios and receive data

directly presents a number of challenges. Chief among them is the management of the

global state of the application. Components are frequently created, mutated and destroyed

– as such, they are unable to maintain statefulness reliably. Data that should be consistent

between components can become out-of-sync, as different versions of ostensibly the same

object are contained within different components. Furthermore, some components are

unable to properly render until they have the required data from the backend, or are so

frequently instantiated that they would send an overwhelming number of HTTP requests

with each new instance. Instead, a state-management library can be used, such as React-

Redux, an implementation of the more general-purpose Redux library.45 Redux comprises a

global store of data retrieved from remote server APIs. Rather than creating HTTP requests

directly, React components call Redux actions, which in turn make the required HTTP

requests, receive the response and update the global data store, which all React

components look to for their own data.

For the diary entry interface, the React-MDE (Markdown editor) library was chosen.46 It

provides a lightweight, user-friendly editor for creating markdown text, while providing

functionality for limiting the formatting options available to users for the MVP version of this

program, where only bold, italics, unordered lists and headers are supported. React-

Markdown was chosen to provide the conversion from Markdown text to properly formatted

HTML in diary entry display pages.47

45 ‘React Redux | React Redux’, accessed 6 October 2021, https://react-redux.js.org/. React-Redux

and Redux are conflated within this report, and referred to as Redux throughout.

46 André Pena,

�

 React-Mde, TypeScript, 2021, https://github.com/andrerpena/react-mde.

47 React-Markdown, JavaScript (2015; repr., remark, 2021), https://github.com/remarkjs/react-

markdown.

 36

4. Implementation

The project was built in a Git mono-repository, with the

React client contained in a sub-directory at the project

root named ‘client’ (see Figure 2). At the project root is

a package.json file, which lists the various

dependencies of the application, various scripts for

purposes of development and deployment, as well as

other project metadata. These scripts, shown in Figure

3, include server, which starts the application using

nodemon, a version of the node runtime that watches

the project folder for any code changes and restarts the

server to update the version in memory. The build

script first changes the working directory to the client

Figure 3 - package.json npm scripts

directory, runs npm install to install the various

dependencies for the React client in its own internal

node_modules directory, before running the build

script of the React client’s own package.json file.

This script consolidates the current state of the React

client into a single directory of static files, which are

served directly to the browser when accessing the URL

of the website. During development, it is useful to run

the React code directly, and so the start script of the

React client’s package.json is run instead. This Figure 2 - Backend file structure

 37

creates a live updating version of the React client that updates with code changes, and

does not require the time-consuming process of building a static file. Static files are

preferred for serving to end-users because they are minified during the build process to

make them smaller and less expensive to transmit over the Internet; they are immutable,

and can be versioned; and they hide much of the working of the development code from

end users (although this can be reverse engineered without much difficulty).

This section will discuss the implementation of the web application, first focusing on the

backend web server, before discussing the frontend React client. Please refer to section 3.3

for further context.

4.1 Backend Server

4.1.1 Express

Figure 4 shows the core setup for the Express application. A number of dependencies are

imported to add functionality. Aside from those discussed in section 3.3.1, these include

dotenv, which allows the application to access environment variables and thus keep

sensitive data out of the codebase; path, which provides an interface for accessing the file

structure from within the code; morgan, which provides detailed logs for HTTP requests

and errors in the terminal for development; and bodyParser, which allows incoming data in

HTTP request bodies to be

parsed. An instance of

Express is instantiated into

the app variable, and the

connection string to the

MongoDB database is read

from the process

environment into the db

variable.

Mongoose is used to setup a

database connection, which

persists throughout the life of the application. As this is itself an HTTP request, it is by

definition asynchronous (also known as ‘async’) – all HTTP requests involve some latency

between the client (which is the diary application web server in this case) and the server

Figure 4 - Express application setup

 38

(the MongoDB database

server) – and so it is

implemented as a

JavaScript Promise. Lines 8

and 9 of Figure 5 show the

then-catch format of this

async call; the connect

function is called, and once

it resolves either the then

function is called (if the

async call was successful)

or the catch function is

called if there is an error.

Middleware is also setup at this

early stage. These are functions

that extend the behaviour of the

Express application. Logging

with morgan is initialised, as

well as adding parsing for

urlencoded and JSON data with

bodyParser. Passport is also

initialised, using settings from

elsewhere in the codebase.

These settings – shown in

Figure 6 – use the JwtStrategy

(Jwt being ‘JSON web token’) to

decode the authorisation token

that will be sent by

authenticated users and find

the mongoose User model from the database using the id from the payload.

Figure 5 - Database connection and middleware setup

Figure 6 - Passport setup

 39

Figure 7 - Route for serving static files

Back in the main app.js file, the

file ends by setting an HTTP GET

route at ‘*’ to serve the

index.html file from the

production build of the React

client (see Figure 7). By using the

wildcard * character, it ensures

that any requests are served with

this HTML file (and the

accompanying React JavaScript

file), at which point the React

Router will handle information display. The app is then exported into /bin/www, a file that

solely exists to create a web server using this application and listen on a port defined by the

process environment (see Figure 8). This is then run by the start script in the server’s

package.json file.

4.1.2 Routing of API endpoints

The routes that make up the API endpoints are defined in separate files as individual

Express routers. Within app.js these are defined just before the wildcard static file route.

Express routers function as another middleware, adding the functionality of their routes to

the overall application.

Figure 8 - Creating the web server

 40

Figure 9 - Express routers

Four main router files are defined, alongside a seedRouter that is used for development to

seed the database with test data (see Figure 9). In each call to app.use, which instructs

the Express application to use the routes within these routers, there are two parameters – a

path, and the router itself. The path (e.g. “/api/users” on line 3) is from the root of the

URL – an HTTP GET request to domain-name.com/api/users/index would be handled

by a GET route defined in userRouter with the path “/index”.

Part of the userRouter file is shown in Figure 10. Three routes are shown: GET

“/current” (which would become “/api/users/current” in the main app), GET

“/:id” and POST “/register”. These three routes highlight some core functionality.

GET “/current” includes the passport authentication middleware – a request to this

endpoint must contain an auth web token in its header, or else it will fail and respond with a

403: Unauthorized HTTP response. GET “/:id” includes a parameter id, indicated by

the colon in front of it. Any GET request to this route, with :id replaced by a string, will

have that string interpreted as the id parameter within the controller method (see section

4.1.3).This route must be defined after GET “/current”, or else the URL will be

compared to this route first, and the string “current” would be interpreted as an id

parameter. The POST “/register” route contains another middleware, Joi, which is a

 41

validation library.48 Schemas can be defined – such as

registerUserValidationSchema here, to ensure that data in the request body is valid

and can be processed in the controller method.

Figure 10 - User router

Each route has a path parameter, zero or more middleware parameters, and finally a

controller method parameter. All routes in the userRouter are controlled by methods in

the UserController, which serves the same function as controllers in MVC web

frameworks.

48 ‘Joi’, npm, accessed 7 October 2021, https://www.npmjs.com/package/joi; ‘Express-Joi-

Validation’, npm, accessed 7 October 2021, https://www.npmjs.com/package/express-joi-

validation.

 42

4.1.3 Controllers

The functions in the

controllers are all async,

and take three

parameters: the request

req, the response res,

and next, which

forwards information

along to other Express

middleware. Figure 11

shows the getUserById

function, which takes the

id param from :id in the

route, checks to see if it is

a valid MongoDB ObjectId

(and returns a 400: Bad Request error if not), looks for a User with that id in the

database, and returns it in the response (automatically serialised to JSON). Controller

functions are async as the connection with Mongoose is over HTTP – line 10 uses the

await keyword when calling the Promise User.findById, an alternative to the .then()

structure shown earlier, which instructs the program to wait until the Promise has resolved.

The process for registering new users is shown in Figure 12; multiple steps are involved.

First, the database is checked to see if any User already has the submitted email address or

username, responding with a 409: Conflict error if so. The request body – which

contains the fields submitted in the registration form – is then deserialised into a User

object. However, this User still has its password as the plaintext version submitted by the

form. To encrypt the password, bcryptjs is used. First a hashSalt is generated, with a work

factor of 10 (which translates to 210, or 1024 iterations); then this salt is used to encrypt the

password; lastly, the now encrypted passwordHash is saved into the User object in place

of the plaintext password. When logging in, bcryptjs compares the hash of the submitted

login password with that of the stored passwordHash and authenticates if they match.

Finally, the newly created User is saved to the database, and logged in. The makeToken

Figure 11 - User controller, getUserById

 43

Figure 12 - User controller, postUser

 44

method is called with the newly saved User, which extracts the id, username and

firstName of the User and encodes it in a JSON web token, with an expiry time of 21600

seconds, or six hours. This is returned in the HTTP response.

4.1.4 Models

The User referred to above is

a Mongoose model, which is

defined by a fixed Schema

(see Figure 13). The models

created for this application

were User, Diary,

DiaryEntry and

Flashcard. The User

schema illustrates some key

aspects of these Schemas.

Fields can be deemed

required, or if they must have

a unique value. This

resembles a table

description found in a

relational database, but here

serves as a self-imposed

constraint to ensure

consistency, rather than an

inescapable trait of the

database system itself. The

model created from this

Schema is understood by

Mongoose to have a

connection with database

records, exposing class methods such as .findById(objectId), and instance methods

such as .save(), as seen before.

Figure 13 - User model and schema

 45

4.1.5 Flashcard generation

Figure 14 - Diary entry controller, createEntry

Flashcards are generated automatically upon the submission of a new diary entry, when the

makeCards field in the request body is set to true. This process is shown in Figure 14. The

body of the request is deserialised into a DiaryEntry object, with the userId derived

from the decoded Authorization header, and the diaryId taken from the id parameter

of the route (“/api/diaries/:id/newentry”). If makeCards is true, a sanitised

version of the authenticated User (with personally identifying information stripped out) is

 46

created. This sanitisedUser, along with the saved diary entry (in an array, since the

cardmaker expects an array of diary entries), is passed to runCardmakerService, which

creates the flashcard data. This is then used to create one-or-more flashcards (see line 26).

runCardmakerService is an async process, but in this case the controller method does

not wait for it to finish before sending the saved diary entry back in the HTTP response. This

allows flashcard processing to happen in the background while the user can continue

interacting with the client and the API in other ways; if the cardmaker service were to be

changed to a more compute-heavy, slower process, this would not slow down the process

of saving new diary entries.

Figure 15 – runCardmakerService

runCardmakerService first creates a Worker with the worker_threads node library,

which provides an interface for multithreaded processing in Node. This allows for CPU-

 47

intensive JavaScript to run in parallel to the main server thread. As shown in Figure 15, the

service first sanitises the diary entry data – converting ObjectId fields into strings – before

creating a Promise, within which the actual worker is created and runs. The worker uses

code contained in ./services/cardmaker.service.js, a structure which allows

workers to use other processing methods in future (for instance using natural language

processing) without having to refactor anything beyond this reference.

Figure 16 shows the main

loop within the

implemented cardmaker.

Each parsed diary entry is

used to call several

different ‘make’ functions,

appending the resulting

data to an array

newFlashcardData,

which is sent back to the

parent

runCardmakerService

at the end.

parsedDiaryEntries

are created by parsing the content fields of the diary entry data into a ‘sections object’,

which uses regular expressions to detect the different sections of a string of Markdown-

Figure 16 - Cardmaker, main loop

 48

formatted text (see Figure 17). These sections are then passed onto a further function,

detectLists, which looks at each section to determine whether it is an unordered list.

These sections are passed through several other parsing functions until they are split into

individual sentences. These sentences are then processed to create cloze sentences, with

gaps as prompts for users to remember what they wrote (see Figure 18). The algorithmic

approach to creating these cloze sentences is straightforward. First, sentences are checked

to see if any words have been italicised or bolded; if so, these are taken as the key words

within the sentence and chosen for omission in the cloze sentences. If no words have been

emphasised, the function loops through the entire sentence and finds all words that are

longer than three characters and not included in a set of the 1200 most common words in

Figure 17 - Cardmaker, parsedDiaryEntries and makeSectionsObject

 49

the English

language; these

are then chosen as

candidates for

cloze sentences.49

In either case, the

chosen words are

removed from the

original sentence

and replaced with

a cloze gap of

underscores equal

in length to the

omitted word.

These sentences

are appended to

an array, which is

returned by the

function.

Other cards

produced by the

Cardmaker

include date

cards, which

prompt the user to

remember when a

particular diary

entry excerpt took

49 Derived from Josh Kaufman, Google-10000-English/Google-10000-English.Txt, 2021,

https://github.com/first20hours/google-10000-

english/blob/d0736d492489198e4f9d650c7ab4143bc14c1e9e/google-10000-english.txt.

Figure 18 - Cardmaker, makeClozeSentences

 50

place; mood cards, which prompt the user to remember how they felt on a certain day; and

location cards, which prompt to remember where a memory took place.

4.2 Frontend Client

As mentioned above, the React client was contained

within a /client sub-directory within the overall project

root. The file structure of the frontend client is shown in

Figure 19. This structure was chosen as the client and

server are quite tightly coupled; however, as a

standalone application, the frontend could exist

separately within a different Git repository and

deployment pipeline. Since the frontend and backend

only communicate through a RESTful API, the client

could theoretically be refactored to call endpoints of a

different server with related endpoints; in the same way,

other frontend clients (such as other websites, mobile

applications, or plugins to other larger web services)

could call the API endpoints of the web server to retrieve

the same data and manipulate/display it in different

ways.

As a standalone application, the frontend client also

contains a separate package.json file, which contains

the dependencies for the React project, as well as scripts

to build the production application or run it in

development mode. Rather than using NPM, many

modern React projects (including this one) use Yarn as a

package and script manager.50 It is functionally similar to

NPM, and uses the same package.json syntax and

package repositories; indeed, its scripts are largely

interoperable.

50 ‘Yarn’, Yarn, accessed 7 October 2021, https://classic.yarnpkg.com/en/.

Figure 19 - React client, file structure

 51

4.2.1 React setup and routing

Figure 20 shows the basic initial

setup for the React application. This

index.js file serves as the entry point

for the overall app. An event listener

– a type of JavaScript function that

allows for a callback (another

function) to be run when a particular

event occurs – is added to the

document object in the browser,

which is the root node of the DOM.

The browser’s localStorage,

which stores files and cookies for

individual web pages on a local

machine, is checked for an existing

JSON web token, and the

authenticated User is decoded if

one is found and added to a

preloadedState object, which

represents some data that will be sent to Redux state management. A method

configureStore() is called (either with this preloaded state if a web token is found, or

not), which sets up the Redux data store.

Finally the root of the HTML document is found

– a <div> element with the id of ‘root’, which

is created during the build process – and

ReactDOM’s render class method is called.

This method takes two parameters – a React

component, and an HTML element in the DOM

– and renders the React component in the

place of the HTML element. In this way, on line

33 the DOM is replaced by the <Root />

component, which itself contains the rest of

Figure 20 - React application setup

Figure 21 - React, Root component

 52

the application nested within it (see Figure 21). The Redux store is passed to this

component as a prop. The Root component is a utility component that wraps <App />,

which contains the actual business logic of the application, in a React Redux

<Provider/>, which allows nested components to access the Redux store and to dispatch

actions; and a React Router <HashRouter />, which provides access to the URL for path

routing.

It is called a ‘hash’ router as it can

access everything after the hash (#) in a

URL. For instance, a route defined within

the application for ‘/login’ will be

accessible at the URL domain-

name.com/#/login. Routing is

achieved using a <Switch />

component from React-Router. As

shown in Figure 22, routes are defined

for several paths. ‘/login’ and

‘/register’ are <AuthRoute />

components, defined within the

application to only be accessible to

Users who are not logged in, redirecting

them to the homepage if they are.

Conversely, a <ProtectedRoute />

can only be accessed if authenticated,

and redirects to the ‘/login’ route.

The comp prop for each of these Routes

is the React component that will be

rendered here if the route is accessed.

The last route has no authentication

rules, and renders the <HomePage /> if

none of the other routes are matched.

Figure 22 - React, main application routing

 53

4.2.2 Redux: actions, reducers and store

This section will discuss the implementation of state management and the interactions

between the React app and the backend API. As discussed in section 3.3.2, Redux allows

API interactions to occur outside of individual components using actions.

Figure 23 shows an excerpt

of the actions used to

interact with diary routes in

the API. HTTP requests

formed in Axios are

imported here as

DiaryAPIUtil (see Figure

24). In the

fetchAllDiaries

function, this request is

made in

a .then().catch() block

(as an HTTP request it is

async). The diaries received

in the HTTP response are

then used to call the

receiveDiaries method,

which makes an action

object with a type (defined

by constants at the top of

the file) and any other

arbitrary keys, in this case the diaries data. This action object is itself used in the dispatch

call, which is provided in the <Provider /> parent component and accessed by React.

This dispatch function is how data from HTTP responses is passed to the Redux store.

Dispatches can occur for other reasons, however; here in this method, a

diariesLoadingOn dispatch is made before the HTTP request is called, which can be

used to inform the wider system that a request has been made but the resulting data is not

yet available. A corresponding diariesLoadingOff dispatch is made after the request is

Figure 23 - React, diary actions

Figure 24 - React, diary API utils

 54

fulfilled. This prevents components

from trying to access data that does

not yet exist within the Redux store.

Before dispatched data can be useful

to other components, it must first be

processed and incorporated into the

current data store of the application.

For this, the Redux store is configured

with a ‘reducer’ that manages the

state of the data in the application in a

JavaScript object; this reducer is in

turn is composed of several other

reducers, each of which manage a

‘slice’ of the state. The reducer (and its component reducers) receives two parameters

when a dispatch is received; the current state (or the default value if no state has been

created yet), and the action object. Each reducer contains a switch statement, which runs

some code if the action.type is one of the defined cases. This code creates a new object

that is returned to Redux to replace the old slice of state. For example, on lines 9-13, an

empty diariesOutput object is created; it iterates over the array of diaries from the API

response and assigns each diary to a key in diariesOutput, the key being the diary’s

ObjectID. This object is then returned to represent the ‘diaries’ slice of the application

state. Components that wish to access a diary with a particular ID can look it up within the

state object.

The root reducer, which collates all the

slices of state created by other

reducers, is passed to the Redux

createStore function, along with any

preloaded state from existing web

tokens. This is the store passed to the

<Root /> component of the overall application.

Figure 25 - React, diaries reducer

Figure 26 - React, configureStore

 55

4.2.3 Component design and modularity

Figure 27 - React, diaries index (/#/diaries)

Once logged in, the main diaries index is displayed. The view is split into three columns,

with diaries listed on the left, diary entries in the centre and individual entries displayed on

the right. Figure 27 shows the initial index, and Figure 28 shows a diary entry displayed.

Figure 28 - React, diary entry show (/#/diaries/:diaryId/entry/:entryId)

 56

This view is constructed from

numerous React components that

programmatically display data from

the Redux state. As an example,

within the parent <DiariesIndex/>

component, there is an unordered list

that maps over the values in the

diaries slice of state, and creates a

<DiaryListItem />

component for each (see Figure

30). This component creates an

 element that contains

data about the individual diary

and provides interactions to

change the current URL location

in the browser. This component

also contains some internal

state, which toggles whether the

delete menu is shown,

depending on whether the user

clicks the button defined on

lines 18-23. If this state value is

true, the elements on lines 27-

38 are added to the DOM.

The diary entry show

component, on the right-hand

column of Figure 28, shows the

content of the diary entry. It

uses a <ReactMarkdown />

component from the react-

markdown library, that converts Markdown formatted text into HTML elements.

Figure 30 - React, diaries index generation

Figure 29 - React, diary index item

 57

Diary entries are created using a Markdown

text editor imported from the React-MDE

library. Figure 32 and Figure 31 respectively

show the write and preview views of the

editor. This allows for users to write their

freeform text content in the write panel, and

see the current formatted state of their entry

in the preview pane, as it would be

represented in the diary show view of the main

diaries index view. As mentioned earlier,

formatting is used as context clues for the

Cardmaker service to derive the most

important information from these entries.

The entry form also includes fields for an

entry title, date, location and mood

(enumerated from a hardcoded list). This

metadata is used to generate other types

of cards, as discussed in section 4.1.5.

Figure 32 - React, markdown text editor, write view

Figure 31 - React, markdown text editor, preview view

 58

Figure 33 - React, flashcard front

Figure 34 - React, flashcard back

 59

Figure 33 and Figure 34 show the flashcard studying interface. At the top of the view (which

is still nested under the site header shown in Figure 27, cropped out of this screenshot) is a

similar three-column navigation menu to the diaries index. Beneath each diary or entry is a

button that displays a count of all the flashcards that are currently scheduled to be studied

for that element. If a diary has an entry with 10 cards due, and another with 15 cards due,

the diary will show 25 cards due. Each flashcard – contained in a <StudyCard />

component – has a front and back, toggled using the Flip button. If the user has

remembered the information on the back of the card, they can click ‘I Remembered’;

otherwise they can click ‘I Forgot’, which will reset the correctStreak of the card and its

scheduling.

Figure 35 shows the functions

attached to these buttons. A

remembered card increases its

correctStreak by the formula

� = max	(√� + 1, � + 1) where n is

the new correctStreak; d is

the number of days between the

current date and when this card

became due; and c is the current

value for the correctStreak.

This is used to calculate the next

dueDate for the card, defined as

2! days from the current date.

This creates an exponential

effect by which the increase of the interval between each revision of a card grows larger as

cards become easier to remember. This is the implementation of spaced-repetition within

the application.

4.2.4 Sass stylesheets

The app was styled with Sass, which is a pre-processor for cascading style sheets (CSS), a

fundamental building block of all modern websites.51 Sass allows for convenient

51 ‘Sass: Syntactically Awesome Style Sheets’, accessed 7 October 2021, https://sass-lang.com/.

Figure 35 - React, card answer functions

 60

functionality such as variables and

mixins, providing a more programmatic

approach to the creation of stylesheets.

Unlike pure CSS files, which can be

written and read directly by the browser,

Sass stylesheets must first be compiled

into regular CSS, which is what the

browser interprets. Figure 36 shows an

excerpt of the Sass sheet for the

<StudyCard /> component. Sass

allows nesting within stylesheets – which

is not currently available in pure CSS,

although it is likely to be possible in the

near future52 – which provides for a clean

inheritance structure for child elements

within the DOM. Here, the .card-

heading selector only applies to an

<element class=”card-heading”>

that is the child of <element class=”study-card”>. Also, note the use of variables

such as $graylighter and $display; both are defined in other Sass sheets and allow for

the site-wide alteration of attribute values from a single source of truth.53

52 ‘CSS Nesting, Specificity and You | Kilian Valkhof’, 4 August 2021,

https://kilianvalkhof.com/2021/css-html/css-nesting-specificity-and-you/.

53 CSS variables are currently available within pure CSS as well, known as custom-properties, though

their use and implementation differs substantially to Sass.

Figure 36 - Sass, stylesheet for flashcards

 61

5. Testing

5.1 Test Driven Development

Test-driven development (TDD) is an approach to software engineering that privileges the

writing of automated tests throughout the development process, in order to ensure

interoperability of code and the consistency of results regardless of changes and refactors.

Each individual piece of functionality of the code is tested in isolation as it is developed,

also known as unit tests (a unit being an

atomic piece of code, such as a statement,

function, class or module); then the overall

interoperability between different code

elements is also tested, in integration tests

(which can be across classes, modules or

even entire services and applications).

TDD was used throughout the development of

the backend server; the file structure for the

tests is shown in Figure 37. Several JavaScript

libraries were used specifically for testing:

Mocha, a test framework that allows for the

simple description of test cases; Chai, which

provides a straightforward interface for

otherwise complex assertions within tests;

and Supertest, which allows for the testing of HTTP requests within an Express application

without using a live web server.54 MongoDB was installed on the local development

environment to allow for a test database to be created and used whilst tests are running.

54 ‘Mocha - the Fun, Simple, Flexible JavaScript Test Framework’, accessed 7 October 2021,

https://mochajs.org/; ‘Chai’, accessed 7 October 2021, https://www.chaijs.com/; ‘Supertest’, npm,

accessed 7 October 2021, https://www.npmjs.com/package/supertest.

Figure 37 - Test file structure

 62

Hooks were used to set

up the test database,

clear the data before each

test (to avoid polluting

results with unpredictable

data), and deleting the

test database upon the

conclusion of testing (see

Figure 38). The test

database exists on

localhost; first the

NODE_ENV is changed to

‘test’, which prevents

the Express app from

making a connection to

the main production

database (see line 1 of

Figure 5, page 38). Then a mongoose connection is made to the local MongoDB server.

Figure 39 shows an excerpt of the user routes tests. The first tests that a user is returned

when GET “/api/users/:id” is called with a valid ObjectId. The test contains two

expect statements: that the HTTP response is 200: OK, and that the response body

contains a username property, indicative of a User model. The other two tests check for

expected behaviour on erroneous requests: that the server responds with 400: Bad

Request if the ObjectId is malformed, and with 404: Not Found if the ObjectId is valid,

but does not match any records in the database.

Figure 38 - Testing, common.js

 63

Figure 39 - User routes tests

The output of the tests include the responses from supertest (see Figure 40). It displays

the exact HTTP request made, the response status, and the time it took for the response to

be returned after making the request.

Figure 40 - Test output, user routes

5.2 User Testing

In order to test the user experience of the application, live user testing was also used. A

participant recruitment letter (see page 83) was distributed on social media asking for

 64

participants, with the recruitment post directing them to a participant consent form.55

Through this process, three participants were recruited for the study, who will be referred

to as:

• pA (female, aged 50-64)

• pB (female, aged 18-34)

• pC (male, aged 50-64).

Participation was split into two parts. First, participants were asked to talk through their

thought processes and experiences as they used the website to perform specific tasks

given to them by the researcher. After this, participants were asked to answer a

questionnaire (see page 84) about their experiences with productivity software in general

and the application in particular. During the first part, participants were asked to:

• Register a new account

• Log out and log back in

• Create a diary

• Create a diary entry

o Bold some text

o Add a sub-heading

• Add a diary entry using the sample text

• Study flashcards generated from their entry

All participants were instructed not to use any personally identifiable information

throughout the UX test, including in the registration and diary entry writing processes.

5.2.1 Key findings

Design and layout

All three participants found the design and layout of the website to be clear and relatively

intuitive. When asked to register a new account, all were able to find the Register button, fill

out the registration form, and register their account. pA was uncomfortable entering date of

birth information (regardless of the anonymised fake information used in the test), and felt

it was unclear why the website needed that information. All participants were likewise able

55 ‘Participation Information and Consent Form’, Google Docs, accessed 7 October 2021,

https://docs.google.com/forms/d/e/1FAIpQLSfwQxM2Fpif9esq0TNJSXXpiMJzxzR5mZUN_sYqZQTD

hRqL9Q/viewform?usp=embed_facebook.

 65

to log out and back into the website with no issue. When asked to navigate between diaries,

diary entries and flashcards, participants were able to find the required areas of the

website with little issue and no need for further prompting. Two participants understood

the ‘title’ field in the New Diary form to be prompting for a diary title, but pC mistook this to

be asking for his own title (‘Mr’) – furthermore, pB thought of the New Diary as being an

entry rather than a collection of entries, and titled their diary as such. Clearer labelling and

hints may help to alleviate these issues.

All participants commented on the grey appearance of the website, particularly its

homepage, commenting that more colour would increase its appeal.

Markdown editing

Unfortunately, all participants found formatting with the Markdown text editor to be

confusing to use at first. The diary entry form as a whole was simple to use, with the entry

title, location, mood and date fields being clear to understand. Participants also had little

issue with entering plain text within the textarea field of the Markdown editor. However,

when asked to make some text bold, there was confusion – after selecting a word and

clicking the ‘bold’ button on the taskbar, the word was surrounded by asterisks, which was

surprising to participants. pB mentioned that she had seen this before in other contexts,

but understood the asterisks themselves to be the desired result, rather than a

representation of formatting yet to be applied/displayed. Participants did not consider

clicking the Preview button until directly prompted to look for such functionality, at which

point they saw their selected word formatted in bold as initially expected.56

When asked to insert a sub-heading, participants were similarly confused. It was not until

direct prompting that they considered clicking on the ‘learn how to format your diary entry’

helper tab, which informed them about the Markdown formatting options available. After

seeing this panel, they were able to insert a sub-heading (although needed extra help

56 There is also a bug that means that if a word is selected along with whitespace before or after it,

and then made bold, the inserted asterisks encapsulate the whitespace (e.g. resulting in **hello **

rather than **hello**). This whitespace breaks the parsing of the Preview pane, meaning ‘hello’ is not

rendered in bold. This is another source of confusion, and one that likely requires a software

solution.

 66

adding a space after the # symbols to help the parser along, which is something that ought

to be clarified in the help panel).

When asked to create an entry with the sample text, and given the opportunity to compare

the Markdown version with the formatted Preview version, pA and pB reported that they

were able to better understand the relationship between the Markdown symbols and the

resultant formatting. pA specifically mentioned that seeing the sample text before

attempting her own entry would have made the process clearer to understand. All

participants considered the process of writing Markdown to be something they could get

used to now that they had attempted it. In post-test questionnaires, none of the

participants said they had used Markdown before. Much more information must be

presented to new users in order for them to understand the process of using Markdown

comfortably. pA suggested that the editor be replaced with a WYSIWYG editor, that parses

and displays formatting live, without having to switch to the Preview pane.

Flashcards

All users reported enjoying using the flashcards, and found them to be a surprisingly fun

way to interact with their diary entries. pA and pC, upon seeing a cloze-deletion card,

initially expected to be able to type their answer into the gap in the sentence and submit it.

However, after a brief explanation that the flashcards are for self-reported memory

training, they felt happy with the present implementation. pA felt that there was an

absence of feedback from the ‘Remembered’ and ‘Forgot’ buttons, which obscured what

the impact of clicking one or the other was. As the algorithmic approach to interval

expansion is built into the <StudyCard /> component, this information would be trivial to

surface and would be engaging for users.

All participants recognised the utility of the application, and reported that it would be a

good way to remember the information in their diary entries. pA imagined that having to

click ‘Forgot’ for flashcards would be demoralising, and might put her off using the study

feature, but also recognised that there would be a complementary sense of

accomplishment from remembering flashcards.

Questionnaire results

All participants reported using productivity software for work, particularly calendars and

appointment diaries. Participants thought of diaries as being prospective data stores –

 67

rather than using them to record past events, they use them to remind themselves of future

events or obligations. None of the participants had used space-repetition programs before,

but understood the principles behind it (in particular pA and pB). None had used Markdown

for text formatting.

All participants considered the Markdown editor to be the most frustrating aspect of the

software, despite generally feeling that they could ultimately get used to using it. As a fairly

uncommon interface for writing formatted text, particularly when many apps use WYSIWYG

editors, this is likely to be a significant issue that would need to be addressed in future

versions of the program.

 68

6. Evaluation and Conclusion

The aim of this project, as outlined in section 1.2.1 on page 10, was to create a website that

allows users to create an ongoing diary with rich text formatting, whose entries can be

converted into flashcards to be studied using spaced-repetition training. While establishing

the efficacy of this application as a memory-enhancement tool is well beyond the scope of

this project, it is important to reflect on the implementation of this aim in software.

6.1 Achievement of acceptance criteria

Feature Acceptance

Criteria Achieved?

Notes

Functional Requirements

Authentication

Users need to be able to register and log in

Acceptance criteria:

The registration and log-in functions are

clearly visible and usable from the home

screen.

Single Sign-On

Users should be able to log into the system

once to access all parts of the program.

Acceptance criteria:

After logging in, the user can access the diary

and study pages.

User Accounts

Users can have user accounts, to organise all

their data.

Acceptance criteria:

Users have exclusive access to their own

diaries, entries and flashcards, and cannot

see those made by other users.

 69

Feature Acceptance

Criteria Achieved?

Notes

Diary and Entry Creation

Users need to be able to create diaries and

write diary entries

Acceptance criteria:

Users can create a diary and a diary entry for

that diary.

Markdown Text Editor

Users can create freeform diary entries using

a markdown text editor

Acceptance criteria:

The interface for creating a diary entry allows

for rich text, and the ability for users to

preview their entries before posting them.

Diary Entry Metadata

Metadata like dates, locations and mood

should be added with entries.

Acceptance criteria:

Users can add a date, location and mood to

each diary entry during creation.

Diary Viewing

Users must be able to read through their

diary like a traditional chronological diary

Acceptance criteria:

Users can select diary entries and see them

displayed with their formatting.

 70

Feature Acceptance

Criteria Achieved?

Notes

Card Generation

Diary entries need to be converted to cards

Acceptance criteria:

Flashcards are automatically generated for a

new diary entry if a user choose to create

flashcards.

Flashcards consist of a front-side, which has

a prompt, and a back-side, which has the

solution that the user should remember

Automatic Card Generation

Using markdown syntax, metadata and other

methods, cards are generated from the diary

entries.

Acceptance criteria:

Generated flashcards use information from

the diary entry in their body.

Study

Users can study their cards

Acceptance criteria:

Users can choose a diary or diary entry and

study only the associated flashcards.

Flashcards should be shown one after

another.

Users can select if they remembered or

forgot the information on the back-side of

the card.

 71

Feature Acceptance

Criteria Achieved?

Notes

Scheduling of cards

Cards are scheduled using an SRT algorithm

Acceptance criteria:

Flashcards are scheduled to be due for study

at increasing intervals when users remember

them, or to be shown sooner if they forget.

Non-functional requirements

Usable interface

The application should be simple to use with

no prior instruction

Acceptance criteria:

Users can register, create a diary and a diary

entry, and study the generated flashcards

without external direction.

Any required instructions should be present

in the application

Partial User testing

revealed that, while

most aspects of the

interface were self-

explanatory, some

functionality –

particularly

regarding the

Markdown editor –

is not easy to use

without guidance.

Responsiveness

The application should be responsive and

work on a range of devices.

Acceptance criteria:

Users can use the application on a desktop

computer, laptop or smartphone

No Current version of

the application has

no CSS breakpoints

and as such is

generally unusable

on screens with a

width smaller than

600px.

Broadly speaking, the technical aims of the project were achieved. The backend and

frontend components have all the functionality implemented to satisfy the functional

 72

requirements of the project. However, as illustrated above, the non-functional

requirements were only partially met.

6.2 General evaluation

6.2.1 Key successes

Dynamic flashcards

The Cardmaker service, with its dynamic generation of context-rich flashcards, has proven

successful. The core programming challenge within this project was to create an

algorithmic approach to parsing freeform, loosely structured text; define a rules-based

system for establishing important information (in this case through formatting hints and the

use of uncommon words); and generating flashcard data. The current approach is still very

naïve, but provides a fundamental basis upon which to expand in future.

Simple, extensible structure

The structure of the backend server uses RESTful principles throughout, meaning that

interacting with the diary and flashcard data is easily done by other web services.

Furthermore, the Cardmaker service is parallelised, and can be easily swapped out for

other more sophisticated cardmaking programs, or even external services that can return

digestible flashcard data (which itself is easily enforced using the Mongoose model

schema). The frontend uses React, an intrinsically modular framework, that means that

further work on the diary application can be done within a highly extensible structure.

6.2.2 Areas for improvement

Accessibility

HTML5 provides a number of semantic HTML elements and tags that greatly increase the

ability for screen readers and other accessibility-enhancing devices to parse web pages for

users with atypical accessibility needs. The current web layout relies heavily on non-

semantic tags such as <div> and that do not provide these benefits for users.

Refactoring React components to use semantically rich tags would not be a significant

additional task, and would provide great benefit to an often undervalued user base.

Responsiveness

The website is currently only usable on screens larger than 600px, which is a significant

hurdle – a large number of people use mobile devices as their primary internet device, and

 73

the website’s current design drastically limits the ability to study flashcards or make ad-hoc

diary entries whilst away from a desktop or laptop computer. React’s modular design

makes the implementation of responsive web layouts relatively straightforward, and this

change would provide significant benefit for limited development time.

Usability

The application largely performs well in its usability, but UX testing revealed significant

difficulties with the Markdown text editor. Furthermore, there are fields and prompts in

some forms which are not intuitively understood by all users. Further guidance ought to be

incorporated into the interface to alleviate these issues, such as a Markdown tutorial.

Alternatively, the text editor could be replaced wholesale by a WYSIWYG editor, although

this may require significant additional development and refactoring of the Cardmaker and

<EntryShow /> parsers

6.2.3 Future scope

There are several aspects of the application, beyond resolving issues raised in section

6.2.2, that could be improved to further enhance its overall functionality. These include:

• The use of natural-language processing to create more context-sensitive flashcards.

Particularly by using models such as the highly sophisticated GPT-3, there is the

potential for direct questions to be generated from diary content.

• As the backend server is a RESTful API, integrations could be made with other web

services that could access diary or flashcard data. Creating a public API spec would

allow for other services to build out such integrations.

• Conversely, the application – either through the backend or through data

transformation in the React client – could send HTTP requests to other public APIs

to enhance the content of user diaries. This could be used in a variety of ways; for

example, publicly accessible weather data could be referenced for specific dates

and locations, allowing flashcards to be created about what the weather was like on

a particular day.

• The therapeutic benefits of diary keeping and spaced-repetition training were a key

motivating factor for this project, and collaboration with mental health and

 74

neurology experts to establish the efficacy of this project towards such goals would

be of great benefit for the future direction of the project.

• The application currently uses the most common English words as a filter for

ignoring unimportant words when generating cloze deletion cards. Unfortunately

this only works for English-language diary entries (although the rest of the algorithm

should be language agnostic, at least for languages that incorporate whitespace as a

separator for words). A localisation layer would allow the application to be more

readily useful for users from other language communities.

6.3 Personal reflection

Working on this project has afforded me the opportunity to explore a number of subjects of

interest to me.

Spaced repetition

As a student, I have used numerous study tools and applications throughout the years. I

have often found that tools are typically either designed in such an opinionated way that

they are only useful for a small subsection of students or subjects; or in such a broad way

as to require a significant level of organisation and management to stay useful. Spaced

repetition system tools often fall into one of these camps. Anki is a powerful, highly

customisable tool that does not in and of itself offer any study material or curricula, only

being useful through the manual creation of flashcards or the use of third-party decks of

cards from a community that has no enforced quality control. Conversely, Memrise is a

complete study solution aimed at self-learners, with curricula and courses already

designed; but which is difficult to customise, and results in courses being highly

generalised, which may not suit more esoteric or advanced learners. Part of the motivation

to do this project was to explore the possibility of an application that could essentially

generate a curriculum of flashcard content, but based on the specific needs and notes of

the user.

The process of working on this project has allowed me to research the science behind

spaced repetition training, and the effects it has on memory and recall. This scientific

foundation was instrumental in understanding the aims of the project, as well as enhancing

my own understanding of the SRT practices I use in my day-to-day life. I have been lucky

enough to have had previous research experience, albeit in other fields from Computer

 75

Science, and have been able to draw on that experience in the assessment of sources, the

use of library services and electronic research repositories, and summarise research

literature. That being said, I have had limited experience with the specific areas of

background research required for this project, and thew experience of working through the

project has been a useful opportunity to broaden my own research abilities.

User experience testing

This was my first experience with UX testing an application in live sessions with

participants. The process was highly useful, both for getting a non-technical perspective of

my software, but also to see what assumptions a general public might make when using

this tool. In order to prepare for the testing process, it was important to plan ahead for

prompts and questions I would ask of participants, and to ensure that I was measuring

what I intended to. It would have been preferable to have a wider sample of UX tests, but

for the purposes of this project I was able to get useful input.

Project management

Management of the software project was relatively smooth; I was able to follow many best

practices for the development process, managing version control and deployment versions

through Git and Heroku.57 Generally, however, time management was a challenge

throughout the project, particularly regarding the non-technical aspects. In future, I would

hope to take better care to finalise requirements and specifications ahead of time, to avoid

similar issues. Time management is an ongoing area in need of improvement and this

project, with its multiple ongoing obligations, has been a useful object lesson in its

importance.

57 The application is deployed live on Heroku. ‘SRS Diary’, accessed 7 October 2021, https://srs-

diary.herokuapp.com/#/.

 76

References

Alexandrov, Arseni K., and Lazar M. Fedoseev. Long-Term Memory Mechanisms, Types and

Disorders. Neuroscience Research Progress Series. Hauppauge, N.Y.: Nova Science
Publishers, 2012.

Al-Rawi, Wisam, Lauren Easterling, and Paul C. Edwards. ‘Development of a Mobile Device
Optimized Cross Platform-Compatible Oral Pathology and Radiology Spaced
Repetition System for Dental Education’. Journal of Dental Education 79, no. 4
(2015): 439–47. https://doi.org/10.1002/j.0022-0337.2015.79.4.tb05902.x.

‘Anki - Powerful, Intelligent Flashcards’. Accessed 4 October 2021.
https://apps.ankiweb.net/.

‘Axios’. Accessed 6 October 2021. https://axios-http.com/.

‘Chai’. Accessed 7 October 2021. https://www.chaijs.com/.

‘CSS Nesting, Specificity and You | Kilian Valkhof’, 4 August 2021.
https://kilianvalkhof.com/2021/css-html/css-nesting-specificity-and-you/.

‘Day One: Your Journal for Life’. Accessed 27 September 2021. https://dayoneapp.com/.

‘Diarium, by Timo Partl’. Accessed 27 September 2021. https://timopartl.com/#diarium.

Einstein, Gilles O., Mark A. McDaniel, Ruthann Thomas, Sara Mayfield, Hilary Shank, Nova
Morrisette, and Jennifer Breneiser. ‘Multiple Processes in Prospective Memory
Retrieval: Factors Determining Monitoring Versus Spontaneous Retrieval.’ Journal of

Experimental Psychology: General 134, no. 3 (2005): 327–42.
https://doi.org/10.1037/0096-3445.134.3.327.

‘Express - Node.Js Web Application Framework’. Accessed 5 October 2021.
https://expressjs.com/.

npm. ‘Express-Joi-Validation’. Accessed 7 October 2021.
https://www.npmjs.com/package/express-joi-validation.

Frith, Emily, Eveleen Sng, and Paul D. Loprinzi. ‘Randomized Controlled Trial Evaluating the
Temporal Effects of High-Intensity Exercise on Learning, Short-Term and Long-
Term Memory, and Prospective Memory’. European Journal of Neuroscience 46, no.
10 (2017): 2557–64. https://doi.org/10.1111/ejn.13719.

Green, Collin, James C. Johnston, and Eric Ruthruff. ‘Attentional Limits in Memory
Retrieval—Revisited.’ Journal of Experimental Psychology: Human Perception and

Performance 37, no. 4 (2011): 1083–98. https://doi.org/10.1037/a0023095.

‘Grid Diary: The Simplest Way to Get Started with Keeping a Diary | Grid Diary’. Accessed 27
September 2021. https://griddiaryapp.com/.

 77

Hanson, Aroline E. Seibert, and Christina M. Brown. ‘Enhancing L2 Learning through a
Mobile Assisted Spaced-Repetition Tool: An Effective but Bitter Pill?’ Computer

Assisted Language Learning 33, no. 1–2 (2 January 2020): 133–55.
https://doi.org/10.1080/09588221.2018.1552975.

Hawley, Karri S., Katie E. Cherry, Emily O. Boudreaux, and Erin M. Jackson. ‘A Comparison
of Adjusted Spaced Retrieval versus a Uniform Expanded Retrieval Schedule for
Learning a Name–Face Association in Older Adults with Probable Alzheimer’s
Disease’. Journal of Clinical and Experimental Neuropsychology 30, no. 6 (18 July
2008): 639–49. https://doi.org/10.1080/13803390701595495.

Ho, Joanna, Adrienne Epps, Louise Parry, Miriam Poole, and Suncica Lah. ‘Rehabilitation of
Everyday Memory Deficits in Paediatric Brain Injury: Self-Instruction and Diary
Training’. Neuropsychological Rehabilitation 21, no. 2 (1 April 2011): 183–207.
https://doi.org/10.1080/09602011.2010.547345.

npm. ‘Joi’. Accessed 7 October 2021. https://www.npmjs.com/package/joi.

Karch, Dominik, Krzysztofa Kopyt, Aleksandra Gauden, and Michal Nowakowski. ‘Efficiency
of Web Application and Spaced Repetition Algorithms as an Aid in Preparing to
Practical Examination of Histology: PS195’. Porto Biomedical Journal 2, no. 5
(September 2017): 187–88. https://doi.org/10.1016/j.pbj.2017.07.030.

Kaufman, Josh. Google-10000-English/Google-10000-English.Txt, 2021.
https://github.com/first20hours/google-10000-
english/blob/d0736d492489198e4f9d650c7ab4143bc14c1e9e/google-10000-
english.txt.

Kleijn, Suzanne, Henk Pander Maat, and Ted Sanders. ‘Cloze Testing for Comprehension
Assessment: The HyTeC-Cloze’. Language Testing 36, no. 4 (October 2019): 553–
72. https://doi.org/10.1177/0265532219840382.

Lambers, Anton, and Adrian J. Talia. ‘Spaced Repetition Learning as a Tool for Orthopedic
Surgical Education: A Prospective Cohort Study on a Training Examination’. Journal

of Surgical Education 78, no. 1 (2021): 134–39.
https://doi.org/10.1016/j.jsurg.2020.07.002.

Linderholm, Tracy, and Lise Abrams. ‘The Benefits of Expressive Writing on Long-Term
Memory Performance’. In Long-Term Memory: Mechanisms, Types and Disorders,
131–46. Nova Science Publishers, 2012.

‘Location - Web APIs | MDN’. Accessed 6 October 2021. https://developer.mozilla.org/en-
US/docs/Web/API/Location.

Memrise. ‘Learn a Language. Meet the World. | Memrise’. Accessed 4 October 2021.
https://www.memrise.com.

Miner, Annalise E., Mark W. Schurgin, and Timothy F. Brady. ‘Is Working Memory Inherently
More “Precise” Than Long-Term Memory? Extremely High Fidelity Visual Long-Term
Memories for Frequently Encountered Objects’. Journal of Experimental Psychology.

 78

Human Perception and Performance 46, no. 8 (2020): 813–30.
https://doi.org/10.1037/xhp0000748.

‘Mocha - the Fun, Simple, Flexible JavaScript Test Framework’. Accessed 7 October 2021.
https://mochajs.org/.

‘Mochi — Spaced Repetition Made Easy’. Accessed 4 October 2021. https://mochi.cards/.

‘Mongoose ODM v6.0.9’. Accessed 5 October 2021. https://mongoosejs.com/.

Node.js. ‘Node.Js’. Node.js. Accessed 5 October 2021. https://nodejs.org/en/.

Norris, Dennis. ‘Short-Term Memory and Long-Term Memory Are Still Different’.
Psychological Bulletin 143, no. 9 (2017): 992–1009.
https://doi.org/10.1037/bul0000108.

‘Npm’. Accessed 7 October 2021. https://www.npmjs.com/.

Oren, Shiri, Charlene Willerton, and Jeff Small. ‘Effects of Spaced Retrieval Training on
Semantic Memory in Alzheimer’s Disease: A Systematic Review’. Journal of Speech,

Language & Hearing Research 57, no. 1 (February 2014): 247–70.
https://doi.org/10.1044/1092-4388(2013/12-0352).

Parker, Amanda, Edward L. Wilding, and Timothy J. Bussey, eds. The Cognitive

Neuroscience of Memory: Encoding and Retrieval. 1. publ. Studies in Cognition
Series. Hove: Psychology Press, 2002.

Google Docs. ‘Participation Information and Consent Form’. Accessed 7 October 2021.
https://docs.google.com/forms/d/e/1FAIpQLSfwQxM2Fpif9esq0TNJSXXpiMJzxzR5
mZUN_sYqZQTDhRqL9Q/viewform?usp=embed_facebook.

npm. ‘Passport’. Accessed 6 October 2021. https://www.npmjs.com/package/passport.

Pena, André. React-Mde. TypeScript, 2021. https://github.com/andrerpena/react-mde.

Persellin, Diane. A Concise Guide to Improving Student Learning: Six Evidence-Based

Principles and How to Apply Them. First edition. Sterling, Virginia: Stylus, 2014.

Pham, Xuan-Lam, Gwo-Dong Chen, Thi-Huyen Nguyen, and Wu-Yuin Hwang. ‘Card-Based

Design Combined with Spaced Repetition: A New Interface for Displaying Learning

Elements and Improving Active Recall’. Computers & Education 98 (July 2016):
142–56. https://doi.org/10.1016/j.compedu.2016.03.014.

Provos, Niels, and David Mazières. ‘A Future-Adaptable Password Scheme’, n.d., 13.

‘React – A JavaScript Library for Building User Interfaces’. Accessed 6 October 2021.
https://reactjs.org/.

‘React Redux | React Redux’. Accessed 6 October 2021. https://react-redux.js.org/.

 79

ReactRouterWebsite. ‘React Router: Declarative Routing for React’. Accessed 6 October
2021. https://reacttraining.com/react-router.

React-Markdown. JavaScript. 2015. Reprint, remark, 2021.
https://github.com/remarkjs/react-markdown.

Reddy, Siddharth, Igor Labutov, Siddhartha Banerjee, and Thorsten Joachims. ‘Unbounded
Human Learning: Optimal Scheduling for Spaced Repetition’, 13-17-:1815–24.
KDD ’16. ACM, 2016. https://doi.org/10.1145/2939672.2939850.

‘RemNote | The Best Way to Remember and Organize What You Learn’. Accessed 4 October
2021. https://www.remnote.io/.

Rose, Nathan S., Joel Myerson, Henry L. Roediger, and Sandra Hale. ‘Similarities and
Differences Between Working Memory and Long-Term Memory: Evidence From the
Levels-of-Processing Span Task’. Journal of Experimental Psychology. Learning,

Memory, and Cognition 36, no. 2 (2010): 471–83.
https://doi.org/10.1037/a0018405.

‘Sass: Syntactically Awesome Style Sheets’. Accessed 7 October 2021. https://sass-
lang.com/.

‘Shared Decks - AnkiWeb’. Accessed 4 October 2021. https://ankiweb.net/shared/decks/.

Sherwood, Lauralee. Human Physiology: From Cells to Systems. Cengage Learning, 2015.

Simons, J. S. ‘Recollection-Based Memory in Frontotemporal Dementia: Implications for
Theories of Long-Term Memory’. Brain 125, no. 11 (1 November 2002): 2523–36.
https://doi.org/10.1093/brain/awf247.

‘SRS Diary’. Accessed 7 October 2021. https://srs-diary.herokuapp.com/#/.

npm. ‘Supertest’. Accessed 7 October 2021. https://www.npmjs.com/package/supertest.

Szőllősi, Ágnes, Attila Keresztes, Martin A. Conway, and Mihály Racsmány. ‘A Diary after
Dinner: How the Time of Event Recording Influences Later Accessibility of Diary
Events’. Quarterly Journal of Experimental Psychology 68, no. 11 (November 2015):
2119–24. https://doi.org/10.1080/17470218.2015.1058403.

Tarnow, Eugen. ‘Why The Atkinson-Shiffrin Model Was Wrong From The Beginning’.
WebmedCentral Neurology 1, no. 10 (2010): 13.

MongoDB. ‘The Most Popular Database for Modern Apps’. Accessed 5 October 2021.
https://www.mongodb.com.

Yarn. ‘Yarn’. Accessed 7 October 2021. https://classic.yarnpkg.com/en/.

 80

Appendices

Wireframes

Figure 41 – Wireframe, registration form

Figure 42 – Wireframe, log in form

 81

Figure 43 – Wireframe, diary index

Test case

Table 1 - Test case 1: User registration

Test Case Id: 1 Test Purpose: Users can register on the website

Server Environment: Written in Express.js 4.17.1, MongoDb 3.6.10, Mongoose 5.13.4, running on

Node 16.6.1

Client Environment: Written in React.js 17.0.2, React-Redux 7.2.4, running on Chrome

94.0.4606.61

Preconditions: User is on the home page of the website, and not logged in.

Test Case Steps:

Step No Procedure Expected Response Pass/Fail

1 Choose ‘Register’ Displays the registration form modal (see

Figure 41 – Wireframe, registration form)

P

2 Fill registration form:

Email: testcase1@example.com

Username: testcase1

Password: password

Confirm password: password

 P

 82

First Name: Test1

Last Name: Case1

Date of Birth: 01/01/2000

3 Click ‘Register new account’ The application redirects to the diary

index (see Figure 43 – Wireframe, diary

index

P

Comments: [provide details of any failed steps]

Related Tests:

Author: N Sibanda, C21009631 Checker:

 83

Documents

Participant recruitment letter

A Web Application for Recording a Personal Diary with Spaced Repetition Training

Recruitment Invitation Letter

Dear _________________

I would like to invite you to be a user-testing participant for a web application I am developing as part

of my MSc dissertation research project.

About the Project:

The project is a web application for recording a personal or study diary, implementing spaced-

repetition training to allow users to better remember important information and the events of their

lives. There are numerous diary apps and websites currently available, with both online and offline

functionality. These programs typically serve a number of productivity functions, including personal

organisation and time management. These apps are ostensibly designed - at least in part - to help users

remember information. Learners need to access such information during exams, assignments or

complex tasks. Diary-keepers use this information to remind themselves of the events of their lives,

and to keep track of upcoming events.

Current apps allow users to organise their information, but make no effort to help users recall

information they deem important. This project attempts to fulfil this need through the design and

implementation of a web application that allows users to keep an ongoing diary, processing this

information into relatively atomised elements, and generating digital "flashcards" that users can use to

revise the information they enter. These flashcards will be shown at intervals defined by a spaced-

repetition algorithm, to maximise retention of information while minimising the number of flashcards

a user is required to review each day to retain all the information therein.

What Participation Involves:

The participatory element of this project will involve user testing; participants will be asked to use the

developed application with minimal guidance, to complete several tasks, such as registering a new

account, logging in, creating diary entries, and studying generated flashcards. During this live testing

session, the researcher will ask participants about their experience using the software in real-time, to

identify strengths and weaknesses in its design and implementation. Participants will then be asked to

 84

complete a questionnaire to reflect on their overall experience using the application. This data will be

used to evaluate the success of the application in achieving the goals of the project, and to identify

areas for potential future improvement or expansion.

Your participation in this research project would be immensely appreciated, and I would love to speak

with you further about it. You will be provided with all the information you need in order to decide

whether you would like to proceed with participation; informed consent is a cornerstone of ethical

research, and all participants must feel comfortable and confident in their willingness to be involved.

Please let me know if participation in this project would be of interest to you, and I will be able to

send along further information.

Yours sincerely,

Nyasha Sibanda

Principal Investigator

Student – MSc Computing

Participant post-test questionnaire

1. Do you typically use productivity software? This includes applications such as diary-taking

software, digital calendars, note-taking software, study tools or time management software.

(Yes/No)

2. If yes, describe your typical use of these programs, including why and how often you use

them.

3. Have you ever used Spaced Repetition Training software? This includes applications such as

Anki and Memrise. (Yes/No)

4. If yes, describe your typical use of these programs.

5. Have you ever used Markdown to format text? This includes applications such as Notion, or

the text formatting syntax used by Reddit.

6. If yes, describe your typical use of Markdown.

7. What were your initial impressions of the web application you were asked to use?

8. What did you think of the layout of the content?

9. Was it easy to accomplish the tasks you were asked to do?

10. Is the purpose of the application clear?

 85

11. What did you like the most about using the application?

12. What did you like the least?

13. Were there any aspects of the application that were frustrating?

14. How would you compare the application to other productivity tools you may have used in the

past?

15. How would you change the application?

16. Would you use an application like this in your own life?

