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Abstract

The goal of this report and project is to explore the methods in which an agent
can be implemented to take control of a robot in order to explore and navigate an
unknown environment. The robot used by the agent is one that was constructed
for less than £100, making use of cheaply available components, and low powered
prototyping systems.

In this report, various aspects of how to represent the physical world upon dig-
ital mediums will be covered and how well each of them will work in regards to
hardware available. Leading on from this, the agent and robot software will be
produced and how they were implemented will be covered.

Additionally the calibration of the robot, in order to find the best operation
ranges for components will be checked. The results of the entire system will be
evaluated to find out why such robots are not yet feasible, but with the recent
developments made in low powered computers, how this may change in the next
few years.
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1 Introduction

It is not always possible for humans to enter an environment with the purpose of gather-
ing information about it. This may be down to the environment being too small, hostile
or quite simply infeasible for a human to enter it. Typically people have sent in remotely
controlled drones to remotely view these inaccessible areas, but increasingly (especially
in high expense operations), autonomous robots are starting to be used instead. These
robots are capable of making decisions themselves in order to successfully navigate their
way around the unknown environment without need for human intervention.

The goal of this project is to find out how feasible it is to produce a robot capable of
exploring an unknown physical environment for a budget of under £100. The interim
report showed that it is certainly possible to get a bare minimum set of components
required for the robot, but still needs to be determined how well these components will
perform.

However, it is not simply enough to be able to build the robot and expect it to be able
to function. For it to be able to function, a software layer needs to be introduced to
manage, control and make decisions on what the robot should do. The Interim Report
focused on the hardware aspects involved in the creation of the robot, and in this report
the software aspects will be explored.

In order to be able to explore an unknown environment, a software system capable of
learning through observations made of that environment needs to be developed. This
software will be a rudimentary AI Agent .

There will be a number of problems which need to be addressed in order for this agent to
function, not only correctly, but also efficiently. An initial problem that will need to be
overcome is that of where to do all of the processing and computation. The robot is pow-
ered by an Arduino, which runs at 16MHz and has 32KB of memory, which has to hold
the entire program code. It was determined in the Interim Report (Section 3.1.3, p.20)
that sending information back to a computer in order to do any heavy computational
work will be required. There still exists the issue of how to reduce the data being com-
municated between the robot and the computer to prevent overloading the USB channel.

Moreover, how will the agent represent the world it explores, and deal with different types
of errors such as false-positives and false-negatives?

Finally, how will the agent determine where it needs to go in order to collect data? Does
a basic naive Local Search work, or should a more complex path finding algorithm be
employed to intelligently find a route to its next destination.
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1.1 Goals & Aims

There are a number of goals that are specific to the software aspects of the project that
were not outlined in the Interim Report. These aims are listed below.

• Represent a physical world digitally.
This is an important aspect of the project as it is the means through which the
robot will decide how and where it will conduct its search and exploration efforts.
Additionally it will be used to present a visual map of the explored environment to
the user.

• Determine paths to explore.
How will the robot decide where to go? Once it has decided, how will it navigate
its way through potentially unknown areas to get to that destination?

• How will actions and exploration be co-ordinated between the agent and
the robot?
Both of these systems need to work harmoniously together. How should work be
segregated between the two to ensure optimum performance and stability?

In addition to these aims, the hardware of the robot will need to be calibrated. This
calibration will be maintained and managed by the agent.

This report will focus primarily on the software behind the robot and agent, and touch
up hardware when needed.
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2 The Robot

2.1 Robot Specification

Since the Interim Report, the design and specification of the robot has been finalised.
The following three tables all outline various aspects and information about the robot,
including component costs, dimensions and processing capabilities.

Dimension Differences from the Prototype Robot
Prototype Final

Wheel Diameter 6.3cm 3.1cm
Wheel Thickness 3.7cm 0.6cm
Robot Size (Width/Height) 16.6cm 12cm
Turning Circle Diameter 14cm 11.2cm

Table 1: Details on how dimensions and measurements have changed from the prototype robot
to the final robot.

Component Listing
Component Quantity Cost (Estimate)
Plasticard (A4 Sheet) 2 £1.20
Motor 2 £15.00
2 Wheel Set 1 £6.00
Arduino 1 £20.00
Motor Driver 1 £3.50
IR Range Sensor 1 £10.00

Total Cost (Estimate) £71.90

Table 2: Components listing of final robot, including the materials used to construct the chasis.

Arduino Specification
CPU Clock speed 16MHz
Memory 32KB Built in
Architecture AVR ATmega328
Programming Language More-or-less C/C++

Table 3: Information about the Arduino used in the project.
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2.2 Motor Power

Perhaps most importantly for the accuracy of the robot, is the power supplied to both
of its motors. It was determined in the Interim Report that both the Arduino board
and motors for the robot would need to be powered by separate power sources. The
Arduino would already be communicating with the agent via USB and would therefore,
draw power from the computer that the agent is running on, whilst the motors would
utilise an onboard NiCad battery.

Figure 1: The amount of current delivered by a NiCad cell and/or battery will vary depending
on the amount of charge remaining. This will effect the speed and power of the motors leading
to unreliable movement of the robot. Chart by ElectroDynamics (2011)

However, upon investigation of initial movement tests in which the robot was unable to
produce consistent movements when powering its motors with NiCad batteries, it was
found that they deliver varying levels of charge which make them unsuitable for use in
this application. Figure 1 shows the relationship between charge and current for NiCad
cells.

An alternative to NiCad batteries are LiPoly batteries. Unlike NiCad batteries, LiPoly
batteries do not diminish in the amount of current they deliver as the cells discharge, but
instead deliver a consistent current over the course of their life.

Given that the robot would already by connected to the agent via a USB cable, it was
decided that adding a second USB cable (that was modified to deliver only power rather
than data) to the robot would be the quickest and cheapest method of powering the
robot’s motors. However, because the Arduino only has one USB port the additional
cable had to be modified to to be able to deliver additional power to the robot without
requiring a USB port. This was achieved by isolating the power lines inside a USB cable
and connecting them to ”jumper wires” which could be easily plugged into a breadboard.
The finished cable is shown in Figure 2.

This source of power for the motors is guaranteed to 5V (stated in the USB Specification)
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Figure 2: A modified USB cable that has had the data wires and one of the plugs removed.
The power lines have then been connected to jumper wires to make them easy to use with a
breadboard.

and means that any previous inconsistencies that were caused by varying current should
no longer be an issue.
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3 The Agent

The agent is the software that is responsible for interpreting any observations made by
the robot and producing a map of the environment from them. In addition to this it also
makes decisions on how to act upon this knowledge that it collects in order to collect
more knowledge to help construct the map.

In order for the agent to work, it needs to have a mechanism to keep track of observations
which can also be used to determine and visualise the structure of that environment. How
will the agent decide on where to go, and how to get there? Finally, due to the agent
and robot being separate entities, how will the agent communicate with the robot to
co-ordinate and collect information about the environment?

3.1 Representing Knowledge

Before a solution to the problem of exploration can be designed, it is imperative that the
agent has a means in which it can record and store the observations made by the robot
and use them to build up knowledge of the environment. This knowledge will then be
usable at a later time to help co-ordinate further exploration of the environment.

The most straight forward, and easiest to handle way of storing and accessing information
about the world is through a matrix. In this, each cell of the matrix is taken to represent
a specific section of the world. Figure 3 shows how the layout of an environment can be
encoded into a matrix.

Figure 3: Aerial photograph of a room (left) which illustrates how the room may be divided up
into sections, which can be represented as a matrix (right). Room image by (Chill 2006)

One of the simplest forms of matrix that can be used to accomplish this is the Bit Array.
In this structure each cell is represented by a single bit, allowing only for the storage
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of true or false values. These values can be used to represent whether a section of the
environment with which, that value corresponds to, is obstructed or not.

A slightly more advanced form of this would be a Confidence Map. Rather than storing
each cell as a single bit, each cell is stored as a byte, short (2 bytes) or integer (4 bytes).
This allows for varying levels of confidence as to whether a cell is actually occupied or
not. This can be referred to as the Occupied Probability.

Whilst analysing these methods of knowledge representation for the physical world we
shall look at them each in regards to a 25x25 cell matrix.

3.1.1 Bit Array

The Bit Array is an extremely simple form of matrix and is data structure that which
requires very little memory in which to be stored.

Sizebytes =

⌈
Mwidth ×Mheight

8

⌉

Where Mwidth and Mheight are the width and height of the matrix respectively. By sub-
stituting in the matrix sizes into the equation, the minimum number of bytes required to
store the Bit Array can be determined.

Sizebytes =

⌈
25× 25

8

⌉
=
⌈
78.125

⌉
= 79

This low memory footprint is a strong positive point in regards to the Arduino, which
has limited memory. However its limited capacity for storing data about a cell is a major
negative point.

With the Bit Array structure, there is no way to determine which cells have not yet been
visited. This makes it difficult to construct an effective search strategy that isn’t just a
fixed route. This can be overcome by creating a second Bit Array to store whether a cell
is visited or unvisited. This effectively doubles the amount of storage required, however
it is still less than that of a Confidence Map.
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3.1.2 Confidence Map

The Confidence Map is a larger version of the Bit Array. Rather than using only one bit
per cell, it uses an arbitrary number of bits, N . This allows it to store a range of values
per cell, rather than just true/false values. The number of values capable of being stored
in a cell depends on the number of bits allocated per cell. The maximum value that a
cell can store can be computed by using the following.

Valuemax = 2N − 1

The reason for storing a larger range of values per cell is to allow the implementation of
a ”vote” system. This works by incrementing the value of a cell when the agent believes
it has spotted an obstacle in the section of the physical world that corresponds to that
cell. Cells with higher values (or more votes), are the ones which the agent has a higher
confidence of something obstructing that cell. However, this ability to store a range of
values comes at the cost of higher memory footprints.

Sizebytes =

⌈
N
(
Mwidth ×Mheight

)
8

⌉

Assume that each cell is going to require 16 bits (2 bytes or a short) of storage.

Sizebytes =

⌈
16
(
25× 25

)
8

⌉

=

⌈
10, 000

8

⌉
=
⌈
1, 250

⌉
= 1, 250

This is nearly 16 times larger than the Bit Array, but rather than allowing only 2 values
per cell, it can take 65,536 values per cell. The size of N needs to be large enough to
account for the number of observations that the robot may make of that section of the
environment.

In this structure, it is possible to record whether a cell has been visited or not. A single
value can be taken to be a special identifying value that represents an unvisited cell.
When a cell contains this value then it is treated as unvisited.
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However, there is still a limitation in this structure. It can only record observances of
obstructed cells. At first this is not an apparent limitation, as the purpose of the system
is to explore and find obstacles in an environment. Further consideration of the problem
reveals that it is equally important to consider the areas that are not obstructed, as it is
these areas in which the robot will use to navigate the environment. Without a mech-
anism to record when a cell is unoccupied, it is entirely possible that a moving object
within the environment may cause a number of cells to appear as occupied when in fact
they are not (or at least not very frequently). By also recording the number of times
a cell is not obstructed we can then account for motion and possible incorrect readings
when exploring the environment, by generating probabilities of a section being obstructed.

To do this two Confidence Maps are needed, one for the observances of obstructions and
the other for the observances of unobstructed sections. From these two matrices we can
then calculate a probability of the cell being obstructed.

Let α be equal to the count from the obstruction matrix.
Let β be equal to the count from the unobstructed matrix.

ϕx,y = αx,y + βx,y

Px,y =

{
unvisited if ϕx,y = 0

αx,y

(
100
ϕx,y

)
if ϕx,y > 0

3.1.3 Knowledge Size & Resolution

An additional problem is posed in the form of how much space to allocate the knowledge
for the agent? The problem arises from the very nature of the project... the environment
is unknown. As far as we know at the beginning of the exploration, the environment
could be tens of metres across, or just a few tens of centimetres. This poses the question
of exactly how much space should be allocated for knowledge? Before this can be deter-
mined though, some additional information is required.

The first bit of additional information that is required is the amount of space that each
cell actually covers. This largely depends on the actual robot, as it will need to be
optimised to the capabilities of the robot. Assume the that size of a cell, as defined by
the robot is

Cellsize = πr2

Let r be equal to 1cm, where r is the radius of the robots wheel. We know that the size
of a cell is then 3.142cm wide or high. Taking the matrix defined earlier (25 by 25 cells)
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we can determine that it would map to an area 78.5cm2 in the physical world.

3.2 Exploration & Planning

Exploration noun
The action of traveling in or through an unfamiliar area in order to learn
about it.
- Oxford English Dictionary

The primary goal of the agent is to be able to explore and construct a map of the physi-
cal environment that it is in. From the definition of Exploration, this can be understood
to require physically travelling through its environment and recording any observations
made. These observations can then be used to build an understanding of the structure
and layout of the environment.

However there are a number of different ways in which this exploration could be carried
out, such as involving different paths and search strategies for determining the best path
to take. Should the search strategy be dictated by a basic Local Search, checking for the
best unobserved area overall or use search and path finding algorithms such as the A*
algorithm?

What should the robot do at each point? Rotate around and observe all directions around
it at each point? Or just make observations directly ahead of it at all times?

3.2.1 Local Search

Local Search is a meta heuristic intended to determine an optimal solution to a problem.
This is accomplished by evaluating all of the potential solutions that could be used and
determine which one is the best. However it does not consider any intermediate states of
getting there.

In the context of mapping out a physical environment, and deciding the best route to
take in order to fully explore the environment, we can consider that each cell represents
an area of the world to be in a specific state. For example Unobserved or Observed.

However, these alone do not provide enough information; it is possible to have multi-
ple candidate cells. In order to be able to weight each cell, so that the best choice is
made, and not the first that happens to meet the criteria required, a cost function can
be introduced. A cost function simply adds in the costs of considered properties of the
world. Such properties may include distance, effort required, chance of death, etc. For
this problem the following need to be considered:
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1. Distance to candidate cell (further is better).

2. Probability of obstacle at candidate cell (lower is better).

3. Is it unobserved? (if it is, then decrease the cost.)

The distance to a candidate cell can be computed in two distinct ways, by using either the
Manhattan or the Euclidean Distance. Weisstien (2012) defines the Euclidean Distance
to be the ordinary distance between two given points and can be calculated by using
Pythagoras’ Theorem. This is a distance that assumes the agent is able to move along
diagonals. However the acquired knowledge by the agent is built with the belief that it
cannot travel along diagonals, only horizontal and vertical movements are permitted.

Russel & Norvig (1995, p.102) state that when an agent cannot move diagonally, its dis-
tance can be calculated through the sum of the horizontal and vertical distances, giving
the City Block Distance or Manhattan Distance.

The probability of there being an obstacle at the candidate cell can be determined by
using the function stated in Section 3.1.2. This function calculates the probability based
on the number of times an obstruction has been observed and the number of times there
hasn’t been an obstruction observed at the given cell. It can also give a value for when
the given cell has not yet been observed.

From this the cost of going to the candidate cell needs to be calculated. This is done by
evaluating all the considered properties and parameters of the candidate cell, typically
by summing them together. The agent will then select the candidate with the lowest cost
as its preferred destination.

s⇒ maximum world width, as used by the knowledge of the agent.

λ⇒ distance from agent to candidate cell.

ϕ⇒ probability of obstacle at candidate cell.

C = (2s− λ) + ϕ

Once the agent has determined the cell to use, it will then move towards it either along
the horizontal or vertical axis, before repeating the entire process again. This is inefficient
and susceptible to becoming stuck in a particular spot due to obstructions in its path to
the best candidate cell, as illustrated in Figure 4.

3.2.2 A*

The A* algorithm is a pathfinding algorithm that has faced widespread adoption due
to being able to efficiently plot a route between two points. When tied with the Local
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Figure 4: The robot (circle) gets stuck on the environment as it tries to move towards its
destination (diamond) due to only being able to move closer to its destination.

Search, to provide a means of actually planning a route to the destination given existing
knowledge about the environment, as opposed to blindly moving towards the destination,
the major problem of becoming stuck in the standalone Local Search should be eliminated.

The A* algorithm was developed through two iterations of improvements upon Dijkstra’s
Algorithm by Nils Nilsson and Bertrand Raphael in 1964 and 1967 respectively. The
improvements they both introduced focused on improving the speed of the algorithm and
to use a heuristic means of determining the best route.

The algorithm works by iteratively expanding traversing nodes in the known graph or
world, by focusing on the current lowest cost path known at that point. This method
is Dijkstra’s Algorithm and guaranteed to find an optimal path, but is not guaranteed
to do so quickly. This is where the heuristic component of the algorithm comes in. The
algorithm will also estimate the remaining cost to the destination from each node and
add that in to the cost. By doing this it helps to prevent the algorithm from unneces-
sarily searching nodes that lead away from the destination node and thus reducing the
computational time of the algorithm.

Russel & Norvig (1995, p.96) describe that two different search strategies Greedy Search
and Uniform-cost Search both individually employ aspects that are desirable, but each
have negative consequences that are not. Greedy Search, denoted as h(n) can cut the cost
considerably, but is not an optimal solution nor is it complete, which makes it unreliable
in many applications. Uniform-cost Search, g(n), on the other hand is both optimal and
complete, but is very inefficient in how it conducts the search. Russel and Norvig show
that the favourable aspects of these two algorithms can be gained with ease by simply
summing them.

f(n) = g(n) + h(n)
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In this g(n) is the total path cost to get to the node that is currently being explored from
the starting node, where as h(n) is the estimated cost of travelling the cheapest path
from the current node to the goal. Tracy & Bouthoorn (1997, p.107) describe that h(n)
should be an underestimate of h ∗ (n) and admissible, where h ∗ (n) is the actual optimal
cost for all currently explored nodes.

h(n) is admissible iff h(n) ≤ h ∗ (n).

This all makes the A* algorithm a good choice for making the agent’s planning and search
strategy more robust and effective. By merging the two and using the Local Search to
initially select a new destination cell and then switching to the A* algorithm to produce
a plan on how to reach the destination.

However the A* algorithm needs to be given an admissible heuristic in which it can
estimate the remaining cost from any given cell to the destination. If the heuristic
is not admissible, then the algorithm can not be guaranteed to find an optimal path.
Fortunately, the nature of the world constructed in the agent’s knowledge is a uniform
matrix comprised of square cells making the task of finding a suitable heuristic relatively
trivial. Additionally because the agent can only move in vertical and horizontal directions
in respect to the world, it is simple to the calculate the shortest distance between two
points.

d = ∆x+ ∆y

Where d is the distance and ∆x and ∆y are the changes in x and y respectively. As
shown earlier this is simply the Manhattan Distance.

The effect that this has on the agent’s ability to handle obstructions is illustrated in
Figure 5.

Using this information so far, the following algorithm can be produced to incorporate
both the Local Search and A* algorithm aspects of the agent.

function DetermineBestCell
bestCost = INTEGER MAX
for y = 0→ worldSize do

for x = 0→ worldSize do
c = EvaluateCellCost(x, y)
if c < bestCost then

bestCost = c
bestCell =Point(x, y)

end if
end for
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Figure 5: The robot (circle) plans a route around the obstruction it encounters to get to its
goal (diamond) using the A* algorithm to find the optimal path.

end for
return bestCell

end function

function EvaluateCellCost(destination)
dx =abs(current.x− destination.x)
dy =abs(current.y − destination.y)
distance = dx+ dy
p = OccupiedProbability(destination)
if p = unoccupied then

cost = distance
else

cost = p+ distance
end if
return cost

end function

3.2.3 Dealing with Potential Problems

Even with both Local Search and A* algorithm working together to navigate the envi-
ronment, they still have to work with, at least early on, incomplete information about
the world. When the agent initially makes a decision on where to go, and then plans out
a route, it has no knowledge of whatever obstructions may, or may not, exist along its
chosen path.

These unknowns have to be dealt with as the new data is collected. At each point the
agent visits it collects new information about its surroundings and if an obstruction is
encountered in its immediate path that blocks it then one of two things can be done.

1. A new path can be worked out to its goal using the newly acquired knowledge.
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2. A new destination can be chosen and a path planned to it.

Both of these actions will result in the agent changing its path to something which it
believes to have no obstructions, given the present information that it has.

3.3 On-board System

Another aspect of the agent is the on-board system which will sit on the robot itself and
communicate with the computer. There are four main things that need to be handled by
the on-board system.

1. Forward Movement - controlling movement speed and time to move forward in a
consistent manner so that mapping is reliable.

2. Rotation - controlling how the robot rotates so that it rotates at a consistent 90de-
grees.

3. Observation - making measurements to the nearest obstacle ahead of itself using its
IR range sensor so that the agent can build the map.

4. Communication with Agent - send information to the agent, and carry out actions
given by the agent.

3.3.1 Forward Movement

As determined by the way in which the agent builds up knowledge and a map of its
environment, the robot will need to move forward in increments of a fixed distance. This
kind of movement can be achieved in a couple of ways.

• Set the power of the motors and then activate them for a set duration of time before
deactivating them again.

• Activate the motors, and use the IR range sensor to measure when the robot has
moved a certain distance and then deactivate them.

The first option involves the most calibration, as tests need to be carried out to determine
the relationship between how much power is delivered to the motors and the speed that
the robot then travels. Once the speed is known the distance that the robot will travel
in a specific period of time can be determined easily.

A major advantage to this approach is that it does not rely on any sensor which may
be giving noisy results, and so can consistently be used without concern of failure in
many different environments. The downside of it is, that many iterations of tests will be
required to determine the speed of different power levels.

The second option involves repeatedly (and rapidly) measuring the distance to the the
object directly ahead of the robot to determine when it has moved a certain distance.
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The advantages to this are that the robot is then able to vary the speed at which it
goes in realtime. Ease up the speed, and ease down the speed at the start and end
of movement respectively. This would help diminish any jerking movements which can
cause the robot to twist and lead to drift. However this is redundant as soon as the robot
goes out of range of any objects. It is only able to detect objects within 10 to 80 cm
directly ahead of its IR range sensor, making the method useless when in the middle of
a large open space. Additionally noise from the IR range sensor will make it difficult
to be precise in stopping the robot after the desired distance. However, due to the na-
ture of the map and world constructed by the agent, this point should be a minor concern.

Due to the limitations of the second option, the robot will govern its movement using the
first option, by activating the motors for a predefined interval of time at a certain power.
Test data for determining this can be found in Section 5.1.

3.3.2 Rotation

The robot needs to be able to rotate in an accurate manner, and as defined by the way
the knowledge and world are represented by the agent, in 90◦ intervals.

Rotation for the robot is achieved by activating both motors in opposite directions, thus
causing one half to try to move forwards and the other half to move backwards. This
causes a spinning motion around the centre point of the robot’s wheel base.

Unlike with determining forward movement, which required many tests to accurately de-
termine the speed of the robot at different power levels, rotation can fundamentally be
seen as a motion in a straight line.

Figure 6: The path (in gray) the wheels of the robot follow when rotating. d represents the
distance between the two wheels, or the diameter of the turning circle.

By measuring the distance between the two wheels of the robot, the circumference of the
turning circle can be calculated. The circumference is in essence the distance that the
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robot needs to travel in order to pass through 360◦.

Further, we can then divide this distance (the circumference) by 4 to give the distance
that the robot travels when rotating 90◦.

C

4
=
dπ

4

The distance between the wheels of the robot is specified in the Robot Specification in
Section 2.1, as 11.2cm, which gives

d = 11.2

C

4
=

11.2π

4

=
14π

5
≈ 8.8cm

This means that the robot will move through 8.8cm when rotating 90◦. Using both this
and the results collected in the speed tests in Section 5.1, it is possible to determine what
power the motors will need to be set to and how long to activate them to achieve this.

3.3.3 Observation

Observation via the IR range sensor needs to be handled by the robot before information
can be communicated back to the agent. In order for this to be done, an understanding
of how the IR range sensor works is needed. Oomlout (2012) provide basic information
on how the sensor outputs a varying voltage depending upon the distance of the object
directly ahead, and how this relates to an actual distance.

The voltage provided by the sensor is between 0.4 and 3 volts, and is detected by the
Arduino as a 10bit value. Oomlout provide a formula to convert this 10bit reading to an
actual distance.

d = 12343.85× (10bit reading)−1.15

This then provides the robot with an actual distance reading to the nearest object straight
ahead of the robot. For simplicity in sending the information back to the agent, a simple
calculation can be done to turn the distance into ”cells”, so that the agent is given a
distance in terms of the number of cells between it and the nearest object. Figure 7
illustrates how the distance relates to a number of cells.
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Figure 7: The robot (circle) measuring the distance to the closet object (diamond) and getting
a distance reading of d. The actual cell boundaries are shown beneath to show how the distance
maps to a cell count.

To show how this works, assume the following values.

d = 33.4cm

cell size = 10cm

We can convert the distance, d, into a cell count very easily through simple division.

celldistance =

⌊
d

cell size

⌋
= 3

This gives a result of 3 cells, which is the number of whole cells that the beam for the IR
range sensor passes through.

3.3.4 Communication

The final aspect that the on-board system needs to take into account is the communi-
cation back to the agent. All communication is handled via a serial link over USB. The
Arduino contains a library for establishing and communicating easily via serial, which is
aptly named Serial. In the case of the Arduino Duemilanove, which is what drives the
robot, it has one Serial Port.

Arduino (2012) state that the library will take control of two of the digital pins that the
Arduino offers. However given that the total number of required digital pins on the robot
is 9, and the Arduino offers 14 to begin with, this is not a concern.

Additionally, the library requires a baud rate (pulses per second) to be specified. Whilst
there is no universally agreed best baud rate, WormFood (2005) provides a collection
of tables with supported baud rates for the AVR chips (which the Arduino uses) and
how susceptible each baud rate is to errors for given CPU frequencies. The Arduino
Duemilanove uses a 16MHz which gives the following suitable baud rates.

23



• 4800

• 9600

• 14400

• 19200

• 28800

• 38400

• 76800

The baud rate of 9600 also appears in the code examples provided in the Arduino refer-
ences suggesting that it is the most suitable and ideal baud rate.

The reason for the onboard communication is so that the robot can receive commands
from and send back information to the agent. The commands that are used are listed in
Table 4.

Command Code Command Value Command Description

MOV M Move Forward. The value byte con-
tains the power that the motors should
be set at.

RCW R Rotate Clockwise. The value byte con-
tains the power that the motors should
be set at.

RCCW r Rotate Counter Clockwise. The value
byte contains the power that the mo-
tors should be set at.

OBSV O Instruct the robot to make an obser-
vation. The value byte does not con-
tain any information. The robot should
make an observation and then send
back an OBSV packet with the value
set to the number of cells ahead that
an object was detected.

SPWR S Set the power level of the motors. The
value byte contains the power that the
motors should be set at.

SDEL D Set the activation period of the mo-
tors. The value byte contains the time
in tenths of a second that the motors
should be set at.

Table 4: Commands used by the robot and agent to co-ordinate exploration.
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4 Building the System Software

With the information that has been collected, and the decisions that have been made with
regards to that data, the software for the system can now be produced. This software is
what will be responsible for controlling and driving the robot.

Figure 8: The on-board system is the software that runs upon the Arduino and the actual robot,
whereas the agent host is the computer on which the actual agent will run.

4.1 On-board System

The on-board system is what will run on the actual robot and be responsible for control-
ling the motors, sensors and communicating information back to the agent and carrying
out actions that the agent tells it to. Figure 9 shows the basic overview of the system
structure.

Figure 9: The on-board system is split into three major components which each handle specific
responsibilites.
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The overall design of the system can be split into three major components; the Robot
controller, the Motor controller and the Navigator. Each of these components is respon-
sible for managing just one aspect of the robot.

The first of these components is the Robot Controller, which is responsible for interpreting
commands received from the agent and telling the Navigator what to do, before sending
back confirmations to the agent. This component has one major function which is the
handleCommand() function. This function is only called when there is available data in
the USB buffer. Checking for available data in the buffer is handled by serialEvent()

function, which is declared as part of the Arduino libraries. serialEvent() is a func-
tion that is called whenever the Arduino has detected activity on the USB serial buffer.
By implementing the function in the system, USB Serial events can be used to trigger
the handleCommand() function after checking the number of bytes available in the USB
Buffer. As all commands in the system will consist of two bytes a check can be put in
place to only call the handleCommand() function when two of more bytes are available.

Additionally the Robot Controller is responsible for initialising the motors and navigator
when the robot is first powered on.

The second component is the Motor controller. This component is unique as there will
need to be multiple instances of it in order to refer to each of the motors on the robot.
When a Motor controller instance is created the robot will need to specify which digital
pins it will be responsible for. The Motor controller can not directly detect or even con-
trol the motor, but instead turns the digital pins it is responsible for on and off. Provided
the pins specified match up to actual motors correctly, then robot will move as expected.
The digital pins it is responsible for control the activation and direction of the motors spin.

The first pin specified is the activation pin. This pin is responsible for the rotation speed
of the motor. Normally digital pins only handle HIGH and LOW voltages, which in the
case of a motor can be equated to full speed and stopped, or in terms of electronics 5V
and 0V. However the Arduino provides Pulse-With-Modulation (PWM) functionality on
several digital pins which can be used to alter the speed of the motor.

The second and third pins are used to specify the spin direction of the motor. By alter-
nating the outputs of the pins between HIGH and LOW the motor spin direction can be
set. PWM is not necessary for these pins.

The third component is the Navigator, and the most complex part of the on-board sys-
tem. This component is responsible for carrying out instructions sent from the agent host
and collecting information about the environment. This means that it needs to be aware
of both motors and how to control them, the IR range sensor and how to convert the raw
signal that it provides into a distance that can be equated to a number of cells.
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4.2 Agent Host

The agent host is the computer and system that provides the bulk of the processing power
and decision making capabilities for the overall system. It is connected to the on-board
system via USB. Figure 10 shows what the core of the agent hosts structure is.

Figure 10: The agent host is split into three primary components (not including UI com-
ponents) that are responsible for determining what the robot should do and what the current
environment knowledge is.

These three core components of the agent host are responsible for co-ordinating the ex-
ploration of the unknown environment and controlling the robot whilst they do that
exploration. The system will need additional components that enable user interaction
and displaying information on screen, but the core functionality that will enable the sys-
tem to function is in these components.

The USB component is used by the agent to co-ordinate the USB communications. It
is responsible for opening a connection to the robot, sending commands and waiting for
replies. In this regard the relationship between the agent and robot can be thought of
as master and slave respectively. The robot will never be able to take control of the
connection or even start a connection. Figure 11 demonstrates how a single command is
handled by the USB connection.

The Knowledge component is the most complex of the components that make up the
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Figure 11: An example of how single command packets travel between the agent and the robot.

agent, and is responsible for managing and turning all collected data into structured
knowledge about the environment. From this collected data and knowledge the Knowl-
edge component is able to plan new routes and determine the probabilities of an object
been at any given cell within the environment.

However because the robot does not directly relay any information about position to the
agent, then the Knowledge component needs to be able to keep track of which cell it
believes the robot is currently in and the current rotation of the robot. The UML struc-
ture shown in Figure 10 shows two properties associated with the Knowledge component;
currentLocation and currentRotation. These properties are updated to reflect the
believed position of the robot each time the agent issues a command to the robot.

Figure 12 shows how the process of sending actions and commands to the robot works. It
begins by checking the Actions Queue for any existing actions that need to be performed.
This actions queue stores all the actions that will take the robot along a certain path.
This path is determined by the Knowledge component in the pathToCell() function by
passing it a cell, which can be chosen by using the function DetermineBestCell(). The
action of determining a new path should only be done when there are no outstanding
actions to be carried out.

The agent will always select the next action in the actions queue and attempt to perform
it. Before sending the action to the robot the agent will attempt to determine if the
action will be successful or not. An action will be considered to be successful iff it will
not result in the robot colliding with any objects. This is determined by checking the
current knowledge of the environment and seeing whether the destination cell is occupied
or not. If the agent determines that the action will be unsuccessful then it will not send
the action to the robot, but rather, empty the current actions queue and redetermine
a new path. The reason for determining a new path rather than continuing with the

28



Figure 12: This flow chart shows how the agent sends actions and commands to the robot,
using the knowledge it has gathered to decide if the action will be successfull or not.

next action in the actions queue is because the actions will no longer match up with the
current knowledge the agent has, and will become increasingly likely to fail actions.

After the agent knows that an action will succeed it will then send the action command
via USB to the robot and wait for a response acknowledging that the action has been
completed. This process results in the agent being blocked from execution, which helps
prevent both the agent and robot going out of sync with each other.

Once the agent receives the acknowledgement that the robot has carried the action, it
removes the action from the actions queue and repeats the process once again. This
process is repeated until no more paths can be found, at which point the agent assumes
that it has fully explored its environment.
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5 Testing & Calibration

Before being able to test the robot in an actual unknown environment to see the results it
produces, a number of tests need to be carried out in order to determine the error ranges
and rates that the robot experiences. These tests will be used to calibrate and determine
the optimum values for cell sizes and speed for the robot.

5.1 Testing Motor Speed

The purpose of this test is to determine how different power levels provided to the motors,
affect the speed of the robot.

The motor power is determined through a Pulse-With-Modulation (PWM) signal that
causes rapid activation and deactivation of each motor every second. The reason for us-
ing PWM is because the micro-controller on the Arduino works purely on digital signals,
and can only deliver either a Low Signal (0V) or a High Signal (5V). PWM allows the
micro-controller to rapidly turn on and turn off the signal delivered by specific pins to
simulate different voltages.

It is this simulated voltage which is referred to as the motor power, and what effects the
speed of the robot. In the case of the Arduino the PWM can be set to a value between
0 (always off) and 255 (always on).

However, initial tests show that a minimum PWM value of 50 needs to be provided for
the motors to able to turn over.

The test will be based on the robot moving forward in a straight line for 0.5 seconds,
with the power being increased after every three tests run. The power will be increased
by a value of 5, and at the end all measurements for like power levels will be averaged.

The results collected in this test are available in Appendix A. These results include in-
formation about drift, speed and distance travelled.

Figure 13 shows how the speed increases in relation to the power. Additionally Figure 14
shows how drift effects the robot in relation to the distance travelled.

The results for this test, show that there are several points in which the amount of drift
experienced diminishes to little or none. These points include the motor power’s of 50,
90, 110 and 130.

As stated in previously in Section 3.3.1 (p. 20), the robot can be made to move forward
in steps of a fixed distance, with each of these steps representing the size of a cell. Table 5
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Figure 13: The increase in speed as the power to the motors is increase. Negative values show
drift to the left, whilst positive values show drift to the right.

Figure 14: The amount of drift experienced when travelling a specific distance

shows how these motor power’s relate to actual speeds and gives the distances attained
using these speeds for 3 different durations.

Further, Figure 14 shows that as the motor power is increased the harshness of any drift
that is experienced appears to drop off. This leads to the possible conclusion of 130 being
a suitable motor power for travelling forward. This also fits nicely when taking the dis-
tance travelled in half a second at this motor power; it matches with the size of the robot.

However, additional tests with the IR range sensor in order to determine its accuracy and
points in which it is the most accurate need to be conducted to determine if this speed
and a cell size of 12cm are suitable.

It was also stated in Section 3.3.2 that the motor power used for rotation is dependant
upon the speed of the motors and thus the distance in which is travel at that power. For
the current robot, the “distance” that it needs to travel is 8.8cm in order to complete 90◦

of its turning circle. Again, from Table 5 there is only one motor power that provides an
immediate and obvious closeness to this distance; 90, for a duration of 0.5 seconds. This
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Distance Travelled (m)
Motor Power Speed (m/s) 0.5s 1s 2s
50 0.06 0.03 0.06 0.12
90 0.18 0.09 0.18 0.36
110 0.22 0.11 0.22 0.44
130 0.24 0.12 0.24 0.48

Table 5: Distances travelled by robot at different speeds and time durations.

Motor Power Distance
85 0.082m
86 0.0836m
87 0.0852m
88 0.0868m
89 0.0884m
90 0.090m

Table 6: Stepping through motor powers to find the closest distance to 8.8cm possible from the
robot’s motors.

does not give a perfect value however. Looking at the motor power of 85 within the test
data we find that it delivers a speed of 0.164m/s which equates to 0.082m, which is now
too low. This can be solved by using the following:

α = 0.09m− 0.082m

= 0.008m

This means that for an increase of 5 in the motor power, on average, the robot travels
8mm farther.

β =
α

5
= 0.0016m

Now, stepping through each of the motor power’s between 85 and 90, and incrementing
the distance by 1.6mm at each step we can determine the best motor power for achieving
a 90◦ rotation. These values are shown in Table 6, and show that the closest and most
ideal value comes from a motor power of 89.

Fortunately two different speeds and durations can be used for both moving forwards and
rotating the robot. The ideal values are listed in Table 7.
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Aspect Duration Motor Power
Moving Forward 0.5s 130
Rotation 0.5s 89

Table 7: Ideal motor powers and durations for moving forward and rotating the robot 90◦.

5.2 IR Range Sensor Distance Tests

The purpose of this test is to determine the accuracy of the IR range sensor which is used
to measure distance to objects directly ahead, and thus find out its optimum operating
range.

Oomlout (2012) state in their quick start guide sheet that the sensor has an operating
range between 0.4 Volts and 3 Volts which equates to a range of 80cm to 10cm. They pro-
vide a chart of the relationship between voltage and distance which is shown in Figure 15.

However, the operating range of the sensor on the robot still needs to be tested incase of
any manufacturing discrepancies.

Testing this is a very simple, and simply requires checking the output voltage of the
sensor after moving an object in front of the sensor at a specific distance. This can be
repeated for all integer distances between 1 and 80 cm.

Also shown in Figure 15, is the actual results of testing the sensors output voltage. The
curve illustrates the same basic structure as what the manufacturer provides, but out-
puts lower voltages overall. Additionally the curve also illustrates some noise and not the
perfect curve shown by the manufacturers.

The results for this test are available in Appendix B.

5.3 Error Rate Accumulation

In order to test the combined accuracy of different types of movement a simple test that
makes the robot follow a predetermined path needs to be established. In this test all three
major aspects of movement (moving forward, rotating clockwise and counter clockwise)
will need to be tested, as the robot tries to complete the path. The rate of error is then
measured in how far the robot is from its expected finishing point.

Unlike the previous speed testing in Section 5.1, this test will allow different types of
errors to accumulate over the duration of the test in order to see how pronounced they
may become when actually mapping out an environment for real.

33



Figure 15: The chart on the left shows the manufacturers specified operating voltages for the IR
range sensor, whilst the chart on the right shows actual acheived voltages. Left chart produced
by Sharp (n.d.).

There are several paths in which the robot could be made to follow which would test
these different aspects of its movement. The first test was mentioned in the Interim
Report, and is called the UMBmark. J.Borenstein & L.Feng (1994, p.4-27) state that
the test can be used to find the severity of different systematic errors in mobile robots
by having them travel in a square path in both clockwise and counter clockwise directions.

Another possible path that the robot could be made to follow in order to test for the rate
in which errors are accumulated is a triangular path, which is depicted in Figure 16.

Figure 16: A triangular path that would test clockwise, counter clockwise and forward move-
ments of the robot.

With this path the robot will alternate between clockwise and counter clockwise rotations
after moving forwards by a single cell.

Finally a path which has the same basic shape as a square wave can be used to determine
the accumulation of errors in a similar way to the triangular path, but using a different
pattern. An example of the path is shown in Figure 17.

The results for this test are available in Appendix C. Figure 18 show how the X and Y
offset distances are distributed pseudo-randomly away from the destination. The robot
would always fail to reach the target and be to the left of it.
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Figure 17: A square path that would test clockwise, counter clockwise and forward movements
of the robot.

Figure 18: The distribution of finishing locations in relation to the intended finishing location
as offsets along the x and y axis.

5.4 Simulation of Mapping

In order to be able to test the actual software independently of the robot, a simulation
needs to be produced which will test all aspects of the software for the robot, whilst
mimicking the actual movement and exploration of the robot. There are a number of
advantages to performing a simulation in order to the test the software, over using the
actual robot.

1. Precise and accurate movements
This is arguably the most important aspect of a simulation. All of the physical
components are not used in a simulation, and thus the errors and inaccuracies that
they can introduce into the system will not be affecting the software. This is crucial
in testing the software because any errors that do appear can then be said to be in
the software and not the hardware.

2. Less time consuming
When testing with an actual physical robot it can take far longer to carry out a
single exploration to determine how well an algorithm is working. In a simulation
however any physical movement such as translation and rotation can be carried out
as simply changing the value of a variable. This means the time required to explore
an environment in a virtual world is much less than required in a physical world.
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Before any simulations can actually be run, a method for actually running them needs to
be created. This method needs to take into account as many of the actual components
of the system as possible in order to produce the closest result possible to the end result,
without introducing the errors of the motors and sensors.

By disabling certain aspects of the on-board system on the robot and introducing a ready
made map of the “environment” the vast majority of the overall system will be running
as if it is an actual real world test, and not a simulation. This ready made map can be
quite easily built using a Bit Array (explained in Section 3.1.1, page 12), with a set bit
representing an object and a zero bit representing empty space. In turn each bit can also
represent a single cell.

The on-board system on the robot can then be made to move itself around as normal
using the position reference numbers to store the x, y co-ordinates that it believes itself
to be at. This is the same as what happens in the real system, with the exception that
it doesn’t activate the motors. Therefore, as far as the robot is concerned, it is actually
moving.

The code responsible for taking an IR range sensor reading can also be replaced with sim-
ulation code to simulate the IR range sensor in the ready made map. This can be done
by moving along the beam projected by the “IR range sensor” and checking at each cell
it passes through if there is an obstacle. It then measures the distance by incrementing
it by the cell size at each step.

Figure 19: A virtual world is defined as an array in the robot code, but can be visualized as
2D map.

Figure 19 shows how the simulated world can be represented in code. The output of the
simulation is shown Figure 20. This result shows the algorithms and software function
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as expected.

Figure 20: The result of exploring an simulated world.
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6 Evaluation

This section will evaluate the overall performance of the robot, as well as evaluate the
performance of independent aspects of the robot and look at the reasons why things have
or have not worked as expected.

6.1 Robot Hardware

The performance of the hardware is perhaps one of the most critical aspects of the overall
system. If the robot is unable accurately provide data back to the agent then the agent will
be immediately running at a disadvantage. There are six main aspects to the hardware
that need to perform correctly.

1. Motor Speed
The speed of the motor needs to remain consistent from moment to moment in
order to be able to produce a dependable movement.

2. Travel Distance
Does the robot consistently travel a set distance when no power or timing settings
are changed. This builds upon the Motor Speed.

3. Drift
How susceptible is the robot to drift when travelling?

4. Rotation
Is the robot able to consistently rotate an expected amount?

5. Accuracy of Sensors
Does the IR range sensor of the robot produce the information expected?

6. Reliability of the USB Communication
Do commands get dropped, or are there any latency and delay issues?

6.1.1 Motor Speed & Travel Distance

The motor speed is a fundamental function of the robot, and in order for the expec-
tations and assumptions made by the agent and other software aspects, it needs to be
accurate and consistent. Figure 21 illustrates how an inconsistent motor speed can affect
the movement of the robot in the real world, causing the assumptions of the agent and
the real world to go out of sync.

This variation in speed and movement will affect the actual distance achieved by the
robot. This is has a negative impact on the entire system, as the robots own on-board
system now assumes it to be in the centre of a different cell, as does the agent. How-
ever, in the real world, the robot has not moved far enough to be in the centre of that cell.
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Figure 21: The agent and software have to make an assumption of how the robot actually
moved and how far it movement, which will differ to the actual movement in the real world.
This difference needs to be reduced as much as possible for the accuracy of the results to increase.

To illustrate this assume that every cell has a size of 10cm. This means that in order to
get to the next cell the robot needs to move 10cm. However, internal to the software,
cells are just represented via a simple co-ordinate such as (2, 5). If this co-ordinate is
changed to (3, 5) through an action that the robot has carried out, then the system
assumes that the robot has moved 10cm along the x-axis, and now sits at the centre of
the space represented by that cell. However, if the robot only travels 5cm then it is now
out of sync with where the software expects the robot to be. Because of this variance
between the real world and the assumptions of the software, any obstacles will be placed
incorrectly around the robot when the software tries to determine where it is safe for the
robot to travel.

Figure 22: The distance acheived by the robot is consistently lower than the intended distance,
and varies across a 6mm range.

Figure 22 shows how the achieved distance in the physical world varies and is consistently
lower than what the agent assumes. The data for this test can be found in Appendix
D. In this test the motors were set to a power level of 130 and an activation time of 0.5
seconds, as specified in Table 7 (p. 33).
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6.1.2 Drift

Another important factor in the long term accuracy of the robot and its ability to provide
reliable results is the amount of drift that it experiences. Drift is a negative effect caused
by a power imbalance between each of its wheels and/or motors. This power imbalance
might be caused by a difference in the amount of friction between the wheels and ground,
actual voltage delivered to the motors, the motors being slightly out of alignment and
other slight variances on the robot and in the environment. The combined sum of all
these variances can cause the robot to experience a pull or push in a perpendicular di-
rection to the direction in which the robot is travelling.

In Section 5.1, Figure 14, during the calibration of the motors the amount of drift that
the robot experienced was measured and plotted as a percentage of the distance that the
robot travelled. Additionally this chart shows that the robot tends towards a leftward
drift, as opposed to a rightward one. This may suggest a couple of a possibilities.

• Tension from the USB cable connecting the robot to the agent host exerts a tugging
force on the robot pulling it to the left.

• The right motor receives a higher voltage that the left motor.

The affect of the agent host in regards to the amount of drift can be determined by posi-
tioning it to either the left or right of the robot as it moves and checking which direction
it pulls.

A number of possible solutions exist to be able to resolve this problem.

The first solution is to remove any physical connection between the agent host and the
robot. Currently the robot requires 2 USB connections to the agent host, one for com-
munication and power to the Arduino and the other for power to the motors. The USB
connection used to power the motors was introduced in the improvement mentioned in
Section 2.2. By switching back to an onboard power supply for the motors then the
tension from the second cable will be removed. However, the reason for introducing the
second cable was to provide a more stable and reliable power source for the motors to
make the Motor Speed and Travel Distance consistent.

The reason for the increased reliability in the voltage delivered by a USB connection
is due to a combination of voltage regulation circuitry which is used to maintain and
convert a noisy voltage into a fixed level voltage. This circuitry could be moved onto the
robot to help balance out the voltage delivered by a battery to help maintain a consistent
motor speed and travel distance, whilst reducing the amount of tugging and drag caused
by physical connections to the agent host.

The second USB connection however poses more complications than the first. To begin
with, the connection is carrying a second power source, used to power the Arduino. The
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reason for this second power source is to prevent voltage spikes, that are caused by DC
motors, causing the Arduino to reset. This means that both the motors and the Arduino
can not directly run of the same power supply.

Moreover the connection is used to carry commands and information back and forth
between the agent and the robot. Without this physical connection, an alternate solution
needs to be found. Two possible solutions to this are outlined below.

1. Bluetooth or WiFi
Wireless technologies certainly address the problems of tension and drag induced
by the USB connection(s), but they introduce another problem themselves. This
is one of increased power requirements, which will reduce the life of the robot for
a single charge. This can be addressed though, by using a larger battery on the
robot. Another minor concern is that they also have an increased latency which
may cause slowdown to the entire system.

2. More powerful and capable onboard computer
The sole reason for sending back information to the agent host and determining
commands there is due to the lack of power and severe memory constraints of the
Arduino. By upgrading to a more powerful onboard computer the need to send
back information to the agent host reduces. Some boards such as the Beagleboard
offer an increased power and memory size, but also increase in cost quite drasti-
cally. However the recent development and availability of the Raspberry Pi makes
it possible to cheaply put a much more powerful computer into the robot. The
Raspberry Pi offers a 700MHz processor and 256MB of RAM, which is massively
more powerful than the Arduino. As with the use of the wireless technologies, this
is likely to reduce the lifespan of the robot.

Whilst both of these solutions do address the problem of physical connections to a com-
puter whilst exploring, they both come with their own disadvantages. An immediate
concern is that of power consumption. The first solution, Wireless, is an additional com-
ponent to be placed upon the robot resulting in the battery having to be shared out
between a larger pool of components. The second solution, a more capable onboard
computer, will require more power to run. Another consideration to take into account
with regards to the more powerful onboard computer is to do with seeing the result of
the exploration. Neither the Beagleboard nor the Raspberry Pi have built in wireless
capabilities and without any physical connection back to the agent host, they will require
a wireless module to be added in order to communicate the currently constructed map
back to the user.

In order to remove both USB connections between the agent host and robot, the onboard
power systems need to be enhanced to deliver more reliable power. Wireless technologies
will need to be added to the robot so that it has a means of communicating with the
user (or in the case of keeping the Arduino as the main onboard computer, communicat-
ing with the agent) and possibly upgrading the onboard computer from an Arduino to
something more powerful such as the Raspberry Pi or Beagleboard.
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The second solution to reducing the amount of drift experienced is to alter the voltage
delivered to each wheel to compensate for the drift. The idea is that when the robot
begins to drift in a particular direction, one of the motors can have the voltage delivered
to it either increased or decreased in an attempt to bring it back into a straight line.
Immediately a problem with this is apparent; the robot has no means of detecting drift
by itself, as it uses only a single fixed point IR range sensor positioned on the front of
the robot. This solution would require additional sensors in order to be affective. These
sensors would be able to detect the distance to objects either side of the robot and thus
detect when drift is occurring. Even with these additional sensors detecting distance
either side of the robot, they still have an effective range and if no obstacles are in range
either side of the robot, then it will be unable to determine if any drift is happening.
This makes the system only really suitable in small enclosed environments rather than
wide open spaces.

6.1.3 Sensors

The robot was built with just one IR range sensor in order to keep the components cost
to a minimum. However, during actual mapping tests it quickly became apparent that
this single point sensor is unable to perceive enough information to be able to get a clear
picture of the environment.

The problem of the limited perception offered by a single sensor is illustrated in Figure 23.
In this example the robot is depicted to be ”seeing” a cylindrical object directly ahead.
The side view is given to show that without the larger context of the environment it is
impossible to know anything about the surface that has been detected. What kind of
rotation does it have? What is the size of it? These are details about the object that the
robot has no means of detecting. It is only capable of detecting the distance to the point
directly ahead of the IR range sensor.

Figure 23: The robot is only capable of perceiving a very limited amount of information from
the environment when using only a single IR range sensor.
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The problem of limited perception becomes immediately obvious when an object partially
obstructs the path of the robot, but does not cover enough of that cell to break the sensor
beam of the robot. Figure 24 shows how the IR range sensor beam can pass by a closer
obstacle without interacting with it and report a distance to an obstacle further away.

Figure 24: The single beam projected by the sensor must be broken in order for the robot to
detect the obstacle. This makes it possible for objects to be immediate obstacles to the robot
without ever being detected.

In order for the robot to be able to reliably detect objects and build more precise maps of
the environment that it is exploring a more sophisticated object detecting system needs
to be implemented. Below, several different types of sensors and setups for the sensors
have been outlined as potential methods of overcoming the disadvantages of just one
single point sensor.

• Multiple Sensors
By increasing the number of sensors on the robot a more complete picture of the
surrounding world can be gathered.

• Sensor and Servo
By attaching the IR range sensor to a 360◦ servo, the sensor can be spun around to
different angles to able to get a complete 360◦ view of the environment around it.

The first and most immediate solution is to simply add more sensors to the robot in order
to increase the robots ability to perceive the world. Depending on the positioning of these
sensors, immediately the problem of being able to detect the rotation of an object can
be addressed. Figure 25 shows how placing three sensors across the front of the robot
allows it to detect three distances to the obstacle in unison, and thus get an idea of the
rotation of the surface that has been detected.

Additionally, this configuration of multiple sensors at different points along the robot will
allow for a more comprehensive detection of obstacles within a cell. The initial problem
came from the sole sensor on the robot was positioned in the middle of the robot and
thus would only detect objects that passed through the centre of the cell. By adding
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Figure 25: By measuring the distance to an object from 3 different points on the robot in
unison, a hint of the obstacles true rotation can be determined.

additional sensors to the sides of the robot obstacles that only partially occupy a cell can
also be detected.

However, the increase in sensors will put a greater demand on the power supply of the
robot. Assuming a migration to a completely wireless robot this would require increasing
the power capacity of the robots onboard batteries.

The second potential solution doesn’t increase the number of sensors, but instead adds a
servo and mounts the sensor upon it. Servos are components that can be rotated precisely
to specific angles. By using a servo capable of rotating through 360◦ the robot can then
move the sensor to look in any direction and measure the distance to it. This allows the
robot to take many different measurements without actually increasing the number of
sensors.

This approach has a number of advantages over the previous one. Firstly it does not
increase the power requirements as much as adding several more sensors. There is the
power requirement of the servo, but unlike the approach of multiple sensors, which re-
quires power for each sensor, this approach only ever has a single sensor. This means
that for each direction you wish to take a measurement, the first solution requires an
additional sensor and thus more power is required, but the second solution still stays at
the power needed for one servo and one sensor.

The second advantage is that it does not require as many I/O pins on the robots onboard
computer. Each sensor requires a single I/O pin to be able to send information to the
computer. The Arduino offers five analog pins, meaning a maximum of five different
measurements can be taken. However by using the servo and sensor solution, many
different measurements through 360◦ can be taken whilst only requiring a single analog
pin.
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6.2 Software

The software is responsible for automating the process of mapping the unknown environ-
ment without the need for human intervention. This software is comprised of a variety
of different algorithms which work together to help the robot navigate, explore and build
up an image of its environment, each of which need to work and respond in an expected
and logical manner.

6.2.1 Determining Destination & Path Finding

In any autonomous system that is required to move from point to point, there needs to
be a method for it to find a route between those two points. The goal of any pathfinding
algorithm is to find the shortest path from the starting point to the ending point in the
quickest time possible. The agent uses the A* algorithm in order to find the shortest path
to an unexplored cell that has been selected through a Local Search algorithm. This cell
might be anywhere in the world, from far away to right next to the robot. These cells
should be further away from the robot at the start of the exploration, and gradually
become closer to it as further cells become either obstructed or observed.

However, is this method of selecting a destination effective? Or could it be made more
effective.

When selecting a destination the agent demonstrates a tendency to repeatedly select cells
that it has no way of reaching. This in itself is largely unavoidable, due to the need of
selecting the cell in order to be able to test to see if that cell is reachable. However the
agent doesn’t mark that cell as obstructed, but leaves it in the unexplored state. This
has the negative effect of allowing the algorithm to repeatedly return to that cell and
keep testing it, regardless of the fact that it has already been found to be unreachable.
This oversight in the algorithm allows for it to take a potentially infinite amount of time
in trying to select a reachable cell, as it repeatedly loops through unreachable unexplored
cells.

This clearly is not an effective or efficient way of finding a new destination, as poten-
tially large amounts of processing time are used up trying to find a new route to explore.
Additionally anytime the agent is trying to search for a new route, the robot is idle and
consuming power.

The most apparent solution to this is to mark those unreachable cells as obstructed, thus
narrowing the search scope down with each successive failed attempt to find a new path.
This does not address the problem completely though, as the agent still may potentially
scan through large amounts of the unreachable environment before finding a new route
to take.
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Another solution that would help reduce the amount of search time for new routes, is to
set the remainder of a path to obstructed if the agent is forced to cancel and redetermine
a path. Currently the agent will redetermine the cell with the best cost as its destination
if it encounters an obstacle in its path, and thus recalculate its route. Prior to choosing
this new destination, the remainder of the path could be immediately traversed by the
agent and each cell it passes through set as obstructed. If the agent later manages to di-
rectly observe those cells that were automatically set to obstructed the probability of the
cell being occupied will be reduced, making it possible for the robot to be pass through
those cells. However, the number of unobserved cells will have diminished resulting in a
smaller search space to test when searching for a new route.

The current performance of actually calculating the path is very good. Figure 26 shows
how the agent is able to determine the route through an incomplete maze to reach its
destination.

Figure 26: This illustrates how the path finding algorithm is able to determine the shortest
route through an incomplete environment to its destrination, successfully determining that it can
travel through unoccupied cells and not occupied cells. The cyan cell represents the destination
and the magenta cell represents the robots current location.

Ultimately this shows that even though the agent is able to determine the shortest path
to take, due to potentially checking the same unreachable destination cell repeatedly, it
may never find a valid path to explore.
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6.2.2 Exploration

One of the core premises of the project was to find a way in which a robot could explore
an unknown environment to construct a map of it. In order to accomplish this task it
had to be able to explore that environment in such a way that it would not miss any
important aspects of the environment.

To do this the robot needed to employ a search strategy that would not only collect
as much information about the environment as possible, but also compensate for the
limited sensor capabilities of the robot. The strategy employed by the agent currently,
is to rotate through 360◦ at each cell it visits and measure the distance to the nearest
obstacles at each 90◦ interval. This allows the robot to build up a more complete picture
of its environment in a single pass rather than having to repeatedly return to places to
complete its exploration.

There are a number of problems in this approach however. The first major one is that
the problem of drift experienced by the robot when rotating is largely compounded in
doing this. For each observation the agent wants to make, the robot needs to rotate 90◦,
leading to a drift error being added four times in the course of one set of observations.
Add this up over the course of its exploration of the environment and this could very
quickly become large enough to make results meaningless.

The second problem is with the USB cables connecting the robot to the agent host. As
the robot is made to spin around to take measurements the cables will be twisted together
making them increasingly taut, leading to a increased pulling on the robot and increasing
its drift.

The third problem is that this spinning motion is very inefficient. In order to look around
itself the robot is having to expend a lot of power rotating around just to take measure-
ments. As discussed in Section 6.1.3, increasing the number of sensors on the robot will
help to address this problem, particularly if the increase in sensors allows it to take mea-
surements in all directions without needing to rotate. This could be accomplished by
putting a single sensor on each side of the robot, or attaching a sensor to a servo.

An alternative method of exploring the environment is to simply take measurements from
directly ahead of the robot. This approach however is not an optimal solution. Figure 27
shows how the picture of the environment doesn’t change as the robot moves from one
cell to the next when using only a single sensor, whilst when taking measurements in all
directions around the robot it builds up a picture far quicker.

This shows that although the method of taking measurements from all around the robot
is far quicker and thorough in collecting information about the world, unless the robot
has multiple sensors, or a servo mounted sensor, it requires a lot of excessive spinning
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Figure 27: By taking measurements in four different directions the robot is able to build up a
picture of the environment far quicker than it would be able to if it just took measurements to
obstacles directly ahead.

which can lead to a larger build up of errors and inaccuracies.

6.3 Overall Performace

It was shown in Section 5.4 that the software for the agent all works correctly and as
expected. However this does not demonstrate the performance of the entire system, in-
cluding the movement and sensor functions.

Figure 28 shows the progress of the robot as it maps out a physical environment that is
completely empty. Immediately it is obvious that the exploration is not happening cor-
rectly. Firstly, the robot is only ever meant to go horizontal and vertically, not diagonally.
This movement error in the physical world can be see in the virtual world representation
given by the agent, and shows how the problem of drift leads to completely unreliable
results. Figure 29 further shows how the imprecision and inconsistencies of the robots
movements prevent it from being able to produce a reliable result.

Additional images of explorations can be found in Appendix E.
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Figure 28: An example of results produced by the robot as it maps out an empty environment.
These results demonstrate how the movement functions of robot are imprecise and inconsistent.

Figure 29: An example of results produced by the robot as it maps out an obstructed en-
vironment. These results reiterate how the movement functions of robot are imprecise and
inconsistent.

7 Future Work

The scope of the project was to determine the feasibility of mapping unknown environ-
ments using a robot that had been assembled for an extremely low cost. Advancements
in technology, even in the space of a year, have brought relatively large computational
power to a small single board computer, the Raspberry Pi, that is available for a price
similar to the of the Arduino. As discussed in Section 6.1.2, this alone will allow certain
limitations of the current robot, such as drift to be overcome. The cheap availability of
this increased processing power which can be put onboard the robot, opens the scope
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to other techniques of perceiving the environment such VisualSLAM. VisualSLAM uses
standard images captured by a camera (such as a Webcam) to determine where objects
are in relation to the robot.

VisualSLAM algorithms are becoming increasingly sophisticated and as the available
power, and small sizes of low end computers increases, the ability to incorporate such al-
gorithms in to cheap robots becomes easier. This ultimately means that the dependancy
of a large array of range sensors onboard the robot becomes less important, as the in-
formation these sensors gather can be inferred from images captured using VisualSLAM.
This opens up the possibilities of integrating such techniques in to the robot to help it
build a clearer and more thorough map of the environment than is currently possible with
just a single sensor.

Even without going to VisualSLAM, the accuracy and efficiency of the actual robot has
many aspects that need improving. Perhaps most importantly of all, a solution to the
drift problem needs to be found. When running the exploration algorithms in both the
simulator and real world, there is one factor that is not simulated, that happens in the
real world; Drift. Currently the robot is unable to produce a map in the real world due to
errors caused by drift adding up very quickly. This shows that drift is the most immediate
and critical issue that needs to be resolved. In Section 6.1.2, numerous methods were
addressed that may have the potential to reduce drift. These are outlined below.

1. Wireless communication to the user’s computer. Bluetooth, WiFi or Radio?

2. The agent sits onboard the robot, rather than on the computer, meaning that only
a map of the environment is sent back to the user.

3. On-board battery with regulated voltage supplying power to the onboard computer,
motors and sensors.

4. More powerful onboard computer, such as the Raspberry Pi.

5. Additional sensors to determine if the robot is drifting.

Each of these possible solutions needs to be explored in further detail to determine exactly
what benefit it will have in addressing drift. Is it possible to do so by only implementing
one or two of these methods, or would all of them need to be implemented? Do any of
them address the issue, or is something more complex needed?

There is also much room for expansion in the agent itself. The basic structure used
works with a single sensor and can be improved with little effort to support several sen-
sors measuring distances all around the robot, but it will not be able to handle input from
a VisualSLAM algorithm should that be implemented. Moreover, if VisualSLAM should
be implemented how will this effect world representation? Can VisualSLAM be made to
work with the methods discussed in Section 3.1, or will new methods need to be explored?

Moreover, the search strategy of the agent needs to be improved to help prevent it from
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getting stuck in loops, or carrying out large amounts of unneeded actions. As mentioned
in Section 6.2.1, numerous alterations to how the agent handles paths that have become
obstructed could be made to help reduce the search space available to the agent and thus
help to prevent loops and getting stuck.

It is also clear that any future work conducted is going to require a larger budget than
what was allocated for this project, as a larger amount of hardware is likely going to be
required.
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8 Conclusion

Autonomous robots that deal with exploration of unknown environments have histori-
cally been expensive to produce. Ranging from the Mars Exploration Rovers at $820
Million (AssociatedPress 2007) to cheap robot vacuum cleaners such as Samsung’s Nav-
iBot Robotic Cleaner at £330, the cost of this has not yet dropped below the £100
mark. The aim of this project was to determine if this was possible to do. From the tests
carried out using a robot constructed for around £70 it certainly seems as though it is not.

However, as mentioned in Section 7 the recent advances in computation power available
on cheap, small onboard computers is making what were previously harder to access al-
gorithms (i.e, VisualSLAM) due to their higher computational demands more readably
available. This means that it is plausible that such robots will become possible within
the next few years for less than £100.

Many of the issues in robotic exploration lie in the hardware of the robot. Many factors
can undermine the affectiveness of the robot, such as imprecision in alignments of compo-
nents, sensor inaccuracies, unreliable voltages, weight distribution through the robot or
even components failing. Each of these problems when identified is not as easy to correct
as problems that occur in software. Very often when a problem occurs it may require a
new part to be bought in order to fix it, or the complete design to be altered in order
to correct the alignment of a single component that was out. The hardware issues can
become very expensive and very time consuming. Many of these issues can be overcome
with access to high precision tools, which in themselves can be costly.

It is far easier to make software precise however, as everything is dealt with in a digi-
tal and mathematical world where altering several values in source code can change the
outcome of an algorithm instantly. This ability to rapidly develop and engineer the al-
gorithms behind robotic exploration means that the software costs of such robots can be
potentially much lower than the hardware costs.
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9 Reflection on Learning

Now that the project is complete, I can look back at aspects of the project that have
either posed challenges and complications, and how I would approach these differently in
the future.

A major part of the project that I believe I could have done better, is the construction
and designing of the robot. Much of the design and planning for the robot was done for
the software aspects of it, rather than the hardware. The result of this was that many
parts of the robot were either not constructed optimally, or had to be modified to correct
shortcomings that were identified after robot construction had been completed.

Additionally, time should have been allocated in the project plan to learning various skills
required to build the robot, rather than trying to learn whilst assembling it. This was
particularly evident in the soldering required for some components. Several times whilst
soldering components, the heat from the soldering iron damaged them to the point of
not working. By learning the required skills to solder electronic components, prior to
beginning construction of the robot, would help to overcome the problem of heat damage
to components.

This ultimately meant that several components either did not work once attached (and
thus required replacements where possible), or were intermittent, requiring modifications
to be made to the robot.

The time management of the project was generally good, although due to some bugs
and problems that arose in the software for the agent, a large section of it had to be
redeveloped causing a delay to progress. Although this type of problem can not be 100%
anticipated, better planning for the project can help to pin point where potential problems
may exist.
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Glossary

A* A widely used pathfinding and graph traversal algorithm due to its ability to effi-
ciently find optimal paths between two points. 14–18, 44

Actions Queue A first-in-first-out (FIFO) queue in which the agent adds actions to
ready for them to be performed at a later time. 27, 28

Agent Something the perceives and acts in a rational and logical manner. (Russel &
Norvig 1995, p.7). 5, 6, 8, 10, 12–15, 17–28, 37, 38, 40, 44–47, 49

Agent Host The computer upon which the Agent runs. 24–26, 39, 40, 46

Arduino An open-source prototyping platform. 5, 7, 8, 11, 21–25, 29, 39, 40, 43, 48

Autonomous System A system that can operate and make decisions independent of
any external control. 44

Baud Transmission speed, or how many symbols/pulses per second are used. 22, 23

Beagleboard Like the Arduino, the Beagleboard is a prototyping platform. However
it is based on the ARM architecture and offers a 1GHz processor and 500MB of
RAM. It is available for $150. 40

Bit Array An array in which every value is represented by a single bit. Typically
accessing these values requires Bit Operations . 10–12, 35

Breadboard (Protoboard) Used for prototyping electronics without the need for solder-
ing. 8

Confidence Map A form of matrix which holds values, or counts, representing proba-
bilities of something. 11, 13

Cost Function A function that calculates the benefit of doing something, and producing
a score (cost) as a result. 14

Drift An undesirable product of systematic and nonsystematic errors which cause move-
ment, perpendicular to the desired direction. 20, 29, 37, 38, 41, 46, 47, 49

IR Range Sensor An electronic component which emits a single infrared beam which
can be used to measure the distance to an object. 19–22, 25, 30–32, 35, 37, 41, 42

LiPoly Lithium-polymer is a type of rechargeable battery which is composed of several
”secondary” cells in parallel to increase the discharge current capability. 8

Local Search A meta heuristic method for solving computationally hard problems. 5,
14, 15, 17, 18, 44

Matrix A rectangular array of values which can be stored as a 2-dimensional array. 10,
11, 13, 17
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Motor Power The value given to the Pulse-With-Modulation (PWM) output of the
Arduino chip to vary the speed of the robot’s motors.. 29–31

NiCad Nickel-cadmium is a type of rechargeable and readily available battery, typically
available as AA, AAA or 9V Batteries in shops. 8

On-board System The software that runs upon the Arduino on the robot. 19, 22, 24,
25, 35, 37

Plasticard High Impact Polystyrene Sheet (HIPS) is a material commonly used in model
building. 7

Pulse-With-Modulation By rapidly alternating between 5V and 0V on a digital signal,
an analogue signal can be simulated which allows for a varying voltage and current
to be delivered to components. This method can be used to change motor speeds,
the brightness of LEDs, etc. 25, 29

Raspberry Pi A small, cheap computer that is the size of a credit card. It provides a
700MHz processor and 256MB of RAM, and is available for £20. 40, 48, 49

Search Strategy The route constructed by the agent to find information about its
environment that is currently unknown. 11, 14, 46, 49

VisualSLAM Visual simultaneous locatisation and mapping, is a technique used by
robots to build up knowledge of its environment through the use of a webcam, or
similar image capturing devices. 48, 49
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Appendix A

These are the results from the Speed Tests for the robot. The purpose of the Speed
Tests was to determine how fast the robot was able to travel at different levels of power
delivered to the motors.

Motor Activation Time Motor Power Speed (m/s) Drift (m)

0.5 50 0.031 0
0.5 50 0.029 0
0.5 50 0.031 0
0.5 55 0.034 0
0.5 55 0.035 0
0.5 55 0.037 -0.0005
0.5 60 0.042 0
0.5 60 0.048 -0.0005
0.5 60 0.042 0
0.5 65 0.048 -0.001
0.5 65 0.049 -0.0005
0.5 65 0.053 0
0.5 70 0.058 -0.001
0.5 70 0.056 -0.0005
0.5 70 0.059 -0.0015
0.5 75 0.0625 0
0.5 75 0.065 -0.00015
0.5 75 0.066 -0.001
0.5 80 0.071 -0.0015
0.5 80 0.0695 0
0.5 80 0.074 0
0.5 85 0.082 0.0005
0.5 85 0.082 0
0.5 85 0.082 0
0.5 90 0.088 0
0.5 90 0.09 0
0.5 90 0.091 0
0.5 95 0.096 0.0005
0.5 95 0.097 0.001
0.5 95 0.096 0
0.5 100 0.101 -0.0005
0.5 100 0.1015 0
0.5 100 0.0985 0.0005
0.5 105 0.105 0
0.5 105 0.1015 -0.001
0.5 105 0.106 -0.001
0.5 110 0.109 0
0.5 110 0.107 0
0.5 110 0.107 0
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Motor Activation Time Motor Power Speed (m/s) Drift (m)

0.5 115 0.1135 -0.0005
0.5 115 0.1135 -0.00025
0.5 115 0.114 0
0.5 120 0.119 0
0.5 120 0.1175 0
0.5 120 0.1185 -0.0005
0.5 125 0.1215 0.001
0.5 125 0.122 0
0.5 125 0.123 0
0.5 130 0.124 0
0.5 130 0.124 0
0.5 130 0.119 0
0.5 135 0.12 0
0.5 135 0.125 -0.001
0.5 135 0.126 -0.0005
0.5 140 0.126 0.0005
0.5 140 0.1285 0
0.5 140 0.1285 0
0.5 145 0.131 -0.00025
0.5 145 0.1335 -0.00025
0.5 145 0.135 0
0.5 150 0.133 -0.0005
0.5 150 0.136 0
0.5 150 0.1365 -0.0015
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Appendix B

These results are for measuring the accuracy of he IR Range Sensor on the robot. The
results were collected by measuring the output voltage of the sensor with an object
positioned at different distances from it.

Object Distance Output Voltage

5 2.6
6 2.62
7 2.49
8 2.19
9 1.9
10 1.76
15 1.19
20 1.05
25 0.73
30 0.61
35 0.52
40 0.53
45 0.39
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Appendix C

These results come from the resulting offset of position of the robot after following a
square wave path, from where it should have been.

Offset Distance X Offset Distance Y Offset Distance

-10.8cm -2.8cm 11.2cm
-8.9cm -6.6cm 11.1cm
-7.3cm -4.7cm 8.7cm
-6.5cm -4.1cm 7.7cm
-7.0cm -6.7cm 9.7cm
-9.7cm -8.2cm 12.7cm
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Appendix D

These are the results are from the Distance Tests to determine how accurate and consis-
tent travel distance of the robot is. Negative values on the X axis represent an offset to
the left, whilst negative values on the Y axis represent being short of the target.

Motor Power Motor Activation Time Distance Traveled (cm)

130 0.5 11.5
130 0.5 11.9
130 0.5 11.5
130 0.5 11.6
130 0.5 11.6
130 0.5 11.5
130 0.5 11.7
130 0.5 11.6
130 0.5 11.3
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