

Final Report
2 Dimensional, Multiplatform Space Invaders Game Using

Microsoft XNA Game Studio

Written by Stephen McQueen, Supervised by Dr F.C. Langbein and moderated by Prof R.R. Martin

Cardiff University School of Computer Science and Informatics

Date of Completion: 4
th

 May 2012

Final Report Stephen McQueen

2 | P a g e

Abstract

The aim of this project is to take a fresh look at a classic arcade video game and attempt to

re-implement it using a modern programming environment along with modern

programming techniques and devices to be compatible with multiple hardware platforms.

This project report will take you through the logical steps undertaken to appreciate and

understand the game as well as to illustrate the challenges faced when implementing my

own version of the game. Ultimately this project will attempt to “improve” on the original

game by increasing its compatibility with hardware platforms, and by building on the games

original functionality to create an overall more enjoyable gaming experience.

Acknowledgements

This project would not be feasibly achievable without the continuous help and support and

feedback provided to me by my project supervisor Dr.F. Langbein. Dr. Langbein has provided

me with invaluable advice in almost all aspects of this project as well as motivating me to

push this project to its absolute limit whilst providing much encouragement and enthusiasm

throughout.

Finally I would also like to thank Microsoft and their website create.msdn.com/en-US/ along

with its community for providing me with a free programming environment (Visual Studio

2011) and frameworks (.NET, XNA), along with highly detailed tutorials and samples of

which have proven to be absolutely crucial to the overall success and feasibility of the

project.

Final Report Stephen McQueen

3 | P a g e

Contents
Introduction .. 6

Design ... 6

Deliverables Recap .. 6

Entity Relationship Diagram ... 6

Game Architecture .. 7

Initialise ... 8

Load Content ... 8

Game Loop .. 8

CRC Cards .. 9

Class: Player .. 9

Class: Enemy (Master)... 10

Class Common Enemy: Enemy .. 11

Class Uncommon Enemy: Enemy .. 11

Class Very Uncommon Enemy: Enemy ... 11

Class Mystery Enemy: Enemy ... 12

Class Laser ... 12

Class Enemy Laser ... 13

Class Barriers ... 13

Class Main Menu Screen ... 14

Class High Scores Screen ... 15

Class Paused Screen .. 15

Class Instructions Screen .. 17

Class Play Screen ... 17

Class Power Up .. 18

Class Bayesian Network .. 19

Main Menu Screen User Interface .. 19

Game Screen User Interface ... 20

High Scores User Interface .. 21

Control User Interface .. 21

Instruction Screen Design ... 22

Game Screen Management Flow Chart .. 23

Player Input Design Considerations .. 24

Collision Detection .. 25

Final Report Stephen McQueen

4 | P a g e

Accurate Collision Detection ... 26

Barrier Design Considerations .. 27

Aspect Ratios ... 27

Bayesian Network ... 28

Probabilities and Truth Table .. 29

Illustrative Example ... 29

Enemy A.I States ... 31

State Diagram .. 31

State Management ... 32

Break Away Enemies ... 32

Game Application .. 33

Managing Break Away Enemies .. 33

Updating Firing Enemies ... 34

Enemy Block Jagged Array .. 34

Update Firing Enemy Algorithm .. 35

Managing Enemy Movement .. 36

Creating and Updating a High Scores File ... 37

Implementation .. 38

Challenges ... 38

Learning C# and XNA Game Studio ... 38

Xbox 360 Testing ... 38

Positioning Accuracy ... 38

Updating Firing Enemies ... 39

Implementation of Bezier Curve ... 39

Bayesian Network ... 39

Accessing Internal Storage Device for High Scores ... 39

Program Robustness ... 40

Code Explained .. 40

Update Firing Enemy Pointers .. 40

Collision Detection .. 40

Bayesian Network ... 41

Bezier Curve and Generate Break Away Thresholds... 41

Results and Evaluation ... 42

Classic Vs Modern Comparisons ... 42

Final Report Stephen McQueen

5 | P a g e

Average Score ... 42

Average Round Number .. 43

Enjoyment Satisfaction Survey ... 44

Evaluation of User Interface Design.. 45

Evaluation of Solution against Initial Specifications and Project Aims ... 46

Evaluation of Project Approach .. 47

Future Work.. 47

3 Dimensional Game ... 47

Improved Collision Detection ... 47

Collaborative Enemies .. 47

Different Break Away Paths .. 47

Difficulty Settings .. 48

Conclusion .. 48

Reflections .. 48

References .. 49

Final Report Stephen McQueen

6 | P a g e

Introduction
The first aim of this project is to implement a clone version of the original Space Invaders

arcade game using a modern programming environment and modern programming

techniques which is compatible with numerous hardware platforms.

The second aim of the project is to then build upon the original game and attempt to

improve it by making noticeable game play changes that ultimately allows for a more

enjoyable and less predictable gaming experience.

The interim report includes an in depth research of all aspects of the original Space

Invaders, covering its history, challenges and potential areas for improvement. It also covers

an in depth study with regards to implementing some form of “game A.I” to the modern

version of the game and how this could be achieved.

This report will cover in depth the sheer scale of the project and dissect it into small and

concise sections. It will cover the challenges faced during the implementation stage and

provide an insight to the program source code as well as in game screenshots to illustrate

the project progress and solution. Finally the report will reflect on the learning outcomes

gained and whether the program meets the specification outlined in the Interim Report.

Design

Deliverables Recap
Before tackling any design of the game it is crucial to note the main objectives (deliverables)

that the solution must satisfy in the form of a specification. Based on my previous research

my high level specification for the program is the following:

• Be multi platform; namely for the Xbox 360, Windows OS PC and Windows OS

Phone.

• Include a playable clone of the original game.

• Include a modernistic version of the game.

Entity Relationship Diagram
The first step in the design phase is to identify any potential objects that would need to be

implemented in my version of the game. This is easily achievable by playing the original

game a few times over and the notable objects are:

• Player

• Enemies

• Mystery Enemy

• Laser

• Enemy Laser

• Barriers

• Menu screen, high score screen, play screen.

The next step is to then map the relationships between the potential objects to gain an

understanding of how these objects would interact with one another. In order to do this an

Final Report Stephen McQueen

7 | P a g e

entity relationship diagram has been created (otherwise known as ERD) to map the

relationships and visually express them.

You may notice in the ERD that a game object has been added which acts as a central hub to

all objects involved. As mentioned in the interim report, in most games (if not all) there

exists a central “game loop” object in which controls the continuous running of the game in

any state except when the player opts to exit the game entirely. Having this central “Game”

object normalises the game data such that there is always a singular relationship between

any object and the Game object whereas oppositely the Game object can have any

relationship to any object. This therefore compliments the suggested game engine

architecture.

Game Architecture
The next stage is to plan where and how these elements will fit into the game engine

architecture provided by XNA Game Studio. The provided architecture is shown in the form

of a data flow diagram below:

Figure 1 – Entity Relationship Diagram

Figure 2 – High Level Data Flow Diagram

Final Report Stephen McQueen

8 | P a g e

From Figure 2, the game engine can be broken down into three basic steps:

• Initialise

• Load Content

• Game Loop

Initialise

The initialise part of the architecture is used to declare variables and instantiate classes. In

Layman’s terms this stage is used to “set up” the game before running it. A data flow

diagram of this part of the engine is shown below:

As you can see from Figure 3, this part of the engine simply takes hardware specification

information from the device and loads the game in readiness to be played.

Load Content

The load content part of the engine is very similar to the initialise stage but with one major

difference. This part of the engine is solely dedicated to loading any graphical

textures/fonts/animations from the internal storage device ready to be used by the game.

As you can see from Figure 4, this part of the engine simply looks up the file paths of the

game resources and loads them into the game.

Game Loop

This final part of the game engine is the “heart” of the whole architecture. The game loop is

essentially an infinite loop that will keep executing at a certain rate and executing the code

therein. The game architecture makes use of a game loop that makes constant calls to a

“Draw” function which will update all of the graphics on the screen whilst the game loop

updates the physical object positions, states etc.

Figure 3 – Low Level Data Flow Diagram

Figure 4 – Low Level Data Flow Diagram

Final Report Stephen McQueen

9 | P a g e

At this stage it is now possible to plan further detailed specifications for each noted object

with the overall intention to map the specifications to CRC cards which will be extremely

useful when it comes to the physical implementation of the game. As noted in the Interim

report the specification for each object is as follows:

• Player

o Move horizontally at the bottom of the screen;

o Fire Lasers;

o Have a finite number of lives;

o Have a score associated with the number and type of enemy destroyed.

• Enemies

o Move as a group from one side of the screen to the other;

o Have a set score associated with each enemy;

o Only enemies who have the line of sight of the player can fire lasers.

• Barriers

o Absorb laser damage from both the player and the enemies;

o Have a finite amount of damage it can take before being destroyed.

• Screens

o Be intuitive and effectively display all critical information (health & score).

• Lasers

o Move up or down the screen depending on who fired it.

From here it is relatively simple to insert these objects into CRC card format. The next step is

to try and formulate their behaviour as stated in the specification as high level methods and

assign basic variables to each object.

CRC Cards
Following on from the specification, the next focus is to propose viable classes for each of

the objects outlined previously. An effective way to do this is with the use of CRC cards. This

will allow for effectively “programming” classes along with their associated variables and

methods in order to gain a better understanding of the bigger picture.

Class: Player

This class is probably one of the most self explanatory with regards to what it needs to do

and what variables are required. The basic attributes for this class are as follows:

Figure 5 – Low Level Data Flow Diagram

Final Report Stephen McQueen

10 | P a g e

Attributes: Type: Description:

Lives Int Number of lives for the player

Score Int Current score for the player

Position Vector Coordinate of the top left corner of

the player rectangle

Movement

Speed

Float The movement speed for the player

Shield Boolean Dictates whether the players shield is

activated or not

Dual Lasers Boolean Dictates whether the players dual

lasers are activated or not

Player Rectangle Rectangle The bounding box (with aspect ratio

applied) for the player texture to be

drawn

Texture Texture2D The graphical texture for the player

Active Boolean Represents if the player is alive/dead

The basic methods that will be associated with a player class are also reasonably self

explanatory given the specification. One method that has been added that is less

explanatory however the “Draw” method is. This method has been added in anticipation of

the requirement for the game to draw the player object to the screen.

Method: Parsing: Description:

Void Initialise() Player textures,

Viewport

Initialise the player object with

the required textures

Void MoveLeft() n/a Update the players position with

regards to its movement speed

Void MoveRight() n/a Update the players position with

regards to its movement speed

Void Draw() SpriteBatch Draw the player texture given its

position

Void LoseLife n/a Decrement the players current

remaining lives

Class: Enemy (Master)

Sticking with the original Space Invaders game it is clearly noted that in each row (or every

other) there is a different type of enemy of which is worth more points (working from

bottom up). Therefore at the design stage it is necessary to prepare a suitable architecture

for managing several types of an enemy. A relatively easy way to do this is to use

polymorphism and create a super class for an enemy object which will contain all basic

variables and behaviours. The architecture for this can be illustrated diagrammatically like

so:

Figure 6 – High Level Class Diagram

Final Report Stephen McQueen

11 | P a g e

With this in mind the attributes for the enemy super class are as follows:

Attribute: Type: Description:

Value Int The value added to the players

score if that enemy is destroyed

Position Vector The coordinate of the top left

hand corner of the enemy

rectangle

State Enum The various states an enemy

object can be in.

PreviousState Enum Represents the previous state

the enemy was in.

Speed Float Dictates the speed of the

enemy

Enemy Rectangle Rectangle The bounding box (with aspect

ratio applied) for the enemy

texture to be drawn

Texture Texture2D The graphical texture for the

enemy

These attributes will be applied to every sub class of enemy that is created. The next step is

to create the methods that each enemy will be likely to use. Keeping in mind the behaviour

of the enemies in the original Space Invaders it is noted that each row of enemies move

together in a stuttering fashion. Therefore a method will be added to the super class that

will be able to update an enemy’s position on the screen.

Method: Parsing: Description:

Void Initialise() Enemy Texture,

Viewport

Initialise the enemy object with

its texture and position

Void MoveLeft() n/a Move the enemy by updating

its rectangle position

Void MoveRight() n/a Move the enemy by updating

its rectangle position

Void MoveDown() n/a Move the enemy by updating

its rectangle position

Void Draw() SpriteBatch Draw the enemy texture given

its position

Class Common Enemy: Enemy

• Attributes and Methods same as super.

• Value attribute modified to low score.

• Overridden draw method.

Class Uncommon Enemy: Enemy

• Attributes and Methods same as super.

• Value attribute modified to medium score.

• Overridden draw method.

Class Very Uncommon Enemy: Enemy

• Attributes and Methods same as super.

Final Report Stephen McQueen

12 | P a g e

• Value attribute modified to high score.

• Overridden Draw Method.

Class Mystery Enemy: Enemy

The mystery enemy will require a few extra methods and attributes to any of the main

enemies found in the game due to its difference in behaviour. Namely an extra method that

will be added is “Generate Speed”. This will generate a random speed in which the enemy

will travel across the screen. The purpose of this is that the faster the enemy is moving, the

more points it will be worth upon destruction. However this fact will not be known to the

gamer, the point of this is for the player to make the association of the above and then

prioritise whether to try and shoot it down or not. The method details in CRC card form can

be found below:

Method: Parsing: Description:

Void GenerateSpeed n/a Generate a random speed for

the mystery enemy and

calculate its value based on its

speed.

Class Laser

The laser classes are by design one of the simplest classes that will be implemented in the

game due to its simplistic behaviour in the game. The attributes required for a laser object is

the following:

Attribute: Type: Description:

Speed Float The speed of the laser

Texture Texture2D The laser graphic

Position Vector The graphical texture of the

laser

Active Boolean Represents whether the laser is

active or if it has been

destroyed

Laser Rectangle Rectangle The bounding box (with aspect

ratio applied) for the laser

texture

As per the initial specification, if a laser is fired by the player then it is to travel up the screen

until it collides with an object or reaches out of bounds.

Method: Parsing: Description:

Void Initialise Laser Texture, Viewport Initialise the laser object with

its texture and position

Void UpdatePosition n/a Update the position of the laser

so it travels up the screen

Void Draw SpriteBatch Draw the laser graphic to the

screen

Final Report Stephen McQueen

13 | P a g e

Class Enemy Laser

The enemy laser class is very similar to its player laser counterpart if not exactly. The only

difference between them is their behaviour namely, that a laser fired by an enemy will

travel down the screen. Therefore all of the enemy laser attributes will be kept the same as

shown previously.

Attribute: Type: Description:

Speed Float The speed of the laser

Texture Texture2D The laser graphic

Position Vector The graphical texture of the

laser

Active Boolean Represents whether the laser is

active or if it has been

destroyed

Laser Rectangle Rectangle The bounding box (with aspect

ratio applied) for the laser

texture

Note that the following methods will also appear exactly the same as the previous laser

class as CRC cards do not delve into too much detail.

Method: Parsing: Description:

Void InitialiseLaser Laser Texture, Viewport Initialise the laser object with

its texture and position

Void UpdatePosition n/a Update the position of the laser

so it travels down the screen

Void Draw SpriteBatch Draw the laser graphic to the

screen

Class Barriers

The barriers are by design to protect the player during the first couple of rounds of game

play, or for more experienced players to reach the highest possible round before dying.

With this in mind a barrier will be made up of several “barrier blocks”. The barrier class will

be used to create barrier block instances in game. Each barrier block will have the following

attributes:

Attribute: Type: Description:

Barrier Texture Texture2D The graphical texture of the

barrier

Barrier Rectangle Rectangle The bounding box (with aspect

ratio applied) of the barrier

texture

Health Int The amount of health per

barrier block

Position Vector The position of the barrier

relative to the top left hand

corner of the rectangle

Active Boolean Represents whether the barrier

block is active or not

Final Report Stephen McQueen

14 | P a g e

As each barrier block is stationary in game, the number of methods required will be at a

minimum. The only bespoke method required is one to reduce the health of the barrier

when it is hit.

Method: Parsing: Description:

Void Initialise() Texture, Viewport Initialise the barrier object with

its texture and position

Void LoseLife() n/a Decrement the current

remaining life of the barrier

Void Draw n/a Draw the barrier object relative

to its position

Class Main Menu Screen

The next section of classes is dedicated to the numerous “screens” that will be used in the

game. A screen represents the current state of the game and what is to be shown on the

screen given that state. Each screen will share common attributes that will include vectors

for text positions etc. The attributes for the main menu screen are as follows:

Attribute: Type: Description:

Text Positions Vector The coordinates for all of the

text to be drawn to screen

Menu Position Int Represent the option the user

currently has selected on the

screen

Fonts SpriteFont The different fonts used in the

main menu

Sub Menu Active Boolean Represents whether or not to

expand the sub menu

Each screen will also have its unique set of methods based upon how the user will navigate

through the textual options shown on the screen. As this is the main menu screen the user

will have to do a fair amount of navigation in order to select the option they like. With this

in mind the methods required are as follows:

Method: Parsing: Description:

Void Initialise() Texture, Viewport Initialise the main menu object

with its texture and position

Int Menu Up Current menu position Update the menu

Int Menu Down Current menu position Update the menu

Void Expand Sub Menu n/a Expand the sub menu

Void Draw n/a Draw the main menu

Void Change Font() Menu position, smaller font, bigger font Change the font size and colour

of the highlighted option

Void Draw Sub Menu() n/a Draw the main menu along

with the expanded sub menu

As you can see from the table above a very basic option manager will be implemented

which will work by recording and manipulating a single integer value to reflect the current

Final Report Stephen McQueen

15 | P a g e

option that is highlighted by the user. In order to make the user’s choice obvious to the user

a “Change Font” method will be implemented which will increase the size of the font that

has been highlighted. There is also the possibility to change the colour of the selected

option in order to emphasise this.

Class High Scores Screen

The high scores screen is by design to do one thing, namely to effectively portray the highest

scores achieved by previous players and the high score achieved by the user (if it is high

enough). As high scores will need to be scored in non volatile memory (as to avoid deletion

between running the game) a method will need to implemented that will read and write the

high score information to a file. With this in mind the following attributes will be declared:

Attribute: Type: Description:

Text Positions Vector The coordinates for all of the

text to be drawn to screen

Score Positions Vector The coordinates for all of the

scores to be drawn to screen

Fonts SpriteFont The different fonts used in the

main menu

Scores Int[] Stores all of the highest scores

FilePath String The full path location of the

high score file

As you can see, a string array will be used to store the characters read from the file. There is also a

need to store the intended directory of the file in a string format so a method knows where to

access the file to read from. The last method that will be required is to update the high scores

file given the score the current user has achieved.

Method: Parsing: Description:

Void Initialise() Texture, Viewport Initialise the high scores object

with text positions

Void CreateFile() n/a Attempts to locate an existing

high scores file and if it fails it

creates a new file

Void OpenFile() n/a Attempts to open the high

scores file and read its contents

Void UpdateScores() NewScore, PlayerName Updates the high scores based

on the players score

Void Draw() SpriteBatch, SpriteFont Draws the high score screen

Class Paused Screen

This screen class will be used to represent what is drawn to the screen when the user

decides to pause the game. This screen will be one of the simplest by design given that it

will only display to the user:

• That the game has been paused;

• How to resume the game;

• How to quit the game and return to the main menu.

Final Report Stephen McQueen

16 | P a g e

Therefore the only attributes required will be those to represent the position of the text on

the screen like so:

Attribute: Type: Description:

Text Positions Vector The coordinates for all of the

text to be drawn to screen

Fonts SpriteFont The different fonts used in the

paused screen

Method: Parsing: Description:

Void Initialise() Texture, Viewport Initialise the paused screen

object with text positions

Void

DrawPausedScreen()

SpriteBatch, SpriteFont Draws the paused screen

Class Game Over Screen

The game over screen is a necessity in any video game as it not only informs the user that

the game has conclusively come to an end but, it can also act as a form of humiliation such

that for example, the “game has won” and the player has lost. Again to implement the

screen will require the same basic attributes and methods found in the other screen classes.

Attribute: Type: Description:

Text Positions Vector The coordinates for all of the

text to be drawn to screen

Fonts SpriteFont The different fonts used in the

paused screen

Position Integer Portrays the option the user

has currently highlighted

As the game will effectively be over, the user will be presented options to either return to

the main menu (to start another game) or to exit the game all together. Therefore the class

will require methods to handle the user’s navigation to these options.

Method: Parsing: Description:

Void Initialise() Texture, Viewport Initialise the game over object

with text positions

Void UpdateLeft() n/a Decreases the value of Position

if the first option is NOT

currently highlighted

Void UpdateRight() n/a Increases the value of Position

if the second option is NOT

currently highlighted

Void DrawScreen() SpriteBatch, SpriteFont Draws the game over screen

Final Report Stephen McQueen

17 | P a g e

Class Instructions Screen

The instructions screen will display the objectives of the game, how many points each

enemy is worth and for the modern version of the game, what power ups do what.

Therefore as this screen will be used to just display text it will contain the following

attributes.

Attribute: Type: Description:

Text Positions Vector The coordinates for all of the

text to be drawn to screen

Fonts SpriteFont The different fonts used in the

instructions screen

As a result of the user not interacting with this screen the only methods required are those

to initialise the screen and to draw the screen.

Method: Parsing: Description:

Void Initialise() Texture, Viewport Initialise the instructions object

with text positions

Void DrawScreen() SpriteBatch, SpriteFont Draws the instructions screen

Class Play Screen

The play screen class will be used to display the user interface whilst the game is in its “play

game” state. This includes items such as: round number, score and number of lives

remaining etc. Therefore the attributes are as follows:

Attribute: Type: Description:

Text Positions Vector The coordinates for all of the

text to be drawn to screen

Fonts SpriteFont The different fonts used in the

paused screen

There will be a number of drawing methods required in this class in order to draw each

piece of information to the game screen of which are found below:

Method: Parsing: Description:

Void Initialise() Texture, Viewport Initialise the play screen object

with text positions

Void DrawLives() SpriteBatch, SpriteFont Draw the number of lives

remaining to the screen

Void DrawScore() SpriteBatch, SpriteFont Draw the current score to the

screen

Void DrawRound() SpriteBatch, SpriteFont Draw the current round

number to the screen

Void Draw Border() SpriteBatch Draw the border that separates

the information from the game

play area of the screen

Final Report Stephen McQueen

18 | P a g e

Class Power Up

As per the Interim Report, one of the possible advanced features to be used in the modern

version of the game is the use of power ups. A power up can be traditionally found in two

forms: its inactivated form and its activated form. Therefore with regards to implementing

the power ups I will need a way to represent the power up in each form. Therefore a

suitable approach is to implement a power up class that will be used to represent a power

up in its inactive state. Whilst in this state the class will determine which kind of power up it

is and how it is to move across the screen. Traditionally in video games a power up is a

reward for destroying an enemy or completing a specific task. With this in mind the decision

was made that when an enemy is killed, there is a certain chance of a power up being

dropped from its position and “falling” down the screen in a straight line. Therefore the

attributes for class are as follows:

Attribute: Type: Description:

Active Boolean Depicts whether the power up

object is active or not

Position Vector The position of the power up

on the screen

PowerUp Rectangle Rectangle The bounding box (with aspect

ratio applied) for the power up

texture

Drop Speed Float The speed at which the power

up moves down the screen

ShieldPowerUpTexture Texture 2D The texture for the shield

power up

DualLasersPowerUpTexture Texture 2D The texture for the dual lasers

power up

MovementPowerUpTexture Texture 2D The texture for the movement

speed power up

The methods for a power up are relatively similar to that of the enemy lasers, given that

they are created at the enemy’s position and then move down the screen. Therefore the

methods for this class are as follows:

Method: Parsing: Description:

Void InitialisePowerUps() Shield texture, movement

texture, dual lasers texture,

viewport

Initialise the power up object

along with all of the power up

textures

Void DropPowerUp() Position, power up type Add a power up to the game

screen

Void UpdatePowerUp() Position, power up type Update the power ups position

so it moves down the screen

Void DrawPowerUp() SpriteBatch Draw the power up to the game

screen

Final Report Stephen McQueen

19 | P a g e

Class Bayesian Network

As per the Interim Report, one of the main objectives in the modern version of the game is

to make the enemies seemingly more “intelligent” with a hope to make the game play more

challenging and enjoyable. However without conducting the design of the network itself, at

this stage it is very difficult to plan ahead for the implementation of this class. Therefore this

class from a design perspective shall be a basic interpretation.

Attribute: Type: Description:

Probabilities Float Variables used to store the

probabilities of an event

occurring

Truth Values Boolean Describes whether an event has

occurred or not

The methods for this class however are reasonably self explanatory given that, in order to

create a probability, one must:

• Determine what events have occurred;

• Given their probabilities, calculate the probability of an enemy firing.

Therefore it is reasonable to expect the methods for this class to be similar to the following:

Method: Parsing: Description:

Void InitialiseNetwork() Probabilities of events occurring Initialises the network and

assigns probabilities to their

respective variables

Void DetermineEvents() Truth values of certain events Given the games current state,

determine what events have

occurred and store them in

their Boolean form.

Void CalculateProbability() All of the above Given

Main Menu Screen User Interface
The main menu screen design is extremely simple and is only used to allow the user to

navigate through the options and make their selections. It will provide the user with the

opportunity to read through the instructions and the controls before starting a game.

In order to illustrate what option the user has currently highlighted the menu will change

the size and colour of the font of the option to reflect this.

Final Report Stephen McQueen

20 | P a g e

When the user selects the play option, the menu will expand to reveal sub menu options.

This is where the user can select to play the classic rendition of the game or the modern

interpretation of the game. Again the menu will make use of highlighting the current option

the user has selected.

Game Screen User Interface
The game screen user interface is not used to draw all of the items to the game screen as

each object will have its own draw method. Instead it will be used to draw specific

information to the screen for the players benefit.

The heads up display (HUD) for the player during the game screen must display the

following:

• Number of lives remaining;

• Current round number;

• Current score.

Figure 8 – Main Menu User Interface
Figure 7 – Expanded Menu User Interface

Figure 9 – Game Screen User Interface

Final Report Stephen McQueen

21 | P a g e

High Scores User Interface
This screen will be used solely for displaying the highest scores achieved in a game when the

player has lost all of their lives.

Only the top 5 scores will be saved

and if the players score is high

enough it will be highlighted.

Control User Interface
The concept behind this screen is that, if the user is playing the game on a PC, then the

control screen will be able to detect what controller the player is using (i.e. keyboard or

Xbox controller). Therefore two different screens of information must be considered based

on the player’s choice of controller.

From figures 11 and 12 it can be seen that the screen layout is very simple and merely illustrates

what control does what in game. There is the possibility of adding an image of the Xbox 360

controller and PC keys to better illustrate this point if there is time later in the project.

Figure 10 – High Scores User Interface

Figure 12 – Xbox Control Screen User Interface Figure 11 – PC Control Screen User Interface

Final Report Stephen McQueen

22 | P a g e

Instruction Screen Design
The instructions screen is required in almost any game in order to provide a concise

overview of the game objectives and what to expect in the game. This is crucial as not all

users will be seasoned gamers and be able to naturally adapt to what is happening

compared to new comers.

Figure 13 illustrates that the instructions screen will display all of the possible enemies and

power ups that can be encountered in the game play along with a description. It is

important not to overcomplicate the display of instructions to the user as to avoid any

confusion which could impact the overall gaming experience.

With this in mind the implementation of the same will be constantly checked against the

original design. However the design is open to change based on user feedback and their

opinions on the instructions clarity and overall layout.

Figure 13 – Instructions Screen User Interface

Final Report Stephen McQueen

23 | P a g e

Game Screen Management Flow Chart
As the game has several different screens, these can be treated as “states”, this allows for

the design of the interactions between each state and the required scenario for a transition

to occur. The following diagram illustrates each screen in the game and how the user

progresses from one screen to another.

From the flow chart we can determine that:

• The main menu screen acts as the central hub of all other screens and links most of

them together.

• The play screen is constantly checked to see if the game has been paused or has

finished.

• The transition occurs between the high scores screen and game over screen after an

allotted time frame and therefore there is no user interaction at this point.

 Figure 14 – Game Screen Management Flow Chart

Final Report Stephen McQueen

24 | P a g e

Player Input Design Considerations
As the game is designed to work on multiple platforms it must be taken into account the

variety of different input devices that can be used to interact with the game. For example

some different types of input given from using a PC, Windows Phone and an Xbox 360

includes: Mouse, keyboard, hands, gestures, accelerometer, game pad etc. Therefore the

screen designs have ensured that no matter what manner of interaction is occurring the

player will be able to seamlessly play and enjoy the game to its full potential.

Mobile Phone Play Style Vs Console Controls

Figure 15 – Mobile Phone Input Considerations

For the mobile version of the game it was decided to use a simple finger input play style. To

move the player ship the user merely has to drag their finger across the bottom of the

screen and the ship will follow. To fire a laser the user simply has to tap the screen once.

The option was available to make use of the accelerometer to control the player movement

however, after some consideration it was dropped due to the fact that physically moving a

device whilst trying to focus on positions of the enemies and lasers etc may be too

strenuous for the player and can cause distress/frustration as opposed to enjoyment.

The PC version of the game will make use of the standard input; i.e. the keyboard. The

arrow keys are the most widely used form of input for movement in a

game and therefore I have opted to proceed with this option.

The Xbox controller allows for a lot more variety when it comes to input

as it is a purpose built, ergonomic game controller. It is also able to bring

the game more to life by using its “rumble” feature. This can be used to

give the player feedback from the game via the controller as opposed to

just looking at the screen. An example layout for the controls of my game can be found on

the following page.

Final Report Stephen McQueen

25 | P a g e

Using a Xbox controller will

provide the user with a more

“arcade” like game play

experience due to the use of a

joystick to control the player

movement.

Therefore having such a variety of controls for this game provides the user the opportunity

to experience the same game on different platforms which was not the case for the original

Space Invaders game.

Collision Detection
Collision detection is a major aspect of any game. This is where the game uses a collision

detection algorithm to determine whether two (or more) objects have collided. For this

solution a bounding box approach will be used, for which the algorithm is as follows:

The approach of implementing this algorithm is relatively simple. As shown in Figure17

above, the algorithm will create a bounding box around each object graphic that is drawn to

the screen. The algorithm then performs a simple check to see if any of the coordinates

along the border of the bounding box has intersected with that of another. This can be

easily expressed using an illustrative example like so:

Figure 16 – Xbox 360 Control Considerations

Figure 17 – Collision Detection Algorithm Flowchart

Final Report Stephen McQueen

26 | P a g e

Stage 1 – Creating bounding box

Stage 2 – Check for intersections

Accurate Collision Detection

In case the collisions in the game do not look believable to the player there are a couple of

tweaks to the algorithm that can be made to try and compensate for this. One simple option

is to merely increase the speed of the missile moving across the screen, thereby making it

more difficult for a human to be able to see the absolute point of contact.

Another, more feasible option would be to manipulate the collision detection points in the

rectangle in such a way that, if anything hit that particular point it would be an undeniable

strike as opposed to a near miss. This can be done by creating a rectangle that is slightly

smaller than the game graphic itself, like so:

Figure 20 – Narrower bounding box

By creating a smaller contact area this massively reduces the possibility of a laser missing

the space ship graphic and still destroying it. This approach can be replicated for the lasers

such that, the bounding box would be slightly shorter than the beam itself. This would

ensure that a certain proportion of the beam has made contact with something before

checking if a collision has occurred.

Therefore this approach provides an extremely

simple solution to collision detection which is also

not computationally expensive. Technically this

implementation will result in O
n
 computation time

as a collision detection will occur once for each

object on the screen.

However this method is not without its draw

backs. It is easily noticed from Figure 19 that, it is

easy for the bounding boxes to collide whereas the

actual graphics contained within them have not.

Therefore it may be an issue if a collision does not

look believable to the player in game. There are

however, a number of alternative approaches to

make the player “believe” a collision has occurred.

Figure 18 – Bounding a game graphic in a

rectangle

Figure 19 – Collision between two bounding rectangles

Final Report Stephen McQueen

27 | P a g e

At this stage in the project development, the foreseeable collisions will be between the

following:

• Player – Enemy

• Player – Enemy laser

• Player – Barrier

• Player – Power up

• Player laser – Enemy

• Player laser – Barrier

• Player laser – Power up

Barrier Design Considerations

Keeping in mind the above discussion regarding collision detection (i.e. using bounding

rectangles) the barriers design has made full use of bounding boxes.

Figure 21 shows how each barrier is made up of several

barrier blocks. It is important to note that the “Barrier”

class will not actually control a barrier in its entirety. In

fact it will represent each barrier block individually.

Therefore each barrier block will have health and

bounding collision box.

Aspect Ratios
One of the challenges to any game is getting it to look the same on a number of different

screens. This is doubly so due to the nature of the project covering a large range in screen

sizes roughly between 2 inches and anything above. Therefore it is imperative that all

textures used in the game are resized with proportion to the size of the screen.

As shown in Figure 22, if the physical image file is drawn to the game screen it can either be

far too small or too big for the screen itself. Therefore to ensure that this does not happen

there is a simple calculation that can be done to create a bounding box for the image to be

Figure 21 – Barrier Design

Figure 22 – Game graphics with no aspect ratios applied

Final Report Stephen McQueen

28 | P a g e

drawn in. This box will be proportional to the size of the screen and will scale the image

depending on the scaling factor specified in the program itself.

The following variables are required to recreate a bounding rectangle:

• Vector

• Width

• Height

Figure 23 represents how to calculate the bounding

box for graphic and how it is scaled down.

Bayesian Network
In order to implement a probabilistic Bayesian network the design the network must be

done first and take into account the dependencies and probabilities. For the modern version

of the game it is my intention to make the enemies “smarter” with their choice of when to

fire a laser. As discussed in the interim report, the enemies in the original game merely fired

at random and there was no real justification for them to fire. Therefore based on this I have

created the following Bayesian network for firing a laser, taking into account and variables

that would affect the probability of firing occurring.

In order to do this we need to place ourselves in the enemy’s shoes and note what would

motivate them to fire at something. As a result the following network has been constructed.

From Figure 24 above it is shown that the motivation for a human playing as an enemy is to

strategically fire at something with value. This is where firing when you are above the player

or a barrier is of particular interest, as the result will yield in a disadvantage to the player

that will ultimately end in their demise. However it is also noted that when playing against

another player, people would try and predict their opponent’s movements and fire a laser

into their path as opposed to directly above them. With this in mind another node has been

Figure 23 – Aspect Ratio Equation and variables

Figure 24 – Bayesian Network Design

Final Report Stephen McQueen

29 | P a g e

added to the network that will consider the probability of firing a laser given they are within

a specific radius of the player’s current position. This will allow for an enemy that is a short

distance away from the player to fire a laser that would hopefully intercept the player given

their current path.

The network has been designed with a top down approach as to minimise computation. For

example, were the network to be flipped upside down it would result in the following

computation:

P(1|2,3,4) . P(2) . P(3) . P(4)

Whereas with a top down network the computation is spread far more evenly:

P(1) . P(2|1) . P(3|1) . P(4|1)

Probabilities and Truth Table

With the network constructed the next step is to allocate probabilities to each possible

occurrence of firing a laser given something has happened (e.g. being above a player). In

order to do this truth tables have been drawn with probability values allocated accordingly.

Firstly a base probability will be allocated for the enemies to fire. This will ensure that an

enemy will have a chance to fire even if one of the child nodes are not satisfied. Therefore

the base probability of an enemy firing is: P(F) = 0.01. This low value will ensure that at the

start of the game the enemies will be far less aggressive and will fire infrequently. As the

game progresses this probability will be increased on a linear scale (i.e. P(F) *= round

number
2
)

Probability of being above the player (P(Ap)) given that a laser has been fired

True False

0.5 0.25

Probability of being above a barrier (P(Ab)) given that a laser has been fired

True False

0.3 0.25

Probability of being within a radius (P(Wr)) of the player given that a laser has been fired

True False

0.4 0.25

Illustrative Example

In order to see how the network will truly affect how the enemies will attack a player, the

following diagram represents a game state along with which nodes of the Bayesian network

are satisfied (i.e. above the player, above a barrier and within radius of player).

Final Report Stephen McQueen

30 | P a g e

The following diagram will now illustrate the probability assigned the each enemy which

reflects the probability of each one firing for the first round of the game.

Figure 26 shows the enemies which are either above a barrier, above a player, within the

player’s radius or a combination of both, have a noticeably higher probability than those

who are above nothing at all. However it is important to note that the enemies that are

above nothing and satisfy none of the nodes in the Bayesian network are still assigned

probabilities which will grant them the opportunity to fire.

Figure 25 – Game play scenario

Figure 26 – Probabilities of enemies firing laser

Final Report Stephen McQueen

31 | P a g e

The base probability of an enemy to fire is scaled linearly with each round and will therefore

gradually increase all of the values found in the above diagram, resulting in a far more

aggressive enemy pack. This will account for the scaling difficulty that is found in the original

Space Invaders game.

Enemy A.I States
At this stage in the design it is worth considering all the different enemy states and how one

state can move to another. As discussed in the interim report the intention is to give each

enemy a state and they will then use these states to allow the enemies to change their

behaviour.

State Diagram

Below is a state diagram illustrating all possible states of an enemy as well as the different

possible states it can transition to.

Figure 27 illustrates that:

• Each state can make the transition to the destroyed state;

• Each enemy starts out with the base state “Idle” before being allocated something else;

• There is a loop (or cycle) present in the diagram namely that an enemy can transition

through the following:

o Can break away to the right

o Break away to the right

o Return to screen

o Can’t break away to the right

This loop exists for the alternate “can break away to the left” scenario.

Can’t break away to

the right

Figure 27 – Enemy State Diagram

Final Report Stephen McQueen

32 | P a g e

State Management

It is important to be aware of under what conditions can an enemy make a transition from

one state to another. Therefore a list of conditions that must be satisfied in order to allow

the transition from one state to another has been created, of which can be found in

“Appendix A”.

Break Away Enemies
One of the aspects to be implemented in the modern version of the game is the ability for

an enemy to break away from the main pack and follow a curved path in an effort to collide

with the player or a barrier and cause damage to it. This could be implemented using

absolute positioning and a curve could quite easily be generated in this way. However this

would be ineffective due to the multitude of screen sizes and therefore an alternative

solution is to implement what is known as a “Bezier curve”.

A Bezier curve works by considering at least two points and then recursively finds a point

between them generating a smooth curve. In this case the cubic formula is most

appropriate:

���� = 	 �1 − ��	
0 + 3�1 − ����
1 + 3�1 − ����
2 +	�	
3

Where t = time and P represents the coordinate points respectively.

The formula requires four coordinate values, these are:

• Key points

o These are the start and end positions of the curve.

• Control points

o These are the intermediate nodes in which to calculate and generate a curve.

The algorithm to produce this curve is as follows:

For time t, t < 1, t += 0.1

Generate curve point using equation listed above()

This example algorithm will return a curve with a total of 10 points. The lower the increment

or the higher the threshold, will result in more curve points and will produce a smoother

curve.

Figure 28 – Design of a Bezier curve

Final Report Stephen McQueen

33 | P a g e

Game Application

This curve can be applied to enemies who are breaking away like so:

Figure 29 above represents how the four coordinate points would be declared:

• The key points are :

o Current position of the enemy

o Given the direction of the curve, either the bottom left/right hand corner

• The control points are:

o Specified horizontal and vertical distances from each control point.

In order to use the curve in the game a List will be used to store each coordinate value as

the algorithm produces them. From there an enemy can simply loop through the list and

update its position accordingly.

Managing Break Away Enemies

With enemies breaking away it is important to consider how to manage when and where

they are “allowed” to break away. Due to personal preference, it is unfavourable for the

enemies to break away and go out of bounds of the screen. This is because, from a players

point of view it would be easier to keep track of every enemies position on screen in order

to get a more satisfying and challenging experience. With this in mind we can make use of

the Bezier curve algorithm in an iterative loop to find the breakaway threshold coordinates.

The proposed algorithm for this is as follows:

Find left most break away threshold()

While threshold > left side of screen

GenerateCurveLeft() – This will add all of the curve points to the list

 If current smallest value > curve value

 Current smallest value = curve value[current position]

End While

Figure 29 – Game application of a Bezier curve

Final Report Stephen McQueen

34 | P a g e

As a result of the algorithm this will produce the following scenario:

From Figure 30 we can see that the algorithm will find the minimum and maximum possible

X coordinates on the screen in which the curve will remain within the bounds of the screen.

This algorithm will run before playing commences to avoid any lag time produced that may

hinder the smooth running of game play.

Updating Firing Enemies
One of the flaws of the original Space Invaders game was that enemies could fire through

other enemies in front of them. In this version of the game it will attempt to rectify this and

to allow only the enemies with direct line of sight of the player (not including the barriers)

the ability to fire. There are several approaches to manage which enemies do have line of

sight to be considered

Enemy Block Jagged Array

A possible solution to managing which enemy has line of sight is to implement what is

technically known as a jagged array. A jagged array can be considered as a two dimensional

array. This suits the situation at hand as the enemy group is literally a two dimensional

matrix.

The idea for this solution is to construct a 10 x 5 dimensional array and assign each number

a value (pointer) for the next enemy that is to be fired. This in affect is a link list that will be

used to track which enemy is next to fire upon its death.

Figure 30 – Break away thresholds

Figure 31 – Enemy firing pointers

Final Report Stephen McQueen

35 | P a g e

Update Firing Enemy Algorithm

When an enemy is destroyed and its state was either “Fire Laser” or “Has Line of Sight” then

the program must find that enemies pointer in order to know which enemy is next in line to

have “line of sight”. When the game starts, the program will have the following knowledge

with regards to the enemy pack. Please note that the table on the right hand side represents

the pointer associated with each enemy.

The next illustration is an example of the enemy pack after several have been destroyed and

reflects to condition of the pointers thereafter.

Therefore the algorithm to manage the pointers is relatively simple and is shown in the

pseudo code below:

If the enemy was firing upon death then

 Access its pointer

 Assign the enemy number found in the pointer to have line of sight

Else

 Access its pointer and store it in a temporary variable

 Find the enemy that points to the deceased one

 Make its pointer equal to the temporary variable

Figure 32 – Assignment of pointers

Figure 33 – Game play scenario with updated pointers

Final Report Stephen McQueen

36 | P a g e

Managing Enemy Movement
As the enemies move as one in the game, it is necessary to create an algorithm that

manages when they change direction and move down the screen. One approach is to track

the top left and top right enemies in the pack and monitor when they reach the borders of

the screen. When this occurs they will all move down the screen slightly and then change

their direction.

However there is a flaw in this approach, namely that the enemies can be destroyed (killing

the top left/right enemy) and therefore the program must be able to find the current left

most and right most enemies in order to know when to move down the screen and change

direction.

The following illustration will represent the enemy pack after several have been destroyed

and the player has just destroyed the current left most enemy.

The proposed algorithm to find the next left most enemy (as portrayed in the above image)

is as follows:

If left most enemy is destroyed then

 Go to the first enemy number in the column

Figure 34 – Assigning screen boundaries

Figure 35 – Finding next left most enemy in remaining pack

Final Report Stephen McQueen

37 | P a g e

 While new left most enemy is not found then

 Check all enemies in the column and see if they are active

 If no enemy is found then move to the next row

 Else

 New left most enemy has been found

This algorithm is then replicated and altered to find the right most enemy and this should be

a sufficient solution.

 Creating and Updating a High Scores File
The main objective in the game is to achieve the highest possible score and declare yourself

as the “best” at the game. As shown in Figure 10, a very basic layout for the high scores

screen is to be used in the game. The next step is to plan how the use of high scores will be

achievable and to make this aim realisable.

In order to save the high scores achieved, the game will have to create a file and store it in

internal memory. Therefore a suitable destination, file type and data to be written to the file

must be considered. The plan is to store the high scores file in the public directory in the C:\

Drive as this does not require administrative rights to access/create/modify files with. A

bubble sorting algorithm will then be used to sort the high scores for which the algorithm is

below:

For each element in the high scores file

 Compare player score to high score

 If player score >= high score Then

 Temp = high score[i]

 High score[i] = player score

 Player score = temp

The algorithm ensures that any player that achieves a score equal to that of another player then

their score takes preference as it is more recent. This will encourage previous players to continue

playing the game in order to check their high score is still intact.

Final Report Stephen McQueen

38 | P a g e

Implementation

Challenges

Learning C# and XNA Game Studio

One of the major challenges of this project was to become affluent using C#, as well as

becoming familiar with the Visual Studio environment and XNA Game Studio framework.

However there are plenty of online resources and downloadable tutorials, of which one of

the most important was Game Development Tutorial (Microsoft).This provided an

invaluable insight into how C#, Visual Studio and XNA Game Studio worked and allowed for

basic implementation to begin shortly thereafter.

Unfortunately however more in depth research was required in order to gain an

understanding on how to do “simple tasks” in C# but more specifically understanding how

each component of the XNA Game studio game engine functioned. Thankfully a thorough

educational file Learn Programming with XNA by Miles, R. Sithers, Andrew. (2009) was

available from App Hub (Microsoft), provided a step by step guide through each component.

Xbox 360 Testing

An unforeseen problem with regards to creating an Xbox 360 version of the game was that

in order to test the program on the console a developer fee was required to do so.

Therefore the decision was made to make the PC version of the game compatible with the

Xbox 360 controller in order to illustrate how the program would be played with an Xbox

360 console.

Positioning Accuracy

Early in the project development a slight issue arose with regards to the scaling of each

graphic to be drawn to the screen. Unfortunately there is a drawback of using scaled

textures within bounding boxes, which is the loss of accuracy of the player’s position on the

screen due to the restrictions of using a rectangle in the game.

In Layman’s terms, without a bounding box around the player graphic, the position of the

player is represented as a decimal value. However when using a rectangle to encase the

graphic, (the rectangle position acts as the player’s position) and due to restrictions in the

Rectangle class, the coordinate values must be integers. For example if the players position

on screen is:

X coordinate: 52.5 and Y coordinate: 98.449

Then the players equivalent position with the bounding box applied would be:

X coordinate: 53 and Y coordinate: 99. This therefore creates a minor loss in screen position.

However as this is such a minute difference in position, the effects will be the most

noticeable when updating the players movement.

For example a player that moves across the screen 0.1 of a pixel at a time will give the

illusion that it is moving smoothly across a screen. Whereas if the player were to be moving

at 1 pixel at a time, it would look like it is jumping across the screen. Thankfully this has not

proved to be a major issue and the updating of objects across the screen does not look

“jumpy”.

Final Report Stephen McQueen

39 | P a g e

Updating Firing Enemies

This was one of the most challenging and time consuming tasks in the project

implementation. The original approach (using pointers), proved to be overly complex when

removing an enemy from the list once destroyed. The problem was that, it took a lot of

effort for the program to figure out where in a list it should update the pointers in order to

maintain those that had line of sight of the player. Unfortunately after multiple attempts of

implementing this approach the algorithm created only worked for 80% of cases.

Therefore a reluctant decision was made to opt for a much simpler solution with the

consequence of having to re-write almost the entire game engine. The new solution

focussed on not removing an enemy from the list upon its destruction, which allowed for a

far simpler algorithm to be implemented updating the enemy pointers. The method for this

can be found in Appendix D.

Implementation of Bezier Curve

Despite having done sufficient research and design of how to implement a curved path for

the enemy, this proved difficult to implement for a number of enemies and how to manage

them. The approach of using a list of lists was attempted to create a list of curved paths for

each enemy that was “breaking away” could follow. However the loop had to break after

each single iteration (due to speed of loop execution it had to break to ensure gradual

movement across the curve), and unfortunately due to time constraints result was

unachievable. Therefore the solution had to resort to allowing only one enemy in a specific

row being eligible to break away and for one enemy to break away at any time.

Bayesian Network

The implementation of the Bayesian network unfortunately took an overly long time as I

struggled to fully understand and appreciate how the formula works. After several attempts

the probabilities being produced were exactly the same as those defined in the code and so

gave the impression it was just returning the values that it was parsed. Thankfully after

lengthy discussions with Dr. Langbein a working solution was implemented.

There was also the intention for this project, to implement a Bayesian network for the

enemies to decide whether or not to break away. However due to prior problems with

implementing the Bezier curve and time constraints, this feature was not implemented.

Accessing Internal Storage Device for High Scores

Unfortunately due to being relatively new to using C# and XNA Game Studio it took quite

some time in order to find a suitable approach to creating and updating a high score file for

just the Windows OS PC version of the game. There were many different approaches of

implementing a high score file available online, but most were out dated and were not

compatible with the version of XNA Game Studio being used. Therefore a simpler approach

was used which was to create a text file which is stored in a public directory of the users

“C:\” drive (due to admin rights restrictions). The method for updating the high scores file

can be found in Appendix E.

Therefore unfortunately due to time constraints there was no possibility to fully research

and implement a solution to create a file on the Windows Phone Version of the game.

Final Report Stephen McQueen

40 | P a g e

Program Robustness

Due to the size and complexity of the overall solution, it required a long a rigorous process

to ensure that the program in its “final state” was as bug free as physically possible. This

required many hours of testing and getting beta testers to play through the program and

report back to me with any crashes or unexpected errors that occurred.

Code Explained
This section of the project will discuss some of the more interesting sections of source code

from my project solution and reflect on their impact on the overall solution.

Update Firing Enemy Pointers

As previously discussed, this section of code was a significant challenge for me to overcome.

However I am very pleased with the resulting method due to its simplicity and ease to

manage in the program which can be found in Appendix D.

The method (as stated in the design section) uses what is called a “jagged array” which is

simply a two dimensional array which is used to form a matrix of values. This has been done

as the formation of the enemy pack is a matrix and therefore it is easy to visualise each

enemy pointer in its matrix form.

Therefore when an enemy is defeated the “UpdateFiringEnemiesList” method is called to do

the following:

• Retrieve the enemy position in the matrix

• Determine whether the enemy was either eligible to fire or firing at time of death

• If so then

o From its position retrieve the value stored there (the pointer to next to fire)

o Make the defeated enemy pointer equal to null (therefore it cannot be

accessed anymore)

o Make the enemy pointer eligible to fire by changing its state to “has line of

sight”

• Otherwise if the enemy was not eligible to fire (this means it is behind an enemy)

then

o Retrieve its pointer

o Find the enemy in the matrix whose pointer is equal to that of the enemy

defeated

o Make the enemies pointer equal to that of the deceased enemy

Using this simple technique this method ensures that throughout the game, only enemies

with an unobstructed view of the player (excluding barriers) will be eligible to fire.

Collision Detection

Thankfully the collision detection was made incredibly easy for me by the XNA Game Studio

framework. I made consistent use of the “intersect” method which checks to see if any

points in two rectangles intersect. Using this method allowed me to implement collision

detection quickly and easily. An example of a collision being detected between the player

and an enemy laser would look like so:

If(playerRectangle.Intersects(enemyLaserRectangle)){ collision occurred }

Final Report Stephen McQueen

41 | P a g e

Bayesian Network

The method for the implementation of the Bayesian network can be found in Appendix C. As

mentioned in the interim report and in the design section of this report, the Bayesian

network will consist of four nodes; i.e. firing, above player, above barrier, within radius of

player. The method makes use of the formula:

P(Firing) . P(Above player|Firing) . P(Above barrier|Firing) . P(Within radius|Firing)

Where P is the probability.

The method then takes the following steps to generate a probability:

• Calculate the first part of the equation by placing in probability values of each node

in the network based on whether they are true or false. This value is regarded as the

firing being true.

• The method then calculates the opposite equation in order to normalise the result.

• Finally the method normalises the outcome by dividing the values generated.

It is important to note that this method is not computationally expensive, as a probability

has to be calculated within a half second in early rounds and within 0.2 of a second in later

rounds. Therefore it is important that probabilities can be calculated quickly and efficiently.

Bezier Curve and Generate Break Away Thresholds

One of the most unexpectedly interesting aspects of this solution is the generation of a

Bezier curved path for an enemy to follow when it breaks away. As discussed previously

there were many approaches to create a reasonable solution. However the Bezier curve

appeared to be optimal as it allows for simple tailoring to be done changing the amplitude

of the curve produced fitting the programmer’s needs. The Bezier curve generation method

can be found in Appendix B.

The method I wish to discuss in detail however is the “Generate Thresholds” method in the

program which utilises the generation of Bezier curve which can be found in Appendix K.

The method works by doing the following:

• Retrieving the positions of the left most and right most enemies in the pack upon

initialisation

• Start with the right most enemy and create a Bezier curve (to the right)

• Loop through the points in the curve and do the following:

o If the current largest value is < value in the curve then

� If value is >= screen width – 20 then

• Make current value = value in curve

� Else

• Break

o Increase right most enemy position by 10

o Back to start

• Then repeat the following but for the left most enemy.

Final Report Stephen McQueen

42 | P a g e

As a result this method returns a Vector value (X,Y) where X is the left most position an

enemy can be in for it to be eligible to break away and Y vice versa.

Results and Evaluation

Classic Vs Modern Comparisons
In order to assess the differences and compare both versions of the game, a number of

experiments were carried. The experiments are as follows:

• Average score obtained per game,

• Average round number achieved per game,

• Time taken for barriers to be completely destroyed (with no user interaction),

• Enjoyment/game satisfaction survey.

For each test the aim is to collect data from users that consider their gaming ability as:

• Beginner (i.e. New to gaming),

• Intermediate (i.e. has gaming experience),

• Advanced (i.e. has a lot of gaming experience).

For ease of use the tests will be undertaken on the PC version of the game and the mobile

version where possible.

Average Score

The purpose of this test is to ascertain how easy/difficult it is for a player to achieve a

maximum score during the game. It should be the case that a player can achieve a higher

score on the classic version of the game however it may be the case that, due to power ups,

the player will have greater sustainability and therefore achieve a higher score also.

For this test I have had the assistance of 3 other people who played each version of the

game 3 times as well as myself. The scores attained in each game can be found in Appendix

F.

The results have been compiled into a bar graph to greater illustrate the differences in

scores between game modes.

Figure 36 – Graph to show average score achieved by 4 users in both game modes

Final Report Stephen McQueen

43 | P a g e

From Figure 36 we can see that there is a clear but slight difference in scores with users

consistently scoring higher in the classic version of the game and less in the modern game.

This will reflect on the average number of rounds each player achieved and will give the

impression that the modern version is more difficult.

Average Round Number

This test is very similar to the above in that it will test how many levels a play can survive for

before being completely destroyed.

The data gathered from the test (as shown in Appendix G) conforms with the average scores

players achieved in both game modes. Again it is evident that players are getting to a higher

round number in the classic version of the game as opposed to the modern version.

Again this has been compiled into graphical form to better illustrate these outcomes.

Time Taken to Destroy Barriers

This aim of this test is to illustrate how aggressive the enemies are with regards to

systematically wearing down the players barriers. This should correlate to the average

round number the player reaches. The test will run for the first minute of game play after

which point I will assess the damage to each barrier. The results for this test can be found in

Appendix H. Again I have used a graph to better illustrate these results to allow for a more

effective comparison to be made.

Figure 37 – Graph to illustrate average round number achieved by 4 users in each game mode

Final Report Stephen McQueen

44 | P a g e

From Figure 38 we can see that there is a more noticeable difference here between game modes.

This proves that in the modern version of the game the enemies are systematically targeting the

player’s barriers in an effort to expose them and eventually destroy them. It is also noticeable that

barrier 1 has been worn down to 20%. Upon further investigation it was found that this is because

the player was situated beneath barrier 1 and therefore the enemies were targeting that barrier as a

priority.

Enjoyment Satisfaction Survey

This test is as crucial as all of the above as there is no point in the game if the player does

not enjoy it. It should also highlight any correlations with regards to the difficulty of the

game and the player’s enjoyment. This test will ask the player of their thoughts with regards

to each version of the game and to note at least one pro and con for each. It will then ask

the user to rate the overall game on a scale of 1-10, (1 being, will never play again and 10

being the best game ever and will recommend to all my friends). The results of this survey

can be found in Appendix I and of which have been compiled into graphical form to highlight

the overall outcome of the survey.

Figure 38 – Percentage of barriers remaining after 1 minute of game play

Figure 39 – User Satisfaction Survey

Final Report Stephen McQueen

45 | P a g e

From Figure 39 we can see that the overall feedback from the testers has been positive (no

feedback being below 6). The constructive criticism from the advanced and beginner user

were conflicted, with one stating the modern game was too easy and the other stating it

was too hard. Therefore a solution to this would be to add a difficulty setting to the modern

version of the game.

Evaluation of User Interface Design
During the implementation of this game I stuck strongly to my user interface designs shown

in the design section of the report. Upon completion I was very happy with them and made

very minor alterations to them. In game screen shots can be found below:

Figure 40 illustrates the main menu when the user

has selected the play option. As you can see the

game offers the player two game modes to choose

from.

Figure 41 illustrates a basic implementation of a

paused screen interface. As you can see, there is

nothing flamboyant happening here, the game is

simply paused and the user is able to select

continue or exit.

Figure 42 illustrates how the game screen user

interface looks. As you can see it is almost identical

to that of the design and I am very happy with the

outcome.

Figure 40 – Screenshot of expanded main menu

Figure 41 – Screenshot of paused screen

Final Report Stephen McQueen

46 | P a g e

Figure 43 illustrates what the

instruction screen looks like on the

Windows Phone platform. This

screenshot further illustrates how the

program is able to scale down all

graphics and fonts to fit any screen

size and not lose its layout.

Evaluation of Solution against Initial Specifications and Project Aims
The objectives for this project, as noted in the interim and found in Appendix J have been

almost wholly satisfied by the solution produced. The following objectives however have

not been satisfied:

• Tombstone effectively for Windows Phone (basic requirement)

• Include animations (basic requirement)

• Enemy Bosses (optional requirement)

• Multiplayer options (optional requirement)

Unfortunately all of the above have not been satisfied due to time constraints, however I do

believe that these objectives carry little weight with regards to increasing value of the

overall project solution and therefore I am pleased that only a few objectives were not

satisfied by the project.

With regards to the objectives that were satisfied, from the tests carried out during the

evaluation phase I believe I have successfully proven that I have implemented a clone of the

original Space Invaders game. From the user feedback it has been shown that users can

appreciate playing a classic game on a modern platform and that this does not hinder the

user’s enjoyment. Also my user testing has proven that the enemies in the modern game

are far more “aggressive” in that they systematically aim to whittle the player down by

shooting at barriers and making every shot count. The feedback has shown mixed results

with regards to the enjoyment of this and the average score/rounds achieved may illustrate

that the enemies are overly aggressive in the early rounds.

A solution to this would be to decrease the probabilities found in the Bayesian network.

However I expected that this would require extensive user testing to find the right balance

of probabilities to ensure the game is challenging enough to keep the user engaged in the

game but not overly challenging that users get frustrated and would therefore provide a

suitable basis for further work on the project.

Figure 42 – Screenshot of play screen

Figure 43 – Screenshot of the instructions screen on Windows Phone emulator

Final Report Stephen McQueen

47 | P a g e

One final objective I was unable to successfully implement was the use of high scores for the

Windows Phone version of the game. This is because the approach taken by the PC

compatible version was incompatible due to the way in which the program accessed

internal memory. As stated previously, due to time constraints I was unable to fully

investigate and implement a solution for this objective.

Evaluation of Project Approach
Due to the major challenge of learning how to use a new programming langue, IDE and

framework, I have had to rely heavily on an effective approach to allow for this project to be

a success. I have had to make extensive use of an agile development approach as to allow

me to design an aspect of the solution, learn how to program it and then physically program

it and test it.

Despite the challenges faced, I fully stand by my decision to program the solution using C#

and XNA Game Studio. Once I had learned the basics, the XNA Framework was able to

provide me with not only a basic game engine architecture but also several game specific

methods such as the “intersect” function for collision detection. Visual Studio was of a great

help to the implementation of the project as it allowed for me to physically view each and

every class along with every texture in one program. It also provided me with accessibility to

a Windows Phone emulator of which I could use to extensively test my solution for the

Windows Phone.

Future Work

3 Dimensional Game
This game could be made more modernistic by adding 3 Dimensional game play to it. From

the solution created it will act as a strong framework to quickly and efficiently create a 3

Dimensional version of the game.

Improved Collision Detection
The collision detection algorithm I am using at the moment is very efficient however it is not

very accurate. Therefore in order to provide accurate and satisfying game play it would be

worth investigating and implementing a pixel by pixel collision detection algorithm to rectify

this.

Collaborative Enemies
One of the advanced objectives of the game was to have the enemies “collaborate” with

one another and act as a whole intelligent unit. This would be done by allocating specific

roles such as; leader and follower. The leaders would then command the following enemies

to do what they will. An interesting idea for further developing this would be to make the

following enemies less obedient when there are few remaining. Unfortunately due to time

constraints this objective was not satisfied.

Different Break Away Paths
The current project solution provides only two curved paths for an enemy to follow (one to

the bottom left hand corner and the other to the bottom right hand corner). As a result this

pattern is quickly learned by the player and they can take evasive action immediately to

Final Report Stephen McQueen

48 | P a g e

avoid being destroyed. Therefore by adding a number of different possible paths the player

will have to remain vigilant and act at the last moment to avoid being hit.

Difficulty Settings
As mentioned previously, it would be beneficial to implement two difficulty settings for the

modern version of the game in order to give advanced/beginner players the best game play

experience possible whilst challenging them enough for them to find it competitive.

Conclusion
In summary my project has been an overall success, I have successfully implemented a

Space Invaders clone and have made it compatible with Windows OS PC and Windows OS

Phone. I have also created a “modern” version of the game that makes use of a Bayesian

network which makes the enemies make more tactical shots during the game which makes

for a more challenging gaming experience. I have also allowed for certain enemies to break

away from the main pack and attack the player head on to add for a further change in game

play from the original. From testing I have proved that the modern approach is more

challenging but has been found to be either too hard or too easy.

Unfortunately I was unable to implement some of the advanced features proposed for this

game which is disappointing as there were some interesting ideas that were left unexplored.

Finally the resulting game is compatible with only the PC and Windows Phone as opposed to

the Xbox 360. However the PC version does accommodate for use of an Xbox 360 controller

to provide an insight as to how the game would run on the console.

Reflections
This project has provided me with an opportunity to select a project of my choosing and in

doing so allowed me to set myself a challenge of which I knew I would find interesting

enough to motivate myself to complete it. Initially I thought this project was overly

ambitious especially considering I had no experience using C#, Visual Studio or XNA Game

Studio however I have learned that over a reasonably short space of time and with a lot of

time practice and determination, I have become comfortable and confident programming in

C#. However as a consequence I have learned to be cautious when assigning project goals.

As I have mentioned throughout the project lifecycle that this project is not only grand in

scale on its own, but the challenges involved when learning a new language will almost

certainly double, if not triple the amount of time spent on simple coding practices.

With regards to my project reports I have learned that despite the amount of effort and

hard work that is put into projects, it is important not to try and include absolutely

everything that has been done to the reader. The ability to ensure a report is concise and

easy to read for the reader is of upmost importance and unfortunately I have a tendency to

waffle due my wanting to portray how much work I have done into report form.

Final Report Stephen McQueen

49 | P a g e

References

Miles, R. Sithers, Andrew. (2009) Learn Programming with XNA. Available at:

https://www.facultyresourcecenter.com/curriculum/pfv.aspx?ID=7992&Login=&wa=wsigni

n1.0&c1=en-us&c2=0 (Accessed at: 28 July 2011)

App Hub. Available at: http://create.msdn.com/en-US (Accessed: 8 August 2011)

App Hub Game Development Tutorial. Available at: http://create.msdn.com/en-

US/education/tutorial/2dgame/getting_started (Accessed: 8 August 2011)

