
Final Report
Implementation of an ontology-driven conversational agent

Author: Jay Rainey
Supervisor: Irena Spasić
Moderator: Yukun Lai
Module number: CM3203
Module title: One semester individual project
Credits: 40

	 2

Table of Contents
Abstract 4

Acknowledgements 5

Introduction 6
Project outline 6
Project objectives 6

Modeling domain knowledge 6
System design 6
Graphical user interface design 6
Testing 6

Limitations and risks 7
User participation 7
Counseling techniques 7
System effectiveness 7

Background 8
Conversational structure 8
Current research 8
Research questions 8

Specification and design 9
System architecture, tools and methods 9
System requirements 11

Functional requirements 11
Non-functional requirements 12

Modeling domain knowledge 13
Ontology structure 13
Data acquisition 14
Data cleansing 15
Ontology development 15
Database development 15

System design 18
Design patterns 18
Architecture 20
Conversational structure 22
Conversation use cases 23
Class diagrams 25
Context detection 26
Response selection 27

Graphical user interface design 28
Responsive design 28
Browser compatibility 29
Chat design 29
User participation: voting system 30

	
	

	 3

Implementation 31
Modeling domain knowledge 31

Data acquisition 31
Data cleansing 31
Ontology development 32
Database development 33
Application manager 35

System implementation 36
Conversation flow 36
Context detection 36
Response selection 37

Results and evaluation 38
Functionality testing 38
Usability testing 39

System usability scale 39
General user feedback 40

User participation 41
Evaluation of ontological development 42
Evaluation of intervention questions 43

Evaluation of system requirements 44
Functional requirements 44
Non-functional requirements 47

Future work 48
Control group 48
Crowd sourcing 48
Personalization 48
Unit testing 48

Conclusion 49

Reflection on learning 50
Project scope 50
Project management 50
User participation 50

References 51

Appendices 54

	 4

Abstract

Health behaviors that negatively affect an individual, such as lack of physical activity or an
unhealthy diet are responsible for the most deaths in the United Kingdom per year [1]. It is
possible to elicit behavioral change through reflection by openly discussing user habits [2, 3],
though limited research has been undertaken that focuses on diet and exercise habits.

This successful project designed and developed a conversational system that uses structured
conversation to administer interventions techniques to invoke user reflection. It is proposed that
users will evaluate their health decisions based on conversations with the system.

User participation through these short conversations and their feedback can gradually improve
the system’s performance over time in two ways:

1. Context detection: each user message is used to improve the knowledge base, which
is utilized during message-selection on the server.

2. Conversation structure: each message sent by the service is manually written to abide
by the intervention techniques, and is evaluated by the user through a voting system.

This project concludes that administrating independent interventions through automated free-
form conversations is feasible, though further research should be undertaken to assess the
effectiveness of this.

	 5

Acknowledgements

Thanks to Irena Spasić for project supervision and guidance, and users for their participation.

	 6

Introduction

This section provides an outline and overview of the objectives of this project including a
general outline that excludes technical details, project goals, and the limitations of the solution.

Project outline

This projects aims to develop an autonomous chat service to act as a health counselor to
users. The conversation is structured using intervention techniques in an attempt to elicit
behavioral change and reflection in users by openly discussing their health choices and habits.
It is proposed that conversations will motivate user actions and invoke independent change [4].

Project objectives

The following is a broad overview of the goals in each stage of the project. These differ from
the initial report as I have only included a general overview of the functional objectives below.
The system requirements are expanded in detail in the design requirements section below.

Modeling domain knowledge

§ Design, develop, construct, and implement a domain-specific ontology.
§ Develop utilities to facilitate automation and simplification of this process.

System design

§ Manually write system responses using specific intervention approaches.
§ Develop algorithms that use the ontology to select context-appropriate responses.
§ Develop algorithms to improve the system through user feedback:

o Improve knowledge base and context detection using user messages.
o Introduce a voting mechanism to improve the selection of written responses.

Graphical user interface design

§ Design an efficient chat interface where users can enter free-form messages, and
provide feedback to all aspects of the system including the usefulness of system
messages, usability of the designed system, and general opinions of the system.

Testing

§ Quantify and evaluate the effectiveness of the system including:
o Functionality testing
o Usability design
o Ontological development over time using user messages
o Manually written intervention questions

	 7

Limitations and risks

This section describes the limitations and risks that were expected to be faced during the
project, and identifies techniques incorporated to reduce or overcome each.

User participation

The greatest risk in this project was the dependency on user participation to improve several
areas of the system. User messages improve the systems ontology; long, accurate, and
detailed responses are ideal. The contextual response selection algorithm depends on user
feedback (voting) to identify the most efficient and useful messages sent by the system.

Consequently, it was imperative that mass user participation was achieved as a means of
evaluating these aspects of the system. To achieve this, the system test website should be
advertised on social media, and across various other outlets.

Counseling techniques

Counseling techniques were used to structure the systems conversations. Consequently, the
responses were written to abide by these techniques, which required: invoking personal
reflection in users by being open-ended and empathetic. However, as I am not a trained
counselor I cannot be certain that the questions I have written will achieve this goal.

To identify the questions that are inefficient I introduced a voting mechanism as an integral part
of the user interface, which allows them to rate the automated responses sent by the system.
The questions can be formally evaluated to identify the qustions that are well written, and
improve those that are not.

System effectiveness

Each conversation required the user to be anonymous due to the intervention technique used,
which did not enforce strict controlled conditions. This and time constraints restricted the
potential scope of the project as an effective, systematic evaluation on ontological development
and the intervention technique used was not possible.

Instead, the system was developed to achieve the defined system objectives, rather than a
controlled and research oriented project. This provides a framework for future developers or
researches to begin carrying out experiments to test and evaluate the hypothesis of the
research questions proposed by this project.

	 8

Background

The section introduces the core techniques used to achieve the system objectives, a
discussion of current research using these techniques, and how the system developed
attempts to address a hole in current research in a novel way.

Conversational structure

Brief motivational interventions (BMI) are a strategy used to explore a patient’s motivation to
change their behavior rather than prescribing a specific course of action [4]. BMI’s conversation
structure consists of four strategies that the counselor (this system) must abide to be effective:

1. Open-ended questions: invoke user reflection and reasoning for patients’ choices.
2. Affirmations: highlight patients’ strengths, values, and goals using compliments.
3. Reflections: restatements of patients’ thoughts to demonstrate understanding.
4. Summaries: combines patients’ statements to ensure that the counselor has the

correct understanding of users ideas, and encourages further exploration of these.

The applications conversation structure follows the BMI approach by using open-ended
questions to invoke reflection, and combines the other three strategies in the response to the
user. This process facilitates user reflection, while demonstrating understanding of the user’s
particular problem by the system, and is similar to how counselors use the BMI framework [4].

Current research

To date, there is limited research using ontologies to power automated interventions, though
ontologies have been used extensively in various domains to store, access, and generate
suitable responses, which is the desired goal of the ontology for this project.

Existing research uses alternative intervention techniques and adds restrictions to user input by
providing pre-defined responses for the user to select from [5]. This application attempts to
address these issues by providing a free-form user input where messages can be written, and
analysis of these used in the application to select an appropriate response to send to the user.

Research establishes that BMIs are effective and have positive change in participants after a
single conversation [4], that interventions can be more effective than control groups [6], are
effective in patients of all ages and varying stages of change [7]. These unique properties
make BMI best suited over alternatives for an automated system.

Research questions

1. Can BMIs be administered effectively using an automated service?
2. Are free-form messages suitable to select appropriate intervention responses?
3. To what extent is an ontological representation suitable for selecting responses?
4. Can user participation drive the development of such a system?

	 9

Specification and design

This section covers the requirements for what the system being developed should achieve, and
how I planned to do this effectively. This includes the four stages as outlined in the introduction.

System architecture, tools and methods

This project focuses on abiding by software engineering best practices to develop a solution
that was reusable, maintainable, and well documented. This section discusses and justifies the
selection of the specific architectures, tools, and methods used to achieve the systems goals.

Flask micro-framework

Python was chosen as the main programming language due to the extensive range of libraries
available suitable for this project, and my personal and professional experience using it1.

The Python Flask micro-framework was chosen to power the web application, as it is simple,
lightweight, and extensible. Its “micro” aspect aims to “keep the core simple but extensible” [8],
and is structured to promote modularity and simplicity by using design-patterns that have been
incorporated throughout the project as discussed in the system design section.

The “micro” aspect is why Flask was selected over alternatives, such as Django and Pyramid,
which provide extensive functionality outside the scope of this project, such as admin control,
which can be added to Flask through extensions if the application requires this in the future.

Flask-SQLAlchemy

Object Relational Mapper (ORM) provides an abstraction for database access by mapping
Python classes to database tables and access of data through these. ORMs were chosen over
database specific extensions as they provide database vendor independence, and abstract
database access to class implementation. This removes the need to write hard-coded queries,
which simplifies code readability, implementation, and testing.

Version control

Version control is a tool that saves snapshots (commits) of a working directory, which simplifies
viewing, modification, or removal of previous commits. Using version control provides backup
functionality as a copy of the codebase existed on external remote servers, which ensured
project progress would continue if any major technical issues occurred.

Git was chosen over alternatives, such as SVN or Mercurial, due to its decentralized nature
and branching features. Branching allows a copy of the local repository to be made into
isolated branch where features can be implemented without affecting the core implementation.
Features can then be developed and tested before pushing the changes to end-users.
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1 All code written abides by PEP8 coding standards: https://www.python.org/dev/peps/pep-0008/

	 10

Deployment

To deploy and host the application I selected Heroku, a cloud platform as a service (PaaS),
which provides an environment where code could be deployed, configured and run with ease.
Within this project, deployment was automated; when Heroku detected changes to the remote
Github repository it merged those into its own repository, and updated the live website
respectively. Heroku provides simplicity of deployment over alternatives, such as Amazon Web
Service or Digital Ocean, which offer infrastructure configuration outside project’s scope.

Python virtual environment

A python virtual environment allows the creation and management of dependencies in
isolation. This project depends on several external libraries; using a virtual environment
streamlines development, testing, and deployment for future developers by installing the
project dependencies into a folder within the project on the working machine.

Flask-SocketIO

Flask-SocketIO was chosen to achieve the client-server conversational aspect of the, which
provides bidirectional communications through web-sockets. It uses a Python library to access
messages on the server, and a JavaScript library to access client messages. This library was
preferred over alternative networking libraries, such as Twisted or Tornado as they do not
come pre-packaged with the conversational functionality that this project required.

Flask-Script

Flask-Script is an extension that provides support for writing simple command-line interface
scripts that access Python libraries and tasks outside the scope of the Flask application. This
application uses Flask-Script to run utility methods, such as database and ontology creation
and population, and to run the SocketIO server.

Although it is possible to write command-line applications in Python using alternative libraries,
such as argparse, these would not have access to the Flask application context. Although there
are workarounds to this (such as invoking desired methods on application creation), these
would introduce tight coupling and restrictions into the application, which are not desirable.

Bootstrap and jQuery

These libraries are well designed and tested to promote consistency across browsers and
devices via responsive design, and are well documented. Using these instead of writing plain
CSS design and JavaScript ensures that the web application front-end functionality remain
consistent, maintainable, and that a usable system running could be developed quickly, which
afforded more time spent on other requirements of the system.

	 11

System requirements

The following are the essential requirements of the application that outline the key functionality
and interactivity that must be achieved in order for the application to be a success. A
description of each requirement and acceptance criteria to verify their achievement is provided.

Functional requirements

Requirement: develop web-scraping algorithm to obtain domain knowledge via online sources.
Acceptance: data acquired must be relevant to ontological terms, and consist of at least
10,000 unique words to be used to assign to the ontology.

Requirement: develop an algorithm to clean data and insert concepts into the ontology.
Acceptance: only unknown words (terms of concepts) are produced from cleaned data.

Requirement: develop an algorithm to insert concepts from cleaned data to the ontology.
Acceptance: a command line interface that outputs single terms (from cleaned data) that can
be assigned to known concepts in the ontology, which will update the ontology respectively.

Requirement: design and develop algorithms to select context appropriate responses.
Acceptance: manually written responses are selected based on the context of user messages.
Determined by the frequency of words in user messages in comparison with the ontology.

Requirement: design and develop an algorithm to transfer ontology from file to database.
Acceptance: transfers ontology concepts from file to a hierarchical structure in an RDBMS.

Requirement: design a database to store ontology, system and user messages, and feedback.
Acceptance: each table stores relevant data and is queryable for system use and evaluation.

Requirement: design chat interface where users can enter free-form messages.
Acceptance: user can chat with system without restrictions in a free-form way.

Requirement: design and develop mechanisms to improve the system through user feedback.
Acceptance: the following criteria should be met for each

§ System messages: users vote to improve future selection of system messages.
§ User messages: improves knowledge base and context detection.
§ Usability: relevant usability form incorporated into design to evaluate system.
§ General: free-form field where users can share their opinion on all aspects of system.

Requirement: quantify and evaluate effectiveness of the system.
Acceptance: highlight improvements through evaluations including: ontological development,
response-selection algorithms, usability design, and user participation.

	 12

Non-functional requirements

Requirement: manually write responses to ontology concepts using intervention technique.
Acceptance: 5 unique responses for the initial question, and open-ended question must be
written for each parent term in the ontology.

Requirement: crowd source user participation via social networking websites.
Acceptance: a minimum of 100 unique users must use the application.

Requirement: usability – system design
Acceptance: at least 12 users providing feedback and achieving system usability score (SUS)
above 68 percent. This would demonstrate that the usability is above average [9].

Requirement: cross-browser support
Acceptance: system must look and function the same across all major browsers.

Requirement: reliability – chat performance
Acceptance: appropriate context specific system messages must be chosen and sent within
10 seconds of receiving a user message.

	 13

Modeling domain knowledge

Formally modeling domain knowledge is critical to the success of the application, as it is the
driving force of the system’s conversational algorithms. Therefore, having a systematic and
reusable approach to developing and updating the ontology as a means of formal model of
domain knowledge is of utmost importance. The steps taken to achieve this, including the
dependencies of each are discussed in the following section.

Ontology structure

An ontology is an abstract understanding and simplified view of the world that we wish to
represent [10]. Ontologies consist of concepts (objects of reality) and the relationships between
these terms, e.g. a fruit and a grape would be terms in an ontology, linked by “is a” relationship.

Various ontological representations exist, e.g. RDF [11], OBO
[12], and OWL [13]. OBO was selected in this project as the
complex features of alternatives are not required (quantified
relations, cardinality, and inferences), and OBO has a simple
syntax, which is illustrated in the following table where a term
(diet) shares a single relationship to another term (health).

The ontology is used within the system to detect the content of user messages by performing
word frequency analysis of them and comparing the results with terms in the ontology.
Appropriate term selection for the ontology is thus fundamental to the applications success.

Diet and exercise were selected as the parent terms of the ontology
as they are the focus of the conversational system. To ensure
suitable terms were selected, current literature and health focused
ontologies in the biomedical repository [14] were examined.

Terms for this applications ontology were selected based on the
commonality between ontologies in current research that provided the
best scope for conversations. The resulting structure of the ontology
is presented in the diagram to the right.

Diet was further sub-divided into sub-terms using criteria based on food properties and
nutritional information. Other literature subcategorized ontologies by food type, such as fruit,
and vegetables [15, 16]. Having compared several ontologies that use food branches, I
selected those that occurred most often, and were within the boundaries of the expected
conversations with the system. This analysis resulted in nine core diet sub-terms, which would
act as parents and contain specific sub-terms related to their parent.

OBO term
[Term]
id: ID:2
name: diet
is_a: ID:1 ! health

	 14

The major difference between the exercise ontologies examined depends on their use, which
explains the sub-divisions of the categories in current literature [17, 18, 19]. This analysis
resulted in the selection of two core branches of exercise: cardio and endurance. Four sub-
terms were selected that were common amongst all research and ontologies analyzed, which
were chosen as they provide suitable detail for the conversational scope of this project.

Data acquisition

Contextual data was required to populate the parent-terms of the ontology described above
with suitable children terms, e.g. the “diet” term has a child term of “fruit”, which has a child
term of “apple”. An algorithm for scrapping relevant data for each parent-term (diet and
exercise) must be developed. This section discusses and justified the data sources chosen.

Reddit is an online forum where users can share their opinions, and thoughts regarding specific
topics of personal interest. It is the 24th most popular website on the Internet [20], and has 168
million unique visitors from over 208 countries per month [21]. Each topic on the website is
sub-divided into sections where users can discuss that topic, which is known as a “subreddit”.

Reddit was chosen for data acquisition due to the diversity of users and free-form nature of the
conversations held there, which resemble the desired conversational aspect of this application.
Due to Reddit’s popularity, the algorithm developed could be re-run to acquire additional data
of conversations that had taken place since it had been previously run, which would further
promote diversity of the known terms in the ontology.

To select context appropriate subreddits to be used a manual popularity analysis was
performed using redditlist [22], which is a website that publishes statistics for subreddits,
including their rank, growth, and number of subscribers. A limit of five subreddits of the 250
most popular was selected, as coverage of three million subscribers for each parent term will
provide sufficient data to achieve the system requirements. The results of this analysis, and
selected subreddits for each parent-term are provided in the tables observed on 09/02/15:

	

	

Exercise
Rank Subreddit Subscribers
29 Fitness 2,556,378
105 Loseit 256,849
192 Bicycling 142,842
199 Running 148,686
212 bodyweightfitness 138,000

Total: 3,242,755

Diet
Rank Subreddit Subscribers
48 Food 2,436,847
94 Cooking 284,692
142 EatCheapAndHealthy 199,076
221 Keto 133,376
224 Slowcooking 132,973

Total: 3,186,964

	 15

Data cleansing

An algorithm must be written that loads data (Reddit data or user messages), and reduces it in-
memory to a suitable format to add to the ontology. The algorithm will split the data into a list of
unique words, comparing against a separate file of words that are known to the ontology. The
result of this algorithm will be read by the developer and manually added to the ontology. It is
therefore vital to reduce the result to a minimum. The outline for the algorithm is as follows:

1) Load Reddit data into memory
2) Split Reddit data into a set of unique words:

1. Convert data to lowercase and remove punctuation for comparison.
2. Remove stop words.
3. Remove words greater than a length 12 as they are likely to be

reddit waffle.
3) Return the difference of the words in the above set to the words in a file

that contains words the ontology already knows, or the developer has
previously disregarded.

Ontology development

Data acquired, and cleansed must be parsed and allow the developer to manually assign each
word to known terms in the ontology file if it is related. Otherwise, it should be skipped and
added to a “known words” file to improve data cleansing of future data.

To achieve this, a command-line interface algorithm must be developed that outputs each word
of the input data to the user, including the possible terms in the ontology as available options.
The developer must select an available option, which generates and writes an OBO term to the
ontology for that specific word. An external library will be used to write OBO terms to the file.

A possible barrier when developing this algorithm and ontology is the loss of time due to
manually assigning words to terms as there may exist spelling errors, inconsistencies, or
unknown words to the developer, which they have to look up. The manual assignment of words
is required as there is currently no way to automatically achieve this.

Database development

A relational database was used to store and manage the project data. Two separate database
engines were used as they provide advantages depending on the development environment.

SQLite was chosen for local development due to its file system nature, and installing of
dependencies was not required. PostgreSQL was chosen for production as SQLite cannot take
heavy traffic [23], and is not recommended for production code due to lock issues [23].

As an ORM was used, the choice of production database engine was not relevant besides data
storage, and support for high traffic, which PostgreSQL provides. I will now discuss the
purpose behind of each table, including a description of each attribute and relationships.

	 16

Ontological representation

The health ontology must be accessible and queryable from within the application to determine
the appropriate intervention question to send to the user. To achieve this, the health ontology
must be represented in a database format to enable efficient querying and comparison of terms
from within the ontology against each word in the users message.

Closure tables are the simplest and most efficient way to represent a hierarchical ontology in a
database [24]. They were selected over alternatives as they provide referential integrity, the
ability to easily query children and sub-trees, which alternatives do not [24].

Transitive closure

A transitive closure consists of two tables: “nodes”, which stores a parent node, and a human-
readable name of the parent, and “closure”, which stores all parent-child relations and depths.
These tables share relationships; the parent row in nodes references id (self-referential), and
both the parent and child in closure reference nodes.id as illustrated below:

User conversations

Two tables are used to facilitate the conversation, and are illustrated to
the right in entity relationship diagrams (ERD). The “messages” table
stores all messages sent or received during a conversation. The “status”
attribute is used to differentiate between sent and received messages.

The “questions” stores all of the questions to send to the user. The
“type” attribute is used to differentiate between intervention questions,
e.g. initial question or clarification, the “concept” (term) and “rating” of a
question are used to facilitate response selection, e.g. to select a
question related to a parent of the highest rating known.

User feedback

This table stores results from user feedback, which consists of a System
Usability Scale (SUS) questionnaire form, and a text-area for general
feedback by users. Both rows are represented in the ERD to the right.

	 17

Populating database with ontology terms

An OBO file containing all ontological terms and their relationships is populated using the
ontology development algorithm below. This allows the ontology to be shared between
developers and applications, and is used to verify the relationships are correct through testing.

To determine the ontological terms that exist in user messages the ontology must be converted
to a database representation as discussed above. The transitive closure tables will be
populated from using the contents of the OBO file as outlined in the following algorithm:

1. Reads the OBO ontology to memory.
2. For each term in the OBO ontology that is not known to the database:

1. Create a new Node for the term
2. For each parent of the Node

I. Collect ancestors of parent and insert each into the Closure
table.

3. Insert the Node into the Closure table

	 18

System design

This section provides an outline of each system design choice made that was fundamental to
developing the implementation for the system.

Design patterns

The Flask framework provides several design-patterns that promote modularity and simplicity
that has been incorporated within this application. This section describes each, and the
benefits of their use to this project and future developers.

Blueprints

Blueprints are a technique to divide a Flask application into separate modules. This provides
extensibility and isolation of testing, as related view methods, templates, and classes are
grouped together. The benefits of such modularity enable additional functionality to be added to
the application without affecting other components, which allow each to be tested individually.

Within this application, one blueprint is used to represent the chat components, and is assigned
to the Flask application in the application factory as illustrated below. The templates or view
methods have not been separated into their own modules due to the small-scale scope of this
application. A blueprint was used to support such extensibility if desired by future developers.

Application factory

An application factory enables multiple instances of the
application to be created by assigning all related
extensions and application settings on creation. This
provides control over the creation of the application, and
allows multiple applications and services within the
application to share these extensions.

This application uses this pattern for testing using separate
configurations as described below, and to access
extension functionality to initialize the database and to run
the socketio server through a command line interface. The
pattern used for this application is illustrated to the right.

	 19

Configuration

Configuration settings contain different settings depending on the application environment that
the application is being used in, e.g. debug mode, secret keys, database configurations, etc.
This application has two configurations that inherit shared configuration settings. One contains
local development settings, and the other for production. This enables specific settings to be
toggled with ease (i.e. debug) and different configurations to be attached to an application.

To achieve this, an environmental variable
is set on the production sever to load the
configuration on application initialization,
which is illustrated in the following image:

Shared templates

Flask uses Jinja2 as the template engine, which provides template inheritance that allows a
base “skeleton” template to be created that contains all common elements for the website, and
defines “blocks” that children templates can override [25]. This prevents code duplication by
promoting reusability of HTML elements, which simplifies application development.

Within this application, a base template is used
(layout.html), which includes the navigation, CSS
styles, JavaScript, feedback form (modal.html), and the
HTML structure. An inheritance diagram of the web
application templates is illustrated to the right:

Index.html and about.html inherit the base template and override the content block to represent
applicable content on that webpage to the user, which is illustrated in the image below:

	 20

Architecture

Flask does not use any framework paradigms due to its “micro”
nature. Instead, the developer adapts techniques suited to their
project using the foundations flask provides.

For this project, the model-view-controller (MVC) architecture
was chosen as Flask provides models for data representation,
and views for displaying the data to the user. Whereas controller
functionality is not explicitly provided, which allows the
developer to manipulate data as required by their application.

Flask models and views implemented do not depend on a class structure typical to UML
modeling. Instead, the implementation details and advantages of each are discussed below.

Models

To achieve database access with an ORM a Python class must be written for each database
table and must extend the Flask-SQLAlchemy base class. The resulting class will be mapped
to the respective database tables at runtime to expose database access [26]. An example of
this declarative definition for the application’s Message table is illustrated below:

Extending the base database model (db.Model) allows operations on the models respective
tables to be performed. Each flask instance creates a database object on initialization that
maps known models automatically. This enables object queries to be written, for example, to
obtain the name of a term based on an id using the Nodes model:

To create and insert a new row into the respective table for the current database session:

	 21

Views

A view function is where an HTTP request (from the user) meets the application logic
(performing actions on data and displaying the results). Each view generated binds the view
function to a URL route, which corresponds to the blueprint “route” method parameter as
illustrated below: when a user visits ‘/about’ the method ‘about()’ is invoked.

A view function exists for each webpage, which is used to render the corresponding templates
to the user. A brief description of each:

§ index: the application root where the conversation and user interaction occurs.
§ about: project information, including purpose, user participation, and instructions.
§ 404: a user-friendly error message and redirects users to about.

Traditionally, application logic is known as the “controller” as it performs operations on data.
However, controllers within this application perform responding actions to user actions using
SocketIO, while views explicitly render HTML to the user as illustrated above.

	 22

Conversational structure

BMIs have been selected to structure the conversation between users and the system due to
their advantages as described in the background section. The purpose of the conversational
structural components is described below:

1. Initial question: provides the user with the purpose of the application and concludes
with a general open-ended question to steer the conversation towards health.

2. Open-ended questions: used to invoke user reflection and reasoning for choices that
affect their health and wellbeing.

3. Reflective summaries: combines reflection, affirmations (a restatement of terms in
the user’s message), and summaries (using previous messages to determine context).

Conversations were structured to adhere to BMI techniques
as discussed above with one difference; a clarification
message is sent when no terms are detected in a user
message.

This provides the user with the option to write a detailed
response, which would bring the conversation forward and
facilitate further reflection, as they have to consider the
previous question.

	 23

Conversation use cases

Although I have written a strict set of requirements above, a use case diagram was created to
identify the user interactions and data flow between the users and the system (the actors)
when conversing with the website. The use case diagram below illustrates the interactions and
data flow between these. The server is an actor as it dynamically processes and responds to
user messages, and interacts with the core components of the system to achieve this.

Description of use cases

A detailed describing of each use case including the required conditions to facilitate it, and the
data flow of each are described below. The actors of each use case are: user, website, server.

Use case: initial question
Description: the server provides the initial opening question to begin conversation with user.
Preconditions: the website is online.
Basic flow:

1. A user visits the website.
2. The interface displays the initial question to the user.

	 24

Use case: user message (conversation)
Description: the user sends a message to the server through the website. The system
generates a response automatically and replies to the user.
Preconditions: the initial message has been sent, and the server and website are online.
Basic flow:

1. The user types a message in the free-form text box and presses enter.
2. The server sends an appropriate response.

Use case: user voting
Description: the user casts a vote (rates) a server response
Preconditions: the rating system interface appears alongside a server response.
Basic flow:

1. The user clicks the down-vote button.

Alternative flow:

1. The user clicks the up-vote button.

Use case: user feedback
Description: the user completes and submits the feedback form.
Preconditions: the website and server are online.
Basic flow:

1. The user completes and submits the feedback form.

	 25

Class diagrams

A class diagram was designed for each class to describe the functionality required to achieve
the desired behavior of the system. This section describes the purpose of each class modeled
and their relationships.

Conversation controller

The messenger class acts as a controller in this application as it manipulates model data, and
generates an appropriate response to display in the views. Each public method in Messenger
adheres to the BMI conversation structure. The methods that take a user message as input
(open_ended_question and reflective_summary) use the private method for context detection.

The database class contains methods that query the ontological database representation. This
class is used within Messenger’s private method to acquire ontological terms from the user’s
message. These methods are fundamental to the application and have been grouped together
in isolation to accommodate unit testing. Both classes, their methods and relationship is
illustrated in the following class diagram:

Views

Views in Flask do not require a class, but instead
blueprint views are contained within the same
module. The Views module for this application
contains the webpages (index, about,
page_not_found), and associated messaging
methods, which are illustrated to the right.

The private method (cast_vote) will be used by
“on_vote” to modify the rating of a particular
question in the database, and was abstracted to a
separate method to simplify logic within “on_vote”.

	 26

Utils

The first three methods in the UML diagram to the right
contain the algorithms for modeling domain knowledge for
this application, and the following three are used for
evaluating the system. The implementation details of each
are discussed in the design and evaluation sections below.

All three private methods will be used within
“assign_terms_to_obo_file”, which provides a command-
line interface for updating the ontology from scraped data.

Context detection

This algorithm attempts to determine the context of a users message to bring the conversation
forward, i.e. the topic (exercise, diet, or children of these) a user is discussing. This is achieved
by determining the frequency of ontological terms in the user message. This algorithm is used
by all selection algorithms to select an appropriate response, and is where the queries against
the transitive closure ontological representation are made.

To achieve this, each word in the users message must be queried against the ontological
representation to identify if any parent terms exist for it. A dictionary will be used to store the
counter for each term. The proposed design of this algorithm is illustrated below:

1. terms_in_user_message = dict(key:term_name, value:counter)
2. user_words_list = split user message by unique words
3. for each word in user_words_list:

a. term_id = obtain the term id for the word
b. if term_id exists:

i. parent_name = obtain the parent name using term_id
ii. known_terms = list of terms from the Question model

iii. If parent name in known_terms:
1. Increment parent term value in terms dictionary

4. return terms_in_user_message

	 27

Response selection

Automatically generating responses is outside the scope of this project. Instead, responses for
each parent term must be manually written, and stored for use by the selection algorithms
discussed below (Appendix A), e.g. open-ended questions for the fruit term are illustrated:

As I am not a trained clinician the questions manually written may not adhere to the BMI
principles of empathy, open-endedness, and reflection. This may limit user participation and
responses to the system, which would limit the effect of the system overall.

To overcome this limitation a voting system was developed to allow users to “rate” each
question, which the selection algorithm uses to choose the most suitable response. This
ensures poorly written questions will be used last, which will improve conversations.

This algorithm selects a suitable response to a user message by determining the most frequent
concept in the users message using the context detection algorithm described above. The
response is selected based on the rating of a question, where the best is selected until no best
messages exist, and then unsent responses are sent that have less rating. If all messages
have been sent, then one is chosen at random to be sent. This prevents bias being introduced
by the selection algorithm as other users may down-vote a response that would be helpful to
other users. An outline of the desired algorithm with these characteristics is illustrated below:

1. terms_in_message = frequency dictionary of terms in user message
2. if terms_in_message is not empty:

§ unsent_questions = all questions that have not been sent
§ all_questions = all questions in database for most frequent term
§ unsent_highest_rated = all unsent questions for most frequent term

with the highest rating
§ if unsent_highest_rated is not empty:

i. Return a question from unsent_highest_rated at random
§ else if unsent_questions is not empty:

i. Return a question from unsent_questions at random
§ else:

i. Return a question from all_questions at random
3. else:

§ Return a clarification message as no terms detected in user message

	 28

Graphical user interface design

This section describes and justifies the interface design choices for all aspects of the system.

Responsive design

The number of devices with Internet access is increasing per year [27], which implies mobile
users are likely to visit and interact with this application. It was therefore vital to design the
application to function accordingly across all devices. Responsive web design forces a website
to respond to the user’s device. This eliminates different design and development phases for
each device and reduces the burden of maintaining these on the developer.

Responsive design is achieved using CSS media-queries where styles can be written within
each media-query that uses a specific width. Minimum width refers to everything greater than
or equal to the amount given, so in the below example styles written within it would only work
on small devices, such as phones which do not have a width greater than 320 pixels.

@media only screen and (min-width: 480px) { /* Styles in here */ }

A “mobile first” approach was taken, which focuses on designing the application for a mobile
first to allow the design to be centered around the key features of the application while
remaining simple. Bootstrap supports this by default, and to use it I applied a set-width to the
container that holds the entire application. This is expanded automatically until the application’s
CSS is applied, which limits the size of the container to 600 pixels on large devices:

@media (min-width: 1200px) { .container { max-width: 600px } }

The result of using this approach is that the application will have a high level of consistent
usability across all devices and browsers, which will afford user interaction with the application.
The design across several devices is illustrated below:

Mobile (iPhone 6) Tablet (Google Nexus 7) Computer (MacBook)

	 29

Browser compatibility

The design of the web application remains consistent across all modern browsers due to the
use of Bootstrap. This provides support for modern web features (CSS3 and HTML5) on all
browsers and devices by using JavaScript on older browsers to ensure this functionality works.
The client/server functionality implemented using SocketIO is supported across all browsers.

Chat design

As the conversational aspect is fundamental
to the system, research was undertaken to
ensure the design of the chat system would
achieve a high level of usability, readability
and be aesthetically pleasing to users.

Messages have been separated to easily
differentiate between each by color
coordinating sent and received messages,
and indenting user sent messages. These
techniques allow each message to be viewed
in isolation, improving readability and the
context of the current conversation.

Message flow (from top to bottom) was
chosen to force the user to focus on the most
recent messages received as previous
messages that may no longer be relevant
due to the nature of the intervention used.

An adapting font-size was chosen to adhere
to 45-75 characters standard across all
devices [28], which improves the readability
and accessibility of the chat service.

About page

A separate webpage was developed that
explains the applications functionality,
purpose, and how users can participate. This
was used to provide context for the
application when advertising online. A
screenshot is illustrated to the right.

	 30

User participation: voting system

A voting system must be developed to evaluate the effectiveness of the manually written
responses, and to enable the response selection algorithms to choose best-known responses.

From a design perspective, directional arrows were used beside each response the system
sends to the user to accommodate feedback. A two choice voting mechanism was selected
over alternatives as this is proven to be effective for rating and evaluating a system [29]. The
design of the voting system in use is illustrated below when a user has up-voted a response:

Accompanying algorithms must be developed both on the client and server to achieve this. On
the client, an algorithm must notify the server of each vote and send the related question and
vote type. The server to update the rating for that question in the database uses this.

The client must also detect when a down-vote response from the system is received and
replace the related question on the interface with the new one received from the server. This
provides the user with conversation control, and facilitates evaluation of system responses.

On the server, an algorithm must exist that increases/decreases the rating by .1 with each user
vote until a minimum (0) or maximum (1) threshold is met. If a user has down-voted a question,
then a new question is selected using the response selection algorithm (therefore, another
best-rated question will be selected) will be sent to the user after the vote has been applied.
The interactions between the client and server are highlighted in the following diagram:

Client Flow Server
User casts vote on GUI for a question.

If “vote message” received:
 Replace question on GUI

à

ß

Updates question rating in database.

If “down-vote” cast by user:
 Send a new question

	 31

Implementation

All algorithms designed in the previous section were implemented (Appendix A) and used
within the project. This section discusses the algorithms that deviate from their design, are
interesting in nature, or where problems were encountered during implementation.

Modeling domain knowledge

This section covers specific implementation details of the algorithms used to develop the
system ontology, challenges faced during implementation, and how these were overcome.

Data acquisition

It was had planned to acquire all existing data (threads and comments) from selected
subreddits obtained from analysis as discussed in the design section above. However, it was
discovered that Reddit uses aggressive caching mechanisms that enforce a strict limit on their
API to a maximum of 1000 “most recent” comment downloads per request [30].

The Python Reddit API wrapper [31] was used to simplify access to Reddit data. The algorithm
developed downloads 1000 comments for each subreddit related to a parent term, and stores
the result into a file labeled with the run date and parent time, and stored in the “data” folder
within the project. This algorithm can then be run on other days, and developers can easily
differentiate between data if they wish to perform separate analysis using these files.

Data cleansing

This algorithm generates a set of unique words from all scrapped Reddit data from the above
algorithm. This is performed in memory as the result is passed to the ‘ontology development’
algorithm, and prevents files being saved that would not be used otherwise.

To reduce the size of the dataset (as each word in the resulting set is manually parsed and
added to the ontology using the algorithm below) several techniques have been implemented:

1. Markdown removal: regex is used to replace none English characters with nothing.
2. Converts all letters to lowercase for set comparison later.
3. Remove English stopwords using the Natural Language ToolKit (NLTK) module.
4. Remove words greater than length 12 (double the average English word length) as

words larger than this are likely to be the result of the above Regex replace.
5. Converts result to set to remove duplicates.

A file that contains words previously manually assigned to terms in the ontology (or thrown
away) is used to perform a set difference to further reduce the resulting dataset.

	 32

Ontology development

This algorithm was developed to parse the cleansed dataset of words, and to provide a
command-line interface for developers to assign each word to a term in the ontology. If a word
were not relevant to the ontology, then it would be inserted into a file that is later used in the
data-cleansing algorithm to reduce the dataset size for future iterations of scrapped data.

An open-source OBO module was used to read, and
insert OBO terms into the ontology. To build a term to
insert into the ontology Python’s string formatting
capabilities are used as illustrated to the right.

A “skip” option was incorporated that adds the word output on the command-line to a separate
file that stores a list of words not suitable for the ontological representation (Appendix A). This
file is re-used in this data-cleansing algorithm to reduce the number of words output to the user
within this algorithm. The command-line output when running this algorithm is illustrated below:
	

This algorithm was run twice against two separate datasets2 (Appendix A) to add terms to the
ontology. No additional runs were carried out, as the ontology size was sufficient to begin user
testing, and manually assigning words took a considerable amount of time that was better sent
elsewhere in the project. The known words file simplified this process significantly after a single
iteration, which is illustrated in the table below:

Several limitations were encountered during this process; words that I did not know, such as
“molasses” had to be manually looked up to verify if they belonged in the ontology, and if yes,
where. Words often contained spelling errors and had to subsequently be ‘skipped’, or plurals
of alternative versions of words that already existed in the ontology had to also be ‘skipped’.

These limitations could be overcome in the future by improving the ontology-cleansing
algorithm to use natural language processing techniques, such as stemming, to reduce the
dataset size output by parsing the ‘know words’ list, stemming each word and removing and
related words from the reddit dataset.
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2 The datasets exist inside the “data” folder in the project source.
 Terms added to the ontology can be viewed inside structure.obo in the same folder

 Iteration one Iteration two
Words in cleansed dataset 18,213 13,405
Words assigned to known words file 17,866 13,362
Words assigned to ontology 347 43

	 33

Database development

The “concept_id” is arguably the most significant aspect of the system as it takes as input a
word from the users message, and attempts to detect if it exists in the ontology.

Stemming was used to reduce the input word to their root word to improve comparison and
detection of user words in the ontology. This overcomes a one-to-one comparison with the
input word and all terms in the ontology, which is inefficient as the user may use plurals, or
have spelling errors. The Snowball stemming algorithm from NLTK was chosen over
alternatives (Lancaster and Porter), as it’s faster, and less aggressive [32].

To enhance this comparison a “LIKE” query was used against the ontology using the stemmed
word. This produces a higher comparison rate across, which improves overall context detection
in the system. The implementation details of this method are illustrated in the image below:

Selecting parent term name

This method takes the term id, and uses it to obtain the parent name. It is used in the context
detection algorithm to assign parent names as keys in the counter dictionary, which is used to
select a manually written response. This is achieved using two queries: the first obtains the
parent id for the term, and the second obtains the name for the parent id as illustrated below:

	 34

Populating database with ontology terms

An external module3 was used to facilitate adding OBO terms to the local OBO ontological file.
This was chosen over manually writing the functionality for simplicity; the library has extensive
tests that demonstrate it is correct. The contents of the applications OBO ontology are loaded
into memory, which is accommodated by the module as illustrated below:

Each term in the OBO ontology is read, and the attributes of the term are stored in variables to
be used to populate the transitive closure as illustrated below. As the top-level attribute is
“health”, for which there are no manually written questions the parent id (“_pid”) had to be zero
rather than one, otherwise PostgreSQL would throw an error as closure terms could not be
generated for it.

A new Node is then added to the database if the term is known and generates all ancestors of
the parent (as illustrated below) to populate the transitive closure with their values.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3 This module was obtained from a popular open-source biological gene library:
 https://github.com/ntamas/gfam/blob/master/gfam/go/obo.py

	 35

Application manager

Several of the utility methods and the application server must be run through the command line
interface (CLI). An external library (Flask-Script) was used to simplify the process of writing a
CLI to handle tasks outside the scope of the web application.

An instance of the Flask application instance is
passed to the Flask-Script constructor, which
exposes access to all Flask variables. Methods that
are decorated with “command” become command
line arguments. The initialization of the database
command is is illustrated to the right.

Flask-Script provides a ‘runserver’ argument by default that will invoke the Flask application
server. Instead, this application must construct the SocketIO web server to gain exposure to
asynchronous behavior. This was achieved by overriding the ‘runserver’ command by providing
my own implementation, which calls the SocketIO run method. Methods that have been made
as arguments for this CLI script are illustrated below:

	 36

System implementation

The following sub-section discusses the implementation details of core algorithms designed
above, which have deviated from their design, or where issues were encountered.

Conversation flow

SocketIO was used to simplify message sending between the client and server. To achieve
this, a method was required on the client to send data, and a matching method on the server to
receive data. Methods were implemented for each conversation use case developed above.

As each implementation covers the same principles (including the user participation voting
system) I have illustrated the “user feedback” use case below. When the client (end user)
submits the feedback form, JavaScript is invoked that sends (emits) the form data across the
websocket to the server.

The server implements the SocketIO “on” method that receives data from the client based on
the namespace transported with the associated data. Once data is received for a namespace,
the server calls the associated Python method, which in this use case saves the form data to
the database.

Client (JavaScript) Server (Python)

Context detection

This is the most fundamental method in the application as it builds a dictionary containing the
frequency of parent terms detected in a user message, which is used to select a manually
written response to send to the user in the selection algorithms. This is achieved by splitting the
user message by individual words, and identifying if these exist in the ontology representation
using the term detection algorithm as discussed above.

Security measures were implemented to filter user input to prevent SQL injections and other
well-known security risks. To achieve this, all none English characters are removed from the
users’ message, and it is split by spaces (e.g. into words). The database operations are then
performed using each word from the list of words generated, which limits security risks.

To prevent parents being added to the dictionary for which responses were not written, all
concepts from the question model are stored in a list. This is used to verify that a parent being
added to the dictionary has responses written for it; some parents do not, e.g. health, or diet.

	 37

Response selection: open-ended questions

This was the most fundamental algorithm in the application as it selects best-rated contextual
responses based on the terms detected in the users messages. The implementation described
does not differ from the design, but the techniques used to acquire the characteristics of the
design are interested as illustrated below.

Firstly, if a term is detected in the users message (using the context detection algorithm
described above), then a suitable response must be selected to send to users. As a best-suited
response must be selected the most frequent occurring term in the user message is obtained,
then all questions for that term are obtained from the database.

The questions are then filtered to acquire the highest rated questions, and all messages for this
as illustrated below. When obtaining the highest rated questions the rating had to be routed to
one decimal place as down-voted questions would differ from highest rating, and comparison of
these did not provide accurate results.

The core selection mechanism ensures the best un-sent messages are not sent (rather than
repeating the previous best-sent message) until all best rated messages are sent, and then
unsent messages are sent. Finally, if all messages have been sent then one is selected at
random. It is thought that this selection process will prevent bias being introduced as each
question has a fair chance of being sent the more the user interacts with the system.

	 38

Results and evaluation

This section illustrates mechanisms used to verify the software developed, and the extent to
which it achieved success in relation to the system requirements. Moreover, this section also
highlights the results of user participation for the development of the system, which are used to
validate, verify, and critically evaluate the system requirements.

Functionality testing

This was carried out to verify that the application functioned as anticipated by end-users. The
conversation use cases created in the design section were used as test cases to validate the
user requirements and expected interactions with the system, which were:

1. Initial question
2. User message conversation
3. User voting
4. User feedback

A test case template was developed to provide consistency and comparison between testers:

Test case ID:
Test purpose:
Environment:
Preconditions:
Test case steps:
Step number: Procedure: Expected response: Pass or fail:

Tester name:
Tester comments:

Three independent testers completed each test case to verify functionality across a range of
browsers, devices, and environments. All test cases passed and no errors were reported. The
results of each independent test case were joined together to simplify readability as no errors
were found (Appendix B). The devices and browsers tested on were:

- Windows 7: Internet explorer 10, Firefox (version 30), and Opera (version 10).
- OSX Mavericks: Safari, Firefox (version 34), Google Chrome, and Opera (version 12).
- Ubuntu 12.04: Chromium, Firefox (version 34), and Opera (version 10).
- Google Nexus 7 (tablet): Google Chrome.
- iPhone 6 (phone): Google Chrome.

	 39

Usability testing

This section describes the performance of usability testing strategies used and the measures
taken to address issues raised by users. To gain user feedback a web-form was developed to
acquire quantitative data through a questionnaire and qualitative data through free-form input.

System usability scale

The System Usability Scale (SUS) is a method designed to measure the usability of a website.
This is achieved using a questionnaire of ten questions on a five-point Likert scale from
“Strongly agree” to “Strongly disagree” [9] as illustrated in the image below. The benefit of
using SUS over alternatives is its effectiveness on small sample sizes. Furthermore, current
research indicates that a sample size of 12 provides coverage for 90% of all feedback [33].

Overall, 17 users participants provided feedback, which resulted in a SUS score of 92.5%
(Appendix C). This puts the usability of this application significantly above average, and
validates that this application is reliable, and fit for purpose.

	 40

General user feedback

An optional free-form text field in the feedback form allows the user to suggest improves to the
current website. This feedback was taken into account, and solutions to their suggestions were
developed that were within the timeframe of this project, which are illustrated below:

 “When I visited the website it took quite some time to load (10 seconds), and responding to my
messages took seconds at. Once his first response was sent, all others seemed to be quick.”

The free hosting provided by Heroku was used for testing the project, which automatically puts
the instance of the web application to sleep when inactive. Consequently, when users visit the
inactive application it takes some time to awake and begin the conversation. This could easily
be overcome by using an alternative hosting service, but was outside the scope of this project.

“This is a neat idea! One thing I would mention is that
the opening question asked is a bit confusing. It would
be easier if you sent it in another separate message to
me. That way what I should do next is more obvious.”

Similar comments suggesting that it would be beneficial
to users if the initial question were asked in a separate
message. This was incorporated as illustrated to the
right, and has the advantage that users can now rate the
initial question asked by the system, which improves the
selection of popular questions for other users. However,
as this was introduced towards the end of testing the
effectiveness of this question will not be evaluated.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 41

User participation

This section evaluates the results of user participation and testing, and illustrates the impact
they had on improving the system’s performance through evaluative feedback mechanism;
writing detailed responses would improve the domain-specific ontology, and rating messages
would enable evaluation of intervention questions written. Although user participation was not
as significant as anticipated, trends were identified as discussed in the following sections.

Google Analytics was used to capture user participation on the testing website due to its
simplicity in settings up, and prior experience using it. Results conclude that 315 users
participated from 45 different countries participated as illustrated below:

The website was released on April 5th to three peers who rigorously tested it for a two week
period to ensure any bugs were addressed prior to releasing it to the general public.

On April 18th the application was advertised on social media (Twitter/Facebook), which
increased the number of users by four. However, at this stage participants were friends, or
peers due to the channels advertised on, which limited participation as they were likely to visit
the website, but not participate in the application as illustrated in the results section below.

On April 24th, the application was advertised on Reddit, which significantly increased traffic for
the remaining week of testing. It is stipulated that user participation at this stage was more
detailed due to their unbiased with the application developer. The participants at this stage
were more detailed, which provided a better opportunity to evaluate the effectiveness of BMIs.

	
	

	 42

Evaluation of ontological development

User messages were used to improve the knowledge base in the same way as the acquired
data. The ontological development algorithm was used against the user messages dataset
(Appendix C). A total of 134 unique words existed in the reduced dataset, and were manually
parsed using the ontological development algorithm. A total of 28 words were assigned to the
ontology. This is more on average than the to the acquired dataset, which illustrates that user
messages can be more effective than the acquired data for ontological development.

It is thought that the quantity of relevant terms in the user messages dataset in comparison to
the acquired dataset is due to the structured conversations used. Questions asked are directly
related to a parent term in the ontology, rather than general conversations that exist on the
subreddits used to acquire the data.

Moreover, terms added to the ontology as a result of user participation identify a correlation
between the groups of effective intervention questions as illustrated below. This demonstrates
that the best intervention questions invoke better reflection from users.

The lack of detailed participation in user responses restricted the evaluative scope of this
project. It is thought that the lack of participation is due to the advertising mechanisms used
(social media), which may not have been the target audience for the application developed.

The detailed conversations that took place provided enough ontological development to
demonstrate that the system on a large scale could be effective. This could be improved in the
future through the use of controlled groups, which would focus on specific sub-domains (i.e.
diet) that would allow for focused and detailed responses from users to be obtained.

	 43

Evaluation of intervention questions

A rating system was incorporated into the system to identify the best and worst written open-
ended questions based on user opinions and use of the system. This feedback mechanism
was required to evaluate the effectiveness of the manually written intervention questions, and
provide a means for selecting the “best” responses to respond with.

Another trend identified was that the majority of terms added to the ontology from user
messages were related to the best-rated intervention questions (fruit), which are illustrated
below. This could be used on a large-scale for further analysis to identify the intervention
questions that are ineffective in an attempt to determine why to improve the questions written.

The majority of the intervention questions were not used, which restricts the evaluative scope
of these questions. The most popular category of use was “fruit”, where all questions received
ratings. One of the questions was down-voted significantly more than others, which indicates
that this question was not fit for purpose as illustrated below:

It is observed that the majority of written responses went unused during user participation,
which was especially true for the “exercise” scope of the project. This indicates that the project
may have been too broad, or the sample size too small. An example of un-used term is
swimming, where all ratings remained “1”, which is illustrated below:

Overall, the effectiveness of the majority of the intervention questions cannot be determined
due to the small-scale user testing undertaken. Although, no question received a rating below
.7, which may indicate that those written were effective.

One notable limitation identified through analysis was that the stemming algorithm used to
select the concept from the database would select inaccurate responses as illustrated below.
This could be overcome by introducing word length limits to stem for in the ontology, or
incorporating NLTK functionality to improve the context detection algorithm described above.

	 44

Evaluation of system requirements

All functional and non-functional requirements have been met or exceeded. This section
reviews the achievement of each alongside their acceptance criteria, and provides details of
where their design, and implementation have been discussed elsewhere in this report.

Functional requirements

Requirement: develop web-scraping algorithm to obtain domain knowledge via online sources.
Acceptance: data acquired must be relevant to ontological terms, and consist of at least
10,000 unique words to be used to assign to the ontology.
Achievement:

 Two datasets of relevant data were acquired consisting of 31,968 unique words. The
algorithm developed was discussed in detail the ontology development section above.

Requirement: develop an algorithm to clean data and insert concepts into the ontology.
Acceptance: only unknown words (terms of concepts) are produced from cleaned data.
Achievement:

 The algorithm developed as discussed in the ontology development section above
significantly reduces the acquired dataset. The mechanisms incorporated facilitate algorithm
re-use to accommodate analysis of acquired datasets and user participation data.

Requirement: develop an algorithm to insert concepts from cleaned data to the ontology.
Acceptance: a command line interface that outputs single terms (from cleaned data) that can
be assigned to known concepts in the ontology, which will update the ontology respectively.
Achievement:

 The algorithm developed takes a set of words as input, and provide the developer with
a CLI to manually assign these terms as illustrated above. This algorithm uses the data
reduction algorithm to simplify this stage of ontology development for the developer.

Requirement: design and develop algorithms to select context appropriate responses.
Acceptance: manually written responses are selected based on the context of user messages.
Determined by the frequency of words in user messages in comparison with the ontology.
Achievement:

 A shared method was developed to promote reusability across the structured
conversation selection algorithms: initial question, and open-ended question. The algorithms
developed for structured conversation exceed expectations as demonstrated in the results and
evaluation section above.

	 45

Requirement: design and develop an algorithm to transfer ontology from file to database.
Acceptance: transfers ontology concepts from file to a hierarchical structure in an RDBMS.
Achievement:

 An algorithm was developed to transfer the ontology from an OBO file to a database
representation (transitive closure) as discussed in the design section above.

Requirement: design a database to store ontology, system and user messages, and feedback.
Acceptance: each table stores relevant data and is queryable for system use and evaluation.
Achievement:

 A normalized database representation was developed for each aspect of the system to
accommodate user participation as discussed in the database development section above.
Each table is used throughout the system to save or retrieve data on user interactions.

Requirement: design chat interface where users can enter free-form messages.
Acceptance: user can chat with system without restrictions in a free-form way.
Achievement:

 The interface developed accommodates free-form user conversations, and was
developed to achieve a high level of usability to afford user participation.

	 46

Requirement: design and develop mechanisms to improve the system through user feedback.
Acceptance: the following criteria should be met for each

§ System messages: users vote to improve future selection of system messages.
§ User messages: improves knowledge base and context detection.
§ Usability: relevant usability form incorporated into design to evaluate system.
§ General: free-form field where users can share their opinion on all aspects of system.

Achievement:

 System messages:
 A voting mechanism was designed and developed to incorporate user
feedback into the system. This allowed users to rate each intervention question, which is used
by the selection algorithms and discussed throughout the report.

 User messages:
 These messages were used at the end of the project to demonstrate the
effectiveness of the system.

 Usability:
 Usability testing results demonstrate that the system designed was of high
quality and usability by achieving a SUS of 92.5%.

 General:
 As illustrated above, a free-form field was provided to allow users to write any
message to the system.

Requirement: quantify and evaluate effectiveness of the system.
Acceptance: highlight improvements through evaluations including: ontological development,
response-selection algorithms, usability design, and user participation.
Achievement:

 The results and evaluation section above discusses the effectiveness of the system
through quantitative analysis of usability, functional testing, and user participation. Results
indicate the effectiveness of the system, but the sample size used limited evaluative scope.

	 47

Non-functional requirements

Requirement: manually write responses to ontology concepts using intervention technique.
Acceptance: 5 unique responses for the initial question, and open-ended question must be
written for each parent term.
Achievement:

 7 responses were written for initial question, and 5 responses for each parent term
were written for the open-ended question and reflective summaries (Appendix A).

Requirement: crowd source user participation via social networking websites.
Acceptance: a minimum of 100 unique users must use the application.
Achievement:

 During testing, the website had 315 unique visitors with 255 unique conversations.

Requirement: usability – system design
Acceptance: at least 12 users providing feedback and achieving system usability score (SUS)
above 68 percent. This would demonstrate that the usability is above average [9].
Achievement:

 Usability testing results demonstrate that the system designed was of high quality and
usability by achieving a SUS of 92.5% with 17 participants providing feedback during testing.

Requirement: cross-browser support
Acceptance: system must look and function the same across all major browsers.
Achievement:

 The system was tested across 5 operating systems and devices, and on 6 different
browsers. No usability or functionality issues were reported during testing.

Requirement: reliability – chat performance
Acceptance: system messages must send within 10 seconds of receiving a user message.
Achievement:

 Although it was observed by users that the system was slow to start (due to Heroku
hibernation as noted above), each message the system responded with was within seconds.

	 48

Future work

This section provides suggestions for improving the current application by exploiting the
limitations discovered when undertaking this project. The following suggestions will also be
beneficial to those undertaking similar research focused projects in the area of public health.

Control group

As user participation was undertaken without enforcing controlled conditions the results
obtained above are not an ideal representation of the capabilities of this application or the
affect it can have on participants.

To achieve accurate evaluation a controlled and none-controlled group of participants could
interact with the application on a defined basis and their eating habits be recorded over time.
This could be used to evaluate the effectiveness of the application in invoking reflection by
illustrating change in user health habits over time.

Crowd sourcing

The small quantity of participants in this application significantly limited the evaluation of the
effectiveness intervention technique used. Undertaking large-scale user testing in the future
would improve the validity of current results, and provide a better way to identifying trends.

This could be achieved through crowd sourcing to acquire significant user participation for
better system evaluation. Several user-driven aspects of the system (voting, user messages)
would benefit from such participation, and are ideal candidates for crowd sourcing use.

Personalization

The current application was developed with a focus on achieving the objectives set out as a
proof of concept. By adding personalization options prior to beginning the conversation the
system can determine qualities of the user and focus the conversation towards those.

It is proposed that this would facilitate further user participation, which would help overcome
the limitation of this project where several user messages lacked in quality. Possible
personalization options include: users diet type, height, weight, and last meal eaten.

Unit testing

Unit testing provides a framework to verify the functional behavior of methods independently.
This provides confidence that each method and their interactions functions as designed. It was
considered implementing unit tests during the final weeks of the project. Attention was instead
focused elsewhere to ensure the all of the system objectives setout in the initial report were
met. As the project was a proof of concept, unit tests were not considered vital.

	 49

Conclusion

This project successfully developed software to autonomously administer interventions through
a chat service to users in an attempt to address the research questions proposed. All defined
objectives were exceeded, which demonstrates that the technical solution developed is usable,
and suitable to addressing the problem set out to address.

The software was developed with reusability and professionalism in mind, which was
incorporated through rigorous design and testing phrases, as well as writing detailed developer
documentation to begin contributing to the project as is provided in the source README. This
ensures that the software can be used in the future by other developers and researchers a like.

From a research perspective, the system developed proves through user participation that
automatically administering BMIs using free-form user messages is possible, which had not
been previously demonstrated in other research. However, as noted above, the extent to which
administers these interventions were effective was outside the scope of this project.

The feedback mechanisms incorporated in the project demonstrate that user participation
improves the ontology, but is insignificant in comparison to data acquired from external
sources. The ontological representation is proven suitable for selecting responses to user
messages; the small sample size and lack of detailed user participation limited the evaluation
in determining the effectiveness of user participation.

As noted in the limitations and risks section above, the effectiveness of the intervention
techniques cannot be evaluated due to insufficient user participation, but the groundwork has
been set for promising research in areas of public health by adapting this software in the future.

	 50

Reflection on learning

This section identifies the impact the learning experiences of undertaking this project have had
on my personal development, and a reflection on the decisions made that impacted the project.

Project scope

The project undertaken enabled me to gain insight in multiple areas of interest: ontologies and
their use, natural language processing, and user design, while gaining exposure to research in
other disciplines (public health). This broadened my personal research interests, which
ultimately motivated me to pursue postgraduate studies in this area.

The breath of exposure this project arguably limited the scope of results. If instead the project
focused on gaining a deep understanding of a specific sub-area of the defined problem then
more useful results may have been obtained, for example, if the ontology focused on food (or
going further, a specific diet), rather than food and exercise.

Project management

The work plan developed in the initial report lacked rigor and detail. This slowed progress
during the project implementation phase as the low-level implementation of each component
had not been considered. Leeway introduced in the initial plan facilitated moving user testing
two weeks forward when the final report was being written. This prevented thorough analysis
and evaluation of the results, as they had to be written in the last few days.

Moreover, when carrying out similar large-scale projects in the future I will ensure reports and
documentation are written alongside each stage as writing retrospectively from notes took a
considerable amount of time, which limited the detail I could go into during the evaluation
stage, which was left last due to user participation.

User participation

User participation demonstrated that the usability and feedback mechanisms developed were
highly effective. However, due to the small number of participants the extent to which this
analysis can be used is limited. Instead, I propose that experiments and evaluations be
undertaken on a controlled group of users, to re-evaluate the effectiveness of the system in
achieving the desired research objectives.

Moreover, a small group of beta-testers was used during the initial testing phase to validate the
system prior to advertising it on social media. This allows a sub-set of users to test the system,
and report flaws, which could be immediately fixed. This type of testing proved effective as
several potential flaws were reported and addressed without impacting the majority of users.

	 51

References

[1] Office for National Statistics. Mortality statistics: deaths registered in England and Wales.
http://www.ons.gov.uk/ons/rel/vsob1/mortality-statistics--deaths-registered-in-england-and-
wales--series-dr-/2013/index.html (accessed 29 January 2015)

[2] Hustad J, Mastroleo N. The comparative effectiveness of individual and group brief
motivational interventions for mandated college students. 2014.

[3] Gaume J, Gmel G. Is brief motivational intervention effective in reducing alcohol use among
young men voluntarily receiving it? A randomized controlled trial. 2011.

[4] Field C, Hungerford D, Dunn C. Brief Motivational Interventions: An introduction. 2005

[5] Bickmore T, Schulman D, Shaw G. A reusable framework for health counseling dialogue
systems based on a behavioral medicine ontology. 2011.

[6] Stevens VJ, Smith KS. One-year results from a brief, computer-assisted intervention to
decrease consumption of fat and increase consumption of fruits and vegetables. 2003.

[7] Miller W, Rollnick S. Motivational Interviewing: preparing people for change. 2002.

[8] Flask. What does micro mean. http://flask.pocoo.org/docs/0.10/foreword/#what-does-micro-
mean (accessed 30th January 2015).

[9] Broke J. SUS - A quick and dirty usability scale. 1996.

[10] Guarino N, Oberle N, Staab S. What Is an Ontology? 2009.

[11] W3C. Resource Description Framework (RDF). http://www.w3.org/RDF/ (accessed 30th
January 2015)

[12] obofoundry. The open biological and biomedical ontologies. http://www.obofoundry.org/
(accessed 30th January 2015).

[13] W3C. OWL Web Ontology Language. http://www.w3.org/TR/owl-features/ (accessed 30th
January 2015).

[14] BioPortal. The world’s most comprehensive repository of biomedical ontologies.
http://bioportal.bioontology.org/ (accessed 30th January 2015).

[15] BioPortal. Computer retrieval of information on scientific projects thesaurus.
http://bioportal.bioontology.org/ontologies/CRISP/ (accessed 1st February 2015).

	 52

[16] BioPortal. Read Codes, Clinical Terms Version 3 (CTV3).
http://bioportal.bioontology.org/ontologies/RCD/ (accessed 1st February 2015).

[17] BioPortal. Robert Hoehndorf Version of MeSH.
http://bioportal.bioontology.org/ontologies/RH-MESH/ (accessed 1st February 2015).

[18] BioPortal. Medical Subject Headings. http://bioportal.bioontology.org/ontologies/MESH/
(accessed 1st February 2015).

[19] BioPortal. National Cancer Institute Thesaurus.
http://bioportal.bioontology.org/ontologies/NCIT/ (accessed 1st February 2015).

[20] Alexa. How popular is reddit.com? http://www.alexa.com/siteinfo/reddit.com (accessed 1st
February 2015)

[21] Reddit. About reddit. http://www.reddit.com/about/ (accessed 1st February 2015).

[22] Redditlist. Tracking the top 5000 subreddits. http://redditlist.com/ (accessed 9th February
2015).

[23] SQLite. Appropriate uses for SQLite. https://www.sqlite.org/whentouse.html (accessed
10th February 2015).

[24] Karwin B. Models for hierarchical data. http://www.slideshare.net/billkarwin/models-for-
hierarchical-data (accessed 10th February 2015).

[25] Flask. Template inheritance.
http://flask.pocoo.org/docs/0.10/patterns/templateinheritance/#template-inheritance (accessed
10th February 2015).

[26] SQLAlchemy. SQLAlchemy 0.8 Documentation.
http://docs.sqlalchemy.org/en/rel_0_8/orm/extensions/declarative.html (accessed 10th
February 2015).

[27] ONS. Internet Access – Households and individuals 2014.
http://www.ons.gov.uk/ons/rel/rdit2/internet-access---households-and-individuals/2014/stb-ia-
2014.html (accessed 11th February 2015).

[28] Craig J. Designing With Type. 1971.

[29] Chen M, Singh J. Computing and using reputations for Internet ratings. 2001.

	 53

[30] PRAW. Non-obvious behavior and other need to know.
https://praw.readthedocs.org/en/latest/pages/faq.html#non-obvious-behavior-and-other-need-
to-know (accessed 13th February 2015)

[31] PRAW. PRAW: The Python Reddit API Wrapper. https://praw.readthedocs.org/ (accessed
13th February 2015).

[32] Snowball. Snowball: A language for stemming algorithms.
http://snowball.tartarus.org/texts/introduction.html (accessed 14th February 2015).

[33] Tullis T, Stetson J. A Comparison of Questionnaires for Assessing Website Usability.
2004.

	 54

Appendices

The name of each appendix folder and a description is listed below:

Appendix A: source-code

This folder contains a clean copy of the project source code. The README file describes the
steps necessary to setup, run, and use the project locally and in production. The “data” folder
within this folder contains the manually written responses (questions.json), the acquired data in
.txt format (labeled by date), the OBO ontology (structure.OBO), and the known words file.

Appendix B: test-cases

This folder contains the results of functional testing in both PDF and DOC format.

Appendix C: results

This folder containing two sub-folders: “usability” and “user-participation” containing the results
of user participation, and a script used to generate the results from the Heroku database4. A
brief description of each file is listed below:

db_copy.py
 Generates a copy of the database when the method exists in manage.py
usability
 general.txt
 The general free-form comments made by users during user feedback.
 SUS.txt
 The SUS scores of acquired from user feedback.
 SUS.py
 A script created to generate the SUS from SUS.txt

user-participation
 question-ratings.txt
 The rating of each open-ended question after user participation
 user-messages.txt
 The messages users sent during conversations with the system.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
4 Issues were encountered when generating a database backup on Heroku.
Instead, db_copy.py was written that copies the contents of the database to file.

