

One Semester Individual Project

CM3203

Final Project

Training and Recruitment Assessment System for South Wales

Police

Author: Jamie Morris (C1123702)

Supervisor: Dr. Irena Spasić

Moderator: Dr. Andrew Jones

Page 1 of 79

Abstract
The Learning Development Services Unit are responsible for the entire training provision for South
Wales Police. The introduction of independent learning programmes, through workbooks and
assessments, was designed to gauge current knowledge and understanding in an attempt to
decrease the number of trainer contact hours. The current system of producing and securely storing
hard copy assessments is inadequate and costly but is necessary to provide evidence of student
learning. However, this has facilitated robust measures for quality assurance through version
control, compliance with the Management of Police Information Act and security through access
control.

During a period of austerity resulting in a reduced workforce, the process of assessing examinations,
evaluations, workbooks and application forms has become onerous. This project aimed to reduce
the human resources required to mark and assess and hence reduce costs in terms of labour and
ease pressure on staff by eliminating the requirement for marking and assessing by hand where this
is not necessary.

This project delivered a bespoke software application that has eased the assessment and evaluation
process within the Learning Development Services Unit of South Wales Police. The system provides
an automated method of creating and marking Student assessments, reducing the human resources
required in this process.

Acknowledgments
I would like to thank my Supervisor, Dr Irena Spasić for flexible meeting times that enabled me to get

regular helpful feedback that has assisted me in completing this project.

I would also like to thank my internal Client at South Wales Police who was regularly available, which

enabled me to follow my development model and to discuss and demonstrate my progress on the

project.

Page 2 of 79

Table of Contents
Abstract ... 1

Acknowledgments ... 1

Table of Contents .. 2

Table of Figures ... 4

Introduction .. 6

Defining the Problem .. 6

Deliverables... 6

Background ... 7

Existing Assessment Systems & Austerity ... 7

Security Issues ... 8

Deployment .. 8

Data Protection Act 1998 .. 8

Specification and Design ... 9

Requirements .. 9

Both Users ... 9

Trainers ... 9

Students .. 10

System Architecture .. 11

Use Case Diagram ... 15

Database Design.. 16

Service Layer Design ... 21

Platform .. 21

Separation of Operations .. 22

Authentication .. 22

UI Design ... 24

Corporate Colours ... 24

UI Framework .. 25

System Layout ... 25

Implementation .. 27

Development Tools ... 27

Integrated Development Environment and Server Debugging .. 27

Database Management ... 27

Client Debugging and Network Analysis ... 27

Page 3 of 79

Device Mode Tool ... 28

API HTTP Testing ... 28

Resolving and Handling Dependencies ... 29

Server Dependencies .. 29

Client Dependencies ... 30

Service Layer ... 30

Database Interaction - Repositories ... 31

Service Handlers - Services ... 35

Service Interface - Server .. 46

Client ... 47

Login Page ... 49

Navigation Bar ... 49

Home Pages .. 50

Editing Assessments (Trainers) ... 54

Viewing Assessment Results (Trainers) ... 55

System Popovers ... 58

Sitting an Assessment (Students) .. 60

Testing ... 62

Test Cases .. 62

Usability Testing .. 63

Unit Testing ... 64

Evaluation ... 67

Meeting Requirements ... 67

Intuitive User Interface ... 69

SUS Questionnaire .. 69

Future Work .. 71

Reflection on Learning .. 74

Project Management .. 75

Weekly Reports ... 75

Agile Approach .. 75

References .. 77

Appendix ... 79

Page 4 of 79

Table of Figures
Figure 1: Client-Database model ... 11

Figure 2: Client-Server-Database Model ... 11

Figure 3: HTTP Server-Client Model .. 12

Figure 4: SOAP Advantages and Disadvantages .. 12

Figure 5: REST Advantages and Disadvantages... 12

Figure 6: JSON Example .. 13

Figure 7: XML/JSON Interest Over Time ... 14

Figure 8: Use Case Diagram .. 15

Figure 9: Database Operations ... 17

Figure 10: Database Schema ... 18

Figure 11: Multiple Choice Example JSON Object... 19

Figure 12: Call Log Example JSON Object.. 20

Figure 13: Password Encryption Example ... 22

Figure 14: Authentication Diagram ... 23

Figure 15: Example Corporate PowerPoint Slide .. 24

Figure 16: Whiteboard Homepage Design .. 25

Figure 17: Whiteboard Mobile Homepage Design ... 26

Figure 18: Whiteboard Sit Assessment Design ... 26

Figure 19: Google Chrome Developer Tools ... 27

Figure 20: Google Chrome Responsive Mode... 28

Figure 21: REST Console .. 28

Figure 22: Dependency Diagram Pre-Management ... 29

Figure 23: Dependency Diagram Post-Management .. 29

Figure 24: Service Layer .. 30

Figure 25: Student Schema ... 31

Figure 26: Find Student Repository Function ... 32

Figure 27: Edit Question Repository Function .. 32

Figure 28: Local Authentication Strategy .. 35

Figure 30: Authenticate User Function ... 36

Figure 29: Authentication Object .. 36

Figure 31: Get Admin Function ... 37

Figure 32: Authenticate Check Diagram ... 37

Figure 33: Server-Repository Diagram .. 38

Figure 34: Assessment Marking Diagram ... 40

Figure 35: Levenshtein Alignment Matrix ... 41

Figure 36: Jaro Equation ... 42

Figure 38: Jaro-Winkler Alignment Matrix .. 42

Figure 37: Jaro-Winkler Extension Equation ... 42

Figure 39: Levenshtein Examples .. 43

Figure 40: Jaro Winkler Examples ... 44

Figure 41: String Distance Solution Sample Iterations.. 44

Figure 42: Server API Resource Example URI's ... 46

Figure 43: Example Bad Request Response .. 46

file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553777
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553778
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553782
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553784
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553785
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553787
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553788
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553789
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553790
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553792
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553793
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553794
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553796
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553797
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553798
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553799
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553800
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553801
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553802
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553803
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553804
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553806
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553808
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553809
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553810
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553814
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553819

Page 5 of 79

Figure 44: Web Application Architecture ... 47

Figure 45: AJAX Loaded Code Element ... 48

Figure 46: Web Application File Structure .. 48

Figure 47: Sign In Page .. 49

Figure 48: Navigation Bar .. 49

Figure 49: Mobile Navigation Bar ... 49

Figure 50: Selectable Navigation Item .. 49

Figure 51: Student Homepage Pre-scheduled .. 50

Figure 52: Student Homepage Post-scheduled .. 50

Figure 53: Bootstrap Screen Size Definitions .. 51

Figure 54: Mobile Homepage ... 51

Figure 55: Tablet Homepage ... 52

Figure 56: Trainer Homepage ... 53

Figure 57: Edit Assessment Page .. 54

Figure 58: Angular Directive Structure ... 54

Figure 60: d3 Library Usage Snippet ... 56

Figure 59: Assessment Results Page ... 56

Figure 61: Mobile Assessment Results ... 57

Figure 62: Popover Directive Usage Snippet... 58

Figure 63: Edit Assessment Popover ... 59

Figure 64: Assessment Scheduling Popover ... 59

Figure 65: Scheduled Item (Coming up).. 60

Figure 66: Scheduled Item (Warning) ... 60

Figure 67: Scheduled Item (Waiting page) .. 60

Figure 68: Call Log Question View .. 61

Figure 69: Test Case Template .. 62

Figure 70: Usability Problems over Number of Test Users ... 63

Figure 71: Usability Test Template ... 64

Figure 72: Webstorm Test View .. 65

Figure 73: SUS Results Table ... 69

Figure 74: SUS Score Percentile Graph ... 70

Figure 75: Agile Iteration Example .. 76

file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553820
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553821
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553822
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553831
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553834
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553836
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553837
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553840
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553844
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553848
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553850
file:///C:/Users/Jamie/Documents/Uni/Year%204/FYP/Final%20Year%20Project/CM3203%20Final%20Report%20-%20Jamie%20Morris.docx%23_Toc418553851

Page 6 of 79

Introduction

Defining the Problem

The department within South Wales Police required a tool that would support learning and
development of professionals, human resources personnel and management teams to assess and
evaluate large volumes of written exams, application forms and performance appraisals in training
and recruitment. The assessment system required capability for three types of questions within
assessments:

 Free-text answers

 Multiple choice answers

 Call log answers

An automated solution to set and mark all of these types of questions, which could also be used as
an instant feedback feature for Students. It was also required to allow Students to download a
report containing their results for their own use. Assessments are version controlled and are divided
into versions for each new assessment and to ensure assessments are fair for Students a version
cannot be altered after it has already been use to test on.

The system is targeted for use by both Trainers and Students as both user types have some form of
recordable activities on the system and both types of users are able to authenticate themselves
against the system. Staff within the department have also recently received tablet devices to carry
out their day-to-day activities, it was therefore required for the application to be usable on smaller
resolution devices to allow them to perform all of the actions they could do on a desktop computer.
The main technological problems lie around the choice of software tools and interoperability with
the current system architecture within the Police.

Deliverables

This project has resulted in a fully functional system which incorporates all of the features
mentioned in the previous section. The full source code is available at GitHub (https://github.com/J-
Morris676/SWPAssessment). Deployment is relatively simple as it only requires Node.js and
MongoDB.

I have also created weekly reports containing my progress on a weekly basis on the project using
Google Docs, it has not only been a helpful form of documentation but a shared place where my
Supervisor could regularly check my progress:

 https://docs.google.com/document/d/1mOfn7Nt0FDyH3OToEz1IG_EP2ZKlZ8XhmerfqpuEH
wU/edit?usp=sharing

https://github.com/J-Morris676/SWPAssessment
https://github.com/J-Morris676/SWPAssessment
https://docs.google.com/document/d/1mOfn7Nt0FDyH3OToEz1IG_EP2ZKlZ8XhmerfqpuEHwU/edit?usp=sharing
https://docs.google.com/document/d/1mOfn7Nt0FDyH3OToEz1IG_EP2ZKlZ8XhmerfqpuEHwU/edit?usp=sharing

Page 7 of 79

Background

Existing Assessment Systems & Austerity

It is no secret that during the past five years austerity measures and drastic budgetary cuts to the

public service have and continue to cause considerable strain to the policing service (BBC, 2015

http://www.bbc.co.uk/news/uk-31771456). Redundancies and early retirement options have

drastically reduced the establishment and for this reason this form of labour and cost saving

software is so important to this department. Whilst there are software tools that allow one to create

Student assessments, requirements unique to policing result in the need for bespoke features such

as questions based on call logs. This makes it difficult for the Client at South Wales Police to find a

suitable off-the-shelf solution. Some have been considered in the past, and quotes received but

ultimately ruled out due to the extremely high costs involved.

Existing systems in place at South Wales Police are listed below and demonstrate some of the

reasons the department have made the decision to source an alternative solution.

 Kallidus Learning Management System

o An initially inexpensive basic version of this system is already in place at South Wales

Police (SWP). Kallidus provided updates free of charge to its customers on the

proviso that data is hosted on their own servers. Due to the enhanced security

required, SWP host the system internally and therefore any updates are carried out

by a Kallidus consultant at a cost of £895 per day,

o Additionally, the consultants are each required to be vetted due to the sensitive

information involved prior to being given access at considerable cost to SWP.

o Historically, logistical difficulties have been experienced synchronising Kallidus

consultant availability with that of SWP ICT Database managers and engineers.

o Though generic in content, bolt-on features are expensive and in addition, the cost

of adding additional administrators (trainers) to create assessments is prohibitive.

o Kallidus provides an appraisal system which is incompatible with the existing Human

Resources system and all updates proposed in the future are based on the

assumption that Kallidus customers are utilising this which SWP is resisting.

 Adobe Captivate

o Whilst this product has been supplied free of charge and is currently in use by SWP it

falls far short of delivering the unique and sophisticated requirements of the

Learning and Development Unit and is used only to supply randomly selected multi-

choice style questions at a student.

o This product does not have the capacity to store student data or analyse results.

http://www.bbc.co.uk/news/uk-31771456
http://www.bbc.co.uk/news/uk-31771456

Page 8 of 79

Security Issues

As there are two different user roles on the system, some preventative measures needed to be in

place to keep data secure. It was particularly important that Students should have no method (back

door or otherwise) of accessing either Trainer data, other Student's data or indeed, the answers. In

order to overcome this a structured authorisation method has been researched and implemented.

Deployment

It is required for the application to be hosted internally to South Wales Police as they currently

already use locally hosted web applications and is the reason why it has not been deployed to any

server to date.

Data Protection Act 1998

We aligned our privacy requirements with the Data Protection Act 1998, which notably states that

the use of personal data must be:

1. Used fairly and lawfully

2. Kept safe and secure

This act of parliament is an important one to consider for use in the application and during the entire

development process. I have used dummy data sets including mock assessments and random user

data meaning that it will not be possible to affect any personal data. In the deployed version, as

mentioned before, it will be locally hosted and protected from external access so it would not be

possible to access any of the data externally to South Wales Police.

Internally, the service layer is protected using username/password authentication and the database

itself would require credentials to gain access to protecting data from any potential internal attacks.

Page 9 of 79

Specification and Design
The majority of my aims and objectives highlighted in my initial report provide a high level overview

of what the system requires for it to satisfy client requirements. In order to achieve these aims and

objects professionally, I have divided major aspects of the system up into sections. These sections

target the requirements defined below, most of which are derived from my aims and objectives.

Requirements

The aims and objectives in my initial report outlined what I wanted to achieve throughout the

duration of this project. The functional requirements outlined below define how the systems

components should function and how each of the components should act when certain operations

are completed.

As it was possible to have weekly meetings with the Client I chose to use these as 'iterations'

throughout the project. This allowed me to implement requirements in iterations of one week and

test them ready for the next Client meeting resulting in some form of working application that could

be demonstrated to the Client. This concurrent testing and implementation is the reason I decided

to utilise an agile software development approach, due to this not all of the requirements were

gathered at the beginning of the project as you would normally expect. Instead, these requirements

(mainly additional requirements) were gathered at each iteration when a new aspect of the system

needed to be implemented, here I will define the requirements gathered over all of the iterations.

Both Users - Covers Trainer and Student requirements to prevent duplication

1. The system must allow the user to sign in to the system using their credentials and direct

them to their respective system area

Acceptance Criteria - On sign in, the system navigates user to a page displaying the

users content and their profile details.

2. The system must allow the user to sign out of the system

Acceptance Criteria - When signing out using a logout button or similar, the user

should be navigated to the sign in page.

3. Additional - The system should utilise a common tooltip feature displaying helpful

information about components

 Acceptance Criteria - All of the ambiguous components have visually rich guidance

 of what the components is and/or what it does

Trainers

1. The system must allow the user to create, edit, view and delete assessments, versions of

assessments and the questions within each version

Acceptance Criteria - A page is provided to:

 Input assessments that when submitted, appear in the list mentioned below

 View a list of all of the created assessments with options to delete and edit

 When edit is selected, user is directed to a page where the assessment can

be fully edited and saved

Page 10 of 79

2. The system must allow the user to create, edit, view and delete assessment Schedules

Acceptance Criteria - When requirement 1 of Trainers is complete, an assessment

Schedule can be created, edited and deleted.

3. The system must allow the user to create, edit, view and delete student accounts and view
any results they have in assessments

 Acceptance Criteria - When created, the Student can be seen by the Trainer and the
 Student will be able to sign in with the given password. An edited Student is able to
 sign in with the new password when edited by the Trainer.

4. The system must allow the user to edit their own details (first name, last name & password)
 Acceptance Criteria - When edited, the user is able to sign in with the new password
 and first name/last name will be updated

5. The system must allow the user to download a document displaying the results of Students
in completed assessments
 Acceptance Criteria - When the user finishes a scheduled assessment a
 download button will become available on the results page for a particular
 Student, this will start the download of a PDF file displaying the results of
 the assessment

Students

1. The system must allow the user to sit an assessment that they have been scheduled to sit at
the correct start time

Acceptance Criteria - When the start time of the scheduled assessment is reached,
the system should allow the user to sit the assessment during this period:

 If the time taken runs over the end time without completion the session will
be automatically terminated and the user will be redirected

 If the user gets to the end of the assessment and submits the assessment,
the system automatically marks their assessment and shows them the result

2. The system must allow the user to submit an assessment during the period of time between
a scheduled assessments start and end time

Acceptance Criteria - The assessment for the user should be marked as completed
and a grade becomes available, user is automatically notified of this on submission

3. The system must allow the user to visit the results of their completed assessments
 Acceptance Criteria - When the user finishes a scheduled assessment the results of
 this assessment will become available to view on their home page

4. The system must allow the user to download a document displaying limited results of their
completed assessment

 Acceptance Criteria - When the user finishes a scheduled assessment a download
 button will become available on the results page, this should start the download of a
 PDF file displaying the limited results of the assessment

5. Additional - The system will lock assessments that have been used for testing
 Acceptance Criteria - When a user starts an assessment, that assessment is locked
 for editing preventing any changes being made to it and can be tested by attempting
 to delete it

Page 11 of 79

System Architecture

As the architecture and technologies I used for this project were entirely up to me, I was left with

the responsibility of designing the structure of the system. With the requirement of a database, I

had two main options to consider:

 A local application that makes direct calls to the database

o Advantages:

 Simple to setup

 Client has only one remote dependency

o Disadvantages:

 Limited use of technologies

 Overall client size will be large as it has to contain code for UI, logic &

database communication

 A client/server model architecture where the server handles requests from clients and

transactions to the database

o Advantages:

 Opens a new array of usable technologies (web architecture etc.)

 Logic & communication code is split up over two nodes meaning client

size is smaller.

 Commonly used architecture

 Scalable when used with common guidelines (REST)

o Disadvantages:

 Client depends on one more node (Server & Database)

 More complicated to setup

To help in the decision of which architecture to implement, it's important to consider existing

deployment methods and architecture within South Wales Police where they run local web

applications on local servers that is entirely inaccessible outside of their firewall. With permission to

implement this application using modern browsers (e.g. IE11/Chrome26+

https://html5test.com/results/desktop.html) I decided to implement a client/server model

architecture as a web application.

With the size of the system looking like it was going to be larger than anything I have ever

implemented before I was cautious about being able to easily scale the application up and

encapsulate different areas as much as possible. I therefore decided to look into web services which

DB

Client

DB

Client

Server

Figure 1: Client-Database model

Figure 2: Client-Server-Database Model

https://html5test.com/results/desktop.html

Page 12 of 79

provide an interface to retrieve a resource or perform some action, for example, a given client (e.g.

web browser) request to the web server looks similar to the diagram in figure 3.

Figure 3: HTTP Server-Client Model

An important consideration is the transfer method and data interchange format to use as this can

affect the development design and performance of the application, until recently, SOAP was the

dominating method of web services but REST has quickly become the most used.

SOAP (Simple Object Orientated Protocol)

Advantages Disadvantages

Can be developed in any programming language Contains a heavy overhead of XML content

It's platform independent Difficult to develop with, requires tools

Utilises well know XML schemas

Lacks support in modern web technologies

Figure 4: SOAP Advantages and Disadvantages

REST (Representational State Transfer)

Advantages Disadvantages

Can be developed in any programming language Lacks in agreed standards and it is not a protocol

It's platform independent and can be used by

any technology using standard HTTP

Not suitable for large amounts of data

Can utilise XML or JSON as a data interchange

format

Very simple to develop with

Well supported in modern web technologies

Figure 5: REST Advantages and Disadvantages

Client

e.g. Web browser

Server
Request

Response

Page 13 of 79

The biggest driving force behind REST is how lightweight and simple it is compared to SOAP. The

application required relatively small requests and responses, written with modern web technologies

and needed to be fast to develop. With this being my first experience with constructing web services

the advantages of REST compared to those of SOAP seemed much more ideal for this project.

REST consists of a set of software architectural guidelines for HTTP services to follow and found that

the use of Representational State Transfer (REST) would allow me to:

 Construct a very easy to use and understandable API interface that follows file directory

structures that we are all familiar with along with HTTP verbs, for example, it is easy to

understand what the following request is supposed to do:

o GET http://example.com/resources/students

 Use extremely lightweight requests with the use of any data format (No extreme XML

overhead like SOAP)

 Gain experience in an increasingly used technology that is implemented by major companies

(Twitter, Facebook, Microsoft etc. all provide some form of REST API for data access).

 Use JavaScript Object Notation (JSON) as a data interchange format which is lightweight and

derived from JavaScript objects (Used in client web applications anyway).

JSON is an alternative to XML as a way of representing and transferring data in a way that is easily
readable by humans and computers, a basic example representing a person can be seen in figure 6.

{
 "firstName": "Bob",
 " surname": "Smith",
 "telNumber": 0123456789,
 "isAdmin": true
}

Figure 6: JSON Example

Page 14 of 79

A graph on Google Trends shows the XML/JSON interest based off news headlines and clearly
displays how JSON has propelled forward as a data interchange format after an explosion of
popularity around 2007.

Figure 7: XML/JSON Interest Over Time

Page 15 of 79

Use Case Diagram

As we have more than one type of user for the application it makes sense to represent the roles of

these users in a diagram. Both user types of the system have to be given credentials:

 Trainers are provided with credentials from a database administrator who inserts their

details directly into the database

 Students are provided with credentials from a Trainer who can create Student accounts.

It is also important to note that resources appear differently depending if you're a Student or a

Trainer, this is difficult to represent in a use case diagram and has been outlined below:

 Downloading a results report as a Trainer will show questions, answers and marks whereas

it'll only show the question and marks for a Student.

 Assessment schedules and assessments are not accessible to the Student unless they are

enrolled onto them (with very limited access)

 Student results on the application appear with just the questions but Trainers will be able to

see the answers as well

Below is a high level diagram displaying both users interactions with the system that contains all of

the functional requirements defined earlier in the report. A Trainer can do a lot more than a Student

as they are responsible for creating, reading, updating and deleting (CRUD) features of the system.

 Figure 8: Use Case Diagram

Page 16 of 79

Database Design

As the daily operations of assessment setting and marking are done entirely on paper, there is no

existing data structure that can be used for this project. The following considerations and

agreements with the client were made before I began designing the database:

 There are two types of users:

o Trainers, which have:

 First name, last name, username, password and created date

o Students, which have:

 First name, last name, username, password, created date and assessment

results

 Assessments, which have:

o Title, versions, created by (Trainer) and created date

 Assessment Schedules, which have:

o Start date, end date, assessment (Assessment ID), version (version ID) , students and

trainer

 There are multiple questions per version and assessments have multiple versions

o Each question can be different types (Call log, free text, multiple choice)

Mostly due to the variability of the question types and how assessments can have versions (which
can have multiple questions) I decided to look into alternatives to using a database with a strict
schema. The data I require to store can’t easily be structured into pre-defined 2-dimensional tables
such as those used in SQL databases, for example, each assessment question and answer can have a
different question type which means this question can have totally different properties to that of
another question. SQL schemas won’t easily allow for this as an explicit structure must be set.

An alternative to SQL is NoSQL which allows the storage of arbitrary data. However, when using
NoSQL the structure must be known, maintained and controlled throughout the entire application in
the form of a dynamic schema. Being that the only access requirement to the database is through
the application itself, it is possible to safely persist arbitrary data from client to database and vice
versa. Other factors must be considered when it comes to choosing NoSQL over SQL as there are
some features of which we sometimes take for granted from SQL databases.

An example of a NoSQL database is MongoDB which stores its data as a collection of documents
where each document is a standard JSON object. This is another benefit of using MongoDB in a web-
based project as JSON which is based on a subset of JavaScript which is still growing as the
prominent language on the web. The deciding factor of my choice to use MongoDB was to follow the
MEAN development stack which is explained in the Service Layer Design section of this report.

Page 17 of 79

Throughout my data it is also only really necessary to use an insert/update operation on a single
document, for example:

In MongoDB, these operations are atomic on the level of a single document

(http://docs.mongodb.org/manual/tutorial/model-data-for-atomic-operations/) meaning that all of

the write operations required for my application won’t be affected by the atomicity that MongoDB

lacks.

The usage scale of this application is also small enough that the lack of ACID properties won’t be a

problem as realistically, only one Admin will be authorised to make any assessment changes and a

maximum of 20 Students in a test period will be able to submit their assessments in a small time

scale for marking.

To get a better idea of the structure of the data using a document orientated approach I designed a
schema with relationships (document references) to illustrate how arrays of objects can be pre-
defined schemas (figure 10).

Figure 9: Database Operations

http://docs.mongodb.org/manual/tutorial/model-data-for-atomic-operations/

Page 18 of 79

Figure 10: Database Schema

The most important things to note in this design are:

 The arrays of pre-defined schemas (i.e. [versionsSchema] – an array of versions)

 The Mixed data type that is available to use (i.e. for arbitrary answers to a question –
additionalInfo is a mixed type that can be used for call logs!)

 The Array data type that is available to use (This is just an array of arbitrary objects can
represent marked answers for an assessment result)

Page 19 of 79

As for the question type objects, these will depend on the type of question:

 Multiple choice

 Free

 Call log
Call log will require more information than a multiple choice question and it is for this reason it is a

good idea to select this arbitrary document store. A multiple choice question simply requires the

question, answers (options) and the actual answer which could look something like this:

Figure 11: Multiple Choice Example JSON Object

Page 20 of 79

A call log (and free text) is a different question and has to be stored differently to make sense and

looks more like this (similar but requires other information for the user to read):

Figure 12: Call Log Example JSON Object

Page 21 of 79

Service Layer Design

Platform

The responsibility of the service layer is to take requests from the client and to interact with the

database to respond to these requests. I have also mentioned that the services should be exposed as

a RESTful interface adhering to these standards to enable scalability and simplicity for client

applications. Due to the size of this project it is unrealistic to use a lower level programming

language to implement services as there simply wasn't enough time to work with sockets and handle

low level networking issues. Due to this there were five realistic language choices when considering

the service layer:

 Java (JEE/Spring Data)

 PHP

 C#

 Python

 Node.js

Java, Python and C# are similar in that they are not primarily web languages and as such require

other means of constructing web services (large libraries etc.). Java and C# are also strictly typed

languages which was very attractive but Java takes too long to set up and re-build and I had no prior

experience with C#. With further research I found an extremely useful framework called the MEAN

stack that helped me select my implementation method. The MEAN stack comprises of:

 MongoDB

o A database which I have already discussed as being a good option to store the

required data

 Express.js

o A Node.js web application framework that fully supports implementations of REST

API's

 Angular.js

o A JavaScript framework that assists in structuring JavaScript on the client which can

quickly become messy without

 Node.js

o “Node.js® is a platform built on Chrome's JavaScript runtime for easily building fast,

scalable network applications. Node.js uses an event-driven, non-blocking I/O model

that makes it lightweight and efficient, perfect for data-intensive real-time

applications that run across distributed devices.”

The use of Node.js in a web environment alongside MongoDB results in a full JavaScript stack (client-

server-database). Node.js is the fastest progressing programming platform I’ve ever seen and

although mature, has support using the package manager that’s built into it (NPM). JavaScript seems

to be a fast growing technology with capability of full stack development and has been recognised as

the most-used programming language on the Stack Overflow developer survey with mentions of

Node.js and AngularJS:

o http://stackoverflow.com/research/developer-survey-2015#tech-lang

http://code.google.com/p/v8/
http://stackoverflow.com/research/developer-survey-2015%23tech-lang

Page 22 of 79

For all these reasons, alongside better integration with MongoDB and RESTful interfaces is the

reason why I chose Node.js as a development platform over PHP and Python.

Separation of Operations

The service layer alone will be responsible for handling and responding to all create, read, update

and delete (CRUD) operations, it is for this reason I decided to separate implementations to make it

easier to navigate and understand. The full listings of the REST API can be found in this file

(https://github.com/J-Morris676/SWPAssessment/blob/master/server.js) and is split up into three

implementations:

 Data Access Services

o Responsible for GET requests, examples:

 /resources/schedules/:scheduleAssessmentId/students/:username/report

 /resources/assessments/:assessmentId/versions/:versionId

 Data Upload Services

o Responsible for upload/update/authentication requests, examples:

 /auth/login

 /resources/schedule

 Data Delete Services

o Responsible for upload/update/authentication requests, examples:

 /resources/schedules/:scheduleId

 /resources/admins/:username

Designing the service layer in this way by dividing the services up into these three areas helps when

implementing further features and debugging any issues that occur.

Authentication

The service layer is also responsible for the authentication of users and as there are two levels of
authentication a design was required to understand what level of access a user should be granted.

The passwords in the database are stored using a cryptographic hash function called MD5 which is
outputs a 16-byte hexadecimal value that represents a standard string, an example of this is
demonstrated in figure 13.

password123 MD5() 482c811da5d5b4bc6d497ffa98491e38

Unencrypted password 16-byte encrypted password

Figure 13: Password Encryption Example

https://github.com/J-Morris676/SWPAssessment/blob/master/server.js

Page 23 of 79

A simple query is then used on the database with the given username and password to ensure
correct credentials shown in figure 14.

The application uses cookies for sessions after a user is authorised so the user doesn't need to
provide credentials again. In this model confidentiality and integrity aren't considered but are
protected due to the fact it will be deployed internally to South Wales Police and it was decided
SSL/TLS for demonstration was overkill due to the fact it wouldn't be used in an actual
implementation.

2) FIND {username, md5(password)}

5) Inform client of auth status 3) Respond empty or result

1) POST {username, password}

DB

Server

Client

4) Either successful auth (start

cookie store for session) or respond

unsuccessful Figure 14: Authentication Diagram

Page 24 of 79

UI Design
Due to the two user roles of the system the application has a login page and two main sections – one
for Trainers and one for Students where the overall design and feel is the same and the application
will determine whether they are a Trainer or a Student and direct them accordingly.

Corporate Colours

The Client would like the system to utilise corporate colours often found throughout their
PowerPoint presentation:

Figure 15: Example Corporate PowerPoint Slide

This is the colour scheme that is used for the entire application and I have taken colours and sections
out of this image to ensure they are the same.

I have extracted the banner at the top displaying the Battenberg design as an SVG for a lightweight
retrieval for the Client application and is used for the navigation bar. The code and image for this
SVG can be found here:

 https://github.com/J-Morris676/SWPAssessment/blob/master/public/img/SWPBlocks.svg

I have also utilised this slide for use with the downloadable results report mentioned in the
implementation section of this report.

The grey colour at the bottom has been utilised by panels and some buttons in the application and
other buttons utilise the blue colour seen on the centre of the PowerPoint slide.

https://github.com/J-Morris676/SWPAssessment/blob/master/public/img/SWPBlocks.svg

Page 25 of 79

UI Framework

Due to the scale of this project I decided it was best to utilise a front-end, open source framework
that supports responsive design as this resulted in a UI that was user friendly and quick to set up,
which was ideal for this project. I made this decision because designing and implementing CSS
libraries bespoke to an application that are user friendly and fully responsive can be a very time
consuming process. The most obvious use of this on the modern web is Twitter Bootstrap but there
are others that I considered for use:

 HTML KickStart

 Kickstrap

 Pure

 HTML5 Boilerplate

One benefit to using some over others is the integration with Angular.js (A in MEAN) as some
frameworks/libraries are fully integrated as Angular modules/directives which is extremely useful for
ensuring my view and control relationship is clean. Examples of these include angular-strap and
angular-ui for Twitter Bootstrap components and is the reason why I eventually decided on Twitter
Bootstrap over its competitors among these other reasons too:

 Right level of complexity and control (e.g. HTML5 Boilerplate was just for templates)

 Unrivalled documentation and support (http://getbootstrap.com/getting-started/)

 Form builders using drag and drop functionality have been implemented for Bootstrap
components making it extremely quick to build forms
(http://bootsnipp.com/forms?version=3)

 It's built mobile first meaning all of its features are responsive

System Layout

As I was working with a Client on this project, I had to consider ideas that would reduce the chances

of a misunderstanding in meetings as this can be very time consuming and unnecessary. To help

prevent this, I brought a small whiteboard, pen and paper to each meeting so we could not just

discuss design ideas but visualise them too.

The first example I have of these is for the home page and as seen below, I sketched out rough

designs based on the requirements that were set out and we fine-tuned them together in meetings.

Doing this allowed us to mutually agree on a design before any form of implementation went ahead

and this saved time.

Figure 16: Whiteboard Homepage Design

http://getbootstrap.com/getting-started/)
http://bootsnipp.com/forms?version=3

Page 26 of 79

As the Client requested the application be usable on smaller resolution devices, I also had to
consider how these features would look on a mobile device. Below is another example of a drawing
showing how the application will look with responsive features provided by the library framework
that I decided to use to implement it which utilises row breaks.

Another important example of this was when the sitting of assessments section of the system was
being designed. This page is interesting as it's state changes frequently:

 Countdown to end of assessment

 Disabled buttons based on current question number

 Submit button appears on last question

These sketches were primarily for me so that I could get a good idea as to what the Client wanted
and implement it directly from my sketch design at a later date. More examples of these sketches
can be found in the appendix of this report.

Throughout the design of the system I utilised Jakob Nielsen's 10 usability heuristics to minimise the
amount of usability issue's that may appear when performing usability tests, during the
implementation section of this report I have included justifications for my layout choices based on a
usability heuristic.

Figure 17: Whiteboard Mobile Homepage Design

Figure 18: Whiteboard Sit Assessment Design

Page 27 of 79

Implementation

Development Tools

Integrated Development Environment and Server Debugging

To make debugging and file traversal as simple and as quick as possible I decided to use an

Integrated Development Environment (IDE). This decision of IDE was based off a simple Google

search where I found IntelliJ are the leading light in commercial IDE products for web languages

(PHP, Ruby, Python etc.). With knowledge of their IntelliJ IDEA IDE (Java) I decided to use WebStorm

(best suited for JavaScript client & server side development) on a Student license.

Database Management

MongoDB does provide a JavaScript shell that can be used to query the database but it's often

difficult to view and compare documents within the collections, I therefore decided to use

Robomongo which is fairly similar to Oracle SQLDeveloper as it allows you to perform all standard

operations using a GUI and using a query window, Robomongo has a GNU license.

Client Debugging and Network Analysis

To enable step-by-step code debugging for the client I primarily used the browsers that this

application was intended for (Chrome & IE11), the tools provided by both of these browsers allowed

me to analyse the state of the system at step-by-step stages. I also utilised the network feature

provided by these browsers to monitor responses and timings of HTTP requests.

Figure 19: Google Chrome Developer Tools

Page 28 of 79

Device Mode Tool

A recent update of Google Chrome provides a method for scaling the view to see what a web
application will look like on a variety of devices, this was particularly useful when ensuring the
features were responsive by tweaking the mark-up based on the view at different resolutions

API HTTP Testing

To test the functionality of the API whilst constructing the services I used a Google Chrome extension

called 'REST console' (MIT license) which allows you to easily send HTTP requests to a server using a

graphical interface. This was particularly useful when needing to POST particular resources to the

server (e.g. a JSON object containing assessment information).

Figure 20: Google Chrome Responsive Mode

Figure 21: REST Console

Page 29 of 79

Resolving and Handling Dependencies

Due to the size of the project and the limited time I had available the use of third party libraries was

something I had to take advantage of to reduce the amount of time taken to implement system

requirements. In fact, the system (server through to client) relies on a total of 30 dependencies so it

was extremely important that I had some way of maintaining all of these. Without the use of these

dependency handlers it can get very messy very quickly as dependencies all exist in different places

with different versions:

As illustrated by the above diagram, it becomes obvious to see how quickly this can easily get out of

control when a system has a large amount of dependencies, with the use of dependency handlers it

becomes more simple:

The above diagram now shows both components only have to interact with a single package

manager server where dependencies for both are defined in a single file.

Server Dependencies

As mentioned in the design section of this report, Node.js has a built in package manager called NPM

(Node Package Manager). This made it as simple as just defining a file in the project that describes

the system being built and a list of all of the NPM packages it depends on. With a little help from an

NPM tool called 'npm-install-missing' all dependencies within this file can be resolved from a single

command. The package file for this project can be found at the below link:

 https://github.com/J-Morris676/SWPAssessment/blob/master/package.json

Client

Server

Express.js

Mongoose

MD5

Bootstrap

Angular.js

jQuery

Client

Server

NPM Bower

Figure 22: Dependency Diagram Pre-Management

Figure 23: Dependency Diagram Post-Management

https://github.com/J-Morris676/SWPAssessment/blob/master/package.json

Page 30 of 79

Client Dependencies

The client design was similar in some ways to the server in that it requires rich frameworks and

libraries to really bring it to life. To handle client dependencies a third party package manager was

required called Bower that:

 "Takes care of hunting, finding, downloading, and saving the stuff you're looking for"
 - http://bower.io/

Bower works very similarly to NPM with npm-install-missing and all of these client dependencies are

defined in a file called 'bower.json' which can be found at the below link:

 https://github.com/J-Morris676/SWPAssessment/blob/master/public/bower.json

Service Layer

The service layer utilises abstraction to make it as simple as possible to understand and navigate

when it needs to be extended, the server is divided into three layers:

Repositories

 Expose resources in the database

Services

 Implementation of server logic using the

repositories

 Handles requests/responses

 Authentication checks

 Server

 API interface that maps exposed URI's to

the services

Database

Client

Client

Client

Client

Client Client

Client

Client

Figure 24: Service Layer

http://bower.io/
https://github.com/J-Morris676/SWPAssessment/blob/master/public/bower.json

Page 31 of 79

Database Interaction - Repositories

Node.js and MongoDB are known to work well together and it was very quick to setup a method of

querying the database, my solution to this involves the use of Mongoose which allows for object

modelling and was written because:

 "writing MongoDB validation, casting and business logic boilerplate is a drag"
 - http://mongoosejs.com/

The use of Mongoose allowed me to define strict or loose schemas depending on the particular

resource in the database. Schemas are really simple to define and they take an object containing the

schema of the MongoDB collection, for example:

Note: These exact schemas have already been seen in the design section of this report.

This above code defines a schema for the student collection where the types are standard JavaScript

data types or other schemas, for example:

 username is a standard JavaScript String

 createdDate is a standard JavaScript String

 assessmentResults is an array of resultSchema documents

These schemas are then modelled directly to a collection within the database Mongoose is

connected to. The full listing of these schemas and the database connection can be found here:

 https://github.com/J-Morris676/SWPAssessment/blob/master/repositories/database-

connection.js

To provide an interface to the service layer which is responsible for handling HTTP requests I have

divided the MongoDB query implementations into 3 different files:

 data-access-repository

 data-delete-repository

 data-upload-repository

The sole purpose of these is to act as repositories to the service layer, exposing functions that will

perform database operations (and any other transformations that were required). Doing this helped

with scaling the application up as it was easy to tell where to implement further features. Doing so

var studentSchema = new Schema({
 "username": String,
 "password": String,
 "firstName": String,
 "lastName": String,
 "createdDate": Date,
 "assessmentResults": [resultSchema]
}, { versionKey: false });

Figure 25: Student Schema

http://mongoosejs.com/
https://github.com/J-Morris676/SWPAssessment/blob/master/repositories/database-connection.js
https://github.com/J-Morris676/SWPAssessment/blob/master/repositories/database-connection.js

Page 32 of 79

has no effect on any other repository feature, a basic example of a repository function can be seen

below:

In this function the below MongoDB query can be seen:

 db.student.findOne({"_id": id}, {password: 0});

This particular example retrieves the student with the given ID and uses projection (second

parameter) to prevent retrieving the password (As it should not be retrievable!)

A more complex example can be seen in figure 27 which edits a question in a given version of
an assessment.

exports.findStudentById = function(id, cb) {
 databaseConnection.students.findOne({"_id": id}, {password: 0}, function(err, data)
{repositoryCallback(err,data,cb);});
};

Figure 26: Find Student Repository Function

Figure 27: Edit Question Repository Function

Page 33 of 79

The function in figure 27 utilises the below Mongo query (Assuming questionNo = 1):

 db.assessments.update({"_id": ObjectId(assessmentId),

 "versions": {

 "$elemMatch": {

 "_id": ObjectId(versionId),

 "locked": {$ne: true}

 }

 }

 },

 {

 "$set": {

 "versions.$.QAs.1": question

 }

 }

})

This query updates the contents of all documents that:

 Match the given assessment ID

 Version array contains an object where the ID is the given version ID and the 'locked' field is

not true

The update parameter is given a MongoDB $set operator to edit the contents of the question in the

found version ('$' matches the index of the object found with $elemMatch):

 "versions.$.QAs.1" now becomes whatever the given question object contains.

Due to the level of nesting for assessments (shown below), the queries can become fairly complex

which is why I have left inline comments in the code, so it can be easily understood when revisited.

 Assessments

o Versions

 Questions

To fulfil the requirements of the system I have had to look into a wide variety of MongoDB querying

methods including the use of the following useful operators:

 $push: Inserts a new document into an array

 $pull: Remove matching document from array

 $unset: Removes a field from a document

 $set: Updates an object in a document

 $ne, $gt, $lt: Standard Mathematical operations - work on dates too. (not equal, greater

than etc.)

 $elemMatch: Matches objects with the given object

 $size: Match given array index size

http://docs.mongodb.org/manual/reference/operator/update/push/
http://docs.mongodb.org/manual/reference/operator/update/pull/
http://docs.mongodb.org/manual/reference/operator/update/unset/
http://docs.mongodb.org/manual/reference/operator/update/set/
http://docs.mongodb.org/manual/reference/operator/query/ne/
http://docs.mongodb.org/manual/reference/operator/query/gt/
http://docs.mongodb.org/manual/reference/operator/query/lt/
http://docs.mongodb.org/manual/reference/operator/query/elemMatch/
http://docs.mongodb.org/manual/reference/operator/query/size/

Page 34 of 79

The system also utilises the more modern MongoDB aggregation framework

(http://docs.mongodb.org/manual/aggregation/), here is an example aggregate query from the

data-access-repository:

 db.assessmentSchedule.aggregate([
 {$unwind : "$students" },
 {
 $match: {
 _id: scheduledAssessmentId,
 "students.username": studentUsername,
 "students.dates.endDate": {"$exists": true}
 }
 }
])

This query enabled me to determine whether the given Student (studentUsername) in the scheduled
assessment (scheduledAssessmentId) has finished the scheduled assessment. It does this by
unwinding the students array within each assessment schedule resulting in a larger collection of
assessment schedule documents with each of their student array objects as an object.
Example
 This:
 [
 {"_id": ObjectId("55131c38ff6bbe6018eb5d36"), students: [
 {"name": "Bob"},
 {"name": "Bill"}
]}
]
 $unwinds to this:
 [
 {"_id": ObjectId("55131c38ff6bbe6018eb5d36"), students: {"name": "Bob"} },
 {"_id": ObjectId("55131c38ff6bbe6018eb5d36"), students: {"name": "Bill"} }
]
This is useful because matches made after the transformation can query on individual Students in an
array index.

The full listings for all of these repository functions and the queries within them can be found in the

following files:

 https://github.com/J-Morris676/SWPAssessment/blob/master/repositories/data-access-

repository.js

 https://github.com/J-Morris676/SWPAssessment/blob/master/repositories/data-delete-

repository.js

 https://github.com/J-Morris676/SWPAssessment/blob/master/repositories/data-upload-

repository.js

http://docs.mongodb.org/manual/aggregation/
https://github.com/J-Morris676/SWPAssessment/blob/master/repositories/data-access-repository.js
https://github.com/J-Morris676/SWPAssessment/blob/master/repositories/data-access-repository.js
https://github.com/J-Morris676/SWPAssessment/blob/master/repositories/data-delete-repository.js
https://github.com/J-Morris676/SWPAssessment/blob/master/repositories/data-delete-repository.js
https://github.com/J-Morris676/SWPAssessment/blob/master/repositories/data-upload-repository.js
https://github.com/J-Morris676/SWPAssessment/blob/master/repositories/data-upload-repository.js

Page 35 of 79

Service Handlers - Services

The services handle the requests and responses received by the server and contain the logic that
ultimately determines what a response will be, they have three main responsibilities:

 Check user authentication level

 Interacting with the repositories to access data via queries

 Apply application level logic

As mentioned in the design section I decided to take advantage of the Express framework to
construct the API allowing me to simply define routes and the services that map to them, each
Express service takes a request (req) object and a response (res) object.

 req contains information like URI parameters, HTTP body content, HTTP headers

 res contains methods of setting HTTP headers, statuses and functions to respond to the
request.

Authentication
To satisfy the authentication requirements the server has to ensure whether the user requesting a
resource is authorised to do so. This is handled by using sessions and requires a user to sign in
before accessing resources. Node.js has a package called Passport.js and authentication is achieved
using this package by utilising authentication strategies which take a username and password and
returns whether the authentication is successful or not. As stated in the database design the
username and password of users are stored in the Student and Admin collections and a query is
made to check whether any matches are made.
NB: the authenticate function seen in the below snippet just checks whether the given user's
password is equal to the given password

Figure 28: Local Authentication Strategy

http://passportjs.org/

Page 36 of 79

The above strategy follows the following logic to determine whether a session can be set up or not:
1. Attempt to find username in Student collection

 If no Student is found, then repeat from step 1 for the Admin collection

 If Student was found but fails to authenticate (users password is not equal to
provided password) then return with incorrect password message

 If Student was found and successfully authenticates (users password is equal to
provided password) then set up the session object that'll be used to identify the user
attempting to access resources

Full Passport strategy implementation can be found here:

 https://github.com/J-Morris676/SWPAssessment/blob/master/authentication/local-
strategies.js

When a user is successfully authenticated an object is created that will be used by each service to
identify a signed in user, below is an example session object for a student:

This strategy can then be implemented by a service to set up an Express session if the authentication

was successful outlined in the authenticateUser service snippet below:

 Figure 30: Authenticate User Function

The line of interest here is where it makes a call to 'req.logIn()' which binds the user object outlined
above to the session (and cookie which is handled behind the scenes by Passport) and can then be

{
 "student": {
 "username": "Bob",
 "id": "551d9634841c93c41c52cd67"
 }
}

Figure 29: Authentication Object

https://github.com/J-Morris676/SWPAssessment/blob/master/authentication/local-strategies.js
https://github.com/J-Morris676/SWPAssessment/blob/master/authentication/local-strategies.js

Page 37 of 79

used by every other service (via req.user) to check authentication. Logging a user out (ending a
session) is very similar to this and a call to 'req.logout()' will wipe all contents of a session so all
services will not be able to identify the user anymore.

To determine whether a user is authorised to access a resource some logic needs to be applied to
determine the access rights. To prevent this clogging up the services layer, I have implemented a
series of functions to 'check authentication'. Each service will have to call these functions to
determine access rights, for example to get an admin by their username (you must be an admin!):

 Figure 31: Get Admin Function

From the above snippet we can see that authCheck provides a quick and easy way to check whether
the user bound to the current session is authenticated to access this type of resource and failure to
succeed past this will result in a HTTP 401 (unauthorised) response. The below diagram shows how
the authCheck object can be used to determine Admin or Student authorisation.

This method of authentication is very seamless and keeps all of the services lightweight as all that is
necessary is to check whether the user is authenticated is a check up on the session object.

authCheck

checkAuthenticated() checkAuthenticated()

Admin Student

Figure 32: Authenticate Check Diagram

Page 38 of 79

Server-Repository Interaction
To carry out their jobs, services rely on repository functions (discussed earlier in the report) to access
and make changes to resources in the database. They do this by simply accessing their respective
repository, the red lines on the below diagram illustrate the interaction between services and
repositories:

Notable Service Implementations
Many of the services are very simple and only have a single role (e.g. GET all assessments), however,
the requirements for this project call for a little more complex application logic and the use of the
below packages have been used to carry out some of these roles cleanly and efficiently:

 MD5 - Used to hash passwords for database storage

 pdfkit - Used to generate the assessment results report

 async - Used to safely and reliably handle asynchronous calls within loop iterations

Service function: createAssessmentResultsReport(req, res)

The first notable service implementation helps in solving the below requirements:

 Student requirement 4 - download a document showing limited results

 Trainer requirement 5 - download a document showing results

Using the req.user object defined when authenticating (explained in authentication implementation)
the service can identify who the user is and after authenticating, applies the following logic as to
what the document should contain:

1. If session user is Student:

 Check whether the requested Student result username matches the currently logged
in session user:

i. If they match: authorised, build a limited document based on results and
respond

ii. If they don't match: not authorised, respond with HTTP response code 401
2. If session user is Trainer:

 Authorised, build document based on results and respond
3. If no session exists:

 Not authorised, respond with HTTP response code 401

Server

data-access-services

data-upload-services

data-delete-services

data-access-repository

data-upload -repository

data-delete-repository

 Figure 33: Server-Repository Diagram

https://www.npmjs.com/package/MD5
https://www.npmjs.com/package/pdfkit
https://www.npmjs.com/package/async

Page 39 of 79

The NPM package pdfkit was used to easily build the document by using it's API functions to
construct a pdf document. Each function in the API returns the updated document so a chaining
approach in the code can be used to make the code short but still very readable, for example:

 doc.fontSize(2).fillColor("#004B8E").text("Assessment Summary").moveDown(1);

The above line performs four operations but only takes up one line of code which made it simple to
write and understand, the generation of the document was swift and the API makes documents easy
to write. Two example documents (full & limited) can be found in the appendix of this report and the
implementation of this service function can be found here: https://github.com/J-
Morris676/SWPAssessment/blob/master/services/data-access-services.js.

Service function: attemptAssessmentStart(req, res)

The second notable service implementation helps in solving the below requirements:

 Student requirement 1 - Allow a user to sit an assessment that they have been scheduled to
sit at the correct time start time

 Student requirement 5 - Additional: lock an assessment version once it has been started for
testing

In order to satisfy these requirements for starting an assessment session this service has to make
three different requests to the repositories, after authenticating. The following logic is applied when
a Student client requests to start a scheduled assessment.

1. Find the scheduled assessment in the database using the given request (schedule and
student)

 If it couldn't be found using the given Student, not authorised, respond HTTP
401

2. Check whether the current time is between the start and end time of the requested
assessment schedule.

 If it is after the end date of the assessment respond not authorised (401) with a
message informing the client the assessment schedule has already been

 If it is before the start date of the assessment respond not authorised (401) with a
message informing the client the assessment schedule hasn't started yet

3. Start Student on assessment schedule by adding the start date in the database
4. Lock the assessment version by setting the locked field to 'true' in the assessments collection

Service function: updateAssessmentProgress(req, res)

It is also possible to 'update' the progress that a Student has made on an assessment by utilising the
above service function, which applies a method to check whether a Student has started and
updating the progress by updating the assessment result they posted by inserting it into the
database. This also means that the remnants of an uncompleted assessment can still exist in the
database and could even be utilised in future implementations mentioned later in the report.

Service function: attemptAssessmentEnd(req, res)

This service implementation helps in solving the below requirement:

 Student Requirement 2 - The system must allow the user to submit an assessment during
the period of time between a scheduled assessments start and end time

https://github.com/J-Morris676/SWPAssessment/blob/master/services/data-access-services.js
https://github.com/J-Morris676/SWPAssessment/blob/master/services/data-access-services.js

Page 40 of 79

This service will be used when a user submits their assessment and applies the following logic:
1. Find the scheduled assessment in the database using the requests schedule and student

 If it couldn't be found using the given Student, not authorised, respond HTTP 401
2. Check whether the current time is between the start and end time of the requested

assessment schedule.

 If it is after the end date of the assessment respond not authorised (401) with a
message informing the client the assessment schedule has already been

 If it is before the start date of the assessment respond not authorised (401) with a
message informing the client the assessment schedule hasn't started yet

3. Check whether the student has finished assessment schedule

 If they have, respond not authorised (401) with a message informing client user has
already submitted

4. Get the version of the assessment in the database and mark the questions that was posted
along with the request

5. Respond with an end assessment confirmation and the marked assessment

This service is where the marking feature appears and is implemented using a separate service which
is solely focused on marking a given assessment.

The diagram above shows how the services can utilise the assessment-marking-services which can
be found in this directory:
https://github.com/J-Morris676/SWPAssessment/tree/master/services/assessment-marking-
services

 assessmentMarker - This file exposes a Node.js export function which takes the assessment
and the answers as arguments and iterates through each question summing up a grade
utilising the answer marking file explained below.

 answerMarker - This file provides the three answer type implementations
o Free Text: freeTextMark(question, answer)
o Call Log: callLogMark(question, answer)
o Multiple Choice: multiChoiceMark(question, answer)

The call log and multiple choice marking implementations are very simple as they add a mark by
determining whether the selected answer is equal to the correct answer. The free text marking
implementation is a little more complex as it needs to find pre-defined answers in a given piece of
text.

During the meetings, whilst discussing this the Client expressed that it would be favourable for the
system to be a little lenient on the free-text marking. It is for this reason I decided to look into the
potential of utilising a string distance algorithm, to determine whether a word or term is similar to
but not exact allowing for things like typo's.

assessment-marking-services

assessmentMarker

answerMarker

Services

Figure 34: Assessment Marking Diagram

https://github.com/J-Morris676/SWPAssessment/tree/master/services/assessment-marking-services
https://github.com/J-Morris676/SWPAssessment/tree/master/services/assessment-marking-services
https://github.com/J-Morris676/SWPAssessment/blob/master/services/assessment-marking-services/assessmentMarker.js
https://github.com/J-Morris676/SWPAssessment/blob/master/services/assessment-marking-services/answerMarker.js

Page 41 of 79

The free-text mark initially checks for each answer in the text using a standard regular expression
pattern, for example, the below pattern when the answer is 'test':

 /.*^test$.*/i

In order to allow for typos I had to look past the use of regular expressions and began looking into
existing algorithms that can measure the distance between two strings preferably with an
implemented open source solution with the little time I had. I soon discovered that Node.js has a
Natural Language processing library that is still relatively mature in advanced natural language
features but does provide the facilities that I require for this feature. NaturalNode provides string
distance algorithms that I have used to determine whether two words are of any similarity. The
library has these solutions to this problem:

Levenshtein Distance
The Levenshtein distance is a String metric that measures the distance between two sequences by
calculating the minimum number of single-character edits (i.e. insertions, deletions or substitutions)

Figure 35 shows an alignment diagram for strings 'Monday' and 'Tuesday' and highlights how the
edit distance can be calculated using a matrix, the grey cells represent the characters in the words
and the blue cells represent where a character comparison was made (and incremented when an
insertion, deletion or substitution operation needs to be made:

As seen in the figure, the Levenshtein distance between 'Monday' and 'Tuesday' is 4.

 T u e s d a y

 0 1 2 3 4 5 6 7

M 1 1 2 3 4 5 6 7

o 2 2 2 3 4 5 6 7

n 3 3 3 3 4 5 6 7

d 4 4 4 4 4 4 5 6

a 5 5 5 5 5 5 4 5

y 6 6 6 6 6 6 5 4

Figure 35: Levenshtein Alignment Matrix

Page 42 of 79

Jaro-Winkler Distance

The Jaro-Winkler distance is a measure of similarity between two strings by normalising a score

between 0 (Not similar) and 1 (exact match) - it is best suited for short strings. This distance is an

extension of the Jaro distance by using a standard weight (0.1), the Jaro equation is shown in figure

36.

 Figure 36: Jaro Equation

The equation in figure 37 is used to then figure out the Jaro-Winkler distance where:

 l is the length of the matching prefix

 p is a standard weight

 jaro is the result after the jaro equation (dj from figure 36)

For example, The diagram below is an alignment diagram for the strings 'Monday' and 'Tuesday' and

highlights how matching characters can be calculated using a matrix, the grey cells represent the

characters in the words and the blue cells represent where two characters have been identified as a

match.

 T u e s d a y

M 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

n 0 0 0 0 0 0 0

d 0 0 0 0 1 0 0

a 0 0 0 0 0 1 0

y 0 0 0 0 0 0 1

Figure 38: Jaro-Winkler Alignment Matrix

Figure 37: Jaro-Winkler Extension Equation

Page 43 of 79

Figure 38 shows three matching characters (m) and can now be substituted into the equations in

figures 36 and 37 to calculate the Jaro-Winkler distance:

As the length of the matching prefix in my example is equal to 0, the Jaro-Winkler is the same as the

Jaro distance which is 0.643.

As it is possible for trainers to use 'terms' as answers and not just words an overall better solution is

to check on a per-word basis (and every word must have an similarity over a set threshold). As the

words can be of any size (more frequently between 3-10 characters) the Levenshtein distance may

not be the best implementation for small words:

Levenshtein Examples

Actual answer Given answer Distance

a b 1

the ase 2

thoroughly thoroghly 2

Figure 39: Levenshtein Examples

From these small examples it is already clear that the given distance accuracy varies drastically

based on the word size as it is the letters in the word that determine the output distance. The

highlighted rows have the same distance but the larger word 'thoroughly' would be considered more

correct (similar) to 'thoroghly' than the smaller word 'the' would be to 'ase'.

Page 44 of 79

If we take the same examples using the Jaro-Winkler distance we can see more realistic distances

between the words regardless of the word length:

Jaro-Winkler Examples

Actual answer Given answer Distance

a b 0

the ase 0.56

thoroughly thoroghly 0.96

Figure 40: Jaro Winkler Examples

With a little bit of testing and an analysis of the result from different types of common typos the
Client decided to go for a similarity distance of 0.9 as it is still important that Students type
accurately due to the work conditions that they move onto after successful completion of the
courses that they are on.

The solution with the Jaro-Winkler distance involves finding all equally sized terms in the free-text
and measuring the similarity in each word of each term and if all words are greater than 0.9 in
similarity then it will mark the answer as correct.

Example (Case insensitive):
Actual answer: "Cupper with a copper"
Given answer: "The answer is Cuper with a coper."

...

Iteration 4 of equal sized terms is "Cuper with a coper " and it finds that each of these words are
greater than 0.9 in similarity and will mark it as correct. If any word in a term is found to be less than
0.9 in similarity then the iteration will end to optimise the implementation. All three of the marking
implementations can be found in this file: https://github.com/J-
Morris676/SWPAssessment/blob/5e0d80ce569d1a142e10e0757c49fa50e5f72ea7/services/assessm
ent-marking-services/answerMarker.js

Iteration 1

Cupper with a copper

The answer is cuper

0 - - -

Iteration 2

Cupper with a copper

Answer is cuper with

0 - - -

Iteration 4

Cupper with a copper

Cuper with a coper

0.91 1 1 0.91

Figure 41: String Distance Solution Sample Iterations

https://github.com/J-Morris676/SWPAssessment/blob/5e0d80ce569d1a142e10e0757c49fa50e5f72ea7/services/assessment-marking-services/answerMarker.js
https://github.com/J-Morris676/SWPAssessment/blob/5e0d80ce569d1a142e10e0757c49fa50e5f72ea7/services/assessment-marking-services/answerMarker.js
https://github.com/J-Morris676/SWPAssessment/blob/5e0d80ce569d1a142e10e0757c49fa50e5f72ea7/services/assessment-marking-services/answerMarker.js

Page 45 of 79

Other methods to improve marking robustness is by implementing algorithms to detect other
common types of spelling mistakes and if there was more time, phonetic algorithms like Metaphone
and Soundex would be utilised to identify input words that are incorrect but sound and/or
pronounced the same in English.

Page 46 of 79

Service Interface - Server

This layer of the server consists of the API routes that are mapped to the services and also performs
validation on input using the NPM package express-validation. The below table shows a few GET
examples and how these resource URI's are mapped to validation schemas and services:

Resource URI Validation
Schema

Service

/resources/admins - dataAccessServices.getAllAdmins

/resources/admins/:username User
(parameter)

dataAccessServices.getAdminByUserna
me

/resources/assessments - dataAccessServices.getAllAssessments

/resources/assessments/:assessmentId Assessment
(parameter)

dataAccessServices.getAssessmentById

/resources/assessments/:assessmentId
/versions

Assessment
(parameter)

dataAccessServices.getAssessmentVers
ions

Figure 42: Server API Resource Example URI's

As mentioned earlier in this report, when using HTTP it is possible to take input data and to validate
it using a set of pre-defined schemas which have been designed with express-validation, to respond
to Clients with relevant data if the data they send is not valid. These validation schemas can be
found in two files found here:
 https://github.com/J-Morris676/SWPAssessment/tree/master/validation

 http-body-validation - defines valid schemas for HTTP bodies using POST requests

 http-url-params-validation - defines valid schemas for HTTP bodies using GET requests

For example, if we wanted to use the REST console to add a Student (signed in as an admin):

POST {"username": "Bob", "password": "asd"} to http://localhost:3003/resources/students
The response of this request is a 400 (Bad Request) and informs the Client of what was invalid, this
object is generated by express-validation based on the schema set in the files discussed above. The
full response can be seen below and is extremely useful for a Client:

Figure 43: Example Bad Request Response

https://www.npmjs.com/package/express-validation
https://github.com/J-Morris676/SWPAssessment/tree/master/validation
https://github.com/J-Morris676/SWPAssessment/blob/master/validation/http-body-validation.js
https://github.com/J-Morris676/SWPAssessment/blob/master/validation/http-url-params-validation.js

Page 47 of 79

Alongside this, this server layer is responsible for server configurations and is the entry point to
starting the server and starting it is as simple as calling the below command:

 node server.js

Client

As mentioned in the design section of this report, the application I decided to implement would use

the MEAN stack, the Angular.js part of this is a client MVC framework that maps HTML templates to

controllers which control all of the logic behind the template. It also offers the following powerful

features:

 Two-way data binding: If you've ever looked at Angular.js before you'd have come across

this concept that allows you to bind JavaScript variables onto a $scope object which updates

the DOM on any variable change

 HTML Directives: A method for extending the HTML vocabulary and can be used to create

custom HTML elements

 Native Angular Directives: Angular provides a full library of directives that can be used to

render DOM elements based on the state of some JavaScript variable (on the controllers

$scope)

I also mentioned that I will be using Bootstrap as a UI framework to assist me in creating a fully

responsive web application whilst minimising the amount of styling code I had to write.

It is up to the developer how an Angular.js project is structured but for pre-configurations and a
quicker setup I decided to use the angular-seed (https://github.com/angular/angular-seed). This
project contains a structure that can be adapted for larger projects (like this one). This Angular
structure can be represented in the following high-level diagram:

Angular controllers are defined in modules which can be injected into the high level app.js module
and then uses Angular's $routeProvider
(https://docs.angularjs.org/api/ngRoute/provider/$routeProvider) to map what controller and HTML
template to use when a certain web application route is visited making it an MVC structure.
Angular.js achieves this by utilising AJAX to retrieve the HTML template and compile them in place
on the document, this is also very useful when creating a directive (extended HTML) as it is possible
to retrieve and compile large HTML templates. This concept seems to be what coins the term 'web
app' differing from 'website' as it doesn't provide a full page reload on a route change and is all
controlled using the above configuration, this makes it possible for all scripts and CSS libraries (35 in
total) to only be retrieved once whilst navigating throughout the web application.

app.js

$routeProvider

URL Template: _____
Controller: ______

URL Template: _____
Controller: ______

URL Template: _____
Controller: ______

App Route App Route App Route

Figure 44: Web Application Architecture

https://github.com/angular/angular-seed
https://docs.angularjs.org/api/ngRoute/provider/$routeProvider

Page 48 of 79

The ngView (https://docs.angularjs.org/api/ngRoute/directive/ngView) directive is where the
template HTML will go and can be seen in my index.html file. Everything outside of the ngView
attribute element will not need to be rendered again as the template HTML files are placed directly
inside this element everytime. The ajax-loader that it contains by default is what appears whilst
Angular is fetching the HTML template letting the user know that the application is working on
something.

The index.html file can be found here:

 https://github.com/J-Morris676/SWPAssessment/blob/master/public/index.html
The interesting snippet from this file is shown below:

The overall file structure of the client project can be seen below:

 Admin/Student scripts and HTML are divided into different directories to aid navigation

 Note how the app.js (containing configurations already mentioned) and signIn are top level

as they're both shared by Student and Trainer parts of the system

Utilising the power of Angular.js and Bootstrap to construct this assessment system has been a very

enjoyable experience and I couldn't imagine building a web application without using some form of

similar frameworks in the future. This report will now provide a high level overlook at the various

aspects of the client application and how they have helped to solve system requirements,

highlighting how particular features adhere to Nielsen heuristics.

Figure 45: AJAX Loaded Code Element

Figure 46: Web Application File Structure

https://docs.angularjs.org/api/ngRoute/directive/ngView
https://github.com/J-Morris676/SWPAssessment/blob/master/public/index.html

Page 49 of 79

Login Page

The login page consists of one field that can be used for both Students and Trainers, it is not possible

for both a Student and a Trainer to have a duplicate username so this is automatically identified and

the user is navigated accordingly. The sign in page is a very basic splash page that requires a user to

enter their credentials and satisfies the first system requirement for both users.

Figure 47: Sign In Page

Navigation Bar

In order to aid in user control and freedom a navigation bar will always be present after the user has

logged in. This is to ensure that no matter what the state of the system may be - the user can always

navigate back home using the navigation bar. The navigation bar design is the battenberg police

pattern found throughout their corporate PowerPoint presentation slides.

Figure 48: Navigation Bar

As it is responsive, the navigation bar looks more like this on smaller resolutions:

Figure 49: Mobile Navigation Bar

The menu button that appears here is a common button found throughout mobile applications and

indicates that a menu is available by clicking it, this simply replaces the drop down menu that

appears on the full screen version:

Figure 50: Selectable Navigation Item

Page 50 of 79

This navigation bar is obvious, similar to existing popular systems and utilises recognisable and

relevant button features making it very easy to use even for a complete beginner. It also provides

the option to log out of the system which satisfies the second system requirement for both users.

Home Pages

Once logged in, both Student and Trainers will be navigated to their respective homepage and both

of these home pages look very familiar, the only difference between the two is the content that

appears before them.

Student Home Page

A Student's initial view is the below page which gives them information about why they cannot view

anything. The system requires that a Student is due to sit an assessment or has already finished

assessments to get past this stage.

Figure 51: Student Homepage Pre-scheduled

Once the Student has been scheduled for assessment, the Student view will change to inform them

that they are due to sit an assessment:

Figure 52: Student Homepage Post-scheduled

This view shows the different widget-like panels that show previews of the resources available

shown in designs earlier in the report, to make this content responsive, the panels utilise the

Bootstrap grid system (http://getbootstrap.com/css/#grid) which splits rows up into columns of 12

with column size being different depending on the current screen size highlighted in figure 53.

http://getbootstrap.com/css/%23grid

Page 51 of 79

Bootstrap's definitions of screen sizes using the grid system
http://getbootstrap.com/css#grid-options

Extra small devices
Phones

Small devices
Tablets

Medium devices
Desktops

Large devices
Desktops

<768px ≥768px ≥992px ≥1200px
Figure 53: Bootstrap Screen Size Definitions

To visualise this concept I have tested the application using the Google Chrome tool, a tablet device

(iPad) and mobile device (LG G3).

LG G3 Student front page

Figure 54: Mobile Homepage

http://getbootstrap.com/css%23grid-options

Page 52 of 79

iPad Mini front page

A directory full of screenshots for mobile and desktop can be found in the appendix.

Figure 55: Tablet Homepage

Page 53 of 79

Trainer Home Page
The Trainer home page is very similar to the Student home page but the panels that appear before
them are:

 Assessment Schedule: Can be used to navigate to create, view, update, and delete
assessment schedules

 Assessments: Used to navigate to create, view, update, and delete assessments

 Students: Used to navigate to create, view, update, and delete Students

The below screenshot also demonstrates how ongoing assessments appear to users of the system,

to utilise visibility of system status as much as possible the system as a whole is as active as possible

by:

 Using countdown timers

 Using real time dates and 24-hour clocks

 Showing the state of assessment, student and schedule resources (locked/unlocked etc.)

 Clear page titles to inform the user of where they are and what they're looking for

Figure 56: Trainer Homepage

Page 54 of 79

Editing Assessments (Trainers)

When an assessment is created by a trainer, it can be edited by navigating into it by pressing an edit
button, this takes them to the page shown below:

Figure 57: Edit Assessment Page

From here it is possible to do the following operations:

 Edit the title of the assessment

 Add/delete new versions of the assessment

 Add/edit/delete new questions into the versions of each assessment

This implementation satisfies requirement one of the Trainer requirements and allows them to have

full control over assessments.

As mentioned before, each question can be different and the form that displays below the 'Type'

selection box will change based on what is selected, this is implemented using Angular directives and

takes on the structure below:

Question

Directive placeholder

multi

free

call

Controller
Create element

Figure 58: Angular Directive Structure

Page 55 of 79

 The higher-level question directive is responsible for the 'type' selection and when selected
will place the directive for the selected question type on the template and compile it

 The mark-up and logic for the question is then handled by the particular question directive

This is all possible by binding the controller variables to the directives and they will update whenever
the user makes changes to the content in the directives. The point of doing this is to encapsulate the
often complex functionality of each question, the source code for this question selection
implementation can be found in the following files:

 All four directives:
o https://github.com/J-

Morris676/SWPAssessment/blob/master/public/js/directives/assessmentEditingDir
ectives/assessmentEditingDirectives.js

 The HTML templates that they use can be found in this directory:
o https://github.com/J-

Morris676/SWPAssessment/tree/master/public/js/directives/assessmentEditingDire
ctives/templates

Viewing Assessment Results (Trainers)

Although not a direct functional requirement, when an assessment has finished it has been made

possible to view the list of all students who completed the assessment. This makes it much easier to

assess how a Trainers Students did all in one place. Other features of this page include visualisations

which show:

 Percentage of Students who started the assessment

 Percentage of Students who finished the assessment

 A bar chart displaying the results of each Student

https://github.com/J-Morris676/SWPAssessment/blob/master/public/js/directives/assessmentEditingDirectives/assessmentEditingDirectives.js
https://github.com/J-Morris676/SWPAssessment/blob/master/public/js/directives/assessmentEditingDirectives/assessmentEditingDirectives.js
https://github.com/J-Morris676/SWPAssessment/blob/master/public/js/directives/assessmentEditingDirectives/assessmentEditingDirectives.js
https://github.com/J-Morris676/SWPAssessment/tree/master/public/js/directives/assessmentEditingDirectives/templates
https://github.com/J-Morris676/SWPAssessment/tree/master/public/js/directives/assessmentEditingDirectives/templates
https://github.com/J-Morris676/SWPAssessment/tree/master/public/js/directives/assessmentEditingDirectives/templates

Page 56 of 79

These features make the results page visually rich, additional features have been planned and

outlined in the future work section of this report.

All visualisations were made possible by using the d3.js library (http://d3js.org/) which provides a

practical API for manipulating SVG elements on the document making these visualisations

lightweight, as they are just a series of HTML elements. D3 was selected over other alternatives as it

is possible to create visualisation with just pure JavaScript and is easily integrated with Angular. Due

to the amount of control a developer has when using D3 it's also really easy to make visualisations

responsive by monitoring the width of the window that the document is running in. Each function in

D3 returns the element you've called the function on so a chaining code method can be utilised

making it really simple to use, for example:

Figure 60: d3 Library Usage Snippet

The above code simply adds attributes to the 'svg' d3 object by simply 'chaining' the functions to

each other and says:

 "Set the width attribute to this, the height attribute to this, append a <g> SVG element to it

and apply a transform attribute to the <g> element just created"

 The value of 'chart' will now be the new <g> element created at the end of the chain of

functions

Figure 59: Assessment Results Page

http://d3js.org/)

Page 57 of 79

These visualisations have also been wrapped into Angular directives to encapsulate the code that

creates them and makes them reusable (i.e. the two pie chart graphs are the same directive). The

HTML tag used to create a pie chart visualisation can be seen below:

 <pie-chart ng-model="startPercentage"> <pie-chart>

This directive takes a single parameter which is a two-way variable used to model to this

visualisation and that represents the percentage of pie to display.

Due to it being possible to make the visualisations responsive, the graphs also work on mobile
devices and examples can be seen on the screenshots below.

Both of these graph directives can be found in the this file: https://github.com/J-
Morris676/SWPAssessment/blob/master/public/js/directives/studentResultsGraphsDirectives/graph
Directives.js

Figure 61: Mobile Assessment Results

https://github.com/J-Morris676/SWPAssessment/blob/master/public/js/directives/studentResultsGraphsDirectives/graphDirectives.js
https://github.com/J-Morris676/SWPAssessment/blob/master/public/js/directives/studentResultsGraphsDirectives/graphDirectives.js
https://github.com/J-Morris676/SWPAssessment/blob/master/public/js/directives/studentResultsGraphsDirectives/graphDirectives.js

Page 58 of 79

System Popovers

The purpose of the popovers in this web application is to aid in the below Nielson heuristics:

 Aesthetic and minimalist design

o Popovers are very lightweight and are optional to view (on hover). They also contain

colour coded symbols and small pieces of separated text to explain what a

component does

 Help and documentation

o As popovers are used on almost every element on the system, users will know to

hover over an element to see an explanation of the particular component

It was discussed in length during meetings how to provide useful information on the system without

clogging it with too much text that users simply will not read. After a little inspiration from existing

systems (discussed more in depth in my weekly report document) it was decided that the system

would utilise rich tooltips called popovers (http://getbootstrap.com/javascript/#popovers) in the

Bootstrap framework. As there would be many popovers throughout the system they are

implemented as Angular directives to reduce repetitive jQuery throughout the controllers, this

directive binds to an attribute called 'custom-popover' which expects the below attributes as input:

 popover-title <Text>: The title that this popover will display

 popover-html <URI>: The URI that points to the HTML template that should be displayed on

this popover

 popover-placement <position>: Where this popover should appear relative to the element

It is very simple to use this directive and the outer div element in the snippet below provides an

example of its usage:

Figure 62: Popover Directive Usage Snippet

In this example the popover-html attribute can take a variable on the controllers $scope and the

value of 'popoverTemplates.assessmentTitleInput' is:

 parts/admin/popoverTpls/assessments/assessmentTitleInput.html

The full source code of the directive that uses the Bootstrap popover can be in the below repository:

 https://github.com/J-
Morris676/SWPAssessment/blob/master/public/js/directives/customPopOverDirective.js

http://getbootstrap.com/javascript/#popovers
https://github.com/J-Morris676/SWPAssessment/blob/master/public/js/directives/customPopOverDirective.js
https://github.com/J-Morris676/SWPAssessment/blob/master/public/js/directives/customPopOverDirective.js

Page 59 of 79

The popover for the mark-up in figure 62 can be seen in figure 63.

Figure 63: Edit Assessment Popover

This appears when the user hovers over the input box and informs them of what this input box does
and how to update the title once text has been added to it.

A more rich and useful example is for the assessment schedule panel on the Trainer home page
where it displays a list of operations that can be made by clicking this item:

Figure 64: Assessment Scheduling Popover

Page 60 of 79

Sitting an Assessment (Students)

Student requirement 1 is the ability to sit an assessment they're scheduled to sit between the start

and end time. As seen before, the Student is presented with an assessment schedule item that they

can use to navigate to a landing page:

Schedule Item

Figure 65: Scheduled Item (Coming up)

Schedule Item Warning

Figure 66: Scheduled Item (Warning)

Waiting Page

Figure 67: Scheduled Item (Waiting page)

Page 61 of 79

The above screenshots display how easy it is to start an assessment when it has started and clearly
warns the user that they need to sit it within a given period of time.

Call Log Question
The below screenshot shows a call log question being asked in the assessment, the point of this
question is to use the call log information to determine an answer to the question. This
implementation utilises a service that updates their assessment everytime they navigate question
keeping a log of what they have answered if they were to not make it to submission.

Figure 68: Call Log Question View

Page 62 of 79

Testing
When designing and implementing the system extensibility was always a key factor to consider,

there is evidence of this throughout this report. This has also been carefully considered by the

testing methods that I have used, it was important to have a structured and standardised way of

testing the application at different iterations. This ensured a new implementation had not affected

other aspects of the system. As it was a requirement for the system to be usable on desktop and

mobile devices, two cases have been considered where necessary and the test specifications can be

seen below:

Desktop Testing

 Operating System: Windows (8.1)

 Device: Laptop

 Peripherals:

o Mouse

o Native laptop keyboard

o Native laptop monitor

 Web Browser: Google Chrome (v. 42.0.2311.90)

Mobile Testing

 Operating System: Android (v. 5.0)

 Device: LG G3-D855

 Web Brower: Google Chrome (v. 42.0.2311.109)

Test Cases

To test the full functionality of the system as a user, each step of the system needed to be tested
using a set of conditions which will specify if that aspect of the system is functional. In the case of
this system test oracles were used in the form of requirements that were set at the beginning of this
report. The template form and table used for all of the test cases can be seen below:
Database URL:
Application URL:
Prerequisites:
Web Browser:
Device:
Date:

As of 26/04/15 all of these test cases pass with no functional issues and all test cases can be found in
the appendix.

Figure 69: Test Case Template

ID Step Expected

Result

Actual

Result

Pass/Fail Remarks

0

1

Page 63 of 79

Usability Testing

At some points throughout the project's iterations the usability of the system was considered and

after aspects of the system was found to be fully functional usability tests were used using a sample

of users to consider how usable the application was.

As there was a requirement for the application to be usable on smaller devices two types of tests

were conducted and a different 'magic 5' was used for the sample size for each device. Nielsen's

'magic 5' comes about from studies where different usability problems were found by different

users, a graph of from this study is shown in figure 70.

Figure 70: Usability Problems over Number of Test Users

Another reason for this sample size is due to the number of time and people (i.e. resources) I had

available but also has a lot to do with the theory that after 5 test users the feedback begins to get

very repetitive.

The tests on the users were entirely task-based using instructions which were read out to the user, it

was then entirely up to the user to navigate to and perform the actions required. Any ambiguity the

user found in the system was noted for future use and considered as a 'ticket' for potential future

implementations.

The table structure for logging users actions can be seen below and a full listing of all usability tests

conducted can be found in the appendix.

Page 64 of 79

UserNo:

Test Type: Desktop/Mobile

Task No. Task Comments ~ Time Taken (s)

Figure 71: Usability Test Template

Usability Testing Findings

There were many interesting findings during the usability tests and the whole process was very

productive and it really highlighted issues in the system that I simply couldn't realise as I

implemented them myself. The testers highlighted a total of 3 usability issues that have been added

for future work and these issues were repeated among multiple users. After the fourth test no new

usability issues were found which supports the 'magic 5' test count selection. The issues are shown

below:

1. When creating a student or assessment schedule, the collapsible 'add' menu does not

collapse anywhere on the panel, only on the 'collapse' button

2. Three users felt that they could be able to click on the popovers that appear which would

navigate them to the resource

3. It didn't seem to be obvious enough that the collapse buttons for versions and questions
when editing assessments could be used to show more information about the respective
version/question

Unit Testing

The API, described in the service implementation section of this report, contains almost 50 RESTful

services therefore it was vital to ensure each service worked as expected without having to manually

check with each new implementation.

To overcome this I decided to write a set of unit tests that would emulate a browser and fire HTTP

requests at the REST API asserting the results returned from it. The below packages were used to

assist in creating these unit tests:

 Mocha (http://mochajs.org/) - The most popular test framework for Node.js is and has all

the features you'd expect from a test framework (describing of tests, assertions, hooks etc.).

 Supertest (https://github.com/visionmedia/supertest) - Can be used to make HTTP

requests and test the responses - powerful when partnered with Mocha.

 Mongodb (https://www.npmjs.com/package/mongodb) - The raw driver for MongoDB, used

to insert data into the database to test the API with (e.g. create an admin before performing

tests)

This setup allowed me to ensure all of the requests made from the client web application receive

valid responses when the services were updated during any iteration, all of the tests can be run in

under 10 seconds and have proved extremely useful.

http://mochajs.org/
https://github.com/visionmedia/supertest
https://www.npmjs.com/package/mongodb

Page 65 of 79

Another advantage of using Mocha is it's integration with the IDE that I used, Webstorm. All tests

can be run from within the IDE and can even run in debug mode so I can quickly figure out as to why

a test may not be working as expected. The UI of the unit testing can be seen in figure 72 and

provided a very quick and easy way of setting the tests up. The server is started using the 'Run' tab

and the 'Debug' tab is used to run the Mocha tests.

As seen in the above screenshot, a test structure has been used to ensure all of the below factors

are considered:

 Authentication for each user type for each operation

 Response codes for each user type for each operation

 Response bodies for each user type for each operation

Tests are divided into two different test files for each user type covering each operation of the API,

the structure for each file is outlined below:

 User

o Operations on Admins

o Operations on Students

o Operations on Assessments

o Operations on Assessment Schedules

Figure 72: Webstorm Test View

Page 66 of 79

On the last development iteration of the projects, a total of 52 tests passed successfully. The full

implementation of both test files can be found in the below directory:

 https://github.com/J-Morris676/SWPAssessment/tree/master/test

https://github.com/J-Morris676/SWPAssessment/tree/master/test

Page 67 of 79

Evaluation
To evaluate whether the system implementation constructed was effective, this report will evaluate
the projects core functional requirements determining whether each requirement has been met.
The evidence columns in the below tables briefly explain what the system does to tackle the
requirement. Detailed information about the evidence can be found in the implementation section
in this report and the functionality can be found on the client application implemented during this
project.

The tables below highlight all of the requirements and whether the requirements were met based
on the requirements acceptance criteria.

Meeting Requirements

Both User Requirements

Requirement Requirement Met? Evidence

The system must allow the user

to sign in to the system using

their credentials and direct

them to their respective system

area.

Yes The system does this by identifying which
collection in the database the signing in
user belongs to. Using this information the
client application navigates them to their
respective area of the system.

The system must allow the user

to sign out of the system.

Yes The system does this by removing a cookie
that was set up when signing in. The
previously set up cookie is no longer
accepted after this and the session has
been ended.

Trainer Requirements

Requirement Requirement Met? Evidence

The system must allow the user

to create, edit, view and delete

assessments, versions of

assessments and the questions

within each version

Yes The system does this by providing services
to perform these operations which can all
be controlled through the client application
with a session setup as a Trainer.

A page on the application is also available
satisfying the acceptance criteria for this
requirement.

The system must allow the user

to create, edit, view and delete

assessment Schedules

Yes The system does this by providing services
to perform these operations which can all
be controlled through the client application
with a session setup as a Trainer.

The system must allow the user
to create, edit, view and delete

Yes The system does this by providing services
to perform these operations which can all

Page 68 of 79

student accounts and view any
results have in assessments

be controlled through the client application
with a session setup as a Trainer.

The system must allow the user
to edit their own details (first
name, last name & password)

Yes It is possible to use the client application to
alter the details of the signed in user (Only
possible as Trainer), services are used to
make these changes in the database.

The system must allow the user
to download a document
displaying the results of
Students in completed
assessments

Yes Results are available to the Trainer by either
directly accessing the Student and viewing
there results or by accessing the scheduled
assessment to see all results of enrolled
Students.

Downloading the PDF report can be done
by accessing Student results either of the
above ways.

Student Requirements

Requirement Requirement Met? Evidence

The system must allow the user
to sit an assessment that they
have been scheduled to sit at
the correct time start time

Yes When a trainer has set an assessment
schedule, all enrolled Students can sit the
assessment.

Manual and unit tests cover the acceptance
criteria's and work as expected.

The system must allow the user
to submit an assessment during
the period of time between a
scheduled assessments start
and end time

Yes It is possible to sit the entire assessment
and submit the answers providing it is done
so by the end of the assessment, other
operations defined as acceptance criteria
also work as expected.

The system must allow the user
to visit the results of their
completed assessments

Yes The results of an assessment is available
instantly after the submission of their
answers, it can also be viewed at any time
by using the client application to look at
their 'completed assessments' page

The system must allow the user
to download a document
displaying limited results of
their completed assessment

Yes Similar to how the above requirement was
met, it is possible to download a PDF
document displaying the results the
moment they submit their answers.

These tables show how each and every functional requirement gathered throughout the project
have been met and the test cases which are designed to highlight these issues passed with no issues.

Page 69 of 79

Intuitive User Interface

The Nielsen heuristic's that I followed throughout the development of the application resulted in
positive usability results and feedback. New users found the system easy to use and consistent
throughout, resulting in it being easy to learn how to use on either desktop or mobile devices.
Feedback also showed that the use of glyphicons (recognisable icons and symbols) helped users who
take a visual approach in using applications as it helped them disambiguate and decide on where
they needed to click quicker making it more efficient for them to use.

The intentionally consistent design made it very memorable to users as during the tests it was found
that once they had used one aspect of the system, any hesitation they previously had in a similarly
looking area decreased every time. The popovers with visual aids and small text entries led to two
new users to actually calling the system 'intuitive' showing how the considerations taken throughout
the duration of the project has really paid off.

SUS Questionnaire

To gain a better understanding of how; effective, efficient and satisfying the application was to use,
in comparison with other systems, I asked the tester to fill out a System Usability Scale (SUS) form
immediately after each usability test. The questionnaire consists of the following ten statements
which the testers rated from Strongly Disagree (1) to Strongly Agree (5).

1. I think that I would like to use this website frequently.

2. I found this website unnecessarily complex.

3. I thought this website was easy to use.

4. I think that I would need assistance to be able to use this website.

5. I found the various functions in this website were well integrated.

6. I thought there was too much inconsistency in this website.

7. I would imagine that most people would learn to use this website very quickly.

8. I found this website very cumbersome/awkward to use.

9. I felt very confident using this website.

10. I needed to learn a lot of things before I could get going with this website.

I have used the results provided by the testers to gather a series of composite measures of overall
usability calculated using the steps defined by SUS scoring shown below:

1. For each odd item number in the form, subtract 1 from response
2. For each even item number in the form, subtract response by 5
3. Sum all 10 numbers up and multiply them by 2.5 to get a scale from 0-100

Note: Numbers in brackets are the values after scaling the given score

 Statement Numbers

Tester
ID

1 2 3 4 5 6 7 8 9 10 SUS Score

1 1 (0) 4 (1) 5 (4) 2 (3) 5 (4) 1 (4) 5 (4) 1 (4) 5 (4) 2 (3) 77.5

2 5 (4) 2 (3) 4 (3) 2 (3) 5 (4) 1 (4) 5 (4) 1 (4) 4 (3) 1 (4) 90

3 5 (4) 4 (1) 5 (4) 3 (2) 5 (4) 1 (4) 5 (4) 2 (3) 5 (4) 1 (4) 85

4 5 (4) 4 (1) 5 (4) 4 (1) 5 (4) 1 (4) 5 (4) 1 (4) 5 (4) 2 (3) 82.5

5 4 (3) 1 (4) 4 (3) 2 (3) 4 (3) 1 (4) 4 (3) 2 (3) 3 (2) 1 (4) 80

 Average: 83
Figure 73: SUS Results Table

Page 70 of 79

The average SUS score from 500 studies is a 68 and the average results for my system from all five
testers comes out at 83 meaning that my SUS score is well above average. This result seems very
high and there are various factors to consider before I can consider it a pleasant user experience:

 Application size: The questionnaire was based on experience with the application and
generally how easy the user got on with using it for the first time. As the application was
fairly small (an individual, 11 week project) there are less features on the system to interact
with making it generally easier to use compared to a larger system. As the system may grow
in size I believe the SUS score will also come down as there will be more aspects of the
system for a new user to become confused at.

 Potentially biased feedback: As much as I hoped that there was no biased feedback in the
questionnaires I had to consider that the testers may have been conscious about any low
scores they gave, no matter how much they were told to be honest.

 How to interpret the score: A percentile rank graph exists that can be used to grade a SUS
score on a curve. Using this graph I could conclude that the application received an A, being
in the top 10% of scores from the studies.

Regardless of these potential flaws in the SUS questionnaire method, the individual feedback and
overall SUS score analysis left me satisfied with the user experience. The system was verbally
complimented several times throughout the testing day and with some minor fixes mentioned in the
usability testing section, I believe this application will be very easy to use in the near future. All
questionnaires filled out by the testers can be found in the appendix.

Figure 74: SUS Score Percentile Graph

Page 71 of 79

Future Work
Even though all of the core requirements the Client has provided have been successfully
implemented, there could be many potential additions in the future. These additions were discussed
in the final meeting I had with the Client and are listed below. As I already had a good idea about
how to implement most of the additions, I have described my potential solution for each addition.

Additional
Feature

Description Potential Solution

Mobile
application
implementation

With the introduction of
tablets into the office it would
be quite useful to have a
mobile application created
that could be used to carry out
the same operations. As the
application was created using
a standard HTTP API and the
mobile application could
simply use the same server as
the web application.

My solution to this would be to create an

Android application that will either be available

on the Google Play Store or to install them

directly to each device using the resulting APK

file. If there was a potential requirement of

having an application available for other

mobile operating systems as well I would

consider using a tool called PhoneGap

(http://phonegap.com/) which allows the

developer to create mobile apps using HTML,

CSS, JavaScript and an API provided by

PhoneGap which can then be compiled to use

on multiple device Operating Systems:

 iPhone

 Android

 Blackberry

 Windows Phone

More parameters
for question
types

It is currently possible to set
three question types for
testing and in the future it
would be nice to add some
further options for Trainers to
select that would affect the
way they appear and/or are
marked. An example of this is
to allow the Trainer to choose
the distance (between 0-1) of
string marking.

I have implemented the system in such a way

that features like this become fairly easy to

include, the following basic procedures would

have to be followed to implement this:

 No schema changes have to be made

as question schemas are arbitrary

 Update any actions on the server that

these new parameters might require

 Update the client application to make

the parameters available to choose

and any other actions that may be

required to update

More parameters
for assessment
schedules

Similarly to above, a feature to
choose options for assessment
schedules would improve the

This could be implemented very similarly to

the solutions described above (For question

http://phonegap.com/

Page 72 of 79

system by making it possible
to toggle how much
assessment result information
will appear to Students

type parameters) but would include storing a

flag in the assessment schedule documents to

determine how much of the results to the

Students

Customisable
usage assistance

Features like popovers are

great for new users of the

system as it becomes very

easy to figure out what a

component does but it could

potentially become annoying

for regular users. It would be

nice if the user had the option

to switch these off to prevent

them appearing every time a

component has been hovered

over.

This could be implemented very similarly to

the solutions described above (For question

type parameters) but would include storing a

flag in a user collection to determine whether

to show them on the client and make it a

selectable feature on the client application.

Resource paging The system works great at the
moment with between 15-20
items per resource but as this
grows there will be an issue
with querying, data transfer
and client rendering. This will
require a method to group
resource items by something
(i.e. Students to a Trainer) or
to implement paging onto all
resources.

My solution to this would begin by improving

the API making it utilise paging features which

would make it easy for a client to get a given

number of items with paging information as

HTTP headers. A library already exists called

express-paginate

(https://github.com/expressjs/express-

paginate) that can be used to implement these

features whilst querying the database in such a

way to return this information for the client.

An example HTTP request with pagination can

be seen below:

 GET

/resources/assessments?pageSize=10

&pageNumber=2

Going beyond a
proof of concept

The system in its current state
is only a proof of concept, only
available for demonstrations
and tests.

To deploy this application it would involve
working internally within South Wales Police
and deploying onto local servers within their
firewall. I do not have the security clearance to
fully consider all factors of this problem.

Real time update
for trainers of
student
assessment
activity

As an assessment is going on it

would be beneficial if a Trainer

can see Student activity in real

time by showing them Student

answers as they are answering

them.

As the system already stores user results as

they navigate questions I only need to consider

how to update the Trainer's client with real

time updates. There are two possible solutions

to this:

 Continuous requests - an easy but

https://github.com/expressjs/express-paginate
https://github.com/expressjs/express-paginate

Page 73 of 79

 resource demanding solution that will

make requests to the server every x

seconds to find any Student progress

updates

 Bidirectional event-based

communication - An NPM package

called Socket.io (http://socket.io/)

looks like an exciting solution to this

which allows real-time two-way

communication between client and

server (Commonly used to build

instant messaging applications)

Statistical
features on
completed
assessments

There are graphs showing the

percentage of Students who

started and ended an

assessment and a graph of

Students and their results. It is

possible to provide more than

this by providing various

visualisation based on data

collected from around the

system.

A solution to this could be a new page that's

sole purpose is to have users select what to

show on a particular visualisation (e.g.

percentage of passes on an assessment)

http://socket.io/

Page 74 of 79

Reflection on Learning
This project was a great opportunity for me to familiarise with state-of-the-art Software

Development and gain practical experience in this area. My University experience primarily focused

on small projects with a single requirement, whereas this project allowed me to branch out to new

and upcoming frameworks and technologies to turn what seemed like an impossible task into

something that could be implemented quite comfortably.

I have become much more aware of the importance of using existing frameworks and libraries to

minimise the amount of time spent writing it myself. Researching and integrating existing software

packages is a skill in its own right and I have learnt what seems a very simple, but very important

lesson from this:

"Research existing implementations before writing your own."

Whether that implementation is an existing library or a solution on Stack Overflow, understanding

other ideas and integrating them into your own solution is extremely helpful when implementing

larger software projects. It was often quite difficult and frustrating at times attempting to identify

how all of the technologies work together and how to use them effectively but it was well worth the

learning curve. The overall development environment was very enjoyable to use and I look forward

to further exposure in the future.

The use of MongoDB in this project was a risky decision considering my lack of exposure to anything

outside of SQL. I have only positive things to say about my experience with it but in my opinion,

developers should be aware of the luxuries provided by a standard RDBMS and develop around this

sensibly. For example, one luxury I sorely missed was the "all or nothing" proposition of RDBMS

transactions.

On reflection, I am very happy with my decision to implement this project as a web application as it

appears that web applications have superseded desktop applications. This is largely due to the

capability of HTML5 and its ability to run in any web browser on any device. The future of software

applications seems to be in mobile development and web applications and this exposure has even

resulted in me securing a permanent role in a company primarily using Node.js and MongoDB.

The interaction with the Client was also a very valuable experience as it helped develop my

professional skills. It was also interesting to be involved in this experience as it was often surprisingly

very difficult at times to establish exactly what the Client required. I am happy that, having

effectively identified solutions despite some ambiguous discussions the outcome was an overall

success.

If I were to do the project again I would spend a little more time on the question types, particularly

the free text style questions as although it currently satisfies the requirement it would be nice to

possibly determine synonyms and some abbreviations to mark the answer correct based on further

parameters provided by a trainer and thus enable them to be a little more creative when designing

their assessments.

Whilst implementing the system I found through research a useful superset of JavaScript called

TypeScript which tightens up the features of JavaScript and allows you to define typed features of

Page 75 of 79

object-orientated programming such as interfaces and classes. Learning from this, I would certainly

use this in any future project as typing all variables makes it much easier to understand.

Project Management

Moderator feedback from my initial report highlighted the challenging time plan necessary and
hence the importance of frequently reviewing the progress of the project to prevent falling behind
schedule. It is for this reason that I decided to strictly manage the progress of the project at each
stage and will now discuss the approaches that were used.

Weekly Reports

It was often difficult to meet with my Supervisor every week to discuss the project and early on we

agreed that I would write weekly updates that would be made public using Google Docs. This

allowed my Supervisor to include inline comments to the report to provide support and any

suggestions.

When meetings were arranged, it was much easier to update my Supervisor by referencing sections

in the report which contained diagrams and images some of which have been adapted into this final

report.

This use of logging work also ensured I was up to date with the work plan as I was eager not to fall

behind. The updates of the report start at week 1 and finished when the implementation stage of

the project was completed (Easter break week 2) meaning a total of 11 weeks of work was recorded

and has become an extremely useful resource whilst writing this final report.

The document is entirely public and can be accessed using the below link:

 https://docs.google.com/document/d/1mOfn7Nt0FDyH3OToEz1IG_EP2ZKlZ8XhmerfqpuEH

wU/edit?usp=sharing

Agile Approach

Due to the nature of the project, research led me to realise the benefits of an agile approach
compared with a waterfall approach. In order to provide a system that can be demonstrated at the
end of the project and regardless of the number of requirements that are met, an agile approach is
safer, particularly when considering the short time frames involved. To satisfy the documentation
requirement of an agile approach I maintained a report as mentioned in the previous section which
documents the design and implementation during each iteration.

The agile approach is a development methodology and mainly applied to weeks 4-9 in my overall

project work plan. The diagram below shows how this iterative procedure of agile software occurred

(in my case it was weekly iterations due to the short duration of the project). During these iterations

I worked through the requirements and at the end of each iteration I delivered, demonstrated and

gathered feedback from the Client which helped towards the next iteration of development.

https://docs.google.com/document/d/1mOfn7Nt0FDyH3OToEz1IG_EP2ZKlZ8XhmerfqpuEHwU/edit?usp=sharing
https://docs.google.com/document/d/1mOfn7Nt0FDyH3OToEz1IG_EP2ZKlZ8XhmerfqpuEHwU/edit?usp=sharing

Page 76 of 79

I believe my decision to use an agile model was better than using the waterfall model as I had an
application by week 9 that was ready for demonstration. The remaining weeks were used to
implement remaining requirements and write this report. Therefore, by adopting this development
approach I was able to develop my personal and professional skills while meeting the Client's
expectations and requirements.

Figure 75: Agile Iteration Example

Page 77 of 79

References
1. Adobe, 2015. Captivate [online] Available at:

<http://www.adobe.com/uk/products/captivate.html> [Accessed 28 April 2015].

2. Bevan, N., Barnum, C., Cockton, G., Nielsen, J., Spool, J. and Wixon, D., 2003. The "magic

number 5": is it enough for web testing?. ACM New York.

3. Bootstrap, 2015. Grid Options [online] Available at: <http://getbootstrap.com/css/#grid-

options> [Accessed 28 April 2015].

4. Bower.io, 2012. Bower A package manager for the web [online] Available at

<http://bower.io/> [Accessed 28 April 2015].

5. Brooke, J. 1986. SUS - A quick and dirty usability scale. [online] Available at:

<http://cui.unige.ch/isi/icle-wiki/_media/ipm:test-suschapt.pdf> [Accessed 27 April 2015].

6. Cinergix Pty, 2008-2014. Creately. [online] Available at: <http://creately.com/diagram-

type/use-case> [Accessed 28 April 2015].

7. GOV.UK, 2015. Data Protection - GOV.UK. [online] Available at: <https://www.gov.uk/data-

protection/the-data-protection-act> [Accessed 29 April 2015].

8. Jetbrains, 2015. Webstorm [online] Available at: <https://www.jetbrains.com/webstorm/>

[Accessed 28 April 2015].

9. Kallidus, 2015. LMS Learning Management [online] Available at:

<http://www.kallidus.com/Products/Kallidus-LMS-Learning-Management/> [Accessed 28

April 2015].

10. Leenheer, N. 2015. html5test. [online] Available at: <https://html5test.com/> [Accessed 28

April 2015].

11. MEAN.IO, 2014. MEAN.IO [online] Available at: <http://mean.io/> [Accessed 28 April 2015].

12. Microsoft, 2012-2015. TypeScript [online] Available at: <http://www.typescriptlang.org/>

[Accessed 28 April 2015].

13. MongoDB, inc, 2011-2015. Aggregation [online] Available at

<http://docs.mongodb.org/manual/aggregation/> [Accessed 28 April 2015].

14. MongoDB, inc, 2011-2015. MongoDB CRUD Operations [online] Available at

<http://docs.mongodb.org/manual/crud/> [Accessed 28 April 2015].

15. Nielsen, J. 1995. 10 Usability Heuristics for User Interface Design. [online] Available at:

<http://www.nngroup.com/articles/ten-usability-heuristics/> [Accessed 29 April 2015].

16. Nielsen, J. 2000. Why You Only Need to Test with 5 Users. [online] Available at:

<http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/> [Accessed 29

April 2015].

http://www.adobe.com/uk/products/captivate.html
http://getbootstrap.com/css/%23grid-options
http://getbootstrap.com/css/%23grid-options
http://bower.io/
http://cui.unige.ch/isi/icle-wiki/_media/ipm:test-suschapt.pdf
http://creately.com/diagram-type/use-case
http://creately.com/diagram-type/use-case
https://www.gov.uk/data-protection/the-data-protection-act
https://www.gov.uk/data-protection/the-data-protection-act
https://www.jetbrains.com/webstorm/
http://www.kallidus.com/Products/Kallidus-LMS-Learning-Management/
https://html5test.com/
http://mean.io/
http://www.typescriptlang.org/
http://docs.mongodb.org/manual/aggregation/
http://docs.mongodb.org/manual/crud/
http://www.nngroup.com/articles/ten-usability-heuristics/
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

Page 78 of 79

17. Node.js, 2015. Node.js [online] Available at: <https://nodejs.org/> [Accessed 28 April 2015].

18. Paralect, 2013-2015. Robomongo [online] Available at: <http://robomongo.org/> [Accessed

28 April 2015].

19. Sahni, V. n.d.. Best Practices for Designing a Pragmatic RESTful API. [online] Available at:

<http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api> [Accessed 28 April

2015].

20. Sauro, J. 2011. Measuring Usability With The System Usability Scale (SUS). [online] Available

at: <http://www.measuringu.com/sus.php> [Accessed 28 April 2015].

21. Shaw, D (Home Affairs Correspondent), 2015. Police forces all face major budget cuts. BBC

News, [online] 7 March. Available at: <http://www.bbc.co.uk/news/uk-31771456> [Accessed

28 April 2015].

22. Stack Overflow, 2015. 2015 Developer Survey [online] Available at:

<http://stackoverflow.com/research/developer-survey-2015> [Accessed 28 April 2015].

23. Surguy, M. 2013. Bootsnipp [online] Available at: <http://bootsnipp.com/> [Accessed 28

April 2015].

24. Umbel, Ellis and Mull, 2012. NaturalNode [online] Available at:

<https://github.com/NaturalNode/natural> [Accessed 28 April 2015].

25. Winkler, W. E. (1990). "String Comparator Metrics and Enhanced Decision Rules in the

Fellegi-Sunter Model of Record Linkage" Proceedings of the Section on Survey Research

Methods (American Statistical Association): 354–359.

26. Yujian, L., Liu Bo. 2007. A Normalized Levenshtein Distance Metric. IEEE Computer Society

Washington.

https://nodejs.org/
http://robomongo.org/
http://www.vinaysahni.com/
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api
http://www.measuringu.com/sus.php
http://www.bbc.co.uk/news/uk-31771456
http://stackoverflow.com/research/developer-survey-2015
http://bootsnipp.com/
https://github.com/NaturalNode/natural
http://en.wikipedia.org/w/index.php?title=William_E._Winkler&action=edit&redlink=1
http://www.amstat.org/sections/srms/Proceedings/papers/1990_056.pdf
http://www.amstat.org/sections/srms/Proceedings/papers/1990_056.pdf

Page 79 of 79

Appendix
Appendices can be found in the zip folder alongside this report and are numbered the same as

below.

1. Design Sketches

2. Sample Results Documents

3. Desktop Screenshots

4. Mobile Screenshots

5. Test Cases

6. Usability Tests

7. SUS Questionnaires

8. Weekly Update Document

9. Source Code

