
Supervisor:  Helen R. Phillips Moderator: Alun D. Preece 
 

 

Physics Lab - Teaching 
Package 

Final Report 
 

Adam Beecham 

BSc. Computer Science 
 

School of Computer Science and Informatics,  
Cardiff University 

 

 

 

  

 



 
1 

Abstract 

The physics lab project involves the design and implementation of a visual simulation of a number of 

scenarios that would typically be encountered in an A-level physics course. The emphasis of this 

project is on providing a way of visualising the actions of forces on objects and how these actions are 

reflected by the underlying equations.  

 

The package would be used as a teaching aid by an instructor to demonstrate the application of 

these equations, which would otherwise be difficult or dangerous to perform. This package should 

also provide a more engaging method of teaching students the mathematical concepts behind 

various applications of force and help students to better understand these concepts. The aim of this 

project is to address the issues that students encounter when solving physics problems that require 

understanding of fundamental physics concepts and mathematical equations. 

  



 
2 

Acknowledgements 

 Dr Helen R. Phillips, who originally proposed the idea of implementing a physics simulation 

system, and has supervised the development of the project. 

 

 Mr John Ivins of croesyceiliog School, for providing feedback on the selection of appropriate 

physics concepts to use in simulations and evaluating the completed system. 

 

  



 
3 

Table Of Contents 

Introduction 
Requirements Specification Amendments ............................................................................................. 6 

The Prototype System ............................................................................................................................. 6 

Introduction of New Technologies.......................................................................................................... 6 

Nifty GUI .............................................................................................................................................. 6 

Blender ................................................................................................................................................ 7 

JavaDB ................................................................................................................................................. 7 

Projectile Motion Simulation - Design 
Overview ................................................................................................................................................. 9 

Interface Design .................................................................................................................................... 10 

System Design Modifications ................................................................................................................ 11 

Graphical Updates ................................................................................................................................. 13 

Projectile Motion Simulation - Implementation 
Overview ............................................................................................................................................... 14 

Interface Layout .................................................................................................................................... 14 

Screen Controllers ................................................................................................................................. 16 

Graphics ................................................................................................................................................ 17 

Camera Angles ...................................................................................................................................... 18 

Tracers ................................................................................................................................................... 19 

Projectile Motion Simulation - Testing 
Projectile Testing................................................................................................................................... 21 

First Run ............................................................................................................................................ 21 

Second Run ....................................................................................................................................... 21 

Interpretation of Results ................................................................................................................... 22 

Interface Testing ................................................................................................................................... 22 

Menu - Design 
Overview ............................................................................................................................................... 25 

Interface Design .................................................................................................................................... 25 



 
4 

Database Design.................................................................................................................................... 26 

Normalization.................................................................................................................................... 27 

Menu Structure ..................................................................................................................................... 29 

Menu - Implementation 
Menu Layout ......................................................................................................................................... 30 

Database Implementation .................................................................................................................... 31 

Menu Controller .................................................................................................................................... 33 

Menu - Testing 
Interface Testing ................................................................................................................................... 34 

Momentum Simulation - Design 
Overview ............................................................................................................................................... 35 

Interface Design .................................................................................................................................... 35 

Momentum Update Algorithm ............................................................................................................. 36 

Momentum Controller .......................................................................................................................... 37 

Momentum Simulation - Implementation 
Interface Layout .................................................................................................................................... 38 

Momentum Update Algorithm ............................................................................................................. 39 

Momentum Simulation Controller ........................................................................................................ 40 

Momentum Simulation - Testing 
Particle Testing ...................................................................................................................................... 42 

Interface Testing ................................................................................................................................... 43 

Evaluation & Conclusion 
Results ................................................................................................................................................... 46 

Feedback ............................................................................................................................................... 47 

Conclusion ............................................................................................................................................. 47 

Appendix A - Requirements Specification 
Functional Requirements ...................................................................................................................... 50 

Non-Functional Requirements .............................................................................................................. 51 



 
5 

Appendix B - Prototype Class Diagram 
Prototype Class Diagram………………………………………………………………………………………………………………. 53 

Appendix C - Feedback From Physics Teacher 
Observations on Mechanics project ..................................................................................................... 53 

 

  



 
6 

Introduction 

Requirements Specification Amendments 
Following the development of the prototype system documented in the interim report, it was found 

that a number of changes to the original requirements specification were necessary as 

implementation of all the mentioned features would not be possible in the given timescale. The 

main alterations made are summarised below: 

 The original requirements specification states that the system will have simulations covering 

concepts at GCSE and A-Level. To improve the feasibility of implementing a complete 

system in the time scale, the system will instead focus on A-level concepts, specifically 

projectile motion, conservation of momentum demonstrated via perfectly elastic collisions 

and pulley systems. 

 The original requirements specification states the system will have a question mode and a 

demo mode. To save time in implementation, the functionality in these modes will be 

merged, so that all functionality will be available to the user without swapping between 

modes.  

 Simulation setups will no longer be saveable as previously stated, but the user will still be 

able to write and save their own questions. 

The full amended requirements specification is available in the appendices. 

The Prototype System 
The final system will build on much of the technology developed for the prototype outlined in the 

interim report. To summarise, the prototype system demonstrated a very basic version of the 

projectile motion simulation and demonstrated how the simulation could be integrated with a swing 

interface using a workaround that involved running the 3D application in a canvas. The prototype 

was primarily developed as a proof of concept, showing that it would be possible to meet the 

requirements using the JMonkeyEngine and java swing interfaces. 

Introduction of New Technologies 
Following development of the prototype system, a number of required technologies that were not 

previously mentioned in the interim report were identified. The following technologies are necessary 

for implementing all of the desired features specified by the requirements.  

Nifty GUI 
Nifty GUI  is a GUI system especially developed for use in java openGL or LWJGL applications. Nifty 

provides a range of common GUI components such as sliders, text fields and panels as well as screen 

manager capabilities, allowing transitions between different screens.  Typically, the layout of a nifty 

interface is done in XML, while transitions between screens and user interaction with Nifty 

interfaces are managed by java classes called controllers, which contain methods that are called 

when an event of some kind is detected. As JMonkey is based on LWJGL, it already has support for 



 
7 

nifty interfaces. JMonkey also provides a number of libraries to allow integration between nifty and 

its own SimpleApplication class, which would allow quick integration of nifty into Physics lab.   

There are a number of reasons why Nifty GUI is a necessary component for physics lab. Using nifty 

will mean that development of a screen manager system will not be necessary and will save 

significant time when implementing the system interface. This screen management capability is 

necessary as the system will need many screens, one for each simulation and the menu, and will 

need to transition between these screens when the user selects a simulation or returns to the menu 

from a simulation. 

The interim report detailed that in order to use a swing based interface, a workaround was 

necessary. This involved running the JMonkey application itself in a canvas, while adding a panel to 

the application frame with the swing interface. This was not an ideal solution as JMonkey 

applications are intended to run as self-contained programs and many desirable features were lost 

as a result. Using this method, each simulation would require its own JMonkey application, and the 

code structure would quickly become very untidy having to switch between several applications by 

starting and quitting them. 

Using Nifty for the interface can prevent such problems as it runs inside the JMonkey application, 

rather than alongside it as swing does. Although Nifty offers fewer GUI components than swing, 

using Nifty enables desirable features such as running physics lab in full screen or windowed mode 

at many resolutions and anti-aliasing of 3D graphics. This also allows physics lab to run as a single 

JMonkey application and simulations can be developed as components of the application, rather 

than as individual applications. 

Blender 
Blender is an open source 3D modelling program that will be used to develop 3D models for physics 

lab. Blender provides a wide range of tools for 3D model development, including basic shapes that 

can be used as starting points for quick development of 3D models, texture mapping and 

illumination (Wikipedia). As the OgreXML model format is the preferred format for models used with 

JMonkey, models will be exported to JMonkey using blenders OgreXML exporter.  

Development of custom 3D models will be necessary as free 3D models are scarcely available and 

are not suitable for the needs of this project. In addition, few models are available in the OgreXML 

format required by JMonkey. Models will be textured and their illumination models set with blender 

so that it will not be necessary to hard code these properties into Physics Lab and save development 

time. Developing custom models will ensure that they meet the requirements of the project but will 

require additional time to develop, meaning that less time will be available for coding. 

JavaDB 
JavaDB is a lightweight database solution that uses the open source Apache Derby database. JavaDB 

is included in the java SDK and will be used to develop an embedded database solution for the 

physics lab system. This database will be used for storing questions saved by users, as well as 

information on simulations in the system that will be retrieved from the database for display when 

the menu is opened. 



 
8 

JavaDB is an ideal solution for storing data as it is small in size and provides room for a large amount 

of data to be stored, and allows for easy expansion of the system in the future if required. In 

addition a database ensures data integrity that cannot be provided by a file based system that would 

require data integrity to be manually enforced if, for example, new simulations were added or 

outdated simulations were removed. 

  



 
9 

Projectile Motion Simulation – Design 

Overview 
As a basic version of the projectile motion simulation was developed as part of the prototype 

system, a number of existing classes used in the prototype will be expanded and integrated into the 

final system. These classes are: 

Simulation – The abstract base class for all simulations. The simulation class contains methods and 

variables that provide the basic functionality required by all simulations, such as the init() and 

update() methods. Each simulation will extend on the Simulation class and overrides some of its 

classes to provide more specific functionality as needed. 

Particle – The abstract base class for all particles. The particle class contains methods and variables 

that provide the basic functionality required by all particles. As each simulation will require its 

particles to behave differently, classes will be constructed for each type of particle. These classes will 

extend the Particle class and override its update() method, specifying how each particle should 

move and interact with its environment. 

 ProjectileMotionSim – The class that manages the projectile motion simulation. Currently, it is 

responsible for instantiating and updating a Projectile, and responding to user input that is received 

from the swing interface panel, such as playing and pausing the simulation. 

Projectile – The class responsible for creating and updating a projectile particle. Currently, this class 

sets up a projectile and its geometry by calling the constructor of the particle class and updates its x 

and y position according to the projectile motion equations: 

 Y =  Usin(θ) + at 

 X =  Ucos(θ) 

Where: 

 U = initial (launch) velocity 

 a = acceleration (gravity, constantly pulling down at -9.81 m/s) 

 t = time elapsed. 

 θ = launch angle. 
 
In order to incorporate a menu into the system so that the user may switch between simulations, 
the existing swing interface will not be included. Instead, the InterfacePanel and 
ProjectileMotionInterface classes will be dropped and replaced by nifty GUI controller classes to 
handle input and a nifty GUI XML document will be developed to layout the interface for the 
simulation. 
 



 
10 

Interface Design 
As interface layout in nifty is different from swing and many features left out of the prototype, it was 

necessary to redesign the original projectile motion interface. Nifty interface layout is typically done 

using XML and consists of: 

 

 Screens – Only one screen is visible at a time. The first screen to appear must be named 

‘start’.  Screens hold all the elements of the interface that is currently active and interactions 

with the interface are handled by java controller classes. 

 Layers – Layers hold panels and can be used for alignment and other effects such as 

overlapping. 

 Panels – Panels hold interactive elements such as text fields and buttons. They are used for 

laying out an interface and can be nested but cannot overlap (Hohmuth 2011). 

The diagram below shows the proposed layout for the interface of the complete projectile motion 

interface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Play 

 Pause  

Reset 

 Menu 

Quit  

 Projectile 

properties 

Time: 

X Velocity: 

Y Velocity: 

Acceleration: 

Height: 

Distance Travelled: 

  

Projectile Properties  Simulation Options  

Launch velocity Slider  

 Launch angle Slider 

 Projectile Radius slider 

 Projectile colour drop down list 

Tabs 
Buttons 

  

Simulation Options  

Camera Angle Drop Down  

Gravity Slider 

Play Simulation for x seconds spinner 

Update simulation x times per second spinner 

On Opening Tab 

Labels 

Figure 1 - Projectile Motion Simulation Interface 



 
11 

Due to the number of additional components not present in the prototype interface, components 

that allow interaction with the simulation have been grouped into two separate tabs. The projectile 

properties tab contains sliders for adjusting the projectiles launch angle, velocity and radius, as well 

as a list of colours that can be applied to the projectile. The simulation options tab allows the user to 

select from a range of camera angles that can be used to view the scene, a slider to change the 

strength of the gravity in the simulation and two spinners, one specifying how long the simulation 

should run for and another specifying how many times the projectile should update per second. A 

number of labels will display the projectiles properties at the given time and will be refreshed each 

time the particle is updated.  

A list of buttons is also provided for basic operations such as playing, pausing and resetting the 

simulation, returning to the menu and quitting the application. It should be noted that these 

buttons, as well as the simulation options and the particle properties on display, will be the same 

across all simulations as this will allow an abstract controller class to be defined and speed up 

implementation.  

System Design Modifications 
A number of alterations will be made to the structure of the existing application classes. More 

functionality will be given to the base Simulation and Particle classes so that less time is required to 

implement sub classes. As the Projectile class update algorithm is already correct, no changes will be 

made to it. Minor changes will be made to the ProjectileMotionSim algorithm in order to integrate 

the additional interface options. 

 In the prototype, the Simulation class was responsible for displaying the projectile properties to the 

user. To achieve better componentization, this responsibility will instead be handled by the new 

interface controller classes so that all interface components are handled together. In addition, the 

Simulation class will also include additional methods for handling the new interface options and for 

feeding particle data back to the new interface. 

The Simulation class will use a generic List for storing particles. Rather than have sub classes manage 

and update their specific particles as previously done, they will instead instantiate the required type 

of particle and attach each particle to the list. This will allow much of the interaction between the 

projectile motion simulation and its particles (i.e. updating particles) to be abstracted to the 

Simulation class by exploiting inheritance and polymorphism. 

The Particle class will no longer be responsible for keeping track of elapsed time. Though this was 

adequate in the prototype, it may cause discrepancies in simulations with multiple particles. The 

responsibility will now be given to the Simulation class and fed to each particle when its update() 

method is called by the simulation. The Particle class will also have additional methods to allow it to 

be targeted by the camera, have its radius adjusted and its colour changed. 

As the new interface no longer requires the application to be run in a canvas, the PhysicsLab class 

will extend JMonkeys SimpleApplication class and the swing workaround will be removed. It will 

instead initialize the nifty interface by reading the XML layout document. Nifty will then start the 

appropriate controller class for the projectile simulation screen which will initialise the simulation 

and the interface and display the screen to the user.  



 
12 

 The following class diagram shows the structure of the system thus far. For simplicity, get and set 

methods have been omitted. The original class diagram can be seen in the appendices. 

 

 

 

 

Simulation Particle SimController 

ProjectileSimController ProjectileMotionSim Projectile 

MathHelper PhysicsLab 

screen 

simulation 

application 

isFinished 

isLoaded 

bind() 

onStartScreen() 

onEndScreen() 

init() 

update() 

togglePaused() 

reset() 

toMenu() 

quit() 

onGravityChanged() 

onViewpointChanged() 

onColorChanged() 

timeElapsed 

timeLimit 

updateTimer 

particleList 

camera 

cameraTarget 

isPaused 

isReset 

gravity 

init() 

update() 

destroy() 

geometry 

position 

velocity 

acceleration 

height 

distanceTravelled 

mass 

radius 

isActive 

color 

init() 

update() 

destroy() 

onVelocityChanged() 

onRadiusChanged() 

onAngleChanged() 

updateLabels() 

update() 

projectileAngle 

projectileVelocity 

projectileRadius 

init() 

update() 

launchAngle 

update() 

metersToWorldUnitsRatio 
worldUnitsToMetersRatio 

toWorldUnits() 

toMeters() 

round() 

 

projectileSimController 

init() 

update() 

Figure 2 - First Iteration Class Diagram 

has 1 0..N 

has 

1 

1 

has 

1 



 
13 

As can be seen, the abstract base classes now include much more functionality than they previously 

did. Methods in the new controller classes prefixed with ‘on’ represent methods that perform an 

action in response to an event.  an example of this is the onStartScreen() method, which can 

be used to load everything required by the screen prior to it being displayed. the controller classes 

also contain button methods such as reset() . As each screen has an interface and a simulation, 

each controller requires a reference to the active simulation and the application itself, as the 

application contains necessary components such as the scene graph and camera. The remaining 

classes are expanded versions of those used in the prototype. They specify additional methods and 

variables to include the previously discussed features. 

Graphical Updates 
Previously, the system exploited primitive 3D shapes included with the JMonkeyEngine framework. 

The final system will instead use models designed using Blender. The terrain will consist of two 

components; the runway, where the simulation will actually occur, will be a rectangular mesh 

textured with a tiled concrete image and the landscape. This will be used as a backdrop for the scene 

to make it more visually stimulating, but will not play any part in the simulation itself. Particles will 

remain unshaded sphere objects, in order to ensure they are unaffected by the lighting in the scene 

and can be clearly viewed from any angle. 

 

  



 
14 

Projectile Motion Simulation - 
Implementation 

Overview 
The updated implementation of the projectile motion simulation addresses many of the issues that 

were present in the prototype system, however some alterations were made from the design due to 

some unforeseen problems. One particular problem arose during implementation of the particle 

updates per second feature that allowed the users to speed up or slow down the particle. This 

caused unexpected behaviour, such as the particle not colliding with the runway and stopping out of 

the users view. 

In order to resolve this issue, a new feature was implemented, whereby ‘tracers’ are dropped along 

the projectiles trajectory a specified number of times per second. Tracers inherit from the Particle 

class and hold data on the projectiles properties at the time the tracer was created. Tracers can be 

selected by clicking on them, which causes the interface to display the data held by the selected 

tracer for analysis by the user. 

A previous issue, where the prototype displayed particle properties to approximately seven decimal 

places had also been resolved. Before values are sent to the interface, they are first rounded to two 

decimal places by the new round() method in the MathHelper class, giving a more reasonable 

level of accuracy. The projectile and simulation update algorithms remain essentially unchanged 

since the  prototype system. 

Interface Layout 
As specified in the design, the interface layout was done using an XML document. Elements specify 

interface components themselves, while attributes set the properties of the given components. A 

sample of the interface layout below shows how the basic button controls are created. 

 

 

 

<screen id="projectile_sim" controller="mygame.ProjectileSimController"> 

  <layer height="100%" width="100%" childLayout="vertical"> 

    <panel childLayout="horizontal" width="100%" height="30%"> 

<panel style="nifty-panel" align="left" childLayout="center"   

width="20%" height="100%"> 

<panel childLayout="vertical" valign="center" width="100%" 

height="90%"> 

          <control name="label" text="Basic Controls" align="center"/> 

<control name="button" label="Play/Pause" id="play"   

align="center" visibleToMouse="true" > 

            <interact onClick="togglePaused()"/> 

          </control> 

... 

 



 
15 

 

 

 

<control name="button" label="Reset" id="reset" align="center" 

valign="center" visibleToMouse="true" > 

            <interact onClick="reset()"/> 

          </control> 

     ... 

        </panel> 

      </panel> 

    </layer> 

</screen> 

 

 

The opening element of the sample is the screen tag that holds all the other elements of the screen. 

This element has an ‘id’ attribute which allows it to be referred to by the application. It also specifies 

the controller class for the screen that will be responsible for loading the screen, handling input and 

closing the screen. The next element is a layer that contains the interface panels. Its attributes 

specify the dimensions as a percentage of the screen size and the layout of its children, specified as 

‘vertical’. This means that panels in the layer will be positioned in a top down manner, with each 

new panel placed lower on the screen than the previous one. The next component is a panel 

containing a nested panel that hold the buttons. As this panel should be visible, it is given a style 

attribute that is set to the default ‘nifty-panel’ (a grey panel with rounded edges) and specifies its 

alignment within the layer and the layout of its children.  

Interactive elements are defined using control tags. these have a name that specifies the type of 

component, alignment attributes and further optional attributes such as text labels and whether or 

not the component should be clickable using the visibleToMouse attribute. Additionally, control 

elements can contain an interact element that specifies the method in the screens controller class to 

be called on a specific event. In the sample above, a button click triggers a call to the corresponding 

method, resulting in the appropriate action being performed. In order for control elements to be 

referenced and used by the corresponding controller class, they must have a defined ‘id’ attribute. 

The layout of the remaining elements is done in a similar fashion. The complete interface is seen 

below. 

Figure 3 - XML nifty interface layout 



 
16 

 

 

Figure 4 - The Implemented Interface 

Screen Controllers 
The ProjectileSimController class is responsible for handling loading and interactions between the 

user and the simulation. Eventually, it will also be responsible for unloading the screen and returning 

to the menu when the user clicks the menu button, to allow switching between simulations. In order 

to enable the controller, it is first instantiated, along with a nifty interface object in the PhysicsLab 

class. The nifty interface then invokes a method specifying the XML layout document, the screen 

name and the specified controller that binds them together. The nifty interface is then added to the 

JMonkey GUI viewport so that it overlays the 3D canvas and is ready to use. The code for this is seen 

below. 

 

@Override    

public void simpleInitApp()    {    

      //instantiate a controller and a nifty display 

projectileSimController = new 

ProjectileSimController((PhysicsLab)this);  

      NiftyJmeDisplay niftyDisplay = new NiftyJmeDisplay( 

      assetManager, inputManager, audioRenderer, guiViewPort); 

      // Create a new NiftyGUI object 

      Nifty nifty = niftyDisplay.getNifty(); 

      // Read XML and initialize custom ScreenController        

nifty.fromXml("Interface/PhysicsLabGUI.xml", "projectile_sim", 

projectileSimController);         

      // attach the Nifty display to the gui view port as a processor 

      guiViewPort.addProcessor(niftyDisplay);              

    } 

 

  
Figure 5 - Controller Setup 



 
17 

 

As no menu is yet present, the projectile motion simulation is run as soon as the program starts. The 

onStartScreen()method sets up some of the interface components and creates a new 

projectile simulation then calls the same parent SimController class method to setup the default 

components. The controllers update method is then called by the application update loop, which 

starts the simulation. 

Interactions between the user and buttons are trivial, the user clicks a button and the button then 

calls the method defined in the layout document. However interactions with components that have 

changeable values, such as sliders, are more complex. The code sample below shows how 

interaction with the velocity slider is managed. 

 

@NiftyEventSubscriber(id="p_vel") 

public void onVelocityValueChange(final String id,  

final SliderChangedEvent event)  

{ 

   //get the value the user selected 

   float val = event.getValue(); 

   //find the label displaying the velocity 

   Element label = nifty.getCurrentScreen().findElementByName("ms_label"); 

   //update the label with the selected velocity rounded to 2 dp 

   label.getRenderer(TextRenderer.class).setText(MathHelper.round(val, 2)); 

   //set the projectile velocity 

   ((ProjectileMotionSim)sim).setInitialProjectileVelocity(val);     

} 

 

 

First, @NiftyEventSubscriber() is used to subscribe to events triggered by the velocity 

slider using its ‘id’ attribute.  The method below is then called every time the slider is moved by the 

user. This method gets the selected value and updates the label adjacent to it to show the user the 

value currently selected. The value is then sent to the ProjectileMotionSim class which uses the 

value to set the projectiles launch velocity. 

The above procedure is used for all interface components excluding buttons. the element is 

subscribed to, and responds to selections by the user by retrieving the selected value and 

performing some action with the value. 

Graphics 
As specified in the design, 3D models were developed for the games terrain. In addition, a skybox 

was used to provide a backdrop for the simulation in order to make it a more immersive experience. 

Importing these assets was straightforward as JMonkey provides folders for the projects assets, they 

were saved to the appropriate folders and imported into the game by calling the asset managers 

loadModel() method, specifying the models directory. The skybox was created by using a .dds 

file and calling Jmonkeys built in createSky() method from the SkyFactory class.  

To add further realism, a directional light and shadow renderer were also added to the simulation. 

As these features were included with the JMonkeyEngine, implementation of these required an 

Figure 6 - Interacting with the Velocity Slider 



 
18 

 

object of each type to be instantiated. The light source was then attached to the scene and the 

shadow renderer added to the viewport as a processor. As shadow generation can be 

computationally expensive, the terrain was set to receive shadows only, the particle to cast shadows 

but not receive them and the runway to both cast and receive shadows. The scene is shown below. 

 

Figure 7 - Simulation with Terrain, Lighting and Shadows 

Camera Angles 
A number of changes have been made to the camera since the prototype. In the final 

implementation of the system, the user can choose to view the simulation from various camera 

angles by selecting them from a drop down list in the simulation options tab. The system still uses 

the built in camera, so once the user has chosen a view, they are able to move freely from the 

position if desired. When the user selects a viewpoint, the controller class determines the option 

selected using a switch statement and calls the Simulation class setCamViewMethod() which 

snaps the camera to the specified position. The implementation of the method is as follows. 

 

public void setCamView(int view) 

{ 

    //view from the runway 

    if(view == GROUND_VIEW)         

      app.getCamera().setLocation(new Vector3f(-60, 45, 600)); 

    //view from the side at a slightly elevated position 

    if(view == SIDE_VIEW) 

      app.getCamera().setLocation(new Vector3f(-200, 200, 500));  

    //chase the particle        

    if(view == CHASE_VIEW) 

    { 

       



 
19 

 

 

//find the particle being chased then follow it      

for(Particle p : particles) 

       if(p.isCamChasing == true) 

       { 

app.getCamera().setLocation(new Vector3f(p.position.x,   

p.position.y,  p.position.z - 15)); 

         break; 

       } 

  } 

} 

 

When the user selects the chase view, the camera will not be controllable until a different view is 

selected. The camera will always target a particle, unless the user selects a tracer. The camera then 

locks on to the selected tracer until the user deselects it, at which point it will retarget the projectile. 

Tracers 
The most significant change since the prototype system is the introduction of tracers. Tracers hold 

data on particle properties at the time they were created. They can be selected by the user which 

causes data held by the tracer to be displayed in the interface instead of the particles data. Tracer 

functionality is implemented in the abstract simulation class so they can be used for all types of 

particles. They were developed to replace the ability to slow the number of updates to a particle 

each second, which caused problems during implementation. A significant advantage of this feature 

is that the tracers remain even after the simulation has finished, so the user may go back and 

analyse the particles trajectory and properties if desired. 

A timer is used to keep track of when a tracer should be created in the update loop. When the timer 

reaches an interval (calculated as 1/times to spawn per second), a tracer is created and added to a 

list of tracers currently on the screen. The tracer is then attached to the scene graph for display via a 

tracer node, which is attached to the root node of the scene graph. This is done to simplify selection 

of tracers, as only objects attached to the tracer node will be selectable and the user cannot 

accidentally select the terrain. The code below shows how tracers are created. 

 

//create a tracer if the timer has finished 

if(tracerTimer >= tracerInterval) 

{ 

   tracerTimer = 0; 

   //create a tracer for each particle and add it to the list of active 

   //tracers 

   for(Particle p : particles) 

   { 

tracers.add(new Tracer(p, new Material(app.getAssetManager(),  

"Common/MatDefs/Misc/Unshaded.j3md"))); 

      tracerNode.attachChild(tracers.getLast().getGeometry()); 

   } 

} 

 

 

Figure 8 - setCamView method 

Figure 9 - Tracer Creation 



 
20 

 

As tracers do not update in any way, they are easily selected by the user. An ActionListener was 

added to the Simulation class in order to respond to mouse clicks by the user. The listeners 

onAction() method gets the 2D coordinates of the click and converts it into 3D coordinates 

using the cameras position. The 3D coordinates are then used to calculate the normalised direction 

of the click which is then used to cast a ray into the scene. If the ray intersects a tracer, it is selected, 

its data is displayed and it becomes the camera target. If no intersections are made then the camera 

remains targeted at the projectile. The selection process code is a modified version of the mouse 

selection tutorial available on the JMonkey community website and is shown below. 

 
//cast a ray and check for tracer collisions 

Ray ray = new Ray(click3d, dir); 

tracerNode.collideWith(ray, results); 

// select a tracer if one was hit 

if (results.size() > 0) { 

   //deselect previous tracer 

   if(selectedTracer != null) 

       selectedTracer.setSelected(false); 

       //if multiple tracers were hit, pick the closest one 

       CollisionResult closest = results.getClosestCollision(); 

       Geometry selected = closest.getGeometry(); 

  //compare the geometry of the closest tracer with each active tracer 

       for(Tracer t : tracers) 

       { 

     //if the geometry position matches that of the current tracer, we 

          //know what tracer we have selected           

          if(selected.getLocalTranslation().equals(t.position)) 

          { 

    //found the tracer we need so exit the loop 

              selectedTracer = t; 

              break; 

          } 

       } 

  //target the tracer 

       camTarget = selectedTracer.getPosition(); 

       selectedTracer.setSelected(true); 

} else { 

       // No hits so deselect if a tracer was selected 

    if(selectedTracer != null) 

    selectedTracer.setSelected(false);  

    selectedTracer = null; 

} 

 

 

 

  

Figure 10 - Tracer Selection 



 
21 

Projectile Motion Simulation – Testing 

Projectile Testing 
An important part of each simulation is ensuring that a particles movement or update algorithm is 

correctly calculating particle data being displayed to the user. As Physics lab is intended for use in an 

educational environment, data that is out of acceptable range of the correct answer could cause 

confusion among students and would not be useful. 

In order to ensure the calculations within the projectiles update loop are correct, the simulation was 

run twice and the xVelocity, yVelocity , distance and height values generated by each run sampled at 

different times. These values were then compared against manually calculated values using the 

same times that the values from the simulation were sampled at. The results for each of these runs 

are shown below. Acceleration, launch velocity and angle data is omitted as it is specified by the user 

and not computed by the simulation. 

First Run 
The simulation was setup with the following properties: 

 Gravity:  -9.81 m/s2 

 Launch Velocity:  50m/s 

 Launch Angle:  30 degrees 

The table below compares the results computed by the simulation against those calculated 

manually. 

Table 1 - Analysis of First Run 

Time 
of 
Sample 

Expected 
xVelocity 

Simulation 
xVelocity 

Expected 
yVelocity 

Simulation 
yVelocity 

Expected 
Distance 

Simulation 
Distance 

Expected 
Height 

Simulation 
Height 

0.72s 43.3m/s 43.3m/s 17.94m/s 17.95m/s 31.17m 31.13m 15.46m 15.44m 

2.07s 43.3m/s 43.3m/s 4.7m/s 4.71m/s 89.63m 89.55m 30.73m 30.72m 

3.6s 43.3m/s 43.3m/s -10.32m/s -10.33m/s 155.88m 155.93m 26.43m 26.42m 

5s 43.3m/s 43.3m/s -24.05m/s -65.31m/s 216.51m 216.59m 2.38m 2.38m 

 

Second Run 
The simulation was setup with the following properties: 

 Gravity: -13.72 m/s2 

 Launch Velocity:  75.35 m/s 

 Launch Angle: 66.25 degrees 

The table below compares the results computed by the simulation against those calculated 

manually. 

 



 
22 

Table 2 - Analysis of Second Run 

Time 
of 
Sample 

Expected 
xVelocity 

Simulation 
xVelocity 

Expected 
yVelocity 

Simulation 
yVelocity 

Expected 
Distance 

Simulation 
Distance 

Expected 
Height 

Simulation 
Height 

0.42s 30.35m/s 30.35m/s 63.21m/s 63.25m/s 12.75m 12.65m 27.76m 27.57m 

4.33s 30.35m/s 30.35m/s 9.56m/s 9.53m/s 131.4m 131.46m 170.02m 170.04m 

6.23s 30.35m/s 30.35m/s -16.51m/s -16.45m/s 189.06m 188.94m 163.42m 163.48m 

9.81s 30.35m/s 30.35m/s -65.62m/s -65.69m/s 297.7m 297.86m 16.4m 16.08m 

 

Interpretation of Results 
It can be seen from the data that there are small discrepancies between the expected values and 

simulation values for the yVelocity, distance and height data. As the difference between these values 

is so small, it is likely that the difference is due to rounding errors. Manual calculations were done 

using the gravity, launch velocity and launch angle data displayed by the interface. This data is first 

rounded to two decimal places before being displayed, however it is not rounded before being used 

by the simulation to calculate new values for the projectile, meaning that the values used by the 

simulation and those used for manual calculations are slightly different.  

In order to resolve this problem, each of these values should be rounded before being used by the 

simulation, as well as prior to being displayed by the interface, as this would make calculations by 

the simulation correspond with calculations done manually, avoiding any future confusion by users. 

Interface Testing 
To ensure the projectile motion simulation interface works as intended, each of the components 

were tested and the observed outcome documented and compared with the expected outcome of 

using the component. The table below summarises the tests performed and their results. 

Table 3 - Interface Testing Results 

Tested Component Expected Outcome Observed Outcome 

Play/Pause Button Simulation should start with defined 
settings on first click, successive clicks 
should toggle pausing of the 
simulation. 

As expected. 

Reset Button If the simulation has finished or is 
currently playing, the projectile should 
return to the start position, tracers 
should be cleared and the interface 
reset. 

As expected. 

Toggle Options 
Button 

Should hide/ show the option panel on 
each click depending on whether it is 
already visible. 

As expected. 

Quit Button Clicking should close the application. As expected. 

Launch Velocity 
Slider 

Altering the slider position should 
change the launch velocity, causing the 
adjacent label to be updated with the 
selected value and cause the projectile 
to be launched at the specified velocity. 

As expected, Though wrong 
value is displayed on 
application start until the slider 
is moved, at which point value 
displayed is correct. 



 
23 

Launch Angle Slider Altering the slider position should 
change the launch angle, causing the 
adjacent label to be updated with the 
selected value and cause the projectile 
to be launched at the specified angle. 

As expected, Though wrong 
value is displayed on 
application start until the slider 
is moved, at which point value 
displayed is correct. 

Radius Slider Altering the slider position should 
change the projectile radius, causing 
the adjacent label to be updated with 
the selected value and cause the 
projectile to be resized to the specified 
radius. 

As expected, Though wrong 
value is displayed on 
application start until the slider 
is moved, at which point value 
displayed is correct. 

Projectile Colour 
Drop Down 

Selecting a value from the drop down 
list should cause the particle to 
immediately change to the specified 
colour. 

Causes transparent layer 
overlaying the simulation to 
turn black and hide the 
simulation from view. With this 
layer removed, behaviour is as 
expected, but fade-in effect at 
the simulation start up is lost. 

Camera Angle Drop 
Down 

Selecting a value from the drop down 
list should cause the camera to snap to 
the selected camera angle. 

As expected. 

Gravity Slider Altering the slider position should 
change the gravity, causing the 
adjacent label to be updated with the 
selected value and cause the projectiles 
yAcceleration to be affected by the 
selected value. 

As expected. 

Run Time Text Field Entering a value into the field should 
cause the simulation to run either until 
the value (in seconds) is reached 
(minimum of 1, maximum of 60), or the 
projectile hits the floor. Values outside 
the accepted range will be converted to 
1 is less than 1 or 60 if more than 60. 

As expected, though if the user 
enters a value outside the 
accepted range the value is not 
corrected in the text field for 
the user to see. 

Tracer Text Field Entering a value into the field should 
cause tracers to be created the 
specified number of times per second 
behind the particle(minimum of 1, 
maximum of 10 per second). Values 
outside the accepted range will be 
converted to 1 is less than 1 or 10 if 
more than 10. 

As expected, though if the user 
enters a value outside the 
accepted range the value is not 
corrected in the text field for 
the user to see. 

Tracers Selecting a tracer from the simulation 
should cause it to turn white in colour 
and replace the currently displayed 
data with data on the projectile at the 
time the tracer was created. 

As expected, though tracers 
that appear further away do 
not always select when clicked. 

 



 
24 

In general, the interface behaves as expected. There are however some minor problems where 

details such as ensuring labels match initial slider values have been overlooked but are easily 

corrected.  

The most significant problem occurred when selecting a colour from the drop down list, 

unexpectedly causing the screen to turn black and hide the simulation from view. This was due to a 

layer specified in the nifty XML document, set to appear initially as black and fade out to reveal the 

simulation on start up. Selecting a value from the drop down list appears to interrupt the rendering 

of the layer and cause it to become black again, hiding the simulation. 

Unfortunately, the problem seems to be contained within nifty itself and as a result the only way to 

prevent it from occurring is to remove the layer and transition effect entirely. 

  



 
25 

Menu - Design 

Overview 
The menu screen will provide the user with the ability to select from a list of available simulations 

that they wish to use. Selecting a simulation from the menu will cause a brief description of the 

chosen simulation to be retrieved from an embedded database and displayed, providing further 

details about the simulation to the user. If the user then decides that they wish to use the selected 

simulation, it will be started upon clicking the start button. The user will also be able to quit the 

application from the menu by clicking a quit button. 

If the user is currently viewing a simulation and wishes to switch to another simulation, each 

simulation screen will have a menu button in its interface that will unload the current simulation (to 

prevent the program eventually crashing), and return the user the menu when clicked. 

When the application is first started, it will no longer immediately load the projectile motion 

simulation. A simple splash screen will be used as the start screen to introduce the user to the 

application. From this screen, the user can press start to then proceed to the menu, or immediately 

exit the application by pressing the quit button 

Interface Design 
The interface of the menu will be minimalistic and not require many components. The only 

functionality required for the menu is the ability to select a simulation, display simulation data (i.e. 

its name, description and image) and options for starting the selected simulation or quitting the 

application. 

The list of simulations will be held by a nifty list box component, as this can display string values and 

can be configured for selection of single values from the list. Label and image elements will be 

specified in the menus XML layout for displaying simulation data. These will have ‘id’ attributes so 

that they can be referred to by the menu’s controller class and updated when the selected value of 

the list box is changed. The design for the menu’s interface can be seen below. 

 

 

 

 

 

 

 

 



 
26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The middle section of the menu will have two separate panels that hold nested panels containing 

the interfaces components, such as the list box and the simulation data labels. Unlike the Projectile 

Motion Interface panels, each of These panels will be transparent and will be used strictly for layout 

purposes and no style or colour attributes will therefore be defined. 

Database Design 
The system database will be created using the tools provided with the standard java SDK. This 

provides a java derby database and libraries for making SQL queries in java. The database will hold 

data on simulations for the menu such as its title and description, question data such as the 

questions answer and the question description, as well as customised simulation setups. This will 

allow the system to be expandable at a later date, even if this functionality is not fully implemented 

within the timescale for completion of the project. 

Simulation data for the menu will be retrieved from the embedded database on the first load of the 

menu using the java SQL library and stored in an array. This will prevent expensive connections to 

the database and improve the systems performance if the user makes multiple switches between 

simulations. In order to ensure the records in each table are unique, each record will have an ID 

number that will act as a primary key field. The table below summarises the information needed by 

the database. 

    

Main Menu Title label 

 Quit Button  Start Button 

Simulation Title label 

Simulation image 

Simulation description label 

Select Simulation: label 

Simulation Select list box 

Figure 11 - Menu Layout 



 
27 

Table 4 - Database Attributes 

Attribute Description 

Simulation ID Unique identifier for a simulation. 

Simulation Title The name of a simulation. 

Simulation Description A brief description of the contents of a 
simulation. 

Simulation Image The file path of the image to be displayed in the 
menu for a given simulation. 

Question ID Unique identifier for a user defined question. 

Question Description A description of the problem that will be 
displayed to the user 

Question Answer The answer to the question. 

Sim Setup ID Unique identifier for a user defined simulation 
setup. 

Gravity setting User defined gravity value. 

Run time setting How long the simulation should run for before 
stopping. 

Tracer setting How many tracers should be created per second. 

Camera setting The camera viewing angle. 

Particle Setup ID Unique identifier for a user defined particle 
setup. 

Particle Velocity The particles initial velocity. 

Particle Angle The particles initial angle. 

Particle Mass The particles weight in kilos. 

 

Note that only simulation properties that appear across all simulations are saveable. This allows 

them to be used as ‘preferences’ that could be quickly loaded to speed up initial simulation setups. 

This also allows them to be used on any simulation rather than being limited to a specific type of 

simulation. This also applies to particle setups, however there is a risk that simulations added in 

future may require additional properties to be saveable, though these could be added at a later date 

if necessary. Any property attributes held by the database that are not required by a specific type of 

particle could be left blank. 

Normalization 
As the number of attributes in the database is quite small, normalization is quite simple. In order to 

put the database in first normal form, it must not have any repeating elements or groups of 

elements. This is achieved by separating the data into the three tables shown below. Notice that 

they do not have relationships with eachother as both setup tables are independent of one another 

and can be applied to any simulation. 

 

 

 

 



 
28 

 Simulation Table 

 Sim Setup Table  Particle Setup Table 

Simulation ID 

Simulation Description 

Simulation Image 

Simulation Title 

Sim Setup ID 

Gravity Setting 

Run Time Setting 

Tracer Setting 

Camera Setting 

Particle Setup ID 

Particle Velocity 

Particle Angle 

Particle Mass 

 Question Table 

Question ID 

Question Description 

Question Answer 

Simulation ID 

1 

0..N 

 

 

 

 

 

 

 

 

 

 

Attributes that form a primary key are highlighted in bold font. As can be seen, the simulation table 

has two attributes forming the primary key. This is not necessary, as each of the attributes in the 

table depend on only one of the primary key attributes and can therefore be normalized into second 

normal form. To do this, all attributes dependent on the Question ID attribute are placed into 

another table and the Simulation ID is included in the new table as a foreign key. This is required 

because a simulation can have many questions, and as such a relationship between the new 

Question table and the Simulation table is necessary. Second normal form is adequate for the needs 

of the system and there is no need for further normalisation. The final database structure is shown 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 Simulation Table 

Simulation ID 

Simulation Description 

Simulation Image 

Simulation Title 

Question ID 

Question Description 

Question Answer 

Sim Setup ID 

Gravity Setting 

Run Time Setting 

Tracer Setting 

Camera Setting 

 Sim Setup Table  Particle Setup Table 

Particle Setup ID 

Particle Velocity 

Particle Angle 

Particle Mass 

Figure 12 - First Normal Form 

Figure 13 - Second Normal Form 



 
29 

Menu Structure 
As with the Projectile Motion Simulation, the interface layout will be done using XML and a 

corresponding controller class will handle user interactions with the menu. As the PhysicsLab class 

holds the nifty interface, it will need to know which screen is active so that it can call the update 

method of that screens controller class in order to run the chosen simulation. This will be achieved 

by using  java enumeration types, which will hold a number of values that will correspond to one of 

the screens in the interface. When a controller then becomes active, it sets the enumeration types 

value to the value corresponding to itself in its onStartScreen() method causing the 

PhysicsLab class to call its update method. 

  



 
30 

Menu - Implementation 

Menu Layout 
The layout of the menu was done in a similar manner to that of the projectile motion simulation. The 

main component of the menu is the List box holding the simulations that can be selected by the 

user. When the user selects a simulation from the list, its data is displayed in a panel next to the list 

box. The code for the list box is as follows. 

 

<panel height="100%" width="30%" align="center" childLayout="vertical"> 

   ... 
   <panel height="50%" width="100%" align="center" childLayout="center"> 

<control name="listBox" id="sim_list" align="center" valign="center" 

horizontal="optional" displayItems="10" selection="single" 

forceSelection="true" visibleToMouse="true" />                             

   </panel> 

</panel> 

 

 

The List box is positioned by nesting two panels. The main panel is positioned horizontally adjacent 

to the panel holding the simulation data but is sized slightly smaller than half the screen width, as 

the simulation data panel holds much more data and needs more screen space as a result. The List 

box is added to the screen by adding a control element with the name ‘listbox’.  

As it is necessary to refer to the List box in the MenuController class for handling user selections, it’s 

‘id’ attribute is also specified as ‘sim_list’. The horizontal scroll bar of the interface is set to 

‘optional’, meaning that it is only displayed when required, whereas the vertical scrollbar attribute is 

not specified and is always displayed by default. Finally, the list box is given enough space to display 

10 simulations at one time, and is given ‘single’ selection mode, meaning only one item can be 

selected at a time. The ‘forceSelection’ attribute determines whether a mouse click on a list item 

immediately selects it and the ‘visibleToMouse’ attribute specifies whether or not the user can 

interact with the list box. 

The rest of the menu is layout is done in a similar fashion. Each of the control elements are 

contained in a panel to give greater control over the positions of items on the screen. The menus 

title and background are provided by using XML image elements that specify the filename and 

dimensions for the image. Any necessary resizing is done automatically by nifty. The finished menu is 

shown below. 

Figure 14 - List box layout 



 
31 

 

Figure 15 - Main Menu 

Database Implementation 
The database was constructed using a database plugin tool for the JMonkeyEngine, allowing tables 

to be contructed and relationships created using automatically generated SQL code. In order to 

allow interaction between the program and the database, a simple helper class DataSource was 

created by modifying a code sample from the book ‘big Java’ (Horstmann). It is used to read in 

database properties from a properties file, such as the databases url, and establish a connection to 

the database using the DriverManager class in the java sql library. The DataSource static 

getConnection() method provides a connection using the following code.  

public static Connection getConnection() throws SQLException 

{ 

   return DriverManager.getConnection(url, username, password); 

} 

 

 

The method passes the data held by the DataSource class to the DriverManager class and creates a 

connection to the database, providing the data passed to the getConnection() method is 

correct. 

As specified in the design, the menu’s controller class makes a connection to the database in its 

onStartScreen() method on its first load in order to retrieve data for the menu and place it in 

an array for further use. This is achieved by exectuting a ‘SELECT * FROM simulations’  SQL query 

using functionality from the Statement class in the java SQL library. The code for this is detailed 

below. 

Figure 16 - The DataSource.getConnection() Method 



 
32 

if(isFirstLoad) 

{ 

   //get the menu list box 

   listBox = screen.findNiftyControl("sim_list", ListBox.class); 

   Connection connection; 

   try{ 

  //initialize the data source and create a database connection 

       DataSource.init("src/mygame/database.properties"); 

       connection = DataSource.getConnection(); 

       try{ 

      //keep track of the number of results 

           int count = 0; 

      //prepare an SQL statement 

           Statement statement = connection.createStatement(); 

  //put the results of the query in a result set 

ResultSet result = statement.executeQuery("SELECT * FROM 

simulations"); 

//loop through the results and store them in the array 

           while(result.next()) 

           { 

               simData[count][0] = result.getString("name"); 

               simData[count][1] = result.getString("description"); 

               simData[count][2] = result.getString("image"); 

               count++; 

           }    

        } 

       //always close the database connection 

        finally{ 

           connection.close();            

        } 

   } 

   catch(Exception e) 

   { 

       e.printStackTrace();            

   } 

   //add all simulations to the list box 

   populateMenu(); 

} 

 

The code above is only executed once during each run of the application as the PhysicsLab class only 

needs to instantiate screen controllers when the program starts. This can be exploited to prevent 

having to connect to the database each time the menu is opened. The list box is also setup in the 

above code, as once all the items have been added to the list, they are not cleared when screens are 

switched unless done manually by the user. 

As the program uses a derby database, it needs to know the location of the appropriate driver for 

the database to allow interaction with java. This was done by copying the derby driver .jar file from 

the java SDK and placing it in the simulations ‘mygame’ folder. The file path for the drivers was then 

added to the programs classpath using the following command line argument: ‘ -classpath 

src/mygame/derby.jar’. 

Figure 17 -  Connecting to the database 



 
33 

Menu Controller 
The MenuController class is structured in a way similar to the controller class for the projectile 

motion simulation. The most significant differences between these controllers is in the way user 

interactions are handled due to the different components. It has already been seen that part of the 

MenuControllers responsibility involves interacting with the embedded database. Its other main 

responsibility involves handling selections from the simulation list box and using the selection to 

display the appropriate information back to the user. This functionality is handled in a similar fashion 

to handling input from sliders. First, events from the list box are subscribed to, then the users 

selection is retrieved by the method below and used to update the simulation information displayed 

to the user. The code for this is shown below. 

 

@NiftyEventSubscriber(id="sim_list") 

public void onSimListBoxSelectionChanged(final String id, final 

ListBoxSelectionChangedEvent<Integer> event)  

{ 

      //retrieve the users selection from the event 

      List<Integer> selection = event.getSelectionIndices(); 

      //only one selection at a time, so set the selected sim to the 

      //first value in the list of results 

      currentSim = selection.get(0); 

      //display data on the selected sim 

Element title =    

nifty.getCurrentScreen().findElementByName("sim_title"); 

Element description = 

nifty.getCurrentScreen().findElementByName("sim_desc"); 

      title.getRenderer(TextRenderer.class). 

setText(simData[currentSim][0]); 

      description.getRenderer(TextRenderer.class). 

      setText(simData[currentSim][1]); 

 //show the image of the selected sim 

 Element img = nifty.getCurrentScreen().findElementByName("sim_img"); 

NiftyImage newImage = 

nifty.getRenderEngine().createImage(simData[currentSim][2], false); 

      img.getRenderer(ImageRenderer.class).setImage(newImage);    

  } 

 

 

The code above retrieves the index of the selected item in the list and passes the value to the 

‘currentSim’ variable. This variable is then used to find the appropriate simulation data that was 

previously stored in an array and passes these values to each of the labels and image tags that 

display the data to the user. The ‘currentSim’ variable is then used in the start buttons 

startSim() method, to determine which of the simulations should be started via a switch 

statement when the user clicks it. 

 

 

Figure 18 - Handling list box selections 



 
34 

Menu - Testing 

Interface Testing 
As the menu is composed of only interface components, testing the menu consisted of checking 

each of the interactive components on the interface to ensure they worked correctly. The observed 

outcomes were documented and compared with the expected outcome of using each component. 

The table below summarises the tests performed and their results. 

Table 5 - Menu Test Results 

Tested Component Expected Outcome Observed Outcome 

Simulation List Box Clicking an item in the list 
should cause it to become 
highlighted, indicating a 
selection has been made. The 
simulation information 
displayed to the user should be 
updated, displaying information 
and an image of the selected 
simulation. 

As expected. A problem 
occured when selecting 
simulations with longer 
descriptions. The description 
text overlapped other elements 
on the screen and did not stay 
within the dimensions specified 
in the XML layout. 

Start Button If a selection has been made 
from the list box, clicking the 
start button should cause the 
corresponding simulation to 
start and close the menu 
screen. Otherwise it should do 
nothing. 

Simulations start correctly on 
the first click of the start 
button. However returning to 
the menu and pressing the 
button again causes the 
simulation to load with some of 
its interface components 
unresponsive. 

Quit Button Clicking the quit button should 
cause the application to close. 

As expected. 

 

A major problem was encountered when testing the menu. When starting the projectile motion 

simulation, returning to the menu and starting the same simulation again, the particle settings 

section of the interface failed to load correctly. Attempting to use any of the  components in the 

section with the mouse did not work, yet they were still selectable by using the tab key and could be 

altered using the arrow keys. A possible way to resolve this issue would be to explicitly set each 

components ‘visibleToMouse’ attribute in the corresponding simulation controller class, as it 

appears to become disabled when restarting a simulation. 

 

 

 



 
35 

Momentum Simulation – Design 

Overview 
The momentum simulation is the second simulation that will be included in the system and will 

demonstrate the principle of conservation of momentum. This will be demonstrated by colliding two 

particles together in a perfectly elastic collision, whereby the kinetic energy of the two particles is 

preserved even after colliding. 

The development of the momentum simulation will follow a process that is almost identical to the 

development of the projectile motion simulation. The only significant difference between the two 

simulations is that their particles behave differently and hence have differing update algorithms.  

In order to implement the simulation, several new classes will be required. The MomentumSim class 

will be responsible for initializing and updating the simulation and will inherit its core functionality 

from the Simulation class in the same way as the ProjectileMotionSim class. The MomentumParticle  

class will be used to create the particles needed for the momentum simulation, containing the 

particles update code and checking for collisions between two momentum particles. It will inherit its 

core functionality from the Particle class, just as the Projectile class in the projectile motion 

simulation did. A MomentumController class will also be added to handle interactions with the 

simulations nifty interface. 

Interface Design 
The momentum simulations interface will be in the same format as the interface used in the 

projectile motion simulation. The settings available in the simulation options tab will be exactly as 

they were in the projectile motion simulation, providing changeable gravity, camera angles, run time 

and tracer settings. As the momentum simulation involves two particles, two tabs will be required 

providing sliders to change each particles mass and velocity, as these are the two properties that 

affect the outcome of the collision between the two particles. In addition, two sets of labels will be 

required, displaying  each particles velocity throughout the simulation, so the user can see how this 

value changes after the two particles collide. The layout for each particles settings tab is shown 

below.  

 

 

 

 

 

 

 

Particle Properties  

Particle Velocity Slider  

Particle Mass Slider 

Particle Radius slider 

Particle colour drop down list 

Figure 19 - Particle properties tab 



 
36 

The layout is similar to the projectile settings tab for the projectile motion interface. The difference 

in this tab is that the mass slider replaces the launch angle slider, as particles will collide in a straight 

line and therefore an adjustable launch angle is not required. 

Momentum Update Algorithm 
The momentum particle update algorithm will use the velocity and mass values set by the user from 

the interface in order to calculate the velocities of each ball after they have collided. Initially, each 

particle will move toward the other at the velocity specified by the user. when a collision between 

the two particles is detected, the mass and velocities of each particle will be used to calculate new 

velocities for each particle, causing them to move away from eachother as would be expected. Given 

that the first particle has an initial (before collision) velocity u1 and mass m1 and the second particle 

has initial velocity u2 and mass m2 , then the final velocity v1 of the first particle can be found using 

the equation: 

    
  (     )       

     
 

The final velocity of the second particle v2  can then be calculated by rearranging the equation: 

              

The momentum simulation update algorithm will update each of the momentum particles by calling 

the Simulation class update method and then check for a collision between the two particles. If a 

collision is detected, then the new velocities for each particle will be calculated by calling the 

MomentumParticle class calcFinalVelocity() method. The pseudo code for this is shown 

below. 

 

Algorithim SimulationUpdate(timePerFrame) 

Input: timePerFrame, the time taken to update from one frame 

to the next. 

Output: new position of particle, time elapsed and x velocity. 

superclass.update(timePerFrame) 

if playSimulation then 

 if particle1 collidesWith particle2 

 calcFinalVelocity(particle1, particle2) 

if resetSimulation then 

resetInterface() 

resetParticles() 

 

 

The calcFinalVelocity() method in the update algorithm (above) will compute the new 

velocities for each particle according the equations explained above and will be part of the 

MomentumParticle class. 

 

Figure 20 - Momentum Simulation Update Algorithm 



 
37 

Momentum Controller 
The momentum simulation controller class is very similar to the projectile motion simulation class 

previously implemented. It will inherit its core features from the abstract SimController class. As it 

has slightly differing options to the projectile motion simulations interface, the only difference 

between the two classes are the event handling methods for the additional components. Such 

similarities are beneficial as this has allowed most functionality to be abstracted to the 

SimController class and resulted in less development time for implementing controllers. 

  



 
38 

Momentum Simulation - 
Implementation 

Interface Layout 
The momentum simulation interface is composed of three tabs, two tabs holding the settings for 

each of the particles and one tab holding the same simulation settings present in the projectile 

motion simulation. The same button menu is also included and two separate sets of labels display 

data to the user regarding each of the simulations particles. Again, an XML document is used to 

specify the layout and types of components to be used in the interface. The XML sample below 

shows how sliders are added to the particle tabs of the interface. 

<panel id="label_panel" childLayout="center" width="60%" height="100%"> 

<control id="p1_vel" name="horizontalSlider" min="0" max="50" 

initial="10" stepSize="0.01" buttonStepSize="1" width="90%" 

align="left"/> 

</panel> 

 

 

As with all interactive screen elements, the slider is defined using a control element. The ‘name’ 

attribute specifies that the control should be a horizontal slider and its ‘id’ attribute enables it to be 

referenced by the controller class for event handling. The ‘min’ and ‘max’ attributes set the 

minimum and maximum values that can be selected by the user. Finally, the ‘stepSize’ attribute sets 

the smallest possible increment of the slider to 0.01 and the ‘buttonStepSize’ attribute sets the 

amount to increment the slider value by if the user presses the buttons on either end of the slider, 

rather than dragging the slider with the mouse. The screen shot below shows the completed 

interface. 

 

Figure 22 - Momentum Simulation Interface  

Figure 21 - Slider controls 



 
39 

Momentum Update Algorithm 
With the exception of the differing update algorithms, the implementation of the momentum 

simulation was the same as that of the projectile motion simulation. The Momentum simulations 

update method updates each of the particles by making a call to the Simulation class update 

method, which loops through the list of particles attached to the scene and updates them. If the 

simulation is playing, the momentum simulation update method then checks if a collision between 

the two particles has occurred. If this is found to be the case, a call to the MomentumParticle class 

static calcFinalVelocity() method is made, which computes the velocity for each particle 

after they have collided. The code for this algorithm is below. 

//update the particles through the simulation class 

super.update(tpf); 

//simulation is playing 

if(!isPaused) 

{ 

   //check for a collision if particles haven’t yet collided             

   if(particle1.collidesWith(particle2) && collided == false) 

   { 

  //calculate the velocity of the particles after the collision 

       MomentumParticle.calcFinalVelocity(particle1, particle2); 

//only need to check for a collision once, else particles will get   

//stuck 

 collided = true; 

   } 

} 

 

 

As it is known that the two particles colliding in a straight line and both particles are spherical, 

collisions can be detected using a basic collision detection algorithm. the collidesWith() 

method shown above, checks if the distance of the center of each particle is less than the distance of 

the combined radii of the two particles. If this is the case, then the particles would appear to be 

touching and make the collision look more realistic. A boolean value of true is returned by the 

method if a collision is detected and false if otherwise. The method is shown below. 

public boolean collidesWith(MomentumParticle other) 

{ 

    //if the two particles are sufficiently close, a collision has occured 

    if(position.distance(other.position) <= (radius + other.radius)) 

    { 

        return true; 

    } 

    else 

    { 

        return false; 

    } 

} 

  

 

Figure 23 - Momentum Simulation Update 

Figure 24 - Collision Detection 



 
40 

Momentum Simulation Controller 
Implementation of the momentum simulations controller class did not go as expected. As the 

simulation has two particles, each with its own set of tracers, selecting a tracer belonging to either of 

the particles caused the data labels of both particles to be overwritten with the tracers data. The 

desired outcome was that if a tracer was selected, the particle it belonged to would be identified 

and only the data for that particle would be overwritten. In order to correct this, alterations were 

made to the controllers updateLabels() method.  

Originally, the method retrieved the both particles from the simulation, using its get methods to 

access the particles properties and pass them to the display labels. An if statement to check if a 

tracer was selected caused the method to instead set the labels to the tracers properties if it 

evaluated to true. This was found not to be sufficient when dealing with more than one particle, as 

this cause all labels to be overwritten with the data from the tracer. Instead, the method had to use 

two more complex if statements before updating each set of labels. These new if statements first 

check if a tracer is selected, then check that the tracer belongs to the particle whose labels are about 

to be overwritten. The overwrite is only allowed to proceed if both conditions are true. Part of the 

new method can be seen below . 

 

public void updateLabels() 

{ 

    //retrieve the first particle        

    Particle p = (MomentumParticle)sim.particles.get(0); 

    //is a tracer selected and does it belong to this particle? 

    if(sim.selectedTracer != null && sim.selectedTracer.parent == p) 

       //if yes, overwrite the first particle with the selected tracer 

 p = sim.selectedTracer;      

    //update the display labels     

    Element label =  

    nifty.getCurrentScreen().findElementByName("p1_x_velocity"); 

    label.getRenderer(TextRenderer.class).setText("" + MathHelper.round( 

    -p.getXVelocity(), 2)); 

     

    ... 

    //retrieve the second particle  

    p = (MomentumParticle)sim.particles.get(1); 

    //overwrite the particle if a tracer is selected and belongs to this 

    //particle 

    if(sim.selectedTracer != null && sim.selectedTracer.parent == p) 

       p = sim.selectedTracer;  

    //update the display labels     

    label = nifty.getCurrentScreen().findElementByName("p2_x_velocity"); 

    label.getRenderer(TextRenderer.class).setText("" + MathHelper.round( 

    -p.getXVelocity(), 2)); 

    ... 

           

} 

 

 
Figure 25 - updateLabels method 



 
41 

For simplicity, the momentum simulation only allows one tracer to be selected at a time. Even 

though it would be desirable to be able to select a tracer from each particle and be able to compare 

them, this functionality would require a complete rewrite of the Tracer selection algorithm in the 

Simulation class (detailed in the projectile motion implementation section). 

  



 
42 

Momentum Simulation - Testing 

Particle Testing 
In order to ensure the calculations within the momentum particles update method are correct, the 

simulation was run five times and the xVelocity values generated for each particle by each run 

sampled after the two particles collided. These values were then compared against manually 

calculated values for each of the particles. The results for each of these runs and the setups for each 

are shown below. mass and initial velocity values are omitted as they are specified by the user and 

not computed by the simulation. 

Run 1 Setup 

 Particle A initial velocity:  7 m/s 

 Particle A mass: 15kg 

 Particle B initial velocity: -3 m/s 

 Particle B mass: 10kg 

Run 2 Setup 

 Particle A initial velocity:  13.15 m/s 

 Particle A mass: 21.1kg 

 Particle B initial velocity: -15.1 m/s 

 Particle B mass: 23.7kg 

Run 3 Setup 

 Particle A initial velocity:  40 m/s 

 Particle A mass: 50 kg 

 Particle B initial velocity: -50 m/s 

 Particle B mass: 20.62kg 

Run 4 Setup 

 Particle A initial velocity:  0 m/s 

 Particle A mass: 15.91 kg 

 Particle B initial velocity: -30.19 m/s 

 Particle B mass: 9.9kg 

Run 5 Setup 

 Particle A initial velocity: 25 m/s 

 Particle A mass: 20 kg 

 Particle B initial velocity: -25 m/s 

 Particle B mass: 20kg 

 



 
43 

 

 

Table 6 - Particle Test Results 

Run No. Expected 
Particle A Final 
Velocity 

Actual Particle 
A Final Velocity 

Expected 
Particle B Final 
Velocity 

Actual Particle 
B Final Velocity 

1 -1m/s -1m/s 9m/s 9m/s 

2 -16.74m/s -16.74m/s 11.51m/s 11.51m/s 

3 -12.56m/s -12.56m/s 77.44m/s 77.44m/s 

4 -23.16m/s -23.16m/s 7.03m/s 7.03m/s 

5 -25m/s -25m/s 25m/s 25m/s 

 

As the table shows above, the momentum particle update algorithm correctly calculates final 

velocity values for each of the particles in every run to two decimal places. Note that negative values 

refer to the direction of the particles movement, where particle A is always assumed to be the 

forward moving particle. 

Interface Testing 
To ensure the momentum simulation interface works as intended, each of the components were 

tested and the observed outcome documented and compared with the expected outcome of using 

the component. The table below summarises the tests performed and their results. 

Table 7 - Interface Testing Results 

Tested Component Expected Outcome Observed Outcome 

Play/Pause Button Simulation should start with defined 
settings on first click, successive clicks 
should toggle pausing of the 
simulation. 

As expected. 

Reset Button If the simulation has finished or is 
currently playing, the projectile should 
return to the start position, tracers 
should be cleared and the interface 
reset. 

As expected. 

Toggle Options 
Button 

Should hide/ show the option panel on 
each click depending on whether it is 
already visible. 

As expected. 

Quit Button Clicking should close the application. As expected. 

Menu Button Clicking the button should return the 
user to the menu. 

As expected but restarting the 
simulation causes 
unresponsiveness of the 
interface. 

Particle A Velocity 
Slider 

Altering the slider position should 
change the initial velocity of particle A, 
causing the adjacent label to be 
updated with the selected value. 

As expected. 



 
44 

Particle A Mass 
Slider 

Altering the slider position should 
change the mass of particle A, causing 
the adjacent label to be updated with 
the selected value. 

As expected. 

Particle A Radius 
Slider 

Altering the slider position should 
change particle As radius, causing the 
adjacent label to be updated with the 
selected value and cause the particle to 
be resized to the specified radius. 

As expected, Though wrong 
value is displayed on 
application start until the slider 
is moved, at which point value 
displayed is correct. 

Particle A Colour 
Drop Down 

Selecting a value from the drop down 
list should cause the particle to 
immediately change to the specified 
colour. 

As expected. 

Particle B Velocity 
Slider 

Altering the slider position should 
change the initial velocity of particle B, 
causing the adjacent label to be 
updated with the selected value. 

As expected. 

Particle B Mass 
Slider 

Altering the slider position should 
change the mass of particle B, causing 
the adjacent label to be updated with 
the selected value. 

As expected. 

Particle B Radius 
Slider 

Altering the slider position should 
change particle Bs radius, causing the 
adjacent label to be updated with the 
selected value and cause the particle to 
be resized to the specified radius. 

As expected, Though wrong 
value is displayed on 
application start until the slider 
is moved, at which point value 
displayed is correct. 

Particle B Colour 
Drop Down 

Selecting a value from the drop down 
list should cause the particle to 
immediately change to the specified 
colour. 

As expected. 

Camera Angle Drop 
Down 

Selecting a value from the drop down 
list should cause the camera to snap to 
the selected camera angle. 

As expected. 

Gravity Slider Altering the value of the slider should 
have no effect on this simulation As 
only movement along the x axis is 
considered. 

As expected. 

Run Time Text Field Entering a value into the field should 
cause the simulation to run either until 
the value (in seconds) is reached 
(minimum of 1, maximum of 60), or the 
projectile hits the floor. Values outside 
the accepted range will be converted to 
1 is less than 1 or 60 if more than 60. 

As expected, though if the user 
enters a value outside the 
accepted range the value is not 
corrected in the text field for 
the user to see. 

Tracer Text Field Entering a value into the field should 
cause tracers to be created the 
specified number of times per second 
behind the particle(minimum of 1, 
maximum of 10 per second). Values 
outside the accepted range will be 
converted to 1 is less than 1 or 10 if 

As expected, though if the user 
enters a value outside the 
accepted range the value is not 
corrected in the text field for 
the user to see. 



 
45 

more than 10. 

Tracers Selecting a tracer from the simulation 
should cause it to turn white in colour 
and replace the currently displayed 
data with data on the projectile at the 
time the tracer was created. Any 
currently selected tracers should be 
deselected if a new Tracer becomes 
selected. 

As expected. 

 

The results of interface testing show that only a few minor problems exist with labels not being 

correctly set at start up. The majority of significant issues that could have arisen were addressed 

when testing the projectile motion interface and have therefore been avoided for the momentum 

simulations interface. 

One potentially significant problem that remains however is that when returning to the menu and 

opening the same simulation that was just closed, some of the settings tabs become unresponsive to 

mouse events. Attempts were made to resolve this when testing the interface but were not 

successful. The cause of the problem is unclear and is possibly a bug within nifty, as this is still a 

relatively new technology.  



 
46 

Evaluation & Conclusion 

Results 
Having implemented the majority of the functionality specified in the system requirements, it was 

decided that a number of features should be dropped from the system, in favour of ensuring existing 

features and simulations were complete and working to a good standard. The main features that 

were dropped from the system were the pulley systems simulation, which was only partially 

implemented and the question system allowing users to create and answer questions on each 

simulation.  

I believe that the reason for having to drop these components is down to an over ambitious 

requirements specification for the given development timescale. During the development of the 

system there were also a number of unexpected changes to the development process that were 

unaccounted for by the time plan, including the redevelopment of the interface with nifty and the 

implementation of the tracer feature. These unplanned events resulted in significant delays in 

development and no alterations were made to the time plan to counteract the effects of the delays, 

which meant that other desirable features had to be excluded from the system. 

The final system does have a number of strengths. Although not without problems, I believe the 

nifty interface to be a much more suitable choice for the interface for the system than a java swing 

one. A particular benefit is niftys built in screen management capabilities as this served the systems 

needs for switching between simulations very well. Use of nifty also saved considerable time in 

having to develop a custom screen manager system that would have been required for a swing 

interface. 

Another positive aspect of the system is its 3D graphics. I feel that this was a good development 

choice as it provides a more immersive experience and would likely be more interesting to an A level 

student as a result. In addition, displaying particle properties and developing selectable tracers was 

also a strong point of the system, as this allows for a much more detailed analysis of a particles 

behaviour and would be beneficial in an educational environment. 

A drawback of the system was the use of XML interface layouts. Although this method of 

development was relatively quick to learn, this benefit was quickly negated by the loss of the ability 

to exploit java inheritance with the original swing interface. As a result of this, the XML layout 

specifies identical components for each of the screens multiple times and could have been avoided if 

it was implemented in java. 

I also feel that given many features specified by the requirements were dropped, the 

implementation of a database for storing the systems data was unnecessary and adds a significant 

loading time to the menu screen. As the system currently only requires menu data to be loaded from 

the database, I feel a simple system for reading in menu data from text files would have been a more 

suitable and faster option. Despite this, the use of a database does provide the possibility of future 

expansions such as new simulations or the ability to create and save custom questions without 

having to worry about designing a new system for storing data. 



 
47 

Feedback 
In order to test the systems suitability for its intended audience, a meeting was arranged with an A-

level physics teacher in order to demonstrate the systems capabilities. After viewing both the 

projectile motion and momentum simulations, he provided both positive and negative feedback on 

several aspects of the system. 

A particular positive point noted was that he noted the simulations were highly relevant to the 

curriculum for students in his school and that the simulations would be useful for students to 

compare their own calculations with or for demonstrations using a projector or interactive 

whiteboard. These comments suggest that the system would indeed be appropriate as an aid to 

active learning, which was one of the key aims for developing the system. 

Some negative points the teacher noted were that some aspects of the interface may be distracting 

for students and were not necessary such as the ability to change the colour of particles. His concern 

was that such features would take the focus from the mathematical concepts behind the 

simulations, and that the system would become more like a game than an educational program. A 

summary of the teachers evaluation can be found in the appendices. 

Conclusion 
Overall, I believe the system has satisfied its main aim of providing a range of simulations that could 

be used in a physics class to help students understand mathematical concepts in physics. This has 

been enforced by the feedback given by an A-level physics teacher who was generally positive about 

the system and felt that it would be beneficial for physics students. 

Development of the prototype system was a highly beneficial component of the development 

process. The prototype enabled potential issues that could have been damaging to the quality of the 

final system to be identified and resolved before this could happen. I believe this greatly contributed 

to the success of the project as this allowed a much clearer visualisation of how the final system 

might look and whether it would be able to meet the specified requirements from an early stage. 

Though it would have been desirable for the system to be useable as a self-contained tool for active 

learning in physics, I feel that the system satisfies its requirements to a good standard. Given a larger 

timescale to implement more of the desirable features identified in the requirements, I believe that 

the system could have become a much more useful tool for students and would have been suitable 

for students to use without supervision from an instructor.  

As the system currently stands, I feel that it would be suitable for use in a classroom environment 

under supervision of an A-level physics instructor, as an aid to active learning rather than a self-

contained solution. This is because the system does not currently provide any explanations of the 

mathematical formulae involved but provides a visual demonstration of how they work. It is 

assumed that an A-level instructor would be on hand to explain the simulations and the required 

mathematical concepts to students while using the system. 

 

 



 
48 

Future Work 

As the system is not fully complete, there is a great deal of room for expansions to be made. The 

simulation only has two working simulations at present, covering a small portion of the A-level 

physics syllabus. Using the current systems framework, adding additional simulations could be done 

quickly as the major functionality for all simulations is contained in the abstract Simulation class. 

This would allow future developers to concentrate on developing update algorithms, particularly 

with regards to implementing the equations required for realistic particle movement. Additional 

simulations could cover further physics concepts at A-level such as restitution, friction or centrifugal 

forces. The system could also include simpler GCSE physics simulations, covering concepts such as 

introductory acceleration and velocity. 

Further expansions to the system could also include adding extra functionality to the system. This 

might include a built in wiki, providing detailed explanations on the math behind each of the 

simulations which could be written using XML to maintain a consistent format across all articles and 

parsed using java XML api’s.  

The system could also benefit from the question system that was not implemented in this project. 

Adding such a system would greatly benefit the systems value if used for active learning, as this 

would enable students to engage with the system more effectively than is possible at present. As the 

database structure already exists for this system, development could focus on implementing the 

system immediately without having to design a storage solution. 

A number of utilities could be added to the system to improve its ability to act as a self-contained 

active learning solution. An embedded calculator could be useful to the system if combined with a 

question system as previously mentioned, as this would enable users to calculate their answers to 

questions. The calculator could be accessible from a simulations button menu and be tailored for 

solving questions for each specific type of simulation and would be quicker than using a regular 

calculator. 

One final expansion to the system could be to integrate a physics engine into the system. Adding a 

physics engine would provide a greater level of realism to how particles move and interact with the 

environment. A good option for this would be the java bullet physics engine as this is already 

integrated with the JMonkeyEngine framework used by the system. This was not included in the 

system in this project as it was deemed too realistic for simple A-level simulations and would have 

caused the system to become much more CPU intensive, making it unsuitable for older computers. 

 

 

 

 

 



 
49 

Reflection On Learning 

During development of the physics lab project, I was required to become familiar with several 

technologies and concepts that I had previously never encountered and had no experience of using.  

These technologies include Nifty-GUI, in particular its XML layout system and menu controllers, as 

well as java database integration and the practice of using update loops in each of the simulations. 

Working with these new technologies has given me an appreciation of the importance of researching 

existing technologies that may be useful if included in the development of a system to meet its 

objectives. It has also given me confidence that I am able to learn to use technologies that are new 

to me, a skill that could be beneficial in a working environment where unforeseen problems may 

arise. 

I have also gained an understanding that keeping a good time plan, which accounts for the fact that 

unforeseen problems will inevitably occur is an important factor in the success of a project. The time 

plan that I developed for my project was overambitious and as a result led to me falling short of my 

specified deadlines from an early stage in the project. In addition, I allowed little room for 

addressing unexpected problems and the combination of these factors had a damaging impact on 

the outcome of the project as several planned features had to be dropped. This problem could have 

been resolved by taking more care in developing a more realistically achievable set of requirements 

and allowing more time to deal with any problems that might occur during development. 

A key component of the projects implementation was the use of inheritance and polymorphism. I 

feel that exploiting these traits of object oriented programming were crucial factors of the projects 

success, as development of particle and simulation classes was significantly shortened by abstracting 

many of the common functionalities of each to abstract base classes.  By using such techniques, I 

have also learned the importance of good design as by using these techniques, careful consideration 

had to be given to the relationships between each of the classes in the system. This also led me to 

produce class diagrams to help visualise such relationships, which I feel were an important part of 

the systems design. 

Overall, I feel that the development of the physics lab project has given me the confidence to cope 

with the complexity of developing large scale systems. It has also given me an understanding in the 

importance of good design and testing of the system, and that this can have a significant outcome 

on the success of a project. I have also gained an insight into development using 3D graphics 

technologies and the importance of an appropriate interface. I believe that the skills I have gained 

from this project will be of great benefit to me in any future career.  

  



 
50 

Appendix A – Requirements 
Specification 

The full and amended requirements specification below will be used to evaluate the success of the 

project. 

Functional Requirements 
 The system shall have simulations that demonstrate concepts covered in A-level physics 

such as: 

 Equations of motion, including Projectile motion 

 Pulley systems 

 Collisions and momentum 

 Simulations will have 3D graphics. 

 Simulation particles will conform to the appropriate physics for the given simulation (e.g. 

projectiles will move as defined by the corresponding projectile motion equations). 

 Simulations will allow interaction through the manipulation of an object’s properties via the 

user interface. Properties that will be changeable will include initial velocity, mass and 

launch angles. 

 Simulations will have a camera that can be moved around the scene by the user so that the 

scene can be viewed from various angles. 

 Simulations will display data related to the objects mass, acceleration and velocity in a 

graphical manner so that it is easier for a student to understand the underlying 

mathematical concepts. 

 Simulations should have  functionality that will allow the user to create questions on the 

given simulation (automatically or manually) and provide a means to answer and check 

these questions.  

o The user should be able to save any questions produced by the user for that 

simulation. 

 The system shall have a menu from which will display a list of available simulations, including 

an image to help identify the simulation. 

 If a simulation is selected, the system shall display the simulation, as well as an interface 

providing options to adjust the simulation as required. These options will always include (but 

will not be limited to): 

o play, pause and reset options for the simulation 

o return to menu and exit application options  

 Where appropriate the interface will allow the user to filter the information displayed on a 

given object, such as its velocity, so that a user can focus on any given area they choose. 

 The system will provide help for how to navigate and use components appropriately. As the 

system is designed for use by physics instructors, it is assumed that no help needs to be 

provided on the underlying physics of each simulation. 

 

 



 
51 

 

Non-Functional Requirements 
 The system will be suitable for use by novice users. This will be achieved with the following: 

o Risk of user error will be minimised by restricting user input using GUI components 

such as sliders, combo boxes and spinners. Only values within a defined range will 

be allowed. 

o The system will be developed with consideration to the Principles of usability2 (Dix 

et al.): 

 Learnability - the interface will be simplistic, components logically 

grouped and behave in a predictable manner. If the user alters values, 

then the system will display these changes to the user immediately 

wherever possible. Common GUI components will be used so that the 

system feels familiar to the user. 

 Flexibility - The user will be able to customize the system by being able 

to alter values in the simulation and to show/hide non-essential 

components as needed. 

 Robustness - The system will provide feedback to the user through 

progress bars when busy processing and will warn the user when 

irreversible changes are about to be made. The user will be able to reset 

simulations restore default settings, and also save setups as desired. 

 Simulations will be sorted in the menu by topic and level (GCSE or A-level). 

 The system will ideally be usable on linux, windows and mac environments. 

 Simulations will be graphically detailed, using models, textures and lighting techniques in 

order to be as appealing to students as possible. 

 The user should be able to easily exit the program at any point. 

 Simulations should have a frame rate of at least 30fps, so that they appear to animate 

smoothly. 

 

  

  



 
52 

Appendix B – Prototype Class Diagram 

The following diagram shows the structure of the prototype system. This is different to the structure 

of the projectile motion simulation in the final system and the interface classes are no longer 

included in the system. 

 



 
53 

Appendix C – Feedback From Physics 
Teacher 

The following document summarises the feedback given by Mr John Ivins on the final system. It 

outlines his thoughts on the system, as well as some suggestions he felt could benefit the system. 

Observations on Mechanics project 
 Very engaging user interface suitable for AS and A2 students. 

 Projectiles and momentum applications address relevant parts of the AS and A2 curriculum 

(AQA) 

 Very easy to see how the application could be used to teach projectiles and momentum, 

either: 

o As a class demonstration using a projector and white board. 

o As an engaging way for students to verify their calculations. 

 Suggestions: 

o Would benefit from having the output information made more obvious on both 

applications. 

o A few of the features could be deleted or hidden in a setup menu as they would 

distract students (changing the colour and shape of the ball. 

  



 
54 

References 

Hohmuth, J. 2009. About Nifty GUI [Online]. Available at:  

http://sourceforge.net/apps/mediawiki/nifty-gui/index.php?title=About_Nifty_GUI [Accessed: 09 

April 2012] 

Hohmuth ,J et al. 2011. Nifty GUI 1.3.1 The Missing Manual [Online]. Available at: http://nifty-

gui.lessvoid.com/ [Accessed: 12 April 2012] 

Horstmann, C. 2008. Big Java, 3rd Ed. Hoboken, NJ : Wiley 

JMonkeyEngine. 2012. Picking Tutorial [Online]. Available at: 

http://jmonkeyengine.org/wiki/doku.php/jme3:beginner:hello_picking [Accessed: 16 April 2012] 

Wikipedia. 2012. Blender (Software) [Online]. Available at: 

http://en.wikipedia.org/wiki/Blender_%28software%29 [Accessed: 10 April 2012] 

http://sourceforge.net/apps/mediawiki/nifty-gui/index.php?title=About_Nifty_GUI
http://nifty-gui.lessvoid.com/
http://nifty-gui.lessvoid.com/
http://jmonkeyengine.org/wiki/doku.php/jme3:beginner:hello_picking
http://en.wikipedia.org/wiki/Blender_%28software%29

