
Supervisor: Helen R. Phillips Moderator: Alun D. Preece

Physics Lab - Teaching
Package
Interim Report

Adam Beecham

BSc. Computer Science

School of Computer Science and Informatics,
Cardiff University

Adam Beecham

1

Abstract

The physics lab project involves the design and implementation of a visual simulation of a number of

scenarios that would typically be encountered in an A-level physics course. The emphasis of this

project is on providing a way of visualising the actions of forces on objects and how these actions are

reflected by the underlying equations. The package would be used as a teaching aid by an instructor

to demonstrate the application of these equations, which would otherwise be difficult or dangerous

to perform. This package should also provide a more engaging method of teaching students the

mathematical concepts behind various applications of force and help students to better understand

these concepts. The aim of this project is to address the issues that students encounter when solving

physics problems that require understanding of fundamental physics concepts and mathematical

equations.

Adam Beecham

2

Acknowledgements

- Dr Helen R. Phillips, who originally proposed the idea of implementing a physics simulation system,

and has supervised the development of the project.

- Mr John Ivins of croesyceiliog School, for providing feedback on the selection of appropriate

physics concepts to use in simulations.

Adam Beecham

3

Table of Contents

Introduction
Problem Overview .. 5

Project Aims .. 5

Beneficiaries .. 5

Scope ... 6

Approach ... 6

Background
Active Learning .. 7

JMonkeyEngine ... 7

Existing Solutions .. 7

Requirements Analysis
Functional Requirements .. 9

Non-Functional Requirements .. 10

Algorithms ... 11

System Architecture .. 11

Prototype Design
Overview ... 12

Prototype Sketch ... 12

Prototype Class Diagram ... 13

Projectile Update Algorithm ... 14

Prototype Implementation
User Interface ... 16

Projectile Motion Simulation .. 17

Projectile ... 18

Known Issues ... 19

Adam Beecham

4

Conclusion
Summary ... 21

Future Work .. 21

Appendices
Appendix A - Comparison of 3D programming utilities .. 22

Appendix B - Analysis of Existing Systems .. 24

Appendix C - Physics Concepts .. 30

References
References .. 36

Adam Beecham

5

Introduction

Problem Overview

For many students today, physics is considered to be one of the most challenging subjects that can

be studied. Studies commonly find that students feel that the mathematics involved is difficult,

concepts are too abstract or that the subject is simply not interesting. An investigation into why

students perceive physics to be difficult revealed that from a survey of 293 students studying

introductory physics, 57% felt physics was difficult, while 41% felt it was too abstract and 33% felt it

required a good understanding of mathematics4(Ornek, F. et al. 2008). It is possible that such

perceptions of physics are a result of students having difficulty grasping the fundamental concepts of

physics. As argued by Freedman (1996) students often misinterpret the meaning of mathematical

equations; although they are able to correctly solve problems, they have difficulty in interpreting

their results3.

Project Aims

The physics lab project aims to address the common difficulties that physics students encounter at

an early stage, by producing a software system for use in GCSE or A-level course. This system would

provide a number of simulations, covering momentum, velocity and forces, using 3D graphics in

order to convey these topics in an interesting manner. These topics require understanding of

fundamental concepts of physics, mathematical equations and are often perceived to be abstract.

As it is not assumed that users will be expert computer users, the system produced by this project

should be suitable for use by users who are not computer literate by providing a simplistic user

interface for interaction with objects in a simulation. The system should also clearly show how the

underlying equations change in step with their respective equations, as this is intended to make

given concepts feel less abstract. In turn, this should help improve a student’s ability to interpret

how these equations generate results. The system also aims to use visually stimulating graphics and

to provide problems for students to work through. This active learning approach will be more

engaging for students, meaning that they are likely to learn more from using the system.

Beneficiaries

This project is primarily aimed at A-level and GCSE students. It aims to benefit these students by

providing an effective means of improving their understanding of various equations and concepts

required when solving physics problems regarding forces, momentum and velocity. The project aims

to achieve this by exploiting the graphics capabilities of modern computer systems in order to

produce visually attractive 3D simulations.

Another potential beneficiary would be a GCSE or A-level physics instructor. By incorporating the use

of these simulations into a course, the instructor would be more easily able to demonstrate

concepts that students might consider to be abstract and difficult to visualise. This would potentially

allow the instructor to focus on other aspects of the course that students may have difficulty with.

Adam Beecham

6

Scope

In order to achieve the stated aims, the outcome of this project will be a software system

compromising a range of interactive 3D physics simulations on forces, momentum and velocity.

Simulations will be selectable from a menu that clearly summarises the areas that a particular

simulation addresses. Each simulation will have a simple interface, suitable for a novice user that will

allow manipulation of settings such as initial velocities, launch angles and mass. Simulations will

provide feedback to the user, showing the equations used and values calculated (such as velocity

and distance) for a given time in the simulation.

The system will be able to open simulations in demonstration mode, which allows the user to run

the simulation as normal, or question mode, which will allow an instructor to set problems based on

the given equation, for students to attempt to solve. The system will check answers given, and

inform the user whether or not they have correctly answered the question.

Approach

The system will be developed following the incremental development approach. The core

components will be designed and implemented first. These core components consist of a basic

simulation framework, the menu, and the essential components of the user interface, such as play,

pause, reset and exit buttons. Each component will then be tested and evaluated, prior to design

and implementation of the next increment.

Each successive iteration will then consist of a new simulation, including any necessary amendments

to the interface. The final iteration will add the question mode to the system, once all other

components have been tested and are working correctly. Once all iterations have been developed,

the system will then undergo acceptance testing by a physics instructor before being considered

ready for distribution.

Before development of the main system begins, a prototype system will be developed as a proof of

concept. This system will be composed of a projectile motion simulation with a user interface,

allowing basic interaction with the system, and options for pausing, playing and resetting the

system.

Adam Beecham

7

Background

Active Learning

Active learning is the theory that ‘we learn more effectively by doing’5. There are a number of

activities that can be used to encourage active learning, categorised into high and low risk activities.

As high risk activities are more likely to fail and require more intricate and longer planning, the

physics lab project aims to encourage active learning by providing a question mode, so that students

actively engage with the simulations. This was decided to be an effective solutions as quizzing

students is considered a low risk activity and the amount of time required to produce a

questionnaire is reasonably short. This preparation time can be significantly reduced by recycling

questions through the physics lab systems ability to save setups.

As stated by Bonwell, one particular disadvantage brought by Active learning is that ‘active learning

strategies reduces the amount of available lecture time that can be devoted to content coverage’1.

While this problem cannot be completely eliminated when using the physics lab system, it could be

minimised by using the system to compliment course coverage, as a tool to aid student

understanding of concepts of force, velocity and momentum.

JMonkeyEngine

In order to speed up the development process of the physics lab project, the system will be built on

using the JMonkeyEngine 3 framework. JMonkeyEngine is an open source game engine built with

java that allows rapid development of 3D applications. This framework is in turn based on the LWJGL

(Light weight java games library) which provides access to OpenGL’s graphics capabilities. JMonkey

applications typically extend from the SimpleApplication class, which is responsible for setting up the

basic components of a 3D scene. The JMonkey documentation can be found at:

http://jmonkeyengine.org/wiki/doku.php . A comparison of JMonkey against other similar systems

can be found in Appendix A.

Existing Solutions

At present, few software systems currently exist that attempt to address the issues tackled by this

project. Many existing educational physics programs place emphasis on animations displaying a

particular concept to the user. While this addresses the issue of physics being abstract, it does not

help students to understand the underlying equations. Some systems use complex user interfaces

that are simply inappropriate for use by a novice user. These often contain many elements, causing

them to be particularly difficult to navigate and unclear use of icons, making it challenging for the

user to deduce the functions of each element. In addition to these problems, existing systems

typically cannot be purchased as individual copies, but only accessed through monthly or yearly

payments. A number of subscription types are normally offered, giving different levels of access, but

it is often difficult to know which service is appropriate, as trials are very limited or often not

provided.

Adam Beecham

8

The main reason that these existing systems are inadequate for addressing the issues tackled by this

project is that none make use of the concept of active learning. While all involve displaying

animations to the user, none attempt to engage the user further than allowing setup of simulations.

Users are then simply expected to observe said simulations, which does not utilize active learning in

any form. An analysis of two existing systems can be found in Appendix B

Adam Beecham

9

Requirements Specification

The final version of the system should satisfy the following functional and non-functional

requirements:

Functional Requirements

 The system shall have simulations that demonstrate concepts covered in GCSE and A-level

physics such as:

o GCSE level

 Distance, speed and acceleration

 Velocity

 Momentum and Force

o AS/A level

 Equations of motion, including Projectile motion

 Components of force and equilibrium

 Pulley systems

 Collisions and momentum

 (A specific list of concepts with worked examples can be found in Appendix C)

 Simulations will have 3D graphics.

 Simulation particles will conform to the appropriate physics for the given simulation (e.g.

projectiles will move as defined by the corresponding projectile motion equations).

 Simulations will allow interaction through the manipulation of an object’s properties via the

user interface. Properties that will be changeable will include initial velocity, mass and

launch angles.

 Simulations will have a camera that can be moved around the scene by the user so that the

scene can be viewed from various angles.

 Simulations will display data related to the objects mass, acceleration and velocity in a

graphical manner so that it is easier for a student to understand the underlying

mathematical concepts.

 Simulations should have two modes:

o demo mode -simply runs the simulation with the standard interface for interacting

and visualising a given concept

o question mode - as demo mode, but will allow the user to create mathematical

problems on the given simulation (automatically or manually) and provide a means

to answer and check these questions.

o The user should be able to save the setup of any simulation, as well as any questions

produced by the user for that simulation.

 The system shall have a menu from which will display a list of available simulations, including

an image to help identify the simulation and the level that the simulation is aimed at (GCSE

or A-level). The menu will also provide a means to open previously saved simulation setups.

Adam Beecham

10

 If a simulation is selected, the system shall display the simulation, as well as an interface

providing options to adjust the simulation as required. These options will always include (but

will not be limited to):

o play, pause and reset options for the simulation

o return to menu and exit application options

o a save option(to save the setup of a simulation)

 Where appropriate the interface will allow the user to filter the information displayed on a

given object, such as its velocity, so that a user can focus on any given area they choose.

 The system will provide help for how to navigate and use components appropriately. As the

system is designed for use by physics instructors, it is assumed that no help needs to be

provided on the underlying physics of each simulation.

 The system will provide a calculator that can be used to assist in answering.

Non-Functional Requirements

 The system will be suitable for use by novice users. This will be achieved with the following:

o Risk of user error will be minimised by restricting user input using GUI components

such as sliders, combo boxes and spinners. Only values within a defined range will

be allowed.

o The system will be developed with consideration to the Principles of usability2 (Dix

et al.):

 Learnability - the interface will be simplistic, components logically

grouped and behave in a predictable manner. If the user alters values,

then the system will display these changes to the user immediately

wherever possible. Common GUI components will be used so that the

system feels familiar to the user.

 Flexibility - The user will be able to customize the system by being able

to alter values in the simulation and to show/hide non-essential

components as needed.

 Robustness - The system will provide feedback to the user through

progress bars when busy processing and will warn the user when

irreversible changes are about to be made. The user will be able to reset

simulations restore default settings, and also save setups as desired.

 Simulations will be sorted in the menu by topic and level (GCSE or A-level).

 The system will ideally be usable on linux, windows and mac environments.

 Simulations will be graphically detailed, using models, textures and lighting techniques in

order to be as appealing to students as possible.

 The user should be able to easily exit the program at any point.

 Simulations should have a frame rate of at least 30fps, so that they appear to animate

smoothly.

Adam Beecham

11

Algorithms

The majority of algorithms used by the project are simply the equations that are required to

calculate an objects velocity and distance travelled. These algorithms will be responsible for

animating the simulations, positioning particles correctly in each frame of the animation. The

pseudocode for the animation of the projectile motion simulation can be found in the prototype

design section.

System Architecture

The system will have a modular design, where each element will be designed as a separate class,

with similar elements (such as simulations) inheriting from one generic class containing the

functionality required by all these elements. Due to the extensive use of mathematics, helper classes

will be utilised, to provide shortcuts to commonly used values. A unit conversion class will also be

required for converting between world units(the units used by jMonkey) to meters, as students will

be require feedback from simulations as meters. One other essential component will be a screen

manager, as the program will frequently need to switch between displaying the menu and selected

simulations. The screen manager will be responsible for ensuring this transition occurs in a

predictable way, and any transition screens, such as loading screens are displayed.

Adam Beecham

12

Prototype Design

Overview

The prototype system was produced for several reasons:

 As a proof of concept, to show that the final system can be realistically achieved.

 To allow potential development problems to be identified and resolved prior to

development of the final system.

 To allow familiarisation with the JMonkeyEngine 3 framework and its capabilities.

 To develop the core simulation framework, ready for the implementation of the final

system.

 The prototype consists only of a projectile motion simulation and its interface, in order to

demonstrate how simulations, particles and interfaces can inherit from their abstract parent classes.

This allows for effective reuse of core components, so that specific simulations can be rapidly

produced.

Prototype Sketch

The first step taken in designing the system was a sketch of the prototype system. This involved

sketching the appearance of the projectile motion simulation, as well as its interface and

components. The sketch can be seen below:

Play/Pause

Reset

Launch Angle Slider

Initial Velocity Slider

Acceleration, x and y velocity,

distance travelled, height and

time displayed and updated

with simulation.

Display all equations used here for quick student reference

V

a
Terrain

Particle updates per second Spinner

Figure 1 - Prototype Sketch

Ucos(θ)

Usin(θ) + at

Adam Beecham

13

As can be seen, the sketch shows the simulation as it would appear at some arbitrary time after

being run. The particle velocity and acceleration arrows displayed in the scene represent that at this

point, the particle would move with a velocity specified by the x and y components, where:

 U = initial (launch) velocity

 a = acceleration (gravity, constantly pulling down at -9.81 m/s)

 t = time elapsed.

 θ = launch angle.

The interface provides all the basic functionality required to interact with the scene. From the

interface, the user can start, pause and resume the simulation with a single button, reset the scene

at any time, select a launch velocity and angle using sliders, and change how often the particle

updates per second. The sliders and spinners will include labels that clearly displays the purpose of

each component, and will provide immediate feedback to the user, informing them what value they

have selected.

Prototype Class Diagram

The class diagram below shows the structure of the prototype system. The Simulation, and

InterfacePanel classes are abstract classes that will be used in the final system to provide each

simulation and its accompanying interface with its core features. As each simulation will have

uniquely behaving particles, an abstract particle class will also be used, to prevent having to rewrite

common variables and methods for each particle.

InterfacePanel
playButton
resetButton
particleUpdateSpinner
updatesPerSecond
playSim
pauseSim

Particle
geometry
position
velocity
xVelocity
yVelocity
acceleration
distanceTravelled
height
time
updateInterval

update()
reset()

Simulation
xVelocityText
yVelocityText
accelerationText
distanceText
massText
heightText
timeText
camera
terrain

Update()

UnitConverter
metersToWorldUnitsRatio
worldUnitsToMetersRatio
toWorldUnits()
toMeters()

PhysicsLab
frame
projectileMotionSim
run()

ProjectileMotionInterface
launchAngleSlider
launchVelocitySlider
launchAngle
launchVelocity

Projectile
launchAngle

update

ProjectileMotionSim
projectile
projectileMotionInterface

update()

has

has

runs

1

1

1

1

1

1

Figure 2 - Prototype Class Diagram

Adam Beecham

14

To summarise the above diagram, the Projectile, ProjectileMotionSim and ProjectileMotionInterface

classes extend the functionality of their parent classes. The ProjectileMotionSim class has a

projectile and a ProjectileMotionInterface, while the PhysicsLab class simply runs the program. The

UnitConverter converts between meters and world units, as output will need to be displayed as

meters, but any positions and movements in the simulation must be calculated in world units.

Projectile Update Algorithm

The main algorithm in the prototype system involves updating the simulation by calculating the

properties of a projectile at a given time and then positioning the projectile accordingly. This should

only happen if the user is currently playing the simulation, otherwise the projectile should do

nothing. This functionality can be seen in the pseudocode below.

Algorithim SimulationUpdate(timePerFrame)

Input: timePerFrame, the time taken to update from one frame

to the next.

Output: new position of projectile, its height, distance, time

elapsed and x,y velocities.

if !playSimulation then

 setProjectileLaunchVelocity()

 setProjectileLaunchAngle()

 setProjectileUpdateInterval()

if playSimulation then

 updateProjectile(timePerFrame)

 updateInterface()

if resetSimulation then

 resetParticle()

Figure 3 - ProjectileMotionSim Update Algorithm

The algorithm above simply allows the user to setup the particles update frequency, launch angle

and velocity before starting the simulation. If the simulation is running then the projectile should

update and the correct value for each of its properties be displayed. The particle should reset if the

simulation has been reset. The pseudocode below shows how the particle will be updated.

Adam Beecham

15

Algorithm UpdateProjectile(timePerFrame)

Input: timePerFrame, the time taken to update from one frame

to the next.

Output: new position of projectile, its height, distance, time

elapsed and x,y velocities.

yVelocity ← u * sin(theta) + a * t

xVelocity ← u * cos(theta)

distance ← u * cos(theta) * t

height ← u * sin(theta) * t + 0.5 * a * t
2

if landed then

 stop()

position = position + velocity * timePerFrame

if timeToUpdate then

 setPosition()

 updateInterface()

 resetUpdateInterval()

Figure 4 - Projectile Update Algorithm

The projectile update algorithm simply computes new values for each property on each time the

projectile is updated. The position is calculated by adding the velocity to the position. As the velocity

is given in meters per second, it is multiplied by the timePerFrame variable to give the correct

distance that the projectile has moved. If the updateInterval has elapsed, then the projectile is

placed in its new position, and its values are displayed in the interface. The projectile stops if it hits

the ground.

Adam Beecham

16

Prototype Implementation

User Interface

The user interface of the prototype system is composed of several swing components. The interface

allows the user to setup a projectiles initial velocity and launch angle, and then play, pause or reset

the simulation. As specified by the requirements, the interface is simplistic and restricts the users

input to suitable ranges. Components are grouped into core components and projectile specific

components by JPanels. TheFeedback is provided through JLabels which update immediately after a

value is altered. These values are then passed to the ProjectileMotionSim class, which updates the

particle. The code snippet below shows how the interface retrieves users initial particle velocity and

angles from JSliders and immediately provides feedback to the user by displaying the value selected.

/*

 * override the stateChanged method in the simulation

 * class

 */

 @Override

 public void stateChanged(ChangeEvent e)

 {

 //needed to update the upsSpinner

 super.stateChanged(e);

 //get value from the launchAngle slider

 if(e.getSource() == launchAngleSlider)

 {

 //set launchAngleVariable to the slider value

 launchAngle = (int)launchAngleSlider.getValue();

 //show the user the selected value

 angleLabel.setText(launchAngle + " degrees");

 }

 //get value from the velocity slider

 if(e.getSource() == velocitySlider)

 {

 //set the velocity variable to the slider value

 velocity = (float)(velocitySlider.getValue())/10;

 //show the user the selected value

 velocityLabel.setText(velocity + " m/s");

 }

 }

Figure 5 - ProjectileMotionInterface stateChanged Method

The prototype interface is created by defining a ProjectileMotionInterface object in the

ProjectileMotionSim class. The ProjectileMotionInterface class extends the InterfacePanel class, as

specified in the design, which defines the core components of the simulation interface.

Adam Beecham

17

Projectile Motion Simulation

The simulation provided by the prototype is a projectile motion simulation, specified by the

ProjectileMotionSim class. This class extends the Simulation class, which in turn extends the

SimpleApplication class, provides access to the required JMonkeyEngine capabilities, such as the

camera and 3D graphics features. The main feature of the ProjectileMotionSim class is its update

method. This class is responsible for updating the interface that displays each of the particles

properties and the particle itself, positioning it in its appropriate position as the simulation advances.

The code snippet below shows the main sections of the ProjectileMotionSim class update method.

/*

 * Update the simulation

 */

@Override

public void simpleUpdate(float tpf) {

//if the simulation isn't playing, allow the user

//to setup the simulation.

 if(!panel.playSim())

 {

 particle.setLaunchAngle(panel.getLaunchAngle());

 particle.setLaunchVelocity(panel.getLaunchVelocity());

 particle.setUpdateInterval(1f /

 panel.getParticleFramesPerSecond());

 }

 //update the simulation if its playing

 if(panel.playSim())

 {

 //update the particle

 particle.update(tpf);

 //update the interface

 if(particle.updateInterface())

 {

 xVelocity.setText("x velocity: " +

 particle.getXVelocity() + " m/s");

 yVelocity.setText("y velocity: " +

 particle.getYVelocity() + " m/s");

 ...

 }

 }

 //if the user resets the simulation, reset the particle and the

Adam Beecham

18

 interface

 if(panel.resetSim())

 {

 particle.reset();

 panel.setReset(false);

 xVelocity.setText("x velocity: ");

 yVelocity.setText("y velocity: ");

 ...

 }

}

Figure 6 - ProjectileMotionSim Update Method

Projectile

The projectile class is responsible for drawing and updating the projectile to the screen. It extends

the Particle class, which provides the basic components of all particles. The projectile updates itself

by calculating its velocity, then adding the velocity to the current position to compute its new

location. The projectile then calculates its height and distance and provides these as feedback to the

user. The code snippet below shows the projectiles update method:

/*

 * update the projectile

 */

 @Override

 public void update(float tpf)

 {

 //update while the projectile is still airborne

 if(!stop)

 {

 //particle class calculates the time variable

 super.update(tpf);

 //calculate the x and y components of the particle velocity

 yVelocity = (float)(initialVelocity *

Math.sin(launchAngle))

 + (acceleration*time);

 xVelocity = -(float)(initialVelocity *

Math.cos(launchAngle));

 velocity = new Vector3f(0,yVelocity,xVelocity);

 //calculate the distance and height

 distanceTravelled = (float)((initialVelocity *

 Math.cos(launchAngle)) * time);

 height = (float)((initialVelocity * Math.sin(launchAngle))

 * time)

 + (0.5f * (acceleration * (time * time)));

 //compute the new position by adding the velocity times the

 //time per frame to the current position

Adam Beecham

19

 position = position.add(UnitConverter.toWorldUnits(

 velocity.mult(tpf)));

 //position the particle at every update interval. This

 //allows the particle to be updated at a speed specified by

 //the user

 if(interval >= updateInterval)

 {

 updateInterface = true;

 geometry.setLocalTranslation(position);

 interval = 0;

 }

 //stop the particle if it hits the floor

 if(position.y <= -1)

 {

 velocity.zero();

 position.y = -1;

 geometry.setLocalTranslation(position);

 stop = true;

 }

 }

}

Figure 7 - Projectile Update Method

Known Issues

While the use of the JMonkeyEngine has simplified the process of developing the systems graphics,

it has introduced some complications in developing the interface. As JMonkey applications typically

take up an entire frame, a work around had to be used to allow the use of a swing interface. This

involved running the application in a Canvas, so that it could be resized and allow the interface to be

displayed. This workaround is in the PhysicsLab class, which can be found with the full source code in

the appendices.

Another issue is the feedback provided by the system. Although the calculations are accurate, the

interface displays values with an accuracy of up to 7 decimal places. This level of accuracy is not

required, and makes the interface look untidy. This also casues extremely small values to be

displayed, such as the projectiles x velocity when it is launched at 90 degrees. The x component

should be zero, however very small values are detected and displayed. The screenshot below

displays this behaviour, with the affected properties highlighted.

Adam Beecham

20

 Figure 8 - Issues with the interface

Adam Beecham

21

Conclusions

Summary

The main aim of the interim report has been to highlight the development of the prototype version

of the physics lab system and the core components of its implementation. The development of a

framework for particles, simulations and interfaces, will allow for rapid development of the

additional simulations to be included in the final version of the system. The report has also identified

the requirements of the final system, justified the use of an iterative development approach and

development decisions, such as the use of the JMonkeyEngine framework. The systems use of a

question mode to encourage Active Learning has also been explained and finally issues with the

prototype have been identified, including issues with number formatting and swing interfaces.

Future Work

Using the framework developed in the prototype system, the next stage of the project will be to

develop the remaining simulations for the system. These will be built in the same manner as the

projectile motion simulation, with particles, simulations and interfaces extending the abstract

classes used in the prototype. The Particle, Simulation and InterfacePanel classes will likely require

additional functionality that has not been identified by simply designing the projectile motion

simulation alone.

The design and implementation of a menu and screen manager class will be necessary to enable

users to select a desired simulation and for the system to be able to manage the transitions between

the menu and simulations. Once all the system has been developed and each iteration has been

tested, the system will then need to be tested by an A-level instructor, who will then provide

feedback on the systems effectiveness.

Adam Beecham

22

Appendices

Appendix A - Comparison of 3D programming utilities

Due to the Physics labs systems need for 3D graphics, specialist programming tools for graphics

programming will be required. A number of tools that could potentially be used in development of

the system are listed below.

Java - JOGL

JOGL is a java wrapper library for the OpenGL graphics language. JOGL provides a wide range of tools

for developing 3D applications due to OpenGL being a specialist graphics language. Most coding

must be done at a low level, as OpenGL does not provide readymade utilities such as cameras or

utilities for managing the scene.

Advantages:

 Low level code allows for a greater level of control over development of simulation graphics

 Open source library so free to use

 Can be cross platform, so long as the system has an openGL compatible graphics card (most

modern computers do)

Disadvantages:

 Longer development time will be required (to develop camera classes, update loops and

primitive shapes, such as a sphere).

 Can be tricky to setup for development (either place in java directory or in a desired folder and

set a classpath to the library)

C# - XNA 4.0 Framework

The XNA framework is a framework developed by Microsoft for indie game developers. XNA

provides both 3D and 2D graphics capabilities which can be accessed at a high and low level. XNA’s

3D graphics system typically uses Models which can be quickly imported using the XNA content

pipeline. Developers must use vectors and Matrices in order to position or transform objects.

Advantages:

 Easy to use library, which is well supported with a large community

 Works with visual studio IDE, which will enable quick development

Disadvantages:

 Not open source, so a risk of legal issues unless proper permission is sought

 Will only run on windows systems

 No tools for creating user interfaces

 Only a very basic set of 3D utilities provided

Adam Beecham

23

Java - JMonkeyEngine 3

The JMonkeyEngine 3 is a complete framework, including an IDE, for developing 3D applications in

java. The JMonkeyEngine is based on the lightweight java games library, which allows access to

openGL functionality at a high level. JMonkey provides a wide range of basic utilities for 3D

applications, such as cameras, primitive shapes, materials and an integrated physics engine.

Advantages:

 Wide range of utilities available will allow development to focus on building simulations

immediately, rather than developing core components such as cameras and update loops.

 Open source and freely available for use

 Cross platform capability, so long as a machine supports openGL 2.0 or higher

Disadvantages:

 No utilities for developing suitable interfaces, but JMonkey applications can be run in a canvas

and allow for the use of java swing components instead.

Conclusion

It is clear that the JMonkeyEngine solution would be ideal for the project, as this provides tools to

produce a 3D cross platform system and is open source, so can be used freely.

Adam Beecham

24

Appendix B - Analysis of Existing Systems

Physics-online.com by Fable Multimedia

Overview

Physics-online is an online service that provides a range of simulations, videos and articles on a

range of GCSE and A-level physics topics. Content is arranged by topic, level and exam board. Each

topic has a number of articles, simulations and videos that the user can view, explaining a particular

aspect of that topic. Much of the content provided is from external sources, however content

produced by Fable multimedia is also provided. The main user interface is simple and intuitive and

consists of the navigator, where the user can select the topic they wish to learn more about, and the

main screen, where all content is displayed. Help videos and articles are easily accessible and users

can also choose to display the content in a separate popup window if desired.

 In order to use Physics-online, users must register an account appropriate to their requirements.

The types of account available are:

Lite - a free, single user account which provides limited access to available content.

Home - a single user full access account that can be used any day after 4pm and costs £17.50 per

year

Single - a single user account that provides full 24 hour access costing £49 per year.

School - a multi user account providing full 24 hour access for teachers and students costing £99 per

year.

Figure 2 - User Interface

Despite being aimed at British GCSE and A-level physics students, much of the content is pulled from

American university websites. While some of this content appears to be useful, a significant

proportion seems irrelevant and sometimes too advanced for the target audience. In addition, this

also raises questions over the possible legal issues involved with using these resources, as it is

unclear if permission has been granted for the inclusion of this content in the system.

Adam Beecham

25

Simulations

A number of 3D and 2D simulations are available for users, some of which are linked from external

websites and are typically java applets or flash animations. Most simulations produced by Physics-

online are produced using mechanics pad, a custom 2D flash program built on top of a flash physics

engine derived from the C++ Box2D physics engine. Mechanics pad also provides the ability for users

to build their own simulations, with the ability to add bodies, change properties of a given body and

also to display forces acting on them. In house 3D simulations are produced using adobe shockwave

and are used mainly for illustrating velocity/time graphs.

Most simulations included are built by Fable multimedia and designed specifically for A-level and

GCSE students. These simulations are well suited to the intended audience, as they explain the

covered concepts well, and are able to hold the interest of the user through the use of interactivity.

Simulations from external websites are often from university websites, often too simplistic to be of

any use to students. Due to the inclusion of mechanics pad, linking to these resources also seems

pointless, as mechanics pad is able to perform the same simulations, while also providing useful

information, such as an objects speed.

Figure 3 - 3D velocity/time graph demonstration

Adam Beecham

26

Figure 4 - Mechanics Pad

Videos

Videos are primarily flash based, and are either produced directly by Fable Multimedia or from

external sources, normally university websites. The main purposes of videos are for explaining

specific concepts or working through example questions. Videos produced by Fable are typically easy

to follow and work through examples, clearly explaining how to answer a given question and would

be useful for a student who may be struggling to understand the math behind a concept. One

downside to this is that some videos appear to assume that the viewer has some prior knowledge

and hence doesn’t explain why certain values are required, though this knowledge could be acquired

from other resources provided.

Articles

Some topics contain articles which are typically links to external webpages covering specific topics in

great detail, however this is often in much more detail than would be required for a GCSE or A-level

student, and can be difficult and dry to read. With the exception of help articles, the inclusion of

Figure 5 - Example question video

Adam Beecham

27

these articles seems unnecessary, as the topics covered are almost always covered in the required

level of detail by videos or simulations.

Interactive Physics by Design Simulation Technologies

Interactive physics is a standalone program that can be run on Windows or Mac classic mode

(available on version 10.4 or lower). Interactive physics claims to be widely used by schools

worldwide and has won a number of awards. The most recent release of interactive physics is the

2005 version, meaning that this software is now out of date and would not cover all aspects of

current physics syllabuses.

Unlike physics-online, interactive physics is based entirely on simulations, and allows the user to

create experiments for themselves, or choose from a library of ready to run simulations, which can

also be customised by the user. The library of animations includes (but is not limited to) simulations

for momentum, kinematics, projectiles, collisions and pulley systems. All simulations are in 2D and

make use of simplistic sprite graphics that are not visually stimulating, however they are very simple

to set up and would be appropriate for even non-computer literate users. Many simulations also

provide information on each simulation, such as an objects velocity or acceleration, and also provide

brief explanations of why objects behave as they do, which would be appropriate for GCSE level, yet

would not be in enough detail for an A-level student.

Figure 6 - Projectile Simulation

Adam Beecham

28

Interactive physics has a complex user interface, similar to a drawing package such as photoshop.

The user can select a variety of components from a menu and alter their properties, then add them

to a simulation as desired. The downside to this is that the interface appears cluttered, meaning that

it would be difficult for an inexperienced user to create an experiment for themselves. It should be

noted however, that to view simulations already included, the user need only know how to access

the library of prebuilt simulations, meaning that the user interface can be avoided almost entirely.

Figure 7 - Interactive physics user interface

There are several editions of physics online available, each with different functionality. The different

versions available are as follows:

Demo edition

 Access to demo files only
 Files cannot be saved or copied
 Cannot export movies or data
 Available in 10 international languages

Textbook edition

 Licensed with a Developer edition and is able to play simulations created by the Developer
edition

 Files cannot be saved or copied
 Limited printing and exporting capabilities
 Limited access to pre-designed physics experiments
 Created for textbooks, not instructors
 CD must be in CD-ROM drive for program to run
 Available in 10 international languages

http://www.design-simulation.com/IP/international.php#Languages
http://www.design-simulation.com/IP/versiondiff.php#Developer
http://www.design-simulation.com/IP/international.php#Languages

Adam Beecham

29

Homework edition

 Sold and packaged in increments of 10 CDs and are available to customers with at least a 10-
user license of IP

 Full use capability
 Access to all pre-designed physics experiments
 CD must be in CD-ROM drive for program to run
 Does not include user manuals or technical support and must be installed on student-owned

computers, not on school equipment
 Available in 10 international languages

Full edition

 Full use capability
 Manual lookup word at first launch
 Allows saving and copying files
 Allows exporting data
 Access to all pre-designed physics experiments
 Available in 10 international languages

Developer edition

 Available to publishers and science curriculum developers whose customer base is on a
state-wide or country-wide level

 Sold with a specified number of textbook versions (minimum of 500 textbook versions)
 Full use capability
 Access to all pre-designed physics experiments
 Capability to create files that can be opened by:

o Textbook edition
o Homework edition
o Full edition
o Developer edition

 Available in 10 international languages

Source: http://www.design-simulation.com/IP/versiondiff.php#Homework

http://www.design-simulation.com/IP/international.php#Languages
http://www.design-simulation.com/IP/international.php#Languages
http://www.design-simulation.com/IP/international.php#Languages
http://www.design-simulation.com/IP/versiondiff.php#Homework

Adam Beecham

30

Appendix C - Physics Concepts

The following highlights the concepts that could be covered by the Final system. Some worked

examples have been provided to demonstrate how these concepts can be applied

Equations of Motion:

 For objects with constant acceleration

 Air resistance is ignored

 6 equations:

1. v = u + at

2. s = 1/2(u + v)t

3. s = ut + 1/2at2

4. s = vt - 1/2at2

5. v2 = u2 + 2as

6. a = (v – u)/t

Where:

s = the distance between initial and final positions (displacement)
u = the initial velocity
v = the final velocity
a = the constant acceleration
t = the time taken to move from the initial state to the final state

Example:

A particle is projected vertically upwards with a speed of 34.3 m/s. Find the velocity of the particle

after 4 seconds.

Using v = u + at

v = 34.3 + (-9.8)4 (-9.8 = gravity slowing particle)

v = - 4.9 m/s2

Adam Beecham

31

Components of Force

 For calculating the resultant force (and angle of said force) applied to an object

 Useful when multiple forces are being applied to an object

 Can also be used to deduce the horizontal and vertical components of given forces acting on

an object

Example:

Consider an object with the following forces acting upon it:

 60

To deduce the resultant force, first break up forces into horizontal and vertical components and

calculate the resultant force of each.

Resultant horizontal = 10 + 10sin60 - 10cos30

 = 10N

Resultant vertical = 10cos60 - 10sin30

 = 0N

Calculate the total force by taking the square root of the addition of the vertical and horizontal

components squared

Resultant force = √ (since the vertical force is 0)

 = 10N

Angle = tan-1(0/10)

 = 0

The resultant force is 10N at an angle of 0 degrees (the two angled forces cancel each other out).

30
10N

10N

10N

10sin60

10cos60

-10cos30

-10sin30

Adam Beecham

32

Coefficient of Friction

 A value that represents the friction between two surfaces

 Not constant, but increases until it reaches its maximum value

 Once this value is reached, the object in question will begin to move

To calculate the maximum frictional force:

F = mR

Where:

 F = maximum frictional force

 m = coefficient of friction

 R = normal reaction force

Example:

A block of mass 8kg is placed on a rough surface with coefficient of friction 0.7. Find max frictional

force and acceleration of the block if a force of 100N was applied to it.

First calculate max frictional force:

F = 0.7 x 78.4

 = 54.88N

Now the acceleration of the object can be deduced using the formula:

Resultant force = mass x acceleration

100N - 54.88N = 8a

a = 45.12/8

a = 5.64 m/s2

100N F

R

8 x 9.8 =78.4N

Adam Beecham

33

Pulleys

 Two particles connected by an inextensible string (which is assumed to have no mass) over a

smooth pulley

 If these particles are of different mass, one will begin to pull the other over the pulley.

 The acceleration of these particles, and the tension in the string are calculated by using the

formula:

R = ma

for each particle, and solving simultaneously.

Example:

Consider the following system:

To find acceleration:

Consider A: Use the acceleration to find the tension:

TN - 8 x 9.8N = 8a 98 - T = 10x1.08

TN - 78.4N = 8a 98 = 10.8 + T

Consider B: 98 - 10.8 = T

10 x 9.8N - TN = 10a T = 87.2N

98N - TN = 10a

Solve simultaneously:

98 - TN = 10a

-78.4 + TN = 8a

 19.6 = 18a

a = 19.6/18

a = 1.08m/s2

B A

8kg 10kg

T T

Adam Beecham

34

Momentum

 The momentum (P) of an object is equal to its mass (m) multiplied by its velocity (v) and

measured in Newton seconds (Ns):

P = mv

 Conservation of momentum states that when a collision between two objects occurs, the

total momentum is preserved, hence:

Momentum before = Momentum after

Or, if two objects m1 and m2 collide, travelling at velocities u1 and u2 prior to colliding and v1

and v2 after, then this becomes:

m1u1 + m2u2 = m1v1 + m2v2

Example:

Two particles, P & Q, of masses 3kg & 5kg respectively are moving along a straight line with velocity

4m/s and -2m/s respectively. After the impact, the direction of P is reversed and its speed is 2m/s.

Find the velocity of Q.

Before impact:

After impact:

As the momentum of the system is known to be the same before the collision as it is after, simply

apply the values to the equation to find V2 (it is assumed that movement to the right is positive):

(3 x 4) + (5 x -2) = (3 x -2) + 5v2

12 - 10 = 5v2 - 6

5v2 = 8

v2 = 1.6 m/s

P

Q

4 m/s 2 m/s

5kg 3kg

P

Q

2 m/s v2 m/s

m/s

5kg 3kg

Adam Beecham

35

Impulse

 Impulse is the change in momentum of an object caused by a force (F), and is equivalent to

the force applied multiplied by the time (t) the force is applied. Also measured in Ns:

Impulse = change in momentum = Ft

 Or

 Ft = mv - mu (final momentum minus initial momentum)

 Force-time graphs can be used to plot force in a collision over time. Impulse can then be

deduced by calculating the area under the graph

Example:

A ball experiences a force of 25N over a time period of 7.25 seconds. What is the impulse of the ball?

Impulse = Ft

 = 25 x 7.25

 = 181.25 Ns

Summary

After receiving feedback from Mr John Ivins, it was decided that the final system should implement

as many of the concepts above as possible, with the exception of coefficient of friction. This is

because friction is no longer as broadly covered in GCSE/ A-level physics.

Adam Beecham

36

References

References

1. Bonwell, C. 2000. Active Learning: Creating Excitement in the Classroom [Online]. Available at:
http://www.ydae.purdue.edu/lct/hbcu/documents/Active_Learning_Creating_Excitement_in_the_C
lassroom.pdf [Accessed: 10 December 2011]

2. Dix, A. et al. 2005. Human Computer Interaction[Online]. Available at:

http://cognac.ai.ru.nl/studie/MMI_summary.pdf [Accessed: 11 December 2011]

3. Freedman, R. 1996. Challenges in Teaching and Learning Introductory Physics [Online]. Available

at: http://web.physics.ucsb.edu/~airboy/challenge.html [Accessed: 3 December 2011]

4. Ornek, F. et al. 2008. What makes physics difficult? International Journal of Environmental &

Science Education 3 (1), pp. 30-34

5. Petty, G. 2004. Active learning [Online]. Available at:

http://www.geoffpetty.com/activelearning.html [Accessed: 6 December 2011]

http://www.ydae.purdue.edu/lct/hbcu/documents/Active_Learning_Creating_Excitement_in_the_Classroom.pdf
http://www.ydae.purdue.edu/lct/hbcu/documents/Active_Learning_Creating_Excitement_in_the_Classroom.pdf
http://cognac.ai.ru.nl/studie/MMI_summary.pdf
http://web.physics.ucsb.edu/~airboy/challenge.html
http://www.geoffpetty.com/activelearning.html

