Final Report

Implementation of a Data Privacy Protection Tool for
Relational Data

Author: Benjamin G Lourence
Student No: 1111753
Supervisor: Dr. J Shao

Moderator: Dr. D Tsaneva
Module: CM3203

Date: 30/04/2015

Ben Lourence - 1111753

Contents
[o T U =T UPPUROt 4
FAY o A - [ot AR T O TP PP PR OTOPRRTO 6
ACKNOWIEAZEMENTSeiiiiiiiiieeie et e e e e e e e e e e e e e ettt b ataeeeeaaeeesssssstasaesaeeaaaeesasansssssaseeenns 7
(a1 d goTe [V TordTo Yo H T TP T O OO P U OPPPOTUUPPOUPPTOUPRINt 8
1.1 Project Aims & EXPECIatioNsScccoiiiiiiiiieeeeeeeeee e s ee e 9
1.2 Project AUdIience/BenefiCiari@s......ccouiiiieciiiiie ettt e e e e e 9
P - T <=4 o 1 o Vo U PPUPUPN 10
2.1 Anonymisation Attribute TerminolOgYcccuuiiiiiiiiiei e e e e e 10
2.2 Individual Re-1dentification.......c.coiiieeeiiiiecii et 11
2.3 Re-identification Case StUIEScccueieiiiiieiiie ettt sttt esbee e sneeeeaee 12
D N Yo T 0 1Y/ 0 Y1 YU UUUURROt 13
I Y] oL e - [o] o IS UUR PP 15
3.1 Data SPECITICATIONS ..uviiiiiieiie et e nberbaaraeeeaaaeeaaaaas 15
3.2 Overarching Design CONCEPT c.oiiccciiiiiiiiie e e e e e ettt e e e e e e e e e e b rr e e e e eeeeeeeeessassbaareeeeaaaaesenns 16
3.3 ANONYMISation STrUCTUIE DESIZN ..uuiiiiiiiiiiie et ee s s e e e e e e s e e e aaaeeeaes 17
3.4 RESUIt MBASUIEMENTS ...ttt ettt ettt ettt e et e et e e s bte e e sbbeesbaeesnteesbaeesneeenans 19
N Lo Y g1 o1 a D LT T4 o IS SRR 20
4.1 Set Based ANONYMISATION ...ciiiiiiiicccciiiiieeeee et e e e e e e e et rre e e e e e e e e e e e eanbtsabeeeeaaaeeeennns 20
4.2 Range Based ANONYMISATIONcccccciiiiiiiiiieee ettt e e e e e e e e e ettt rre e e e e e e e e e e e eansbsabeeeeaaaeeeennns 21
4.3 Hierarchy Based ANONYMISAtiONuuuiiiiiiiiiiiiciiiiiiiie e e e e e e cccitrere e e e e e e e e e e s enrrrareeeeaaaeeeeanns 22
4.4 Set vs. Hierarchy Based ANONYMIiSatioN.........cooiiiiiiiiiiiieeie et e e e e e e cvrrrre e e e e e e e e e 25
4.5 Set Based k-members CIUSTEIINEGuuviiiiiiiie ettt e e e e e e e e rare e e e e e e e e e eeaas 26
4.6 Hierarchy Scan and Local Replace Anonymisationccccceeeeeiiiiiiiiiieeee e e e e e 28
o3 [0] o1 =T 0 1= a1 €= 4 Lo o AU PPUPUPN 30
5.1 TEChNOIOZIES USEA....uiiiiiieiieeee ettt et e e e e e e e et rr e e e e e e e e e e e e e s abestaaaaeaeaaaaeeenas 30
5.2 Model View ViewModel (MVVM) Archit@CtUreuuveeeeeeeeeiiccciiiiiiiiee e eeecccrvere e e e e e e e 31
5.3 Anonymisation Algorithms Implementation Architecturecccccceeeeeiiiiiiiiiiiiiieeeee e 32
R o o) =Tt A A U ot AU = PP UPPUPRPRE 34
5.6 Pre-ProCeSSING TOOIS . .uuiiiiiii e e ettt eeccctrree e e e e e e e e e e et ra e e e e eaaeeeeeesasssbaaaeeeeaaaeeeenas 38
5.7 Anonymisation Algorithms Implementationccccceeeeiiee e 44
5.8 POST-PrOCESSING TOOIS ..viiiiiiiieeeiiecciiiiee et e e e e e ettt e e e e e e e e e s e e abbara e e e e aaaeeeeeesnsastaaaeeeeaaaeeeeans 50
RS I =T A1 = SO UPPUPRRPPRE 56
6 RESUIES & EVAIUALION ..ottt ettt et e st e s bee e sbr e e sbeeesneeens 59

Ben Lourence - 1111753

L I 1= =] PO P PPN 59
6.3 Critical EValuation Of RESUILS ...c..eiiiiiiiiie ettt et e s e 65
T FULUIE WOTK. ettt et ettt e bt e s bt e e ettt e s bt e e s bteesabeeesanbeesabaeesneeenn 66
7.1 Plugin Algorithm REPOSITOIY .cccueeiiiiiiiiiiee ettt e e et e e e e e e e e e e e aabbaaaeeeeaaaeeeennns 66
7.2 Import/EXport CUStOM HIErarChi@s.........ccuiiiiiiiiiiie ettt e rree e e 66
7.3 1L0sS Calculation EXEENSIONS ...ccc.veiiiiieiiieeeiiieesiiee ettt ettt e et e st e e it e sbeeesneeesbeeesneeenans 67
7.4 Graphing of information retention Metricsccccuviiieiiee i 68
8 CONCIUSIONS ..ttt ettt ettt ettt e st e s bt e st e e s b bt e sttt e sabeeesabeeesabeeesabbeesabaeesbeeesabbeesabeeenaneas 69
9 REflECTION ON LEAINING ..ciiiiiiiieeieeee ettt e e e e e e e ettt e e e e e e e e e e e e e btabaaaeeeaaaaeeeesssnstsaasnaeeens 71
9.1 ProjeCt ManagemENt . .ccuuiiiieiiiiiiiiiee ettt e ettt e e e e e ea e e e e e e et e e e e e e aat e e e aeaaanaaaes 71
9.2 Understanding of Personal Privacy ISSUESccccuuiiiiiiieeeieeicccciiirreeee e e e e e e eeennrrere e e e e e e e e 72
9.3 Plugin Algorithm ArChitECTUIEuuviiiiiiieee et e e e e e e e e e e re e e e e e e e e eeaaas 73
O o] o= Yo [Tol Y-S PUUPUPN 75
L0 REFEIENCES «.eeeeueteeeiiee ettt ettt ettt et e e st e e sab e e s bt e e s abe e e s abeeesabeeesabeeesabe e e sabee e s beeesabeeesabeeesneeenn 76

Ben Lourence - 1111753

List of Figures

Figure 2.4.1 — Non-conforming vs k-conforming table (K=3)cccccceiiiiiiiiiiiieie e, 13
Figure 2.4.2 — Suppression example: k-anonymity conformant table (k=3).........cccooeiiiiiiiiiieeeeneennnnn. 13
Figure 2.4.3 — Generalisation example: k-anonymity conformant table (k=3)........cccccoeviiiiieeeennnnnn. 13
Figure 3.1.1 — Comma-Separated Value FOrmat EXamplecceeeieeiiiccciiiiieiieeee e e e e 15
Figure 3.2.1 — Overarching System Design CONCEPLcccccuvriiiiieiieee ettt e e e e e e e e eescirrrrreeeeeaeeeeeeeaa 16
Figure 3.3.1 — Class Diagram: Anonymisation Structure Design CoONCepPL......cceveeeeeeeeiiiiiirriiieeeeeeeeeeenn, 17
Figure 4.1.1 - Pre Set Based Anonymisation, AZe Datasetcccccceeeeiiiiiiiiiiiiiieeeee e e eeccciirreee e e e e e e e e 20
Figure 4.1.2 - Post Set Based Anonymisation, Age Datasel.....ccccccceeeiiiciiiiiiiiiieee e e e 21
Figure 4.3.1 — Pre Hierarchy Based Anonymisation, Animal Datasetccccceeeeeeeeeeiiiiiiiiiieeeee e 22
Figure 4.3.2 — ANIMal HIEIarChY ...ooooi oottt e e e e e e e e e e e raaeeeeaaaeeeeaans 22
Figure 4.3.3 — Post Hierarchy Based Anonymisation, Animal Dataset.........cccccceeeeeeeeeciiiiiiiieeeeeeeeeeene 22
Figure 4.3.4 — Pre Hierarchy Based Anonymisation, Rule Defined Postcode Dataset.........cccccceeennnne. 23
Figure 4.3.5 — Rule Generated Anonymisation Hierarchy EXtractccccovveeeeeiiiiieicciiiiiiiieeeee e 24
Figure 4.3.6 — Post Hierarchy Based Anonymisation, Rule Defined Postcode Datasetcccccccc........ 24
Figure 4.6.1 — Pre Anonymisation EXamMPIeceuiiiiiiiiiiiiiiiiiieeeec ettt e itnrrrae e e e e e e e e 28
Figure 4.6.2 — Post Local Vs. Alternative Technique Anonymisation Exampleccccovvivieeeeeeeenennn. 28
Figure 5.2.1 — Graphical Representation of MVVM Architectural Pattern..........cccceeecciviiveeeeeeeeeeenn, 31
Figure 5.3.1 — Anonymisation Algorithm Implementation Structureccccceeeeeeeeeecciciiiiiieeeee e 32
Figure 5.4.1 — Project Structure, Visual Studio SCreenshotcccccceeeiiecciiiiiiieeee e 34
Figure 5.5.1 — Data Import: Attribute Declaration, System Screenshotcccccceeeeeeiiiiiiiiiieeeee e e, 36
Figure 5.5.2 — Data Import: Successfully Loaded csv Data, System Screenshot...........ccccvvveeeeeeeeennnn. 37
Figure 5.6.1 — Column Pre-Processing Tools, System Screenshotcccoveeeeeeiiiiieicccciiiiieeeee e 38

Figure 5.6.2 - Postcode Hierarchy Construction, Rule-Based String Redaction, System Screenshot .. 39

Figure 5.6.3 — Custom Hierarchy Definition, System Screenshotccccccveeeeeiiiiiiicccciiieeeeeee e, 40
Figure 5.6.4 —Tree View Display Code Snippet, HierarchyTreeView.xaml, Visual Studio 42
Figure 5.7.1 — C# Generics Example, Visual StUIO........ccccuiiiiiiiieiic et e e 44
Figure 5.7.2 — Set Based Anonymisation C# Implementation, Visual Studio...........cccccccviiveeeeeeenennnnn. 45
Figure 5.7.3 - k-members Set Based Generic Implementation, Visual Studiocccccvvvvieeeeeeeennnnn. 46
Figure 5.7.4 — HierarchyBasedAnonymisation.cs C# Implementation, Visual Studio..........ccccceeeeennn. 47
Figure 5.7.5 — Generate Next Set of Values to be Anonymised From Hierarchy Data structure......... 48

Figure 5.7.6 — Dynamic Loading of Plugin Algorithms + Default Set and Hierarchy Based

Anonymisations: PreprocessingColumnsVm.cs, Visual StUdiocccvvieeieiiiiiiiiiiiiiiiieeeee s 49
Figure 5.7.7 — Post Processing Results Dashboard, System Screenshot.......ccccceeeeieeiciciiiiiieeeee e e, 50
Figure 5.7.9 — Task Based Evaluation Queries + Results, System Screenshot............cccccvvviveeeeeeennnnn. 53

Ben Lourence - 1111753

Figure 5.9.1 — Unit Tests Results Explorer, Visual STUdIO.........ceeiiiiiiiiiiiiiiiiiieeee e 56
Figure 5.9.2 — Levenshtein Distance Unit Tests, Visual StUdiOccocciiiiiiiiiieiii e 57
Figure 6.1.2 — Test Case 1: Output Anonymised Data Set (k=2 vs. k=3), System Screenshot.............. 59

Figure 6.1.4 — Test Case 2: Output Anonymised Data Set (k=2 vs. k=3 vs. k=4), System Screenshot.. 60

Figure 6.1.6 — Test Case 3: Output Anonymised Data Set, System Screenshot............ccccvvveeeeeeeeennnnn. 61
Figure 6.1.7 - Test case 3: Post-Processing, Task Based Metric Evaluation, System Screenshot......... 62
Figure 6.1.8 — Test Case 4: Post-Processing, Data Based Evaluation, System Screenshot................... 63
Figure 6.1.9 — Test Case 5: Increased Dataset Size, System Screenshot.......cccccceeeeeeiiiiiiiiiieeeee e, 64
Figure 7.3.1 - Postcode Anonymisation Hierarchy Possible Descendants.......ccccccceeeveciiiiiieeeeeeeeeeeenn, 67

Ben Lourence - 1111753

Abstract

The motivation behind this project is to help ensure the protection and privacy of individuals. An
increasing number of organisations are beginning to utilise personal data for benefit. Many of these
uses are pioneering and the current trend seems to indicate the demand for personal data analytics
will only increase. This demand has exacerbated issues surrounding personal privacy, in particularly

the assurance that an individual cannot be re-identified from such data released into the public

domain. In order to provide sufficient protection for data subjects this project features
k-anonymisation algorithms that protect against re-identification attacks.

This project has successfully implemented an anonymisation tool for relational data. The tool
facilitates a number of various techniques that can be configured to provide custom anonymisations.
The tool also supports post-processing metric generation that quantifies information retained in
anonymised datasets.

The implemented tool provides an excellent base for future development in the field and could even
be integrated as a component of a larger information security system. Relational anonymised data
generated by the system satisfies the k-anonymity privacy component of the project and indeed
would provide sufficient protection against re-identification. While no ground breaking new
algorithms have been implemented within the application, the innovate way that anonymisation
algorithms can be loaded and used by the system may influence similar tools in the future.

Ben Lourence - 1111753

Acknowledgements

For his knowledgeable advice and helpful guidance throughout this project, special thanks must be
given to my supervisor Dr. J Shao.

Ben Lourence - 1111753

1 Introduction

As modern society continues to collect, store and analyse ever-increasing amounts of information,
the associated value of data increases as more information is collated. This data can be used to
predict trends, perform association discovery and various other data mining activities. Organisations
leverage this knowledge in a wide variety of ways for example increasing efficiency or generating
increased sales of targeted products. The popular rise of big data analytics has accelerated the
demand for information that will impact the management and inform decisions of an organisation.

Recently the number of organisations openly releasing data to the public has dramatically increased,
the underlying reasons behind this range from regulatory compliance to inviting third parties to
perform specialist data mining analysis. However with these new modern trends that organisations
seem to be embracing, there is a worrying and very real issue. Personal privacy has become
increasingly rare within the social based and information consuming orientated web. Users willingly
volunteer vast amounts of personal information in order to access ‘free’ services, organisations then
use this knowledge to create targeted adverts specifically for each user. There are many social issues
here but by participating in use of these products users exchange their personal information to gain
access to services.

While users may freely volunteer data placed on social media other more sensitive information such
as medical records should be protected before being passed to external parties. Therefore steps
must be taken to ensure that data of this nature is suitably anonymised to ensure individuals cannot
be re-identified.

At the core of this information revolution is the underlying personal data. While the increased
openness and frequency of information releases to the public provide data scientists with a wealth
of data to work with, it has exacerbated issues surrounding individual privacy. This project aims to
design and develop a tool that will enable users to sufficiently anonymise data for privacy protection
while still maintaining the usefulness of original data. The tool will leverage k-anonymisation
algorithms in order to sufficiently protect individual data to a suitable level. Anonymisation is
achieved by ensuring that any record in the data set is identical to at least k-1 other records (where k
is some nominal value) therefore no underlying individual can be re-identified.

Ben Lourence - 1111753

1.1 Project Aims & Expectations

This project aims to:

Develop a relational data anonymisation tool based on existing k-anonymisation algorithms. The
system should operate on tabular data, similar in format to common relational database storage.
The tool should utilise a developed k-anonymisation algorithm in order to enforce k-conformity
within relational data. The system is expected to export anonymised data in a format that preserves
anonymity.

The application aims to provide a series of pre-processing tools that will allow users specify
anonymisation execution details such as custom anonymisation hierarchies. The tool should
provide functionality to configure custom anonymisations. One vital component expected to be
developed is an anonymisation hierarchy builder.

Develop post-processing tools to quantify anonymisation performance. Performance metric
extraction will allows users to assess the successfulness of k-anonymisation algorithms. Users are
expected to make significant use of this functionality when inspecting their anonymised relational
datasets for information loss.

The tool will aim be to built as an extensible solution for future development. The solution is
expected to be built as a series of modular components in order to maximise maintainability. This is
vital as the project maybe included as a component of future data anonymisation projects within the
schools of Computer Science and Informatics at Cardiff University.

Anonymisation algorithms are expected to be implemented using plugin architecture. Third party
developers could then build new anonymisations and plug them into the platform while still being
able to leverage the existing system infrastructure.

Cope with a wide range of anonymisations and data types. This means the user will be able to load
relational data and invoke anonymisations after specifying a few simple criteria and minimal
configuration steps.

1.2 Project Audience/Beneficiaries

As stated in the initial text there are a series of organisations releasing data into the public domain
for a multitude of reasons. The resultant tool is aimed to benefit these entities. As an emerging field
in the technology industry a wide array of organisations may have significant interest in harnessing
such a tool when anonymising and releasing personal data. Keeping this in mind the resultant
solution should be a generic implementation and not targeted too specifically at one sector of the
industry, this approach will yield the largest potential audience for the tool.

In addition to the organisations that want to safely anonymise and release personal data, the tool
should also be orientated towards an audience of future developers. The school of Computer
Science and Informatics at Cardiff University plan to research and develop several projects
associated with privacy preserving data publishing including simulating attacks on such anonymised
datasets. It has been suggested the tool produced by this project could be integrated as a
component of a larger systems in the future. Therefore the design and implementation stages
should take extreme caution to make the resultant solution as extensible and reusable as possible.

Ben Lourence - 1111753

2 Background

The emerging trend for organisations to release and leverage data has led to the creation of new
careers such as data scientists. Providing analysts with the optimum quality and quantity of data has
led to intense research in a wide number of fields. The field of Privacy Persevering Data Publishing
(PPDP) has been the focus of intense interest recently. PPDP is required to ensure that personal data
can mined and analysed for useful previously undiscovered knowledge while protecting individual’s
identity.

The NHS releases patient data for researchers to investigate underlying trends while also keeping
regulatory compliance. Netflix the video streaming service released data about its customer’s movie
preferences as part of an open competition to improve its video suggestion algorithm in return for a
cash prize. The rise of open data repositories such as Data.gov.uk[1] brings huge amounts of
personal based information that can be easily accessed by the general public for whatever purpose
they wish. These examples demonstrate the increased availability and novel use of personal data
that is used to drive changes in the modern world. As openly available personal information
becomes more a prevalent component of organisation operations it is pertinent to consider the
impact on individual privacy. A person should not be susceptible to re-identification from an openly
released dataset. For example no single person should be exposed as having a certain condition from
a set of medical patient data that is openly released by a hospital. However the data must retain
enough information so that it is still useful for analysis by data scientists and other professionals who
will inspect the data.

2.1 Anonymisation Attribute Terminology

Explicit Identifiers: Information that explicitly identifies an individual e.g. National insurance
number.

Quasi-ldentifiers: An attribute that could be used in conjunction with other quasi-identifies to
potentially re-identify an individual e.g. Combination of postcode and date of birth.

Sensitive Attributes: Data that relates to a specific individual within the record set e.g. Salary.

Non-Sensitive Attributes: Encompasses any attribute that does not fit the definition of the three
terms above.

10

Ben Lourence - 1111753

2.2 Individual Re-ldentification

Latanya Sweeny reports “87% (216 million of 248 million) of the population in the United States had
reported characteristics that likely made them unique based only on {5-digit ZIP, gender, date of
birth}.” [2]

The statistic uncovered by the report indicates that only a partial sub-set of information about an
individual is required to achieve re-identification. Datasets publicly released by organisations often
have some level of privacy protection. Although the level of protection provided is usually far from
adequate to assume that individuals could not be re-discovered. A theoretical example of this is
could be a dataset where explicit identifiers (e.g Name, NHS number) have been removed. While
providing an extremely basic level of protection, it is clearly not sufficient based on the findings of
Latanya Sweeny who theorised that individuals can be identified if only a small number of key quasi-
attributes remain, these may not appear to disseminate a large amount of information but could be
leveraged for individual discovery. This type of pseudo-anonymised data is a major cause for concern
because the organisation releasing the data and individuals featured may incorrectly feel they are
protected when in actuality they have not been adequately secured and are susceptible to malicious
re-identification attacks.

Leveraging attributes that can be collated together in order to identify an individual is know as a
record linage attack. Record linkage attacks can be extremely easy to perform given only a minute
amount of information about targeted victims.

“In the attack of record linkage, some value qid on QID [Quasi-identifier] identifies a small number of
Records in the released table T, called a group. If the victim’s QID matches the value qid, the victim is
vulnerable to being linked to the small number of records in the group.” [3]

As B.C. M. Fung describes how a record linkage attack utilises groups of quasi-identifiers to extract a
small finite number of records from a dataset. Highly targeted attacks or relatively small datasets
could even result in a single record being re-identified. Even from a minimal group of retrieved
records, further investigation can easily lead to individual discovery from pseudo-anonymised data.

The real danger of this type of record linkage attack is that the quasi-identifying attributes may not
appear to reveal a great deal of information about the underlying person. However when combined
together these seemingly innocent pieces of information actually form a major security risk. Another
point to carefully consider is the sheer number of quasi-attributes an organisation may employ in
addition to the combination they are arranged within the data set. The tool produced by this project
should aim to sufficiently anonymise values from a wide range of use cases in such a way that
personal privacy is protected while retaining as much information as possible.

11

Ben Lourence - 1111753

2.3 Re-identification Case Studies

William Weld is one of the highest profile victims of a record linkage attack. The former governor of
Massachusetts medical records were re-identified although supposedly anonymised and released by
an insurance group. The record linkage attack was performed using a combination of ZIP code, birth
date and gender. A corresponding voter registration dataset revealed that these quasi-identifying
values where unique to the former governor. Cross referencing this information allowed researchers
to successfully link and extract the openly released medical records of William Weld. Although there
have been sceptics such D. C. Barth-Jones whom investigated the feasibility of replicating this type of
attack “careful re-examination of the population demographics in Cambridge indicates that Weld
was most likely re-identifiable only because he was a public figure who experienced a highly
publicized hospitalization rather than there being any certainty underlying his re- identification using
the Cambridge voter data, which had missing data for a large proportion of the population” [4].
However this particular case has brought PPDP to the forefront of Computer Science research and
highlighted the possible dangers that lay ahead.

As previously discussed the video streaming service Netflix launched a competition in 2006 to
improve its video suggestion algorithm based on user movie preferences. Researchers would
attempt to improve on the current algorithm and the most successful development would receive a
cash prize of 1 million dollars. To support researchers the organisation publically released a set of
supposedly anonymised user preference data. However two researchers from the University of
Texas were able to re-identify individuals from the dataset by cross-referencing the released data
with movie ratings on the popular site IMDB (Internet Movie Database). The researchers were able
to achieve this re-identification with unprecedented ease. This resulted in a number of lawsuits
against the movie streaming company and once again highlighted to the industry the dangers of
releasing individual data publically.

12

Ben Lourence - 1111753

2.4 k-Anonymity

Personal protection against re-identification is the fundamental concept of this project. One
protection mechanism k-anonymity has been used to ensure personal privacy when publishing data.
Essentially anonymity is gained by ensuring that every entry in the table has nominal value k
occurrences. Since one cannot be anonymous in a crowd of one, the idea is to introduce ambiguity
within the dataset to stop individual re-identification. Therefore all explicit identifiers should be
removed and care must be taken to obfuscate quasi-identifiers that could be used to infer the
identity of an individual.

Age Age
19 18
14 18
17 18

Figure 2.4.1 — Non-conforming vs k-conforming table (k=3)

Fig 2.4.1 depicts two separate datasets. Given the value of k as 3, any value featured in a dataset
must occur at least 3 times to be k-conformant. The left hand table does meet these criteria where
as the right hand dataset is said to be k-conformant. Below two techniques have been detailed that
could be applied to the left hand table in order to achieve k-anonymity.

Age
1*
1*
1*

Figure 2.4.2 — Suppression example: k-anonymity conformant table (k=3)

Suppression: Entails removing distinguishing information from the dataset, for example replacing
digits of the attribute ‘Age’ with an asterisk “*’. This process obviously incurs a certain amount of
information loss because we have lost the exact values represented by the underlying data however
we can infer from Fig 2.4.2 the values must lay between 10 and 19.

Age
14-19
14-19
14-19

Figure 2.4.3 — Generalisation example: k-anonymity conformant table (k=3)

13

Ben Lourence - 1111753

Generalisation: Requires specific values to be transformed to a boarder category that includes the
original information, for example transforming age specific values in Fig 2.3.1 into a range 14-19.
Similar to the suppression technique a certain amount of information loss is incurred because the
original value has been obfuscated. However in this particular example more data utility is retained
because the list of possible values is 14 to 19 in Fig 2.4.3, instead of the larger range in Fig 2.4.2,
even though both techniques make the dataset k-anonymity compliant.

A research paper written by Ji-WonByun explains the complexity of the problem. “Although the idea
of k-anonymity is conceptually straightforward, the computational complexity of finding an optimal
solution for the k-anonymity problem has been shown to be NP-hard, even when one considers only
cell suppression.” [5]

The paper goes on to describe the issues surrounding k-anonymisation within a dataset. NP hard
(Non-deterministic polynomial time hard) essentially means there are no polynomial-time
algorithms to solve such a problem. Greedy heuristic algorithms have been shown to solve such
problems to an acceptable degree. Section 4; algorithm design details some of these approaches
which will be used in the anonymisation tool.

This project has two fundamental concepts; to ensure the personal privacy of individuals featured
within anonymised datasets and to retain the maximum amount of data utility where anonymisation
is required. Both concepts are of paramount importance to create a tool that will produce results of
usable quality for researchers/professionals who will probe the resultant data for underlying trends.
Throughout the design and implementation stages of this project these concepts will be regarded as
the highest priorities.

14

Ben Lourence - 1111753

3 Approach

3.1 Data Specifications

Initially the system will leverage comma-separated values (csv) files to import data. These csv files
are simple, easily human readable and commonly used throughout the technology sector. While
there is no industry standard format there are a set of commonly understood and adhered to
guidelines. Below is a typical extract of csv data, the tool will import data from files with the
following syntax, some csv files use semicolons or other special characters to delimit records.
However the initial implementation will only use commas.

Name, Age, Postcode, Condition
Dave, 21,CF24 4AR, Cancer
James, 45, BH21 1HT, HIV
Hannah, 8, GH32 3JU, Flu
Fahed, 24, MK7 7SY, Flu

Figure 3.1.1 — Comma-Separated Value Format Example

Future implementations of the tool could focus on developing mechanisms to import data from a
relational database management system (RDBMS). Integration with industry standard database
applications would make the tool far more appealing to users and would be seen as a significant
benefit streamlining the import process. However due to time constraints the initial implementation
of the tool will not support this feature.

Similar to the input data mechanisms initially the tool will export the anonymised data as a csv file.
This file format has been selected because it is easy to implement and commonly used throughout
the industry, tools in the same field as this project seem to support csv as a standard output. After
investigating other output potential formats such a JavaScript Object Notation (JSON) and Extensible
Mark-up Language (XML) | saw no clear advantages that would significantly affect the functionality
of the tool. Therefore for the initial implementation | have decided to focus on the operation of
algorithms and post-processing activities.

15

Ben Lourence - 1111753

3.2 Overarching Design Concept

The overarching design concept separates the tool into 3 clear distinct sections.

. P?:»?rlo"c]g:gin W F— PassesWell ,| K-Anonymisation | Passes ,Resgls'z%ﬁi!ﬁf’g" ¥
Tools Formatted Data Algorithms Anonymised Data Tools
A A
(A 1 (A 1
Hierarchy Anonymisation . Additional Performance
Data Import Generation Defintion Set Based Hierarchy Based Plugins Metrics Data Export

Figure 3.2.1 — Overarching System Design Concept

Data Import/Export + Pre-Processing Tools:

Throughout the design and development stages of the project a set of ‘well prepared’ test data will
be assumed to ensure integrity and testability of results. The system will import data from a csv file.
Fig 3.2.1 also indicates that pre-processing tasks includes hierarchy generation and anonymisation
definition (i.e setting an attribute as a quasi identifier with k = 3). This distinct section is responsible
for the preparing the data ready for the anonymisation process.

Anonymisation:

The fundamental operation of the system is to anonymise data. One of the project concepts is to
create a platform that will allow developers to implement new algorithms and while leveraging the
existing system infrastructure. The tool will utilise techniques to enforce k-anonymity within a
dataset. Initially the k-members algorithm will be developed to provide the necessary functionality.
Anatomy has been suggested as a suitable secondary k-anonymisation algorithm to be developed if
time constraints allow. In the future other developers should be able to design and code their own
anonymisation algorithms that will then feed the next comparison stage of the system. The
anonymisation process can be regarded as a black box; raw data is passed in, some form of
anonymisation is applied, k-anonymity conformant data is passed out.

Result Comparison + Post-Processing Tools:

The proposed tool includes functionality for post-processing activities once an anonymisation
algorithm has been applied. This section should allow users to review and compare performance of
their designed algorithms. Comparison between anonymised data sets is an essential requirement of
the tool because it will allow data scientists/developers to test, review and improve anonymisation
techniques. The comparison elements of the system should support querying of processed data, for
example extracting all the associated age data that has been anonymised by the system. Here a line-
by-line comparison against the original data would be extremely useful to develop an in-depth
understanding of these anonymisation techniques. These post-processing tools will allow users to
quantify the performance of the application and the quality of resultant datasets.

16

Ben Lourence - 1111753

3.3 Anonymisation Structure Design

This section of the report details the design concept of k-anonymisation algorithm structure and
how the pluggable architecture will be achieved. For more detail on the underlying processes please
see section 4; algorithm design. As depicted in Fig 3.2.1 the anonymisation component of the system
sits as a stand-alone component of the wider system. The application will simply call to a common
interface and invoke anonymisation process on a particular dataset.

<<interface>>
IKAnonymisation

+ Name: String
+ RequiresHierarchy: Bool

+ ApplyAnonymisation(ref DataTable dt, ColumnModel cm): void

g

'
'
'
'
'
'
'
'
'
L

SetBasedAnonymisation

HierarchyBasedAnonymisation

- Clusters: List<List<T>>
+ Name: String
+ RequiresHierarchy: Bool

- AnonHierarchy: AnonymisationHierarchy
+ Name: String
+ RequiresHierarchy: Bool

- AnonymiseExplicitidentifier(ref DataTable dt, ColumModel, cm): void
- AnonyiseQuasildentifier(ref DataTable dt, ColumnModel cm): void

- ClusterKMembers(int K, List<T> values): List<List<T>>

- NearsetValue(T val, List<T> values): T

- FurthestValue(T val, List<T> values): T

- NearsetCluster(T val): List<T>

+ ApplyAnonymisation(ref DataTable dt, ColumnModel, cml): void

- AnonymiseExplicitldentifier(ref DataTable dt, ColumModel, cm): void
- AnonyiseQuasildentifier(ref DataTable dt, ColumnModel cm): void

- FindValuesToBeAnonymised(int k, List<String> vals): List<String>

- AnonymiseValuesToNextLevel(List<String>

vals, AnonymisationHierarchy ah) Dict<String, String>

+ ApplyAnonymisation(ref DataTable dt, ColumnModel, cml): void

AnonymisationHierarchy

+ RootNode: Node

+ SelectedTreeNode: Node
+ Nodes: ListcNode>

+ Depth:int

+ GetLeafNodes(): List<Node>

<<enumeration> ColumnModel
ldentifierType

e +K:int
Bl +Header: String
Quasi + DataType: Type

+ Attribute Type: IdentifierType

Sensitive + AnonHierarchy: AnonymisationHierarchy
Non-Sensitive

+ FindNode(String val): Node

+ AddNode(Node node, Node, parent): void
+ RemoveNode(Node node): void

Figure 3.3.1 — Class Diagram: Anonymisation Structure Design Concept

17

Ben Lourence - 1111753

The class diagram (Fig 3.3.1) depicts the common interface IKAnonymisation that all algorithms must
implement to be compatible with the system. The underlying implementation of each algorithm is
very different (information is detailed within section 4 Algorithm Design) but the common interface
means that each algorithm can be implemented in vastly different manners while still being invoked
in a common way. The required hierarchy Boolean variable indicates to the system if the algorithm
will need an anonymisation hierarchy to operate. The anonymisation hierarchy tree is passed into
the application as a component of the column model class.

For each attribute in a dataset there will be a corresponding column model class that retains
information required for the anonymisation process. Each individual k level is set independently here
this means that a user could opt to set different k-levels of anonymity for various attributes in the
same anonymisation operation. This ensures the system will be flexible and highly configurable to
the user needs. Column model classes hold an identifier type enumeration for each column that
indicates whether the selected attribute is explicit, quasi, sensitive or non-sensitive. Once these
properties have been defined it will be up to the discretion of an anonymisation algorithm to
perform corresponding operations.

The anonymisation hierarchy class featured is used for any type of hierarchy-based anonymisation.
Essentially the class contains a tree like data structure where each original unique value in the
dataset forms a leaf node, as anonymisation is applied each value to be anonymised is replaced by
it's parent element in the tree until the dataset becomes k-conformant. This is why the hierarchy
based anonymisation class features an ‘AnonymiseValuesToNextLevel’ method. The anonymisation
hierarchy class also exposes a number of methods for adding, removing and interacting with the
data structure. These methods are then used freely by algorithms within the system and will be
made available to external plugins as well.

18

Ben Lourence - 1111753

3.4 Result Measurements

Once a dataset has been successfully anonymised by the system, the system will provide a suite of
tools that will enable users to extract relevant metrics in order to judge the performance. There are
two differing aspects that could be measured.

The first, information retention describes the utility of anonymised versus original data. Given a
postcode BH21 1SY that is anonymised to BH21 1** in order to form a k-compliant table, a portion
of the original underlying data has been truncated. Extracting data metrics for information retention
would quantify the usability of the newly anonymised value.

Benjamin Fung states, “A data metric measures the data quality in the entire anonymous table with
respect to the data quality in the original table.” [6]

One overarching goal of the tool is to retain the maximum amount of data utility,
researchers/professionals examining the resultant data will form better solutions given the most
information and an in depth understanding of the data context. A medical researcher investigating
the spread of diseases would be able to form far superior conclusions given high data utility as
appose to working with a dataset where large amounts of the original information had been
changed to a generic disease name in order to become k-compliant. The platform will enable users
to apply various anonymisation algorithms, each of these will generate different levels of
information retention based on their implementation, therefore the system must provide
mechanisms to measure these important data metrics which helps to quantify algorithm
performance.

Another technique to provide data metrics is finding the number of occurrences of a value from both
the original and anonymised data set. Where the anonymisation process may have altered certain
values occurrences in the anonymised set maybe more frequent, such an increase would indicate a
loss in precision of the underlying data values.

There are a number of data metric calculations that can be performed to judge information loss
based on a hierarchy of anonymisation values. These types of calculations take into account a
selected value with respect to any possible original values from a tree structure that forms the
incremental anonymisation levels.

The tool will include functionality to extract data metrics from the two techniques detailed above.
The implementation stage of the report will detail exactly how this will be achieved.

The other aspect of result measurement concerns privacy perseveration. Often researches will not
deal with privacy measurement because if k-level anonymity has been satisfied than it is assumed
that privacy is adequate. Obviously the nominal value k can be selected as any integer in accordance
with user preference, this opens the discussion that privacy perseveration if only as strong as
specified. Without imagining and simulating every attack that could be performed on the
anonymised data it is hard to quantify how much privacy protection has been implemented.

Due to the time constraints | will only be initially implementing a series of data metrics to evaluate
information retention. However future iterations of this project should consider adding some
metrics to quantify privacy perseveration levels.

19

Ben Lourence - 1111753

4 Algorithm Design

Throughout the design and creation of this project | will attempt to implement two types of
anonymisation algorithms. Both will attempt to anonymise data with vastly different approaches
however each algorithm will be aiming to attain a pre-defined level of k-anonymity in the resultant
data set.

In order to ensure k-anonymity within a dataset, values within attributes must be counted to
determine their number of occurrences. Both algorithms will implement a set of functionality to
calculate and collate values in order to establish what data does not meet the threshold k value and
therefore must be anonymised. After generating a list of values to be anonymised, each algorithm
will then perform actions to collate values into groups, the resultant groups are then analysed to see
if they satisfy the required k-anonymity threshold. This process is repeated until the dataset has
attainted the specified level of k-anonymity.

The two different approaches discussed are Set Based anonymisation and Hierarchy Based
Anonymisation.

4.1 Set Based Anonymisation

Arguably the simplest approach to group items that have not satisfied k-anonymity threshold values
is to preform a union of items. Grouping the resultant items means that you can join the number of
occurrences together to form a group that satisfies the k threshold. The table below (Fig 1.1) details
a list of 6 ages. Given a specified level of k=3. The value 17 has 3 occurrences and would satisfy the
criteria; therefore these values can remain unchanged in the table. However the remaining values in
the table will not meet the threshold, each with only 1 occurrence.

Age
17
17
17
41
67
23

Figure 4.1.1 - Pre Set Based Anonymisation, Age Dataset

K Anonymity Threshold = 3
17: 3 occurrences

Values to be anonymised:
23: 1 occurrence

41: 1 occurrence

67: 1 occurrence

Aggregating the values to be anonymised into a single set means that the number of occurrences

can be added together. Then replacing each occurrence of a value contained within the set with the
resultant set means the level of k-anonymity can be satisfied (Fig 4.1.2).

20

Ben Lourence - 1111753

Age

17

17

17
{23, 41, 67}
{23, 41, 67}
{23, 41, 67}

Figure 4.1.2 - Post Set Based Anonymisation, Age Dataset

K Anonymity Threshold = 3
17: 3 occurrences
Resultant Set - {23, 41, 67}: 3 occurrences

Deciding which items to group together in a set based anonymisation is an important task. Ideally
grouping values that are closely related to other values in the set would minimise data loss while still
achieving k-anonymity status. However the hardest part is discerning what makes values ‘close’.
Numeric values ‘closeness’ can be easily quantified, measuring the difference between separate
values. Although this task is inherently more difficult given a category such as patient condition,
evaluating and grouping conditions such as Cold, Flu and Fractured Leg require pre-existing
knowledge. Anonymising data to form the set {Cold, Flu} would make far more sense to a user
evaluating the data than {Cold, Fractured Leg}. While both sets may satisfy the k-anonymity
threshold required for the dataset, the initial Cold and Flu set would make far more semantic sense.
However when grouping values within categories that require specialist knowledge it would be my
recommendation to use hierarchy based anonymisation with a custom defined hierarchy, doing so
would result in a far more coherent and sensible output. Hierarchy based anonymisation is discussed
below. One significant benefit implementing a Set Based Anonymisation approach is that the user
can load the data and clicks go to kick off the anonymisation process. No pre-processing work is
required to define sets or format values. This makes the process of anonymising data sets simple,
quick and easy to perform from the users perspective. However as previously discussed, Set Base
anonymisation is not a ‘one-size fits all’ approach that can be applied to all types of data.

4.2 Range Based Anonymisation

Another similar method to group data items is to utilise range based anonymisation. Therefore in
the example above the resultant set would instead become the range [23-67]. This encompasses the
value 41 implicitly within the range. However this resultant range represents a significant amount of
information loss in comparison to the set featured above. While the set based anonymisation
alludes that the original value is either 23, 41 or 67, 3 possible values. The range based
anonymisation is interpreted to mean the original value could lie anywhere between and including
23 to 67, 45 possible values. One of the overarching concepts of this project is to maintain the
highest level of data utility possible. Applying a range-based anonymisation in the situation
decimates large amounts of information about the underlying data, therefore | have not considered
it appropriate to implement within the project.

Another point of interest, ranges can only be calculated and applied to numeric values. Given the
category ‘Condition’ within a medical context the range [Fractured Leg - Flu] makes no sense and
would not be an appropriate anonymisation to apply. On the other hand set based anonymisation
can be very easily applied to non-numeric values.

21

Ben Lourence - 1111753

4.3 Hierarchy Based Anonymisation

This approach requires some pre-processing criteria to be defined. Obviously in order to apply a
hierarchy based anonymisation a hierarchy must first be generated. Unlike set based
anonymisations where the values can only be anonymised to sets which are formed by creating a
union of values already present in the data, a hierarchy based approach could alter the original value
to something completely different. However this process of altering the value is done so that other
values in the table could also be anonymised and changed to the new values. The new value that
supersedes several items in the original dataset is then measured to see if it has achieved the
threshold value for k-anonymity. The process is repeated until the dataset has achieved k-
anonymity status.

Animal Type
Dog
Dog
Dog

Snake
Snake
Lizard

Figure 4.3.1 — Pre Hierarchy Based Anonymisation, Animal Dataset

Given k=3 the values Snake and Lizard need to be anonymised in order to satisfy the threshold value.
However unlike set based anonymisation which would generate {Snake, Lizard}, this approach
requires a defined hierarchy for this example Fig2.2 depicts the generated hierarchy.

Animal

Bl

Mammal Reptile

4N VNN

Dog Cat Snake Lizard

Figure 4.3.2 — Animal Hierarchy

Animal Type
Dog
Dog
Dog
Reptile
Reptile
Reptile

Figure 4.3.3 — Post Hierarchy Based Anonymisation, Animal Dataset

22

Ben Lourence - 1111753

The resulting anonymisation inspects the nodes Snake and Lizard; replacing these values with the
common parent Reptile satisfies the k anonymity threshold. Therefore the occurrences of Snake and
Lizard become their parent value Reptile. This approach traverses the hierarchy tree in order to find
a value that is common enough to meet the pre-defined k number of occurrences.

Hierarchy based anonymisations offer a far more flexible and configurable way of anonymising data.
Unlike a set based approach, hierarchies allow users to generate a custom set of values at various
levels within anonymisation hierarchies. The advantage of this is that anonymised values are more
likely to retain their semantic meaning, altering Flu -> Virus, retains more information utility about
the original data compared to forming a set {Flu, Fractured Leg} from other values in the data set.
The approach to anonymising values and their results can be more tightly controlled with a user-
generated hierarch. However this requires significantly more effort by the user to create and define
a custom hierarchy for each unique value in the tree.

An interesting idea that has previously been suggested would be to use a third party data source to
automatically generate hierarchies, such as a medical taxonomy of diseases. Using the data from
such as source could facilitate the generation of a hierarchy of diseases that could be utilised by the
anonymisation tool. This has the advantage of leveraging a pre-created and maintained data source
to build what would be an extremely complex hierarchy with minimal effort required by the user.

Rule Defined Hierarchies — One approach to reduce the effort required to generate hierarchies is to
employ a rule that automatically builds a tree of nodes based on a list of values fed to the system. A
good example of this is string redaction, where characters of a string are anonymised using a
character such an asterisk. The underlying rule could be if the k threshold is not met, replace the
furthest right valid character to a * and check to see if k occurrences have been created.

Postcode
MK7 7SU
MK7 7ST
MK7 7UY

Figure 4.3.4 — Pre Hierarchy Based Anonymisation, Rule Defined Postcode Dataset

Given k=3 all the values in Fig 4.3.4 are required to be anonymised. Using the string redaction rule
described above a custom hierarchy could be defined. Fig 4.3.5 displays a small extract of the rule-
generated hierarchy that has been used to anonymise the dataset

23

.

MK7 70"

SN

MK7 7**

\

MK7 78*

Ben Lourence - 1111753

il N

MK7 7UY

MK7 7UX

MK7 7ST

MK7 7SU

MK7 78X

Figure 4.3.5 — Rule Generated Anonymisation Hierarchy Extract

Postcode

MK7 7**

MK7 7**

MK7 7**

Figure 4.3.6 — Post Hierarchy Based Anonymisation, Rule Defined Postcode Dataset

The resultant table displays 3 occurrences of the anonymised Postcode MK7 7** therefore the table
satisfies the k=3 level anonymity threshold. Fig 4.3.5 depicts part of a hierarchy that is generated via
the string redaction rule. This process means that rule based hierarchies can be automatically
generated without the need to build a custom tree every time an anonymisation is performed. This
is a convenient cross between the flexibility of hierarchy anonymisation, which retains more
semantic meaning, and the ease of use of a set based anonymisation, which requires no pre-
processing operation to be performed. Rule based hierarchies can be customised to pad and
anonymise strings in different ways left to right or right to left and other options such as changing
the character used to anonymise parts of the value.

24

Ben Lourence - 1111753

4.4 Set vs. Hierarchy Based Anonymisation

The advantage to set based anonymisation is that it can be simply run on the input data without
much pre-processing setup. Ideally the optimum solution for this entire project is to produce a tool
that requires as little user input as possible and encapsulates the complexities of data
anonymisation. On the other hand the absence of pre-defined groups means that unrelated data
maybe be grouped together in a way that is of no use to the data analysts who want to manipulate
and explore the information. Set based grouping may for example collate the conditions {foot pain,
headache} to sufficiently meet the k anonymisation criteria. The two conditions may have no
commonality and therefore it would be illogical to group the two items together but with set based
anonymisation there is not always a clear way to define this.

The other technique that will be implemented in the initial tool is a hierarchy-based anonymisation.
However the user will create a hierarchy that will apply a suitable level of anonymisation to the data.
This advantage of this approach is that anonymised data will be sensibly grouped together in a way
that still maintains utility of the original data. Although this requires the extra step, pre-defining a
hierarchy, which can be then applied to the data.

The approaches discussed have both their individual merits and drawbacks. The current preference
of many researchers would be to implement a hierarchical approach to data anonymisation.
However | am attempting to build a tool that will help users understand the associated processes
and differences in techniques, therefore | see fit to include to include both types as a starting point
of the platform.

There are many different algorithms that can be implemented to achieve K-Anonymity compliant

datasets. | have selected two different algorithms, one to achieve set based anonymisation and the
second is to enable hierarchy-based anonymisations.

25

Ben Lourence - 1111753

4.5 Set Based k-members Clustering

This particular approach is an extension of the popular data-mining algorithm k-means clustering
with a few alterations. Similar to k-means the initial value is randomly selected from the dataset.
One difference is that with k-means the user defines k as the amount of resultant clusters the
algorithm should produce, where as in k-members clustering k represents the minimum number of
items that should be present in a cluster. As such an obvious difference is that the user does not
define how many clusters they want to produce with k-members, instead that is dependant on the
data that is fed to the algorithm.

After conducting research | found the following greedy k-members algorithm from a research paper
[7]. This pseudocode has been used as the basis for the algorithm | will implement within the data
anonymisation tool.

[Greedy k-members co-clustering algorithm]
1. Let S be a set of objects. Choose the anonymity level k and randomly select an object r.
2. Let a cluster index t be 0. Repeat the following process while [S | > k.
(a) Replace r with its furthest object and remove r from S .
(b) t =t + 1. Generate cluster Gt with a single element r.
¢) Repeat the following process while |Gt| < k.
i. Find the best neighbour object r of cluster Gt, which has the largest within-
cluster aggregation of Eq.(7) after merging.
ii. Add r to cluster Gt and remove r from S .
3. Repeat the following process while [S | > 0.
(a) Randomly select an object r from S .
(b) Find the best neighbour cluster Gt of r, where the object has the largest within-cluster
aggregation of Eq.(7) after merging.
(c) Add r to cluster Gt and remove r from S .

During initialisation a list of values is fed to the algorithm, the level of anonymity threshold k is also
defined. While the number of values contained in the list is greater than the level of k, the algorithm
proceeds to build a set of clusters that contain k number of items (after adding each value to a
cluster it is subsequently removed from list of values). Each cluster looks at the remaining items in
the list and selects the closest value to be added.

Once the number of list items has been reduced to less than the level of k. The next item is randomly
selected from the remaining values. The resulting value is then assessed to find the closest cluster.
There are a number of ways you could calculate the closest value. Group average would find the
average value of all current values in the cluster, while min/max link look at the nearest/furthest
value present in the cluster respectively. Since group average makes use of all the values in the
cluster and would average out any outlying values | have opted for this implemenation. Once initial
the randomly selected value is added to the closest cluster it is then removed from the list of values.
This process is repeated until the initial list of values is empty. An important point to note with this
implementation is that once the number of items in the list reaches the level of k, no new clusters
are created. Instead the remaining items are appended to pre-existing clusters, which means that
clusters may contain more values than the minimum number of k-level items.

K-Members Hierarchical Clustering Issues - One issue that has arisen is the classification of values for
the ‘closest cluster’ selection element of the k-members clustering algorithm. This process is fairly

26

Ben Lourence - 1111753

simple for numeric values or structured strings such as postcodes because various measurements
can be employed (Euclidean and Levenshtein distances respectively) to find the comparative
difference between two values. This calculation would then allow a nearest neighbour to be found.
However other attributes may not be so easy to measure, for example in a medical set of records
patient condition. Finding a metric to measure the difference between ‘Cancer’ and ‘Flu’ would be
necessary in order to ascertain what is the closest cluster. Without defining a custom measurement
for every single type of attribute it would be hard to allow the tool to automatically infer what values
are ‘near’ to each other, considering near as near in meaning not similarity of the characters of
corresponding data. One technique that has been suggested is to utilise the pre-existing hierarchy in
order to understand what values are related and therefore devise a set of definitions that specific
which values are close to others in terms of meaning.

27

Ben Lourence - 1111753

4.6 Hierarchy Scan and Local Replace Anonymisation

The next algorithm will leverage hierarchies in an effort to maintain data utility. The design and
generation of hierarchies will be covered in other aspects of this report. This algorithm possesses
two main functions; scan and replace. The scan function similar to the set based implementation will
iterate through dataset in order to ascertain and collate a list of values for anonymisation.

Once a value has surpassed the predefined k-level then no further operation will be performed on
the item. The second replace element, details the way in which ‘values to be anonymised’ is
transformed. Simply the algorithm looks at the parent node of the value in hierarchy. An example
would be Flu -> Virus, if Virus were the parent node of Flu. This process is repeated until the table
has satisfied the level of k required.

The root of the hierarchy should be a completely anonymised value which reveals no information
such a “*’. Therefore if a value does not meet the k-threshold then it should be fully anonymised as
specified and updated within the dataset.

Postcode
MK?7 7SU
MK?7 7SU
MK?7 7SU
MK7 7TY

Figure 4.6.1 — Pre Anonymisation Example

Postcode Postcode
MK?7 7SU MK7 7**
MK?7 7SU MK7 7**
MK?7 7SU MK7 7**

* MK7 7**

Figure 4.6.2 — Post Local Vs. Alternative Technique Anonymisation Example

The local anonymisation aspect refers to the fact that if a value meets the threshold it is exempt
from any further action. Given a k=3 threshold anonymity level. Fig 4.6.1 displays a set of postcode
values to anonymise. Subsequently Fig 4.6.2 depicts two differing techniques used to anonymise
these values, local and alternative anonymisation left to right respectively.

Local anonymisation identifies the 3 occurrences of MK7 7SU and because the threshold value of k
has been met, no further action will be performed on these values. The remaining value MK7 7TY
has a single reaming occurrence and has no opportunity to meet the threshold, therefore it is
anonymised to the root of the hierarchy in this case *. The anonymisation is localised to occurrences
that have not been discarded by the algorithm because they have surpassed the threshold value.
The alternative anonymisation on the other hand would identify the 3 occurrences of MK7 7SU that
meet the threshold. The algorithm would then move onto the single occurrence of MK7 7TY and
attempt to anonymise this value, the key difference being the alternative scan of the data is
performed at this point to find a suitable set of values the occurrence can be anonymised with. In
this case the postcode MK7 7SU is found and all the resulting values are converted to MK7 7**,
Both techniques produce k-anonymity conformant table. Interestingly preforming a post-processing
query on the tables from Fig.4.6.2 searching for possible matches to ‘MK7 7SU’ would return 4

28

Ben Lourence - 1111753

possibilities from both tables. However the information loss between the two results does differ
quite considerably. The local anonymisation maintains maximum data utility for 3 out of the 4
entries in the table. However for the final entry, the original information has been completely
decimated as a result of the local anonymisation. Compared to the alternative anonymisation where
each entry in the table suffers some degree of information loss. Although no information is fully
decimated, as is the case with local anonymisation, the resultant approach does cause a fair amount
of information loss across the dataset. | have elected to perform local anonymisation process in the
algorithm | have selected because | believe it will maintain greater utility of the original data.

[Hierarchy Scan and Local Replace Anonymisation]
1. Let S be a set of objects. Let H be the anonymisation hierarchy. Choose the anonymity level k.
2. Repeat until all values occur k times or value is anonymised to root of the hierarchy.
a. Scan through s and return a list of values to be anonymised.
b. For each value to be anonymised
i. Anonymise value to parent node in H

The intended end product of this project is a data anonymisation tool that implements both set
based k-members clustering in addition to the hierarchy scan and local replace algorithms. Both of
these will form the default algorithms coded and built into the system. Should future developers see
fit to tweak these default processes, then by adjusting the source code and building a new version of
the application the hard coded algorithms can be updated.

However during my initial research and report, | discussed the idea of pluggable algorithm
architecture, where a developer makes their anonymisation algorithm available in the system via a
plugin. The advantage with this approach is that the system would not have to be rebuilt and instead
transforms the final product from a stand-alone tool to a platform that can be used as a test bed to
alter and update algorithms. While two default algorithms have been designed and documented
within this section of the report, the system architecture means that in reality the tool could feature
and leverage many more algorithms.

29

Ben Lourence - 1111753

5 Implementation

5.1 Technologies Used

Implementation Language: C# .NET

C# has been selected as the programming language to implement the data anonymisation tool. The
language is powerful, mature and versatile. The language is focused on the object-orientated
programming paradigm with c style syntax similar to Java. The language also facilitates access to
Microsoft’s .NET framework, which itself holds a wealth of useful libraries and other functionality.
Language-integrated query (LINQ) allows developers to perform various operations on relational
datasets which is an ideal feature given the aims of this project. Last year | undertook an industrial
placement where | developed several applications using C# and the .NET framework, this exposure
has given me an excellent understanding and strong base to develop the application.

Graphical User Interface: WPF

To create a graphical user interface (GUI) | will be using Windows Presentation Format (WPF)
another component of the .NET programming framework. Personally | have just over a years
experience in developing and creating interfaces with this set of tools, during which time | found the
process to be incredibly simple and intuitive. WPF uses XAML; XML based set of statements to
declare and arrange graphical components

Integrated Development Environment:

| have opted to implement the tool using the C#.NET platform. | will develop the system using Visual
Studio; Microsoft’s accompanying IDE. The software itself is stable and mature; it also features
several tools that maybe useful throughout the application implementation such as in built unit
testing and code profiling to test speed of execution.

Version Control:

Throughout the implementation process | will be using Git & GitHub to provide version control for
the code base of my system. Version control is an important tool used to backup the implementation
of a system. Although it also provides other handy features such as visualising changes that have
been committed and also the ability to roll back a version if bugs are accidentally introduced to the
application.

30

Ben Lourence - 1111753

5.2 Model View ViewModel (MVVM) Architecture

WPF relies on MVVM architectural design pattern in order to separate application logic from GUI
implementation. Eventually this means that the layout and information displayed by the user
interface can change completely without having to alter the underlying logic code. MVVM is an
extension on the popular architectural pattern Model View Controller (MVC), although it has been
adapted specially to facilitate data binding which is WPF’s technique to populate GUI components
with application data. The pattern separates implementation into 3 distinct sections.

Model:

The model section is primarily concerned with retrieving data from data stores as a data access layer
(DAL). Data for the anonymisation tool, will be stored within CSV files however in future
implementations of the software, the model classes could be extended to retrieve information from
a Relational Database Management Systems (RDBMS). The tool will employee this model in order to
retrieve and load raw data from CSV files.

View:

While the view refers the graphical implementation presented to the user. Views can be nested or
combined to form other views. A view hooks into exposed properties from the ViewModel with a
binding expression in the XAML. The underlying business layers and application logic are completely
isolated from any GUI implementation. This separation is what gives the MVVM pattern the
flexibility required to update the underlying logic or user interface implementations independently.

ViewModel:

The most significant component in comparison to other similar patterns is the ViewModel. The
ViewModel provides the bridge from application logic to graphical interface. The ViewModel
exposes a set of public properties that can be bound to the view via a binding expression in the xaml.
Once again the key point is that the ViewModel has no relational knowledge to the View, therefore
it can be independently altered and the View still binds to the resulting ViewModel in the exact
same way.

Notifications

Data Binding ViewModel

A

‘ Commands
) Presentation Btimiecss
ul L°8'F Logic d g
(Code Behind) and Data

Figure 5.2.1 — Graphical Representation of MVVM Architectural Pattern

The diagram above taken from Microsoft’s documentation [8] graphically illustrates the separation
of application logic from graphical presentation. The MVVM design approach will allow me to create
a modular and very maintainable system. The tool maybe integrated into larger systems so it is key
to design a system that is extensible and could be easily incorporated within other applications.

31

Ben Lourence - 1111753

5.3 Anonymisation Algorithms Implementation Architecture

This section is aimed at explaining the implementation of anonymisation algorithms within the tool.
Primarily discussing the complexities of implementing plugin algorithm architecture.

<<interface>> Anonymisation
Data Anon Tool Components IKAnonymisation Implementation
Data Tools <
Import/Export

Anonymisation
Controller

Post Processing

Tools Dynamically Loaded

GUI

Figure 5.3.1 — Anonymisation Algorithm Implementation Structure

The diagram splits the data anonymisation tool into a set of distinct components, for the purposes of
this explanation | will assume that a series of well-formatted data has been loaded into the system
and any other necessary pre-processing tasks have been completed.

The anonymisation controller component is responsible for invoking the algorithms that will
anonymise data. A dataset is passed into the controller along with another object that contains
reference to what attribute is to be anonymised and a reference to an interface; IKAnonymisation.
The important point here is that the anonymisation component understands how to interact with
the interface IKAnonymisation. Regardless of the underlying implementation the controller simply
invokes the algorithm calling a method ‘InvokeAnonymisation’. The default set and hierarchy based
algorithms both implement the same IKAnonymisation interface. The controller does not care which
algorithm is being implemented as long as it can execute the common method, which is guaranteed
by implementing the interface. The interface acts as a bridge between anonymisation
implementation and the data tool structure.

The IKAnonymisation contains a boolean field ‘RequiresHierarchy’. Obviously this indicates as to
whether a valid hierarchy should be defined. Once defined a hierarchy is passed to the controller as
part of an object that contains other information about attributes being anonymised. From here the
algorithm can utilise a hierarchy if required.

32

Ben Lourence - 1111753

One of the requirements for the system is to implement a plugin architecture so that developers can
include algorithms without rebuilding the entire system. Each of these algorithms must implement
the same IKAnonymisation interface, the same as the default set and hierarchy algorithms. Once
again the Anonymisation controller does retain any knowledge about how the process is achieved,
that logic is encapsulated within each class that implements the interface.

Plugin algorithms can be built separately from the data anonymisation tool. The output should be
built as a dynamic-link library (.dll) file.

“A dynamic-link library (DLL) is a module that contains functions and data that can be used by
another module (application or DLL).... DLLs provide a way to modularize applications so that their
functionality can be updated and reused more easily.” [9]

Once built an algorithm should be added to a specified plugin directory. Classes that contain the
corresponding interface will be dynamically instantiated and appended to a list of algorithms
available for use in the system. Should one of these plugin algorithms be selected for anonymisation
then the anonymisation controller will execute the method ‘InvokeAnonymisation’ on the
dynamically created object. Regardless of whether the underlying anonymisation technique requires
sets, hierarchies or another type of implementation they are all initialised and invoked in exactly the
same way. This means that developers can implement their own anonymisation algorithms and plug
them into the system, utilising the pre-existing infrastructure and functionality.

33

Ben Lourence - 1111753

5.4 Project Structure

o]

Solution '‘DataAnonTool' (10
.nuget

a[e# AnonTool.Core

a[c#] AnonTool.Infrastructure

&[] AnonTool.MVVM

a[e# AnonTool.Ul

i[<*| DataAnonTool

a&] DataAnonTool.Tests

a[c KAnonymisation.Core

a[e# KAnonymisation.Hierarchy
[(9' KAnonymisation.PluginPOC (unavailable)

a[c*] KAnonymisation.SetBased

a[c KAnonymisation.Ul

v vVvVvivVvivVvivVvvVvVvvVvVvvVvVvvVvvVvYw

Figure 5.4.1 — Project Structure, Visual Studio Screenshot

The graphic above depicts the project structure of the system. The final product makes use of 10
separate projects within a single solution. | have taken a great deal of care when implementing the
anonymisation tool to ensure that various aspects of the system are independent modules, they are
combined together to form a maintainable and easily expandable platform. In order to achieve this
each individual project has a very targeted function

NuGet [10] is Microsoft’s package manager for developers is used within the project to import and
makes use of third party software libraries. Specifically a library to handle reading and writing CSV
files, this process will be detailed within the section 5.6.

DataAnonTool is the entry point of the application and contains only the shell window of the system.
The shell is used as a host for components in other projects. Hosting items from other projects in a
shell means that should the required components of the system change the old code can be thrown
away and replaced easily by changing what is contained within the shell view. This implementation
detail was aimed at designing and implementing an easily maintainable system.

DataAnonTool.Tests is a UnitTesting project. It contains a number of hard coded tests that ensure
the functionality of components in the solution. Every time the project is built the set of unit tests
are run to ensure that changes to the code have not impacted the functionality of the system.
Specifically | have made use of unit tests to ensure the validity of anonymisation techniques applied
by the system. Unit and further testing details of the implementation have been detailed in section
5.10 of this report.

AnonTool.Core is one of the most important projects of the system. This library contains a number
of classes the core to the functionality of the application. Application logic for menu bars, hierarchy
generation and pre-processing operations are all contained within this core library. AnonTool.Ul
contains the graphical interface implementations of these components.

AnonTool.Infrastructure currently the infrastructure library is responsible for controlling the flow of
data into and out of the application. Future developers could extend this project adding functionality
to import/export data from a RDBMS. Although this feature has not currently been added to the tool

34

Ben Lourence - 1111753

the system has been designed with extensibility in mind, which is why an infrastructure project has
been created.

AnonTool.MVVM is responsible for implementing the controls that enable the application to utilise
the Model View ViewModel architectural pattern. One such example is a stub of code
“RaisePropertyChanged” that notifies the user interface to update when a publically exposed
property is altered.

Projects starting with tag KAnonymisation relate to the implementation of k-anonymity algorithms
within the system. KAnonymisation.Core contains the interface IKAnonymisation that anonymisation
algorithms must implement, in addition to other key classes. One such is ColumnModel that retains
information about what attributes are to be anonymised and holds a reference to the hierarchy that
will be applied during the process. Any project that is responsible for the implementation of an
anonymisation algorithm makes use of these core common classes. The Ul component of
KAnonymisation contains a set of views that facilitate post-processing tasks on anonymised data.
This project contains strictly graphical components only (the same as AnonTool.Ul); the logic to
populate these interfaces is situated in the other projects.

There are 3 implementations of anonymisation algorithms in the final system. The default set and
hierarchy based anonymisations in addition to KAnonymisation.PluginPOC a proof of concept project
that demonstrates the process of injecting a custom plugin anonymisation algorithm. The project is
secluded (hence the unavailable warning in Fig 5.4.1) from the rest of the solution to ensure that it
functions correctly as a plugin. To further ensure its validity, plugin proof of concept is built
independently from the other projects of the solution.

Design and implementation of this solution structure was one of the hardest challenges | faced
throughout this project. Careful thought has been given when separating implementation
components into isolated projects.

35

Ben Lourence - 1111753

5.5 Data Loader Importing/Exporting

As previously discussed in section 5.4 project structure, DataAnonTool.Infrastructure is currently
responsible for importing/exporting data in the application. The tool currently supports both of
these operations using csv files.

| have created the a Dataloader class which acts a wrapper class for a third party open sourced
library ‘Csvhelper’ [11]. To import data using the CsvHelper library a file stream is passed into the
class ‘CsvReader’ , from here each line can be processed and broken down into separate attributes
within each line. The first line of the csv file is reserved for the list of attribute names (see report
section 3.1 data formats).

= _ o
Field Name Data Type
Name g
string v
Postcode .
string v
Email .
string v
BankAccountNo .
string v

RegistrationDate date v

Bl string v
Gender .
string v
| string

int
double

Done Cancel date

Figure 5.5.1 — Data Import: Attribute Declaration, System Screenshot

Once a list of attribute names has been retrieved from the first line of the csv file, the system
presents the window depicted in Fig 5.5.1 This view allows the user to specify the data types of each
attribute. It is important to specify correct data types so that the anonymisation algorithms can find
semantically ‘close’ values. Running a set based anonymisation on the attribute age should be done
with the assigned data type int, the algorithm can then calculate close integers to form the cluster
and restrict information loss. Otherwise age would be defined as a string then algorithm would
automatically attempt to match based on characters of strings, two values such as 102 and 10
maybe grouped together because they are fairly similar strings but vastly different values in the
context of integer age.

36

Ben Lourence - 1111753

Data Anon Tool

Preprocessing View

Name.

Name Postcode Email BankAccountNo RegistrationDate Drug Gender
Regan C. Estrada___|C8 50 _ | Vivamu AD8226221124877298670210 10/02/2015 | Warfarin Sodium Male
Ahmed Z. Cox TPOB 6DK | massa.Quisque.portti uk__|1L648921196377680013531 08/04/2015 | Simvastatin Female
Raya F. Snider HI1 3HC | leoinloborts du L12762143085154693545 08/15/2015___|Allopurinal Female
Connor P. Townsend | XS44 5CH | Phasellus.libero.mauris@luctusut.edu KZ775091688571190769 07/25/2014 Prednisone Male
Mallory D. \gton [124 85C [Phasellus.null om | TN0920114119655263213488 10/14/2015 Hydrocodone/APAP Female
Tashya X. Love [AA2 OAI_| mauri HUB6652723080019952546511421 __|10/15/2015 | Carisoprodol Male
Chaim M. Dyer Vasy 1M uk C72749377820767725142053 08/13/2015 Salts Female
719 OFC MKB5160864741803641 Male
NE98 2SE BGO2LWML97146520624866 08/05/2015
Lacey I. Alford FP77LI__| dolor@Cumsocisnet FR3556097980335210165693483 11/29/2014 | Tramadol HCl Male
Denton E. Pacheco KP98 8GZ [Ci islQu ot 1566881356088 Benicar HCT Male
Angelica T. Cobb MS50 9UP hendrerit@luctusut.edu EE695752149145081545 11/18/2015 Amoxicillin Trihydrate/Potassium Clavulanate | Male
Frances D. Blair IM64 6M8] llicitudin.a@Sed.org NL70JYWB4152220249 10/24/2014 | Alprazolam Female
Damian A Hebert __|W08 280 M I D ‘GE27077735532909406874 03/21/2015 L i Female
Dante E. Barber ST02 1kM | Quisquelibero@Integer.ca PL85160454180049685756755726 _|06/20/2015 |Gy el Male
Fitzgerald K Evans __|B4Y OLP | euismod@montes net S140373006463395875 03/10/2016 Losartan Potassium Female
Gillian T. Sexton RI7S ING_| dui@facilisis.edu CHA4281243712366744146 09/09/2015 Oxycontin Female
Travis R. Chavez V9 9DE o te i d LB70 i Acetonide Female
Beverly C.Strong | N4 5HQ. LB27616772372493434315241168 __|09/25/2014 Metoprolol Succinate Female
Inez K. Hartman HN7N 9JD | tristi d AE289571725990279307971 03/12/2015 Lisinopril Female
Holmes E. Steph QGB 2)C_| Dui i uk 15948259597709881991220110 11/12/2014 Lisinopril Female
Rooney R House __|K1 5CA innet RO70WKINB960823354672177 02/18/2016 | Gabapentin Male
Lacey W. Hopper UK3 5NK | accumsan.convallis@sagittisNullamvitae.edu MD1083371536772806357624 09/08/2014 Paroxetine HCI Female
Phoebe W. Goodwin _[YD1 1CV arturient@auctorne KZ773859112363711062 07/06/2014 Lisinopril Male
Haley T. Hubbard 06 8ZK Proin.mi. SA6618997145945277674391 11/20/2014 Digoxin Male
Zachery N. Bender __|B5K OXN 5165070874058999562 10/20/2014___| Clonazepam Male
Otto T. Dillon UT77 3WB [accumsan@In.org HU77499232147203170602021009 _|02/16/2016 Lisinopril Female
Mikayla Z. Fleming | GV08 6GC | Don i d AE971530604916560609898 11/20/2015___| Ability Female
Jason L. Hester A9 1VM_|eget@Curabitur.ca MT09QII55331609945480497117997 |05/12/2014 | Sertraline HCI Female
Callie | Barrett DU7 UF_|luctu: d (CR9819258132068578307 10/07/2015 i Female
Brianna K. Mueller |HU93 8KD | ligul o.uk 102 01/15/2016 Amlodipine Besylate Male
Galena Q Moore | MU3 3EQ SM9511731279321165567224409 | 11/20/2015 Metformin HCI Female
Alma O. Acosta X9E 0SW_|fringil, i et AD0300146114819255774947 12/16/2015 Plavix Male
Declan J. Martin R22VS | neque@quiscom PS190171967733195470160619376 | 12/13/2015 Premarin Female
Fallon D. Day N39AQ_|eli BES4393027321464 07/13/2015___[Januvia Female
Colby H_Pearson___|P70376 m MTB5XFLC26704375212176862934538|00/14/2015 | Celebrex Male
Allistair A. Hunt [E79 1vx m_|PL18272867612721655238898753 | 12/05/2014. Sertraline HCI Female
Alexis R. Hendricks __|Z33CZ_|dict d ME70477001168253291344 03/07/2016 Oxycodor Male
Patrick G. Gallegos | SK37 0XM K ADS083613148216280220238 07/10/2015 | Tramadol HCI Male
Evangeline E Riggs | HAB OVK BGO7LORX03860949915229 12/09/2015 Lorazepam Male
Otto C. Buckley DF29Q)_|Suspendisse@euismod.com MEB0681393182003179515 11/19/2015 | Gabapentin Female
Galena Q_Palmer __|V64 YL _|mollis P} net C77622036585780226041789 10/27/2015 Naproxen Male
Lydia 7. Castro PSH4QI | nibh@lorem edu DK9670874642988953 03/12/2015 Lorazepam Female
Scott F. Lynch T45 INA | pede. k MC1208477210850155024428070 10/11/2014 Male
Amethyst K. Decker [F91 10Y K: Risperidone Female

Figure 5.5.2 — Data Import: Successfully Loaded csv Data, System Screenshot

Exporting data from the application is a fairly simple process. After invoking the export process the
user is prompted with a dialog window where they select the location of soon to be generated csv
file. The output data table is then passed to the DatalLoader wrapper class along with the location of
the output file. The DatalLoader class once again makes use of CsvHelper open source library,
iterating over each row of the dataset writing it to the csv file.

37

Ben Lourence - 1111753

5.6 Pre-Processing Tools

Once the data has been successfully been loaded into the application (Fig 8.2) the user is required to
specify which attributes should be anonymised and to what extent they should be anonymised.

Building a set of controls that would allow a user to quickly and intuitively specify these
requirements was not an easy task. Throughout the implementation | created several iterations of
layout and constantly tested them to assess their ease of use. Eventually | finalised a design that
featured a right hand pane easily readable and available directly adjacent to the input data. From
here the user selects a value from a list of corresponding attributes. The right hand pane then
populates anonymisation information for the attribute; this includes the associated anonymisation
type (Explicit, Quasi, Sensitive or Insensitive).

Column Preprocessing

Postcode v
DataType: System.String

Attribute Type: Quasi v

Anonymisation Technique:

Default Hierarchy Based Anonymisation v

Define Hierarchy

i

Figure 5.6.1 — Column Pre-Processing Tools, System Screenshot

Once an attribute is marked as a quasi identifier a dropdown menu listing available anonymisations
and an accompanying field to specify the required k-level appear. The user proceeds to select an
appropriate algorithm from the anonymisation technique drop down menu, if the resulting
algorithm requires an anonymisation hierarchy, the ‘Define Hierarchy’ button is displayed. The
resultant user interface (Fig 5.6.1) is a simple, clean and intuitive experience for users. Exposing
corresponding choices such as define hierarchy only when hierarchies are a pre-requisite for the
algorithm simplifies the selection process, users are not bombarded with a series of choices that are
superfluous to the functionality being implemented.

The hierarchy definition tool is one of the most important features of the application. The tool
facilitates two separate ways to define a hierarchy. Both methods generate hierarchies that can be
used in conjunction with hierarchy-based anonymisation algorithms. Although differing in
implementation both techniques have some common features; all unique values of an attribute
form a set of leaf nodes in the hierarchy and the root node should be a fully anonymised value.

Deciding the most suitable format to visualise generated hierarchies was a difficult challenge during
the implementation. The data structure should be displayed in such a way that users can drill down
into particular levels of the hierarchy to find particular anonymisation values. Initially | attempted to
display this information as a linked list of items each adjacent to the previous anonymisation value.
However this didn’t appear to visual the structure of the hierarchy particular well. After some
experimenting | developed a tree view structure (seen in Fig.5.6.2), users can expand particular
levels to discover anonymisation values and the general presentation of the resultant display is very
clean and self-explanatory.

38

Ben Lourence - 1111753

Rule Based Hierarchy Generation:

As previously discussed in section 4.6 Hierarchy Based Anonymisation of this report, hierarchies can
be automatically generated by a rule. String redaction is the process where strings are anonymised
by replacing the last valid character with an anonymised value such as ‘*’. A hierarchy of nodes can
be built by anonymising each character of every unique value in the attribute. | have implemented
this rule based automatic hierarchy generation approach in the anonymisation tool. The advantage
of generating a hierarchy automatically is that the users are not required design and implement a
new custom hierarchy each time they want to perform a hierarchy based anonymisation.

To accommodate this functionality | crated a static utility class ‘StringRedactionHierarchyGenerator’
that exposes a static method ‘Generate’. Passing a list of strings that correspond unique values in the
attribute to this method invokes the construction of an anonymisation hierarchy. The process pads
the original strings to the same length and then begins the redaction process building up a list of
parent nodes, eventually the root node is constructed that can represent any attribute value fully
anonymised. Each unique value is retained as a leaf node. Once the hierarchy has been constructed
it is retuned from the generating method.

(K Hierarchy Definition Generator

String Hierarchy | Custom Hierarchy

Direction: | Right to Left v

dedede g dede e e
Column Name: Postcode 4

P

A BHxrxrxx

Unique Values:

BH21 1SO
BH21 1ST
BH21 7JU
BH28 1ST
BH8 3AX

CF14 4AR
CF21 4AR
CF23 4AQ
CF23 4AR
CF23 4HB
CF32 4AR
MK2 7SU

MK7 4AR
MK7 7SU

MK7 7YU
MK9 7SU

4 BHp*w*Rx
4 BHPT****
4 BH21 ***
4 BH21 1**
4 BH21 15*
BH21 15O
BH21 1ST
b BH21 7**
b BH28****
BHG*****
4 Crexsxsx
4 CErwxsxs
CE7#*#%*
CFo#*#**
CE3#*#x*

Y

Figure 5.6.2 - Postcode Hierarchy Construction, Rule-Based String Redaction, System Screenshot

39

Ben Lourence - 1111753

When a user opens the hierarchy definition tool they are initially presented with this rule-based
construction from the corresponding attribute values. Fig 5.6.2 provides a visualisation of the rule-
constructed hierarchy that is displayed to the user when opening the hierarchy definition tool. The
value BH21 1S* has two child nodes BH21 1ST and BH21 1SO, both of these children will be
anonymised to their parent node value if they do not satisfy the k-level threshold.

In an effort to make rule based hierarchy generation functionality flexible the user is given the
choice to perform the string redaction right to left: MK7 7SU -> MK7 7S*, this option is also the
default selection or left to right: MK7 7SU -> *K7 7SU. Initially this feature was not planned for the
first version of the tool. However when reflecting on the functionality | came to the conclusion that
the quick rule based hierarchy generation would be a very appealing feature of the system, to help
users apply this process for as wide a range of situations as possible it was important to ensure this
process could be tailored for specific operations. Future iterations of the tool should contain more
rule based configuration options because it is a convenient trade off between reducing information
loss and sufficiently anonymising relational datasets while the process to set-up such hierarchies is
minimal in comparison to custom anonymisations.

Custom Hierarchy Generation:

Rule based hierarchy generation is perfectly suited for certain types of attributes. Postcode is a
prime example of this; the process of obscuring data by removing the last trailing value to satisfy k-
anonymity conformity attempts to retain the maximum amount of information utility. However
other categories such as disease do fit this model as well. Strings close in value i.e Canavan and
Cancer diseases may be completely unrelated therefore it makes no sense to group these items
close together in a hierarchy. To accommodate grouping of items based on underlying meaning the
tool supports the generation of custom hierarchies. This requires the user to explicitly define nodes
of hierarchies. Once again common rules are imposed on the hierarchy, leaf nodes must constitute
of unique values in the attribute and the root node must be a fully anonymised value. However the
structure between root and leaf nodes is fully customisable and can be constructed in any way the
user requires.

Node Value: |cancer

Add To Edit List| |Clear Edit List Insert Node| |Remove Node

4 * .
4 Disease Nodes To Edit:

4 Cancer Lung Cancer
Lung Cancer

Bowel Cancer

Bowel Cancer

4 Genetic Add To Edit (Same Parent Node)
Haemophila . _ ;
Canavan Disease Begins With: Add

Figure 5.6.3 — Custom Hierarchy Definition, System Screenshot

40

Ben Lourence - 1111753

The example above depicts the creation of a simple custom hierarchy. The fully anonymised root
node “*’ will replace any value that cannot satisfy k-level anonymity of any other node. The
simplified hierarchy features 4 leaf nodes that are the original unique values of attribute ‘Condition’.
The user selects nodes they wish to group adding the corresponding nodes to the edit list. The
example above has collated lung and bowel, inserting a new node ‘Cancer’ produces the result
depicted in the left hand tree view pane. The edited nodes to edit become the children of the newly
inserted node. ‘Disease’ that was originally the parent of both lung and bowel becomes the parent
of the inserted node. An important point to note is that once an item has been marked for edit, only
other nodes with the same parent maybe added to the list. This stops users attempting to create an
illogical parent of two items that are not currently adjacent in the hierarchy and therefore should
not have the same parent node.

The hierarchy definition tool will not allow users to remove leaves or the root node of the hierarchy.
This has been implemented to ensure a valid hierarchy will be produced that can successfully
anonymise all the original unique values. However in Fig 9.3 inserted nodes between the root and
leaves can easily be removed. Should the user elect to remove the node ‘Cancer’ from the hierarchy
both lung and bowel nodes would become the children of ‘Disease’. The tool has been designed to
be simple, intuitive and highly configurable, any user can easily create targeted and complex
hierarchies with relatively little effort.

An additional feature of the tool that has been implemented to streamline the generation process is
the ‘begins with add node component’. Say the condition list contained several blood diseases
(where each value would be structured ‘Blood X’ with X representing the second part of the disease
name), to quickly group all of these items together the user would simply type ‘Blood’ and click the
adjacent add button, at this point the system would appended all values beginning with the word
blood to the edit list. Although an initial item must be added to the edit list which allows the system
to work out what the targeted parent node is, because all the items in the edit list must have the
same parent node.

While features of the hierarchy generation tool streamline the construction process there are a few
more additions | would have liked to made however owing to time constraints | was not able to
implement them. These additional features would have included an ‘Ending with’ equivalent to
‘Begin with’ that would quickly detect nodes ending with a matching string, this maybe particularly
useful for values that have common trailing names i.e Disease, Heart Disease, Canavan Disease etc.
The ability to import and export custom hierarchies from the anonymisation tool is another
important feature that would ideally be implemented. Inclusion of this functionality would greatly
enhance the appeal to potential users. Allowing users to build and create their own custom
hierarchies is a highly configurable and flexible approach. | have discussed this process in greater
detail within section future work.

41

Ben Lourence - 1111753

Hierarchical Tree View Ul:

The underlying Ul code to present both rule based and custom hierarchies is exactly the same. A
singular tree view component has been used to visualise the levels of the structure and allows the
nesting of child elements inside nodes (Fig 5.6.2 & Fig 5.6.3). At the beginning of the implementation
| discussed the different technologies | would be leveraging in order to create the anonymisation
tool. WPF was the favoured method to arrange and present graphical components. As previously
mentioned WPF uses Xaml an extension of xml to arrange Ul controls in a view, a C# ViewModel is
then used to populate data in these controls via data binding. The code snippet below demonstrates
the elegance and flexibility of the platform. In order to display potentially thousands of nested
hierarchy items, 3 simple Xaml statements have been written.

<HierarchicalDataTemplate x:Key="ChildTemplate" ItemsSource="{Binding Path=ChildNodes}">
<TextBlock FontStyle="Italic" Text="{Binding Path=Value}" />
</HierarchicalDataTemplate>
<HierarchicalDataTemplate x:Key="RootTemplate" ItemsSource="{Binding Path=ChildNodes}" ItemTemplate="{StaticResource ChildTemplate}">
<StackPanel Orientation="Vertical">
<TextBlock Text="{Binding Path=Value}" FontWeight="Bold" />
</StackPanel>
</HierarchicalDataTemplate>

</Grid.Resources>

<TreeView ItemsSource="{Binding Nodes}" ItemTemplate="{StaticResource RootTemplate}"
SelectedItemChanged="hierarchyTreeView_SelectedItemChanged" x:Name="hierarchyTreeView" />

Figure 5.6.4 —Tree View Display Code Snippet, HierarchyTreeView.xaml, Visual Studio

The first 2 statements are hierarchical data templates. Data templates are used in WPF to arrange a
Ul component when the hosting control is populated with items. Therefore when the tree view
control is populated, both of the Hierarchical templates are utilised to display the bound data.

RootTemplate — This template is applied to the root node of the tree. As the data template is
hierarchical it sets the item source of this node as ChildNodes, which means that the children of the
current node in the corresponding ViewModel will populate child nodes.

ChildTemplate — This template is used to display all items in the tree view expect the root node of
the tree. Similar to the root template children of the selected node in the corresponding ViewModel
will populate further hierarchical child nodes.

The final statement defines the tree view control that hosts the hierarchical data templates.
‘ItemsSource’ refers to list of objects that have been linked to the component through data binding
via a ViewModel, the attached ViewModel is expected to expose a list of ‘Nodes’ which will be used
to populate the tree. An event handler is attached using the SelectedltemChanged attribute, this
notifies a section of code when different items are selected from the tree view and is used to
construct custom hierarchies.

In total 8 lines of Ul code has been written that will automatically display up to thousands of nodes
when populated with data. | personally believe this example demonstrates the power of WPF and
vindicates my choice to use the technology for the implementation of the anonymisation tool Ul. As
the component was created as a modular ‘HierarichalTreeView’ control | have reused the same
component to display rule based and custom hierarchies. Implementing the control this way
stopped me having to write the same snippet of code twice and future developers can alter both
tree view layouts be easily refactoring the singular common component.

42

Ben Lourence - 1111753

Once a user has generated the hierarchy they want to utilise of the anonymisation process, they
ensure the corresponding tab item has been selected when closing the hierarchy definition tool. To
select the rule based anonymisation close the tool with the ‘String Hierarchy’ tab selected.
Alternatively selecting the ‘Custom Hierarchy’ tab before closing the tool can enable the custom

defined hierarchy.

43

Ben Lourence - 1111753

5.7 Anonymisation Algorithms Implementation

As detailed in section 5.4 project structure the solution features a series of C# projects named with
the precursor KAnonymisation. Each of these projects contains some form of anonymisation
implementation.

Set Based k-members Clustering Anonymisation:

Section 4.5 of the report details the design of the set-based k-members clustering algorithm which
has been implemented. Anonymisation of explicit identifiers replaces each value with an asterisk in
order to obfuscate the original value. The tool allows each algorithm to apply it’s own explicit
identifier anonymisation; this has been done in order to make the platform highly configurable. The
pseudocode from Co-Clustering paper by A. Kawano [7] has been used as a basis for my C#
implementation in the tool.

One difficulty encountered when implementing the set based algorithm was attempting to design a
singular piece of code that could handle multiple data types. Initial implementations featured
correctly performing processes but they system would only execute with integer data types.
Obviously the tool should be able to handle multiple data types, which adds flexibility that is
important to the audience of this project. After research | decided to employ the use generics to
help solve this particular problem. The use of C# generics is obvious from looking at the source code
(See Fig 5.7.1). Generics have been employed to allow re-use of methods by a range of data types,
such a process avoids repeated method implementations for every single of data type that maybe
passed into the algorithm.

Microsoft developer notes explains “using a generic type parameter T you can write a single class
that other client code can use without incurring the cost or risk of runtime casts or boxing
operations...Use generic types to maximize code reuse, type safety, and performance”. [12]

class GenericsExample
{
private List<int> _listOfIntegers = new List<int>() { 3, 5, 1, 7 };
private List<string> _listOfStrings = new List<string>() { "foo", "bar", "thump" };
private T ReturnFirstGenericValue<T>(List<T> genericListofItems)
{
return genericListofItems.First();
¥
private void GenericExampleMethod()
{
var intResult = ReturnFirstGenericValue<int>(_listOfIntegers);
var strResult = ReturnFirstGenericValue<string>(_listOfStrings);
¥
¥

Figure 5.7.1 — C# Generics Example, Visual Studio

The generic example shows that one singular method can be used to perform operations on both
integers and strings. Without the use of generics the same method would have to be rewritten
separately for each data type.

44

Ben Lourence - 1111753

The clustering algorithm requires the operations nearest/furthest value given an initial value and a
list of items. The data anonymisation tool was designed to anonymise many different data types,
without the use of generics every data type would require a separate nearest/furthest functions
(NearsetString/FurthestString, NearsetInt/Furthestint, etc). However | was successfully able to
implement these as generic methods, which keeps the implementation code clean, minimal and
ideal for maintenance. Generics where also utilised to return the nearest cluster to a specified value.
Once again because of the implementation any generic data type can be used and the function will
return a generic list, which represents a cluster of that data type.

namespace KAnonymisation.SetBased
{
public class SetBasedAnonymisation : IKAnonymisation
{
public string Name].. |
public bool RequiresHierarchy |..]

public void ApplyAnonymisation(ref DataTable dataTable, ColumnModel columnModel)lz]

private void AnonymiseExplicitIdentifier(ColumnModel columnModel, ref DataTable dataTable)
private void AnonymiseQuasiIdentifier(ColumnModel columnModel, ref DataTable dataTable)
private void EditRow(DataRow row, string header,string toUpdate)E

private List<List<T>> ClusterKMembers<T>(int k, List<T> values) where T : IComparableB
private T FurthestVal<T>(T r, ref List<T> shuffledArray) where T : IComparable
private T NearestVal<T>(T r, ref List<T> shuffledArray) where T : IComparable
private Dictionary<T, double> CalcSimilairtyDict<T>(T r, List<T> shu-FfledAr‘r'ay)

private Dictionary<T, double> CalcDoubleVals<T>(object r, List<T> shuffledArr‘ay)B

private Dictionary<T, double> CalcIntVals<T>(T r, List<T> shuffledAr‘r‘ay)]:]

private Dictionary<T, double> CalcLevenstheinVals<T>(T r, List<T> shuffledAr‘r‘ay)E]

private Dictionary<T, double> CalcDateVals<T>(T r, List<T> shuffledArr‘ay)E]

private List<T> NearestCluster<T>(T r, ref List<List<T>> clusters) where T : IComparable :]

Figure 5.7.2 — Set Based Anonymisation C# Implementation, Visual Studio

While generic methods can be used to reduce the level of code repetition they are not appropriate
to perform the calculations that quantify the closeness of two values (although this process is
wrapped by generic methods e.g nearest/furthest value). Different data types require specific
calculations to measure distance, for example numeric values can be quantified by Euclidean
distance of two values. Where as strings can be measured using Levenshtein distance that returns a
number based on the closeness of two strings. The Levenshtein distance calculation featured in this
algorithm has been taken from a third party source [13] and verified as correctly functioning (see
unit testing Fig 5.9.2). Support for date data types has also been added; closeness is quantified as
the number of days between respective dates.

This varied difference in calculation techniques means it is unreasonable to try and use generic
methods to calculate the distance between all different data types. However in order to facilitate a
data type that is not currently supported, a single calculation method would need to be added plus a
small tweak to the code to notify the algorithm that the new data type is available for use. Then the
generic methods would operate as before returning closest and furthest values of the new data type
based on the calculation function. This simple extensibility means that future development would
easily be able to accommodate more obscure data types that | haven’t had time to implement
throughout the project.

45

Ben Lourence - 1111753

The edit row helper method is used to alter the contents of the dataset. To edit a data table entry a
series of operations; begin edit, update and accept changes are required to be performed. Therefore

this process has been wrapped into a helper method that in turn is invoked by the clustering

algorithm at the appropriate time.

private List<List<T>> ClusterKMembers<T>(int k, List<T> values) where T :
{

IComparable

var clusters = new List<List<T>>();
var rand = new Random();

//shuffled values via LINQ statment]|
var shuffledList = values.OrderBy(val => rand.Next()).ToList();

if (shuffledList.Count < 1)
return clusters;

var r = shuffledList.First();
while (shuffledList.Count >= k)
{
r FurthestVal<T>(r, ref shuffledlList);

shuffledList.Remove(r);

var cluster = new List<T>();

//cluster container used to count number of items, can't expliclty count occu
//in case the same number is added to the cluster i.e {2, 2, 4} -> {2, 4}

int clusterContainer = 1;

cluster.Add(r);

while (clusterContainer < k)
{
r = NearestVal<T>(r, ref shuffledlList);

if (!cluster.Contains(r))
cluster.Add(r);

shuffledList.Remove(r);

clusterContainer++;

¥
clusters.Add(cluster);
¥

while (shuffledList.Count > ©)
{
r = shuffledList.First();
var nearestCluster = NearestCluster<T>(r, ref clusters);

if (!nearestCluster.Contains(r))
nearestCluster.Add(r);

shuffledList.Remove(r);
¥

return clusters;

rences of numbers

Figure 5.7.3 - k- members Set Based Generic Implementation, Visual Studio

The implementation (Fig 5.7.3) follows very closely to the designed algorithm within section 4. A few

changes have been made to ensure that the process can handle multiple data types by
implementing a generic approach that has been discussed above. A list of values and a nominal

integer k value are fed to the algorithm, it then builds a number of clusters each of size k related to
closeness of the items. This is repeated until less than k items are left so no more clusters can be

formed. Then the algorithm uses the closest cluster function to iteratively ad
to its closest related cluster. Once the series of clusters have been built then
over the data table updating singular values within a replacement set where

d each remaining item
algorithm then passes
appropriate. As the

data set is passed by reference the anonymisation process is applied to the dataset that is passed

from the client side of the anonymisation tool that invokes the algorithm therefore no value needs

to be returned by the method ‘ApplyAnonymisation’.

46

Ben Lourence - 1111753

Hierarchy Based Scan and Replace k-Anonymisation:

The other default anonymisation algorithm that has been implemented within the system is a
hierarchy-based scan and replace. Once again the implementation is contained within a single C# file
which implements the IKAnonymisation interface. The specific design details of the technique are
listed within section 4; algorithm design. The process requires a predefined anonymisation
hierarchy. This is essentially a tree structure where the leaf nodes are formed by unique values in
the dataset and the root is a fully anonymised value, therefore the levels between leaves and root
represents the different levels of anonymisation.

Unlike the set based anonymisation this algorithm relies on a hierarchy to anonymise values. The
anonymisation levels within this data structure therefore there is no need to group items related on
a concept of ‘closeness’ at run time. This means that all the occurrences of values can be counted
after casting all values to a string, so there is no need to implement generic methods to handle
various data types.

namespace KAnonymisation.Hierarchy
{
public class HierarchyBasedAnonymisation : IKAnonymisation
{
public string Name|. ..
public bool RequiresHierarchy. ..

public void ApplyAnonymisation(ref DataTable dataTable, ColumnModel columnModel)[. . |
private void EditRow(DataRow row, string header, string toUpdate)|...

private void AnonymiseExplicitIdentifier(ColumnModel columnModel, ref DataTable dataTable)...
private void AnonymiseQuasiIdentifier(ColumnModel columnModel, ref DataTable dataTable) ...
private void ApplyAnonymisedValues(Dictionary<string, string> newAnonValues, ref DataTable dataTable, ColumnModel columnModel)|...|

private List<string> FindValuesToBeAnonymised(Dictionary<string, int> valuelLookup, int k, AnonymisationHierarchy anonHierarchy)|. ..

private Dictionary<string, int> CountOccurances(DataTable dataTable, ColumnModel columnModel)|. ..
private Dictionary<string, string> FindNextLevelAnonymisation(List<string> valsToBeAnonymised, AnonymisationHierarchy anonymisationHi

Figure 5.7.4 — HierarchyBasedAnonymisation.cs C# Implementation, Visual Studio

The algorithm iterates over the dataset counting the frequency of each item, results are added to a
dictionary data structure and returned from the ‘CountOccurances’ method. The find values to be
anonymised function inspects this data to identify values that should be anonymised and discards
values that have met the k-level threshold value. Also worth noting that any value, which is the root
of the anonymistation tree, is also discarded as it has been fully anonymised therefore no more
action is required.

47

Ben Lourence - 1111753

private Dictionary<string, string> FindNextLevelAnonymisation(List<string> valsToBeAnonymised,
AnonymisationHierarchy anonymisationHierarchy)
{
// Produces a dictionary where the item to be anonymised is the key and

// the newly anonymised object is the value. New value is generated by navigating
// to the parent node in the anonymisation hierarchy.

var result = new Dictionary<string, string>();
var nodes = new List<Node>();

if (valsToBeAnonymised == null || anonymisationHierarchy == null)
throw new Exception("Error Applying Anonymisations Levels");

//finds corresponding nodes in the anonymisation hierarchy
foreach(var val in valsToBeAnonymised)
nodes.Add(anonymisationHierarchy.FindNode(val));

foreach(var node in nodes)
{
if (result != null & !result.ContainsKey(node.Value))
{
// Ternary statement is essentailly a compacted if statement
var parentValue = (node.ParentNode == null) ? null : node.ParentNode.Value;
result.Add(node.Value, parentValue);

¥

return result;

Figure 5.7.5 — Generate Next Set of Values to be Anonymised From Hierarchy Data structure

Next the method ‘FindNextLevelAnonymisation’ (Fig 5.7.5) iterates through the list of values to be
anonymised generating the next level of anonymisation values from the corresponding hierarchy.
This method generates a dictionary that contains items to be anonymised as the key and the new
level of anonymisation as the value. Once this dictionary data structure is returned to the calling
method the information is used to alter the contents of the dataset by iterating over items and
replacing with the new corresponding value where appropriate.

The same helper method to edit data table rows from the set based algorithm is present in this
implementation and once again provides an encapsulated easy way for the algorithm to alter the
information stored. As described in section 4; algorithm design, once a value meets the threshold it
is discarded and no further action is performed, as appose to finding close values and then grouping
information together in an effort to satisfy the threshold. This was a conscious design decision that
has been previously justified in the design section and been implemented successfully. The
algorithm repeats the process of counting occurrences and applying the next level of anonymisation
until the all values satisfy the threshold and the dataset is k-complaint or the remaining values have
been fully anonymised with the root level of the anonymisation hierarchy. The original dataset is
passed by reference to the algorithm so once anonymisation has been applied it is returned to the
calling client code as the anonymised dataset.

48

Ben Lourence - 1111753

Anonymisation Algorithm Loading:

Once the algorithms had been implemented they must be loaded into the tool to ensure they are
available for use. The observable collection ‘AvailableKAnonymisations’ holds an instance of each
algorithm; the list populates the client Ul ready for user selection. One of the main goals of the tool
was to be able to dynamically load plugin algorithms at run time that would allow users to access
techniques that were not hard coded into the original system. The source code below is the final
implementation of this process that achieved this specification goal.

private void LoadAvailableKAnonymisations()
{
//Defaults hard coded to load
IKAnonymisation defaultSetBasedAnon = new SetBasedAnonymisation();
IKAnonymisation defaultHierarchyBasedAnon = new HierarchyBasedAnonymisation();
AvailableKAnonymisations = new ObservableCollection<IKAnonymisation>() { defaultSetBasedAnon, defaultHierarchyBasedAnon };

if (!_loadPluginAnonymisations)
return;

try
{
//Dynamically load anonymisation plugins
List<IKAnonymisation> pluginAnons = DynamicallylLoadAnonymisationPlugins();
foreach (var iKAnon in pluginAnons)
AvailableKAnonymisations.Add(iKAnon);

catch(Exception ex)
{

var msgBox = MessageBox.Show(ex.Message, "Error Dynamically Loading Anonymisation Plugins");
X

by
private List<IKAnonymisation> DynamicallylLoadAnonymisationPlugins()
{

var result = new List<IKAnonymisation>();

var curDir = Directory.GetCurrentDirectory();

var baseDir = Application.StartupPath;

var pPath = "\\Plugins";

var fullPath = string.Format("{@}{1}", baseDir, pPath);

string[] plugins = Directory.GetFiles(fullPath, "*.DLL");

foreach(var plugin in plugins)

{
var assembly = Assembly.LoadFile(plugin);
if(assembly != null)
{

var type = typeof(IKAnonymisation);
var types = assembly.GetTypes();
foreach(var t in types)

if (type.IsAssignableFrom(t))
result.Add((IKAnonymisation)Activator.CreateInstance(t));

¥
b
return result;

Figure 5.7.6 — Dynamic Loading of Plugin Algorithms + Default Set and Hierarchy Based
Anonymisations: PreprocessingColumnsVm.cs, Visual Studio

The method ‘LoadAvaibleKAnonymisation’ initially instantiates the default set and hierarchy based
anonymisation algorithms detailed in this section of the report. If the flag to dynamically load plugin
algorithms is set to true then the code inspects a local directory labelled ‘Plugins’ to search for any
files that implement the IKAnonymisation interface. If any matching files are found they are loaded
dynamically (see activator, create instance statement) and appended to a list of plugin algorithms
available to the system. This list is returned to the calling function and any found plugins algorithms
are added to the observable collection and subsequently populate the user interface ready for
selection.

The source code for each algorithm can be inspected line-by-line in the report appendix, which
details every implementation file used to build the system.

49

Ben Lourence - 1111753

5.8 Post-Processing Tools

The two objects of PPDP are to maintain information utility and provide a sufficient level of
anonymisation to protect individual privacy. Once a dataset has been successfully anonymised the
user may want to query the level of retained information utility compared to original data. To
facilitate this the tool implements a range of post processing tools that allow users to extract
information utility metrics.

This report primarily implements metrics used to measure information loss, however an important
point to consider is the secureness of anonymised data generated by the tool. Metrics providing
details about the secureness of anonymisation are rarely extracted from the dataset. However one
opinion is that this process is superfluous as the anonymisation criteria have been fulfilled d by
ensuring the table achieves k-anonymity conformity. While implementing the system | shared this
opinion that achieving k-anonymity within a dataset ensures the personal privacy of an individual.
The system should then support post-processing operations to measure the retained data utility. In
this section | have detailed two approaches to calculating metrics on anonymised data. However in
the future other developers may wish to expand the functionality to facilitate personal privacy
metric calculations, but for now privacy protection is assumed if k level anonymity has been
satisfied.

Results | Post-Processing

Anon: 1 v Data Based Evaluation

Task Based Evaluation Extract Metrics
[

E] ILoss Attribute: | Postcode v | Value; | **ixxx v | Result: 0.9375

ILoss Attribute: | Postcode v | Value: | MK74AR v | Result: 0.0000
Query No: #1
SELECT COUNT () ILoss Attribute: | Postcode v | Value: | CF23 4A* v | Result: 0.0625
FROM | Input Table v ILoss Attribute: | Postcode ¥ | Value: | BH*** v | Result: 0.2500
WHERE
Name v | = John
ID v | = 2312

Task Based Query Results:

+ || -
—] Extracted Metrics

Query No: #1: 3

Query No: #2 Query No: #2: 8

Query No: #3: 1

SELECT COUNT (%) Query No: #4: 3

FROM | OutputTable v Query No: #5: 1

Query No: #6: 2

WHERE Query No: #7: 1

Query No: #8: 1

Name v | = John Query No: #9: 5

Query No: #10: 8

Query No: #11: 2

ID v =|2312 Query No: #12: 6
<[]

’ Query No: #3

Figure 5.7.7 — Post Processing Results Dashboard, System Screenshot

50

Anonymisation Results / Post Processing - 0

Ben Lourence - 1111753

The system implements two approaches to calculate information loss metrics. Task and data based
measurements are utilised to understand how the information is altered and whether it retains its
original meaning. The system supports a post-processing dashboard (Fig 5.7.7) for each dataset
anonymisation. Here the user can design and implement a set of custom post processing
calculations. This functionality is particularly useful if the user wants to drill down to a specific set of
values and see how the anonymisation algorithm affects the information utility. Alternatively the
system can automatically generate a set of random calculations for both task and data based
metrics.

Data Based Measurements:

Benjamin Fung discusses information loss calculations in a research paper referenced below. One
calculation explored was the ILoss general-purpose metric. This calculation assumes a hierarchy of
anonymisation values. Essentially the calculation is formed between the numbers of leaf node
descendants of vg minus 1 divided by the total number of leaf nodes for a given attribute.

ILoss(vg) = 'T%;ll

“Where [vg| is the number of domain values that are descendants of vg, and [DA[is the number of
domain values in the attribute A of vg. This data metric requires all original data values to be at the
leaves in the taxonomy. ILoss(vg) = 0 if vg is an original data value in the table. In words, ILoss(vg)
measures the fraction of domain values generalized by vg.” [6]

The ILoss calculation is an incredibly simple and effective measurement of information loss. The
larger the result the more distorted the anonymised value has become. It is important to extract
these types of metrics from the output data because it informs users on the level of data utility that
has been retained during the anonymisation process. Obviously if a dataset achieves k-anonymity
conformity but has to throw away huge amounts of information the output may not be suitable for
practical application, therefore it is important to calculation information loss metrics.

The system leverages the defined hierarchies used to anonymise the data to form the basis for these
calculations. The example in Fig 5.7.8 shows the data anonymisation tool calculating ILoss metrics
for the attribute Postcode. The value combo box has been populated from the nodes of the
anonymisation hierarchy that was automatically generated by rule-based string redaction of the
unique values, see Fig 5.6.2. The application allows users to specify custom calculations and
configure them as they wish, to add or remove a calculation select the corresponding + or - button.
Alternatively the random button populates 4 different ILoss calculations for each attribute that has a
valid hierarchy defined.

51

Ben Lourence - 1111753

Data Based Evaluation

[+ [-] [Random|

ILoss Attribute: | Postcode v | Value: | o ¥ | Result: 0.9375
ILoss Attribute: | Postcode ¥ | Value: | BH21*** v | Result: 0.125
ILoss Attribute: | Postcode ¥ Value: | MK7 7%** ¥ | Result: 0.0625
ILoss Attribute: | Postcode ¥ Value: BH217JU ¥ | Result: 0

Figure 5.7.8 — Post Processing ILoss Calculation, System Screenshot

The anonymisation hierarchy featured has been automatically generated by a rule-based string
redaction of unique postcode values displayed in the left hand pane of the screen shot. At this point
it is worth noting the differences between the actual leaf nodes and the nodes that could be part of
the hierarchy. As stated the actual leaf nodes are derived from a set of unique values, however the
hierarchy does not feature all the possible values. BH21 1S* features two actual leaf nodes that are
present in the original dataset. Although once the string has been anonymised the original value
could have been BH21 1S[A-Z], 1 of 26 possibilities. Once the information has been exported from
the anonymisation tool then anyone reviewing the information should not have access to the
original data and therefore no way of discerning the set of items that anonymised values have been
formed with. Generating this extended hierarchy is not required for the anonymisation process and
would needlessly increase the amount of resource required by the application. When calculating the
information loss with the ILoss calculation | have opted to use the anonymisation hierarchy as above,
instead of the range of possible values. This decision was made because | want the system to convey
the amount of information loss in comparison to the original data set. Therefore ILoss calculations
will extract metrics based on nodes present in the anonymisation hierarchy. However the system
could be easily altered to calculate this metric against a set of all possible values.

A series of unit tests have been added to the application build process. This ensures that ILoss
calculations are being performed correctly and returning the correct pre-calculated value. This
process gives the developer confidence that any changes that have been made, will not impact the
functionality of the code. When the project is being built each unit test run and if it passes the test
and gives the expected result the unit of code is preforming as intended. However for the purposes
of demonstration | will show a worked example of an ILoss metric calculation from Fig 5.7.8.

Worked ILoss Metric Examples:
Total Number of Leaves in hierarchy: 16

Descendant Leaf Nodes: BH21 7JU,

BH21 1ST Total nodes: 0

BH21 1SO ILoss(BH21 7JU) = (0—-1)/ 16

BH21 7JU =-0.2-->0

Total Descendant leaf nodes: 3 cannot have information gain therefore result
ILoss(BH21****)=(3-1)/ 16 =0

=0.125

52

Ben Lourence - 1111753

Task Based Measurements:

Information loss metrics can be calculated by performing a common task on both the input and
output datasets. The system allows users to design and run multiple tailored search queries to assess
differences in information utility. The search queries are extremely flexible, users configure the
arrangement of criteria to be fulfilled, any number of constraints can be easily added or removed
from the query.

Task Based Evaluation

1]

Query No: #1

SELECT COUNT (%)
FROM | Input Table v

WHERE Results
Name v =%
Extracted Metrics
Postcode v | = |MK77sU Query No: #1: 2
1] —_— > Query No: #2: 5
Query No: #2

SELECT COUNT ()
FROM | OutputTable

<

WHERE

Name vi=)%
Postcode v | = MK77sU
] -

Figure 5.7.9 — Task Based Evaluation Queries + Results, System Screenshot

The two queries featured above search the input and output datasets respectively for a set of pre-
defined criteria. Additional constrains could be added to each individual query using the
corresponding + and — buttons nested within each query window. Entirely new queries can be
appended or removed from the query planner by once again using the + and — buttons featured at
the top of the view situated under the title ‘Task Based Evaluation’. The flexibility and customisable
nature of the query planner allows users to define and run highly targeted analysis on the data. This
was considered a key feature when implementing the post-processing tools and so great care has
been taken to ensure that users can change and detail precise criteria of task based queries. The task
based query solution includes complex features such as wildcard searching, set based matching and
anonymised data matches that are necessary to extract the appropriate information loss metrics
from the datasets.

Wildcard Search — The use of special character % indicates to the system that the user would like to
return data that fits the criteria preceding the percentage symbol, the criteria after the symbol

matches regardless.

Criteria: 1%
Possible Matches: J, James, Justin, Joanne

53

Ben Lourence - 1111753

The excerpt above details a few possible matches to a wild card search criteria. As discussed only
information preceding the % character is used to identify possible matches. Wildcard searching is an
important feature of the query planner functionality because it allows users to easily select groups
of data without having to reference each member of the group individually.

Set Based Matching — Previously detailed within this report the tool implements both set and
hierarchy based anonymisation techniques. Values maybe anonymised as a set to satisfy k level
anonymity threshold, this result of this means that one anonymised item may contain several values.

Criteria: 19
Possible Matches 19, {19, 22}, {19 ,41, 67}

The specified criteria 19 will be matched exactly if queried against the original data table. However
queried against an anonymised table that contains sets the system should match wherever an exact
or possible match occurs. The use of curly braces { } indicates to the system that a set has been
formed containing a number of values. Querying the original criteria 19 against a set causes the
system to evaluate if the value; 19 occurs in any of sets. Without access to the original table there is
no way that the application can identify if a 19 was the original value of a set, therefore possible
matches are returned. The increased number of possible matches indicates the amount of
information incurred by the anonymisation process. List of possible matches above depict this
possible set based matching process.

Anonymised Matches — The core functionality of the system is intended to anonymise data in such a
way that it cannot be re-identified and linked back to its individual owner. Querying a dataset to find
possible occurrences of information therefore requires some thought when performed on
anonymised data.

Criteria: MK7 7SU
Possible Matches: MK7 7SU, MK7 7**, *

The example above specifies a postcode that will be used to identify matches within the data. When
performed on the original dataset, only exact matches to the string MK7 7SU will be retuned as
occurrences of the data. However MK7 7** may feature in an anonymised data in order to satisfy
the defined k-level anonymity threshold. Looking only at the output anonymised data there is no
way of discerning what the original value was, the anonymised characters may well have been ‘SU’
and would therefore meet the search criteria defined. So requiring that anonymised values may
have been derived from the search criteria a possible match should be identified. This holds true for
both the value MK7 7** and the fully anonymised value * and therefore are both possible matches
of the original search criteria MK7 7SU.

Also featured in Fig 9 are the corresponding extracted metrics. The results indicate that the query #1
has found 2 occurrences of individuals who’s name begins with the letter J and live in the postcode
MK?7 7SU from the original input table. While the second query performed on the anonymised
dataset returned 5 possible occurrences. The difference between these two values informs the user
about the information loss between the input and output datasets. Clearly some information utility
degradation has occurred within the data because more possible matches have been identified
comparing non-anonymised to anonymised data. Running a number of these task based queries
over the input and output datasets would allow users to build up a picture of how the data has been
altered in order to satisfy k anonymity conformity.

54

Ben Lourence - 1111753

Functionality to display information loss metrics with graphing was discussed in my initial project
plan. Unfortunately due to time constraints | have been unable to implement these features.
Implementing the post processing metric extraction was another significant challenge throughout
the creation of the anonymisation tool. Developing these aspects took significantly longer than | had
first anticipated, especially to produce the behaviour that extracts metrics for set based
anonymisation and wild card support. While the graphing features have not been the underlying
infrastructure to extract these metrics has been built, simply extending the system would enable
users to access graphing of these metrics. This is one of the major work items | would like to add as
future work because | feel it would be an extremely useful addition to the system. Although taking
longer than initially expected, the metric extraction features work extremely well and provide a solid
base for future development in this area.

55

Ben Lourence - 1111753

5.9 Testing

Throughout the implementation of this system | have leveraged several different types of testing to
ensure system functionality and validity of results during the development phase.

Unit Testing — These tests are designed by the developer and used to ensure the functionality of
internal application components. Unit tests are coded into the project solution and can be part of
the application build process to ensure the components being compiled into the system are
performing as expected. Unit tests often function by running a set of pre-defined test conditions
leveraging a unit of functionality from the system, returned results are then evaluated for
correctness using assertion statements. If a value is not asserted as the expected result the test fails
and the developer is. Unit tests are especially useful if a developer is refactoring a set of
functionality. Ensuring no unintended side affects have been introduced during a refactor of the
code base can be achieved by ensuring operational unit tests are passing during build of the
application, therefore the system is still performing as expected.

Black Box Testing — Entails testing the application functionality without attempting to understand
the internal logic. Sets of values are passed into the black box that encapsulates application logic;
the tester then evaluates the result that returned. If the returned result is expected the system has
passed the test. Otherwise the application has failed to produce an expected result and the cause of
this should be investigated and fixed.

As previously discussed in section 5.4 Project Structure | have implemented a unit-testing library that
is run every time | build the application from Visual Studio. The project ‘DataAnonTool.Tests’
contains 5 separate test classes, which between themselves contain 17 individual test methods. The
majority of these test methods contain multiple assertion statements.

Test Explorer

[tz ~ | Search

Run All | Run..~ | Playlist: All Tests ~
4 AnonymisationTests (7) DefaultQuasiHierarchyAnonymisationTest
O DefaultexplicitAnonymisationTest s Source: AnonymisationTests.cs line 226
@ DefaultNonSenstiveAnonymisationTest 4 ms
- — i @ Test Passed - DefaultQuasiHierarchyAnonymisationTest
@ DefaultQuasiSetBasedAnonymisationNonKMatchingltemsTest 9ms Elapsedtimez12{ms
@ DefaultQuasiSetBasedAnonymisationTest 37ms
@ DefaultSenstiveAnonymisationTest 4ms
@ EmptyColumnsTest 294 ms
4 HierarchyGenerationTests (3)
@ EmptyListTest <1ms
@ FindNodeChildrenTest <1ms
@ GenerateFromSingleStringTest <1ms
4 |evenshtienDistanceTests (3)
@ DifferentStringsTest <1ms
@ EmptyStringTest <1ms
@ EqualStringsTests <1ms
4 MVVMTests (1)
@ RelayCommandTest <1ms
4 PostProcessingTests (3)
@ ILossCalculationsHierarchyTest 4 ms
@ MatchOnAnonymisedValuesTest 4ms
@ WildCardMatchTest 7ms

Error List Output | Test Explorer

Figure 5.9.1 — Unit Tests Results Explorer, Visual Studio

56

Ben Lourence - 1111753

As depicted in the screenshot above | have tested units of functionality from varying areas of the
system. Ranging from Levenshtein string difference calculations to Model View ViewModel
infrastructure tests. The named tests classes are self-explanatory to their content and intended
testing purpose. An important point to note is that unit tests cannot provide complete code
coverage to ensure that every single possible execution of the code unit functions as expected. It
would be impractical to think of minutely possible but plausible edge cases that unit tests should
accommodate, in addition to this the time it would take implement these tests would take an
unacceptably long period of time. There would be no point spending 1 week developing functionality
to then spend 6 weeks exhaustively testing every possible outcome, there has to be a reasonable
cost/benefit pay off to justify implementing a sensible number of unit tests. Due to these reasons |
have implemented a series of key unit tests which evaluate the core components of the
anonymisation tool. The tests that have been performed on these components are also general
targeted cases to indicate if the system was functioning as intended.

[TestClass]
public class LevenshteinDistanceTests
{
[TestMethod]
public void EqualStringsTests()
{
var strl
var str2

ufoon;
"fOO";

var result = LevenshteinDistance.Compute(strl, str2);
Assert.IsTrue(result == ©.0);
s

[TestMethod]
public void DifferentStringsTest()

{
var strl

var str2

"fOO";
"bar";

var result = LevenshteinDistance.Compute(strl, str2);
Assert.IsTrue(result == 3.0);

Figure 5.9.2 — Levenshtein Distance Unit Tests, Visual Studio

The screenshot above shows two unit test methods that have been used to evaluate results
produced from the utility class ‘LevenshteinDistance’. This class returns an integer that varies in size
depending on the similarity between two strings passed into the compute method. Therefore | have
implemented these two test methods (other methods have also been written) to evaluate the unit
functionality of the Levenshtein distance calculation unit of code.

57

Ben Lourence - 1111753

Unit test classes and methods must be decorated with the appropriate attribute [TestClass] and
[TestsMethod] respectively, this enables Visual Studio to detect and run the corresponding tests. As
with all the unit tests | have implemented, both test methods have been descriptively named. | have
selected these two unit tests because they are simple examples and demonstrate the general
structure of a unit test. After the utility class calculates the difference between the two strings an
assertion is used to evaluate the expected result against the actual result. Should a developer
refactor how the utility class calculates Levenshtein distance these two unit tests should remain in
the project. Once the code has been refactored running the unit test will allow the developer to
confirm no bugs have been introduced in the code if the units are still preforming as expected.
Placing unit test around the key components of the system increases the confidence that the
developed system is working as intended.

| have leveraged black box testing throughout the implementation of the application. This approach
has been especially useful when evaluating the functionality of anonymisations on datasets. Given a
small-restricted data sample (see examples in section 4, algorithm design) passed into the
anonymisation algorithm. | would then observe the result that was returned from the algorithm,
which acted as a black box. When the algorithm generated results | was expecting | knew the
internal logic was functioning as intended. On the other hand when the actual result did not match
the expected result | knew the algorithm had a bug and | then proceeded to find and fix the issue.

For example defining a set based anonymisation with k threshold value equal to 3. If the dataset
contains 3 separate individual values, | would expect the algorithm to replace all instances in the
table with a set that comprised of all 3 values. Passing my known data into the black box
anonymisation algorithm, | could then evaluate if my set based process was functioning correctly.
An important thing to note about black box testing is that as the tester | was required to define
exactly what was expected as output, if these assumptions were incorrect | could have missed a bug
in the system. This meant | needed to develop in depth knowledge about the different algorithms |
was implementing, and understand the differing impact each of these would have on my controlled
dataset. The input to a black box test must also be strictly controlled, | used a few different input
datasets to ensure validity and test different scenarios the algorithms would have to deal with.

Testing has been a significant aspect of implementation. The combination of unit and black box
testing has ensured that the functionality of the system remained of paramount importance. The
anonymisation algorithms are the core functionality of the tool, therefore ensuring correct valid
results has been the focus of my development. | feel this approach has contributed towards a final
system that produces accurate and reliable anonymisations.

58

Ben Lourence - 1111753

6 Results & Evaluation

This section of the report aims to demonstrate and critically assess the performance of the resultant
tool built throughout the project. In order to achieve this several test cases will be used exhibit
system behaviour. Once the test case result have been inspected a critical evaluation of results and
explanation of the selection of tests will also be justified. The figures displayed below are
screenshots taken from the tool before/after the anonymisation has been applied. The test cases
feature a series of fictional data that | have created for purposes of testing the system.

6.1 Test Cases

NoOfTreatments Letter
1 A
2 B
5 C
6 D
9 E
10 F

Figure 6.1.1 — Test Case 1: Input Data Set, System Screenshot

This test case demonstrates the set-based anonymisation algorithm behaviour. Specifically the
difference in operation when opting for various k-level thresholds. The initial input data set is an
extremely concise table, an integer attribute ‘NoOfTreatments’ that will be used to assess the
performance of the default set-based algorithm which has been hard coded into the system.

NoOfTreatments Letter NoOfTreatments Letter
{1, 2} A {1,2,5} A
{1,2} B {1, 2, 5} B
{6, 5} C {1,2,5} C
{6, 5} D {10, 9, 6} D
{10, 9} E {10, 9, 6} E
{10, 9} F {10, 9, 6} F

Figure 6.1.2 — Test Case 1: Output Anonymised Data Set (k=2 vs. k=3), System Screenshot

The output datasets have been successfully anonymised, the left hand table k=2 where as the right
hand table k=3. The key function of this algorithm is to generate a series of clusters, each must
contain at least k elements. Once the clusters have been built they are applied to the original dataset
replacing singular values that have not met the k-level threshold. Examining both test cases it is clear
to see the appropriate number of items has been added to each cluster, 2 and 3 respectively left to
right. Clusters that have been built also contain values that are ‘close’ in meaning to each other.

For example grouping the two lowest integers into a set {1, 2} for the k=2 anonymisation process is
exactly the result that was expected. The greedy set based algorithm evaluates the list of values to
be anonymised and groups them into respective sets in an effort to efficiently optimise the process.
When the k-level threshold is set to 3 the algorithm correctly splits data set into clusters containing 3
items. The algorithm also partitions the data into higher and lower integer values within each cluster

59

Ben Lourence - 1111753

{1,2,5}and {10, 9, 6}. The ordering of the values within the higher integer cluster is not in ascending
order. ldeally these values would be sorted accordingly to make it easier for the user to read
however it appears that this has not been implemented from the test case results.

Animal Letter
4 Animal Snake |A
4 Reptile Snake |B
Lizzard -
Snake Lizard |C
4 Mammal Cat D
Cat Dog E
Dog Dog |F
Dog G

Figure 6.1.3 — Test Case 2: Input Data Set + Anonymisation Hierarchy

The next test case illustrates the performance of a hierarchy-based anonymisation. This particular
anonymisation leverages a simple custom hierarchy that is specified above. A key point to remember
is the algorithm has been coded to count the frequency of item appearances, once the k-level
threshold has been satisfied that value is discarded and no further processing will occur. Even if
similar items are required to be anonymised they will not be grouped with values that have already
satisfied the threshold.

Animal Letter Animal Letter Animal Letter
Snake |A Reptile |A i A
Snake |B Reptile |B . B
Animal |C Reptile |C * C
Animal |D * D Mammal [D
Dog E Dog E Mammal | E
Dog F Dog F Mammal | F
Dog |G Dog |G Mammal |G

Figure 6.1.4 — Test Case 2: Output Anonymised Data Set (k=2 vs. k=3 vs. k=4), System Screenshot

From left to right the figure above displays the anonymised data sets that have resulted from the
hierarchy-based algorithm with respective k-levels: k=2, k=3 and k=4. Each anonymisation produces
very different set of results.

The anonymisation on the left hand side identifies that the values dog and snake both meet the
specified criteria k=2 threshold. The algorithm discards these values and is left with a remaining
items cat and lizard. Due to the hierarchy both the values converge at the animal level of the data
structure, both animals items combined meet the threshold and thus each original value is replaced
by the newly formed animal value.

K=3 anonymisation still retains each original dog value because it satisfies the threshold value.
However snake by it self no longer meets this criteria, ascending the hierarchy it can be combined
with lizard to form 3 objects reptile. This is the expected behaviour and reptile replaces all the

60

Ben Lourence - 1111753

corresponding values in the original dataset. Cat once again does not meet any criteria and thus
ascends to the fully anonymised root value of the hierarchy.

The final anonymisation again presents a stark difference in output simply by updating the threshold
k=4. The 3 instances of dog must be combined with cat to from mammal that meets the required 4
values. Where as snake and lizard form 3 occurrences which cannot meet any level of k=4 therefore
each item is fully anonymised to the root value “*’.

While each k value generates very different output datasets, the processing of each anonymisation is
exactly as intended. This would seem to indicate the user has a lot of control over the output
dataset. Tweaking the threshold values may produce more favourable results; therefore it is up to
the user to ensure the optimum format of anonymised data.

Name EnrollmentDate Postcode Gender Treatment NumberOfTreatments
Sarah [12/03/2014 MK7 7SU |F Drug A
Fahed [09/03/2012 MK7 7TR (M Drug A
Hannah |05/09/2013 MK7 YHE |F Drug C
Dave 06/07/2013 BH21 1SY (M Drug D
James [12/03/2014 BH21 1SY (M Drug B
M
F
F
F

Roy 12/03/2014 BH21 1SY Drug A
Connie [02/11/2011 CF24 4AR Drug C
Kim 09/01/2012 CF25 4RE Drug A
Faye 01/05/2013 MK7 7GH Drug C

~N|= NN N O N oY W

Figure 6.1.5 — Test Case 3: Input Data Set, System Screenshot

Test case 3 features a typical extract of relational data. This set was created to test the functionality
of the tool and also to show case the ability the system has to create highly configurable
anonymisations.

Name EnrollmentDate Postcode Gender Treatment NumberOfTreatments
* 12/03/2014 MK7 7%** [{M, F} [Drug A {1, 3}

* {02/11/2011, 09/01/2012, 09/03/2012} | MK7 7*** | {M, F} |Drug A {9, 6}

* {05/09/2013, 06/07/2013, 01/05/2013} | ******** 1 {M, F} |Drug C 7

* {05/09/2013, 06/07/2013, 01/05/2013} | BH21 1SY |{M, F} |Drug D {9, 6}

* 12/03/2014 BH21 1SY [{M, F} |Drug B 2

* 12/03/2014 BH21 1SY [{M, F} |Drug A 2

* {02/11/2011, 09/01/2012, 09/03/2012} | ******** | {M, F} |Drug C 2

* {02/11/2011, 09/01/2012, 09/03/2012} | ******** |{M, F} |Drug A {1, 3}

* {05/09/2013, 06/07/2013, 01/05/2013} [MK7 7*** [{M, F} [Drug C 7

Figure 6.1.6 — Test Case 3: Output Anonymised Data Set, System Screenshot

The name attribute has been fully anonymised as an explicit identifier therefore all underlying
information is removed at every row.

The enrollment date attribute has been anonymised to level k=3 using a set based anonymisation.
Defining this attribute as a date data type has successfully resulted in closer dates being grouped
together in corresponding sets. The set based anonymisation has also correctly identified the date
12/03/2104 occurs 3 times and therefore shouldn’t be anonymised.

61

Ben Lourence - 1111753

Postcode data has been anonymised using an automatically generated string redaction hierarchy.
Once again setting k-level threshold to 3 has resulted in a mixture of anonymised values; some items
being totally anonymised, others left as their original values. The automatic hierarchy generation
performs as intended obscuring a relevant amount of characters for values that should be partially
anonymised. This process provides a balance between personal privacy and information retention.
Gender has been anonymised into a set that includes both female and male indicators. The mock
treatment attribute has not been anonymised; this is a simplified example of data that
researchers/professionals examining the data would use to find underlying trends when linked to
personal data. Ensuring the rest of the relational data is anonymised sufficiently should mean this
type of information would not need to be obfuscated.

The final attribute number of treatments was imported into the tool as an integer data type.
Performing a set based anonymisation k=2, it is clear to see the algorithm has grouped the
anonymised data sets effectively with close numbers added to the corresponding groups.

Query No: #5
SELECT COUNT (%)
FROM | Input Table v

WHERE

Treatment v | = DrugA

Postcode v | = IMK77sU

Extracted Metrics
D Query No: #5: 1

Query No: #6: 3

Query No: #6

SELECT COUNT (%)
FROM | OutputTable v

WHERE

Treatment v | = DrugA

Postcode v | = [MK77SU

]

Figure 6.1.7 - Test case 3: Post-Processing, Task Based Metric Evaluation, System Screenshot

The post-processing query example uses the input and output dataset from Fig 6.1.5 & Fig 6.1.6
respectively. This particular test case illustrates that more potential matches may occur within an
anonymised dataset due to the information loss that has been enforced to produce k-conformant
tables. The initial query correctly identifies that only one possible match is available from the input
dataset, the second row Fahed lives within such a postcode and was on treatment from drug A. The
secondary query is structured as the first however it is searching through the output dataset. Due to
the anonymisation process and resultant information loss 3 potential matches have been identified.
Rows 1, 2 and 8 within Fig 6.1.6 could all possibly match as the postcode ‘MK7 7SU’ and each has
been subjected to drug A treatment. The post-processing task based metric extractions have
performed exactly as expected and would allow users to gain an insight into the retained
information within anonymised datasets.

62

Ben Lourence - 1111753

A FrkEAEk
A4 M*******
‘ MK******
A4 MK7*****
A MK7 *hEkk

4 MK7 7*%**
b MK7 75**
b MK7 7T** ILoss Attribute: | Postcode ¥ | Value: CF24 4AR ¥ | Result: 0.0000

4 MK7 7G**
4 MK7 7GH*
MK7 7GH ILoss Attribute: | Postcode ¥ | Value: | MK7 7%** ¥ | Result: 0.2857

ILoss Attribute: | Postcode ¥ | Value: | CRroe ¥ | Result: 0.1429

MK7 Y***

A BrEEEREE ILoss Attribute: | Postcode ¥ | Value: | ¥ | Result: 0.8571

A BHFRFEFX
4 BHp****x
A BHP1#%**
BH21 ***

A4 C******X’
A4 CF******
A CFpx#**
[CFZ *Ekk*
b CF25**

Figure 6.1.8 — Test Case 4: Post-Processing, Data Based Evaluation, System Screenshot

This test case features the tools data based metric extraction. The anonymisation hierarchy depicted
above was automatically generated using the applications rule based string redaction hierarchy
generator. The resultant structure was used to anonymise the postcode attribute in Fig 6.1.8. The
post —processing tool allows users to examine the associated information loss when transforming
values to parent nodes in order to achieve k-level conformity. As expected the original leaf node
value ‘CF24 4AR’ produces a result of 0 because no information loss has been incurred. Parent nodes
above this value such as ‘CF******” incur some loss, however because there are only two possible
CF postcode values the information loss isn’t as high as a value closer to the leaf node of an MK
postcode. At this point it is worth reiterating that these calculations work solely based on parent and
leaf values specified in the anonymisation hierarchy. The alternative would be to perform a
calculation on possible values from example CF24 4A* -> CF24 4A[A-R] 26 possible alternatives.
However given the current functionality the test case produces sensible results that appear to
sufficiently reflect the level of information loss imposed on values that maybe utilised by the
anonymisation process.

63

Ben Lourence - 1111753

Name Postcode DOB Requests Department MaritialStatus
* Dr+mx - 1{29/12/2010, 31/12/2010, 10/01/2011} {90, 89} Quality Assurance Single

* 112370972010, 25/09/2010, 10/10/2010} {1,2, 4} Customer Relations Common-Law
* rkkk - 1{19/10/2010, 04/11/2010, 04/12/2010} {38, 40} Customer Relations Single

* M***xxxx 1(21/02/2012, 18/02/2012, 14/02/2012} {41, 42} Payroll Single

* rkkkk - 1{03/03/2011, 08/03/2011, 17/03/2011} {50, 49, 47} | Finances Common-Law
* GFFRxRxx - 1£21/02/2012, 18/02/2012, 14/02/2012} {15, 16} Research and Development |Single

* XFexrrrx o [1121/02/2012, 18/02/2012, 14/02/2012} {50, 49, 47} | Public Relations Divorced

* B 1{26/04/2012, 22/04/2012, 21/04/2012} 85 Payroll Married

* Rxxxsx1{25/04/2011, 29/04/2011, 17/05/2011, 19/05/2011}|{57, 53, 51} | Media Relations Common-Law
* Gk 1409/01/2012, 27/12/2011, 24/12/2011} {15, 16} Research and Development | Married

* o [128/04/2010, 05/05/2010, 09/05/2010} {96, 95, 94} | Finances Single

* H**xxxxx - 1413/01/2012, 11/01/2012, 10/01/2012} {36, 37, 38} | Finances Divorced

* H**xxxxx o 1121/04/2012, 18/04/2012, 16/04/2012} 100 Legal Department Common-Law
* ko {07/03/2012, 27/02/2012} {31, 33} Asset Management Common-Law
* Mx*xxxxx1121/04/2012, 18/04/2012, 16/04/2012} {16, 18, 20} | Human Resources Married

* Trxxxxx - 1{10/05/2010, 16/05/2010, 01/06/2010} {57, 53, 51} | Payroll Single

* SHxmkixx1{07/03/2012, 27/02/2012} {81, 80} Quality Assurance Common-Law
* CF24 4AR [{09/01/2012, 27/12/2011, 24/12/2011} {27, 28, 29} | Customer Service Single

* 005 7*** [{25/04/2011, 29/04/2011, 17/05/2011, 19/05/2011} |{9, 10} Sales and Marketing Divorced

* MC17 5Q* [{11/11/2011, 01/11/2011, 24/10/2011} {43, 46} Finances Common-Law
* QM2 3Y** [{11/06/2011, 09/06/2011, 05/06/2011} {71, 68, 67} | Research and Development|Single

* 12 3**** 1{07/03/2012, 27/02/2012} 19 Asset Management Single

* IX3Z 50B |{12/01/2011, 23/01/2011, 26/01/2011} {31, 33} Tech Support Divorced

* U97 5MG |{15/04/2012, 12/04/2012, 10/04/2012} 54 Payroll Married

* CF24 4AR [{08/09/2011, 23/08/2011, 26/07/2011} {90, 89} Public Relations Married

* IX3Z 6** [{31/01/2012, 17/01/2012, 14/01/2012} 45 Legal Department Single

* XF5T 1M* |{07/06/2010, 24/06/2010} {7, 8} Advertising Single

* H**x1{30/03/2011, 01/04/2011, 07/04/2011} {64, 63, 61} | Customer Service Divorced

* oo 1118/07/2010, 26/07/2010, 20/08/2010} {96, 95, 94} | Accounting Single

* DF*kxkx | 115/04/2012, 12/04/2012, 10/04/2012} {64, 63, 61} | Public Relations Married

* Wik 1120/03/2012, 13/03/2012, 10/03/2012} 100 Advertising Single

* XFrwrwrx—1{12/01/2011, 23/01/2011, 26/01/2011} {88, 86, 83} | Quality Assurance Single

* rkk - 1{25/07/2011, 08/07/2011, 07/07/2011} {21, 25} Accounting Common-Law
* 005 7*** [{11/11/2011, 01/11/2011, 24/10/2011} {71, 68, 67} | Public Relations Divorced

* MC17 5Q*|{17/12/2010, 26/12/2010} 85 Media Relations Married

* QM2 3Y** [{27/02/2011, 28/02/2011, 02/03/2011} {16, 18, 20} | Sales and Marketing Single

* [2 3rx* {05/04/2012, 30/03/2012, 24/03/2012} {34, 36} Human Resources Common-Law
* IX3Z 50B |{11/06/2011, 09/06/2011, 05/06/2011} {41, 42} Payroll Single

* U97 5MG |{28/04/2010, 05/05/2010, 09/05/2010} 100 Research and Development | Common-Law
* CF24 4AR [{30/03/2011, 01/04/2011, 07/04/2011} 19 Payroll Common-Law
* IX3Z 6** [{07/09/2010, 12/09/2010, 17/09/2010} {88, 86, 83} | Customer Relations Divorced

* XF5T 1M* |{31/01/2012, 17/01/2012, 14/01/2012} {64, 63, 61} | Asset Management Common-Law
* L ke de e e e [1C/0A/0N010 12/0A4/00490 410/0A4/0010) (74 £0 £NID 11 InH =

Figure 6.1.9 — Test Case 5: Increased Dataset Size, System Screenshot

Test 5 was targeted at stressing the system further than the previous cases. The input dataset had
100 records, far beyond the numbers tested above. The system handled the increased size
exceptionally well and the execution time of the anonymisation process was not distinguishable
from the smaller sets. For the sake of brevity a figure of the input data has not been shown but will
be listed within the appendix. Despite the mixed anonymisation techniques applied to this larger
relational dataset the tool appears to still function at an acceptable rate. Although with much larger
datasets it may have been appropriate to implement process indicators to inform the user how long
the operation is expected to take and the it’s current stage of competition.

64

Ben Lourence - 1111753

6.3 Critical Evaluation of Results

Evaluating the performance of hierarchy based anonymisations within the tool showed the process
works as designed and intended. However critically assessing the difference in results from Fig 6.1.4
the behaviour to instantly discard values from any further processing once the k-level is satisfied
may cause vast contrasts in results depending on the threshold. The advantage of this approach is
that a high level of information is retained on values that satisfy k-conformity. However the contrast
is that that values that fall short of this are more likely to suffer high information loss because they
have to navigate to high levels of the hierarchy in order to combine with other values to meet the
criteria. This is depicted in Fig 6.1.4 because values that fall short tend to become fully anonymised.
The alternative to this approach is to group values that do not meet the k-level with other values
that have already satisfied the criteria. Overall this would mean that some information loss is
incurred by more values although the remaining data would be more evenly anonymised. In
hindsight perhaps an algorithm that provides more evenly distributed anonymisation across a whole
dataset would be favourable to one that contrasts between stark differences of high and low
information loss.

lloss post-processing data-based evaluation produces sensible metrics based on the amount of
information loss that is incurred by transforming original values to others anonymised values within
the hierarchy. While these metrics make perfect sense within the data anonymisation tool because
the user has access to the corresponding hierarchy. The information maybe far less pertinent once it
has left the context of the application. Attackers looking to uncover the original values and re-
identify individuals would have no prior knowledge of the hierarchy used to anonymise the values.
Therefore to external third parties the lloss calculation maps more appropriately to every possible
value that could occur i.e (CF24 4A* -> CF24 4A[A-Z], 26 possibilities) instead of the actual
descendants of that node in a hierarchy. On the other hand without programming specific data types
such as postcode into the tool the application would not know what could logically fit into such a
gaps. The domain of potential values that could take the place of anonymised characters would have
to be defined every time such a calculation was performed. As such defining behaviour for the tool
to understand that the anonymised character within the redacted postcode ‘CF24 4A*’ could only be
a letter would be a very complex problem. The system could not include every single possible
character in this space as many would produce wildly invalid results e.g ‘CF24 4AS’. Without such
mechanisms the application would require a huge amount of work to add tailored data types.

Unless this behaviour could be incorporated into the tool it may actually be fundamentally incorrect
to base metric calculations upon possible descendants. If the system doesn’t understand that the
redacted postcode could only have possible characters missing then calculating a metric that uses
characters, numbers and symbols as possible descendants would generate a metric that is simply
wrong and does not reflect the true information loss. On balance | believe the way these post-
processing evaluations have been implemented is correct based on the project length and time
constraints. Although | can see the appeal and benefits of a system identifies possible decedent
matches, this is something | have specified later to be discussed within section 7; Future Work.

65

Ben Lourence - 1111753

7 Future Work

7.1 Plugin Algorithm Repository

The most novel feature of the tool is the ability to inject and leverage custom anonymisation
algorithms. The plugin architecture that provides this functionality is an original concept and
something | have not seen in similar targeted applications. These tools appear to force users to
leverage built in algorithms or refactor the algorithms and then rebuild the whole system from
source code. Obviously the ability to plugin custom algorithms (even while the system is running)
gives the tool far more flexibility and transforms the product from an isolated anonymisation
application into a platform for algorithm development. An interesting addition to the system would
be the inclusion of an algorithm repository. Users could upload their developed anonymisation
techniques to a centralised store. Users could also make their algorithms available to other users of
the application via this repository. Additional features such as user ratings and comments would
make a plugin store very attractive to potential users. Similar in concept to many programming IDE
plugin managers that allow developers to download and use third party functionality. Given
sufficient community and demand, users developing algorithms could look at charging a fee to
access certain anonymisation plugins. This would be an interesting approach to revenue generation,
especially if the eventual system source code was open sourced at the end of the project.

While this feature would not add more functionality to the current system, it would open the
possibilities for users of the system and is a natural extension to the plugin architecture.

7.2 Import/Export Custom Hierarchies

The inclusion of functionality to import/export custom created hierarchies is a feature that would
require careful thought before implementation. The obvious benefits of saving time, sharing and
reusing previously built hierarchies are great reasons to implement import/export functionality. The
addition of hierarchy import/export would add a substantial level of complexity to the system.
Defining behaviour to handle previously built hierarchies that no longer contain an identical input
set of data is just one example of many problematical scenarios. The list of unique values would not
be the same this would mean some leaf nodes may not be present in the anonymisation tree.
Options that adapt the tree to accommodate values that are not present could be implemented, but
then the application is changing the hierarchy and therefore may not apply the anonymisation in the
users intended way. Alternatively a hierarchy-based anonymisation cannot be applied if a required
leaf value is not featured in the anonymisation hierarchy. A combination of these difficulties and
time constraints mean that | have not been able to implement this particular feature as the system
stands. However the addition of this functionality would be a natural evolution of the tool and
should rank among the highest priorities for future work.

66

Ben Lourence - 1111753

7.3 ILoss Calculation Extensions

The inclusion of ILoss calculations allows user to extract information loss metrics from
anonymisation hierarchies. This post-processing operation gives users insight into the level of
information utility that is retained by values in comparison to other items in the hierarchy. However
as previously discussed in section 5.8 Post Processing Tools an important interpretation has been
made when calculating these metrics.

As the system has been implemented ILoss is calculated as the number of leaf descendants from the
specified node minus 1 divided by the total number of leaf node descendants for the attribute. This
assumes that only values within the hierarchy are used to define the possible leaf descendants. For
example Fig 3.2 (Algorithm Design section) depicts that the value MK7 75* has 2 leaf values;
therefore the current ILoss method would calculate the descendant number of level nodes as 2.

MK7 78*

MK7 7SA MK7 7SB [B-Z] MK7 7SZ

Figure 7.3.1 - Postcode Anonymisation Hierarchy Possible Descendants

However another technique (depicted in Fig 7.3.1) is to assume no prior knowledge of the structure,
therefore the node MK7 7S* could have 26 possibilities MK7 7S[A-Z]. The node would then have 26
descendant leaf nodes. Originally this method was not implemented because the system calculates
information loss metrics based on the known hierarchy, therefore | interpreted that the actual leaf
descendants should be used instead of the full range of possible values.

An extension to the post-processing tool would allow users to switch between these two methods of
defining how leaf node descendants are generated. Then it would become the users discretion that
influences how the calculation is implemented, instead of forcing them to work upon my personal
interpretation. This project objective would not expand the functionality of the system, however it
would give the user more control to configure the tool. The ability to easily configure the tool would
be a major benefit of the system and ultimately means that as new techniques and best practice are
established within the field, users can tweak configuration to reflect these changes.

67

Ben Lourence - 1111753

7.4 Graphing of information retention metrics

The system features a series of post processing tools. They allow the user to extract a series of
metrics pertaining to the level of information loss that has been incurred by the anonymisation
process. An appropriate extension to this set of tools is a graphing suite that visually depicts the
extracted metrics. These graphs would allow users to group and display information from a number
of different anonymisation sources in one easily readable format. Users would be able to clearly
compare how various anonymisations have impacted the original data set and hopefully allow them
to draw effective conclusions when developing and using anonymisation algorithms. Visually
displaying these metrics would be far more efficient compared to the current method of printing
calculated metrics on screen for the user to examine individually. The graphing suite could leverage
line and bar graphs to depict this information. Graphing metrics was discussed within the initial
report, however due to time constraints it has not been included in the initial solution.

While disappointing that this functionality does not currently feature within the tool the
infrastructure to calculate the metrics has been implemented. Adding graphing functionality would
simply be an extension to visualise these values.

68

Ben Lourence - 1111753

8 Conclusions

The overarching objective of the project was to build a data anonymisation tool that featured a pre-
existing k-anonymisation algorithm to help protect relational datasets. Other sub-objectives were
derived from this project goal. Inclusion of pre/post-processing tools, use of existing
k-anonymisation techniques, the ability to cope with a wide range of data types and an extensible
project structure were all conceived from the original notion of a data anonymisation tool.

The resultant solution is an anonymisation tool that can be used to generate k-anonymity
conformant datasets. The tool currently supports a default set and hierarchy based anonymisation in
addition to a plugin architecture that allows users to run third party algorithms. The plugin
functionality is perhaps the most innovate feature of the project and elevates the solution from a
stand-alone tool into an anonymisation platform that supports algorithm design and development.
While conducting initial research | discovered a few tools with similar anonymisation functionality
such as ARX — Data Anonymisation Tool [14]. However these tools featured one anonymisation
method that was hard coded into the system. This would be sufficient for general users that simply
want to anonymise relational datasets. However as best practice and new techniques emerge the
user is stuck using the same anonymisations until the system is re-built. Although there is relatively
little support for super users who may want to tweak their own custom algorithms, the inclusion of a
plugin architecture within the tool allows researchers/professionals to work in such a way that will
hopefully accelerate the discovery and implementation of information security best practice.

Pre-processing tools have been created that allow users to generate highly configurable and tailored
anonymised datasets. Custom hierarchies are a prime example, they facilitates configurable
anonymisations built exactly to the user specifications. While post-processing tools extract data
metrics that can illustrate information loss incurred by anonymisation. Metrics will be utilised by
users to quantify the quality of results. The inclusion of these tools was vital to ensure the resultant
solution could be effectively used to configure anonymisations and then to evaluate output quality.

The objective to include a wide range of data types within the anonymisation tool was not fully
achieved. In hindsight this was an ambitious objective, the implementation of custom data types
would have required a substantial amount of implementation time for each individual type. Instead
an attitude to handle varying data as a series of generic types appeared to be the most logical
approach. While string, integer, double and date generic data types have all been implemented in
the future more specialised data types would be a logical step forward for example a specific
postcode type. Unfortunately this aspect of implementation never came to fruition due to added
complexity layers to the tool and the associated time constraints.

On the other hand the objective to create an extensible tool suitable for future development has
been a resounding success. The plugin architecture gives anyone with access to the software
platform the ability to perform immediate updates with the inclusion of third party custom
algorithms. In addition the structure of the system has been meticulously designed and
implemented which has resulted in a modular solution. Thanks to this modular structure coupled
with an MVVM architecture individual components can be easily refactored or even completely
replaced without needing to alter large sections of the system to achieve such updates.

The output data sets such as the one produced in Fig 6.1.6 are k-conformant and provide the
necessary levels of personal protection against record linkage attacks and subsequent re-
identification. The tool facilities a range of ways that k-anonymity can be enforced, set based, rule-
based (string redaction) and custom hierarchies. To this end | believe the project has been very

69

Ben Lourence - 1111753

successful delivering a tool that supersedes some of the required functionality. In particular | feel it
is a strong base for future development, as discussed with my supervisor the school of Computer
Science and Informatics has plans to develop further anonymisation projects to model attacks on
relational data. This tool would be an ideal candidate for inclusion as a component of a larger
information security project. Alternatively the tool is suitable for use by one of the many
organisations that want to ensure they are anonymising data sufficiently for public release.

Throughout this project | have learnt and applied various techniques in the field of privacy
persevering data publishing. Having no prior experience with k-anonymity there was a steep learning
curve at the design stage of the project, an acknowledgement must go to my supervisor for working
through numerous examples helping me to understand the underpinning theory. One thing that has
become apparent to myself throughout this project is that despite the best anonymisation tools in
the world, the safety of personal privacy must be ensured by knowledgeable humans with careful
forethought. Anonymising a series of relational attributes is of no useful protection if the person
applying the anonymisation has misunderstood a fundamental piece of information that could result
in the exposure and re-identification of individuals from that dataset. Information security is
constantly evolving field and individuals within it should be prepared to change as best practice and
new threats emerge within the sector. This project has created an anonymisation tool that can safely
protect individual privacy but it must be used correctly with caution urged every step of the way
before publically releasing such data. While continued research and support for increasingly clever
and secure tools should be a priority for the technology industry, an equal if not greater emphasis
should be placed on the teaching and training of appropriate individuals to better understand the
fundamental concepts of privacy persevering data publishing.

| believe certain organisations such as the NHS are indeed doing such a task, through giving their
member’s information governance training [15] in order to sufficiently prepare them to handle
personal data in the modern world. The policy places emphasis on holding data securely while
maintaining confidentially in addition to sharing/disclosing data lawfully and appropriately.
Organisations have the responsibility to define and implement clear and effective policies to handle
and release personal information. Educational institutions should also be equipping the next
generation of workers to protect personal data.

The project has indeed attempted to tackle each of these objectives and for the most part it would
be fair to say has fulfilled the concept idea underpinning its inception. Some particular areas such as
custom hierarchy generation have exceeded my initial expectations where as others have not quite
seen the same progress i.e graphing of resultant data metrics. However the final solution has
produced a tool that can theoretically leverage a huge number of varying k-anonymisation
algorithms. A large amount of design and development has gone into the tool and | would be hard
pressed to implement any more features due to time constraints. The features that have been
implemented work well and | believe the whole application has a general smooth and intuitive feel
that will allow users to quickly generate anonymised datasets with a small amount of application
familiarisation.

70

Ben Lourence - 1111753

9 Reflection on Learning

9.1 Project Management

This process has resulted in the largest academic project | have ever produced. A good approach and
style of management has been of paramount importance at every stage of the project. Planning
work items, organising supervisor meetings in addition to effectively communicating problems and
solutions have been required throughout the process. Without a sustainable style of project
management | would not have been able to successfully implement or document the creation of the
data anonymisation tool.

Working on a project of such magnitude was an overwhelming prospect initially. | felt it would be
hard to keep track of the tasks that had been completed and what was still required. This was
especially prevalent at the start of the project as | attempted to design/implement and document
the project simultaneously. Quickly | felt this was not an appropriate approach and altered my
project management technique accordingly. To alleviate this situation | began to allocate blocks of
time to specific tasks e.g 2 days to program functionality x. This allowed my approach to become
more focused on smaller targeted objectives. Once this had changed | began to feel far more in
control of the project and actually enjoyed the freedom | allowed myself to work with on different
aspects of the project.

Evaluating my management | can identify that by the end the project | was able to effectively
control, track and allocate work to myself. This was all done while maintaining a positive relationship
with my supervisor, arranging meetings, demonstrating my latest work and communicating other
issues that surrounded design or implementation of the tool. However while | was able to develop
personal work management skills there has been no scope to expand such skills in a group context.
However this has been an individual project so intrinsically there have been no opportunities for
group development. Although the personal management skills | have developed can be utilised in
future projects where | will have to work strictly towards tight deadlines.

The change in approach that occurred near the beginning of the project that meant | stopped
attempting to design/implement and document the tool simultaneously. | believe | can multi-task
well however this was not sustainable and in hindsight an unrealistic approach. An important aspect
of project management throughout this process was not to underestimate the time it would take to
complete tasks.

Hofstadter’s law [16] states, “It always takes longer than you expect, even when you take into
account Hofstadter's Law”. Reflecting on this statement | can see that when planning and managing
tasks it is important to assign ample time for completion even if the task has been identified as fairly
non-intensive. Looking back to my initial report project plan, | can easily identify some areas that
needed more time to be completed effectively. Many of the tasks | estimated would take a
significant time to implement still took even longer than initially anticipated. In future projects | will
remember this adage as a guide to ensure that | do not allocate myself too many tasks with not
enough time to successfully implement them.

In the final stages of the project | began to use a whiteboard to note down activities for the week.
This included objectives that needed to be implemented, work items in progress and tasks that had
been completed. | found this approach very effective as it immediately visualised my progress. Given
its success | should have adopted this approach sooner in the project.

71

Ben Lourence - 1111753

In the future projects | will attempt to manage my expectations of how much work can be
successfully implemented with given time constraints. | will also attempt to visualise my progress in
some manner, this could take the form of the previously discussed whiteboard work items technique
or even something more elaborate such as Trello [17] which functions as a smart notice board with
specific tools designed to track and visualise work items. Another important piece of knowledge |
have gained from this process is that | work most effectively when focusing on specific targeted
tasks. After initially attempting to design/implement and document the tool | found that | was more
effective when applying myself to a singular task with a smaller objective. In my future career | will
remember to give myself sufficient time per task and rotate my schedule to achieve them, instead of
attempting to perform all my tasks simultaneously.

9.2 Understanding of Personal Privacy Issues

This project has been centralised around the implementation of a privacy protection tool. Having
little prior experience and understanding of these issues | was required to constantly learn
throughout the design and development stages. While having a small amount of prior experience
within data protection, | had never studied or implemented anything related to k-anonymity.
Throughout the project | have been furthering my understanding of these issues and in particular
record linkage attacks that can mounted to re-identify individuals within relational datasets.

Previously | have not been required to read, understand and apply large quantities of research-based
information. Due to this | found the initial research stages of the project fairly demanding, although
in hindsight this was exacerbated by a fairly inexperienced knowledge of personal privacy issues. As
the project has progressed | have felt more comfortable with my understanding of these issues and
the solutions | have produced to solve the associated problems.

Implementation of the tool has significantly benefited my personal knowledge and understanding.
To this extent the project has been a positive learning experience. On the other hand while a
positive learning experience this has shown me at times the relatively insecure privacy methods that
organisations (some of which hold personal data about myself) use to insufficiently protect their
data. In the future | will be far more aware regarding the personal information organisations store
about myself.

Reflecting on the process of understanding and applying research level content | would spend longer
ensuring | had substantial core knowledge of the underlying concepts. After developing an
understanding of the high level issues | would be far more equipped to under the research level
detailed information. | believe my approach to applying the gained knowledge was suitable and
actually very effective. In the future it would be vitally important to gain an understanding of how to
apply the research level content. However once the process had been completed | would approach
any future iterations of work that require a significant research component in the same manner.

72

Ben Lourence - 1111753

9.3 Plugin Algorithm Architecture

From the initial research stage of the project several possible system architectures were conceived
that aimed to make the tool extensible while providing easy access to implemented algorithms.
Eventually the final decision was made to implement a plugin algorithm architecture because it
fulfilled the project aim to provide a simple extensible platform in addition to supporting more than
the initial hard coded default anonymisations. While conducting research on tools that offered
similar functionality | could not find any projects that supported such a way of allowing users to
leverage third party algorithms. The significant benefits associated with this approach meant that
the plugin solution was favoured to other possible architectures.

Having never implemented a similar system before witnessing each step of plugin functionality being
added to the tool was an exciting process. Reflecting on this aspect of the project | felt the
implementation of a working plugin system was one of my greatest achievements that demonstrates
a well designed and executed final solution. Although during the initial design concepts | felt this
particular goal may have been too ambitious because it took me significantly longer than expected
to research, plan and build a working prototype that exhibited this type of behaviour. However once
this prototype snippet of functionality was operating | recognised that the objective could easily be
incorporated into the resultant solution.

The main advantage to the architecture is that future developers can build and leverage new
anonymisations by dynamically plugging in their code (without even having to restart the
application). This transforms the system from a tool that features a couple of hard coded
anonymisations, into a platform for algorithm research and development. Overall this feature adds
significant functionality, while the design and implementation process although at times was
difficult, it has actually been a hugely positive experience.

On the other hand by implementing a plugin architecture | have made a series of assumptions that
eventually may constrict the behaviour of the system. One such example is that a plugin algorithm
assumes one dataset as input and one anonymised dataset as output, this assumption has been fine
for the length of the project however other anonymisations such as k-anonymity via anatomy may
utilise multiple tables. Obviously the restriction of the plugin algorithm to use one data table cannot
sufficiently accommodate this process. Attempting to design a solution that could solve these issues
was an extremely difficult problem and was certainly a very demanding aspect of the project.

In hindsight the innovative design and implementation of an anonymisation plugin architecture has
been a rewarding learning experience. Having no previous experience there was a large portion of
research and prototype development that accompanied this objective. The resultant solution
operates exactly as intended and does indeed provide an easy flexible way for future developers to
extend the tool with their own custom functionality. As a result of this implementation | have built a
comprehensive base of knowledge related to algorithm plugin structure. | have no doubt the skills |
have gained will benefit me far beyond this project; | would now confidently suggest this approach
as a possible structure for future solutions. | have also built sufficient knowledge to recognise in
which situations this implementation would be appropriate.

Reflecting on this objective | should have spent more time developing a system that could cope with
a wide range of plugins without enforcing strict restrictions such as 1 relational datasetinand 1
relational anonymised dataset as output. On the other hand due to the nature of plugin
implementations some form of commonality (i.e assumptions of behaviour) must be applied.

73

Ben Lourence - 1111753

Given the knowledge | have gained from this objective | would approach this problem in a slightly
different manner. In the future | will aim to spend slightly more time designing and thinking about
the range of possibilities | would like a plugin system to cope with. Once | have settled on a list of
requirements | would then move to develop an initial prototype proof of concept. Spending more
time at this design stage would hopefully lead to the most flexible plugin system possible within
future projects.

74

10 Appendices

Data Anon Tool Complete Project Code Listing
Test Cases Input & Output
TestCasellnput.csv (Fig 6.1.1)
TestCaselOutputK2.csv (Fig 6.1.2, k=2)
TestCaselOutputK3.csv (Fig 6.1.2, k=3)
TestCase2Input.csv (Fig 6.1.3)
TestCase20utputK2.csv (Fig 6.1.4, k=2)
TestCase20utputK3.csv (Fig 6.1.4, k=3)
TestCase20utputK4.csv (Fig 6.1.4, k=4)
TestCase3InputData.csv (Fig 6.1.5)
TestCase3OutputData.csv (Fig 6.1.6)

j. TestCase5InputData.csv

k. TestCase50utputData.csv (Fig 6.1.9)

S 0D o0 T W

75

Ben Lourence - 1111753

Ben Lourence - 1111753

11 References

[1] UK Government. About Data.Gov. Available: http://data.gov.uk/about. Last accessed 19th April
2015

[2] Sweeny L. (2002). K-ANONYMITY: A Model for Protecting Privacy. International Journal on
Uncertainty, Fuzziness and Knowledge-based Systems. 10 (5), p2.

[3] B. C. M. Fung. (2010). Privacy-Preserving Data Publishing: A Survey of Recent Developments. ACM
Computing Surveys. 42 (4), p7

[4] D. C. Barth-Jones. (2012). The "Re-identification" of Governor William Weld's Medical
Information: A Critical Re-examination of Health Data Identification Risks and Privacy Protections,
Then and Now. Analysis and Commentary: "Re-identification" of Governor William Weld. 1 (1), p.1.

[5] Ji-Won Byun. (2007). Efficient k-Anonymization Using Clustering Techniques. DASFAA, LNCS. 4443
, p188.

[6] B. C. M. Fung. (2010). Privacy-Preserving Data Publishing: A Survey of Recent Developments. ACM
Computing Surveys. 42 (4), p22.

[7] A. Kawano. (2013). A Greedy Algorithm for k-Member Co-clustering and Its Applicability to
Collaborative Filtering. Procedia Computer Science. 22 (477-484), 480.

[8] Microsoft. Implementing the MVVM Pattern Using the Prism Library 5.0 for WPF. Available:
https://msdn.microsoft.com/en-us/library/gg405484(v=pandp.40).aspx. Last accessed 26th Feb
2015.

[9] Windows Dev Center. Dynamic-Link Libraries. Available: https://msdn.microsoft.com/en-
us/library/windows/desktop/ms682589(v=vs.85).aspx. Last accessed 29th Mar 2015.

[10] Microsoft. NuGet Gallery, What is NuGet? . Available: https://www.nuget.org. Last accessed
17th April 2015.

[11] John Close. (2009). CsvHelper. Available: https://github.com/JoshClose/CsvHelper. Last
accessed 30th Mar 2015.

[12] Microsoft. Generics (C# Programming Guide). Available: https://msdn.microsoft.com/en-
us/library/512aeb7t.aspx. Last accessed 12th April 2015.

[13] Dot Net Perls. Levenshtein Distance Computations. Available:
http://www.dotnetperls.com/levenshtein. Last accessed 13th April 2015

[14] ARX — Data Anonymisation Tool . Available: http://arx.deidentifier.org/. Last accessed 30th Jan
2015.

[15] NHS. (2014). Information Governance Policy . Available: http://www.england.nhs.uk/wp-
content/uploads/2013/06/ig-policy-1.1.pdf. Last accessed 22nd April 2015.

[16] D. R. Hofstadter. (1999). Godel, Escher, Bach: An Eternal Golden Braid. 20th anniversary ed.
New York: Basic Books, Inc. p.152.

[17] Trello. Available: https://trello.com. Last accessed 25th April 2015.

76

