Exploration and analysis of smartphone
Wi-Fi and Bluetooth data

Eirini Sofia Anthi

A thesis presented for the degree of
Bachelor of Science

CARDIFF

UNIVERSITY
PRIFYSGOL

(AFRDYD

Cardiff University
Computer Science and Informatics
May 2016

Abstract

In this thesis we examine 96 free mobile applications across 11 categories, in
both the Apple App Store and Google Play Store, to investigate how securely they
transmit and handle user data.

For each application, wireless packet sniffing and a series of man-in-the-middle
attacks were performed, to try to capture personal or identifying information. Such
sensitive information included usernames, passwords, search terms, and location/geo-
coordinates data. During the wireless packet sniffing, we monitored the traffic from
the device when a specific application was in use, to examine if any sensitive data
was transmitted unencrypted. At the same time we revealed and assessed the list
of algorithms that each application is using, to establish a secure connection. Dur-
ing the man-in-the-middle attacks, a variety of methods was used in order to try
to decrypt the transmitted information. The third party domains to which various
applications transmitted sensitive information without the user’s permission were
also recorded.

The results showed that although all tested applications established a secure
connection with the server to transmit data, 85% of them supported weak algorithms
to achieve this, which can potentially make the applications vulnerable to attacks.
Additionally, 60% of i10S and 25% of Android applications transmitted unencrypted
user data over the Wi-Fi network. Some of this data was also forwarded to third
party domains. Finally, the third party domains that received a higher percentage
of user data, belonged to Google and Apple.

Acknowledgements

First of all I would like to thank my supervisor, George Theodorakopoulos, for his
valuable guidance and support.

Additionally, T would like to thank my family and my boyfriend, for always be-
ing there for me and inspiring me to want to become the best I can be.

Finally I would like to further extend my gratitude towards my friends, Shaz and
Jason, for their support and friendship the past three years.

Contents

1 Introduction
2 Background

3 Methodology
3.1 Selecting the mobile applications
3.2 Using the applications
3.3 Wireless packet sniffing o000
3.4 Man-In-The-Middle (MITM) attacks
3.4.1 Certificate Validation
3.4.2 Man-In-The-Middle attack with Burp Suit
3.4.3 Man-In-The-Middle attack with mitmprozy
3.4.4 Bypassing Certificate Pinning
3.5 Assessing the Cipher Suites
3.6 Analysing the captured communications

4 Results

4.1 Results from the Wireless Packet Sniffing
4.1.1 Cipher suites used by ¢OS applications
4.1.2 Cipher suites used by Android Applications

4.2 Results from the MITM attack using Burp Suit

4.3 Results from the MITM attack using mitmproxy

4.4 Results for iOS Applications

4.5 Android Applicationso

4.6 Results from the technique used to bypass Certificate Pinning

5 Discussion and Evaluation
6 Bluetooth

7 Future Work

8 Conclusion

9 Reflection

A Appendix Title
A.1 Keywords used throughout the testing.
A.2 Cipher Suites Used by iOS applications
A.3 Cipher Suites used by Android Applications

7

9

10
10
12
12
14
15
16
18
19
21
22

23
23
23
25
26
28
28
33
35

36

39

41

42

43

45
45
48

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1

4.2

4.3

4.4

4.5
4.6
4.7
4.8

6.1
6.2

Sample of network traffic occurred by the Amazon iOS application. . 12

Cipher Suit Format 13
Cipher Suits that Amazon 1OS application uses 14
Man-In-The-Middle Attack 14
Certificate-based Authentication 15
Configuring Burp Suit. 16
Confguring the devices to use a proxy. 17
Captured traffic on Burp Suit. 17
MItMPIrOXY.« v v v e e 18
Installing custom certificate. 18
Capturing HTTPS traffic. 19
iOS SSL Kill on iPhone 20
Evaluation of cipher suits. 21

Amount of cipher suites that :0S applications support and how many

of these are considered to be weak. 24
The weak cipher suites are found at the bottom of the list in the

ClientHello message. i v i i 24
Amount of cipher suites that Android applications support and how

many of these are considered to be weak. 25
The weak cipher suites are found at the top of the list in the Clien-

tHello message 26
Applications rejecting self-signed certificate 27
Warning message on the Android device. 28
Types of data shared with third parties by ¢OS applications. 29
Types of data shared with third parties by iOS applications. 33
Adafruit BLE sniffer. 39
Bluetooth traffic from the smartwatch to the phone. 40

List of Tables

3.1
3.2

4.1

4.2

Al
A2

A3

List of all tested applications. 11
Typesof user data. 22
Sensitive data that we captured for each ¢OS application and the

third party domains that applications forwarded data to. 32
Sensitive data that we captured for each Android application and the

third party domains that applications forwarded data to. 35
Keywords used throughout the testing. 48
Total number of cipher suites used by each application and how many

of these are rated as weak. 49
List of all tested applications. 51

Chapter 1

Introduction

In the last decade, the amount of smartphone users has increased dramatically
[1]. Smartphones are Internet-enabled devices with an operating system (e.g. i0S,
Android, Windows), capable of executing a variety of applications. Most of these
devices are also equipped with voice control functionality, a camera, a Wi-Fi antenna,
Bluetooth and GPS. Due to their capabilities, smartphone owners not only use their
devices to communicate, but they also use them to perform everyday important life
activities. Such activities include researching a health condition, accessing education
resources, navigating and managing their money [2].

Most of the time users are required to share personal information with the mo-
bile applications they use. However, it is often not clear to smartphone users how
exactly these applications handle their personal data. A study by Boyels et al. [3]
showed that 54% of smartphone users decided not to install an application once they
discovered how much personal information they would need to share. Additionally,
30% of the users uninstalled an application that was already on their mobile phone
when they learnt it was collecting personal information they did not wish to share.
The same study also showed that users are particularly sensitive about location
data, with 19% of the users turning off the location tracking feature on their phone,
due to concerns about who could possibly access this information.

The rapid growth of the amount of smartphone users has led to the increase
of security threats related to smartphones. According to the ENISA (European
Union Agency for Network and Information Security), the number one threat is the
leakage of data [4]. This can happen in various ways. When a smartphone gets lost
or stolen, its memory or removable media are unprotected, allowing an attacker to
access the user’s data [4]. Moreover, most of the applications used on a smartphone
device will require the user to change their privacy settings in order to allow the
application to access sensitive information such as contacts, photographs, etc. Many
of these applications have been reported for sharing users personal information with
third parties without their consent. A recent study by Zang et al. [5] showed that
73% of Android and 47% of iOS applications shared personal information with third
parties, including email addresses and location data. Finally, there is data loss that
can occur when a smartphone is connected to Wi-Fi [6].

Even though many smartphone users are aware that the mobile applications they
use may share their personal data with third parties, many do not realise how often
this happens [7]. Furthermore, a recent survey [8], showed that many users are
completely unaware of the risks that come when they share their personal data over

7

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

a Wi-Fi connection, and specifically over public Wi-Fi networks. The most severe
threat is the unauthorised access to their device which can lead to identity theft and
compromised bank accounts [8].

The purpose of this thesis is to examine, in-depth, the data leakage that occurs
when users share personal information with various mobile applications over a Wi-
Fi connection. Such information includes usernames, passwords, search terms, and
location/geo-coordinates data. Additionally, we examine how these applications
handle a user’s personal information by observing the type of data they share with
third parties. Finally, we investigate methods to avoid data leakage. The results
of this research will better inform smartphone users as to how mobile applications
transmit and handle their data.

We perform tests on both Android and iOS devices, as they have a different
operating system and their behaviors as to how they transmit and handle user data
differs.

The following chapters are organised as follows: Chapter 3 describes the experi-
ment methodology. Chapter 4 presents the experiment results. Chapter 5 discusses
the findings and evaluates the research. Chapter 6 explains the reason why we did
not examine the Bluetooth data. Chapter 7 covers the future work and Chapter 8
concludes the thesis. Finally, Chapter 9 contains “The Reflexion”.

8 Chapter 1 Eirini Sofia Anthi

Chapter 2

Background

Previous studies have mainly focused on investigating the types of sensitive data
that various mobile applications share with third parties. The main approach used
is dynamic analysis [9].

Dynamic analysis is used to capture mobile application traffic. The only dis-
advantage of this approach is that requires human intervention, which can limit
the scaling of the experiment. There are various methodologies that fall under this
approach and have been used successfully in the past.

For instance, Rao et al. [10] used a Virtual Private Network (VPN) to mon-
itor the mobile traffic, involving tools such as Meddle. This study showed that a
significant amount of Apple i0S and Google Android applications shared sensitive
information such as emails, locations, names, and passwords as plain-text. A dif-
ferent way to observe network traffic is directly from the device. The Taindroid
application [11] for Android platforms allows users to track how private information
is obtained and released by mobile applications, in real time. A study by Enck et
al. showed that 15 applications sent users location data to third parties and 30 sent
the unique phone identifier, phone number, and SIM card serial number. A research
study by Zang et al. [5] used a third method to monitor network traffic, during which
they performed a man-in-the-middle attack over the Wi-Fi network that the device
was connected. They showed that a very large percentage of mobile applications
shared personal data with third parties and connected to unknown domains.

Another study which used the same method as [5] was that of Thurm et al. [12].
This study showed that a music 108 application shared personal information with
eight different domains. Furthermore, the Federal Trade Commission [13], applied
the same method, to research the behaviour of 15 fitness applications. The results
of this study, showed that 12 of the applications transmitted identifying information
to 76 third party domains .

These studies focused on investigating the types of sensitive data that various
mobile applications share with third parties. However, how securely these applica-
tions transmit this data over Wi-Fi networks had not yet been examined.

In this thesis we build on previous work by testing 96 free applications that
require personal information. We investigate how users sensitive information is
transmitted and handled, using wireless packet sniffing and dynamic analysis with
man-in-the-middle attacks over a Wi-Fi network.

Chapter 3

Methodology

3.1 Selecting the mobile applications

The Google Play Store for Android and the Apple App Store for iOS are the two
largest distribution channels for mobile applications [14], this is why we chose to
examine these two platforms. From a total of 96 applications that were tested,
51 were i0S and 45 were Android. We looked for the most popular applications
as of January/February 2016 that handle sensitive user data, across 10 different
categories: Business, Finance, Food and Drink, Games, Health and Fitness, Music,
Productivity, Shopping, Social Networking and Travel. The 0S applications were
tested on an iPhone 6 and the Android applications on a Motorola Moto e. The
list of the applications that were tested for each platform can be found below in the
table 3.1:

Category Application i Android
Adobe Reader
ADP Mobile Solutions
Dropbox

Business Facebook Pages
Indeed Jobs
Reed.co.uk

Smart Scan Express
Barclays Mobile Banking
Finance PayPal
Pingit
Burger King
Domino’s Pizza
Hungry House
Just Eat
Angry Birds
Bubble Witch 2
Candy Crush
Fruit Ninja
Games Guess the Emoji
Monsters
Piano Tiles
Temple Run

<

NANAANE

Food and Drink

NAVAYASA A AR

ST A A A RN R A S RS A R AV A SRS R AN AN =

NAAANE

10

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table 3.1

Two Dots

Health and Fitness

Clue

iTriage

Lose it!

NAYRAY

Map My Run

MyFitness Pal

Period Tracker Lite

NAVAVAVA AR

Withings

Music

Capitol Fm

SoundCloud

Spotify

NAVAE

Ultimate Guitar

Productivity

BlackBoard

NAVR YAV AR

Google Chrome

NAVE

Safari

Weather

Shopping

Amazon

Ebay

Groupon

GumTree

Wish

Social Networking

Facebook

Facebook Messenger

Instagram

Skype

Viber

Whatsapp

Travel

Booking.com

EasyJet

Expedia

Google Earth

Kayak

NAA A A A A A A A VA SRR VANANANA NS

Tripadvisor

Trivago

v’

N A A A AN A VA SN AN AN AN A SR VANANANE

Table 3.1: List of all tested applications.

Chapter 3

Eirini Sofia Anthi

11

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

3.2 Using the applications

In order to test each application it was necessary to simulate a typical use for 10
to 15 minutes. The time spent on each application varied and exclusively depended
on its type. During the simulation, the basic functions of the application were
explored. These included: creating a user account, searching using various keywords,
performing actions that required personal identifying data, and completing a level
of a game. Specific keywords and personal user data that was used during each
simulation, was recorded. We then searched for these keywords and personal data
in the captured communications. To ensure the integrity of the captured data and
to avoid possible interference of other applications, the following measures have
been taken: during the testing we made sure that only the tested application was
open and no other. For each application all the requested permissions, such as for
sharing location data, apart from the push notifications, were allowed. The reason
we disabled push notifications is because they keep sending data in the background
even when the application is closed [15]. This would result to capturing data not
only from the tested application, but also from applications that were tested before
and at the time had push notifications on.

3.3 Wireless packet sniffing

To identify if any of the applications transmitted unencrypted data over the Wi-
Fi network, we performed wireless packet sniffing using the packet-capturing tool
Wireshark [16]. During this process we passively monitored the mobile traffic from
the smartphone. This free and open source network analyser tool, tries to capture all
the network packets that get transmitted and displays their data in as much detail
as possible [17]. After configuring Wireshark to monitor mobile traffic from the
smartphone, we started using an application. We then observed the mobile traffic
from the device, as shown in the figure 3.1:

N2 RE QesEF I FH aaaE
(W]Apply 2 display filter ... <3¢/> =3 ~| epression.. +
s e =TT T

T iovonn soaie0.zz Toramt o5 7% Standard auery 5640 A ash.onazon.couuk

2 e.000320 192.168.2.2 176.32.108.186. TP 78 50896 - 443 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=32 TSval=49006842 TSecr=@ SACK_PERM=1

N R foRTER] e
= 4 0.022875 192.168.2.2 178.236.7.124 TcP 78 50897 - 443 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=32 TSval=490006867 TSecr=0 SACK_PERM=1

5 0.023208 176.32.108.186 192.168.2.2 Tcp 62 443 - 50896 [SYN, ACK] Seq=0 Ack=1 Win=819@ Len=0 MSS=1460 WS=64

o orommee 100260.2.2 76:32: 208206 TP 54 50830 = 443 MO Seq1 Acked Wine262184 Laneo

7 olozass 19pa66.02 Vossao.ite Tiovi 265 client etto

8 0.042731 192.168.2.2 178.236.7.124 TCP 8 50898 ~ 443 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=32 TSval=490006886 TSecr=0 SACK_PERM=1

9 0.045685 178.236.7.124 192.168.2.2 TP 62 443 - 50897 [SYN, ACK] Seq=0 Ack=1 Win=8190 Len=0 MSS=146@ WS=64

0 br0anise 152 260.22 Trorzs0erenzs e e 50007 = 445 MO Seqel Acke1 wine262184 Leneo

11 0.048217 176.32.108.186 2 TCP 54 [TCP Window Update] 443 - 50896 [ACK] Seq=1 Ack=1 Win=14848 Len=0
[T 12 e.051155 192.168.2.2 TLSv1 286 Client Hello

e e ——

1 oloses ez asease T 1514 server etto

15 oo meazisais 3 Tiovi 1334 corviticts

1 ootz moaamise iasea SO I Gt an

oo mama maes oA S iy B

18 0.059990 192.168.2.2 176.32.108.186 TP 54 50896 - 443 [ACK] Seq=212 Ack=2921 Win=260672 Len=0

s oioszaes iozasesis Vo.dot08106 TCo 54 50896 - 493 ACK] Sea-pis Ackoss Win262140 Lencd

20 0.064536 178.236.7.124 192.168.2.2 TP 62 443 - 50898 [SYN, ACK] Seq=0 Ack=1 Win=8190 Len=0 MSS=146@ WS=64

e oraossd T o o A oI ekmar wirzcaroz Lo

22 0.067138 192.168.2.2 178.236.7.124 TCP 54 50898 - 443 [ACK] Seg=1 Ack=1 Win=262144 Len=0

®owene e 1omaesse T 134 (1P seoment of a ressseanted FoUl

S mennsn moanas REn T St iy, G, S

25 0.079542 192.168.2.2 178.236.7.124 Tcp 54 50897 - 443 [ACK] Seq=233 Ack=1461 Win=260672 Len=0

2 oorosss 1oaaezis Voot Tovi 120 clienc Key Exchange

27 siemosao) waiassiziz TR mam O GG oo
S Frane 13: 266 bytes on vire (3388 BTESY, 785 bytes coptured (2268 bLEsT o .

ot e e
; rotocet orsion 4, Sres 197.168.2.2, Det: 176.236.7.124
Y Tranemission Control Protocel, Src Farts SaboY (08970, Dot pores 443 (443), Seq: 1, Acks 1, Len: 252
» B

T2 i 5e 7 60 3i a3 05 e 6 27 98 00 45 @0

R aNkE nanaERnS ¢

RES R g g g

e n Gk rE pnRaaRey

e n R gRannnas |

A F e :

53 6800 30 0a 11 ca 5 caom o de o chen

e tecad oo g s

N rarauaray

o 57 %0 24 6 55 00 au 02 o6 56 23 on 55 00 1

NN nenn :

& 67 0 32 a0 50 00 o8 00 o0 59 00 13 o0 30 88

S e e kTR

e e 0 e cs e e e

S5 66 2 03 63 33 02 65 33 34 1 %o 68 &0 35 39

P nERpE RuRNRARY

e ana warniisn

pRERRnE RERLNL
Q 7 amazon Packets: 5909 - Displayed: 5909 (100.0%) - Load time: 0:0.166 Profile: Default

Figure 3.1: Sample of network traffic occurred by the Amazon iOS application.

12 Chapter 3 Eirini Sofia Anthi

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Wireshark’s main screen displays the Internet Protocol (IP) address of the source
and destination device of the transmitted packet, the type of the protocol (e.g. TCP,
TLSv1, DNS, etc.), its length, and some information about it. Selecting one of the
packets will highlight the row with its details and in the separate window below,
more detailed information about this packet will be shown.

For each application we searched all the captured packets for user sensitive data
using Wireshark’s build-in filter functionality. All the intercepted communications
were saved for future analysis .

In figure 3.1, we observe that one of the protocols used is the Trasport Layer
Security version 1 (TLSv1). The TLS and its predecessor Secure Sockets Layer
(SSL) (we refer to both as SSL), are responsible for establishing a secure channel for
communication between the client and the server, which ensures that no third party
will eavesdrop or interfere with any of the transmitted messages [18]. Therefore,
for any application that employs SSL, we are unable to read or modify any of the
transmitted messages. However, the SSL connection can be weakened in a number
of ways and hence it is possible to decrypt the transmitted data.

When an SSL connection is established, a handshake known as the TLS Hand-
shake Protocol occurs. This handshake, contains the client hello (ClientHello) and
the server hello (ServerHello) messages [18]. The client sends first the ClientHello
message, which contains a list of supported algorithms (known as cipher suites), in
order to establish a secure connection. The server then replies with the ServerHello
message which contains the selected cipher suit from the client’s list [19]. A cipher
suit consists of a key exchange algorithm, a signature algorithm, a block cipher
algorithm, and a hashing algorithm which computes the authentication key [18].
Usually, it is expressed as a string and has the following format:

[SSL/TLS]_[key exchange]_[signature algorithm] WITH [block cipher]_ [authentication hash]

Figure 3.2: Cipher Suit Format

There is a variety of cipher suites available that provide different levels of security.
The choice of cipher suites is crucial as they can compromise the security of the
communication. It only takes one of the listed cipher suites to be cryptographically
insecure, which is enough to break the secure connection between the client and the
server and hence intercept the communication. This is possible via the T'LS Protocol
Downgrade attack [20] and it is one of the ways in which the SSL/TLS connection
can be weakened.

With Wireshark we were able capture the ClientHello and ServerHello messages,
as it is shown in figure 3.1. We were then able to inspect the ClientHello message
and view its content including the list of the cipher suites the application supported
to establish a secure connection with the server, as per figure 3.3. In this specific
example, we notice that the tested application contains in its list of cipher suites
the TLS_RSA_WITH_RC4_128_MD5, which has known weaknesses as per [21], making
the application vulnerable to MITM attacks.

For each application that we tested, we assessed how cryptographically secure
are the cipher suites that they use to establish a secure connection with the server,
using the method described in section 3.5.

!These files have been submitted together with the final report.

Chapter 3 Eirini Sofia Anthi 13

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

@ Wireshark O BE A o) 2 Bitsh 18%) Mon13:31 Q =
[JoX) M Wireshark - Packet 7 - amazon
1 Cipher Suite: TLS_RSA_WITH_RC4_128_MD5 (0x0004) T
Cipher Suite: TLS_RSA_WITH RC4_128_SHA (0x0805)

Cipher Suite: TLS_RSA_WITH_AES_128_CBC_SHA (0x002f)

Cipher Suite: TLS_RSA_WITH_AES_256_CBC_SHA (0x9035)

Cipher Suite: TLS_ECDH_ECDSA_WITH_RCA_128_SHA (@xce2)
Cipher Suite: TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA (@xc@84)
Cipher Suite: TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA (0xc@@5)
Cipher Suite: TLS_ECDH_RSA_WITH_RC4_128_SHA (@xceec)
Cipher Suite: TLS_ECDH_RSA_WITH_AES_128 _CBC_SHA (@xc@oe)
Cipher Suite: TLS_ECDH_RSA WITH_AES_256_CBC_SHA (0xc@of)
Cipher Suite: TLS_ECDHE_ECDSA_WITH_RC4_128_SHA (8xc0@7)
Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA (@xc009)
Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA (@xc@da)
Cipher Suite: TLS_ECDHE_RSA_WITH_RC4_128 SHA (@xc811)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (@xc@13)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (8xc@14)
Cipher Suite: TLS_DHE_RSA_WITH_AES_128_CBC_SHA (@x033)
Cipher Suite: TLS_DHE_RSA_WITH_AES_256_CBC_SHA (8x8039)
Cipher Suite: TLS_DHE_DSS_WITH_AES_128_CBC_SHA (@x032)
Cipher Suite: TLS_DHE_DSS_WITH_AES_256_CBC_SHA (@x0@38)
Cipher Suite: TLS_RSA_WITH_3DES_EDE_CBC_SHA (0x880a)
Cipher Suite: TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA (@xc@o3)
Cipher Suite: TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA (@xc@ed)
Cipher Suite: TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA (@xc008)
Cipher Suite: TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA (@xc@12)
Cipher Suite: TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA (0x0016)
Cipher Suite: TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA (0x2@13)
Cipher Suite: TLS_RSA_WITH_DES_CBC_SHA (0x009)

Cipher Suite: TLS_DHE_RSA_WITH_DES_CBC_SHA (0x9015)

Cipher Suite: TLS_DHE_DSS_WITH_DES_CBC_SHA (0x9012)

Cipher Suite: TLS_RSA_EXPORT_WITH_RC4_40_MD5 (0x@003)

Cipher Suite: TLS_RSA_EXPORT_WITH_DES48_CBC_SHA (8x008)

Cipher Suite: TLS_DHE_RSA_EXPORT_WITH_DESA@_CBC_SHA (8x0014)
Cipher Suite: TLS_DHE_DSS_EXPORT_WITH_DES4@_CBC_SHA (@x@a11)
Cipher Suite: TLS_EMPTY_RENEGOTIATION_INFO_SCSV (0x00ff)
Compression Methods Length: 1
» Compression Methods (1 method)

No.: 7 - Time: 0.882557 - Source: 192.168.2.3 - DBSHnation: 54.239,17.7 - Protocol: TLSVI - Length: 265 - Info: Clent Hello

_ Close

Figure 3.3: Cipher Suits that Amazon i0S application uses

3.4 Man-In-The-Middle (MITM) attacks

As mentioned earlier, to examine how various applications transmit and handle user
data other than sniffing the packets on the wireless network, we also use dynamic
analysis with MITM attacks. The MITM attack is a technique used to intercept the
communication between two systems, in this case between the client (application)
and the server [19].

During Hypertext Transfer Protocol (HTTP) communication, a MITM attack
targets the Transmission Control Protocol (TCP) layer, which is a protocol that
provides reliable, ordered, and error-checked transmission of packets over a network
[22]. Throughout a MITM attack the original TCP connection gets split into two
new ones [19]. One between the client and the attacker and another one between the
attacker and the server as shown in the figure 3.4. When the original TCP connection
is finally compromised, the attacker is able to act as a proxy and therefore read,
insert, and modify data in the intercepted communication [19].

- 4
Computer \ z Server
A 7
N - 4
Attacker

Figure 3.4: Man-In-The-Middle Attack

There are many tools that can be used to help perform such an attack. Specifi-
cally, in this project MITM attacks were performed, using the tools Burp Suit [23]

14 Chapter 3 Eirini Sofia Anthi

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

and mitmprozy [24]. These tools also helped identify HTTP-based traffic only. We
note that a recent study by Raora et. al [10] showed that TCP flows (HTTP/HTTPS)
are responsible for over 90% of the total traffic volume. In order to perform the at-
tacks described above, we were required to steup a Wi-Fi hot-spot on the computer
that ran these tools and then connect the smartphone device to the Internet, via
this hot-spot.

3.4.1 Certificate Validation

SSL is built on the fundamental concept of certificate-based authentication, which
ensures that the parties involved in the communication, are in fact who they claim
to be [25]. This is the main mechanism that helps avoid man-in-the-middle attacks,
by preventing the use of fake public keys and impersonation [26]. Certificate-based
authentication, is achieved by employing digital certificates. These are special elec-
tronic documents that can identify anyone on the Internet, from an individual to
a company, and are associated with a public key [26]. They contain information
about their owner’s identity and also include the digital signature of an entity that
has verified that the certificate details are correct [27].

Digital certificates are issued and signed by independent third parties or or-
ganisations, that run their own certificate-issuing server, and are able to validate
identities, known as Certificate Authorities (CA). Of course, not every CA issued
certificate is trustworthy, this is why every client or server that supports certificates,
preserves a list of all the trusted CA certificates and therefore CAs [26].

The certificate-based authentication process consists of five main steps as shown
in the figure 3.5 [26]:

@ User enters private-key
password. Directory Server

Server authorizes
access for
authenticated identity.

Server uses certificate and
evidence to authenticate

@ Client retrieves private-key and uses it the user's identity.
to create “evidence” (digital signature).

Figure 3.5: Certificate-based Authentication

In order for a server to validate the identity of a client and grant them access,
the client is required to digitally sign a randomly generated piece of data (evidence)
and send it to the server, together with its digital certificate. The server assesses
the client’s evidence and the digital certificate and based on these, it authenticates
the user’s identity.

From all the above, it is made clear that the validation mechanism of digital
certificates is crucial and any weakening in this process can lead to severe security
issues, making user data vulnerable to MITM attacks. The most dangerous thing
that a client or server can do, that could lead to the above issue, is accepting
certificates that are not signed from a trusted CAs (self-signed certificates) [25].

In this project we tested the mobile applications using the method described in
section 3.4.2, to identify if they do accept self-signed certificates and therefore if
they are vulnerable to eavesdropping and tampering attacks.

Chapter 3 Eirini Sofia Anthi 15

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

3.4.2 Man-In-The-Middle attack with Burp Suit

To examine if an application is accepting self-signed certificates, it was necessary to
configure the smartphone to use a proxy, in this case Burp Suit, which generated and
presented to the client a self-signed certificate. We then monitored the behaviour
of the application in use and observed if it functioned as expected. Additionally,
we checked if we were able to capture any HTTPS traffic on the proxy software. The
steps of the procedure are described below [25]:

1. We ensured that the smartphone did not have any existing custom proxy
certificates in its trust store.

2. On the computer, we disabled the firewall and started Burp Suit proxy. It
was necessary to configure it to listen to all external network interfaces by
specifying the port (8080) and address (All interfaces) as shown in figure 3.6:

& StartBurp ABE@® PR o) = sEeish 29%@) Tue17:04 Q =

Burp Intruder Repeater Window Help

Target [proxy | Spider | scanner | itruder | Repeater | sequencer | Decoder | Comparer | Extender | Project options | User optians
[intercept | HTTP history | websackets history | Options

i
& ™
urp Proxy uses listeners to receive incoming HTTP requests from your browser. You will need to configure your browser to use one of the listeners as its proxy server,
LQJ Burp Pr [HTTP fr bi he Il need fi b f the |
Add Running | Interface re i e ~ .
L J eCe Edit proxy listener
(i | seqes g | coires |
Remove
(2] These sextings control how Burp binds the prox listener
Bindto port. | 8080
Bind to address: () Loopback only
Each installation of Burp generates its own CA @ Allinterfaces tacls or another installation of Burp.
Import / export CA certificate | | Regeng © Specific address: |G]
&
@ Use these settings to control which requests
@ Intercept requests based on the following
| mdd | |Enabled | Operstor | marg
File {
Edit g or Real
g or HTTI
Remove o And URL! e Cancel
L |
Dawn
[Automatically fix missing or superfluous new lines at end of request
@ Automatically update Content-Length header when the request s edited
@ i

Figure 3.6: Configuring Burp Suit.

3. Then we configured the smartphone device to use the proxy. (Settings, Wi-F1i,
we chose the desired Wi-Fi network, selected HTTP Proxy Manual). The IP
address and port of the proxy were the same to the computer in use, as per
3.7

16 Chapter 3 Eirini Sofia Anthi

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

esccoEE T 17:05 65% M)

< Wi-Fi SKYC4255

Renew Lease

HTTP PROXY
Server 192.168.0.8
Port 8080
1 2
ABC DEF
4 5 6
GHI KL MNO
7 8 9
pars Uy wxyz
0 &l

(a) iOS device. (b) Android device.

Figure 3.7: Confguring the devices to use a proxy.

4. Finally we launched the application we wanted to test and simulated a typical
use, while we monitored the proxy to detect if any HTTPS data was being
intercepted, as per 3.8

o0 e Burp Suite Free Edition v1.6.32
Burp Intruder Repeater Window Help

Target Spider | Scanner Tlr\(ruder TRepea(er Tseuuencer TDecnder Tcnmparer TEx(er\der TCntlnr\s Alerts

J | HTTP history | WebSockets history | Options |

[#] Requestto hitp:f jwww tripaduisor.co.uk:80 [104.82.246.88)
Forward Drop | Interceptis on | Action Comment this item lﬂ w
Raw | Params | Headers | Hex

GET /Mobilewativessttings-a_: TGEP ATTRIL.L T
user-agene: Kozilla/5.0 (Tinox; Android 4.4.4; xr1021 Boild/KxG21.5-40] ApplewsbKie/S3T.36 (KHTHL, like Gecko) weraion/d.0 chrome/33.0.0.0 Mobile safari/537.36 Taanpp P
TARXLY ta. #a=131076 =L60215014 ==n_GE calame='Android ' devicsWams=motorola_condor_vEes XT1021 caver=4.4.4 hdpi normal mee=null

mre=n01l connecEionswifi
R-TripAdvisor-uuID: d3t44b17-114b-43b0-acTE-5353100746da
Host: wowr. tripadvisor.co.u

connection: closs

Bocepe-Encoding: gzip

Cookia: taAppDeviceFeaturea=13107¢; takppVeraion=160215014

b
v

? < + > | | Typea search rerm 0 matches

Figure 3.8: Captured traffic on Burp Suit.

If Burp Suit was able to intercept HTTPS traffic from the device without having to
install the proxy’s certificate on the device’s trust store, we know that the application
did indeed accept self-signed certificates and was vulnerable to eavesdropping and
modification via MITM attacks [25].

Chapter 3 Eirini Sofia Anthi 17

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

3.4.3 Man-In-The-Middle attack with mitmproxy

On applications that did not accept self-signed certificates, we were not able to cap-
ture the encrypted traffic that occurred from the device using the previous method.
In order to overcome this, we performed a MITM attack using mitmproxy, as per
figure 3.9 [28].

2: Forwarded

1: Request Request

Client

Server

Figure 3.9: mitmproxy.

Once again, we configured the smartphone to use the proxy, however this time,
we installed the proxy’s certificate in the device’s trust store. mitmproxy contains a
certificate authority implementation and is able to generate digital certificates [28].
Furthermore, to make the client (device) trust certificates issued by mitmproxy, we
registered it manually on the device as a trusted CA. It is necessary to underline
that this method will only work if the application does not employ certificate pinning
[29]. More details about this mechanism and how to bypass it will be discussed in
section 3.4.4.

To intercept traffic with the mitmprozy we followed the steps below [30]:

1. To begin with we started mitmprozry and configured the device to use it, by
setting the correct proxy details (port and IP address).

2. We then opened the browser on the smartphone and visited www.mitm.it. On
the screen we were be able to view this:

Click to install the mitmproxy certificate:

¢ 3a i &2

Apple Windows Android Other

Figure 3.10: Installing custom certificate.

3. We selected the relevant icon and followed the further instructions, as to how to
install the proxy’s certificate in the device’s trust store. When the installation

18 Chapter 3 Eirini Sofia Anthi

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

was done, we opened an application and started observing the mitmproxy’s
screen for HTTPS traffic.

In the mitmproxy’s main screen, we were able to view the mobile traffic that
occured when an application was in use, as per figure 3.11:

GET https://github.com/
+ 200 text/html 5.52kB

GET https://a248.e.akamai.net/assets.github.com/stylesheets/bundles/github2-24f59%e3ded11f2a
1c7ef9ee730882bd8d550cfb8. css
+ 200 text/css 28.27kB

GET https://a248.e.akamai.net
324325424

/assets.github.com/images/modules/header/logov7@4x-hover .png?1

+ 200 image/p
GET https://a248, ama ts.github, com/j ripts/bundles/jquery-b2ca07cb3c906cec
cfd58811b430b:

ipt 32.59kB

fassets.github.com/stylesheets/bundles/github-cb564c47¢c51a14
aflae265d7ebab59c4e78b92ch.css
+ 200 text/css 37.09kB
GET https://a248.e.akamai.net/assets.github.com/images/modules/home/logos/facebook.png?1324
58

?:help [*:8080]

Figure 3.11: Capturing HTTPS traffic.

matmproxy displays the full low summary, including the methods used and the
full Uniform Resource Identifiers (URIs) of the HTTP/HTTPS requests. By selecting
one of the requests, the software allows us to inspect and manipulate it [28]. If
the application hadn’t used any encryption method on the data, we were able to
view it as plain-text. Therefore, this method helped us identify if the applications
transmitted unencrypted information over the network and examine if they further
send any of it to unknown third parties.

To analyse further the captured data, we exported it to a text file and used
a Python script to help us search this file for any user sensitive data. The exact
method is discussed in section 3.6.

3.4.4 Bypassing Certificate Pinning

Certificate pinning is a technique used widely on mobile applications to prevent
the possibility of the device’s trust store being compromised, by manually installing
unverified certificates [29]. Specifically, this technique pins the certificate that the
server uses in the application’s source code, making it ignore the device’s trust store.
As a result it will only establish a connection to hosts signed with certificates that
are pinned in the application’s source code. To applications that employed this
mechanism, we used 105 SSL Kill Switch to attempt to bypass it.

This process was only applied to i0S applications, as it requires jailbreaking,/-
rooting [31] the tested device. The Android device used in this project belongs to
the University, therefore we weren’t allowed to root it. Jailbreaking the iPhone 6,
allowed us to remove all the software restrictions of Apple’s operating system, and
granted us access to the 108 file system and manager. As a result we were able to
download extra items that are unavailable on the official Apple App Store [31].

After jailbreaking the iPhone 6 following the instructions on [32], we gained
access to Cydia, the unofficial iOS App Store. From there we downloaded and

Chapter 3 Eirini Sofia Anthi 19

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

installed a tool called iOS SSL Kill Switch, as described on [33]. This tool, disables
the certificate validation process on the device, leaving it exposed to MITM attacks.
After we successfully installed this tool we were able to see it within the System
Settings, as shown in the figure 3.12:

= 16:35 4 = 16:40 @4
Settings < settings SSL Kill Switch 2

Twiter

Facebook -
Disable Certificate Validation L)

Flickr SSL Kill Switch 2

0:8(

Vimeo

L1 SSLKill Switch 2

Angry Birds
BubbleWitch2
Cardiff Bus

Dropbox

8«08 @®

#] FruitNinjaFree

(a) Installed SSL Kill. (b) Enabling SSL Kill

Figure 3.12: iOS SSL Kill on iPhone

Having installed and enabled 108 SSL Kill Switch, we used mitmproxy, following
the method described in the previous section 3.4.3, to observe if we could capture
any HTTPS traffic.

20 Chapter 3 Eirini Sofia Anthi

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

3.5 Assessing the Cipher Suites

For each application tested we were able to identify the list of cipher suites they
supported, to establish a secure connection with the server, as described in section
3.3. Each cipher suit was assessed to discover if any of these are insecure, making
the application vulnerable to MITM attacks.

To achieve this we used data from O-Saft [34] tool, which is used to inspect
information about SSL/TLS certificates and tests the SSL/TLS connection, according
to a given list of cipher suites. The code? within this tool contains an evaluation of
the strength of different cipher suites, which we isolated and used to assess the cipher
suites identified from the applications. To rate a cipher suite as weak or strong, this
script examines the level of security of the individual algorithms (including the
length of the key they use - if applicable), that compose the cipher suit. Below in
figure 3.13, is presented part of this script:

checkeciphers.pl

' ADH-AES128-5HA' [qw(veak SSLv3 SHA1 None
' ADH-AES256-5HA" [qw(SSLv3 SHA1 None
' ADH-DES-CBC3-SHA' [qw(SSLv3 SHA1 None
' ADH-DES-CBC-SHA' => [qw(SSLv3 6 SHA1l None
' ADH-RC4-MD5 ' [qw(SSLv3 RC MD5 None
' ADH-SEED-SHA" [qw(weak S5Lv3 SHA1 None

' AECDH-AES128-SHA' [qw(weak SSLv3 SHA1 None

' AECDH-AES256-SHA' == [qw(ak SSLv3 SHA1 None
' AECDH-DES-CBC3-SHA' [qwl(SSLv3 SHA1 None
' AECDH-NULL-SHA' => [qw(we SSLv3 None SHA1 None
' AECDH-RC4-SHA' [qw(weak SSLv3 SHA1 None
'AES128-SHA" [qw(HIGH SSLv3 SHA1 RSA
'AES256-SHA" [qw({ HIGH S5Lv3 SHA1 RSA
'DES-CBC3-MD5" [qw(HIGH SSLv2 MD5 RSA
'DES-CBC3-SHA" => [gw(HIGH SSLv3 SHA1 RSA
'DES-CBC3-5HA" [qw(HIGH SSLv2 SHA1 RSA
'DES-CBC-MD5 ' [qwl(LOW SSLv2 6 MD5 RSA
'DES-CBC-SHA' [qw(LOW SSLv3 6 SHA1 RSA
'DES-CBC-SHA' [qwl(LOW SSLv2 6 SHA1 RSA
'DES-CFB-M1" [qw(weak SS5Lv2 54 MD5 RSA
'DH-DSS-AES128-5HA' [qw(medium -?- SHA1 DSS
' DH-DSS-AES256-SHA' => [qw(medium -7 SHA1 DSS
' DH-RSA-AES128-SHA' [qw(medium -7 SHA1 RSA
' DH-RSA-AES256-5HA' [qw(medium -7 SHA1 RSA
'DHE-DSS-AES128-SHA! [qw(HIGH S5Lv3 SHA1 DSS
' DHE-DSS-AES256-SHA' [qw(HIGH SSLv3 SHA1 DSS
'DHE-DSS-RC4-SHA' [qw(weak SSLv3 SHA1 DSS

Figure 3.13: Evaluation of cipher suits.

The left list in the script contains all the different combinations of cipher suites.
This is followed by a description of the level of their security, described as weak,

2This was submitted together with the report

Chapter 3 Eirini Sofia Anthi 21

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

medium, and high. Immediately after, is displayed a break down of the each cipher,
which explains the algorithms they contain and their key lengths in further detail.

3.6 Analysing the captured communications

To analyse the captured data, we wrote a Python script®. This helped us search
the saved data in the text files, for any personal user data that might have been
transmitted in plain-text. Specifically, the data we looked for included: Personal
Identifying Information (PII) such as names and passwords, search terms, and geo-
coordinate data, including longitude and latitude values. In the table 3.2, we present
all the types of user data that the script looked for in the text files. The complete
list of the keywords that were used throughout the simulations and therefore we
looked to find in the captured data, can be found in the Appendix A.1. Moreover,
in our Python script we included regular expressions, in order to identify all the
URIs of the requests that the application performed POST requests to. This way we
were able to discover if any of the applications transmitted personal user data to
unknown domains.

Categories of data Data types
Employment (Job Searches)
Medical
Private Messaging (chats, texts, etc.)
Searching
Latitude
Longitude
Address
Age
Date Of Birth
Device Information (e.g. Device ID)
Email Address

PII Gender
Name
Password
Post Code
Telephone Number
Username

Behavior

Location

Table 3.2: Types of user data.

In order to ensure that our results were reliable, every time that the script found
an occurrence of a keyword within a text file, we manually inspected the findings
to confirm that they are correct and identify any further information. For instance,
if the script found a match for the “1990”, we manually examined the result to
ensure that the finding is indeed the user’s year of birth and not a part of some
other information such as long integer. This process was also necessary in order to
discover the destination domain, of the data that was transmitted and identified as
plain-text.

3This was submitted together with the report

22 Chapter 3 Eirini Sofia Anthi

Chapter 4

Results

4.1 Results from the Wireless Packet Sniffing

All the tested mobile applications for both iOS and Android platforms employed the
latest SSL protocol, to establish a secure channel for communication. As a result,
although we were able to capture the transmitted data, it was not possible for us to
read it because it was encrypted. The only case in which we had the opportunity
to capture transmitted data in plain-text, was when we tested the mobile browsers,
Safari on the iPhone and Google Chrome on the Motorola, and performed requests
that did not require a secure connection.

4.1.1 Cipher suites used by :0S applications

We examined and assessed the cipher suites in 51 iOS applications, 45 of which
were found that use the same set of 26 cipher suites. From these 26 suites, 4 are
considered to be weak and shouldn’t be used. Only 6 of the tested applications
used less than 26 suites and didn’t support any weak suites. A visual representation
of these results is displayed in figure 4.1. A detailed table showing how many ci-
pher suites each application uses and how many of these are considered to be weak,
can be found in appendix A.2. The 4 insecure cipher suites that the applications
used are: TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, TLS_ECDHE_RSA_WITH_RC4_128_
SHA, TLS_RSA_WITH_RC4_128_SHA, and TLS_RSA_WITH_RC4_128_MD5. In the Clien-
tHello message, for all 10S applications, we observed that these 4 suites were found
to be at the bottom of the list, as per figure 4.2. The order in which the suites
appear in the ClientHello message, denotes the client’s preferred suites (with the
client’s first preference first). Therefore in this case, the four weak cipher suites are
the least preferred suites by the client and are unlikely to be used to establish a se-
cure connection [35]. Nevertheless, even in this situation these cipher suites should
not be used as a TLS Downgrade Attack [20] could be used against them.

23

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

2

Applications Amount of Cipher Suites Used Weak Suites

Figure 4.1: Amount of cipher suites that 10OS applications support and how many

of these are considered to be weak.

& Wwireshark @ @O sy o)

A m mIRE Qe EF S E QA QXN

[] [] M Wireshark - Packet 20 - viber

Session ID Length: 32
Session ID: 7596492620 173fef06e0097. ..
Cipher Suites Length: 52

v Cipher Suites (26 suites)

Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (@xce2c)
Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (@xC@2b)
Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 (@xc024)
Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 (@xc023)
Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA (@xc00a)
Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA (8xc629)
Cipher Suite: TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA (@xcoes)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (@xc030)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (@xcd2f)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (@xc028)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128 CBC_SHA256 (@xce27)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (8xc@1d)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (@xcel13)
Cipher Suite: TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA (xc@12)
Cipher Suite: TLS_RSA_WITH_AES_256_GCM_SHA384 (8x089d)

Cipher Suite: TLS_RSA_WITH_AES_128_GCM_SHA256 (@x0@9c)

Cipher Suite: TLS_RSA_WITH_AES_256_CBC_SHA256 (@x003d)

Cipher Suite: TLS_RSA_WITH_AES_128_CBC_SHA256 (8x083c)

Cipher Suite: TLS_RSA_WITH_AES_256_CBC_SHA (0x@035)

Cipher Suite: TLS_RSA_WITH_AES_128_CBC_SHA (@x002f)

Suite: TLS_ECDHE_ECDSA_WITH_RC4_128_SHA (@xc087)
Cipher Suite: TLS_ECDHE_RSA_WITH_RC4_128_SHA (9xcoll)
Cipher Suite: TLS_RSA_WITH_RC4_128_SHA (0x0005)
Cipher Suite: TLS_RSA_WITH_RC4_128_MDS (0x8004)

Comp! on Methods Length: T
» Compression Methods (1 method)

Cipher Suite: TLS_EMPTY_RENEGOTIATION_INFO_SCSV (8x@0ff)

No.: 20 - Time: 8142040 - Sourcs: 192.168.2:2 - DESHinaton: 17.15%466.154 - Protocol: TLSY1.2 - Lengih: 305 - Info: Cilent Heio

Close

Figure 4.2: The weak cipher suites are found at the bottom of the

ClientHello message.

list in the

24 Chapter 4

Eirini Sofia Anthi

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

4.1.2 Cipher suites used by Android Applications

From the 45 Android applications that we tested, 27 used the same set of 35 cipher
suites, of which 4 are considered insecure. 11 of the applications used less than 35
cipher suites and from these only 6 did not support any insecure suites. 3 of the
applications used more than 35 suites and only 1 was found to not support weak
cipher suites. Finally, we weren’t able to capture the ClientHello message for 4
applications and as a result it wasn’t possible to examine the cipher suites they use.
A visual representation of these results is displayed in figure 4.3. A detailed table
showing how many cipher suites each application uses and how many of these are
considered to be weak, can be found in appendix A.3.

The insecure cipher suites supported by the Android applications are exactly
the same ones that were found in :0S applications. These suites include the: TLS_
ECDHE_ECDSA_WITH_RC4_128_SHA, TLS_ECDHE_RSA_WITH_RC4_128_SHA, TLS_RSA_
WITH_RC4_128_SHA, and TLS_RSA_WITH_RC4_128_MD5. In the ClientHello message
these suites were found to be at the top of the list, which shows that these are the
client’s most preferred suites, as per figure 4.4. In case the server accepts the client’s
preferences (the server is free to ignore the client’s order and can pick the cipher
suit that thinks it is best [35]) a connection will be established using one of these
insecure suites, making the application vulnerable to MITM attacks. Conclusively,
we can say that 38 out of the 45 tested applications are vulnerable to MITM attacks.

Applications B Amount of Cipher Suites Used Weak Suites

Figure 4.3: Amount of cipher suites that Android applications support and how
many of these are considered to be weak.

Chapter 4 Eirini Sofia Anthi 25

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

& Wireshark

VO BE AL %) S British 18%)

Mon 13:31

M Wireshark - Packet 7 - amazon

Cipher Suite:
Cipher Suite:

TLS_RSA_WITH_RC4_128_MD5 (0x@004)
TLS_RSA_WITH_RC4_128_SHA (0x0005)

Cipher Suite:
Cipher Suite:

TLS_RSA_WITH_AES_128_CBC_SHA (0x082f)
TLS RSA WITH AES 256 CBC SHA (0x0@35)

[cipher suite:

TLS_ECDH_ECDSA_WITH_RC4_128_SHA (@xce02) |

Cipher Suite:
Cipher Suite:

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA (0xc@84)
TLS ECDH ECDSA WITH AES 256 CBC SHA (0xc@05)

[cipher suite:

TLS_ECDH_RSA_WITH_RC4_128_SHA (@xceec)

Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:
Cipher Suite:

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA (@xc@@e)
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA (@xc@ef)
TLS_ECDHE_ECDSA_WITH_RCA_128_SHA (@xc0@7)
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA (@xc8@9)
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA (@xc@@a)
TLS_ECDHE_RSA_WITH_RC4_128_SHA (8xc@11)
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (8xc®13)
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (@xc@14)
TLS_DHE_RSA_WITH_AES_128_CBC_SHA (@x0033)
TLS_DHE_RSA_WITH_AES_256_CBC_SHA (0x0039)
TLS_DHE_DSS_WITH_AES_128_CBC_SHA (0x@032)
TLS_DHE_DSS_WITH_AES_256_CBC_SHA (0x0038)
TLS_RSA_WITH_3DES_EDE_CBC_SHA (8x000a)
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA (@xc0@3)
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA (@xceed)
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA (@xc@8)
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA (9xc012)
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA (x0016)
TLS_DHE_DS5_WITH_3DES_EDE_CBC_SHA (0x0813)
TLS_RSA_WITH_DES_CBC_SHA (8x8009)
TLS_DHE_RSA_WITH_DES_CBC_SHA (0x2@15)
TLS_DHE_DS5_WITH_DES_CBC_SHA (0x2812)
TLS_RSA_EXPORT_WITH_RC4_40_MD5 (0x8003)
TLS_RSA_EXPORT_WITH_DES4@_CBC_SHA (x0008)
TLS_DHE_RSA_EXPORT_WITH_DES48_CBC_SHA (8x0014)
TLS_DHE_DSS_EXPORT_WITH_DES48_CBC_SHA (@x0011)
TLS_EMPTY_RENEGOTIATION_INFO_SCSV (@x0@ff)

Compression Methods Length: 1
» Compression Methods (1 method)

No.: 7+ Timo: 0.852857 - Source: 192.168.2.3 - Dostinglion: 54.239.17.7 - Protocol: TLSv1 - Longin: 265 - info: Cilon! Heilo

Close

Figure 4.4: The weak cipher suites are found at the top of the list in the ClientHello
message

4.2 Results from the MITM attack using Burp

Sut

We performed a MITM attack using Burp Suit to 51 1OS and 45 Android applica-
tions, in order to check if they would accept self-signed certificates that were not
installed in the device’s trust store. We found that none of the applications for both
platforms accepted the unverified certificate, prompting us with a message as shown
in figure 4.5. As a result, we were not able to capture any of the HTTPS traffic that
occurred during the simulation of a typical use for each application.

26

Chapter 4 Eirini Sofia Anthi

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

eecco EE & 11:58 7 3 69% M)

Error

The certificate for this
server is invalid. You might
be connecting to a server

that is pretending to be

Error
The operation couldn’t be

completed. (NSURLErrorDomain
error -1012.)

“m.easyjet.com” which
could put your confidential
information at risk.

Ok

(a) Trivago on i0OS (b) EasyJet on iOS

A Security warning

A There are problems with the

security certificate for this site.
There are problems with the

security certificate for this X This certificate is not from
a trusted authority.

Continue View Cancel
certificate

site.

Cancel Continue

(c) Indeed on Android (d) Google Chrome on Android

Figure 4.5: Applications rejecting self-signed certificate

Chapter 4 Eirini Sofia Anthi 27

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

4.3 Results from the MITM attack using mitm-
proxy

In order to perform this MITM attack we had to install the certificate that mitmproxy
generated in the trust store of each device. After we completed this procedure, we
observed that the Android device displayed a warning message as per figure 4.6,
to inform us that an unauthenticated certificate is currently being used. On the
contrary, on the 10S device we did not get any warnings about the fake certificate.
Nevertheless, at this point we were able to capture HTTPS traffic from both devices,
hence we started testing the applications, the results of which are presented in the
following sections.

A Network monitoring

A third party is capable of
monitoring your network activity,
including emails, apps, and secure
websites.

A trusted credential installed on
your device is making this
possible.

Check trusted credentials

Figure 4.6: Warning message on the Android device.

4.4 Results for iOS Applications

We performed a MITM attack using mitmprozy to 51 iOS applications to investigate
if any sensitive user data gets transmitted unencrypted over the Wi-Fi network and
also to examine if any of these applications sent sensitive data to third party domains.
From the 51 applications we found that 30 transmitted the data unencrypted over
the network, of which 20 forward it to third party domains. 8 of the applications used
encryption on the actual user data, therefore although we captured the transmitted
data, we were unable to read it. 12 applications used certificate pinning and did
not function at all, claiming that there is a problem with the network. The table
4.1, shows the sensitive data that we captured for each application and the domains
that each one was forwarded to . In the table we marked applications that employed
certificate pinning with an xmark and used the abbreviation form of non applicable
(n/a) where data was not forwarded to any third party domains.

The Burger King, Indeed Jobs, Lose it!, and Ebay applications transmitted
the most unencrypted user data, which included: usernames, passwords, emails,
location, gender, and search terms. Additionally we managed to capture user-
names and passwords for Spotify, Blackboard, Instagram and EasyJet. The ap-
plications that forwarded the most data to third party domains was Indeed Jobs
and Burger King. Gaming applications mainly transmitted and shared information
about the device such as: phone model, screen size, etc. Moreover, the third party

28 Chapter 4 Eirini Sofia Anthi

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

domains that received the most sensitive user data were googleanalytics.com,
googleservices.com, and apple.com. Figure 4.7, shows the types of data that the
20 108 applications shared with third parties.

Types of data shared most by iOS applications

PIl ®Behavioural Location

Figure 4.7: Types of data shared with third parties by ¢OS applications.

The fact that we were able to capture the username, password, and email for
Instagram, EasyJet, Blackboard, Ebay, and Spotify, made us think that this might
actually be a security issue. If an unauthorised person logged into these applications
using these credentials, they would have access to much more sensitive information
such as PayPal, bank accounts, home address, passport details, etc. Therefore we
decided to report our observations to each of the application’s development teams,
using the Responsible Disclosure' procedure. Facebook (for Instagram), Spotify, and
Blackboard replied to us thanking us for reporting this issue, confirming that it is
indeed a security flaw.

Adobe none n/a
ADP Mobile Solutions none n/a
% Facebook Pages X X
% Dropox X X
M password n/a
Indeed Jobs email googleadservices.com

'This procedure involves privately notifying affected software vendors of vulnerabilities. The
vendors then typically address the vulnerability at some later date, and the researcher reveals full
details publicly at or after this time [36].

Chapter 4 Eirini Sofia Anthi 29

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table 4.1

search terms

googleanalytics.com

Reed none n/a
Smart Scan Express none n/a
Y Barclays Mobile Banking X X
§ Paypal X X
a Pingit X X
username n/a
googleapis.com
email googleanalytics.com
facebook.com
= Burger King
S search terms googleanalytics.com
o password n/a
z telephone n/a
g
2 post code n/a
location n/a
Domino’s Pizza L. crashlitics.com
device info
apple.com
Hungry House device info apple.com
Just BEat location stats.ge
rovio.com
Angry Birds device info toons.tv
apple.com
Bubble Witch device info adtrack.com
apple.com
Fruit Ninja device info facebook.com
% amazon.com
% apple.com
O device info google.com

Guess the Emoji

googleads.com

twitter.com

Piano Tiles

device info

apple.com

googleads.com

Temple Run

device info

apple.com

Two Dots

device info

apple.com

30

Chapter 4

Eirini Sofia Anthi

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table 4.1

Clue none n/a
. iTriage search terms googleads.com
= gender
= i email
- Lose it!
= username n / a
= device info
< :
K Period Tracker none n/a
MyFitness Pal name googleads.com
username n / a
Withings location n/a
Capitol Fm e'ma1'1 iech.ch
o device info youtube,com
é Soundcloud device info n/a
username
Spotify n/a
password
Ultimate Guitar search terms n/a
= Blackboard username n/a
i password
= Safari none n/a
kS
D% Weather none none
Safari X X
Amazon search terms n/a
email
username
o0 Ebay n/a
= password
2 '
2 location
=
0 username
Cumtree googleads.com
search terms
ender
Wish g ‘ yahoo.com
date of birth
_56 Facebook X X
% Facebook Messenger X X
Z. username n / a
= Instagram
= password
o)
e Skype X X
Eirini Sofia Anthi 31

Chapter 4

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table 4.1

Viber none n/a
Whatsapp X X
Booking.com email googleads.com

search terms

= EasyJet username twitter.com
é password
Expedia search terms apple.com
Google Earth none none
Kayak X X
Trivago X X

Table 4.1: Sensitive data that we captured for each 1OS application and the third
party domains that applications forwarded data to.

32 Chapter 4 Eirini Sofia Anthi

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

4.5 Android Applications

From the 45 applications that we examined, 11 transmitted data unencrypted over
the Wi-Fi network. 9 applications used encryption on the actual user data so al-
though we were able to capture the traffic we were not able to read it. Furthermore,
25 applications employed certificate pinning and did not function throughout this
process. The table 4.2, shows the transmitted sensitive data that we captured for
each Android application and also the third party domains to which it was sent.

Ebay, Gumtree, and Booking.com, were the only applications that transmitted
unencrypted usernames and passwords. Domino’s Pizza, Gumtree, and Booking.com
shared with third parties all the terms that were searched for in the application, loca-
tion data was only shared by Just Eat and gaming applications mainly transmitted
and shared device information. The third party domains that received the most user
sensitive data were googleads.com and apple.com. Figure 4.8, shows the types of
data that the 11 Android applications shared with third parties.

Types of data shared most by iOS applications

PIl ® Behavioural Location

Figure 4.8: Types of data shared with third parties by ¢{OS applications.

Adobe X X
% Facebook Pages X X
= Dropox X X
3 Indeed Jobs none n/a

Reed none n/a

Chapter 4 Eirini Sofia Anthi 33

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table 4.2

Burger King none n/a
"§ Domino’s Pizza search terms googleads.com
- Hungry House device info apple.com
Just Eat location stats.ge
rovio.com
Angry Birds device info cloudads.net
googleads.com
Bubble Witch device info adtrack.com
apple.com
g Guess the Emoji device info google.com
= googleads.com
© twitter.com
Don’t tap the white tile device info apple.com
googleads.com
Temple Run device info apple.com
Two Dots device info apple.com
% Clue none none
E iTriage X X
&3 Lose it! X X
% Period Tracker X X
= MyFitness Pal X X
o Capitol Fm X X
é Soundcloud X X
Spotify X X
g Blackboard X X
A Google Chrome X X
Amazon search terms n/a
email
o Ebay username n/a
-g password
%O location
Curntree username n/a
search terms googleads.com
Wish none n/a

34

Chapter 4

Eirini Sofia Anthi

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table 4.2

e Facebook X X
= Facebook Messenger X X
% Instagram X X
% Skype X X
'§ Viber X X
” Whatsapp X X

Booking.com email n/a

search terms googleads.com
EasyJet X X
= Expedia X X
g Google Earth X X
= Kayak X X
Tripadvisor X X
Trivago X X

Table 4.2: Sensitive data that we captured for each Android application and the
third party domains that applications forwarded data to.

4.6 Results from the technique used to bypass
Certificate Pinning

We jailbroke the iPhone 6 and used SSL Kill Switch, on the 1OS applications that
employed certificate pinning, in order to investigate if it is possible to bypass this
mechanism and capture the transmitted data. We found that this tool was effective
on 75% of the applications. As a result we managed to capture the traffic that
occurred while we were testing them. The other 25% was able to detect that the
device was jaibroken and did not operate. Additionally noticed that none of these
applications encrypt the users data in order to transmit it.

Chapter 4 Eirini Sofia Anthi 35

Chapter 5

Discussion and Evaluation

We performed wireless packet sniffing to investigate if any of the applications trans-
mitted data unencrypted over the Wi-Fi network. Our results showed that all the
applications for both 10S and Android platforms used SSL protocol to establish a
secure channel for communication with the server. This protocol is fairly employed
by developers, as it provides protection against passive eavesdropping [24]. Anyone
performing wireless packet sniffing over the network will be able to capture the traf-
fic, but they won’t be able to read it as it is encrypted. SSL may provide privacy and
data integrity between a client and a server, however it can be weakened and the
cipher suites that applications use to establish this connection have a great role in
this. We examined all the cipher suites that applications support in order to estab-
lish a secure connection, and we found that the majority of them for both platforms
and specifically 90% of the iOS and 80% of the Android applications, supported
four insecure cipher suites. These suites where the same for both operating systems
and included the: TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, TLS_ECDHE_RSA_WITH_
RC4_128_SHA, TLS_RSA_WITH_RC4_128_SHA, and TLS_RSA_WITH_RC4_128_MD5.

These cipher suites are considered to be weak mainly because they use the RC4
stream cipher. Even though RC4 is widely supported and preferred by most servers,
it has been know to have a variety of cryptographic weaknesses, making it unable to
provide a sufficient level of security [21, 37]. For this reason, according to the Internet
Engineering Task Force (IETF), the RC4 algorithm is prohibited and clients must
not include RC4 ciphers in their ClientHello message. Additionally, the MD5 hash
algorithm is also known to have cryptographic weaknesses and ciphers that employee
it should not be used [18, 38]. A few of the reasons that applications support these
suites although they are considered to be insecure and have been prohibited, include:
that are compatible with most servers, have simple design, and are fast due to the
reduced amount of operations they need to perform [39]. Nevertheless, 85% of all
the tested ¢:OS and Android applications that support these suites, even though
they use SSL, are considered to potentially be vulnerable to MITM attacks.

We also tested the applications in order to investigate if they accept self-signed
certificates. We found that none of the applications, for both ¢{OS and Android,
accepted the self-signed certificate that Burp Suit proxy generated. This is an
indication that accepting self-signed certificates is indeed a severe security issue
that developers are aware of, making the certificate validation processes as robust
as possible [25].

Using mitmprozy we established that approximately 60% of the :OS and 25% of

36

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

the Android applications, transmitted and forwarded sensitive unencrypted data to
third party domains. The most common data that was forwarded by applications
to third party domains was Personal Identifying Information (PII) and Behavioural
including: device information, email, name and search terms. For both platforms,
gaming applications mainly transmitted and forwarded information about the de-
vice. A reason why PII and behavioural types of data are shared with third parties,
could be that this information is used by these organisations to develop targeted
advertising [40]. The percentage of Android applications that shared user data with
third party domains seemed to be significantly less than the percentage of the iOS
applications. This was due to the fact that 20% of Android applications encrypted
the actual user data and 56% employed certificate pinning. On the other hand only
15% of the iOS applications encrypted the user data and only 23% employed cer-
tificate pinning. Therefore for the applications that encrypted the data and used
certificate pinning we were unable to investigate if they shared sensitive information
with third parties.

Comparing our results with a recent study by Zang et al.[5], which also investi-
gated data sharing by applications, we can observe some differences. In the previous
study, more applications shared location and other sensitive user data and very few
employed certificate pinning. On the contrary our results showed that fewer applica-
tions shared location and other sensitive user data with third parties. Additionally,
the amount of applications that used certificate pinning, specifically for Android
applications has increased dramatically. The overall increase in applications em-
ploying certificate pinning may be because without it, data can be intercepted by
installing fake certificates in the device’s trust store [29]. Additionally penetration
testing recently performed on various mobile applications [5, 41] could also explain
why more of them started using certificate pinning. The fact that significatly more
Android applications employ certificate pinning compared to :0S, is because cer-
tificate pinning was one of the many security enhancements introduced in the new
firmware version, Android 4.2 [29].

The domains to which applications from both platforms sent the most user sensi-
tive data were: googleanalytics.com, googleservices.com, googleads.com, and
apple.com. Previous studies [5, 10] have also found these domains to be dominant.
This may be due to Google and Apple owing a variety of mobile advertisement net-
works and services such as AdMob, Google Analytics, Double CLick and iAds [42,
43].

Finally we used SSL Kill Switch on the jailbroken iPhone, in order to attempt
to bypass certificate pinning on applications that employed it, and we successfully
managed to do so on 75% of the applications. The finance applications (Barclays,
PayPal, Pingit) detected that the device was jailbroken and did not operate. Con-
clusively, jailbreaking or rooting the smartphone comes introduces security issues
and unless the applications are designed to not operate in such a device, the users
data is in danger of being stolen.

Overall the methods we chose to evaluate how securely mobile applications trans-
mitted and handled user data over a Wi-Fi network were effective, but had limita-
tions. To begin with, all the methods we used required human intervention which
limited significantly the amount of applications that we were able to test. The MITM
attacks we performed to both platforms, although they were able to provide us with
valuable information about the applications certificate validation process and data

Chapter 5 Eirini Sofia Anthi 37

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

sharing behaviour, they required physical access to the device in order to install
fake certificates. Therefore even though we were able to intercept any transmitted
sensitive data, these methods would be very difficult to apply in real life. Addition-
ally, the tools we used to perform these attacks focused only on HTTP/HTTPS traffic,
limiting the scope of the research. The SSL Kill Switch, allowed us to successfully
bypass the certificate pinning mechanism however we were required to jailbreak the
iPhone. This was a very time consuming and insecure process. To analyse the cap-
tured data we wrote a Python script to searched for sensitive data in the captured
communications text files. The script was very effective in analysing our data, how-
ever if these files were larger in size, Python would run very slow and would not be
the most appropriate language to use to implement it.

38 Chapter 5 Eirini Sofia Anthi

Chapter 6

Bluetooth

Part of the objectives of this project was to investigate also the data leakage that
can happen to data that gets transmitted via the smartphone’s Bluetooth known as
Bluetooth Low Energy (BLE). We would try to capture the transmitted data be-
tween a smartphone and a Pebble smartwatch and try to decryp it. Sensitive data
such as text messages, reminders, emails, social media notifications, etc. get trans-
mitted to the smartwatch via bluetooth. In order to explore this issue we needed
to use an external USB Bluetooth sniffer such as Ubertooth [44]. Unfortunately,
we did not have access to it and we could not conduct the experiment properly.
Consequently, this is something that a future research could focus on investigating.
Nevertheless, we decided to use a low cost Bluetooth sniffer for the purposes of this
project, the Adafruit BLE sniffer, as shown in figure 6.1.

Figure 6.1: Adafruit BLE sniffer.

A recent study by Ryan M. [45] proved that the encryption used by Bluetooth
Low Energy (BLE) can be broken. In a Bluetooth connection, there are always two
parties that communicate with each other. The master, which is the central device
(e.g smartphone) and a slave (e.g. smartwatch, Bluetooth speaker, etc.). These two
parties in order to establish a secure channel for communication they are required
to use a key exchange protocol. This key exchange protocol is not based on any
well-known and robust key exchange protocols such as Diffie Hellman (DH) [46],
but it was invented by Bluetooth SIG and is known to have significant weaknesses
[47]. The attack performed by in [45] targets the key exchange protocol rather than
the encryption itself.

39

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

The procedure during which a master and a slave establish a secure connection
is called pairing and has three different modes [48]: 1) Just Works, 2) 6-digit pin,
and 3) OOB: a 128 bit value exchanged out-of-band. Due to weakness of the key
exchange protocol, if the master and slave use the Just Work or 6-digit pin modes
to pair, all the required values of the elements needed to decrypt the communication
apart from one (which has a value from 0-999,999) are known. Therefore using a
simple brute force attack the last value can be calculated and the communication
can be decrypted [45].

A passive eavesdropper could actually capture the key exchange process and the
encrypted traffic between the two devices. Then a tool can be used to analyse the
key exchange process and find the value of the unknown element required to break
the encryption [45]. An open source tool that can be used to achieve this is Crackle
[49].

After many unsuccessful attempts, trying to configure this low cost sniffer to
listen to the BLE traffic from the smartphone device, Adafruit engineers informed
us that this sniffer can only listen to peripheral devices and not central ones. As
a result it was possible for us to capture only the traffic that occurred from the
smartwatch to the smartphone. Although we managed to do so as per figure 6.2,
we were unable to capture the key exchange procedure and therefore we could not
continue any further.

M pebble blustooth.pcapng [Wireshark 1.12.10 (v1,12,10-0-g7f36a20 from master-1.12)] - X
File Edit View Go Capture Analyze Statistics Telephony Tools Intemals Help

GOl BRXE Aer+aTE|EE QA §ERRX O
Filter ~ | Expression... Clear Apply Save

No, L Source Destination Protocol Length Info
1 0.00000000 sTave master UE' L 59 ADV_IND
2 0.00585900 5Tave Master LE LL 59 ADV_IND
3 0.03318800 slave Master LE LL 59 ADV_IND
4 0.10703800 slave Master LE LL 59 ADV_IND
50.11285300 Slave Master LE LL 59 ADV_IND
6 0.12095800 51ave Master LE LL 59 ADV_IND
7 0.24316200 slave Master LE LL 59 ADV_IND
& 0.24908600 sTave master LE LL 59 ADV_IND
9 0.25518200 5lave Master LE LL 59 ADV_IND
10 0.28074100 51ave Master LE LL 38 SCAN_REQ.
11 0.29949700 5lave Master LE LL 32 SCAN_RSP
12 0. 32089600 STave Master LE LL 59 ADV_IND
13 0.33976000 STave Master LE LL 59 ADV_IND
14 0. 35868400 sTave Master LE LL 59 ADV_IND
15 0.43114000 sTave master LE LL 59 ADV_IND
16 0.44416800 STave Master LE LL 59 ADV_IND
17 0.47119800 sTave Master LE LL 59 ADV_IND
18 0.49323200 slave Master LE LL 38 SCAN_REQ
19 0. 51356700 STave Master LE LL 32 SCAN_RSP v

® Frame 10: 38 bytes on wire (304 bits), 38 bytes captured (304 bits) on interface 0
® Nordic BLE sniffer meta
= Bluetooth Low Energy Link Layer

0000 03 06 1f 01 48 1b 06 0a 01 27 39 00 00 96 00 00
0010 00 d6 be 89 8e c3 Oc 2f 06 e6 46 e7 56 57 04 53
0020 b7 4b 4f ac ef &d LK

O 7 File: "C\Users\chris\ Desktop\pebble blueto... | Packets: 76 - Displayed: 76 (100.0%) - Load time: 0:00.004 Profile: Default

Figure 6.2: Bluetooth traffic from the smartwatch to the phone.

From left to right we can see the number of the transmitted packet, then the
time, the source which is the slave (Pebble smartwatch), the destination which is the
master (iPhone), the protocol used, the size of the transmitted packet and finally
some information about the type of packet.

40 Chapter 6 Eirini Sofia Anthi

Chapter 7
Future Work

To expand on the results of this research, future study could focus on testing more
applications from each category, for both operating systems. Non-TCP traffic could
also be investigated for sensitive data leakage using tcpdump, which monitors traffic
that is not on the TCP. To the applications that supported weak cipher suites TLS
Downgrade Attack could be performed, to explore if the SSL can indeed be com-
promised this way. In this project we managed to apply tools to bypass certificate
pinning only to 0§ devices. Future studies could also root an Android device and
then use Android-SSL-TrustKiller [50] to try to bypass certificate pinning in this
operating system as well. Furthermore, tools that track the data sharing behaviour
of applications directly from the smartphone device such as Taindroid could be used
to monitor both the operating system and the application. As a result it would be
possible to clearly distinguish any leakage that happens due to the application’s
activity and the background system processes [5, 11].

Additionally, paid applications could also be tested for data leakage. The results
could then be compared with the ones from the free applications in order to review
any difference in the data sharing behaviour. Tools that limit the data sharing
such as Limit ad Tracking and Opt out of interest based ads can be employed to
examine any differences in the activity of the applications. Finally, regarding the
data that gets transmitted via Bluetooth Low Energy (BLE), future research could
use Ubertooth BLE sniffer [44] to capture the traffic between smartphones and smart
devices (e.g. smartwatches) and try to decrypt it using Crackle.

41

Chapter 8

Conclusion

The study was set out to explore and analyse how user data gets transmitted and
handled by various mobile applications. We selected 51 1OS and 45 Android mobile
applications and carried out 4 different experiments, while we simulated a typical use
for each application. The results showed that all applications use SSL protocol to es-
tablish a secure channel for communication with the server, which protects data from
passive eavesdropping, specifically when transmitted over public networks. However,
this does not mean that user data is secure, as our findings showed that a very small
percentage of these applications encrypted the actual user data and approximately
85% of these applications supported 4 weak cipher suites which make them vulner-
able to MITM attacks. Moreover, our results showed that 60% of the iOS and 15%
of Android applications forwarded sensitive user data, mostly PII and Behavioural,
to third party domains mainly owned by Google and Apple. Background research
regarding Bluetooth Low Energy indicated that there are severe security issues with
its encryption model. However due to lack of necessary equipment, we were unable
to conduct an experiment and research it any further.

Although our research methodology had its limitations, we still managed to arrive
to significant conclusions as to how securely user data gets transmitted and handled
by various applications, over a Wi-Fi network. Additionally, two of the methods we
used, were designed in order to break or bypass the basic encryption mechanisms
that developers have employed, such as SSL and certificate pinning. This is proof
that these security measures are not invulnerable. As a result, users need to become
fully aware that their personal information can never be 100% secure and the only
way to protect their privacy, is to understand these security risks.

Our hope is that this project will educate its readers, making them aware of
the data leakage that occurs when applications transmit and handle their data.
Therefore, we aspire that they will be more cautious when sharing sensitive data with
mobile applications and at the same time we hope that they will always remember
to take measures to protect their privacy when using public networks.

42

Chapter 9

Reflection

For my thesis I had decided to pursue a research based project in order to improve my
research skills and gain valuable experience as a researcher. The main reasons why
I chose this project were the topic, of which I found to be current and interesting.
Taking into consideration that I did not have any previous experience in the field
of mobile security, I started reading on and experimenting with mobile and network
security before I began working on my thesis.

The initial project goals were to investigate the data leakage that can happen
when data is transmitted from smartphones (for :OS and Android device) over a
Wi-Fi network and Bluetooth, but also the leakage that happens when applications
share user data with third parties. In order to be able to select the appropriate
methodology to achieve this, I was required to study the fundamentals of data
transmission procedure over a network and Bluetooth, the protocols that are used
in each case, and their encryption mechanisms. After I had a clear understanding
of these, I was able to research which methods/experiments were the most suitable
to fulfil my goals. Having in mind the experiments I would carry out and having
selected the mobile applications and peripheral device to test the data leakage over
a network and Bluetooth respectively, I had to set a time plan to help me organise
myself and ensure that I would complete the project on time. Creating my own time
plan and having to evaluate the approximate time that I would need to complete
each sub part of this project was very difficult, however I did manage to follow it as
much as possible. As it is natural, I feel like I underestimated the time that some
procedures take, such as data collection and analysis and I did fall back slightly on
these.

Managing and representing results from my data analysis, was another challeng-
ing part of this project. Sometimes I felt that the way I chose to represent my
findings could have been clearer. After many attempts trying to organise them in
different ways, I believe I have managed to represent them as simply and clearly as
possible.

As the sample of applications that I chose to test was quite large, I had planned
to carry out only one experiment, in order to evaluate if I could capture any sensitive
unencrypted data over Wi-Fi and also tp enable me to investigate if applications
forward any user data to third parties. Nevertheless, although this experiment
required a lot of time and a complex method to analyse the results, I felt like this
was not enough and I had to push my self harder. As a result I decided to carry out
three more experiments to investigate this issue and to have a more spherical opinion

43

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

about it. I took this decision almost one and a half months prior the submission
date of the dissertation, which was very risky because I had very little time and I
had to re-examine 96 applications in three more experiments. I had to work very
hard in order to complete all the testing and data analysis, however I feel as though
my risk paid off.

Throughout my investigations I found that for some major mobile applications
I was able to capture the user’s credentials and get access to very sensitive data. I
thought that this did not seem right and I reported this issue to these companies.
When I received a message from these companies thanking me and confirming that
this was indeed an issue I felt very happy, surprised and satisfied because my final
year project contributed to making these applications safer.

Regarding the Bluetooth data although I did not have access to the necessary
hardware I was determined to find a way to examine this issue. I purchased a low
cost Bluetooth sniffer and I used it to try to capture the traffic from the smartphone
to a smartwatch. Even though the company that produces this sniffer claims that it
can capture the Bluetooth traffic from a smartphone I found that this was not the
case. I was very disappointed at this point. I didn’t give up and I researched every
tutorial I could find. Finally, I contacted the engineers within this company and
they confirmed that this device can only capture BLE data from peripheral devices.
Even though I felt disappointment, at this point I felt also relieved because there
was nothing else I could have done.

Overall I feel satisfied with my performance on this project, with what I managed
to achieve, the knowledge I gained and not giving up regarding the Bluetooth aspect
of the project. I know that I have tried my absolute best to fulfil the goals of this
project and this makes me feel very happy. It was an experience through which I
learnt so many things about mobile security, I experienced (on a small scale) how it
feels to carry out research and it also helped me improve my organisational /research
skills.

In the future, with the experience I have now, I would make sure that to allo-
cate more time to data collection and analysis, better plan the methodology and
ensure that it is sufficient, ensure from the beginning that I have access to all the
necessary equipment that I need to carry out the experiments, and I would certainly
organise the collected data better so that it is easier to represent afterwards. Addi-
tionally, I feel as though I have to learn to control my emotions as they can effect
my performance.

44 Chapter Eirini Sofia Anthi

Appendix A

Appendix Title

A.1 Keywords used throughout the testing.

Behavior Employment analyst
Behavior Employment assistant
Behavior Employment chef
Behavior Employment developer
Behavior Employment education
Behavior Employment fulltime
Behavior Employment full-time
Behavior Employment graduate
Behavior Employment IT
Behavior Employment research
Behavior Employment security
Behavior Employment teacher
Behavior Employment £21000
Behavior Medical chest pain
Behavior Medical cough
Behavior Medical fever
Behavior Medical headache
Behavior Medical medication
Behavior Medical mycrogynon
Behavior Medical pneumonia
Behavior Medical sinusitis
Behavior | Private Messaging ciao
Behavior | Private Messaging cinema at nine
Behavior | Private Messaging hello

45

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table A.1
(Category | Type | Torm Searched

Behavior | Private Messaging hey
Behavior | Private Messaging holla
Behavior | Private Messaging how are you?
Behavior | Private Messaging meet me at seven
Behavior Searching beer
Behavior Searching boat cruise
Behavior Searching cavalieri hotel
Behavior Searching fish
Behavior Searching game of thrones
Behavior Searching indian
Behavior Searching kickboxing
Behavior Searching laptop
Behavior Searching mani club
Behavior Searching nintendo
Behavior Searching pancacke accessories
Behavior Searching rocksmith
Behavior Searching weights
Location Latitude 51.5
Location Longitude -3.0
Location Latitude latitude
Location Longitude longitude

PII Address athens

PII Address cardiff

PII Address corfu

PII Address newport

PII Address risca

PII Address thessaloniki

PII Address united kingdom

PII Address

PII Age 23

PII Age 27

PII DOB 23/07/1962

PII DOB 23-07-1990

PII DOB 17/09/1990

PII DOB 17-09-1990

46

Chapter A

Eirini Sofia Anthi

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table A.1
(Category | Type | Term Searched
PII DOB July 62
PII DOB 1962
PII DOB Sept 90
PII DOB 1990
PII Device Info iphone
PII Device Info motorola
PII Device Info MEID: 8Qkitotiitsioriox
PII Device Info MEID: @7kttt
PII Email irini@yahoo.gr
PII Email irinianthi90@gmail.com
PII Email chris-2@live.co.uk
PII Email ¢1417801@gmail.com
PII Gender Female
PII Gender female
PII Name chris northfield
PII Name irene anthi
PII Name nenitsa tsoukala
PII Password loloal
PII Password Rlodol
PII Password kol
PII Password otttk
PII Password kool
PII Password otttk
PII Post Code npl08fl
PII Post Code npl0 8fl
PII Telephone Number 07745971980
PII Telephone Number 00447745971980
PII Telephone Number 077-459-71980
PII Telephone Number 077-459-71980
PII Username chrisnorthfield
PII Username ireneanth
PII Username ireneanthi
PII Username irinaki90
PII Username irini90
PII Username lina

Chapter A

Eirini Sofia Anthi

47

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table A.1
(Category | Type | Term Searched
PII Username ninoula
Location Latitude 51.5
Location Longitude -3.0
Location Latitude latitude
Location Longitude longitude

Table A.1: Keywords used throughout the testing.

A.2 Cipher Suites Used by iOS applications

Adobe Reader 12 0

ADP Mobile Solutions 26 4

Dropbox 26 4

Business Facebook Pages 26 4
Indeed Jobs 26 4

Reed.co.uk 26 4

Smart Scan Express 26 4

Barclays Mobile Banking 26 4

Finance PayPal 26 4
Pingit 26 4

Burger King 26 4

Food and Drink Domino’s Pizza 26 4
Hungry House 26 4

Just Eat 26 4

Angry Birds 26 4

Bubble Witch 2 26 4

Fruit Ninja 26 4

Games Guess the Emoji 26 4
Piano Tiles 26 4

Temple Run 26 4

Two Dots 26 4

Clue 18 0

iTriage 26 4

Health and Fitness Lose it? 26 4
Period Tracker Lite 26 4

48

Chapter A

Eirini Sofia Anthi

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table A.2

MyFitness Pal 26 4

Withings 24 0

Capitol Fm 26 4

Music SoundCloud 12 0
Spotify 12 0

Ultimate Guitar 26 4

Productivity BlackBoard 26 4
Safari - .

Weather 26 4

Amazon 26 4

Ebay 26 4

Shopping Groupon 26 4
GumTree 26 4

Wish 26 4

Facebook 26 4

Facebook Messenger 26 4

Instagram 12 0

Social Networking Skype 26 4
Viber 26 4

Whatsapp 26 4

Booking.com 26 4

EasylJet 26 4

Travel Expedia 26 4
Google Earth 26 4

Kayak 26 4

Trivago 26 4

Table A.2: Total number of cipher suites used by each application and how many
of these are rated as weak.

A.3 Cipher Suites used by Android Applications

Business

Adobe Reader 35
Dropbox 8
Facebook Pages 35

Chapter A

Eirini Sofia Anthi

49

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table A.3
_ Category | Application | Total Ciphers | Weak Ciphers
Indeed Jobs 35 4
Reed.co.uk 6 2
Burger King 17 0
Food and Drink Domino’s Pizza 35 4
Hungry House 35 4
Just Eat 35 4
Angry Birds 50 0
Bubble Witch 2 - -
Candy Crush 65 4
Games Guess the Emoji 35 4
Piano Tile 35 4
Monsters 35 4
Temple Run - -
Clue 11 0
iTriage 35 4
Health and Fitness Lose it! - -
Map My Run 11 0
MyFitness Pal 11 0
Period Tracker Lite 35 4
Capitol Fm 35 4
Music SoundCloud 35 4
Spotify 10 0
Productivity BlackBoard 35 4
Google Chrome - -
Amazon 35 4
Ebay 53 4
Shopping Groupon 35 4
GumTree 35 4
Wish 35 4
Facebook 35 4
Social Networking Facebook Messenger 35 4
Instagram 14 0
Skype 35 4
Viber 11 0
Whatsapp 35 4

50

Chapter A

Eirini Sofia Anthi

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table A.3
Booking.com 35 4
EasyJet 15 2
Travel Expedia 35 4
Google Earth 35 4
Kayak 35 4
Tripadvisor 10 0
Trivago 35 4

Table A.3: List of all tested applications.

Chapter A Eirini Sofia Anthi

51

Bibliography

Statista. Number of smartphone users worldwide from 2014 to 2019. http://
www . statista.com/statistics/330695/number-of - smartphone-users-
worldwide/. Accessed: 1/04/2016. 2016.

Aaron Smith. “US smartphone use in 2015”. In: Pew Research Center (2015).
Accessed: 1/04/2016, pp. 18-29.

Jan Lauren Boyles, Aaron Smith, and Mary Madden. “Privacy and data man-
agement on mobile devices”. In: Pew Internet € American Life Project 4
(2012).

ENISA. Top Ten Smartphone Risks. https : //www . enisa . europa . eu/
activities/Resilience-and-CIIP/critical-applications/smartphone-
security-1/top-ten-risks. Accessed: 4/04/2016. 2016.

Jinyan Zang, Krysta Dummit, James Graves, Paul Lisker, and Latanya Sweeney.
Who Knows What About Me? A Survey of Behind the Scenes Personal Data
Sharing to Third Parties by Mobile Apps. http://techscience.org/a/
2015103001/. Accessed: 14/02/2016. 2015.

Michael Cooney. 10 Common Mobile Security Problems to Attack. http :
/ /www . pcworld . com/article/2010278/10 - common-mobile-security-
problems-to-attack.html. Accessed: 4/04/2016. 2012.

Carnegie Mellon University. Knowledge of location sharing by apps prompts
privacy action. https : //www . sciencedaily . com/releases/2015/03/
150323132846 .html. Accessed: 4/04/2016. 2015.

Statista. The Hidden Dangers of Public WiFi. http://www.privatewifi.
com/wp-content/uploads/2015/01/PWF_whitepaper_v6.pdf/. Accessed:
5/04/2016. 2016.

Thomas Ball. “The concept of dynamic analysis”. In: Software Engineer-
ing—ESEC/FSE’99. Springer. 1999, pp. 216-234.

Ashwin Raoa et al. “Using the Middle to Meddle with Mobile”. In: (2013).

Appanalysis. Realtime Privacy Monitoring on Smartphones. http: //wuw .
appanalysis.org/index.html/. Accessed: 9/04/2016. 2016.

Scott Thurm and Yukari Iwatani Kane. “Your apps are watching you”. In:
The Wall Street Journal 17 (2010), p. 1.

ENISA. Federal Trade Commaission. https://www.ftc.gov/search/site/
fitness\%20app. Accessed: 9/04/2016. 2016.

H Victor. “Android’s Google Play beats App Store with over 1 million apps,
now officially largest”. In: Retrieved January 16 (2013), p. 2014.

52

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

[19]
[20]

[21]

Mark A Fox, Peter F King, and Seetharaman Ramasubramani. Method and
apparatus for maintaining security in a push server. US Patent 6,421,781. July
2002.

Angela Orebaugh, Gilbert Ramirez, and Jay Beale. Wireshark € Ethereal net-
work protocol analyzer toolkit. Syngress, 2006.

Wireshark. How does it work? https://www.wireshark.org/#learnWs/.
Accessed: 18/04/2016. 2016.

OWASP. Transport Layer Protection Cheat Sheet. https : //www . owasp .
org/index . php/Transport _Layer _Protection_Cheat _Sheet. Accessed:
18/04/2016. 2016.

OWASP. Man-in-the-middle attack. https://www.owasp.org/index . php/
Man-in-the-middle_attack/. Accessed: 18/04/2016. 2016.

Bodo Moeller and Adam Langley. “TLS Fallback Signaling Cipher Suite Value
(SCSV) for Preventing Protocol Downgrade Attacks”. In: (2015).

Internet Engineering Task Force (IETF). RFC 7465 - Prohibiting RC4 Cipher
Suites. https://tools.ietf.org/html/rfc7465#section-1. Accessed on
25/04/2016.

Christensson P. TCP/IP Definition. http://techterms.com/definition/
tcpip. Accessed: 18/04/2016. 2006.

Dafydd Stuttard. Burp Suite, 2007.

Dan Boneh, Srinivas Inguva, and Ian Baker. “SSL, MITM Proxy”. In: ht
tp://crypto. stanford. edu/ssl-mitm (2007).

Ollie Whitehouse Tyrone Erasmus Shaun Colley. The Mobile Application Hacker’s
Handbook. John Wiley & Sons; 1 edition (3 April 2015), 2015.

Oracle Corporation. Certificates and Certificate Authorities (CA). https://
docs.oracle.com/cd/E19316-01/820-2765/gdzen/index.html/. Accessed:
19/04,/2016. 2016.

OpenSSL. Certificate Authorities (CA) and Digital Signatures. https://www.
openssl.org/docs/manmaster/apps/ca.html/. Accessed: 19/04/2016. 2016.

mitmproxy. How mitmprozy works. Accessed: 20/04/2016. 2016. URL: http:
//docs .mitmproxy.org/en/latest/howmitmproxy.html.

Nikolay Elenkov. Certificate pinning in Android 4.2. 2012.

mitmproxy. About Certificates. Accessed: 20/04/2016. 2016. URL: http: //
docs.mitmproxy.org/en/latest/certinstall.html.

A Cohen. “The iPhone Jailbreak: A Win Against Copyright Creep”. In: Time.
com (2010).

Pangu. Pangu Jailbreak. http://en.pangu.io. Accessed: 20/04/2016. 2016.

Alban Diquet. :OS SSL Kill Switch. https://github. com/iSECPartners/
ios-ssl-kill-switch. Accessed: 20/04/2016. 2016.

OWASP. O-Saft. https://www.owasp.org/index.php/0-Saft/. Accessed:
20/04/2016. 2016.

Chapter A Eirini Sofia Anthi 53

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

[35] RFC 5246 - The Transport Layer Security (TLS) Protocol Version 1.2. https:
//tools.ietf.org/html/rfc5246. Accessed on 05/01/2016.

[36] Google. Rebooting Responsible Disclosure: a focus on protecting end users.
https://security.googleblog.com/2010/07/rebooting-responsible-
disclosure-focus.html. (Accessed on 30/04/2016).

[37] Nadhem AlFardan. On the Security of RC4 in TLS. http://www.isg.rhul.
ac.uk/tls/. Accessed on 25/04/2016.

[38] MIT Laboratory for Computer Science and RSA Data Security. REFC' 1321
- The MD5 Message-Digest Algorithm. https://tools.ietf .org/html/
rfc1321. (Accessed on 25/04/2016).

[39] Souradyuti Paul and Bart Preneel. “On the (in) security of stream ciphers
based on arrays and modular addition”. In: Advances in Cryptology-ASIACRYPT
2006. Springer, 2006, pp. 69-83.

[40] Upkar Varshney and Ron Vetter. “Mobile commerce: framework, applications
and networking support”. In: Mobile networks and Applications 7.3 (2002),
pp. 185-198.

[41] Alexander Mense et al. “Analyzing Privacy Risks of mHealth Applications.”
In: Studies in health technology and informatics 221 (2016), p. 41.

[42] Google. Monetize and promote with Google Ads.Google Developers. https :
//developers.google.com/ads/?hl=en. (Accessed on 03/05/2016).

[43] Apple. Ad for Developers. Apple Developer. https://developer.apple.com/
iad/. (Accessed on 03/05/2016).

[44] M Ossmann. “Project ubertooth”. In: Retrieved 18 (2012), p. 23.

[45] Mike Ryan. “Bluetooth: With Low Energy Comes Low Security.” In: WOOT.
2013.

[46] Elaine B Barker, Don Johnson, and Miles E Smid. “Recommendation for
pair-wise key establishment schemes using discrete logarithm cryptography
(revised)”. In: (2007).

[47] Markus Jakobsson and Susanne Wetzel. “Security weaknesses in Bluetooth”.
In: Topics in Cryptology—CT-RSA 2001. Springer, 2001, pp. 176-191.

[48] Mark A Kurisko and Philip D Mooney. Security apparatus and method during
BLUETOOTH pairing. US Patent 7,174,130. Feb. 2007.

[49] Mike Ossmann. Crackle, crack Bluetooth Smart (BLE) encryption. https :
//lacklustre.net/projects/crackle/. (Accessed on 03/05/2016).

[50] Marc Blanchou. iSECPartners/Android-SSL-TrustKiller. Bypass SSL certifi-
cate pinning for most applications. https://github . com/iSECPartners/
Android-SSL-TrustKiller. (Accessed on 03/05/2016).

54 Chapter A Eirini Sofia Anthi

