

Property Notification System with

Key tracking application

Student Name: Phoophanom Tanprasit
Student Number: C1226125

 Supervisor: Dr George Theodorakopoulos
Moderator: Professor. Omer Rana

Programme Name: Computer Science with a year in
industry (BSc)

Submitted: 06/05/2016

Abstract
The aim of this project is to build a bespoke property notification system that will assist
commercial and residential property managers with specific managerial tasks. The web
application will supply dynamic information to the occupiers of residential buildings,
informing them of various events that will occur within the property.

Two mobile applications will be developed alongside the web application. The first will
be an Android application that will display said notifications, which managers can modify
at a moment's notice, through the online dashboard. The other is a mobile application
that logs times when a master key gets taken and returned from a cabinet. Property
managers will also be able to distribute pin codes through the application, replacing the
current email system. Additionally, property managers will be able to view the times
when a key had been taken and returned through the web application.

The web application had been developed on a PHP Framework called Laravel in
conjunction with various web languages and libraries. Both mobile applications were
developed on Android Studios, with Java and XML.

Acknowledgements
I would like to thank my supervisor, Dr George Theodorakopoulos for his help and
support throughout this project. His weekly feedback sessions helped guide the project
in the right direction. Also, I would like to thank my parents for providing me with various
project ideas and supporting my time at Cardiff University.

Table of Contents
Abstract .. 2	
Acknowledgements .. 2	
Table of Contents ... 3	
Table of Figures ... 6	
Introduction ... 7	
Background .. 8	

Property Management Solutions ... 8	
Arthur Online .. 8	
Buildium ... 9	

Key Tracking Solutions ... 9	
The problem .. 10	
Stakeholders ... 11	

Aim and Objectives .. 12	
Approach and Designs ... 14	

Overview ... 14	
Changes from initial report .. 14	
Development Tools and Frameworks ... 14	

Laravel ... 14	
Android Framework ... 15	
GIT ... 15	
Bootstrap ... 16	
Trello .. 16	

Choice of Development Methodology ... 16	
System Architecture .. 17	
Database Designs ... 18	

Entity and Relationship Diagram ... 18	
Tables ... 19	
User Interface Designs .. 20	

Mock Ups ... 20	
Web Application ... 20	
Key Tracking Application ... 20	
Notification Application .. 20	

System Requirements ... 21	
Functional Requirements as User Stories ... 21	
Non-Functional Requirements as User Stories ... 22	

Use Flow Diagram ... 24	
Use Cases ... 24	

Field explanations .. 24	
Use Cases ... 25	

Implementation ... 30	
Web Application .. 30	

Configuration ... 30	
Database ... 31	

Migrations .. 31	

Routes and Middleware .. 32	
Request Verbs .. 32	
Key Management .. 33	

Assigning a key to a contractor .. 34	
Revoking access to a key .. 35	

Notification Management .. 36	
Creating and editing notifications ... 36	
Saving the notification .. 37	
Assigning notifications to a device ... 39	
Removing a notification from a device ... 40	

Mobile Applications ... 41	
Making requests .. 41	
Handling responses with GSON .. 42	
Handling Date and Time on Android .. 43	

Notification App ... 44	
Permissions ... 44	
Device Setup ... 44	
Registering the device ... 44	
Updating the device ... 45	
Displaying Notifications .. 46	
Displaying local weather .. 47	

Key Tracking App .. 48	
Contractor Login .. 48	
Displaying Keys ... 50	
Refreshing Key List .. 52	
Updating Key Taken and Return Times ... 53	

Security ... 56	
Authenticating Requests .. 56	
Digest Authentication ... 56	
HTTP Basic Authentication using SSL .. 56	
Chosen method of authentication .. 57	
Mobile Digest implementation .. 57	
Server Digest implementation .. 60	

Results and Evaluation ... 62	
Testing .. 62	

System Specifications .. 62	
Unit testing – Web Application ... 63	
User Testing – Key Tracking Application ... 64	

Evaluation ... 66	
Functional Requirements .. 66	

Administrators .. 66	
Contractors .. 67	
Residents ... 67	

Non-Functional Requirements .. 67	
Administrators .. 67	
Contractors .. 68	

Residents ... 68	
Future Work .. 70	

Web Application .. 70	
Key Tracking Application ... 70	
Notification Application .. 71	

Conclusion .. 72	
Reflection On Learning ... 73	

Project Management ... 74	
Weekly Meetings ... 74	
Agile Methodology ... 74	

References ... 75	
Appendix .. 76	

Table of Figures
Figure 1 - TrackR Bluetooth device .. 10	
Figure 2 - Overview of the property notification system and key tracking application 17	
Figure 3 - Entity and relationship diagram of the notification and key tracking application

 .. 18	
Figure 4 - Print screen of the local environment parameters ... 30	
Figure 5 - Print screen of the production environment parameters 31	
Figure 6 - A database schema for the notifications table ... 32	
Figure 7 - An empty table of assigned keys on a contractor page 34	
Figure 8 - A bootstrap modal for assigning a key to a contractor 34	
Figure 9 - An assigned key within a contractor's assigned key table 35	
Figure 10 - Notification creation page .. 37	
Figure 11 - Save button within the CKEditor toolbar .. 37	
Figure 12 - Devices list page on the web application ... 39	
Figure 13 - Connected notifications table on a device page .. 40	
Figure 14 - Add a new notification to device modal .. 40	
Figure 15 - Login screen on the key tracking application ... 49	
Figure 16 - A card containing an address, pin code, key taken and returned time 50	
Figure 17 - Recylcer view diagram ... 51	
Figure 18 - An inactivated key displayed on a card .. 54	
Figure 19 - An activated key displayed on a key .. 54	

Introduction
To most businesses, time is considered to be the most important resource available. In
today’s market in order to compete and succeed against other competitors, their
workforce must work at optimal efficiency, be highly adaptable and provide rich digital
experiences to their clients.

“Companies that successfully embraced digital transformation invested well in both
technology-enabled initiatives and the leadership capabilities required. In return they
grew revenues by 9pc and are, on average, 26pc more profitable than their industry
competitors” (Freakley, 2015).

Businesses that lack digit integration will lose out on customers, as more companies are
expected to provide fast and digitally rich services. As popularity of mobile applications
is at an all time high, new and sophisticated applications are being developed to provide
newer better solutions to existing problems.

In order to provide the best services, bespoke digital infrastructure will be needed to
order to efficiently store and securely transmit data. Furthermore, by taking an agile
approach the intended audience can provide constant feedback and improve the overall
user experience by adding quality of life updates.

The property notification system was envisioned as a web application that property
managers could access in order to supply up-to-date information to notification-enabled
devices, located at various locations around the UK. The notification application can be
deployed on to any Android enabled devices, as long as Internet and cellular connection
are available.

Additionally, my client requested a key tracking application and he had asked for it to be
integrated into the web application. Property managers who will now be known as the
administrators will provide contractors with access to master keys via pin codes. The
mobile application will audit the time the keys had been taken and returned to the
cabinet.

Background

Property Management Solutions

Arthur Online
Arthur Online (Ltd, A.O, 2011) provides an online platform where property managers
can connect with contractors, letting agents and owners via the web and mobile
applications.

Users of the application can input and transmit data securely making sharing
information safe and convenient. Allowing better more fluid explicit data transfers
between users of the system.

Their interactive platform can audit all forms of data like financials and correspondence
documents between users, allowing property managers to access all archives in the
future.

The online dashboard is very minimalistic and simple to use. The user interface adjusts
to fit the user’s needs. For example, property managers can view their portfolios, while
contractors can view their list of tasks and invoices.

Tenants on the other hand can view their monthly rent statements and raise any
concerns that they may have with their lease. Personally, I felt that the application was
well organised and the user interface looked very professional compared to other
solutions available.

The mobile application contains most of the features available on the web platform.
Similarly, the user interface was well organised like their web counterpart. Property
managers can converse with tenants and contractors remotely through the app, in order
discuss an issue that requires immediate attention. See Appendix 1.

Their one major downside that I had notice was the price plan of the application. It can
be quite expensive, at £1.50 per property per month. They offer extra services like
business hours helpline and live training. However, they are willing to lower the price
per unit depending on the size of portfolio.

Additionally, users of the application must have a compatible smartphone. Arthur Online
offers a complete package for residential management, however the application itself
may be overwhelming for some tenants due to the amount of features that are available.

Buildium
Another good web based property management software is called Buildium (Buildium,
2016). They offer all the same services similar to Author Online but with a generic app.
Therefore, tenants are expected to use the same portal as a property manager, as it is
integrated into the management site. Unlike Arthur Online who are UK based, Buildium
offers international features like time-zone support, currency conversions and country-
specific address fields.

Their user interface is simple and easy to use but feature heavy. Therefore, it does not
cater to novice users who are starting out with property management. Their self-help
section is known to be out-of-date, thus a member of the customer service team is
required for most work around. See Appendix 1.

Buildium allows tenants to submit issue tickets online via the tenant portal. Property
managers can turn these tickets into tasks for contractors to be assigned to. Each task
will be time stamped and allows tenants to attach any relevant photos that relates to the
issue.

However, they charge setup fees for electronic payments and screenings. Which means
that for small businesses it can be very expensive.

Key Tracking Solutions
TrackR (TrackR, 2016) is a Bluetooth tracking device, no larger than a coin that can be
attached to small items. See Figure 2.

It connects to an app running on a mobile device. The application then tracks the power
level of the emitted signals from the Bluetooth device. Depending on the threshold of
the emitted signal, the application will alert the user if they stray too far from the linked
item. Utilising Bluetooth low energy it consumes 50 times less energy than regular
Bluetooth, allowing TrackR to last at least a year.

Figure 1 - TrackR Bluetooth device

TrackR includes a unique feature called Crowd GPS. It is different from traditional GPS,
as it uses all devices that are connected to their network to locate missing items. Once
the item had been located, its GPS location will be transmitted to the original owner of
the item.

Each TrackR device costs $30 and considering that property managers can manage
over 100 properties individually, this solution is a costly one. However, TrackR is open
source, so developers can create custom applications that can interact with TrackR
devices.

The problem
A simple Google search for a property notification system yielded zero result, it is
considered very niche, a lot of property specialists can benefit from utilising this
application, like removing the need to travel long distances to distribute notices to
property residents.

Each solution from above was designed with the sole intention of managing properties
and its residents. If a property manager wants to inform residents of an event, they will
need to contact with the client directly through their email feature. A major problem with
this approach comes from residents who do not check their email regularly. So the
solution is to place several tablets at various locations where residents will take notice.
For example, in a lift, as usually people do not have anything to do and have a few
seconds to scan the notification screen.

TrackR is an alternative solution to tracking keys all together. The software tracks the
location of the key rather than the time, which is what my client had wanted. However,
since TrackR provides APIs to interact with their database, an application can be
developed to track whenever a key leaves or enters a building using Bluetooth
technology.

Stakeholders
The stakeholders of this project will be small to medium property specialists, as large
organisations will have their own solutions to the problem sated previously. Allowing
property managers with that organisation to distribute large amount of information to
residents at various location. Additionally, the key tracking application will and web
application will provide a platform for them to organise key distributions. Both
notification and key tracking applications are lightweight mobile applications, so they
can easily be deployed once the web application is configured

Aim and Objectives
The aims of this project remain the same, as specified in the first report. That is to build
an online web application that can aid property managers with their managerial tasks.
Such as, supplying information to occupier of residential buildings via digital devices.

A secondary aim is to create key tracking application. Its target audiences are
contractors who had been contracted by a property manager to resolve an issue. A key
will contain a pin code; this pin code can be used to unlock a master key cabinet.
Whenever a pin code gets revealed, the application will automatically log the timestamp.
Then when the contractor returns the key, he can log the time, so that he can no longer
be accountable if the key was later stolen or missing.

The aim of this report is to explain the development processes that had taken place
throughout the project. The project will require the combined knowledge of my time at
Cardiff University and my industry experience as a developer. Describing how each
application was built and the challenges I had encountered.

Three separate applications will be built. First, a web application that allows managers
to login and view property and contractor information. In addition, managers will be able
to create, edit and remove notifications that will be displayed within a property. The
second a mobile terminal app that display said notifications and provide useful
information like the local weather.

Lastly, a mobile app that contractors can sign in and view keys, each key will have a
hidden pin code. These pin codes must be activated in order to unlock a master key
cabinet. The application will track the time when a key had been taken and returned to a
key storage box.

The first stage involves requirement gathering. The requirement gathering process for
this project requires less work than most projects, as a property specialist gave the
project idea to me.

He had already thought about the issues that exist and solutions to them. He had noted
how they were still using paper to distribute information to property residents and that a
display terminal or TV should be used instead in conjunction with a web app, enabling
him to supply relevant information and up-to-the-minute notifications.

Additionally, he had mentioned that providing pin codes and keeping track of
contractors can be time-consuming. Every time a contractor needs access to a property,
a property manager will need to find the contractor’s contact information and email him
a pin code in order to obtain a master key. A new system should be in place where they
can view a list of keys that they had or will be assigned to them. An alert would also be
desirable that will trigger when a contractor had taken a key and not returned within a
specified time.

The second stage of the development cycle involves converting requirements into user
case, user flow and entity and relationship diagrams. Additionally, I had designed
various user interfaces for the three separate applications. However, live testing was
only performed on the mobile applications. Furthermore, I had created test cases in
order to test the functionality of my applications.

The third stage will include the implementation of my applications and the various
approaches that I had taken in order to solve the problems that I had encountered.
Additionally, I will specify the Frameworks that I had used and any libraries that I had
integrated into my applications.

The fourth stage is carry various tests on the applications and noting down the results.

The fifth and final stage will involve taking the results from stage four and evaluate the
web and mobile applications.

An agile approach will be used to tackle to project, in order to accommodate for the
changes in requirements, time constraints and issues that may block my progress.
Hopefully, this will allow three minimum viable products to be produced before the
project’s deadline, with the main features of each application working correctly. While a
lot of time had been given to setup an environment to host the web application, there
was not enough time to deploy the application on Amazon Web Services, which would
allow the application to be accessed globally and tested at vast geographical locations.

Approach and Designs

Overview

To complete the aims and objectives that for this project, I had separated out the
property management system into three separate applications:

• Web application for property managers
o Must be able to assign notifications to devices
o Must be able to distribute keys to contractors

• Android notification application for residents
o Must automatically setup the device
o Must be able to display notifications and local weather

• Android key tracking application for contractors
o Must allow contractors to login
o Must have professional looking interface
o Must allow contractors to retrieve pin codes
o Must be able to update the key taken and return times

Changes from initial report
• The notification application will no longer provide local traffic information, due to

lack for free APIs
• Securing the data transmission became a secondary aim
• The notification application currently does not provide Android TV support, as the

client had decided that this feature is no longer needed

Development Tools and Frameworks

Laravel
The web portal was developed on a PHP framework called Laravel 5.2. It uses a Model
View Controller (MVC) framework; MVC paradigm enables developers to separate out
the presentation like user interface from the object models that we perceived in the real
world. These models were to be closed off and functions must be able to perform
correctly without referencing the presentation.

For the backend, a version control type system was used to construct the database.
They allow developers to modify the database schema and still keep their schema up-
to-date. The reasoning behind it was to prevent any inconsistencies between
developers, however with a project with one developer it enables easy expansions and
modifications to the database in the future without having to redesign certain features

from scratch. Laravel also includes a schema builder, allowing for easy schema design
and management.

The default objects relational mapper (ORM) that Laravel uses is called Eloquent. It is
also very effective handling data set that have a lot of relations, providing multiple of
helper functions to perform create, update and delete (CRUD) operations; In addition to
making complex database queries. For the presentation, it uses a template engine
called Blade, which is easier to use and make HTML code cleaner and easy to read.
Laravel offers protections from cross-site scripting (XSS) and cross-sites resource
forgery (CSRF) in addition to providing login capabilities straight out of the box.

Android Framework
Android was used to develop the two mobile applications. The reasoning was that
Android devices are generally cheaper than the IOS counterpart. Meaning that the cost
to deploy and maintain these devices will be low. Additionally, many open source
libraries are available to use in Java, which developers can use in order to reduce
development time. From a developer’s point of view Java is ideal for this project, as it
requires little time to setup the environment.

A superior solution is to build for IOS and Android at the same time using Xamarin.
Xamarin, is a tool that allows developer to code Business logic, database uses and
network access in C# once and reuse on any platform. To which developers can
customise further depending on the end user needs.

One noticeable downside of using Xamarin is the cost, at $80 per developer on an on-
going monthly basis. Second, Xamarin does not support all native features and user
interfaces; therefore developers will not have access to the latest features and
enhancements until Xamarin provides APIs to support them. Furthermore, having a
smaller ecosystem than IOS and Android means finding support can be difficult, as
documentations can be scarce. Lastly, the developer must be adept at C#, .Net,
Android, IOS and Xamarin frameworks and Xamarin IDE. In addition, developers must
have prior knowledge of each platform’s lifecycle and user interface designs.

GIT
For this project GIT will be used as the version control system. By creating snapshots of
the project and tracking changes made to the project. Git allows for branching, which
means that a new feature or user story can be worked on independently. This enables
the project to follow the agile approach by working on multiple stories at once and
merge at the end of a sprint in order to produce minimum viable product. As bonus GIT
offers rollbacks methods, which means that, any mistakes is negligible and reversible.

Bootstrap
To handle the visual side of the web application I had decided to use Bootstrap 3.3.5.
Bootstrap employs the grid system by resizing contents depending the on the device’s
screen size. Thus creating a responsive website requires little to no extra work.

For a web developer a front-end framework like Bootstrap allows new websites to be
made quickly. Instead of wasting time researching coding from scratch, Bootstrap
provides examples on their documentation site. Additionally, it provides cross platform
support a feature that will take several hours to complete.

Being a framework ensures that the web application looks the same regardless of the
platform and it is highly customizable. Bootstrap provides a customizable page where
developers can choose the features that they want their site to have. This can become
useful during the optimization phase, where loading time can be improved even by a
little.

Trello
A Kanban board was also used during the development, as a management tool. The
application is called Trello. Using an Agile approach I had converted the project’s goals
and requirements into user stories. These user stories were then converted into cards
on Trello, with the cards a user can place it under five lists applications web portal,
notification app, terminal app, in progress or completed. The completed list refers the
completed tasks for the current build not the finished product.

Choice of Development Methodology

There are two major software methodologies that most projects follow, Waterfall or
Agile. Most developers will consider water as an out-dated concept the reasoning is that
waterfall relies on well defined set of requirements Thus, any changes in the future will
greatly impact the project progress. In theory it makes sense, however the reality is that
nothing stays static. New or mainstream ideas gets introduced that can force changes in
the project's requirements in order to compete or increase performance. This can have
a major effect on the budget and time, as it was not accounted for during the
requirement gather stage.
Agile on the other hand is the polar opposite. Where developers set out to accomplish a
minimum viable build every two weeks. At the meeting the new build with new features
will be demonstrated. Feedback will be given and used to guide the project ensuring
that the product will be always be on track and relevant.

As mentioned before Git was the version control system of choice in order to guarantee
that a working build is always available. Git uses branches to separate the master build
from the ones that contains features that are under progress.

I had decided to use a hybrid of Waterfall and Agile, utilizing the advantages of both like
the transparency of Waterfall and flexibility of Agile. First taking down the requirements,
then reverting to Agile to adapt to the change in requirements allowing for continuous
delivery. A hybrid model is very good at handling products where reusing of code is
possible. Allowing for quick turnaround time.

System Architecture
The system architecture can be broken down into four parts (See figure 3):

• The first is a relational database that will house property and contractor information.
• Second is an Android application client that can display notifications and weather

information to residents within a property.
• Third is an Android application that can be used by contractors to securely receive pin

codes.
• Lastly, a web portal that property managers can log in and distribute notifications to

devices and assign keys to contractors.

Figure 2 - Overview of the property notification system and key tracking application

Database Designs
There are two types of database structure that fit the project, relational and non-
relational databases. Relational databases models data into one or more tables,
consisting of rows and columns. Each entity will have it’s own table and each row
represents an instance of that object.

The a good reason behind choosing relational over non relational databases is it’s
ability to handle frequent short read and write operations. Additionally, the framework of
choice is Laravel and its object relational model is Eloquent and both require the use of
a relational database to be used effectively.

While scalability is better on non-relational databases, it is not a concern with this
project as the number of properties will not exceed the limited need for it to out perform
relational databases.

Entity and Relationship Diagram

Figure 3 - Entity and relationship diagram of the notification and key tracking application

Every single model in Laravel will include a create_at and updated_at attributes. This is
great for auditing data and informing the user of the time the last action had taken place.

Tables
Users - the records within this table will either be an instance of an administrator or
contractor. It allows devices to be owned by a user and a contractor can have many
keys as relationships. Laravel automatically hashes the password using a library called
bcrypt based on the Blowfish cipher. The remember me field is for protecting against
‘cookie hijacking’. The value gets refreshed during login and logout process deeming
hijacked cookies worthless, since it no longer matches.

Properties - Property management software will require a table to store property
details. While the table seems very basic, it is enough. A property can have many keys
in addition to multiple contractors. Multiple devices will be deployed at various locations
within a property, thus a relationship between a property and device was needed.

Keys - Due to the nature to keys belonging to both a contractor and a property. This
table is also known as a pivot table for properties and contractors. Describing a working
relationship between properties and contractors. The taken_at and returned_at fields
are for storing timestamps, when the key gets checked in and out from a cabinet. The
pin field is for storing the pin codes needed to unlock the cabinet.

Devices – To attach notification to a property, a device must first be attached to a
property. Once attached, multiple notifications may be assigned to the device. In order
to define a device, a serial number must be present. Most if Android device will have
one defined by default. Therefore, to prevent running to any problems only nexus
devices will be used as they all have unique serial number. In addition to being the
foundation most Android applications were built on. The latitude and longitude will be
used to locate the devices. Administrators can use this alongside Google Maps API to
generate a map for visual aid.

Deviceable - To prevent myself from creating a redundant device table, I decided that
devices will share a polymorphic relationship with users and properties. This allows one
model to be able to share a relationship with multiple models, in other words it means
that a device can belong to a property and a user at the same time, but the relationships
must be defined separately.

Notifications - For notifications, a title will be used to describe the notification. The type
can be used to filter the list of notification i.e. alarms schedule, broken lift notice.
Towards the end of the project it was decided there was not enough time to implement
the filtering feature, as it is a quality of life feature and does not impact the major
requirements. The data field will store the HTML text that CKEditor generates. The
updated_at field will once again be used to audit the time the notification was modified.

User Interface Designs

Mock Ups
I had decided to use Balsamiq (Balsamiq, no date), an online wire-framing tool to plan
out my user interface designs for the three applications. Balsamiq allowed me to mock
up applications extremely quickly, using their drag and drop what you see is what you
get editor. One downside is their lack of support for Android widgets and native user
interface, however I made do with the IOS widgets. Full mock up designs can be found
within Appendix 2.

Web Application
I found Balsamiq to be very useful when I want to keep the user interface consistent
across the site. As each widget’s look and feel provided me be with a standard design
to follow. While the web application may look bland compared to the mobile
applications. Users of the site will not care about the looks, only its functionality.

In order to save some time, I had only made mock-ups for pages that are unique or
contains an important feature. For example, I found that the several missing pages,
such as keys and notification pages were identical in design to the property’s’ in terms
of design.

Key Tracking Application
As I had mentioned earlier, Balsamiq lacks support for Android widgets, therefore some
user interfaces on the final product may differ from the initial mock-ups that I had
produced.

To gather some design ideas, I had used an online visual discovery site called Pinterest
(Pinterest, no date). Pinterest allowed me to search for visual trends and themes on
Android, which is key when designing a professional looking user interface.

Notification Application
There was not point mocking up the notification application, as the look and look of each
notification can be modified on through the web application. Additionally, the device will
automatically setup itself. Therefore, it does not require any user interaction, removing any need
to design the user interface.

System Requirements

Functional Requirements as User Stories
I had listed my main aims and requirements in my initial reports but back then project
was at its early stages and additional requirements had requested and several had
been down graded or removed.

Each of the core aims can be broken down further so that more details can be provided.
As this is an agile project I will convert these requirements into user stories and provide
a reasonable acceptance criteria.

Administrators
1. As an Administrator, I must be able to login to the web application so that only

authorised users can gain access to the rest of the system.
Acceptance Criteria - The administrators must be able to login using their
credentials. If incorrect values had been entered they will be asked to retry.

2. As an Administrator, I must be able to logout of the web application so that

administrators can switch accounts.
Acceptance Criteria - Using the logout button this must clear the session and log
the administrator off.

3. As an Administrator, I must be able to create new keys and send them to
contractor providing them with access to a master key cabinet.
Acceptance Criteria - If I am an admin, I can create new keys and assign them
the contractors.

4. As an Administrator, I must be able revoke a contractor’s access to a key
cabinet, so that a cabinet can be kept secure.
Acceptance Criteria - As an admin I can navigate to a contractor page, view a list
of keys and remove one or several keys.

5. As an Administrator, I must be able to view the key taken and return times, so
that I can contract a contractor if a key is missing.
Acceptance Criteria - I can view a list of keys and the logged taken and return
times that a contractor had made.

6. As an Administrator, I must be able to create new notification so that information
can be distributed to property residents.
 Acceptance Criteria - If I am an admin I can create notifications and assign them
to devices that resides within a property.

7. As an Administrator, I must be able to view the location of each terminal so that I

locate the device if it needs maintaining.
Acceptance Criteria - I can view the location of a device using Google maps.

8. As an Administrator, I only need to provide the notification with Internet

connection to setup the device, so that I do not have to worry about configuring
the device on deployment.
Acceptance Criteria - The application will automatically register device details
and can operate without user input.

Contractors
1. As a contractor, I must be able to login the application so that I can view a list of

keys that had been assigned to me.
Acceptance Criteria - If my credentials are valid, I should be able to see a list of
keys.

2. As a contractor, I must be able to logout of the application so that only I can view
the keys list.
Acceptance Criteria - I will automatically logout of the application when it closes.

3. As a contractor, I must be able to view cabinet pin codes so that I can use it to
unlock a cabinet.
Acceptance Criteria - I can view a list of keys and their pin codes.

4. As a contractor, I must be able to log a key’s taken and return times so that an

administrator cannot hold me accountable if a key had be lost.
Acceptance Criteria - I must be able to log the time taken and returned of key.

Residents
1. As a resident, I must be able to view the notifications that an administrator had

made so that I am updated with the latest events.
 Acceptance Criteria - I can look at the notification device to get the latest
information one fire alarm schedules and any on site maintenance.

2. As a resident, I must able to obtain the latest weather formation like the chance

of precipitation and wind speed so that I can decide to bring an umbrella or not.
Acceptance Criteria - I can view the daily weather on a notification terminal.

Non-Functional Requirements as User Stories
To design the behaviour of each system several non-functional requirements was
created. Providing some constraint for the system focusing more on the quality
attributes of the system, such as the performance and security of the application. As this
is an agile project I will convert these requirements into user stories and provide a
reasonable acceptance criteria.

Administrators
1. As an Administrator, I must be able to load all web pages under 2 seconds.

Acceptance Criteria - Making sure the time between a request and response is
under the specified time.

2. As an Administrator, I must be able to operate the application on a mobile device

so that I can work from away from a computer.
 Acceptance Criteria - The website can scale to fit the device screen.

3. As an Administrator, my user experience must be consistent throughout the
application so that the application is easy to navigate.
Acceptance Criteria - The user interface components like the search bar and
delete buttons should be located in the same general area.

4. As an Administrator, I must be able to use the web application on different

browsers.
Acceptance Criteria - Changing browsers should not impact the features on the
application, only the look and feel.

5. As an Administrator, I must be presented with a human readable message when

an error has occurred.
Acceptance Criteria - If an error occurs, it should fail gracefully and redirect to an
error response page.

Contractors
1. As a contractor, I must be able to load and refresh my list of keys in less than 2

seconds.
Acceptances Criteria - Loading and reloading speeds must be are under 2
seconds.

2. As a contractor, I must be kept informed when processing is happening in the

background.
Acceptance Criteria - A loading indicator will appear every time long processes
are taking place.

3. As a contractor, I must be presented with a human readable message when error

has occurred.
Acceptance Criteria - An error message will pop up every time an error occurs,
giving a reasonable explanation describing the problem.

4. As a contractor, the user interface I use should follow Android material design for

so that it is pleasing to the eyes to use.
Acceptance Criteria - The entire application will have consistent colours, text size
and components.

Residents
1. As a resident, the notification displayed to be clear and easy to see.

Acceptance Criteria - The notification should scale the text size according to the
device screen size. The text colour should change to complement the
background.

2. As a resident, the notifications should rotate after a reasonable amount of time so

that I have enough time to read everything.
Acceptance Criteria - The notification will not switch between notifications and
the weather information too fast.

Use Flow Diagram
To model the entire application I had created a user flow diagram. See Appendix 3. The
diagram will describe a set of actions that a user of the system can perform and what is
observable by other members of the application.

As stated previously in the requirements section, there are three actors’ administrators,
contractors and residents. Property managers are administrators of the system.
Therefore, they are in charge of notification creation and distribution, in addition to
managing keys for contractors. The contractors will only interact with the Android
tracking application logging in the key taken and return times.

Use Cases

Field explanations

Title The goal of the use case

Description Description of the goal and context of the use
case.

Actor A person, software system that interacts with
the system to achieve the specified goal

Pre-condition Description of the system before an
interaction had taken place.

Post-condition Description of the system after all actions had
taken place.

Main Success Scenario Flow of events from the pre-condition to post-
condition state.

Extensions Extra scenario for this use case.

Use Cases

Title Administrator can Login

Description An admin can gain access to the rest of the
application by providing their credentials.

Actor Administrator

Pre-condition Admin must have a register account

Post-condition The admin is logged in and redirected to the
property's listing page.

Main Success Scenario 1. Admin will need to enter their email
address and password into the
corresponding input boxes.

2. Admin clicks on the ‘Sign in’ button.
3. Admin get redirected to the properties

dashboard page.

Extensions 2a. User incorrectly enters either the email or
password.

- 2a1 an error message will appear,
informing the user of their error.

- 2a2 Enter the correct credentials
- 2a3 Clicks on ‘Sign In’ button

Title Register new contractors

Description Can create new contractors when given valid
information.

Actor Administrator

Pre-condition Admin must be logged into the application.

Post-condition A new contractor had be

Main Success Scenario 1. Administrator will need to provide the
contractor’s full name.

2. Administrator will need to provide the
contractor a password.

3. Administrator will need to provide the
contractor an email address.

4. Administrator will need to provide the
contractor a telephone number

5. Administrator will need to change the

role to contractor.
6. Administrator clicks on submit to

create a new user.

Extensions 6a. If the fields are left empty.
- 6a1. An error message will pop up

and tell the admin that they need to fill
the missing fields.

- 6a2. Admin fills in the missing fields
and create a new contractor.

6b If an email address had already been
used.

- 6b1. An error message will pop up
and inform the admin that they need
to provide an alternative email
address.

- 6b2. Admin needs to enter a new
email address or cancel the creation
process.

Title Deleting a contractor

Description Removing a contractor record from the
system

Actor Administrator

Pre-condition Admin must be logged in and on the
contractor-listing page.

Post-condition The deleted contractor will not be searchable

Main Success Scenario 1. Admin uses search bar to filter the
table so that their desired contractors
appear.

2. Admin clicks on the delete button.
3. The web page will then refresh the

page and be updated with the latest
list of contractors.

Extensions None

Title Assigning a key to a contractor.

Description To generate a key for contractors to use to
unlock a cabinet and retrieve a property
master key. The newly generated key will
appear within contractor’s app when they
refresh their key list.

Actor Administrator

Pre-condition Admin must be logged in and on the
contractor-listing page.

Post-condition Contractor will be able to view the key and
the pin code that relates to it.

Main Success Scenario 1. Search for a contractor from the
contractor table page.

2. Click on the row of the desired
contractor.

3. Scroll down and click on ‘Add Key’
4. Select a contractor name from the

dropdown list.
5. Type in the pin code for the property.
6. Click on ‘Add’ to finalize the key.

Extensions None

Title Revoking a key from a contractor

Description To revoke or remove an active key from a
contractor. The removed key information will
disappear from the contractor’s key list once
they refresh the list or restart the mobile app.

Actor Administrator

Pre-condition The administrator must be logged in and
admin must be on the contractor page.

Post-condition The contractor will no longer have access to
the key and the pin code.

Main Success Scenario 1. Scroll down the active keys list
2. Type into the search bar the property

name of the key.
3. Click on the ‘Delete’ button.

Extensions None

Title Assign notification(s) to a device

Description Attaching a notification to a notification list, so
that the notification app can display it to
residents.

Actor Administrator

Pre-condition The admin must be logged in and must be on
the device page.

Post-condition The device will no longer display removed
notification.

Main Success Scenario 1. Search for a device that admin wants
to attach a notification to

2. Scroll down to the connected
notification table

3. Click on ‘Add Notification’.
4. Select the notification from a list.
5. Click ‘Add’.

Extensions None

Title Removing a notification from a device

Description Removing desired notification from the device
so that it no longer displays it to residents.

Actor Administrator

Pre-condition Admin must be logged in and on the device
page

Post-condition The device will no longer display removed
notification.

Main Success Scenario 1. Search for a device that admin wants
to attach a notification to

2. Scroll down to the connected
notification table

3. Search for the notification from the
notification table.

4. Click ‘Delete’.

Extensions None

Implementation
This section will outline development process that I had went through to implement the
project. Including any noteworthy programming problems that I had encounters and the
solutions to them. The first thing I had decided to do was setup the Laravel development
environments, one locally and another on an Amazon AWS instance.

Web Application

Configuration
Since the introduction of Laravel 5, PHPDotEnv had been used to configure the
environment variables. Environment variables separate sensitive data from the project’s
source code, as a rule of thumb, a developer should never keep their security
credentials inside a Git Repo. Most of the time developers will have one configuration
for their local machine and another for the production server.

Local

Figure 4 - Print screen of the local environment parameters

For local development environment I had decided to display the error stack in the
browser, as it was more convenient than searching through the Laravel error log file.

Production

Figure 5 - Print screen of the production environment parameters

For the production environment I did not want to display the error stack so I had set the
APP_DEBUG variable to false, with different database credentials from the local
version. Additionally, App_Key is required to encrypt session data and must be
generated through a command line interface.

The database was also hosted on the same AWS instance in order to save on cost and
like the local configuration file; I needed to specify the username and password. While
at first it seems like a mistake to store the database password in plaintext, as long as
the file is not placed within the public folder an outsider cannot access it, unless the
entire AWS instance was compromised.

Database
The next step after setting up the environment is to store the various entities in a
database, such as properties and contractors. Laravel allow developers to easily
integrate databases to their web applications via the environment file. Performing
queries was simplified and supports multiple database systems such as MySQL,
Postgres, and SQLite and SQL server.

Migrations
Laravel uses a version control like system to manage the database. Allowing multiple
developers share their database schema, following agile methodology means that the
project must be able to adapt to changes and by using schemas some flexibility was
added to the database. See figure 6.

Figure 6 - A database schema for the notifications table

A migration class will contain two methods ‘up’ and ‘down’. The up will allow new
tables to be created, add new or change existing columns. The down method will need
to do the reverse, conveniently for this example I wanted to change the ‘data’ column to
type ‘mediumText, as it allowed more characters to be stored than what it was before.
For the reverse function I changed the column type back to ‘string’ also known as ‘text’
primitively.

Routes and Middleware
For any modern web framework an application router will be needed to direct a HTTP
request to an appropriate controller. The ‘app/routes.php’ is where the routes need to be
defined. This was done to keep the entire route in one place and by separating the
concerns future route modifications becomes easier to manage.

With the above example the ‘/auth.logout’ requests will be handled by an authentication
controller.

Request Verbs
Laravel likes to be more specific when post requests are performed. Normally, html
forms only supports GET and POST request. Extra verbs like Delete and PUT verbs will
not and requires spoofing by adding a hidden field named ‘Delete’. See code snippet
below:

Additional verbs were added so that multiple actions can be performed using the same
URL.

For example:

http://192.168.0.8:8000/devices/152

The above link will load the device page with an id of 152, using the GET verb. However
if a spoof POST request with a hidden field of PUT was made. The action will be to
update the resource instead of loading it.

The following table lists all verbs that Laravel uses along with the action.
Verb Path Action Explanation

GET /resource index Gets the page with every
resource loaded.

GET /resource/create create Get the form page to create the
resource

POST /resource/ store Request to create a resource

GET /resource/{id} show Get resource page with the
same id as specified in the
path

GET /resource/{id}/edit edit Get the form page to update
the resource

PUT/ PATCH /resource/{id} update Request to update a resource

DELETE /resource/{id} destroy Request to delete a resource

Key Management
As specified as a project aim, property managers must be able to distribute keys to
contractors. The decided solution was to have to a panel where an admin can assign
keys to contractors, as well as specifying the property that key belongs to.

Assigning a key to a contractor
There are many ways to create keys, however I will be discussing the ideal method for
key creation. This procedure will automatically create a relationship between a
contractor and the created key, along with the property this key can be used on.

First, the administrator will need to navigate to a contractor profile page, scroll down to
the active keys panel. See figure 7.

Figure 7 - An empty table of assigned keys on a contractor page

Clicking on the ‘Add Key’ button will trigger a model. Where admins can select a
property from a drop down list and assign a pin code all contained within a form. See
figure 8. However, from a user experience point of view this is very bad, as it is difficult
for users to get a good overview of the list. If time permits I will modify this input box to
use a postcode, where user can search for an address within the database.

Figure 8 - A bootstrap modal for assigning a key to a contractor

On submission, the POST request will be directed to the ‘addKey’ method within the
contractor controller. See the code snippet below:

First the ‘addKey’ method will retrieve a property object using the submitted property id
and the pin code. As it is a RESTful API, I can use the id in the URL to find the
contractor. After creating a new keys and assigning the appropriate values for each
field, then redirect the user back the page they were before.

Within the key object both ‘taken_at’ and ‘returned_at’ fields was designed to accept null
values in the schema. However, it is much better to assign it a default carbon value, so
that I do not have to worry about null exceptions. Allowing for easier expansions in the
future.

For example, the key tracking application maps this serialized key object to a java
object via the use of GSON. GSON, doesn’t allow a mapping of null values if the
timestamp value ‘0000-00-00 00:00:00’ was not used.

Revoking access to a key
The easiest method to remove a key is via the contractor active keys table. See figure
9. In the option panel the contractor will have the option to edit and delete a key. By
deleting the key. The contractor will no longer be able to view key information on his or
her device.

Figure 9 - An assigned key within a contractor's assigned key table

On submission, a POST request will be directed to the ‘removeKey’ method with the
key_id as a parameter. See below:

The ‘removeKey’ method searches the database for a key matching the specified
‘key_id’ via Laravel’s eloquent model. Then proceeds to delete the record and redirect
the user back the contractor page. See code snippet below.

Notification Management
As mentioned earlier I had integrated an open source web editor called CKEditor into
my application to handle the notification creation and modification. The code to integrate
the editor was quite straightforward. I needed to create a webpage with a text area.
Then tell CKEditor to replace the text area with the editor by using the following
JavaScript code:

CKEDITOR.replace('notificationArea',	{	... }

On CKEditor’s downloads page (http://ckeditor.com/download) they provide three
versions of CKEditor basic, standard and full package. Essentially the versions you
choose will decide the number of plugins it automatically include and ready to use
straight of the box.

The developers have full control over the editor. They can add and remove the plugins
that may or may not be needed. However, for an unknown reason, it does not provide a
save button or plugin by default. Thus, I had to add to download and install the plugin
separately.

Creating and editing notifications
Creating a new notification is simple and straightforward because it is a WYSIWYG editor.
They can style the text and add media to each notification in real time and the outcome

will be a document that can be displayed through a notification terminal. In terms of
functionality it works like any word document.

Figure 10 - Notification creation page

Currently, the notification app only supports portrait mode, so I had used an A4 paper
size for the editor’s width and height with 72 dpi. Ensuring that each notification will be
structured roughly the same regardless of the device width and size in portrait mode. All
modifications to the editor’s user interface were done through
‘public/lib/ckeditor/config.js’ file see below.

Saving the notification
In order to save the notification, CKEditor converts the textarea content into HTML
code, before sending a request for Laravel to handle. The code to save newly created
notification and edited notification are roughly the same, via AJAX.

Figure 11 - Save button within the CKEditor toolbar

After adding the save plugin, I created an onclick handler for the save button. When the
event triggers the HTML code that represent a notification, title, types and notes will be
extracted from the textarea via JQuery. CSRF token was also injectected into AJAX in
order to Laravel’s security check. Then the contents of a notification will be encoded so
that unwanted side effect are prevented For example, when using commas, AJAX will
create parameters in a POST request. See the Ajax code below.

On arrival on the server side,

Then all input data will be used to construct a notification object and saved to a
database. See code below:

Assigning notifications to a device
To assign a notification to a device the user needs to navigate to the devices list page.
Then they will need to filter the table for the device they want to add notifications to. See
figure 12.

Figure 12 - Devices list page on the web application

After selecting a device and loaded the device page, scroll down to the connected
notifications table, here the admin can add existing notification to the device via ‘Add
Notification’ button. See figure 13.

Figure 13 - Connected notifications table on a device page

Modal will appear, where admin can select a notification from the dropdown list. This
can be done multiple times to chain notifications together, so that the device will rotate
the notifications in order to display everything.

Figure 14 - Add a new notification to device modal

Removing a notification from a device
To remove a notification or notifications from a device, the administrator must navigate
to each device page and scroll down to the connected notifications table. When an
admin clicks on the delete button, a POST request will be sent to the server requesting
the link between the device and notification to be destroyed.

Mobile Applications

Making requests
In order to communicate with the server and receive data on the Android device, a class
was constructed to handle HTTP requests, both Android applications uses the same
‘RequestTask.java’ class implementation in order to save some development time.
‘RequestTask’ utilizes Android HTTP library Volley to make requests. The class does
the following:
● Handles the creation of GET and POST requests.
● Handles retry policies of timeout requests.
● Handles error responses and generate human readable messages.
● Manages digest authentication routines.

For every request a new RequestTask object must be instantiated, along with a
response listener and an error listener. On successful requests a JSON response will
be returned, however if there was an error a VolleyError object will be returned instead.

The ‘RequestTask’ task handles GET and POST by creating two methods.
StringRequest is request that expects a string response provided by Volley. For GET
requests the method type does not need to be specified. However, for POST both post
parameters and method type must be supplied.

StringRequest	stringRequest	=	new	StringRequest(Request.Method.POST,	
url,	this.listener,	new	ErrorListener()	{

Once a request had been created. A retry policy must also be configured in order to
counter slow connections. By default the timeout value is set to 2.5 seconds and the
max number retries is 1. If nothing was configured and the max number of retries had
been reached, Android will throw a timeout error crashing the application.

Finally, add the request to a request queue. A Volley request queue singleton was
made. My reasoning was that the application will make multiple requests and each time
a request queue must be created. By not creating and destroying objects, the
application will be much more efficient and the code produced becomes much cleaner.

VolleySingleton.java

Handling responses with GSON
All responses from the server will be in JSON format. Below is a typical response from
the server.

A JSON response of keys

The JSON was chosen as the response format because of its simplicity, ease of
debugging and unlike XML uses less characters. Additionally, it is fully compatible with
GSON, a Java library that can serialize and de-serialize JSON to Java objects.
Combining the two removes the need for complex parsing methods.

To de-serialize a JSON to a Java object pass the JSON string and the class it maps to,
to the fromJson method:

Both mobile applications do not need to serialize Java, however the method to do so is
simple. See code below:
String	serializedObject	=	new	Gson().toJson(Object);

Conveniently, this allows any Gson serializable objects to be stored on the device, as
preference manager allows strings to be stored. Once that object had been stored it can
be retrieved at any point, removing the need to create a parcelable object to transfer
objects between Android activities. However, it is less efficient this way.

Handling Date and Time on Android
Dealing with date and time can be difficult when time zones are involved. Splitting
different functionalities into classes encapsulates problems, so that developers can
focus on the problem. Additionally, I needed a clean and non-redundant way to format
the date and time to fit certain situations. Thus, I utilized Joda time library to create a
helper class to construct my own time object. The object can convert system’s UNIX
timestamp into Carbon time format, in order to be parsable server side.

Below is a method that converts Joda time into carbon time format.
public	String	getCarbonDateTime()	{
			return	dateTime.toString("yyyy-MM-dd	HH:mm:ss");
}

Implemented with Agile in mind the mobile application can be configured to work at
various location around the world, only requiring modification of the zone id.

A member variable of the TimeHelper.java class
private	DateTimeZone	timeZone	=	
DateTimeZone.forID(Constants.TIMEZONE_UK);

TimeHelper.java class’s contructor
public	TimeHelper()	{
			this.dateTime	=	new	DateTime();
			this.dateTime	=	dateTime.withZone(this.timeZone);
}

The following method was needed in order to convert the date and time object into a
string that humans can read, for example ‘Sun 01 May’. This is much more convenient
than constructing the traditional SimpleDateFormat object, where a formatting and time
zone are required every time.

public	String	getReadableDateForCard()	{
			return	this.dateTime.toString("EEE	dd	MMM");
}

Notification App
The notification application was designed with the sole purpose of supplying information
to residents of a property, in addition to providing the local weather.

Permissions
The notification application requires Internet connection and location services. In order
to use the APIs like get latitude and longitude, permissions must be specified in
‘AndroidManifest.xml’ file. Simply put a manifest file defines the structure and metadata
about an application, permissions and intent filters are there to determine how they work
with each other and other applications.

Device Setup
As specified as a user story, the device must be able to automatically register itself and
update its location when moved from one property to another. The device must have
Internet connection and the terminal owner must enable location service before the
application will work.

The code block above does the following, generate a loading animation, try to get the
device object from local storage and determine whether or not the device needs
registering or updating.

Registering the device
The first launch after installing the application, the device will register itself to the
system. Using the ‘URLHelper’ class a URL is required to register the device.

Then the application extracts as much information as it can from the device. Such as
the build, manufacturer and serial number. Location coordinates will also be extracted
using the GPSTracker class.

The latitude and longitude will be parsed into a string then compared with the string
value of ‘0.0’, as it is the value that the default value that latitude and longitude returns
when the location coordinates cannot be determined.

After the device successfully registers itself on the server. The response will then be
stored locally for the rest of the application to use.

Updating the device
Updating the device information is similar to the registration routine. However, there is a
check to see if previous device information exists on the device. If so, grab the device id
and request a device update.

With the above the GSON was used to convert the string device object into a use
device object. Then the id number was used to construct the UPDATE request. If
successful the updated device object will be replaced. This entire process will repeat
every time the application restarts.

Displaying Notifications
Once a notification had been assigned to the device, the application will display the
notification when the weather screen switches out. My implementation switches
between weather and notifications every 20 seconds and updating occurs in between
switching.

The limitation exists because of how the fragment switcher was implemented. By the
time I had started building the application I was behind schedule, so decided to
implement this functionality in the quickest and easiest way possible. I had decided to
create a ‘FragmentSwitcher’ class that extends ‘CountDownTimer’. ‘CountDownTimer’
is an abstract class that executes an event after a specified amount of time had
elapsed.
.
Fragment switcher
When I extended my ‘FragmentSwitcher’ class from the ‘CountDownTimer’, I had to
implement my own ‘onFinish’ and ‘onTick’ methods. I will leave the ‘onTick’ empty, as
there is nothing I needed to do between one interval and the next. However, I
implemented the fragment switching within the on ‘onFinish’ method because I wanted
to switch fragments after the timer is up.

The switching implementation works by assigning both notification fragment and
weather fragment an id. The id number will increment after every switch and when the id
number exceeds the number of fragment; the variable resets itself back to one. This
implementation will simplify the appending of new fragments, like the traffic fragment for
example; developers will only need to add a new case and hiding the existing
fragments.

Displaying local weather
To supply the notification client with weather information I had built a weather
‘IntentService’ within the application. Simply put an ‘IntentService’ is a class had
handles asynchronous requests, like weather update requests. All requests will be
handled on a worker thread and stops itself when the job is done, which means that it
will not hold up the rest of the application especially during long requests. Allowing both
notifications and weather to update them simultaneously.

In order to update weather information as smoothly as possible, I had decided to update
the interface when the weather fragment switches out and not viewable by the user. The
logic is checks if it the fragment ‘isHidden’ or switched out. If so, check that the weather
service is running and supply it with the URL and coordinates it needs.

Getting the weather data follows the same procedure as a normal HTTP request,
however I decided to use a callback method to separate out the code for readability
purposes.

When a response returns, the client broadcast the data back to the weather fragment.
Telling it to update the user interface with the latest temperatures, wind speeds and so
on. Below is the code that tells the weather broadcast listener to listen out for
broadcasts with a ‘WEATHER_RESPONSE’ tag.

Upon receiving a broadcast the receiver will extract the updated weather information and update
the user interface components accordingly.

Key Tracking App
The key tracking application was designed to help contractor manage their keys. The
application will only reveal pins when contractor activates their key, logging the time.

Contractor Login
In terms of registration every contractor will be given an account to use, with an email
and password. The first thing the contractor will see is the login screen, where they can
enter their credentials. See figure 14.

Figure 15 - Login screen on the key tracking application

I added a checkbox for remembering the username. In order to improve the user
experience because the application automatically logs the user out when they close the
application, forcing them to enter their email address every time. See code below:

When the contractor entered their credentials and tapped on ‘SIGN IN’, a login request
will be submitted along with their email and password. The request was made using the
‘RequestTask’ class that I had implemented.

A circle progress bar then appear providing feedback to the contractor, letting them
know that they have submitted their request and are awaiting for a response. If the
request was successful the client will save the user object that returns with the
confirmation, otherwise a message will appear informing them that they had failed
authentication.

Displaying Keys
Once the contractor successfully logs in. They will be presented with a key list that can
either be empty or contain several cards. Each card contains information that will be
useful to a contractor like the address, pin code and the key taken and returned
timestamps. See figure 16.

Figure 16 - A card containing an address, pin code, key taken and returned time

The key list was implemented using a widget called a ‘RecyclerView’. It is a more
advanced and flexible version of a ‘ListView’. In Android a ‘ListView’ is a component that
displays a list of scrollable items. A RecyclerView is Ideal for displaying medium to large
datasets; users will be able to traverse through the dataset via scrolling.

Figure 17 - Recylcer view diagram

RecyclerView
To use a RecyclerView, I added the xml code below to ‘content_key.xml’ file. The file
will be used to render various components within the Key Activity.

Then I had attached a LayoutManager to the RecyclerView, allowing new cards to be
created and attached to the RecyclerView. Setting the hasFixedSized to true means
that when a new card gets added to the list, the contents like texts and images of that
card does not force other cards within that list to re-render due to inconsistent width or
height. Thus, improving the device performance, as it is expensive to re-render.

Adapter
The adapter provides access to contents of a card that resides within a RecyclerView.
An adapter is in charge of creating cards and updating contents of a card when it is out-
dated.

Whenever a new card is created the onCreateViewHolder method is invoked. A
LayouInflater is an Android component that allows new views like cards to be
generated.

Once a new card has been created. The contents like address and postcode can be
injected into the view. The process is relatively simple when an adapter receives a list.
The adapter indexes the items and generates the same amount of cards. Each card can
then be inserted with texts, buttons or any other components.

Refreshing Key List
The ability to refresh the key list is a core feature of the key tracking application.
Whenever an admin assigns a new key to a contractor, they must either restart the
application or refresh the key list to obtain the new or updated keys.

To add the refresh feature, I added the ‘swipeRefreshLayout’ component to the
‘content_key.xml’ file. The xml snippet should wrap around the RecyclerView, while it
does not affect rendering of either components; it will inform future developers that there
is a refresh component that affects its child RecyclerView.

Then I assigned a listener to the ‘SwipeRefreshLayout’, when a contractor makes a
swipe down gesture the listener’s ‘onRefresh’ method will be invoked. On activation the
contractor id will be used to send a key update request to the server.

If the request was successful, a list of keys will be returned. The response will then be
serialized into a key list object. The key list adapter then uses the key list object to
update the interface with the latest key information.

Updating Key Taken and Return Times
When a new key gets assigned to a contractor, a card will be generated that card will
not have a key taken or returned time. The pin code that the contractor needs to unlock
a cabinet will also be replaced with the word ‘Inactivated’.

In order to retrieve the pin code, the contractor must tap on the ‘TAKE KEY’ button. On
button click a user interface will update and reveal the pin code the contractor. See
figure 18 and 19. I had designed the application this way, in order to force contractors to
log the key taken time. When contractors are done with their key, they can tap the
‘RETURN KEY’ button to make a second request to log the key returned time.

Figure 18 - An inactivated key displayed on a card

Figure 19 - An activated key displayed on a key

I experienced a nasty bug developing this feature. The issue was the key returned time
was the same as the key taken time. I did not notice that the ‘TimeHelper’ object was
extracted the current time of the system during card view construction and later during
the on click execution.

To solve the issue I moved the logic around so that the client extracts the code just
before a request submission, rather than during the card view construction, which was
incorrect. See snippet below for the fix.

Security

Authenticating Requests
One main feature that I wanted to add to my mobile application was a method to secure
data transmissions. HTTPS prevents the user and the session from being exposed.

In order to decide which authentication method to use, I took into consideration the
sensitivity of the data that was being submitted and the time left to implement it. For the
notification system the devices will mainly be receiving non-sensitive information like a
fire alarm schedules and advertisements. Thus, the method chosen does not have to be
completely secure.

Digest Authentication
The first solution is to use Digest authentication method. This particular implementation
prevents the shared secret from being transmitted in plaintext. Additionally, it uses
nonce in order to prevent attacks from rainbow tables. Digest does not use SSL that
means requests can be completed slightly faster.

There are also a few downsides from using Digest authentication. First every request
that uses this method of authentication requires 2 requests, one without the credentials
and one with. Second the HTTP Digest is vulnerable to man in the middle attacks, as it
does not provide methods for clients to verify the server's identity.

Process:

1. Client makes a request to the server
2. Client receives a 401-authentication challenge from the server and with it a

nonce.
3. The client sends back a hash response value containing username, realm,

nonce, realm, URL, and a shared secret password also known as an API key. .
4. The server looks up the username and shared secret in order to carry the same

hashing process.
5. Compares the client hashed response with it’s own. It is matches the client is

authenticated, if not the password is wrong.

HTTP Basic Authentication using SSL
The obvious solution with securing data transmission is a priority is to use HTTPs. In
addition to providing an added level of security, serving the application over HTTPS
means that Google more likely to rank your site higher.

In order to use SSL, the server must be configured to use SSL there are multiple ways
to obtain a valid certificate. Some will be free and others will require some sort of
payment. However, the first step is to create a certificate-signing request using

OpenSSL. OpenSSL will create two files, a private key for decryption of SLL certificate
and a certificate sign request.

After receiving a certificate from an issuer, it needs to be installed on a server that is
hosting the application. After enabling SSL and its configuration, SSL connections will
become possible.

SSL is slower than most non-SSL methods, only one API per request. The password on
the server will be encrypted using bcrypt in order to make it harder for hackers to
extract.

Process:

1. Client makes a request with a email and password in plaintext to the server.
2. If the credentials are valid the server will respond with the requested information

or an error.

Chosen method of authentication
Given the amount of time I had left, I had decided to implement Digest authentication
method, as the alternative was not viable for me to setup and use. The amount of work
required in order to setup a valid certificate will undoubtedly add extra workload to an
already large project.

For the notification side of the project the added level of security was an unnecessary
overhead, as the information being transmitted was intended for the public eye.
However, for the key tracking application it is a security flaw. I had stated prior that I ran
out of time to complete the security aspect of the application. AES encryption will be
used in the next iteration in order to encrypt JSON responses from the server. The
response contains a lot of valuable information such the pin code that can unlock a
master key cabinet and the location where the master key can be used.

Mobile Digest implementation
The below is the code that handles the authentication procedures on the Android device
and can be located as a method in ‘requestTask.java’ file. The code handles the Volley

error response from the first HTTP request.

The method checks whether or not a Digest challenge header ‘WWW-Authenticate’
exists. If the header is missing, it usually means that the user’s credentials were
incorrect and that an error message had been returned.

However, if ‘‘WWW-Authenticate’’ header is accessible, it will require a method to parse
its value, as it is one long string with each pair separated by a comma. The header
content contains the realm, quality of protection, nonce and opaque.

Challenge from server with WWW-Authenticate header

WWW-Authenticate parse method

Now that ‘digestHeader’ had been parsed generateAuthorizationHeader(digestHeaders,
method, url) method will generate a Digest response and appends the results to the
second request.

There are two types of request the mobile application can make, either a GET or a
POST request. Both requests can use this one method to handle all Digest responses,
compression potentially two handlers preventing code redundancy and makes this class
easier to maintain.

Volley POST request method

I found that the Digest handler to be problematic to implement because Volley does not
provide methods to obtain the original URL or method type by default. Thus every
request requires an URL and type to be passed down to the handler. Additionally, I had
to manage two error listeners deciding how each error should be delegated.

For example to implement the login feature I needed to make a request in order
authenticate the user. With every request an error listener must be instantiated to
handle errors. When ‘RequestTask’ gets executed the first response will most like be
the 401 challenges from the server. This error will be handled by a separate handler
that resides in either ‘sendPostRequest’ or ‘sendGetRequest’ method. Then on the
second response, if an error has occurred it will be delegated the first listener.

Server Digest implementation
Setting up the Digest authentication on the server was simple, as there are many
libraries available. The package I had decided to use was called httpauth and it
supports both digest and basic authentication.

To install the library the following command was executed.

$	composer	require	intervention/httpauth

Once installed and a package must be registered with an alias. These packages will be
lazy loaded so that it doesn’t hinder the performance of the application. The term lazy
loading refers to an event when a parent does not load any of its child objects.
After installation, I needed to create a filter that passes requests through the Digest
authentication process. In Laravel a request filter is called a middleware; not only can it
handle authentication processes, it can also be configured to audit requests.

To enable a filter, the route configuration file must be modified. Using a group function
and placing the routes inside it’s closure allows a set of filters to be applied to selected
routes.

Results and Evaluation

Testing
Initially, I had opted to create unit tests for all three applications, however I did not have
time to complete them due to unforeseeable circumstance such as job interviews. I
decided that it was best if I complete as much of the project as possible then performing
manual unit testing.

 While Laravel does offer some helper functions making tests for create, remove,
update and delete operations was easy. The level of complexity increases dramatically
once user interfaces are involved, as some design choices causes some presentation
code to behave in an abnormal way. One example was when a label was used, as a
synthetic button to submit a form. Thus, the testing framework cannot click on the label.
Additionally, some implementations took far longer than anticipated including several
less documented bugs.

The mobile applications was tested on two devices a Nexus 7 and a Nexus 5X. See full
specifications below. The Nexus 7 was used to develop and test the notification app, as
the screen size was preferable to a mobile phone’s and mimics the tablet devices that
will be utilized once released. The Nexus 5X was instead used to for the key tracking
application.

Android Studio does offer the ability to emulate certain devices. There are drawbacks,
for example not all user interaction can be replicated using a mouse or a keyboard.
When testing for level of battery consumption, Android Studio also simulates the battery
value meaning that it is not a true representation, as performance of field-tested device
something that is hard to replicate. There are some features that Android can try and
simulate the camera using the front webcam with poor results.

System Specifications
The web application was developed on a laptop and was designed to work across
multiple browsers. The two mobile applications were designed and to be used on an
Android devices see specifications below:

Laptop
Operating System OS X El Capitan 10.11 Beta (15A278b)
Model MacBook Pro 2012
Peripherals Laptop Built-in Screen

Laptop Built-in Track pad
Laptop Keyboard

Browser Version 50.0.2661.86 (64-bit)

Mobile
Operating System Android 6.0.1
Model Nexus 5X
Web Browser Google Chrome 50.0.2661.89
Build MHC19Q

Tablet
Operating System Android 4.4.2
Model Nexus 7
Web Browser Google Chrome 50.0.2661.89
Build KOT49H

Unit testing – Web Application
In order to test the web application and services that it provides to the mobile
application, it is critical that each route is fully functional. This, I had created several
tests that I can use after completing each new implementation to ensure that everything
is functioning normally.

However, I did not implement any tests for various APIs employed by the two mobile
applications. Therefore, I will perform manual testing on them by firing requests and
noting down the responses. See appendix 4.

While I tried my best to prevent bugs, the end product will have bugs that have yet to be
discovered. As, it is extremely lengthy to test every possible variable, state and path
within a system or application.

To create unit tests I had decided to use PHPUnit a PHP testing framework
(https://phpunit.de/). PHPUnit can emulate HTTP requests, examine responses and fill
out forms. I had created tests for every controller and the functionality of each method.
Testing each method will ensure that:

• Each method works
• The response code is correct
• The response returned is as expected

Conveniently, PHPUnit is integrated into Laravel, allowing me to perform all tests using
the following command within the project directory:

phpunit

Below is a screenshot from running PHPUnit. All source code will be supplied with this
report.

User Testing – Key Tracking Application
Unlike the web application, I had opted to manually test the mobile application. In order
to ease the testers in, I explained the scenario when the application will be used and
that they will be carrying out a role of a contractor. All responses from testers will be
noted, however I will not answer any questions or guide them through the tasks that I
had set.

Functional Requirements

Task User Responses
Incorrectly enter the
provided email address or
password

User A “It says incorrect
credentials, as expected”

User B “A message popped up
informing me that I had
entered the wrong
credentials”

Log in to the application User A “It works”
User B “It works like its supposed

to”
Retrieve pin code to unlock
a cabinet and log the time

User A “The time was updated
appropriately”

User B “The UI looks very good”
Refresh the key list User A “I don’t know how”

“Pulling it down does it”
User B “Intuitive to pull down to

refresh”
Return the key to the
cabinet and log the time

User A “Nice, the response tells me
that the update was a
success”

User B
Log out of the application User A “I don’t know how, There

should be an option like a
button ”

User B “I cannot see the logout
button anywhere”

Non-Functional Requirements

In order to obtain feedback for non-functional requirements, I converted non-functional
requirements into questions and asked them whether or not it had been accomplished,
in addition to any improvements that they think should be included in the next iteration
of the application.

Question User Responses
Was the application fast
and responsive to use?

User A “Yes, it updated fast enough.”
User B “Yes, very”

Did the application do a
good job informing them
that a long running task is
in progress?

User A “Yes, the spinner informed me that a task
is running”

User B “Yes, the loading animation was useful”

Was the error message
easy to understand

User A “Yes, it was easy to understand

User B “Yes, it was simple and easy to
understand”

Is the user interface easy
to read and eye pleasing

User A “App was eye pleasing the use of cards
were good. The controls were bad
because there are no indications.”

User B “Yes, more feedback to inform them that
they need to pull down to refresh the key. It
would be better to automatically refresh the
list ”

Evaluation
To evaluate whether or not the implemented solutions were adequate, I will discuss the
functional and non-functional requirements that I had set out to complete had been met.
Including the results and conclusions that I had drawn from live user testing.

Functional Requirements

Administrators
As an Administrator, I must be able to login to the web application so that only
authorised users can gain access to the rest of the system. I believe that I had met this
requirement, as an administrator can login into the application using their account
credentials. A session will also be established between the user client and server.

As an Administrator, I must be able to logout of the web application so that
administrators can switch accounts. I believe that I had met this requirement, as logging
out of the application is possible. The session will also be destroyed when the

As an Administrator, I must be able to create new keys and send them to contractors
providing them with access to a master key cabinet. I had met this requirement, as it is
possible for contractors to assign new keys to contractors and record the relationship
within a database.

As an Administrator, I must be able revoke a contractor’s access to a key cabinet, so
that a cabinet can be kept secure. I met this requirement, as it is possible to remove a
record from the pivot table that specifies a relationship between a contractor and a key.

As an Administrator, I must be able to view the key taken and return times, so that I can
contract a contractor if a key is missing. I had met this requirement, as admins will have
access to all contractors page, including the active keys table where the times taken
and returned were displayed.

As an Administrator, I must be able to create new notification so that information can be
distributed to property residents. I had met this requirement, as admins can create new
notifications via the notification creation page and assign them to devices using the
device page.

As an Administrator, I must be able to view the location of each terminal so that I locate
the device if it needs maintaining. I had met this requirement, as admins can view the
exact location of each device using the GPS coordinates extracted from individual
devices.

As an Administrator, I only need to provide the notification with Internet connection to
setup the device, so that I do not have to worry about configuring the device on
deployment. I met this requirement by implementing an auto registration feature on the

notification application. It checks the server for its serial number; if it exists that means
that it is registered. If it does not exist a new device will be created with the submitted
serial number and saved in a database.

Contractors
As a contractor, I must be able to login the application so that I can view a list of keys
that had been assigned to me. I met this requirement, as it is possible for contractors to
sign in to the application using a valid credential.

As a contractor, I must be able to logout of the application so that only I can view the
keys list. I believe that I had met this requirement, albeit partially. At the moment the
user will need to close the application in order to logout. My reasoning was that I wanted
to automate redundant processes like logging out, in case they the contractors forget.

As a contractor, I must be able to view cabinet pin codes so that I can use it to unlock a
cabinet. I met this requirement, as contractors are able to view their assigned keys on
the mobile application

As a contractor, I must be able to log a key’s taken and return times so that an
administrator cannot hold me accountable if a key had be lost. I met this requirement,
as the mobile application can send update requests containing key taken and return
times.

Residents
As a resident, I must be able to view the notifications that an administrator had made so
that I am updated with the latest events. I met this requirement, as residents are able to
view new and old notifications via the notification app. Administrators are able to add
and remove notifications at will, allowing information to be distributed quickly and
efficiently.

As a resident, I must able to obtain the latest weather formation like the chance of
precipitation and wind speed so that I can decide to bring an umbrella or not. I met this
requirement, as residents can view live weather data on within the application. The
application updates its local weather data every 20 seconds, thus the weather data
displayed will always be correct and up-to-date.

Non-Functional Requirements

Administrators
As an Administrator, I must be able to load all web pages under 2 seconds. I had met
this requirement by testing the speeds for all pages and timing them and they were all
under 2 seconds.

As an Administrator, I must be able to operate the application on a mobile device so that
I can work from away from a computer. I did not complete this requirement, as the login
page background image did not scale properly. However, the rest of the application
scaled correctly on a mobile device.

As an Administrator, my user experience must be consistent throughout the application
so that the application is easy to navigate. I met this requirement by using Balsamiq to
first design my application ensuring consistency between pages.

As an Administrator, I must be able to use the web application on different browsers. I
met this requirement by testing web application on Chrome and Safari. I found the web
application to be very stable and responsive.

As an Administrator, I must be presented with a human readable message when an
error has occurred. I met this requirement by building validation checks whenever, I
store or update an object within the database. If an admin makes a mistake, they will be
directed back to their previous page, with a custom message telling them errors and
solutions to them.

Contractors
As a contractor, I must be able to load and refresh my list of keys in less than 2
seconds. I met this requirement, as I had tested the application on a standard Wi-Fi
network and timed the response to confirm that it the request and the user interface
updated within 2 seconds. Additionally, during live user testing and both testers agreed
that the application was fast and responsive.

As a contractor, I must be kept informed when processing is happening in the
background. I met this requirement by using a progress bar on long running tasks.
During live user testing both testers mentioned that the application provided adequate
feedback.

As a contractor, I must be presented with a human readable message when error has
occurred. I met this requirement, as I had created custom error and success messages
that will provide additional information to the user. During live testing both testers
agreed that all messages were informative and appropriate.

As a contractor, the user interface I use should follow Android material design for so
that it is pleasing to the eyes and easy to use. I believe that I did not initially meet.
Testers requested basic instructions to be added to the application, like the ability to
refresh the key list and some indications to where they can log out. In response, I added
some instruction to the key list and added a log out button.

Residents
As a resident, the notification displayed to be clear and easy to see. I met this
requirement by allowing carefully by using scaling text unit in Android.

As a resident, the notifications should rotate after a reasonable amount of time so that I
have enough time to read everything. I had met this requirement by, changing the
rotation speed and asking my testers whether or not enough time was given to read
each notification. I found that 20 seconds was a reasonable amount of time, according
to my testers

Future Work
While I believed that the client had met all core aims and requirements, there are still a
lot of features left to be implement. Considering that the client is an acquaintance of
mine, I will continue to develop this product in the future and hopefully deploy it in his
organisation.

Web Application
As of this moment, the user interface of the application is very bland and some features
are far too basic to be used effectively. For example I would like to replace the current
table library with something that is more robust. Currently, when searching for a
particular record the library only filter out records that does not contain the search term.
This means when common words or phrases are used like first names for example, it
will not filter enough of the dataset to become useful.

One key requirement I did not really fulfil was the security aspect of the application. As, I
had mentioned before in the security section, I wanted to switch my requests to use
HTTPS. Allowing my application to encrypt the data between the server and client,
using symmetric cryptography. Encryption will prevent against man in the middle attacks
as the server keeps its key secret so that the man-in-the-middle cannot use the site’s
real certificate. Nowadays if anyone tries to use an invalidated certificate they will be
detected almost immediately.

Due to the lack of time by the end of the project, several automated tests were missing
from the web application. At the moment no test exists to test that can test the API login
method within the contractor controller. In the future I will try to use test-driven
development as a counter measure, in order to take an even more Agile approach. It
will help focus the implementation process to only produce relevant code.

Key Tracking Application
The first thing I would like to do within the key tracking application is to convert it into an
IOS app. I did not suggest this earlier as a requirement because the project large
enough without adding an additional application. One major factor was my lack of
knowledge of IOS development, which unlike Android I have never used Swift the IOS
native language of choice.

There are several features that I would like to implement but ran out of time. The first
would be a prompt for users telling them to enable 3G or Wi-Fi, as the application at
currently does not check for this eventuality. The next feature I would like to work on is
the ability to sign up on the device itself, as currently contractor registration can only be
done on the web application. As a result the feature will save administrators a lot of
time, removing the need to manually enter the data himself

An additional feature that my client suggested was the ability for the contractor to call
the property manager that had assigned the key to them. Essentially, adding a method
of communication between contractor and the property manager like an in app
messaging screen for example.

In terms of code, I would like to spend more time refactoring various components of the
applications. There are some snippets of code that I could take out and replace with
something better. Currently, when an error occurs an error message pops up and the
message can be rather generic. I would like to replace it with a global error handler that
users can interact with to submit error reports along with the error stack.

While I did some live testing personally and with a couple of tester, I would like to
distribute the application to various contractors within my client’s company to test
whether or not they prefer the application over what exists currently. Testing the
application with real intended users would mean better feedback, as the responses
would be more genuine.

Another interesting observation that I had made was a lack of tutorial within the tracking
application. Testers that do not use an Android on a daily basis were not aware of the
pull down to refresh feature. Which lets me to believe that nothing can be too basic,

One bug issue I have with the key application is the lack of use case testing within the
application. Android studio IDE provides it’s own testing framework for me to use,
however I did not have time, as I needed to focus on solving major issues that exists
elsewhere.

An area that I had wised I worked on more, was automated testing for the notification
application. Between working on three applications, I did not have enough time to create
test cases for the application. User tests that I had carried out with testers should be
converted into tests, as it is simple to implement.

Notification Application
One main feature that I did not have time to carry out was the ability to offer local traffic
information. I had a discussion with my supervisor and we had both agreed that existing
solutions were not worth the effort or costs, as most traffic APIs are paid services.
Additionally, the value the feature would add to the application would be minimal
compared to the implementation of the notification screen.

Personally, I would like to change how I had implemented the notification screen. At the
moment each notification was displayed through a web view. Whether there is more
than one notification the web view switches out the HTML code to display a different
notification. I felt that this was ineffective resource wise, so I had decided to
a ViewPager instead. Unlike the current implementation, each notification will be a
unique page within a ViewPager and therefore would not need to switch the notifications
in and out of a web view.

Conclusion
The goal of this project was to produce three applications, a web application, an Android
notification app and an Android key tracking application. All three had been completed
by the project deadline.

Initially I began working on establishing the core requirements of the three applications.
By researching and analysing existing solutions I was able to produce both functional
and non-functional requirements that were needed to progress to the implementation
stage. Once I had established the actors and their roles within the system. I was able to
design the entities and relationship diagrams that were used to create schemas and in
turn the database.

After the design stage ended, I started working on the web application that enables key
and notification management. Then I moved on to the mobile notification application.
Once basic functionalities like displaying notification and weather data had been
implemented, I began working on the key tracking side of the project with testing in
between implementations.

All together the project was a success, the notification application can automatically
register itself, communicate and pull notifications from a server. In addition to displaying
local weather using the device’s GPS location. On web side administrators can create,
edit and delete notifications as well as assigning them to registered devices.

The key tracking application can potentially be deployed to real contractors once the
web application interface for distributing keys has been streamlined. The user interface
is fluid, ran smoothly and functioned as intended.

Reflection On Learning
The project gave me an opportunity to work with Android applications, something that I
had enjoy working on. I was able to discover more of my strengths and weaknesses as
a developer.

One major weakness that I had discovered was my judgement of project complexity.
Throughout the dissertation, I had underestimated the amount of time that was needed
to implement simple features. This was not an issue during my year out, as I was
working within a team, therefore it was easy to move resources to speedup
development when certain features are behind.

Another weakness was my loose attitude towards testing. I had started the project
strong created tests for all the methods within a controller. However, as the project size
grew it became exponentially difficult complete deadlines and create tests for
automated testing. This highlighted the needs for me to learn how to develop using test-
driven development. TDD will allow me to spend less time debugging and more time
developing and solving problems.

I have previous experience working with Laravel 4.2. Yet, I had decided that it would be
better for employment if I were to learn and use Laravel 5.2, the latest version. The
MVC principles remained the same but several tools and libraries that I had relied on in
the past had either been removed or replaced with a new version. Therefore, many
commands and paradigms that I had memorised became unusable, causing slow
downs, as more time was needed to read and understand the framework.

As for my strengths, I felt that I was good at picking up and using new technologies.
One good example was when I had implemented the GET and POST requests on the
Android applications.

Previously, I had used Apache HTTP client to make my requests. However, since
Android version 6.0 the library had been removed, as it was considered to be less
efficient than Volley. Then I had decided to spend a couple of hours going over web
tutorials and Google documentations in order to master it. By the end of that day I was
able to construct the ‘RequestTask’ class that was able to make both GET and POST
requests and able to delegate errors to the right error listener.

Another strength was my ability to judge whether I should be implementing my own
solutions or use existing implementations. For example I implemented the digest
authentication feature on the server, I knew that there were several libraries available
that can perform the digest routine. However, on the Android Digest authentication
libraries exist but most implementation looked very ad hock, lacking in structure and
documentation.

I found that during the designing phase that it was a good idea to take a look at existing
mobile applications and the user interface. Analysing the good and bad allowed me to
construct a better-looking application than I would have otherwise.

Several attempts were made to have meetings with my client, however due to
scheduling conflicts and job interviews I found it difficult to do so and obtain feedback
from him. However, being able to discussing requirements initially allowed me to pin
point exactly what he wanted out of the application. In addition, I was able to discuss in
more detail the scenarios where the application will be utilize.

Project Management

Weekly Meetings
I met with my supervisor on a weekly basis, where we had discussed the progress that I
had made that week, issues that I had encountered and set of goals. He would often
provide me suggestions and guidance that I needed, so that I do not fall behind
schedule.

Agile Methodology
Having experienced the benefits of both Agile and Waterfall, I had decided to use them
both. The sequential design process was during the requirements gathering and design
stage allowing me to carefully design code can be reused between applications,
however once I reached the implementation stage I switched to full Agile. I needed to
product three separate applications in the shortest amount of time possible, so when the
deadline arrives I wanted to have a basic system that I can show to my supervisor and
moderator.

I believe that my decision to use Agile can be justified. Once week 9 arrived, I was able
to demonstrate the notification application and by week 10 I had a working key tracking
application to show and test. The remaining time I had left was used on writing this
report and tests various aspects of the system.

References
Freakley, S. (2015) Businesses must embrace the digital world. Available at:
http://www.telegraph.co.uk/finance/comment/12022636/Businesses-must-embrace-the-
digital-world-to-compete-or-be-left-behind.html (Accessed: 22 April 2016).

Ltd, A.O. (2011) Property management software - Arthur. Available at:
http://www.arthuronline.co.uk/ (Accessed: 22 April 2016).

Buildium (2016) Property management software. Available at:
https://www.buildium.com/ (Accessed: 23 April 2016).

TrackR (2016) Lost it? Find it. TrackR helps you find lost items in seconds using your
iPhone or Android. Available at: https://www.thetrackr.com/ (Accessed: 23 April 2016)

Keytracker, T. (2016) Home page - Keytracker - secure key and asset management.
Available at: https://www.keytracker.com/ (Accessed: 24 April 2016).

Pinterest (no date) Available at: https://uk.pinterest.com/ (Accessed: 6 May 2016).

Balsamiq. Rapid, effective and fun wireframing software (no date) Available at:
https://balsamiq.com/ (Accessed: 6 May 2016).

Appendix
All appendices can be found within the attached zip folder and will be ordered the same as the
following list:

1. Background Research Documents

2. Balsamiq Mock-ups

3. User Flow Diagram

4. Manual Testing Documents

