{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import rioxarray\n",
"import json, os\n",
"\n",
"from sklearn.feature_selection import SelectKBest\n",
"from sklearn.feature_selection import chi2, f_classif, mutual_info_classif\n",
"from sklearn.metrics import f1_score, classification_report\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"from sklearn.linear_model import LogisticRegression, SGDClassifier\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier, StackingClassifier\n",
"\n",
"from imblearn.over_sampling import RandomOverSampler, SMOTE"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"seed = 42\n",
"verbose = False\n",
"details = True"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 210500.0 | \n",
" 458500.0 | \n",
" 17 | \n",
" 0 | \n",
" 52 | \n",
" 30 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.708913e+01 | \n",
" 7.608381e+00 | \n",
" 2.782641e+00 | \n",
" 8.605974e+00 | \n",
" 8.541364e+00 | \n",
" 4.872463e+00 | \n",
" 1.886089e+01 | \n",
" 1.385952e+01 | \n",
" 1.371158e+01 | \n",
" 0 | \n",
"
\n",
" \n",
" 995500.0 | \n",
" 601500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 300500.0 | \n",
" 618500.0 | \n",
" 17 | \n",
" 0 | \n",
" 46 | \n",
" 18 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.386673e+01 | \n",
" 1.642136e+00 | \n",
" 1.971480e+00 | \n",
" 7.683126e+00 | \n",
" 8.405563e+00 | \n",
" 7.249522e-01 | \n",
" 3.250140e+00 | \n",
" 3.704372e+00 | \n",
" 3.392229e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 12500.0 | \n",
" 338500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 597500.0 | \n",
" 399500.0 | \n",
" 0 | \n",
" 4 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 96 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"210500.0 458500.0 17 0 52 \n",
"995500.0 601500.0 0 0 0 \n",
"300500.0 618500.0 17 0 46 \n",
"12500.0 338500.0 0 0 0 \n",
"597500.0 399500.0 0 4 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"210500.0 458500.0 30 0 0 \n",
"995500.0 601500.0 0 0 0 \n",
"300500.0 618500.0 18 0 0 \n",
"12500.0 338500.0 0 0 0 \n",
"597500.0 399500.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"210500.0 458500.0 0 0 0 0 ... \n",
"995500.0 601500.0 0 0 0 0 ... \n",
"300500.0 618500.0 0 0 0 0 ... \n",
"12500.0 338500.0 0 0 0 0 ... \n",
"597500.0 399500.0 0 0 96 0 ... \n",
"\n",
" Glyphosate Mancozeb Mecoprop-P Metamitron \\\n",
"y x \n",
"210500.0 458500.0 1.708913e+01 7.608381e+00 2.782641e+00 8.605974e+00 \n",
"995500.0 601500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"300500.0 618500.0 1.386673e+01 1.642136e+00 1.971480e+00 7.683126e+00 \n",
"12500.0 338500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"597500.0 399500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n",
"y x \n",
"210500.0 458500.0 8.541364e+00 4.872463e+00 1.886089e+01 \n",
"995500.0 601500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"300500.0 618500.0 8.405563e+00 7.249522e-01 3.250140e+00 \n",
"12500.0 338500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"597500.0 399500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur Tri-allate Occurrence \n",
"y x \n",
"210500.0 458500.0 1.385952e+01 1.371158e+01 0 \n",
"995500.0 601500.0 -3.400000e+38 -3.400000e+38 0 \n",
"300500.0 618500.0 3.704372e+00 3.392229e+00 0 \n",
"12500.0 338500.0 -3.400000e+38 -3.400000e+38 0 \n",
"597500.0 399500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 221500.0 | \n",
" 502500.0 | \n",
" 0 | \n",
" 0 | \n",
" 2 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.756213e-02 | \n",
" 1.720418e-03 | \n",
" 4.031708e-03 | \n",
" -3.400000e+38 | \n",
" 5.754761e-03 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 794500.0 | \n",
" 60500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 547500.0 | \n",
" 674500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 228500.0 | \n",
" 256500.0 | \n",
" 10 | \n",
" 1 | \n",
" 0 | \n",
" 80 | \n",
" 0 | \n",
" 0 | \n",
" 8 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 4.691394e-01 | \n",
" 7.202167e-01 | \n",
" 5.701302e-01 | \n",
" 1.139177e+00 | \n",
" 4.138628e-01 | \n",
" 4.975241e-01 | \n",
" 3.603367e-01 | \n",
" 8.818065e-02 | \n",
" 6.709322e-01 | \n",
" 0 | \n",
"
\n",
" \n",
" 904500.0 | \n",
" 96500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"221500.0 502500.0 0 0 2 \n",
"794500.0 60500.0 0 0 0 \n",
"547500.0 674500.0 0 0 0 \n",
"228500.0 256500.0 10 1 0 \n",
"904500.0 96500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"221500.0 502500.0 3 0 0 \n",
"794500.0 60500.0 0 0 0 \n",
"547500.0 674500.0 0 0 0 \n",
"228500.0 256500.0 80 0 0 \n",
"904500.0 96500.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"221500.0 502500.0 0 0 0 0 ... \n",
"794500.0 60500.0 0 0 0 0 ... \n",
"547500.0 674500.0 0 0 0 0 ... \n",
"228500.0 256500.0 8 0 0 0 ... \n",
"904500.0 96500.0 0 0 0 0 ... \n",
"\n",
" Glyphosate Mancozeb Mecoprop-P Metamitron \\\n",
"y x \n",
"221500.0 502500.0 1.756213e-02 1.720418e-03 4.031708e-03 -3.400000e+38 \n",
"794500.0 60500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"547500.0 674500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"228500.0 256500.0 4.691394e-01 7.202167e-01 5.701302e-01 1.139177e+00 \n",
"904500.0 96500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n",
"y x \n",
"221500.0 502500.0 5.754761e-03 -3.400000e+38 -3.400000e+38 \n",
"794500.0 60500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"547500.0 674500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"228500.0 256500.0 4.138628e-01 4.975241e-01 3.603367e-01 \n",
"904500.0 96500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur Tri-allate Occurrence \n",
"y x \n",
"221500.0 502500.0 -3.400000e+38 -3.400000e+38 0 \n",
"794500.0 60500.0 -3.400000e+38 -3.400000e+38 0 \n",
"547500.0 674500.0 -3.400000e+38 -3.400000e+38 0 \n",
"228500.0 256500.0 8.818065e-02 6.709322e-01 0 \n",
"904500.0 96500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 491500.0 | \n",
" 463500.0 | \n",
" 8 | \n",
" 4 | \n",
" 1 | \n",
" 47 | \n",
" 0 | \n",
" 11 | \n",
" 0 | \n",
" 0 | \n",
" 7 | \n",
" 23 | \n",
" ... | \n",
" 2.552632e-01 | \n",
" 4.633016e-02 | \n",
" 1.943011e-01 | \n",
" -3.400000e+38 | \n",
" 1.751061e-01 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 415500.0 | \n",
" 12500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 617500.0 | \n",
" 662500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 832500.0 | \n",
" 300500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 100 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 929500.0 | \n",
" 459500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"491500.0 463500.0 8 4 1 \n",
"415500.0 12500.0 0 0 0 \n",
"617500.0 662500.0 0 0 0 \n",
"832500.0 300500.0 0 0 0 \n",
"929500.0 459500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"491500.0 463500.0 47 0 11 \n",
"415500.0 12500.0 0 0 0 \n",
"617500.0 662500.0 0 0 0 \n",
"832500.0 300500.0 0 0 0 \n",
"929500.0 459500.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"491500.0 463500.0 0 0 7 23 ... \n",
"415500.0 12500.0 0 0 0 0 ... \n",
"617500.0 662500.0 0 0 0 0 ... \n",
"832500.0 300500.0 0 0 100 0 ... \n",
"929500.0 459500.0 0 0 0 0 ... \n",
"\n",
" Glyphosate Mancozeb Mecoprop-P Metamitron \\\n",
"y x \n",
"491500.0 463500.0 2.552632e-01 4.633016e-02 1.943011e-01 -3.400000e+38 \n",
"415500.0 12500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"617500.0 662500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"832500.0 300500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"929500.0 459500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n",
"y x \n",
"491500.0 463500.0 1.751061e-01 -3.400000e+38 -3.400000e+38 \n",
"415500.0 12500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"617500.0 662500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"832500.0 300500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"929500.0 459500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur Tri-allate Occurrence \n",
"y x \n",
"491500.0 463500.0 -3.400000e+38 -3.400000e+38 0 \n",
"415500.0 12500.0 -3.400000e+38 -3.400000e+38 0 \n",
"617500.0 662500.0 -3.400000e+38 -3.400000e+38 0 \n",
"832500.0 300500.0 -3.400000e+38 -3.400000e+38 0 \n",
"929500.0 459500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1100500.0 | \n",
" 388500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 641500.0 | \n",
" 640500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 421500.0 | \n",
" 238500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 688500.0 | \n",
" 183500.0 | \n",
" 0 | \n",
" 98 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 993500.0 | \n",
" 590500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1100500.0 388500.0 0 0 0 \n",
"641500.0 640500.0 0 0 0 \n",
"421500.0 238500.0 0 0 0 \n",
"688500.0 183500.0 0 98 0 \n",
"993500.0 590500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1100500.0 388500.0 0 0 \n",
"641500.0 640500.0 0 0 \n",
"421500.0 238500.0 0 0 \n",
"688500.0 183500.0 0 0 \n",
"993500.0 590500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1100500.0 388500.0 0 0 0 0 \n",
"641500.0 640500.0 0 0 0 0 \n",
"421500.0 238500.0 0 0 0 0 \n",
"688500.0 183500.0 0 0 0 2 \n",
"993500.0 590500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate Mancozeb \\\n",
"y x ... \n",
"1100500.0 388500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"641500.0 640500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"421500.0 238500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"688500.0 183500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"993500.0 590500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P Metamitron Pendimethalin \\\n",
"y x \n",
"1100500.0 388500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"641500.0 640500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"421500.0 238500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"688500.0 183500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"993500.0 590500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride Prosulfocarb Sulphur \\\n",
"y x \n",
"1100500.0 388500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"641500.0 640500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"421500.0 238500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"688500.0 183500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"993500.0 590500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Tri-allate Occurrence \n",
"y x \n",
"1100500.0 388500.0 -3.400000e+38 0 \n",
"641500.0 640500.0 -3.400000e+38 0 \n",
"421500.0 238500.0 -3.400000e+38 0 \n",
"688500.0 183500.0 -3.400000e+38 0 \n",
"993500.0 590500.0 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 75500.0 | \n",
" 319500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 86500.0 | \n",
" 311500.0 | \n",
" 6 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.716818e-03 | \n",
" 3.315273e-04 | \n",
" 1.605283e-03 | \n",
" -3.400000e+38 | \n",
" 1.047427e-03 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1254500.0 | \n",
" 606500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 274500.0 | \n",
" 631500.0 | \n",
" 0 | \n",
" 0 | \n",
" 65 | \n",
" 30 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.496213e+01 | \n",
" 3.442879e+00 | \n",
" 3.434172e+00 | \n",
" 2.874435e+00 | \n",
" 1.414938e+01 | \n",
" 1.705149e+00 | \n",
" 6.048480e+00 | \n",
" 3.643768e+00 | \n",
" 7.355608e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 471500.0 | \n",
" 519500.0 | \n",
" 0 | \n",
" 0 | \n",
" 90 | \n",
" 6 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.506880e+01 | \n",
" 1.530977e+01 | \n",
" 5.076050e+00 | \n",
" 9.553390e+00 | \n",
" 1.567872e+01 | \n",
" 1.130232e+01 | \n",
" 1.062081e+01 | \n",
" 7.042382e+00 | \n",
" 1.348234e+01 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"75500.0 319500.0 0 0 0 \n",
"86500.0 311500.0 6 0 0 \n",
"1254500.0 606500.0 0 0 0 \n",
"274500.0 631500.0 0 0 65 \n",
"471500.0 519500.0 0 0 90 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"75500.0 319500.0 0 0 \n",
"86500.0 311500.0 1 0 \n",
"1254500.0 606500.0 0 0 \n",
"274500.0 631500.0 30 0 \n",
"471500.0 519500.0 6 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"75500.0 319500.0 0 0 0 0 \n",
"86500.0 311500.0 1 0 0 0 \n",
"1254500.0 606500.0 0 0 0 0 \n",
"274500.0 631500.0 0 0 0 0 \n",
"471500.0 519500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate Mancozeb \\\n",
"y x ... \n",
"75500.0 319500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"86500.0 311500.0 0 ... 2.716818e-03 3.315273e-04 \n",
"1254500.0 606500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"274500.0 631500.0 0 ... 2.496213e+01 3.442879e+00 \n",
"471500.0 519500.0 0 ... 1.506880e+01 1.530977e+01 \n",
"\n",
" Mecoprop-P Metamitron Pendimethalin \\\n",
"y x \n",
"75500.0 319500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"86500.0 311500.0 1.605283e-03 -3.400000e+38 1.047427e-03 \n",
"1254500.0 606500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"274500.0 631500.0 3.434172e+00 2.874435e+00 1.414938e+01 \n",
"471500.0 519500.0 5.076050e+00 9.553390e+00 1.567872e+01 \n",
"\n",
" PropamocarbHydrochloride Prosulfocarb Sulphur \\\n",
"y x \n",
"75500.0 319500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"86500.0 311500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1254500.0 606500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"274500.0 631500.0 1.705149e+00 6.048480e+00 3.643768e+00 \n",
"471500.0 519500.0 1.130232e+01 1.062081e+01 7.042382e+00 \n",
"\n",
" Tri-allate Occurrence \n",
"y x \n",
"75500.0 319500.0 -3.400000e+38 0 \n",
"86500.0 311500.0 -3.400000e+38 0 \n",
"1254500.0 606500.0 -3.400000e+38 0 \n",
"274500.0 631500.0 7.355608e+00 0 \n",
"471500.0 519500.0 1.348234e+01 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1289500.0 | \n",
" 146500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1037500.0 | \n",
" 237500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 327500.0 | \n",
" 104500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 155500.0 | \n",
" 486500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.335905e-02 | \n",
" 1.131381e-03 | \n",
" 3.626722e-03 | \n",
" -3.400000e+38 | \n",
" 3.725381e-03 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 899500.0 | \n",
" 209500.0 | \n",
" 6 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 83 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1289500.0 146500.0 0 0 0 \n",
"1037500.0 237500.0 0 0 0 \n",
"327500.0 104500.0 0 0 0 \n",
"155500.0 486500.0 0 0 0 \n",
"899500.0 209500.0 6 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1289500.0 146500.0 0 0 \n",
"1037500.0 237500.0 0 0 \n",
"327500.0 104500.0 0 0 \n",
"155500.0 486500.0 0 0 \n",
"899500.0 209500.0 1 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1289500.0 146500.0 0 0 0 0 \n",
"1037500.0 237500.0 0 0 0 0 \n",
"327500.0 104500.0 0 0 0 0 \n",
"155500.0 486500.0 0 0 0 0 \n",
"899500.0 209500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate Mancozeb \\\n",
"y x ... \n",
"1289500.0 146500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1037500.0 237500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"327500.0 104500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"155500.0 486500.0 0 ... 1.335905e-02 1.131381e-03 \n",
"899500.0 209500.0 83 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P Metamitron Pendimethalin \\\n",
"y x \n",
"1289500.0 146500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1037500.0 237500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"327500.0 104500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"155500.0 486500.0 3.626722e-03 -3.400000e+38 3.725381e-03 \n",
"899500.0 209500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride Prosulfocarb Sulphur \\\n",
"y x \n",
"1289500.0 146500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1037500.0 237500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"327500.0 104500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"155500.0 486500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"899500.0 209500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Tri-allate Occurrence \n",
"y x \n",
"1289500.0 146500.0 -3.400000e+38 0 \n",
"1037500.0 237500.0 -3.400000e+38 0 \n",
"327500.0 104500.0 -3.400000e+38 0 \n",
"155500.0 486500.0 -3.400000e+38 0 \n",
"899500.0 209500.0 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 922500.0 | \n",
" 509500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 120500.0 | \n",
" 410500.0 | \n",
" 2 | \n",
" 0 | \n",
" 92 | \n",
" 4 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 5.567024e+01 | \n",
" 1.320240e+00 | \n",
" 7.980333e+00 | \n",
" 2.178659e-02 | \n",
" 1.725411e+01 | \n",
" 1.156848e-02 | \n",
" 1.226339e+01 | \n",
" 5.671224e+00 | \n",
" 8.835752e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 556500.0 | \n",
" 604500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 788500.0 | \n",
" 673500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 546500.0 | \n",
" 662500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"922500.0 509500.0 0 0 0 \n",
"120500.0 410500.0 2 0 92 \n",
"556500.0 604500.0 0 0 0 \n",
"788500.0 673500.0 0 0 0 \n",
"546500.0 662500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"922500.0 509500.0 0 0 0 \n",
"120500.0 410500.0 4 0 0 \n",
"556500.0 604500.0 0 0 0 \n",
"788500.0 673500.0 0 0 0 \n",
"546500.0 662500.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"922500.0 509500.0 0 0 0 0 ... \n",
"120500.0 410500.0 0 0 0 0 ... \n",
"556500.0 604500.0 0 0 0 0 ... \n",
"788500.0 673500.0 0 0 0 0 ... \n",
"546500.0 662500.0 0 0 0 0 ... \n",
"\n",
" Glyphosate Mancozeb Mecoprop-P Metamitron \\\n",
"y x \n",
"922500.0 509500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"120500.0 410500.0 5.567024e+01 1.320240e+00 7.980333e+00 2.178659e-02 \n",
"556500.0 604500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"788500.0 673500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"546500.0 662500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n",
"y x \n",
"922500.0 509500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"120500.0 410500.0 1.725411e+01 1.156848e-02 1.226339e+01 \n",
"556500.0 604500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"788500.0 673500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"546500.0 662500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur Tri-allate Occurrence \n",
"y x \n",
"922500.0 509500.0 -3.400000e+38 -3.400000e+38 0 \n",
"120500.0 410500.0 5.671224e+00 8.835752e+00 0 \n",
"556500.0 604500.0 -3.400000e+38 -3.400000e+38 0 \n",
"788500.0 673500.0 -3.400000e+38 -3.400000e+38 0 \n",
"546500.0 662500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 840500.0 | \n",
" 675500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 751500.0 | \n",
" 399500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 641500.0 | \n",
" 605500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 707500.0 | \n",
" 578500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 84500.0 | \n",
" 344500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"840500.0 675500.0 0 0 0 \n",
"751500.0 399500.0 0 0 0 \n",
"641500.0 605500.0 0 0 0 \n",
"707500.0 578500.0 0 0 0 \n",
"84500.0 344500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"840500.0 675500.0 0 0 0 \n",
"751500.0 399500.0 0 0 0 \n",
"641500.0 605500.0 0 0 0 \n",
"707500.0 578500.0 0 0 0 \n",
"84500.0 344500.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"840500.0 675500.0 0 0 0 0 ... \n",
"751500.0 399500.0 0 0 0 0 ... \n",
"641500.0 605500.0 0 0 0 0 ... \n",
"707500.0 578500.0 0 0 0 0 ... \n",
"84500.0 344500.0 0 0 0 0 ... \n",
"\n",
" Glyphosate Mancozeb Mecoprop-P Metamitron \\\n",
"y x \n",
"840500.0 675500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"751500.0 399500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"641500.0 605500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"707500.0 578500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"84500.0 344500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n",
"y x \n",
"840500.0 675500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"751500.0 399500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"641500.0 605500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"707500.0 578500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"84500.0 344500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur Tri-allate Occurrence \n",
"y x \n",
"840500.0 675500.0 -3.400000e+38 -3.400000e+38 0 \n",
"751500.0 399500.0 -3.400000e+38 -3.400000e+38 0 \n",
"641500.0 605500.0 -3.400000e+38 -3.400000e+38 0 \n",
"707500.0 578500.0 -3.400000e+38 -3.400000e+38 0 \n",
"84500.0 344500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1190500.0 | \n",
" 180500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1062500.0 | \n",
" 325500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 665500.0 | \n",
" 648500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 655500.0 | \n",
" 20500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1111500.0 | \n",
" 482500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1190500.0 180500.0 0 0 0 \n",
"1062500.0 325500.0 0 0 0 \n",
"665500.0 648500.0 0 0 0 \n",
"655500.0 20500.0 0 0 0 \n",
"1111500.0 482500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1190500.0 180500.0 0 0 \n",
"1062500.0 325500.0 0 0 \n",
"665500.0 648500.0 0 0 \n",
"655500.0 20500.0 0 0 \n",
"1111500.0 482500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1190500.0 180500.0 0 0 0 0 \n",
"1062500.0 325500.0 0 0 0 0 \n",
"665500.0 648500.0 0 0 0 0 \n",
"655500.0 20500.0 0 0 0 0 \n",
"1111500.0 482500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate Mancozeb \\\n",
"y x ... \n",
"1190500.0 180500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1062500.0 325500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"665500.0 648500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"655500.0 20500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1111500.0 482500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P Metamitron Pendimethalin \\\n",
"y x \n",
"1190500.0 180500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1062500.0 325500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"665500.0 648500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"655500.0 20500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1111500.0 482500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride Prosulfocarb Sulphur \\\n",
"y x \n",
"1190500.0 180500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1062500.0 325500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"665500.0 648500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"655500.0 20500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1111500.0 482500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Tri-allate Occurrence \n",
"y x \n",
"1190500.0 180500.0 -3.400000e+38 0 \n",
"1062500.0 325500.0 -3.400000e+38 0 \n",
"665500.0 648500.0 -3.400000e+38 0 \n",
"655500.0 20500.0 -3.400000e+38 0 \n",
"1111500.0 482500.0 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1050500.0 | \n",
" 258500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1104500.0 | \n",
" 335500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 217500.0 | \n",
" 274500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 100 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1020500.0 | \n",
" 246500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 732500.0 | \n",
" 439500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1050500.0 258500.0 0 0 0 \n",
"1104500.0 335500.0 0 0 0 \n",
"217500.0 274500.0 0 0 0 \n",
"1020500.0 246500.0 0 0 0 \n",
"732500.0 439500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1050500.0 258500.0 0 0 \n",
"1104500.0 335500.0 0 0 \n",
"217500.0 274500.0 0 0 \n",
"1020500.0 246500.0 0 0 \n",
"732500.0 439500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1050500.0 258500.0 0 0 0 0 \n",
"1104500.0 335500.0 0 0 0 0 \n",
"217500.0 274500.0 0 100 0 0 \n",
"1020500.0 246500.0 0 0 0 0 \n",
"732500.0 439500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate Mancozeb \\\n",
"y x ... \n",
"1050500.0 258500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1104500.0 335500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"217500.0 274500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1020500.0 246500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"732500.0 439500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P Metamitron Pendimethalin \\\n",
"y x \n",
"1050500.0 258500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1104500.0 335500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"217500.0 274500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1020500.0 246500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"732500.0 439500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride Prosulfocarb Sulphur \\\n",
"y x \n",
"1050500.0 258500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1104500.0 335500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"217500.0 274500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1020500.0 246500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"732500.0 439500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Tri-allate Occurrence \n",
"y x \n",
"1050500.0 258500.0 -3.400000e+38 0 \n",
"1104500.0 335500.0 -3.400000e+38 0 \n",
"217500.0 274500.0 -3.400000e+38 0 \n",
"1020500.0 246500.0 -3.400000e+38 0 \n",
"732500.0 439500.0 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 974500.0 | \n",
" 405500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 71500.0 | \n",
" 445500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1222500.0 | \n",
" 274500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 375500.0 | \n",
" 469500.0 | \n",
" 12 | \n",
" 0 | \n",
" 51 | \n",
" 16 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.102861e+01 | \n",
" 1.076760e+00 | \n",
" 1.887839e+00 | \n",
" 7.217796e+00 | \n",
" 7.214385e+00 | \n",
" 6.286643e-01 | \n",
" 6.793458e+00 | \n",
" 5.953130e+00 | \n",
" 4.101244e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 538500.0 | \n",
" 354500.0 | \n",
" 1 | \n",
" 0 | \n",
" 11 | \n",
" 87 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 4.199960e-01 | \n",
" 7.959555e-02 | \n",
" 5.110549e-01 | \n",
" -3.400000e+38 | \n",
" 2.692819e-01 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"974500.0 405500.0 0 0 0 \n",
"71500.0 445500.0 0 0 0 \n",
"1222500.0 274500.0 0 0 0 \n",
"375500.0 469500.0 12 0 51 \n",
"538500.0 354500.0 1 0 11 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"974500.0 405500.0 0 0 \n",
"71500.0 445500.0 0 0 \n",
"1222500.0 274500.0 0 0 \n",
"375500.0 469500.0 16 0 \n",
"538500.0 354500.0 87 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"974500.0 405500.0 0 0 0 0 \n",
"71500.0 445500.0 0 0 0 0 \n",
"1222500.0 274500.0 0 0 0 0 \n",
"375500.0 469500.0 0 0 0 0 \n",
"538500.0 354500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate Mancozeb \\\n",
"y x ... \n",
"974500.0 405500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"71500.0 445500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1222500.0 274500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"375500.0 469500.0 0 ... 1.102861e+01 1.076760e+00 \n",
"538500.0 354500.0 0 ... 4.199960e-01 7.959555e-02 \n",
"\n",
" Mecoprop-P Metamitron Pendimethalin \\\n",
"y x \n",
"974500.0 405500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"71500.0 445500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1222500.0 274500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"375500.0 469500.0 1.887839e+00 7.217796e+00 7.214385e+00 \n",
"538500.0 354500.0 5.110549e-01 -3.400000e+38 2.692819e-01 \n",
"\n",
" PropamocarbHydrochloride Prosulfocarb Sulphur \\\n",
"y x \n",
"974500.0 405500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"71500.0 445500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1222500.0 274500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"375500.0 469500.0 6.286643e-01 6.793458e+00 5.953130e+00 \n",
"538500.0 354500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Tri-allate Occurrence \n",
"y x \n",
"974500.0 405500.0 -3.400000e+38 0 \n",
"71500.0 445500.0 -3.400000e+38 0 \n",
"1222500.0 274500.0 -3.400000e+38 0 \n",
"375500.0 469500.0 4.101244e+00 0 \n",
"538500.0 354500.0 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 637500.0 | \n",
" 286500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 61 | \n",
" 0 | \n",
" 0 | \n",
" 6 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 5.183865e-01 | \n",
" 7.056607e-02 | \n",
" 2.228176e-01 | \n",
" -3.400000e+38 | \n",
" 1.624027e-01 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 784500.0 | \n",
" 646500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 103500.0 | \n",
" 384500.0 | \n",
" 0 | \n",
" 0 | \n",
" 96 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 5.581972e+01 | \n",
" 1.260713e+00 | \n",
" 6.174690e+00 | \n",
" -3.400000e+38 | \n",
" 1.836491e+01 | \n",
" -3.400000e+38 | \n",
" 1.129929e+01 | \n",
" 4.079481e+00 | \n",
" 8.705502e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 207500.0 | \n",
" 217500.0 | \n",
" 27 | \n",
" 0 | \n",
" 16 | \n",
" 21 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.724084e-01 | \n",
" 3.704135e-02 | \n",
" 2.476914e-01 | \n",
" -3.400000e+38 | \n",
" 1.167010e-01 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1129500.0 | \n",
" 318500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"637500.0 286500.0 0 0 0 \n",
"784500.0 646500.0 0 0 0 \n",
"103500.0 384500.0 0 0 96 \n",
"207500.0 217500.0 27 0 16 \n",
"1129500.0 318500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"637500.0 286500.0 61 0 \n",
"784500.0 646500.0 0 0 \n",
"103500.0 384500.0 3 0 \n",
"207500.0 217500.0 21 0 \n",
"1129500.0 318500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"637500.0 286500.0 0 6 0 0 \n",
"784500.0 646500.0 0 0 0 0 \n",
"103500.0 384500.0 0 0 0 0 \n",
"207500.0 217500.0 0 0 0 0 \n",
"1129500.0 318500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate Mancozeb \\\n",
"y x ... \n",
"637500.0 286500.0 0 ... 5.183865e-01 7.056607e-02 \n",
"784500.0 646500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"103500.0 384500.0 0 ... 5.581972e+01 1.260713e+00 \n",
"207500.0 217500.0 0 ... 1.724084e-01 3.704135e-02 \n",
"1129500.0 318500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P Metamitron Pendimethalin \\\n",
"y x \n",
"637500.0 286500.0 2.228176e-01 -3.400000e+38 1.624027e-01 \n",
"784500.0 646500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"103500.0 384500.0 6.174690e+00 -3.400000e+38 1.836491e+01 \n",
"207500.0 217500.0 2.476914e-01 -3.400000e+38 1.167010e-01 \n",
"1129500.0 318500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride Prosulfocarb Sulphur \\\n",
"y x \n",
"637500.0 286500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"784500.0 646500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"103500.0 384500.0 -3.400000e+38 1.129929e+01 4.079481e+00 \n",
"207500.0 217500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1129500.0 318500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Tri-allate Occurrence \n",
"y x \n",
"637500.0 286500.0 -3.400000e+38 0 \n",
"784500.0 646500.0 -3.400000e+38 0 \n",
"103500.0 384500.0 8.705502e+00 0 \n",
"207500.0 217500.0 -3.400000e+38 0 \n",
"1129500.0 318500.0 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 281500.0 | \n",
" 383500.0 | \n",
" 5 | \n",
" 6 | \n",
" 58 | \n",
" 19 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.063023e+01 | \n",
" 4.160291e+00 | \n",
" 5.357363e+00 | \n",
" 2.858755e+00 | \n",
" 8.222045e+00 | \n",
" 1.255364e+00 | \n",
" 4.379103e+00 | \n",
" 4.502326e+00 | \n",
" 6.157461e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 757500.0 | \n",
" 517500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1030500.0 | \n",
" 136500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1108500.0 | \n",
" 69500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 175500.0 | \n",
" 410500.0 | \n",
" 0 | \n",
" 0 | \n",
" 94 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 4.713646e+01 | \n",
" 1.032259e+00 | \n",
" 6.678602e+00 | \n",
" -3.400000e+38 | \n",
" 2.027867e+01 | \n",
" -3.400000e+38 | \n",
" 2.101815e+01 | \n",
" 7.201351e+00 | \n",
" 1.526736e+01 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"281500.0 383500.0 5 6 58 \n",
"757500.0 517500.0 0 0 0 \n",
"1030500.0 136500.0 0 0 0 \n",
"1108500.0 69500.0 0 0 0 \n",
"175500.0 410500.0 0 0 94 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"281500.0 383500.0 19 0 \n",
"757500.0 517500.0 0 0 \n",
"1030500.0 136500.0 0 0 \n",
"1108500.0 69500.0 0 0 \n",
"175500.0 410500.0 3 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"281500.0 383500.0 0 0 0 0 \n",
"757500.0 517500.0 0 0 0 0 \n",
"1030500.0 136500.0 0 0 0 0 \n",
"1108500.0 69500.0 0 0 0 0 \n",
"175500.0 410500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate Mancozeb \\\n",
"y x ... \n",
"281500.0 383500.0 0 ... 1.063023e+01 4.160291e+00 \n",
"757500.0 517500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1030500.0 136500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1108500.0 69500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"175500.0 410500.0 0 ... 4.713646e+01 1.032259e+00 \n",
"\n",
" Mecoprop-P Metamitron Pendimethalin \\\n",
"y x \n",
"281500.0 383500.0 5.357363e+00 2.858755e+00 8.222045e+00 \n",
"757500.0 517500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1030500.0 136500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1108500.0 69500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"175500.0 410500.0 6.678602e+00 -3.400000e+38 2.027867e+01 \n",
"\n",
" PropamocarbHydrochloride Prosulfocarb Sulphur \\\n",
"y x \n",
"281500.0 383500.0 1.255364e+00 4.379103e+00 4.502326e+00 \n",
"757500.0 517500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1030500.0 136500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1108500.0 69500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"175500.0 410500.0 -3.400000e+38 2.101815e+01 7.201351e+00 \n",
"\n",
" Tri-allate Occurrence \n",
"y x \n",
"281500.0 383500.0 6.157461e+00 0 \n",
"757500.0 517500.0 -3.400000e+38 0 \n",
"1030500.0 136500.0 -3.400000e+38 0 \n",
"1108500.0 69500.0 -3.400000e+38 0 \n",
"175500.0 410500.0 1.526736e+01 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 284500.0 | \n",
" 445500.0 | \n",
" 3 | \n",
" 0 | \n",
" 93 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.458500e+01 | \n",
" 1.001419e+00 | \n",
" 4.695138e+00 | \n",
" -3.400000e+38 | \n",
" 2.278710e+01 | \n",
" -3.400000e+38 | \n",
" 1.749321e+01 | \n",
" 2.188244e+01 | \n",
" 1.407471e+01 | \n",
" 0 | \n",
"
\n",
" \n",
" 779500.0 | \n",
" 513500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 585500.0 | \n",
" 307500.0 | \n",
" 0 | \n",
" 0 | \n",
" 14 | \n",
" 84 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 4.916749e+00 | \n",
" 2.231230e-01 | \n",
" 3.304013e+00 | \n",
" -3.400000e+38 | \n",
" 1.349496e+00 | \n",
" -3.400000e+38 | \n",
" 8.603682e-01 | \n",
" 4.481045e-01 | \n",
" 8.959922e-01 | \n",
" 0 | \n",
"
\n",
" \n",
" 817500.0 | \n",
" 521500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 390500.0 | \n",
" 97500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"284500.0 445500.0 3 0 93 \n",
"779500.0 513500.0 0 0 0 \n",
"585500.0 307500.0 0 0 14 \n",
"817500.0 521500.0 0 0 0 \n",
"390500.0 97500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"284500.0 445500.0 3 0 0 \n",
"779500.0 513500.0 0 0 0 \n",
"585500.0 307500.0 84 0 0 \n",
"817500.0 521500.0 0 0 0 \n",
"390500.0 97500.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"284500.0 445500.0 0 0 0 0 ... \n",
"779500.0 513500.0 0 0 0 0 ... \n",
"585500.0 307500.0 0 0 0 0 ... \n",
"817500.0 521500.0 0 0 0 0 ... \n",
"390500.0 97500.0 0 0 0 0 ... \n",
"\n",
" Glyphosate Mancozeb Mecoprop-P Metamitron \\\n",
"y x \n",
"284500.0 445500.0 2.458500e+01 1.001419e+00 4.695138e+00 -3.400000e+38 \n",
"779500.0 513500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"585500.0 307500.0 4.916749e+00 2.231230e-01 3.304013e+00 -3.400000e+38 \n",
"817500.0 521500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"390500.0 97500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n",
"y x \n",
"284500.0 445500.0 2.278710e+01 -3.400000e+38 1.749321e+01 \n",
"779500.0 513500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"585500.0 307500.0 1.349496e+00 -3.400000e+38 8.603682e-01 \n",
"817500.0 521500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"390500.0 97500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur Tri-allate Occurrence \n",
"y x \n",
"284500.0 445500.0 2.188244e+01 1.407471e+01 0 \n",
"779500.0 513500.0 -3.400000e+38 -3.400000e+38 0 \n",
"585500.0 307500.0 4.481045e-01 8.959922e-01 0 \n",
"817500.0 521500.0 -3.400000e+38 -3.400000e+38 0 \n",
"390500.0 97500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1053500.0 | \n",
" 538500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 261500.0 | \n",
" 547500.0 | \n",
" 11 | \n",
" 0 | \n",
" 1 | \n",
" 31 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.289639e-01 | \n",
" 2.276678e-02 | \n",
" 4.382756e-02 | \n",
" -3.400000e+38 | \n",
" 4.783259e-02 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 682500.0 | \n",
" 217500.0 | \n",
" 8 | \n",
" 76 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 14 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1000500.0 | \n",
" 232500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1159500.0 | \n",
" 168500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1053500.0 538500.0 0 0 0 \n",
"261500.0 547500.0 11 0 1 \n",
"682500.0 217500.0 8 76 0 \n",
"1000500.0 232500.0 0 0 0 \n",
"1159500.0 168500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1053500.0 538500.0 0 0 \n",
"261500.0 547500.0 31 0 \n",
"682500.0 217500.0 0 0 \n",
"1000500.0 232500.0 0 0 \n",
"1159500.0 168500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1053500.0 538500.0 0 0 0 0 \n",
"261500.0 547500.0 0 0 0 0 \n",
"682500.0 217500.0 0 14 0 1 \n",
"1000500.0 232500.0 0 0 0 0 \n",
"1159500.0 168500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate Mancozeb \\\n",
"y x ... \n",
"1053500.0 538500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"261500.0 547500.0 0 ... 1.289639e-01 2.276678e-02 \n",
"682500.0 217500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1000500.0 232500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1159500.0 168500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P Metamitron Pendimethalin \\\n",
"y x \n",
"1053500.0 538500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"261500.0 547500.0 4.382756e-02 -3.400000e+38 4.783259e-02 \n",
"682500.0 217500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1000500.0 232500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1159500.0 168500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride Prosulfocarb Sulphur \\\n",
"y x \n",
"1053500.0 538500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"261500.0 547500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"682500.0 217500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1000500.0 232500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1159500.0 168500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Tri-allate Occurrence \n",
"y x \n",
"1053500.0 538500.0 -3.400000e+38 0 \n",
"261500.0 547500.0 -3.400000e+38 0 \n",
"682500.0 217500.0 -3.400000e+38 0 \n",
"1000500.0 232500.0 -3.400000e+38 0 \n",
"1159500.0 168500.0 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 977500.0 | \n",
" 416500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 19500.0 | \n",
" 457500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1069500.0 | \n",
" 90500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 295500.0 | \n",
" 439500.0 | \n",
" 3 | \n",
" 0 | \n",
" 41 | \n",
" 52 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 8.091403e+00 | \n",
" 6.810439e+00 | \n",
" 2.065955e+00 | \n",
" 7.075270e+00 | \n",
" 8.444314e+00 | \n",
" 3.296879e+00 | \n",
" 9.757885e+00 | \n",
" 5.554022e+00 | \n",
" 1.064113e+01 | \n",
" 0 | \n",
"
\n",
" \n",
" 1053500.0 | \n",
" 480500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"977500.0 416500.0 0 0 0 \n",
"19500.0 457500.0 0 0 0 \n",
"1069500.0 90500.0 0 0 0 \n",
"295500.0 439500.0 3 0 41 \n",
"1053500.0 480500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"977500.0 416500.0 0 0 \n",
"19500.0 457500.0 0 0 \n",
"1069500.0 90500.0 0 0 \n",
"295500.0 439500.0 52 0 \n",
"1053500.0 480500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"977500.0 416500.0 0 0 0 0 \n",
"19500.0 457500.0 0 0 0 0 \n",
"1069500.0 90500.0 0 0 0 0 \n",
"295500.0 439500.0 0 0 0 0 \n",
"1053500.0 480500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate Mancozeb \\\n",
"y x ... \n",
"977500.0 416500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"19500.0 457500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1069500.0 90500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"295500.0 439500.0 0 ... 8.091403e+00 6.810439e+00 \n",
"1053500.0 480500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P Metamitron Pendimethalin \\\n",
"y x \n",
"977500.0 416500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"19500.0 457500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1069500.0 90500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"295500.0 439500.0 2.065955e+00 7.075270e+00 8.444314e+00 \n",
"1053500.0 480500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride Prosulfocarb Sulphur \\\n",
"y x \n",
"977500.0 416500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"19500.0 457500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1069500.0 90500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"295500.0 439500.0 3.296879e+00 9.757885e+00 5.554022e+00 \n",
"1053500.0 480500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Tri-allate Occurrence \n",
"y x \n",
"977500.0 416500.0 -3.400000e+38 0 \n",
"19500.0 457500.0 -3.400000e+38 0 \n",
"1069500.0 90500.0 -3.400000e+38 0 \n",
"295500.0 439500.0 1.064113e+01 0 \n",
"1053500.0 480500.0 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 150500.0 | \n",
" 48500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 700500.0 | \n",
" 340500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 142500.0 | \n",
" 605500.0 | \n",
" 19 | \n",
" 0 | \n",
" 65 | \n",
" 14 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 3.535822e+01 | \n",
" 3.623691e+00 | \n",
" 5.856493e+00 | \n",
" 3.066536e+00 | \n",
" 1.098517e+01 | \n",
" 2.224410e+00 | \n",
" 7.717764e+00 | \n",
" 3.820922e+00 | \n",
" 1.059968e+01 | \n",
" 0 | \n",
"
\n",
" \n",
" 230500.0 | \n",
" 262500.0 | \n",
" 25 | \n",
" 0 | \n",
" 0 | \n",
" 69 | \n",
" 0 | \n",
" 0 | \n",
" 4 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.922603e-01 | \n",
" 4.330866e-02 | \n",
" 2.704217e-01 | \n",
" -3.400000e+38 | \n",
" 1.295823e-01 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 372500.0 | \n",
" 201500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"150500.0 48500.0 0 0 0 \n",
"700500.0 340500.0 0 0 0 \n",
"142500.0 605500.0 19 0 65 \n",
"230500.0 262500.0 25 0 0 \n",
"372500.0 201500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"150500.0 48500.0 0 0 0 \n",
"700500.0 340500.0 0 0 0 \n",
"142500.0 605500.0 14 0 0 \n",
"230500.0 262500.0 69 0 0 \n",
"372500.0 201500.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"150500.0 48500.0 0 0 0 0 ... \n",
"700500.0 340500.0 0 0 0 0 ... \n",
"142500.0 605500.0 0 0 0 0 ... \n",
"230500.0 262500.0 4 0 0 0 ... \n",
"372500.0 201500.0 0 0 0 0 ... \n",
"\n",
" Glyphosate Mancozeb Mecoprop-P Metamitron \\\n",
"y x \n",
"150500.0 48500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"700500.0 340500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"142500.0 605500.0 3.535822e+01 3.623691e+00 5.856493e+00 3.066536e+00 \n",
"230500.0 262500.0 1.922603e-01 4.330866e-02 2.704217e-01 -3.400000e+38 \n",
"372500.0 201500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n",
"y x \n",
"150500.0 48500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"700500.0 340500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"142500.0 605500.0 1.098517e+01 2.224410e+00 7.717764e+00 \n",
"230500.0 262500.0 1.295823e-01 -3.400000e+38 -3.400000e+38 \n",
"372500.0 201500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur Tri-allate Occurrence \n",
"y x \n",
"150500.0 48500.0 -3.400000e+38 -3.400000e+38 0 \n",
"700500.0 340500.0 -3.400000e+38 -3.400000e+38 0 \n",
"142500.0 605500.0 3.820922e+00 1.059968e+01 0 \n",
"230500.0 262500.0 -3.400000e+38 -3.400000e+38 0 \n",
"372500.0 201500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1263500.0 | \n",
" 503500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1226500.0 | \n",
" 653500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 217500.0 | \n",
" 587500.0 | \n",
" 7 | \n",
" 0 | \n",
" 86 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 3.026467e+01 | \n",
" 1.387858e+01 | \n",
" 7.357382e+00 | \n",
" 1.434486e+01 | \n",
" 1.611069e+01 | \n",
" 1.062018e+01 | \n",
" 1.557524e+01 | \n",
" 3.998450e+00 | \n",
" 1.456761e+01 | \n",
" 0 | \n",
"
\n",
" \n",
" 176500.0 | \n",
" 502500.0 | \n",
" 2 | \n",
" 0 | \n",
" 45 | \n",
" 27 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.921509e+01 | \n",
" 6.230546e+00 | \n",
" 2.146786e+00 | \n",
" 6.279777e+00 | \n",
" 1.331602e+01 | \n",
" 4.220648e+00 | \n",
" 1.814787e+01 | \n",
" 4.173172e+00 | \n",
" 1.486834e+01 | \n",
" 0 | \n",
"
\n",
" \n",
" 177500.0 | \n",
" 116500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1263500.0 503500.0 0 0 0 \n",
"1226500.0 653500.0 0 0 0 \n",
"217500.0 587500.0 7 0 86 \n",
"176500.0 502500.0 2 0 45 \n",
"177500.0 116500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1263500.0 503500.0 0 0 \n",
"1226500.0 653500.0 0 0 \n",
"217500.0 587500.0 3 0 \n",
"176500.0 502500.0 27 0 \n",
"177500.0 116500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1263500.0 503500.0 0 0 0 0 \n",
"1226500.0 653500.0 0 0 0 0 \n",
"217500.0 587500.0 0 0 0 0 \n",
"176500.0 502500.0 0 0 0 0 \n",
"177500.0 116500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate Mancozeb \\\n",
"y x ... \n",
"1263500.0 503500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1226500.0 653500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"217500.0 587500.0 0 ... 3.026467e+01 1.387858e+01 \n",
"176500.0 502500.0 0 ... 1.921509e+01 6.230546e+00 \n",
"177500.0 116500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P Metamitron Pendimethalin \\\n",
"y x \n",
"1263500.0 503500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1226500.0 653500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"217500.0 587500.0 7.357382e+00 1.434486e+01 1.611069e+01 \n",
"176500.0 502500.0 2.146786e+00 6.279777e+00 1.331602e+01 \n",
"177500.0 116500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride Prosulfocarb Sulphur \\\n",
"y x \n",
"1263500.0 503500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1226500.0 653500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"217500.0 587500.0 1.062018e+01 1.557524e+01 3.998450e+00 \n",
"176500.0 502500.0 4.220648e+00 1.814787e+01 4.173172e+00 \n",
"177500.0 116500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Tri-allate Occurrence \n",
"y x \n",
"1263500.0 503500.0 -3.400000e+38 0 \n",
"1226500.0 653500.0 -3.400000e+38 0 \n",
"217500.0 587500.0 1.456761e+01 0 \n",
"176500.0 502500.0 1.486834e+01 0 \n",
"177500.0 116500.0 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 659500.0 | \n",
" 356500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 100 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 682500.0 | \n",
" 186500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 840500.0 | \n",
" 247500.0 | \n",
" 61 | \n",
" 0 | \n",
" 0 | \n",
" 39 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 7.728302e-02 | \n",
" 1.611009e-02 | \n",
" 6.161585e-02 | \n",
" -3.400000e+38 | \n",
" 3.239392e-02 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1055500.0 | \n",
" 69500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 88500.0 | \n",
" 439500.0 | \n",
" 2 | \n",
" 0 | \n",
" 54 | \n",
" 41 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.206366e+01 | \n",
" 7.950239e+00 | \n",
" 2.559340e+00 | \n",
" 3.304436e+00 | \n",
" 1.104135e+01 | \n",
" 3.432077e+00 | \n",
" 6.372918e+00 | \n",
" 1.880297e+00 | \n",
" 4.242424e+00 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"659500.0 356500.0 0 0 0 \n",
"682500.0 186500.0 0 0 0 \n",
"840500.0 247500.0 61 0 0 \n",
"1055500.0 69500.0 0 0 0 \n",
"88500.0 439500.0 2 0 54 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"659500.0 356500.0 0 0 \n",
"682500.0 186500.0 0 0 \n",
"840500.0 247500.0 39 0 \n",
"1055500.0 69500.0 0 0 \n",
"88500.0 439500.0 41 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"659500.0 356500.0 0 0 0 100 \n",
"682500.0 186500.0 0 0 0 0 \n",
"840500.0 247500.0 0 0 0 0 \n",
"1055500.0 69500.0 0 0 0 0 \n",
"88500.0 439500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate Mancozeb \\\n",
"y x ... \n",
"659500.0 356500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"682500.0 186500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"840500.0 247500.0 0 ... 7.728302e-02 1.611009e-02 \n",
"1055500.0 69500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"88500.0 439500.0 0 ... 2.206366e+01 7.950239e+00 \n",
"\n",
" Mecoprop-P Metamitron Pendimethalin \\\n",
"y x \n",
"659500.0 356500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"682500.0 186500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"840500.0 247500.0 6.161585e-02 -3.400000e+38 3.239392e-02 \n",
"1055500.0 69500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"88500.0 439500.0 2.559340e+00 3.304436e+00 1.104135e+01 \n",
"\n",
" PropamocarbHydrochloride Prosulfocarb Sulphur \\\n",
"y x \n",
"659500.0 356500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"682500.0 186500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"840500.0 247500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1055500.0 69500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"88500.0 439500.0 3.432077e+00 6.372918e+00 1.880297e+00 \n",
"\n",
" Tri-allate Occurrence \n",
"y x \n",
"659500.0 356500.0 -3.400000e+38 0 \n",
"682500.0 186500.0 -3.400000e+38 0 \n",
"840500.0 247500.0 -3.400000e+38 0 \n",
"1055500.0 69500.0 -3.400000e+38 0 \n",
"88500.0 439500.0 4.242424e+00 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate | \n",
" Mancozeb | \n",
" Mecoprop-P | \n",
" Metamitron | \n",
" Pendimethalin | \n",
" PropamocarbHydrochloride | \n",
" Prosulfocarb | \n",
" Sulphur | \n",
" Tri-allate | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 202500.0 | \n",
" 235500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 857500.0 | \n",
" 471500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 963500.0 | \n",
" 192500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 49500.0 | \n",
" 143500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 884500.0 | \n",
" 21500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"202500.0 235500.0 0 0 0 \n",
"857500.0 471500.0 0 0 0 \n",
"963500.0 192500.0 0 0 0 \n",
"49500.0 143500.0 0 0 0 \n",
"884500.0 21500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"202500.0 235500.0 0 0 0 \n",
"857500.0 471500.0 0 0 0 \n",
"963500.0 192500.0 0 0 0 \n",
"49500.0 143500.0 0 0 0 \n",
"884500.0 21500.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"202500.0 235500.0 0 0 0 0 ... \n",
"857500.0 471500.0 0 0 0 0 ... \n",
"963500.0 192500.0 0 0 0 0 ... \n",
"49500.0 143500.0 0 0 0 0 ... \n",
"884500.0 21500.0 0 0 0 0 ... \n",
"\n",
" Glyphosate Mancozeb Mecoprop-P Metamitron \\\n",
"y x \n",
"202500.0 235500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"857500.0 471500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"963500.0 192500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"49500.0 143500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"884500.0 21500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n",
"y x \n",
"202500.0 235500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"857500.0 471500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"963500.0 192500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"49500.0 143500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"884500.0 21500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur Tri-allate Occurrence \n",
"y x \n",
"202500.0 235500.0 -3.400000e+38 -3.400000e+38 0 \n",
"857500.0 471500.0 -3.400000e+38 -3.400000e+38 0 \n",
"963500.0 192500.0 -3.400000e+38 -3.400000e+38 0 \n",
"49500.0 143500.0 -3.400000e+38 -3.400000e+38 0 \n",
"884500.0 21500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"INVASIVE_BIRDS_PATH = 'Datasets/Machine Learning/1km Rasters/Birds'\n",
"# Use this if using coordinates as separate columns\n",
"# df_1km = pd.read_csv('Datasets/Machine Learning/Dataframes/1km_All_Birds_DF.csv')\n",
"\n",
"# Use this if using coordinates as indices\n",
"df_1km = pd.read_csv('Datasets/Machine Learning/Dataframes/1km_All_Birds_DF.csv', index_col=[0,1])\n",
"\n",
"total_birds = (df_1km['Occurrence']==1).sum()\n",
"df_dicts = []\n",
"\n",
"for file in os.listdir(INVASIVE_BIRDS_PATH):\n",
" filename = os.fsdecode(file)\n",
" if not filename.endswith('.tif') or filename.endswith('All_Invasive_Birds_1km.tif') :\n",
" continue\n",
"\n",
"\n",
"\n",
" bird_name = filename[:-4].replace('_', ' ')\n",
"\n",
" bird_dataset = rioxarray.open_rasterio(f'{INVASIVE_BIRDS_PATH}/{file}')\n",
" bird_dataset.name = 'data'\n",
" bird_df = bird_dataset.squeeze().drop(\"spatial_ref\").drop(\"band\").to_dataframe()\n",
"\n",
" # Check if index matches\n",
" if not df_1km.index.equals(bird_df.index):\n",
" print('Warning: Index does not match')\n",
" continue\n",
"\n",
" bird_df['Occurrence'] = [0 if x == -1 else 1 for x in bird_df['data']]\n",
" bird_df = df_1km.drop(columns='Occurrence').join(bird_df.drop(columns='data'))\n",
" \n",
" bird_dict = {'name' : bird_name, 'dataframe' : bird_df }\n",
" df_dicts.append(bird_dict)\n",
" display(bird_df.sample(5))\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 1km data before drop: \n",
" Occurrence\n",
"0 909231\n",
"1 769\n",
"dtype: int64 \n",
"\n",
"Barnacle Goose 1km data after drop: \n",
" Occurrence\n",
"0 32315\n",
"1 769\n",
"dtype: int64 \n",
"\n",
"Canada Goose 1km data before drop: \n",
" Occurrence\n",
"0 899853\n",
"1 10147\n",
"dtype: int64 \n",
"\n",
"Canada Goose 1km data after drop: \n",
" Occurrence\n",
"0 22937\n",
"1 10147\n",
"dtype: int64 \n",
"\n",
"Egyptian Goose 1km data before drop: \n",
" Occurrence\n",
"0 909137\n",
"1 863\n",
"dtype: int64 \n",
"\n",
"Egyptian Goose 1km data after drop: \n",
" Occurrence\n",
"0 32221\n",
"1 863\n",
"dtype: int64 \n",
"\n",
"Gadwall 1km data before drop: \n",
" Occurrence\n",
"0 907795\n",
"1 2205\n",
"dtype: int64 \n",
"\n",
"Gadwall 1km data after drop: \n",
" Occurrence\n",
"0 30879\n",
"1 2205\n",
"dtype: int64 \n",
"\n",
"Goshawk 1km data before drop: \n",
" Occurrence\n",
"0 909554\n",
"1 446\n",
"dtype: int64 \n",
"\n",
"Goshawk 1km data after drop: \n",
" Occurrence\n",
"0 32638\n",
"1 446\n",
"dtype: int64 \n",
"\n",
"Grey Partridge 1km data before drop: \n",
" Occurrence\n",
"0 907877\n",
"1 2123\n",
"dtype: int64 \n",
"\n",
"Grey Partridge 1km data after drop: \n",
" Occurrence\n",
"0 30961\n",
"1 2123\n",
"dtype: int64 \n",
"\n",
"Indian Peafowl 1km data before drop: \n",
" Occurrence\n",
"0 909706\n",
"1 294\n",
"dtype: int64 \n",
"\n",
"Indian Peafowl 1km data after drop: \n",
" Occurrence\n",
"0 32790\n",
"1 294\n",
"dtype: int64 \n",
"\n",
"Little Owl 1km data before drop: \n",
" Occurrence\n",
"0 906452\n",
"1 3548\n",
"dtype: int64 \n",
"\n",
"Little Owl 1km data after drop: \n",
" Occurrence\n",
"0 29536\n",
"1 3548\n",
"dtype: int64 \n",
"\n",
"Mandarin Duck 1km data before drop: \n",
" Occurrence\n",
"0 908990\n",
"1 1010\n",
"dtype: int64 \n",
"\n",
"Mandarin Duck 1km data after drop: \n",
" Occurrence\n",
"0 32074\n",
"1 1010\n",
"dtype: int64 \n",
"\n",
"Mute Swan 1km data before drop: \n",
" Occurrence\n",
"0 890876\n",
"1 19124\n",
"dtype: int64 \n",
"\n",
"Mute Swan 1km data after drop: \n",
" Occurrence\n",
"1 19124\n",
"0 13960\n",
"dtype: int64 \n",
"\n",
"Pheasant 1km data before drop: \n",
" Occurrence\n",
"0 904145\n",
"1 5855\n",
"dtype: int64 \n",
"\n",
"Pheasant 1km data after drop: \n",
" Occurrence\n",
"0 27229\n",
"1 5855\n",
"dtype: int64 \n",
"\n",
"Pink-footed Goose 1km data before drop: \n",
" Occurrence\n",
"0 907354\n",
"1 2646\n",
"dtype: int64 \n",
"\n",
"Pink-footed Goose 1km data after drop: \n",
" Occurrence\n",
"0 30438\n",
"1 2646\n",
"dtype: int64 \n",
"\n",
"Pintail 1km data before drop: \n",
" Occurrence\n",
"0 909303\n",
"1 697\n",
"dtype: int64 \n",
"\n",
"Pintail 1km data after drop: \n",
" Occurrence\n",
"0 32387\n",
"1 697\n",
"dtype: int64 \n",
"\n",
"Pochard 1km data before drop: \n",
" Occurrence\n",
"0 908943\n",
"1 1057\n",
"dtype: int64 \n",
"\n",
"Pochard 1km data after drop: \n",
" Occurrence\n",
"0 32027\n",
"1 1057\n",
"dtype: int64 \n",
"\n",
"Red-legged Partridge 1km data before drop: \n",
" Occurrence\n",
"0 907047\n",
"1 2953\n",
"dtype: int64 \n",
"\n",
"Red-legged Partridge 1km data after drop: \n",
" Occurrence\n",
"0 30131\n",
"1 2953\n",
"dtype: int64 \n",
"\n",
"Ring-necked Parakeet 1km data before drop: \n",
" Occurrence\n",
"0 909496\n",
"1 504\n",
"dtype: int64 \n",
"\n",
"Ring-necked Parakeet 1km data after drop: \n",
" Occurrence\n",
"0 32580\n",
"1 504\n",
"dtype: int64 \n",
"\n",
"Rock Dove 1km data before drop: \n",
" Occurrence\n",
"0 906081\n",
"1 3919\n",
"dtype: int64 \n",
"\n",
"Rock Dove 1km data after drop: \n",
" Occurrence\n",
"0 29165\n",
"1 3919\n",
"dtype: int64 \n",
"\n",
"Ruddy Duck 1km data before drop: \n",
" Occurrence\n",
"0 909876\n",
"1 124\n",
"dtype: int64 \n",
"\n",
"Ruddy Duck 1km data after drop: \n",
" Occurrence\n",
"0 32960\n",
"1 124\n",
"dtype: int64 \n",
"\n",
"Whooper Swan 1km data before drop: \n",
" Occurrence\n",
"0 909045\n",
"1 955\n",
"dtype: int64 \n",
"\n",
"Whooper Swan 1km data after drop: \n",
" Occurrence\n",
"0 32129\n",
"1 955\n",
"dtype: int64 \n",
"\n",
"Wigeon 1km data before drop: \n",
" Occurrence\n",
"0 907683\n",
"1 2317\n",
"dtype: int64 \n",
"\n",
"Wigeon 1km data after drop: \n",
" Occurrence\n",
"0 30767\n",
"1 2317\n",
"dtype: int64 \n",
"\n"
]
}
],
"source": [
"# Data Cleaning\n",
"np.random.seed(seed=seed)\n",
"\n",
"for dict in df_dicts:\n",
" cur_df = dict[\"dataframe\"]\n",
" cur_df_name = dict[\"name\"]\n",
"\n",
" print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n",
" \n",
" no_occurences = cur_df[cur_df['Occurrence']==0].index \n",
" sample_size = sum(cur_df['Occurrence']==0) - total_birds + sum(cur_df['Occurrence']==1)\n",
" random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n",
" dict[\"dataframe\"] = cur_df.drop(random_indices)\n",
" \n",
" print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')\n",
"\n",
"\n",
"# for dict in df_dicts:\n",
"# cur_df = dict[\"dataframe\"]\n",
"# cur_df_name = dict[\"name\"]\n",
"\n",
"# print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n",
" \n",
"# no_occurences = cur_df[cur_df['Occurrence']==0].index\n",
"# sample_size = sum(cur_df['Occurrence']==0) - sum(cur_df['Occurrence']==1)\n",
"# random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n",
"# dict[\"dataframe\"] = cur_df.drop(random_indices)\n",
" \n",
"# print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# Standardisation\n",
"def standardise(X):\n",
" scaler = StandardScaler()\n",
" X_scaled = scaler.fit_transform(X)\n",
"\n",
" # Add headers back\n",
" X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)\n",
"\n",
" # Revert 'Surface type' back to non-standardised column as it is a categorical feature\n",
" X_scaled_df['Surface type'] = X['Surface type'].values\n",
" return X_scaled_df"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# Feature Selection\n",
"\n",
"# Check if any columns have NaN in them\n",
"# nan_columns = []\n",
"# for column in X_scaled_df:\n",
"# if X_scaled_df[column].isnull().values.any():\n",
"# nan_columns.append(column)\n",
"# print(nan_columns if len(nan_columns)!= 0 else 'None')\n",
"\n",
"\n",
"# Using ANOVA F-Score as a feature selection method\n",
"def feature_select(X, y):\n",
" k_nums = [10, 15, 20, 25, 30, 35]\n",
" kbest_dict = {}\n",
" for num in k_nums:\n",
" # Needs to be 1d array, y.values.ravel() converts y into a 1d array\n",
" best_X = SelectKBest(f_classif, k=num).fit(X, y.values.ravel())\n",
" # kbest_dict[str(num)] = best_X.get_feature_names_out().tolist()\n",
" kbest_dict[str(num)] = best_X\n",
" # kbest_dict['40'] = list(X.columns)\n",
"\n",
" best_X = SelectKBest(f_classif, k='all').fit(X, y.values.ravel())\n",
"\n",
" feat_scores = pd.DataFrame()\n",
" feat_scores[\"F Score\"] = best_X.scores_\n",
" feat_scores[\"P Value\"] = best_X.pvalues_\n",
" feat_scores[\"Attribute\"] = X.columns\n",
" kbest_dict['Dataframe'] = feat_scores.sort_values([\"F Score\", \"P Value\"], ascending=[False, False])\n",
"\n",
"\n",
" if details:\n",
" print(f'K-Best Features Dataframe: \\n{kbest_dict[\"Dataframe\"]} \\n')\n",
" # print(json.dumps(kbest_dict, indent=4))\n",
" return kbest_dict"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Resample (upsample) minority data\n",
"# for dict in df_dicts:\n",
"# if sum(dict['dataframe']['Occurence']==1) > sum(dict['dataframe']['Occurence']==0):\n",
"# continue\n",
"\n",
"# from sklearn.utils import resample\n",
"\n",
"# def upsample(X, y):\n",
"# X_1 = X[y['Occurrence'] == 1] # Getting positive occurrences (minority)\n",
"# X_0 = X[y['Occurrence'] == 0] # Getting negative occurrences (majority)\n",
" \n",
"# X_1_upsampled = resample(X_1 ,random_state=seed,n_samples=total_birds/2,replace=True)\n",
"\n",
"\n",
"# print(f'Resampling: \\n {y.value_counts()} \\n')\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"def oversample(X_train, y_train):\n",
" over = RandomOverSampler(sampling_strategy='minority', random_state=seed)\n",
" smote = SMOTE(random_state=seed, sampling_strategy='minority')\n",
" X_smote, y_smote = smote.fit_resample(X_train, y_train)\n",
" \n",
" if details:\n",
" print(f'Resampled Value Counts: \\n {y_smote.value_counts()} \\n')\n",
"\n",
" return X_smote, y_smote"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Name | \n",
" Occurrence Count | \n",
" Percentage | \n",
"
\n",
" \n",
" \n",
" \n",
" 9 | \n",
" Mute Swan 1km | \n",
" 19124 | \n",
" 0.578044 | \n",
"
\n",
" \n",
" 1 | \n",
" Canada Goose 1km | \n",
" 10147 | \n",
" 0.306704 | \n",
"
\n",
" \n",
" 10 | \n",
" Pheasant 1km | \n",
" 5855 | \n",
" 0.176974 | \n",
"
\n",
" \n",
" 16 | \n",
" Rock Dove 1km | \n",
" 3919 | \n",
" 0.118456 | \n",
"
\n",
" \n",
" 7 | \n",
" Little Owl 1km | \n",
" 3548 | \n",
" 0.107242 | \n",
"
\n",
" \n",
" 14 | \n",
" Red-legged Partridge 1km | \n",
" 2953 | \n",
" 0.089258 | \n",
"
\n",
" \n",
" 11 | \n",
" Pink-footed Goose 1km | \n",
" 2646 | \n",
" 0.079978 | \n",
"
\n",
" \n",
" 19 | \n",
" Wigeon 1km | \n",
" 2317 | \n",
" 0.070034 | \n",
"
\n",
" \n",
" 3 | \n",
" Gadwall 1km | \n",
" 2205 | \n",
" 0.066649 | \n",
"
\n",
" \n",
" 5 | \n",
" Grey Partridge 1km | \n",
" 2123 | \n",
" 0.064170 | \n",
"
\n",
" \n",
" 13 | \n",
" Pochard 1km | \n",
" 1057 | \n",
" 0.031949 | \n",
"
\n",
" \n",
" 8 | \n",
" Mandarin Duck 1km | \n",
" 1010 | \n",
" 0.030528 | \n",
"
\n",
" \n",
" 18 | \n",
" Whooper Swan 1km | \n",
" 955 | \n",
" 0.028866 | \n",
"
\n",
" \n",
" 2 | \n",
" Egyptian Goose 1km | \n",
" 863 | \n",
" 0.026085 | \n",
"
\n",
" \n",
" 0 | \n",
" Barnacle Goose 1km | \n",
" 769 | \n",
" 0.023244 | \n",
"
\n",
" \n",
" 12 | \n",
" Pintail 1km | \n",
" 697 | \n",
" 0.021068 | \n",
"
\n",
" \n",
" 15 | \n",
" Ring-necked Parakeet 1km | \n",
" 504 | \n",
" 0.015234 | \n",
"
\n",
" \n",
" 4 | \n",
" Goshawk 1km | \n",
" 446 | \n",
" 0.013481 | \n",
"
\n",
" \n",
" 6 | \n",
" Indian Peafowl 1km | \n",
" 294 | \n",
" 0.008886 | \n",
"
\n",
" \n",
" 17 | \n",
" Ruddy Duck 1km | \n",
" 124 | \n",
" 0.003748 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Name Occurrence Count Percentage\n",
"9 Mute Swan 1km 19124 0.578044\n",
"1 Canada Goose 1km 10147 0.306704\n",
"10 Pheasant 1km 5855 0.176974\n",
"16 Rock Dove 1km 3919 0.118456\n",
"7 Little Owl 1km 3548 0.107242\n",
"14 Red-legged Partridge 1km 2953 0.089258\n",
"11 Pink-footed Goose 1km 2646 0.079978\n",
"19 Wigeon 1km 2317 0.070034\n",
"3 Gadwall 1km 2205 0.066649\n",
"5 Grey Partridge 1km 2123 0.064170\n",
"13 Pochard 1km 1057 0.031949\n",
"8 Mandarin Duck 1km 1010 0.030528\n",
"18 Whooper Swan 1km 955 0.028866\n",
"2 Egyptian Goose 1km 863 0.026085\n",
"0 Barnacle Goose 1km 769 0.023244\n",
"12 Pintail 1km 697 0.021068\n",
"15 Ring-necked Parakeet 1km 504 0.015234\n",
"4 Goshawk 1km 446 0.013481\n",
"6 Indian Peafowl 1km 294 0.008886\n",
"17 Ruddy Duck 1km 124 0.003748"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"All_bird_occurrences = pd.DataFrame([(dict['name'],sum(dict['dataframe']['Occurrence'] == 1)) for dict in df_dicts], columns=['Name', 'Occurrence Count'])\n",
"All_bird_occurrences['Percentage'] = All_bird_occurrences['Occurrence Count']/total_birds\n",
"\n",
"All_bird_occurrences.sort_values('Occurrence Count', ascending=False)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training with Barnacle Goose 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"25 1586.660696 0.000000e+00 Inflowing drainage direction\n",
"29 1579.799646 0.000000e+00 Chlorothalonil\n",
"30 1579.799646 0.000000e+00 Glyphosate\n",
"31 1579.799646 0.000000e+00 Mancozeb\n",
"32 1579.799646 0.000000e+00 Mecoprop-P\n",
"34 1579.799646 0.000000e+00 Pendimethalin\n",
"18 1440.939379 1.143607e-308 Saltmarsh\n",
"23 1417.879628 7.271005e-304 Surface type\n",
"22 1269.611405 6.667737e-273 Cumulative catchment area\n",
"24 1223.198053 3.502336e-263 Outflowing drainage direction\n",
"21 1203.742558 4.196966e-259 Elevation\n",
"17 1078.608288 8.174358e-233 Littoral sediment\n",
"13 978.472706 1.050650e-211 Freshwater\n",
"15 853.811730 2.457887e-185 Supralittoral sediment\n",
"3 816.914586 1.639367e-177 Improve grassland\n",
"38 682.011193 7.904841e-149 Tri-allate\n",
"37 676.149377 1.402808e-147 Sulphur\n",
"36 673.575429 4.960887e-147 Prosulfocarb\n",
"26 605.329133 1.806036e-132 Fertiliser K\n",
"27 605.329133 1.806036e-132 Fertiliser N\n",
"28 605.329133 1.806036e-132 Fertiliser P\n",
"35 504.754899 5.949135e-111 PropamocarbHydrochloride\n",
"33 472.954811 3.918041e-104 Metamitron\n",
"16 416.369272 5.554940e-92 Littoral rock\n",
"7 360.657263 5.403022e-80 Fen\n",
"0 243.378276 1.130191e-54 Deciduous woodland\n",
"2 223.631247 2.134039e-50 Arable\n",
"19 168.960021 1.551633e-38 Urban\n",
"20 156.098247 9.703696e-36 Suburban\n",
"14 88.036607 6.821306e-21 Supralittoral rock\n",
"9 70.504247 4.773365e-17 Heather grassland\n",
"4 52.091677 5.410742e-13 Neutral grassland\n",
"12 28.131255 1.140877e-07 Saltwater\n",
"10 10.593482 1.136010e-03 Bog\n",
"6 3.881727 4.882264e-02 Acid grassland\n",
"8 1.726979 1.888063e-01 Heather\n",
"11 1.309928 2.524160e-01 Inland rock\n",
"1 1.193636 2.746053e-01 Coniferous woodland\n",
"5 0.275406 5.997316e-01 Calcareous grassland \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 24236\n",
"1 24236\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9857919446503582,\n",
" \"recall\": 0.9876222304740686,\n",
" \"f1-score\": 0.9867062387930501,\n",
" \"support\": 8079\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4350282485875706,\n",
" \"recall\": 0.4010416666666667,\n",
" \"f1-score\": 0.41734417344173447,\n",
" \"support\": 192\n",
" },\n",
" \"accuracy\": 0.9740055616007738,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7104100966189644,\n",
" \"recall\": 0.6943319485703676,\n",
" \"f1-score\": 0.7020252061173923,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9730067155796226,\n",
" \"recall\": 0.9740055616007738,\n",
" \"f1-score\": 0.9734892739100308,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Barnacle Goose 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9841054706752095,\n",
" \"recall\": 0.9886124520361431,\n",
" \"f1-score\": 0.9863538129052178,\n",
" \"support\": 8079\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4064516129032258,\n",
" \"recall\": 0.328125,\n",
" \"f1-score\": 0.3631123919308357,\n",
" \"support\": 192\n",
" },\n",
" \"accuracy\": 0.9732801354128884,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6952785417892177,\n",
" \"recall\": 0.6583687260180715,\n",
" \"f1-score\": 0.6747331024180268,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9706960231244635,\n",
" \"recall\": 0.9732801354128884,\n",
" \"f1-score\": 0.971886112164427,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Canada Goose 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"29 31307.822741 0.000000e+00 Chlorothalonil\n",
"30 31307.822741 0.000000e+00 Glyphosate\n",
"31 31307.822741 0.000000e+00 Mancozeb\n",
"32 31307.822741 0.000000e+00 Mecoprop-P\n",
"34 31307.822741 0.000000e+00 Pendimethalin\n",
"23 27980.651957 0.000000e+00 Surface type\n",
"26 27539.757586 0.000000e+00 Fertiliser K\n",
"27 27539.757586 0.000000e+00 Fertiliser N\n",
"28 27539.757586 0.000000e+00 Fertiliser P\n",
"24 22192.853532 0.000000e+00 Outflowing drainage direction\n",
"25 21798.073867 0.000000e+00 Inflowing drainage direction\n",
"21 20557.269520 0.000000e+00 Elevation\n",
"37 14416.271856 0.000000e+00 Sulphur\n",
"36 14379.008562 0.000000e+00 Prosulfocarb\n",
"38 14239.510204 0.000000e+00 Tri-allate\n",
"22 10467.973712 0.000000e+00 Cumulative catchment area\n",
"35 10058.930524 0.000000e+00 PropamocarbHydrochloride\n",
"33 9820.800013 0.000000e+00 Metamitron\n",
"3 9373.992389 0.000000e+00 Improve grassland\n",
"20 6200.682674 0.000000e+00 Suburban\n",
"0 4606.437967 0.000000e+00 Deciduous woodland\n",
"2 4435.557422 0.000000e+00 Arable\n",
"19 2407.892997 0.000000e+00 Urban\n",
"13 1994.218535 0.000000e+00 Freshwater\n",
"4 591.947491 1.305021e-129 Neutral grassland\n",
"18 389.095029 4.077898e-86 Saltmarsh\n",
"7 240.538301 4.654537e-54 Fen\n",
"17 162.207343 4.555336e-37 Littoral sediment\n",
"5 56.217105 6.651725e-14 Calcareous grassland\n",
"15 54.988572 1.241339e-13 Supralittoral sediment\n",
"12 49.209521 2.344481e-12 Saltwater\n",
"1 18.689323 1.542908e-05 Coniferous woodland\n",
"10 16.182904 5.763851e-05 Bog\n",
"11 13.004010 3.112817e-04 Inland rock\n",
"9 10.057049 1.519046e-03 Heather grassland\n",
"16 3.194359 7.390188e-02 Littoral rock\n",
"14 1.831655 1.759414e-01 Supralittoral rock\n",
"8 1.564030 2.110850e-01 Heather\n",
"6 1.341571 2.467655e-01 Acid grassland \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 17232\n",
"1 17232\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Canada Goose 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9475095785440613,\n",
" \"recall\": 0.8669588080631025,\n",
" \"f1-score\": 0.9054462242562928,\n",
" \"support\": 5705\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7512291052114061,\n",
" \"recall\": 0.8932190179267342,\n",
" \"f1-score\": 0.8160940003560618,\n",
" \"support\": 2566\n",
" },\n",
" \"accuracy\": 0.8751057913190666,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8493693418777337,\n",
" \"recall\": 0.8800889129949183,\n",
" \"f1-score\": 0.8607701123061773,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8866154067907553,\n",
" \"recall\": 0.8751057913190666,\n",
" \"f1-score\": 0.8777255367302389,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Canada Goose 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8952180028129395,\n",
" \"recall\": 0.8925503943908852,\n",
" \"f1-score\": 0.8938822083735627,\n",
" \"support\": 5705\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7626790553619822,\n",
" \"recall\": 0.7677318784099766,\n",
" \"f1-score\": 0.7651971256554672,\n",
" \"support\": 2566\n",
" },\n",
" \"accuracy\": 0.8538266231410954,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8289485290874609,\n",
" \"recall\": 0.830141136400431,\n",
" \"f1-score\": 0.829539667014515,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8540990402740498,\n",
" \"recall\": 0.8538266231410954,\n",
" \"f1-score\": 0.8539588711405034,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Egyptian Goose 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"26 4833.620741 0.000000e+00 Fertiliser K\n",
"27 4833.620741 0.000000e+00 Fertiliser N\n",
"28 4833.620741 0.000000e+00 Fertiliser P\n",
"22 4398.345684 0.000000e+00 Cumulative catchment area\n",
"13 3391.728526 0.000000e+00 Freshwater\n",
"29 3198.335134 0.000000e+00 Chlorothalonil\n",
"30 3198.335134 0.000000e+00 Glyphosate\n",
"31 3198.335134 0.000000e+00 Mancozeb\n",
"32 3198.335134 0.000000e+00 Mecoprop-P\n",
"34 3198.335134 0.000000e+00 Pendimethalin\n",
"24 2769.983626 0.000000e+00 Outflowing drainage direction\n",
"19 2688.563744 0.000000e+00 Urban\n",
"23 2448.189595 0.000000e+00 Surface type\n",
"36 2166.345317 0.000000e+00 Prosulfocarb\n",
"37 2164.465187 0.000000e+00 Sulphur\n",
"38 2130.679135 0.000000e+00 Tri-allate\n",
"33 1913.836423 0.000000e+00 Metamitron\n",
"25 1867.181758 0.000000e+00 Inflowing drainage direction\n",
"35 1851.637936 0.000000e+00 PropamocarbHydrochloride\n",
"20 1608.119655 0.000000e+00 Suburban\n",
"21 1508.446202 1.037538e-322 Elevation\n",
"3 1160.254219 5.600729e-250 Improve grassland\n",
"0 1025.549798 1.228685e-221 Deciduous woodland\n",
"7 631.476180 4.722469e-138 Fen\n",
"2 600.148490 2.308798e-131 Arable\n",
"18 214.961650 1.613752e-48 Saltmarsh\n",
"4 66.795470 3.118157e-16 Neutral grassland\n",
"6 24.532078 7.344270e-07 Acid grassland\n",
"9 16.103881 6.009295e-05 Heather grassland\n",
"10 10.942250 9.409617e-04 Bog\n",
"8 6.460287 1.103570e-02 Heather\n",
"15 6.121062 1.336303e-02 Supralittoral sediment\n",
"17 4.658208 3.091261e-02 Littoral sediment\n",
"5 3.654048 5.594175e-02 Calcareous grassland\n",
"11 3.305391 6.906195e-02 Inland rock\n",
"16 3.051750 8.065946e-02 Littoral rock\n",
"12 0.870474 3.508309e-01 Saltwater\n",
"14 0.756741 3.843565e-01 Supralittoral rock\n",
"1 0.003547 9.525091e-01 Coniferous woodland \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 24140\n",
"1 24140\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Egyptian Goose 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9874953571870744,\n",
" \"recall\": 0.9870065585942334,\n",
" \"f1-score\": 0.9872508973882905,\n",
" \"support\": 8081\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4587628865979381,\n",
" \"recall\": 0.46842105263157896,\n",
" \"f1-score\": 0.46354166666666663,\n",
" \"support\": 190\n",
" },\n",
" \"accuracy\": 0.9750937008826018,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7231291218925062,\n",
" \"recall\": 0.7277138056129062,\n",
" \"f1-score\": 0.7253962820274786,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9753494051363023,\n",
" \"recall\": 0.9750937008826018,\n",
" \"f1-score\": 0.9752203383462028,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Egyptian Goose 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9858199753390875,\n",
" \"recall\": 0.9893577527533721,\n",
" \"f1-score\": 0.987585695756902,\n",
" \"support\": 8081\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4658385093167702,\n",
" \"recall\": 0.39473684210526316,\n",
" \"f1-score\": 0.4273504273504274,\n",
" \"support\": 190\n",
" },\n",
" \"accuracy\": 0.9756982227058397,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7258292423279289,\n",
" \"recall\": 0.6920472974293177,\n",
" \"f1-score\": 0.7074680615536647,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9738750498712794,\n",
" \"recall\": 0.9756982227058397,\n",
" \"f1-score\": 0.974716066812732,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Gadwall 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"26 8495.245130 0.000000e+00 Fertiliser K\n",
"27 8495.245130 0.000000e+00 Fertiliser N\n",
"28 8495.245130 0.000000e+00 Fertiliser P\n",
"29 7138.523124 0.000000e+00 Chlorothalonil\n",
"30 7138.523124 0.000000e+00 Glyphosate\n",
"31 7138.523124 0.000000e+00 Mancozeb\n",
"32 7138.523124 0.000000e+00 Mecoprop-P\n",
"34 7138.523124 0.000000e+00 Pendimethalin\n",
"37 6747.511680 0.000000e+00 Sulphur\n",
"36 6716.673071 0.000000e+00 Prosulfocarb\n",
"38 6693.525002 0.000000e+00 Tri-allate\n",
"35 5956.455748 0.000000e+00 PropamocarbHydrochloride\n",
"33 5952.405449 0.000000e+00 Metamitron\n",
"24 5605.884628 0.000000e+00 Outflowing drainage direction\n",
"22 5421.221412 0.000000e+00 Cumulative catchment area\n",
"23 5337.742415 0.000000e+00 Surface type\n",
"25 4250.868883 0.000000e+00 Inflowing drainage direction\n",
"13 3657.950458 0.000000e+00 Freshwater\n",
"21 3513.520144 0.000000e+00 Elevation\n",
"2 2555.774940 0.000000e+00 Arable\n",
"3 2162.540101 0.000000e+00 Improve grassland\n",
"20 1871.462238 0.000000e+00 Suburban\n",
"0 1487.487019 2.357158e-318 Deciduous woodland\n",
"19 1271.177886 3.134320e-273 Urban\n",
"18 947.217815 4.200123e-205 Saltmarsh\n",
"7 892.320809 1.714432e-193 Fen\n",
"4 739.334890 4.953129e-161 Neutral grassland\n",
"17 160.826029 9.095729e-37 Littoral sediment\n",
"15 130.604141 3.443944e-30 Supralittoral sediment\n",
"6 45.799690 1.331664e-11 Acid grassland\n",
"12 32.280187 1.345866e-08 Saltwater\n",
"9 29.120347 6.848560e-08 Heather grassland\n",
"10 21.703699 3.194143e-06 Bog\n",
"8 17.560026 2.791009e-05 Heather\n",
"11 7.808204 5.203950e-03 Inland rock\n",
"1 7.188161 7.342254e-03 Coniferous woodland\n",
"14 1.781952 1.819190e-01 Supralittoral rock\n",
"5 0.735834 3.910048e-01 Calcareous grassland\n",
"16 0.097151 7.552781e-01 Littoral rock \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 23153\n",
"1 23153\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gadwall 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.961431812452735,\n",
" \"recall\": 0.9873155578565881,\n",
" \"f1-score\": 0.9742017879948913,\n",
" \"support\": 7726\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7091988130563798,\n",
" \"recall\": 0.43853211009174314,\n",
" \"f1-score\": 0.5419501133786848,\n",
" \"support\": 545\n",
" },\n",
" \"accuracy\": 0.9511546366823842,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8353153127545574,\n",
" \"recall\": 0.7129238339741656,\n",
" \"f1-score\": 0.758075950686788,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9448114540110697,\n",
" \"recall\": 0.9511546366823842,\n",
" \"f1-score\": 0.945719480817303,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Gadwall 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9636247606892151,\n",
" \"recall\": 0.977219777375097,\n",
" \"f1-score\": 0.9703746545851809,\n",
" \"support\": 7726\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5963302752293578,\n",
" \"recall\": 0.47706422018348627,\n",
" \"f1-score\": 0.5300713557594292,\n",
" \"support\": 545\n",
" },\n",
" \"accuracy\": 0.9442630878974732,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7799775179592865,\n",
" \"recall\": 0.7271419987792916,\n",
" \"f1-score\": 0.7502230051723051,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9394226696995377,\n",
" \"recall\": 0.9442630878974732,\n",
" \"f1-score\": 0.94136180270995,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Goshawk 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"23 1228.008833 3.437230e-264 Surface type\n",
"21 1131.658994 5.687958e-244 Elevation\n",
"29 1110.016642 2.016393e-239 Chlorothalonil\n",
"30 1110.016642 2.016393e-239 Glyphosate\n",
"31 1110.016642 2.016393e-239 Mancozeb\n",
"32 1110.016642 2.016393e-239 Mecoprop-P\n",
"34 1110.016642 2.016393e-239 Pendimethalin\n",
"24 1068.037277 1.373575e-230 Outflowing drainage direction\n",
"22 1044.933301 1.009602e-225 Cumulative catchment area\n",
"25 919.889067 2.517246e-199 Inflowing drainage direction\n",
"0 809.818171 5.254241e-176 Deciduous woodland\n",
"3 684.780108 2.032079e-149 Improve grassland\n",
"1 397.809147 5.441281e-88 Coniferous woodland\n",
"38 378.743353 6.890413e-84 Tri-allate\n",
"37 375.216071 3.958707e-83 Sulphur\n",
"36 366.309524 3.275528e-81 Prosulfocarb\n",
"6 362.459808 2.209967e-80 Acid grassland\n",
"35 245.243731 4.460776e-55 PropamocarbHydrochloride\n",
"26 234.255491 1.066866e-52 Fertiliser K\n",
"27 234.255491 1.066866e-52 Fertiliser N\n",
"28 234.255491 1.066866e-52 Fertiliser P\n",
"33 226.160901 6.042257e-51 Metamitron\n",
"2 87.757391 7.852555e-21 Arable\n",
"20 79.803707 4.343909e-19 Suburban\n",
"8 45.558282 1.506066e-11 Heather\n",
"5 16.053837 6.170139e-05 Calcareous grassland\n",
"13 15.723043 7.347960e-05 Freshwater\n",
"18 8.693071 3.196452e-03 Saltmarsh\n",
"7 4.213295 4.011621e-02 Fen\n",
"10 3.293395 6.956812e-02 Bog\n",
"14 1.492644 2.218154e-01 Supralittoral rock\n",
"19 1.235707 2.663082e-01 Urban\n",
"9 0.653081 4.190191e-01 Heather grassland\n",
"11 0.416397 5.187449e-01 Inland rock\n",
"12 0.222689 6.370020e-01 Saltwater\n",
"15 0.046972 8.284207e-01 Supralittoral sediment\n",
"4 0.041436 8.386999e-01 Neutral grassland\n",
"17 0.032689 8.565239e-01 Littoral sediment\n",
"16 0.002739 9.582594e-01 Littoral rock \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 24473\n",
"1 24473\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Goshawk 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9871717293961031,\n",
" \"recall\": 0.9990202082057563,\n",
" \"f1-score\": 0.9930606281957634,\n",
" \"support\": 8165\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.0,\n",
" \"recall\": 0.0,\n",
" \"f1-score\": 0.0,\n",
" \"support\": 106\n",
" },\n",
" \"accuracy\": 0.9862169024301777,\n",
" \"macro avg\": {\n",
" \"precision\": 0.49358586469805155,\n",
" \"recall\": 0.49951010410287816,\n",
" \"f1-score\": 0.4965303140978817,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9745202720975918,\n",
" \"recall\": 0.9862169024301777,\n",
" \"f1-score\": 0.9803336995790604,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Goshawk 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9879444715051144,\n",
" \"recall\": 0.9936313533374158,\n",
" \"f1-score\": 0.9907797520913476,\n",
" \"support\": 8165\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.11864406779661017,\n",
" \"recall\": 0.0660377358490566,\n",
" \"f1-score\": 0.08484848484848484,\n",
" \"support\": 106\n",
" },\n",
" \"accuracy\": 0.9817434409382179,\n",
" \"macro avg\": {\n",
" \"precision\": 0.5532942696508623,\n",
" \"recall\": 0.5298345445932362,\n",
" \"f1-score\": 0.5378141184699162,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9768036369273002,\n",
" \"recall\": 0.9817434409382179,\n",
" \"f1-score\": 0.9791694613976294,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Grey Partridge 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"26 8765.050569 0.000000e+00 Fertiliser K\n",
"27 8765.050569 0.000000e+00 Fertiliser N\n",
"28 8765.050569 0.000000e+00 Fertiliser P\n",
"37 8712.410120 0.000000e+00 Sulphur\n",
"36 8711.451485 0.000000e+00 Prosulfocarb\n",
"38 8703.792647 0.000000e+00 Tri-allate\n",
"2 8141.700589 0.000000e+00 Arable\n",
"32 7660.609011 0.000000e+00 Mecoprop-P\n",
"29 7659.048939 0.000000e+00 Chlorothalonil\n",
"30 7659.048939 0.000000e+00 Glyphosate\n",
"31 7659.048939 0.000000e+00 Mancozeb\n",
"34 7659.048939 0.000000e+00 Pendimethalin\n",
"35 7405.435155 0.000000e+00 PropamocarbHydrochloride\n",
"33 7361.522264 0.000000e+00 Metamitron\n",
"23 5901.470556 0.000000e+00 Surface type\n",
"24 4800.409421 0.000000e+00 Outflowing drainage direction\n",
"22 4601.906150 0.000000e+00 Cumulative catchment area\n",
"25 4463.973740 0.000000e+00 Inflowing drainage direction\n",
"21 4389.262340 0.000000e+00 Elevation\n",
"3 2126.495399 0.000000e+00 Improve grassland\n",
"0 901.238763 2.221379e-195 Deciduous woodland\n",
"20 518.009891 8.599298e-114 Suburban\n",
"5 327.045266 9.488789e-73 Calcareous grassland\n",
"4 319.849011 3.384407e-71 Neutral grassland\n",
"19 98.781469 3.039441e-23 Urban\n",
"15 42.304272 7.923464e-11 Supralittoral sediment\n",
"18 42.065170 8.952540e-11 Saltmarsh\n",
"13 27.868120 1.306903e-07 Freshwater\n",
"7 18.302932 1.889456e-05 Fen\n",
"17 6.233018 1.254381e-02 Littoral sediment\n",
"1 5.215300 2.239529e-02 Coniferous woodland\n",
"11 4.740881 2.946103e-02 Inland rock\n",
"14 4.021946 4.491999e-02 Supralittoral rock\n",
"8 3.136113 7.658531e-02 Heather\n",
"6 2.392910 1.218961e-01 Acid grassland\n",
"12 0.249330 6.175506e-01 Saltwater\n",
"10 0.120851 7.281160e-01 Bog\n",
"9 0.012848 9.097560e-01 Heather grassland\n",
"16 0.000036 9.952257e-01 Littoral rock \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 23218\n",
"1 23218\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Grey Partridge 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9373253977893842,\n",
" \"recall\": 0.9966421283740152,\n",
" \"f1-score\": 0.9660741111667501,\n",
" \"support\": 7743\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.3157894736842105,\n",
" \"recall\": 0.022727272727272728,\n",
" \"f1-score\": 0.04240282685512368,\n",
" \"support\": 528\n",
" },\n",
" \"accuracy\": 0.9344698343610204,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6265574357367973,\n",
" \"recall\": 0.509684700550644,\n",
" \"f1-score\": 0.5042384690109369,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.89764809541633,\n",
" \"recall\": 0.9344698343610204,\n",
" \"f1-score\": 0.9071092413666608,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Grey Partridge 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9493670886075949,\n",
" \"recall\": 0.9686168151879117,\n",
" \"f1-score\": 0.9588953525538579,\n",
" \"support\": 7743\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.3450134770889488,\n",
" \"recall\": 0.24242424242424243,\n",
" \"f1-score\": 0.28476084538375973,\n",
" \"support\": 528\n",
" },\n",
" \"accuracy\": 0.9222584935316165,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6471902828482718,\n",
" \"recall\": 0.605520528806077,\n",
" \"f1-score\": 0.6218280989688089,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9107866621921862,\n",
" \"recall\": 0.9222584935316165,\n",
" \"f1-score\": 0.9158602878959191,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Indian Peafowl 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"26 1472.657485 2.862598e-315 Fertiliser K\n",
"27 1472.657485 2.862598e-315 Fertiliser N\n",
"28 1472.657485 2.862598e-315 Fertiliser P\n",
"36 1175.153234 4.174421e-253 Prosulfocarb\n",
"37 1172.615821 1.422851e-252 Sulphur\n",
"38 1166.318796 2.985253e-251 Tri-allate\n",
"29 1150.513144 6.221230e-248 Chlorothalonil\n",
"30 1150.513144 6.221230e-248 Glyphosate\n",
"31 1150.513144 6.221230e-248 Mancozeb\n",
"32 1150.513144 6.221230e-248 Mecoprop-P\n",
"34 1150.513144 6.221230e-248 Pendimethalin\n",
"35 993.549316 6.904766e-215 PropamocarbHydrochloride\n",
"33 989.712520 4.455187e-214 Metamitron\n",
"23 826.341713 1.639780e-179 Surface type\n",
"22 773.116357 3.264405e-168 Cumulative catchment area\n",
"24 694.651908 1.603430e-151 Outflowing drainage direction\n",
"2 636.396656 4.208646e-139 Arable\n",
"25 618.098698 3.386540e-135 Inflowing drainage direction\n",
"21 581.270648 2.497700e-127 Elevation\n",
"3 579.289817 6.621914e-127 Improve grassland\n",
"0 557.985251 2.382356e-122 Deciduous woodland\n",
"20 341.361921 7.768283e-76 Suburban\n",
"4 31.037453 2.550632e-08 Neutral grassland\n",
"19 28.479423 9.532196e-08 Urban\n",
"5 19.591241 9.621430e-06 Calcareous grassland\n",
"7 11.127497 8.515085e-04 Fen\n",
"13 9.872829 1.678853e-03 Freshwater\n",
"6 4.975747 2.571178e-02 Acid grassland\n",
"10 3.521124 6.060014e-02 Bog\n",
"1 2.674323 1.019882e-01 Coniferous woodland\n",
"9 2.267492 1.321231e-01 Heather grassland\n",
"8 1.470891 2.252138e-01 Heather\n",
"11 0.730498 3.927281e-01 Inland rock\n",
"12 0.717725 3.968973e-01 Saltwater\n",
"15 0.509339 4.754303e-01 Supralittoral sediment\n",
"18 0.335080 5.626872e-01 Saltmarsh\n",
"14 0.132251 7.161121e-01 Supralittoral rock\n",
"17 0.099303 7.526692e-01 Littoral sediment\n",
"16 0.034266 8.531431e-01 Littoral rock \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 24594\n",
"1 24594\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Indian Peafowl 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.990921195981116,\n",
" \"recall\": 0.9987798926305514,\n",
" \"f1-score\": 0.9948350246095886,\n",
" \"support\": 8196\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.0,\n",
" \"recall\": 0.0,\n",
" \"f1-score\": 0.0,\n",
" \"support\": 75\n",
" },\n",
" \"accuracy\": 0.9897231290049571,\n",
" \"macro avg\": {\n",
" \"precision\": 0.495460597990558,\n",
" \"recall\": 0.4993899463152757,\n",
" \"f1-score\": 0.4974175123047943,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9819356936599235,\n",
" \"recall\": 0.9897231290049571,\n",
" \"f1-score\": 0.9858140323661212,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Indian Peafowl 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9912684938151831,\n",
" \"recall\": 0.9973157637872133,\n",
" \"f1-score\": 0.9942829339496412,\n",
" \"support\": 8196\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.12,\n",
" \"recall\": 0.04,\n",
" \"f1-score\": 0.05999999999999999,\n",
" \"support\": 75\n",
" },\n",
" \"accuracy\": 0.988634989723129,\n",
" \"macro avg\": {\n",
" \"precision\": 0.5556342469075916,\n",
" \"recall\": 0.5186578818936066,\n",
" \"f1-score\": 0.5271414669748206,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9833679815390207,\n",
" \"recall\": 0.988634989723129,\n",
" \"f1-score\": 0.9858110176098729,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Little Owl 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"26 19475.045822 0.000000e+00 Fertiliser K\n",
"27 19475.045822 0.000000e+00 Fertiliser N\n",
"28 19475.045822 0.000000e+00 Fertiliser P\n",
"36 14464.783437 0.000000e+00 Prosulfocarb\n",
"37 14463.764574 0.000000e+00 Sulphur\n",
"38 14420.985632 0.000000e+00 Tri-allate\n",
"32 13365.596356 0.000000e+00 Mecoprop-P\n",
"29 13362.750579 0.000000e+00 Chlorothalonil\n",
"30 13362.750579 0.000000e+00 Glyphosate\n",
"31 13362.750579 0.000000e+00 Mancozeb\n",
"34 13362.750579 0.000000e+00 Pendimethalin\n",
"33 11175.998989 0.000000e+00 Metamitron\n",
"35 11122.139446 0.000000e+00 PropamocarbHydrochloride\n",
"23 9941.994917 0.000000e+00 Surface type\n",
"2 9462.794504 0.000000e+00 Arable\n",
"24 8442.661824 0.000000e+00 Outflowing drainage direction\n",
"22 7788.899641 0.000000e+00 Cumulative catchment area\n",
"25 7508.970331 0.000000e+00 Inflowing drainage direction\n",
"21 6742.553493 0.000000e+00 Elevation\n",
"3 4944.473615 0.000000e+00 Improve grassland\n",
"20 2250.993774 0.000000e+00 Suburban\n",
"0 1224.086080 2.281664e-263 Deciduous woodland\n",
"4 630.020519 9.656906e-138 Neutral grassland\n",
"5 439.830706 5.052213e-97 Calcareous grassland\n",
"19 344.014425 2.082536e-76 Urban\n",
"13 191.220766 2.273330e-43 Freshwater\n",
"7 143.222650 6.146287e-33 Fen\n",
"18 59.796551 1.081619e-14 Saltmarsh\n",
"6 42.200831 8.353273e-11 Acid grassland\n",
"1 34.080188 5.338007e-09 Coniferous woodland\n",
"10 30.463089 3.428286e-08 Bog\n",
"8 26.647155 2.456208e-07 Heather\n",
"9 19.056362 1.272986e-05 Heather grassland\n",
"15 16.754547 4.264108e-05 Supralittoral sediment\n",
"16 7.372175 6.627513e-03 Littoral rock\n",
"11 7.137556 7.552295e-03 Inland rock\n",
"14 5.890295 1.522985e-02 Supralittoral rock\n",
"12 0.157614 6.913651e-01 Saltwater\n",
"17 0.095097 7.577967e-01 Littoral sediment \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 22143\n",
"1 22143\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Little Owl 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9410580021482277,\n",
" \"recall\": 0.9480589747058028,\n",
" \"f1-score\": 0.944545515800822,\n",
" \"support\": 7393\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5334143377885784,\n",
" \"recall\": 0.5,\n",
" \"f1-score\": 0.516166960611405,\n",
" \"support\": 878\n",
" },\n",
" \"accuracy\": 0.9004957078950551,\n",
" \"macro avg\": {\n",
" \"precision\": 0.737236169968403,\n",
" \"recall\": 0.7240294873529014,\n",
" \"f1-score\": 0.7303562382061135,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8977849834917445,\n",
" \"recall\": 0.9004957078950551,\n",
" \"f1-score\": 0.89907140487635,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Little Owl 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.939565627950897,\n",
" \"recall\": 0.9421073988908427,\n",
" \"f1-score\": 0.9408347967040389,\n",
" \"support\": 7393\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5011655011655012,\n",
" \"recall\": 0.489749430523918,\n",
" \"f1-score\": 0.4953917050691244,\n",
" \"support\": 878\n",
" },\n",
" \"accuracy\": 0.8940877765687342,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7203655645581991,\n",
" \"recall\": 0.7159284147073803,\n",
" \"f1-score\": 0.7181132508865816,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8930276867929261,\n",
" \"recall\": 0.8940877765687342,\n",
" \"f1-score\": 0.8935492164289265,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Mandarin Duck 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"26 4982.270656 0.000000e+00 Fertiliser K\n",
"27 4982.270656 0.000000e+00 Fertiliser N\n",
"28 4982.270656 0.000000e+00 Fertiliser P\n",
"29 3746.947882 0.000000e+00 Chlorothalonil\n",
"30 3746.947882 0.000000e+00 Glyphosate\n",
"31 3746.947882 0.000000e+00 Mancozeb\n",
"32 3746.947882 0.000000e+00 Mecoprop-P\n",
"34 3746.947882 0.000000e+00 Pendimethalin\n",
"22 3559.780952 0.000000e+00 Cumulative catchment area\n",
"0 3525.975295 0.000000e+00 Deciduous woodland\n",
"24 2973.634105 0.000000e+00 Outflowing drainage direction\n",
"23 2900.268149 0.000000e+00 Surface type\n",
"3 2556.207049 0.000000e+00 Improve grassland\n",
"37 2345.273531 0.000000e+00 Sulphur\n",
"36 2339.229953 0.000000e+00 Prosulfocarb\n",
"38 2322.533150 0.000000e+00 Tri-allate\n",
"25 2139.256963 0.000000e+00 Inflowing drainage direction\n",
"21 2040.599063 0.000000e+00 Elevation\n",
"20 1659.981195 0.000000e+00 Suburban\n",
"35 1618.553741 0.000000e+00 PropamocarbHydrochloride\n",
"33 1589.076229 0.000000e+00 Metamitron\n",
"13 792.705495 2.254877e-172 Freshwater\n",
"19 434.160164 8.347169e-96 Urban\n",
"2 322.317750 9.929157e-72 Arable\n",
"4 289.027410 1.523840e-64 Neutral grassland\n",
"5 86.986582 1.158292e-20 Calcareous grassland\n",
"1 43.617236 4.053481e-11 Coniferous woodland\n",
"7 30.454378 3.443701e-08 Fen\n",
"9 12.680495 3.700080e-04 Heather grassland\n",
"10 11.170154 8.321583e-04 Bog\n",
"6 4.774378 2.889326e-02 Acid grassland\n",
"16 3.468317 6.256379e-02 Littoral rock\n",
"14 3.191997 7.400873e-02 Supralittoral rock\n",
"17 3.080693 7.923601e-02 Littoral sediment\n",
"12 2.603302 1.066509e-01 Saltwater\n",
"11 2.290784 1.301538e-01 Inland rock\n",
"15 1.408976 2.352351e-01 Supralittoral sediment\n",
"8 0.023329 8.786052e-01 Heather\n",
"18 0.004613 9.458479e-01 Saltmarsh \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 24029\n",
"1 24029\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mandarin Duck 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9780353874313605,\n",
" \"recall\": 0.9962709757613425,\n",
" \"f1-score\": 0.9870689655172414,\n",
" \"support\": 8045\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6052631578947368,\n",
" \"recall\": 0.20353982300884957,\n",
" \"f1-score\": 0.30463576158940403,\n",
" \"support\": 226\n",
" },\n",
" \"accuracy\": 0.9746100834240116,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7916492726630486,\n",
" \"recall\": 0.599905399385096,\n",
" \"f1-score\": 0.6458523635533228,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9678496149884545,\n",
" \"recall\": 0.9746100834240116,\n",
" \"f1-score\": 0.9684218969538644,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Mandarin Duck 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9797247480953551,\n",
" \"recall\": 0.9910503418272218,\n",
" \"f1-score\": 0.9853550021627634,\n",
" \"support\": 8045\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.45864661654135336,\n",
" \"recall\": 0.26991150442477874,\n",
" \"f1-score\": 0.3398328690807799,\n",
" \"support\": 226\n",
" },\n",
" \"accuracy\": 0.9713456655785274,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7191856823183542,\n",
" \"recall\": 0.6304809231260002,\n",
" \"f1-score\": 0.6625939356217716,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9654866078787907,\n",
" \"recall\": 0.9713456655785274,\n",
" \"f1-score\": 0.9677165059619983,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Mute Swan 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"30 43676.953726 0.000000e+00 Glyphosate\n",
"34 43676.953726 0.000000e+00 Pendimethalin\n",
"29 43659.642747 0.000000e+00 Chlorothalonil\n",
"31 43642.342398 0.000000e+00 Mancozeb\n",
"32 43625.052671 0.000000e+00 Mecoprop-P\n",
"23 41778.683149 0.000000e+00 Surface type\n",
"25 37707.864005 0.000000e+00 Inflowing drainage direction\n",
"21 32149.803935 0.000000e+00 Elevation\n",
"24 24629.730532 0.000000e+00 Outflowing drainage direction\n",
"26 19640.235987 0.000000e+00 Fertiliser K\n",
"27 19640.235987 0.000000e+00 Fertiliser N\n",
"28 19640.235987 0.000000e+00 Fertiliser P\n",
"37 14704.076106 0.000000e+00 Sulphur\n",
"36 14617.037623 0.000000e+00 Prosulfocarb\n",
"38 14559.360173 0.000000e+00 Tri-allate\n",
"35 9242.027887 0.000000e+00 PropamocarbHydrochloride\n",
"33 8916.083195 0.000000e+00 Metamitron\n",
"22 7714.991172 0.000000e+00 Cumulative catchment area\n",
"3 6922.429433 0.000000e+00 Improve grassland\n",
"20 5556.769597 0.000000e+00 Suburban\n",
"2 4548.309043 0.000000e+00 Arable\n",
"0 3188.833827 0.000000e+00 Deciduous woodland\n",
"19 2126.916337 0.000000e+00 Urban\n",
"13 1261.094423 4.042871e-271 Freshwater\n",
"4 710.989883 5.323266e-155 Neutral grassland\n",
"17 350.947774 6.674534e-78 Littoral sediment\n",
"6 274.300533 2.317521e-61 Acid grassland\n",
"18 258.697255 5.478710e-58 Saltmarsh\n",
"7 204.439981 3.082649e-46 Fen\n",
"15 138.876035 5.432921e-32 Supralittoral sediment\n",
"10 122.310053 2.214177e-28 Bog\n",
"12 113.202400 2.149655e-26 Saltwater\n",
"8 103.816162 2.411588e-24 Heather\n",
"9 88.379538 5.738193e-21 Heather grassland\n",
"16 66.697722 3.276343e-16 Littoral rock\n",
"11 49.312998 2.224191e-12 Inland rock\n",
"1 44.669892 2.369145e-11 Coniferous woodland\n",
"14 29.331059 6.143449e-08 Supralittoral rock\n",
"5 8.698519 3.186914e-03 Calcareous grassland \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 14291\n",
"1 14291\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mute Swan 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9197844007609385,\n",
" \"recall\": 0.8438045375218151,\n",
" \"f1-score\": 0.8801577669902911,\n",
" \"support\": 3438\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8950556966972836,\n",
" \"recall\": 0.9476515621767019,\n",
" \"f1-score\": 0.9206030150753769,\n",
" \"support\": 4833\n",
" },\n",
" \"accuracy\": 0.9044855519284246,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9074200487291111,\n",
" \"recall\": 0.8957280498492585,\n",
" \"f1-score\": 0.9003803910328341,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9053346574723827,\n",
" \"recall\": 0.9044855519284246,\n",
" \"f1-score\": 0.9037911709311953,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Mute Swan 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8887548990051252,\n",
" \"recall\": 0.8574752763234439,\n",
" \"f1-score\": 0.8728349370836418,\n",
" \"support\": 3438\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.901090028259992,\n",
" \"recall\": 0.9236499068901304,\n",
" \"f1-score\": 0.9122305098600184,\n",
" \"support\": 4833\n",
" },\n",
" \"accuracy\": 0.8961431507677428,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8949224636325586,\n",
" \"recall\": 0.8905625916067872,\n",
" \"f1-score\": 0.8925327234718301,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8959626948809286,\n",
" \"recall\": 0.8961431507677428,\n",
" \"f1-score\": 0.8958549834176073,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Pheasant 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"31 16151.612969 0.000000e+00 Mancozeb\n",
"32 16151.612969 0.000000e+00 Mecoprop-P\n",
"29 16147.891932 0.000000e+00 Chlorothalonil\n",
"30 16147.891932 0.000000e+00 Glyphosate\n",
"34 16147.891932 0.000000e+00 Pendimethalin\n",
"23 14828.439300 0.000000e+00 Surface type\n",
"26 13583.366928 0.000000e+00 Fertiliser K\n",
"27 13583.366928 0.000000e+00 Fertiliser N\n",
"28 13583.366928 0.000000e+00 Fertiliser P\n",
"24 12411.664397 0.000000e+00 Outflowing drainage direction\n",
"21 11511.436305 0.000000e+00 Elevation\n",
"25 11025.748971 0.000000e+00 Inflowing drainage direction\n",
"37 10813.051867 0.000000e+00 Sulphur\n",
"36 10803.090695 0.000000e+00 Prosulfocarb\n",
"38 10762.210355 0.000000e+00 Tri-allate\n",
"22 9363.861895 0.000000e+00 Cumulative catchment area\n",
"35 7504.726180 0.000000e+00 PropamocarbHydrochloride\n",
"33 7356.605139 0.000000e+00 Metamitron\n",
"3 6889.758402 0.000000e+00 Improve grassland\n",
"2 5020.115469 0.000000e+00 Arable\n",
"0 3497.652887 0.000000e+00 Deciduous woodland\n",
"20 1872.691498 0.000000e+00 Suburban\n",
"5 415.858475 7.152889e-92 Calcareous grassland\n",
"4 355.069398 8.637276e-79 Neutral grassland\n",
"1 235.243263 6.519726e-53 Coniferous woodland\n",
"19 219.109454 2.036749e-49 Urban\n",
"6 141.740399 1.292165e-32 Acid grassland\n",
"13 137.784819 9.390379e-32 Freshwater\n",
"8 88.397878 5.685377e-21 Heather\n",
"7 57.673169 3.176391e-14 Fen\n",
"10 33.154847 8.585587e-09 Bog\n",
"18 21.413945 3.714720e-06 Saltmarsh\n",
"15 13.123056 2.921201e-04 Supralittoral sediment\n",
"11 5.451389 1.955872e-02 Inland rock\n",
"9 4.362221 3.675199e-02 Heather grassland\n",
"16 2.751696 9.716078e-02 Littoral rock\n",
"12 0.202376 6.528125e-01 Saltwater\n",
"17 0.146886 7.015312e-01 Littoral sediment\n",
"14 0.077339 7.809384e-01 Supralittoral rock \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 20410\n",
"1 20410\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pheasant 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9195280592951142,\n",
" \"recall\": 0.8914796891039742,\n",
" \"f1-score\": 0.9052866716306776,\n",
" \"support\": 6819\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5542168674698795,\n",
" \"recall\": 0.6336088154269972,\n",
" \"f1-score\": 0.5912596401028278,\n",
" \"support\": 1452\n",
" },\n",
" \"accuracy\": 0.8462096481682989,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7368724633824968,\n",
" \"recall\": 0.7625442522654857,\n",
" \"f1-score\": 0.7482731558667527,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8553965334179239,\n",
" \"recall\": 0.8462096481682989,\n",
" \"f1-score\": 0.8501582409961185,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Pheasant 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8843537414965986,\n",
" \"recall\": 0.9150901891772987,\n",
" \"f1-score\": 0.8994594594594594,\n",
" \"support\": 6819\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5234567901234568,\n",
" \"recall\": 0.4380165289256198,\n",
" \"f1-score\": 0.47694038245219345,\n",
" \"support\": 1452\n",
" },\n",
" \"accuracy\": 0.8313384113166485,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7039052658100278,\n",
" \"recall\": 0.6765533590514592,\n",
" \"f1-score\": 0.6881999209558264,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8209971493803125,\n",
" \"recall\": 0.8313384113166485,\n",
" \"f1-score\": 0.8252849098506394,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Pink-footed Goose 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"29 7036.747030 0.000000e+00 Chlorothalonil\n",
"30 7036.747030 0.000000e+00 Glyphosate\n",
"31 7036.747030 0.000000e+00 Mancozeb\n",
"32 7036.747030 0.000000e+00 Mecoprop-P\n",
"34 7036.747030 0.000000e+00 Pendimethalin\n",
"25 5823.246006 0.000000e+00 Inflowing drainage direction\n",
"23 5796.329675 0.000000e+00 Surface type\n",
"37 5571.993565 0.000000e+00 Sulphur\n",
"36 5543.722242 0.000000e+00 Prosulfocarb\n",
"38 5512.222341 0.000000e+00 Tri-allate\n",
"21 4750.062797 0.000000e+00 Elevation\n",
"35 4557.628130 0.000000e+00 PropamocarbHydrochloride\n",
"24 4416.411546 0.000000e+00 Outflowing drainage direction\n",
"33 4315.390457 0.000000e+00 Metamitron\n",
"22 4111.240745 0.000000e+00 Cumulative catchment area\n",
"2 4027.385455 0.000000e+00 Arable\n",
"17 1680.756257 0.000000e+00 Littoral sediment\n",
"3 1578.759585 0.000000e+00 Improve grassland\n",
"18 1503.642898 1.032597e-321 Saltmarsh\n",
"20 1109.115857 3.118895e-239 Suburban\n",
"0 1064.014160 9.660098e-230 Deciduous woodland\n",
"26 924.852644 2.244918e-200 Fertiliser K\n",
"27 924.852644 2.244918e-200 Fertiliser N\n",
"28 924.852644 2.244918e-200 Fertiliser P\n",
"15 852.335728 5.051033e-185 Supralittoral sediment\n",
"19 449.450750 4.341152e-99 Urban\n",
"13 441.183451 2.587866e-97 Freshwater\n",
"16 329.374467 2.984579e-73 Littoral rock\n",
"7 117.207897 2.872142e-27 Fen\n",
"12 55.275652 1.072913e-13 Saltwater\n",
"4 50.484241 1.225518e-12 Neutral grassland\n",
"1 7.481350 6.237451e-03 Coniferous woodland\n",
"6 3.024752 8.201214e-02 Acid grassland\n",
"14 2.001253 1.571786e-01 Supralittoral rock\n",
"8 1.379174 2.402504e-01 Heather\n",
"11 1.198463 2.736371e-01 Inland rock\n",
"10 0.051515 8.204487e-01 Bog\n",
"5 0.022436 8.809347e-01 Calcareous grassland\n",
"9 0.002302 9.617297e-01 Heather grassland \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 22823\n",
"1 22823\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pink-footed Goose 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9526175009552923,\n",
" \"recall\": 0.9821405121470781,\n",
" \"f1-score\": 0.9671537566274409,\n",
" \"support\": 7615\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6761904761904762,\n",
" \"recall\": 0.4329268292682927,\n",
" \"f1-score\": 0.5278810408921933,\n",
" \"support\": 656\n",
" },\n",
" \"accuracy\": 0.9385805827590376,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8144039885728842,\n",
" \"recall\": 0.7075336707076854,\n",
" \"f1-score\": 0.7475173987598172,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9306931715820944,\n",
" \"recall\": 0.9385805827590376,\n",
" \"f1-score\": 0.932313604103886,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Pink-footed Goose 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9577043206663196,\n",
" \"recall\": 0.9663821405121471,\n",
" \"f1-score\": 0.9620236616772339,\n",
" \"support\": 7615\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5638841567291312,\n",
" \"recall\": 0.5045731707317073,\n",
" \"f1-score\": 0.5325824617860015,\n",
" \"support\": 656\n",
" },\n",
" \"accuracy\": 0.9297545641397654,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7607942386977253,\n",
" \"recall\": 0.7354776556219271,\n",
" \"f1-score\": 0.7473030617316176,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9264691583470359,\n",
" \"recall\": 0.9297545641397654,\n",
" \"f1-score\": 0.9279632787575569,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Pintail 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"29 1342.972285 3.070953e-288 Chlorothalonil\n",
"30 1342.972285 3.070953e-288 Glyphosate\n",
"31 1342.972285 3.070953e-288 Mancozeb\n",
"32 1342.972285 3.070953e-288 Mecoprop-P\n",
"34 1342.972285 3.070953e-288 Pendimethalin\n",
"25 1325.168183 1.608067e-284 Inflowing drainage direction\n",
"23 1169.840995 5.439990e-252 Surface type\n",
"36 1152.405110 2.491814e-248 Prosulfocarb\n",
"37 1150.598093 5.970826e-248 Sulphur\n",
"38 1144.636386 1.067303e-246 Tri-allate\n",
"26 1092.499220 9.754959e-236 Fertiliser K\n",
"27 1092.499220 9.754959e-236 Fertiliser N\n",
"28 1092.499220 9.754959e-236 Fertiliser P\n",
"21 987.248175 1.475675e-213 Elevation\n",
"33 964.658121 8.682894e-209 Metamitron\n",
"35 958.762685 1.527456e-207 PropamocarbHydrochloride\n",
"24 832.260391 9.109264e-181 Outflowing drainage direction\n",
"18 829.398253 3.685447e-180 Saltmarsh\n",
"22 760.526243 1.546155e-165 Cumulative catchment area\n",
"2 723.168873 1.361610e-157 Arable\n",
"17 700.432781 9.417029e-153 Littoral sediment\n",
"3 435.362823 4.604501e-96 Improve grassland\n",
"20 333.610377 3.643021e-74 Suburban\n",
"19 306.416036 2.680625e-68 Urban\n",
"0 244.336169 7.011810e-55 Deciduous woodland\n",
"4 241.540306 2.824742e-54 Neutral grassland\n",
"7 156.617233 7.482770e-36 Fen\n",
"15 129.030277 7.586888e-30 Supralittoral sediment\n",
"12 78.133376 1.009712e-18 Saltwater\n",
"13 49.612911 1.909316e-12 Freshwater\n",
"6 4.766818 2.902040e-02 Acid grassland\n",
"8 1.605596 2.051210e-01 Heather\n",
"11 1.411725 2.347787e-01 Inland rock\n",
"9 1.135354 2.866439e-01 Heather grassland\n",
"1 0.735527 3.911038e-01 Coniferous woodland\n",
"14 0.389845 5.323851e-01 Supralittoral rock\n",
"5 0.173820 6.767413e-01 Calcareous grassland\n",
"16 0.049150 8.245503e-01 Littoral rock\n",
"10 0.034271 8.531325e-01 Bog \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 24298\n",
"1 24298\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pintail 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9795918367346939,\n",
" \"recall\": 0.9969093831128694,\n",
" \"f1-score\": 0.9881747441945959,\n",
" \"support\": 8089\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.358974358974359,\n",
" \"recall\": 0.07692307692307693,\n",
" \"f1-score\": 0.12669683257918554,\n",
" \"support\": 182\n",
" },\n",
" \"accuracy\": 0.9766654576230202,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6692830978545264,\n",
" \"recall\": 0.5369162300179732,\n",
" \"f1-score\": 0.5574357883868908,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9659354008802167,\n",
" \"recall\": 0.9766654576230202,\n",
" \"f1-score\": 0.9692182721943535,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Pintail 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.979526958290946,\n",
" \"recall\": 0.9522808752627024,\n",
" \"f1-score\": 0.9657117783489,\n",
" \"support\": 8089\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.051597051597051594,\n",
" \"recall\": 0.11538461538461539,\n",
" \"f1-score\": 0.07130730050933785,\n",
" \"support\": 182\n",
" },\n",
" \"accuracy\": 0.9338653125377826,\n",
" \"macro avg\": {\n",
" \"precision\": 0.5155620049439988,\n",
" \"recall\": 0.5338327453236589,\n",
" \"f1-score\": 0.5185095394291189,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9591082370941998,\n",
" \"recall\": 0.9338653125377826,\n",
" \"f1-score\": 0.9460307706150346,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Pochard 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"26 2536.936766 0.000000e+00 Fertiliser K\n",
"27 2536.936766 0.000000e+00 Fertiliser N\n",
"28 2536.936766 0.000000e+00 Fertiliser P\n",
"29 2457.352155 0.000000e+00 Chlorothalonil\n",
"30 2457.352155 0.000000e+00 Glyphosate\n",
"31 2457.352155 0.000000e+00 Mancozeb\n",
"32 2457.352155 0.000000e+00 Mecoprop-P\n",
"34 2457.352155 0.000000e+00 Pendimethalin\n",
"37 2207.208744 0.000000e+00 Sulphur\n",
"36 2202.231304 0.000000e+00 Prosulfocarb\n",
"38 2198.961775 0.000000e+00 Tri-allate\n",
"33 2022.083842 0.000000e+00 Metamitron\n",
"35 1989.817324 0.000000e+00 PropamocarbHydrochloride\n",
"23 1842.761284 0.000000e+00 Surface type\n",
"2 1555.536108 0.000000e+00 Arable\n",
"25 1549.051565 0.000000e+00 Inflowing drainage direction\n",
"24 1485.853766 5.152527e-318 Outflowing drainage direction\n",
"22 1392.732967 1.268634e-298 Cumulative catchment area\n",
"21 1309.187405 3.516732e-281 Elevation\n",
"20 894.234195 6.746925e-194 Suburban\n",
"3 745.160492 2.857352e-162 Improve grassland\n",
"19 743.681811 5.893993e-162 Urban\n",
"0 574.470893 7.099727e-126 Deciduous woodland\n",
"13 271.809180 8.008227e-61 Freshwater\n",
"4 149.345332 2.857674e-34 Neutral grassland\n",
"7 131.344663 2.375107e-30 Fen\n",
"18 99.865736 1.760901e-23 Saltmarsh\n",
"15 46.675600 8.521422e-12 Supralittoral sediment\n",
"17 38.959990 4.378224e-10 Littoral sediment\n",
"12 13.290046 2.672276e-04 Saltwater\n",
"6 12.015067 5.283914e-04 Acid grassland\n",
"5 10.402339 1.259780e-03 Calcareous grassland\n",
"10 10.105514 1.479624e-03 Bog\n",
"9 4.772190 2.893001e-02 Heather grassland\n",
"8 4.024274 4.485804e-02 Heather\n",
"11 2.159090 1.417381e-01 Inland rock\n",
"14 0.851691 3.560812e-01 Supralittoral rock\n",
"1 0.632046 4.266115e-01 Coniferous woodland\n",
"16 0.240235 6.240394e-01 Littoral rock \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 24018\n",
"1 24018\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pochard 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9687764734357981,\n",
" \"recall\": 0.9995005618678986,\n",
" \"f1-score\": 0.98389872173058,\n",
" \"support\": 8009\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5,\n",
" \"recall\": 0.015267175572519083,\n",
" \"f1-score\": 0.029629629629629627,\n",
" \"support\": 262\n",
" },\n",
" \"accuracy\": 0.9683230564623383,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7343882367178991,\n",
" \"recall\": 0.5073838687202088,\n",
" \"f1-score\": 0.5067641756801048,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9539270675549881,\n",
" \"recall\": 0.9683230564623383,\n",
" \"f1-score\": 0.9536703935803624,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Pochard 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9704837721984079,\n",
" \"recall\": 0.9893869396928455,\n",
" \"f1-score\": 0.9798441943860516,\n",
" \"support\": 8009\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.19811320754716982,\n",
" \"recall\": 0.08015267175572519,\n",
" \"f1-score\": 0.11413043478260869,\n",
" \"support\": 262\n",
" },\n",
" \"accuracy\": 0.9605851771248942,\n",
" \"macro avg\": {\n",
" \"precision\": 0.5842984898727889,\n",
" \"recall\": 0.5347698057242853,\n",
" \"f1-score\": 0.5469873145843301,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9460174334317987,\n",
" \"recall\": 0.9605851771248942,\n",
" \"f1-score\": 0.9524210285033164,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Red-legged Partridge 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"26 13523.622232 0.000000e+00 Fertiliser K\n",
"27 13523.622232 0.000000e+00 Fertiliser N\n",
"28 13523.622232 0.000000e+00 Fertiliser P\n",
"37 11673.899484 0.000000e+00 Sulphur\n",
"36 11667.108199 0.000000e+00 Prosulfocarb\n",
"38 11666.574791 0.000000e+00 Tri-allate\n",
"29 10659.554341 0.000000e+00 Chlorothalonil\n",
"30 10659.554341 0.000000e+00 Glyphosate\n",
"31 10659.554341 0.000000e+00 Mancozeb\n",
"32 10659.554341 0.000000e+00 Mecoprop-P\n",
"34 10659.554341 0.000000e+00 Pendimethalin\n",
"2 9262.561980 0.000000e+00 Arable\n",
"35 9224.344758 0.000000e+00 PropamocarbHydrochloride\n",
"33 9063.157294 0.000000e+00 Metamitron\n",
"23 8310.347324 0.000000e+00 Surface type\n",
"24 6580.468060 0.000000e+00 Outflowing drainage direction\n",
"25 6132.393216 0.000000e+00 Inflowing drainage direction\n",
"21 6122.856668 0.000000e+00 Elevation\n",
"22 6094.072173 0.000000e+00 Cumulative catchment area\n",
"3 3761.382336 0.000000e+00 Improve grassland\n",
"0 1821.322033 0.000000e+00 Deciduous woodland\n",
"20 591.420483 1.691353e-129 Suburban\n",
"5 325.757650 1.798558e-72 Calcareous grassland\n",
"4 108.694533 2.073050e-25 Neutral grassland\n",
"19 58.130510 2.518487e-14 Urban\n",
"7 54.477132 1.609616e-13 Fen\n",
"13 38.514509 5.499196e-10 Freshwater\n",
"18 19.620936 9.473139e-06 Saltmarsh\n",
"9 7.224620 7.194636e-03 Heather grassland\n",
"11 7.125487 7.603285e-03 Inland rock\n",
"15 4.532290 3.326844e-02 Supralittoral sediment\n",
"8 4.459810 3.470883e-02 Heather\n",
"16 3.979559 4.606380e-02 Littoral rock\n",
"10 3.505345 6.117991e-02 Bog\n",
"1 2.115325 1.458406e-01 Coniferous woodland\n",
"14 0.747430 3.872974e-01 Supralittoral rock\n",
"6 0.289120 5.907888e-01 Acid grassland\n",
"17 0.153603 6.951180e-01 Littoral sediment\n",
"12 0.139898 7.083844e-01 Saltwater \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 22563\n",
"1 22563\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Red-legged Partridge 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9202310717797444,\n",
" \"recall\": 0.9892970401691332,\n",
" \"f1-score\": 0.9535150280183393,\n",
" \"support\": 7568\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4,\n",
" \"recall\": 0.07681365576102418,\n",
" \"f1-score\": 0.1288782816229117,\n",
" \"support\": 703\n",
" },\n",
" \"accuracy\": 0.9117398138072784,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6601155358898723,\n",
" \"recall\": 0.5330553479650787,\n",
" \"f1-score\": 0.5411966548206255,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8760136321157183,\n",
" \"recall\": 0.9117398138072784,\n",
" \"f1-score\": 0.8834243941510941,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Red-legged Partridge 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9294176959919335,\n",
" \"recall\": 0.9743657505285412,\n",
" \"f1-score\": 0.9513611146948782,\n",
" \"support\": 7568\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.42433234421364985,\n",
" \"recall\": 0.2034139402560455,\n",
" \"f1-score\": 0.27499999999999997,\n",
" \"support\": 703\n",
" },\n",
" \"accuracy\": 0.9088381090557369,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6768750201027917,\n",
" \"recall\": 0.5888898453922934,\n",
" \"f1-score\": 0.613180557347439,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8864875784366035,\n",
" \"recall\": 0.9088381090557369,\n",
" \"f1-score\": 0.8938732820711931,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Ring-necked Parakeet 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"20 5174.029480 0.000000e+00 Suburban\n",
"19 4816.293327 0.000000e+00 Urban\n",
"26 2496.791010 0.000000e+00 Fertiliser K\n",
"27 2496.791010 0.000000e+00 Fertiliser N\n",
"28 2496.791010 0.000000e+00 Fertiliser P\n",
"22 2110.055997 0.000000e+00 Cumulative catchment area\n",
"29 1731.345378 0.000000e+00 Chlorothalonil\n",
"31 1731.345378 0.000000e+00 Mancozeb\n",
"32 1731.345378 0.000000e+00 Mecoprop-P\n",
"30 1731.004980 0.000000e+00 Glyphosate\n",
"34 1731.004980 0.000000e+00 Pendimethalin\n",
"23 1451.182004 8.429407e-311 Surface type\n",
"24 1239.102083 1.629495e-266 Outflowing drainage direction\n",
"25 1101.552188 1.215523e-237 Inflowing drainage direction\n",
"21 934.465809 2.082605e-202 Elevation\n",
"0 644.695315 7.138206e-141 Deciduous woodland\n",
"3 590.530935 2.620156e-129 Improve grassland\n",
"36 550.735617 8.473886e-121 Prosulfocarb\n",
"37 549.972053 1.234441e-120 Sulphur\n",
"38 531.829928 9.435110e-117 Tri-allate\n",
"35 454.966109 2.841247e-100 PropamocarbHydrochloride\n",
"33 447.760495 1.001226e-98 Metamitron\n",
"13 266.908247 9.184502e-60 Freshwater\n",
"2 33.737881 6.363711e-09 Arable\n",
"6 16.142590 5.887779e-05 Acid grassland\n",
"9 8.350427 3.858472e-03 Heather grassland\n",
"10 6.304742 1.204628e-02 Bog\n",
"4 6.018766 1.415966e-02 Neutral grassland\n",
"8 5.354666 2.067299e-02 Heather\n",
"1 4.630696 3.141203e-02 Coniferous woodland\n",
"16 2.075782 1.496627e-01 Littoral rock\n",
"11 2.028360 1.543966e-01 Inland rock\n",
"14 1.773163 1.830003e-01 Supralittoral rock\n",
"17 1.343003 2.465134e-01 Littoral sediment\n",
"18 1.007935 3.154055e-01 Saltmarsh\n",
"12 0.767993 3.808449e-01 Saltwater\n",
"15 0.170880 6.793333e-01 Supralittoral sediment\n",
"7 0.122766 7.260555e-01 Fen\n",
"5 0.061965 8.034183e-01 Calcareous grassland \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 24433\n",
"1 24433\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ring-necked Parakeet 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.989615527259241,\n",
" \"recall\": 0.9825702712654965,\n",
" \"f1-score\": 0.986080315348608,\n",
" \"support\": 8147\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.21978021978021978,\n",
" \"recall\": 0.3225806451612903,\n",
" \"f1-score\": 0.261437908496732,\n",
" \"support\": 124\n",
" },\n",
" \"accuracy\": 0.9726756135896506,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6046978735197304,\n",
" \"recall\": 0.6525754582133934,\n",
" \"f1-score\": 0.62375911192267,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9780740476162233,\n",
" \"recall\": 0.9726756135896506,\n",
" \"f1-score\": 0.9752163740537666,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Ring-necked Parakeet 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9896062606994375,\n",
" \"recall\": 0.9933717932981465,\n",
" \"f1-score\": 0.9914854517611026,\n",
" \"support\": 8147\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.41935483870967744,\n",
" \"recall\": 0.31451612903225806,\n",
" \"f1-score\": 0.35944700460829493,\n",
" \"support\": 124\n",
" },\n",
" \"accuracy\": 0.9831942933139887,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7044805497045574,\n",
" \"recall\": 0.6539439611652023,\n",
" \"f1-score\": 0.6754662281846988,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9810569708521724,\n",
" \"recall\": 0.9831942933139887,\n",
" \"f1-score\": 0.9820098421072581,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Rock Dove 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"29 11974.716865 0.000000e+00 Chlorothalonil\n",
"30 11974.716865 0.000000e+00 Glyphosate\n",
"31 11974.716865 0.000000e+00 Mancozeb\n",
"32 11974.716865 0.000000e+00 Mecoprop-P\n",
"34 11974.716865 0.000000e+00 Pendimethalin\n",
"23 9715.208896 0.000000e+00 Surface type\n",
"26 9320.817826 0.000000e+00 Fertiliser K\n",
"27 9320.817826 0.000000e+00 Fertiliser N\n",
"28 9320.817826 0.000000e+00 Fertiliser P\n",
"24 7716.649425 0.000000e+00 Outflowing drainage direction\n",
"25 7489.623513 0.000000e+00 Inflowing drainage direction\n",
"37 7222.092735 0.000000e+00 Sulphur\n",
"36 7220.986108 0.000000e+00 Prosulfocarb\n",
"21 7209.182719 0.000000e+00 Elevation\n",
"38 7185.198282 0.000000e+00 Tri-allate\n",
"22 6950.626400 0.000000e+00 Cumulative catchment area\n",
"35 5320.538837 0.000000e+00 PropamocarbHydrochloride\n",
"33 5174.072845 0.000000e+00 Metamitron\n",
"3 4736.971375 0.000000e+00 Improve grassland\n",
"20 4361.914241 0.000000e+00 Suburban\n",
"2 3272.566853 0.000000e+00 Arable\n",
"0 1947.276915 0.000000e+00 Deciduous woodland\n",
"19 1698.722674 0.000000e+00 Urban\n",
"4 327.460980 7.718845e-73 Neutral grassland\n",
"5 172.810554 2.260169e-39 Calcareous grassland\n",
"13 158.476505 2.949316e-36 Freshwater\n",
"16 63.399064 1.741628e-15 Littoral rock\n",
"14 38.512231 5.505612e-10 Supralittoral rock\n",
"15 35.360040 2.767982e-09 Supralittoral sediment\n",
"7 32.305738 1.328301e-08 Fen\n",
"18 15.733289 7.308286e-05 Saltmarsh\n",
"17 13.808123 2.027922e-04 Littoral sediment\n",
"11 5.939593 1.480967e-02 Inland rock\n",
"8 1.467724 2.257138e-01 Heather\n",
"6 1.183074 2.767391e-01 Acid grassland\n",
"10 1.068542 3.012825e-01 Bog\n",
"9 0.520829 4.704932e-01 Heather grassland\n",
"12 0.491905 4.830835e-01 Saltwater\n",
"1 0.363769 5.464245e-01 Coniferous woodland \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 21951\n",
"1 21951\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rock Dove 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9031088082901555,\n",
" \"recall\": 0.9664541169947325,\n",
" \"f1-score\": 0.9337083165930092,\n",
" \"support\": 7214\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5607985480943739,\n",
" \"recall\": 0.2923368022705771,\n",
" \"f1-score\": 0.3843283582089552,\n",
" \"support\": 1057\n",
" },\n",
" \"accuracy\": 0.8803046789989118,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7319536781922646,\n",
" \"recall\": 0.6293954596326548,\n",
" \"f1-score\": 0.6590183374009823,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8593629559111274,\n",
" \"recall\": 0.8803046789989118,\n",
" \"f1-score\": 0.863499802989824,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Rock Dove 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8975622406639004,\n",
" \"recall\": 0.9595231494316606,\n",
" \"f1-score\": 0.927509044620126,\n",
" \"support\": 7214\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4776386404293381,\n",
" \"recall\": 0.25260170293282874,\n",
" \"f1-score\": 0.3304455445544554,\n",
" \"support\": 1057\n",
" },\n",
" \"accuracy\": 0.869181477451336,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6876004405466193,\n",
" \"recall\": 0.6060624261822447,\n",
" \"f1-score\": 0.6289772945872907,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8438977206000711,\n",
" \"recall\": 0.869181477451336,\n",
" \"f1-score\": 0.8512067692520431,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Ruddy Duck 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"13 2084.023887 0.000000e+00 Freshwater\n",
"26 611.973820 6.880144e-134 Fertiliser K\n",
"27 611.973820 6.880144e-134 Fertiliser N\n",
"28 611.973820 6.880144e-134 Fertiliser P\n",
"24 574.800456 6.036397e-126 Outflowing drainage direction\n",
"22 439.953763 4.753911e-97 Cumulative catchment area\n",
"29 420.253312 8.124948e-93 Chlorothalonil\n",
"31 420.253312 8.124948e-93 Mancozeb\n",
"32 420.253312 8.124948e-93 Mecoprop-P\n",
"30 420.170729 8.463895e-93 Glyphosate\n",
"34 420.170729 8.463895e-93 Pendimethalin\n",
"37 334.799327 2.018860e-74 Sulphur\n",
"23 331.644948 9.666367e-74 Surface type\n",
"38 327.259937 8.529270e-73 Tri-allate\n",
"36 316.625993 1.678218e-70 Prosulfocarb\n",
"35 279.546885 1.702940e-62 PropamocarbHydrochloride\n",
"33 275.651878 1.182909e-61 Metamitron\n",
"25 252.505585 1.196889e-56 Inflowing drainage direction\n",
"19 209.791045 2.131385e-47 Urban\n",
"21 206.348108 1.188914e-46 Elevation\n",
"0 197.545829 9.644094e-45 Deciduous woodland\n",
"4 178.469812 1.333079e-40 Neutral grassland\n",
"3 159.658114 1.632226e-36 Improve grassland\n",
"20 117.615266 2.340567e-27 Suburban\n",
"7 105.045117 1.299505e-24 Fen\n",
"2 54.679745 1.452179e-13 Arable\n",
"18 36.700240 1.392471e-09 Saltmarsh\n",
"15 18.578174 1.635478e-05 Supralittoral sediment\n",
"12 17.716380 2.570854e-05 Saltwater\n",
"6 3.935350 4.728954e-02 Acid grassland\n",
"17 2.178205 1.399871e-01 Littoral sediment\n",
"8 1.916130 1.662933e-01 Heather\n",
"10 1.383460 2.395211e-01 Bog\n",
"9 1.221097 2.691535e-01 Heather grassland\n",
"1 1.008807 3.151962e-01 Coniferous woodland\n",
"14 0.445443 5.045116e-01 Supralittoral rock\n",
"16 0.433081 5.104857e-01 Littoral rock\n",
"11 0.247335 6.189611e-01 Inland rock\n",
"5 0.072280 7.880478e-01 Calcareous grassland \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 24719\n",
"1 24719\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1334: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, msg_start, len(result))\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1334: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, msg_start, len(result))\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1334: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, msg_start, len(result))\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ruddy Duck 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9963728690605731,\n",
" \"recall\": 1.0,\n",
" \"f1-score\": 0.9981831395348837,\n",
" \"support\": 8241\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.0,\n",
" \"recall\": 0.0,\n",
" \"f1-score\": 0.0,\n",
" \"support\": 30\n",
" },\n",
" \"accuracy\": 0.9963728690605731,\n",
" \"macro avg\": {\n",
" \"precision\": 0.49818643453028655,\n",
" \"recall\": 0.5,\n",
" \"f1-score\": 0.49909156976744184,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9927588941999981,\n",
" \"recall\": 0.9963728690605731,\n",
" \"f1-score\": 0.9945625985862625,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Ruddy Duck 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9967312348668281,\n",
" \"recall\": 0.9990292440237836,\n",
" \"f1-score\": 0.9978789164293074,\n",
" \"support\": 8241\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.2727272727272727,\n",
" \"recall\": 0.1,\n",
" \"f1-score\": 0.14634146341463417,\n",
" \"support\": 30\n",
" },\n",
" \"accuracy\": 0.9957683472373353,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6347292537970504,\n",
" \"recall\": 0.5495146220118918,\n",
" \"f1-score\": 0.5721101899219707,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9941051776954841,\n",
" \"recall\": 0.9957683472373353,\n",
" \"f1-score\": 0.994790278587397,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Whooper Swan 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"25 1676.560528 0.000000e+00 Inflowing drainage direction\n",
"23 1555.884294 0.000000e+00 Surface type\n",
"21 1411.884325 1.291051e-302 Elevation\n",
"29 1368.299617 1.585328e-293 Chlorothalonil\n",
"31 1368.299617 1.585328e-293 Mancozeb\n",
"32 1368.299617 1.585328e-293 Mecoprop-P\n",
"30 1367.972943 1.854762e-293 Glyphosate\n",
"34 1367.972943 1.854762e-293 Pendimethalin\n",
"24 1295.050837 3.175931e-278 Outflowing drainage direction\n",
"22 1252.169594 2.987125e-269 Cumulative catchment area\n",
"37 822.832470 9.102816e-179 Sulphur\n",
"36 818.843021 6.390379e-178 Prosulfocarb\n",
"38 809.297607 6.776178e-176 Tri-allate\n",
"3 560.870223 5.752589e-123 Improve grassland\n",
"35 537.803158 4.965172e-118 PropamocarbHydrochloride\n",
"2 518.099739 8.226528e-114 Arable\n",
"33 491.320567 4.509861e-108 Metamitron\n",
"26 428.892315 1.130612e-94 Fertiliser K\n",
"27 428.892315 1.130612e-94 Fertiliser N\n",
"28 428.892315 1.130612e-94 Fertiliser P\n",
"13 302.457075 1.918026e-67 Freshwater\n",
"17 294.097064 1.224555e-65 Littoral sediment\n",
"0 236.168141 4.111276e-53 Deciduous woodland\n",
"18 210.131628 1.798147e-47 Saltmarsh\n",
"7 171.006773 5.572412e-39 Fen\n",
"20 166.933497 4.277570e-38 Suburban\n",
"4 152.889945 4.839547e-35 Neutral grassland\n",
"19 129.204755 6.950815e-30 Urban\n",
"9 88.659782 4.982099e-21 Heather grassland\n",
"15 87.366558 9.563148e-21 Supralittoral sediment\n",
"14 65.810060 5.135459e-16 Supralittoral rock\n",
"16 62.367071 2.938167e-15 Littoral rock\n",
"10 36.089602 1.904150e-09 Bog\n",
"1 25.502277 4.442055e-07 Coniferous woodland\n",
"8 13.925116 1.905575e-04 Heather\n",
"12 7.753771 5.363096e-03 Saltwater\n",
"6 7.525727 6.085674e-03 Acid grassland\n",
"11 0.360808 5.480621e-01 Inland rock\n",
"5 0.028754 8.653489e-01 Calcareous grassland \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 24119\n",
"1 24119\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Whooper Swan 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9686592449177154,\n",
" \"recall\": 0.9993757802746567,\n",
" \"f1-score\": 0.9837778050878702,\n",
" \"support\": 8010\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.2857142857142857,\n",
" \"recall\": 0.007662835249042145,\n",
" \"f1-score\": 0.014925373134328356,\n",
" \"support\": 261\n",
" },\n",
" \"accuracy\": 0.9680812477330432,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6271867653160006,\n",
" \"recall\": 0.5035193077618494,\n",
" \"f1-score\": 0.4993515891110993,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9471082070320794,\n",
" \"recall\": 0.9680812477330432,\n",
" \"f1-score\": 0.9532046597922741,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Whooper Swan 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9717665013353681,\n",
" \"recall\": 0.9539325842696629,\n",
" \"f1-score\": 0.9627669627669627,\n",
" \"support\": 8010\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.09558823529411764,\n",
" \"recall\": 0.14942528735632185,\n",
" \"f1-score\": 0.11659192825112107,\n",
" \"support\": 261\n",
" },\n",
" \"accuracy\": 0.9285455204932898,\n",
" \"macro avg\": {\n",
" \"precision\": 0.5336773683147429,\n",
" \"recall\": 0.5516789358129923,\n",
" \"f1-score\": 0.5396794455090419,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9441177856496268,\n",
" \"recall\": 0.9285455204932898,\n",
" \"f1-score\": 0.9360650302305542,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Training with Wigeon 1km cells... \n",
"\n",
"K-Best Features Dataframe: \n",
" F Score P Value Attribute\n",
"29 4819.105469 0.000000e+00 Chlorothalonil\n",
"30 4819.105469 0.000000e+00 Glyphosate\n",
"31 4819.105469 0.000000e+00 Mancozeb\n",
"32 4819.105469 0.000000e+00 Mecoprop-P\n",
"34 4819.105469 0.000000e+00 Pendimethalin\n",
"25 4543.858943 0.000000e+00 Inflowing drainage direction\n",
"23 4385.352401 0.000000e+00 Surface type\n",
"21 3772.569210 0.000000e+00 Elevation\n",
"37 3368.272204 0.000000e+00 Sulphur\n",
"36 3344.881952 0.000000e+00 Prosulfocarb\n",
"38 3316.664763 0.000000e+00 Tri-allate\n",
"24 3296.213107 0.000000e+00 Outflowing drainage direction\n",
"22 3018.447019 0.000000e+00 Cumulative catchment area\n",
"35 2471.153767 0.000000e+00 PropamocarbHydrochloride\n",
"33 2444.415822 0.000000e+00 Metamitron\n",
"3 1984.684092 0.000000e+00 Improve grassland\n",
"2 1640.404091 0.000000e+00 Arable\n",
"26 1577.395456 0.000000e+00 Fertiliser K\n",
"27 1577.395456 0.000000e+00 Fertiliser N\n",
"28 1577.395456 0.000000e+00 Fertiliser P\n",
"0 1016.533733 9.783489e-220 Deciduous woodland\n",
"20 871.988879 3.462062e-189 Suburban\n",
"17 839.439277 2.736586e-182 Littoral sediment\n",
"13 570.717851 4.505394e-125 Freshwater\n",
"18 551.354132 6.247919e-121 Saltmarsh\n",
"19 535.113644 1.869402e-117 Urban\n",
"15 329.558717 2.723634e-73 Supralittoral sediment\n",
"16 261.381261 1.439437e-58 Littoral rock\n",
"7 176.243055 4.059697e-40 Fen\n",
"4 150.239640 1.825651e-34 Neutral grassland\n",
"12 104.357556 1.836557e-24 Saltwater\n",
"14 37.244870 1.053444e-09 Supralittoral rock\n",
"8 14.097058 1.739122e-04 Heather\n",
"1 12.680417 3.700235e-04 Coniferous woodland\n",
"9 9.281786 2.316259e-03 Heather grassland\n",
"5 7.220527 7.211058e-03 Calcareous grassland\n",
"10 1.418478 2.336626e-01 Bog\n",
"6 0.976582 3.230512e-01 Acid grassland\n",
"11 0.096023 7.566574e-01 Inland rock \n",
"\n",
"Resampled Value Counts: \n",
" Occurrence\n",
"0 23081\n",
"1 23081\n",
"dtype: int64 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Wigeon 1km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9378988708885616,\n",
" \"recall\": 0.9942753057507155,\n",
" \"f1-score\": 0.9652646204370341,\n",
" \"support\": 7686\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6422764227642277,\n",
" \"recall\": 0.13504273504273503,\n",
" \"f1-score\": 0.2231638418079096,\n",
" \"support\": 585\n",
" },\n",
" \"accuracy\": 0.93350259944384,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7900876468263947,\n",
" \"recall\": 0.5646590203967253,\n",
" \"f1-score\": 0.5942142311224718,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9169897749929341,\n",
" \"recall\": 0.93350259944384,\n",
" \"f1-score\": 0.9127765348974334,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n",
"Wigeon 1km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9475020037403152,\n",
" \"recall\": 0.9228467343221441,\n",
" \"f1-score\": 0.9350118639599261,\n",
" \"support\": 7686\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.2445859872611465,\n",
" \"recall\": 0.3282051282051282,\n",
" \"f1-score\": 0.28029197080291973,\n",
" \"support\": 585\n",
" },\n",
" \"accuracy\": 0.8807882964575021,\n",
" \"macro avg\": {\n",
" \"precision\": 0.5960439955007308,\n",
" \"recall\": 0.6255259312636362,\n",
" \"f1-score\": 0.6076519173814229,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8977854193321041,\n",
" \"recall\": 0.8807882964575021,\n",
" \"f1-score\": 0.8887041457279289,\n",
" \"support\": 8271\n",
" }\n",
"} \n",
"\n"
]
}
],
"source": [
"# Add model pipeline\n",
"estimators = [\n",
" ('lr', LogisticRegression(max_iter=10000, solver='saga', random_state=seed, penalty='l2', verbose=verbose)),\n",
" ('knn', KNeighborsClassifier(n_neighbors=5, weights='distance')),\n",
" ('sgd', SGDClassifier( max_iter=10000, loss='modified_huber', random_state=seed, penalty='l2', verbose=verbose)),\n",
" ('rf', RandomForestClassifier(n_estimators=20,max_features=None, random_state=seed, verbose=verbose))\n",
"]\n",
"\n",
"\n",
"for dict in df_dicts:\n",
" print(f'Training with {dict[\"name\"]} cells... \\n')\n",
" # Use this if using coordinates as separate columns\n",
" # coords, X, y = data['dataframe'].iloc[:, :2], data['dataframe'].iloc[:, 2:-1], data['dataframe'].iloc[:, [-1]]\n",
" # data['coords'] = coords\n",
" \n",
" # Use this if using coordinates as indices\n",
" X, y = dict['dataframe'].iloc[:, 0:-1], dict['dataframe'].iloc[:, [-1]], \n",
"\n",
" dict['X'] = standardise(X)\n",
" dict['y'] = y\n",
" dict['kbest'] = feature_select(dict['X'], dict['y'])\n",
"\n",
" # dict['X'] = dict['kbest']['10'].transform(dict['X'])\n",
"\n",
" X_train, X_test, y_train, y_test = train_test_split(dict['X'], dict['y'], random_state=seed)\n",
" dict['X_train'], dict['X_test'], dict['y_train'], dict['y_test'] = X_train, X_test, y_train, y_test # for debugging purposes\n",
"\n",
" dict['X_smote'], dict['y_smote'] = oversample(X_train, y_train)\n",
"\n",
" stack_clf = StackingClassifier(\n",
" estimators=estimators, \n",
" final_estimator=GradientBoostingClassifier(n_estimators=20, learning_rate=0.5, max_features=None, max_depth=2, random_state=seed)\n",
" )\n",
"\n",
" # Classifier without SMOTE\n",
" stack_clf.fit(dict['X_train'], dict['y_train'])\n",
" y_pred = stack_clf.predict(X_test)\n",
" \n",
" dict['predictions'] = y_pred\n",
" dict['report'] = classification_report(y_test, y_pred, output_dict=True)\n",
" \n",
"\n",
" # Classifier with SMOTE\n",
" stack_clf.fit(dict['X_smote'], dict['y_smote'])\n",
" y_pred_smote = stack_clf.predict(X_test)\n",
" \n",
" dict['predictions_smote'] = y_pred_smote\n",
" dict['report_smote'] = classification_report(y_test, y_pred_smote, output_dict=True)\n",
" \n",
" print(f'{dict[\"name\"]} Classification Report: \\n {json.dumps(dict[\"report\"], indent=4)} \\n')\n",
" print(f'{dict[\"name\"]} SMOTE Classification Report: \\n {json.dumps(dict[\"report_smote\"], indent=4)} \\n')\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9857919446503582,\n",
" \"recall\": 0.9876222304740686,\n",
" \"f1-score\": 0.9867062387930501,\n",
" \"support\": 8079\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4350282485875706,\n",
" \"recall\": 0.4010416666666667,\n",
" \"f1-score\": 0.41734417344173447,\n",
" \"support\": 192\n",
" },\n",
" \"accuracy\": 0.9740055616007738,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7104100966189644,\n",
" \"recall\": 0.6943319485703676,\n",
" \"f1-score\": 0.7020252061173923,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9730067155796226,\n",
" \"recall\": 0.9740055616007738,\n",
" \"f1-score\": 0.9734892739100308,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Canada Goose 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9475095785440613,\n",
" \"recall\": 0.8669588080631025,\n",
" \"f1-score\": 0.9054462242562928,\n",
" \"support\": 5705\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7512291052114061,\n",
" \"recall\": 0.8932190179267342,\n",
" \"f1-score\": 0.8160940003560618,\n",
" \"support\": 2566\n",
" },\n",
" \"accuracy\": 0.8751057913190666,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8493693418777337,\n",
" \"recall\": 0.8800889129949183,\n",
" \"f1-score\": 0.8607701123061773,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8866154067907553,\n",
" \"recall\": 0.8751057913190666,\n",
" \"f1-score\": 0.8777255367302389,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Egyptian Goose 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9874953571870744,\n",
" \"recall\": 0.9870065585942334,\n",
" \"f1-score\": 0.9872508973882905,\n",
" \"support\": 8081\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4587628865979381,\n",
" \"recall\": 0.46842105263157896,\n",
" \"f1-score\": 0.46354166666666663,\n",
" \"support\": 190\n",
" },\n",
" \"accuracy\": 0.9750937008826018,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7231291218925062,\n",
" \"recall\": 0.7277138056129062,\n",
" \"f1-score\": 0.7253962820274786,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9753494051363023,\n",
" \"recall\": 0.9750937008826018,\n",
" \"f1-score\": 0.9752203383462028,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Gadwall 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.961431812452735,\n",
" \"recall\": 0.9873155578565881,\n",
" \"f1-score\": 0.9742017879948913,\n",
" \"support\": 7726\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7091988130563798,\n",
" \"recall\": 0.43853211009174314,\n",
" \"f1-score\": 0.5419501133786848,\n",
" \"support\": 545\n",
" },\n",
" \"accuracy\": 0.9511546366823842,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8353153127545574,\n",
" \"recall\": 0.7129238339741656,\n",
" \"f1-score\": 0.758075950686788,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9448114540110697,\n",
" \"recall\": 0.9511546366823842,\n",
" \"f1-score\": 0.945719480817303,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Goshawk 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9871717293961031,\n",
" \"recall\": 0.9990202082057563,\n",
" \"f1-score\": 0.9930606281957634,\n",
" \"support\": 8165\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.0,\n",
" \"recall\": 0.0,\n",
" \"f1-score\": 0.0,\n",
" \"support\": 106\n",
" },\n",
" \"accuracy\": 0.9862169024301777,\n",
" \"macro avg\": {\n",
" \"precision\": 0.49358586469805155,\n",
" \"recall\": 0.49951010410287816,\n",
" \"f1-score\": 0.4965303140978817,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9745202720975918,\n",
" \"recall\": 0.9862169024301777,\n",
" \"f1-score\": 0.9803336995790604,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Grey Partridge 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9373253977893842,\n",
" \"recall\": 0.9966421283740152,\n",
" \"f1-score\": 0.9660741111667501,\n",
" \"support\": 7743\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.3157894736842105,\n",
" \"recall\": 0.022727272727272728,\n",
" \"f1-score\": 0.04240282685512368,\n",
" \"support\": 528\n",
" },\n",
" \"accuracy\": 0.9344698343610204,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6265574357367973,\n",
" \"recall\": 0.509684700550644,\n",
" \"f1-score\": 0.5042384690109369,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.89764809541633,\n",
" \"recall\": 0.9344698343610204,\n",
" \"f1-score\": 0.9071092413666608,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Indian Peafowl 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.990921195981116,\n",
" \"recall\": 0.9987798926305514,\n",
" \"f1-score\": 0.9948350246095886,\n",
" \"support\": 8196\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.0,\n",
" \"recall\": 0.0,\n",
" \"f1-score\": 0.0,\n",
" \"support\": 75\n",
" },\n",
" \"accuracy\": 0.9897231290049571,\n",
" \"macro avg\": {\n",
" \"precision\": 0.495460597990558,\n",
" \"recall\": 0.4993899463152757,\n",
" \"f1-score\": 0.4974175123047943,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9819356936599235,\n",
" \"recall\": 0.9897231290049571,\n",
" \"f1-score\": 0.9858140323661212,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Little Owl 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9410580021482277,\n",
" \"recall\": 0.9480589747058028,\n",
" \"f1-score\": 0.944545515800822,\n",
" \"support\": 7393\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5334143377885784,\n",
" \"recall\": 0.5,\n",
" \"f1-score\": 0.516166960611405,\n",
" \"support\": 878\n",
" },\n",
" \"accuracy\": 0.9004957078950551,\n",
" \"macro avg\": {\n",
" \"precision\": 0.737236169968403,\n",
" \"recall\": 0.7240294873529014,\n",
" \"f1-score\": 0.7303562382061135,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8977849834917445,\n",
" \"recall\": 0.9004957078950551,\n",
" \"f1-score\": 0.89907140487635,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Mandarin Duck 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9780353874313605,\n",
" \"recall\": 0.9962709757613425,\n",
" \"f1-score\": 0.9870689655172414,\n",
" \"support\": 8045\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6052631578947368,\n",
" \"recall\": 0.20353982300884957,\n",
" \"f1-score\": 0.30463576158940403,\n",
" \"support\": 226\n",
" },\n",
" \"accuracy\": 0.9746100834240116,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7916492726630486,\n",
" \"recall\": 0.599905399385096,\n",
" \"f1-score\": 0.6458523635533228,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9678496149884545,\n",
" \"recall\": 0.9746100834240116,\n",
" \"f1-score\": 0.9684218969538644,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Mute Swan 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9197844007609385,\n",
" \"recall\": 0.8438045375218151,\n",
" \"f1-score\": 0.8801577669902911,\n",
" \"support\": 3438\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8950556966972836,\n",
" \"recall\": 0.9476515621767019,\n",
" \"f1-score\": 0.9206030150753769,\n",
" \"support\": 4833\n",
" },\n",
" \"accuracy\": 0.9044855519284246,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9074200487291111,\n",
" \"recall\": 0.8957280498492585,\n",
" \"f1-score\": 0.9003803910328341,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9053346574723827,\n",
" \"recall\": 0.9044855519284246,\n",
" \"f1-score\": 0.9037911709311953,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Pheasant 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9195280592951142,\n",
" \"recall\": 0.8914796891039742,\n",
" \"f1-score\": 0.9052866716306776,\n",
" \"support\": 6819\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5542168674698795,\n",
" \"recall\": 0.6336088154269972,\n",
" \"f1-score\": 0.5912596401028278,\n",
" \"support\": 1452\n",
" },\n",
" \"accuracy\": 0.8462096481682989,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7368724633824968,\n",
" \"recall\": 0.7625442522654857,\n",
" \"f1-score\": 0.7482731558667527,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8553965334179239,\n",
" \"recall\": 0.8462096481682989,\n",
" \"f1-score\": 0.8501582409961185,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Pink-footed Goose 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9526175009552923,\n",
" \"recall\": 0.9821405121470781,\n",
" \"f1-score\": 0.9671537566274409,\n",
" \"support\": 7615\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6761904761904762,\n",
" \"recall\": 0.4329268292682927,\n",
" \"f1-score\": 0.5278810408921933,\n",
" \"support\": 656\n",
" },\n",
" \"accuracy\": 0.9385805827590376,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8144039885728842,\n",
" \"recall\": 0.7075336707076854,\n",
" \"f1-score\": 0.7475173987598172,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9306931715820944,\n",
" \"recall\": 0.9385805827590376,\n",
" \"f1-score\": 0.932313604103886,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Pintail 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9795918367346939,\n",
" \"recall\": 0.9969093831128694,\n",
" \"f1-score\": 0.9881747441945959,\n",
" \"support\": 8089\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.358974358974359,\n",
" \"recall\": 0.07692307692307693,\n",
" \"f1-score\": 0.12669683257918554,\n",
" \"support\": 182\n",
" },\n",
" \"accuracy\": 0.9766654576230202,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6692830978545264,\n",
" \"recall\": 0.5369162300179732,\n",
" \"f1-score\": 0.5574357883868908,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9659354008802167,\n",
" \"recall\": 0.9766654576230202,\n",
" \"f1-score\": 0.9692182721943535,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Pochard 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9687764734357981,\n",
" \"recall\": 0.9995005618678986,\n",
" \"f1-score\": 0.98389872173058,\n",
" \"support\": 8009\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5,\n",
" \"recall\": 0.015267175572519083,\n",
" \"f1-score\": 0.029629629629629627,\n",
" \"support\": 262\n",
" },\n",
" \"accuracy\": 0.9683230564623383,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7343882367178991,\n",
" \"recall\": 0.5073838687202088,\n",
" \"f1-score\": 0.5067641756801048,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9539270675549881,\n",
" \"recall\": 0.9683230564623383,\n",
" \"f1-score\": 0.9536703935803624,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Red-legged Partridge 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9202310717797444,\n",
" \"recall\": 0.9892970401691332,\n",
" \"f1-score\": 0.9535150280183393,\n",
" \"support\": 7568\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4,\n",
" \"recall\": 0.07681365576102418,\n",
" \"f1-score\": 0.1288782816229117,\n",
" \"support\": 703\n",
" },\n",
" \"accuracy\": 0.9117398138072784,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6601155358898723,\n",
" \"recall\": 0.5330553479650787,\n",
" \"f1-score\": 0.5411966548206255,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8760136321157183,\n",
" \"recall\": 0.9117398138072784,\n",
" \"f1-score\": 0.8834243941510941,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Ring-necked Parakeet 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.989615527259241,\n",
" \"recall\": 0.9825702712654965,\n",
" \"f1-score\": 0.986080315348608,\n",
" \"support\": 8147\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.21978021978021978,\n",
" \"recall\": 0.3225806451612903,\n",
" \"f1-score\": 0.261437908496732,\n",
" \"support\": 124\n",
" },\n",
" \"accuracy\": 0.9726756135896506,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6046978735197304,\n",
" \"recall\": 0.6525754582133934,\n",
" \"f1-score\": 0.62375911192267,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9780740476162233,\n",
" \"recall\": 0.9726756135896506,\n",
" \"f1-score\": 0.9752163740537666,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Rock Dove 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9031088082901555,\n",
" \"recall\": 0.9664541169947325,\n",
" \"f1-score\": 0.9337083165930092,\n",
" \"support\": 7214\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5607985480943739,\n",
" \"recall\": 0.2923368022705771,\n",
" \"f1-score\": 0.3843283582089552,\n",
" \"support\": 1057\n",
" },\n",
" \"accuracy\": 0.8803046789989118,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7319536781922646,\n",
" \"recall\": 0.6293954596326548,\n",
" \"f1-score\": 0.6590183374009823,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8593629559111274,\n",
" \"recall\": 0.8803046789989118,\n",
" \"f1-score\": 0.863499802989824,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Ruddy Duck 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9963728690605731,\n",
" \"recall\": 1.0,\n",
" \"f1-score\": 0.9981831395348837,\n",
" \"support\": 8241\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.0,\n",
" \"recall\": 0.0,\n",
" \"f1-score\": 0.0,\n",
" \"support\": 30\n",
" },\n",
" \"accuracy\": 0.9963728690605731,\n",
" \"macro avg\": {\n",
" \"precision\": 0.49818643453028655,\n",
" \"recall\": 0.5,\n",
" \"f1-score\": 0.49909156976744184,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9927588941999981,\n",
" \"recall\": 0.9963728690605731,\n",
" \"f1-score\": 0.9945625985862625,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Whooper Swan 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9686592449177154,\n",
" \"recall\": 0.9993757802746567,\n",
" \"f1-score\": 0.9837778050878702,\n",
" \"support\": 8010\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.2857142857142857,\n",
" \"recall\": 0.007662835249042145,\n",
" \"f1-score\": 0.014925373134328356,\n",
" \"support\": 261\n",
" },\n",
" \"accuracy\": 0.9680812477330432,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6271867653160006,\n",
" \"recall\": 0.5035193077618494,\n",
" \"f1-score\": 0.4993515891110993,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9471082070320794,\n",
" \"recall\": 0.9680812477330432,\n",
" \"f1-score\": 0.9532046597922741,\n",
" \"support\": 8271\n",
" }\n",
"}\n",
"Wigeon 1km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9378988708885616,\n",
" \"recall\": 0.9942753057507155,\n",
" \"f1-score\": 0.9652646204370341,\n",
" \"support\": 7686\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6422764227642277,\n",
" \"recall\": 0.13504273504273503,\n",
" \"f1-score\": 0.2231638418079096,\n",
" \"support\": 585\n",
" },\n",
" \"accuracy\": 0.93350259944384,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7900876468263947,\n",
" \"recall\": 0.5646590203967253,\n",
" \"f1-score\": 0.5942142311224718,\n",
" \"support\": 8271\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9169897749929341,\n",
" \"recall\": 0.93350259944384,\n",
" \"f1-score\": 0.9127765348974334,\n",
" \"support\": 8271\n",
" }\n",
"}\n"
]
}
],
"source": [
"for dict in df_dicts:\n",
" print(dict['name'], '\\n', json.dumps(dict['report'], indent=4))"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA5EAAAPHCAYAAACxBc1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADpFUlEQVR4nOzde3zO9f/H8edlmx1tY9jQGOYwhSZUTpsi50ZJIYeKdHAqIt/kfPgqEilJZUukckpOESbEHIeYOaX51kqRa2YM2/v3h6/r12UbH8fZd4/77fa+fX3e7/fn/Xld11R7ft+f63PZjDFGAAAAAABYUCC3CwAAAAAA5B2ESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWuuV0AkNdkZmbqt99+U6FChWSz2XK7HAAAAOCGGWN06tQplSxZUgUKXHmvkRAJXKPffvtNwcHBuV0GAAAAcNMdPXpUd9111xXnECKBa1SoUCFJF/8B8/X1zeVqAAAAgBuXkpKi4OBgx++6V0KIBK7RpVtYfX19CZEAAAD4n2Ll41o8WAcAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGCZa24XAORZfn65XQEAAADyGmNyu4Ibxk4k8qyQkBC9++67uV0GAAAAkK8QIm+Brl27ymaz6YUXXsgy9vLLL8tms6lr167XtKbNZtPChQtvuLa0tDQNGjRI5cuXl4eHh4oVK6aIiAh98803N7z2zfTDDz+oVatWKlmy5E177QAAAABuHCHyFgkODtacOXN05swZR9/Zs2c1e/ZslS5dOtfqeuGFFzR//ny999572rdvn5YvX662bdvq+PHjuVZTdk6fPq3q1avr/fffz+1SAAAAAPwDIfIWqVGjhoKDgzV//nxH3/z581W6dGmFh4c7zc3utsx7771Xw4YNc4xLUps2bWSz2RzHkvTNN9+oRo0a8vDwULly5TR8+HBduHAhx7oWLVqkf/3rX2revLlCQkJ03333qVevXnr22WclSVOmTNE999zjmL9w4ULZbDZ9+OGHjr5GjRpp8ODBkqRDhw4pKipKgYGB8vHxUa1atfT9999neX1jxozRs88+q0KFCql06dL66KOPrvj+NWvWTKNGjVKbNm2uOO+fPv74Y/n7+2vVqlWSpMjISPXq1Ut9+/ZV4cKFFRgYqOnTp+v06dN65plnVKhQIYWGhmrZsmWWrwEAAADkd4TIW+jZZ5/VjBkzHMeffvqpnnnmmWteZ8uWLZKkGTNmKDk52XG8bt06de7cWX369NHevXs1bdo0RUdHa/To0TmuFRQUpKVLl+rUqVPZjkdERGjv3r36888/JUlr165V0aJFFRsbK0k6f/68Nm7cqMjISElSamqqmjdvrlWrVmnHjh1q2rSpWrVqpaSkJKd1J0yYoJo1a2rHjh166aWX9OKLLyoxMfGa34ucvPXWW3r99de1YsUKPfzww47+mJgYFS1aVJs3b1avXr304osv6oknnlCdOnW0fft2PfLII+rUqZPS0tJyXDs9PV0pKSlODQAAAMi3DG66Ll26mKioKHPs2DHj7u5ujhw5Yo4cOWI8PDzMn3/+aaKiokyXLl0c88uUKWMmTpzotEb16tXN0KFDHceSzIIFC5zmPPzww2bMmDFOfTNnzjQlSpTIsba1a9eau+66y7i5uZmaNWuavn37mvXr1zvGMzMzTUBAgPn666+NMcbce++9ZuzYsSYoKMgYY8z69euNm5ubOX36dI7XuPvuu817773n9Pqefvppp2sUL17cTJ06Ncc1/im7135p3YkTJ5oBAwaYEiVKmJ9++slpPCIiwtSrV89xfOHCBePt7W06derk6EtOTjaSzMaNG3O8/tChQ42kLM1+8dlaNBqNRqPRaDSa9XaHstvtRpKx2+1XnctO5C1UrFgxtWjRQtHR0ZoxY4ZatGihokWL3rT1d+7cqREjRsjHx8fRunfvruTk5Bx31ho0aKDDhw9r1apVatu2rfbs2aP69etr5MiRki4+wKdBgwaKjY3VyZMntXfvXr300ktKT0/Xvn37tHbtWtWqVUteXl6SLu5E9u/fX2FhYfL395ePj48SEhKy7ERWq1bN8WebzaagoCAdO3bsht+DCRMmaPr06Vq/fr3uvvvuLOP/vK6Li4sCAgJUtWpVR19gYKAkXbGWQYMGyW63O9rRo0dvuG4AAAAgryJE3mLPPvusoqOjFRMT4/jc4eUKFCggY4xT3/nz56+6dmpqqoYPH674+HhH2717tw4cOCAPD48cz3Nzc1P9+vU1cOBArVixQiNGjNDIkSN17tw5SRc/SxgbG6t169YpPDxcvr6+jmC5du1aRUREONbq37+/FixYoDFjxmjdunWKj49X1apVHWv985r/ZLPZlJmZedXXeDX169dXRkaGvvrqqxxf6+XX/WefzWaTpCvW4u7uLl9fX6cGAAAA5FeuuV3A/7qmTZvq3LlzstlsatKkSbZzihUrpuTkZMdxSkqKfv75Z6c5bm5uysjIcOqrUaOGEhMTFRoaekM1VqlSRRcuXNDZs2dVsGBBRUREqG/fvvr6668dn32MjIzU999/rw0bNqhfv36Oczds2KCuXbs6HoCTmpqqI0eO3FA916J27drq2bOnmjZtKldXV/Xv3/+2XRsAAADIjwiRt5iLi4sSEhIcf87OQw89pOjoaLVq1Ur+/v4aMmRIlrkhISFatWqV6tatK3d3dxUuXFhDhgxRy5YtVbp0abVt21YFChTQzp079dNPP2nUqFHZXisyMlLt27dXzZo1FRAQoL179+pf//qXGjZs6Nhhq1atmgoXLqzZs2dr8eLFjvP69+8vm82munXrOtarUKGC5s+fr1atWslms+nNN9+8KTuMqampOnjwoOP4559/Vnx8vIoUKZLlK1Lq1KmjpUuXqlmzZnJ1dVXfvn1v+PoAAAAAskeIvA2udvvjoEGD9PPPP6tly5by8/PTyJEjs+xETpgwQa+++qqmT5+uUqVK6ciRI2rSpIkWL16sESNGaNy4cXJzc1PlypXVrVu3HK/VpEkTxcTE6F//+pfS0tJUsmRJtWzZUkOGDHHMsdlsql+/vpYsWaJ69epJuhgsfX19ValSJXl7ezvmvvPOO3r22WdVp04dFS1aVAMHDrwpTy/dunWrGjZs6Dh+9dVXJUldunRRdHR0lvn16tXTkiVL1Lx5c7m4uKhXr143XMPV+MkuiVtbAQAAcA1s2Xdf9um2O5rNXP5hPABXlJKSIj8/P4kQCQAAgJskt1PZpd9x7Xb7VTfBeLAOAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMtfcLgDIs173kzxyuwgAQH5jhprcLgFAPsdOJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDLX3C4AyKvsg+zy9fXN7TIAAACA24qdSAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZa65XQCyZ7PZtGDBArVu3Tq3S7ljDRs2TAsXLlR8fHzuFODnlzvXBQAAyI4xuV0B8ol8uxP5+++/q1evXipXrpzc3d0VHBysVq1aadWqVbld2k21Zs0atWzZUsWKFZOHh4fKly+vJ598Uj/88ENul3ZFZ8+eVdeuXVW1alW5uroSpgEAAIA7RL4MkUeOHNF9992n1atX6+2339bu3bu1fPlyNWzYUC+//HJul3fTfPDBB3r44YcVEBCgL7/8UomJiVqwYIHq1KmjV155JbfLu6KMjAx5enqqd+/eatSoUW6XAwAAAOC/8mWIfOmll2Sz2bR582Y9/vjjqlixou6++269+uqr2rRpk2PeO++8o6pVq8rb21vBwcF66aWXlJqa6hiPjo6Wv7+/vvvuO4WFhcnHx0dNmzZVcnKyY86WLVvUuHFjFS1aVH5+foqIiND27dud6jlw4IAaNGggDw8PValSRStXrsxS88CBA1WxYkV5eXmpXLlyevPNN3X+/PkcX2NSUpL69u2rvn37KiYmRg899JDKlCmjatWqqU+fPtq6davT/Hnz5unuu++Wu7u7QkJCNGHCBKfxv//+W507d1bhwoXl5eWlZs2a6cCBA47xX375Ra1atVLhwoXl7e2tu+++W0uXLnWM//TTT2rWrJl8fHwUGBioTp066a+//sqxfm9vb02dOlXdu3dXUFBQjvP+6dChQypXrpx69uwpY4zj57N48WJVqlRJXl5eatu2rdLS0hQTE6OQkBAVLlxYvXv3VkZGhqVrAAAAAPldvguRJ06c0PLly/Xyyy/L29s7y7i/v7/jzwUKFNDkyZO1Z88excTEaPXq1RowYIDT/LS0NI0fP14zZ87UDz/8oKSkJPXv398xfurUKXXp0kXr16/Xpk2bVKFCBTVv3lynTp2SJGVmZuqxxx5TwYIFFRcXpw8//FADBw7MUlehQoUUHR2tvXv3atKkSZo+fbomTpyY4+ucN2+ezp8/n6XeS2w2m+PP27ZtU7t27fTUU09p9+7dGjZsmN58801FR0c75nTt2lVbt27VokWLtHHjRhlj1Lx5c0eQffnll5Wenq4ffvhBu3fv1rhx4+Tj4yNJOnnypB566CGFh4dr69atWr58uf744w+1a9cux/qv1a5du1SvXj116NBBU6ZMcby+tLQ0TZ48WXPmzNHy5csVGxurNm3aaOnSpVq6dKlmzpypadOmae7cuTmunZ6erpSUFKcGAAAA5Fsmn4mLizOSzPz586/53K+//toEBAQ4jmfMmGEkmYMHDzr63n//fRMYGJjjGhkZGaZQoULm22+/NcYY89133xlXV1fz66+/OuYsW7bMSDILFizIcZ23337b3HfffTmOv/DCC8bX19epb+7cucbb29vRdu3aZYwxpkOHDqZx48ZOc1977TVTpUoVY4wx+/fvN5LMhg0bHON//fWX8fT0NF999ZUxxpiqVauaYcOGZVvLyJEjzSOPPOLUd/ToUSPJJCYm5vgaLunSpYuJiorK0j906FBTvXp1s2HDBlO4cGEzfvx4p/Hsfj49evQwXl5e5tSpU46+Jk2amB49euR4/aFDhxpJWZr94sfXaTQajUaj0e6MBtwAu91uJBm73X7VufluJ9IYY3nu999/r4cfflilSpVSoUKF1KlTJx0/flxpaWmOOV5eXipfvrzjuESJEjp27Jjj+I8//lD37t1VoUIF+fn5ydfXV6mpqUpKSpIkJSQkKDg4WCVLlnSc8+CDD2ap5csvv1TdunUVFBQkHx8fDR482LFGTv652yhJTZo0UXx8vJYsWaLTp087buFMSEhQ3bp1nebWrVtXBw4cUEZGhhISEuTq6qr777/fMR4QEKBKlSopISFBktS7d2+NGjVKdevW1dChQ7Vr1y7H3J07d2rNmjXy8fFxtMqVK0u6eAvqjUhKSlLjxo01ZMgQ9evXL8v45T+fwMBAhYSEOHZJL/X982d2uUGDBslutzva0aNHb6hmAAAAIC/LdyGyQoUKstls2rdv3xXnHTlyRC1btlS1atU0b948bdu2Te+//74k6dy5c455bm5uTufZbDanoNqlSxfFx8dr0qRJ+vHHHxUfH6+AgACnNa5m48aN6tixo5o3b67Fixdrx44deuONN664RoUKFWS32/X77787+nx8fBQaGqoyZcpYvrZV3bp10+HDh9WpUyft3r1bNWvW1HvvvSdJSk1NVatWrRQfH+/ULn0W9EYUK1ZMtWvX1hdffJHtbabZ/Xyy68vMzMzxGu7u7vL19XVqAAAAQH6V70JkkSJF1KRJE73//vs6ffp0lvGTJ09Kuvg5wczMTE2YMEEPPPCAKlasqN9+++2ar7dhwwb17t1bzZs3dzy45p8PlAkLC9PRo0edHsbzz4f7SNKPP/6oMmXK6I033lDNmjVVoUIF/fLLL1e8btu2beXm5qZx48ZdtcawsDBt2LAhS90VK1aUi4uLwsLCdOHCBcXFxTnGjx8/rsTERFWpUsXRFxwcrBdeeEHz589Xv379NH36dElSjRo1tGfPHoWEhCg0NNSpZfe51Gvh6empxYsXy8PDQ02aNHF81hQAAADArZHvQqQkvf/++8rIyFDt2rU1b948HThwQAkJCZo8ebLjVtLQ0FCdP39e7733ng4fPqyZM2fqww8/vOZrVahQQTNnzlRCQoLi4uLUsWNHeXp6OsYbNWqkihUrqkuXLtq5c6fWrVunN954I8saSUlJmjNnjg4dOqTJkydrwYIFV7xu6dKlNWHCBE2aNEldunTRmjVrdOTIEW3fvl2TJ0+WJLm4uEiS+vXrp1WrVmnkyJHav3+/YmJiNGXKFMcDgipUqKCoqCh1795d69ev186dO/X000+rVKlSioqKkiT17dtX3333nX7++Wdt375da9asUVhYmKSLD905ceKE2rdvry1btujQoUP67rvv9Mwzz1zxqah79+5VfHy8Tpw4Ibvd7tjBvJy3t7eWLFkiV1dXNWvWzOkJugAAAABuslv+Cc071G+//WZefvllU6ZMGVOwYEFTqlQp8+ijj5o1a9Y45rzzzjumRIkSxtPT0zRp0sR89tlnRpL5+++/jTEXH9zi5+fntO6CBQvMP9/W7du3m5o1axoPDw9ToUIF8/XXX5syZcqYiRMnOuYkJiaaevXqmYIFC5qKFSua5cuXG8n5wTqvvfaaCQgIMD4+PubJJ580EydOzHLt7KxcudI0a9bMFClSxLi6uprAwEDTunVrs3z5cqd5c+fONVWqVDFubm6mdOnS5u2333YaP3HihOnUqZPx8/NzvB/79+93jPfs2dOUL1/euLu7m2LFiplOnTqZv/76yzG+f/9+06ZNG+Pv7288PT1N5cqVTd++fU1mZmaOtZcpU8ZIWR9oc8mlB+tccurUKVOnTh3ToEEDk5qamu3P5/JzjMn5wT05ufShY8me65+fp9FoNBqNRruTG/KOa3mwjs0YY3IrwAJ5UUpKivz8/CTZJfH5SAAAgJyQNPKOS7/j2u32qz4DJF/ezgoAAAAAuD6ESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlrrldAJBnve4neeR2EUD+YIaa3C4BAAD8FzuRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLXHO7ACCvsg+yy9fXN7fLAAAAAG4rdiIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWueZ2AUCe5eeX2xUAwP8eY3K7AgDAVbATmUdER0fL398/t8u4o8TGxspms+nkyZO5XQoAAACQbxAi7xBdu3aVzWaTzWZTwYIFFRoaqhEjRujChQu5XdpNZ7PZtHDhwqvOGz16tOrUqSMvLy8CNAAAAHCHIETeQZo2bark5GQdOHBA/fr107Bhw/T222/ndlm55ty5c3riiSf04osv5nYpAAAAAP6LEHkHcXd3V1BQkMqUKaMXX3xRjRo10qJFi5zmfPfddwoLC5OPj48jdP7Txx9/rLCwMHl4eKhy5cr64IMPnMYHDhyoihUrysvLS+XKldObb76p8+fPO8Z37typhg0bqlChQvL19dV9992nrVu3SpKOHz+u9u3bq1SpUvLy8lLVqlX1xRdfOK0fGRmp3r17a8CAASpSpIiCgoI0bNgwx3hISIgkqU2bNrLZbI7j7AwfPlyvvPKKqlataun9S0tLU7NmzVS3bl2dPHlSR44ckc1m01dffaX69evL09NTtWrV0v79+7VlyxbVrFlTPj4+atasmf78809L1wAAAADyO0LkHczT01Pnzp1zHKelpWn8+PGaOXOmfvjhByUlJal///6O8VmzZmnIkCEaPXq0EhISNGbMGL355puKiYlxzClUqJCio6O1d+9eTZo0SdOnT9fEiRMd4x07dtRdd92lLVu2aNu2bXr99dfl5uYmSTp79qzuu+8+LVmyRD/99JOef/55derUSZs3b3aqOyYmRt7e3oqLi9Nbb72lESNGaOXKlZKkLVu2SJJmzJih5ORkx/GNOnnypBo3bqzMzEytXLnS6fbXoUOHavDgwdq+fbtcXV3VoUMHDRgwQJMmTdK6det08OBBDRkyJMe109PTlZKS4tQAAACAfMvgjtClSxcTFRVljDEmMzPTrFy50ri7u5v+/fsbY4yZMWOGkWQOHjzoOOf99983gYGBjuPy5cub2bNnO607cuRI8+CDD+Z43bffftvcd999juNChQqZ6Ohoy3W3aNHC9OvXz3EcERFh6tWr5zSnVq1aZuDAgY5jSWbBggWWrzFjxgzj5+eXpX/NmjVGkklISDDVqlUzjz/+uElPT3eM//zzz0aS+fjjjx19X3zxhZFkVq1a5egbO3asqVSpUo7XHzp0qJGUpdkvPkOQRqPRaDezAQByhd1uN5KM3W6/6ly+4uMOsnjxYvn4+Oj8+fPKzMxUhw4dnG4F9fLyUvny5R3HJUqU0LFjxyRJp0+f1qFDh/Tcc8+pe/fujjkXLlyQ3z++iuLLL7/U5MmTdejQIaWmpurChQvy9fV1jL/66qvq1q2bZs6cqUaNGumJJ55wXDMjI0NjxozRV199pV9//VXnzp1Tenq6vLy8nF5HtWrVnI7/Weet0LhxY9WuXVtffvmlXFxcsoz/s57AwEBJcrpFNjAw8Ir1DRo0SK+++qrjOCUlRcHBwTejdAAAACDP4XbWO0jDhg0VHx+vAwcO6MyZM47bQi+5dFvpJTabTcYYSVJqaqokafr06YqPj3e0n376SZs2bZIkbdy4UR07dlTz5s21ePFi7dixQ2+88YbTLbPDhg3Tnj171KJFC61evVpVqlTRggULJElvv/22Jk2apIEDB2rNmjWKj49XkyZNnM7Pqc7MzMyb9C5l1aJFC/3www/au3dvtuP/rMdms2Xbd6X63N3d5evr69QAAACA/IqdyDuIt7e3QkNDr+vcwMBAlSxZUocPH1bHjh2znfPjjz+qTJkyeuONNxx9v/zyS5Z5FStWVMWKFfXKK6+offv2mjFjhtq0aaMNGzYoKipKTz/9tCQpMzNT+/fvV5UqVa6pVjc3N2VkZFzTOVfy73//Wz4+Pnr44YcVGxt7zfUAAAAAsI4Q+T9k+PDh6t27t/z8/NS0aVOlp6dr69at+vvvv/Xqq6+qQoUKSkpK0pw5c1SrVi0tWbLEscsoSWfOnNFrr72mtm3bqmzZsvrPf/6jLVu26PHHH5ckVahQQXPnztWPP/6owoUL65133tEff/xxzaEtJCREq1atUt26deXu7q7ChQtnOy8pKUknTpxQUlKSMjIyFB8fL0kKDQ2Vj4+P09zx48crIyNDDz30kGJjY1W5cuVrqgkAAACANYTI/yHdunWTl5eX3n77bb322mvy9vZW1apV1bdvX0nSo48+qldeeUU9e/ZUenq6WrRooTfffNPxuUsXFxcdP35cnTt31h9//KGiRYvqscce0/DhwyVJgwcP1uHDh9WkSRN5eXnp+eefV+vWrWW326+pzgkTJujVV1/V9OnTVapUKR05ciTbeUOGDHF6smx4eLgkac2aNYqMjMwyf+LEiU5BsmDBgtdU17Xyk10St7YCwE1ly+0C/jf899MuAHBL2IzhXzPAtUhJSfnvw4oIkQCAOxO/3QG4Vpd+x7Xb7Vd9BggP1gEAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFjmmtsFAHnW636SR24XgdvNDDW5XQIAAECuYicSAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgmWtuFwDkVfZBdvn6+uZ2GQAAAMBtxU4kAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAy19wuADdH165ddfLkSS1cuDC3S7mtQkJC1LdvX/Xt2/f2X9zP7/ZfE8D1Mya3KwAA4H8CO5G3QdeuXWWz2WSz2eTm5qayZctqwIABOnv2bK7Wdakmm80mb29vVahQQV27dtW2bdtyta5LfvjhB7Vq1UolS5aUzWbLdwEZAAAAuBMRIm+Tpk2bKjk5WYcPH9bEiRM1bdo0DR06NLfL0owZM5ScnKw9e/bo/fffV2pqqu6//3599tlnuV2aTp8+rerVq+v999/P7VIAAAAA/Bch8jZxd3dXUFCQgoOD1bp1azVq1EgrV650jKenp6t3794qXry4PDw8VK9ePW3ZssVpjT179qhly5by9fVVoUKFVL9+fR06dCjb623ZskXFihXTuHHjrliXv7+/goKCFBISokceeURz585Vx44d1bNnT/3999+OefPmzdPdd98td3d3hYSEaMKECY6xf/3rX7r//vuzrF29enWNGDHCcfzxxx8rLCxMHh4eqly5sj744IMr1tasWTONGjVKbdq0ueK8f/r444/l7++vVatWSZIiIyPVq1cv9e3bV4ULF1ZgYKCmT5+u06dP65lnnlGhQoUUGhqqZcuWWb4GAAAAkJ8RInPBTz/9pB9//FEFCxZ09A0YMEDz5s1TTEyMtm/frtDQUDVp0kQnTpyQJP36669q0KCB3N3dtXr1am3btk3PPvusLly4kGX91atXq3Hjxho9erQGDhx4zfW98sorOnXqlCPkbtu2Te3atdNTTz2l3bt3a9iwYXrzzTcVHR0tSerYsaM2b97sFGj37NmjXbt2qUOHDpKkWbNmaciQIRo9erQSEhI0ZswYvfnmm4qJibnm+nLy1ltv6fXXX9eKFSv08MMPO/pjYmJUtGhRbd68Wb169dKLL76oJ554QnXq1NH27dv1yCOPqFOnTkpLS8t23fT0dKWkpDg1AAAAIN8yuOW6dOliXFxcjLe3t3F3dzeSTIECBczcuXONMcakpqYaNzc3M2vWLMc5586dMyVLljRvvfWWMcaYQYMGmbJly5pz587leI2oqCgzf/584+PjY+bMmXPVuiSZBQsWZOk/c+aMkWTGjRtnjDGmQ4cOpnHjxk5zXnvtNVOlShXHcfXq1c2IESMcx4MGDTL333+/47h8+fJm9uzZTmuMHDnSPPjgg1et80q1lilTxkycONEMGDDAlChRwvz0009O4xEREaZevXqO4wsXLhhvb2/TqVMnR19ycrKRZDZu3JjttYcOHWokZWn2i4/poNFoeaUBAIAc2e12I8nY7farzmUn8jZp2LCh4uPjFRcXpy5duuiZZ57R448/Lkk6dOiQzp8/r7p16zrmu7m5qXbt2kpISJAkxcfHq379+nJzc8vxGnFxcXriiSc0c+ZMPfnkk9ddqzFG0sUH70hSQkKCU22SVLduXR04cEAZGRmSLu5Gzp4923H+F198oY4dO0q6+NnGQ4cO6bnnnpOPj4+jjRo1Ksfbca/FhAkTNH36dK1fv1533313lvFq1ao5/uzi4qKAgABVrVrV0RcYGChJOnbsWLbrDxo0SHa73dGOHj16wzUDAAAAeRUh8jbx9vZWaGioqlevrk8//VRxcXH65JNPLJ/v6el51Tnly5dX5cqV9emnn+r8+fPXXeul4Fq2bFnL57Rv316JiYnavn27fvzxRx09etQRZFNTUyVJ06dPV3x8vKP99NNP2rRp03XXeUn9+vWVkZGhr776Ktvxy4P3pafk/vNYkjIzM7M9393dXb6+vk4NAAAAyK8IkbmgQIEC+te//qXBgwfrzJkzKl++vAoWLKgNGzY45pw/f15btmxRlSpVJF3cTVu3bt0Vw2HRokW1evVqHTx4UO3atbvuIPnuu+/K19dXjRo1kiSFhYU51SZJGzZsUMWKFeXi4iJJuuuuuxQREaFZs2Zp1qxZaty4sYoXLy7p4k5fyZIldfjwYYWGhjq1awmqOaldu7aWLVumMWPGaPz48Te8HgAAAICcESJzyRNPPCEXFxe9//778vb21osvvqjXXntNy5cv1969e9W9e3elpaXpueeekyT17NlTKSkpeuqpp7R161YdOHBAM2fOVGJiotO6xYsX1+rVq7Vv3z61b98+2wfv/NPJkyf1+++/65dfftHKlSvVtm1bzZ49W1OnTpW/v78kqV+/flq1apVGjhyp/fv3KyYmRlOmTFH//v2d1urYsaPmzJmjr7/+2nEr6yXDhw/X2LFjNXnyZO3fv1+7d+/WjBkz9M477+RYW2pqqmPXUpJ+/vlnxcfHKykpKcvcOnXqaOnSpRo+fLjefffdK75mAAAAANePEJlLXF1d1bNnT7311ls6ffq0/v3vf+vxxx9Xp06dVKNGDR08eFDfffedChcuLEkKCAjQ6tWrlZqaqoiICN13332aPn16tp+RDAoK0urVq7V792517NjR8bnF7DzzzDMqUaKEKleurBdffFE+Pj7avHmz46mqklSjRg199dVXmjNnju655x4NGTJEI0aMUNeuXZ3Watu2rY4fP660tDS1bt3aaaxbt276+OOPNWPGDFWtWlURERGKjo6+4k7k1q1bFR4ervDwcEnSq6++qvDwcA0ZMiTb+fXq1dOSJUs0ePBgvffeezmuCwAAAOD62cylp6gAsCQlJUV+fn6S7JL4fCSAG8d/iQEAue3S77h2u/2qzwBhJxIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGCZa24XAORZr/tJHrldxP8OM9TkdgkAAACwgJ1IAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlrrldAJBX2QfZ5evrm9tlAAAAALcVO5EAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLXHO7ACDP8vPL7QoAAJJkTG5XAAD5CjuReYDNZtPChQuv+bwjR47IZrMpPj7+ptd0o25Wbdf73gAAAAC4PoTIO0DXrl3VunXrHMeTk5PVrFkzSTmHr6utcSMyMjI0ceJEVa1aVR4eHipcuLCaNWumDRs23JLrXTJ//nw98sgjCggIuGPDMAAAAJDfECLzgKCgILm7u+fKtY0xeuqppzRixAj16dNHCQkJio2NVXBwsCIjI2/pLuDp06dVr149jRs37pZdAwAAAMC1IUTmAf+8ZbNs2bKSpPDwcNlsNkVGRmrYsGGKiYnRN998I5vNJpvNptjY2GzX+umnn9SsWTP5+PgoMDBQnTp10l9//ZXjtb/66ivNnTtXn332mbp166ayZcuqevXq+uijj/Too4+qW7duOn36tOx2u1xcXLR161ZJUmZmpooUKaIHHnjAsdbnn3+u4OBgy6+7U6dOGjJkiBo1amT5nKFDh6pEiRLatWuXJCkkJESjRo1S586d5ePjozJlymjRokX6888/FRUVJR8fH1WrVs1RNwAAAIArI0TmMZs3b5Ykff/990pOTtb8+fPVv39/tWvXTk2bNlVycrKSk5NVp06dLOeePHlSDz30kMLDw7V161YtX75cf/zxh9q1a5fj9WbPnq2KFSuqVatWWcb69eun48ePa+XKlfLz89O9997rCK+7d++WzWbTjh07lJqaKklau3atIiIibsK7kJUxRr169dJnn32mdevWqVq1ao6xiRMnqm7dutqxY4datGihTp06qXPnznr66ae1fft2lS9fXp07d5bJ4cEM6enpSklJcWoAAABAfkWIzGOKFSsmSQoICFBQUJCKFCkiHx8feXp6yt3dXUFBQQoKClLBggWznDtlyhSFh4drzJgxqly5ssLDw/Xpp59qzZo12r9/f7bX279/v8LCwrIdu9R/6dzIyEhHiIyNjVXjxo0VFham9evXO/puRYi8cOGCnn76aa1atUrr169XaGio03jz5s3Vo0cPVahQQUOGDFFKSopq1aqlJ554QhUrVtTAgQOVkJCgP/74I9v1x44dKz8/P0e7lt1UAAAA4H8NITIf2blzp9asWSMfHx9Hq1y5siTp0KFDOZ6X0w7d5SIiIrR+/XplZGRo7dq1ioyMdATL3377TQcPHlRkZOTNeClOXnnlFcXFxemHH35QqVKlsoz/c1cyMDBQklS1atUsfceOHct2/UGDBslutzva0aNHb2b5AAAAQJ5CiMxHUlNT1apVK8XHxzu1AwcOqEGDBtmeU7FiRSUkJGQ7dqm/YsWKkqQGDRro1KlT2r59u3744QenELl27VqVLFlSFSpUuOmvq3Hjxvr111/13XffZTvu5ubm+LPNZsuxLzMzM9vz3d3d5evr69QAAACA/Mo1twvAtbl0m2pGRkaW/sv7LlejRg3NmzdPISEhcnW19qN/6qmn1KFDB3377bdZPhc5YcIEBQQEqHHjxpIkf39/VatWTVOmTJGbm5sqV66s4sWL68knn9TixYtv2echH330UbVq1UodOnSQi4uLnnrqqVtyHQAAAADsRN4x7HZ7lh3C7G6bLF68uDw9PR0PxbHb7ZIuPoV0165dSkxM1F9//aXz589nOffll1/WiRMn1L59e23ZskWHDh3Sd999p2eeeSbHAPrUU0+pTZs26tKliz755BMdOXJEu3btUo8ePbRo0SJ9/PHH8vb2dsyPjIzUrFmzHIGxSJEiCgsL05dffnnNIfLEiROKj4/X3r17JUmJiYmKj4/X77//nmVumzZtNHPmTD3zzDOaO3fuNV0HAAAAgHWEyDtEbGyswsPDndrw4cOzzHN1ddXkyZM1bdo0lSxZUlFRUZKk7t27q1KlSqpZs6aKFSumDRs2ZDm3ZMmS2rBhgzIyMvTII4+oatWq6tu3r/z9/VWgQPZ/FWw2m7766iv961//0sSJE1WpUiXVr19fv/zyi2JjY9W6dWun+REREcrIyHD67GNkZGSWPisWLVqk8PBwtWjRQtLFQBseHq4PP/ww2/lt27ZVTEyMOnXqpPnz51/Tta6Hn+yyydBoNBott5tN190AANfOZqw+NQWAJCklJUV+fn6S7JL4fCQA5GX8FgQAF136Hddut1/1GSDsRAIAAAAALCNEAgAAAAAsI0QCAAAAACwjRAIAAAAALCNEAgAAAAAsI0QCAAAAACwjRAIAAAAALCNEAgAAAAAsI0QCAAAAACxzze0CgDzrdT/JI7eLyDvMUJPbJQAAAOAmYCcSAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgmWtuFwDkVfZBdvn6+uZ2GQAAAMBtxU4kAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMCyOzJExsbGymaz6eTJkznOGTZsmO69997bVtONCgkJ0bvvvpvbZVyRlfc9Ojpa/v7+t62mK8n199TPT7LZaDTapQYAAPKFGwqRXbt2lc1mk81mk5ubm8qWLasBAwbo7NmzN6u+fGPYsGGO99LV1VUhISF65ZVXlJqaesPrWg3bderUUXJysvz8/G7omjfDDz/8oFatWqlkyZKy2WxauHBhbpcEAAAAQJLrjS7QtGlTzZgxQ+fPn9e2bdvUpUsX2Ww2jRs37mbUl6/cfffd+v7773XhwgVt2LBBzz77rNLS0jRt2rRrXssYo4yMDMvzz58/r4IFCyooKOiar3UrnD59WtWrV9ezzz6rxx57LLfLAQAAAPBfN3w7q7u7u4KCghQcHKzWrVurUaNGWrlypWM8MzNTY8eOVdmyZeXp6anq1atr7ty5TmssXbpUFStWlKenpxo2bKgjR45cVy0ff/yxwsLC5OHhocqVK+uDDz5wGv/xxx917733ysPDQzVr1tTChQtls9kUHx/vmLNo0SJVqFBBHh4eatiwoWJiYnT5LZ7r169X/fr15enpqeDgYPXu3VunT592jB87dkytWrWSp6enypYtq1mzZlmq39XVVUFBQbrrrrv05JNPqmPHjlq0aJEkaebMmapZs6YKFSqkoKAgdejQQceOHXOce+lW1GXLlum+++6Tu7u7Pv/8cw0fPlw7d+507HJGR0dLkmw2m6ZOnapHH31U3t7eGj16dLa3s0ZHR6t06dLy8vJSmzZtdPz48Sx1jxo1SsWLF1ehQoXUrVs3vf7661l2P6/2s7lcs2bNNGrUKLVp08bSe3fpGv7+/lq1apUkKTIyUr169VLfvn1VuHBhBQYGavr06Tp9+rSeeeYZFSpUSKGhoVq2bJnlawAAAAD5nrkBXbp0MVFRUY7j3bt3m6CgIHP//fc7+kaNGmUqV65sli9fbg4dOmRmzJhh3N3dTWxsrDHGmKSkJOPu7m5effVVs2/fPvP555+bwMBAI8n8/fffOV576NChpnr16o7jzz//3JQoUcLMmzfPHD582MybN88UKVLEREdHG2OMsdvtpkiRIubpp582e/bsMUuXLjUVK1Y0ksyOHTuMMcYcPnzYuLm5mf79+5t9+/aZL774wpQqVcqploMHDxpvb28zceJEs3//frNhwwYTHh5uunbt6qilWbNmpnr16mbjxo1m69atpk6dOsbT09NMnDjR8usxxpjevXubIkWKGGOM+eSTT8zSpUvNoUOHzMaNG82DDz5omjVr5pi7Zs0aI8lUq1bNrFixwhw8eND85z//Mf369TN33323SU5ONsnJySYtLc0YY4wkU7x4cfPpp5+aQ4cOmV9++cWxxqXXumnTJlOgQAEzbtw4k5iYaCZNmmT8/f2Nn5+f0/vu4eFhPv30U5OYmGiGDx9ufH19r+lnczWSzIIFC7L0lylTxvGejhs3zgQEBJi4uDjHeEREhClUqJAZOXKk2b9/vxk5cqRxcXExzZo1Mx999JHZv3+/efHFF01AQIA5ffp0jtc/e/assdvtjnb06FEjydglY2g02v83AACQZ9ntdiPJ2O32q869of/qd+nSxbi4uBhvb2/j7u5uJJkCBQqYuXPnGmMu/vLt5eVlfvzxR6fznnvuOdO+fXtjjDGDBg0yVapUcRofOHCgudYQWb58eTN79mynOSNHjjQPPvigMcaYqVOnmoCAAHPmzBnH+PTp080/Q+TAgQPNPffc47TGG2+84VTLc889Z55//nmnOevWrTMFChQwZ86cMYmJiUaS2bx5s2M8ISHBSLqmELl161ZTtGhR07Zt22znb9myxUgyp06dMsb8f4hcuHDhFde9RJLp27evU9/lIbJ9+/amefPmTnOefPJJpxB5//33m5dfftlpTt26da/pZ3M1VwuRAwYMMCVKlDA//fST03hERISpV6+e4/jChQvG29vbdOrUydGXnJxsJJmNGzfmeP2hQ4caSVkaIZJGu6wBAIA861pC5A1/JrJhw4aaOnWqTp8+rYkTJ8rV1VWPP/64JOngwYNKS0tT48aNnc45d+6cwsPDJUkJCQm6//77ncYffPBBp2MfHx/Hn59++ml9+OGHTuOnT5/WoUOH9Nxzz6l79+6O/gsXLjgeEpOYmKhq1arJw8PDMV67dm2ndRITE1WrVi2nvsvn7Ny5U7t27XK6RdUYo8zMTP3888/av3+/XF1ddd999znGK1eubOmJprt375aPj48yMjJ07tw5tWjRQlOmTJEkbdu2TcOGDdPOnTv1999/KzMzU5KUlJSkKlWqONaoWbPmVa9jdW5CQkKW20kffPBBLV++3HGcmJiol156yWlO7dq1tXr1aknWfjY3YsKECTp9+rS2bt2qcuXKZRmvVq2a488uLi4KCAhQ1apVHX2BgYGS5HRr8OUGDRqkV1991XGckpKi4ODgG64dAAAAyItuOER6e3srNDRUkvTpp5+qevXq+uSTT/Tcc885niy6ZMkSlSpVyuk8d3d3y9f452cWfX19s4xfus706dOzBFIXFxfL17EiNTVVPXr0UO/evbOMlS5dWvv377/utStVqqRFixbJ1dVVJUuWVMGCBSVdDGJNmjRRkyZNNGvWLBUrVkxJSUlq0qSJzp0757SGt7e35etdy9zrdat/NvXr19eSJUv01Vdf6fXXX88y7ubm5nR86UnC/zyW5Ajl2XF3d7+mv68AAADA/7IbDpH/VKBAAf3rX//Sq6++qg4dOqhKlSpyd3dXUlKSIiIisj0nLCzM8fCYSzZt2uR0fCmk5iQwMFAlS5bU4cOH1bFjx2znVKpUSZ9//rnS09MdgWDLli1Z5ixdutSp7/I5NWrU0N69e3OsqXLlyrpw4YK2bdvm2NVMTEy84ncvXlKwYMFs1923b5+OHz+uf//7344dsK1bt151vUtrXstTWv8pLCxMcXFxTn2X/2wqVaqkLVu2qHPnzo6+f75nVn42N6J27drq2bOnmjZtKldXV/Xv3/+mXwMAAADA/7vhp7Ne7oknnpCLi4vef/99FSpUSP3799crr7yimJgYHTp0SNu3b9d7772nmJgYSdILL7ygAwcO6LXXXlNiYqJmz57teILotRg+fLjGjh2ryZMna//+/dq9e7dmzJihd955R5LUoUMHZWZm6vnnn1dCQoK+++47jR8/XtL/70b16NFD+/bt08CBA7V//3599dVXTk8zlaSBAwfqxx9/VM+ePRUfH68DBw7om2++Uc+ePSVdDFVNmzZVjx49FBcXp23btqlbt27y9PS87ve0dOnSKliwoN577z0dPnxYixYt0siRIy2dGxISop9//lnx8fH666+/lJ6ebvm6vXv31vLlyzV+/HgdOHBAU6ZMcbqVVZJ69eqlTz75RDExMTpw4IBGjRqlXbt2Od4v6eo/m+ykpqYqPj7esQt96TUkJSVlmVunTh0tXbpUw4cP17vvvmv59QEAAAC4Djfy4cvLn856ydixY02xYsVMamqqyczMNO+++66pVKmScXNzM8WKFTNNmjQxa9eudcz/9ttvTWhoqHF3dzf169c3n376qZGu7cE6xhgza9Ysc++995qCBQuawoULmwYNGpj58+c7xjds2GCqVatmChYsaO677z4ze/ZsI8ns27fPMeebb75x1BIZGWmmTp1qJDk9kGfz5s2mcePGxsfHx3h7e5tq1aqZ0aNHO8aTk5NNixYtjLu7uyldurT57LPPnJ4kavX1/NPs2bNNSEiIcXd3Nw8++KBZtGiRkf7/oUCXPxTnkrNnz5rHH3/c+Pv7G0lmxowZxhhjpKwPq8lujU8++cTcddddxtPT07Rq1cqMHz/e6cE6xhgzYsQIU7RoUePj42OeffZZ07t3b/PAAw84zbnaz+Zyl2q5vHXp0sUx5/L3dO3atcbb29tMnjzZGHPxwTp9+vRxWje7n0N278WVOD50nNsPMaHR7rQGAADyrGt5sI7NGGNuf3S9M8yaNUvPPPOM7HZ7jjuFo0eP1ocffqijR4/e5uryrsaNGysoKEgzZ87M7VJuiZSUlP8+FMguKetndHFr5N9/UwEAANx6l37Htdvt2T6H5p9u6mci73SfffaZypUrp1KlSmnnzp0aOHCg2rVr5xQgP/jgA9WqVUsBAQHasGGD3n77bcetqsgqLS1NH374oZo0aSIXFxd98cUX+v7777Vy5crcLg0AAADALZCvQuTvv/+uIUOG6Pfff1eJEiX0xBNPaPTo0U5zLn2u78SJEypdurT69eunQYMG5VLFdz6bzaalS5dq9OjROnv2rCpVqqR58+apUaNGuV0aAAAAgFsgX9/OClwPbmfNHfybCgAA4Na5lttZb/rTWQEAAAAA/7sIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADL8tX3RAI31et+kkduF5E7zFC+bwMAACC/YicSAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGCZa24XAORV9kF2+fr65nYZAAAAwG3FTiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAy19wuAMiz/PxyuwIAwO1mTG5XAAC5Ls/tRHbt2lWtW7e+pnNsNpsWLlx4Tef8/vvvaty4sby9veXv739N594u1/O6/pccOXJENptN8fHxuV0KAAAAkG/ccSGya9eustlsstlsKliwoEJDQzVixAhduHBBkjRp0iRFR0ff8jomTpyo5ORkxcfHa//+/Tdt3dsd/H7//Xf16dNHoaGh8vDwUGBgoOrWraupU6cqLS3tttVxPT766CNFRkbK19dXNptNJ0+ezO2SAAAAgHzvjrydtWnTppoxY4bS09O1dOlSvfzyy3Jzc9OgQYPkd5tuITx06JDuu+8+VahQ4bZc71Y4fPiw6tatK39/f40ZM0ZVq1aVu7u7du/erY8++kilSpXSo48+mttl5igtLU1NmzZV06ZNNWjQoNwuBwAAAIDuwJ1ISXJ3d1dQUJDKlCmjF198UY0aNdKiRYskZb2dNTIyUr1799aAAQNUpEgRBQUFadiwYVdcf+jQoSpRooR27dqV7XhISIjmzZunzz77TDabTV27dpUkJSUlKSoqSj4+PvL19VW7du30xx9/OJ07depUlS9fXgULFlSlSpU0c+ZMp3UlqU2bNrLZbI5jSfrmm29Uo0YNeXh4qFy5cho+fLhj91WSDhw4oAYNGsjDw0NVqlTRypUrr/IuSi+99JJcXV21detWtWvXTmFhYSpXrpyioqK0ZMkStWrVyjH3Rl+bMUbDhg1T6dKl5e7urpIlS6p3796O8fT0dPXv31+lSpWSt7e37r//fsXGxl6x/r59++r111/XAw88cNXXKkkZGRl69tlnVblyZSUlJUm6uPM7bdo0tWzZUl5eXgoLC9PGjRt18OBBRUZGytvbW3Xq1NGhQ4csXQMAAADI7+7IEHk5T09PnTt3LsfxmJgYeXt7Ky4uTm+99ZZGjBiRbcgyxqhXr1767LPPtG7dOlWrVi3b9bZs2aKmTZuqXbt2Sk5O1qRJk5SZmamoqCidOHFCa9eu1cqVK3X48GE9+eSTjvMWLFigPn36qF+/fvrpp5/Uo0cPPfPMM1qzZo1jXUmaMWOGkpOTHcfr1q1T586d1adPH+3du1fTpk1TdHS0Ro8eLUnKzMzUY489poIFCyouLk4ffvihBg4ceMX37Pjx41qxYoVefvlleXt7ZzvHZrM51r/R1zZv3jxNnDhR06ZN04EDB7Rw4UJVrVrVcX7Pnj21ceNGzZkzR7t27dITTzyhpk2b6sCBA1d8HValp6friSeeUHx8vNatW6fSpUs7xkaOHKnOnTsrPj5elStXVocOHdSjRw8NGjRIW7dulTFGPXv2vOLaKSkpTg0AAADIt8wdpkuXLiYqKsoYY0xmZqZZuXKlcXd3N/37988ybowxERERpl69ek5r1KpVywwcONBxLMl8/fXXpkOHDiYsLMz85z//uWodUVFRpkuXLo7jFStWGBcXF5OUlOTo27Nnj5FkNm/ebIwxpk6dOqZ79+5O6zzxxBOmefPmTrUsWLDAac7DDz9sxowZ49Q3c+ZMU6JECWOMMd99951xdXU1v/76q2N82bJl2a51yaZNm4wkM3/+fKf+gIAA4+3tbby9vc2AAQNu2mubMGGCqVixojl37lyWWn755Rfj4uLiVP+l1z1o0KBs6/+nNWvWGEnm77//dur/+eefjSSzbt068/DDD5t69eqZkydPOs2RZAYPHuw43rhxo5FkPvnkE0ffF198YTw8PHK8/tChQ42kLM1+8Rl9NBqNRstPDQD+R9ntdiPJ2O32q869I3ciFy9eLB8fH3l4eKhZs2Z68sknr3iL6uU7iiVKlNCxY8ec+l555RXFxcXphx9+UKlSpRz9Y8aMkY+Pj6Ndug3ycgkJCQoODlZwcLCjr0qVKvL391dCQoJjTt26dZ3Oq1u3rmM8Jzt37tSIESOc6ujevbuSk5OVlpbmuHbJkiUd5zz44INXXDMnmzdvVnx8vO6++26lp6fftNf2xBNP6MyZMypXrpy6d++uBQsWOG7H3b17tzIyMlSxYkWn17h27dqbchtp+/btdfr0aa1YsSLbz8z+8+9HYGCgJDntkgYGBurs2bM57jAOGjRIdrvd0Y4ePXrDNQMAAAB51R35YJ2GDRtq6tSpKliwoEqWLClX1yuX6ebm5nRss9mUmZnp1Ne4cWN98cUX+u6779SxY0dH/wsvvKB27do5jv8Z1G6X1NRUDR8+XI899liWMQ8Pj+taMzQ0VDabTYmJiU795cqVk3TxFuGbKTg4WImJifr++++1cuVKvfTSS3r77be1du1apaamysXFRdu2bZOLi4vTeT4+Pjd87ebNm+vzzz/Xxo0b9dBDD2UZ/+ffj0u38GbXd/nfmUvc3d3l7u5+w3UCAAAA/wvuyBDp7e2t0NDQm7rmo48+qlatWqlDhw5ycXHRU089JUkqUqSIihQpctXzw8LCdPToUR09etSxY7d3716dPHlSVapUcczZsGGDunTp4jhvw4YNjnHpYnjJyMhwWrtGjRpKTEzM8TVfunZycrJKlCghSdq0adMV6w0ICFDjxo01ZcoU9erVK8fPRd7M1+bp6alWrVqpVatWevnll1W5cmXt3r1b4eHhysjI0LFjx1S/fv0r1n09XnzxRd1zzz169NFHtWTJEkVERNz0awAAAAC46I4MkbdKmzZtNHPmTHXq1Emurq5q27at5XMbNWqkqlWrqmPHjnr33Xd14cIFvfTSS4qIiFDNmjUlSa+99pratWun8PBwNWrUSN9++63mz5+v77//3rFOSEiIVq1apbp168rd3V2FCxfWkCFD1LJlS5UuXVpt27ZVgQIFtHPnTv30008aNWqUGjVqpIoVK6pLly56++23lZKSojfeeOOqNX/wwQeqW7euatasqWHDhqlatWoqUKCAtmzZon379um+++67aa8tOjpaGRkZuv/+++Xl5aXPP/9cnp6eKlOmjAICAtSxY0d17txZEyZMUHh4uP7880+tWrVK1apVU4sWLbKt//fff9fvv/+ugwcPSrp4W2yhQoVUunTpLMG/V69eysjIUMuWLbVs2TLVq1fP8s8WAAAAwDW4DZ/RvCaXPzjnauMRERGmT58+TnMufyiO5PwAmi+//NJ4eHiYefPm5Xidy9cw5uIDYh599FHj7e1tChUqZJ544gnz+++/O8354IMPTLly5Yybm5upWLGi+eyzz5zGFy1aZEJDQ42rq6spU6aMo3/58uWmTp06xtPT0/j6+pratWubjz76yDGemJho6tWrZwoWLGgqVqxoli9fnuV1Zee3334zPXv2NGXLljVubm7Gx8fH1K5d27z99tvm9OnTN+21LViwwNx///3G19fXeHt7mwceeMB8//33jvFz586ZIUOGmJCQEOPm5mZKlChh2rRpY3bt2pVj7Tk90GbGjBnGmP9/sM6OHTsc50yYMMEUKlTIbNiwwRiT9Wef3Tk5PbgnJ5c+dCzZc/35DjQajUa79Q0A8oNrebCOzRhjciW9AnlUSkrKfx/gY5fkm9vlAABuMX5TApAfXPod1263y9f3yr/j3pFPZwUAAAAA3JkIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLXHO7ACDPet1P8sjtIm4dM9TkdgkAAAC4A7ETCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsMw1twsA8ir7ILt8fX1zuwwAAADgtmInEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgmWtuFwDkWX5+uV0BcGczJrcrAAAAtwA7kflIbGysbDabTp48mdul3BTDhg3Tvffem9tlAAAAAPkKITIP+vDDD1WoUCFduHDB0Zeamio3NzdFRkY6zb0UHA8dOqQ6deooOTlZfnlgB+3s2bPq2rWrqlatKldXV7Vu3Tq3SwIAAAAgQmSe1LBhQ6Wmpmrr1q2OvnXr1ikoKEhxcXE6e/aso3/NmjUqXbq0ypcvr4IFCyooKEg2my03yr4mGRkZ8vT0VO/evdWoUaPcLgcAAADAfxEi86BKlSqpRIkSio2NdfTFxsYqKipKZcuW1aZNm5z6GzZs6Pjz5bezTp8+XcHBwfLy8lKbNm30zjvvyN/f3+l633zzjWrUqCEPDw+VK1dOw4cPd9oFTUpKUlRUlHx8fOTr66t27drpjz/+cIxfuu105syZCgkJkZ+fn5566imdOnUqx9fo7e2tqVOnqnv37goKCrL0vhw6dEjlypVTz549ZYxRdHS0/P39tXjxYlWqVEleXl5q27at0tLSFBMTo5CQEBUuXFi9e/dWRkZGjuump6crJSXFqQEAAAD5FSEyj2rYsKHWrFnjOF6zZo0iIyMVERHh6D9z5ozi4uIcIfJyGzZs0AsvvKA+ffooPj5ejRs31ujRo53mrFu3Tp07d1afPn20d+9eTZs2TdHR0Y55mZmZioqK0okTJ7R27VqtXLlShw8f1pNPPum0zqFDh7Rw4UItXrxYixcv1tq1a/Xvf//7pr0fu3btUr169dShQwdNmTLFsdualpamyZMna86cOVq+fLliY2PVpk0bLV26VEuXLtXMmTM1bdo0zZ07N8e1x44dKz8/P0cLDg6+aXUDAAAAeY5BnjR9+nTj7e1tzp8/b1JSUoyrq6s5duyYmT17tmnQoIExxphVq1YZSeaXX34xxhizZs0aI8n8/fffxhhjnnzySdOiRQundTt27Gj8/Pwcxw8//LAZM2aM05yZM2eaEiVKGGOMWbFihXFxcTFJSUmO8T179hhJZvPmzcYYY4YOHWq8vLxMSkqKY85rr71m7r//fkuvtUuXLiYqKipL/9ChQ0316tXNhg0bTOHChc348eOdxmfMmGEkmYMHDzr6evToYby8vMypU6ccfU2aNDE9evTI8fpnz541drvd0Y4ePWokGfvFZ0/SaLScGgAAyDPsdruRZOx2+1XnshOZR0VGRur06dPasmWL1q1bp4oVK6pYsWKKiIhwfC4yNjZW5cqVU+nSpbNdIzExUbVr13bqu/x4586dGjFihHx8fByte/fuSk5OVlpamhISEhQcHOy0O1elShX5+/srISHB0RcSEqJChQo5jkuUKKFjx47d8PuQlJSkxo0ba8iQIerXr1+WcS8vL5UvX95xHBgYqJCQEPn4+Dj1XakWd3d3+fr6OjUAAAAgv+J7IvOo0NBQ3XXXXVqzZo3+/vtvRURESJJKliyp4OBg/fjjj1qzZo0eeuihG7pOamqqhg8frsceeyzLmIeHh+V13NzcnI5tNpsyMzNvqDZJKlasmEqWLKkvvvhCzz77bJaAl911b1UtAAAAQH7ATmQe1rBhQ8XGxio2Ntbpqz0aNGigZcuWafPmzTl+HlK6+ICeLVu2OPVdflyjRg0lJiYqNDQ0SytQoIDCwsJ09OhRHT161HHO3r17dfLkSVWpUuXmvNAr8PT01OLFi+Xh4aEmTZpc8WE9AAAAAG4cITIPa9iwodavX6/4+HjHTqQkRUREaNq0aTp37twVQ2SvXr20dOlSvfPOOzpw4ICmTZumZcuWOX0FyJAhQ/TZZ59p+PDh2rNnjxISEjRnzhwNHjxYktSoUSNVrVpVHTt21Pbt27V582Z17txZERERqlmz5g29vr179yo+Pl4nTpyQ3W5XfHy84uPjs8zz9vbWkiVL5OrqqmbNmik1NfWGrgsAAAAgZ4TIPKxhw4Y6c+aMQkNDFRgY6OiPiIjQqVOnHF8FkpO6devqww8/1DvvvKPq1atr+fLleuWVV5xuU23SpIkWL16sFStWqFatWnrggQc0ceJElSlTRtLFW0G/+eYbFS5cWA0aNFCjRo1Urlw5ffnllzf8+po3b67w8HB9++23io2NVXh4uMLDw7Od6+Pjo2XLlskYoxYtWuj06dM3fP2r8ZNdNhkaLVfaHfDYnKs3AADwP8lmDP+lx//r3r279u3bp3Xr1uV2KXeslJQU+fn5SbJL4iE7yB38mxsAANxMl37HtdvtV32QJA/WyefGjx+vxo0by9vbW8uWLVNMTIw++OCD3C4LAAAAwB2KEJnPbd68WW+99ZZOnTqlcuXKafLkyerWrVtulwUAAADgDkWIzOe++uqr3C4BAAAAQB7Cg3UAAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlvF0VuB6ve4neeR2ETfGDOUb6wEAAHBt2IkEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFjmmtsFAHmVfZBdvr6+uV0GAAAAcFuxEwkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCUlSdHS0/P39b9n6w4YN07333us47tq1q1q3bn1T17zt/Pwkm41Go9Fo+aEBABwIkXnI77//rj59+ig0NFQeHh4KDAxU3bp1NXXqVKWlpeV2eTfV2bNn1bVrV1WtWlWurq43HDgBAAAA3ByuuV0ArDl8+LDq1q0rf39/jRkzRlWrVpW7u7t2796tjz76SKVKldKjjz6a22XeNBkZGfL09FTv3r01b9683C4HAAAAwH+xE5lHvPTSS3J1ddXWrVvVrl07hYWFqVy5coqKitKSJUvUqlUrx9x33nlHVatWlbe3t4KDg/XSSy8pNTXVab3o6GiVLl1aXl5eatOmjY4fP+4Ys9vtcnFx0datWyVJmZmZKlKkiB544AHHnM8//1zBwcGO44EDB6pixYry8vJSuXLl9Oabb+r8+fPX/Xq9vb01depUde/eXUFBQZbOOXTokMqVK6eePXvKGOO4RXfx4sWqVKmSvLy81LZtW6WlpSkmJkYhISEqXLiwevfurYyMjOuuFQAAAMhPCJF5wPHjx7VixQq9/PLL8vb2znaO7R+f1yhQoIAmT56sPXv2KCYmRqtXr9aAAQMc43FxcXruuefUs2dPxcfHq2HDhho1apRj3M/PT/fee69iY2MlSbt375bNZtOOHTscYXTt2rWKiIhwnFOoUCFFR0dr7969mjRpkqZPn66JEyfezLfhinbt2qV69eqpQ4cOmjJliuP9SEtL0+TJkzVnzhwtX75csbGxatOmjZYuXaqlS5dq5syZmjZtmubOnZvj2unp6UpJSXFqAAAAQH5FiMwDDh48KGOMKlWq5NRftGhR+fj4yMfHRwMHDnT09+3bVw0bNlRISIgeeughjRo1Sl999ZVjfNKkSWratKkGDBigihUrqnfv3mrSpInT2pGRkY4QGRsbq8aNGyssLEzr16939P0zRA4ePFh16tRRSEiIWrVqpf79+ztd81b68ccfFRkZqf79+zuFYUk6f/68pk6dqvDwcDVo0EBt27bV+vXr9cknn6hKlSpq2bKlGjZsqDVr1uS4/tixY+Xn5+do/9yBBQAAAPIbQmQetnnzZsXHx+vuu+9Wenq6o//777/Xww8/rFKlSqlQoULq1KmTjh8/7nj4TkJCgu6//36ntR588EGn44iICK1fv14ZGRlau3atIiMjHcHyt99+08GDBxUZGemY/+WXX6pu3boKCgqSj4+PBg8erKSkpFv34v8rKSlJjRs31pAhQ9SvX78s415eXipfvrzjODAwUCEhIfLx8XHqO3bsWI7XGDRokOx2u6MdPXr05r4IAAAAIA8hROYBoaGhstlsSkxMdOovV66cQkND5enp6eg7cuSIWrZsqWrVqmnevHnatm2b3n//fUnSuXPnLF+zQYMGOnXqlLZv364ffvjBKUSuXbtWJUuWVIUKFSRJGzduVMeOHdW8eXMtXrxYO3bs0BtvvHFN17texYoVU+3atfXFF19ke5upm5ub07HNZsu2LzMzM8druLu7y9fX16kBAAAA+RUhMg8ICAhQ48aNNWXKFJ0+ffqKc7dt26bMzExNmDBBDzzwgCpWrKjffvvNaU5YWJji4uKc+jZt2uR07O/vr2rVqmnKlClyc3NT5cqV1aBBA+3YsUOLFy92upX1xx9/VJkyZfTGG2+oZs2aqlChgn755ZcbfNXWeHp6avHixfLw8FCTJk106tSp23JdAAAAIL8iROYRH3zwgS5cuKCaNWvqyy+/VEJCghITE/X5559r3759cnFxkXRx1/L8+fN67733dPjwYc2cOVMffvih01q9e/fW8uXLNX78eB04cEBTpkzR8uXLs1wzMjJSs2bNcgTGIkWKKCwsTF9++aVTiKxQoYKSkpI0Z84cHTp0SJMnT9aCBQtu+DXv3btX8fHxOnHihOx2u+Lj4xUfH59lnre3t5YsWSJXV1c1a9Ysy5NoAQAAANw8hMg8onz58tqxY4caNWqkQYMGqXr16qpZs6bee+899e/fXyNHjpQkVa9eXe+8847GjRune+65R7NmzdLYsWOd1nrggQc0ffp0TZo0SdWrV9eKFSs0ePDgLNeMiIhQRkaG02cfIyMjs/Q9+uijeuWVV9SzZ0/de++9+vHHH/Xmm2/e8Gtu3ry5wsPD9e233yo2Nlbh4eEKDw/Pdq6Pj4+WLVsmY4xatGhx1R3bm8FPdtlkaDQajZYfmk1XbQCQX9iMMSa3iwDykpSUFPn5+UmyS+LzkQCAi/iNCkBedul3XLvdftVngLATCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsMw1twsA8qzX/SSP3C7i+pihJrdLAAAAQB7FTiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAy19wuAMir7IPs8vX1ze0yAAAAgNuKnUgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWuuV0AkGf5+eV2BUDeYUxuVwAAAG4SdiLhxGazaeHChTmOHzlyRDabTfHx8betppx07dpVrVu3zu0yAAAAgHwl34bI33//XX369FFoaKg8PDwUGBiounXraurUqUpLS7vt9cTGxspmszlaYGCgHn/8cR0+fPimrHvy5ElL85OTk9WsWbMbuubNkJycrA4dOqhixYoqUKCA+vbtm9slAQAAAFA+DZGHDx9WeHi4VqxYoTFjxmjHjh3auHGjBgwYoMWLF+v777/P8dzz58/f0toSExP122+/6euvv9aePXvUqlUrZWRkXNda11LruXPnJElBQUFyd3e/ruvdTOnp6SpWrJgGDx6s6tWr53Y5AAAAAP4rX4bIl156Sa6urtq6davatWunsLAwlStXTlFRUVqyZIlatWrlmGuz2TR16lQ9+uij8vb21ujRoyVJ33zzjWrUqCEPDw+VK1dOw4cP14ULFyRJzz77rFq2bOl0zfPnz6t48eL65JNPrlhb8eLFVaJECTVo0EBDhgzR3r17dfDgQW3ZskWNGzdW0aJF5efnp4iICG3fvt3p3Mtr7d69uxo2bChJKly4sGw2m7p27SpJioyMVM+ePdW3b18VLVpUTZo0cazxz9tZN2/erPDwcHl4eKhmzZrasWNHlpoXLVqkChUqyMPDQw0bNlRMTEyW3c/169erfv368vT0VHBwsHr37q3Tp0/n+D6EhIRo0qRJ6ty5s/wsfvZwy5YtKlasmMaNGydJGjZsmO699159+umnKl26tHx8fPTSSy8pIyNDb731loKCglS8eHHHzzQn6enpSklJcWoAAABAfpXvQuTx48e1YsUKvfzyy/L29s52js1mczoeNmyY2rRpo927d+vZZ5/VunXr1LlzZ/Xp00d79+7VtGnTFB0d7Qgj3bp10/Lly5WcnOxYY/HixUpLS9OTTz5puVZPT09JF3cJT506pS5dumj9+vXatGmTKlSooObNm+vUqVM51jp8+HDNmzdP0sUdzuTkZE2aNMkxNyYmRgULFtSGDRv04YcfZrl+amqqWrZsqSpVqmjbtm0aNmyY+vfv7zTn559/Vtu2bdW6dWvt3LlTPXr00BtvvOE059ChQ2ratKkef/xx7dq1S19++aXWr1+vnj17Wn4vrmb16tVq3LixRo8erYEDBzpde9myZVq+fLm++OILffLJJ2rRooX+85//aO3atRo3bpwGDx6suLi4HNceO3as/Pz8HC04OPim1Q0AAADkOSaf2bRpk5Fk5s+f79QfEBBgvL29jbe3txkwYICjX5Lp27ev09yHH37YjBkzxqlv5syZpkSJEo7jKlWqmHHjxjmOW7VqZbp27ZpjXWvWrDGSzN9//22MMea3334zderUMaVKlTLp6elZ5mdkZJhChQqZb7/99oq1Xr7uJRERESY8PDzLupLMggULjDHGTJs2zQQEBJgzZ844xqdOnWokmR07dhhjjBk4cKC55557nNZ44403nK753HPPmeeff95pzrp160yBAgWc1s5JRESE6dOnT5b+Ll26mKioKDN//nzj4+Nj5syZ4zQ+dOhQ4+XlZVJSUhx9TZo0MSEhISYjI8PRV6lSJTN27Ngcr3/27Fljt9sd7ejRo0aSsV983iSNRrPSAADAHc1utxtJxm63X3UuX/HxX5s3b1ZmZqY6duyo9PR0p7GaNWs6He/cuVMbNmxwug0yIyNDZ8+eVVpamry8vNStWzd99NFHGjBggP744w8tW7ZMq1evvmodd911l4wxSktLU/Xq1TVv3jwVLFhQf/zxhwYPHqzY2FgdO3ZMGRkZSktLU1JS0hVrvZL77rvviuMJCQmqVq2aPDw8HH0PPvig05zExETVqlXLqa927dpOxzt37tSuXbs0a9YsR58xRpmZmfr5558VFhZmuebLxcXFafHixZo7d262T2oNCQlRoUKFHMeBgYFycXFRgQIFnPqOHTuW4zXc3d3viM+JAgAAAHeCfBciQ0NDZbPZlJiY6NRfrlw5Sf9/C+k/XX7ba2pqqoYPH67HHnssy9xLgatz5856/fXXtXHjRv34448qW7as6tevf9X61q1bJ19fXxUvXtwp/HTp0kXHjx/XpEmTVKZMGbm7u+vBBx90PBAnp1qv5Frm3ojU1FT16NFDvXv3zjJWunTpG1q7fPnyCggI0KeffqoWLVrIzc3NafzyY5vNlm1fZmbmDdUBAAAA5Bf5LkQGBASocePGmjJlinr16nVdQapGjRpKTExUaGjoFa/TunVrzZgxQxs3btQzzzxjae2yZcvK398/S/+GDRv0wQcfqHnz5pKko0eP6q+//rrqegULFpSk63rCa1hYmGbOnKmzZ886wvGmTZuc5lSqVElLly516tuyZYvTcY0aNbR3794rvl/Xq2jRopo/f74iIyPVrl07ffXVV1lCIgAAAICbJ989WEeSPvjgA124cEE1a9bUl19+qYSEBCUmJurzzz/Xvn375OLicsXzhwwZos8++0zDhw/Xnj17lJCQoDlz5mjw4MFO87p166aYmBglJCSoS5cuN1RzhQoVNHPmTCUkJCguLk4dO3bMdtf0cmXKlJHNZtPixYv1559/KjU11fI1O3ToIJvNpu7du2vv3r1aunSpxo8f7zSnR48e2rdvnwYOHKj9+/frq6++UnR0tKT/f0DRwIED9eOPP6pnz56Kj4/XgQMH9M0331z1wTrx8fGKj49Xamqq/vzzT8XHx2vv3r1Z5hUvXlyrV6/Wvn371L59e8dTcgEAAADcfPkyRJYvX147duxQo0aNNGjQIFWvXl01a9bUe++9p/79+2vkyJFXPL9JkyZavHixVqxYoVq1aumBBx7QxIkTVaZMGad5jRo1UokSJdSkSROVLFnyhmr+5JNP9Pfff6tGjRrq1KmTevfureLFi1/1vFKlSmn48OF6/fXXFRgYeE1PRPXx8dG3336r3bt3Kzw8XG+88Ybj6zMuKVu2rObOnav58+erWrVqmjp1quPprJc+R1itWjWtXbtW+/fvV/369RUeHq4hQ4Zc9T0JDw9XeHi4tm3bptmzZys8PNyxE3u5oKAgrV69Wrt371bHjh2v+7s1r4Wf7LLJ3NZ2BzwehUa7vgYAAP5n2Izhv+63SmpqqkqVKqUZM2Zk+/nJ/1WjR4/Whx9+qKNHj+Z2KbdESkrKf7+70i7J97Zem39aAQAAcCtc+h3XbrfL1/fKv+Pmu89E3g6ZmZn666+/NGHCBPn7++vRRx/N7ZJuqQ8++EC1atVSQECANmzYoLfffvumfgckAAAAgDsHIfIWSEpKUtmyZXXXXXcpOjparq7/22/zgQMHNGrUKJ04cUKlS5dWv379NGjQoNwuCwAAAMAtwO2swDXidlYAAAD8r7mW21nz5YN1AAAAAADXhxAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALDsf/u7J4Bb6XU/yeP2XtI2/MbON0N5vCsAAABuDDuRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLXHO7ACCvsg+yy9fXN7fLAAAAAG4rdiIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIiFJioyMVN++fW/b9UJCQvTuu+/e0Bq3u+Ys/Pwkm412Iw0AAAB5DiEyj+jatatsNptsNpsKFiyo0NBQjRgxQhcuXMjt0m6JPXv26PHHH1dISIhsNtsNB04AAAAANwchMg9p2rSpkpOTdeDAAfXr10/Dhg3T22+/ndtl5SgjI0OZmZnXdW5aWprKlSunf//73woKCrrJlQEAAAC4XoTIPMTd3V1BQUEqU6aMXnzxRTVq1EiLFi2SJP3999/q3LmzChcuLC8vLzVr1kwHDhxwOn/Dhg2KjIyUl5eXChcurCZNmujvv/92jGdmZmrAgAEqUqSIgoKCNGzYMKfz33nnHVWtWlXe3t4KDg7WSy+9pNTUVMd4dHS0/P39tWjRIlWpUkXu7u5KSkrSsWPH1KpVK3l6eqps2bKaNWvWVV9rrVq19Pbbb+upp56Su7u7pfdnyZIl8vPzc6zftWtXtW7dWmPGjFFgYKD8/f0du7evvfaaihQporvuukszZsywtD4AAAAAQmSe5unpqXPnzkm6GJi2bt2qRYsWaePGjTLGqHnz5jp//rwkKT4+Xg8//LCqVKmijRs3av369WrVqpUyMjIc68XExMjb21txcXF66623NGLECK1cudIxXqBAAU2ePFl79uxRTEyMVq9erQEDBjjVlJaWpnHjxunjjz/Wnj17VLx4cXXt2lVHjx7VmjVrNHfuXH3wwQc6duzYTX0vZs+erfbt22vWrFnq2LGjo3/16tX67bff9MMPP+idd97R0KFD1bJlSxUuXFhxcXF64YUX1KNHD/3nP//Jce309HSlpKQ4NQAAACDfMsgTunTpYqKioowxxmRmZpqVK1cad3d3079/f7N//34jyWzYsMEx/6+//jKenp7mq6++MsYY0759e1O3bt0c14+IiDD16tVz6qtVq5YZOHBgjud8/fXXJiAgwHE8Y8YMI8nEx8c7+hITE40ks3nzZkdfQkKCkWQmTpxo6bWXKVMm27kRERGmT58+ZsqUKcbPz8/ExsY6jXfp0sWUKVPGZGRkOPoqVapk6tev7zi+cOGC8fb2Nl988UWO1x86dKiRlKXZJWNoN9YAAABwR7Db7Rd/x7XbrzrXNbfCK67d4sWL5ePjo/PnzyszM1MdOnTQsGHDtGrVKrm6uur+++93zA0ICFClSpWUkJAg6eJO5BNPPHHF9atVq+Z0XKJECacdw++//15jx47Vvn37lJKSogsXLujs2bNKS0uTl5eXJKlgwYJO6yQkJMjV1VX33Xefo69y5cry9/e/7vfhn+bOnatjx45pw4YNqlWrVpbxu+++WwUK/P+Ge2BgoO655x7HsYuLiwICAq64Mzpo0CC9+uqrjuOUlBQFBwfflPoBAACAvIbbWfOQhg0bKj4+XgcOHNCZM2cct59a4enpedU5bm5uTsc2m83xYJwjR46oZcuWqlatmubNm6dt27bp/ffflyTHLbWXrmO7jV/dEB4ermLFiunTTz+VMSbLeHav6UqvMzvu7u7y9fV1agAAAEB+RYjMQ7y9vRUaGqrSpUvL1fX/N5HDwsJ04cIFxcXFOfqOHz+uxMREValSRdLFXcZVq1Zd97W3bdumzMxMTZgwQQ888IAqVqyo33777arnVa5cWRcuXNC2bdscfYmJiTp58uR11/JP5cuX15o1a/TNN9+oV69eN2VNAAAAADkjRP4PqFChgqKiotS9e3etX79eO3fu1NNPP61SpUopKipK0sVbMrds2aKXXnpJu3bt0r59+zR16lT99ddflq4RGhqq8+fP67333tPhw4c1c+ZMffjhh1c9r1KlSmratKl69OihuLg4bdu2Td26dbvqzui5c+cUHx+v+Ph4nTt3Tr/++qvi4+N18ODBLHMrVqyoNWvWaN68eerbt6+l1wMAAADg+hAi/0fMmDFD9913n1q2bKkHH3xQxhgtXbrUcetmxYoVtWLFCu3cuVO1a9fWgw8+qG+++cZpR/NKqlevrnfeeUfjxo3TPffco1mzZmns2LGWaytZsqQiIiL02GOP6fnnn1fx4sWveM5vv/2m8PBwhYeHKzk5WePHj1d4eLi6deuW7fxKlSpp9erV+uKLL9SvXz9Ldd0oP9llk7lp7Q54zM3tbwAAAMhzbCa7D5IByFFKSor8/Pwk2SXdvM9H8k8iAAAAcsul33HtdvtVnwHCTiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAy19wuAMizXveTPG7ecrbhF//XDDU3b1EAAADgJmMnEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYJlrbhcA5FX2QXb5+vrmdhkAAADAbcVOJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMtfcLgDIs/z8crsCADeLMbldAQAAeQY7kbdRdHS0/P39b3idI0eOyGazKT4+/obXul1sNpsWLlx4U9fs2rWrWrdufVPXBAAAAHBl+SJEdu3aVTabTS+88EKWsZdfflk2m01du3a9/YVdp+DgYCUnJ+uee+65oXVsNpujeXt7q0KFCuratau2bdt2kyq9fsnJyerQoYMqVqyoAgUKqG/fvrldEgAAAADlkxApXQxec+bM0ZkzZxx9Z8+e1ezZs1W6dOlcrOzanDt3Ti4uLgoKCpKr643fjTxjxgwlJydrz549ev/995Wamqr7779fn3322U2o9vqlp6erWLFiGjx4sKpXr56rtQAAAAD4f/kmRNaoUUPBwcGaP3++o2/+/PkqXbq0wsPDneYuX75c9erVk7+/vwICAtSyZUsdOnTIMX7pdtL58+erYcOG8vLyUvXq1bVx40andaKjo1W6dGl5eXmpTZs2On78uNP4oUOHFBUVpcDAQPn4+KhWrVr6/vvvneaEhIRo5MiR6ty5s3x9ffX8889nuZ01NjZWNptNq1atUs2aNeXl5aU6deooMTHxqu+Lv7+/goKCFBISokceeURz585Vx44d1bNnT/3999+SpGHDhunee+91Ou/dd99VSEiIU9+nn36qu+++W+7u7ipRooR69uyZ43WHDh2qEiVKaNeuXdmOh4SEaNKkSercubP8LH72cMuWLSpWrJjGjRvnVPenn36q0qVLy8fHRy+99JIyMjL01ltvKSgoSMWLF9fo0aOvuG56erpSUlKcGgAAAJBf5ZsQKUnPPvusZsyY4Tj+9NNP9cwzz2SZd/r0ab366qvaunWrVq1apQIFCqhNmzbKzMx0mvfGG2+of//+io+PV8WKFdW+fXtduHBBkhQXF6fnnntOPXv2VHx8vBo2bKhRo0Y5nZ+amqrmzZtr1apV2rFjh5o2bapWrVopKSnJad748eNVvXp17dixQ2+++WaOr++NN97QhAkTtHXrVrm6uurZZ5+95vdIkl555RWdOnVKK1eutHzO1KlT9fLLL+v555/X7t27tWjRIoWGhmaZZ4xRr1699Nlnn2ndunWqVq3addV4udWrV6tx48YaPXq0Bg4c6Og/dOiQli1bpuXLl+uLL77QJ598ohYtWug///mP1q5dq3Hjxmnw4MGKi4vLce2xY8fKz8/P0YKDg29KzQAAAECeZPKBLl26mKioKHPs2DHj7u5ujhw5Yo4cOWI8PDzMn3/+aaKiokyXLl1yPP/PP/80kszu3buNMcb8/PPPRpL5+OOPHXP27NljJJmEhARjjDHt27c3zZs3d1rnySefNH5+fles9e677zbvvfee47hMmTKmdevWTnMuXX/Hjh3GGGPWrFljJJnvv//eMWfJkiVGkjlz5kyO15JkFixYkKX/zJkzRpIZN26cMcaYoUOHmurVqzvNmThxoilTpozjuGTJkuaNN9644rW+/vpr06FDBxMWFmb+85//5Dj3chEREaZPnz5Z+i/9XOfPn298fHzMnDlznMaHDh1qvLy8TEpKiqOvSZMmJiQkxGRkZDj6KlWqZMaOHZvj9c+ePWvsdrujHT161Egy9ovPc6TRaP8LDQCAfM5utxtJxm63X3VuvvqKj2LFiqlFixaKjo6WMUYtWrRQ0aJFs8w7cOCAhgwZori4OP3111+OHcikpCSnh9n8cxetRIkSkqRjx46pcuXKSkhIUJs2bZzWffDBB7V8+XLHcWpqqoYNG6YlS5YoOTlZFy5c0JkzZ7LsRNasWdPS68upnmv9zKcxRtLFB+9YcezYMf322296+OGHrzjvlVdekbu7uzZt2pTt+3494uLitHjxYs2dOzfbJ7WGhISoUKFCjuPAwEC5uLioQIECTn3Hjh3L8Rru7u5yd3e/KfUCAAAAeV2+up1VunhLa3R0tGJiYnK83bNVq1Y6ceKEpk+frri4OMetjufOnXOa5+bm5vjzpcB1+S2vV9K/f38tWLBAY8aM0bp16xQfH6+qVatmuY63t7el9W60nksSEhIkSWXLlpUkFShQwBEsLzl//rzjz56enpbWbdy4sX799Vd9991311xTTsqXL6/KlSvr008/darpkn++J9LF9yW7vut5nwAAAID8KN+FyKZNm+rcuXM6f/68mjRpkmX8+PHjSkxM1ODBg/Xwww8rLCzM8YCZaxEWFpblc3abNm1yOt6wYYO6du2qNm3aqGrVqgoKCtKRI0eu+Vo327vvvitfX181atRI0sUd3N9//90pSP7zOyoLFSqkkJAQrVq16orrPvroo5o9e7a6deumOXPm3JRaixYtqtWrV+vgwYNq165dtkESAAAAwM2Tr25nlSQXFxfHTpuLi0uW8cKFCysgIEAfffSRSpQooaSkJL3++uvXfJ3evXurbt26Gj9+vKKiovTdd9853coqSRUqVND8+fPVqlUr2Ww2vfnmm7d9R+zkyZP6/ffflZ6erv3792vatGlauHChPvvsM/n7+0uSIiMj9eeff+qtt95S27ZttXz5ci1btky+vr6OdYYNG6YXXnhBxYsXV7NmzXTq1Clt2LBBvXr1crpemzZtNHPmTHXq1Emurq5q27ZtjrVdCqqpqan6888/FR8fr4IFC6pKlSpO84oXL67Vq1erYcOGat++vebMmXNTvv4EAAAAQFb5bidSknx9fZ0C0D8VKFBAc+bM0bZt23TPPffolVde0dtvv33N13jggQc0ffp0TZo0SdWrV9eKFSs0ePBgpznvvPOOChcurDp16qhVq1Zq0qSJatSocV2v6Xo988wzKlGihCpXrqwXX3xRPj4+2rx5szp06OCYExYWpg8++EDvv/++qlevrs2bN6t///5O63Tp0kXvvvuuPvjgA919991q2bKlDhw4kO0127Ztq5iYGHXq1MnpK1cuFx4ervDwcG3btk2zZ89WeHi4mjdvnu3coKAgrV69Wrt371bHjh2VkZFxHe/GtfGTXTYZGo12i9ttebQOAACwzGYu/7AbgCtKSUn573dX2iVl/39GALh5+K8UAAC33qXfce12e44bbpfky51IAAAAAMD1IUQCAAAAACwjRAIAAAAALCNEAgAAAAAsI0QCAAAAACwjRAIAAAAALCNEAgAAAAAsI0QCAAAAACxzze0CgDzrdT/J4+YuaYbyreoAAAC4s7ETCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwzDW3CwDyKvsgu3x9fXO7DAAAAOC2YicSAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIfIqbDabFi5cmNtlIAe5+vPx85NsNtrNaAAAAMgz8kWI/PDDD1WoUCFduHDB0Zeamio3NzdFRkY6zY2NjZXNZtOhQ4duc5W3z59//qkXX3xRpUuXlru7u4KCgtSkSRNt2LAht0tzMn/+fD3yyCMKCAiQzWZTfHx8bpcEAAAA5Hv5IkQ2bNhQqamp2rp1q6Nv3bp1CgoKUlxcnM6ePevoX7NmjUqXLq3y5cvnRqk31blz57Ltf/zxx7Vjxw7FxMRo//79WrRokSIjI3X8+PHbXOGVnT59WvXq1dO4ceNyuxQAAAAA/5UvQmSlSpVUokQJxcbGOvpiY2MVFRWlsmXLatOmTU79DRs2dDr/r7/+Ups2beTl5aUKFSpo0aJFTuNr165V7dq15e7urhIlSuj111932vVMT09X7969Vbx4cXl4eKhevXrasmWL0zVtNpuWLFmiatWqycPDQw888IB++uknp+usX79e9evXl6enp4KDg9W7d2+dPn3aMR4SEqKRI0eqc+fO8vX11fPPP5/lvTh58qTWrVuncePGqWHDhipTpoxq166tQYMG6dFHH5Uk9e/fXy1btnSc8+6778pms2n58uWOvtDQUH388ceSpC1btqhx48YqWrSo/Pz8FBERoe3btztd12az6eOPP77i+3i5Tp06aciQIWrUqNEV5/3T0KFDVaJECe3atcvxnowaNUqdO3eWj4+PypQpo0WLFunPP/9UVFSUfHx8VK1aNaf/gwEAAABAzvJFiJQu7kauWbPGcbxmzRpFRkYqIiLC0X/mzBnFxcVlCZHDhw9Xu3bttGvXLjVv3lwdO3bUiRMnJEm//vqrmjdvrlq1amnnzp2aOnWqPvnkE40aNcpx/oABAzRv3jzFxMRo+/btCg0NVZMmTRxrXPLaa69pwoQJ2rJli4oVK6ZWrVrp/PnzkqRDhw6padOmevzxx7Vr1y59+eWXWr9+vXr27Om0xvjx41W9enXt2LFDb775Zpb3wcfHRz4+Plq4cKHS09Ozfa8iIiK0fv16ZWRkSLoYkosWLeoI4b/++qsOHTrkuBX41KlT6tKli9avX69NmzapQoUKat68uU6dOmX5fbxRxhj16tVLn332mdatW6dq1ao5xiZOnKi6detqx44datGihTp16qTOnTvr6aef1vbt21W+fHl17txZxphs105PT1dKSopTAwAAAPItk09Mnz7deHt7m/Pnz/9fe3cel1P6/w/8dVe6W+8SaSGiPZOK8ElDJJ+yjcwMhn6UfYbEWIbGUsZYxjCWGYMR5WusM8OMfZchM2S5s2UpmYwpjKWUtF6/P3w7X7eKE1F4PR+P6/HoXNd1rvM+p4P77TrnukVWVpbQ0dERN2/eFGvWrBFt2rQRQgixb98+AUD89ddf0n4AxKRJk6Tt7OxsAUDs2LFDCCHE559/LpycnERxcbHUZ9GiRcLIyEgUFRWJ7OxsUaNGDbF69WqpPT8/X1hbW4vZs2cLIYQ4cOCAACDWrVsn9bl9+7bQ19cX69evF0IIMXDgQDFkyBCNczp06JDQ0tISubm5QgghGjRoIIKCgp55LX7++WdRs2ZNoaenJ1q1aiUiIiJEYmKi1H737l2hpaUlEhISRHFxsTAzMxMzZ84ULVu2FEII8eOPP4q6deuWO35RUZEwNjYWW7ZskX0dnyY1NVUAEKdOnSrVBkD89NNPok+fPsLFxUX8/fffGu0NGjQQ/+///T9pOz09XQAQkydPlur++OMPAUCkp6eXefzIyEgBoFTJBIRgqZxCRERERFUqMzPz0WfczMxn9n1rZiLbtm2LnJwcJCQk4NChQ3B0dIS5uTl8fX2l9yLj4uLQqFEj1K9fX2Pfx2e1DA0NoVKpcPPmTQBAUlISvL29oXhshUkfHx9kZ2fj77//RkpKCgoKCuDj4yO116hRAy1atEBSUpLGcby9vaWfzczM4OTkJPVJTExEbGysNJNoZGSEgIAAFBcXIzU1VdrPy8vrmdfigw8+wD///IPNmzcjMDAQcXFxaNq0KWJjYwEApqamcHd3R1xcHM6cOQNdXV0MGTIEp06dQnZ2Ng4ePAhfX19pvBs3bmDw4MFwcHCAiYkJVCoVsrOzkZaWJvs6vohPP/0UR48exe+//466deuWan/8uBYWFgAANze3UnXlxRIREYHMzEypXLt27YVjJiIiIiJ6XelUdQCvir29PerVq4cDBw7g7t27UhJkbW0NGxsbHDlyBAcOHICfn1+pfWvUqKGxrVAoUFxc/EriLpGdnY2hQ4ciPDy8VNvjSa+hoaGs8fT09NChQwd06NABkydPxqBBgxAZGYnQ0FAAj5LuuLg4KJVK+Pr6wszMDC4uLjh8+DAOHjyIMWPGSGOFhITg9u3bWLBgARo0aAClUglvb+9SC/u8rOvYoUMHrF27Frt27UJwcHCp9sePW5Lsl1VXXixKpRJKpfKF4yQiIiIiehO8NTORwKP3IuPi4hAXF6fx1R5t2rTBjh07cOzYsVLvQz6Li4sL/vjjD4336eLj42FsbIx69erBzs4Ourq6Gl+fUVBQgISEBLi6umqM9fgCP3fv3sWlS5fg4uICAGjatCnOnz8Pe3v7UkVXV7dCMZfF1dVVY5Gekvci9+3bJ12rtm3bYu3atbh06ZLG9YuPj0d4eDg6deqExo0bQ6lU4t9//33hmOR67733sGbNGgwaNAjr1q17ZcclIiIiInobvXVJ5OHDh6FWqzUex/T19cXSpUuRn59f4SRy2LBhuHbtGkaMGIELFy7gt99+Q2RkJEaPHg0tLS0YGhrik08+wbhx47Bz506cP38egwcPxoMHDzBw4ECNsb744gvs27cPZ8+eRWhoKGrXro2goCAAwPjx43HkyBGEhYVBrVbj8uXL+O2330otrPMst2/fhp+fH3788UecPn0aqamp+OmnnzB79mx069ZN6temTRvcv38fW7du1UgiV69eDSsrKzg6Okp9HRwcsGrVKiQlJeHo0aMIDg6Gvr5+heIqy507d6BWq3H+/HkAwMWLF6FWq5GRkVGqb/fu3bFq1Sr0798fP//88wsfm4iIiIiIyvbWPM4KPEoic3Nz4ezsLL0HBzxKIu/fvy99FUhF1K1bF9u3b8e4cePg7u4OMzMzDBw4EJMmTZL6zJo1C8XFxejbty/u378PLy8v7Nq1CzVr1tQYa9asWRg5ciQuX74MDw8PbNmyRZplbNKkCQ4ePIiJEyeidevWEELAzs4OvXr1qlC8RkZGaNmyJebNmye9r2ljY4PBgwfj888/l/rVrFkTbm5uuHHjBpydnQE8SiyLi4s1EnAAWL58OYYMGYKmTZvCxsYGM2bMwNixYysUV1k2b96M/v37S9sfffQRgEdf4xEVFVWq/4cffihdZy0tLbz//vsvHMPTmCATgOqpfcpZ8JWIiIiI6LWlEIIfc6tayXdT3r17F6amplUdDj1DVlYWTExMACaRRERERPSGKPmMm5mZCZXq6Z9x36rHWYmIiIiIiOjFMIkkIiIiIiIi2d6qdyKrq7Zt24JPFRMRERER0euAM5FEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItn4FR9Ez2uCCaD39C6KqfKHE5H8mhciIiIiqv44E0lERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItl0qjoAotdVZkQmVCpVVYdBRERERPRKcSaSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGTTqeoAiF5bJiZVHQER0YsToqojICKi1wxnIqtAVFQUPDw8qjqM115cXBwUCgXu3btX1aEQEREREb013sgkMjQ0FAqFolQJDAx85bEoFAr8+uuvGnVjx47Fvn37Xsnxk5OTMWDAANSvXx9KpRJ169ZF+/btsXr1ahQWFr6SGJ7X9OnT0apVKxgYGMDU1LSqwyEiIiIiIrzBj7MGBgYiJiZGo06pVFZRNJqMjIxgZGT00o9z7Ngx+Pv7o3Hjxli0aBGcnZ0BAMePH8eiRYvwzjvvwN3d/aXH8bzy8/PRo0cPeHt7Y/ny5VUdDhERERER4Q2diQQeJYyWlpYapWbNmlL7hQsX8O6770JPTw+urq7Yu3evxqyhn58fwsLCNMa8desWdHV1pVlEW1tbTJs2Db1794ahoSHq1q2LRYsWSf1tbW0BAN27d4dCoZC2n3ycNSEhAR06dEDt2rVhYmICX19fnDx5UuPYCoUC0dHR6N69OwwMDODg4IDNmzeXe/5CCISGhsLR0RHx8fHo2rUrHBwc4ODggN69e+Pw4cNo0qSJ1P/MmTPw8/ODvr4+atWqhSFDhiA7O1tqLy4uxhdffIF69epBqVTCw8MDO3fulNrz8/MRFhYGKysr6OnpoUGDBpg5c6bUfu/ePQwaNAjm5uZQqVTw8/NDYmJiufEDwNSpU/Hpp5/Czc3tqf1KPHjwAB07doSPjw/u3buHq1evQqFQYMOGDWjdujX09fXRvHlzXLp0CQkJCfDy8oKRkRE6duyIW7duyToGEREREdHb7o1NIp+mqKgIQUFBMDAwwNGjR/HDDz9g4sSJGn0GDRqENWvWIC8vT6r78ccfUbduXfj5+Ul1X3/9Ndzd3XHq1ClMmDABI0eOxJ49ewA8Sg4BICYmBunp6dL2k+7fv4+QkBAcPnwYf/75JxwcHNCpUyfcv39fo9/UqVPRs2dPnD59Gp06dUJwcDDu3LlT5phqtRpJSUkYO3YstLTK/jUrFAoAQE5ODgICAlCzZk0kJCTgp59+wt69ezWS6AULFmDu3LmYM2cOTp8+jYCAALz33nu4fPkyAGDhwoXYvHkzNmzYgIsXL2L16tVS0gwAPXr0wM2bN7Fjxw6cOHECTZs2Rfv27cuNv6Lu3buHDh06oLi4GHv27NF4/DUyMhKTJk3CyZMnoaOjgz59+uCzzz7DggULcOjQISQnJ2PKlCnljp2Xl4esrCyNQkRERET01hJvoJCQEKGtrS0MDQ01yvTp04UQQuzYsUPo6OiI9PR0aZ89e/YIAGLTpk1CCCFyc3NFzZo1xfr166U+TZo0EVFRUdJ2gwYNRGBgoMaxe/XqJTp27ChtPz5micjISOHu7l5u/EVFRcLY2Fhs2bJFY5xJkyZJ29nZ2QKA2LFjR5ljrFu3TgAQJ0+elOpu3LihcT0WLVokhBDihx9+EDVr1hTZ2dlS323btgktLS2RkZEhhBDC2tpaun4lmjdvLoYNGyaEEGLEiBHCz89PFBcXl4rl0KFDQqVSiYcPH2rU29nZiaVLl5Z7HUrExMQIExOTUvUHDhwQAERSUpJo0qSJ+OCDD0ReXp7UnpqaKgCI6OhoqW7t2rUCgNi3b59UN3PmTOHk5FTu8SMjIwWAUiXz0ZqGLCwsLK93ISIiEkJkZmYKACIzM/OZfd/Ymch27dpBrVZrlI8//hgAcPHiRdjY2MDS0lLq36JFC4399fT00LdvX6xYsQIAcPLkSZw9exahoaEa/by9vUttJyUlVSjWGzduYPDgwXBwcICJiQlUKhWys7ORlpam0e/xx08NDQ2hUqlw8+ZN2cepVauWdC1MTU2Rn58PAEhKSoK7uzsMDQ2lvj4+PiguLsbFixeRlZWFf/75Bz4+Phrj+fj4SOcaGhoKtVoNJycnhIeHY/fu3VK/xMREZGdno1atWtL7oEZGRkhNTUVKSor8C1WODh06wN7eHuvXr4eurm6p9sevm4WFBQBoPCJrYWHx1OsYERGBzMxMqVy7du2FYyYiIiIiel29sQvrGBoawt7e/oXGGDRoEDw8PPD3338jJiYGfn5+aNCgQSVF+H9CQkJw+/ZtLFiwAA0aNIBSqYS3t7eU5JWoUaOGxrZCoUBxcXGZYzo4OAB4lDB7enoCALS1taVroqNTub/6pk2bIjU1FTt27MDevXvRs2dP+Pv74+eff0Z2djasrKwQFxdXar/KWHW1c+fO+OWXX3D+/Pky3598/LqVPML7ZF151xF49H5tdVmUiYiIiIioqr2xM5FP4+TkhGvXruHGjRtSXVnvK7q5ucHLywvLli3DmjVrMGDAgFJ9/vzzz1LbLi4u0naNGjVQVFT01Hji4+MRHh6OTp06oXHjxlAqlfj3338reloaPD094ezsjDlz5jw1QQIAFxcXJCYmIicnRyMmLS0tODk5QaVSwdraGvHx8aXidnV1lbZVKhV69eqFZcuWYf369fjll19w584dNG3aFBkZGdDR0YG9vb1GqV279gudJwDMmjULISEhaN++Pc6fP//C4xERERERUfne2JnIvLw8ZGRkaNTp6Oigdu3a6NChA+zs7BASEoLZs2fj/v37mDRpEoD/m6kqMWjQIISFhcHQ0BDdu3cvdZz4+HjMnj0bQUFB2LNnD3766Sds27ZNare1tcW+ffvg4+MDpVKpsUJsCQcHB6xatQpeXl7IysrCuHHjoK+v/0Lnr1AoEBMTgw4dOsDHxwcRERFwcXFBQUEBfv/9d9y6dQva2toAgODgYERGRiIkJARRUVG4desWRowYgb59+0qPf44bNw6RkZGws7ODh4cHYmJioFarsXr1agDAN998AysrK3h6ekJLSws//fQTLC0tYWpqCn9/f3h7eyMoKAizZ8+Go6Mj/vnnH2zbtg3du3eHl5dXmeeQlpaGO3fuIC0tDUVFRVCr1QAAe3v7Ul+RMmfOHBQVFcHPzw9xcXHS15kQEREREVElewXvaL5yISEhAii9EMrji6ckJSUJHx8foaurK5ydncWWLVsEALFz506Nse7fvy8MDAykBWQe16BBAzF16lTRo0cPYWBgICwtLcWCBQs0+mzevFnY29sLHR0d0aBBAyFE6YV1Tp48Kby8vISenp5wcHAQP/30k2jQoIGYN2+e1AcovUCPiYmJiImJeeq1uHjxoggJCRH16tUTOjo6wsTERLRp00YsXbpUFBQUSP1Onz4t2rVrJ/T09ISZmZkYPHiwuH//vtReVFQkoqKiRN26dUWNGjWEu7u7xqI+P/zwg/Dw8BCGhoZCpVKJ9u3bayzqk5WVJUaMGCGsra1FjRo1hI2NjQgODhZpaWnlxl7e7/HAgQNCiP9bWOfu3bvSPiNGjBBWVlbi4sWL0sI6p06dktrL2qe8hXvKU/LSMZBZ5ethsLCwsLwuhYiIqreKLKyjEEKIV565VkPx8fF49913kZycDDs7O6n+6tWrsLOzQ0JCApo2baqxj62tLUaNGoVRo0a94mipKmVlZcHExARAJgBVVYdDRPRa4KcNIqLqreQzbmZmJlSqp3/GfWMfZ32WTZs2wcjICA4ODkhOTsbIkSPh4+MjJZAFBQW4ffs2Jk2ahP/85z+lEkgiIiIiIqK30VubRN6/fx/jx49HWloaateuDX9/f8ydO1dqj4+PR7t27eDo6Iiff/65CiMlIiIiIiKqPvg4K1EF8XFWIqKK46cNIqLqrSKPs76VX/FBREREREREz4dJJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItne2q/4IHphE0wAvRcfRkRyyUIiIiIien1wJpKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLLpVHUARK+rzIhMqFSqqg6DiIiIiOiV4kwkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhk06nqAKhsCoUCmzZtQlBQUFWHUm2Fhobi3r17+PXXX6smABOTqjkuEVVPQlR1BERERK/EGzkTGRoaCoVCIZVatWohMDAQp0+frurQXrlffvkFfn5+qFmzJvT19eHk5IQBAwbg1KlTVR3aU6Wnp6NPnz5wdHSElpYWRo0aVdUhERERERER3tAkEgACAwORnp6O9PR07Nu3Dzo6OujSpcsLjZmfn19J0b0a48ePR69eveDh4YHNmzfj4sWLWLNmDRo1aoSIiIiqDu+p8vLyYG5ujkmTJsHd3b2qwyEiIiIiov/1xiaRSqUSlpaWsLS0hIeHByZMmIBr167h1q1bUp/x48fD0dERBgYGaNSoESZPnoyCggKpPSoqCh4eHoiOjkbDhg2hp6cH4NGjptHR0ejevTsMDAzg4OCAzZs3S/sVFRVh4MCBaNiwoTT7t2DBglIxrlixAo0bN4ZSqYSVlRXCwsLKPZ9r166hZ8+eMDU1hZmZGbp164arV6+W2//PP//E7Nmz8c033+Cbb75B69atUb9+fTRr1gyTJk3Cjh07NPovXrwYdnZ20NXVhZOTE1atWqXRnpaWhm7dusHIyAgqlQo9e/bEjRs3pPbExES0a9cOxsbGUKlUaNasGY4fPy61Hz58GK1bt4a+vj5sbGwQHh6OnJyccuO3tbXFggUL0K9fP5jIfGw0ISEB5ubm+OqrrwD83+9vxYoVqF+/PoyMjDBs2DAUFRVh9uzZsLS0RJ06dTB9+nRZ4xMRERER0RucRD4uOzsbP/74I+zt7VGrVi2p3tjYGLGxsTh//jwWLFiAZcuWYd68eRr7Jicn45dffsHGjRuhVqul+qlTp6Jnz544ffo0OnXqhODgYNy5cwcAUFxcjHr16uGnn37C+fPnMWXKFHz++efYsGGDtP/ixYsxfPhwDBkyBGfOnMHmzZthb29fZvwFBQUICAiAsbExDh06hPj4eBgZGSEwMLDc2dG1a9dKSVNZFAqF9POmTZswcuRIjBkzBmfPnsXQoUPRv39/HDhwQDqfbt264c6dOzh48CD27NmDK1euoFevXtIYwcHBqFevHhISEnDixAlMmDABNWrUAACkpKQgMDAQH3zwAU6fPo3169fj8OHDT02aK2r//v3o0KEDpk+fjvHjx0v1KSkp2LFjB3bu3Im1a9di+fLl6Ny5M/7++28cPHgQX331FSZNmoSjR4+WO3ZeXh6ysrI0ChERERHRW0u8gUJCQoS2trYwNDQUhoaGAoCwsrISJ06ceOp+X3/9tWjWrJm0HRkZKWrUqCFu3ryp0Q+AmDRpkrSdnZ0tAIgdO3aUO/bw4cPFBx98IG1bW1uLiRMnltsfgNi0aZMQQohVq1YJJycnUVxcLLXn5eUJfX19sWvXrjL3DwwMFE2aNNGomzt3rnRNDA0Nxb1794QQQrRq1UoMHjxYo2+PHj1Ep06dhBBC7N69W2hra4u0tDSp/dy5cwKAOHbsmBBCCGNjYxEbG1tmLAMHDhRDhgzRqDt06JDQ0tISubm55V6DEr6+vmLkyJGl6kNCQkS3bt3Exo0bhZGRkVi3bp1Ge2RkpDAwMBBZWVlSXUBAgLC1tRVFRUVSnZOTk5g5c2a5x4+MjBQASpXMR8tosLCwsDwqREREr7HMzEwBQGRmZj6z7xs7E9muXTuo1Wqo1WocO3YMAQEB6NixI/766y+pz/r16+Hj4wNLS0sYGRlh0qRJSEtL0xinQYMGMDc3LzV+kyZNpJ8NDQ2hUqlw8+ZNqW7RokVo1qwZzM3NYWRkhB9++EEa++bNm/jnn3/Qvn17WeeSmJiI5ORkGBsbw8jICEZGRjAzM8PDhw+RkpIi+5oMGDAAarUaS5cuRU5ODoQQAICkpCT4+Pho9PXx8UFSUpLUbmNjAxsbG6nd1dUVpqamUp/Ro0dj0KBB8Pf3x6xZszTiSkxMRGxsrBS7kZERAgICUFxcjNTUVNnxl+Xo0aPo0aMHVq1apTEzWsLW1hbGxsbStoWFBVxdXaGlpaVR9/jv7kkRERHIzMyUyrVr114oZiIiIiKi19kbm0QaGhrC3t4e9vb2aN68OaKjo5GTk4Nly5YBAP744w8EBwejU6dO2Lp1K06dOoWJEyeWejzU0NCwzPFLHtUsoVAoUFxcDABYt24dxo4di4EDB2L37t1Qq9Xo37+/NLa+vn6FziU7OxvNmjWTkuKScunSJfTp06fMfRwcHHDlyhWNdzxNTU1hb2+PunXrVuj4ckRFReHcuXPo3Lkz9u/fD1dXV2zatEmKf+jQoRqxJyYm4vLly7Czs3uh49rZ2cHZ2RkrVqzQONcSZf2enva7K4tSqYRKpdIoRERERERvqzc2iXySQqGAlpYWcnNzAQBHjhxBgwYNMHHiRHh5ecHBwUFjlvJFxMfHo1WrVhg2bBg8PT1hb2+vMTNnbGwMW1tb7Nu3T9Z4TZs2xeXLl1GnTh0pMS4p5S0607t3b2RnZ+P7779/5vguLi6Ij48vdQ6urq5S+7Vr1zRm4M6fP4979+5JfQDA0dERn376KXbv3o33338fMTExUvznz58vFbu9vT10dXVlXYPy1K5dG/v370dycjJ69uxZZiJJRERERESV541NIvPy8pCRkYGMjAwkJSVhxIgRyM7ORteuXQE8mqlLS0vDunXrkJKSgoULF0ozZy/KwcEBx48fx65du3Dp0iVMnjwZCQkJGn2ioqIwd+5cLFy4EJcvX8bJkyfx7bffljlecHAwateujW7duuHQoUNITU1FXFwcwsPD8ffff5e5j7e3N8aMGYMxY8Zg9OjROHz4MP766y/8+eefWL58uZRUA8C4ceMQGxuLxYsX4/Lly/jmm2+wceNGjB07FgDg7+8PNzc3BAcH4+TJkzh27Bj69esHX19feHl5ITc3F2FhYYiLi8Nff/2F+Ph4JCQkwMXFBcCjVXCPHDmCsLAwqNVqXL58Gb/99tszF9YpmbXMzs7GrVu3oFarcf78+VL96tSpg/379+PChQvo3bs3CgsLn/4LIiIiIiKi56ZT1QG8LDt37oSVlRWARzN/zs7O+Omnn9C2bVsAwHvvvYdPP/0UYWFhyMvLQ+fOnTF58mRERUW98LGHDh2KU6dOoVevXlAoFOjduzeGDRum8bUaISEhePjwIebNm4exY8eidu3a+PDDD8scz8DAAL///jvGjx+P999/H/fv30fdunXRvn37pz5aOWfOHLRo0QKLFy/GihUr8ODBA1hYWKBNmzb4448/pH2DgoKwYMECzJkzByNHjkTDhg0RExMjXSuFQoHffvsNI0aMQJs2baClpYXAwEAp6dXW1sbt27fRr18/3LhxA7Vr18b777+PqVOnAnj0/ujBgwcxceJEtG7dGkII2NnZlfkO4+M8PT2ln0+cOIE1a9agQYMGZX61iaWlJfbv34+2bdsiODgYa9aseerYlcEEmQD4aCsR/S/Fs7tUlf99BZ6IiKhSKITgPy1EFZGVlfW/jxEziSSi1wP/pSciomcp+YybmZn5zDVA3tjHWYmIiIiIiKjyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsulUdQBEr60JJoDe8+0qIkXlxkJERERE9IpwJpKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLLpVHUARK+rzIhMqFSqqg6DiIiIiOiV4kwkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcmmU9UBEL22TEyqOoLKIURVR0BERERErxHORL7FQkNDERQU9EqOZWtri/nz50vbCoUCv/76a6WOSURERERELx+TyDdYaGgoFAoFFAoFdHV1YW9vjy+++AKFhYUAgAULFiA2NrZCYz5v8peQkIAhQ4bI7v/777+ja9eusLa2rpSEk4iIiIiIKgeTyDdcYGAg0tPTcfnyZYwZMwZRUVH4+uuvAQAmJiYwNTV9JXGYm5vDwMBAdv+cnBy4u7tj0aJFLzEqIiIiIiKqKCaRbzilUglLS0s0aNAAn3zyCfz9/bF582YApR9nbdu2LcLDw/HZZ5/BzMwMlpaWiIqKktptbW0BAN27d4dCoZC2U1JS0K1bN1hYWMDIyAjNmzfH3r17NeKo6KOnHTt2xJdffonu3bvL3ic6OhqmpqbYt2+fdD4jRozAqFGjULNmTVhYWGDZsmXIyclB//79YWxsDHt7e+zYsUP2MYiIiIiI3nZMIt8y+vr6yM/PL7d95cqVMDQ0xNGjRzF79mx88cUX2LNnD4BHj6QCQExMDNLT06Xt7OxsdOrUCfv27cOpU6cQGBiIrl27Ii0t7eWf0P+aPXs2JkyYgN27d6N9+/Ya51O7dm0cO3YMI0aMwCeffIIePXqgVatWOHnyJP773/+ib9++ePDgQblj5+XlISsrS6MQEREREb2tmES+JYQQ2Lt3L3bt2gU/P79y+zVp0gSRkZFwcHBAv3794OXlJc3smZubAwBMTU1haWkpbbu7u2Po0KF455134ODggGnTpsHOzk6a8XzZxo8fj/nz5+PgwYNo0aKFRpu7uzsmTZoEBwcHREREQE9PD7Vr18bgwYPh4OCAKVOm4Pbt2zh9+nS548+cORMmJiZSsbGxedmnRERERERUbfErPt5wW7duhZGREQoKClBcXIw+ffpoPKL6pCZNmmhsW1lZ4ebNm089RnZ2NqKiorBt2zakp6ejsLAQubm5r2Qmcu7cucjJycHx48fRqFGjUu2Pn4+2tjZq1aoFNzc3qc7CwgIAnnqOERERGD16tLSdlZXFRJKIiIiI3lqciXzDtWvXDmq1GpcvX0Zubq70uGp5atSoobGtUChQXFz81GOMHTsWmzZtwowZM3Do0CGo1Wq4ubk99bHZytK6dWsUFRVhw4YNZbaXdT6P1ykUCgB46jkqlUqoVCqNQkRERET0tuJM5BvO0NAQ9vb2lTZejRo1UFRUpFEXHx+P0NBQaRGc7OxsXL16tdKO+TQtWrRAWFgYAgMDoaOjg7Fjx76S4xIRERERva2YRFKF2NraYt++ffDx8YFSqUTNmjXh4OCAjRs3omvXrlAoFJg8efIzZy+fJTs7G8nJydJ2amoq1Go1zMzMUL9+fY2+rVq1wvbt29GxY0fo6Ohg1KhRL3RsIiIiIiIqHx9npQqZO3cu9uzZAxsbG3h6egIAvvnmG9SsWROtWrVC165dERAQgKZNm77QcY4fPw5PT0/pGKNHj4anpyemTJlSZv93330X27Ztw6RJk/Dtt9++0LHlMkEmFBCvf1GgWhciIiIiql4UQghR1UEQvU6ysrJgYmICIBMA34982fg3FBEREdHLV/IZNzMz85lrgHAmkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhk06nqAIheWxNMAL2K7yYiReXHQkRERET0inAmkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhk06nqAIheV5kRmVCpVFUdBhERERHRK8WZSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERyVbpSeTVq1ehUCigVqsre+gqYWtri/nz51fqmG3btsWoUaMqdczKUp1je1JsbCxMTU2rLgATE0ChYGFheZsLERHRW6hCSWRoaCgUCgUUCgVq1KiBhg0b4rPPPsPDhw+lPjY2NkhPT8c777xT6cG+LWJjY6XrrKWlhXr16qF///64efNmVYf2wirynwzh4eFo1qwZlEolPDw8XnpsRERERET0bDoV3SEwMBAxMTEoKCjAiRMnEBISAoVCga+++goAoK2tDUtLy0oP9G2jUqlw8eJFFBcXIzExEf3798c///yDXbt2Pdd4BQUFqFGjRiVH+fINGDAAR48exenTp6s6FCIiIiIiwnM8zqpUKmFpaQkbGxsEBQXB398fe/bskdqfnGmKi4uDQqHAvn374OXlBQMDA7Rq1QoXL17UGPfLL79EnTp1YGxsjEGDBmHChAnPnH1q27YtwsPD8dlnn8HMzAyWlpaIiorS6HPv3j0MGjQI5ubmUKlU8PPzQ2JiokafLVu2oHnz5tDT00Pt2rXRvXv3co8ZHR0NU1NT7Nu3DwBw9uxZdOzYEUZGRrCwsEDfvn3x77//Sv1zcnLQr18/GBkZwcrKCnPnzn3qOZVQKBSwtLSEtbU1OnbsiPDwcOzduxe5ubnYuXMn3n33XZiamqJWrVro0qULUlJSpH1Lfgfr16+Hr68v9PT0sHr1aty+fRu9e/dG3bp1YWBgADc3N6xdu/apcWzbtg0mJiZYvXo1AODatWvo2bMnTE1NYWZmhm7duuHq1aulrpGLiwv09PTg7OyM77//Xmpr2LAhAMDT0xMKhQJt27Yt99gLFy7E8OHD0ahRI1nX7NatW/Dy8kL37t2Rl5cn3Xu7du2Cp6cn9PX14efnh5s3b2LHjh1wcXGBSqVCnz598ODBA1nHICIiIiJ6273QO5Fnz57FkSNHoKur+8y+EydOxNy5c3H8+HHo6OhgwIABUtvq1asxffp0fPXVVzhx4gTq16+PxYsXy4ph5cqVMDQ0xNGjRzF79mx88cUXGkltjx49pKThxIkTaNq0Kdq3b487d+4AeJQkde/eHZ06dcKpU6ewb98+tGjRosxjzZ49GxMmTMDu3bvRvn173Lt3D35+fvD09MTx48exc+dO3LhxAz179pT2GTduHA4ePIjffvsNu3fvRlxcHE6ePCnr3B6nr6+P4uJiFBYWIicnB6NHj8bx48exb98+aGlpoXv37iguLtbYZ8KECRg5ciSSkpIQEBCAhw8folmzZti2bRvOnj2LIUOGoG/fvjh27FiZx1yzZg169+6N1atXIzg4GAUFBQgICICxsTEOHTqE+Ph4GBkZITAwEPn5+QAe/S6nTJmC6dOnIykpCTNmzMDkyZOxcuVKAJCOtXfvXqSnp2Pjxo0VvhZluXbtGlq3bo133nkHP//8M5RKpdQWFRWF7777DkeOHJGS4Pnz52PNmjXYtm0bdu/ejW+//bbcsfPy8pCVlaVRiIiIiIjeWqICQkJChLa2tjA0NBRKpVIAEFpaWuLnn3+W+qSmpgoA4tSpU0IIIQ4cOCAAiL1790p9tm3bJgCI3NxcIYQQLVu2FMOHD9c4lo+Pj3B3d39qPL6+vuLdd9/VqGvevLkYP368EEKIQ4cOCZVKJR4+fKjRx87OTixdulQIIYS3t7cIDg4u9xgNGjQQ8+bNE5999pmwsrISZ8+eldqmTZsm/vvf/2r0v3btmgAgLl68KO7fvy90dXXFhg0bpPbbt28LfX19MXLkyHKPGRMTI0xMTKTtS5cuCUdHR+Hl5VVm/1u3bgkA4syZM0KI//sdzJ8/v9xjlOjcubMYM2aMtO3r6ytGjhwpvvvuO2FiYiLi4uKktlWrVgknJydRXFws1eXl5Ql9fX2xa9cuIcSja7tmzRqNY0ybNk14e3trxFZyf8gRGRlZ5r1Qcp0uXLggbGxsRHh4uEZsZd17M2fOFABESkqKVDd06FAREBDw1OMDKFUyASFYWFje7kJERPSGyMzMFABEZmbmM/tW+J3Idu3aYfHixcjJycG8efOgo6ODDz744Jn7NWnSRPrZysoKAHDz5k3Ur18fFy9exLBhwzT6t2jRAvv37wcAHDp0CB07dpTali5diuDg4FLjloxdsgBNYmIisrOzUatWLY0+ubm50uOfarUagwcPfmrsc+fORU5ODo4fP67xaGViYiIOHDgAIyOjUvukpKQgNzcX+fn5aNmypVRvZmYGJyenpx4PADIzM2FkZITi4mI8fPgQ7777LqKjowEAly9fxpQpU3D06FH8+++/0gxkWlqaxoJGXl5eGmMWFRVhxowZ2LBhA65fv478/Hzk5eXBwMBAo9/PP/+MmzdvIj4+Hs2bN9c43+TkZBgbG2v0f/jwIVJSUpCTk4OUlBQMHDhQ45oWFhbCxMTkmef8PHJzc9G6dWv06dOn3FV0H79HLCwsYGBgoPF7tLCwKHc2FgAiIiIwevRoaTsrKws2NjYvHjwRERER0WuowkmkoaEh7O3tAQArVqyAu7s7li9fjoEDBz51v8cXdVH877LoTz5+WR4vLy+N1TwtLCzKHLdk7JJxs7OzYWVlhbi4uFJjlnw1hL6+/jOP37p1a2zbtg0bNmzAhAkTpPrs7Gx07dpVWlTocVZWVkhOTn7m2OUxNjbGyZMnoaWlBSsrK404u3btigYNGmDZsmWwtrZGcXEx3nnnHemR0hKGhoYa219//TUWLFiA+fPnw83NDYaGhhg1alSp/Tw9PXHy5EmsWLECXl5e0u8rOzsbzZo1k96PfJy5uTmys7MBAMuWLdNInIFHCy69DEqlEv7+/ti6dSvGjRuHunXrlurz5L33tHumvGM8/ngsEREREdHbrMJJ5OO0tLTw+eefY/To0ejTp4+shKwsTk5OSEhIQL9+/aS6hIQE6Wd9fX0pca2Ipk2bIiMjAzo6OrC1tS2zT5MmTbBv3z7079+/3HFatGiBsLAwBAYGQkdHB2PHjpXG/+WXX2BrawsdndKX0s7ODjVq1MDRo0dRv359AMDdu3dx6dIl+Pr6PjV2LS2tMs/59u3buHjxIpYtW4bWrVsDAA4fPvzUsUrEx8ejW7du+H//7/8BeJTEX7p0Ca6urqXinjt3Ltq2bQttbW1899130vmuX78ederUgUqlKjW+iYkJrK2tceXKFWmm+Ekl788WFRXJivlZtLS0sGrVKvTp0wft2rVDXFwcrK2tK2VsIiIiIiIq7YUW1gEeLVyjra2NRYsWPfcYI0aMwPLly7Fy5UpcvnwZX375JU6fPi3NgD0vf39/eHt7IygoCLt378bVq1dx5MgRTJw4EcePHwcAREZGYu3atYiMjERSUhLOnDlT5sxiq1atsH37dkydOlV6bHL48OG4c+cOevfujYSEBKSkpGDXrl3o378/ioqKYGRkhIEDB2LcuHHYv38/zp49i9DQUGhpPf9lr1mzJmrVqoUffvgBycnJ2L9/v8ajlk/j4OCAPXv24MiRI0hKSsLQoUNx48aNMvs6OjriwIED+OWXXzBq1CgAQHBwMGrXro1u3brh0KFDSE1NRVxcHMLDw/H3338DAKZOnYqZM2di4cKFuHTpEs6cOYOYmBh88803AIA6depAX19fWoQoMzOz3HiTk5OhVquRkZGB3NxcqNVqqNXqUjOn2traWL16Ndzd3eHn54eMjAxZ14OIiIiIiCruhZNIHR0dhIWFYfbs2cjJyXmuMYKDgxEREYGxY8eiadOmSE1NRWhoKPT09F4oNoVCge3bt6NNmzbo378/HB0d8dFHH+Gvv/6SHolt27YtfvrpJ2zevBkeHh7w8/Mr9/24d999F9u2bcOkSZPw7bffwtraGvHx8SgqKsJ///tfuLm5YdSoUTA1NZUSxa+//hqtW7dG165d4e/vj3fffRfNmjV77nPS0tLCunXrcOLECbzzzjv49NNP8fXXX8vad9KkSWjatCkCAgLQtm1bWFpaIigoqNz+Tk5O2L9/P9auXYsxY8bAwMAAv//+O+rXr4/3338fLi4uGDhwIB4+fCjNTA4aNAjR0dGIiYmBm5sbfH19ERsbK321h46ODhYuXIilS5fC2toa3bp1K/f4gwYNgqenJ5YuXYpLly7B09MTnp6e+Oeff0r11dHRwdq1a9G4cWPpazxeNhNkQgHBwvLGl2qwfE31LURERG8hhRDV81/BDh06wNLSEqtWrarqUIg0ZGVl/e9CQZkASj/WS/SmqZ7/ShAREVFlKvmMm5mZWeara497oXciK8uDBw+wZMkSBAQEQFtbG2vXrsXevXs1vu+RiIiIiIiIql61SCJLHjudPn06Hj58CCcnJ/zyyy/w9/ev6tCIiIiIiIjoMdUiidTX18fevXurOgwiIiIiIiJ6hhdeWIeIiIiIiIjeHkwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGSrFl/xQfRammAC6D27m4gULz8WIiIiIqJXhDORREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSTaeqAyB6XWVGZEKlUlV1GERERERErxRnIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINp2qDoDotWViUtURvFpCVHUERERERFQNcCbyLRQbGwtTU9NXeszQ0FAEBQVV6phxcXFQKBS4d+9epY5LRERERETlYxJZzWRkZGDkyJGwt7eHnp4eLCws4OPjg8WLF+PBgwdVHd4rNX36dLRq1QoGBgavPOklIiIiIqKy8XHWauTKlSvw8fGBqakpZsyYATc3NyiVSpw5cwY//PAD6tati/fee6+qw3xl8vPz0aNHD3h7e2P58uVVHQ4REREREYEzkdXKsGHDoKOjg+PHj6Nnz55wcXFBo0aN0K1bN2zbtg1du3aV+qalpaFbt24wMjKCSqVCz549cePGDak9MTER7dq1g7GxMVQqFZo1a4bjx49rHG/Xrl1wcXGBkZERAgMDkZ6eLrUlJCSgQ4cOqF27NkxMTODr64uTJ09K7WPHjkWXLl2k7fnz50OhUGDnzp1Snb29PaKjo8s814SEBJibm+Orr74q93pMnToVn376Kdzc3GRcPeDBgwfo2LEjfHx8cO/ePVy9ehUKhQIbNmxA69atoa+vj+bNm+PSpUtISEiAl5cXjIyM0LFjR9y6dUvWMYiIiIiI3nZMIquJ27dvY/fu3Rg+fDgMDQ3L7KNQKAAAxcXF6NatG+7cuYODBw9iz549uHLlCnr16iX1DQ4ORr169ZCQkIATJ05gwoQJqFGjhtT+4MEDzJkzB6tWrcLvv/+OtLQ0jB07Vmq/f/8+QkJCcPjwYfz5559wcHBAp06dcP/+fQCAr68vDh8+jKKiIgDAwYMHUbt2bcTFxQEArl+/jpSUFLRt27bUeezfvx8dOnTA9OnTMX78+Be6biXu3buHDh06oLi4GHv27NF4/DUyMhKTJk3CyZMnoaOjgz59+uCzzz7DggULcOjQISQnJ2PKlCnljp2Xl4esrCyNQkRERET01hJULfz5558CgNi4caNGfa1atYShoaEwNDQUn332mRBCiN27dwttbW2RlpYm9Tt37pwAII4dOyaEEMLY2FjExsaWeayYmBgBQCQnJ0t1ixYtEhYWFuXGV1RUJIyNjcWWLVuEEELcvXtXaGlpiYSEBFFcXCzMzMzEzJkzRcuWLYUQQvz444+ibt260v4hISGiW7duYuPGjcLIyEisW7dO9rWJiYkRJiYmpeoPHDggAIikpCTRpEkT8cEHH4i8vDypPTU1VQAQ0dHRUt3atWsFALFv3z6pbubMmcLJyanc40dGRgoApUrmo/VK355CRERERG+szMzMR59xMzOf2ZczkdXcsWPHoFar0bhxY+Tl5QEAkpKSYGNjAxsbG6mfq6srTE1NkZSUBAAYPXo0Bg0aBH9/f8yaNQspKSka4xoYGMDOzk7atrKyws2bN6XtGzduYPDgwXBwcICJiQlUKhWys7ORlpYGADA1NYW7uzvi4uJw5swZ6OrqYsiQITh16hSys7Nx8OBB+Pr6ahzz6NGj6NGjB1atWqUxa/qiOnToAHt7e6xfvx66urql2ps0aSL9bGFhAQAaj8haWFhonPuTIiIikJmZKZVr165VWuxERERERK8bJpHVhL29PRQKBS5evKhR36hRI9jb20NfX79C40VFReHcuXPo3Lkz9u/fD1dXV2zatElqf/zRVuDRo7Lise8BDAkJgVqtxoIFC3DkyBGo1WrUqlUL+fn5Up+2bdsiLi5OShjNzMzg4uKCw4cPl5lE2tnZwdnZGStWrEBBQUGFzudpOnfujN9//x3nz58vs/3xcy15JPjJuuLi4nLHVyqVUKlUGoWIiIiI6G3FJLKaqFWrFjp06IDvvvsOOTk5T+3r4uKCa9euacyInT9/Hvfu3YOrq6tU5+joiE8//RS7d+/G+++/j5iYGNnxxMfHIzw8HJ06dULjxo2hVCrx77//avQpeS9y37590ruPbdu2xdq1a3Hp0qVS70PWrl0b+/fvR3JyMnr27FlpieSsWbMQEhKC9u3bl5tIEhERERFR5WASWY18//33KCwshJeXF9avX4+kpCRcvHgRP/74Iy5cuABtbW0AgL+/P9zc3BAcHIyTJ0/i2LFj6NevH3x9feHl5YXc3FyEhYUhLi4Of/31F+Lj45GQkAAXFxfZsTg4OGDVqlVISkrC0aNHERwcXGo2tE2bNrh//z62bt2qkUSuXr0aVlZWcHR0LDVunTp1sH//fly4cAG9e/dGYWFhuTGkpaVBrVYjLS0NRUVFUKvVUKvVyM7OLtV3zpw5CA4Ohp+fHy5cuCD7PImIiIiIqGKYRFYjdnZ2OHXqFPz9/REREQF3d3d4eXnh22+/xdixYzFt2jQAjx6//O2331CzZk20adMG/v7+aNSoEdavXw8A0NbWxu3bt9GvXz84OjqiZ8+e6NixI6ZOnSo7luXLl+Pu3bto2rQp+vbti/DwcNSpU0ejT82aNeHm5gZzc3M4OzsDeJRYFhcXl3qU9XGWlpbYv38/zpw5g+DgYGmF1ydNmTIFnp6eiIyMRHZ2Njw9PeHp6Vnqq0pKzJs3Dz179oSfnx8uXbok+1yfW+ZbtrQOEREREREAhRD8dEhUEVlZWTAxMUFmZibfjyQiIiKiN0JFPuNyJpKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZNOp6gCIXlcmM00AvfLbRaR4dcEQEREREb0inIkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItl0qjoAotdVZkQmVCpVVYdBRERERPRKcSaSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYl8AQqFAr/++isA4OrVq1AoFFCr1VUaU2X54YcfYGNjAy0tLcyfP7/Sxw8NDUVQUNALjREVFQUPD49Kiee5mJgACkX1L0REREREleitTCIrI4F5ko2NDdLT0/HOO+9U6rhPio2NhUKhgEKhgJaWFurVq4f+/fvj5s2blXaMrKwshIWFYfz48bh+/TqGDBlSaWPL9fDhQ4SGhsLNzQ06OjqV/vsiIiIiIqLno1PVAbwptLW1YWlp+UqOpVKpcPHiRRQXFyMxMRH9+/fHP//8g127dlXK+GlpaSgoKEDnzp1hZWVVKWNWVFFREfT19REeHo5ffvmlSmIgIiIiIqLS3sqZyCe1bdsW4eHh+Oyzz2BmZgZLS0tERUVp9Ll8+TLatGkDPT09uLq6Ys+ePRrtTz7OWlRUhIEDB6Jhw4bQ19eHk5MTFixYoLFPyYzonDlzYGVlhVq1amH48OEoKCh4arwKhQKWlpawtrZGx44dER4ejr179yI3NxcAEB0dDRcXF+jp6cHZ2Rnff/+9xv7jx4+Ho6MjDAwM0KhRI0yePFk6ZmxsLNzc3AAAjRo1gkKhwNWrVwEAixcvhp2dHXR1deHk5IRVq1ZJY44dOxZdunSRtufPnw+FQoGdO3dKdfb29oiOjn7quZUwNDTE4sWLMXjwYNnJeUpKCho1aoSwsDAIIRAbGwtTU1Ns3boVTk5OMDAwwIcffogHDx5g5cqVsLW1Rc2aNREeHo6ioiJZxyAiIiIiettxJvJ/rVy5EqNHj8bRo0fxxx9/IDQ0FD4+PujQoQOKi4vx/vvvw8LCAkePHkVmZiZGjRr11PGKi4tRr149/PTTT6hVqxaOHDmCIUOGwMrKCj179pT6HThwAFZWVjhw4ACSk5PRq1cveHh4YPDgwbJj19fXR3FxMQoLC7F69WpMmTIF3333HTw9PXHq1CkMHjwYhoaGCAkJAQAYGxsjNjYW1tbWOHPmDAYPHgxjY2N89tln6NWrF2xsbODv749jx47BxsYG5ubm2LRpE0aOHIn58+fD398fW7duRf/+/VGvXj20a9cOvr6+iI6ORlFREbS1tXHw4EHUrl0bcXFxCAwMxPXr15GSkoK2bds+z6/nmU6fPo2AgAAMHDgQX375pVT/4MEDLFy4EOvWrcP9+/fx/vvvo3v37jA1NcX27dtx5coVfPDBB/Dx8UGvXr3KHDsvLw95eXnSdlZW1ks5ByIiIiKi14J4C4WEhIhu3bpJ276+vuLdd9/V6NO8eXMxfvx4IYQQu3btEjo6OuL69etS+44dOwQAsWnTJiGEEKmpqQKAOHXqVLnHHT58uPjggw804mjQoIEoLCyU6nr06CF69epV7hgxMTHCxMRE2r506ZJwdHQUXl5eQggh7OzsxJo1azT2mTZtmvD29i53zK+//lo0a9ZM2j516pQAIFJTU6W6Vq1aicGDB2vs16NHD9GpUychhBB3794VWlpaIiEhQRQXFwszMzMxc+ZM0bJlSyGEED/++KOoW7euxrk//jt4mvL6RkZGCnd3dxEfHy9q1qwp5syZo9EeExMjAIjk5GSpbujQocLAwEDcv39fqgsICBBDhw4t9/iRkZECQKmSCQjxOhQiIiIiomfIzMx89Bk3M/OZffk46/9q0qSJxraVlZW0WE1SUhJsbGxgbW0ttXt7ez9zzEWLFqFZs2YwNzeHkZERfvjhB6SlpWn0ady4MbS1tcs8bnkyMzNhZGQEAwMDODk5wcLCAqtXr0ZOTg5SUlIwcOBAGBkZSeXLL79ESkqKtP/69evh4+MDS0tLGBkZYdKkSaXielJSUhJ8fHw06nx8fJCUlAQAMDU1hbu7O+Li4nDmzBno6upiyJAhOHXqFLKzs3Hw4EH4+vo+85pVVFpaGjp06IApU6ZgzJgxpdoNDAxgZ2cnbVtYWMDW1hZGRkYadU+75hEREcjMzJTKtWvXKvckiIiIiIheI3yc9X/VqFFDY1uhUKC4uPi5x1u3bh3Gjh2LuXPnwtvbG8bGxvj6669x9OjRFz6usbExTp48CS0tLVhZWUFfXx8AcOPGDQDAsmXL0LJlS419ShLVP/74A8HBwZg6dSoCAgJgYmKCdevWYe7cuc99riXatm2LuLg4KJVK+Pr6wszMDC4uLjh8+DAOHjxYZpL3oszNzWFtbY21a9diwIABUKlUGu1lXd+KXnOlUgmlUll5QRMRERERvcaYRMrg4uKCa9euIT09XVqt9M8//3zqPvHx8WjVqhWGDRsm1T0+G/gitLS0YG9vX6rewsIC1tbWuHLlCoKDg8vc98iRI2jQoAEmTpwo1f3111/PPKaLiwvi4+Ol9yqBR+fo6uoqbfv6+mLFihXQ0dFBYGAggEeJ5dq1a3Hp0qWX8j6kvr4+tm7dik6dOiEgIAC7d++GsbFxpR+HiIiIiIgeYRIpg7+/PxwdHRESEoKvv/4aWVlZGklYWRwcHPA///M/2LVrFxo2bIhVq1YhISEBDRs2fKmxTp06FeHh4TAxMUFgYCDy8vJw/Phx3L17F6NHj4aDgwPS0tKwbt06NG/eHNu2bcOmTZueOe64cePQs2dPeHp6wt/fH1u2bMHGjRuxd+9eqU+bNm1w//59bN26FbNmzQLwKIn88MMPYWVlBUdHxwqdy/nz55Gfn487d+7g/v370sq3Hh4eGv0MDQ2xbds2dOzYER07dsTOnTs1HlclIiIiIqLKw3ciZdDS0sKmTZuQm5uLFi1aYNCgQZg+ffpT9xk6dCjef/999OrVCy1btsTt27c1ZiVflkGDBiE6OhoxMTFwc3ODr68vYmNjpeT1vffew6effoqwsDB4eHjgyJEjmDx58jPHDQoKwoIFCzBnzhw0btwYS5cuRUxMjMbsYs2aNeHm5gZzc3M4OzsDeJRYFhcXP9f7kJ06dYKnpye2bNmCuLg4eHp6wtPTs8y+RkZG2LFjB4QQ6Ny5M3Jycip8vArLfE2W1iEiIiIiqkQKIfgpk6gisrKyYGJigszMzFLvYBIRERERvY4q8hmXM5FEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJJtOVQdA9LoymWkC6GnWiUhRNcEQEREREb0inIkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsOlUdANHrKjMiEyqVqqrDICIiIiJ6pTgTSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGTTqeoAiIiIiIjkKCwsRH5+flWHQfTa0tPTg5bWi88jMokkel4mJlUdAT2NEFUdARERVRIhBNLS0vDvv/9WdShErzUtLS24urpCqVS+0DhMIqsphUKBTZs2ISgoqMz2q1evomHDhjh16hQ8PDxeaWzPIyoqCr/++ivUanWljfm6XQMiIiJ6PiUJZN26dWFkZFQpMylEb5vi4mKkpqbi6tWrcHR0hEKheO6xmES+gNDQUKxcuRIAoKOjg3r16qFHjx744osvoKenV8XRPVtUVBSmTp0KANDW1oapqSlcXV3x/vvv45NPPnnh/6F4UT/88APWrFmDkydP4v79+7h79y5MTU2rNCYiIiJ6tQoLC6UE0tLSsqrDIXqt1a1bF6mpqSgoKICuru5zj8P/xnlBgYGBSE9Px5UrVzBv3jwsXboUkZGRVR2WbI0bN0Z6ejrS0tJw4MAB9OjRAzNnzkSrVq1w//79Ko3twYMHCAwMxOeff16lcRAREVHVKXkH0sjIqIojIXr9lUwSFRYWvtA4TCJfkFKphKWlJWxsbBAUFAR/f3/s2bNHare1tcX8+fM19vHw8EBUVJS0ffnyZbRp0wZ6enpwdXXV2L/EsWPH4OnpCT09PXh5eeHUqVNSmxAC9vb2mDNnjsY+arUaCoUCycnJ5cavo6MDS0tLWFtbw83NDSNGjMDBgwdx9uxZfPXVV1I/hUKBX3/9VWNfU1NTxMbGStt///03evfuDTMzMxgaGsLLywtHjx4t87gpKSlo1KgRwsLCIMp5d23UqFGYMGEC/vOf/5Qb/+OKioowYMAAODs7Iy0tTYp76dKl6NKlCwwMDODi4oI//vgDycnJaNu2LQwNDdGqVSukpKTIOgYRERFVDT7CSvTiXuQR1sfxT2MlOnv2LI4cOVKhqeHi4mK8//770NXVxdGjR7FkyRKMHz9eo092dja6dOkCV1dXnDhxAlFRURg7dqzUrlAoMGDAAMTExGjsFxMTgzZt2sDe3r5C5+Hs7IyOHTti48aNsvfJzs6Gr68vrl+/js2bNyMxMRGfffYZiouLS/U9ffo03n33XfTp0wffffddpdzMeXl56NGjB9RqNQ4dOoT69etLbdOmTUO/fv2gVqvh7OyMPn36YOjQoYiIiMDx48chhEBYWNhTx87KytIoRERERERvK74T+YK2bt0KIyMjFBYWIi8vD1paWvjuu+9k7793715cuHABu3btgrW1NQBgxowZ6Nixo9RnzZo1KC4uxvLly6Gnp4fGjRvj77//xieffCL1CQ0NxZQpU3Ds2DG0aNECBQUFWLNmTanZSbmcnZ2xe/du2f3XrFmDW7duISEhAWZmZgBQZvJ65MgRdOnSBRMnTsSYMWOeK7YnZWdno3PnzsjLy8OBAwdg8sSqqf3790fPnj0BAOPHj4e3tzcmT56MgIAAAMDIkSPRv3//csefOXOm9O4oEREREdHbjknkC2rXrh0WL16MnJwczJs3Dzo6Ovjggw9k75+UlAQbGxspgQQAb2/vUn2aNGmisVjPk32sra3RuXNnrFixAi1atMCWLVuk2bnnIYSo0AyhWq2Gp6enlECWJS0tDR06dMD06dMxatSo54qrLL1790a9evWwf/9+6Ovrl2pv0qSJ9LOFhQUAwM3NTaPu4cOHyMrKgkqlKrV/REQERo8eLW1nZWXBxsam0uInIiKi56OYWjmP5sklIvn1UUQAH2d9YYaGhrC3t4e7uztWrFiBo0ePYvny5VK7lpZWqXf+CgoKXkosgwYNwrp165Cbm4uYmBj06tULBgYGzzVWUlISGjZsKG0rFIqnnkdZyduTzM3N0aJFC6xdu7ZSHwnt1KkTTp8+jT/++KPM9ho1akg/lyTGZdWV9egt8Oi9V5VKpVGIiIiI5Lh27RoGDBgAa2tr6OrqokGDBhg5ciRu375d1aG9dhQKhVRMTEzg4+OD/fv3V3VYzxQbG/vGfcMAk8hKpKWlhc8//xyTJk1Cbm4ugEeJU3p6utQnKysLqamp0raLiwuuXbum0efPP//UGNfFxQWnT5/Gw4cPy+0DPEqmDA0NsXjxYuzcuRMDBgx4rvO4cOECdu7cqTGj+uR5XL58GQ8ePJC2mzRpArVajTt37pQ7rr6+PrZu3Qo9PT0EBARU2uqvn3zyCWbNmoX33nsPBw8erJQxiYiIiF7UlStX4OXlhcuXL2Pt2rVITk7GkiVLsG/fPnh7ez/1c9PLVrLq7eOKiorK/U/16iImJgbp6emIj49H7dq10aVLF1y5cuW5xirrGpA8TCIrWY8ePaCtrY1FixYBAPz8/LBq1SocOnQIZ86cQUhICLS1taX+/v7+cHR0REhICBITE3Ho0CFMnDhRY8w+ffpAoVBg8ODBOH/+PLZv317mu47a2toIDQ1FREQEHBwcSj3yWpbCwkJkZGTgn3/+wZkzZ/Dtt9/C19cXHh4eGDdunNTPz88P3333HU6dOoXjx4/j448/1pjN6927NywtLREUFIT4+HhcuXIFv/zyS6nZQUNDQ2zbtg06Ojro2LEjsrOzy40tIyMDarVaWl32zJkz5SaqI0aMwJdffokuXbrg8OHDzzxvIiIiopdt+PDh0NXVxe7du+Hr64v69eujY8eO2Lt3L65fv67xmS8vLw/jx4+HjY0NlEol7O3tNZ5uO3fuHLp06QKVSgVjY2O0bt1aWl2+bdu2pV4VCgoKQmhoqLRta2srLTaoUqkwZMgQaYZs8+bNcHV1hVKpRFpaGvLy8jB27FjUrVsXhoaGaNmyJeLi4qSxSvbbtWsXXFxcYGRkJH3t3eNWrFiBxo0bQ6lUwsrKSmMhw3v37mHQoEEwNzeHSqWCn58fEhMTn3lNTU1NYWlpiXfeeQeLFy9Gbm6u9M0GZ8+eRceOHWFkZAQLCwv07dsX//77r7Rv27ZtERYWhlGjRqF27drS+hhPu7YAEB0dDRcXF+jp6cHZ2Rnff/+91Hb16lUoFAps3LgR7dq1g4GBAdzd3aXPwHFxcejfvz8yMzOlWdSSb2lYtWoVvLy8YGxsDEtLS/Tp0wc3b97UON/NmzfDwcEBenp6aNeuHVauXAmFQoF79+5JfQ4fPozWrVtDX18fNjY2CA8PR05OzjOv5YtgElnJdHR0EBYWhtmzZyMnJwcRERHw9fVFly5d0LlzZwQFBcHOzk7qr6WlhU2bNiE3NxctWrTAoEGDMH36dI0xjYyMsGXLFpw5cwaenp6YOHGixtdvPG7gwIHIz89/6kIxjzt37hysrKxQv359tG3bFhs2bEBERAQOHTqk8X1Mc+fOhY2NDVq3bo0+ffpg7NixGo/KlvwFWadOHXTq1Alubm6YNWuWRsL8+Pns2LEDQgh07ty53Jt8yZIl8PT0xODBgwEAbdq0gaenJzZv3lxm/1GjRmHq1Kno1KkTjhw5Iuv8X0hmJiAES3UtREREVejOnTvYtWsXhg0bVuq1H0tLSwQHB2P9+vXS60L9+vXD2rVrsXDhQiQlJWHp0qXSZ7Hr16+jTZs2UCqV2L9/P06cOIEBAwZU+Lv+5syZA3d3d5w6dQqTJ08G8Oh7ub/66itER0fj3LlzqFOnDsLCwvDHH39g3bp1OH36NHr06IHAwEBcvnxZGuvBgweYM2cOVq1ahd9//x1paWka3x6wePFiDB8+HEOGDMGZM2ewefNmjUUXe/TogZs3b2LHjh04ceIEmjZtivbt21dodrbkuubn5+PevXvw8/ODp6cnjh8/jp07d+LGjRvS4oolVq5cCV1dXcTHx2PJkiXPvLarV6/GlClTMH36dCQlJWHGjBmYPHkyVq5cqTHuxIkTMXbsWKjVajg6OqJ3794oLCxEq1atMH/+fKhUKqSnpyM9PV26TgUFBZg2bRoSExPx66+/4urVqxqJf2pqKj788EMEBQUhMTERQ4cOLTXZlJKSgsDAQHzwwQc4ffo01q9fj8OHDz/1mwcqhaA3yu+//y5q1KghMjIyqjqUN1ZmZqYAIDIzM6s6FCIiojdeTk6OOH78uMjJySnVhii80lIRf/75pwAgNm3aVGb7N998IwCIGzduiIsXLwoAYs+ePWX2jYiIEA0bNhT5+flltvv6+oqRI0dq1HXr1k2EhIRI2w0aNBBBQUEafWJiYgQAoVarpbq//vpLaGtri+vXr2v0bd++vYiIiNDYLzk5WWpftGiRsLCwkLatra3FxIkTy4z30KFDQqVSiYcPH2rU29nZiaVLl5a5jxBC43rm5OSIYcOGCW1tbZGYmCimTZsm/vvf/2r0v3btmgAgLl68KIR4dJ08PT01+jzr2trZ2Yk1a9Zo1E2bNk14e3sLIYRITU0VAER0dLTUfu7cOQFAJCUlCSEeXS8TE5Nyz6tEQkKCACDu378vhBBi/Pjx4p133tHoM3HiRAFA3L17VwghxMCBA8WQIUM0+hw6dEhoaWmJ3NzcUsd42p+ninzG5eqsb4i8vDzcunULUVFR6NGjh7QKKRERERFVHSHj6Ri1Wg1tbW34+vqW2966dWuNV4meh5eXV6k6XV1djZXsz5w5g6KiIjg6Omr0y8vLQ61ataRtAwMDjafrrKyspEcxb968iX/++Qft27cvM47ExERkZ2drjAcAubm5Go+RlqV3797Q1tZGbm4uzM3NsXz5cjRp0gTTpk3DgQMHNJ6kK5GSkiKdT7NmzTTannZtc3JykJKSgoEDB0pPxgGPXgd78ivlHr+GVlZWAB5dB2dn53LPpeT73xMTE3H37l3pfdS0tDS4urri4sWLaN68ucY+LVq00NhOTEzE6dOnsXr1aqlOCIHi4mKkpqbCxcWl3OO/CCaRb4i1a9di4MCB8PDwwP/8z/9UdThEREREbzV7e3soFAokJSWhe/fupdqTkpJQs2ZNmJubP3OV+2e1y/02AENDwzLHfvxr3bKzs6GtrY0TJ06Uei3p8QTtyaTr8ZX8nxVvdnY2rKysNN6zLPGsVUznzZsHf39/mJiYwNzcXGPMrl27lvnKV0lSB5S+Bk+LtWTtjmXLlqFly5YabU9em4qs/A88SlADAgIQEBCA1atXw9zcHGlpaQgICKjQgj/Z2dkYOnQowsPDS7XVr19f9jgVxSTyDREaGqrxDDURERERVZ1atWqhQ4cO+P777/Hpp59qJCsZGRlYvXo1+vXrB4VCATc3NxQXF+PgwYPw9/cvNVaTJk2wcuVKFBQUlDlj9uQq+kVFRTh79izatWtX4bg9PT1RVFSEmzdvonXr1hXeHwCMjY1ha2uLffv2lRlD06ZNkZGRAR0dHdja2lZobEtLS413Kx8f85dffoGtrS10dOSnOE+7thYWFrC2tsaVK1cQHBxcoTgfp6uri6KiIo26Cxcu4Pbt25g1a5b0/ePHjx/X6OPk5ITt27dr1CUkJGhsN23aFOfPny/zmrxMXFiHiIiIiOgl+O6775CXl4eAgAD8/vvvuHbtGnbu3IkOHTqgbt260mKKtra2CAkJwYABA/Drr78iNTUVcXFx2LBhAwAgLCwMWVlZ+Oijj3D8+HFcvnwZq1atwsWLFwE8WkV/27Zt2LZtGy5cuIBPPvlEY/XOinB0dERwcDD69euHjRs3IjU1FceOHcPMmTOxbds22eNERUVh7ty5WLhwIS5fvoyTJ0/i22+/BfDo2wm8vb0RFBSE3bt34+rVqzhy5AgmTpxYKpGSa/jw4bhz5w569+6NhIQEpKSkYNeuXejfv3+pBO5xz7q2U6dOxcyZM7Fw4UJcunQJZ86cQUxMDL755hvZsdna2iI7Oxv79u3Dv//+iwcPHqB+/frQ1dXFt99+iytXrmDz5s2YNm2axn5Dhw7FhQsXMH78eFy6dAkbNmxAbGwsgP+b7Rw/fjyOHDmCsLAwqNVqXL58Gb/99hsX1iGqbriwDhER0avztIVAXgdXr14VISEhwsLCQtSoUUPY2NiIESNGiH///VejX25urvj000+FlZWV0NXVFfb29mLFihVSe2Jiovjvf/8rDAwMhLGxsWjdurVISUkRQgiRn58vPvnkE2FmZibq1KkjZs6cWebCOvPmzdM4ZnkLvuTn54spU6YIW1tbUaNGDWFlZSW6d+8uTp8+Xe5+mzZtEk+mFkuWLBFOTk7SGCNGjJDasrKyxIgRI4S1tbV0XYKDg0VaWlq51xJPWahICCEuXbokunfvLkxNTYW+vr5wdnYWo0aNEsXFxUKIshcgEuLp11YIIVavXi08PDyErq6uqFmzpmjTpo3YuHGjEOL/FtY5deqU1P/u3bsCgDhw4IBU9/HHH4tatWoJACIyMlIIIcSaNWuEra2tUCqVwtvbW2zevLnUWL/99puwt7cXSqVStG3bVixevFgA0Fg059ixY6JDhw7CyMhIGBoaiiZNmojp06eXeY0qa2EdhRBcC5+oIrKysmBiYoLMzEyoVKqqDoeIiOiN9uDBAyQlJcHFxUXj68WI3kbTp0/HkiVLcO3atefa/2l/niryGZfvRBIREREREVVD33//PZo3b45atWohPj4eX3/99ct/VFUGJpFERERERETV0OXLl/Hll1/izp07qF+/PsaMGYOIiIiqDotJJBERERERUXU0b948zJs3r6rDKIWrsxI9J5OZJs/uRERERET0hmESSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbv+KDiIiIiF5LCsWrPZ4Qr/Z4RNUVZyKJiIiIiF6C0NBQKBSKUiU5ORm///47unbtCmtraygUCvz666+yxkxMTMR7772HOnXqQE9PD7a2tujVqxdu3rz5ck+G6DFMIomIiIiIXpLAwECkp6drlIYNGyInJwfu7u5YtGiR7LFu3bqF9u3bw8zMDLt27UJSUhJiYmJgbW2NnJycl3YOBQUFL21sej0xiSQiIiIiekmUSiUsLS01ira2Njp27Igvv/wS3bt3lz1WfHw8MjMzER0dDU9PTzRs2BDt2rXDvHnz0LBhQ6nfuXPn0KVLF6hUKhgbG6N169ZISUkBABQXF+OLL75AvXr1oFQq4eHhgZ07d0r7Xr16FQqFAuvXr4evry/09PSwevVqAEB0dDRcXFygp6cHZ2dnfP/995V0leh1w3ciiZ5TZkRmVYdAREREbxFLS0sUFhZi06ZN+PDDD6Eo46XQ69evo02bNmjbti32798PlUqF+Ph4FBYWAgAWLFiAuXPnYunSpfD09MSKFSvw3nvv4dy5c3BwcJDGmTBhAubOnQtPT08pkZwyZQq+++47eHp64tSpUxg8eDAMDQ0REhLyyq4BVQ9MIomIiIiIXpKtW7fCyMhI2u7YsSN++umn5xrrP//5Dz7//HP06dMHH3/8MVq0aAE/Pz/069cPFhYWAIBFixbBxMQE69atQ40aNQAAjo6O0hhz5szB+PHj8dFHHwEAvvrqKxw4cADz58/XeLR21KhReP/996XtyMhIzJ07V6pr2LAhzp8/j6VLlzKJfAvxcVYiIiIiopekXbt2UKvVUlm4cKGs/WbMmAEjIyOppKWlAQCmT5+OjIwMLFmyBI0bN8aSJUvg7OyMM2fOAADUajVat24tJZCPy8rKwj///AMfHx+Neh8fHyQlJWnUeXl5ST/n5OQgJSUFAwcO1Ijpyy+/lB6TpbcLZyKJiIiIiF4SQ0ND2NvbV3i/jz/+GD179pS2ra2tpZ9r1aqFHj16oEePHpgxYwY8PT0xZ84crFy5Evr6+pUWd4ns7GwAwLJly9CyZUuNftra2pVyPHq9MIkkIiIiIqpmzMzMYGZm9sx+urq6sLOzk1ZnbdKkCVauXImCgoJSs5EqlQrW1taIj4+Hr6+vVB8fH48WLVqUewwLCwtYW1vjypUrCA4Ofs4zojcJk0giIiIiolcsOzsbycnJ0nZqairUajXMzMxQv379MvfZunUr1q1bh48++giOjo4QQmDLli3Yvn07YmJiAABhYWH49ttv8dFHHyEiIgImJib4888/0aJFCzg5OWHcuHGIjIyEnZ0dPDw8EBMTA7VaLa3AWp6pU6ciPDwcJiYmCAwMRF5eHo4fP467d+9i9OjRlXdh6LXAJJKIiIiIXktCVHUEz+/48eNo166dtF2SiIWEhCA2NrbMfVxdXWFgYIAxY8bg2rVrUCqVcHBwQHR0NPr27Qvg0aOu+/fvx7hx4+Dr6wttbW14eHhI70GGh4cjMzMTY8aMwc2bN+Hq6orNmzdrrMxalkGDBsHAwABff/01xo0bB0NDQ7i5uWHUqFEvfjHotaMQ4nX+40f06mVlZcHExASZmZlQqVRVHQ4REdEb7cGDB0hKSoKLiwsMDAyqOhyi19rT/jxV5DMuV2clIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIRERHR60mheLWFnsvt27dRp04dXL16tapDeW5LlixB165dqzqMaoNJJBERERHRSxAaGgqFQlGqJCcnAwB+//13dO3aFdbW1lAoFPj1119ljZuYmIj33nsPderUgZ6eHmxtbdGrVy/cvHnzJZ7N85s+fTq6desGW1tbqW7Tpk34z3/+AxMTExgbG6Nx48YYNWrUS48lKioKHh4eFd5vwIABOHnyJA4dOlT5Qb2GmEQSEREREb0kgYGBSE9P1ygNGzYEAOTk5MDd3R2LFi2SPd6tW7fQvn17mJmZYdeuXUhKSkJMTAysra2Rk5Pzsk4DBQUFz7XfgwcPsHz5cgwcOFCq27dvH3r16oUPPvgAx44dw4kTJzB9+vTnPsaroKuriz59+mDhwoVVHUq1wCSSiIiIiOglUSqVsLS01Cja2toAgI4dO+LLL79E9+7dZY8XHx+PzMxMREdHw9PTEw0bNkS7du0wb948KTkFgHPnzqFLly5QqVQwNjZG69atkZKSAgAoLi7GF198gXr16kGpVMLDwwM7d+6U9r169SoUCgXWr18PX19f6OnpYfXq1QCA6OhouLi4QE9PD87Ozvj++++fGu/27duhVCrxn//8R6rbsmULfHx8MG7cODg5OcHR0RFBQUEayXTJjOGKFStQv359GBkZYdiwYSgqKsLs2bNhaWmJOnXqYPr06RrHS0tLQ7du3WBkZASVSoWePXvixo0bAIDY2FhMnToViYmJ0qxwbGwsAODevXsYNGgQzM3NoVKp4Ofnh8TERI2xu3btis2bNyM3N1fur+uNxSSSiIiIiOg1YWlpicLCQmzatAlCiDL7XL9+HW3atIFSqcT+/ftx4sQJDBgwAIWFhQCABQsWYO7cuZgzZw5Onz6NgIAAvPfee7h8+bLGOBMmTMDIkSORlJSEgIAArF69GlOmTMH06dORlJSEGTNmYPLkyVi5cmW58R46dAjNmjUrdQ7nzp3D2bNnn3quKSkp2LFjB3bu3Im1a9di+fLl6Ny5M/7++28cPHgQX331FSZNmoSjR48CeJQcd+vWDXfu3MHBgwexZ88eXLlyBb169QIA9OrVC2PGjEHjxo2lWeGSth49euDmzZvYsWMHTpw4gaZNm6J9+/a4c+eOFI+XlxcKCwul473VBBFVSGZmpgAgMjMzqzoUIiKiN15OTo44fvy4yMnJKd0IvNpSQSEhIUJbW1sYGhpK5cMPPyyzLwCxadMmWeN+/vnnQkdHR5iZmYnAwEAxe/ZskZGRIbVHRESIhg0bivz8/DL3t7a2FtOnT9eoa968uRg2bJgQQojU1FQBQMyfP1+jj52dnVizZo1G3bRp04S3t3e5sXbr1k0MGDBAoy47O1t06tRJABANGjQQvXr1EsuXLxcPHz6U+kRGRgoDAwORlZUl1QUEBAhbW1tRVFQk1Tk5OYmZM2cKIYTYvXu30NbWFmlpaVL7uXPnBABx7NgxaVx3d3eNeA4dOiRUKpXG8UvOd+nSpRp1NWvWFLGxseWeb3X3tD9PFfmMy5lIIiIiIqKXpF27dlCr1VKpyDt1M2bMgJGRkVTS0tIAPFqoJiMjA0uWLEHjxo2xZMkSODs748yZMwAAtVqN1q1bo0aNGqXGzMrKwj///AMfHx+Neh8fHyQlJWnUeXl5ST/n5OQgJSUFAwcO1Ijpyy+/lB6TLUtubi709PQ06gwNDbFt2zYkJydj0qRJMDIywpgxY9CiRQs8ePBA6mdrawtjY2Np28LCAq6urtDS0tKoK1lQKCkpCTY2NrCxsZHaXV1dYWpqWurcHpeYmIjs7GzUqlVL49xSU1NLnZu+vr5GjG8rnaoOgIiIiIjoTWVoaAh7e/vn2vfjjz9Gz549pW1ra2vp51q1aqFHjx7o0aMHZsyYAU9PT8yZMwcrV66Evr7+C8cNPIq9RHZ2NgBg2bJlaNmypUa/knc8y1K7dm3cvXu3zDY7OzvY2dlh0KBBmDhxIhwdHbF+/Xr0798fAEolwQqFosy64uJi+SdVhuzsbFhZWSEuLq5Um6mpqcb2nTt3YG5u/kLHexMwiSQiIiIiqobMzMxgZmb2zH66urqws7OTVmdt0qQJVq5ciYKCglJJl0qlgrW1NeLj4+Hr6yvVx8fHo0WLFuUew8LCAtbW1rhy5QqCg4Nln4Onpyd+/PHHZ/aztbWFgYHBC60w6+LigmvXruHatWvSbOT58+dx7949uLq6Anh0rYqKijT2a9q0KTIyMqCjo6PxNSRPSklJwcOHD+Hp6fncMb4pmEQSEREREVWB7Oxs6TsjASA1NRVqtRpmZmaoX79+mfts3boV69atw0cffQRHR0cIIbBlyxZs374dMTExAICwsDB8++23+OijjxAREQETExP8+eefaNGiBZycnDBu3DhERkbCzs4OHh4eiImJgVqtllZgLc/UqVMRHh4OExMTBAYGIi8vD8ePH8fdu3cxevToMvcJCAhAREQE7t69i5o1awJ4tPLqgwcP0KlTJzRo0AD37t3DwoULUVBQgA4dOjzPpQQA+Pv7w83NDcHBwZg/fz4KCwsxbNgw+Pr6So/m2traSte5Xr16MDY2hr+/P7y9vREUFITZs2fD0dER//zzD7Zt24bu3btL+x46dAiNGjWCnZ3dc8f4puA7kURERET0enrVS+tUsuPHj8PT01Oa2Ro9ejQ8PT0xZcqUcvdxdXWFgYEBxowZAw8PD/znP//Bhg0bEB0djb59+wJ49Kjr/v37kZ2dDV9fXzRr1gzLli2TZiXDw8MxevRojBkzBm5ubti5cyc2b94MBweHp8Y7aNAgREdHIyYmBm5ubvD19UVsbKzGV4s8yc3NDU2bNsWGDRukOl9fX1y5cgX9+vWDs7MzOnbsiIyMDOzevRtOTk6yr9+TFAoFfvvtN9SsWRNt2rSBv78/GjVqhPXr10t9PvjgAwQGBqJdu3YwNzfH2rVroVAosH37drRp0wb9+/eHo6MjPvroI/z111+wsLCQ9l27di0GDx783PG9SRRCvIQ/EURvsKysLJiYmCAzMxMqlaqqwyEiInqjPXjwAElJSXBxcYGBgUFVh0PPYdu2bRg3bhzOnj2rsSjO6+TcuXPw8/PDpUuXYGJiUtXhPLen/XmqyGdcPs5KREREREQvTefOnXH58mVcv35dY+XU10l6ejr+53/+57VOICsTk0giIiIiInqpRo0aVdUhvBB/f/+qDqFaeT3nk4mIiIiIiKhKMIkkIiIiIiIi2ZhEEhEREVG196JfKE9ElffniO9EEhEREVG1paenBy0tLaSmpqJu3bpQKpVQKBRVHRbRa6e4uBjp6elQKBRQKpUvNBaTSCIiIiKqtrS0tODq6oqrV68iNTW1qsMheq0pFArY29tDW1v7hcZhEklERERE1ZpSqYSjoyMKCgpQWFhY1eEQvbaUSuULJ5AAk0giIiIieg0oFAro6upCV1e3qkMheutxYR0iIiIiIiKSjUkkERERERERycYkkoiIiIiIiGTjO5FEFSSEAABkZWVVcSRERERERJWj5LNtyWfdp2ESSVRBt2/fBgDY2NhUcSRERERERJXr/v37MDExeWofJpFEFWRmZgYASEtLe+YfMKInZWVlwcbGBteuXYNKparqcOg1w/uHXhTvIXoRvH/ebEII3L9/H9bW1s/syySSqIK0tB69SmxiYsK/QOm5qVQq3j/03Hj/0IviPUQvgvfPm0vuBAkX1iEiIiIiIiLZmEQSERERERGRbEwiiSpIqVQiMjISSqWyqkOh1xDvH3oRvH/oRfEeohfB+4dKKIScNVyJiIiIiIiIwJlIIiIiIiIiqgAmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklUhkWLFsHW1hZ6enpo2bIljh079tT+P/30E5ydnaGnpwc3Nzds3779FUVK1VFF7p9ly5ahdevWqFmzJmrWrAl/f/9n3m/0Zqvo3z8l1q1bB4VCgaCgoJcbIFV7Fb2H7t27h+HDh8PKygpKpRKOjo78d+wtVtH7Z/78+XBycoK+vj5sbGzw6aef4uHDh68oWqoqTCKJnrB+/XqMHj0akZGROHnyJNzd3REQEICbN2+W2f/IkSPo3bs3Bg4ciFOnTiEoKAhBQUE4e/bsK46cqoOK3j9xcXHo3bs3Dhw4gD/++AM2Njb473//i+vXr7/iyKk6qOj9U+Lq1asYO3YsWrdu/YoipeqqovdQfn4+OnTogKtXr+Lnn3/GxYsXsWzZMtStW/cVR07VQUXvnzVr1mDChAmIjIxEUlISli9fjvXr1+Pzzz9/xZHTKyeISEOLFi3E8OHDpe2ioiJhbW0tZs6cWWb/nj17is6dO2vUtWzZUgwdOvSlxknVU0XvnycVFhYKY2NjsXLlypcVIlVjz3P/FBYWilatWono6GgREhIiunXr9goipeqqovfQ4sWLRaNGjUR+fv6rCpGqsYreP8OHDxd+fn4adaNHjxY+Pj4vNU6qepyJJHpMfn4+Tpw4AX9/f6lOS0sL/v7++OOPP8rc548//tDoDwABAQHl9qc31/PcP0968OABCgoKYGZm9rLCpGrqee+fL774AnXq1MHAgQNfRZhUjT3PPbR582Z4e3tj+PDhsLCwwDvvvIMZM2agqKjoVYVN1cTz3D+tWrXCiRMnpEder1y5gu3bt6NTp06vJGaqOjpVHQBRdfLvv/+iqKgIFhYWGvUWFha4cOFCmftkZGSU2T8jI+OlxUnV0/PcP08aP348rK2tS/3HBL35nuf+OXz4MJYvXw61Wv0KIqTq7nnuoStXrmD//v0IDg7G9u3bkZycjGHDhqGgoACRkZGvImyqJp7n/unTpw/+/fdfvPvuuxBCoLCwEB9//DEfZ30LcCaSiKiamDVrFtatW4dNmzZBT0+vqsOhau7+/fvo27cvli1bhtq1a1d1OPSaKi4uRp06dfDDDz+gWbNm6NWrFyZOnIglS5ZUdWj0GoiLi8OMGTPw/fff4+TJk9i4cSO2bduGadOmVXVo9JJxJpLoMbVr14a2tjZu3LihUX/jxg1YWlqWuY+lpWWF+tOb63nunxJz5szBrFmzsHfvXjRp0uRlhknVVEXvn5SUFFy9ehVdu3aV6oqLiwEAOjo6uHjxIuzs7F5u0FStPM/fQVZWVqhRowa0tbWlOhcXF2RkZCA/Px+6urovNWaqPp7n/pk8eTL69u2LQYMGAQDc3NyQk5ODIUOGYOLEidDS4nzVm4q/WaLH6OrqolmzZti3b59UV1xcjH379sHb27vMfby9vTX6A8CePXvK7U9vrue5fwBg9uzZmDZtGnbu3AkvL69XESpVQxW9f5ydnXHmzBmo1WqpvPfee2jXrh3UajVsbGxeZfhUDTzP30E+Pj5ITk6W/gMCAC5dugQrKysmkG+Z57l/Hjx4UCpRLPkPCSHEywuWql5Vr+xDVN2sW7dOKJVKERsbK86fPy+GDBkiTE1NRUZGhhBCiL59+4oJEyZI/ePj44WOjo6YM2eOSEpKEpGRkaJGjRrizJkzVXUKVIUqev/MmjVL6Orqip9//lmkp6dL5f79+1V1ClSFKnr/PImrs1JF76G0tDRhbGwswsLCxMWLF8XWrVtFnTp1xJdffllVp0BVqKL3T2RkpDA2NhZr164VV65cEbt37xZ2dnaiZ8+eVXUK9IrwcVaiJ/Tq1Qu3bt3ClClTkJGRAQ8PD+zcuVN60TwtLU3jf91atWqFNWvWYNKkSfj888/h4OCAX3/9Fe+8805VnQJVoYreP4sXL0Z+fj4+/PBDjXEiIyMRFRX1KkOnaqCi9w/Rkyp6D9nY2GDXrl349NNP0aRJE9StWxcjR47E+PHjq+oUqApV9P6ZNGkSFAoFJk2ahOvXr8Pc3Bxdu3bF9OnTq+oU6BVRCMG5ZiIiIiIiIpKH/51JREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbP8ff9NmLM5JF80AAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Labels | \n",
" Precision | \n",
" Precision (Smote) | \n",
" Recall | \n",
" Recall (Smote) | \n",
" F1 | \n",
" F1 (Smote) | \n",
" Occurrence Count | \n",
" Percentage | \n",
"
\n",
" \n",
" \n",
" \n",
" 9 | \n",
" Mute Swan 1km | \n",
" 0.895056 | \n",
" 0.901090 | \n",
" 0.947652 | \n",
" 0.923650 | \n",
" 0.920603 | \n",
" 0.912231 | \n",
" 19124 | \n",
" 0.578044 | \n",
"
\n",
" \n",
" 1 | \n",
" Canada Goose 1km | \n",
" 0.751229 | \n",
" 0.762679 | \n",
" 0.893219 | \n",
" 0.767732 | \n",
" 0.816094 | \n",
" 0.765197 | \n",
" 10147 | \n",
" 0.306704 | \n",
"
\n",
" \n",
" 10 | \n",
" Pheasant 1km | \n",
" 0.554217 | \n",
" 0.523457 | \n",
" 0.633609 | \n",
" 0.438017 | \n",
" 0.591260 | \n",
" 0.476940 | \n",
" 5855 | \n",
" 0.176974 | \n",
"
\n",
" \n",
" 16 | \n",
" Rock Dove 1km | \n",
" 0.560799 | \n",
" 0.477639 | \n",
" 0.292337 | \n",
" 0.252602 | \n",
" 0.384328 | \n",
" 0.330446 | \n",
" 3919 | \n",
" 0.118456 | \n",
"
\n",
" \n",
" 7 | \n",
" Little Owl 1km | \n",
" 0.533414 | \n",
" 0.501166 | \n",
" 0.500000 | \n",
" 0.489749 | \n",
" 0.516167 | \n",
" 0.495392 | \n",
" 3548 | \n",
" 0.107242 | \n",
"
\n",
" \n",
" 14 | \n",
" Red-legged Partridge 1km | \n",
" 0.400000 | \n",
" 0.424332 | \n",
" 0.076814 | \n",
" 0.203414 | \n",
" 0.128878 | \n",
" 0.275000 | \n",
" 2953 | \n",
" 0.089258 | \n",
"
\n",
" \n",
" 11 | \n",
" Pink-footed Goose 1km | \n",
" 0.676190 | \n",
" 0.563884 | \n",
" 0.432927 | \n",
" 0.504573 | \n",
" 0.527881 | \n",
" 0.532582 | \n",
" 2646 | \n",
" 0.079978 | \n",
"
\n",
" \n",
" 19 | \n",
" Wigeon 1km | \n",
" 0.642276 | \n",
" 0.244586 | \n",
" 0.135043 | \n",
" 0.328205 | \n",
" 0.223164 | \n",
" 0.280292 | \n",
" 2317 | \n",
" 0.070034 | \n",
"
\n",
" \n",
" 3 | \n",
" Gadwall 1km | \n",
" 0.709199 | \n",
" 0.596330 | \n",
" 0.438532 | \n",
" 0.477064 | \n",
" 0.541950 | \n",
" 0.530071 | \n",
" 2205 | \n",
" 0.066649 | \n",
"
\n",
" \n",
" 5 | \n",
" Grey Partridge 1km | \n",
" 0.315789 | \n",
" 0.345013 | \n",
" 0.022727 | \n",
" 0.242424 | \n",
" 0.042403 | \n",
" 0.284761 | \n",
" 2123 | \n",
" 0.064170 | \n",
"
\n",
" \n",
" 13 | \n",
" Pochard 1km | \n",
" 0.500000 | \n",
" 0.198113 | \n",
" 0.015267 | \n",
" 0.080153 | \n",
" 0.029630 | \n",
" 0.114130 | \n",
" 1057 | \n",
" 0.031949 | \n",
"
\n",
" \n",
" 8 | \n",
" Mandarin Duck 1km | \n",
" 0.605263 | \n",
" 0.458647 | \n",
" 0.203540 | \n",
" 0.269912 | \n",
" 0.304636 | \n",
" 0.339833 | \n",
" 1010 | \n",
" 0.030528 | \n",
"
\n",
" \n",
" 18 | \n",
" Whooper Swan 1km | \n",
" 0.285714 | \n",
" 0.095588 | \n",
" 0.007663 | \n",
" 0.149425 | \n",
" 0.014925 | \n",
" 0.116592 | \n",
" 955 | \n",
" 0.028866 | \n",
"
\n",
" \n",
" 2 | \n",
" Egyptian Goose 1km | \n",
" 0.458763 | \n",
" 0.465839 | \n",
" 0.468421 | \n",
" 0.394737 | \n",
" 0.463542 | \n",
" 0.427350 | \n",
" 863 | \n",
" 0.026085 | \n",
"
\n",
" \n",
" 0 | \n",
" Barnacle Goose 1km | \n",
" 0.435028 | \n",
" 0.406452 | \n",
" 0.401042 | \n",
" 0.328125 | \n",
" 0.417344 | \n",
" 0.363112 | \n",
" 769 | \n",
" 0.023244 | \n",
"
\n",
" \n",
" 12 | \n",
" Pintail 1km | \n",
" 0.358974 | \n",
" 0.051597 | \n",
" 0.076923 | \n",
" 0.115385 | \n",
" 0.126697 | \n",
" 0.071307 | \n",
" 697 | \n",
" 0.021068 | \n",
"
\n",
" \n",
" 15 | \n",
" Ring-necked Parakeet 1km | \n",
" 0.219780 | \n",
" 0.419355 | \n",
" 0.322581 | \n",
" 0.314516 | \n",
" 0.261438 | \n",
" 0.359447 | \n",
" 504 | \n",
" 0.015234 | \n",
"
\n",
" \n",
" 4 | \n",
" Goshawk 1km | \n",
" 0.000000 | \n",
" 0.118644 | \n",
" 0.000000 | \n",
" 0.066038 | \n",
" 0.000000 | \n",
" 0.084848 | \n",
" 446 | \n",
" 0.013481 | \n",
"
\n",
" \n",
" 6 | \n",
" Indian Peafowl 1km | \n",
" 0.000000 | \n",
" 0.120000 | \n",
" 0.000000 | \n",
" 0.040000 | \n",
" 0.000000 | \n",
" 0.060000 | \n",
" 294 | \n",
" 0.008886 | \n",
"
\n",
" \n",
" 17 | \n",
" Ruddy Duck 1km | \n",
" 0.000000 | \n",
" 0.272727 | \n",
" 0.000000 | \n",
" 0.100000 | \n",
" 0.000000 | \n",
" 0.146341 | \n",
" 124 | \n",
" 0.003748 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Labels Precision Precision (Smote) Recall \\\n",
"9 Mute Swan 1km 0.895056 0.901090 0.947652 \n",
"1 Canada Goose 1km 0.751229 0.762679 0.893219 \n",
"10 Pheasant 1km 0.554217 0.523457 0.633609 \n",
"16 Rock Dove 1km 0.560799 0.477639 0.292337 \n",
"7 Little Owl 1km 0.533414 0.501166 0.500000 \n",
"14 Red-legged Partridge 1km 0.400000 0.424332 0.076814 \n",
"11 Pink-footed Goose 1km 0.676190 0.563884 0.432927 \n",
"19 Wigeon 1km 0.642276 0.244586 0.135043 \n",
"3 Gadwall 1km 0.709199 0.596330 0.438532 \n",
"5 Grey Partridge 1km 0.315789 0.345013 0.022727 \n",
"13 Pochard 1km 0.500000 0.198113 0.015267 \n",
"8 Mandarin Duck 1km 0.605263 0.458647 0.203540 \n",
"18 Whooper Swan 1km 0.285714 0.095588 0.007663 \n",
"2 Egyptian Goose 1km 0.458763 0.465839 0.468421 \n",
"0 Barnacle Goose 1km 0.435028 0.406452 0.401042 \n",
"12 Pintail 1km 0.358974 0.051597 0.076923 \n",
"15 Ring-necked Parakeet 1km 0.219780 0.419355 0.322581 \n",
"4 Goshawk 1km 0.000000 0.118644 0.000000 \n",
"6 Indian Peafowl 1km 0.000000 0.120000 0.000000 \n",
"17 Ruddy Duck 1km 0.000000 0.272727 0.000000 \n",
"\n",
" Recall (Smote) F1 F1 (Smote) Occurrence Count Percentage \n",
"9 0.923650 0.920603 0.912231 19124 0.578044 \n",
"1 0.767732 0.816094 0.765197 10147 0.306704 \n",
"10 0.438017 0.591260 0.476940 5855 0.176974 \n",
"16 0.252602 0.384328 0.330446 3919 0.118456 \n",
"7 0.489749 0.516167 0.495392 3548 0.107242 \n",
"14 0.203414 0.128878 0.275000 2953 0.089258 \n",
"11 0.504573 0.527881 0.532582 2646 0.079978 \n",
"19 0.328205 0.223164 0.280292 2317 0.070034 \n",
"3 0.477064 0.541950 0.530071 2205 0.066649 \n",
"5 0.242424 0.042403 0.284761 2123 0.064170 \n",
"13 0.080153 0.029630 0.114130 1057 0.031949 \n",
"8 0.269912 0.304636 0.339833 1010 0.030528 \n",
"18 0.149425 0.014925 0.116592 955 0.028866 \n",
"2 0.394737 0.463542 0.427350 863 0.026085 \n",
"0 0.328125 0.417344 0.363112 769 0.023244 \n",
"12 0.115385 0.126697 0.071307 697 0.021068 \n",
"15 0.314516 0.261438 0.359447 504 0.015234 \n",
"4 0.066038 0.000000 0.084848 446 0.013481 \n",
"6 0.040000 0.000000 0.060000 294 0.008886 \n",
"17 0.100000 0.000000 0.146341 124 0.003748 "
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create graphs to show off data\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"plt.rcParams['figure.figsize'] = [9, 12]\n",
"\n",
"occurrence_count, occurrence_percentage = All_bird_occurrences['Occurrence Count'], All_bird_occurrences['Percentage']\n",
"precision = []\n",
"precision_smote = []\n",
"recall = []\n",
"recall_smote = []\n",
"f1 = []\n",
"f1_smote = []\n",
"labels = []\n",
"for dict in df_dicts:\n",
" precision.append(dict['report']['1']['precision'])\n",
" precision_smote.append(dict['report_smote']['1']['precision'])\n",
" recall.append(dict['report']['1']['recall'])\n",
" recall_smote.append(dict['report_smote']['1']['recall'])\n",
" f1.append(dict['report']['1']['f1-score'])\n",
" f1_smote.append(dict['report_smote']['1']['f1-score'])\n",
" labels.append(dict['name'])\n",
"\n",
"\n",
"\n",
"scores = pd.DataFrame({'Labels' : labels, \n",
" 'Precision': precision, 'Precision (Smote)': precision_smote, \n",
" 'Recall': recall, 'Recall (Smote)': recall_smote, \n",
" 'F1': f1, 'F1 (Smote)': f1_smote,\n",
" 'Occurrence Count' : occurrence_count, 'Percentage' : occurrence_percentage} )\n",
" \n",
"scores.sort_values('Occurrence Count', inplace=True)\n",
"\n",
"n=20\n",
"r = np.arange(n)\n",
"height = 0.25\n",
"\n",
"plt.barh(r, 'Percentage', data=scores, label='Occurrence Percentage', height = height, color='g')\n",
"plt.barh(r+height, 'F1', data=scores, label='F1-Score', height= height, color='b')\n",
"plt.barh(r+height*2, 'F1 (Smote)', data=scores, label='F1-Score (Smote)', height = height, color='r')\n",
"plt.legend(framealpha=1, frameon=True)\n",
"plt.yticks(r+height*2, scores['Labels'])\n",
"\n",
"\n",
"plt.show()\n",
"\n",
"\n",
"scores.sort_values('Occurrence Count', ascending=False)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Stored 'df_dicts_1km' (list)\n"
]
}
],
"source": [
"# Store dictionaries for later use\n",
"df_dicts_1km = df_dicts\n",
"%store df_dicts_1km"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 962500.0 | \n",
" 155500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 819500.0 | \n",
" 338500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 378500.0 | \n",
" 406500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 706500.0 | \n",
" 390500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 897500.0 | \n",
" 325500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1096500.0 | \n",
" 199500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 535500.0 | \n",
" 591500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 337500.0 | \n",
" 425500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 232500.0 | \n",
" 186500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 1135500.0 | \n",
" 40500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"962500.0 155500.0 0 0\n",
"819500.0 338500.0 0 0\n",
"378500.0 406500.0 0 0\n",
"706500.0 390500.0 0 0\n",
"897500.0 325500.0 0 0\n",
"... ... ...\n",
"1096500.0 199500.0 0 0\n",
"535500.0 591500.0 0 0\n",
"337500.0 425500.0 0 0\n",
"232500.0 186500.0 0 1\n",
"1135500.0 40500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 836500.0 | \n",
" 116500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 655500.0 | \n",
" 626500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 277500.0 | \n",
" 451500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 518500.0 | \n",
" 61500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 746500.0 | \n",
" 117500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1017500.0 | \n",
" 557500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 374500.0 | \n",
" 502500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 248500.0 | \n",
" 292500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 183500.0 | \n",
" 500500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 1073500.0 | \n",
" 158500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"836500.0 116500.0 0 0\n",
"655500.0 626500.0 0 0\n",
"277500.0 451500.0 1 1\n",
"518500.0 61500.0 0 0\n",
"746500.0 117500.0 0 0\n",
"... ... ...\n",
"1017500.0 557500.0 0 0\n",
"374500.0 502500.0 1 0\n",
"248500.0 292500.0 0 0\n",
"183500.0 500500.0 1 1\n",
"1073500.0 158500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 965500.0 | \n",
" 565500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 815500.0 | \n",
" 297500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 357500.0 | \n",
" 224500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 695500.0 | \n",
" 254500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 897500.0 | \n",
" 689500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1097500.0 | \n",
" 515500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 516500.0 | \n",
" 560500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 315500.0 | \n",
" 568500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 216500.0 | \n",
" 594500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 1135500.0 | \n",
" 18500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"965500.0 565500.0 0 0\n",
"815500.0 297500.0 0 0\n",
"357500.0 224500.0 0 0\n",
"695500.0 254500.0 0 0\n",
"897500.0 689500.0 0 0\n",
"... ... ...\n",
"1097500.0 515500.0 0 0\n",
"516500.0 560500.0 0 0\n",
"315500.0 568500.0 0 0\n",
"216500.0 594500.0 1 0\n",
"1135500.0 18500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 948500.0 | \n",
" 472500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 799500.0 | \n",
" 389500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 347500.0 | \n",
" 652500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 683500.0 | \n",
" 615500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 880500.0 | \n",
" 575500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1086500.0 | \n",
" 585500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 499500.0 | \n",
" 640500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 312500.0 | \n",
" 593500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 218500.0 | \n",
" 477500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1127500.0 | \n",
" 658500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"948500.0 472500.0 0 0\n",
"799500.0 389500.0 0 0\n",
"347500.0 652500.0 0 0\n",
"683500.0 615500.0 0 0\n",
"880500.0 575500.0 0 0\n",
"... ... ...\n",
"1086500.0 585500.0 0 0\n",
"499500.0 640500.0 0 0\n",
"312500.0 593500.0 0 0\n",
"218500.0 477500.0 0 0\n",
"1127500.0 658500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 968500.0 | \n",
" 51500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 828500.0 | \n",
" 230500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 382500.0 | \n",
" 480500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 718500.0 | \n",
" 624500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 904500.0 | \n",
" 666500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1099500.0 | \n",
" 552500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 540500.0 | \n",
" 467500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 337500.0 | \n",
" 350500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 231500.0 | \n",
" 463500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1138500.0 | \n",
" 581500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"968500.0 51500.0 0 0\n",
"828500.0 230500.0 0 0\n",
"382500.0 480500.0 0 0\n",
"718500.0 624500.0 0 0\n",
"904500.0 666500.0 0 0\n",
"... ... ...\n",
"1099500.0 552500.0 0 0\n",
"540500.0 467500.0 0 0\n",
"337500.0 350500.0 0 0\n",
"231500.0 463500.0 0 0\n",
"1138500.0 581500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 949500.0 | \n",
" 6500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 799500.0 | \n",
" 470500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 361500.0 | \n",
" 282500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 683500.0 | \n",
" 278500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 882500.0 | \n",
" 446500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1091500.0 | \n",
" 3500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 505500.0 | \n",
" 434500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 323500.0 | \n",
" 642500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 226500.0 | \n",
" 653500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1132500.0 | \n",
" 613500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"949500.0 6500.0 0 0\n",
"799500.0 470500.0 0 0\n",
"361500.0 282500.0 0 0\n",
"683500.0 278500.0 1 0\n",
"882500.0 446500.0 0 0\n",
"... ... ...\n",
"1091500.0 3500.0 0 0\n",
"505500.0 434500.0 0 0\n",
"323500.0 642500.0 0 1\n",
"226500.0 653500.0 0 0\n",
"1132500.0 613500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 969500.0 | \n",
" 180500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 824500.0 | \n",
" 179500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 378500.0 | \n",
" 407500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 712500.0 | \n",
" 336500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 903500.0 | \n",
" 422500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1099500.0 | \n",
" 45500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 531500.0 | \n",
" 276500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 334500.0 | \n",
" 534500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 227500.0 | \n",
" 170500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1138500.0 | \n",
" 554500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"969500.0 180500.0 0 0\n",
"824500.0 179500.0 0 0\n",
"378500.0 407500.0 0 0\n",
"712500.0 336500.0 0 0\n",
"903500.0 422500.0 0 0\n",
"... ... ...\n",
"1099500.0 45500.0 0 0\n",
"531500.0 276500.0 0 0\n",
"334500.0 534500.0 0 0\n",
"227500.0 170500.0 0 0\n",
"1138500.0 554500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 930500.0 | \n",
" 568500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 771500.0 | \n",
" 130500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 327500.0 | \n",
" 11500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 645500.0 | \n",
" 485500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 858500.0 | \n",
" 506500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1074500.0 | \n",
" 258500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 456500.0 | \n",
" 557500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 293500.0 | \n",
" 690500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 210500.0 | \n",
" 288500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1119500.0 | \n",
" 95500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"930500.0 568500.0 0 0\n",
"771500.0 130500.0 0 0\n",
"327500.0 11500.0 0 0\n",
"645500.0 485500.0 0 0\n",
"858500.0 506500.0 0 0\n",
"... ... ...\n",
"1074500.0 258500.0 0 0\n",
"456500.0 557500.0 0 0\n",
"293500.0 690500.0 0 0\n",
"210500.0 288500.0 0 0\n",
"1119500.0 95500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 960500.0 | \n",
" 209500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 814500.0 | \n",
" 197500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 367500.0 | \n",
" 436500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 702500.0 | \n",
" 371500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 894500.0 | \n",
" 360500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1096500.0 | \n",
" 139500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 521500.0 | \n",
" 528500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 325500.0 | \n",
" 88500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 220500.0 | \n",
" 211500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1136500.0 | \n",
" 611500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"960500.0 209500.0 0 0\n",
"814500.0 197500.0 0 0\n",
"367500.0 436500.0 1 1\n",
"702500.0 371500.0 0 0\n",
"894500.0 360500.0 0 0\n",
"... ... ...\n",
"1096500.0 139500.0 0 0\n",
"521500.0 528500.0 0 0\n",
"325500.0 88500.0 0 0\n",
"220500.0 211500.0 0 0\n",
"1136500.0 611500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 680500.0 | \n",
" 65500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 530500.0 | \n",
" 309500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 254500.0 | \n",
" 634500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 425500.0 | \n",
" 348500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 626500.0 | \n",
" 529500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 861500.0 | \n",
" 205500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 322500.0 | \n",
" 344500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 230500.0 | \n",
" 483500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 180500.0 | \n",
" 539500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 935500.0 | \n",
" 174500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"680500.0 65500.0 0 0\n",
"530500.0 309500.0 1 1\n",
"254500.0 634500.0 1 1\n",
"425500.0 348500.0 1 1\n",
"626500.0 529500.0 0 0\n",
"... ... ...\n",
"861500.0 205500.0 0 0\n",
"322500.0 344500.0 1 1\n",
"230500.0 483500.0 1 1\n",
"180500.0 539500.0 1 1\n",
"935500.0 174500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 902500.0 | \n",
" 540500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 739500.0 | \n",
" 369500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 317500.0 | \n",
" 554500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 622500.0 | \n",
" 469500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 828500.0 | \n",
" 584500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1057500.0 | \n",
" 582500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 454500.0 | \n",
" 632500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 282500.0 | \n",
" 318500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 203500.0 | \n",
" 86500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1104500.0 | \n",
" 550500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"902500.0 540500.0 0 0\n",
"739500.0 369500.0 0 0\n",
"317500.0 554500.0 0 1\n",
"622500.0 469500.0 0 0\n",
"828500.0 584500.0 0 0\n",
"... ... ...\n",
"1057500.0 582500.0 0 0\n",
"454500.0 632500.0 0 0\n",
"282500.0 318500.0 0 1\n",
"203500.0 86500.0 0 0\n",
"1104500.0 550500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 950500.0 | \n",
" 406500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 809500.0 | \n",
" 2500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 398500.0 | \n",
" 691500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 707500.0 | \n",
" 615500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 881500.0 | \n",
" 442500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1089500.0 | \n",
" 549500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 547500.0 | \n",
" 154500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 354500.0 | \n",
" 260500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 249500.0 | \n",
" 254500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1131500.0 | \n",
" 696500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"950500.0 406500.0 0 0\n",
"809500.0 2500.0 0 0\n",
"398500.0 691500.0 0 0\n",
"707500.0 615500.0 0 0\n",
"881500.0 442500.0 0 0\n",
"... ... ...\n",
"1089500.0 549500.0 0 0\n",
"547500.0 154500.0 0 0\n",
"354500.0 260500.0 0 0\n",
"249500.0 254500.0 0 0\n",
"1131500.0 696500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 967500.0 | \n",
" 156500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 822500.0 | \n",
" 126500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 378500.0 | \n",
" 457500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 709500.0 | \n",
" 682500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 900500.0 | \n",
" 211500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1101500.0 | \n",
" 468500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 532500.0 | \n",
" 374500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 335500.0 | \n",
" 560500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 231500.0 | \n",
" 416500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1138500.0 | \n",
" 28500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"967500.0 156500.0 0 1\n",
"822500.0 126500.0 0 0\n",
"378500.0 457500.0 0 0\n",
"709500.0 682500.0 0 0\n",
"900500.0 211500.0 0 0\n",
"... ... ...\n",
"1101500.0 468500.0 0 0\n",
"532500.0 374500.0 0 0\n",
"335500.0 560500.0 0 0\n",
"231500.0 416500.0 0 0\n",
"1138500.0 28500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 961500.0 | \n",
" 396500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 818500.0 | \n",
" 565500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 371500.0 | \n",
" 430500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 704500.0 | \n",
" 27500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 896500.0 | \n",
" 597500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1094500.0 | \n",
" 461500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 523500.0 | \n",
" 617500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 331500.0 | \n",
" 11500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 230500.0 | \n",
" 79500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1132500.0 | \n",
" 221500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"961500.0 396500.0 0 0\n",
"818500.0 565500.0 0 0\n",
"371500.0 430500.0 0 1\n",
"704500.0 27500.0 0 0\n",
"896500.0 597500.0 0 0\n",
"... ... ...\n",
"1094500.0 461500.0 0 0\n",
"523500.0 617500.0 0 0\n",
"331500.0 11500.0 0 0\n",
"230500.0 79500.0 0 0\n",
"1132500.0 221500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 940500.0 | \n",
" 272500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 782500.0 | \n",
" 270500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 336500.0 | \n",
" 236500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 664500.0 | \n",
" 453500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 868500.0 | \n",
" 252500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1083500.0 | \n",
" 173500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 481500.0 | \n",
" 553500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 299500.0 | \n",
" 527500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 213500.0 | \n",
" 457500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 1126500.0 | \n",
" 490500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"940500.0 272500.0 0 0\n",
"782500.0 270500.0 0 0\n",
"336500.0 236500.0 0 1\n",
"664500.0 453500.0 0 0\n",
"868500.0 252500.0 0 0\n",
"... ... ...\n",
"1083500.0 173500.0 0 0\n",
"481500.0 553500.0 0 0\n",
"299500.0 527500.0 1 0\n",
"213500.0 457500.0 1 1\n",
"1126500.0 490500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 969500.0 | \n",
" 16500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 821500.0 | \n",
" 474500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 368500.0 | \n",
" 295500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 709500.0 | \n",
" 74500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 903500.0 | \n",
" 575500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1100500.0 | \n",
" 390500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 529500.0 | \n",
" 393500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 325500.0 | \n",
" 323500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 215500.0 | \n",
" 327500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1139500.0 | \n",
" 93500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"969500.0 16500.0 0 0\n",
"821500.0 474500.0 0 0\n",
"368500.0 295500.0 0 0\n",
"709500.0 74500.0 0 0\n",
"903500.0 575500.0 0 0\n",
"... ... ...\n",
"1100500.0 390500.0 0 0\n",
"529500.0 393500.0 0 0\n",
"325500.0 323500.0 0 0\n",
"215500.0 327500.0 0 0\n",
"1139500.0 93500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 937500.0 | \n",
" 31500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 778500.0 | \n",
" 202500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 335500.0 | \n",
" 4500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 659500.0 | \n",
" 322500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 863500.0 | \n",
" 259500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1080500.0 | \n",
" 155500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 474500.0 | \n",
" 477500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 295500.0 | \n",
" 95500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 204500.0 | \n",
" 658500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1123500.0 | \n",
" 550500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"937500.0 31500.0 0 0\n",
"778500.0 202500.0 0 0\n",
"335500.0 4500.0 0 0\n",
"659500.0 322500.0 1 0\n",
"863500.0 259500.0 1 0\n",
"... ... ...\n",
"1080500.0 155500.0 0 0\n",
"474500.0 477500.0 1 0\n",
"295500.0 95500.0 0 0\n",
"204500.0 658500.0 0 0\n",
"1123500.0 550500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 969500.0 | \n",
" 293500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 825500.0 | \n",
" 78500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 379500.0 | \n",
" 633500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 713500.0 | \n",
" 366500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 901500.0 | \n",
" 154500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1099500.0 | \n",
" 316500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 532500.0 | \n",
" 141500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 336500.0 | \n",
" 138500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 232500.0 | \n",
" 302500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1138500.0 | \n",
" 479500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"969500.0 293500.0 0 0\n",
"825500.0 78500.0 0 0\n",
"379500.0 633500.0 0 0\n",
"713500.0 366500.0 0 0\n",
"901500.0 154500.0 0 0\n",
"... ... ...\n",
"1099500.0 316500.0 0 0\n",
"532500.0 141500.0 0 0\n",
"336500.0 138500.0 0 0\n",
"232500.0 302500.0 0 0\n",
"1138500.0 479500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 965500.0 | \n",
" 325500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 825500.0 | \n",
" 144500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 386500.0 | \n",
" 276500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 713500.0 | \n",
" 82500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 903500.0 | \n",
" 171500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1095500.0 | \n",
" 145500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 537500.0 | \n",
" 428500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 343500.0 | \n",
" 467500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 238500.0 | \n",
" 385500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1134500.0 | \n",
" 76500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"965500.0 325500.0 1 0\n",
"825500.0 144500.0 1 0\n",
"386500.0 276500.0 0 1\n",
"713500.0 82500.0 0 0\n",
"903500.0 171500.0 0 0\n",
"... ... ...\n",
"1095500.0 145500.0 0 0\n",
"537500.0 428500.0 0 0\n",
"343500.0 467500.0 0 0\n",
"238500.0 385500.0 0 0\n",
"1134500.0 76500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 952500.0 | \n",
" 101500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 810500.0 | \n",
" 233500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 374500.0 | \n",
" 364500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 698500.0 | \n",
" 209500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 884500.0 | \n",
" 398500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1086500.0 | \n",
" 454500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 527500.0 | \n",
" 207500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 333500.0 | \n",
" 528500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 234500.0 | \n",
" 614500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 1127500.0 | \n",
" 634500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
8271 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"952500.0 101500.0 0 0\n",
"810500.0 233500.0 0 0\n",
"374500.0 364500.0 1 1\n",
"698500.0 209500.0 0 0\n",
"884500.0 398500.0 0 0\n",
"... ... ...\n",
"1086500.0 454500.0 0 0\n",
"527500.0 207500.0 0 1\n",
"333500.0 528500.0 0 0\n",
"234500.0 614500.0 1 1\n",
"1127500.0 634500.0 0 0\n",
"\n",
"[8271 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Export predictions to CSV for QGIS\n",
"RESULTS_PATH = 'Datasets/Machine Learning/Results/1km/'\n",
"for dict in df_dicts:\n",
" # Join with y_test datafram\n",
" result_df = dict['y_test'] \n",
" result_df['Predictions'] = dict['predictions_smote']\n",
" display(result_df)\n",
" result_df.to_csv(RESULTS_PATH + dict['name'] + '.csv')\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 1586.660696 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 29 | \n",
" 1579.799646 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 30 | \n",
" 1579.799646 | \n",
" 0.000000e+00 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 31 | \n",
" 1579.799646 | \n",
" 0.000000e+00 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 32 | \n",
" 1579.799646 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 34 | \n",
" 1579.799646 | \n",
" 0.000000e+00 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 18 | \n",
" 1440.939379 | \n",
" 1.143607e-308 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 23 | \n",
" 1417.879628 | \n",
" 7.271005e-304 | \n",
" Surface type | \n",
"
\n",
" \n",
" 22 | \n",
" 1269.611405 | \n",
" 6.667737e-273 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 24 | \n",
" 1223.198053 | \n",
" 3.502336e-263 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 1203.742558 | \n",
" 4.196966e-259 | \n",
" Elevation | \n",
"
\n",
" \n",
" 17 | \n",
" 1078.608288 | \n",
" 8.174358e-233 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 13 | \n",
" 978.472706 | \n",
" 1.050650e-211 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 15 | \n",
" 853.811730 | \n",
" 2.457887e-185 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 3 | \n",
" 816.914586 | \n",
" 1.639367e-177 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 38 | \n",
" 682.011193 | \n",
" 7.904841e-149 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 37 | \n",
" 676.149377 | \n",
" 1.402808e-147 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 36 | \n",
" 673.575429 | \n",
" 4.960887e-147 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 26 | \n",
" 605.329133 | \n",
" 1.806036e-132 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 605.329133 | \n",
" 1.806036e-132 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 605.329133 | \n",
" 1.806036e-132 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 35 | \n",
" 504.754899 | \n",
" 5.949135e-111 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 33 | \n",
" 472.954811 | \n",
" 3.918041e-104 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 16 | \n",
" 416.369272 | \n",
" 5.554940e-92 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 7 | \n",
" 360.657263 | \n",
" 5.403022e-80 | \n",
" Fen | \n",
"
\n",
" \n",
" 0 | \n",
" 243.378276 | \n",
" 1.130191e-54 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 2 | \n",
" 223.631247 | \n",
" 2.134039e-50 | \n",
" Arable | \n",
"
\n",
" \n",
" 19 | \n",
" 168.960021 | \n",
" 1.551633e-38 | \n",
" Urban | \n",
"
\n",
" \n",
" 20 | \n",
" 156.098247 | \n",
" 9.703696e-36 | \n",
" Suburban | \n",
"
\n",
" \n",
" 14 | \n",
" 88.036607 | \n",
" 6.821306e-21 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 9 | \n",
" 70.504247 | \n",
" 4.773365e-17 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 52.091677 | \n",
" 5.410742e-13 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 28.131255 | \n",
" 1.140877e-07 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 10 | \n",
" 10.593482 | \n",
" 1.136010e-03 | \n",
" Bog | \n",
"
\n",
" \n",
" 6 | \n",
" 3.881727 | \n",
" 4.882264e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 1.726979 | \n",
" 1.888063e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 11 | \n",
" 1.309928 | \n",
" 2.524160e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 1 | \n",
" 1.193636 | \n",
" 2.746053e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 5 | \n",
" 0.275406 | \n",
" 5.997316e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 1586.660696 0.000000e+00 Inflowing drainage direction\n",
"29 1579.799646 0.000000e+00 Chlorothalonil\n",
"30 1579.799646 0.000000e+00 Glyphosate\n",
"31 1579.799646 0.000000e+00 Mancozeb\n",
"32 1579.799646 0.000000e+00 Mecoprop-P\n",
"34 1579.799646 0.000000e+00 Pendimethalin\n",
"18 1440.939379 1.143607e-308 Saltmarsh\n",
"23 1417.879628 7.271005e-304 Surface type\n",
"22 1269.611405 6.667737e-273 Cumulative catchment area\n",
"24 1223.198053 3.502336e-263 Outflowing drainage direction\n",
"21 1203.742558 4.196966e-259 Elevation\n",
"17 1078.608288 8.174358e-233 Littoral sediment\n",
"13 978.472706 1.050650e-211 Freshwater\n",
"15 853.811730 2.457887e-185 Supralittoral sediment\n",
"3 816.914586 1.639367e-177 Improve grassland\n",
"38 682.011193 7.904841e-149 Tri-allate\n",
"37 676.149377 1.402808e-147 Sulphur\n",
"36 673.575429 4.960887e-147 Prosulfocarb\n",
"26 605.329133 1.806036e-132 Fertiliser K\n",
"27 605.329133 1.806036e-132 Fertiliser N\n",
"28 605.329133 1.806036e-132 Fertiliser P\n",
"35 504.754899 5.949135e-111 PropamocarbHydrochloride\n",
"33 472.954811 3.918041e-104 Metamitron\n",
"16 416.369272 5.554940e-92 Littoral rock\n",
"7 360.657263 5.403022e-80 Fen\n",
"0 243.378276 1.130191e-54 Deciduous woodland\n",
"2 223.631247 2.134039e-50 Arable\n",
"19 168.960021 1.551633e-38 Urban\n",
"20 156.098247 9.703696e-36 Suburban\n",
"14 88.036607 6.821306e-21 Supralittoral rock\n",
"9 70.504247 4.773365e-17 Heather grassland\n",
"4 52.091677 5.410742e-13 Neutral grassland\n",
"12 28.131255 1.140877e-07 Saltwater\n",
"10 10.593482 1.136010e-03 Bog\n",
"6 3.881727 4.882264e-02 Acid grassland\n",
"8 1.726979 1.888063e-01 Heather\n",
"11 1.309928 2.524160e-01 Inland rock\n",
"1 1.193636 2.746053e-01 Coniferous woodland\n",
"5 0.275406 5.997316e-01 Calcareous grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Canada Goose 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 29 | \n",
" 31307.822741 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 30 | \n",
" 31307.822741 | \n",
" 0.000000e+00 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 31 | \n",
" 31307.822741 | \n",
" 0.000000e+00 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 32 | \n",
" 31307.822741 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 34 | \n",
" 31307.822741 | \n",
" 0.000000e+00 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 23 | \n",
" 27980.651957 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 26 | \n",
" 27539.757586 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 27539.757586 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 27539.757586 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 24 | \n",
" 22192.853532 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 25 | \n",
" 21798.073867 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 20557.269520 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 37 | \n",
" 14416.271856 | \n",
" 0.000000e+00 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 36 | \n",
" 14379.008562 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 38 | \n",
" 14239.510204 | \n",
" 0.000000e+00 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 22 | \n",
" 10467.973712 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 35 | \n",
" 10058.930524 | \n",
" 0.000000e+00 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 33 | \n",
" 9820.800013 | \n",
" 0.000000e+00 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 3 | \n",
" 9373.992389 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 20 | \n",
" 6200.682674 | \n",
" 0.000000e+00 | \n",
" Suburban | \n",
"
\n",
" \n",
" 0 | \n",
" 4606.437967 | \n",
" 0.000000e+00 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 2 | \n",
" 4435.557422 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 19 | \n",
" 2407.892997 | \n",
" 0.000000e+00 | \n",
" Urban | \n",
"
\n",
" \n",
" 13 | \n",
" 1994.218535 | \n",
" 0.000000e+00 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 4 | \n",
" 591.947491 | \n",
" 1.305021e-129 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 389.095029 | \n",
" 4.077898e-86 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 7 | \n",
" 240.538301 | \n",
" 4.654537e-54 | \n",
" Fen | \n",
"
\n",
" \n",
" 17 | \n",
" 162.207343 | \n",
" 4.555336e-37 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 5 | \n",
" 56.217105 | \n",
" 6.651725e-14 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 15 | \n",
" 54.988572 | \n",
" 1.241339e-13 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 49.209521 | \n",
" 2.344481e-12 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 1 | \n",
" 18.689323 | \n",
" 1.542908e-05 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 10 | \n",
" 16.182904 | \n",
" 5.763851e-05 | \n",
" Bog | \n",
"
\n",
" \n",
" 11 | \n",
" 13.004010 | \n",
" 3.112817e-04 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 9 | \n",
" 10.057049 | \n",
" 1.519046e-03 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 3.194359 | \n",
" 7.390188e-02 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 14 | \n",
" 1.831655 | \n",
" 1.759414e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 8 | \n",
" 1.564030 | \n",
" 2.110850e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 6 | \n",
" 1.341571 | \n",
" 2.467655e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"29 31307.822741 0.000000e+00 Chlorothalonil\n",
"30 31307.822741 0.000000e+00 Glyphosate\n",
"31 31307.822741 0.000000e+00 Mancozeb\n",
"32 31307.822741 0.000000e+00 Mecoprop-P\n",
"34 31307.822741 0.000000e+00 Pendimethalin\n",
"23 27980.651957 0.000000e+00 Surface type\n",
"26 27539.757586 0.000000e+00 Fertiliser K\n",
"27 27539.757586 0.000000e+00 Fertiliser N\n",
"28 27539.757586 0.000000e+00 Fertiliser P\n",
"24 22192.853532 0.000000e+00 Outflowing drainage direction\n",
"25 21798.073867 0.000000e+00 Inflowing drainage direction\n",
"21 20557.269520 0.000000e+00 Elevation\n",
"37 14416.271856 0.000000e+00 Sulphur\n",
"36 14379.008562 0.000000e+00 Prosulfocarb\n",
"38 14239.510204 0.000000e+00 Tri-allate\n",
"22 10467.973712 0.000000e+00 Cumulative catchment area\n",
"35 10058.930524 0.000000e+00 PropamocarbHydrochloride\n",
"33 9820.800013 0.000000e+00 Metamitron\n",
"3 9373.992389 0.000000e+00 Improve grassland\n",
"20 6200.682674 0.000000e+00 Suburban\n",
"0 4606.437967 0.000000e+00 Deciduous woodland\n",
"2 4435.557422 0.000000e+00 Arable\n",
"19 2407.892997 0.000000e+00 Urban\n",
"13 1994.218535 0.000000e+00 Freshwater\n",
"4 591.947491 1.305021e-129 Neutral grassland\n",
"18 389.095029 4.077898e-86 Saltmarsh\n",
"7 240.538301 4.654537e-54 Fen\n",
"17 162.207343 4.555336e-37 Littoral sediment\n",
"5 56.217105 6.651725e-14 Calcareous grassland\n",
"15 54.988572 1.241339e-13 Supralittoral sediment\n",
"12 49.209521 2.344481e-12 Saltwater\n",
"1 18.689323 1.542908e-05 Coniferous woodland\n",
"10 16.182904 5.763851e-05 Bog\n",
"11 13.004010 3.112817e-04 Inland rock\n",
"9 10.057049 1.519046e-03 Heather grassland\n",
"16 3.194359 7.390188e-02 Littoral rock\n",
"14 1.831655 1.759414e-01 Supralittoral rock\n",
"8 1.564030 2.110850e-01 Heather\n",
"6 1.341571 2.467655e-01 Acid grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Egyptian Goose 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 4833.620741 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 4833.620741 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 4833.620741 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 22 | \n",
" 4398.345684 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 13 | \n",
" 3391.728526 | \n",
" 0.000000e+00 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 29 | \n",
" 3198.335134 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 30 | \n",
" 3198.335134 | \n",
" 0.000000e+00 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 31 | \n",
" 3198.335134 | \n",
" 0.000000e+00 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 32 | \n",
" 3198.335134 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 34 | \n",
" 3198.335134 | \n",
" 0.000000e+00 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 24 | \n",
" 2769.983626 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 19 | \n",
" 2688.563744 | \n",
" 0.000000e+00 | \n",
" Urban | \n",
"
\n",
" \n",
" 23 | \n",
" 2448.189595 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 36 | \n",
" 2166.345317 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 37 | \n",
" 2164.465187 | \n",
" 0.000000e+00 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 38 | \n",
" 2130.679135 | \n",
" 0.000000e+00 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 33 | \n",
" 1913.836423 | \n",
" 0.000000e+00 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 25 | \n",
" 1867.181758 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 35 | \n",
" 1851.637936 | \n",
" 0.000000e+00 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 20 | \n",
" 1608.119655 | \n",
" 0.000000e+00 | \n",
" Suburban | \n",
"
\n",
" \n",
" 21 | \n",
" 1508.446202 | \n",
" 1.037538e-322 | \n",
" Elevation | \n",
"
\n",
" \n",
" 3 | \n",
" 1160.254219 | \n",
" 5.600729e-250 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 0 | \n",
" 1025.549798 | \n",
" 1.228685e-221 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 7 | \n",
" 631.476180 | \n",
" 4.722469e-138 | \n",
" Fen | \n",
"
\n",
" \n",
" 2 | \n",
" 600.148490 | \n",
" 2.308798e-131 | \n",
" Arable | \n",
"
\n",
" \n",
" 18 | \n",
" 214.961650 | \n",
" 1.613752e-48 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 4 | \n",
" 66.795470 | \n",
" 3.118157e-16 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 6 | \n",
" 24.532078 | \n",
" 7.344270e-07 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 9 | \n",
" 16.103881 | \n",
" 6.009295e-05 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 10.942250 | \n",
" 9.409617e-04 | \n",
" Bog | \n",
"
\n",
" \n",
" 8 | \n",
" 6.460287 | \n",
" 1.103570e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 15 | \n",
" 6.121062 | \n",
" 1.336303e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 17 | \n",
" 4.658208 | \n",
" 3.091261e-02 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 5 | \n",
" 3.654048 | \n",
" 5.594175e-02 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 3.305391 | \n",
" 6.906195e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 16 | \n",
" 3.051750 | \n",
" 8.065946e-02 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 12 | \n",
" 0.870474 | \n",
" 3.508309e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 14 | \n",
" 0.756741 | \n",
" 3.843565e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 1 | \n",
" 0.003547 | \n",
" 9.525091e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 4833.620741 0.000000e+00 Fertiliser K\n",
"27 4833.620741 0.000000e+00 Fertiliser N\n",
"28 4833.620741 0.000000e+00 Fertiliser P\n",
"22 4398.345684 0.000000e+00 Cumulative catchment area\n",
"13 3391.728526 0.000000e+00 Freshwater\n",
"29 3198.335134 0.000000e+00 Chlorothalonil\n",
"30 3198.335134 0.000000e+00 Glyphosate\n",
"31 3198.335134 0.000000e+00 Mancozeb\n",
"32 3198.335134 0.000000e+00 Mecoprop-P\n",
"34 3198.335134 0.000000e+00 Pendimethalin\n",
"24 2769.983626 0.000000e+00 Outflowing drainage direction\n",
"19 2688.563744 0.000000e+00 Urban\n",
"23 2448.189595 0.000000e+00 Surface type\n",
"36 2166.345317 0.000000e+00 Prosulfocarb\n",
"37 2164.465187 0.000000e+00 Sulphur\n",
"38 2130.679135 0.000000e+00 Tri-allate\n",
"33 1913.836423 0.000000e+00 Metamitron\n",
"25 1867.181758 0.000000e+00 Inflowing drainage direction\n",
"35 1851.637936 0.000000e+00 PropamocarbHydrochloride\n",
"20 1608.119655 0.000000e+00 Suburban\n",
"21 1508.446202 1.037538e-322 Elevation\n",
"3 1160.254219 5.600729e-250 Improve grassland\n",
"0 1025.549798 1.228685e-221 Deciduous woodland\n",
"7 631.476180 4.722469e-138 Fen\n",
"2 600.148490 2.308798e-131 Arable\n",
"18 214.961650 1.613752e-48 Saltmarsh\n",
"4 66.795470 3.118157e-16 Neutral grassland\n",
"6 24.532078 7.344270e-07 Acid grassland\n",
"9 16.103881 6.009295e-05 Heather grassland\n",
"10 10.942250 9.409617e-04 Bog\n",
"8 6.460287 1.103570e-02 Heather\n",
"15 6.121062 1.336303e-02 Supralittoral sediment\n",
"17 4.658208 3.091261e-02 Littoral sediment\n",
"5 3.654048 5.594175e-02 Calcareous grassland\n",
"11 3.305391 6.906195e-02 Inland rock\n",
"16 3.051750 8.065946e-02 Littoral rock\n",
"12 0.870474 3.508309e-01 Saltwater\n",
"14 0.756741 3.843565e-01 Supralittoral rock\n",
"1 0.003547 9.525091e-01 Coniferous woodland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gadwall 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 8495.245130 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 8495.245130 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 8495.245130 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 29 | \n",
" 7138.523124 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 30 | \n",
" 7138.523124 | \n",
" 0.000000e+00 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 31 | \n",
" 7138.523124 | \n",
" 0.000000e+00 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 32 | \n",
" 7138.523124 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 34 | \n",
" 7138.523124 | \n",
" 0.000000e+00 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 37 | \n",
" 6747.511680 | \n",
" 0.000000e+00 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 36 | \n",
" 6716.673071 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 38 | \n",
" 6693.525002 | \n",
" 0.000000e+00 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 35 | \n",
" 5956.455748 | \n",
" 0.000000e+00 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 33 | \n",
" 5952.405449 | \n",
" 0.000000e+00 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 24 | \n",
" 5605.884628 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 5421.221412 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 23 | \n",
" 5337.742415 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 4250.868883 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 13 | \n",
" 3657.950458 | \n",
" 0.000000e+00 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 21 | \n",
" 3513.520144 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 2 | \n",
" 2555.774940 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 3 | \n",
" 2162.540101 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 20 | \n",
" 1871.462238 | \n",
" 0.000000e+00 | \n",
" Suburban | \n",
"
\n",
" \n",
" 0 | \n",
" 1487.487019 | \n",
" 2.357158e-318 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 19 | \n",
" 1271.177886 | \n",
" 3.134320e-273 | \n",
" Urban | \n",
"
\n",
" \n",
" 18 | \n",
" 947.217815 | \n",
" 4.200123e-205 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 7 | \n",
" 892.320809 | \n",
" 1.714432e-193 | \n",
" Fen | \n",
"
\n",
" \n",
" 4 | \n",
" 739.334890 | \n",
" 4.953129e-161 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 160.826029 | \n",
" 9.095729e-37 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 15 | \n",
" 130.604141 | \n",
" 3.443944e-30 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 6 | \n",
" 45.799690 | \n",
" 1.331664e-11 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 32.280187 | \n",
" 1.345866e-08 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 9 | \n",
" 29.120347 | \n",
" 6.848560e-08 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 21.703699 | \n",
" 3.194143e-06 | \n",
" Bog | \n",
"
\n",
" \n",
" 8 | \n",
" 17.560026 | \n",
" 2.791009e-05 | \n",
" Heather | \n",
"
\n",
" \n",
" 11 | \n",
" 7.808204 | \n",
" 5.203950e-03 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 1 | \n",
" 7.188161 | \n",
" 7.342254e-03 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 14 | \n",
" 1.781952 | \n",
" 1.819190e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 5 | \n",
" 0.735834 | \n",
" 3.910048e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.097151 | \n",
" 7.552781e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 8495.245130 0.000000e+00 Fertiliser K\n",
"27 8495.245130 0.000000e+00 Fertiliser N\n",
"28 8495.245130 0.000000e+00 Fertiliser P\n",
"29 7138.523124 0.000000e+00 Chlorothalonil\n",
"30 7138.523124 0.000000e+00 Glyphosate\n",
"31 7138.523124 0.000000e+00 Mancozeb\n",
"32 7138.523124 0.000000e+00 Mecoprop-P\n",
"34 7138.523124 0.000000e+00 Pendimethalin\n",
"37 6747.511680 0.000000e+00 Sulphur\n",
"36 6716.673071 0.000000e+00 Prosulfocarb\n",
"38 6693.525002 0.000000e+00 Tri-allate\n",
"35 5956.455748 0.000000e+00 PropamocarbHydrochloride\n",
"33 5952.405449 0.000000e+00 Metamitron\n",
"24 5605.884628 0.000000e+00 Outflowing drainage direction\n",
"22 5421.221412 0.000000e+00 Cumulative catchment area\n",
"23 5337.742415 0.000000e+00 Surface type\n",
"25 4250.868883 0.000000e+00 Inflowing drainage direction\n",
"13 3657.950458 0.000000e+00 Freshwater\n",
"21 3513.520144 0.000000e+00 Elevation\n",
"2 2555.774940 0.000000e+00 Arable\n",
"3 2162.540101 0.000000e+00 Improve grassland\n",
"20 1871.462238 0.000000e+00 Suburban\n",
"0 1487.487019 2.357158e-318 Deciduous woodland\n",
"19 1271.177886 3.134320e-273 Urban\n",
"18 947.217815 4.200123e-205 Saltmarsh\n",
"7 892.320809 1.714432e-193 Fen\n",
"4 739.334890 4.953129e-161 Neutral grassland\n",
"17 160.826029 9.095729e-37 Littoral sediment\n",
"15 130.604141 3.443944e-30 Supralittoral sediment\n",
"6 45.799690 1.331664e-11 Acid grassland\n",
"12 32.280187 1.345866e-08 Saltwater\n",
"9 29.120347 6.848560e-08 Heather grassland\n",
"10 21.703699 3.194143e-06 Bog\n",
"8 17.560026 2.791009e-05 Heather\n",
"11 7.808204 5.203950e-03 Inland rock\n",
"1 7.188161 7.342254e-03 Coniferous woodland\n",
"14 1.781952 1.819190e-01 Supralittoral rock\n",
"5 0.735834 3.910048e-01 Calcareous grassland\n",
"16 0.097151 7.552781e-01 Littoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Goshawk 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 1228.008833 | \n",
" 3.437230e-264 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 1131.658994 | \n",
" 5.687958e-244 | \n",
" Elevation | \n",
"
\n",
" \n",
" 29 | \n",
" 1110.016642 | \n",
" 2.016393e-239 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 30 | \n",
" 1110.016642 | \n",
" 2.016393e-239 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 31 | \n",
" 1110.016642 | \n",
" 2.016393e-239 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 32 | \n",
" 1110.016642 | \n",
" 2.016393e-239 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 34 | \n",
" 1110.016642 | \n",
" 2.016393e-239 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 24 | \n",
" 1068.037277 | \n",
" 1.373575e-230 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 1044.933301 | \n",
" 1.009602e-225 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 25 | \n",
" 919.889067 | \n",
" 2.517246e-199 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 809.818171 | \n",
" 5.254241e-176 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 3 | \n",
" 684.780108 | \n",
" 2.032079e-149 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 397.809147 | \n",
" 5.441281e-88 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 38 | \n",
" 378.743353 | \n",
" 6.890413e-84 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 37 | \n",
" 375.216071 | \n",
" 3.958707e-83 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 36 | \n",
" 366.309524 | \n",
" 3.275528e-81 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 6 | \n",
" 362.459808 | \n",
" 2.209967e-80 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 35 | \n",
" 245.243731 | \n",
" 4.460776e-55 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 26 | \n",
" 234.255491 | \n",
" 1.066866e-52 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 234.255491 | \n",
" 1.066866e-52 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 234.255491 | \n",
" 1.066866e-52 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 33 | \n",
" 226.160901 | \n",
" 6.042257e-51 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 2 | \n",
" 87.757391 | \n",
" 7.852555e-21 | \n",
" Arable | \n",
"
\n",
" \n",
" 20 | \n",
" 79.803707 | \n",
" 4.343909e-19 | \n",
" Suburban | \n",
"
\n",
" \n",
" 8 | \n",
" 45.558282 | \n",
" 1.506066e-11 | \n",
" Heather | \n",
"
\n",
" \n",
" 5 | \n",
" 16.053837 | \n",
" 6.170139e-05 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 15.723043 | \n",
" 7.347960e-05 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 18 | \n",
" 8.693071 | \n",
" 3.196452e-03 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 7 | \n",
" 4.213295 | \n",
" 4.011621e-02 | \n",
" Fen | \n",
"
\n",
" \n",
" 10 | \n",
" 3.293395 | \n",
" 6.956812e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 14 | \n",
" 1.492644 | \n",
" 2.218154e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 19 | \n",
" 1.235707 | \n",
" 2.663082e-01 | \n",
" Urban | \n",
"
\n",
" \n",
" 9 | \n",
" 0.653081 | \n",
" 4.190191e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 0.416397 | \n",
" 5.187449e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 12 | \n",
" 0.222689 | \n",
" 6.370020e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 15 | \n",
" 0.046972 | \n",
" 8.284207e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 4 | \n",
" 0.041436 | \n",
" 8.386999e-01 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 0.032689 | \n",
" 8.565239e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 16 | \n",
" 0.002739 | \n",
" 9.582594e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 1228.008833 3.437230e-264 Surface type\n",
"21 1131.658994 5.687958e-244 Elevation\n",
"29 1110.016642 2.016393e-239 Chlorothalonil\n",
"30 1110.016642 2.016393e-239 Glyphosate\n",
"31 1110.016642 2.016393e-239 Mancozeb\n",
"32 1110.016642 2.016393e-239 Mecoprop-P\n",
"34 1110.016642 2.016393e-239 Pendimethalin\n",
"24 1068.037277 1.373575e-230 Outflowing drainage direction\n",
"22 1044.933301 1.009602e-225 Cumulative catchment area\n",
"25 919.889067 2.517246e-199 Inflowing drainage direction\n",
"0 809.818171 5.254241e-176 Deciduous woodland\n",
"3 684.780108 2.032079e-149 Improve grassland\n",
"1 397.809147 5.441281e-88 Coniferous woodland\n",
"38 378.743353 6.890413e-84 Tri-allate\n",
"37 375.216071 3.958707e-83 Sulphur\n",
"36 366.309524 3.275528e-81 Prosulfocarb\n",
"6 362.459808 2.209967e-80 Acid grassland\n",
"35 245.243731 4.460776e-55 PropamocarbHydrochloride\n",
"26 234.255491 1.066866e-52 Fertiliser K\n",
"27 234.255491 1.066866e-52 Fertiliser N\n",
"28 234.255491 1.066866e-52 Fertiliser P\n",
"33 226.160901 6.042257e-51 Metamitron\n",
"2 87.757391 7.852555e-21 Arable\n",
"20 79.803707 4.343909e-19 Suburban\n",
"8 45.558282 1.506066e-11 Heather\n",
"5 16.053837 6.170139e-05 Calcareous grassland\n",
"13 15.723043 7.347960e-05 Freshwater\n",
"18 8.693071 3.196452e-03 Saltmarsh\n",
"7 4.213295 4.011621e-02 Fen\n",
"10 3.293395 6.956812e-02 Bog\n",
"14 1.492644 2.218154e-01 Supralittoral rock\n",
"19 1.235707 2.663082e-01 Urban\n",
"9 0.653081 4.190191e-01 Heather grassland\n",
"11 0.416397 5.187449e-01 Inland rock\n",
"12 0.222689 6.370020e-01 Saltwater\n",
"15 0.046972 8.284207e-01 Supralittoral sediment\n",
"4 0.041436 8.386999e-01 Neutral grassland\n",
"17 0.032689 8.565239e-01 Littoral sediment\n",
"16 0.002739 9.582594e-01 Littoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Grey Partridge 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 8765.050569 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 8765.050569 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 8765.050569 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 37 | \n",
" 8712.410120 | \n",
" 0.000000e+00 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 36 | \n",
" 8711.451485 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 38 | \n",
" 8703.792647 | \n",
" 0.000000e+00 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 2 | \n",
" 8141.700589 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 32 | \n",
" 7660.609011 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 29 | \n",
" 7659.048939 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 30 | \n",
" 7659.048939 | \n",
" 0.000000e+00 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 31 | \n",
" 7659.048939 | \n",
" 0.000000e+00 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 34 | \n",
" 7659.048939 | \n",
" 0.000000e+00 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 35 | \n",
" 7405.435155 | \n",
" 0.000000e+00 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 33 | \n",
" 7361.522264 | \n",
" 0.000000e+00 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 23 | \n",
" 5901.470556 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 24 | \n",
" 4800.409421 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 4601.906150 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 25 | \n",
" 4463.973740 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 4389.262340 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 3 | \n",
" 2126.495399 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 0 | \n",
" 901.238763 | \n",
" 2.221379e-195 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 518.009891 | \n",
" 8.599298e-114 | \n",
" Suburban | \n",
"
\n",
" \n",
" 5 | \n",
" 327.045266 | \n",
" 9.488789e-73 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 319.849011 | \n",
" 3.384407e-71 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 19 | \n",
" 98.781469 | \n",
" 3.039441e-23 | \n",
" Urban | \n",
"
\n",
" \n",
" 15 | \n",
" 42.304272 | \n",
" 7.923464e-11 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 18 | \n",
" 42.065170 | \n",
" 8.952540e-11 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 13 | \n",
" 27.868120 | \n",
" 1.306903e-07 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 18.302932 | \n",
" 1.889456e-05 | \n",
" Fen | \n",
"
\n",
" \n",
" 17 | \n",
" 6.233018 | \n",
" 1.254381e-02 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 1 | \n",
" 5.215300 | \n",
" 2.239529e-02 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 11 | \n",
" 4.740881 | \n",
" 2.946103e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 14 | \n",
" 4.021946 | \n",
" 4.491999e-02 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 8 | \n",
" 3.136113 | \n",
" 7.658531e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 6 | \n",
" 2.392910 | \n",
" 1.218961e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 0.249330 | \n",
" 6.175506e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 10 | \n",
" 0.120851 | \n",
" 7.281160e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 9 | \n",
" 0.012848 | \n",
" 9.097560e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.000036 | \n",
" 9.952257e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 8765.050569 0.000000e+00 Fertiliser K\n",
"27 8765.050569 0.000000e+00 Fertiliser N\n",
"28 8765.050569 0.000000e+00 Fertiliser P\n",
"37 8712.410120 0.000000e+00 Sulphur\n",
"36 8711.451485 0.000000e+00 Prosulfocarb\n",
"38 8703.792647 0.000000e+00 Tri-allate\n",
"2 8141.700589 0.000000e+00 Arable\n",
"32 7660.609011 0.000000e+00 Mecoprop-P\n",
"29 7659.048939 0.000000e+00 Chlorothalonil\n",
"30 7659.048939 0.000000e+00 Glyphosate\n",
"31 7659.048939 0.000000e+00 Mancozeb\n",
"34 7659.048939 0.000000e+00 Pendimethalin\n",
"35 7405.435155 0.000000e+00 PropamocarbHydrochloride\n",
"33 7361.522264 0.000000e+00 Metamitron\n",
"23 5901.470556 0.000000e+00 Surface type\n",
"24 4800.409421 0.000000e+00 Outflowing drainage direction\n",
"22 4601.906150 0.000000e+00 Cumulative catchment area\n",
"25 4463.973740 0.000000e+00 Inflowing drainage direction\n",
"21 4389.262340 0.000000e+00 Elevation\n",
"3 2126.495399 0.000000e+00 Improve grassland\n",
"0 901.238763 2.221379e-195 Deciduous woodland\n",
"20 518.009891 8.599298e-114 Suburban\n",
"5 327.045266 9.488789e-73 Calcareous grassland\n",
"4 319.849011 3.384407e-71 Neutral grassland\n",
"19 98.781469 3.039441e-23 Urban\n",
"15 42.304272 7.923464e-11 Supralittoral sediment\n",
"18 42.065170 8.952540e-11 Saltmarsh\n",
"13 27.868120 1.306903e-07 Freshwater\n",
"7 18.302932 1.889456e-05 Fen\n",
"17 6.233018 1.254381e-02 Littoral sediment\n",
"1 5.215300 2.239529e-02 Coniferous woodland\n",
"11 4.740881 2.946103e-02 Inland rock\n",
"14 4.021946 4.491999e-02 Supralittoral rock\n",
"8 3.136113 7.658531e-02 Heather\n",
"6 2.392910 1.218961e-01 Acid grassland\n",
"12 0.249330 6.175506e-01 Saltwater\n",
"10 0.120851 7.281160e-01 Bog\n",
"9 0.012848 9.097560e-01 Heather grassland\n",
"16 0.000036 9.952257e-01 Littoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Indian Peafowl 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 1472.657485 | \n",
" 2.862598e-315 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 1472.657485 | \n",
" 2.862598e-315 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 1472.657485 | \n",
" 2.862598e-315 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 36 | \n",
" 1175.153234 | \n",
" 4.174421e-253 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 37 | \n",
" 1172.615821 | \n",
" 1.422851e-252 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 38 | \n",
" 1166.318796 | \n",
" 2.985253e-251 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 29 | \n",
" 1150.513144 | \n",
" 6.221230e-248 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 30 | \n",
" 1150.513144 | \n",
" 6.221230e-248 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 31 | \n",
" 1150.513144 | \n",
" 6.221230e-248 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 32 | \n",
" 1150.513144 | \n",
" 6.221230e-248 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 34 | \n",
" 1150.513144 | \n",
" 6.221230e-248 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 35 | \n",
" 993.549316 | \n",
" 6.904766e-215 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 33 | \n",
" 989.712520 | \n",
" 4.455187e-214 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 23 | \n",
" 826.341713 | \n",
" 1.639780e-179 | \n",
" Surface type | \n",
"
\n",
" \n",
" 22 | \n",
" 773.116357 | \n",
" 3.264405e-168 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 24 | \n",
" 694.651908 | \n",
" 1.603430e-151 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 2 | \n",
" 636.396656 | \n",
" 4.208646e-139 | \n",
" Arable | \n",
"
\n",
" \n",
" 25 | \n",
" 618.098698 | \n",
" 3.386540e-135 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 581.270648 | \n",
" 2.497700e-127 | \n",
" Elevation | \n",
"
\n",
" \n",
" 3 | \n",
" 579.289817 | \n",
" 6.621914e-127 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 0 | \n",
" 557.985251 | \n",
" 2.382356e-122 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 341.361921 | \n",
" 7.768283e-76 | \n",
" Suburban | \n",
"
\n",
" \n",
" 4 | \n",
" 31.037453 | \n",
" 2.550632e-08 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 19 | \n",
" 28.479423 | \n",
" 9.532196e-08 | \n",
" Urban | \n",
"
\n",
" \n",
" 5 | \n",
" 19.591241 | \n",
" 9.621430e-06 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 11.127497 | \n",
" 8.515085e-04 | \n",
" Fen | \n",
"
\n",
" \n",
" 13 | \n",
" 9.872829 | \n",
" 1.678853e-03 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 6 | \n",
" 4.975747 | \n",
" 2.571178e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 3.521124 | \n",
" 6.060014e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 1 | \n",
" 2.674323 | \n",
" 1.019882e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 9 | \n",
" 2.267492 | \n",
" 1.321231e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 1.470891 | \n",
" 2.252138e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 11 | \n",
" 0.730498 | \n",
" 3.927281e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 12 | \n",
" 0.717725 | \n",
" 3.968973e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 15 | \n",
" 0.509339 | \n",
" 4.754303e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 18 | \n",
" 0.335080 | \n",
" 5.626872e-01 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 14 | \n",
" 0.132251 | \n",
" 7.161121e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 17 | \n",
" 0.099303 | \n",
" 7.526692e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 16 | \n",
" 0.034266 | \n",
" 8.531431e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 1472.657485 2.862598e-315 Fertiliser K\n",
"27 1472.657485 2.862598e-315 Fertiliser N\n",
"28 1472.657485 2.862598e-315 Fertiliser P\n",
"36 1175.153234 4.174421e-253 Prosulfocarb\n",
"37 1172.615821 1.422851e-252 Sulphur\n",
"38 1166.318796 2.985253e-251 Tri-allate\n",
"29 1150.513144 6.221230e-248 Chlorothalonil\n",
"30 1150.513144 6.221230e-248 Glyphosate\n",
"31 1150.513144 6.221230e-248 Mancozeb\n",
"32 1150.513144 6.221230e-248 Mecoprop-P\n",
"34 1150.513144 6.221230e-248 Pendimethalin\n",
"35 993.549316 6.904766e-215 PropamocarbHydrochloride\n",
"33 989.712520 4.455187e-214 Metamitron\n",
"23 826.341713 1.639780e-179 Surface type\n",
"22 773.116357 3.264405e-168 Cumulative catchment area\n",
"24 694.651908 1.603430e-151 Outflowing drainage direction\n",
"2 636.396656 4.208646e-139 Arable\n",
"25 618.098698 3.386540e-135 Inflowing drainage direction\n",
"21 581.270648 2.497700e-127 Elevation\n",
"3 579.289817 6.621914e-127 Improve grassland\n",
"0 557.985251 2.382356e-122 Deciduous woodland\n",
"20 341.361921 7.768283e-76 Suburban\n",
"4 31.037453 2.550632e-08 Neutral grassland\n",
"19 28.479423 9.532196e-08 Urban\n",
"5 19.591241 9.621430e-06 Calcareous grassland\n",
"7 11.127497 8.515085e-04 Fen\n",
"13 9.872829 1.678853e-03 Freshwater\n",
"6 4.975747 2.571178e-02 Acid grassland\n",
"10 3.521124 6.060014e-02 Bog\n",
"1 2.674323 1.019882e-01 Coniferous woodland\n",
"9 2.267492 1.321231e-01 Heather grassland\n",
"8 1.470891 2.252138e-01 Heather\n",
"11 0.730498 3.927281e-01 Inland rock\n",
"12 0.717725 3.968973e-01 Saltwater\n",
"15 0.509339 4.754303e-01 Supralittoral sediment\n",
"18 0.335080 5.626872e-01 Saltmarsh\n",
"14 0.132251 7.161121e-01 Supralittoral rock\n",
"17 0.099303 7.526692e-01 Littoral sediment\n",
"16 0.034266 8.531431e-01 Littoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Little Owl 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 19475.045822 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 19475.045822 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 19475.045822 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 36 | \n",
" 14464.783437 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 37 | \n",
" 14463.764574 | \n",
" 0.000000e+00 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 38 | \n",
" 14420.985632 | \n",
" 0.000000e+00 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 32 | \n",
" 13365.596356 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 29 | \n",
" 13362.750579 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 30 | \n",
" 13362.750579 | \n",
" 0.000000e+00 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 31 | \n",
" 13362.750579 | \n",
" 0.000000e+00 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 34 | \n",
" 13362.750579 | \n",
" 0.000000e+00 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 33 | \n",
" 11175.998989 | \n",
" 0.000000e+00 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 35 | \n",
" 11122.139446 | \n",
" 0.000000e+00 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 23 | \n",
" 9941.994917 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 2 | \n",
" 9462.794504 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 8442.661824 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 7788.899641 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 25 | \n",
" 7508.970331 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 6742.553493 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 3 | \n",
" 4944.473615 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 20 | \n",
" 2250.993774 | \n",
" 0.000000e+00 | \n",
" Suburban | \n",
"
\n",
" \n",
" 0 | \n",
" 1224.086080 | \n",
" 2.281664e-263 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 4 | \n",
" 630.020519 | \n",
" 9.656906e-138 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 439.830706 | \n",
" 5.052213e-97 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 19 | \n",
" 344.014425 | \n",
" 2.082536e-76 | \n",
" Urban | \n",
"
\n",
" \n",
" 13 | \n",
" 191.220766 | \n",
" 2.273330e-43 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 143.222650 | \n",
" 6.146287e-33 | \n",
" Fen | \n",
"
\n",
" \n",
" 18 | \n",
" 59.796551 | \n",
" 1.081619e-14 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 6 | \n",
" 42.200831 | \n",
" 8.353273e-11 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 34.080188 | \n",
" 5.338007e-09 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 10 | \n",
" 30.463089 | \n",
" 3.428286e-08 | \n",
" Bog | \n",
"
\n",
" \n",
" 8 | \n",
" 26.647155 | \n",
" 2.456208e-07 | \n",
" Heather | \n",
"
\n",
" \n",
" 9 | \n",
" 19.056362 | \n",
" 1.272986e-05 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 15 | \n",
" 16.754547 | \n",
" 4.264108e-05 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 16 | \n",
" 7.372175 | \n",
" 6.627513e-03 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 7.137556 | \n",
" 7.552295e-03 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 14 | \n",
" 5.890295 | \n",
" 1.522985e-02 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 12 | \n",
" 0.157614 | \n",
" 6.913651e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 17 | \n",
" 0.095097 | \n",
" 7.577967e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 19475.045822 0.000000e+00 Fertiliser K\n",
"27 19475.045822 0.000000e+00 Fertiliser N\n",
"28 19475.045822 0.000000e+00 Fertiliser P\n",
"36 14464.783437 0.000000e+00 Prosulfocarb\n",
"37 14463.764574 0.000000e+00 Sulphur\n",
"38 14420.985632 0.000000e+00 Tri-allate\n",
"32 13365.596356 0.000000e+00 Mecoprop-P\n",
"29 13362.750579 0.000000e+00 Chlorothalonil\n",
"30 13362.750579 0.000000e+00 Glyphosate\n",
"31 13362.750579 0.000000e+00 Mancozeb\n",
"34 13362.750579 0.000000e+00 Pendimethalin\n",
"33 11175.998989 0.000000e+00 Metamitron\n",
"35 11122.139446 0.000000e+00 PropamocarbHydrochloride\n",
"23 9941.994917 0.000000e+00 Surface type\n",
"2 9462.794504 0.000000e+00 Arable\n",
"24 8442.661824 0.000000e+00 Outflowing drainage direction\n",
"22 7788.899641 0.000000e+00 Cumulative catchment area\n",
"25 7508.970331 0.000000e+00 Inflowing drainage direction\n",
"21 6742.553493 0.000000e+00 Elevation\n",
"3 4944.473615 0.000000e+00 Improve grassland\n",
"20 2250.993774 0.000000e+00 Suburban\n",
"0 1224.086080 2.281664e-263 Deciduous woodland\n",
"4 630.020519 9.656906e-138 Neutral grassland\n",
"5 439.830706 5.052213e-97 Calcareous grassland\n",
"19 344.014425 2.082536e-76 Urban\n",
"13 191.220766 2.273330e-43 Freshwater\n",
"7 143.222650 6.146287e-33 Fen\n",
"18 59.796551 1.081619e-14 Saltmarsh\n",
"6 42.200831 8.353273e-11 Acid grassland\n",
"1 34.080188 5.338007e-09 Coniferous woodland\n",
"10 30.463089 3.428286e-08 Bog\n",
"8 26.647155 2.456208e-07 Heather\n",
"9 19.056362 1.272986e-05 Heather grassland\n",
"15 16.754547 4.264108e-05 Supralittoral sediment\n",
"16 7.372175 6.627513e-03 Littoral rock\n",
"11 7.137556 7.552295e-03 Inland rock\n",
"14 5.890295 1.522985e-02 Supralittoral rock\n",
"12 0.157614 6.913651e-01 Saltwater\n",
"17 0.095097 7.577967e-01 Littoral sediment"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mandarin Duck 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 4982.270656 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 4982.270656 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 4982.270656 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 29 | \n",
" 3746.947882 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 30 | \n",
" 3746.947882 | \n",
" 0.000000e+00 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 31 | \n",
" 3746.947882 | \n",
" 0.000000e+00 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 32 | \n",
" 3746.947882 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 34 | \n",
" 3746.947882 | \n",
" 0.000000e+00 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 22 | \n",
" 3559.780952 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 0 | \n",
" 3525.975295 | \n",
" 0.000000e+00 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 24 | \n",
" 2973.634105 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 23 | \n",
" 2900.268149 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 3 | \n",
" 2556.207049 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 37 | \n",
" 2345.273531 | \n",
" 0.000000e+00 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 36 | \n",
" 2339.229953 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 38 | \n",
" 2322.533150 | \n",
" 0.000000e+00 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 25 | \n",
" 2139.256963 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 2040.599063 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 20 | \n",
" 1659.981195 | \n",
" 0.000000e+00 | \n",
" Suburban | \n",
"
\n",
" \n",
" 35 | \n",
" 1618.553741 | \n",
" 0.000000e+00 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 33 | \n",
" 1589.076229 | \n",
" 0.000000e+00 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 13 | \n",
" 792.705495 | \n",
" 2.254877e-172 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 19 | \n",
" 434.160164 | \n",
" 8.347169e-96 | \n",
" Urban | \n",
"
\n",
" \n",
" 2 | \n",
" 322.317750 | \n",
" 9.929157e-72 | \n",
" Arable | \n",
"
\n",
" \n",
" 4 | \n",
" 289.027410 | \n",
" 1.523840e-64 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 86.986582 | \n",
" 1.158292e-20 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 43.617236 | \n",
" 4.053481e-11 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 7 | \n",
" 30.454378 | \n",
" 3.443701e-08 | \n",
" Fen | \n",
"
\n",
" \n",
" 9 | \n",
" 12.680495 | \n",
" 3.700080e-04 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 11.170154 | \n",
" 8.321583e-04 | \n",
" Bog | \n",
"
\n",
" \n",
" 6 | \n",
" 4.774378 | \n",
" 2.889326e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 3.468317 | \n",
" 6.256379e-02 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 14 | \n",
" 3.191997 | \n",
" 7.400873e-02 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 17 | \n",
" 3.080693 | \n",
" 7.923601e-02 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 2.603302 | \n",
" 1.066509e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 11 | \n",
" 2.290784 | \n",
" 1.301538e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 15 | \n",
" 1.408976 | \n",
" 2.352351e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 8 | \n",
" 0.023329 | \n",
" 8.786052e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 18 | \n",
" 0.004613 | \n",
" 9.458479e-01 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 4982.270656 0.000000e+00 Fertiliser K\n",
"27 4982.270656 0.000000e+00 Fertiliser N\n",
"28 4982.270656 0.000000e+00 Fertiliser P\n",
"29 3746.947882 0.000000e+00 Chlorothalonil\n",
"30 3746.947882 0.000000e+00 Glyphosate\n",
"31 3746.947882 0.000000e+00 Mancozeb\n",
"32 3746.947882 0.000000e+00 Mecoprop-P\n",
"34 3746.947882 0.000000e+00 Pendimethalin\n",
"22 3559.780952 0.000000e+00 Cumulative catchment area\n",
"0 3525.975295 0.000000e+00 Deciduous woodland\n",
"24 2973.634105 0.000000e+00 Outflowing drainage direction\n",
"23 2900.268149 0.000000e+00 Surface type\n",
"3 2556.207049 0.000000e+00 Improve grassland\n",
"37 2345.273531 0.000000e+00 Sulphur\n",
"36 2339.229953 0.000000e+00 Prosulfocarb\n",
"38 2322.533150 0.000000e+00 Tri-allate\n",
"25 2139.256963 0.000000e+00 Inflowing drainage direction\n",
"21 2040.599063 0.000000e+00 Elevation\n",
"20 1659.981195 0.000000e+00 Suburban\n",
"35 1618.553741 0.000000e+00 PropamocarbHydrochloride\n",
"33 1589.076229 0.000000e+00 Metamitron\n",
"13 792.705495 2.254877e-172 Freshwater\n",
"19 434.160164 8.347169e-96 Urban\n",
"2 322.317750 9.929157e-72 Arable\n",
"4 289.027410 1.523840e-64 Neutral grassland\n",
"5 86.986582 1.158292e-20 Calcareous grassland\n",
"1 43.617236 4.053481e-11 Coniferous woodland\n",
"7 30.454378 3.443701e-08 Fen\n",
"9 12.680495 3.700080e-04 Heather grassland\n",
"10 11.170154 8.321583e-04 Bog\n",
"6 4.774378 2.889326e-02 Acid grassland\n",
"16 3.468317 6.256379e-02 Littoral rock\n",
"14 3.191997 7.400873e-02 Supralittoral rock\n",
"17 3.080693 7.923601e-02 Littoral sediment\n",
"12 2.603302 1.066509e-01 Saltwater\n",
"11 2.290784 1.301538e-01 Inland rock\n",
"15 1.408976 2.352351e-01 Supralittoral sediment\n",
"8 0.023329 8.786052e-01 Heather\n",
"18 0.004613 9.458479e-01 Saltmarsh"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mute Swan 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 30 | \n",
" 43676.953726 | \n",
" 0.000000e+00 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 34 | \n",
" 43676.953726 | \n",
" 0.000000e+00 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 29 | \n",
" 43659.642747 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 31 | \n",
" 43642.342398 | \n",
" 0.000000e+00 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 32 | \n",
" 43625.052671 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 23 | \n",
" 41778.683149 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 37707.864005 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 32149.803935 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 24 | \n",
" 24629.730532 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 26 | \n",
" 19640.235987 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 19640.235987 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 19640.235987 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 37 | \n",
" 14704.076106 | \n",
" 0.000000e+00 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 36 | \n",
" 14617.037623 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 38 | \n",
" 14559.360173 | \n",
" 0.000000e+00 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 35 | \n",
" 9242.027887 | \n",
" 0.000000e+00 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 33 | \n",
" 8916.083195 | \n",
" 0.000000e+00 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 22 | \n",
" 7714.991172 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 3 | \n",
" 6922.429433 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 20 | \n",
" 5556.769597 | \n",
" 0.000000e+00 | \n",
" Suburban | \n",
"
\n",
" \n",
" 2 | \n",
" 4548.309043 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 0 | \n",
" 3188.833827 | \n",
" 0.000000e+00 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 19 | \n",
" 2126.916337 | \n",
" 0.000000e+00 | \n",
" Urban | \n",
"
\n",
" \n",
" 13 | \n",
" 1261.094423 | \n",
" 4.042871e-271 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 4 | \n",
" 710.989883 | \n",
" 5.323266e-155 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 350.947774 | \n",
" 6.674534e-78 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 6 | \n",
" 274.300533 | \n",
" 2.317521e-61 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 258.697255 | \n",
" 5.478710e-58 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 7 | \n",
" 204.439981 | \n",
" 3.082649e-46 | \n",
" Fen | \n",
"
\n",
" \n",
" 15 | \n",
" 138.876035 | \n",
" 5.432921e-32 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 10 | \n",
" 122.310053 | \n",
" 2.214177e-28 | \n",
" Bog | \n",
"
\n",
" \n",
" 12 | \n",
" 113.202400 | \n",
" 2.149655e-26 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 8 | \n",
" 103.816162 | \n",
" 2.411588e-24 | \n",
" Heather | \n",
"
\n",
" \n",
" 9 | \n",
" 88.379538 | \n",
" 5.738193e-21 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 66.697722 | \n",
" 3.276343e-16 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 49.312998 | \n",
" 2.224191e-12 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 1 | \n",
" 44.669892 | \n",
" 2.369145e-11 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 14 | \n",
" 29.331059 | \n",
" 6.143449e-08 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 5 | \n",
" 8.698519 | \n",
" 3.186914e-03 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"30 43676.953726 0.000000e+00 Glyphosate\n",
"34 43676.953726 0.000000e+00 Pendimethalin\n",
"29 43659.642747 0.000000e+00 Chlorothalonil\n",
"31 43642.342398 0.000000e+00 Mancozeb\n",
"32 43625.052671 0.000000e+00 Mecoprop-P\n",
"23 41778.683149 0.000000e+00 Surface type\n",
"25 37707.864005 0.000000e+00 Inflowing drainage direction\n",
"21 32149.803935 0.000000e+00 Elevation\n",
"24 24629.730532 0.000000e+00 Outflowing drainage direction\n",
"26 19640.235987 0.000000e+00 Fertiliser K\n",
"27 19640.235987 0.000000e+00 Fertiliser N\n",
"28 19640.235987 0.000000e+00 Fertiliser P\n",
"37 14704.076106 0.000000e+00 Sulphur\n",
"36 14617.037623 0.000000e+00 Prosulfocarb\n",
"38 14559.360173 0.000000e+00 Tri-allate\n",
"35 9242.027887 0.000000e+00 PropamocarbHydrochloride\n",
"33 8916.083195 0.000000e+00 Metamitron\n",
"22 7714.991172 0.000000e+00 Cumulative catchment area\n",
"3 6922.429433 0.000000e+00 Improve grassland\n",
"20 5556.769597 0.000000e+00 Suburban\n",
"2 4548.309043 0.000000e+00 Arable\n",
"0 3188.833827 0.000000e+00 Deciduous woodland\n",
"19 2126.916337 0.000000e+00 Urban\n",
"13 1261.094423 4.042871e-271 Freshwater\n",
"4 710.989883 5.323266e-155 Neutral grassland\n",
"17 350.947774 6.674534e-78 Littoral sediment\n",
"6 274.300533 2.317521e-61 Acid grassland\n",
"18 258.697255 5.478710e-58 Saltmarsh\n",
"7 204.439981 3.082649e-46 Fen\n",
"15 138.876035 5.432921e-32 Supralittoral sediment\n",
"10 122.310053 2.214177e-28 Bog\n",
"12 113.202400 2.149655e-26 Saltwater\n",
"8 103.816162 2.411588e-24 Heather\n",
"9 88.379538 5.738193e-21 Heather grassland\n",
"16 66.697722 3.276343e-16 Littoral rock\n",
"11 49.312998 2.224191e-12 Inland rock\n",
"1 44.669892 2.369145e-11 Coniferous woodland\n",
"14 29.331059 6.143449e-08 Supralittoral rock\n",
"5 8.698519 3.186914e-03 Calcareous grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pheasant 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 31 | \n",
" 16151.612969 | \n",
" 0.000000e+00 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 32 | \n",
" 16151.612969 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 29 | \n",
" 16147.891932 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 30 | \n",
" 16147.891932 | \n",
" 0.000000e+00 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 34 | \n",
" 16147.891932 | \n",
" 0.000000e+00 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 23 | \n",
" 14828.439300 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 26 | \n",
" 13583.366928 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 13583.366928 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 13583.366928 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 24 | \n",
" 12411.664397 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 11511.436305 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 25 | \n",
" 11025.748971 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 37 | \n",
" 10813.051867 | \n",
" 0.000000e+00 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 36 | \n",
" 10803.090695 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 38 | \n",
" 10762.210355 | \n",
" 0.000000e+00 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 22 | \n",
" 9363.861895 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 35 | \n",
" 7504.726180 | \n",
" 0.000000e+00 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 33 | \n",
" 7356.605139 | \n",
" 0.000000e+00 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 3 | \n",
" 6889.758402 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 5020.115469 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 0 | \n",
" 3497.652887 | \n",
" 0.000000e+00 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 1872.691498 | \n",
" 0.000000e+00 | \n",
" Suburban | \n",
"
\n",
" \n",
" 5 | \n",
" 415.858475 | \n",
" 7.152889e-92 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 355.069398 | \n",
" 8.637276e-79 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 235.243263 | \n",
" 6.519726e-53 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 19 | \n",
" 219.109454 | \n",
" 2.036749e-49 | \n",
" Urban | \n",
"
\n",
" \n",
" 6 | \n",
" 141.740399 | \n",
" 1.292165e-32 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 137.784819 | \n",
" 9.390379e-32 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 8 | \n",
" 88.397878 | \n",
" 5.685377e-21 | \n",
" Heather | \n",
"
\n",
" \n",
" 7 | \n",
" 57.673169 | \n",
" 3.176391e-14 | \n",
" Fen | \n",
"
\n",
" \n",
" 10 | \n",
" 33.154847 | \n",
" 8.585587e-09 | \n",
" Bog | \n",
"
\n",
" \n",
" 18 | \n",
" 21.413945 | \n",
" 3.714720e-06 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 15 | \n",
" 13.123056 | \n",
" 2.921201e-04 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 11 | \n",
" 5.451389 | \n",
" 1.955872e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 9 | \n",
" 4.362221 | \n",
" 3.675199e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 2.751696 | \n",
" 9.716078e-02 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 12 | \n",
" 0.202376 | \n",
" 6.528125e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 17 | \n",
" 0.146886 | \n",
" 7.015312e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 14 | \n",
" 0.077339 | \n",
" 7.809384e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"31 16151.612969 0.000000e+00 Mancozeb\n",
"32 16151.612969 0.000000e+00 Mecoprop-P\n",
"29 16147.891932 0.000000e+00 Chlorothalonil\n",
"30 16147.891932 0.000000e+00 Glyphosate\n",
"34 16147.891932 0.000000e+00 Pendimethalin\n",
"23 14828.439300 0.000000e+00 Surface type\n",
"26 13583.366928 0.000000e+00 Fertiliser K\n",
"27 13583.366928 0.000000e+00 Fertiliser N\n",
"28 13583.366928 0.000000e+00 Fertiliser P\n",
"24 12411.664397 0.000000e+00 Outflowing drainage direction\n",
"21 11511.436305 0.000000e+00 Elevation\n",
"25 11025.748971 0.000000e+00 Inflowing drainage direction\n",
"37 10813.051867 0.000000e+00 Sulphur\n",
"36 10803.090695 0.000000e+00 Prosulfocarb\n",
"38 10762.210355 0.000000e+00 Tri-allate\n",
"22 9363.861895 0.000000e+00 Cumulative catchment area\n",
"35 7504.726180 0.000000e+00 PropamocarbHydrochloride\n",
"33 7356.605139 0.000000e+00 Metamitron\n",
"3 6889.758402 0.000000e+00 Improve grassland\n",
"2 5020.115469 0.000000e+00 Arable\n",
"0 3497.652887 0.000000e+00 Deciduous woodland\n",
"20 1872.691498 0.000000e+00 Suburban\n",
"5 415.858475 7.152889e-92 Calcareous grassland\n",
"4 355.069398 8.637276e-79 Neutral grassland\n",
"1 235.243263 6.519726e-53 Coniferous woodland\n",
"19 219.109454 2.036749e-49 Urban\n",
"6 141.740399 1.292165e-32 Acid grassland\n",
"13 137.784819 9.390379e-32 Freshwater\n",
"8 88.397878 5.685377e-21 Heather\n",
"7 57.673169 3.176391e-14 Fen\n",
"10 33.154847 8.585587e-09 Bog\n",
"18 21.413945 3.714720e-06 Saltmarsh\n",
"15 13.123056 2.921201e-04 Supralittoral sediment\n",
"11 5.451389 1.955872e-02 Inland rock\n",
"9 4.362221 3.675199e-02 Heather grassland\n",
"16 2.751696 9.716078e-02 Littoral rock\n",
"12 0.202376 6.528125e-01 Saltwater\n",
"17 0.146886 7.015312e-01 Littoral sediment\n",
"14 0.077339 7.809384e-01 Supralittoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pink-footed Goose 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 29 | \n",
" 7036.747030 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 30 | \n",
" 7036.747030 | \n",
" 0.000000e+00 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 31 | \n",
" 7036.747030 | \n",
" 0.000000e+00 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 32 | \n",
" 7036.747030 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 34 | \n",
" 7036.747030 | \n",
" 0.000000e+00 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 25 | \n",
" 5823.246006 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 23 | \n",
" 5796.329675 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 37 | \n",
" 5571.993565 | \n",
" 0.000000e+00 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 36 | \n",
" 5543.722242 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 38 | \n",
" 5512.222341 | \n",
" 0.000000e+00 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 21 | \n",
" 4750.062797 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 35 | \n",
" 4557.628130 | \n",
" 0.000000e+00 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 24 | \n",
" 4416.411546 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 33 | \n",
" 4315.390457 | \n",
" 0.000000e+00 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 22 | \n",
" 4111.240745 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 2 | \n",
" 4027.385455 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 17 | \n",
" 1680.756257 | \n",
" 0.000000e+00 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 3 | \n",
" 1578.759585 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 1503.642898 | \n",
" 1.032597e-321 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 20 | \n",
" 1109.115857 | \n",
" 3.118895e-239 | \n",
" Suburban | \n",
"
\n",
" \n",
" 0 | \n",
" 1064.014160 | \n",
" 9.660098e-230 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 26 | \n",
" 924.852644 | \n",
" 2.244918e-200 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 924.852644 | \n",
" 2.244918e-200 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 924.852644 | \n",
" 2.244918e-200 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 15 | \n",
" 852.335728 | \n",
" 5.051033e-185 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 19 | \n",
" 449.450750 | \n",
" 4.341152e-99 | \n",
" Urban | \n",
"
\n",
" \n",
" 13 | \n",
" 441.183451 | \n",
" 2.587866e-97 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 16 | \n",
" 329.374467 | \n",
" 2.984579e-73 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 7 | \n",
" 117.207897 | \n",
" 2.872142e-27 | \n",
" Fen | \n",
"
\n",
" \n",
" 12 | \n",
" 55.275652 | \n",
" 1.072913e-13 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 4 | \n",
" 50.484241 | \n",
" 1.225518e-12 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 7.481350 | \n",
" 6.237451e-03 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 6 | \n",
" 3.024752 | \n",
" 8.201214e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 2.001253 | \n",
" 1.571786e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 8 | \n",
" 1.379174 | \n",
" 2.402504e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 11 | \n",
" 1.198463 | \n",
" 2.736371e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 10 | \n",
" 0.051515 | \n",
" 8.204487e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 5 | \n",
" 0.022436 | \n",
" 8.809347e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 9 | \n",
" 0.002302 | \n",
" 9.617297e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"29 7036.747030 0.000000e+00 Chlorothalonil\n",
"30 7036.747030 0.000000e+00 Glyphosate\n",
"31 7036.747030 0.000000e+00 Mancozeb\n",
"32 7036.747030 0.000000e+00 Mecoprop-P\n",
"34 7036.747030 0.000000e+00 Pendimethalin\n",
"25 5823.246006 0.000000e+00 Inflowing drainage direction\n",
"23 5796.329675 0.000000e+00 Surface type\n",
"37 5571.993565 0.000000e+00 Sulphur\n",
"36 5543.722242 0.000000e+00 Prosulfocarb\n",
"38 5512.222341 0.000000e+00 Tri-allate\n",
"21 4750.062797 0.000000e+00 Elevation\n",
"35 4557.628130 0.000000e+00 PropamocarbHydrochloride\n",
"24 4416.411546 0.000000e+00 Outflowing drainage direction\n",
"33 4315.390457 0.000000e+00 Metamitron\n",
"22 4111.240745 0.000000e+00 Cumulative catchment area\n",
"2 4027.385455 0.000000e+00 Arable\n",
"17 1680.756257 0.000000e+00 Littoral sediment\n",
"3 1578.759585 0.000000e+00 Improve grassland\n",
"18 1503.642898 1.032597e-321 Saltmarsh\n",
"20 1109.115857 3.118895e-239 Suburban\n",
"0 1064.014160 9.660098e-230 Deciduous woodland\n",
"26 924.852644 2.244918e-200 Fertiliser K\n",
"27 924.852644 2.244918e-200 Fertiliser N\n",
"28 924.852644 2.244918e-200 Fertiliser P\n",
"15 852.335728 5.051033e-185 Supralittoral sediment\n",
"19 449.450750 4.341152e-99 Urban\n",
"13 441.183451 2.587866e-97 Freshwater\n",
"16 329.374467 2.984579e-73 Littoral rock\n",
"7 117.207897 2.872142e-27 Fen\n",
"12 55.275652 1.072913e-13 Saltwater\n",
"4 50.484241 1.225518e-12 Neutral grassland\n",
"1 7.481350 6.237451e-03 Coniferous woodland\n",
"6 3.024752 8.201214e-02 Acid grassland\n",
"14 2.001253 1.571786e-01 Supralittoral rock\n",
"8 1.379174 2.402504e-01 Heather\n",
"11 1.198463 2.736371e-01 Inland rock\n",
"10 0.051515 8.204487e-01 Bog\n",
"5 0.022436 8.809347e-01 Calcareous grassland\n",
"9 0.002302 9.617297e-01 Heather grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pintail 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 29 | \n",
" 1342.972285 | \n",
" 3.070953e-288 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 30 | \n",
" 1342.972285 | \n",
" 3.070953e-288 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 31 | \n",
" 1342.972285 | \n",
" 3.070953e-288 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 32 | \n",
" 1342.972285 | \n",
" 3.070953e-288 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 34 | \n",
" 1342.972285 | \n",
" 3.070953e-288 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 25 | \n",
" 1325.168183 | \n",
" 1.608067e-284 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 23 | \n",
" 1169.840995 | \n",
" 5.439990e-252 | \n",
" Surface type | \n",
"
\n",
" \n",
" 36 | \n",
" 1152.405110 | \n",
" 2.491814e-248 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 37 | \n",
" 1150.598093 | \n",
" 5.970826e-248 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 38 | \n",
" 1144.636386 | \n",
" 1.067303e-246 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 26 | \n",
" 1092.499220 | \n",
" 9.754959e-236 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 1092.499220 | \n",
" 9.754959e-236 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 1092.499220 | \n",
" 9.754959e-236 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 21 | \n",
" 987.248175 | \n",
" 1.475675e-213 | \n",
" Elevation | \n",
"
\n",
" \n",
" 33 | \n",
" 964.658121 | \n",
" 8.682894e-209 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 35 | \n",
" 958.762685 | \n",
" 1.527456e-207 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 24 | \n",
" 832.260391 | \n",
" 9.109264e-181 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 18 | \n",
" 829.398253 | \n",
" 3.685447e-180 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 22 | \n",
" 760.526243 | \n",
" 1.546155e-165 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 2 | \n",
" 723.168873 | \n",
" 1.361610e-157 | \n",
" Arable | \n",
"
\n",
" \n",
" 17 | \n",
" 700.432781 | \n",
" 9.417029e-153 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 3 | \n",
" 435.362823 | \n",
" 4.604501e-96 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 20 | \n",
" 333.610377 | \n",
" 3.643021e-74 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 306.416036 | \n",
" 2.680625e-68 | \n",
" Urban | \n",
"
\n",
" \n",
" 0 | \n",
" 244.336169 | \n",
" 7.011810e-55 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 4 | \n",
" 241.540306 | \n",
" 2.824742e-54 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 156.617233 | \n",
" 7.482770e-36 | \n",
" Fen | \n",
"
\n",
" \n",
" 15 | \n",
" 129.030277 | \n",
" 7.586888e-30 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 78.133376 | \n",
" 1.009712e-18 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 13 | \n",
" 49.612911 | \n",
" 1.909316e-12 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 6 | \n",
" 4.766818 | \n",
" 2.902040e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 1.605596 | \n",
" 2.051210e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 11 | \n",
" 1.411725 | \n",
" 2.347787e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 9 | \n",
" 1.135354 | \n",
" 2.866439e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 0.735527 | \n",
" 3.911038e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 14 | \n",
" 0.389845 | \n",
" 5.323851e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 5 | \n",
" 0.173820 | \n",
" 6.767413e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.049150 | \n",
" 8.245503e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 0.034271 | \n",
" 8.531325e-01 | \n",
" Bog | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"29 1342.972285 3.070953e-288 Chlorothalonil\n",
"30 1342.972285 3.070953e-288 Glyphosate\n",
"31 1342.972285 3.070953e-288 Mancozeb\n",
"32 1342.972285 3.070953e-288 Mecoprop-P\n",
"34 1342.972285 3.070953e-288 Pendimethalin\n",
"25 1325.168183 1.608067e-284 Inflowing drainage direction\n",
"23 1169.840995 5.439990e-252 Surface type\n",
"36 1152.405110 2.491814e-248 Prosulfocarb\n",
"37 1150.598093 5.970826e-248 Sulphur\n",
"38 1144.636386 1.067303e-246 Tri-allate\n",
"26 1092.499220 9.754959e-236 Fertiliser K\n",
"27 1092.499220 9.754959e-236 Fertiliser N\n",
"28 1092.499220 9.754959e-236 Fertiliser P\n",
"21 987.248175 1.475675e-213 Elevation\n",
"33 964.658121 8.682894e-209 Metamitron\n",
"35 958.762685 1.527456e-207 PropamocarbHydrochloride\n",
"24 832.260391 9.109264e-181 Outflowing drainage direction\n",
"18 829.398253 3.685447e-180 Saltmarsh\n",
"22 760.526243 1.546155e-165 Cumulative catchment area\n",
"2 723.168873 1.361610e-157 Arable\n",
"17 700.432781 9.417029e-153 Littoral sediment\n",
"3 435.362823 4.604501e-96 Improve grassland\n",
"20 333.610377 3.643021e-74 Suburban\n",
"19 306.416036 2.680625e-68 Urban\n",
"0 244.336169 7.011810e-55 Deciduous woodland\n",
"4 241.540306 2.824742e-54 Neutral grassland\n",
"7 156.617233 7.482770e-36 Fen\n",
"15 129.030277 7.586888e-30 Supralittoral sediment\n",
"12 78.133376 1.009712e-18 Saltwater\n",
"13 49.612911 1.909316e-12 Freshwater\n",
"6 4.766818 2.902040e-02 Acid grassland\n",
"8 1.605596 2.051210e-01 Heather\n",
"11 1.411725 2.347787e-01 Inland rock\n",
"9 1.135354 2.866439e-01 Heather grassland\n",
"1 0.735527 3.911038e-01 Coniferous woodland\n",
"14 0.389845 5.323851e-01 Supralittoral rock\n",
"5 0.173820 6.767413e-01 Calcareous grassland\n",
"16 0.049150 8.245503e-01 Littoral rock\n",
"10 0.034271 8.531325e-01 Bog"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pochard 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 2536.936766 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 2536.936766 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 2536.936766 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 29 | \n",
" 2457.352155 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 30 | \n",
" 2457.352155 | \n",
" 0.000000e+00 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 31 | \n",
" 2457.352155 | \n",
" 0.000000e+00 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 32 | \n",
" 2457.352155 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 34 | \n",
" 2457.352155 | \n",
" 0.000000e+00 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 37 | \n",
" 2207.208744 | \n",
" 0.000000e+00 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 36 | \n",
" 2202.231304 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 38 | \n",
" 2198.961775 | \n",
" 0.000000e+00 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 33 | \n",
" 2022.083842 | \n",
" 0.000000e+00 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 35 | \n",
" 1989.817324 | \n",
" 0.000000e+00 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 23 | \n",
" 1842.761284 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 2 | \n",
" 1555.536108 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 25 | \n",
" 1549.051565 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 24 | \n",
" 1485.853766 | \n",
" 5.152527e-318 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 1392.732967 | \n",
" 1.268634e-298 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 21 | \n",
" 1309.187405 | \n",
" 3.516732e-281 | \n",
" Elevation | \n",
"
\n",
" \n",
" 20 | \n",
" 894.234195 | \n",
" 6.746925e-194 | \n",
" Suburban | \n",
"
\n",
" \n",
" 3 | \n",
" 745.160492 | \n",
" 2.857352e-162 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 19 | \n",
" 743.681811 | \n",
" 5.893993e-162 | \n",
" Urban | \n",
"
\n",
" \n",
" 0 | \n",
" 574.470893 | \n",
" 7.099727e-126 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 13 | \n",
" 271.809180 | \n",
" 8.008227e-61 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 4 | \n",
" 149.345332 | \n",
" 2.857674e-34 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 131.344663 | \n",
" 2.375107e-30 | \n",
" Fen | \n",
"
\n",
" \n",
" 18 | \n",
" 99.865736 | \n",
" 1.760901e-23 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 15 | \n",
" 46.675600 | \n",
" 8.521422e-12 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 17 | \n",
" 38.959990 | \n",
" 4.378224e-10 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 13.290046 | \n",
" 2.672276e-04 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 6 | \n",
" 12.015067 | \n",
" 5.283914e-04 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 10.402339 | \n",
" 1.259780e-03 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 10.105514 | \n",
" 1.479624e-03 | \n",
" Bog | \n",
"
\n",
" \n",
" 9 | \n",
" 4.772190 | \n",
" 2.893001e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 4.024274 | \n",
" 4.485804e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 11 | \n",
" 2.159090 | \n",
" 1.417381e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 14 | \n",
" 0.851691 | \n",
" 3.560812e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 1 | \n",
" 0.632046 | \n",
" 4.266115e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.240235 | \n",
" 6.240394e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 2536.936766 0.000000e+00 Fertiliser K\n",
"27 2536.936766 0.000000e+00 Fertiliser N\n",
"28 2536.936766 0.000000e+00 Fertiliser P\n",
"29 2457.352155 0.000000e+00 Chlorothalonil\n",
"30 2457.352155 0.000000e+00 Glyphosate\n",
"31 2457.352155 0.000000e+00 Mancozeb\n",
"32 2457.352155 0.000000e+00 Mecoprop-P\n",
"34 2457.352155 0.000000e+00 Pendimethalin\n",
"37 2207.208744 0.000000e+00 Sulphur\n",
"36 2202.231304 0.000000e+00 Prosulfocarb\n",
"38 2198.961775 0.000000e+00 Tri-allate\n",
"33 2022.083842 0.000000e+00 Metamitron\n",
"35 1989.817324 0.000000e+00 PropamocarbHydrochloride\n",
"23 1842.761284 0.000000e+00 Surface type\n",
"2 1555.536108 0.000000e+00 Arable\n",
"25 1549.051565 0.000000e+00 Inflowing drainage direction\n",
"24 1485.853766 5.152527e-318 Outflowing drainage direction\n",
"22 1392.732967 1.268634e-298 Cumulative catchment area\n",
"21 1309.187405 3.516732e-281 Elevation\n",
"20 894.234195 6.746925e-194 Suburban\n",
"3 745.160492 2.857352e-162 Improve grassland\n",
"19 743.681811 5.893993e-162 Urban\n",
"0 574.470893 7.099727e-126 Deciduous woodland\n",
"13 271.809180 8.008227e-61 Freshwater\n",
"4 149.345332 2.857674e-34 Neutral grassland\n",
"7 131.344663 2.375107e-30 Fen\n",
"18 99.865736 1.760901e-23 Saltmarsh\n",
"15 46.675600 8.521422e-12 Supralittoral sediment\n",
"17 38.959990 4.378224e-10 Littoral sediment\n",
"12 13.290046 2.672276e-04 Saltwater\n",
"6 12.015067 5.283914e-04 Acid grassland\n",
"5 10.402339 1.259780e-03 Calcareous grassland\n",
"10 10.105514 1.479624e-03 Bog\n",
"9 4.772190 2.893001e-02 Heather grassland\n",
"8 4.024274 4.485804e-02 Heather\n",
"11 2.159090 1.417381e-01 Inland rock\n",
"14 0.851691 3.560812e-01 Supralittoral rock\n",
"1 0.632046 4.266115e-01 Coniferous woodland\n",
"16 0.240235 6.240394e-01 Littoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Red-legged Partridge 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 13523.622232 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 13523.622232 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 13523.622232 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 37 | \n",
" 11673.899484 | \n",
" 0.000000e+00 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 36 | \n",
" 11667.108199 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 38 | \n",
" 11666.574791 | \n",
" 0.000000e+00 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 29 | \n",
" 10659.554341 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 30 | \n",
" 10659.554341 | \n",
" 0.000000e+00 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 31 | \n",
" 10659.554341 | \n",
" 0.000000e+00 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 32 | \n",
" 10659.554341 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 34 | \n",
" 10659.554341 | \n",
" 0.000000e+00 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 2 | \n",
" 9262.561980 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 35 | \n",
" 9224.344758 | \n",
" 0.000000e+00 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 33 | \n",
" 9063.157294 | \n",
" 0.000000e+00 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 23 | \n",
" 8310.347324 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 24 | \n",
" 6580.468060 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 25 | \n",
" 6132.393216 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 6122.856668 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 22 | \n",
" 6094.072173 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 3 | \n",
" 3761.382336 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 0 | \n",
" 1821.322033 | \n",
" 0.000000e+00 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 591.420483 | \n",
" 1.691353e-129 | \n",
" Suburban | \n",
"
\n",
" \n",
" 5 | \n",
" 325.757650 | \n",
" 1.798558e-72 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 108.694533 | \n",
" 2.073050e-25 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 19 | \n",
" 58.130510 | \n",
" 2.518487e-14 | \n",
" Urban | \n",
"
\n",
" \n",
" 7 | \n",
" 54.477132 | \n",
" 1.609616e-13 | \n",
" Fen | \n",
"
\n",
" \n",
" 13 | \n",
" 38.514509 | \n",
" 5.499196e-10 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 18 | \n",
" 19.620936 | \n",
" 9.473139e-06 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 9 | \n",
" 7.224620 | \n",
" 7.194636e-03 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 7.125487 | \n",
" 7.603285e-03 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 15 | \n",
" 4.532290 | \n",
" 3.326844e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 8 | \n",
" 4.459810 | \n",
" 3.470883e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 16 | \n",
" 3.979559 | \n",
" 4.606380e-02 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 3.505345 | \n",
" 6.117991e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 1 | \n",
" 2.115325 | \n",
" 1.458406e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 14 | \n",
" 0.747430 | \n",
" 3.872974e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 6 | \n",
" 0.289120 | \n",
" 5.907888e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 0.153603 | \n",
" 6.951180e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 0.139898 | \n",
" 7.083844e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 13523.622232 0.000000e+00 Fertiliser K\n",
"27 13523.622232 0.000000e+00 Fertiliser N\n",
"28 13523.622232 0.000000e+00 Fertiliser P\n",
"37 11673.899484 0.000000e+00 Sulphur\n",
"36 11667.108199 0.000000e+00 Prosulfocarb\n",
"38 11666.574791 0.000000e+00 Tri-allate\n",
"29 10659.554341 0.000000e+00 Chlorothalonil\n",
"30 10659.554341 0.000000e+00 Glyphosate\n",
"31 10659.554341 0.000000e+00 Mancozeb\n",
"32 10659.554341 0.000000e+00 Mecoprop-P\n",
"34 10659.554341 0.000000e+00 Pendimethalin\n",
"2 9262.561980 0.000000e+00 Arable\n",
"35 9224.344758 0.000000e+00 PropamocarbHydrochloride\n",
"33 9063.157294 0.000000e+00 Metamitron\n",
"23 8310.347324 0.000000e+00 Surface type\n",
"24 6580.468060 0.000000e+00 Outflowing drainage direction\n",
"25 6132.393216 0.000000e+00 Inflowing drainage direction\n",
"21 6122.856668 0.000000e+00 Elevation\n",
"22 6094.072173 0.000000e+00 Cumulative catchment area\n",
"3 3761.382336 0.000000e+00 Improve grassland\n",
"0 1821.322033 0.000000e+00 Deciduous woodland\n",
"20 591.420483 1.691353e-129 Suburban\n",
"5 325.757650 1.798558e-72 Calcareous grassland\n",
"4 108.694533 2.073050e-25 Neutral grassland\n",
"19 58.130510 2.518487e-14 Urban\n",
"7 54.477132 1.609616e-13 Fen\n",
"13 38.514509 5.499196e-10 Freshwater\n",
"18 19.620936 9.473139e-06 Saltmarsh\n",
"9 7.224620 7.194636e-03 Heather grassland\n",
"11 7.125487 7.603285e-03 Inland rock\n",
"15 4.532290 3.326844e-02 Supralittoral sediment\n",
"8 4.459810 3.470883e-02 Heather\n",
"16 3.979559 4.606380e-02 Littoral rock\n",
"10 3.505345 6.117991e-02 Bog\n",
"1 2.115325 1.458406e-01 Coniferous woodland\n",
"14 0.747430 3.872974e-01 Supralittoral rock\n",
"6 0.289120 5.907888e-01 Acid grassland\n",
"17 0.153603 6.951180e-01 Littoral sediment\n",
"12 0.139898 7.083844e-01 Saltwater"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ring-necked Parakeet 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 20 | \n",
" 5174.029480 | \n",
" 0.000000e+00 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 4816.293327 | \n",
" 0.000000e+00 | \n",
" Urban | \n",
"
\n",
" \n",
" 26 | \n",
" 2496.791010 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 2496.791010 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 2496.791010 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 22 | \n",
" 2110.055997 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 29 | \n",
" 1731.345378 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 31 | \n",
" 1731.345378 | \n",
" 0.000000e+00 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 32 | \n",
" 1731.345378 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 30 | \n",
" 1731.004980 | \n",
" 0.000000e+00 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 34 | \n",
" 1731.004980 | \n",
" 0.000000e+00 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 23 | \n",
" 1451.182004 | \n",
" 8.429407e-311 | \n",
" Surface type | \n",
"
\n",
" \n",
" 24 | \n",
" 1239.102083 | \n",
" 1.629495e-266 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 25 | \n",
" 1101.552188 | \n",
" 1.215523e-237 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 934.465809 | \n",
" 2.082605e-202 | \n",
" Elevation | \n",
"
\n",
" \n",
" 0 | \n",
" 644.695315 | \n",
" 7.138206e-141 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 3 | \n",
" 590.530935 | \n",
" 2.620156e-129 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 36 | \n",
" 550.735617 | \n",
" 8.473886e-121 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 37 | \n",
" 549.972053 | \n",
" 1.234441e-120 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 38 | \n",
" 531.829928 | \n",
" 9.435110e-117 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 35 | \n",
" 454.966109 | \n",
" 2.841247e-100 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 33 | \n",
" 447.760495 | \n",
" 1.001226e-98 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 13 | \n",
" 266.908247 | \n",
" 9.184502e-60 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 2 | \n",
" 33.737881 | \n",
" 6.363711e-09 | \n",
" Arable | \n",
"
\n",
" \n",
" 6 | \n",
" 16.142590 | \n",
" 5.887779e-05 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 9 | \n",
" 8.350427 | \n",
" 3.858472e-03 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 6.304742 | \n",
" 1.204628e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 4 | \n",
" 6.018766 | \n",
" 1.415966e-02 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 5.354666 | \n",
" 2.067299e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 1 | \n",
" 4.630696 | \n",
" 3.141203e-02 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 16 | \n",
" 2.075782 | \n",
" 1.496627e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 2.028360 | \n",
" 1.543966e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 14 | \n",
" 1.773163 | \n",
" 1.830003e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 17 | \n",
" 1.343003 | \n",
" 2.465134e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 18 | \n",
" 1.007935 | \n",
" 3.154055e-01 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 12 | \n",
" 0.767993 | \n",
" 3.808449e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 15 | \n",
" 0.170880 | \n",
" 6.793333e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 7 | \n",
" 0.122766 | \n",
" 7.260555e-01 | \n",
" Fen | \n",
"
\n",
" \n",
" 5 | \n",
" 0.061965 | \n",
" 8.034183e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"20 5174.029480 0.000000e+00 Suburban\n",
"19 4816.293327 0.000000e+00 Urban\n",
"26 2496.791010 0.000000e+00 Fertiliser K\n",
"27 2496.791010 0.000000e+00 Fertiliser N\n",
"28 2496.791010 0.000000e+00 Fertiliser P\n",
"22 2110.055997 0.000000e+00 Cumulative catchment area\n",
"29 1731.345378 0.000000e+00 Chlorothalonil\n",
"31 1731.345378 0.000000e+00 Mancozeb\n",
"32 1731.345378 0.000000e+00 Mecoprop-P\n",
"30 1731.004980 0.000000e+00 Glyphosate\n",
"34 1731.004980 0.000000e+00 Pendimethalin\n",
"23 1451.182004 8.429407e-311 Surface type\n",
"24 1239.102083 1.629495e-266 Outflowing drainage direction\n",
"25 1101.552188 1.215523e-237 Inflowing drainage direction\n",
"21 934.465809 2.082605e-202 Elevation\n",
"0 644.695315 7.138206e-141 Deciduous woodland\n",
"3 590.530935 2.620156e-129 Improve grassland\n",
"36 550.735617 8.473886e-121 Prosulfocarb\n",
"37 549.972053 1.234441e-120 Sulphur\n",
"38 531.829928 9.435110e-117 Tri-allate\n",
"35 454.966109 2.841247e-100 PropamocarbHydrochloride\n",
"33 447.760495 1.001226e-98 Metamitron\n",
"13 266.908247 9.184502e-60 Freshwater\n",
"2 33.737881 6.363711e-09 Arable\n",
"6 16.142590 5.887779e-05 Acid grassland\n",
"9 8.350427 3.858472e-03 Heather grassland\n",
"10 6.304742 1.204628e-02 Bog\n",
"4 6.018766 1.415966e-02 Neutral grassland\n",
"8 5.354666 2.067299e-02 Heather\n",
"1 4.630696 3.141203e-02 Coniferous woodland\n",
"16 2.075782 1.496627e-01 Littoral rock\n",
"11 2.028360 1.543966e-01 Inland rock\n",
"14 1.773163 1.830003e-01 Supralittoral rock\n",
"17 1.343003 2.465134e-01 Littoral sediment\n",
"18 1.007935 3.154055e-01 Saltmarsh\n",
"12 0.767993 3.808449e-01 Saltwater\n",
"15 0.170880 6.793333e-01 Supralittoral sediment\n",
"7 0.122766 7.260555e-01 Fen\n",
"5 0.061965 8.034183e-01 Calcareous grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rock Dove 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 29 | \n",
" 11974.716865 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 30 | \n",
" 11974.716865 | \n",
" 0.000000e+00 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 31 | \n",
" 11974.716865 | \n",
" 0.000000e+00 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 32 | \n",
" 11974.716865 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 34 | \n",
" 11974.716865 | \n",
" 0.000000e+00 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 23 | \n",
" 9715.208896 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 26 | \n",
" 9320.817826 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 9320.817826 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 9320.817826 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 24 | \n",
" 7716.649425 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 25 | \n",
" 7489.623513 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 37 | \n",
" 7222.092735 | \n",
" 0.000000e+00 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 36 | \n",
" 7220.986108 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 21 | \n",
" 7209.182719 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 38 | \n",
" 7185.198282 | \n",
" 0.000000e+00 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 22 | \n",
" 6950.626400 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 35 | \n",
" 5320.538837 | \n",
" 0.000000e+00 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 33 | \n",
" 5174.072845 | \n",
" 0.000000e+00 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 3 | \n",
" 4736.971375 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 20 | \n",
" 4361.914241 | \n",
" 0.000000e+00 | \n",
" Suburban | \n",
"
\n",
" \n",
" 2 | \n",
" 3272.566853 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 0 | \n",
" 1947.276915 | \n",
" 0.000000e+00 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 19 | \n",
" 1698.722674 | \n",
" 0.000000e+00 | \n",
" Urban | \n",
"
\n",
" \n",
" 4 | \n",
" 327.460980 | \n",
" 7.718845e-73 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 172.810554 | \n",
" 2.260169e-39 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 158.476505 | \n",
" 2.949316e-36 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 16 | \n",
" 63.399064 | \n",
" 1.741628e-15 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 14 | \n",
" 38.512231 | \n",
" 5.505612e-10 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 15 | \n",
" 35.360040 | \n",
" 2.767982e-09 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 7 | \n",
" 32.305738 | \n",
" 1.328301e-08 | \n",
" Fen | \n",
"
\n",
" \n",
" 18 | \n",
" 15.733289 | \n",
" 7.308286e-05 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 17 | \n",
" 13.808123 | \n",
" 2.027922e-04 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 11 | \n",
" 5.939593 | \n",
" 1.480967e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 8 | \n",
" 1.467724 | \n",
" 2.257138e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 6 | \n",
" 1.183074 | \n",
" 2.767391e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 1.068542 | \n",
" 3.012825e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 9 | \n",
" 0.520829 | \n",
" 4.704932e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 0.491905 | \n",
" 4.830835e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 1 | \n",
" 0.363769 | \n",
" 5.464245e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"29 11974.716865 0.000000e+00 Chlorothalonil\n",
"30 11974.716865 0.000000e+00 Glyphosate\n",
"31 11974.716865 0.000000e+00 Mancozeb\n",
"32 11974.716865 0.000000e+00 Mecoprop-P\n",
"34 11974.716865 0.000000e+00 Pendimethalin\n",
"23 9715.208896 0.000000e+00 Surface type\n",
"26 9320.817826 0.000000e+00 Fertiliser K\n",
"27 9320.817826 0.000000e+00 Fertiliser N\n",
"28 9320.817826 0.000000e+00 Fertiliser P\n",
"24 7716.649425 0.000000e+00 Outflowing drainage direction\n",
"25 7489.623513 0.000000e+00 Inflowing drainage direction\n",
"37 7222.092735 0.000000e+00 Sulphur\n",
"36 7220.986108 0.000000e+00 Prosulfocarb\n",
"21 7209.182719 0.000000e+00 Elevation\n",
"38 7185.198282 0.000000e+00 Tri-allate\n",
"22 6950.626400 0.000000e+00 Cumulative catchment area\n",
"35 5320.538837 0.000000e+00 PropamocarbHydrochloride\n",
"33 5174.072845 0.000000e+00 Metamitron\n",
"3 4736.971375 0.000000e+00 Improve grassland\n",
"20 4361.914241 0.000000e+00 Suburban\n",
"2 3272.566853 0.000000e+00 Arable\n",
"0 1947.276915 0.000000e+00 Deciduous woodland\n",
"19 1698.722674 0.000000e+00 Urban\n",
"4 327.460980 7.718845e-73 Neutral grassland\n",
"5 172.810554 2.260169e-39 Calcareous grassland\n",
"13 158.476505 2.949316e-36 Freshwater\n",
"16 63.399064 1.741628e-15 Littoral rock\n",
"14 38.512231 5.505612e-10 Supralittoral rock\n",
"15 35.360040 2.767982e-09 Supralittoral sediment\n",
"7 32.305738 1.328301e-08 Fen\n",
"18 15.733289 7.308286e-05 Saltmarsh\n",
"17 13.808123 2.027922e-04 Littoral sediment\n",
"11 5.939593 1.480967e-02 Inland rock\n",
"8 1.467724 2.257138e-01 Heather\n",
"6 1.183074 2.767391e-01 Acid grassland\n",
"10 1.068542 3.012825e-01 Bog\n",
"9 0.520829 4.704932e-01 Heather grassland\n",
"12 0.491905 4.830835e-01 Saltwater\n",
"1 0.363769 5.464245e-01 Coniferous woodland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ruddy Duck 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 13 | \n",
" 2084.023887 | \n",
" 0.000000e+00 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 26 | \n",
" 611.973820 | \n",
" 6.880144e-134 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 611.973820 | \n",
" 6.880144e-134 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 611.973820 | \n",
" 6.880144e-134 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 24 | \n",
" 574.800456 | \n",
" 6.036397e-126 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 439.953763 | \n",
" 4.753911e-97 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 29 | \n",
" 420.253312 | \n",
" 8.124948e-93 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 31 | \n",
" 420.253312 | \n",
" 8.124948e-93 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 32 | \n",
" 420.253312 | \n",
" 8.124948e-93 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 30 | \n",
" 420.170729 | \n",
" 8.463895e-93 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 34 | \n",
" 420.170729 | \n",
" 8.463895e-93 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 37 | \n",
" 334.799327 | \n",
" 2.018860e-74 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 23 | \n",
" 331.644948 | \n",
" 9.666367e-74 | \n",
" Surface type | \n",
"
\n",
" \n",
" 38 | \n",
" 327.259937 | \n",
" 8.529270e-73 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 36 | \n",
" 316.625993 | \n",
" 1.678218e-70 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 35 | \n",
" 279.546885 | \n",
" 1.702940e-62 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 33 | \n",
" 275.651878 | \n",
" 1.182909e-61 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 25 | \n",
" 252.505585 | \n",
" 1.196889e-56 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 19 | \n",
" 209.791045 | \n",
" 2.131385e-47 | \n",
" Urban | \n",
"
\n",
" \n",
" 21 | \n",
" 206.348108 | \n",
" 1.188914e-46 | \n",
" Elevation | \n",
"
\n",
" \n",
" 0 | \n",
" 197.545829 | \n",
" 9.644094e-45 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 4 | \n",
" 178.469812 | \n",
" 1.333079e-40 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 3 | \n",
" 159.658114 | \n",
" 1.632226e-36 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 20 | \n",
" 117.615266 | \n",
" 2.340567e-27 | \n",
" Suburban | \n",
"
\n",
" \n",
" 7 | \n",
" 105.045117 | \n",
" 1.299505e-24 | \n",
" Fen | \n",
"
\n",
" \n",
" 2 | \n",
" 54.679745 | \n",
" 1.452179e-13 | \n",
" Arable | \n",
"
\n",
" \n",
" 18 | \n",
" 36.700240 | \n",
" 1.392471e-09 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 15 | \n",
" 18.578174 | \n",
" 1.635478e-05 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 17.716380 | \n",
" 2.570854e-05 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 6 | \n",
" 3.935350 | \n",
" 4.728954e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 2.178205 | \n",
" 1.399871e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 8 | \n",
" 1.916130 | \n",
" 1.662933e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 10 | \n",
" 1.383460 | \n",
" 2.395211e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 9 | \n",
" 1.221097 | \n",
" 2.691535e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 1.008807 | \n",
" 3.151962e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 14 | \n",
" 0.445443 | \n",
" 5.045116e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 16 | \n",
" 0.433081 | \n",
" 5.104857e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 0.247335 | \n",
" 6.189611e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 5 | \n",
" 0.072280 | \n",
" 7.880478e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"13 2084.023887 0.000000e+00 Freshwater\n",
"26 611.973820 6.880144e-134 Fertiliser K\n",
"27 611.973820 6.880144e-134 Fertiliser N\n",
"28 611.973820 6.880144e-134 Fertiliser P\n",
"24 574.800456 6.036397e-126 Outflowing drainage direction\n",
"22 439.953763 4.753911e-97 Cumulative catchment area\n",
"29 420.253312 8.124948e-93 Chlorothalonil\n",
"31 420.253312 8.124948e-93 Mancozeb\n",
"32 420.253312 8.124948e-93 Mecoprop-P\n",
"30 420.170729 8.463895e-93 Glyphosate\n",
"34 420.170729 8.463895e-93 Pendimethalin\n",
"37 334.799327 2.018860e-74 Sulphur\n",
"23 331.644948 9.666367e-74 Surface type\n",
"38 327.259937 8.529270e-73 Tri-allate\n",
"36 316.625993 1.678218e-70 Prosulfocarb\n",
"35 279.546885 1.702940e-62 PropamocarbHydrochloride\n",
"33 275.651878 1.182909e-61 Metamitron\n",
"25 252.505585 1.196889e-56 Inflowing drainage direction\n",
"19 209.791045 2.131385e-47 Urban\n",
"21 206.348108 1.188914e-46 Elevation\n",
"0 197.545829 9.644094e-45 Deciduous woodland\n",
"4 178.469812 1.333079e-40 Neutral grassland\n",
"3 159.658114 1.632226e-36 Improve grassland\n",
"20 117.615266 2.340567e-27 Suburban\n",
"7 105.045117 1.299505e-24 Fen\n",
"2 54.679745 1.452179e-13 Arable\n",
"18 36.700240 1.392471e-09 Saltmarsh\n",
"15 18.578174 1.635478e-05 Supralittoral sediment\n",
"12 17.716380 2.570854e-05 Saltwater\n",
"6 3.935350 4.728954e-02 Acid grassland\n",
"17 2.178205 1.399871e-01 Littoral sediment\n",
"8 1.916130 1.662933e-01 Heather\n",
"10 1.383460 2.395211e-01 Bog\n",
"9 1.221097 2.691535e-01 Heather grassland\n",
"1 1.008807 3.151962e-01 Coniferous woodland\n",
"14 0.445443 5.045116e-01 Supralittoral rock\n",
"16 0.433081 5.104857e-01 Littoral rock\n",
"11 0.247335 6.189611e-01 Inland rock\n",
"5 0.072280 7.880478e-01 Calcareous grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Whooper Swan 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 1676.560528 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 23 | \n",
" 1555.884294 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 1411.884325 | \n",
" 1.291051e-302 | \n",
" Elevation | \n",
"
\n",
" \n",
" 29 | \n",
" 1368.299617 | \n",
" 1.585328e-293 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 31 | \n",
" 1368.299617 | \n",
" 1.585328e-293 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 32 | \n",
" 1368.299617 | \n",
" 1.585328e-293 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 30 | \n",
" 1367.972943 | \n",
" 1.854762e-293 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 34 | \n",
" 1367.972943 | \n",
" 1.854762e-293 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 24 | \n",
" 1295.050837 | \n",
" 3.175931e-278 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 1252.169594 | \n",
" 2.987125e-269 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 37 | \n",
" 822.832470 | \n",
" 9.102816e-179 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 36 | \n",
" 818.843021 | \n",
" 6.390379e-178 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 38 | \n",
" 809.297607 | \n",
" 6.776178e-176 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 3 | \n",
" 560.870223 | \n",
" 5.752589e-123 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 35 | \n",
" 537.803158 | \n",
" 4.965172e-118 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 2 | \n",
" 518.099739 | \n",
" 8.226528e-114 | \n",
" Arable | \n",
"
\n",
" \n",
" 33 | \n",
" 491.320567 | \n",
" 4.509861e-108 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 26 | \n",
" 428.892315 | \n",
" 1.130612e-94 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 428.892315 | \n",
" 1.130612e-94 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 428.892315 | \n",
" 1.130612e-94 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 13 | \n",
" 302.457075 | \n",
" 1.918026e-67 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 17 | \n",
" 294.097064 | \n",
" 1.224555e-65 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 0 | \n",
" 236.168141 | \n",
" 4.111276e-53 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 18 | \n",
" 210.131628 | \n",
" 1.798147e-47 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 7 | \n",
" 171.006773 | \n",
" 5.572412e-39 | \n",
" Fen | \n",
"
\n",
" \n",
" 20 | \n",
" 166.933497 | \n",
" 4.277570e-38 | \n",
" Suburban | \n",
"
\n",
" \n",
" 4 | \n",
" 152.889945 | \n",
" 4.839547e-35 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 19 | \n",
" 129.204755 | \n",
" 6.950815e-30 | \n",
" Urban | \n",
"
\n",
" \n",
" 9 | \n",
" 88.659782 | \n",
" 4.982099e-21 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 15 | \n",
" 87.366558 | \n",
" 9.563148e-21 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 14 | \n",
" 65.810060 | \n",
" 5.135459e-16 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 16 | \n",
" 62.367071 | \n",
" 2.938167e-15 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 36.089602 | \n",
" 1.904150e-09 | \n",
" Bog | \n",
"
\n",
" \n",
" 1 | \n",
" 25.502277 | \n",
" 4.442055e-07 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 8 | \n",
" 13.925116 | \n",
" 1.905575e-04 | \n",
" Heather | \n",
"
\n",
" \n",
" 12 | \n",
" 7.753771 | \n",
" 5.363096e-03 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 6 | \n",
" 7.525727 | \n",
" 6.085674e-03 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 0.360808 | \n",
" 5.480621e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 5 | \n",
" 0.028754 | \n",
" 8.653489e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 1676.560528 0.000000e+00 Inflowing drainage direction\n",
"23 1555.884294 0.000000e+00 Surface type\n",
"21 1411.884325 1.291051e-302 Elevation\n",
"29 1368.299617 1.585328e-293 Chlorothalonil\n",
"31 1368.299617 1.585328e-293 Mancozeb\n",
"32 1368.299617 1.585328e-293 Mecoprop-P\n",
"30 1367.972943 1.854762e-293 Glyphosate\n",
"34 1367.972943 1.854762e-293 Pendimethalin\n",
"24 1295.050837 3.175931e-278 Outflowing drainage direction\n",
"22 1252.169594 2.987125e-269 Cumulative catchment area\n",
"37 822.832470 9.102816e-179 Sulphur\n",
"36 818.843021 6.390379e-178 Prosulfocarb\n",
"38 809.297607 6.776178e-176 Tri-allate\n",
"3 560.870223 5.752589e-123 Improve grassland\n",
"35 537.803158 4.965172e-118 PropamocarbHydrochloride\n",
"2 518.099739 8.226528e-114 Arable\n",
"33 491.320567 4.509861e-108 Metamitron\n",
"26 428.892315 1.130612e-94 Fertiliser K\n",
"27 428.892315 1.130612e-94 Fertiliser N\n",
"28 428.892315 1.130612e-94 Fertiliser P\n",
"13 302.457075 1.918026e-67 Freshwater\n",
"17 294.097064 1.224555e-65 Littoral sediment\n",
"0 236.168141 4.111276e-53 Deciduous woodland\n",
"18 210.131628 1.798147e-47 Saltmarsh\n",
"7 171.006773 5.572412e-39 Fen\n",
"20 166.933497 4.277570e-38 Suburban\n",
"4 152.889945 4.839547e-35 Neutral grassland\n",
"19 129.204755 6.950815e-30 Urban\n",
"9 88.659782 4.982099e-21 Heather grassland\n",
"15 87.366558 9.563148e-21 Supralittoral sediment\n",
"14 65.810060 5.135459e-16 Supralittoral rock\n",
"16 62.367071 2.938167e-15 Littoral rock\n",
"10 36.089602 1.904150e-09 Bog\n",
"1 25.502277 4.442055e-07 Coniferous woodland\n",
"8 13.925116 1.905575e-04 Heather\n",
"12 7.753771 5.363096e-03 Saltwater\n",
"6 7.525727 6.085674e-03 Acid grassland\n",
"11 0.360808 5.480621e-01 Inland rock\n",
"5 0.028754 8.653489e-01 Calcareous grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Wigeon 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 29 | \n",
" 4819.105469 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil | \n",
"
\n",
" \n",
" 30 | \n",
" 4819.105469 | \n",
" 0.000000e+00 | \n",
" Glyphosate | \n",
"
\n",
" \n",
" 31 | \n",
" 4819.105469 | \n",
" 0.000000e+00 | \n",
" Mancozeb | \n",
"
\n",
" \n",
" 32 | \n",
" 4819.105469 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P | \n",
"
\n",
" \n",
" 34 | \n",
" 4819.105469 | \n",
" 0.000000e+00 | \n",
" Pendimethalin | \n",
"
\n",
" \n",
" 25 | \n",
" 4543.858943 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 23 | \n",
" 4385.352401 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 3772.569210 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 37 | \n",
" 3368.272204 | \n",
" 0.000000e+00 | \n",
" Sulphur | \n",
"
\n",
" \n",
" 36 | \n",
" 3344.881952 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb | \n",
"
\n",
" \n",
" 38 | \n",
" 3316.664763 | \n",
" 0.000000e+00 | \n",
" Tri-allate | \n",
"
\n",
" \n",
" 24 | \n",
" 3296.213107 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 3018.447019 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 35 | \n",
" 2471.153767 | \n",
" 0.000000e+00 | \n",
" PropamocarbHydrochloride | \n",
"
\n",
" \n",
" 33 | \n",
" 2444.415822 | \n",
" 0.000000e+00 | \n",
" Metamitron | \n",
"
\n",
" \n",
" 3 | \n",
" 1984.684092 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 1640.404091 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 26 | \n",
" 1577.395456 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 1577.395456 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 1577.395456 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 0 | \n",
" 1016.533733 | \n",
" 9.783489e-220 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 871.988879 | \n",
" 3.462062e-189 | \n",
" Suburban | \n",
"
\n",
" \n",
" 17 | \n",
" 839.439277 | \n",
" 2.736586e-182 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 13 | \n",
" 570.717851 | \n",
" 4.505394e-125 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 18 | \n",
" 551.354132 | \n",
" 6.247919e-121 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 19 | \n",
" 535.113644 | \n",
" 1.869402e-117 | \n",
" Urban | \n",
"
\n",
" \n",
" 15 | \n",
" 329.558717 | \n",
" 2.723634e-73 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 16 | \n",
" 261.381261 | \n",
" 1.439437e-58 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 7 | \n",
" 176.243055 | \n",
" 4.059697e-40 | \n",
" Fen | \n",
"
\n",
" \n",
" 4 | \n",
" 150.239640 | \n",
" 1.825651e-34 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 104.357556 | \n",
" 1.836557e-24 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 14 | \n",
" 37.244870 | \n",
" 1.053444e-09 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 8 | \n",
" 14.097058 | \n",
" 1.739122e-04 | \n",
" Heather | \n",
"
\n",
" \n",
" 1 | \n",
" 12.680417 | \n",
" 3.700235e-04 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 9 | \n",
" 9.281786 | \n",
" 2.316259e-03 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 7.220527 | \n",
" 7.211058e-03 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 1.418478 | \n",
" 2.336626e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 6 | \n",
" 0.976582 | \n",
" 3.230512e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 0.096023 | \n",
" 7.566574e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"29 4819.105469 0.000000e+00 Chlorothalonil\n",
"30 4819.105469 0.000000e+00 Glyphosate\n",
"31 4819.105469 0.000000e+00 Mancozeb\n",
"32 4819.105469 0.000000e+00 Mecoprop-P\n",
"34 4819.105469 0.000000e+00 Pendimethalin\n",
"25 4543.858943 0.000000e+00 Inflowing drainage direction\n",
"23 4385.352401 0.000000e+00 Surface type\n",
"21 3772.569210 0.000000e+00 Elevation\n",
"37 3368.272204 0.000000e+00 Sulphur\n",
"36 3344.881952 0.000000e+00 Prosulfocarb\n",
"38 3316.664763 0.000000e+00 Tri-allate\n",
"24 3296.213107 0.000000e+00 Outflowing drainage direction\n",
"22 3018.447019 0.000000e+00 Cumulative catchment area\n",
"35 2471.153767 0.000000e+00 PropamocarbHydrochloride\n",
"33 2444.415822 0.000000e+00 Metamitron\n",
"3 1984.684092 0.000000e+00 Improve grassland\n",
"2 1640.404091 0.000000e+00 Arable\n",
"26 1577.395456 0.000000e+00 Fertiliser K\n",
"27 1577.395456 0.000000e+00 Fertiliser N\n",
"28 1577.395456 0.000000e+00 Fertiliser P\n",
"0 1016.533733 9.783489e-220 Deciduous woodland\n",
"20 871.988879 3.462062e-189 Suburban\n",
"17 839.439277 2.736586e-182 Littoral sediment\n",
"13 570.717851 4.505394e-125 Freshwater\n",
"18 551.354132 6.247919e-121 Saltmarsh\n",
"19 535.113644 1.869402e-117 Urban\n",
"15 329.558717 2.723634e-73 Supralittoral sediment\n",
"16 261.381261 1.439437e-58 Littoral rock\n",
"7 176.243055 4.059697e-40 Fen\n",
"4 150.239640 1.825651e-34 Neutral grassland\n",
"12 104.357556 1.836557e-24 Saltwater\n",
"14 37.244870 1.053444e-09 Supralittoral rock\n",
"8 14.097058 1.739122e-04 Heather\n",
"1 12.680417 3.700235e-04 Coniferous woodland\n",
"9 9.281786 2.316259e-03 Heather grassland\n",
"5 7.220527 7.211058e-03 Calcareous grassland\n",
"10 1.418478 2.336626e-01 Bog\n",
"6 0.976582 3.230512e-01 Acid grassland\n",
"11 0.096023 7.566574e-01 Inland rock"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for dict in df_dicts:\n",
" print(dict['name'])\n",
" display(dict['kbest']['Dataframe'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.13 ('env': venv)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "f025c48a9b67ab76bdc0400dfa0f9ba99120976b4a6ec6a63d1c946516165c91"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}