{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import rioxarray\n", "import json, os\n", "\n", "from sklearn.feature_selection import SelectKBest\n", "from sklearn.feature_selection import chi2, f_classif, mutual_info_classif\n", "from sklearn.metrics import f1_score, classification_report\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.model_selection import train_test_split\n", "\n", "from sklearn.linear_model import LogisticRegression, SGDClassifier\n", "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier, StackingClassifier\n", "\n", "from imblearn.over_sampling import RandomOverSampler, SMOTE" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "seed = 42\n", "verbose = False\n", "details = True" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
210500.0458500.01705230000000...1.708913e+017.608381e+002.782641e+008.605974e+008.541364e+004.872463e+001.886089e+011.385952e+011.371158e+010
995500.0601500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
300500.0618500.01704618000000...1.386673e+011.642136e+001.971480e+007.683126e+008.405563e+007.249522e-013.250140e+003.704372e+003.392229e+000
12500.0338500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
597500.0399500.004000000960...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "210500.0 458500.0 17 0 52 \n", "995500.0 601500.0 0 0 0 \n", "300500.0 618500.0 17 0 46 \n", "12500.0 338500.0 0 0 0 \n", "597500.0 399500.0 0 4 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "210500.0 458500.0 30 0 0 \n", "995500.0 601500.0 0 0 0 \n", "300500.0 618500.0 18 0 0 \n", "12500.0 338500.0 0 0 0 \n", "597500.0 399500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "210500.0 458500.0 0 0 0 0 ... \n", "995500.0 601500.0 0 0 0 0 ... \n", "300500.0 618500.0 0 0 0 0 ... \n", "12500.0 338500.0 0 0 0 0 ... \n", "597500.0 399500.0 0 0 96 0 ... \n", "\n", " Glyphosate Mancozeb Mecoprop-P Metamitron \\\n", "y x \n", "210500.0 458500.0 1.708913e+01 7.608381e+00 2.782641e+00 8.605974e+00 \n", "995500.0 601500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "300500.0 618500.0 1.386673e+01 1.642136e+00 1.971480e+00 7.683126e+00 \n", "12500.0 338500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "597500.0 399500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n", "y x \n", "210500.0 458500.0 8.541364e+00 4.872463e+00 1.886089e+01 \n", "995500.0 601500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "300500.0 618500.0 8.405563e+00 7.249522e-01 3.250140e+00 \n", "12500.0 338500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "597500.0 399500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur Tri-allate Occurrence \n", "y x \n", "210500.0 458500.0 1.385952e+01 1.371158e+01 0 \n", "995500.0 601500.0 -3.400000e+38 -3.400000e+38 0 \n", "300500.0 618500.0 3.704372e+00 3.392229e+00 0 \n", "12500.0 338500.0 -3.400000e+38 -3.400000e+38 0 \n", "597500.0 399500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
221500.0502500.00023000000...1.756213e-021.720418e-034.031708e-03-3.400000e+385.754761e-03-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
794500.060500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
547500.0674500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
228500.0256500.0101080008000...4.691394e-017.202167e-015.701302e-011.139177e+004.138628e-014.975241e-013.603367e-018.818065e-026.709322e-010
904500.096500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "221500.0 502500.0 0 0 2 \n", "794500.0 60500.0 0 0 0 \n", "547500.0 674500.0 0 0 0 \n", "228500.0 256500.0 10 1 0 \n", "904500.0 96500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "221500.0 502500.0 3 0 0 \n", "794500.0 60500.0 0 0 0 \n", "547500.0 674500.0 0 0 0 \n", "228500.0 256500.0 80 0 0 \n", "904500.0 96500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "221500.0 502500.0 0 0 0 0 ... \n", "794500.0 60500.0 0 0 0 0 ... \n", "547500.0 674500.0 0 0 0 0 ... \n", "228500.0 256500.0 8 0 0 0 ... \n", "904500.0 96500.0 0 0 0 0 ... \n", "\n", " Glyphosate Mancozeb Mecoprop-P Metamitron \\\n", "y x \n", "221500.0 502500.0 1.756213e-02 1.720418e-03 4.031708e-03 -3.400000e+38 \n", "794500.0 60500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "547500.0 674500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "228500.0 256500.0 4.691394e-01 7.202167e-01 5.701302e-01 1.139177e+00 \n", "904500.0 96500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n", "y x \n", "221500.0 502500.0 5.754761e-03 -3.400000e+38 -3.400000e+38 \n", "794500.0 60500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "547500.0 674500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "228500.0 256500.0 4.138628e-01 4.975241e-01 3.603367e-01 \n", "904500.0 96500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur Tri-allate Occurrence \n", "y x \n", "221500.0 502500.0 -3.400000e+38 -3.400000e+38 0 \n", "794500.0 60500.0 -3.400000e+38 -3.400000e+38 0 \n", "547500.0 674500.0 -3.400000e+38 -3.400000e+38 0 \n", "228500.0 256500.0 8.818065e-02 6.709322e-01 0 \n", "904500.0 96500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
491500.0463500.08414701100723...2.552632e-014.633016e-021.943011e-01-3.400000e+381.751061e-01-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
415500.012500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
617500.0662500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
832500.0300500.0000000001000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
929500.0459500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "491500.0 463500.0 8 4 1 \n", "415500.0 12500.0 0 0 0 \n", "617500.0 662500.0 0 0 0 \n", "832500.0 300500.0 0 0 0 \n", "929500.0 459500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "491500.0 463500.0 47 0 11 \n", "415500.0 12500.0 0 0 0 \n", "617500.0 662500.0 0 0 0 \n", "832500.0 300500.0 0 0 0 \n", "929500.0 459500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "491500.0 463500.0 0 0 7 23 ... \n", "415500.0 12500.0 0 0 0 0 ... \n", "617500.0 662500.0 0 0 0 0 ... \n", "832500.0 300500.0 0 0 100 0 ... \n", "929500.0 459500.0 0 0 0 0 ... \n", "\n", " Glyphosate Mancozeb Mecoprop-P Metamitron \\\n", "y x \n", "491500.0 463500.0 2.552632e-01 4.633016e-02 1.943011e-01 -3.400000e+38 \n", "415500.0 12500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "617500.0 662500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "832500.0 300500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "929500.0 459500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n", "y x \n", "491500.0 463500.0 1.751061e-01 -3.400000e+38 -3.400000e+38 \n", "415500.0 12500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "617500.0 662500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "832500.0 300500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "929500.0 459500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur Tri-allate Occurrence \n", "y x \n", "491500.0 463500.0 -3.400000e+38 -3.400000e+38 0 \n", "415500.0 12500.0 -3.400000e+38 -3.400000e+38 0 \n", "617500.0 662500.0 -3.400000e+38 -3.400000e+38 0 \n", "832500.0 300500.0 -3.400000e+38 -3.400000e+38 0 \n", "929500.0 459500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
1100500.0388500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
641500.0640500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
421500.0238500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
688500.0183500.009800000020...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
993500.0590500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1100500.0 388500.0 0 0 0 \n", "641500.0 640500.0 0 0 0 \n", "421500.0 238500.0 0 0 0 \n", "688500.0 183500.0 0 98 0 \n", "993500.0 590500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1100500.0 388500.0 0 0 \n", "641500.0 640500.0 0 0 \n", "421500.0 238500.0 0 0 \n", "688500.0 183500.0 0 0 \n", "993500.0 590500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1100500.0 388500.0 0 0 0 0 \n", "641500.0 640500.0 0 0 0 0 \n", "421500.0 238500.0 0 0 0 0 \n", "688500.0 183500.0 0 0 0 2 \n", "993500.0 590500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "1100500.0 388500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "641500.0 640500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "421500.0 238500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "688500.0 183500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "993500.0 590500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "1100500.0 388500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "641500.0 640500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "421500.0 238500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "688500.0 183500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "993500.0 590500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "1100500.0 388500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "641500.0 640500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "421500.0 238500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "688500.0 183500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "993500.0 590500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "1100500.0 388500.0 -3.400000e+38 0 \n", "641500.0 640500.0 -3.400000e+38 0 \n", "421500.0 238500.0 -3.400000e+38 0 \n", "688500.0 183500.0 -3.400000e+38 0 \n", "993500.0 590500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
75500.0319500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
86500.0311500.06001010000...2.716818e-033.315273e-041.605283e-03-3.400000e+381.047427e-03-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1254500.0606500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
274500.0631500.0006530000000...2.496213e+013.442879e+003.434172e+002.874435e+001.414938e+011.705149e+006.048480e+003.643768e+007.355608e+000
471500.0519500.000906000000...1.506880e+011.530977e+015.076050e+009.553390e+001.567872e+011.130232e+011.062081e+017.042382e+001.348234e+010
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "75500.0 319500.0 0 0 0 \n", "86500.0 311500.0 6 0 0 \n", "1254500.0 606500.0 0 0 0 \n", "274500.0 631500.0 0 0 65 \n", "471500.0 519500.0 0 0 90 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "75500.0 319500.0 0 0 \n", "86500.0 311500.0 1 0 \n", "1254500.0 606500.0 0 0 \n", "274500.0 631500.0 30 0 \n", "471500.0 519500.0 6 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "75500.0 319500.0 0 0 0 0 \n", "86500.0 311500.0 1 0 0 0 \n", "1254500.0 606500.0 0 0 0 0 \n", "274500.0 631500.0 0 0 0 0 \n", "471500.0 519500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "75500.0 319500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "86500.0 311500.0 0 ... 2.716818e-03 3.315273e-04 \n", "1254500.0 606500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "274500.0 631500.0 0 ... 2.496213e+01 3.442879e+00 \n", "471500.0 519500.0 0 ... 1.506880e+01 1.530977e+01 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "75500.0 319500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "86500.0 311500.0 1.605283e-03 -3.400000e+38 1.047427e-03 \n", "1254500.0 606500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "274500.0 631500.0 3.434172e+00 2.874435e+00 1.414938e+01 \n", "471500.0 519500.0 5.076050e+00 9.553390e+00 1.567872e+01 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "75500.0 319500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "86500.0 311500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1254500.0 606500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "274500.0 631500.0 1.705149e+00 6.048480e+00 3.643768e+00 \n", "471500.0 519500.0 1.130232e+01 1.062081e+01 7.042382e+00 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "75500.0 319500.0 -3.400000e+38 0 \n", "86500.0 311500.0 -3.400000e+38 0 \n", "1254500.0 606500.0 -3.400000e+38 0 \n", "274500.0 631500.0 7.355608e+00 0 \n", "471500.0 519500.0 1.348234e+01 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
1289500.0146500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1037500.0237500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
327500.0104500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
155500.0486500.00000000000...1.335905e-021.131381e-033.626722e-03-3.400000e+383.725381e-03-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
899500.0209500.060010000083...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1289500.0 146500.0 0 0 0 \n", "1037500.0 237500.0 0 0 0 \n", "327500.0 104500.0 0 0 0 \n", "155500.0 486500.0 0 0 0 \n", "899500.0 209500.0 6 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1289500.0 146500.0 0 0 \n", "1037500.0 237500.0 0 0 \n", "327500.0 104500.0 0 0 \n", "155500.0 486500.0 0 0 \n", "899500.0 209500.0 1 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1289500.0 146500.0 0 0 0 0 \n", "1037500.0 237500.0 0 0 0 0 \n", "327500.0 104500.0 0 0 0 0 \n", "155500.0 486500.0 0 0 0 0 \n", "899500.0 209500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "1289500.0 146500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1037500.0 237500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "327500.0 104500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "155500.0 486500.0 0 ... 1.335905e-02 1.131381e-03 \n", "899500.0 209500.0 83 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "1289500.0 146500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1037500.0 237500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "327500.0 104500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "155500.0 486500.0 3.626722e-03 -3.400000e+38 3.725381e-03 \n", "899500.0 209500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "1289500.0 146500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1037500.0 237500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "327500.0 104500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "155500.0 486500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "899500.0 209500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "1289500.0 146500.0 -3.400000e+38 0 \n", "1037500.0 237500.0 -3.400000e+38 0 \n", "327500.0 104500.0 -3.400000e+38 0 \n", "155500.0 486500.0 -3.400000e+38 0 \n", "899500.0 209500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
922500.0509500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
120500.0410500.020924000000...5.567024e+011.320240e+007.980333e+002.178659e-021.725411e+011.156848e-021.226339e+015.671224e+008.835752e+000
556500.0604500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
788500.0673500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
546500.0662500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "922500.0 509500.0 0 0 0 \n", "120500.0 410500.0 2 0 92 \n", "556500.0 604500.0 0 0 0 \n", "788500.0 673500.0 0 0 0 \n", "546500.0 662500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "922500.0 509500.0 0 0 0 \n", "120500.0 410500.0 4 0 0 \n", "556500.0 604500.0 0 0 0 \n", "788500.0 673500.0 0 0 0 \n", "546500.0 662500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "922500.0 509500.0 0 0 0 0 ... \n", "120500.0 410500.0 0 0 0 0 ... \n", "556500.0 604500.0 0 0 0 0 ... \n", "788500.0 673500.0 0 0 0 0 ... \n", "546500.0 662500.0 0 0 0 0 ... \n", "\n", " Glyphosate Mancozeb Mecoprop-P Metamitron \\\n", "y x \n", "922500.0 509500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "120500.0 410500.0 5.567024e+01 1.320240e+00 7.980333e+00 2.178659e-02 \n", "556500.0 604500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "788500.0 673500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "546500.0 662500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n", "y x \n", "922500.0 509500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "120500.0 410500.0 1.725411e+01 1.156848e-02 1.226339e+01 \n", "556500.0 604500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "788500.0 673500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "546500.0 662500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur Tri-allate Occurrence \n", "y x \n", "922500.0 509500.0 -3.400000e+38 -3.400000e+38 0 \n", "120500.0 410500.0 5.671224e+00 8.835752e+00 0 \n", "556500.0 604500.0 -3.400000e+38 -3.400000e+38 0 \n", "788500.0 673500.0 -3.400000e+38 -3.400000e+38 0 \n", "546500.0 662500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
840500.0675500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
751500.0399500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
641500.0605500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
707500.0578500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
84500.0344500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "840500.0 675500.0 0 0 0 \n", "751500.0 399500.0 0 0 0 \n", "641500.0 605500.0 0 0 0 \n", "707500.0 578500.0 0 0 0 \n", "84500.0 344500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "840500.0 675500.0 0 0 0 \n", "751500.0 399500.0 0 0 0 \n", "641500.0 605500.0 0 0 0 \n", "707500.0 578500.0 0 0 0 \n", "84500.0 344500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "840500.0 675500.0 0 0 0 0 ... \n", "751500.0 399500.0 0 0 0 0 ... \n", "641500.0 605500.0 0 0 0 0 ... \n", "707500.0 578500.0 0 0 0 0 ... \n", "84500.0 344500.0 0 0 0 0 ... \n", "\n", " Glyphosate Mancozeb Mecoprop-P Metamitron \\\n", "y x \n", "840500.0 675500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "751500.0 399500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "641500.0 605500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "707500.0 578500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "84500.0 344500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n", "y x \n", "840500.0 675500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "751500.0 399500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "641500.0 605500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "707500.0 578500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "84500.0 344500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur Tri-allate Occurrence \n", "y x \n", "840500.0 675500.0 -3.400000e+38 -3.400000e+38 0 \n", "751500.0 399500.0 -3.400000e+38 -3.400000e+38 0 \n", "641500.0 605500.0 -3.400000e+38 -3.400000e+38 0 \n", "707500.0 578500.0 -3.400000e+38 -3.400000e+38 0 \n", "84500.0 344500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
1190500.0180500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1062500.0325500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
665500.0648500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
655500.020500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1111500.0482500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1190500.0 180500.0 0 0 0 \n", "1062500.0 325500.0 0 0 0 \n", "665500.0 648500.0 0 0 0 \n", "655500.0 20500.0 0 0 0 \n", "1111500.0 482500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1190500.0 180500.0 0 0 \n", "1062500.0 325500.0 0 0 \n", "665500.0 648500.0 0 0 \n", "655500.0 20500.0 0 0 \n", "1111500.0 482500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1190500.0 180500.0 0 0 0 0 \n", "1062500.0 325500.0 0 0 0 0 \n", "665500.0 648500.0 0 0 0 0 \n", "655500.0 20500.0 0 0 0 0 \n", "1111500.0 482500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "1190500.0 180500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1062500.0 325500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "665500.0 648500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "655500.0 20500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1111500.0 482500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "1190500.0 180500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1062500.0 325500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "665500.0 648500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "655500.0 20500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1111500.0 482500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "1190500.0 180500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1062500.0 325500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "665500.0 648500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "655500.0 20500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1111500.0 482500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "1190500.0 180500.0 -3.400000e+38 0 \n", "1062500.0 325500.0 -3.400000e+38 0 \n", "665500.0 648500.0 -3.400000e+38 0 \n", "655500.0 20500.0 -3.400000e+38 0 \n", "1111500.0 482500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
1050500.0258500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1104500.0335500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
217500.0274500.0000000100000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1020500.0246500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
732500.0439500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1050500.0 258500.0 0 0 0 \n", "1104500.0 335500.0 0 0 0 \n", "217500.0 274500.0 0 0 0 \n", "1020500.0 246500.0 0 0 0 \n", "732500.0 439500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1050500.0 258500.0 0 0 \n", "1104500.0 335500.0 0 0 \n", "217500.0 274500.0 0 0 \n", "1020500.0 246500.0 0 0 \n", "732500.0 439500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1050500.0 258500.0 0 0 0 0 \n", "1104500.0 335500.0 0 0 0 0 \n", "217500.0 274500.0 0 100 0 0 \n", "1020500.0 246500.0 0 0 0 0 \n", "732500.0 439500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "1050500.0 258500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1104500.0 335500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "217500.0 274500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1020500.0 246500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "732500.0 439500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "1050500.0 258500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1104500.0 335500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "217500.0 274500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1020500.0 246500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "732500.0 439500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "1050500.0 258500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1104500.0 335500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "217500.0 274500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1020500.0 246500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "732500.0 439500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "1050500.0 258500.0 -3.400000e+38 0 \n", "1104500.0 335500.0 -3.400000e+38 0 \n", "217500.0 274500.0 -3.400000e+38 0 \n", "1020500.0 246500.0 -3.400000e+38 0 \n", "732500.0 439500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
974500.0405500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
71500.0445500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1222500.0274500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
375500.0469500.01205116000000...1.102861e+011.076760e+001.887839e+007.217796e+007.214385e+006.286643e-016.793458e+005.953130e+004.101244e+000
538500.0354500.0101187000000...4.199960e-017.959555e-025.110549e-01-3.400000e+382.692819e-01-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "974500.0 405500.0 0 0 0 \n", "71500.0 445500.0 0 0 0 \n", "1222500.0 274500.0 0 0 0 \n", "375500.0 469500.0 12 0 51 \n", "538500.0 354500.0 1 0 11 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "974500.0 405500.0 0 0 \n", "71500.0 445500.0 0 0 \n", "1222500.0 274500.0 0 0 \n", "375500.0 469500.0 16 0 \n", "538500.0 354500.0 87 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "974500.0 405500.0 0 0 0 0 \n", "71500.0 445500.0 0 0 0 0 \n", "1222500.0 274500.0 0 0 0 0 \n", "375500.0 469500.0 0 0 0 0 \n", "538500.0 354500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "974500.0 405500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "71500.0 445500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1222500.0 274500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "375500.0 469500.0 0 ... 1.102861e+01 1.076760e+00 \n", "538500.0 354500.0 0 ... 4.199960e-01 7.959555e-02 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "974500.0 405500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "71500.0 445500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1222500.0 274500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "375500.0 469500.0 1.887839e+00 7.217796e+00 7.214385e+00 \n", "538500.0 354500.0 5.110549e-01 -3.400000e+38 2.692819e-01 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "974500.0 405500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "71500.0 445500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1222500.0 274500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "375500.0 469500.0 6.286643e-01 6.793458e+00 5.953130e+00 \n", "538500.0 354500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "974500.0 405500.0 -3.400000e+38 0 \n", "71500.0 445500.0 -3.400000e+38 0 \n", "1222500.0 274500.0 -3.400000e+38 0 \n", "375500.0 469500.0 4.101244e+00 0 \n", "538500.0 354500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
637500.0286500.000061006000...5.183865e-017.056607e-022.228176e-01-3.400000e+381.624027e-01-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
784500.0646500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
103500.0384500.000963000000...5.581972e+011.260713e+006.174690e+00-3.400000e+381.836491e+01-3.400000e+381.129929e+014.079481e+008.705502e+000
207500.0217500.02701621000000...1.724084e-013.704135e-022.476914e-01-3.400000e+381.167010e-01-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1129500.0318500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "637500.0 286500.0 0 0 0 \n", "784500.0 646500.0 0 0 0 \n", "103500.0 384500.0 0 0 96 \n", "207500.0 217500.0 27 0 16 \n", "1129500.0 318500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "637500.0 286500.0 61 0 \n", "784500.0 646500.0 0 0 \n", "103500.0 384500.0 3 0 \n", "207500.0 217500.0 21 0 \n", "1129500.0 318500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "637500.0 286500.0 0 6 0 0 \n", "784500.0 646500.0 0 0 0 0 \n", "103500.0 384500.0 0 0 0 0 \n", "207500.0 217500.0 0 0 0 0 \n", "1129500.0 318500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "637500.0 286500.0 0 ... 5.183865e-01 7.056607e-02 \n", "784500.0 646500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "103500.0 384500.0 0 ... 5.581972e+01 1.260713e+00 \n", "207500.0 217500.0 0 ... 1.724084e-01 3.704135e-02 \n", "1129500.0 318500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "637500.0 286500.0 2.228176e-01 -3.400000e+38 1.624027e-01 \n", "784500.0 646500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "103500.0 384500.0 6.174690e+00 -3.400000e+38 1.836491e+01 \n", "207500.0 217500.0 2.476914e-01 -3.400000e+38 1.167010e-01 \n", "1129500.0 318500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "637500.0 286500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "784500.0 646500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "103500.0 384500.0 -3.400000e+38 1.129929e+01 4.079481e+00 \n", "207500.0 217500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1129500.0 318500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "637500.0 286500.0 -3.400000e+38 0 \n", "784500.0 646500.0 -3.400000e+38 0 \n", "103500.0 384500.0 8.705502e+00 0 \n", "207500.0 217500.0 -3.400000e+38 0 \n", "1129500.0 318500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
281500.0383500.0565819000000...1.063023e+014.160291e+005.357363e+002.858755e+008.222045e+001.255364e+004.379103e+004.502326e+006.157461e+000
757500.0517500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1030500.0136500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1108500.069500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
175500.0410500.000943000000...4.713646e+011.032259e+006.678602e+00-3.400000e+382.027867e+01-3.400000e+382.101815e+017.201351e+001.526736e+010
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "281500.0 383500.0 5 6 58 \n", "757500.0 517500.0 0 0 0 \n", "1030500.0 136500.0 0 0 0 \n", "1108500.0 69500.0 0 0 0 \n", "175500.0 410500.0 0 0 94 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "281500.0 383500.0 19 0 \n", "757500.0 517500.0 0 0 \n", "1030500.0 136500.0 0 0 \n", "1108500.0 69500.0 0 0 \n", "175500.0 410500.0 3 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "281500.0 383500.0 0 0 0 0 \n", "757500.0 517500.0 0 0 0 0 \n", "1030500.0 136500.0 0 0 0 0 \n", "1108500.0 69500.0 0 0 0 0 \n", "175500.0 410500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "281500.0 383500.0 0 ... 1.063023e+01 4.160291e+00 \n", "757500.0 517500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1030500.0 136500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1108500.0 69500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "175500.0 410500.0 0 ... 4.713646e+01 1.032259e+00 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "281500.0 383500.0 5.357363e+00 2.858755e+00 8.222045e+00 \n", "757500.0 517500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1030500.0 136500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1108500.0 69500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "175500.0 410500.0 6.678602e+00 -3.400000e+38 2.027867e+01 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "281500.0 383500.0 1.255364e+00 4.379103e+00 4.502326e+00 \n", "757500.0 517500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1030500.0 136500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1108500.0 69500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "175500.0 410500.0 -3.400000e+38 2.101815e+01 7.201351e+00 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "281500.0 383500.0 6.157461e+00 0 \n", "757500.0 517500.0 -3.400000e+38 0 \n", "1030500.0 136500.0 -3.400000e+38 0 \n", "1108500.0 69500.0 -3.400000e+38 0 \n", "175500.0 410500.0 1.526736e+01 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
284500.0445500.030933000000...2.458500e+011.001419e+004.695138e+00-3.400000e+382.278710e+01-3.400000e+381.749321e+012.188244e+011.407471e+010
779500.0513500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
585500.0307500.0001484000000...4.916749e+002.231230e-013.304013e+00-3.400000e+381.349496e+00-3.400000e+388.603682e-014.481045e-018.959922e-010
817500.0521500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
390500.097500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "284500.0 445500.0 3 0 93 \n", "779500.0 513500.0 0 0 0 \n", "585500.0 307500.0 0 0 14 \n", "817500.0 521500.0 0 0 0 \n", "390500.0 97500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "284500.0 445500.0 3 0 0 \n", "779500.0 513500.0 0 0 0 \n", "585500.0 307500.0 84 0 0 \n", "817500.0 521500.0 0 0 0 \n", "390500.0 97500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "284500.0 445500.0 0 0 0 0 ... \n", "779500.0 513500.0 0 0 0 0 ... \n", "585500.0 307500.0 0 0 0 0 ... \n", "817500.0 521500.0 0 0 0 0 ... \n", "390500.0 97500.0 0 0 0 0 ... \n", "\n", " Glyphosate Mancozeb Mecoprop-P Metamitron \\\n", "y x \n", "284500.0 445500.0 2.458500e+01 1.001419e+00 4.695138e+00 -3.400000e+38 \n", "779500.0 513500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "585500.0 307500.0 4.916749e+00 2.231230e-01 3.304013e+00 -3.400000e+38 \n", "817500.0 521500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "390500.0 97500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n", "y x \n", "284500.0 445500.0 2.278710e+01 -3.400000e+38 1.749321e+01 \n", "779500.0 513500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "585500.0 307500.0 1.349496e+00 -3.400000e+38 8.603682e-01 \n", "817500.0 521500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "390500.0 97500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur Tri-allate Occurrence \n", "y x \n", "284500.0 445500.0 2.188244e+01 1.407471e+01 0 \n", "779500.0 513500.0 -3.400000e+38 -3.400000e+38 0 \n", "585500.0 307500.0 4.481045e-01 8.959922e-01 0 \n", "817500.0 521500.0 -3.400000e+38 -3.400000e+38 0 \n", "390500.0 97500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
1053500.0538500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
261500.0547500.0110131000000...1.289639e-012.276678e-024.382756e-02-3.400000e+384.783259e-02-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
682500.0217500.0876000014010...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1000500.0232500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1159500.0168500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1053500.0 538500.0 0 0 0 \n", "261500.0 547500.0 11 0 1 \n", "682500.0 217500.0 8 76 0 \n", "1000500.0 232500.0 0 0 0 \n", "1159500.0 168500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1053500.0 538500.0 0 0 \n", "261500.0 547500.0 31 0 \n", "682500.0 217500.0 0 0 \n", "1000500.0 232500.0 0 0 \n", "1159500.0 168500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1053500.0 538500.0 0 0 0 0 \n", "261500.0 547500.0 0 0 0 0 \n", "682500.0 217500.0 0 14 0 1 \n", "1000500.0 232500.0 0 0 0 0 \n", "1159500.0 168500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "1053500.0 538500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "261500.0 547500.0 0 ... 1.289639e-01 2.276678e-02 \n", "682500.0 217500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1000500.0 232500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1159500.0 168500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "1053500.0 538500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "261500.0 547500.0 4.382756e-02 -3.400000e+38 4.783259e-02 \n", "682500.0 217500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1000500.0 232500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1159500.0 168500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "1053500.0 538500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "261500.0 547500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "682500.0 217500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1000500.0 232500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1159500.0 168500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "1053500.0 538500.0 -3.400000e+38 0 \n", "261500.0 547500.0 -3.400000e+38 0 \n", "682500.0 217500.0 -3.400000e+38 0 \n", "1000500.0 232500.0 -3.400000e+38 0 \n", "1159500.0 168500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
977500.0416500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
19500.0457500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1069500.090500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
295500.0439500.0304152000000...8.091403e+006.810439e+002.065955e+007.075270e+008.444314e+003.296879e+009.757885e+005.554022e+001.064113e+010
1053500.0480500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "977500.0 416500.0 0 0 0 \n", "19500.0 457500.0 0 0 0 \n", "1069500.0 90500.0 0 0 0 \n", "295500.0 439500.0 3 0 41 \n", "1053500.0 480500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "977500.0 416500.0 0 0 \n", "19500.0 457500.0 0 0 \n", "1069500.0 90500.0 0 0 \n", "295500.0 439500.0 52 0 \n", "1053500.0 480500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "977500.0 416500.0 0 0 0 0 \n", "19500.0 457500.0 0 0 0 0 \n", "1069500.0 90500.0 0 0 0 0 \n", "295500.0 439500.0 0 0 0 0 \n", "1053500.0 480500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "977500.0 416500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "19500.0 457500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1069500.0 90500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "295500.0 439500.0 0 ... 8.091403e+00 6.810439e+00 \n", "1053500.0 480500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "977500.0 416500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "19500.0 457500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1069500.0 90500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "295500.0 439500.0 2.065955e+00 7.075270e+00 8.444314e+00 \n", "1053500.0 480500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "977500.0 416500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "19500.0 457500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1069500.0 90500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "295500.0 439500.0 3.296879e+00 9.757885e+00 5.554022e+00 \n", "1053500.0 480500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "977500.0 416500.0 -3.400000e+38 0 \n", "19500.0 457500.0 -3.400000e+38 0 \n", "1069500.0 90500.0 -3.400000e+38 0 \n", "295500.0 439500.0 1.064113e+01 0 \n", "1053500.0 480500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
150500.048500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
700500.0340500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
142500.0605500.01906514000000...3.535822e+013.623691e+005.856493e+003.066536e+001.098517e+012.224410e+007.717764e+003.820922e+001.059968e+010
230500.0262500.0250069004000...1.922603e-014.330866e-022.704217e-01-3.400000e+381.295823e-01-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
372500.0201500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "150500.0 48500.0 0 0 0 \n", "700500.0 340500.0 0 0 0 \n", "142500.0 605500.0 19 0 65 \n", "230500.0 262500.0 25 0 0 \n", "372500.0 201500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "150500.0 48500.0 0 0 0 \n", "700500.0 340500.0 0 0 0 \n", "142500.0 605500.0 14 0 0 \n", "230500.0 262500.0 69 0 0 \n", "372500.0 201500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "150500.0 48500.0 0 0 0 0 ... \n", "700500.0 340500.0 0 0 0 0 ... \n", "142500.0 605500.0 0 0 0 0 ... \n", "230500.0 262500.0 4 0 0 0 ... \n", "372500.0 201500.0 0 0 0 0 ... \n", "\n", " Glyphosate Mancozeb Mecoprop-P Metamitron \\\n", "y x \n", "150500.0 48500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "700500.0 340500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "142500.0 605500.0 3.535822e+01 3.623691e+00 5.856493e+00 3.066536e+00 \n", "230500.0 262500.0 1.922603e-01 4.330866e-02 2.704217e-01 -3.400000e+38 \n", "372500.0 201500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n", "y x \n", "150500.0 48500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "700500.0 340500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "142500.0 605500.0 1.098517e+01 2.224410e+00 7.717764e+00 \n", "230500.0 262500.0 1.295823e-01 -3.400000e+38 -3.400000e+38 \n", "372500.0 201500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur Tri-allate Occurrence \n", "y x \n", "150500.0 48500.0 -3.400000e+38 -3.400000e+38 0 \n", "700500.0 340500.0 -3.400000e+38 -3.400000e+38 0 \n", "142500.0 605500.0 3.820922e+00 1.059968e+01 0 \n", "230500.0 262500.0 -3.400000e+38 -3.400000e+38 0 \n", "372500.0 201500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
1263500.0503500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1226500.0653500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
217500.0587500.070863000000...3.026467e+011.387858e+017.357382e+001.434486e+011.611069e+011.062018e+011.557524e+013.998450e+001.456761e+010
176500.0502500.0204527000000...1.921509e+016.230546e+002.146786e+006.279777e+001.331602e+014.220648e+001.814787e+014.173172e+001.486834e+010
177500.0116500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1263500.0 503500.0 0 0 0 \n", "1226500.0 653500.0 0 0 0 \n", "217500.0 587500.0 7 0 86 \n", "176500.0 502500.0 2 0 45 \n", "177500.0 116500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1263500.0 503500.0 0 0 \n", "1226500.0 653500.0 0 0 \n", "217500.0 587500.0 3 0 \n", "176500.0 502500.0 27 0 \n", "177500.0 116500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1263500.0 503500.0 0 0 0 0 \n", "1226500.0 653500.0 0 0 0 0 \n", "217500.0 587500.0 0 0 0 0 \n", "176500.0 502500.0 0 0 0 0 \n", "177500.0 116500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "1263500.0 503500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1226500.0 653500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "217500.0 587500.0 0 ... 3.026467e+01 1.387858e+01 \n", "176500.0 502500.0 0 ... 1.921509e+01 6.230546e+00 \n", "177500.0 116500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "1263500.0 503500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1226500.0 653500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "217500.0 587500.0 7.357382e+00 1.434486e+01 1.611069e+01 \n", "176500.0 502500.0 2.146786e+00 6.279777e+00 1.331602e+01 \n", "177500.0 116500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "1263500.0 503500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1226500.0 653500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "217500.0 587500.0 1.062018e+01 1.557524e+01 3.998450e+00 \n", "176500.0 502500.0 4.220648e+00 1.814787e+01 4.173172e+00 \n", "177500.0 116500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "1263500.0 503500.0 -3.400000e+38 0 \n", "1226500.0 653500.0 -3.400000e+38 0 \n", "217500.0 587500.0 1.456761e+01 0 \n", "176500.0 502500.0 1.486834e+01 0 \n", "177500.0 116500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
659500.0356500.0000000001000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
682500.0186500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
840500.0247500.0610039000000...7.728302e-021.611009e-026.161585e-02-3.400000e+383.239392e-02-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1055500.069500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
88500.0439500.0205441000000...2.206366e+017.950239e+002.559340e+003.304436e+001.104135e+013.432077e+006.372918e+001.880297e+004.242424e+000
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "659500.0 356500.0 0 0 0 \n", "682500.0 186500.0 0 0 0 \n", "840500.0 247500.0 61 0 0 \n", "1055500.0 69500.0 0 0 0 \n", "88500.0 439500.0 2 0 54 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "659500.0 356500.0 0 0 \n", "682500.0 186500.0 0 0 \n", "840500.0 247500.0 39 0 \n", "1055500.0 69500.0 0 0 \n", "88500.0 439500.0 41 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "659500.0 356500.0 0 0 0 100 \n", "682500.0 186500.0 0 0 0 0 \n", "840500.0 247500.0 0 0 0 0 \n", "1055500.0 69500.0 0 0 0 0 \n", "88500.0 439500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "659500.0 356500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "682500.0 186500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "840500.0 247500.0 0 ... 7.728302e-02 1.611009e-02 \n", "1055500.0 69500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "88500.0 439500.0 0 ... 2.206366e+01 7.950239e+00 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "659500.0 356500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "682500.0 186500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "840500.0 247500.0 6.161585e-02 -3.400000e+38 3.239392e-02 \n", "1055500.0 69500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "88500.0 439500.0 2.559340e+00 3.304436e+00 1.104135e+01 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "659500.0 356500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "682500.0 186500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "840500.0 247500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1055500.0 69500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "88500.0 439500.0 3.432077e+00 6.372918e+00 1.880297e+00 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "659500.0 356500.0 -3.400000e+38 0 \n", "682500.0 186500.0 -3.400000e+38 0 \n", "840500.0 247500.0 -3.400000e+38 0 \n", "1055500.0 69500.0 -3.400000e+38 0 \n", "88500.0 439500.0 4.242424e+00 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
202500.0235500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
857500.0471500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
963500.0192500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
49500.0143500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
884500.021500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "202500.0 235500.0 0 0 0 \n", "857500.0 471500.0 0 0 0 \n", "963500.0 192500.0 0 0 0 \n", "49500.0 143500.0 0 0 0 \n", "884500.0 21500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "202500.0 235500.0 0 0 0 \n", "857500.0 471500.0 0 0 0 \n", "963500.0 192500.0 0 0 0 \n", "49500.0 143500.0 0 0 0 \n", "884500.0 21500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "202500.0 235500.0 0 0 0 0 ... \n", "857500.0 471500.0 0 0 0 0 ... \n", "963500.0 192500.0 0 0 0 0 ... \n", "49500.0 143500.0 0 0 0 0 ... \n", "884500.0 21500.0 0 0 0 0 ... \n", "\n", " Glyphosate Mancozeb Mecoprop-P Metamitron \\\n", "y x \n", "202500.0 235500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "857500.0 471500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "963500.0 192500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "49500.0 143500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "884500.0 21500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n", "y x \n", "202500.0 235500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "857500.0 471500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "963500.0 192500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "49500.0 143500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "884500.0 21500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur Tri-allate Occurrence \n", "y x \n", "202500.0 235500.0 -3.400000e+38 -3.400000e+38 0 \n", "857500.0 471500.0 -3.400000e+38 -3.400000e+38 0 \n", "963500.0 192500.0 -3.400000e+38 -3.400000e+38 0 \n", "49500.0 143500.0 -3.400000e+38 -3.400000e+38 0 \n", "884500.0 21500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "INVASIVE_BIRDS_PATH = 'Datasets/Machine Learning/1km Rasters/Birds'\n", "# Use this if using coordinates as separate columns\n", "# df_1km = pd.read_csv('Datasets/Machine Learning/Dataframes/1km_All_Birds_DF.csv')\n", "\n", "# Use this if using coordinates as indices\n", "df_1km = pd.read_csv('Datasets/Machine Learning/Dataframes/1km_All_Birds_DF.csv', index_col=[0,1])\n", "\n", "total_birds = (df_1km['Occurrence']==1).sum()\n", "df_dicts = []\n", "\n", "for file in os.listdir(INVASIVE_BIRDS_PATH):\n", " filename = os.fsdecode(file)\n", " if not filename.endswith('.tif') or filename.endswith('All_Invasive_Birds_1km.tif') :\n", " continue\n", "\n", "\n", "\n", " bird_name = filename[:-4].replace('_', ' ')\n", "\n", " bird_dataset = rioxarray.open_rasterio(f'{INVASIVE_BIRDS_PATH}/{file}')\n", " bird_dataset.name = 'data'\n", " bird_df = bird_dataset.squeeze().drop(\"spatial_ref\").drop(\"band\").to_dataframe()\n", "\n", " # Check if index matches\n", " if not df_1km.index.equals(bird_df.index):\n", " print('Warning: Index does not match')\n", " continue\n", "\n", " bird_df['Occurrence'] = [0 if x == -1 else 1 for x in bird_df['data']]\n", " bird_df = df_1km.drop(columns='Occurrence').join(bird_df.drop(columns='data'))\n", " \n", " bird_dict = {'name' : bird_name, 'dataframe' : bird_df }\n", " df_dicts.append(bird_dict)\n", " display(bird_df.sample(5))\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 1km data before drop: \n", " Occurrence\n", "0 909231\n", "1 769\n", "dtype: int64 \n", "\n", "Barnacle Goose 1km data after drop: \n", " Occurrence\n", "0 32315\n", "1 769\n", "dtype: int64 \n", "\n", "Canada Goose 1km data before drop: \n", " Occurrence\n", "0 899853\n", "1 10147\n", "dtype: int64 \n", "\n", "Canada Goose 1km data after drop: \n", " Occurrence\n", "0 22937\n", "1 10147\n", "dtype: int64 \n", "\n", "Egyptian Goose 1km data before drop: \n", " Occurrence\n", "0 909137\n", "1 863\n", "dtype: int64 \n", "\n", "Egyptian Goose 1km data after drop: \n", " Occurrence\n", "0 32221\n", "1 863\n", "dtype: int64 \n", "\n", "Gadwall 1km data before drop: \n", " Occurrence\n", "0 907795\n", "1 2205\n", "dtype: int64 \n", "\n", "Gadwall 1km data after drop: \n", " Occurrence\n", "0 30879\n", "1 2205\n", "dtype: int64 \n", "\n", "Goshawk 1km data before drop: \n", " Occurrence\n", "0 909554\n", "1 446\n", "dtype: int64 \n", "\n", "Goshawk 1km data after drop: \n", " Occurrence\n", "0 32638\n", "1 446\n", "dtype: int64 \n", "\n", "Grey Partridge 1km data before drop: \n", " Occurrence\n", "0 907877\n", "1 2123\n", "dtype: int64 \n", "\n", "Grey Partridge 1km data after drop: \n", " Occurrence\n", "0 30961\n", "1 2123\n", "dtype: int64 \n", "\n", "Indian Peafowl 1km data before drop: \n", " Occurrence\n", "0 909706\n", "1 294\n", "dtype: int64 \n", "\n", "Indian Peafowl 1km data after drop: \n", " Occurrence\n", "0 32790\n", "1 294\n", "dtype: int64 \n", "\n", "Little Owl 1km data before drop: \n", " Occurrence\n", "0 906452\n", "1 3548\n", "dtype: int64 \n", "\n", "Little Owl 1km data after drop: \n", " Occurrence\n", "0 29536\n", "1 3548\n", "dtype: int64 \n", "\n", "Mandarin Duck 1km data before drop: \n", " Occurrence\n", "0 908990\n", "1 1010\n", "dtype: int64 \n", "\n", "Mandarin Duck 1km data after drop: \n", " Occurrence\n", "0 32074\n", "1 1010\n", "dtype: int64 \n", "\n", "Mute Swan 1km data before drop: \n", " Occurrence\n", "0 890876\n", "1 19124\n", "dtype: int64 \n", "\n", "Mute Swan 1km data after drop: \n", " Occurrence\n", "1 19124\n", "0 13960\n", "dtype: int64 \n", "\n", "Pheasant 1km data before drop: \n", " Occurrence\n", "0 904145\n", "1 5855\n", "dtype: int64 \n", "\n", "Pheasant 1km data after drop: \n", " Occurrence\n", "0 27229\n", "1 5855\n", "dtype: int64 \n", "\n", "Pink-footed Goose 1km data before drop: \n", " Occurrence\n", "0 907354\n", "1 2646\n", "dtype: int64 \n", "\n", "Pink-footed Goose 1km data after drop: \n", " Occurrence\n", "0 30438\n", "1 2646\n", "dtype: int64 \n", "\n", "Pintail 1km data before drop: \n", " Occurrence\n", "0 909303\n", "1 697\n", "dtype: int64 \n", "\n", "Pintail 1km data after drop: \n", " Occurrence\n", "0 32387\n", "1 697\n", "dtype: int64 \n", "\n", "Pochard 1km data before drop: \n", " Occurrence\n", "0 908943\n", "1 1057\n", "dtype: int64 \n", "\n", "Pochard 1km data after drop: \n", " Occurrence\n", "0 32027\n", "1 1057\n", "dtype: int64 \n", "\n", "Red-legged Partridge 1km data before drop: \n", " Occurrence\n", "0 907047\n", "1 2953\n", "dtype: int64 \n", "\n", "Red-legged Partridge 1km data after drop: \n", " Occurrence\n", "0 30131\n", "1 2953\n", "dtype: int64 \n", "\n", "Ring-necked Parakeet 1km data before drop: \n", " Occurrence\n", "0 909496\n", "1 504\n", "dtype: int64 \n", "\n", "Ring-necked Parakeet 1km data after drop: \n", " Occurrence\n", "0 32580\n", "1 504\n", "dtype: int64 \n", "\n", "Rock Dove 1km data before drop: \n", " Occurrence\n", "0 906081\n", "1 3919\n", "dtype: int64 \n", "\n", "Rock Dove 1km data after drop: \n", " Occurrence\n", "0 29165\n", "1 3919\n", "dtype: int64 \n", "\n", "Ruddy Duck 1km data before drop: \n", " Occurrence\n", "0 909876\n", "1 124\n", "dtype: int64 \n", "\n", "Ruddy Duck 1km data after drop: \n", " Occurrence\n", "0 32960\n", "1 124\n", "dtype: int64 \n", "\n", "Whooper Swan 1km data before drop: \n", " Occurrence\n", "0 909045\n", "1 955\n", "dtype: int64 \n", "\n", "Whooper Swan 1km data after drop: \n", " Occurrence\n", "0 32129\n", "1 955\n", "dtype: int64 \n", "\n", "Wigeon 1km data before drop: \n", " Occurrence\n", "0 907683\n", "1 2317\n", "dtype: int64 \n", "\n", "Wigeon 1km data after drop: \n", " Occurrence\n", "0 30767\n", "1 2317\n", "dtype: int64 \n", "\n" ] } ], "source": [ "# Data Cleaning\n", "np.random.seed(seed=seed)\n", "\n", "for dict in df_dicts:\n", " cur_df = dict[\"dataframe\"]\n", " cur_df_name = dict[\"name\"]\n", "\n", " print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n", " \n", " no_occurences = cur_df[cur_df['Occurrence']==0].index \n", " sample_size = sum(cur_df['Occurrence']==0) - total_birds + sum(cur_df['Occurrence']==1)\n", " random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n", " dict[\"dataframe\"] = cur_df.drop(random_indices)\n", " \n", " print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')\n", "\n", "\n", "# for dict in df_dicts:\n", "# cur_df = dict[\"dataframe\"]\n", "# cur_df_name = dict[\"name\"]\n", "\n", "# print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n", " \n", "# no_occurences = cur_df[cur_df['Occurrence']==0].index\n", "# sample_size = sum(cur_df['Occurrence']==0) - sum(cur_df['Occurrence']==1)\n", "# random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n", "# dict[\"dataframe\"] = cur_df.drop(random_indices)\n", " \n", "# print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# Standardisation\n", "def standardise(X):\n", " scaler = StandardScaler()\n", " X_scaled = scaler.fit_transform(X)\n", "\n", " # Add headers back\n", " X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)\n", "\n", " # Revert 'Surface type' back to non-standardised column as it is a categorical feature\n", " X_scaled_df['Surface type'] = X['Surface type'].values\n", " return X_scaled_df" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# Feature Selection\n", "\n", "# Check if any columns have NaN in them\n", "# nan_columns = []\n", "# for column in X_scaled_df:\n", "# if X_scaled_df[column].isnull().values.any():\n", "# nan_columns.append(column)\n", "# print(nan_columns if len(nan_columns)!= 0 else 'None')\n", "\n", "\n", "# Using ANOVA F-Score as a feature selection method\n", "def feature_select(X, y):\n", " k_nums = [10, 15, 20, 25, 30, 35]\n", " kbest_dict = {}\n", " for num in k_nums:\n", " # Needs to be 1d array, y.values.ravel() converts y into a 1d array\n", " best_X = SelectKBest(f_classif, k=num).fit(X, y.values.ravel())\n", " # kbest_dict[str(num)] = best_X.get_feature_names_out().tolist()\n", " kbest_dict[str(num)] = best_X\n", " # kbest_dict['40'] = list(X.columns)\n", "\n", " best_X = SelectKBest(f_classif, k='all').fit(X, y.values.ravel())\n", "\n", " feat_scores = pd.DataFrame()\n", " feat_scores[\"F Score\"] = best_X.scores_\n", " feat_scores[\"P Value\"] = best_X.pvalues_\n", " feat_scores[\"Attribute\"] = X.columns\n", " kbest_dict['Dataframe'] = feat_scores.sort_values([\"F Score\", \"P Value\"], ascending=[False, False])\n", "\n", "\n", " if details:\n", " print(f'K-Best Features Dataframe: \\n{kbest_dict[\"Dataframe\"]} \\n')\n", " # print(json.dumps(kbest_dict, indent=4))\n", " return kbest_dict" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# Resample (upsample) minority data\n", "# for dict in df_dicts:\n", "# if sum(dict['dataframe']['Occurence']==1) > sum(dict['dataframe']['Occurence']==0):\n", "# continue\n", "\n", "# from sklearn.utils import resample\n", "\n", "# def upsample(X, y):\n", "# X_1 = X[y['Occurrence'] == 1] # Getting positive occurrences (minority)\n", "# X_0 = X[y['Occurrence'] == 0] # Getting negative occurrences (majority)\n", " \n", "# X_1_upsampled = resample(X_1 ,random_state=seed,n_samples=total_birds/2,replace=True)\n", "\n", "\n", "# print(f'Resampling: \\n {y.value_counts()} \\n')\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "def oversample(X_train, y_train):\n", " over = RandomOverSampler(sampling_strategy='minority', random_state=seed)\n", " smote = SMOTE(random_state=seed, sampling_strategy='minority')\n", " X_smote, y_smote = smote.fit_resample(X_train, y_train)\n", " \n", " if details:\n", " print(f'Resampled Value Counts: \\n {y_smote.value_counts()} \\n')\n", "\n", " return X_smote, y_smote" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NameOccurrence CountPercentage
9Mute Swan 1km191240.578044
1Canada Goose 1km101470.306704
10Pheasant 1km58550.176974
16Rock Dove 1km39190.118456
7Little Owl 1km35480.107242
14Red-legged Partridge 1km29530.089258
11Pink-footed Goose 1km26460.079978
19Wigeon 1km23170.070034
3Gadwall 1km22050.066649
5Grey Partridge 1km21230.064170
13Pochard 1km10570.031949
8Mandarin Duck 1km10100.030528
18Whooper Swan 1km9550.028866
2Egyptian Goose 1km8630.026085
0Barnacle Goose 1km7690.023244
12Pintail 1km6970.021068
15Ring-necked Parakeet 1km5040.015234
4Goshawk 1km4460.013481
6Indian Peafowl 1km2940.008886
17Ruddy Duck 1km1240.003748
\n", "
" ], "text/plain": [ " Name Occurrence Count Percentage\n", "9 Mute Swan 1km 19124 0.578044\n", "1 Canada Goose 1km 10147 0.306704\n", "10 Pheasant 1km 5855 0.176974\n", "16 Rock Dove 1km 3919 0.118456\n", "7 Little Owl 1km 3548 0.107242\n", "14 Red-legged Partridge 1km 2953 0.089258\n", "11 Pink-footed Goose 1km 2646 0.079978\n", "19 Wigeon 1km 2317 0.070034\n", "3 Gadwall 1km 2205 0.066649\n", "5 Grey Partridge 1km 2123 0.064170\n", "13 Pochard 1km 1057 0.031949\n", "8 Mandarin Duck 1km 1010 0.030528\n", "18 Whooper Swan 1km 955 0.028866\n", "2 Egyptian Goose 1km 863 0.026085\n", "0 Barnacle Goose 1km 769 0.023244\n", "12 Pintail 1km 697 0.021068\n", "15 Ring-necked Parakeet 1km 504 0.015234\n", "4 Goshawk 1km 446 0.013481\n", "6 Indian Peafowl 1km 294 0.008886\n", "17 Ruddy Duck 1km 124 0.003748" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "All_bird_occurrences = pd.DataFrame([(dict['name'],sum(dict['dataframe']['Occurrence'] == 1)) for dict in df_dicts], columns=['Name', 'Occurrence Count'])\n", "All_bird_occurrences['Percentage'] = All_bird_occurrences['Occurrence Count']/total_birds\n", "\n", "All_bird_occurrences.sort_values('Occurrence Count', ascending=False)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Training with Barnacle Goose 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "25 1586.660696 0.000000e+00 Inflowing drainage direction\n", "29 1579.799646 0.000000e+00 Chlorothalonil\n", "30 1579.799646 0.000000e+00 Glyphosate\n", "31 1579.799646 0.000000e+00 Mancozeb\n", "32 1579.799646 0.000000e+00 Mecoprop-P\n", "34 1579.799646 0.000000e+00 Pendimethalin\n", "18 1440.939379 1.143607e-308 Saltmarsh\n", "23 1417.879628 7.271005e-304 Surface type\n", "22 1269.611405 6.667737e-273 Cumulative catchment area\n", "24 1223.198053 3.502336e-263 Outflowing drainage direction\n", "21 1203.742558 4.196966e-259 Elevation\n", "17 1078.608288 8.174358e-233 Littoral sediment\n", "13 978.472706 1.050650e-211 Freshwater\n", "15 853.811730 2.457887e-185 Supralittoral sediment\n", "3 816.914586 1.639367e-177 Improve grassland\n", "38 682.011193 7.904841e-149 Tri-allate\n", "37 676.149377 1.402808e-147 Sulphur\n", "36 673.575429 4.960887e-147 Prosulfocarb\n", "26 605.329133 1.806036e-132 Fertiliser K\n", "27 605.329133 1.806036e-132 Fertiliser N\n", "28 605.329133 1.806036e-132 Fertiliser P\n", "35 504.754899 5.949135e-111 PropamocarbHydrochloride\n", "33 472.954811 3.918041e-104 Metamitron\n", "16 416.369272 5.554940e-92 Littoral rock\n", "7 360.657263 5.403022e-80 Fen\n", "0 243.378276 1.130191e-54 Deciduous woodland\n", "2 223.631247 2.134039e-50 Arable\n", "19 168.960021 1.551633e-38 Urban\n", "20 156.098247 9.703696e-36 Suburban\n", "14 88.036607 6.821306e-21 Supralittoral rock\n", "9 70.504247 4.773365e-17 Heather grassland\n", "4 52.091677 5.410742e-13 Neutral grassland\n", "12 28.131255 1.140877e-07 Saltwater\n", "10 10.593482 1.136010e-03 Bog\n", "6 3.881727 4.882264e-02 Acid grassland\n", "8 1.726979 1.888063e-01 Heather\n", "11 1.309928 2.524160e-01 Inland rock\n", "1 1.193636 2.746053e-01 Coniferous woodland\n", "5 0.275406 5.997316e-01 Calcareous grassland \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 24236\n", "1 24236\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9857919446503582,\n", " \"recall\": 0.9876222304740686,\n", " \"f1-score\": 0.9867062387930501,\n", " \"support\": 8079\n", " },\n", " \"1\": {\n", " \"precision\": 0.4350282485875706,\n", " \"recall\": 0.4010416666666667,\n", " \"f1-score\": 0.41734417344173447,\n", " \"support\": 192\n", " },\n", " \"accuracy\": 0.9740055616007738,\n", " \"macro avg\": {\n", " \"precision\": 0.7104100966189644,\n", " \"recall\": 0.6943319485703676,\n", " \"f1-score\": 0.7020252061173923,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9730067155796226,\n", " \"recall\": 0.9740055616007738,\n", " \"f1-score\": 0.9734892739100308,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Barnacle Goose 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9841054706752095,\n", " \"recall\": 0.9886124520361431,\n", " \"f1-score\": 0.9863538129052178,\n", " \"support\": 8079\n", " },\n", " \"1\": {\n", " \"precision\": 0.4064516129032258,\n", " \"recall\": 0.328125,\n", " \"f1-score\": 0.3631123919308357,\n", " \"support\": 192\n", " },\n", " \"accuracy\": 0.9732801354128884,\n", " \"macro avg\": {\n", " \"precision\": 0.6952785417892177,\n", " \"recall\": 0.6583687260180715,\n", " \"f1-score\": 0.6747331024180268,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9706960231244635,\n", " \"recall\": 0.9732801354128884,\n", " \"f1-score\": 0.971886112164427,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Canada Goose 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "29 31307.822741 0.000000e+00 Chlorothalonil\n", "30 31307.822741 0.000000e+00 Glyphosate\n", "31 31307.822741 0.000000e+00 Mancozeb\n", "32 31307.822741 0.000000e+00 Mecoprop-P\n", "34 31307.822741 0.000000e+00 Pendimethalin\n", "23 27980.651957 0.000000e+00 Surface type\n", "26 27539.757586 0.000000e+00 Fertiliser K\n", "27 27539.757586 0.000000e+00 Fertiliser N\n", "28 27539.757586 0.000000e+00 Fertiliser P\n", "24 22192.853532 0.000000e+00 Outflowing drainage direction\n", "25 21798.073867 0.000000e+00 Inflowing drainage direction\n", "21 20557.269520 0.000000e+00 Elevation\n", "37 14416.271856 0.000000e+00 Sulphur\n", "36 14379.008562 0.000000e+00 Prosulfocarb\n", "38 14239.510204 0.000000e+00 Tri-allate\n", "22 10467.973712 0.000000e+00 Cumulative catchment area\n", "35 10058.930524 0.000000e+00 PropamocarbHydrochloride\n", "33 9820.800013 0.000000e+00 Metamitron\n", "3 9373.992389 0.000000e+00 Improve grassland\n", "20 6200.682674 0.000000e+00 Suburban\n", "0 4606.437967 0.000000e+00 Deciduous woodland\n", "2 4435.557422 0.000000e+00 Arable\n", "19 2407.892997 0.000000e+00 Urban\n", "13 1994.218535 0.000000e+00 Freshwater\n", "4 591.947491 1.305021e-129 Neutral grassland\n", "18 389.095029 4.077898e-86 Saltmarsh\n", "7 240.538301 4.654537e-54 Fen\n", "17 162.207343 4.555336e-37 Littoral sediment\n", "5 56.217105 6.651725e-14 Calcareous grassland\n", "15 54.988572 1.241339e-13 Supralittoral sediment\n", "12 49.209521 2.344481e-12 Saltwater\n", "1 18.689323 1.542908e-05 Coniferous woodland\n", "10 16.182904 5.763851e-05 Bog\n", "11 13.004010 3.112817e-04 Inland rock\n", "9 10.057049 1.519046e-03 Heather grassland\n", "16 3.194359 7.390188e-02 Littoral rock\n", "14 1.831655 1.759414e-01 Supralittoral rock\n", "8 1.564030 2.110850e-01 Heather\n", "6 1.341571 2.467655e-01 Acid grassland \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 17232\n", "1 17232\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Canada Goose 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9475095785440613,\n", " \"recall\": 0.8669588080631025,\n", " \"f1-score\": 0.9054462242562928,\n", " \"support\": 5705\n", " },\n", " \"1\": {\n", " \"precision\": 0.7512291052114061,\n", " \"recall\": 0.8932190179267342,\n", " \"f1-score\": 0.8160940003560618,\n", " \"support\": 2566\n", " },\n", " \"accuracy\": 0.8751057913190666,\n", " \"macro avg\": {\n", " \"precision\": 0.8493693418777337,\n", " \"recall\": 0.8800889129949183,\n", " \"f1-score\": 0.8607701123061773,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8866154067907553,\n", " \"recall\": 0.8751057913190666,\n", " \"f1-score\": 0.8777255367302389,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Canada Goose 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8952180028129395,\n", " \"recall\": 0.8925503943908852,\n", " \"f1-score\": 0.8938822083735627,\n", " \"support\": 5705\n", " },\n", " \"1\": {\n", " \"precision\": 0.7626790553619822,\n", " \"recall\": 0.7677318784099766,\n", " \"f1-score\": 0.7651971256554672,\n", " \"support\": 2566\n", " },\n", " \"accuracy\": 0.8538266231410954,\n", " \"macro avg\": {\n", " \"precision\": 0.8289485290874609,\n", " \"recall\": 0.830141136400431,\n", " \"f1-score\": 0.829539667014515,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8540990402740498,\n", " \"recall\": 0.8538266231410954,\n", " \"f1-score\": 0.8539588711405034,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Egyptian Goose 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "26 4833.620741 0.000000e+00 Fertiliser K\n", "27 4833.620741 0.000000e+00 Fertiliser N\n", "28 4833.620741 0.000000e+00 Fertiliser P\n", "22 4398.345684 0.000000e+00 Cumulative catchment area\n", "13 3391.728526 0.000000e+00 Freshwater\n", "29 3198.335134 0.000000e+00 Chlorothalonil\n", "30 3198.335134 0.000000e+00 Glyphosate\n", "31 3198.335134 0.000000e+00 Mancozeb\n", "32 3198.335134 0.000000e+00 Mecoprop-P\n", "34 3198.335134 0.000000e+00 Pendimethalin\n", "24 2769.983626 0.000000e+00 Outflowing drainage direction\n", "19 2688.563744 0.000000e+00 Urban\n", "23 2448.189595 0.000000e+00 Surface type\n", "36 2166.345317 0.000000e+00 Prosulfocarb\n", "37 2164.465187 0.000000e+00 Sulphur\n", "38 2130.679135 0.000000e+00 Tri-allate\n", "33 1913.836423 0.000000e+00 Metamitron\n", "25 1867.181758 0.000000e+00 Inflowing drainage direction\n", "35 1851.637936 0.000000e+00 PropamocarbHydrochloride\n", "20 1608.119655 0.000000e+00 Suburban\n", "21 1508.446202 1.037538e-322 Elevation\n", "3 1160.254219 5.600729e-250 Improve grassland\n", "0 1025.549798 1.228685e-221 Deciduous woodland\n", "7 631.476180 4.722469e-138 Fen\n", "2 600.148490 2.308798e-131 Arable\n", "18 214.961650 1.613752e-48 Saltmarsh\n", "4 66.795470 3.118157e-16 Neutral grassland\n", "6 24.532078 7.344270e-07 Acid grassland\n", "9 16.103881 6.009295e-05 Heather grassland\n", "10 10.942250 9.409617e-04 Bog\n", "8 6.460287 1.103570e-02 Heather\n", "15 6.121062 1.336303e-02 Supralittoral sediment\n", "17 4.658208 3.091261e-02 Littoral sediment\n", "5 3.654048 5.594175e-02 Calcareous grassland\n", "11 3.305391 6.906195e-02 Inland rock\n", "16 3.051750 8.065946e-02 Littoral rock\n", "12 0.870474 3.508309e-01 Saltwater\n", "14 0.756741 3.843565e-01 Supralittoral rock\n", "1 0.003547 9.525091e-01 Coniferous woodland \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 24140\n", "1 24140\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Egyptian Goose 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9874953571870744,\n", " \"recall\": 0.9870065585942334,\n", " \"f1-score\": 0.9872508973882905,\n", " \"support\": 8081\n", " },\n", " \"1\": {\n", " \"precision\": 0.4587628865979381,\n", " \"recall\": 0.46842105263157896,\n", " \"f1-score\": 0.46354166666666663,\n", " \"support\": 190\n", " },\n", " \"accuracy\": 0.9750937008826018,\n", " \"macro avg\": {\n", " \"precision\": 0.7231291218925062,\n", " \"recall\": 0.7277138056129062,\n", " \"f1-score\": 0.7253962820274786,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9753494051363023,\n", " \"recall\": 0.9750937008826018,\n", " \"f1-score\": 0.9752203383462028,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Egyptian Goose 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9858199753390875,\n", " \"recall\": 0.9893577527533721,\n", " \"f1-score\": 0.987585695756902,\n", " \"support\": 8081\n", " },\n", " \"1\": {\n", " \"precision\": 0.4658385093167702,\n", " \"recall\": 0.39473684210526316,\n", " \"f1-score\": 0.4273504273504274,\n", " \"support\": 190\n", " },\n", " \"accuracy\": 0.9756982227058397,\n", " \"macro avg\": {\n", " \"precision\": 0.7258292423279289,\n", " \"recall\": 0.6920472974293177,\n", " \"f1-score\": 0.7074680615536647,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9738750498712794,\n", " \"recall\": 0.9756982227058397,\n", " \"f1-score\": 0.974716066812732,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Gadwall 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "26 8495.245130 0.000000e+00 Fertiliser K\n", "27 8495.245130 0.000000e+00 Fertiliser N\n", "28 8495.245130 0.000000e+00 Fertiliser P\n", "29 7138.523124 0.000000e+00 Chlorothalonil\n", "30 7138.523124 0.000000e+00 Glyphosate\n", "31 7138.523124 0.000000e+00 Mancozeb\n", "32 7138.523124 0.000000e+00 Mecoprop-P\n", "34 7138.523124 0.000000e+00 Pendimethalin\n", "37 6747.511680 0.000000e+00 Sulphur\n", "36 6716.673071 0.000000e+00 Prosulfocarb\n", "38 6693.525002 0.000000e+00 Tri-allate\n", "35 5956.455748 0.000000e+00 PropamocarbHydrochloride\n", "33 5952.405449 0.000000e+00 Metamitron\n", "24 5605.884628 0.000000e+00 Outflowing drainage direction\n", "22 5421.221412 0.000000e+00 Cumulative catchment area\n", "23 5337.742415 0.000000e+00 Surface type\n", "25 4250.868883 0.000000e+00 Inflowing drainage direction\n", "13 3657.950458 0.000000e+00 Freshwater\n", "21 3513.520144 0.000000e+00 Elevation\n", "2 2555.774940 0.000000e+00 Arable\n", "3 2162.540101 0.000000e+00 Improve grassland\n", "20 1871.462238 0.000000e+00 Suburban\n", "0 1487.487019 2.357158e-318 Deciduous woodland\n", "19 1271.177886 3.134320e-273 Urban\n", "18 947.217815 4.200123e-205 Saltmarsh\n", "7 892.320809 1.714432e-193 Fen\n", "4 739.334890 4.953129e-161 Neutral grassland\n", "17 160.826029 9.095729e-37 Littoral sediment\n", "15 130.604141 3.443944e-30 Supralittoral sediment\n", "6 45.799690 1.331664e-11 Acid grassland\n", "12 32.280187 1.345866e-08 Saltwater\n", "9 29.120347 6.848560e-08 Heather grassland\n", "10 21.703699 3.194143e-06 Bog\n", "8 17.560026 2.791009e-05 Heather\n", "11 7.808204 5.203950e-03 Inland rock\n", "1 7.188161 7.342254e-03 Coniferous woodland\n", "14 1.781952 1.819190e-01 Supralittoral rock\n", "5 0.735834 3.910048e-01 Calcareous grassland\n", "16 0.097151 7.552781e-01 Littoral rock \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 23153\n", "1 23153\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Gadwall 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.961431812452735,\n", " \"recall\": 0.9873155578565881,\n", " \"f1-score\": 0.9742017879948913,\n", " \"support\": 7726\n", " },\n", " \"1\": {\n", " \"precision\": 0.7091988130563798,\n", " \"recall\": 0.43853211009174314,\n", " \"f1-score\": 0.5419501133786848,\n", " \"support\": 545\n", " },\n", " \"accuracy\": 0.9511546366823842,\n", " \"macro avg\": {\n", " \"precision\": 0.8353153127545574,\n", " \"recall\": 0.7129238339741656,\n", " \"f1-score\": 0.758075950686788,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9448114540110697,\n", " \"recall\": 0.9511546366823842,\n", " \"f1-score\": 0.945719480817303,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Gadwall 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9636247606892151,\n", " \"recall\": 0.977219777375097,\n", " \"f1-score\": 0.9703746545851809,\n", " \"support\": 7726\n", " },\n", " \"1\": {\n", " \"precision\": 0.5963302752293578,\n", " \"recall\": 0.47706422018348627,\n", " \"f1-score\": 0.5300713557594292,\n", " \"support\": 545\n", " },\n", " \"accuracy\": 0.9442630878974732,\n", " \"macro avg\": {\n", " \"precision\": 0.7799775179592865,\n", " \"recall\": 0.7271419987792916,\n", " \"f1-score\": 0.7502230051723051,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9394226696995377,\n", " \"recall\": 0.9442630878974732,\n", " \"f1-score\": 0.94136180270995,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Goshawk 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "23 1228.008833 3.437230e-264 Surface type\n", "21 1131.658994 5.687958e-244 Elevation\n", "29 1110.016642 2.016393e-239 Chlorothalonil\n", "30 1110.016642 2.016393e-239 Glyphosate\n", "31 1110.016642 2.016393e-239 Mancozeb\n", "32 1110.016642 2.016393e-239 Mecoprop-P\n", "34 1110.016642 2.016393e-239 Pendimethalin\n", "24 1068.037277 1.373575e-230 Outflowing drainage direction\n", "22 1044.933301 1.009602e-225 Cumulative catchment area\n", "25 919.889067 2.517246e-199 Inflowing drainage direction\n", "0 809.818171 5.254241e-176 Deciduous woodland\n", "3 684.780108 2.032079e-149 Improve grassland\n", "1 397.809147 5.441281e-88 Coniferous woodland\n", "38 378.743353 6.890413e-84 Tri-allate\n", "37 375.216071 3.958707e-83 Sulphur\n", "36 366.309524 3.275528e-81 Prosulfocarb\n", "6 362.459808 2.209967e-80 Acid grassland\n", "35 245.243731 4.460776e-55 PropamocarbHydrochloride\n", "26 234.255491 1.066866e-52 Fertiliser K\n", "27 234.255491 1.066866e-52 Fertiliser N\n", "28 234.255491 1.066866e-52 Fertiliser P\n", "33 226.160901 6.042257e-51 Metamitron\n", "2 87.757391 7.852555e-21 Arable\n", "20 79.803707 4.343909e-19 Suburban\n", "8 45.558282 1.506066e-11 Heather\n", "5 16.053837 6.170139e-05 Calcareous grassland\n", "13 15.723043 7.347960e-05 Freshwater\n", "18 8.693071 3.196452e-03 Saltmarsh\n", "7 4.213295 4.011621e-02 Fen\n", "10 3.293395 6.956812e-02 Bog\n", "14 1.492644 2.218154e-01 Supralittoral rock\n", "19 1.235707 2.663082e-01 Urban\n", "9 0.653081 4.190191e-01 Heather grassland\n", "11 0.416397 5.187449e-01 Inland rock\n", "12 0.222689 6.370020e-01 Saltwater\n", "15 0.046972 8.284207e-01 Supralittoral sediment\n", "4 0.041436 8.386999e-01 Neutral grassland\n", "17 0.032689 8.565239e-01 Littoral sediment\n", "16 0.002739 9.582594e-01 Littoral rock \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 24473\n", "1 24473\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Goshawk 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9871717293961031,\n", " \"recall\": 0.9990202082057563,\n", " \"f1-score\": 0.9930606281957634,\n", " \"support\": 8165\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 106\n", " },\n", " \"accuracy\": 0.9862169024301777,\n", " \"macro avg\": {\n", " \"precision\": 0.49358586469805155,\n", " \"recall\": 0.49951010410287816,\n", " \"f1-score\": 0.4965303140978817,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9745202720975918,\n", " \"recall\": 0.9862169024301777,\n", " \"f1-score\": 0.9803336995790604,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Goshawk 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9879444715051144,\n", " \"recall\": 0.9936313533374158,\n", " \"f1-score\": 0.9907797520913476,\n", " \"support\": 8165\n", " },\n", " \"1\": {\n", " \"precision\": 0.11864406779661017,\n", " \"recall\": 0.0660377358490566,\n", " \"f1-score\": 0.08484848484848484,\n", " \"support\": 106\n", " },\n", " \"accuracy\": 0.9817434409382179,\n", " \"macro avg\": {\n", " \"precision\": 0.5532942696508623,\n", " \"recall\": 0.5298345445932362,\n", " \"f1-score\": 0.5378141184699162,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9768036369273002,\n", " \"recall\": 0.9817434409382179,\n", " \"f1-score\": 0.9791694613976294,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Grey Partridge 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "26 8765.050569 0.000000e+00 Fertiliser K\n", "27 8765.050569 0.000000e+00 Fertiliser N\n", "28 8765.050569 0.000000e+00 Fertiliser P\n", "37 8712.410120 0.000000e+00 Sulphur\n", "36 8711.451485 0.000000e+00 Prosulfocarb\n", "38 8703.792647 0.000000e+00 Tri-allate\n", "2 8141.700589 0.000000e+00 Arable\n", "32 7660.609011 0.000000e+00 Mecoprop-P\n", "29 7659.048939 0.000000e+00 Chlorothalonil\n", "30 7659.048939 0.000000e+00 Glyphosate\n", "31 7659.048939 0.000000e+00 Mancozeb\n", "34 7659.048939 0.000000e+00 Pendimethalin\n", "35 7405.435155 0.000000e+00 PropamocarbHydrochloride\n", "33 7361.522264 0.000000e+00 Metamitron\n", "23 5901.470556 0.000000e+00 Surface type\n", "24 4800.409421 0.000000e+00 Outflowing drainage direction\n", "22 4601.906150 0.000000e+00 Cumulative catchment area\n", "25 4463.973740 0.000000e+00 Inflowing drainage direction\n", "21 4389.262340 0.000000e+00 Elevation\n", "3 2126.495399 0.000000e+00 Improve grassland\n", "0 901.238763 2.221379e-195 Deciduous woodland\n", "20 518.009891 8.599298e-114 Suburban\n", "5 327.045266 9.488789e-73 Calcareous grassland\n", "4 319.849011 3.384407e-71 Neutral grassland\n", "19 98.781469 3.039441e-23 Urban\n", "15 42.304272 7.923464e-11 Supralittoral sediment\n", "18 42.065170 8.952540e-11 Saltmarsh\n", "13 27.868120 1.306903e-07 Freshwater\n", "7 18.302932 1.889456e-05 Fen\n", "17 6.233018 1.254381e-02 Littoral sediment\n", "1 5.215300 2.239529e-02 Coniferous woodland\n", "11 4.740881 2.946103e-02 Inland rock\n", "14 4.021946 4.491999e-02 Supralittoral rock\n", "8 3.136113 7.658531e-02 Heather\n", "6 2.392910 1.218961e-01 Acid grassland\n", "12 0.249330 6.175506e-01 Saltwater\n", "10 0.120851 7.281160e-01 Bog\n", "9 0.012848 9.097560e-01 Heather grassland\n", "16 0.000036 9.952257e-01 Littoral rock \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 23218\n", "1 23218\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Grey Partridge 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9373253977893842,\n", " \"recall\": 0.9966421283740152,\n", " \"f1-score\": 0.9660741111667501,\n", " \"support\": 7743\n", " },\n", " \"1\": {\n", " \"precision\": 0.3157894736842105,\n", " \"recall\": 0.022727272727272728,\n", " \"f1-score\": 0.04240282685512368,\n", " \"support\": 528\n", " },\n", " \"accuracy\": 0.9344698343610204,\n", " \"macro avg\": {\n", " \"precision\": 0.6265574357367973,\n", " \"recall\": 0.509684700550644,\n", " \"f1-score\": 0.5042384690109369,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.89764809541633,\n", " \"recall\": 0.9344698343610204,\n", " \"f1-score\": 0.9071092413666608,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Grey Partridge 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9493670886075949,\n", " \"recall\": 0.9686168151879117,\n", " \"f1-score\": 0.9588953525538579,\n", " \"support\": 7743\n", " },\n", " \"1\": {\n", " \"precision\": 0.3450134770889488,\n", " \"recall\": 0.24242424242424243,\n", " \"f1-score\": 0.28476084538375973,\n", " \"support\": 528\n", " },\n", " \"accuracy\": 0.9222584935316165,\n", " \"macro avg\": {\n", " \"precision\": 0.6471902828482718,\n", " \"recall\": 0.605520528806077,\n", " \"f1-score\": 0.6218280989688089,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9107866621921862,\n", " \"recall\": 0.9222584935316165,\n", " \"f1-score\": 0.9158602878959191,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Indian Peafowl 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "26 1472.657485 2.862598e-315 Fertiliser K\n", "27 1472.657485 2.862598e-315 Fertiliser N\n", "28 1472.657485 2.862598e-315 Fertiliser P\n", "36 1175.153234 4.174421e-253 Prosulfocarb\n", "37 1172.615821 1.422851e-252 Sulphur\n", "38 1166.318796 2.985253e-251 Tri-allate\n", "29 1150.513144 6.221230e-248 Chlorothalonil\n", "30 1150.513144 6.221230e-248 Glyphosate\n", "31 1150.513144 6.221230e-248 Mancozeb\n", "32 1150.513144 6.221230e-248 Mecoprop-P\n", "34 1150.513144 6.221230e-248 Pendimethalin\n", "35 993.549316 6.904766e-215 PropamocarbHydrochloride\n", "33 989.712520 4.455187e-214 Metamitron\n", "23 826.341713 1.639780e-179 Surface type\n", "22 773.116357 3.264405e-168 Cumulative catchment area\n", "24 694.651908 1.603430e-151 Outflowing drainage direction\n", "2 636.396656 4.208646e-139 Arable\n", "25 618.098698 3.386540e-135 Inflowing drainage direction\n", "21 581.270648 2.497700e-127 Elevation\n", "3 579.289817 6.621914e-127 Improve grassland\n", "0 557.985251 2.382356e-122 Deciduous woodland\n", "20 341.361921 7.768283e-76 Suburban\n", "4 31.037453 2.550632e-08 Neutral grassland\n", "19 28.479423 9.532196e-08 Urban\n", "5 19.591241 9.621430e-06 Calcareous grassland\n", "7 11.127497 8.515085e-04 Fen\n", "13 9.872829 1.678853e-03 Freshwater\n", "6 4.975747 2.571178e-02 Acid grassland\n", "10 3.521124 6.060014e-02 Bog\n", "1 2.674323 1.019882e-01 Coniferous woodland\n", "9 2.267492 1.321231e-01 Heather grassland\n", "8 1.470891 2.252138e-01 Heather\n", "11 0.730498 3.927281e-01 Inland rock\n", "12 0.717725 3.968973e-01 Saltwater\n", "15 0.509339 4.754303e-01 Supralittoral sediment\n", "18 0.335080 5.626872e-01 Saltmarsh\n", "14 0.132251 7.161121e-01 Supralittoral rock\n", "17 0.099303 7.526692e-01 Littoral sediment\n", "16 0.034266 8.531431e-01 Littoral rock \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 24594\n", "1 24594\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Indian Peafowl 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.990921195981116,\n", " \"recall\": 0.9987798926305514,\n", " \"f1-score\": 0.9948350246095886,\n", " \"support\": 8196\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 75\n", " },\n", " \"accuracy\": 0.9897231290049571,\n", " \"macro avg\": {\n", " \"precision\": 0.495460597990558,\n", " \"recall\": 0.4993899463152757,\n", " \"f1-score\": 0.4974175123047943,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9819356936599235,\n", " \"recall\": 0.9897231290049571,\n", " \"f1-score\": 0.9858140323661212,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Indian Peafowl 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9912684938151831,\n", " \"recall\": 0.9973157637872133,\n", " \"f1-score\": 0.9942829339496412,\n", " \"support\": 8196\n", " },\n", " \"1\": {\n", " \"precision\": 0.12,\n", " \"recall\": 0.04,\n", " \"f1-score\": 0.05999999999999999,\n", " \"support\": 75\n", " },\n", " \"accuracy\": 0.988634989723129,\n", " \"macro avg\": {\n", " \"precision\": 0.5556342469075916,\n", " \"recall\": 0.5186578818936066,\n", " \"f1-score\": 0.5271414669748206,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9833679815390207,\n", " \"recall\": 0.988634989723129,\n", " \"f1-score\": 0.9858110176098729,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Little Owl 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "26 19475.045822 0.000000e+00 Fertiliser K\n", "27 19475.045822 0.000000e+00 Fertiliser N\n", "28 19475.045822 0.000000e+00 Fertiliser P\n", "36 14464.783437 0.000000e+00 Prosulfocarb\n", "37 14463.764574 0.000000e+00 Sulphur\n", "38 14420.985632 0.000000e+00 Tri-allate\n", "32 13365.596356 0.000000e+00 Mecoprop-P\n", "29 13362.750579 0.000000e+00 Chlorothalonil\n", "30 13362.750579 0.000000e+00 Glyphosate\n", "31 13362.750579 0.000000e+00 Mancozeb\n", "34 13362.750579 0.000000e+00 Pendimethalin\n", "33 11175.998989 0.000000e+00 Metamitron\n", "35 11122.139446 0.000000e+00 PropamocarbHydrochloride\n", "23 9941.994917 0.000000e+00 Surface type\n", "2 9462.794504 0.000000e+00 Arable\n", "24 8442.661824 0.000000e+00 Outflowing drainage direction\n", "22 7788.899641 0.000000e+00 Cumulative catchment area\n", "25 7508.970331 0.000000e+00 Inflowing drainage direction\n", "21 6742.553493 0.000000e+00 Elevation\n", "3 4944.473615 0.000000e+00 Improve grassland\n", "20 2250.993774 0.000000e+00 Suburban\n", "0 1224.086080 2.281664e-263 Deciduous woodland\n", "4 630.020519 9.656906e-138 Neutral grassland\n", "5 439.830706 5.052213e-97 Calcareous grassland\n", "19 344.014425 2.082536e-76 Urban\n", "13 191.220766 2.273330e-43 Freshwater\n", "7 143.222650 6.146287e-33 Fen\n", "18 59.796551 1.081619e-14 Saltmarsh\n", "6 42.200831 8.353273e-11 Acid grassland\n", "1 34.080188 5.338007e-09 Coniferous woodland\n", "10 30.463089 3.428286e-08 Bog\n", "8 26.647155 2.456208e-07 Heather\n", "9 19.056362 1.272986e-05 Heather grassland\n", "15 16.754547 4.264108e-05 Supralittoral sediment\n", "16 7.372175 6.627513e-03 Littoral rock\n", "11 7.137556 7.552295e-03 Inland rock\n", "14 5.890295 1.522985e-02 Supralittoral rock\n", "12 0.157614 6.913651e-01 Saltwater\n", "17 0.095097 7.577967e-01 Littoral sediment \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 22143\n", "1 22143\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Little Owl 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9410580021482277,\n", " \"recall\": 0.9480589747058028,\n", " \"f1-score\": 0.944545515800822,\n", " \"support\": 7393\n", " },\n", " \"1\": {\n", " \"precision\": 0.5334143377885784,\n", " \"recall\": 0.5,\n", " \"f1-score\": 0.516166960611405,\n", " \"support\": 878\n", " },\n", " \"accuracy\": 0.9004957078950551,\n", " \"macro avg\": {\n", " \"precision\": 0.737236169968403,\n", " \"recall\": 0.7240294873529014,\n", " \"f1-score\": 0.7303562382061135,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8977849834917445,\n", " \"recall\": 0.9004957078950551,\n", " \"f1-score\": 0.89907140487635,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Little Owl 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.939565627950897,\n", " \"recall\": 0.9421073988908427,\n", " \"f1-score\": 0.9408347967040389,\n", " \"support\": 7393\n", " },\n", " \"1\": {\n", " \"precision\": 0.5011655011655012,\n", " \"recall\": 0.489749430523918,\n", " \"f1-score\": 0.4953917050691244,\n", " \"support\": 878\n", " },\n", " \"accuracy\": 0.8940877765687342,\n", " \"macro avg\": {\n", " \"precision\": 0.7203655645581991,\n", " \"recall\": 0.7159284147073803,\n", " \"f1-score\": 0.7181132508865816,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8930276867929261,\n", " \"recall\": 0.8940877765687342,\n", " \"f1-score\": 0.8935492164289265,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Mandarin Duck 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "26 4982.270656 0.000000e+00 Fertiliser K\n", "27 4982.270656 0.000000e+00 Fertiliser N\n", "28 4982.270656 0.000000e+00 Fertiliser P\n", "29 3746.947882 0.000000e+00 Chlorothalonil\n", "30 3746.947882 0.000000e+00 Glyphosate\n", "31 3746.947882 0.000000e+00 Mancozeb\n", "32 3746.947882 0.000000e+00 Mecoprop-P\n", "34 3746.947882 0.000000e+00 Pendimethalin\n", "22 3559.780952 0.000000e+00 Cumulative catchment area\n", "0 3525.975295 0.000000e+00 Deciduous woodland\n", "24 2973.634105 0.000000e+00 Outflowing drainage direction\n", "23 2900.268149 0.000000e+00 Surface type\n", "3 2556.207049 0.000000e+00 Improve grassland\n", "37 2345.273531 0.000000e+00 Sulphur\n", "36 2339.229953 0.000000e+00 Prosulfocarb\n", "38 2322.533150 0.000000e+00 Tri-allate\n", "25 2139.256963 0.000000e+00 Inflowing drainage direction\n", "21 2040.599063 0.000000e+00 Elevation\n", "20 1659.981195 0.000000e+00 Suburban\n", "35 1618.553741 0.000000e+00 PropamocarbHydrochloride\n", "33 1589.076229 0.000000e+00 Metamitron\n", "13 792.705495 2.254877e-172 Freshwater\n", "19 434.160164 8.347169e-96 Urban\n", "2 322.317750 9.929157e-72 Arable\n", "4 289.027410 1.523840e-64 Neutral grassland\n", "5 86.986582 1.158292e-20 Calcareous grassland\n", "1 43.617236 4.053481e-11 Coniferous woodland\n", "7 30.454378 3.443701e-08 Fen\n", "9 12.680495 3.700080e-04 Heather grassland\n", "10 11.170154 8.321583e-04 Bog\n", "6 4.774378 2.889326e-02 Acid grassland\n", "16 3.468317 6.256379e-02 Littoral rock\n", "14 3.191997 7.400873e-02 Supralittoral rock\n", "17 3.080693 7.923601e-02 Littoral sediment\n", "12 2.603302 1.066509e-01 Saltwater\n", "11 2.290784 1.301538e-01 Inland rock\n", "15 1.408976 2.352351e-01 Supralittoral sediment\n", "8 0.023329 8.786052e-01 Heather\n", "18 0.004613 9.458479e-01 Saltmarsh \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 24029\n", "1 24029\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Mandarin Duck 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9780353874313605,\n", " \"recall\": 0.9962709757613425,\n", " \"f1-score\": 0.9870689655172414,\n", " \"support\": 8045\n", " },\n", " \"1\": {\n", " \"precision\": 0.6052631578947368,\n", " \"recall\": 0.20353982300884957,\n", " \"f1-score\": 0.30463576158940403,\n", " \"support\": 226\n", " },\n", " \"accuracy\": 0.9746100834240116,\n", " \"macro avg\": {\n", " \"precision\": 0.7916492726630486,\n", " \"recall\": 0.599905399385096,\n", " \"f1-score\": 0.6458523635533228,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9678496149884545,\n", " \"recall\": 0.9746100834240116,\n", " \"f1-score\": 0.9684218969538644,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Mandarin Duck 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9797247480953551,\n", " \"recall\": 0.9910503418272218,\n", " \"f1-score\": 0.9853550021627634,\n", " \"support\": 8045\n", " },\n", " \"1\": {\n", " \"precision\": 0.45864661654135336,\n", " \"recall\": 0.26991150442477874,\n", " \"f1-score\": 0.3398328690807799,\n", " \"support\": 226\n", " },\n", " \"accuracy\": 0.9713456655785274,\n", " \"macro avg\": {\n", " \"precision\": 0.7191856823183542,\n", " \"recall\": 0.6304809231260002,\n", " \"f1-score\": 0.6625939356217716,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9654866078787907,\n", " \"recall\": 0.9713456655785274,\n", " \"f1-score\": 0.9677165059619983,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Mute Swan 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "30 43676.953726 0.000000e+00 Glyphosate\n", "34 43676.953726 0.000000e+00 Pendimethalin\n", "29 43659.642747 0.000000e+00 Chlorothalonil\n", "31 43642.342398 0.000000e+00 Mancozeb\n", "32 43625.052671 0.000000e+00 Mecoprop-P\n", "23 41778.683149 0.000000e+00 Surface type\n", "25 37707.864005 0.000000e+00 Inflowing drainage direction\n", "21 32149.803935 0.000000e+00 Elevation\n", "24 24629.730532 0.000000e+00 Outflowing drainage direction\n", "26 19640.235987 0.000000e+00 Fertiliser K\n", "27 19640.235987 0.000000e+00 Fertiliser N\n", "28 19640.235987 0.000000e+00 Fertiliser P\n", "37 14704.076106 0.000000e+00 Sulphur\n", "36 14617.037623 0.000000e+00 Prosulfocarb\n", "38 14559.360173 0.000000e+00 Tri-allate\n", "35 9242.027887 0.000000e+00 PropamocarbHydrochloride\n", "33 8916.083195 0.000000e+00 Metamitron\n", "22 7714.991172 0.000000e+00 Cumulative catchment area\n", "3 6922.429433 0.000000e+00 Improve grassland\n", "20 5556.769597 0.000000e+00 Suburban\n", "2 4548.309043 0.000000e+00 Arable\n", "0 3188.833827 0.000000e+00 Deciduous woodland\n", "19 2126.916337 0.000000e+00 Urban\n", "13 1261.094423 4.042871e-271 Freshwater\n", "4 710.989883 5.323266e-155 Neutral grassland\n", "17 350.947774 6.674534e-78 Littoral sediment\n", "6 274.300533 2.317521e-61 Acid grassland\n", "18 258.697255 5.478710e-58 Saltmarsh\n", "7 204.439981 3.082649e-46 Fen\n", "15 138.876035 5.432921e-32 Supralittoral sediment\n", "10 122.310053 2.214177e-28 Bog\n", "12 113.202400 2.149655e-26 Saltwater\n", "8 103.816162 2.411588e-24 Heather\n", "9 88.379538 5.738193e-21 Heather grassland\n", "16 66.697722 3.276343e-16 Littoral rock\n", "11 49.312998 2.224191e-12 Inland rock\n", "1 44.669892 2.369145e-11 Coniferous woodland\n", "14 29.331059 6.143449e-08 Supralittoral rock\n", "5 8.698519 3.186914e-03 Calcareous grassland \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 14291\n", "1 14291\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Mute Swan 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9197844007609385,\n", " \"recall\": 0.8438045375218151,\n", " \"f1-score\": 0.8801577669902911,\n", " \"support\": 3438\n", " },\n", " \"1\": {\n", " \"precision\": 0.8950556966972836,\n", " \"recall\": 0.9476515621767019,\n", " \"f1-score\": 0.9206030150753769,\n", " \"support\": 4833\n", " },\n", " \"accuracy\": 0.9044855519284246,\n", " \"macro avg\": {\n", " \"precision\": 0.9074200487291111,\n", " \"recall\": 0.8957280498492585,\n", " \"f1-score\": 0.9003803910328341,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9053346574723827,\n", " \"recall\": 0.9044855519284246,\n", " \"f1-score\": 0.9037911709311953,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Mute Swan 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8887548990051252,\n", " \"recall\": 0.8574752763234439,\n", " \"f1-score\": 0.8728349370836418,\n", " \"support\": 3438\n", " },\n", " \"1\": {\n", " \"precision\": 0.901090028259992,\n", " \"recall\": 0.9236499068901304,\n", " \"f1-score\": 0.9122305098600184,\n", " \"support\": 4833\n", " },\n", " \"accuracy\": 0.8961431507677428,\n", " \"macro avg\": {\n", " \"precision\": 0.8949224636325586,\n", " \"recall\": 0.8905625916067872,\n", " \"f1-score\": 0.8925327234718301,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8959626948809286,\n", " \"recall\": 0.8961431507677428,\n", " \"f1-score\": 0.8958549834176073,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Pheasant 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "31 16151.612969 0.000000e+00 Mancozeb\n", "32 16151.612969 0.000000e+00 Mecoprop-P\n", "29 16147.891932 0.000000e+00 Chlorothalonil\n", "30 16147.891932 0.000000e+00 Glyphosate\n", "34 16147.891932 0.000000e+00 Pendimethalin\n", "23 14828.439300 0.000000e+00 Surface type\n", "26 13583.366928 0.000000e+00 Fertiliser K\n", "27 13583.366928 0.000000e+00 Fertiliser N\n", "28 13583.366928 0.000000e+00 Fertiliser P\n", "24 12411.664397 0.000000e+00 Outflowing drainage direction\n", "21 11511.436305 0.000000e+00 Elevation\n", "25 11025.748971 0.000000e+00 Inflowing drainage direction\n", "37 10813.051867 0.000000e+00 Sulphur\n", "36 10803.090695 0.000000e+00 Prosulfocarb\n", "38 10762.210355 0.000000e+00 Tri-allate\n", "22 9363.861895 0.000000e+00 Cumulative catchment area\n", "35 7504.726180 0.000000e+00 PropamocarbHydrochloride\n", "33 7356.605139 0.000000e+00 Metamitron\n", "3 6889.758402 0.000000e+00 Improve grassland\n", "2 5020.115469 0.000000e+00 Arable\n", "0 3497.652887 0.000000e+00 Deciduous woodland\n", "20 1872.691498 0.000000e+00 Suburban\n", "5 415.858475 7.152889e-92 Calcareous grassland\n", "4 355.069398 8.637276e-79 Neutral grassland\n", "1 235.243263 6.519726e-53 Coniferous woodland\n", "19 219.109454 2.036749e-49 Urban\n", "6 141.740399 1.292165e-32 Acid grassland\n", "13 137.784819 9.390379e-32 Freshwater\n", "8 88.397878 5.685377e-21 Heather\n", "7 57.673169 3.176391e-14 Fen\n", "10 33.154847 8.585587e-09 Bog\n", "18 21.413945 3.714720e-06 Saltmarsh\n", "15 13.123056 2.921201e-04 Supralittoral sediment\n", "11 5.451389 1.955872e-02 Inland rock\n", "9 4.362221 3.675199e-02 Heather grassland\n", "16 2.751696 9.716078e-02 Littoral rock\n", "12 0.202376 6.528125e-01 Saltwater\n", "17 0.146886 7.015312e-01 Littoral sediment\n", "14 0.077339 7.809384e-01 Supralittoral rock \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 20410\n", "1 20410\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pheasant 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9195280592951142,\n", " \"recall\": 0.8914796891039742,\n", " \"f1-score\": 0.9052866716306776,\n", " \"support\": 6819\n", " },\n", " \"1\": {\n", " \"precision\": 0.5542168674698795,\n", " \"recall\": 0.6336088154269972,\n", " \"f1-score\": 0.5912596401028278,\n", " \"support\": 1452\n", " },\n", " \"accuracy\": 0.8462096481682989,\n", " \"macro avg\": {\n", " \"precision\": 0.7368724633824968,\n", " \"recall\": 0.7625442522654857,\n", " \"f1-score\": 0.7482731558667527,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8553965334179239,\n", " \"recall\": 0.8462096481682989,\n", " \"f1-score\": 0.8501582409961185,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Pheasant 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8843537414965986,\n", " \"recall\": 0.9150901891772987,\n", " \"f1-score\": 0.8994594594594594,\n", " \"support\": 6819\n", " },\n", " \"1\": {\n", " \"precision\": 0.5234567901234568,\n", " \"recall\": 0.4380165289256198,\n", " \"f1-score\": 0.47694038245219345,\n", " \"support\": 1452\n", " },\n", " \"accuracy\": 0.8313384113166485,\n", " \"macro avg\": {\n", " \"precision\": 0.7039052658100278,\n", " \"recall\": 0.6765533590514592,\n", " \"f1-score\": 0.6881999209558264,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8209971493803125,\n", " \"recall\": 0.8313384113166485,\n", " \"f1-score\": 0.8252849098506394,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Pink-footed Goose 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "29 7036.747030 0.000000e+00 Chlorothalonil\n", "30 7036.747030 0.000000e+00 Glyphosate\n", "31 7036.747030 0.000000e+00 Mancozeb\n", "32 7036.747030 0.000000e+00 Mecoprop-P\n", "34 7036.747030 0.000000e+00 Pendimethalin\n", "25 5823.246006 0.000000e+00 Inflowing drainage direction\n", "23 5796.329675 0.000000e+00 Surface type\n", "37 5571.993565 0.000000e+00 Sulphur\n", "36 5543.722242 0.000000e+00 Prosulfocarb\n", "38 5512.222341 0.000000e+00 Tri-allate\n", "21 4750.062797 0.000000e+00 Elevation\n", "35 4557.628130 0.000000e+00 PropamocarbHydrochloride\n", "24 4416.411546 0.000000e+00 Outflowing drainage direction\n", "33 4315.390457 0.000000e+00 Metamitron\n", "22 4111.240745 0.000000e+00 Cumulative catchment area\n", "2 4027.385455 0.000000e+00 Arable\n", "17 1680.756257 0.000000e+00 Littoral sediment\n", "3 1578.759585 0.000000e+00 Improve grassland\n", "18 1503.642898 1.032597e-321 Saltmarsh\n", "20 1109.115857 3.118895e-239 Suburban\n", "0 1064.014160 9.660098e-230 Deciduous woodland\n", "26 924.852644 2.244918e-200 Fertiliser K\n", "27 924.852644 2.244918e-200 Fertiliser N\n", "28 924.852644 2.244918e-200 Fertiliser P\n", "15 852.335728 5.051033e-185 Supralittoral sediment\n", "19 449.450750 4.341152e-99 Urban\n", "13 441.183451 2.587866e-97 Freshwater\n", "16 329.374467 2.984579e-73 Littoral rock\n", "7 117.207897 2.872142e-27 Fen\n", "12 55.275652 1.072913e-13 Saltwater\n", "4 50.484241 1.225518e-12 Neutral grassland\n", "1 7.481350 6.237451e-03 Coniferous woodland\n", "6 3.024752 8.201214e-02 Acid grassland\n", "14 2.001253 1.571786e-01 Supralittoral rock\n", "8 1.379174 2.402504e-01 Heather\n", "11 1.198463 2.736371e-01 Inland rock\n", "10 0.051515 8.204487e-01 Bog\n", "5 0.022436 8.809347e-01 Calcareous grassland\n", "9 0.002302 9.617297e-01 Heather grassland \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 22823\n", "1 22823\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pink-footed Goose 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9526175009552923,\n", " \"recall\": 0.9821405121470781,\n", " \"f1-score\": 0.9671537566274409,\n", " \"support\": 7615\n", " },\n", " \"1\": {\n", " \"precision\": 0.6761904761904762,\n", " \"recall\": 0.4329268292682927,\n", " \"f1-score\": 0.5278810408921933,\n", " \"support\": 656\n", " },\n", " \"accuracy\": 0.9385805827590376,\n", " \"macro avg\": {\n", " \"precision\": 0.8144039885728842,\n", " \"recall\": 0.7075336707076854,\n", " \"f1-score\": 0.7475173987598172,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9306931715820944,\n", " \"recall\": 0.9385805827590376,\n", " \"f1-score\": 0.932313604103886,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Pink-footed Goose 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9577043206663196,\n", " \"recall\": 0.9663821405121471,\n", " \"f1-score\": 0.9620236616772339,\n", " \"support\": 7615\n", " },\n", " \"1\": {\n", " \"precision\": 0.5638841567291312,\n", " \"recall\": 0.5045731707317073,\n", " \"f1-score\": 0.5325824617860015,\n", " \"support\": 656\n", " },\n", " \"accuracy\": 0.9297545641397654,\n", " \"macro avg\": {\n", " \"precision\": 0.7607942386977253,\n", " \"recall\": 0.7354776556219271,\n", " \"f1-score\": 0.7473030617316176,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9264691583470359,\n", " \"recall\": 0.9297545641397654,\n", " \"f1-score\": 0.9279632787575569,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Pintail 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "29 1342.972285 3.070953e-288 Chlorothalonil\n", "30 1342.972285 3.070953e-288 Glyphosate\n", "31 1342.972285 3.070953e-288 Mancozeb\n", "32 1342.972285 3.070953e-288 Mecoprop-P\n", "34 1342.972285 3.070953e-288 Pendimethalin\n", "25 1325.168183 1.608067e-284 Inflowing drainage direction\n", "23 1169.840995 5.439990e-252 Surface type\n", "36 1152.405110 2.491814e-248 Prosulfocarb\n", "37 1150.598093 5.970826e-248 Sulphur\n", "38 1144.636386 1.067303e-246 Tri-allate\n", "26 1092.499220 9.754959e-236 Fertiliser K\n", "27 1092.499220 9.754959e-236 Fertiliser N\n", "28 1092.499220 9.754959e-236 Fertiliser P\n", "21 987.248175 1.475675e-213 Elevation\n", "33 964.658121 8.682894e-209 Metamitron\n", "35 958.762685 1.527456e-207 PropamocarbHydrochloride\n", "24 832.260391 9.109264e-181 Outflowing drainage direction\n", "18 829.398253 3.685447e-180 Saltmarsh\n", "22 760.526243 1.546155e-165 Cumulative catchment area\n", "2 723.168873 1.361610e-157 Arable\n", "17 700.432781 9.417029e-153 Littoral sediment\n", "3 435.362823 4.604501e-96 Improve grassland\n", "20 333.610377 3.643021e-74 Suburban\n", "19 306.416036 2.680625e-68 Urban\n", "0 244.336169 7.011810e-55 Deciduous woodland\n", "4 241.540306 2.824742e-54 Neutral grassland\n", "7 156.617233 7.482770e-36 Fen\n", "15 129.030277 7.586888e-30 Supralittoral sediment\n", "12 78.133376 1.009712e-18 Saltwater\n", "13 49.612911 1.909316e-12 Freshwater\n", "6 4.766818 2.902040e-02 Acid grassland\n", "8 1.605596 2.051210e-01 Heather\n", "11 1.411725 2.347787e-01 Inland rock\n", "9 1.135354 2.866439e-01 Heather grassland\n", "1 0.735527 3.911038e-01 Coniferous woodland\n", "14 0.389845 5.323851e-01 Supralittoral rock\n", "5 0.173820 6.767413e-01 Calcareous grassland\n", "16 0.049150 8.245503e-01 Littoral rock\n", "10 0.034271 8.531325e-01 Bog \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 24298\n", "1 24298\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pintail 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9795918367346939,\n", " \"recall\": 0.9969093831128694,\n", " \"f1-score\": 0.9881747441945959,\n", " \"support\": 8089\n", " },\n", " \"1\": {\n", " \"precision\": 0.358974358974359,\n", " \"recall\": 0.07692307692307693,\n", " \"f1-score\": 0.12669683257918554,\n", " \"support\": 182\n", " },\n", " \"accuracy\": 0.9766654576230202,\n", " \"macro avg\": {\n", " \"precision\": 0.6692830978545264,\n", " \"recall\": 0.5369162300179732,\n", " \"f1-score\": 0.5574357883868908,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9659354008802167,\n", " \"recall\": 0.9766654576230202,\n", " \"f1-score\": 0.9692182721943535,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Pintail 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.979526958290946,\n", " \"recall\": 0.9522808752627024,\n", " \"f1-score\": 0.9657117783489,\n", " \"support\": 8089\n", " },\n", " \"1\": {\n", " \"precision\": 0.051597051597051594,\n", " \"recall\": 0.11538461538461539,\n", " \"f1-score\": 0.07130730050933785,\n", " \"support\": 182\n", " },\n", " \"accuracy\": 0.9338653125377826,\n", " \"macro avg\": {\n", " \"precision\": 0.5155620049439988,\n", " \"recall\": 0.5338327453236589,\n", " \"f1-score\": 0.5185095394291189,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9591082370941998,\n", " \"recall\": 0.9338653125377826,\n", " \"f1-score\": 0.9460307706150346,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Pochard 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "26 2536.936766 0.000000e+00 Fertiliser K\n", "27 2536.936766 0.000000e+00 Fertiliser N\n", "28 2536.936766 0.000000e+00 Fertiliser P\n", "29 2457.352155 0.000000e+00 Chlorothalonil\n", "30 2457.352155 0.000000e+00 Glyphosate\n", "31 2457.352155 0.000000e+00 Mancozeb\n", "32 2457.352155 0.000000e+00 Mecoprop-P\n", "34 2457.352155 0.000000e+00 Pendimethalin\n", "37 2207.208744 0.000000e+00 Sulphur\n", "36 2202.231304 0.000000e+00 Prosulfocarb\n", "38 2198.961775 0.000000e+00 Tri-allate\n", "33 2022.083842 0.000000e+00 Metamitron\n", "35 1989.817324 0.000000e+00 PropamocarbHydrochloride\n", "23 1842.761284 0.000000e+00 Surface type\n", "2 1555.536108 0.000000e+00 Arable\n", "25 1549.051565 0.000000e+00 Inflowing drainage direction\n", "24 1485.853766 5.152527e-318 Outflowing drainage direction\n", "22 1392.732967 1.268634e-298 Cumulative catchment area\n", "21 1309.187405 3.516732e-281 Elevation\n", "20 894.234195 6.746925e-194 Suburban\n", "3 745.160492 2.857352e-162 Improve grassland\n", "19 743.681811 5.893993e-162 Urban\n", "0 574.470893 7.099727e-126 Deciduous woodland\n", "13 271.809180 8.008227e-61 Freshwater\n", "4 149.345332 2.857674e-34 Neutral grassland\n", "7 131.344663 2.375107e-30 Fen\n", "18 99.865736 1.760901e-23 Saltmarsh\n", "15 46.675600 8.521422e-12 Supralittoral sediment\n", "17 38.959990 4.378224e-10 Littoral sediment\n", "12 13.290046 2.672276e-04 Saltwater\n", "6 12.015067 5.283914e-04 Acid grassland\n", "5 10.402339 1.259780e-03 Calcareous grassland\n", "10 10.105514 1.479624e-03 Bog\n", "9 4.772190 2.893001e-02 Heather grassland\n", "8 4.024274 4.485804e-02 Heather\n", "11 2.159090 1.417381e-01 Inland rock\n", "14 0.851691 3.560812e-01 Supralittoral rock\n", "1 0.632046 4.266115e-01 Coniferous woodland\n", "16 0.240235 6.240394e-01 Littoral rock \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 24018\n", "1 24018\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pochard 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9687764734357981,\n", " \"recall\": 0.9995005618678986,\n", " \"f1-score\": 0.98389872173058,\n", " \"support\": 8009\n", " },\n", " \"1\": {\n", " \"precision\": 0.5,\n", " \"recall\": 0.015267175572519083,\n", " \"f1-score\": 0.029629629629629627,\n", " \"support\": 262\n", " },\n", " \"accuracy\": 0.9683230564623383,\n", " \"macro avg\": {\n", " \"precision\": 0.7343882367178991,\n", " \"recall\": 0.5073838687202088,\n", " \"f1-score\": 0.5067641756801048,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9539270675549881,\n", " \"recall\": 0.9683230564623383,\n", " \"f1-score\": 0.9536703935803624,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Pochard 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9704837721984079,\n", " \"recall\": 0.9893869396928455,\n", " \"f1-score\": 0.9798441943860516,\n", " \"support\": 8009\n", " },\n", " \"1\": {\n", " \"precision\": 0.19811320754716982,\n", " \"recall\": 0.08015267175572519,\n", " \"f1-score\": 0.11413043478260869,\n", " \"support\": 262\n", " },\n", " \"accuracy\": 0.9605851771248942,\n", " \"macro avg\": {\n", " \"precision\": 0.5842984898727889,\n", " \"recall\": 0.5347698057242853,\n", " \"f1-score\": 0.5469873145843301,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9460174334317987,\n", " \"recall\": 0.9605851771248942,\n", " \"f1-score\": 0.9524210285033164,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Red-legged Partridge 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "26 13523.622232 0.000000e+00 Fertiliser K\n", "27 13523.622232 0.000000e+00 Fertiliser N\n", "28 13523.622232 0.000000e+00 Fertiliser P\n", "37 11673.899484 0.000000e+00 Sulphur\n", "36 11667.108199 0.000000e+00 Prosulfocarb\n", "38 11666.574791 0.000000e+00 Tri-allate\n", "29 10659.554341 0.000000e+00 Chlorothalonil\n", "30 10659.554341 0.000000e+00 Glyphosate\n", "31 10659.554341 0.000000e+00 Mancozeb\n", "32 10659.554341 0.000000e+00 Mecoprop-P\n", "34 10659.554341 0.000000e+00 Pendimethalin\n", "2 9262.561980 0.000000e+00 Arable\n", "35 9224.344758 0.000000e+00 PropamocarbHydrochloride\n", "33 9063.157294 0.000000e+00 Metamitron\n", "23 8310.347324 0.000000e+00 Surface type\n", "24 6580.468060 0.000000e+00 Outflowing drainage direction\n", "25 6132.393216 0.000000e+00 Inflowing drainage direction\n", "21 6122.856668 0.000000e+00 Elevation\n", "22 6094.072173 0.000000e+00 Cumulative catchment area\n", "3 3761.382336 0.000000e+00 Improve grassland\n", "0 1821.322033 0.000000e+00 Deciduous woodland\n", "20 591.420483 1.691353e-129 Suburban\n", "5 325.757650 1.798558e-72 Calcareous grassland\n", "4 108.694533 2.073050e-25 Neutral grassland\n", "19 58.130510 2.518487e-14 Urban\n", "7 54.477132 1.609616e-13 Fen\n", "13 38.514509 5.499196e-10 Freshwater\n", "18 19.620936 9.473139e-06 Saltmarsh\n", "9 7.224620 7.194636e-03 Heather grassland\n", "11 7.125487 7.603285e-03 Inland rock\n", "15 4.532290 3.326844e-02 Supralittoral sediment\n", "8 4.459810 3.470883e-02 Heather\n", "16 3.979559 4.606380e-02 Littoral rock\n", "10 3.505345 6.117991e-02 Bog\n", "1 2.115325 1.458406e-01 Coniferous woodland\n", "14 0.747430 3.872974e-01 Supralittoral rock\n", "6 0.289120 5.907888e-01 Acid grassland\n", "17 0.153603 6.951180e-01 Littoral sediment\n", "12 0.139898 7.083844e-01 Saltwater \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 22563\n", "1 22563\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Red-legged Partridge 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9202310717797444,\n", " \"recall\": 0.9892970401691332,\n", " \"f1-score\": 0.9535150280183393,\n", " \"support\": 7568\n", " },\n", " \"1\": {\n", " \"precision\": 0.4,\n", " \"recall\": 0.07681365576102418,\n", " \"f1-score\": 0.1288782816229117,\n", " \"support\": 703\n", " },\n", " \"accuracy\": 0.9117398138072784,\n", " \"macro avg\": {\n", " \"precision\": 0.6601155358898723,\n", " \"recall\": 0.5330553479650787,\n", " \"f1-score\": 0.5411966548206255,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8760136321157183,\n", " \"recall\": 0.9117398138072784,\n", " \"f1-score\": 0.8834243941510941,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Red-legged Partridge 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9294176959919335,\n", " \"recall\": 0.9743657505285412,\n", " \"f1-score\": 0.9513611146948782,\n", " \"support\": 7568\n", " },\n", " \"1\": {\n", " \"precision\": 0.42433234421364985,\n", " \"recall\": 0.2034139402560455,\n", " \"f1-score\": 0.27499999999999997,\n", " \"support\": 703\n", " },\n", " \"accuracy\": 0.9088381090557369,\n", " \"macro avg\": {\n", " \"precision\": 0.6768750201027917,\n", " \"recall\": 0.5888898453922934,\n", " \"f1-score\": 0.613180557347439,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8864875784366035,\n", " \"recall\": 0.9088381090557369,\n", " \"f1-score\": 0.8938732820711931,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Ring-necked Parakeet 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "20 5174.029480 0.000000e+00 Suburban\n", "19 4816.293327 0.000000e+00 Urban\n", "26 2496.791010 0.000000e+00 Fertiliser K\n", "27 2496.791010 0.000000e+00 Fertiliser N\n", "28 2496.791010 0.000000e+00 Fertiliser P\n", "22 2110.055997 0.000000e+00 Cumulative catchment area\n", "29 1731.345378 0.000000e+00 Chlorothalonil\n", "31 1731.345378 0.000000e+00 Mancozeb\n", "32 1731.345378 0.000000e+00 Mecoprop-P\n", "30 1731.004980 0.000000e+00 Glyphosate\n", "34 1731.004980 0.000000e+00 Pendimethalin\n", "23 1451.182004 8.429407e-311 Surface type\n", "24 1239.102083 1.629495e-266 Outflowing drainage direction\n", "25 1101.552188 1.215523e-237 Inflowing drainage direction\n", "21 934.465809 2.082605e-202 Elevation\n", "0 644.695315 7.138206e-141 Deciduous woodland\n", "3 590.530935 2.620156e-129 Improve grassland\n", "36 550.735617 8.473886e-121 Prosulfocarb\n", "37 549.972053 1.234441e-120 Sulphur\n", "38 531.829928 9.435110e-117 Tri-allate\n", "35 454.966109 2.841247e-100 PropamocarbHydrochloride\n", "33 447.760495 1.001226e-98 Metamitron\n", "13 266.908247 9.184502e-60 Freshwater\n", "2 33.737881 6.363711e-09 Arable\n", "6 16.142590 5.887779e-05 Acid grassland\n", "9 8.350427 3.858472e-03 Heather grassland\n", "10 6.304742 1.204628e-02 Bog\n", "4 6.018766 1.415966e-02 Neutral grassland\n", "8 5.354666 2.067299e-02 Heather\n", "1 4.630696 3.141203e-02 Coniferous woodland\n", "16 2.075782 1.496627e-01 Littoral rock\n", "11 2.028360 1.543966e-01 Inland rock\n", "14 1.773163 1.830003e-01 Supralittoral rock\n", "17 1.343003 2.465134e-01 Littoral sediment\n", "18 1.007935 3.154055e-01 Saltmarsh\n", "12 0.767993 3.808449e-01 Saltwater\n", "15 0.170880 6.793333e-01 Supralittoral sediment\n", "7 0.122766 7.260555e-01 Fen\n", "5 0.061965 8.034183e-01 Calcareous grassland \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 24433\n", "1 24433\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Ring-necked Parakeet 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.989615527259241,\n", " \"recall\": 0.9825702712654965,\n", " \"f1-score\": 0.986080315348608,\n", " \"support\": 8147\n", " },\n", " \"1\": {\n", " \"precision\": 0.21978021978021978,\n", " \"recall\": 0.3225806451612903,\n", " \"f1-score\": 0.261437908496732,\n", " \"support\": 124\n", " },\n", " \"accuracy\": 0.9726756135896506,\n", " \"macro avg\": {\n", " \"precision\": 0.6046978735197304,\n", " \"recall\": 0.6525754582133934,\n", " \"f1-score\": 0.62375911192267,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9780740476162233,\n", " \"recall\": 0.9726756135896506,\n", " \"f1-score\": 0.9752163740537666,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Ring-necked Parakeet 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9896062606994375,\n", " \"recall\": 0.9933717932981465,\n", " \"f1-score\": 0.9914854517611026,\n", " \"support\": 8147\n", " },\n", " \"1\": {\n", " \"precision\": 0.41935483870967744,\n", " \"recall\": 0.31451612903225806,\n", " \"f1-score\": 0.35944700460829493,\n", " \"support\": 124\n", " },\n", " \"accuracy\": 0.9831942933139887,\n", " \"macro avg\": {\n", " \"precision\": 0.7044805497045574,\n", " \"recall\": 0.6539439611652023,\n", " \"f1-score\": 0.6754662281846988,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9810569708521724,\n", " \"recall\": 0.9831942933139887,\n", " \"f1-score\": 0.9820098421072581,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Rock Dove 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "29 11974.716865 0.000000e+00 Chlorothalonil\n", "30 11974.716865 0.000000e+00 Glyphosate\n", "31 11974.716865 0.000000e+00 Mancozeb\n", "32 11974.716865 0.000000e+00 Mecoprop-P\n", "34 11974.716865 0.000000e+00 Pendimethalin\n", "23 9715.208896 0.000000e+00 Surface type\n", "26 9320.817826 0.000000e+00 Fertiliser K\n", "27 9320.817826 0.000000e+00 Fertiliser N\n", "28 9320.817826 0.000000e+00 Fertiliser P\n", "24 7716.649425 0.000000e+00 Outflowing drainage direction\n", "25 7489.623513 0.000000e+00 Inflowing drainage direction\n", "37 7222.092735 0.000000e+00 Sulphur\n", "36 7220.986108 0.000000e+00 Prosulfocarb\n", "21 7209.182719 0.000000e+00 Elevation\n", "38 7185.198282 0.000000e+00 Tri-allate\n", "22 6950.626400 0.000000e+00 Cumulative catchment area\n", "35 5320.538837 0.000000e+00 PropamocarbHydrochloride\n", "33 5174.072845 0.000000e+00 Metamitron\n", "3 4736.971375 0.000000e+00 Improve grassland\n", "20 4361.914241 0.000000e+00 Suburban\n", "2 3272.566853 0.000000e+00 Arable\n", "0 1947.276915 0.000000e+00 Deciduous woodland\n", "19 1698.722674 0.000000e+00 Urban\n", "4 327.460980 7.718845e-73 Neutral grassland\n", "5 172.810554 2.260169e-39 Calcareous grassland\n", "13 158.476505 2.949316e-36 Freshwater\n", "16 63.399064 1.741628e-15 Littoral rock\n", "14 38.512231 5.505612e-10 Supralittoral rock\n", "15 35.360040 2.767982e-09 Supralittoral sediment\n", "7 32.305738 1.328301e-08 Fen\n", "18 15.733289 7.308286e-05 Saltmarsh\n", "17 13.808123 2.027922e-04 Littoral sediment\n", "11 5.939593 1.480967e-02 Inland rock\n", "8 1.467724 2.257138e-01 Heather\n", "6 1.183074 2.767391e-01 Acid grassland\n", "10 1.068542 3.012825e-01 Bog\n", "9 0.520829 4.704932e-01 Heather grassland\n", "12 0.491905 4.830835e-01 Saltwater\n", "1 0.363769 5.464245e-01 Coniferous woodland \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 21951\n", "1 21951\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Rock Dove 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9031088082901555,\n", " \"recall\": 0.9664541169947325,\n", " \"f1-score\": 0.9337083165930092,\n", " \"support\": 7214\n", " },\n", " \"1\": {\n", " \"precision\": 0.5607985480943739,\n", " \"recall\": 0.2923368022705771,\n", " \"f1-score\": 0.3843283582089552,\n", " \"support\": 1057\n", " },\n", " \"accuracy\": 0.8803046789989118,\n", " \"macro avg\": {\n", " \"precision\": 0.7319536781922646,\n", " \"recall\": 0.6293954596326548,\n", " \"f1-score\": 0.6590183374009823,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8593629559111274,\n", " \"recall\": 0.8803046789989118,\n", " \"f1-score\": 0.863499802989824,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Rock Dove 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8975622406639004,\n", " \"recall\": 0.9595231494316606,\n", " \"f1-score\": 0.927509044620126,\n", " \"support\": 7214\n", " },\n", " \"1\": {\n", " \"precision\": 0.4776386404293381,\n", " \"recall\": 0.25260170293282874,\n", " \"f1-score\": 0.3304455445544554,\n", " \"support\": 1057\n", " },\n", " \"accuracy\": 0.869181477451336,\n", " \"macro avg\": {\n", " \"precision\": 0.6876004405466193,\n", " \"recall\": 0.6060624261822447,\n", " \"f1-score\": 0.6289772945872907,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8438977206000711,\n", " \"recall\": 0.869181477451336,\n", " \"f1-score\": 0.8512067692520431,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Ruddy Duck 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "13 2084.023887 0.000000e+00 Freshwater\n", "26 611.973820 6.880144e-134 Fertiliser K\n", "27 611.973820 6.880144e-134 Fertiliser N\n", "28 611.973820 6.880144e-134 Fertiliser P\n", "24 574.800456 6.036397e-126 Outflowing drainage direction\n", "22 439.953763 4.753911e-97 Cumulative catchment area\n", "29 420.253312 8.124948e-93 Chlorothalonil\n", "31 420.253312 8.124948e-93 Mancozeb\n", "32 420.253312 8.124948e-93 Mecoprop-P\n", "30 420.170729 8.463895e-93 Glyphosate\n", "34 420.170729 8.463895e-93 Pendimethalin\n", "37 334.799327 2.018860e-74 Sulphur\n", "23 331.644948 9.666367e-74 Surface type\n", "38 327.259937 8.529270e-73 Tri-allate\n", "36 316.625993 1.678218e-70 Prosulfocarb\n", "35 279.546885 1.702940e-62 PropamocarbHydrochloride\n", "33 275.651878 1.182909e-61 Metamitron\n", "25 252.505585 1.196889e-56 Inflowing drainage direction\n", "19 209.791045 2.131385e-47 Urban\n", "21 206.348108 1.188914e-46 Elevation\n", "0 197.545829 9.644094e-45 Deciduous woodland\n", "4 178.469812 1.333079e-40 Neutral grassland\n", "3 159.658114 1.632226e-36 Improve grassland\n", "20 117.615266 2.340567e-27 Suburban\n", "7 105.045117 1.299505e-24 Fen\n", "2 54.679745 1.452179e-13 Arable\n", "18 36.700240 1.392471e-09 Saltmarsh\n", "15 18.578174 1.635478e-05 Supralittoral sediment\n", "12 17.716380 2.570854e-05 Saltwater\n", "6 3.935350 4.728954e-02 Acid grassland\n", "17 2.178205 1.399871e-01 Littoral sediment\n", "8 1.916130 1.662933e-01 Heather\n", "10 1.383460 2.395211e-01 Bog\n", "9 1.221097 2.691535e-01 Heather grassland\n", "1 1.008807 3.151962e-01 Coniferous woodland\n", "14 0.445443 5.045116e-01 Supralittoral rock\n", "16 0.433081 5.104857e-01 Littoral rock\n", "11 0.247335 6.189611e-01 Inland rock\n", "5 0.072280 7.880478e-01 Calcareous grassland \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 24719\n", "1 24719\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1334: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", " _warn_prf(average, modifier, msg_start, len(result))\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1334: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", " _warn_prf(average, modifier, msg_start, len(result))\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1334: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", " _warn_prf(average, modifier, msg_start, len(result))\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Ruddy Duck 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9963728690605731,\n", " \"recall\": 1.0,\n", " \"f1-score\": 0.9981831395348837,\n", " \"support\": 8241\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 30\n", " },\n", " \"accuracy\": 0.9963728690605731,\n", " \"macro avg\": {\n", " \"precision\": 0.49818643453028655,\n", " \"recall\": 0.5,\n", " \"f1-score\": 0.49909156976744184,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9927588941999981,\n", " \"recall\": 0.9963728690605731,\n", " \"f1-score\": 0.9945625985862625,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Ruddy Duck 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9967312348668281,\n", " \"recall\": 0.9990292440237836,\n", " \"f1-score\": 0.9978789164293074,\n", " \"support\": 8241\n", " },\n", " \"1\": {\n", " \"precision\": 0.2727272727272727,\n", " \"recall\": 0.1,\n", " \"f1-score\": 0.14634146341463417,\n", " \"support\": 30\n", " },\n", " \"accuracy\": 0.9957683472373353,\n", " \"macro avg\": {\n", " \"precision\": 0.6347292537970504,\n", " \"recall\": 0.5495146220118918,\n", " \"f1-score\": 0.5721101899219707,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9941051776954841,\n", " \"recall\": 0.9957683472373353,\n", " \"f1-score\": 0.994790278587397,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Whooper Swan 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "25 1676.560528 0.000000e+00 Inflowing drainage direction\n", "23 1555.884294 0.000000e+00 Surface type\n", "21 1411.884325 1.291051e-302 Elevation\n", "29 1368.299617 1.585328e-293 Chlorothalonil\n", "31 1368.299617 1.585328e-293 Mancozeb\n", "32 1368.299617 1.585328e-293 Mecoprop-P\n", "30 1367.972943 1.854762e-293 Glyphosate\n", "34 1367.972943 1.854762e-293 Pendimethalin\n", "24 1295.050837 3.175931e-278 Outflowing drainage direction\n", "22 1252.169594 2.987125e-269 Cumulative catchment area\n", "37 822.832470 9.102816e-179 Sulphur\n", "36 818.843021 6.390379e-178 Prosulfocarb\n", "38 809.297607 6.776178e-176 Tri-allate\n", "3 560.870223 5.752589e-123 Improve grassland\n", "35 537.803158 4.965172e-118 PropamocarbHydrochloride\n", "2 518.099739 8.226528e-114 Arable\n", "33 491.320567 4.509861e-108 Metamitron\n", "26 428.892315 1.130612e-94 Fertiliser K\n", "27 428.892315 1.130612e-94 Fertiliser N\n", "28 428.892315 1.130612e-94 Fertiliser P\n", "13 302.457075 1.918026e-67 Freshwater\n", "17 294.097064 1.224555e-65 Littoral sediment\n", "0 236.168141 4.111276e-53 Deciduous woodland\n", "18 210.131628 1.798147e-47 Saltmarsh\n", "7 171.006773 5.572412e-39 Fen\n", "20 166.933497 4.277570e-38 Suburban\n", "4 152.889945 4.839547e-35 Neutral grassland\n", "19 129.204755 6.950815e-30 Urban\n", "9 88.659782 4.982099e-21 Heather grassland\n", "15 87.366558 9.563148e-21 Supralittoral sediment\n", "14 65.810060 5.135459e-16 Supralittoral rock\n", "16 62.367071 2.938167e-15 Littoral rock\n", "10 36.089602 1.904150e-09 Bog\n", "1 25.502277 4.442055e-07 Coniferous woodland\n", "8 13.925116 1.905575e-04 Heather\n", "12 7.753771 5.363096e-03 Saltwater\n", "6 7.525727 6.085674e-03 Acid grassland\n", "11 0.360808 5.480621e-01 Inland rock\n", "5 0.028754 8.653489e-01 Calcareous grassland \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 24119\n", "1 24119\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Whooper Swan 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9686592449177154,\n", " \"recall\": 0.9993757802746567,\n", " \"f1-score\": 0.9837778050878702,\n", " \"support\": 8010\n", " },\n", " \"1\": {\n", " \"precision\": 0.2857142857142857,\n", " \"recall\": 0.007662835249042145,\n", " \"f1-score\": 0.014925373134328356,\n", " \"support\": 261\n", " },\n", " \"accuracy\": 0.9680812477330432,\n", " \"macro avg\": {\n", " \"precision\": 0.6271867653160006,\n", " \"recall\": 0.5035193077618494,\n", " \"f1-score\": 0.4993515891110993,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9471082070320794,\n", " \"recall\": 0.9680812477330432,\n", " \"f1-score\": 0.9532046597922741,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Whooper Swan 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9717665013353681,\n", " \"recall\": 0.9539325842696629,\n", " \"f1-score\": 0.9627669627669627,\n", " \"support\": 8010\n", " },\n", " \"1\": {\n", " \"precision\": 0.09558823529411764,\n", " \"recall\": 0.14942528735632185,\n", " \"f1-score\": 0.11659192825112107,\n", " \"support\": 261\n", " },\n", " \"accuracy\": 0.9285455204932898,\n", " \"macro avg\": {\n", " \"precision\": 0.5336773683147429,\n", " \"recall\": 0.5516789358129923,\n", " \"f1-score\": 0.5396794455090419,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9441177856496268,\n", " \"recall\": 0.9285455204932898,\n", " \"f1-score\": 0.9360650302305542,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Wigeon 1km cells... \n", "\n", "K-Best Features Dataframe: \n", " F Score P Value Attribute\n", "29 4819.105469 0.000000e+00 Chlorothalonil\n", "30 4819.105469 0.000000e+00 Glyphosate\n", "31 4819.105469 0.000000e+00 Mancozeb\n", "32 4819.105469 0.000000e+00 Mecoprop-P\n", "34 4819.105469 0.000000e+00 Pendimethalin\n", "25 4543.858943 0.000000e+00 Inflowing drainage direction\n", "23 4385.352401 0.000000e+00 Surface type\n", "21 3772.569210 0.000000e+00 Elevation\n", "37 3368.272204 0.000000e+00 Sulphur\n", "36 3344.881952 0.000000e+00 Prosulfocarb\n", "38 3316.664763 0.000000e+00 Tri-allate\n", "24 3296.213107 0.000000e+00 Outflowing drainage direction\n", "22 3018.447019 0.000000e+00 Cumulative catchment area\n", "35 2471.153767 0.000000e+00 PropamocarbHydrochloride\n", "33 2444.415822 0.000000e+00 Metamitron\n", "3 1984.684092 0.000000e+00 Improve grassland\n", "2 1640.404091 0.000000e+00 Arable\n", "26 1577.395456 0.000000e+00 Fertiliser K\n", "27 1577.395456 0.000000e+00 Fertiliser N\n", "28 1577.395456 0.000000e+00 Fertiliser P\n", "0 1016.533733 9.783489e-220 Deciduous woodland\n", "20 871.988879 3.462062e-189 Suburban\n", "17 839.439277 2.736586e-182 Littoral sediment\n", "13 570.717851 4.505394e-125 Freshwater\n", "18 551.354132 6.247919e-121 Saltmarsh\n", "19 535.113644 1.869402e-117 Urban\n", "15 329.558717 2.723634e-73 Supralittoral sediment\n", "16 261.381261 1.439437e-58 Littoral rock\n", "7 176.243055 4.059697e-40 Fen\n", "4 150.239640 1.825651e-34 Neutral grassland\n", "12 104.357556 1.836557e-24 Saltwater\n", "14 37.244870 1.053444e-09 Supralittoral rock\n", "8 14.097058 1.739122e-04 Heather\n", "1 12.680417 3.700235e-04 Coniferous woodland\n", "9 9.281786 2.316259e-03 Heather grassland\n", "5 7.220527 7.211058e-03 Calcareous grassland\n", "10 1.418478 2.336626e-01 Bog\n", "6 0.976582 3.230512e-01 Acid grassland\n", "11 0.096023 7.566574e-01 Inland rock \n", "\n", "Resampled Value Counts: \n", " Occurrence\n", "0 23081\n", "1 23081\n", "dtype: int64 \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Wigeon 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9378988708885616,\n", " \"recall\": 0.9942753057507155,\n", " \"f1-score\": 0.9652646204370341,\n", " \"support\": 7686\n", " },\n", " \"1\": {\n", " \"precision\": 0.6422764227642277,\n", " \"recall\": 0.13504273504273503,\n", " \"f1-score\": 0.2231638418079096,\n", " \"support\": 585\n", " },\n", " \"accuracy\": 0.93350259944384,\n", " \"macro avg\": {\n", " \"precision\": 0.7900876468263947,\n", " \"recall\": 0.5646590203967253,\n", " \"f1-score\": 0.5942142311224718,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9169897749929341,\n", " \"recall\": 0.93350259944384,\n", " \"f1-score\": 0.9127765348974334,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Wigeon 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9475020037403152,\n", " \"recall\": 0.9228467343221441,\n", " \"f1-score\": 0.9350118639599261,\n", " \"support\": 7686\n", " },\n", " \"1\": {\n", " \"precision\": 0.2445859872611465,\n", " \"recall\": 0.3282051282051282,\n", " \"f1-score\": 0.28029197080291973,\n", " \"support\": 585\n", " },\n", " \"accuracy\": 0.8807882964575021,\n", " \"macro avg\": {\n", " \"precision\": 0.5960439955007308,\n", " \"recall\": 0.6255259312636362,\n", " \"f1-score\": 0.6076519173814229,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8977854193321041,\n", " \"recall\": 0.8807882964575021,\n", " \"f1-score\": 0.8887041457279289,\n", " \"support\": 8271\n", " }\n", "} \n", "\n" ] } ], "source": [ "# Add model pipeline\n", "estimators = [\n", " ('lr', LogisticRegression(max_iter=10000, solver='saga', random_state=seed, penalty='l2', verbose=verbose)),\n", " ('knn', KNeighborsClassifier(n_neighbors=5, weights='distance')),\n", " ('sgd', SGDClassifier( max_iter=10000, loss='modified_huber', random_state=seed, penalty='l2', verbose=verbose)),\n", " ('rf', RandomForestClassifier(n_estimators=20,max_features=None, random_state=seed, verbose=verbose))\n", "]\n", "\n", "\n", "for dict in df_dicts:\n", " print(f'Training with {dict[\"name\"]} cells... \\n')\n", " # Use this if using coordinates as separate columns\n", " # coords, X, y = data['dataframe'].iloc[:, :2], data['dataframe'].iloc[:, 2:-1], data['dataframe'].iloc[:, [-1]]\n", " # data['coords'] = coords\n", " \n", " # Use this if using coordinates as indices\n", " X, y = dict['dataframe'].iloc[:, 0:-1], dict['dataframe'].iloc[:, [-1]], \n", "\n", " dict['X'] = standardise(X)\n", " dict['y'] = y\n", " dict['kbest'] = feature_select(dict['X'], dict['y'])\n", "\n", " # dict['X'] = dict['kbest']['10'].transform(dict['X'])\n", "\n", " X_train, X_test, y_train, y_test = train_test_split(dict['X'], dict['y'], random_state=seed)\n", " dict['X_train'], dict['X_test'], dict['y_train'], dict['y_test'] = X_train, X_test, y_train, y_test # for debugging purposes\n", "\n", " dict['X_smote'], dict['y_smote'] = oversample(X_train, y_train)\n", "\n", " stack_clf = StackingClassifier(\n", " estimators=estimators, \n", " final_estimator=GradientBoostingClassifier(n_estimators=20, learning_rate=0.5, max_features=None, max_depth=2, random_state=seed)\n", " )\n", "\n", " # Classifier without SMOTE\n", " stack_clf.fit(dict['X_train'], dict['y_train'])\n", " y_pred = stack_clf.predict(X_test)\n", " \n", " dict['predictions'] = y_pred\n", " dict['report'] = classification_report(y_test, y_pred, output_dict=True)\n", " \n", "\n", " # Classifier with SMOTE\n", " stack_clf.fit(dict['X_smote'], dict['y_smote'])\n", " y_pred_smote = stack_clf.predict(X_test)\n", " \n", " dict['predictions_smote'] = y_pred_smote\n", " dict['report_smote'] = classification_report(y_test, y_pred_smote, output_dict=True)\n", " \n", " print(f'{dict[\"name\"]} Classification Report: \\n {json.dumps(dict[\"report\"], indent=4)} \\n')\n", " print(f'{dict[\"name\"]} SMOTE Classification Report: \\n {json.dumps(dict[\"report_smote\"], indent=4)} \\n')\n", "\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9857919446503582,\n", " \"recall\": 0.9876222304740686,\n", " \"f1-score\": 0.9867062387930501,\n", " \"support\": 8079\n", " },\n", " \"1\": {\n", " \"precision\": 0.4350282485875706,\n", " \"recall\": 0.4010416666666667,\n", " \"f1-score\": 0.41734417344173447,\n", " \"support\": 192\n", " },\n", " \"accuracy\": 0.9740055616007738,\n", " \"macro avg\": {\n", " \"precision\": 0.7104100966189644,\n", " \"recall\": 0.6943319485703676,\n", " \"f1-score\": 0.7020252061173923,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9730067155796226,\n", " \"recall\": 0.9740055616007738,\n", " \"f1-score\": 0.9734892739100308,\n", " \"support\": 8271\n", " }\n", "}\n", "Canada Goose 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9475095785440613,\n", " \"recall\": 0.8669588080631025,\n", " \"f1-score\": 0.9054462242562928,\n", " \"support\": 5705\n", " },\n", " \"1\": {\n", " \"precision\": 0.7512291052114061,\n", " \"recall\": 0.8932190179267342,\n", " \"f1-score\": 0.8160940003560618,\n", " \"support\": 2566\n", " },\n", " \"accuracy\": 0.8751057913190666,\n", " \"macro avg\": {\n", " \"precision\": 0.8493693418777337,\n", " \"recall\": 0.8800889129949183,\n", " \"f1-score\": 0.8607701123061773,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8866154067907553,\n", " \"recall\": 0.8751057913190666,\n", " \"f1-score\": 0.8777255367302389,\n", " \"support\": 8271\n", " }\n", "}\n", "Egyptian Goose 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9874953571870744,\n", " \"recall\": 0.9870065585942334,\n", " \"f1-score\": 0.9872508973882905,\n", " \"support\": 8081\n", " },\n", " \"1\": {\n", " \"precision\": 0.4587628865979381,\n", " \"recall\": 0.46842105263157896,\n", " \"f1-score\": 0.46354166666666663,\n", " \"support\": 190\n", " },\n", " \"accuracy\": 0.9750937008826018,\n", " \"macro avg\": {\n", " \"precision\": 0.7231291218925062,\n", " \"recall\": 0.7277138056129062,\n", " \"f1-score\": 0.7253962820274786,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9753494051363023,\n", " \"recall\": 0.9750937008826018,\n", " \"f1-score\": 0.9752203383462028,\n", " \"support\": 8271\n", " }\n", "}\n", "Gadwall 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.961431812452735,\n", " \"recall\": 0.9873155578565881,\n", " \"f1-score\": 0.9742017879948913,\n", " \"support\": 7726\n", " },\n", " \"1\": {\n", " \"precision\": 0.7091988130563798,\n", " \"recall\": 0.43853211009174314,\n", " \"f1-score\": 0.5419501133786848,\n", " \"support\": 545\n", " },\n", " \"accuracy\": 0.9511546366823842,\n", " \"macro avg\": {\n", " \"precision\": 0.8353153127545574,\n", " \"recall\": 0.7129238339741656,\n", " \"f1-score\": 0.758075950686788,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9448114540110697,\n", " \"recall\": 0.9511546366823842,\n", " \"f1-score\": 0.945719480817303,\n", " \"support\": 8271\n", " }\n", "}\n", "Goshawk 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9871717293961031,\n", " \"recall\": 0.9990202082057563,\n", " \"f1-score\": 0.9930606281957634,\n", " \"support\": 8165\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 106\n", " },\n", " \"accuracy\": 0.9862169024301777,\n", " \"macro avg\": {\n", " \"precision\": 0.49358586469805155,\n", " \"recall\": 0.49951010410287816,\n", " \"f1-score\": 0.4965303140978817,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9745202720975918,\n", " \"recall\": 0.9862169024301777,\n", " \"f1-score\": 0.9803336995790604,\n", " \"support\": 8271\n", " }\n", "}\n", "Grey Partridge 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9373253977893842,\n", " \"recall\": 0.9966421283740152,\n", " \"f1-score\": 0.9660741111667501,\n", " \"support\": 7743\n", " },\n", " \"1\": {\n", " \"precision\": 0.3157894736842105,\n", " \"recall\": 0.022727272727272728,\n", " \"f1-score\": 0.04240282685512368,\n", " \"support\": 528\n", " },\n", " \"accuracy\": 0.9344698343610204,\n", " \"macro avg\": {\n", " \"precision\": 0.6265574357367973,\n", " \"recall\": 0.509684700550644,\n", " \"f1-score\": 0.5042384690109369,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.89764809541633,\n", " \"recall\": 0.9344698343610204,\n", " \"f1-score\": 0.9071092413666608,\n", " \"support\": 8271\n", " }\n", "}\n", "Indian Peafowl 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.990921195981116,\n", " \"recall\": 0.9987798926305514,\n", " \"f1-score\": 0.9948350246095886,\n", " \"support\": 8196\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 75\n", " },\n", " \"accuracy\": 0.9897231290049571,\n", " \"macro avg\": {\n", " \"precision\": 0.495460597990558,\n", " \"recall\": 0.4993899463152757,\n", " \"f1-score\": 0.4974175123047943,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9819356936599235,\n", " \"recall\": 0.9897231290049571,\n", " \"f1-score\": 0.9858140323661212,\n", " \"support\": 8271\n", " }\n", "}\n", "Little Owl 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9410580021482277,\n", " \"recall\": 0.9480589747058028,\n", " \"f1-score\": 0.944545515800822,\n", " \"support\": 7393\n", " },\n", " \"1\": {\n", " \"precision\": 0.5334143377885784,\n", " \"recall\": 0.5,\n", " \"f1-score\": 0.516166960611405,\n", " \"support\": 878\n", " },\n", " \"accuracy\": 0.9004957078950551,\n", " \"macro avg\": {\n", " \"precision\": 0.737236169968403,\n", " \"recall\": 0.7240294873529014,\n", " \"f1-score\": 0.7303562382061135,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8977849834917445,\n", " \"recall\": 0.9004957078950551,\n", " \"f1-score\": 0.89907140487635,\n", " \"support\": 8271\n", " }\n", "}\n", "Mandarin Duck 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9780353874313605,\n", " \"recall\": 0.9962709757613425,\n", " \"f1-score\": 0.9870689655172414,\n", " \"support\": 8045\n", " },\n", " \"1\": {\n", " \"precision\": 0.6052631578947368,\n", " \"recall\": 0.20353982300884957,\n", " \"f1-score\": 0.30463576158940403,\n", " \"support\": 226\n", " },\n", " \"accuracy\": 0.9746100834240116,\n", " \"macro avg\": {\n", " \"precision\": 0.7916492726630486,\n", " \"recall\": 0.599905399385096,\n", " \"f1-score\": 0.6458523635533228,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9678496149884545,\n", " \"recall\": 0.9746100834240116,\n", " \"f1-score\": 0.9684218969538644,\n", " \"support\": 8271\n", " }\n", "}\n", "Mute Swan 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9197844007609385,\n", " \"recall\": 0.8438045375218151,\n", " \"f1-score\": 0.8801577669902911,\n", " \"support\": 3438\n", " },\n", " \"1\": {\n", " \"precision\": 0.8950556966972836,\n", " \"recall\": 0.9476515621767019,\n", " \"f1-score\": 0.9206030150753769,\n", " \"support\": 4833\n", " },\n", " \"accuracy\": 0.9044855519284246,\n", " \"macro avg\": {\n", " \"precision\": 0.9074200487291111,\n", " \"recall\": 0.8957280498492585,\n", " \"f1-score\": 0.9003803910328341,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9053346574723827,\n", " \"recall\": 0.9044855519284246,\n", " \"f1-score\": 0.9037911709311953,\n", " \"support\": 8271\n", " }\n", "}\n", "Pheasant 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9195280592951142,\n", " \"recall\": 0.8914796891039742,\n", " \"f1-score\": 0.9052866716306776,\n", " \"support\": 6819\n", " },\n", " \"1\": {\n", " \"precision\": 0.5542168674698795,\n", " \"recall\": 0.6336088154269972,\n", " \"f1-score\": 0.5912596401028278,\n", " \"support\": 1452\n", " },\n", " \"accuracy\": 0.8462096481682989,\n", " \"macro avg\": {\n", " \"precision\": 0.7368724633824968,\n", " \"recall\": 0.7625442522654857,\n", " \"f1-score\": 0.7482731558667527,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8553965334179239,\n", " \"recall\": 0.8462096481682989,\n", " \"f1-score\": 0.8501582409961185,\n", " \"support\": 8271\n", " }\n", "}\n", "Pink-footed Goose 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9526175009552923,\n", " \"recall\": 0.9821405121470781,\n", " \"f1-score\": 0.9671537566274409,\n", " \"support\": 7615\n", " },\n", " \"1\": {\n", " \"precision\": 0.6761904761904762,\n", " \"recall\": 0.4329268292682927,\n", " \"f1-score\": 0.5278810408921933,\n", " \"support\": 656\n", " },\n", " \"accuracy\": 0.9385805827590376,\n", " \"macro avg\": {\n", " \"precision\": 0.8144039885728842,\n", " \"recall\": 0.7075336707076854,\n", " \"f1-score\": 0.7475173987598172,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9306931715820944,\n", " \"recall\": 0.9385805827590376,\n", " \"f1-score\": 0.932313604103886,\n", " \"support\": 8271\n", " }\n", "}\n", "Pintail 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9795918367346939,\n", " \"recall\": 0.9969093831128694,\n", " \"f1-score\": 0.9881747441945959,\n", " \"support\": 8089\n", " },\n", " \"1\": {\n", " \"precision\": 0.358974358974359,\n", " \"recall\": 0.07692307692307693,\n", " \"f1-score\": 0.12669683257918554,\n", " \"support\": 182\n", " },\n", " \"accuracy\": 0.9766654576230202,\n", " \"macro avg\": {\n", " \"precision\": 0.6692830978545264,\n", " \"recall\": 0.5369162300179732,\n", " \"f1-score\": 0.5574357883868908,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9659354008802167,\n", " \"recall\": 0.9766654576230202,\n", " \"f1-score\": 0.9692182721943535,\n", " \"support\": 8271\n", " }\n", "}\n", "Pochard 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9687764734357981,\n", " \"recall\": 0.9995005618678986,\n", " \"f1-score\": 0.98389872173058,\n", " \"support\": 8009\n", " },\n", " \"1\": {\n", " \"precision\": 0.5,\n", " \"recall\": 0.015267175572519083,\n", " \"f1-score\": 0.029629629629629627,\n", " \"support\": 262\n", " },\n", " \"accuracy\": 0.9683230564623383,\n", " \"macro avg\": {\n", " \"precision\": 0.7343882367178991,\n", " \"recall\": 0.5073838687202088,\n", " \"f1-score\": 0.5067641756801048,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9539270675549881,\n", " \"recall\": 0.9683230564623383,\n", " \"f1-score\": 0.9536703935803624,\n", " \"support\": 8271\n", " }\n", "}\n", "Red-legged Partridge 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9202310717797444,\n", " \"recall\": 0.9892970401691332,\n", " \"f1-score\": 0.9535150280183393,\n", " \"support\": 7568\n", " },\n", " \"1\": {\n", " \"precision\": 0.4,\n", " \"recall\": 0.07681365576102418,\n", " \"f1-score\": 0.1288782816229117,\n", " \"support\": 703\n", " },\n", " \"accuracy\": 0.9117398138072784,\n", " \"macro avg\": {\n", " \"precision\": 0.6601155358898723,\n", " \"recall\": 0.5330553479650787,\n", " \"f1-score\": 0.5411966548206255,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8760136321157183,\n", " \"recall\": 0.9117398138072784,\n", " \"f1-score\": 0.8834243941510941,\n", " \"support\": 8271\n", " }\n", "}\n", "Ring-necked Parakeet 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.989615527259241,\n", " \"recall\": 0.9825702712654965,\n", " \"f1-score\": 0.986080315348608,\n", " \"support\": 8147\n", " },\n", " \"1\": {\n", " \"precision\": 0.21978021978021978,\n", " \"recall\": 0.3225806451612903,\n", " \"f1-score\": 0.261437908496732,\n", " \"support\": 124\n", " },\n", " \"accuracy\": 0.9726756135896506,\n", " \"macro avg\": {\n", " \"precision\": 0.6046978735197304,\n", " \"recall\": 0.6525754582133934,\n", " \"f1-score\": 0.62375911192267,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9780740476162233,\n", " \"recall\": 0.9726756135896506,\n", " \"f1-score\": 0.9752163740537666,\n", " \"support\": 8271\n", " }\n", "}\n", "Rock Dove 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9031088082901555,\n", " \"recall\": 0.9664541169947325,\n", " \"f1-score\": 0.9337083165930092,\n", " \"support\": 7214\n", " },\n", " \"1\": {\n", " \"precision\": 0.5607985480943739,\n", " \"recall\": 0.2923368022705771,\n", " \"f1-score\": 0.3843283582089552,\n", " \"support\": 1057\n", " },\n", " \"accuracy\": 0.8803046789989118,\n", " \"macro avg\": {\n", " \"precision\": 0.7319536781922646,\n", " \"recall\": 0.6293954596326548,\n", " \"f1-score\": 0.6590183374009823,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8593629559111274,\n", " \"recall\": 0.8803046789989118,\n", " \"f1-score\": 0.863499802989824,\n", " \"support\": 8271\n", " }\n", "}\n", "Ruddy Duck 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9963728690605731,\n", " \"recall\": 1.0,\n", " \"f1-score\": 0.9981831395348837,\n", " \"support\": 8241\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 30\n", " },\n", " \"accuracy\": 0.9963728690605731,\n", " \"macro avg\": {\n", " \"precision\": 0.49818643453028655,\n", " \"recall\": 0.5,\n", " \"f1-score\": 0.49909156976744184,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9927588941999981,\n", " \"recall\": 0.9963728690605731,\n", " \"f1-score\": 0.9945625985862625,\n", " \"support\": 8271\n", " }\n", "}\n", "Whooper Swan 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9686592449177154,\n", " \"recall\": 0.9993757802746567,\n", " \"f1-score\": 0.9837778050878702,\n", " \"support\": 8010\n", " },\n", " \"1\": {\n", " \"precision\": 0.2857142857142857,\n", " \"recall\": 0.007662835249042145,\n", " \"f1-score\": 0.014925373134328356,\n", " \"support\": 261\n", " },\n", " \"accuracy\": 0.9680812477330432,\n", " \"macro avg\": {\n", " \"precision\": 0.6271867653160006,\n", " \"recall\": 0.5035193077618494,\n", " \"f1-score\": 0.4993515891110993,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9471082070320794,\n", " \"recall\": 0.9680812477330432,\n", " \"f1-score\": 0.9532046597922741,\n", " \"support\": 8271\n", " }\n", "}\n", "Wigeon 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9378988708885616,\n", " \"recall\": 0.9942753057507155,\n", " \"f1-score\": 0.9652646204370341,\n", " \"support\": 7686\n", " },\n", " \"1\": {\n", " \"precision\": 0.6422764227642277,\n", " \"recall\": 0.13504273504273503,\n", " \"f1-score\": 0.2231638418079096,\n", " \"support\": 585\n", " },\n", " \"accuracy\": 0.93350259944384,\n", " \"macro avg\": {\n", " \"precision\": 0.7900876468263947,\n", " \"recall\": 0.5646590203967253,\n", " \"f1-score\": 0.5942142311224718,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9169897749929341,\n", " \"recall\": 0.93350259944384,\n", " \"f1-score\": 0.9127765348974334,\n", " \"support\": 8271\n", " }\n", "}\n" ] } ], "source": [ "for dict in df_dicts:\n", " print(dict['name'], '\\n', json.dumps(dict['report'], indent=4))" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5EAAAPHCAYAAACxBc1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADpFUlEQVR4nOzde3zO9f/H8edlmx1tY9jQGOYwhSZUTpsi50ZJIYeKdHAqIt/kfPgqEilJZUukckpOESbEHIeYOaX51kqRa2YM2/v3h6/r12UbH8fZd4/77fa+fX3e7/fn/Xld11R7ft+f63PZjDFGAAAAAABYUCC3CwAAAAAA5B2ESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWuuV0AkNdkZmbqt99+U6FChWSz2XK7HAAAAOCGGWN06tQplSxZUgUKXHmvkRAJXKPffvtNwcHBuV0GAAAAcNMdPXpUd9111xXnECKBa1SoUCFJF/8B8/X1zeVqAAAAgBuXkpKi4OBgx++6V0KIBK7RpVtYfX19CZEAAAD4n2Ll41o8WAcAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGCZa24XAORZfn65XQEAAADyGmNyu4Ibxk4k8qyQkBC9++67uV0GAAAAkK8QIm+Brl27ymaz6YUXXsgy9vLLL8tms6lr167XtKbNZtPChQtvuLa0tDQNGjRI5cuXl4eHh4oVK6aIiAh98803N7z2zfTDDz+oVatWKlmy5E177QAAAABuHCHyFgkODtacOXN05swZR9/Zs2c1e/ZslS5dOtfqeuGFFzR//ny999572rdvn5YvX662bdvq+PHjuVZTdk6fPq3q1avr/fffz+1SAAAAAPwDIfIWqVGjhoKDgzV//nxH3/z581W6dGmFh4c7zc3utsx7771Xw4YNc4xLUps2bWSz2RzHkvTNN9+oRo0a8vDwULly5TR8+HBduHAhx7oWLVqkf/3rX2revLlCQkJ03333qVevXnr22WclSVOmTNE999zjmL9w4ULZbDZ9+OGHjr5GjRpp8ODBkqRDhw4pKipKgYGB8vHxUa1atfT9999neX1jxozRs88+q0KFCql06dL66KOPrvj+NWvWTKNGjVKbNm2uOO+fPv74Y/n7+2vVqlWSpMjISPXq1Ut9+/ZV4cKFFRgYqOnTp+v06dN65plnVKhQIYWGhmrZsmWWrwEAAADkd4TIW+jZZ5/VjBkzHMeffvqpnnnmmWteZ8uWLZKkGTNmKDk52XG8bt06de7cWX369NHevXs1bdo0RUdHa/To0TmuFRQUpKVLl+rUqVPZjkdERGjv3r36888/JUlr165V0aJFFRsbK0k6f/68Nm7cqMjISElSamqqmjdvrlWrVmnHjh1q2rSpWrVqpaSkJKd1J0yYoJo1a2rHjh166aWX9OKLLyoxMfGa34ucvPXWW3r99de1YsUKPfzww47+mJgYFS1aVJs3b1avXr304osv6oknnlCdOnW0fft2PfLII+rUqZPS0tJyXDs9PV0pKSlODQAAAMi3DG66Ll26mKioKHPs2DHj7u5ujhw5Yo4cOWI8PDzMn3/+aaKiokyXLl0c88uUKWMmTpzotEb16tXN0KFDHceSzIIFC5zmPPzww2bMmDFOfTNnzjQlSpTIsba1a9eau+66y7i5uZmaNWuavn37mvXr1zvGMzMzTUBAgPn666+NMcbce++9ZuzYsSYoKMgYY8z69euNm5ubOX36dI7XuPvuu817773n9Pqefvppp2sUL17cTJ06Ncc1/im7135p3YkTJ5oBAwaYEiVKmJ9++slpPCIiwtSrV89xfOHCBePt7W06derk6EtOTjaSzMaNG3O8/tChQ42kLM1+8dlaNBqNRqPRaDSa9XaHstvtRpKx2+1XnctO5C1UrFgxtWjRQtHR0ZoxY4ZatGihokWL3rT1d+7cqREjRsjHx8fRunfvruTk5Bx31ho0aKDDhw9r1apVatu2rfbs2aP69etr5MiRki4+wKdBgwaKjY3VyZMntXfvXr300ktKT0/Xvn37tHbtWtWqVUteXl6SLu5E9u/fX2FhYfL395ePj48SEhKy7ERWq1bN8WebzaagoCAdO3bsht+DCRMmaPr06Vq/fr3uvvvuLOP/vK6Li4sCAgJUtWpVR19gYKAkXbGWQYMGyW63O9rRo0dvuG4AAAAgryJE3mLPPvusoqOjFRMT4/jc4eUKFCggY4xT3/nz56+6dmpqqoYPH674+HhH2717tw4cOCAPD48cz3Nzc1P9+vU1cOBArVixQiNGjNDIkSN17tw5SRc/SxgbG6t169YpPDxcvr6+jmC5du1aRUREONbq37+/FixYoDFjxmjdunWKj49X1apVHWv985r/ZLPZlJmZedXXeDX169dXRkaGvvrqqxxf6+XX/WefzWaTpCvW4u7uLl9fX6cGAAAA5FeuuV3A/7qmTZvq3LlzstlsatKkSbZzihUrpuTkZMdxSkqKfv75Z6c5bm5uysjIcOqrUaOGEhMTFRoaekM1VqlSRRcuXNDZs2dVsGBBRUREqG/fvvr6668dn32MjIzU999/rw0bNqhfv36Oczds2KCuXbs6HoCTmpqqI0eO3FA916J27drq2bOnmjZtKldXV/Xv3/+2XRsAAADIjwiRt5iLi4sSEhIcf87OQw89pOjoaLVq1Ur+/v4aMmRIlrkhISFatWqV6tatK3d3dxUuXFhDhgxRy5YtVbp0abVt21YFChTQzp079dNPP2nUqFHZXisyMlLt27dXzZo1FRAQoL179+pf//qXGjZs6Nhhq1atmgoXLqzZs2dr8eLFjvP69+8vm82munXrOtarUKGC5s+fr1atWslms+nNN9+8KTuMqampOnjwoOP4559/Vnx8vIoUKZLlK1Lq1KmjpUuXqlmzZnJ1dVXfvn1v+PoAAAAAskeIvA2udvvjoEGD9PPPP6tly5by8/PTyJEjs+xETpgwQa+++qqmT5+uUqVK6ciRI2rSpIkWL16sESNGaNy4cXJzc1PlypXVrVu3HK/VpEkTxcTE6F//+pfS0tJUsmRJtWzZUkOGDHHMsdlsql+/vpYsWaJ69epJuhgsfX19ValSJXl7ezvmvvPOO3r22WdVp04dFS1aVAMHDrwpTy/dunWrGjZs6Dh+9dVXJUldunRRdHR0lvn16tXTkiVL1Lx5c7m4uKhXr143XMPV+MkuiVtbAQAAcA1s2Xdf9um2O5rNXP5hPABXlJKSIj8/P4kQCQAAgJskt1PZpd9x7Xb7VTfBeLAOAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMtfcLgDIs173kzxyuwgAQH5jhprcLgFAPsdOJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDLX3C4AyKvsg+zy9fXN7TIAAACA24qdSAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZa65XQCyZ7PZtGDBArVu3Tq3S7ljDRs2TAsXLlR8fHzuFODnlzvXBQAAyI4xuV0B8ol8uxP5+++/q1evXipXrpzc3d0VHBysVq1aadWqVbld2k21Zs0atWzZUsWKFZOHh4fKly+vJ598Uj/88ENul3ZFZ8+eVdeuXVW1alW5uroSpgEAAIA7RL4MkUeOHNF9992n1atX6+2339bu3bu1fPlyNWzYUC+//HJul3fTfPDBB3r44YcVEBCgL7/8UomJiVqwYIHq1KmjV155JbfLu6KMjAx5enqqd+/eatSoUW6XAwAAAOC/8mWIfOmll2Sz2bR582Y9/vjjqlixou6++269+uqr2rRpk2PeO++8o6pVq8rb21vBwcF66aWXlJqa6hiPjo6Wv7+/vvvuO4WFhcnHx0dNmzZVcnKyY86WLVvUuHFjFS1aVH5+foqIiND27dud6jlw4IAaNGggDw8PValSRStXrsxS88CBA1WxYkV5eXmpXLlyevPNN3X+/PkcX2NSUpL69u2rvn37KiYmRg899JDKlCmjatWqqU+fPtq6davT/Hnz5unuu++Wu7u7QkJCNGHCBKfxv//+W507d1bhwoXl5eWlZs2a6cCBA47xX375Ra1atVLhwoXl7e2tu+++W0uXLnWM//TTT2rWrJl8fHwUGBioTp066a+//sqxfm9vb02dOlXdu3dXUFBQjvP+6dChQypXrpx69uwpY4zj57N48WJVqlRJXl5eatu2rdLS0hQTE6OQkBAVLlxYvXv3VkZGhqVrAAAAAPldvguRJ06c0PLly/Xyyy/L29s7y7i/v7/jzwUKFNDkyZO1Z88excTEaPXq1RowYIDT/LS0NI0fP14zZ87UDz/8oKSkJPXv398xfurUKXXp0kXr16/Xpk2bVKFCBTVv3lynTp2SJGVmZuqxxx5TwYIFFRcXpw8//FADBw7MUlehQoUUHR2tvXv3atKkSZo+fbomTpyY4+ucN2+ezp8/n6XeS2w2m+PP27ZtU7t27fTUU09p9+7dGjZsmN58801FR0c75nTt2lVbt27VokWLtHHjRhlj1Lx5c0eQffnll5Wenq4ffvhBu3fv1rhx4+Tj4yNJOnnypB566CGFh4dr69atWr58uf744w+1a9cux/qv1a5du1SvXj116NBBU6ZMcby+tLQ0TZ48WXPmzNHy5csVGxurNm3aaOnSpVq6dKlmzpypadOmae7cuTmunZ6erpSUFKcGAAAA5Fsmn4mLizOSzPz586/53K+//toEBAQ4jmfMmGEkmYMHDzr63n//fRMYGJjjGhkZGaZQoULm22+/NcYY89133xlXV1fz66+/OuYsW7bMSDILFizIcZ23337b3HfffTmOv/DCC8bX19epb+7cucbb29vRdu3aZYwxpkOHDqZx48ZOc1977TVTpUoVY4wx+/fvN5LMhg0bHON//fWX8fT0NF999ZUxxpiqVauaYcOGZVvLyJEjzSOPPOLUd/ToUSPJJCYm5vgaLunSpYuJiorK0j906FBTvXp1s2HDBlO4cGEzfvx4p/Hsfj49evQwXl5e5tSpU46+Jk2amB49euR4/aFDhxpJWZr94sfXaTQajUaj0e6MBtwAu91uJBm73X7VufluJ9IYY3nu999/r4cfflilSpVSoUKF1KlTJx0/flxpaWmOOV5eXipfvrzjuESJEjp27Jjj+I8//lD37t1VoUIF+fn5ydfXV6mpqUpKSpIkJSQkKDg4WCVLlnSc8+CDD2ap5csvv1TdunUVFBQkHx8fDR482LFGTv652yhJTZo0UXx8vJYsWaLTp087buFMSEhQ3bp1nebWrVtXBw4cUEZGhhISEuTq6qr777/fMR4QEKBKlSopISFBktS7d2+NGjVKdevW1dChQ7Vr1y7H3J07d2rNmjXy8fFxtMqVK0u6eAvqjUhKSlLjxo01ZMgQ9evXL8v45T+fwMBAhYSEOHZJL/X982d2uUGDBslutzva0aNHb6hmAAAAIC/LdyGyQoUKstls2rdv3xXnHTlyRC1btlS1atU0b948bdu2Te+//74k6dy5c455bm5uTufZbDanoNqlSxfFx8dr0qRJ+vHHHxUfH6+AgACnNa5m48aN6tixo5o3b67Fixdrx44deuONN664RoUKFWS32/X77787+nx8fBQaGqoyZcpYvrZV3bp10+HDh9WpUyft3r1bNWvW1HvvvSdJSk1NVatWrRQfH+/ULn0W9EYUK1ZMtWvX1hdffJHtbabZ/Xyy68vMzMzxGu7u7vL19XVqAAAAQH6V70JkkSJF1KRJE73//vs6ffp0lvGTJ09Kuvg5wczMTE2YMEEPPPCAKlasqN9+++2ar7dhwwb17t1bzZs3dzy45p8PlAkLC9PRo0edHsbzz4f7SNKPP/6oMmXK6I033lDNmjVVoUIF/fLLL1e8btu2beXm5qZx48ZdtcawsDBt2LAhS90VK1aUi4uLwsLCdOHCBcXFxTnGjx8/rsTERFWpUsXRFxwcrBdeeEHz589Xv379NH36dElSjRo1tGfPHoWEhCg0NNSpZfe51Gvh6empxYsXy8PDQ02aNHF81hQAAADArZHvQqQkvf/++8rIyFDt2rU1b948HThwQAkJCZo8ebLjVtLQ0FCdP39e7733ng4fPqyZM2fqww8/vOZrVahQQTNnzlRCQoLi4uLUsWNHeXp6OsYbNWqkihUrqkuXLtq5c6fWrVunN954I8saSUlJmjNnjg4dOqTJkydrwYIFV7xu6dKlNWHCBE2aNEldunTRmjVrdOTIEW3fvl2TJ0+WJLm4uEiS+vXrp1WrVmnkyJHav3+/YmJiNGXKFMcDgipUqKCoqCh1795d69ev186dO/X000+rVKlSioqKkiT17dtX3333nX7++Wdt375da9asUVhYmKSLD905ceKE2rdvry1btujQoUP67rvv9Mwzz1zxqah79+5VfHy8Tpw4Ibvd7tjBvJy3t7eWLFkiV1dXNWvWzOkJugAAAABuslv+Cc071G+//WZefvllU6ZMGVOwYEFTqlQp8+ijj5o1a9Y45rzzzjumRIkSxtPT0zRp0sR89tlnRpL5+++/jTEXH9zi5+fntO6CBQvMP9/W7du3m5o1axoPDw9ToUIF8/XXX5syZcqYiRMnOuYkJiaaevXqmYIFC5qKFSua5cuXG8n5wTqvvfaaCQgIMD4+PubJJ580EydOzHLt7KxcudI0a9bMFClSxLi6uprAwEDTunVrs3z5cqd5c+fONVWqVDFubm6mdOnS5u2333YaP3HihOnUqZPx8/NzvB/79+93jPfs2dOUL1/euLu7m2LFiplOnTqZv/76yzG+f/9+06ZNG+Pv7288PT1N5cqVTd++fU1mZmaOtZcpU8ZIWR9oc8mlB+tccurUKVOnTh3ToEEDk5qamu3P5/JzjMn5wT05ufShY8me65+fp9FoNBqNRruTG/KOa3mwjs0YY3IrwAJ5UUpKivz8/CTZJfH5SAAAgJyQNPKOS7/j2u32qz4DJF/ezgoAAAAAuD6ESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlrrldAJBnve4neeR2EUD+YIaa3C4BAAD8FzuRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLXHO7ACCvsg+yy9fXN7fLAAAAAG4rdiIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWueZ2AUCe5eeX2xUAwP8eY3K7AgDAVbATmUdER0fL398/t8u4o8TGxspms+nkyZO5XQoAAACQbxAi7xBdu3aVzWaTzWZTwYIFFRoaqhEjRujChQu5XdpNZ7PZtHDhwqvOGz16tOrUqSMvLy8CNAAAAHCHIETeQZo2bark5GQdOHBA/fr107Bhw/T222/ndlm55ty5c3riiSf04osv5nYpAAAAAP6LEHkHcXd3V1BQkMqUKaMXX3xRjRo10qJFi5zmfPfddwoLC5OPj48jdP7Txx9/rLCwMHl4eKhy5cr64IMPnMYHDhyoihUrysvLS+XKldObb76p8+fPO8Z37typhg0bqlChQvL19dV9992nrVu3SpKOHz+u9u3bq1SpUvLy8lLVqlX1xRdfOK0fGRmp3r17a8CAASpSpIiCgoI0bNgwx3hISIgkqU2bNrLZbI7j7AwfPlyvvPKKqlataun9S0tLU7NmzVS3bl2dPHlSR44ckc1m01dffaX69evL09NTtWrV0v79+7VlyxbVrFlTPj4+atasmf78809L1wAAAADyO0LkHczT01Pnzp1zHKelpWn8+PGaOXOmfvjhByUlJal///6O8VmzZmnIkCEaPXq0EhISNGbMGL355puKiYlxzClUqJCio6O1d+9eTZo0SdOnT9fEiRMd4x07dtRdd92lLVu2aNu2bXr99dfl5uYmSTp79qzuu+8+LVmyRD/99JOef/55derUSZs3b3aqOyYmRt7e3oqLi9Nbb72lESNGaOXKlZKkLVu2SJJmzJih5ORkx/GNOnnypBo3bqzMzEytXLnS6fbXoUOHavDgwdq+fbtcXV3VoUMHDRgwQJMmTdK6det08OBBDRkyJMe109PTlZKS4tQAAACAfMvgjtClSxcTFRVljDEmMzPTrFy50ri7u5v+/fsbY4yZMWOGkWQOHjzoOOf99983gYGBjuPy5cub2bNnO607cuRI8+CDD+Z43bffftvcd999juNChQqZ6Ohoy3W3aNHC9OvXz3EcERFh6tWr5zSnVq1aZuDAgY5jSWbBggWWrzFjxgzj5+eXpX/NmjVGkklISDDVqlUzjz/+uElPT3eM//zzz0aS+fjjjx19X3zxhZFkVq1a5egbO3asqVSpUo7XHzp0qJGUpdkvPkOQRqPRaDezAQByhd1uN5KM3W6/6ly+4uMOsnjxYvn4+Oj8+fPKzMxUhw4dnG4F9fLyUvny5R3HJUqU0LFjxyRJp0+f1qFDh/Tcc8+pe/fujjkXLlyQ3z++iuLLL7/U5MmTdejQIaWmpurChQvy9fV1jL/66qvq1q2bZs6cqUaNGumJJ55wXDMjI0NjxozRV199pV9//VXnzp1Tenq6vLy8nF5HtWrVnI7/Weet0LhxY9WuXVtffvmlXFxcsoz/s57AwEBJcrpFNjAw8Ir1DRo0SK+++qrjOCUlRcHBwTejdAAAACDP4XbWO0jDhg0VHx+vAwcO6MyZM47bQi+5dFvpJTabTcYYSVJqaqokafr06YqPj3e0n376SZs2bZIkbdy4UR07dlTz5s21ePFi7dixQ2+88YbTLbPDhg3Tnj171KJFC61evVpVqlTRggULJElvv/22Jk2apIEDB2rNmjWKj49XkyZNnM7Pqc7MzMyb9C5l1aJFC/3www/au3dvtuP/rMdms2Xbd6X63N3d5evr69QAAACA/IqdyDuIt7e3QkNDr+vcwMBAlSxZUocPH1bHjh2znfPjjz+qTJkyeuONNxx9v/zyS5Z5FStWVMWKFfXKK6+offv2mjFjhtq0aaMNGzYoKipKTz/9tCQpMzNT+/fvV5UqVa6pVjc3N2VkZFzTOVfy73//Wz4+Pnr44YcVGxt7zfUAAAAAsI4Q+T9k+PDh6t27t/z8/NS0aVOlp6dr69at+vvvv/Xqq6+qQoUKSkpK0pw5c1SrVi0tWbLEscsoSWfOnNFrr72mtm3bqmzZsvrPf/6jLVu26PHHH5ckVahQQXPnztWPP/6owoUL65133tEff/xxzaEtJCREq1atUt26deXu7q7ChQtnOy8pKUknTpxQUlKSMjIyFB8fL0kKDQ2Vj4+P09zx48crIyNDDz30kGJjY1W5cuVrqgkAAACANYTI/yHdunWTl5eX3n77bb322mvy9vZW1apV1bdvX0nSo48+qldeeUU9e/ZUenq6WrRooTfffNPxuUsXFxcdP35cnTt31h9//KGiRYvqscce0/DhwyVJgwcP1uHDh9WkSRN5eXnp+eefV+vWrWW326+pzgkTJujVV1/V9OnTVapUKR05ciTbeUOGDHF6smx4eLgkac2aNYqMjMwyf+LEiU5BsmDBgtdU17Xyk10St7YCwE1ly+0C/jf899MuAHBL2IzhXzPAtUhJSfnvw4oIkQCAOxO/3QG4Vpd+x7Xb7Vd9BggP1gEAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFjmmtsFAHnW636SR24XgdvNDDW5XQIAAECuYicSAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgmWtuFwDkVfZBdvn6+uZ2GQAAAMBtxU4kAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAy19wuADdH165ddfLkSS1cuDC3S7mtQkJC1LdvX/Xt2/f2X9zP7/ZfE8D1Mya3KwAA4H8CO5G3QdeuXWWz2WSz2eTm5qayZctqwIABOnv2bK7Wdakmm80mb29vVahQQV27dtW2bdtyta5LfvjhB7Vq1UolS5aUzWbLdwEZAAAAuBMRIm+Tpk2bKjk5WYcPH9bEiRM1bdo0DR06NLfL0owZM5ScnKw9e/bo/fffV2pqqu6//3599tlnuV2aTp8+rerVq+v999/P7VIAAAAA/Bch8jZxd3dXUFCQgoOD1bp1azVq1EgrV650jKenp6t3794qXry4PDw8VK9ePW3ZssVpjT179qhly5by9fVVoUKFVL9+fR06dCjb623ZskXFihXTuHHjrliXv7+/goKCFBISokceeURz585Vx44d1bNnT/3999+OefPmzdPdd98td3d3hYSEaMKECY6xf/3rX7r//vuzrF29enWNGDHCcfzxxx8rLCxMHh4eqly5sj744IMr1tasWTONGjVKbdq0ueK8f/r444/l7++vVatWSZIiIyPVq1cv9e3bV4ULF1ZgYKCmT5+u06dP65lnnlGhQoUUGhqqZcuWWb4GAAAAkJ8RInPBTz/9pB9//FEFCxZ09A0YMEDz5s1TTEyMtm/frtDQUDVp0kQnTpyQJP36669q0KCB3N3dtXr1am3btk3PPvusLly4kGX91atXq3Hjxho9erQGDhx4zfW98sorOnXqlCPkbtu2Te3atdNTTz2l3bt3a9iwYXrzzTcVHR0tSerYsaM2b97sFGj37NmjXbt2qUOHDpKkWbNmaciQIRo9erQSEhI0ZswYvfnmm4qJibnm+nLy1ltv6fXXX9eKFSv08MMPO/pjYmJUtGhRbd68Wb169dKLL76oJ554QnXq1NH27dv1yCOPqFOnTkpLS8t23fT0dKWkpDg1AAAAIN8yuOW6dOliXFxcjLe3t3F3dzeSTIECBczcuXONMcakpqYaNzc3M2vWLMc5586dMyVLljRvvfWWMcaYQYMGmbJly5pz587leI2oqCgzf/584+PjY+bMmXPVuiSZBQsWZOk/c+aMkWTGjRtnjDGmQ4cOpnHjxk5zXnvtNVOlShXHcfXq1c2IESMcx4MGDTL333+/47h8+fJm9uzZTmuMHDnSPPjgg1et80q1lilTxkycONEMGDDAlChRwvz0009O4xEREaZevXqO4wsXLhhvb2/TqVMnR19ycrKRZDZu3JjttYcOHWokZWn2i4/poNFoeaUBAIAc2e12I8nY7farzmUn8jZp2LCh4uPjFRcXpy5duuiZZ57R448/Lkk6dOiQzp8/r7p16zrmu7m5qXbt2kpISJAkxcfHq379+nJzc8vxGnFxcXriiSc0c+ZMPfnkk9ddqzFG0sUH70hSQkKCU22SVLduXR04cEAZGRmSLu5Gzp4923H+F198oY4dO0q6+NnGQ4cO6bnnnpOPj4+jjRo1Ksfbca/FhAkTNH36dK1fv1533313lvFq1ao5/uzi4qKAgABVrVrV0RcYGChJOnbsWLbrDxo0SHa73dGOHj16wzUDAAAAeRUh8jbx9vZWaGioqlevrk8//VRxcXH65JNPLJ/v6el51Tnly5dX5cqV9emnn+r8+fPXXeul4Fq2bFnL57Rv316JiYnavn27fvzxRx09etQRZFNTUyVJ06dPV3x8vKP99NNP2rRp03XXeUn9+vWVkZGhr776Ktvxy4P3pafk/vNYkjIzM7M9393dXb6+vk4NAAAAyK8IkbmgQIEC+te//qXBgwfrzJkzKl++vAoWLKgNGzY45pw/f15btmxRlSpVJF3cTVu3bt0Vw2HRokW1evVqHTx4UO3atbvuIPnuu+/K19dXjRo1kiSFhYU51SZJGzZsUMWKFeXi4iJJuuuuuxQREaFZs2Zp1qxZaty4sYoXLy7p4k5fyZIldfjwYYWGhjq1awmqOaldu7aWLVumMWPGaPz48Te8HgAAAICcESJzyRNPPCEXFxe9//778vb21osvvqjXXntNy5cv1969e9W9e3elpaXpueeekyT17NlTKSkpeuqpp7R161YdOHBAM2fOVGJiotO6xYsX1+rVq7Vv3z61b98+2wfv/NPJkyf1+++/65dfftHKlSvVtm1bzZ49W1OnTpW/v78kqV+/flq1apVGjhyp/fv3KyYmRlOmTFH//v2d1urYsaPmzJmjr7/+2nEr6yXDhw/X2LFjNXnyZO3fv1+7d+/WjBkz9M477+RYW2pqqmPXUpJ+/vlnxcfHKykpKcvcOnXqaOnSpRo+fLjefffdK75mAAAAANePEJlLXF1d1bNnT7311ls6ffq0/v3vf+vxxx9Xp06dVKNGDR08eFDfffedChcuLEkKCAjQ6tWrlZqaqoiICN13332aPn16tp+RDAoK0urVq7V792517NjR8bnF7DzzzDMqUaKEKleurBdffFE+Pj7avHmz46mqklSjRg199dVXmjNnju655x4NGTJEI0aMUNeuXZ3Watu2rY4fP660tDS1bt3aaaxbt276+OOPNWPGDFWtWlURERGKjo6+4k7k1q1bFR4ervDwcEnSq6++qvDwcA0ZMiTb+fXq1dOSJUs0ePBgvffeezmuCwAAAOD62cylp6gAsCQlJUV+fn6S7JL4fCSAG8d/iQEAue3S77h2u/2qzwBhJxIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGCZa24XAORZr/tJHrldxP8OM9TkdgkAAACwgJ1IAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlrrldAJBX2QfZ5evrm9tlAAAAALcVO5EAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLXHO7ACDP8vPL7QoAAJJkTG5XAAD5CjuReYDNZtPChQuv+bwjR47IZrMpPj7+ptd0o25Wbdf73gAAAAC4PoTIO0DXrl3VunXrHMeTk5PVrFkzSTmHr6utcSMyMjI0ceJEVa1aVR4eHipcuLCaNWumDRs23JLrXTJ//nw98sgjCggIuGPDMAAAAJDfECLzgKCgILm7u+fKtY0xeuqppzRixAj16dNHCQkJio2NVXBwsCIjI2/pLuDp06dVr149jRs37pZdAwAAAMC1IUTmAf+8ZbNs2bKSpPDwcNlsNkVGRmrYsGGKiYnRN998I5vNJpvNptjY2GzX+umnn9SsWTP5+PgoMDBQnTp10l9//ZXjtb/66ivNnTtXn332mbp166ayZcuqevXq+uijj/Too4+qW7duOn36tOx2u1xcXLR161ZJUmZmpooUKaIHHnjAsdbnn3+u4OBgy6+7U6dOGjJkiBo1amT5nKFDh6pEiRLatWuXJCkkJESjRo1S586d5ePjozJlymjRokX6888/FRUVJR8fH1WrVs1RNwAAAIArI0TmMZs3b5Ykff/990pOTtb8+fPVv39/tWvXTk2bNlVycrKSk5NVp06dLOeePHlSDz30kMLDw7V161YtX75cf/zxh9q1a5fj9WbPnq2KFSuqVatWWcb69eun48ePa+XKlfLz89O9997rCK+7d++WzWbTjh07lJqaKklau3atIiIibsK7kJUxRr169dJnn32mdevWqVq1ao6xiRMnqm7dutqxY4datGihTp06qXPnznr66ae1fft2lS9fXp07d5bJ4cEM6enpSklJcWoAAABAfkWIzGOKFSsmSQoICFBQUJCKFCkiHx8feXp6yt3dXUFBQQoKClLBggWznDtlyhSFh4drzJgxqly5ssLDw/Xpp59qzZo12r9/f7bX279/v8LCwrIdu9R/6dzIyEhHiIyNjVXjxo0VFham9evXO/puRYi8cOGCnn76aa1atUrr169XaGio03jz5s3Vo0cPVahQQUOGDFFKSopq1aqlJ554QhUrVtTAgQOVkJCgP/74I9v1x44dKz8/P0e7lt1UAAAA4H8NITIf2blzp9asWSMfHx9Hq1y5siTp0KFDOZ6X0w7d5SIiIrR+/XplZGRo7dq1ioyMdATL3377TQcPHlRkZOTNeClOXnnlFcXFxemHH35QqVKlsoz/c1cyMDBQklS1atUsfceOHct2/UGDBslutzva0aNHb2b5AAAAQJ5CiMxHUlNT1apVK8XHxzu1AwcOqEGDBtmeU7FiRSUkJGQ7dqm/YsWKkqQGDRro1KlT2r59u3744QenELl27VqVLFlSFSpUuOmvq3Hjxvr111/13XffZTvu5ubm+LPNZsuxLzMzM9vz3d3d5evr69QAAACA/Mo1twvAtbl0m2pGRkaW/sv7LlejRg3NmzdPISEhcnW19qN/6qmn1KFDB3377bdZPhc5YcIEBQQEqHHjxpIkf39/VatWTVOmTJGbm5sqV66s4sWL68knn9TixYtv2echH330UbVq1UodOnSQi4uLnnrqqVtyHQAAAADsRN4x7HZ7lh3C7G6bLF68uDw9PR0PxbHb7ZIuPoV0165dSkxM1F9//aXz589nOffll1/WiRMn1L59e23ZskWHDh3Sd999p2eeeSbHAPrUU0+pTZs26tKliz755BMdOXJEu3btUo8ePbRo0SJ9/PHH8vb2dsyPjIzUrFmzHIGxSJEiCgsL05dffnnNIfLEiROKj4/X3r17JUmJiYmKj4/X77//nmVumzZtNHPmTD3zzDOaO3fuNV0HAAAAgHWEyDtEbGyswsPDndrw4cOzzHN1ddXkyZM1bdo0lSxZUlFRUZKk7t27q1KlSqpZs6aKFSumDRs2ZDm3ZMmS2rBhgzIyMvTII4+oatWq6tu3r/z9/VWgQPZ/FWw2m7766iv961//0sSJE1WpUiXVr19fv/zyi2JjY9W6dWun+REREcrIyHD67GNkZGSWPisWLVqk8PBwtWjRQtLFQBseHq4PP/ww2/lt27ZVTEyMOnXqpPnz51/Tta6Hn+yyydBoNBott5tN190AANfOZqw+NQWAJCklJUV+fn6S7JL4fCQA5GX8FgQAF136Hddut1/1GSDsRAIAAAAALCNEAgAAAAAsI0QCAAAAACwjRAIAAAAALCNEAgAAAAAsI0QCAAAAACwjRAIAAAAALCNEAgAAAAAsI0QCAAAAACxzze0CgDzrdT/JI7eLyDvMUJPbJQAAAOAmYCcSAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgmWtuFwDkVfZBdvn6+uZ2GQAAAMBtxU4kAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMCyOzJExsbGymaz6eTJkznOGTZsmO69997bVtONCgkJ0bvvvpvbZVyRlfc9Ojpa/v7+t62mK8n199TPT7LZaDTapQYAAPKFGwqRXbt2lc1mk81mk5ubm8qWLasBAwbo7NmzN6u+fGPYsGGO99LV1VUhISF65ZVXlJqaesPrWg3bderUUXJysvz8/G7omjfDDz/8oFatWqlkyZKy2WxauHBhbpcEAAAAQJLrjS7QtGlTzZgxQ+fPn9e2bdvUpUsX2Ww2jRs37mbUl6/cfffd+v7773XhwgVt2LBBzz77rNLS0jRt2rRrXssYo4yMDMvzz58/r4IFCyooKOiar3UrnD59WtWrV9ezzz6rxx57LLfLAQAAAPBfN3w7q7u7u4KCghQcHKzWrVurUaNGWrlypWM8MzNTY8eOVdmyZeXp6anq1atr7ty5TmssXbpUFStWlKenpxo2bKgjR45cVy0ff/yxwsLC5OHhocqVK+uDDz5wGv/xxx917733ysPDQzVr1tTChQtls9kUHx/vmLNo0SJVqFBBHh4eatiwoWJiYnT5LZ7r169X/fr15enpqeDgYPXu3VunT592jB87dkytWrWSp6enypYtq1mzZlmq39XVVUFBQbrrrrv05JNPqmPHjlq0aJEkaebMmapZs6YKFSqkoKAgdejQQceOHXOce+lW1GXLlum+++6Tu7u7Pv/8cw0fPlw7d+507HJGR0dLkmw2m6ZOnapHH31U3t7eGj16dLa3s0ZHR6t06dLy8vJSmzZtdPz48Sx1jxo1SsWLF1ehQoXUrVs3vf7661l2P6/2s7lcs2bNNGrUKLVp08bSe3fpGv7+/lq1apUkKTIyUr169VLfvn1VuHBhBQYGavr06Tp9+rSeeeYZFSpUSKGhoVq2bJnlawAAAAD5nrkBXbp0MVFRUY7j3bt3m6CgIHP//fc7+kaNGmUqV65sli9fbg4dOmRmzJhh3N3dTWxsrDHGmKSkJOPu7m5effVVs2/fPvP555+bwMBAI8n8/fffOV576NChpnr16o7jzz//3JQoUcLMmzfPHD582MybN88UKVLEREdHG2OMsdvtpkiRIubpp582e/bsMUuXLjUVK1Y0ksyOHTuMMcYcPnzYuLm5mf79+5t9+/aZL774wpQqVcqploMHDxpvb28zceJEs3//frNhwwYTHh5uunbt6qilWbNmpnr16mbjxo1m69atpk6dOsbT09NMnDjR8usxxpjevXubIkWKGGOM+eSTT8zSpUvNoUOHzMaNG82DDz5omjVr5pi7Zs0aI8lUq1bNrFixwhw8eND85z//Mf369TN33323SU5ONsnJySYtLc0YY4wkU7x4cfPpp5+aQ4cOmV9++cWxxqXXumnTJlOgQAEzbtw4k5iYaCZNmmT8/f2Nn5+f0/vu4eFhPv30U5OYmGiGDx9ufH19r+lnczWSzIIFC7L0lylTxvGejhs3zgQEBJi4uDjHeEREhClUqJAZOXKk2b9/vxk5cqRxcXExzZo1Mx999JHZv3+/efHFF01AQIA5ffp0jtc/e/assdvtjnb06FEjydglY2g02v83AACQZ9ntdiPJ2O32q869of/qd+nSxbi4uBhvb2/j7u5uJJkCBQqYuXPnGmMu/vLt5eVlfvzxR6fznnvuOdO+fXtjjDGDBg0yVapUcRofOHCgudYQWb58eTN79mynOSNHjjQPPvigMcaYqVOnmoCAAHPmzBnH+PTp080/Q+TAgQPNPffc47TGG2+84VTLc889Z55//nmnOevWrTMFChQwZ86cMYmJiUaS2bx5s2M8ISHBSLqmELl161ZTtGhR07Zt22znb9myxUgyp06dMsb8f4hcuHDhFde9RJLp27evU9/lIbJ9+/amefPmTnOefPJJpxB5//33m5dfftlpTt26da/pZ3M1VwuRAwYMMCVKlDA//fST03hERISpV6+e4/jChQvG29vbdOrUydGXnJxsJJmNGzfmeP2hQ4caSVkaIZJGu6wBAIA861pC5A1/JrJhw4aaOnWqTp8+rYkTJ8rV1VWPP/64JOngwYNKS0tT48aNnc45d+6cwsPDJUkJCQm6//77ncYffPBBp2MfHx/Hn59++ml9+OGHTuOnT5/WoUOH9Nxzz6l79+6O/gsXLjgeEpOYmKhq1arJw8PDMV67dm2ndRITE1WrVi2nvsvn7Ny5U7t27XK6RdUYo8zMTP3888/av3+/XF1ddd999znGK1eubOmJprt375aPj48yMjJ07tw5tWjRQlOmTJEkbdu2TcOGDdPOnTv1999/KzMzU5KUlJSkKlWqONaoWbPmVa9jdW5CQkKW20kffPBBLV++3HGcmJiol156yWlO7dq1tXr1aknWfjY3YsKECTp9+rS2bt2qcuXKZRmvVq2a488uLi4KCAhQ1apVHX2BgYGS5HRr8OUGDRqkV1991XGckpKi4ODgG64dAAAAyItuOER6e3srNDRUkvTpp5+qevXq+uSTT/Tcc885niy6ZMkSlSpVyuk8d3d3y9f452cWfX19s4xfus706dOzBFIXFxfL17EiNTVVPXr0UO/evbOMlS5dWvv377/utStVqqRFixbJ1dVVJUuWVMGCBSVdDGJNmjRRkyZNNGvWLBUrVkxJSUlq0qSJzp0757SGt7e35etdy9zrdat/NvXr19eSJUv01Vdf6fXXX88y7ubm5nR86UnC/zyW5Ajl2XF3d7+mv68AAADA/7IbDpH/VKBAAf3rX//Sq6++qg4dOqhKlSpyd3dXUlKSIiIisj0nLCzM8fCYSzZt2uR0fCmk5iQwMFAlS5bU4cOH1bFjx2znVKpUSZ9//rnS09MdgWDLli1Z5ixdutSp7/I5NWrU0N69e3OsqXLlyrpw4YK2bdvm2NVMTEy84ncvXlKwYMFs1923b5+OHz+uf//7344dsK1bt151vUtrXstTWv8pLCxMcXFxTn2X/2wqVaqkLVu2qHPnzo6+f75nVn42N6J27drq2bOnmjZtKldXV/Xv3/+mXwMAAADA/7vhp7Ne7oknnpCLi4vef/99FSpUSP3799crr7yimJgYHTp0SNu3b9d7772nmJgYSdILL7ygAwcO6LXXXlNiYqJmz57teILotRg+fLjGjh2ryZMna//+/dq9e7dmzJihd955R5LUoUMHZWZm6vnnn1dCQoK+++47jR8/XtL/70b16NFD+/bt08CBA7V//3599dVXTk8zlaSBAwfqxx9/VM+ePRUfH68DBw7om2++Uc+ePSVdDFVNmzZVjx49FBcXp23btqlbt27y9PS87ve0dOnSKliwoN577z0dPnxYixYt0siRIy2dGxISop9//lnx8fH666+/lJ6ebvm6vXv31vLlyzV+/HgdOHBAU6ZMcbqVVZJ69eqlTz75RDExMTpw4IBGjRqlXbt2Od4v6eo/m+ykpqYqPj7esQt96TUkJSVlmVunTh0tXbpUw4cP17vvvmv59QEAAAC4Djfy4cvLn856ydixY02xYsVMamqqyczMNO+++66pVKmScXNzM8WKFTNNmjQxa9eudcz/9ttvTWhoqHF3dzf169c3n376qZGu7cE6xhgza9Ysc++995qCBQuawoULmwYNGpj58+c7xjds2GCqVatmChYsaO677z4ze/ZsI8ns27fPMeebb75x1BIZGWmmTp1qJDk9kGfz5s2mcePGxsfHx3h7e5tq1aqZ0aNHO8aTk5NNixYtjLu7uyldurT57LPPnJ4kavX1/NPs2bNNSEiIcXd3Nw8++KBZtGiRkf7/oUCXPxTnkrNnz5rHH3/c+Pv7G0lmxowZxhhjpKwPq8lujU8++cTcddddxtPT07Rq1cqMHz/e6cE6xhgzYsQIU7RoUePj42OeffZZ07t3b/PAAw84zbnaz+Zyl2q5vHXp0sUx5/L3dO3atcbb29tMnjzZGHPxwTp9+vRxWje7n0N278WVOD50nNsPMaHR7rQGAADyrGt5sI7NGGNuf3S9M8yaNUvPPPOM7HZ7jjuFo0eP1ocffqijR4/e5uryrsaNGysoKEgzZ87M7VJuiZSUlP8+FMguKetndHFr5N9/UwEAANx6l37Htdvt2T6H5p9u6mci73SfffaZypUrp1KlSmnnzp0aOHCg2rVr5xQgP/jgA9WqVUsBAQHasGGD3n77bcetqsgqLS1NH374oZo0aSIXFxd98cUX+v7777Vy5crcLg0AAADALZCvQuTvv/+uIUOG6Pfff1eJEiX0xBNPaPTo0U5zLn2u78SJEypdurT69eunQYMG5VLFdz6bzaalS5dq9OjROnv2rCpVqqR58+apUaNGuV0aAAAAgFsgX9/OClwPbmfNHfybCgAA4Na5lttZb/rTWQEAAAAA/7sIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADL8tX3RAI31et+kkduF5E7zFC+bwMAACC/YicSAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGCZa24XAORV9kF2+fr65nYZAAAAwG3FTiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAy19wuAMiz/PxyuwIAwO1mTG5XAAC5Ls/tRHbt2lWtW7e+pnNsNpsWLlx4Tef8/vvvaty4sby9veXv739N594u1/O6/pccOXJENptN8fHxuV0KAAAAkG/ccSGya9eustlsstlsKliwoEJDQzVixAhduHBBkjRp0iRFR0ff8jomTpyo5ORkxcfHa//+/Tdt3dsd/H7//Xf16dNHoaGh8vDwUGBgoOrWraupU6cqLS3tttVxPT766CNFRkbK19dXNptNJ0+ezO2SAAAAgHzvjrydtWnTppoxY4bS09O1dOlSvfzyy3Jzc9OgQYPkd5tuITx06JDuu+8+VahQ4bZc71Y4fPiw6tatK39/f40ZM0ZVq1aVu7u7du/erY8++kilSpXSo48+mttl5igtLU1NmzZV06ZNNWjQoNwuBwAAAIDuwJ1ISXJ3d1dQUJDKlCmjF198UY0aNdKiRYskZb2dNTIyUr1799aAAQNUpEgRBQUFadiwYVdcf+jQoSpRooR27dqV7XhISIjmzZunzz77TDabTV27dpUkJSUlKSoqSj4+PvL19VW7du30xx9/OJ07depUlS9fXgULFlSlSpU0c+ZMp3UlqU2bNrLZbI5jSfrmm29Uo0YNeXh4qFy5cho+fLhj91WSDhw4oAYNGsjDw0NVqlTRypUrr/IuSi+99JJcXV21detWtWvXTmFhYSpXrpyioqK0ZMkStWrVyjH3Rl+bMUbDhg1T6dKl5e7urpIlS6p3796O8fT0dPXv31+lSpWSt7e37r//fsXGxl6x/r59++r111/XAw88cNXXKkkZGRl69tlnVblyZSUlJUm6uPM7bdo0tWzZUl5eXgoLC9PGjRt18OBBRUZGytvbW3Xq1NGhQ4csXQMAAADI7+7IEHk5T09PnTt3LsfxmJgYeXt7Ky4uTm+99ZZGjBiRbcgyxqhXr1767LPPtG7dOlWrVi3b9bZs2aKmTZuqXbt2Sk5O1qRJk5SZmamoqCidOHFCa9eu1cqVK3X48GE9+eSTjvMWLFigPn36qF+/fvrpp5/Uo0cPPfPMM1qzZo1jXUmaMWOGkpOTHcfr1q1T586d1adPH+3du1fTpk1TdHS0Ro8eLUnKzMzUY489poIFCyouLk4ffvihBg4ceMX37Pjx41qxYoVefvlleXt7ZzvHZrM51r/R1zZv3jxNnDhR06ZN04EDB7Rw4UJVrVrVcX7Pnj21ceNGzZkzR7t27dITTzyhpk2b6sCBA1d8HValp6friSeeUHx8vNatW6fSpUs7xkaOHKnOnTsrPj5elStXVocOHdSjRw8NGjRIW7dulTFGPXv2vOLaKSkpTg0AAADIt8wdpkuXLiYqKsoYY0xmZqZZuXKlcXd3N/37988ybowxERERpl69ek5r1KpVywwcONBxLMl8/fXXpkOHDiYsLMz85z//uWodUVFRpkuXLo7jFStWGBcXF5OUlOTo27Nnj5FkNm/ebIwxpk6dOqZ79+5O6zzxxBOmefPmTrUsWLDAac7DDz9sxowZ49Q3c+ZMU6JECWOMMd99951xdXU1v/76q2N82bJl2a51yaZNm4wkM3/+fKf+gIAA4+3tbby9vc2AAQNu2mubMGGCqVixojl37lyWWn755Rfj4uLiVP+l1z1o0KBs6/+nNWvWGEnm77//dur/+eefjSSzbt068/DDD5t69eqZkydPOs2RZAYPHuw43rhxo5FkPvnkE0ffF198YTw8PHK8/tChQ42kLM1+8Rl9NBqNRstPDQD+R9ntdiPJ2O32q869I3ciFy9eLB8fH3l4eKhZs2Z68sknr3iL6uU7iiVKlNCxY8ec+l555RXFxcXphx9+UKlSpRz9Y8aMkY+Pj6Ndug3ycgkJCQoODlZwcLCjr0qVKvL391dCQoJjTt26dZ3Oq1u3rmM8Jzt37tSIESOc6ujevbuSk5OVlpbmuHbJkiUd5zz44INXXDMnmzdvVnx8vO6++26lp6fftNf2xBNP6MyZMypXrpy6d++uBQsWOG7H3b17tzIyMlSxYkWn17h27dqbchtp+/btdfr0aa1YsSLbz8z+8+9HYGCgJDntkgYGBurs2bM57jAOGjRIdrvd0Y4ePXrDNQMAAAB51R35YJ2GDRtq6tSpKliwoEqWLClX1yuX6ebm5nRss9mUmZnp1Ne4cWN98cUX+u6779SxY0dH/wsvvKB27do5jv8Z1G6X1NRUDR8+XI899liWMQ8Pj+taMzQ0VDabTYmJiU795cqVk3TxFuGbKTg4WImJifr++++1cuVKvfTSS3r77be1du1apaamysXFRdu2bZOLi4vTeT4+Pjd87ebNm+vzzz/Xxo0b9dBDD2UZ/+ffj0u38GbXd/nfmUvc3d3l7u5+w3UCAAAA/wvuyBDp7e2t0NDQm7rmo48+qlatWqlDhw5ycXHRU089JUkqUqSIihQpctXzw8LCdPToUR09etSxY7d3716dPHlSVapUcczZsGGDunTp4jhvw4YNjnHpYnjJyMhwWrtGjRpKTEzM8TVfunZycrJKlCghSdq0adMV6w0ICFDjxo01ZcoU9erVK8fPRd7M1+bp6alWrVqpVatWevnll1W5cmXt3r1b4eHhysjI0LFjx1S/fv0r1n09XnzxRd1zzz169NFHtWTJEkVERNz0awAAAAC46I4MkbdKmzZtNHPmTHXq1Emurq5q27at5XMbNWqkqlWrqmPHjnr33Xd14cIFvfTSS4qIiFDNmjUlSa+99pratWun8PBwNWrUSN9++63mz5+v77//3rFOSEiIVq1apbp168rd3V2FCxfWkCFD1LJlS5UuXVpt27ZVgQIFtHPnTv30008aNWqUGjVqpIoVK6pLly56++23lZKSojfeeOOqNX/wwQeqW7euatasqWHDhqlatWoqUKCAtmzZon379um+++67aa8tOjpaGRkZuv/+++Xl5aXPP/9cnp6eKlOmjAICAtSxY0d17txZEyZMUHh4uP7880+tWrVK1apVU4sWLbKt//fff9fvv/+ugwcPSrp4W2yhQoVUunTpLMG/V69eysjIUMuWLbVs2TLVq1fP8s8WAAAAwDW4DZ/RvCaXPzjnauMRERGmT58+TnMufyiO5PwAmi+//NJ4eHiYefPm5Xidy9cw5uIDYh599FHj7e1tChUqZJ544gnz+++/O8354IMPTLly5Yybm5upWLGi+eyzz5zGFy1aZEJDQ42rq6spU6aMo3/58uWmTp06xtPT0/j6+pratWubjz76yDGemJho6tWrZwoWLGgqVqxoli9fnuV1Zee3334zPXv2NGXLljVubm7Gx8fH1K5d27z99tvm9OnTN+21LViwwNx///3G19fXeHt7mwceeMB8//33jvFz586ZIUOGmJCQEOPm5mZKlChh2rRpY3bt2pVj7Tk90GbGjBnGmP9/sM6OHTsc50yYMMEUKlTIbNiwwRiT9Wef3Tk5PbgnJ5c+dCzZc/35DjQajUa79Q0A8oNrebCOzRhjciW9AnlUSkrKfx/gY5fkm9vlAABuMX5TApAfXPod1263y9f3yr/j3pFPZwUAAAAA3JkIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLXHO7ACDPet1P8sjtIm4dM9TkdgkAAAC4A7ETCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsMw1twsA8ir7ILt8fX1zuwwAAADgtmInEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgmWtuFwDkWX5+uV0BcGczJrcrAAAAtwA7kflIbGysbDabTp48mdul3BTDhg3Tvffem9tlAAAAAPkKITIP+vDDD1WoUCFduHDB0Zeamio3NzdFRkY6zb0UHA8dOqQ6deooOTlZfnlgB+3s2bPq2rWrqlatKldXV7Vu3Tq3SwIAAAAgQmSe1LBhQ6Wmpmrr1q2OvnXr1ikoKEhxcXE6e/aso3/NmjUqXbq0ypcvr4IFCyooKEg2my03yr4mGRkZ8vT0VO/evdWoUaPcLgcAAADAfxEi86BKlSqpRIkSio2NdfTFxsYqKipKZcuW1aZNm5z6GzZs6Pjz5bezTp8+XcHBwfLy8lKbNm30zjvvyN/f3+l633zzjWrUqCEPDw+VK1dOw4cPd9oFTUpKUlRUlHx8fOTr66t27drpjz/+cIxfuu105syZCgkJkZ+fn5566imdOnUqx9fo7e2tqVOnqnv37goKCrL0vhw6dEjlypVTz549ZYxRdHS0/P39tXjxYlWqVEleXl5q27at0tLSFBMTo5CQEBUuXFi9e/dWRkZGjuump6crJSXFqQEAAAD5FSEyj2rYsKHWrFnjOF6zZo0iIyMVERHh6D9z5ozi4uIcIfJyGzZs0AsvvKA+ffooPj5ejRs31ujRo53mrFu3Tp07d1afPn20d+9eTZs2TdHR0Y55mZmZioqK0okTJ7R27VqtXLlShw8f1pNPPum0zqFDh7Rw4UItXrxYixcv1tq1a/Xvf//7pr0fu3btUr169dShQwdNmTLFsdualpamyZMna86cOVq+fLliY2PVpk0bLV26VEuXLtXMmTM1bdo0zZ07N8e1x44dKz8/P0cLDg6+aXUDAAAAeY5BnjR9+nTj7e1tzp8/b1JSUoyrq6s5duyYmT17tmnQoIExxphVq1YZSeaXX34xxhizZs0aI8n8/fffxhhjnnzySdOiRQundTt27Gj8/Pwcxw8//LAZM2aM05yZM2eaEiVKGGOMWbFihXFxcTFJSUmO8T179hhJZvPmzcYYY4YOHWq8vLxMSkqKY85rr71m7r//fkuvtUuXLiYqKipL/9ChQ0316tXNhg0bTOHChc348eOdxmfMmGEkmYMHDzr6evToYby8vMypU6ccfU2aNDE9evTI8fpnz541drvd0Y4ePWokGfvFZ0/SaLScGgAAyDPsdruRZOx2+1XnshOZR0VGRur06dPasmWL1q1bp4oVK6pYsWKKiIhwfC4yNjZW5cqVU+nSpbNdIzExUbVr13bqu/x4586dGjFihHx8fByte/fuSk5OVlpamhISEhQcHOy0O1elShX5+/srISHB0RcSEqJChQo5jkuUKKFjx47d8PuQlJSkxo0ba8iQIerXr1+WcS8vL5UvX95xHBgYqJCQEPn4+Dj1XakWd3d3+fr6OjUAAAAgv+J7IvOo0NBQ3XXXXVqzZo3+/vtvRURESJJKliyp4OBg/fjjj1qzZo0eeuihG7pOamqqhg8frsceeyzLmIeHh+V13NzcnI5tNpsyMzNvqDZJKlasmEqWLKkvvvhCzz77bJaAl911b1UtAAAAQH7ATmQe1rBhQ8XGxio2Ntbpqz0aNGigZcuWafPmzTl+HlK6+ICeLVu2OPVdflyjRg0lJiYqNDQ0SytQoIDCwsJ09OhRHT161HHO3r17dfLkSVWpUuXmvNAr8PT01OLFi+Xh4aEmTZpc8WE9AAAAAG4cITIPa9iwodavX6/4+HjHTqQkRUREaNq0aTp37twVQ2SvXr20dOlSvfPOOzpw4ICmTZumZcuWOX0FyJAhQ/TZZ59p+PDh2rNnjxISEjRnzhwNHjxYktSoUSNVrVpVHTt21Pbt27V582Z17txZERERqlmz5g29vr179yo+Pl4nTpyQ3W5XfHy84uPjs8zz9vbWkiVL5OrqqmbNmik1NfWGrgsAAAAgZ4TIPKxhw4Y6c+aMQkNDFRgY6OiPiIjQqVOnHF8FkpO6devqww8/1DvvvKPq1atr+fLleuWVV5xuU23SpIkWL16sFStWqFatWnrggQc0ceJElSlTRtLFW0G/+eYbFS5cWA0aNFCjRo1Urlw5ffnllzf8+po3b67w8HB9++23io2NVXh4uMLDw7Od6+Pjo2XLlskYoxYtWuj06dM3fP2r8ZNdNhkaLVfaHfDYnKs3AADwP8lmDP+lx//r3r279u3bp3Xr1uV2KXeslJQU+fn5SbJL4iE7yB38mxsAANxMl37HtdvtV32QJA/WyefGjx+vxo0by9vbW8uWLVNMTIw++OCD3C4LAAAAwB2KEJnPbd68WW+99ZZOnTqlcuXKafLkyerWrVtulwUAAADgDkWIzOe++uqr3C4BAAAAQB7Cg3UAAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlvF0VuB6ve4neeR2ETfGDOUb6wEAAHBt2IkEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFjmmtsFAHmVfZBdvr6+uV0GAAAAcFuxEwkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCUlSdHS0/P39b9n6w4YN07333us47tq1q1q3bn1T17zt/Pwkm41Go9Fo+aEBABwIkXnI77//rj59+ig0NFQeHh4KDAxU3bp1NXXqVKWlpeV2eTfV2bNn1bVrV1WtWlWurq43HDgBAAAA3ByuuV0ArDl8+LDq1q0rf39/jRkzRlWrVpW7u7t2796tjz76SKVKldKjjz6a22XeNBkZGfL09FTv3r01b9683C4HAAAAwH+xE5lHvPTSS3J1ddXWrVvVrl07hYWFqVy5coqKitKSJUvUqlUrx9x33nlHVatWlbe3t4KDg/XSSy8pNTXVab3o6GiVLl1aXl5eatOmjY4fP+4Ys9vtcnFx0datWyVJmZmZKlKkiB544AHHnM8//1zBwcGO44EDB6pixYry8vJSuXLl9Oabb+r8+fPX/Xq9vb01depUde/eXUFBQZbOOXTokMqVK6eePXvKGOO4RXfx4sWqVKmSvLy81LZtW6WlpSkmJkYhISEqXLiwevfurYyMjOuuFQAAAMhPCJF5wPHjx7VixQq9/PLL8vb2znaO7R+f1yhQoIAmT56sPXv2KCYmRqtXr9aAAQMc43FxcXruuefUs2dPxcfHq2HDhho1apRj3M/PT/fee69iY2MlSbt375bNZtOOHTscYXTt2rWKiIhwnFOoUCFFR0dr7969mjRpkqZPn66JEyfezLfhinbt2qV69eqpQ4cOmjJliuP9SEtL0+TJkzVnzhwtX75csbGxatOmjZYuXaqlS5dq5syZmjZtmubOnZvj2unp6UpJSXFqAAAAQH5FiMwDDh48KGOMKlWq5NRftGhR+fj4yMfHRwMHDnT09+3bVw0bNlRISIgeeughjRo1Sl999ZVjfNKkSWratKkGDBigihUrqnfv3mrSpInT2pGRkY4QGRsbq8aNGyssLEzr16939P0zRA4ePFh16tRRSEiIWrVqpf79+ztd81b68ccfFRkZqf79+zuFYUk6f/68pk6dqvDwcDVo0EBt27bV+vXr9cknn6hKlSpq2bKlGjZsqDVr1uS4/tixY+Xn5+do/9yBBQAAAPIbQmQetnnzZsXHx+vuu+9Wenq6o//777/Xww8/rFKlSqlQoULq1KmTjh8/7nj4TkJCgu6//36ntR588EGn44iICK1fv14ZGRlau3atIiMjHcHyt99+08GDBxUZGemY/+WXX6pu3boKCgqSj4+PBg8erKSkpFv34v8rKSlJjRs31pAhQ9SvX78s415eXipfvrzjODAwUCEhIfLx8XHqO3bsWI7XGDRokOx2u6MdPXr05r4IAAAAIA8hROYBoaGhstlsSkxMdOovV66cQkND5enp6eg7cuSIWrZsqWrVqmnevHnatm2b3n//fUnSuXPnLF+zQYMGOnXqlLZv364ffvjBKUSuXbtWJUuWVIUKFSRJGzduVMeOHdW8eXMtXrxYO3bs0BtvvHFN17texYoVU+3atfXFF19ke5upm5ub07HNZsu2LzMzM8druLu7y9fX16kBAAAA+RUhMg8ICAhQ48aNNWXKFJ0+ffqKc7dt26bMzExNmDBBDzzwgCpWrKjffvvNaU5YWJji4uKc+jZt2uR07O/vr2rVqmnKlClyc3NT5cqV1aBBA+3YsUOLFy92upX1xx9/VJkyZfTGG2+oZs2aqlChgn755ZcbfNXWeHp6avHixfLw8FCTJk106tSp23JdAAAAIL8iROYRH3zwgS5cuKCaNWvqyy+/VEJCghITE/X5559r3759cnFxkXRx1/L8+fN67733dPjwYc2cOVMffvih01q9e/fW8uXLNX78eB04cEBTpkzR8uXLs1wzMjJSs2bNcgTGIkWKKCwsTF9++aVTiKxQoYKSkpI0Z84cHTp0SJMnT9aCBQtu+DXv3btX8fHxOnHihOx2u+Lj4xUfH59lnre3t5YsWSJXV1c1a9Ysy5NoAQAAANw8hMg8onz58tqxY4caNWqkQYMGqXr16qpZs6bee+899e/fXyNHjpQkVa9eXe+8847GjRune+65R7NmzdLYsWOd1nrggQc0ffp0TZo0SdWrV9eKFSs0ePDgLNeMiIhQRkaG02cfIyMjs/Q9+uijeuWVV9SzZ0/de++9+vHHH/Xmm2/e8Gtu3ry5wsPD9e233yo2Nlbh4eEKDw/Pdq6Pj4+WLVsmY4xatGhx1R3bm8FPdtlkaDQajZYfmk1XbQCQX9iMMSa3iwDykpSUFPn5+UmyS+LzkQCAi/iNCkBedul3XLvdftVngLATCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsMw1twsA8qzX/SSP3C7i+pihJrdLAAAAQB7FTiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAy19wuAMir7IPs8vX1ze0yAAAAgNuKnUgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWuuV0AkGf5+eV2BUDeYUxuVwAAAG4SdiLhxGazaeHChTmOHzlyRDabTfHx8betppx07dpVrVu3zu0yAAAAgHwl34bI33//XX369FFoaKg8PDwUGBiounXraurUqUpLS7vt9cTGxspmszlaYGCgHn/8cR0+fPimrHvy5ElL85OTk9WsWbMbuubNkJycrA4dOqhixYoqUKCA+vbtm9slAQAAAFA+DZGHDx9WeHi4VqxYoTFjxmjHjh3auHGjBgwYoMWLF+v777/P8dzz58/f0toSExP122+/6euvv9aePXvUqlUrZWRkXNda11LruXPnJElBQUFyd3e/ruvdTOnp6SpWrJgGDx6s6tWr53Y5AAAAAP4rX4bIl156Sa6urtq6davatWunsLAwlStXTlFRUVqyZIlatWrlmGuz2TR16lQ9+uij8vb21ujRoyVJ33zzjWrUqCEPDw+VK1dOw4cP14ULFyRJzz77rFq2bOl0zfPnz6t48eL65JNPrlhb8eLFVaJECTVo0EBDhgzR3r17dfDgQW3ZskWNGzdW0aJF5efnp4iICG3fvt3p3Mtr7d69uxo2bChJKly4sGw2m7p27SpJioyMVM+ePdW3b18VLVpUTZo0cazxz9tZN2/erPDwcHl4eKhmzZrasWNHlpoXLVqkChUqyMPDQw0bNlRMTEyW3c/169erfv368vT0VHBwsHr37q3Tp0/n+D6EhIRo0qRJ6ty5s/wsfvZwy5YtKlasmMaNGydJGjZsmO699159+umnKl26tHx8fPTSSy8pIyNDb731loKCglS8eHHHzzQn6enpSklJcWoAAABAfpXvQuTx48e1YsUKvfzyy/L29s52js1mczoeNmyY2rRpo927d+vZZ5/VunXr1LlzZ/Xp00d79+7VtGnTFB0d7Qgj3bp10/Lly5WcnOxYY/HixUpLS9OTTz5puVZPT09JF3cJT506pS5dumj9+vXatGmTKlSooObNm+vUqVM51jp8+HDNmzdP0sUdzuTkZE2aNMkxNyYmRgULFtSGDRv04YcfZrl+amqqWrZsqSpVqmjbtm0aNmyY+vfv7zTn559/Vtu2bdW6dWvt3LlTPXr00BtvvOE059ChQ2ratKkef/xx7dq1S19++aXWr1+vnj17Wn4vrmb16tVq3LixRo8erYEDBzpde9myZVq+fLm++OILffLJJ2rRooX+85//aO3atRo3bpwGDx6suLi4HNceO3as/Pz8HC04OPim1Q0AAADkOSaf2bRpk5Fk5s+f79QfEBBgvL29jbe3txkwYICjX5Lp27ev09yHH37YjBkzxqlv5syZpkSJEo7jKlWqmHHjxjmOW7VqZbp27ZpjXWvWrDGSzN9//22MMea3334zderUMaVKlTLp6elZ5mdkZJhChQqZb7/99oq1Xr7uJRERESY8PDzLupLMggULjDHGTJs2zQQEBJgzZ844xqdOnWokmR07dhhjjBk4cKC55557nNZ44403nK753HPPmeeff95pzrp160yBAgWc1s5JRESE6dOnT5b+Ll26mKioKDN//nzj4+Nj5syZ4zQ+dOhQ4+XlZVJSUhx9TZo0MSEhISYjI8PRV6lSJTN27Ngcr3/27Fljt9sd7ejRo0aSsV983iSNRrPSAADAHc1utxtJxm63X3UuX/HxX5s3b1ZmZqY6duyo9PR0p7GaNWs6He/cuVMbNmxwug0yIyNDZ8+eVVpamry8vNStWzd99NFHGjBggP744w8tW7ZMq1evvmodd911l4wxSktLU/Xq1TVv3jwVLFhQf/zxhwYPHqzY2FgdO3ZMGRkZSktLU1JS0hVrvZL77rvviuMJCQmqVq2aPDw8HH0PPvig05zExETVqlXLqa927dpOxzt37tSuXbs0a9YsR58xRpmZmfr5558VFhZmuebLxcXFafHixZo7d262T2oNCQlRoUKFHMeBgYFycXFRgQIFnPqOHTuW4zXc3d3viM+JAgAAAHeCfBciQ0NDZbPZlJiY6NRfrlw5Sf9/C+k/XX7ba2pqqoYPH67HHnssy9xLgatz5856/fXXtXHjRv34448qW7as6tevf9X61q1bJ19fXxUvXtwp/HTp0kXHjx/XpEmTVKZMGbm7u+vBBx90PBAnp1qv5Frm3ojU1FT16NFDvXv3zjJWunTpG1q7fPnyCggI0KeffqoWLVrIzc3NafzyY5vNlm1fZmbmDdUBAAAA5Bf5LkQGBASocePGmjJlinr16nVdQapGjRpKTExUaGjoFa/TunVrzZgxQxs3btQzzzxjae2yZcvK398/S/+GDRv0wQcfqHnz5pKko0eP6q+//rrqegULFpSk63rCa1hYmGbOnKmzZ886wvGmTZuc5lSqVElLly516tuyZYvTcY0aNbR3794rvl/Xq2jRopo/f74iIyPVrl07ffXVV1lCIgAAAICbJ989WEeSPvjgA124cEE1a9bUl19+qYSEBCUmJurzzz/Xvn375OLicsXzhwwZos8++0zDhw/Xnj17lJCQoDlz5mjw4MFO87p166aYmBglJCSoS5cuN1RzhQoVNHPmTCUkJCguLk4dO3bMdtf0cmXKlJHNZtPixYv1559/KjU11fI1O3ToIJvNpu7du2vv3r1aunSpxo8f7zSnR48e2rdvnwYOHKj9+/frq6++UnR0tKT/f0DRwIED9eOPP6pnz56Kj4/XgQMH9M0331z1wTrx8fGKj49Xamqq/vzzT8XHx2vv3r1Z5hUvXlyrV6/Wvn371L59e8dTcgEAAADcfPkyRJYvX147duxQo0aNNGjQIFWvXl01a9bUe++9p/79+2vkyJFXPL9JkyZavHixVqxYoVq1aumBBx7QxIkTVaZMGad5jRo1UokSJdSkSROVLFnyhmr+5JNP9Pfff6tGjRrq1KmTevfureLFi1/1vFKlSmn48OF6/fXXFRgYeE1PRPXx8dG3336r3bt3Kzw8XG+88Ybj6zMuKVu2rObOnav58+erWrVqmjp1quPprJc+R1itWjWtXbtW+/fvV/369RUeHq4hQ4Zc9T0JDw9XeHi4tm3bptmzZys8PNyxE3u5oKAgrV69Wrt371bHjh2v+7s1r4Wf7LLJ3NZ2BzwehUa7vgYAAP5n2Izhv+63SmpqqkqVKqUZM2Zk+/nJ/1WjR4/Whx9+qKNHj+Z2KbdESkrKf7+70i7J97Zem39aAQAAcCtc+h3XbrfL1/fKv+Pmu89E3g6ZmZn666+/NGHCBPn7++vRRx/N7ZJuqQ8++EC1atVSQECANmzYoLfffvumfgckAAAAgDsHIfIWSEpKUtmyZXXXXXcpOjparq7/22/zgQMHNGrUKJ04cUKlS5dWv379NGjQoNwuCwAAAMAtwO2swDXidlYAAAD8r7mW21nz5YN1AAAAAADXhxAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALDsf/u7J4Bb6XU/yeP2XtI2/MbON0N5vCsAAABuDDuRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLXHO7ACCvsg+yy9fXN7fLAAAAAG4rdiIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIiFJioyMVN++fW/b9UJCQvTuu+/e0Bq3u+Ys/Pwkm412Iw0AAAB5DiEyj+jatatsNptsNpsKFiyo0NBQjRgxQhcuXMjt0m6JPXv26PHHH1dISIhsNtsNB04AAAAANwchMg9p2rSpkpOTdeDAAfXr10/Dhg3T22+/ndtl5SgjI0OZmZnXdW5aWprKlSunf//73woKCrrJlQEAAAC4XoTIPMTd3V1BQUEqU6aMXnzxRTVq1EiLFi2SJP3999/q3LmzChcuLC8vLzVr1kwHDhxwOn/Dhg2KjIyUl5eXChcurCZNmujvv/92jGdmZmrAgAEqUqSIgoKCNGzYMKfz33nnHVWtWlXe3t4KDg7WSy+9pNTUVMd4dHS0/P39tWjRIlWpUkXu7u5KSkrSsWPH1KpVK3l6eqps2bKaNWvWVV9rrVq19Pbbb+upp56Su7u7pfdnyZIl8vPzc6zftWtXtW7dWmPGjFFgYKD8/f0du7evvfaaihQporvuukszZsywtD4AAAAAQmSe5unpqXPnzkm6GJi2bt2qRYsWaePGjTLGqHnz5jp//rwkKT4+Xg8//LCqVKmijRs3av369WrVqpUyMjIc68XExMjb21txcXF66623NGLECK1cudIxXqBAAU2ePFl79uxRTEyMVq9erQEDBjjVlJaWpnHjxunjjz/Wnj17VLx4cXXt2lVHjx7VmjVrNHfuXH3wwQc6duzYTX0vZs+erfbt22vWrFnq2LGjo3/16tX67bff9MMPP+idd97R0KFD1bJlSxUuXFhxcXF64YUX1KNHD/3nP//Jce309HSlpKQ4NQAAACDfMsgTunTpYqKioowxxmRmZpqVK1cad3d3079/f7N//34jyWzYsMEx/6+//jKenp7mq6++MsYY0759e1O3bt0c14+IiDD16tVz6qtVq5YZOHBgjud8/fXXJiAgwHE8Y8YMI8nEx8c7+hITE40ks3nzZkdfQkKCkWQmTpxo6bWXKVMm27kRERGmT58+ZsqUKcbPz8/ExsY6jXfp0sWUKVPGZGRkOPoqVapk6tev7zi+cOGC8fb2Nl988UWO1x86dKiRlKXZJWNoN9YAAABwR7Db7Rd/x7XbrzrXNbfCK67d4sWL5ePjo/PnzyszM1MdOnTQsGHDtGrVKrm6uur+++93zA0ICFClSpWUkJAg6eJO5BNPPHHF9atVq+Z0XKJECacdw++//15jx47Vvn37lJKSogsXLujs2bNKS0uTl5eXJKlgwYJO6yQkJMjV1VX33Xefo69y5cry9/e/7vfhn+bOnatjx45pw4YNqlWrVpbxu+++WwUK/P+Ge2BgoO655x7HsYuLiwICAq64Mzpo0CC9+uqrjuOUlBQFBwfflPoBAACAvIbbWfOQhg0bKj4+XgcOHNCZM2cct59a4enpedU5bm5uTsc2m83xYJwjR46oZcuWqlatmubNm6dt27bp/ffflyTHLbWXrmO7jV/dEB4ermLFiunTTz+VMSbLeHav6UqvMzvu7u7y9fV1agAAAEB+RYjMQ7y9vRUaGqrSpUvL1fX/N5HDwsJ04cIFxcXFOfqOHz+uxMREValSRdLFXcZVq1Zd97W3bdumzMxMTZgwQQ888IAqVqyo33777arnVa5cWRcuXNC2bdscfYmJiTp58uR11/JP5cuX15o1a/TNN9+oV69eN2VNAAAAADkjRP4PqFChgqKiotS9e3etX79eO3fu1NNPP61SpUopKipK0sVbMrds2aKXXnpJu3bt0r59+zR16lT99ddflq4RGhqq8+fP67333tPhw4c1c+ZMffjhh1c9r1KlSmratKl69OihuLg4bdu2Td26dbvqzui5c+cUHx+v+Ph4nTt3Tr/++qvi4+N18ODBLHMrVqyoNWvWaN68eerbt6+l1wMAAADg+hAi/0fMmDFD9913n1q2bKkHH3xQxhgtXbrUcetmxYoVtWLFCu3cuVO1a9fWgw8+qG+++cZpR/NKqlevrnfeeUfjxo3TPffco1mzZmns2LGWaytZsqQiIiL02GOP6fnnn1fx4sWveM5vv/2m8PBwhYeHKzk5WePHj1d4eLi6deuW7fxKlSpp9erV+uKLL9SvXz9Ldd0oP9llk7lp7Q54zM3tbwAAAMhzbCa7D5IByFFKSor8/Pwk2SXdvM9H8k8iAAAAcsul33HtdvtVnwHCTiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAy19wuAMizXveTPG7ecrbhF//XDDU3b1EAAADgJmMnEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYJlrbhcA5FX2QXb5+vrmdhkAAADAbcVOJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMtfcLgDIs/z8crsCADeLMbldAQAAeQY7kbdRdHS0/P39b3idI0eOyGazKT4+/obXul1sNpsWLlx4U9fs2rWrWrdufVPXBAAAAHBl+SJEdu3aVTabTS+88EKWsZdfflk2m01du3a9/YVdp+DgYCUnJ+uee+65oXVsNpujeXt7q0KFCuratau2bdt2kyq9fsnJyerQoYMqVqyoAgUKqG/fvrldEgAAAADlkxApXQxec+bM0ZkzZxx9Z8+e1ezZs1W6dOlcrOzanDt3Ti4uLgoKCpKr643fjTxjxgwlJydrz549ev/995Wamqr7779fn3322U2o9vqlp6erWLFiGjx4sKpXr56rtQAAAAD4f/kmRNaoUUPBwcGaP3++o2/+/PkqXbq0wsPDneYuX75c9erVk7+/vwICAtSyZUsdOnTIMX7pdtL58+erYcOG8vLyUvXq1bVx40andaKjo1W6dGl5eXmpTZs2On78uNP4oUOHFBUVpcDAQPn4+KhWrVr6/vvvneaEhIRo5MiR6ty5s3x9ffX8889nuZ01NjZWNptNq1atUs2aNeXl5aU6deooMTHxqu+Lv7+/goKCFBISokceeURz585Vx44d1bNnT/3999+SpGHDhunee+91Ou/dd99VSEiIU9+nn36qu+++W+7u7ipRooR69uyZ43WHDh2qEiVKaNeuXdmOh4SEaNKkSercubP8LH72cMuWLSpWrJjGjRvnVPenn36q0qVLy8fHRy+99JIyMjL01ltvKSgoSMWLF9fo0aOvuG56erpSUlKcGgAAAJBf5ZsQKUnPPvusZsyY4Tj+9NNP9cwzz2SZd/r0ab366qvaunWrVq1apQIFCqhNmzbKzMx0mvfGG2+of//+io+PV8WKFdW+fXtduHBBkhQXF6fnnntOPXv2VHx8vBo2bKhRo0Y5nZ+amqrmzZtr1apV2rFjh5o2bapWrVopKSnJad748eNVvXp17dixQ2+++WaOr++NN97QhAkTtHXrVrm6uurZZ5+95vdIkl555RWdOnVKK1eutHzO1KlT9fLLL+v555/X7t27tWjRIoWGhmaZZ4xRr1699Nlnn2ndunWqVq3addV4udWrV6tx48YaPXq0Bg4c6Og/dOiQli1bpuXLl+uLL77QJ598ohYtWug///mP1q5dq3Hjxmnw4MGKi4vLce2xY8fKz8/P0YKDg29KzQAAAECeZPKBLl26mKioKHPs2DHj7u5ujhw5Yo4cOWI8PDzMn3/+aaKiokyXLl1yPP/PP/80kszu3buNMcb8/PPPRpL5+OOPHXP27NljJJmEhARjjDHt27c3zZs3d1rnySefNH5+fles9e677zbvvfee47hMmTKmdevWTnMuXX/Hjh3GGGPWrFljJJnvv//eMWfJkiVGkjlz5kyO15JkFixYkKX/zJkzRpIZN26cMcaYoUOHmurVqzvNmThxoilTpozjuGTJkuaNN9644rW+/vpr06FDBxMWFmb+85//5Dj3chEREaZPnz5Z+i/9XOfPn298fHzMnDlznMaHDh1qvLy8TEpKiqOvSZMmJiQkxGRkZDj6KlWqZMaOHZvj9c+ePWvsdrujHT161Egy9ovPc6TRaP8LDQCAfM5utxtJxm63X3VuvvqKj2LFiqlFixaKjo6WMUYtWrRQ0aJFs8w7cOCAhgwZori4OP3111+OHcikpCSnh9n8cxetRIkSkqRjx46pcuXKSkhIUJs2bZzWffDBB7V8+XLHcWpqqoYNG6YlS5YoOTlZFy5c0JkzZ7LsRNasWdPS68upnmv9zKcxRtLFB+9YcezYMf322296+OGHrzjvlVdekbu7uzZt2pTt+3494uLitHjxYs2dOzfbJ7WGhISoUKFCjuPAwEC5uLioQIECTn3Hjh3L8Rru7u5yd3e/KfUCAAAAeV2+up1VunhLa3R0tGJiYnK83bNVq1Y6ceKEpk+frri4OMetjufOnXOa5+bm5vjzpcB1+S2vV9K/f38tWLBAY8aM0bp16xQfH6+qVatmuY63t7el9W60nksSEhIkSWXLlpUkFShQwBEsLzl//rzjz56enpbWbdy4sX799Vd9991311xTTsqXL6/KlSvr008/darpkn++J9LF9yW7vut5nwAAAID8KN+FyKZNm+rcuXM6f/68mjRpkmX8+PHjSkxM1ODBg/Xwww8rLCzM8YCZaxEWFpblc3abNm1yOt6wYYO6du2qNm3aqGrVqgoKCtKRI0eu+Vo327vvvitfX181atRI0sUd3N9//90pSP7zOyoLFSqkkJAQrVq16orrPvroo5o9e7a6deumOXPm3JRaixYtqtWrV+vgwYNq165dtkESAAAAwM2Tr25nlSQXFxfHTpuLi0uW8cKFCysgIEAfffSRSpQooaSkJL3++uvXfJ3evXurbt26Gj9+vKKiovTdd9853coqSRUqVND8+fPVqlUr2Ww2vfnmm7d9R+zkyZP6/ffflZ6erv3792vatGlauHChPvvsM/n7+0uSIiMj9eeff+qtt95S27ZttXz5ci1btky+vr6OdYYNG6YXXnhBxYsXV7NmzXTq1Clt2LBBvXr1crpemzZtNHPmTHXq1Emurq5q27ZtjrVdCqqpqan6888/FR8fr4IFC6pKlSpO84oXL67Vq1erYcOGat++vebMmXNTvv4EAAAAQFb5bidSknx9fZ0C0D8VKFBAc+bM0bZt23TPPffolVde0dtvv33N13jggQc0ffp0TZo0SdWrV9eKFSs0ePBgpznvvPOOChcurDp16qhVq1Zq0qSJatSocV2v6Xo988wzKlGihCpXrqwXX3xRPj4+2rx5szp06OCYExYWpg8++EDvv/++qlevrs2bN6t///5O63Tp0kXvvvuuPvjgA919991q2bKlDhw4kO0127Ztq5iYGHXq1MnpK1cuFx4ervDwcG3btk2zZ89WeHi4mjdvnu3coKAgrV69Wrt371bHjh2VkZFxHe/GtfGTXTYZGo12i9ttebQOAACwzGYu/7AbgCtKSUn573dX2iVl/39GALh5+K8UAAC33qXfce12e44bbpfky51IAAAAAMD1IUQCAAAAACwjRAIAAAAALCNEAgAAAAAsI0QCAAAAACwjRAIAAAAALCNEAgAAAAAsI0QCAAAAACxzze0CgDzrdT/J4+YuaYbyreoAAAC4s7ETCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwzDW3CwDyKvsgu3x9fXO7DAAAAOC2YicSAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIfIqbDabFi5cmNtlIAe5+vPx85NsNtrNaAAAAMgz8kWI/PDDD1WoUCFduHDB0Zeamio3NzdFRkY6zY2NjZXNZtOhQ4duc5W3z59//qkXX3xRpUuXlru7u4KCgtSkSRNt2LAht0tzMn/+fD3yyCMKCAiQzWZTfHx8bpcEAAAA5Hv5IkQ2bNhQqamp2rp1q6Nv3bp1CgoKUlxcnM6ePevoX7NmjUqXLq3y5cvnRqk31blz57Ltf/zxx7Vjxw7FxMRo//79WrRokSIjI3X8+PHbXOGVnT59WvXq1dO4ceNyuxQAAAAA/5UvQmSlSpVUokQJxcbGOvpiY2MVFRWlsmXLatOmTU79DRs2dDr/r7/+Ups2beTl5aUKFSpo0aJFTuNr165V7dq15e7urhIlSuj111932vVMT09X7969Vbx4cXl4eKhevXrasmWL0zVtNpuWLFmiatWqycPDQw888IB++uknp+usX79e9evXl6enp4KDg9W7d2+dPn3aMR4SEqKRI0eqc+fO8vX11fPPP5/lvTh58qTWrVuncePGqWHDhipTpoxq166tQYMG6dFHH5Uk9e/fXy1btnSc8+6778pms2n58uWOvtDQUH388ceSpC1btqhx48YqWrSo/Pz8FBERoe3btztd12az6eOPP77i+3i5Tp06aciQIWrUqNEV5/3T0KFDVaJECe3atcvxnowaNUqdO3eWj4+PypQpo0WLFunPP/9UVFSUfHx8VK1aNaf/gwEAAABAzvJFiJQu7kauWbPGcbxmzRpFRkYqIiLC0X/mzBnFxcVlCZHDhw9Xu3bttGvXLjVv3lwdO3bUiRMnJEm//vqrmjdvrlq1amnnzp2aOnWqPvnkE40aNcpx/oABAzRv3jzFxMRo+/btCg0NVZMmTRxrXPLaa69pwoQJ2rJli4oVK6ZWrVrp/PnzkqRDhw6padOmevzxx7Vr1y59+eWXWr9+vXr27Om0xvjx41W9enXt2LFDb775Zpb3wcfHRz4+Plq4cKHS09Ozfa8iIiK0fv16ZWRkSLoYkosWLeoI4b/++qsOHTrkuBX41KlT6tKli9avX69NmzapQoUKat68uU6dOmX5fbxRxhj16tVLn332mdatW6dq1ao5xiZOnKi6detqx44datGihTp16qTOnTvr6aef1vbt21W+fHl17txZxphs105PT1dKSopTAwAAAPItk09Mnz7deHt7m/Pnz/9fe3cel1P6/w/8dVe6W+8SaSGiPZOK8ElDJJ+yjcwMhn6UfYbEWIbGUsZYxjCWGYMR5WusM8OMfZchM2S5s2UpmYwpjKWUtF6/P3w7X7eKE1F4PR+P6/HoXNd1rvM+p4P77TrnukVWVpbQ0dERN2/eFGvWrBFt2rQRQgixb98+AUD89ddf0n4AxKRJk6Tt7OxsAUDs2LFDCCHE559/LpycnERxcbHUZ9GiRcLIyEgUFRWJ7OxsUaNGDbF69WqpPT8/X1hbW4vZs2cLIYQ4cOCAACDWrVsn9bl9+7bQ19cX69evF0IIMXDgQDFkyBCNczp06JDQ0tISubm5QgghGjRoIIKCgp55LX7++WdRs2ZNoaenJ1q1aiUiIiJEYmKi1H737l2hpaUlEhISRHFxsTAzMxMzZ84ULVu2FEII8eOPP4q6deuWO35RUZEwNjYWW7ZskX0dnyY1NVUAEKdOnSrVBkD89NNPok+fPsLFxUX8/fffGu0NGjQQ/+///T9pOz09XQAQkydPlur++OMPAUCkp6eXefzIyEgBoFTJBIRgqZxCRERERFUqMzPz0WfczMxn9n1rZiLbtm2LnJwcJCQk4NChQ3B0dIS5uTl8fX2l9yLj4uLQqFEj1K9fX2Pfx2e1DA0NoVKpcPPmTQBAUlISvL29oXhshUkfHx9kZ2fj77//RkpKCgoKCuDj4yO116hRAy1atEBSUpLGcby9vaWfzczM4OTkJPVJTExEbGysNJNoZGSEgIAAFBcXIzU1VdrPy8vrmdfigw8+wD///IPNmzcjMDAQcXFxaNq0KWJjYwEApqamcHd3R1xcHM6cOQNdXV0MGTIEp06dQnZ2Ng4ePAhfX19pvBs3bmDw4MFwcHCAiYkJVCoVsrOzkZaWJvs6vohPP/0UR48exe+//466deuWan/8uBYWFgAANze3UnXlxRIREYHMzEypXLt27YVjJiIiIiJ6XelUdQCvir29PerVq4cDBw7g7t27UhJkbW0NGxsbHDlyBAcOHICfn1+pfWvUqKGxrVAoUFxc/EriLpGdnY2hQ4ciPDy8VNvjSa+hoaGs8fT09NChQwd06NABkydPxqBBgxAZGYnQ0FAAj5LuuLg4KJVK+Pr6wszMDC4uLjh8+DAOHjyIMWPGSGOFhITg9u3bWLBgARo0aAClUglvb+9SC/u8rOvYoUMHrF27Frt27UJwcHCp9sePW5Lsl1VXXixKpRJKpfKF4yQiIiIiehO8NTORwKP3IuPi4hAXF6fx1R5t2rTBjh07cOzYsVLvQz6Li4sL/vjjD4336eLj42FsbIx69erBzs4Ourq6Gl+fUVBQgISEBLi6umqM9fgCP3fv3sWlS5fg4uICAGjatCnOnz8Pe3v7UkVXV7dCMZfF1dVVY5Gekvci9+3bJ12rtm3bYu3atbh06ZLG9YuPj0d4eDg6deqExo0bQ6lU4t9//33hmOR67733sGbNGgwaNAjr1q17ZcclIiIiInobvXVJ5OHDh6FWqzUex/T19cXSpUuRn59f4SRy2LBhuHbtGkaMGIELFy7gt99+Q2RkJEaPHg0tLS0YGhrik08+wbhx47Bz506cP38egwcPxoMHDzBw4ECNsb744gvs27cPZ8+eRWhoKGrXro2goCAAwPjx43HkyBGEhYVBrVbj8uXL+O2330otrPMst2/fhp+fH3788UecPn0aqamp+OmnnzB79mx069ZN6temTRvcv38fW7du1UgiV69eDSsrKzg6Okp9HRwcsGrVKiQlJeHo0aMIDg6Gvr5+heIqy507d6BWq3H+/HkAwMWLF6FWq5GRkVGqb/fu3bFq1Sr0798fP//88wsfm4iIiIiIyvbWPM4KPEoic3Nz4ezsLL0HBzxKIu/fvy99FUhF1K1bF9u3b8e4cePg7u4OMzMzDBw4EJMmTZL6zJo1C8XFxejbty/u378PLy8v7Nq1CzVr1tQYa9asWRg5ciQuX74MDw8PbNmyRZplbNKkCQ4ePIiJEyeidevWEELAzs4OvXr1qlC8RkZGaNmyJebNmye9r2ljY4PBgwfj888/l/rVrFkTbm5uuHHjBpydnQE8SiyLi4s1EnAAWL58OYYMGYKmTZvCxsYGM2bMwNixYysUV1k2b96M/v37S9sfffQRgEdf4xEVFVWq/4cffihdZy0tLbz//vsvHMPTmCATgOqpfcpZ8JWIiIiI6LWlEIIfc6tayXdT3r17F6amplUdDj1DVlYWTExMACaRRERERPSGKPmMm5mZCZXq6Z9x36rHWYmIiIiIiOjFMIkkIiIiIiIi2d6qdyKrq7Zt24JPFRMRERER0euAM5FEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItn4FR9Ez2uCCaD39C6KqfKHE5H8mhciIiIiqv44E0lERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItl0qjoAotdVZkQmVCpVVYdBRERERPRKcSaSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGTTqeoAiF5bJiZVHQER0YsToqojICKi1wxnIqtAVFQUPDw8qjqM115cXBwUCgXu3btX1aEQEREREb013sgkMjQ0FAqFolQJDAx85bEoFAr8+uuvGnVjx47Fvn37Xsnxk5OTMWDAANSvXx9KpRJ169ZF+/btsXr1ahQWFr6SGJ7X9OnT0apVKxgYGMDU1LSqwyEiIiIiIrzBj7MGBgYiJiZGo06pVFZRNJqMjIxgZGT00o9z7Ngx+Pv7o3Hjxli0aBGcnZ0BAMePH8eiRYvwzjvvwN3d/aXH8bzy8/PRo0cPeHt7Y/ny5VUdDhERERER4Q2diQQeJYyWlpYapWbNmlL7hQsX8O6770JPTw+urq7Yu3evxqyhn58fwsLCNMa8desWdHV1pVlEW1tbTJs2Db1794ahoSHq1q2LRYsWSf1tbW0BAN27d4dCoZC2n3ycNSEhAR06dEDt2rVhYmICX19fnDx5UuPYCoUC0dHR6N69OwwMDODg4IDNmzeXe/5CCISGhsLR0RHx8fHo2rUrHBwc4ODggN69e+Pw4cNo0qSJ1P/MmTPw8/ODvr4+atWqhSFDhiA7O1tqLy4uxhdffIF69epBqVTCw8MDO3fulNrz8/MRFhYGKysr6OnpoUGDBpg5c6bUfu/ePQwaNAjm5uZQqVTw8/NDYmJiufEDwNSpU/Hpp5/Czc3tqf1KPHjwAB07doSPjw/u3buHq1evQqFQYMOGDWjdujX09fXRvHlzXLp0CQkJCfDy8oKRkRE6duyIW7duyToGEREREdHb7o1NIp+mqKgIQUFBMDAwwNGjR/HDDz9g4sSJGn0GDRqENWvWIC8vT6r78ccfUbduXfj5+Ul1X3/9Ndzd3XHq1ClMmDABI0eOxJ49ewA8Sg4BICYmBunp6dL2k+7fv4+QkBAcPnwYf/75JxwcHNCpUyfcv39fo9/UqVPRs2dPnD59Gp06dUJwcDDu3LlT5phqtRpJSUkYO3YstLTK/jUrFAoAQE5ODgICAlCzZk0kJCTgp59+wt69ezWS6AULFmDu3LmYM2cOTp8+jYCAALz33nu4fPkyAGDhwoXYvHkzNmzYgIsXL2L16tVS0gwAPXr0wM2bN7Fjxw6cOHECTZs2Rfv27cuNv6Lu3buHDh06oLi4GHv27NF4/DUyMhKTJk3CyZMnoaOjgz59+uCzzz7DggULcOjQISQnJ2PKlCnljp2Xl4esrCyNQkRERET01hJvoJCQEKGtrS0MDQ01yvTp04UQQuzYsUPo6OiI9PR0aZ89e/YIAGLTpk1CCCFyc3NFzZo1xfr166U+TZo0EVFRUdJ2gwYNRGBgoMaxe/XqJTp27ChtPz5micjISOHu7l5u/EVFRcLY2Fhs2bJFY5xJkyZJ29nZ2QKA2LFjR5ljrFu3TgAQJ0+elOpu3LihcT0WLVokhBDihx9+EDVr1hTZ2dlS323btgktLS2RkZEhhBDC2tpaun4lmjdvLoYNGyaEEGLEiBHCz89PFBcXl4rl0KFDQqVSiYcPH2rU29nZiaVLl5Z7HUrExMQIExOTUvUHDhwQAERSUpJo0qSJ+OCDD0ReXp7UnpqaKgCI6OhoqW7t2rUCgNi3b59UN3PmTOHk5FTu8SMjIwWAUiXz0ZqGLCwsLK93ISIiEkJkZmYKACIzM/OZfd/Ymch27dpBrVZrlI8//hgAcPHiRdjY2MDS0lLq36JFC4399fT00LdvX6xYsQIAcPLkSZw9exahoaEa/by9vUttJyUlVSjWGzduYPDgwXBwcICJiQlUKhWys7ORlpam0e/xx08NDQ2hUqlw8+ZN2cepVauWdC1MTU2Rn58PAEhKSoK7uzsMDQ2lvj4+PiguLsbFixeRlZWFf/75Bz4+Phrj+fj4SOcaGhoKtVoNJycnhIeHY/fu3VK/xMREZGdno1atWtL7oEZGRkhNTUVKSor8C1WODh06wN7eHuvXr4eurm6p9sevm4WFBQBoPCJrYWHx1OsYERGBzMxMqVy7du2FYyYiIiIiel29sQvrGBoawt7e/oXGGDRoEDw8PPD3338jJiYGfn5+aNCgQSVF+H9CQkJw+/ZtLFiwAA0aNIBSqYS3t7eU5JWoUaOGxrZCoUBxcXGZYzo4OAB4lDB7enoCALS1taVroqNTub/6pk2bIjU1FTt27MDevXvRs2dP+Pv74+eff0Z2djasrKwQFxdXar/KWHW1c+fO+OWXX3D+/Pky3598/LqVPML7ZF151xF49H5tdVmUiYiIiIioqr2xM5FP4+TkhGvXruHGjRtSXVnvK7q5ucHLywvLli3DmjVrMGDAgFJ9/vzzz1LbLi4u0naNGjVQVFT01Hji4+MRHh6OTp06oXHjxlAqlfj3338reloaPD094ezsjDlz5jw1QQIAFxcXJCYmIicnRyMmLS0tODk5QaVSwdraGvHx8aXidnV1lbZVKhV69eqFZcuWYf369fjll19w584dNG3aFBkZGdDR0YG9vb1GqV279gudJwDMmjULISEhaN++Pc6fP//C4xERERERUfne2JnIvLw8ZGRkaNTp6Oigdu3a6NChA+zs7BASEoLZs2fj/v37mDRpEoD/m6kqMWjQIISFhcHQ0BDdu3cvdZz4+HjMnj0bQUFB2LNnD3766Sds27ZNare1tcW+ffvg4+MDpVKpsUJsCQcHB6xatQpeXl7IysrCuHHjoK+v/0Lnr1AoEBMTgw4dOsDHxwcRERFwcXFBQUEBfv/9d9y6dQva2toAgODgYERGRiIkJARRUVG4desWRowYgb59+0qPf44bNw6RkZGws7ODh4cHYmJioFarsXr1agDAN998AysrK3h6ekJLSws//fQTLC0tYWpqCn9/f3h7eyMoKAizZ8+Go6Mj/vnnH2zbtg3du3eHl5dXmeeQlpaGO3fuIC0tDUVFRVCr1QAAe3v7Ul+RMmfOHBQVFcHPzw9xcXHS15kQEREREVElewXvaL5yISEhAii9EMrji6ckJSUJHx8foaurK5ydncWWLVsEALFz506Nse7fvy8MDAykBWQe16BBAzF16lTRo0cPYWBgICwtLcWCBQs0+mzevFnY29sLHR0d0aBBAyFE6YV1Tp48Kby8vISenp5wcHAQP/30k2jQoIGYN2+e1AcovUCPiYmJiImJeeq1uHjxoggJCRH16tUTOjo6wsTERLRp00YsXbpUFBQUSP1Onz4t2rVrJ/T09ISZmZkYPHiwuH//vtReVFQkoqKiRN26dUWNGjWEu7u7xqI+P/zwg/Dw8BCGhoZCpVKJ9u3bayzqk5WVJUaMGCGsra1FjRo1hI2NjQgODhZpaWnlxl7e7/HAgQNCiP9bWOfu3bvSPiNGjBBWVlbi4sWL0sI6p06dktrL2qe8hXvKU/LSMZBZ5ethsLCwsLwuhYiIqreKLKyjEEKIV565VkPx8fF49913kZycDDs7O6n+6tWrsLOzQ0JCApo2baqxj62tLUaNGoVRo0a94mipKmVlZcHExARAJgBVVYdDRPRa4KcNIqLqreQzbmZmJlSqp3/GfWMfZ32WTZs2wcjICA4ODkhOTsbIkSPh4+MjJZAFBQW4ffs2Jk2ahP/85z+lEkgiIiIiIqK30VubRN6/fx/jx49HWloaateuDX9/f8ydO1dqj4+PR7t27eDo6Iiff/65CiMlIiIiIiKqPvg4K1EF8XFWIqKK46cNIqLqrSKPs76VX/FBREREREREz4dJJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItne2q/4IHphE0wAvRcfRkRyyUIiIiIien1wJpKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLLpVHUARK+rzIhMqFSqqg6DiIiIiOiV4kwkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhk06nqAKhsCoUCmzZtQlBQUFWHUm2Fhobi3r17+PXXX6smABOTqjkuEVVPQlR1BERERK/EGzkTGRoaCoVCIZVatWohMDAQp0+frurQXrlffvkFfn5+qFmzJvT19eHk5IQBAwbg1KlTVR3aU6Wnp6NPnz5wdHSElpYWRo0aVdUhERERERER3tAkEgACAwORnp6O9PR07Nu3Dzo6OujSpcsLjZmfn19J0b0a48ePR69eveDh4YHNmzfj4sWLWLNmDRo1aoSIiIiqDu+p8vLyYG5ujkmTJsHd3b2qwyEiIiIiov/1xiaRSqUSlpaWsLS0hIeHByZMmIBr167h1q1bUp/x48fD0dERBgYGaNSoESZPnoyCggKpPSoqCh4eHoiOjkbDhg2hp6cH4NGjptHR0ejevTsMDAzg4OCAzZs3S/sVFRVh4MCBaNiwoTT7t2DBglIxrlixAo0bN4ZSqYSVlRXCwsLKPZ9r166hZ8+eMDU1hZmZGbp164arV6+W2//PP//E7Nmz8c033+Cbb75B69atUb9+fTRr1gyTJk3Cjh07NPovXrwYdnZ20NXVhZOTE1atWqXRnpaWhm7dusHIyAgqlQo9e/bEjRs3pPbExES0a9cOxsbGUKlUaNasGY4fPy61Hz58GK1bt4a+vj5sbGwQHh6OnJyccuO3tbXFggUL0K9fP5jIfGw0ISEB5ubm+OqrrwD83+9vxYoVqF+/PoyMjDBs2DAUFRVh9uzZsLS0RJ06dTB9+nRZ4xMRERER0RucRD4uOzsbP/74I+zt7VGrVi2p3tjYGLGxsTh//jwWLFiAZcuWYd68eRr7Jicn45dffsHGjRuhVqul+qlTp6Jnz544ffo0OnXqhODgYNy5cwcAUFxcjHr16uGnn37C+fPnMWXKFHz++efYsGGDtP/ixYsxfPhwDBkyBGfOnMHmzZthb29fZvwFBQUICAiAsbExDh06hPj4eBgZGSEwMLDc2dG1a9dKSVNZFAqF9POmTZswcuRIjBkzBmfPnsXQoUPRv39/HDhwQDqfbt264c6dOzh48CD27NmDK1euoFevXtIYwcHBqFevHhISEnDixAlMmDABNWrUAACkpKQgMDAQH3zwAU6fPo3169fj8OHDT02aK2r//v3o0KEDpk+fjvHjx0v1KSkp2LFjB3bu3Im1a9di+fLl6Ny5M/7++28cPHgQX331FSZNmoSjR4+WO3ZeXh6ysrI0ChERERHRW0u8gUJCQoS2trYwNDQUhoaGAoCwsrISJ06ceOp+X3/9tWjWrJm0HRkZKWrUqCFu3ryp0Q+AmDRpkrSdnZ0tAIgdO3aUO/bw4cPFBx98IG1bW1uLiRMnltsfgNi0aZMQQohVq1YJJycnUVxcLLXn5eUJfX19sWvXrjL3DwwMFE2aNNGomzt3rnRNDA0Nxb1794QQQrRq1UoMHjxYo2+PHj1Ep06dhBBC7N69W2hra4u0tDSp/dy5cwKAOHbsmBBCCGNjYxEbG1tmLAMHDhRDhgzRqDt06JDQ0tISubm55V6DEr6+vmLkyJGl6kNCQkS3bt3Exo0bhZGRkVi3bp1Ge2RkpDAwMBBZWVlSXUBAgLC1tRVFRUVSnZOTk5g5c2a5x4+MjBQASpXMR8tosLCwsDwqREREr7HMzEwBQGRmZj6z7xs7E9muXTuo1Wqo1WocO3YMAQEB6NixI/766y+pz/r16+Hj4wNLS0sYGRlh0qRJSEtL0xinQYMGMDc3LzV+kyZNpJ8NDQ2hUqlw8+ZNqW7RokVo1qwZzM3NYWRkhB9++EEa++bNm/jnn3/Qvn17WeeSmJiI5ORkGBsbw8jICEZGRjAzM8PDhw+RkpIi+5oMGDAAarUaS5cuRU5ODoQQAICkpCT4+Pho9PXx8UFSUpLUbmNjAxsbG6nd1dUVpqamUp/Ro0dj0KBB8Pf3x6xZszTiSkxMRGxsrBS7kZERAgICUFxcjNTUVNnxl+Xo0aPo0aMHVq1apTEzWsLW1hbGxsbStoWFBVxdXaGlpaVR9/jv7kkRERHIzMyUyrVr114oZiIiIiKi19kbm0QaGhrC3t4e9vb2aN68OaKjo5GTk4Nly5YBAP744w8EBwejU6dO2Lp1K06dOoWJEyeWejzU0NCwzPFLHtUsoVAoUFxcDABYt24dxo4di4EDB2L37t1Qq9Xo37+/NLa+vn6FziU7OxvNmjWTkuKScunSJfTp06fMfRwcHHDlyhWNdzxNTU1hb2+PunXrVuj4ckRFReHcuXPo3Lkz9u/fD1dXV2zatEmKf+jQoRqxJyYm4vLly7Czs3uh49rZ2cHZ2RkrVqzQONcSZf2enva7K4tSqYRKpdIoRERERERvqzc2iXySQqGAlpYWcnNzAQBHjhxBgwYNMHHiRHh5ecHBwUFjlvJFxMfHo1WrVhg2bBg8PT1hb2+vMTNnbGwMW1tb7Nu3T9Z4TZs2xeXLl1GnTh0pMS4p5S0607t3b2RnZ+P7779/5vguLi6Ij48vdQ6urq5S+7Vr1zRm4M6fP4979+5JfQDA0dERn376KXbv3o33338fMTExUvznz58vFbu9vT10dXVlXYPy1K5dG/v370dycjJ69uxZZiJJRERERESV541NIvPy8pCRkYGMjAwkJSVhxIgRyM7ORteuXQE8mqlLS0vDunXrkJKSgoULF0ozZy/KwcEBx48fx65du3Dp0iVMnjwZCQkJGn2ioqIwd+5cLFy4EJcvX8bJkyfx7bffljlecHAwateujW7duuHQoUNITU1FXFwcwsPD8ffff5e5j7e3N8aMGYMxY8Zg9OjROHz4MP766y/8+eefWL58uZRUA8C4ceMQGxuLxYsX4/Lly/jmm2+wceNGjB07FgDg7+8PNzc3BAcH4+TJkzh27Bj69esHX19feHl5ITc3F2FhYYiLi8Nff/2F+Ph4JCQkwMXFBcCjVXCPHDmCsLAwqNVqXL58Gb/99tszF9YpmbXMzs7GrVu3oFarcf78+VL96tSpg/379+PChQvo3bs3CgsLn/4LIiIiIiKi56ZT1QG8LDt37oSVlRWARzN/zs7O+Omnn9C2bVsAwHvvvYdPP/0UYWFhyMvLQ+fOnTF58mRERUW98LGHDh2KU6dOoVevXlAoFOjduzeGDRum8bUaISEhePjwIebNm4exY8eidu3a+PDDD8scz8DAAL///jvGjx+P999/H/fv30fdunXRvn37pz5aOWfOHLRo0QKLFy/GihUr8ODBA1hYWKBNmzb4448/pH2DgoKwYMECzJkzByNHjkTDhg0RExMjXSuFQoHffvsNI0aMQJs2baClpYXAwEAp6dXW1sbt27fRr18/3LhxA7Vr18b777+PqVOnAnj0/ujBgwcxceJEtG7dGkII2NnZlfkO4+M8PT2ln0+cOIE1a9agQYMGZX61iaWlJfbv34+2bdsiODgYa9aseerYlcEEmQD4aCsR/S/Fs7tUlf99BZ6IiKhSKITgPy1EFZGVlfW/jxEziSSi1wP/pSciomcp+YybmZn5zDVA3tjHWYmIiIiIiKjyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsulUdQBEr60JJoDe8+0qIkXlxkJERERE9IpwJpKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLLpVHUARK+rzIhMqFSqqg6DiIiIiOiV4kwkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcmmU9UBEL22TEyqOoLKIURVR0BERERErxHORL7FQkNDERQU9EqOZWtri/nz50vbCoUCv/76a6WOSURERERELx+TyDdYaGgoFAoFFAoFdHV1YW9vjy+++AKFhYUAgAULFiA2NrZCYz5v8peQkIAhQ4bI7v/777+ja9eusLa2rpSEk4iIiIiIKgeTyDdcYGAg0tPTcfnyZYwZMwZRUVH4+uuvAQAmJiYwNTV9JXGYm5vDwMBAdv+cnBy4u7tj0aJFLzEqIiIiIiKqKCaRbzilUglLS0s0aNAAn3zyCfz9/bF582YApR9nbdu2LcLDw/HZZ5/BzMwMlpaWiIqKktptbW0BAN27d4dCoZC2U1JS0K1bN1hYWMDIyAjNmzfH3r17NeKo6KOnHTt2xJdffonu3bvL3ic6OhqmpqbYt2+fdD4jRozAqFGjULNmTVhYWGDZsmXIyclB//79YWxsDHt7e+zYsUP2MYiIiIiI3nZMIt8y+vr6yM/PL7d95cqVMDQ0xNGjRzF79mx88cUX2LNnD4BHj6QCQExMDNLT06Xt7OxsdOrUCfv27cOpU6cQGBiIrl27Ii0t7eWf0P+aPXs2JkyYgN27d6N9+/Ya51O7dm0cO3YMI0aMwCeffIIePXqgVatWOHnyJP773/+ib9++ePDgQblj5+XlISsrS6MQEREREb2tmES+JYQQ2Lt3L3bt2gU/P79y+zVp0gSRkZFwcHBAv3794OXlJc3smZubAwBMTU1haWkpbbu7u2Po0KF455134ODggGnTpsHOzk6a8XzZxo8fj/nz5+PgwYNo0aKFRpu7uzsmTZoEBwcHREREQE9PD7Vr18bgwYPh4OCAKVOm4Pbt2zh9+nS548+cORMmJiZSsbGxedmnRERERERUbfErPt5wW7duhZGREQoKClBcXIw+ffpoPKL6pCZNmmhsW1lZ4ebNm089RnZ2NqKiorBt2zakp6ejsLAQubm5r2Qmcu7cucjJycHx48fRqFGjUu2Pn4+2tjZq1aoFNzc3qc7CwgIAnnqOERERGD16tLSdlZXFRJKIiIiI3lqciXzDtWvXDmq1GpcvX0Zubq70uGp5atSoobGtUChQXFz81GOMHTsWmzZtwowZM3Do0CGo1Wq4ubk99bHZytK6dWsUFRVhw4YNZbaXdT6P1ykUCgB46jkqlUqoVCqNQkRERET0tuJM5BvO0NAQ9vb2lTZejRo1UFRUpFEXHx+P0NBQaRGc7OxsXL16tdKO+TQtWrRAWFgYAgMDoaOjg7Fjx76S4xIRERERva2YRFKF2NraYt++ffDx8YFSqUTNmjXh4OCAjRs3omvXrlAoFJg8efIzZy+fJTs7G8nJydJ2amoq1Go1zMzMUL9+fY2+rVq1wvbt29GxY0fo6Ohg1KhRL3RsIiIiIiIqHx9npQqZO3cu9uzZAxsbG3h6egIAvvnmG9SsWROtWrVC165dERAQgKZNm77QcY4fPw5PT0/pGKNHj4anpyemTJlSZv93330X27Ztw6RJk/Dtt9++0LHlMkEmFBCvf1GgWhciIiIiql4UQghR1UEQvU6ysrJgYmICIBMA34982fg3FBEREdHLV/IZNzMz85lrgHAmkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhk06nqAIheWxNMAL2K7yYiReXHQkRERET0inAmkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhk06nqAIheV5kRmVCpVFUdBhERERHRK8WZSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERyVbpSeTVq1ehUCigVqsre+gqYWtri/nz51fqmG3btsWoUaMqdczKUp1je1JsbCxMTU2rLgATE0ChYGFheZsLERHRW6hCSWRoaCgUCgUUCgVq1KiBhg0b4rPPPsPDhw+lPjY2NkhPT8c777xT6cG+LWJjY6XrrKWlhXr16qF///64efNmVYf2wirynwzh4eFo1qwZlEolPDw8XnpsRERERET0bDoV3SEwMBAxMTEoKCjAiRMnEBISAoVCga+++goAoK2tDUtLy0oP9G2jUqlw8eJFFBcXIzExEf3798c///yDXbt2Pdd4BQUFqFGjRiVH+fINGDAAR48exenTp6s6FCIiIiIiwnM8zqpUKmFpaQkbGxsEBQXB398fe/bskdqfnGmKi4uDQqHAvn374OXlBQMDA7Rq1QoXL17UGPfLL79EnTp1YGxsjEGDBmHChAnPnH1q27YtwsPD8dlnn8HMzAyWlpaIiorS6HPv3j0MGjQI5ubmUKlU8PPzQ2JiokafLVu2oHnz5tDT00Pt2rXRvXv3co8ZHR0NU1NT7Nu3DwBw9uxZdOzYEUZGRrCwsEDfvn3x77//Sv1zcnLQr18/GBkZwcrKCnPnzn3qOZVQKBSwtLSEtbU1OnbsiPDwcOzduxe5ubnYuXMn3n33XZiamqJWrVro0qULUlJSpH1Lfgfr16+Hr68v9PT0sHr1aty+fRu9e/dG3bp1YWBgADc3N6xdu/apcWzbtg0mJiZYvXo1AODatWvo2bMnTE1NYWZmhm7duuHq1aulrpGLiwv09PTg7OyM77//Xmpr2LAhAMDT0xMKhQJt27Yt99gLFy7E8OHD0ahRI1nX7NatW/Dy8kL37t2Rl5cn3Xu7du2Cp6cn9PX14efnh5s3b2LHjh1wcXGBSqVCnz598ODBA1nHICIiIiJ6273QO5Fnz57FkSNHoKur+8y+EydOxNy5c3H8+HHo6OhgwIABUtvq1asxffp0fPXVVzhx4gTq16+PxYsXy4ph5cqVMDQ0xNGjRzF79mx88cUXGkltjx49pKThxIkTaNq0Kdq3b487d+4AeJQkde/eHZ06dcKpU6ewb98+tGjRosxjzZ49GxMmTMDu3bvRvn173Lt3D35+fvD09MTx48exc+dO3LhxAz179pT2GTduHA4ePIjffvsNu3fvRlxcHE6ePCnr3B6nr6+P4uJiFBYWIicnB6NHj8bx48exb98+aGlpoXv37iguLtbYZ8KECRg5ciSSkpIQEBCAhw8folmzZti2bRvOnj2LIUOGoG/fvjh27FiZx1yzZg169+6N1atXIzg4GAUFBQgICICxsTEOHTqE+Ph4GBkZITAwEPn5+QAe/S6nTJmC6dOnIykpCTNmzMDkyZOxcuVKAJCOtXfvXqSnp2Pjxo0VvhZluXbtGlq3bo133nkHP//8M5RKpdQWFRWF7777DkeOHJGS4Pnz52PNmjXYtm0bdu/ejW+//bbcsfPy8pCVlaVRiIiIiIjeWqICQkJChLa2tjA0NBRKpVIAEFpaWuLnn3+W+qSmpgoA4tSpU0IIIQ4cOCAAiL1790p9tm3bJgCI3NxcIYQQLVu2FMOHD9c4lo+Pj3B3d39qPL6+vuLdd9/VqGvevLkYP368EEKIQ4cOCZVKJR4+fKjRx87OTixdulQIIYS3t7cIDg4u9xgNGjQQ8+bNE5999pmwsrISZ8+eldqmTZsm/vvf/2r0v3btmgAgLl68KO7fvy90dXXFhg0bpPbbt28LfX19MXLkyHKPGRMTI0xMTKTtS5cuCUdHR+Hl5VVm/1u3bgkA4syZM0KI//sdzJ8/v9xjlOjcubMYM2aMtO3r6ytGjhwpvvvuO2FiYiLi4uKktlWrVgknJydRXFws1eXl5Ql9fX2xa9cuIcSja7tmzRqNY0ybNk14e3trxFZyf8gRGRlZ5r1Qcp0uXLggbGxsRHh4uEZsZd17M2fOFABESkqKVDd06FAREBDw1OMDKFUyASFYWFje7kJERPSGyMzMFABEZmbmM/tW+J3Idu3aYfHixcjJycG8efOgo6ODDz744Jn7NWnSRPrZysoKAHDz5k3Ur18fFy9exLBhwzT6t2jRAvv37wcAHDp0CB07dpTali5diuDg4FLjloxdsgBNYmIisrOzUatWLY0+ubm50uOfarUagwcPfmrsc+fORU5ODo4fP67xaGViYiIOHDgAIyOjUvukpKQgNzcX+fn5aNmypVRvZmYGJyenpx4PADIzM2FkZITi4mI8fPgQ7777LqKjowEAly9fxpQpU3D06FH8+++/0gxkWlqaxoJGXl5eGmMWFRVhxowZ2LBhA65fv478/Hzk5eXBwMBAo9/PP/+MmzdvIj4+Hs2bN9c43+TkZBgbG2v0f/jwIVJSUpCTk4OUlBQMHDhQ45oWFhbCxMTkmef8PHJzc9G6dWv06dOn3FV0H79HLCwsYGBgoPF7tLCwKHc2FgAiIiIwevRoaTsrKws2NjYvHjwRERER0WuowkmkoaEh7O3tAQArVqyAu7s7li9fjoEDBz51v8cXdVH877LoTz5+WR4vLy+N1TwtLCzKHLdk7JJxs7OzYWVlhbi4uFJjlnw1hL6+/jOP37p1a2zbtg0bNmzAhAkTpPrs7Gx07dpVWlTocVZWVkhOTn7m2OUxNjbGyZMnoaWlBSsrK404u3btigYNGmDZsmWwtrZGcXEx3nnnHemR0hKGhoYa219//TUWLFiA+fPnw83NDYaGhhg1alSp/Tw9PXHy5EmsWLECXl5e0u8rOzsbzZo1k96PfJy5uTmys7MBAMuWLdNInIFHCy69DEqlEv7+/ti6dSvGjRuHunXrlurz5L33tHumvGM8/ngsEREREdHbrMJJ5OO0tLTw+eefY/To0ejTp4+shKwsTk5OSEhIQL9+/aS6hIQE6Wd9fX0pca2Ipk2bIiMjAzo6OrC1tS2zT5MmTbBv3z7079+/3HFatGiBsLAwBAYGQkdHB2PHjpXG/+WXX2BrawsdndKX0s7ODjVq1MDRo0dRv359AMDdu3dx6dIl+Pr6PjV2LS2tMs/59u3buHjxIpYtW4bWrVsDAA4fPvzUsUrEx8ejW7du+H//7/8BeJTEX7p0Ca6urqXinjt3Ltq2bQttbW1899130vmuX78ederUgUqlKjW+iYkJrK2tceXKFWmm+Ekl788WFRXJivlZtLS0sGrVKvTp0wft2rVDXFwcrK2tK2VsIiIiIiIq7YUW1gEeLVyjra2NRYsWPfcYI0aMwPLly7Fy5UpcvnwZX375JU6fPi3NgD0vf39/eHt7IygoCLt378bVq1dx5MgRTJw4EcePHwcAREZGYu3atYiMjERSUhLOnDlT5sxiq1atsH37dkydOlV6bHL48OG4c+cOevfujYSEBKSkpGDXrl3o378/ioqKYGRkhIEDB2LcuHHYv38/zp49i9DQUGhpPf9lr1mzJmrVqoUffvgBycnJ2L9/v8ajlk/j4OCAPXv24MiRI0hKSsLQoUNx48aNMvs6OjriwIED+OWXXzBq1CgAQHBwMGrXro1u3brh0KFDSE1NRVxcHMLDw/H3338DAKZOnYqZM2di4cKFuHTpEs6cOYOYmBh88803AIA6depAX19fWoQoMzOz3HiTk5OhVquRkZGB3NxcqNVqqNXqUjOn2traWL16Ndzd3eHn54eMjAxZ14OIiIiIiCruhZNIHR0dhIWFYfbs2cjJyXmuMYKDgxEREYGxY8eiadOmSE1NRWhoKPT09F4oNoVCge3bt6NNmzbo378/HB0d8dFHH+Gvv/6SHolt27YtfvrpJ2zevBkeHh7w8/Mr9/24d999F9u2bcOkSZPw7bffwtraGvHx8SgqKsJ///tfuLm5YdSoUTA1NZUSxa+//hqtW7dG165d4e/vj3fffRfNmjV77nPS0tLCunXrcOLECbzzzjv49NNP8fXXX8vad9KkSWjatCkCAgLQtm1bWFpaIigoqNz+Tk5O2L9/P9auXYsxY8bAwMAAv//+O+rXr4/3338fLi4uGDhwIB4+fCjNTA4aNAjR0dGIiYmBm5sbfH19ERsbK321h46ODhYuXIilS5fC2toa3bp1K/f4gwYNgqenJ5YuXYpLly7B09MTnp6e+Oeff0r11dHRwdq1a9G4cWPpazxeNhNkQgHBwvLGl2qwfE31LURERG8hhRDV81/BDh06wNLSEqtWrarqUIg0ZGVl/e9CQZkASj/WS/SmqZ7/ShAREVFlKvmMm5mZWeara497oXciK8uDBw+wZMkSBAQEQFtbG2vXrsXevXs1vu+RiIiIiIiIql61SCJLHjudPn06Hj58CCcnJ/zyyy/w9/ev6tCIiIiIiIjoMdUiidTX18fevXurOgwiIiIiIiJ6hhdeWIeIiIiIiIjeHkwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGSrFl/xQfRammAC6D27m4gULz8WIiIiIqJXhDORREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSTaeqAyB6XWVGZEKlUlV1GERERERErxRnIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINp2qDoDotWViUtURvFpCVHUERERERFQNcCbyLRQbGwtTU9NXeszQ0FAEBQVV6phxcXFQKBS4d+9epY5LRERERETlYxJZzWRkZGDkyJGwt7eHnp4eLCws4OPjg8WLF+PBgwdVHd4rNX36dLRq1QoGBgavPOklIiIiIqKy8XHWauTKlSvw8fGBqakpZsyYATc3NyiVSpw5cwY//PAD6tati/fee6+qw3xl8vPz0aNHD3h7e2P58uVVHQ4REREREYEzkdXKsGHDoKOjg+PHj6Nnz55wcXFBo0aN0K1bN2zbtg1du3aV+qalpaFbt24wMjKCSqVCz549cePGDak9MTER7dq1g7GxMVQqFZo1a4bjx49rHG/Xrl1wcXGBkZERAgMDkZ6eLrUlJCSgQ4cOqF27NkxMTODr64uTJ09K7WPHjkWXLl2k7fnz50OhUGDnzp1Snb29PaKjo8s814SEBJibm+Orr74q93pMnToVn376Kdzc3GRcPeDBgwfo2LEjfHx8cO/ePVy9ehUKhQIbNmxA69atoa+vj+bNm+PSpUtISEiAl5cXjIyM0LFjR9y6dUvWMYiIiIiI3nZMIquJ27dvY/fu3Rg+fDgMDQ3L7KNQKAAAxcXF6NatG+7cuYODBw9iz549uHLlCnr16iX1DQ4ORr169ZCQkIATJ05gwoQJqFGjhtT+4MEDzJkzB6tWrcLvv/+OtLQ0jB07Vmq/f/8+QkJCcPjwYfz5559wcHBAp06dcP/+fQCAr68vDh8+jKKiIgDAwYMHUbt2bcTFxQEArl+/jpSUFLRt27bUeezfvx8dOnTA9OnTMX78+Be6biXu3buHDh06oLi4GHv27NF4/DUyMhKTJk3CyZMnoaOjgz59+uCzzz7DggULcOjQISQnJ2PKlCnljp2Xl4esrCyNQkRERET01hJULfz5558CgNi4caNGfa1atYShoaEwNDQUn332mRBCiN27dwttbW2RlpYm9Tt37pwAII4dOyaEEMLY2FjExsaWeayYmBgBQCQnJ0t1ixYtEhYWFuXGV1RUJIyNjcWWLVuEEELcvXtXaGlpiYSEBFFcXCzMzMzEzJkzRcuWLYUQQvz444+ibt260v4hISGiW7duYuPGjcLIyEisW7dO9rWJiYkRJiYmpeoPHDggAIikpCTRpEkT8cEHH4i8vDypPTU1VQAQ0dHRUt3atWsFALFv3z6pbubMmcLJyanc40dGRgoApUrmo/VK355CRERERG+szMzMR59xMzOf2ZczkdXcsWPHoFar0bhxY+Tl5QEAkpKSYGNjAxsbG6mfq6srTE1NkZSUBAAYPXo0Bg0aBH9/f8yaNQspKSka4xoYGMDOzk7atrKyws2bN6XtGzduYPDgwXBwcICJiQlUKhWys7ORlpYGADA1NYW7uzvi4uJw5swZ6OrqYsiQITh16hSys7Nx8OBB+Pr6ahzz6NGj6NGjB1atWqUxa/qiOnToAHt7e6xfvx66urql2ps0aSL9bGFhAQAaj8haWFhonPuTIiIikJmZKZVr165VWuxERERERK8bJpHVhL29PRQKBS5evKhR36hRI9jb20NfX79C40VFReHcuXPo3Lkz9u/fD1dXV2zatElqf/zRVuDRo7Lise8BDAkJgVqtxoIFC3DkyBGo1WrUqlUL+fn5Up+2bdsiLi5OShjNzMzg4uKCw4cPl5lE2tnZwdnZGStWrEBBQUGFzudpOnfujN9//x3nz58vs/3xcy15JPjJuuLi4nLHVyqVUKlUGoWIiIiI6G3FJLKaqFWrFjp06IDvvvsOOTk5T+3r4uKCa9euacyInT9/Hvfu3YOrq6tU5+joiE8//RS7d+/G+++/j5iYGNnxxMfHIzw8HJ06dULjxo2hVCrx77//avQpeS9y37590ruPbdu2xdq1a3Hp0qVS70PWrl0b+/fvR3JyMnr27FlpieSsWbMQEhKC9u3bl5tIEhERERFR5WASWY18//33KCwshJeXF9avX4+kpCRcvHgRP/74Iy5cuABtbW0AgL+/P9zc3BAcHIyTJ0/i2LFj6NevH3x9feHl5YXc3FyEhYUhLi4Of/31F+Lj45GQkAAXFxfZsTg4OGDVqlVISkrC0aNHERwcXGo2tE2bNrh//z62bt2qkUSuXr0aVlZWcHR0LDVunTp1sH//fly4cAG9e/dGYWFhuTGkpaVBrVYjLS0NRUVFUKvVUKvVyM7OLtV3zpw5CA4Ohp+fHy5cuCD7PImIiIiIqGKYRFYjdnZ2OHXqFPz9/REREQF3d3d4eXnh22+/xdixYzFt2jQAjx6//O2331CzZk20adMG/v7+aNSoEdavXw8A0NbWxu3bt9GvXz84OjqiZ8+e6NixI6ZOnSo7luXLl+Pu3bto2rQp+vbti/DwcNSpU0ejT82aNeHm5gZzc3M4OzsDeJRYFhcXl3qU9XGWlpbYv38/zpw5g+DgYGmF1ydNmTIFnp6eiIyMRHZ2Njw9PeHp6Vnqq0pKzJs3Dz179oSfnx8uXbok+1yfW+ZbtrQOEREREREAhRD8dEhUEVlZWTAxMUFmZibfjyQiIiKiN0JFPuNyJpKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZNOp6gCIXlcmM00AvfLbRaR4dcEQEREREb0inIkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItl0qjoAotdVZkQmVCpVVYdBRERERPRKcSaSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYl8AQqFAr/++isA4OrVq1AoFFCr1VUaU2X54YcfYGNjAy0tLcyfP7/Sxw8NDUVQUNALjREVFQUPD49Kiee5mJgACkX1L0REREREleitTCIrI4F5ko2NDdLT0/HOO+9U6rhPio2NhUKhgEKhgJaWFurVq4f+/fvj5s2blXaMrKwshIWFYfz48bh+/TqGDBlSaWPL9fDhQ4SGhsLNzQ06OjqV/vsiIiIiIqLno1PVAbwptLW1YWlp+UqOpVKpcPHiRRQXFyMxMRH9+/fHP//8g127dlXK+GlpaSgoKEDnzp1hZWVVKWNWVFFREfT19REeHo5ffvmlSmIgIiIiIqLS3sqZyCe1bdsW4eHh+Oyzz2BmZgZLS0tERUVp9Ll8+TLatGkDPT09uLq6Ys+ePRrtTz7OWlRUhIEDB6Jhw4bQ19eHk5MTFixYoLFPyYzonDlzYGVlhVq1amH48OEoKCh4arwKhQKWlpawtrZGx44dER4ejr179yI3NxcAEB0dDRcXF+jp6cHZ2Rnff/+9xv7jx4+Ho6MjDAwM0KhRI0yePFk6ZmxsLNzc3AAAjRo1gkKhwNWrVwEAixcvhp2dHXR1deHk5IRVq1ZJY44dOxZdunSRtufPnw+FQoGdO3dKdfb29oiOjn7quZUwNDTE4sWLMXjwYNnJeUpKCho1aoSwsDAIIRAbGwtTU1Ns3boVTk5OMDAwwIcffogHDx5g5cqVsLW1Rc2aNREeHo6ioiJZxyAiIiIiettxJvJ/rVy5EqNHj8bRo0fxxx9/IDQ0FD4+PujQoQOKi4vx/vvvw8LCAkePHkVmZiZGjRr11PGKi4tRr149/PTTT6hVqxaOHDmCIUOGwMrKCj179pT6HThwAFZWVjhw4ACSk5PRq1cveHh4YPDgwbJj19fXR3FxMQoLC7F69WpMmTIF3333HTw9PXHq1CkMHjwYhoaGCAkJAQAYGxsjNjYW1tbWOHPmDAYPHgxjY2N89tln6NWrF2xsbODv749jx47BxsYG5ubm2LRpE0aOHIn58+fD398fW7duRf/+/VGvXj20a9cOvr6+iI6ORlFREbS1tXHw4EHUrl0bcXFxCAwMxPXr15GSkoK2bds+z6/nmU6fPo2AgAAMHDgQX375pVT/4MEDLFy4EOvWrcP9+/fx/vvvo3v37jA1NcX27dtx5coVfPDBB/Dx8UGvXr3KHDsvLw95eXnSdlZW1ks5ByIiIiKi14J4C4WEhIhu3bpJ276+vuLdd9/V6NO8eXMxfvx4IYQQu3btEjo6OuL69etS+44dOwQAsWnTJiGEEKmpqQKAOHXqVLnHHT58uPjggw804mjQoIEoLCyU6nr06CF69epV7hgxMTHCxMRE2r506ZJwdHQUXl5eQggh7OzsxJo1azT2mTZtmvD29i53zK+//lo0a9ZM2j516pQAIFJTU6W6Vq1aicGDB2vs16NHD9GpUychhBB3794VWlpaIiEhQRQXFwszMzMxc+ZM0bJlSyGEED/++KOoW7euxrk//jt4mvL6RkZGCnd3dxEfHy9q1qwp5syZo9EeExMjAIjk5GSpbujQocLAwEDcv39fqgsICBBDhw4t9/iRkZECQKmSCQjxOhQiIiIiomfIzMx89Bk3M/OZffk46/9q0qSJxraVlZW0WE1SUhJsbGxgbW0ttXt7ez9zzEWLFqFZs2YwNzeHkZERfvjhB6SlpWn0ady4MbS1tcs8bnkyMzNhZGQEAwMDODk5wcLCAqtXr0ZOTg5SUlIwcOBAGBkZSeXLL79ESkqKtP/69evh4+MDS0tLGBkZYdKkSaXielJSUhJ8fHw06nx8fJCUlAQAMDU1hbu7O+Li4nDmzBno6upiyJAhOHXqFLKzs3Hw4EH4+vo+85pVVFpaGjp06IApU6ZgzJgxpdoNDAxgZ2cnbVtYWMDW1hZGRkYadU+75hEREcjMzJTKtWvXKvckiIiIiIheI3yc9X/VqFFDY1uhUKC4uPi5x1u3bh3Gjh2LuXPnwtvbG8bGxvj6669x9OjRFz6usbExTp48CS0tLVhZWUFfXx8AcOPGDQDAsmXL0LJlS419ShLVP/74A8HBwZg6dSoCAgJgYmKCdevWYe7cuc99riXatm2LuLg4KJVK+Pr6wszMDC4uLjh8+DAOHjxYZpL3oszNzWFtbY21a9diwIABUKlUGu1lXd+KXnOlUgmlUll5QRMRERERvcaYRMrg4uKCa9euIT09XVqt9M8//3zqPvHx8WjVqhWGDRsm1T0+G/gitLS0YG9vX6rewsIC1tbWuHLlCoKDg8vc98iRI2jQoAEmTpwo1f3111/PPKaLiwvi4+Ol9yqBR+fo6uoqbfv6+mLFihXQ0dFBYGAggEeJ5dq1a3Hp0qWX8j6kvr4+tm7dik6dOiEgIAC7d++GsbFxpR+HiIiIiIgeYRIpg7+/PxwdHRESEoKvv/4aWVlZGklYWRwcHPA///M/2LVrFxo2bIhVq1YhISEBDRs2fKmxTp06FeHh4TAxMUFgYCDy8vJw/Phx3L17F6NHj4aDgwPS0tKwbt06NG/eHNu2bcOmTZueOe64cePQs2dPeHp6wt/fH1u2bMHGjRuxd+9eqU+bNm1w//59bN26FbNmzQLwKIn88MMPYWVlBUdHxwqdy/nz55Gfn487d+7g/v370sq3Hh4eGv0MDQ2xbds2dOzYER07dsTOnTs1HlclIiIiIqLKw3ciZdDS0sKmTZuQm5uLFi1aYNCgQZg+ffpT9xk6dCjef/999OrVCy1btsTt27c1ZiVflkGDBiE6OhoxMTFwc3ODr68vYmNjpeT1vffew6effoqwsDB4eHjgyJEjmDx58jPHDQoKwoIFCzBnzhw0btwYS5cuRUxMjMbsYs2aNeHm5gZzc3M4OzsDeJRYFhcXP9f7kJ06dYKnpye2bNmCuLg4eHp6wtPTs8y+RkZG2LFjB4QQ6Ny5M3Jycip8vArLfE2W1iEiIiIiqkQKIfgpk6gisrKyYGJigszMzFLvYBIRERERvY4q8hmXM5FEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJJtOVQdA9LoymWkC6GnWiUhRNcEQEREREb0inIkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsOlUdANHrKjMiEyqVqqrDICIiIiJ6pTgTSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGTTqeoAiIiIiIjkKCwsRH5+flWHQfTa0tPTg5bWi88jMokkel4mJlUdAT2NEFUdARERVRIhBNLS0vDvv/9WdShErzUtLS24urpCqVS+0DhMIqsphUKBTZs2ISgoqMz2q1evomHDhjh16hQ8PDxeaWzPIyoqCr/++ivUanWljfm6XQMiIiJ6PiUJZN26dWFkZFQpMylEb5vi4mKkpqbi6tWrcHR0hEKheO6xmES+gNDQUKxcuRIAoKOjg3r16qFHjx744osvoKenV8XRPVtUVBSmTp0KANDW1oapqSlcXV3x/vvv45NPPnnh/6F4UT/88APWrFmDkydP4v79+7h79y5MTU2rNCYiIiJ6tQoLC6UE0tLSsqrDIXqt1a1bF6mpqSgoKICuru5zj8P/xnlBgYGBSE9Px5UrVzBv3jwsXboUkZGRVR2WbI0bN0Z6ejrS0tJw4MAB9OjRAzNnzkSrVq1w//79Ko3twYMHCAwMxOeff16lcRAREVHVKXkH0sjIqIojIXr9lUwSFRYWvtA4TCJfkFKphKWlJWxsbBAUFAR/f3/s2bNHare1tcX8+fM19vHw8EBUVJS0ffnyZbRp0wZ6enpwdXXV2L/EsWPH4OnpCT09PXh5eeHUqVNSmxAC9vb2mDNnjsY+arUaCoUCycnJ5cavo6MDS0tLWFtbw83NDSNGjMDBgwdx9uxZfPXVV1I/hUKBX3/9VWNfU1NTxMbGStt///03evfuDTMzMxgaGsLLywtHjx4t87gpKSlo1KgRwsLCIMp5d23UqFGYMGEC/vOf/5Qb/+OKioowYMAAODs7Iy0tTYp76dKl6NKlCwwMDODi4oI//vgDycnJaNu2LQwNDdGqVSukpKTIOgYRERFVDT7CSvTiXuQR1sfxT2MlOnv2LI4cOVKhqeHi4mK8//770NXVxdGjR7FkyRKMHz9eo092dja6dOkCV1dXnDhxAlFRURg7dqzUrlAoMGDAAMTExGjsFxMTgzZt2sDe3r5C5+Hs7IyOHTti48aNsvfJzs6Gr68vrl+/js2bNyMxMRGfffYZiouLS/U9ffo03n33XfTp0wffffddpdzMeXl56NGjB9RqNQ4dOoT69etLbdOmTUO/fv2gVqvh7OyMPn36YOjQoYiIiMDx48chhEBYWNhTx87KytIoRERERERvK74T+YK2bt0KIyMjFBYWIi8vD1paWvjuu+9k7793715cuHABu3btgrW1NQBgxowZ6Nixo9RnzZo1KC4uxvLly6Gnp4fGjRvj77//xieffCL1CQ0NxZQpU3Ds2DG0aNECBQUFWLNmTanZSbmcnZ2xe/du2f3XrFmDW7duISEhAWZmZgBQZvJ65MgRdOnSBRMnTsSYMWOeK7YnZWdno3PnzsjLy8OBAwdg8sSqqf3790fPnj0BAOPHj4e3tzcmT56MgIAAAMDIkSPRv3//csefOXOm9O4oEREREdHbjknkC2rXrh0WL16MnJwczJs3Dzo6Ovjggw9k75+UlAQbGxspgQQAb2/vUn2aNGmisVjPk32sra3RuXNnrFixAi1atMCWLVuk2bnnIYSo0AyhWq2Gp6enlECWJS0tDR06dMD06dMxatSo54qrLL1790a9evWwf/9+6Ovrl2pv0qSJ9LOFhQUAwM3NTaPu4cOHyMrKgkqlKrV/REQERo8eLW1nZWXBxsam0uInIiKi56OYWjmP5sklIvn1UUQAH2d9YYaGhrC3t4e7uztWrFiBo0ePYvny5VK7lpZWqXf+CgoKXkosgwYNwrp165Cbm4uYmBj06tULBgYGzzVWUlISGjZsKG0rFIqnnkdZyduTzM3N0aJFC6xdu7ZSHwnt1KkTTp8+jT/++KPM9ho1akg/lyTGZdWV9egt8Oi9V5VKpVGIiIiI5Lh27RoGDBgAa2tr6OrqokGDBhg5ciRu375d1aG9dhQKhVRMTEzg4+OD/fv3V3VYzxQbG/vGfcMAk8hKpKWlhc8//xyTJk1Cbm4ugEeJU3p6utQnKysLqamp0raLiwuuXbum0efPP//UGNfFxQWnT5/Gw4cPy+0DPEqmDA0NsXjxYuzcuRMDBgx4rvO4cOECdu7cqTGj+uR5XL58GQ8ePJC2mzRpArVajTt37pQ7rr6+PrZu3Qo9PT0EBARU2uqvn3zyCWbNmoX33nsPBw8erJQxiYiIiF7UlStX4OXlhcuXL2Pt2rVITk7GkiVLsG/fPnh7ez/1c9PLVrLq7eOKiorK/U/16iImJgbp6emIj49H7dq10aVLF1y5cuW5xirrGpA8TCIrWY8ePaCtrY1FixYBAPz8/LBq1SocOnQIZ86cQUhICLS1taX+/v7+cHR0REhICBITE3Ho0CFMnDhRY8w+ffpAoVBg8ODBOH/+PLZv317mu47a2toIDQ1FREQEHBwcSj3yWpbCwkJkZGTgn3/+wZkzZ/Dtt9/C19cXHh4eGDdunNTPz88P3333HU6dOoXjx4/j448/1pjN6927NywtLREUFIT4+HhcuXIFv/zyS6nZQUNDQ2zbtg06Ojro2LEjsrOzy40tIyMDarVaWl32zJkz5SaqI0aMwJdffokuXbrg8OHDzzxvIiIiopdt+PDh0NXVxe7du+Hr64v69eujY8eO2Lt3L65fv67xmS8vLw/jx4+HjY0NlEol7O3tNZ5uO3fuHLp06QKVSgVjY2O0bt1aWl2+bdu2pV4VCgoKQmhoqLRta2srLTaoUqkwZMgQaYZs8+bNcHV1hVKpRFpaGvLy8jB27FjUrVsXhoaGaNmyJeLi4qSxSvbbtWsXXFxcYGRkJH3t3eNWrFiBxo0bQ6lUwsrKSmMhw3v37mHQoEEwNzeHSqWCn58fEhMTn3lNTU1NYWlpiXfeeQeLFy9Gbm6u9M0GZ8+eRceOHWFkZAQLCwv07dsX//77r7Rv27ZtERYWhlGjRqF27drS+hhPu7YAEB0dDRcXF+jp6cHZ2Rnff/+91Hb16lUoFAps3LgR7dq1g4GBAdzd3aXPwHFxcejfvz8yMzOlWdSSb2lYtWoVvLy8YGxsDEtLS/Tp0wc3b97UON/NmzfDwcEBenp6aNeuHVauXAmFQoF79+5JfQ4fPozWrVtDX18fNjY2CA8PR05OzjOv5YtgElnJdHR0EBYWhtmzZyMnJwcRERHw9fVFly5d0LlzZwQFBcHOzk7qr6WlhU2bNiE3NxctWrTAoEGDMH36dI0xjYyMsGXLFpw5cwaenp6YOHGixtdvPG7gwIHIz89/6kIxjzt37hysrKxQv359tG3bFhs2bEBERAQOHTqk8X1Mc+fOhY2NDVq3bo0+ffpg7NixGo/KlvwFWadOHXTq1Alubm6YNWuWRsL8+Pns2LEDQgh07ty53Jt8yZIl8PT0xODBgwEAbdq0gaenJzZv3lxm/1GjRmHq1Kno1KkTjhw5Iuv8X0hmJiAES3UtREREVejOnTvYtWsXhg0bVuq1H0tLSwQHB2P9+vXS60L9+vXD2rVrsXDhQiQlJWHp0qXSZ7Hr16+jTZs2UCqV2L9/P06cOIEBAwZU+Lv+5syZA3d3d5w6dQqTJ08G8Oh7ub/66itER0fj3LlzqFOnDsLCwvDHH39g3bp1OH36NHr06IHAwEBcvnxZGuvBgweYM2cOVq1ahd9//x1paWka3x6wePFiDB8+HEOGDMGZM2ewefNmjUUXe/TogZs3b2LHjh04ceIEmjZtivbt21dodrbkuubn5+PevXvw8/ODp6cnjh8/jp07d+LGjRvS4oolVq5cCV1dXcTHx2PJkiXPvLarV6/GlClTMH36dCQlJWHGjBmYPHkyVq5cqTHuxIkTMXbsWKjVajg6OqJ3794oLCxEq1atMH/+fKhUKqSnpyM9PV26TgUFBZg2bRoSExPx66+/4urVqxqJf2pqKj788EMEBQUhMTERQ4cOLTXZlJKSgsDAQHzwwQc4ffo01q9fj8OHDz/1mwcqhaA3yu+//y5q1KghMjIyqjqUN1ZmZqYAIDIzM6s6FCIiojdeTk6OOH78uMjJySnVhii80lIRf/75pwAgNm3aVGb7N998IwCIGzduiIsXLwoAYs+ePWX2jYiIEA0bNhT5+flltvv6+oqRI0dq1HXr1k2EhIRI2w0aNBBBQUEafWJiYgQAoVarpbq//vpLaGtri+vXr2v0bd++vYiIiNDYLzk5WWpftGiRsLCwkLatra3FxIkTy4z30KFDQqVSiYcPH2rU29nZiaVLl5a5jxBC43rm5OSIYcOGCW1tbZGYmCimTZsm/vvf/2r0v3btmgAgLl68KIR4dJ08PT01+jzr2trZ2Yk1a9Zo1E2bNk14e3sLIYRITU0VAER0dLTUfu7cOQFAJCUlCSEeXS8TE5Nyz6tEQkKCACDu378vhBBi/Pjx4p133tHoM3HiRAFA3L17VwghxMCBA8WQIUM0+hw6dEhoaWmJ3NzcUsd42p+ninzG5eqsb4i8vDzcunULUVFR6NGjh7QKKRERERFVHSHj6Ri1Wg1tbW34+vqW2966dWuNV4meh5eXV6k6XV1djZXsz5w5g6KiIjg6Omr0y8vLQ61ataRtAwMDjafrrKyspEcxb968iX/++Qft27cvM47ExERkZ2drjAcAubm5Go+RlqV3797Q1tZGbm4uzM3NsXz5cjRp0gTTpk3DgQMHNJ6kK5GSkiKdT7NmzTTannZtc3JykJKSgoEDB0pPxgGPXgd78ivlHr+GVlZWAB5dB2dn53LPpeT73xMTE3H37l3pfdS0tDS4urri4sWLaN68ucY+LVq00NhOTEzE6dOnsXr1aqlOCIHi4mKkpqbCxcWl3OO/CCaRb4i1a9di4MCB8PDwwP/8z/9UdThEREREbzV7e3soFAokJSWhe/fupdqTkpJQs2ZNmJubP3OV+2e1y/02AENDwzLHfvxr3bKzs6GtrY0TJ06Uei3p8QTtyaTr8ZX8nxVvdnY2rKysNN6zLPGsVUznzZsHf39/mJiYwNzcXGPMrl27lvnKV0lSB5S+Bk+LtWTtjmXLlqFly5YabU9em4qs/A88SlADAgIQEBCA1atXw9zcHGlpaQgICKjQgj/Z2dkYOnQowsPDS7XVr19f9jgVxSTyDREaGqrxDDURERERVZ1atWqhQ4cO+P777/Hpp59qJCsZGRlYvXo1+vXrB4VCATc3NxQXF+PgwYPw9/cvNVaTJk2wcuVKFBQUlDlj9uQq+kVFRTh79izatWtX4bg9PT1RVFSEmzdvonXr1hXeHwCMjY1ha2uLffv2lRlD06ZNkZGRAR0dHdja2lZobEtLS413Kx8f85dffoGtrS10dOSnOE+7thYWFrC2tsaVK1cQHBxcoTgfp6uri6KiIo26Cxcu4Pbt25g1a5b0/ePHjx/X6OPk5ITt27dr1CUkJGhsN23aFOfPny/zmrxMXFiHiIiIiOgl+O6775CXl4eAgAD8/vvvuHbtGnbu3IkOHTqgbt260mKKtra2CAkJwYABA/Drr78iNTUVcXFx2LBhAwAgLCwMWVlZ+Oijj3D8+HFcvnwZq1atwsWLFwE8WkV/27Zt2LZtGy5cuIBPPvlEY/XOinB0dERwcDD69euHjRs3IjU1FceOHcPMmTOxbds22eNERUVh7ty5WLhwIS5fvoyTJ0/i22+/BfDo2wm8vb0RFBSE3bt34+rVqzhy5AgmTpxYKpGSa/jw4bhz5w569+6NhIQEpKSkYNeuXejfv3+pBO5xz7q2U6dOxcyZM7Fw4UJcunQJZ86cQUxMDL755hvZsdna2iI7Oxv79u3Dv//+iwcPHqB+/frQ1dXFt99+iytXrmDz5s2YNm2axn5Dhw7FhQsXMH78eFy6dAkbNmxAbGwsgP+b7Rw/fjyOHDmCsLAwqNVqXL58Gb/99hsX1iGqbriwDhER0avztIVAXgdXr14VISEhwsLCQtSoUUPY2NiIESNGiH///VejX25urvj000+FlZWV0NXVFfb29mLFihVSe2Jiovjvf/8rDAwMhLGxsWjdurVISUkRQgiRn58vPvnkE2FmZibq1KkjZs6cWebCOvPmzdM4ZnkLvuTn54spU6YIW1tbUaNGDWFlZSW6d+8uTp8+Xe5+mzZtEk+mFkuWLBFOTk7SGCNGjJDasrKyxIgRI4S1tbV0XYKDg0VaWlq51xJPWahICCEuXbokunfvLkxNTYW+vr5wdnYWo0aNEsXFxUKIshcgEuLp11YIIVavXi08PDyErq6uqFmzpmjTpo3YuHGjEOL/FtY5deqU1P/u3bsCgDhw4IBU9/HHH4tatWoJACIyMlIIIcSaNWuEra2tUCqVwtvbW2zevLnUWL/99puwt7cXSqVStG3bVixevFgA0Fg059ixY6JDhw7CyMhIGBoaiiZNmojp06eXeY0qa2EdhRBcC5+oIrKysmBiYoLMzEyoVKqqDoeIiOiN9uDBAyQlJcHFxUXj68WI3kbTp0/HkiVLcO3atefa/2l/niryGZfvRBIREREREVVD33//PZo3b45atWohPj4eX3/99ct/VFUGJpFERERERETV0OXLl/Hll1/izp07qF+/PsaMGYOIiIiqDotJJBERERERUXU0b948zJs3r6rDKIWrsxI9J5OZJs/uRERERET0hmESSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbv+KDiIiIiF5LCsWrPZ4Qr/Z4RNUVZyKJiIiIiF6C0NBQKBSKUiU5ORm///47unbtCmtraygUCvz666+yxkxMTMR7772HOnXqQE9PD7a2tujVqxdu3rz5ck+G6DFMIomIiIiIXpLAwECkp6drlIYNGyInJwfu7u5YtGiR7LFu3bqF9u3bw8zMDLt27UJSUhJiYmJgbW2NnJycl3YOBQUFL21sej0xiSQiIiIiekmUSiUsLS01ira2Njp27Igvv/wS3bt3lz1WfHw8MjMzER0dDU9PTzRs2BDt2rXDvHnz0LBhQ6nfuXPn0KVLF6hUKhgbG6N169ZISUkBABQXF+OLL75AvXr1oFQq4eHhgZ07d0r7Xr16FQqFAuvXr4evry/09PSwevVqAEB0dDRcXFygp6cHZ2dnfP/995V0leh1w3ciiZ5TZkRmVYdAREREbxFLS0sUFhZi06ZN+PDDD6Eo46XQ69evo02bNmjbti32798PlUqF+Ph4FBYWAgAWLFiAuXPnYunSpfD09MSKFSvw3nvv4dy5c3BwcJDGmTBhAubOnQtPT08pkZwyZQq+++47eHp64tSpUxg8eDAMDQ0REhLyyq4BVQ9MIomIiIiIXpKtW7fCyMhI2u7YsSN++umn5xrrP//5Dz7//HP06dMHH3/8MVq0aAE/Pz/069cPFhYWAIBFixbBxMQE69atQ40aNQAAjo6O0hhz5szB+PHj8dFHHwEAvvrqKxw4cADz58/XeLR21KhReP/996XtyMhIzJ07V6pr2LAhzp8/j6VLlzKJfAvxcVYiIiIiopekXbt2UKvVUlm4cKGs/WbMmAEjIyOppKWlAQCmT5+OjIwMLFmyBI0bN8aSJUvg7OyMM2fOAADUajVat24tJZCPy8rKwj///AMfHx+Neh8fHyQlJWnUeXl5ST/n5OQgJSUFAwcO1Ijpyy+/lB6TpbcLZyKJiIiIiF4SQ0ND2NvbV3i/jz/+GD179pS2ra2tpZ9r1aqFHj16oEePHpgxYwY8PT0xZ84crFy5Evr6+pUWd4ns7GwAwLJly9CyZUuNftra2pVyPHq9MIkkIiIiIqpmzMzMYGZm9sx+urq6sLOzk1ZnbdKkCVauXImCgoJSs5EqlQrW1taIj4+Hr6+vVB8fH48WLVqUewwLCwtYW1vjypUrCA4Ofs4zojcJk0giIiIiolcsOzsbycnJ0nZqairUajXMzMxQv379MvfZunUr1q1bh48++giOjo4QQmDLli3Yvn07YmJiAABhYWH49ttv8dFHHyEiIgImJib4888/0aJFCzg5OWHcuHGIjIyEnZ0dPDw8EBMTA7VaLa3AWp6pU6ciPDwcJiYmCAwMRF5eHo4fP467d+9i9OjRlXdh6LXAJJKIiIiIXktCVHUEz+/48eNo166dtF2SiIWEhCA2NrbMfVxdXWFgYIAxY8bg2rVrUCqVcHBwQHR0NPr27Qvg0aOu+/fvx7hx4+Dr6wttbW14eHhI70GGh4cjMzMTY8aMwc2bN+Hq6orNmzdrrMxalkGDBsHAwABff/01xo0bB0NDQ7i5uWHUqFEvfjHotaMQ4nX+40f06mVlZcHExASZmZlQqVRVHQ4REdEb7cGDB0hKSoKLiwsMDAyqOhyi19rT/jxV5DMuV2clIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIRERHR60mheLWFnsvt27dRp04dXL16tapDeW5LlixB165dqzqMaoNJJBERERHRSxAaGgqFQlGqJCcnAwB+//13dO3aFdbW1lAoFPj1119ljZuYmIj33nsPderUgZ6eHmxtbdGrVy/cvHnzJZ7N85s+fTq6desGW1tbqW7Tpk34z3/+AxMTExgbG6Nx48YYNWrUS48lKioKHh4eFd5vwIABOHnyJA4dOlT5Qb2GmEQSEREREb0kgYGBSE9P1ygNGzYEAOTk5MDd3R2LFi2SPd6tW7fQvn17mJmZYdeuXUhKSkJMTAysra2Rk5Pzsk4DBQUFz7XfgwcPsHz5cgwcOFCq27dvH3r16oUPPvgAx44dw4kTJzB9+vTnPsaroKuriz59+mDhwoVVHUq1wCSSiIiIiOglUSqVsLS01Cja2toAgI4dO+LLL79E9+7dZY8XHx+PzMxMREdHw9PTEw0bNkS7du0wb948KTkFgHPnzqFLly5QqVQwNjZG69atkZKSAgAoLi7GF198gXr16kGpVMLDwwM7d+6U9r169SoUCgXWr18PX19f6OnpYfXq1QCA6OhouLi4QE9PD87Ozvj++++fGu/27duhVCrxn//8R6rbsmULfHx8MG7cODg5OcHR0RFBQUEayXTJjOGKFStQv359GBkZYdiwYSgqKsLs2bNhaWmJOnXqYPr06RrHS0tLQ7du3WBkZASVSoWePXvixo0bAIDY2FhMnToViYmJ0qxwbGwsAODevXsYNGgQzM3NoVKp4Ofnh8TERI2xu3btis2bNyM3N1fur+uNxSSSiIiIiOg1YWlpicLCQmzatAlCiDL7XL9+HW3atIFSqcT+/ftx4sQJDBgwAIWFhQCABQsWYO7cuZgzZw5Onz6NgIAAvPfee7h8+bLGOBMmTMDIkSORlJSEgIAArF69GlOmTMH06dORlJSEGTNmYPLkyVi5cmW58R46dAjNmjUrdQ7nzp3D2bNnn3quKSkp2LFjB3bu3Im1a9di+fLl6Ny5M/7++28cPHgQX331FSZNmoSjR48CeJQcd+vWDXfu3MHBgwexZ88eXLlyBb169QIA9OrVC2PGjEHjxo2lWeGSth49euDmzZvYsWMHTpw4gaZNm6J9+/a4c+eOFI+XlxcKCwul473VBBFVSGZmpgAgMjMzqzoUIiKiN15OTo44fvy4yMnJKd0IvNpSQSEhIUJbW1sYGhpK5cMPPyyzLwCxadMmWeN+/vnnQkdHR5iZmYnAwEAxe/ZskZGRIbVHRESIhg0bivz8/DL3t7a2FtOnT9eoa968uRg2bJgQQojU1FQBQMyfP1+jj52dnVizZo1G3bRp04S3t3e5sXbr1k0MGDBAoy47O1t06tRJABANGjQQvXr1EsuXLxcPHz6U+kRGRgoDAwORlZUl1QUEBAhbW1tRVFQk1Tk5OYmZM2cKIYTYvXu30NbWFmlpaVL7uXPnBABx7NgxaVx3d3eNeA4dOiRUKpXG8UvOd+nSpRp1NWvWFLGxseWeb3X3tD9PFfmMy5lIIiIiIqKXpF27dlCr1VKpyDt1M2bMgJGRkVTS0tIAPFqoJiMjA0uWLEHjxo2xZMkSODs748yZMwAAtVqN1q1bo0aNGqXGzMrKwj///AMfHx+Neh8fHyQlJWnUeXl5ST/n5OQgJSUFAwcO1Ijpyy+/lB6TLUtubi709PQ06gwNDbFt2zYkJydj0qRJMDIywpgxY9CiRQs8ePBA6mdrawtjY2Np28LCAq6urtDS0tKoK1lQKCkpCTY2NrCxsZHaXV1dYWpqWurcHpeYmIjs7GzUqlVL49xSU1NLnZu+vr5GjG8rnaoOgIiIiIjoTWVoaAh7e/vn2vfjjz9Gz549pW1ra2vp51q1aqFHjx7o0aMHZsyYAU9PT8yZMwcrV66Evr7+C8cNPIq9RHZ2NgBg2bJlaNmypUa/knc8y1K7dm3cvXu3zDY7OzvY2dlh0KBBmDhxIhwdHbF+/Xr0798fAEolwQqFosy64uJi+SdVhuzsbFhZWSEuLq5Um6mpqcb2nTt3YG5u/kLHexMwiSQiIiIiqobMzMxgZmb2zH66urqws7OTVmdt0qQJVq5ciYKCglJJl0qlgrW1NeLj4+Hr6yvVx8fHo0WLFuUew8LCAtbW1rhy5QqCg4Nln4Onpyd+/PHHZ/aztbWFgYHBC60w6+LigmvXruHatWvSbOT58+dx7949uLq6Anh0rYqKijT2a9q0KTIyMqCjo6PxNSRPSklJwcOHD+Hp6fncMb4pmEQSEREREVWB7Oxs6TsjASA1NRVqtRpmZmaoX79+mfts3boV69atw0cffQRHR0cIIbBlyxZs374dMTExAICwsDB8++23+OijjxAREQETExP8+eefaNGiBZycnDBu3DhERkbCzs4OHh4eiImJgVqtllZgLc/UqVMRHh4OExMTBAYGIi8vD8ePH8fdu3cxevToMvcJCAhAREQE7t69i5o1awJ4tPLqgwcP0KlTJzRo0AD37t3DwoULUVBQgA4dOjzPpQQA+Pv7w83NDcHBwZg/fz4KCwsxbNgw+Pr6So/m2traSte5Xr16MDY2hr+/P7y9vREUFITZs2fD0dER//zzD7Zt24bu3btL+x46dAiNGjWCnZ3dc8f4puA7kURERET0enrVS+tUsuPHj8PT01Oa2Ro9ejQ8PT0xZcqUcvdxdXWFgYEBxowZAw8PD/znP//Bhg0bEB0djb59+wJ49Kjr/v37kZ2dDV9fXzRr1gzLli2TZiXDw8MxevRojBkzBm5ubti5cyc2b94MBweHp8Y7aNAgREdHIyYmBm5ubvD19UVsbKzGV4s8yc3NDU2bNsWGDRukOl9fX1y5cgX9+vWDs7MzOnbsiIyMDOzevRtOTk6yr9+TFAoFfvvtN9SsWRNt2rSBv78/GjVqhPXr10t9PvjgAwQGBqJdu3YwNzfH2rVroVAosH37drRp0wb9+/eHo6MjPvroI/z111+wsLCQ9l27di0GDx783PG9SRRCvIQ/EURvsKysLJiYmCAzMxMqlaqqwyEiInqjPXjwAElJSXBxcYGBgUFVh0PPYdu2bRg3bhzOnj2rsSjO6+TcuXPw8/PDpUuXYGJiUtXhPLen/XmqyGdcPs5KREREREQvTefOnXH58mVcv35dY+XU10l6ejr+53/+57VOICsTk0giIiIiInqpRo0aVdUhvBB/f/+qDqFaeT3nk4mIiIiIiKhKMIkkIiIiIiIi2ZhEEhEREVG196JfKE9ElffniO9EEhEREVG1paenBy0tLaSmpqJu3bpQKpVQKBRVHRbRa6e4uBjp6elQKBRQKpUvNBaTSCIiIiKqtrS0tODq6oqrV68iNTW1qsMheq0pFArY29tDW1v7hcZhEklERERE1ZpSqYSjoyMKCgpQWFhY1eEQvbaUSuULJ5AAk0giIiIieg0oFAro6upCV1e3qkMheutxYR0iIiIiIiKSjUkkERERERERycYkkoiIiIiIiGTjO5FEFSSEAABkZWVVcSRERERERJWj5LNtyWfdp2ESSVRBt2/fBgDY2NhUcSRERERERJXr/v37MDExeWofJpFEFWRmZgYASEtLe+YfMKInZWVlwcbGBteuXYNKparqcOg1w/uHXhTvIXoRvH/ebEII3L9/H9bW1s/syySSqIK0tB69SmxiYsK/QOm5qVQq3j/03Hj/0IviPUQvgvfPm0vuBAkX1iEiIiIiIiLZmEQSERERERGRbEwiiSpIqVQiMjISSqWyqkOh1xDvH3oRvH/oRfEeohfB+4dKKIScNVyJiIiIiIiIwJlIIiIiIiIiqgAmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklUhkWLFsHW1hZ6enpo2bIljh079tT+P/30E5ydnaGnpwc3Nzds3779FUVK1VFF7p9ly5ahdevWqFmzJmrWrAl/f/9n3m/0Zqvo3z8l1q1bB4VCgaCgoJcbIFV7Fb2H7t27h+HDh8PKygpKpRKOjo78d+wtVtH7Z/78+XBycoK+vj5sbGzw6aef4uHDh68oWqoqTCKJnrB+/XqMHj0akZGROHnyJNzd3REQEICbN2+W2f/IkSPo3bs3Bg4ciFOnTiEoKAhBQUE4e/bsK46cqoOK3j9xcXHo3bs3Dhw4gD/++AM2Njb473//i+vXr7/iyKk6qOj9U+Lq1asYO3YsWrdu/YoipeqqovdQfn4+OnTogKtXr+Lnn3/GxYsXsWzZMtStW/cVR07VQUXvnzVr1mDChAmIjIxEUlISli9fjvXr1+Pzzz9/xZHTKyeISEOLFi3E8OHDpe2ioiJhbW0tZs6cWWb/nj17is6dO2vUtWzZUgwdOvSlxknVU0XvnycVFhYKY2NjsXLlypcVIlVjz3P/FBYWilatWono6GgREhIiunXr9goipeqqovfQ4sWLRaNGjUR+fv6rCpGqsYreP8OHDxd+fn4adaNHjxY+Pj4vNU6qepyJJHpMfn4+Tpw4AX9/f6lOS0sL/v7++OOPP8rc548//tDoDwABAQHl9qc31/PcP0968OABCgoKYGZm9rLCpGrqee+fL774AnXq1MHAgQNfRZhUjT3PPbR582Z4e3tj+PDhsLCwwDvvvIMZM2agqKjoVYVN1cTz3D+tWrXCiRMnpEder1y5gu3bt6NTp06vJGaqOjpVHQBRdfLvv/+iqKgIFhYWGvUWFha4cOFCmftkZGSU2T8jI+OlxUnV0/PcP08aP348rK2tS/3HBL35nuf+OXz4MJYvXw61Wv0KIqTq7nnuoStXrmD//v0IDg7G9u3bkZycjGHDhqGgoACRkZGvImyqJp7n/unTpw/+/fdfvPvuuxBCoLCwEB9//DEfZ30LcCaSiKiamDVrFtatW4dNmzZBT0+vqsOhau7+/fvo27cvli1bhtq1a1d1OPSaKi4uRp06dfDDDz+gWbNm6NWrFyZOnIglS5ZUdWj0GoiLi8OMGTPw/fff4+TJk9i4cSO2bduGadOmVXVo9JJxJpLoMbVr14a2tjZu3LihUX/jxg1YWlqWuY+lpWWF+tOb63nunxJz5szBrFmzsHfvXjRp0uRlhknVVEXvn5SUFFy9ehVdu3aV6oqLiwEAOjo6uHjxIuzs7F5u0FStPM/fQVZWVqhRowa0tbWlOhcXF2RkZCA/Px+6urovNWaqPp7n/pk8eTL69u2LQYMGAQDc3NyQk5ODIUOGYOLEidDS4nzVm4q/WaLH6OrqolmzZti3b59UV1xcjH379sHb27vMfby9vTX6A8CePXvK7U9vrue5fwBg9uzZmDZtGnbu3AkvL69XESpVQxW9f5ydnXHmzBmo1WqpvPfee2jXrh3UajVsbGxeZfhUDTzP30E+Pj5ITk6W/gMCAC5dugQrKysmkG+Z57l/Hjx4UCpRLPkPCSHEywuWql5Vr+xDVN2sW7dOKJVKERsbK86fPy+GDBkiTE1NRUZGhhBCiL59+4oJEyZI/ePj44WOjo6YM2eOSEpKEpGRkaJGjRrizJkzVXUKVIUqev/MmjVL6Orqip9//lmkp6dL5f79+1V1ClSFKnr/PImrs1JF76G0tDRhbGwswsLCxMWLF8XWrVtFnTp1xJdffllVp0BVqKL3T2RkpDA2NhZr164VV65cEbt37xZ2dnaiZ8+eVXUK9IrwcVaiJ/Tq1Qu3bt3ClClTkJGRAQ8PD+zcuVN60TwtLU3jf91atWqFNWvWYNKkSfj888/h4OCAX3/9Fe+8805VnQJVoYreP4sXL0Z+fj4+/PBDjXEiIyMRFRX1KkOnaqCi9w/Rkyp6D9nY2GDXrl349NNP0aRJE9StWxcjR47E+PHjq+oUqApV9P6ZNGkSFAoFJk2ahOvXr8Pc3Bxdu3bF9OnTq+oU6BVRCMG5ZiIiIiIiIpKH/51JREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbP8ff9NmLM5JF80AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
LabelsPrecisionPrecision (Smote)RecallRecall (Smote)F1F1 (Smote)Occurrence CountPercentage
9Mute Swan 1km0.8950560.9010900.9476520.9236500.9206030.912231191240.578044
1Canada Goose 1km0.7512290.7626790.8932190.7677320.8160940.765197101470.306704
10Pheasant 1km0.5542170.5234570.6336090.4380170.5912600.47694058550.176974
16Rock Dove 1km0.5607990.4776390.2923370.2526020.3843280.33044639190.118456
7Little Owl 1km0.5334140.5011660.5000000.4897490.5161670.49539235480.107242
14Red-legged Partridge 1km0.4000000.4243320.0768140.2034140.1288780.27500029530.089258
11Pink-footed Goose 1km0.6761900.5638840.4329270.5045730.5278810.53258226460.079978
19Wigeon 1km0.6422760.2445860.1350430.3282050.2231640.28029223170.070034
3Gadwall 1km0.7091990.5963300.4385320.4770640.5419500.53007122050.066649
5Grey Partridge 1km0.3157890.3450130.0227270.2424240.0424030.28476121230.064170
13Pochard 1km0.5000000.1981130.0152670.0801530.0296300.11413010570.031949
8Mandarin Duck 1km0.6052630.4586470.2035400.2699120.3046360.33983310100.030528
18Whooper Swan 1km0.2857140.0955880.0076630.1494250.0149250.1165929550.028866
2Egyptian Goose 1km0.4587630.4658390.4684210.3947370.4635420.4273508630.026085
0Barnacle Goose 1km0.4350280.4064520.4010420.3281250.4173440.3631127690.023244
12Pintail 1km0.3589740.0515970.0769230.1153850.1266970.0713076970.021068
15Ring-necked Parakeet 1km0.2197800.4193550.3225810.3145160.2614380.3594475040.015234
4Goshawk 1km0.0000000.1186440.0000000.0660380.0000000.0848484460.013481
6Indian Peafowl 1km0.0000000.1200000.0000000.0400000.0000000.0600002940.008886
17Ruddy Duck 1km0.0000000.2727270.0000000.1000000.0000000.1463411240.003748
\n", "
" ], "text/plain": [ " Labels Precision Precision (Smote) Recall \\\n", "9 Mute Swan 1km 0.895056 0.901090 0.947652 \n", "1 Canada Goose 1km 0.751229 0.762679 0.893219 \n", "10 Pheasant 1km 0.554217 0.523457 0.633609 \n", "16 Rock Dove 1km 0.560799 0.477639 0.292337 \n", "7 Little Owl 1km 0.533414 0.501166 0.500000 \n", "14 Red-legged Partridge 1km 0.400000 0.424332 0.076814 \n", "11 Pink-footed Goose 1km 0.676190 0.563884 0.432927 \n", "19 Wigeon 1km 0.642276 0.244586 0.135043 \n", "3 Gadwall 1km 0.709199 0.596330 0.438532 \n", "5 Grey Partridge 1km 0.315789 0.345013 0.022727 \n", "13 Pochard 1km 0.500000 0.198113 0.015267 \n", "8 Mandarin Duck 1km 0.605263 0.458647 0.203540 \n", "18 Whooper Swan 1km 0.285714 0.095588 0.007663 \n", "2 Egyptian Goose 1km 0.458763 0.465839 0.468421 \n", "0 Barnacle Goose 1km 0.435028 0.406452 0.401042 \n", "12 Pintail 1km 0.358974 0.051597 0.076923 \n", "15 Ring-necked Parakeet 1km 0.219780 0.419355 0.322581 \n", "4 Goshawk 1km 0.000000 0.118644 0.000000 \n", "6 Indian Peafowl 1km 0.000000 0.120000 0.000000 \n", "17 Ruddy Duck 1km 0.000000 0.272727 0.000000 \n", "\n", " Recall (Smote) F1 F1 (Smote) Occurrence Count Percentage \n", "9 0.923650 0.920603 0.912231 19124 0.578044 \n", "1 0.767732 0.816094 0.765197 10147 0.306704 \n", "10 0.438017 0.591260 0.476940 5855 0.176974 \n", "16 0.252602 0.384328 0.330446 3919 0.118456 \n", "7 0.489749 0.516167 0.495392 3548 0.107242 \n", "14 0.203414 0.128878 0.275000 2953 0.089258 \n", "11 0.504573 0.527881 0.532582 2646 0.079978 \n", "19 0.328205 0.223164 0.280292 2317 0.070034 \n", "3 0.477064 0.541950 0.530071 2205 0.066649 \n", "5 0.242424 0.042403 0.284761 2123 0.064170 \n", "13 0.080153 0.029630 0.114130 1057 0.031949 \n", "8 0.269912 0.304636 0.339833 1010 0.030528 \n", "18 0.149425 0.014925 0.116592 955 0.028866 \n", "2 0.394737 0.463542 0.427350 863 0.026085 \n", "0 0.328125 0.417344 0.363112 769 0.023244 \n", "12 0.115385 0.126697 0.071307 697 0.021068 \n", "15 0.314516 0.261438 0.359447 504 0.015234 \n", "4 0.066038 0.000000 0.084848 446 0.013481 \n", "6 0.040000 0.000000 0.060000 294 0.008886 \n", "17 0.100000 0.000000 0.146341 124 0.003748 " ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Create graphs to show off data\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "plt.rcParams['figure.figsize'] = [9, 12]\n", "\n", "occurrence_count, occurrence_percentage = All_bird_occurrences['Occurrence Count'], All_bird_occurrences['Percentage']\n", "precision = []\n", "precision_smote = []\n", "recall = []\n", "recall_smote = []\n", "f1 = []\n", "f1_smote = []\n", "labels = []\n", "for dict in df_dicts:\n", " precision.append(dict['report']['1']['precision'])\n", " precision_smote.append(dict['report_smote']['1']['precision'])\n", " recall.append(dict['report']['1']['recall'])\n", " recall_smote.append(dict['report_smote']['1']['recall'])\n", " f1.append(dict['report']['1']['f1-score'])\n", " f1_smote.append(dict['report_smote']['1']['f1-score'])\n", " labels.append(dict['name'])\n", "\n", "\n", "\n", "scores = pd.DataFrame({'Labels' : labels, \n", " 'Precision': precision, 'Precision (Smote)': precision_smote, \n", " 'Recall': recall, 'Recall (Smote)': recall_smote, \n", " 'F1': f1, 'F1 (Smote)': f1_smote,\n", " 'Occurrence Count' : occurrence_count, 'Percentage' : occurrence_percentage} )\n", " \n", "scores.sort_values('Occurrence Count', inplace=True)\n", "\n", "n=20\n", "r = np.arange(n)\n", "height = 0.25\n", "\n", "plt.barh(r, 'Percentage', data=scores, label='Occurrence Percentage', height = height, color='g')\n", "plt.barh(r+height, 'F1', data=scores, label='F1-Score', height= height, color='b')\n", "plt.barh(r+height*2, 'F1 (Smote)', data=scores, label='F1-Score (Smote)', height = height, color='r')\n", "plt.legend(framealpha=1, frameon=True)\n", "plt.yticks(r+height*2, scores['Labels'])\n", "\n", "\n", "plt.show()\n", "\n", "\n", "scores.sort_values('Occurrence Count', ascending=False)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Stored 'df_dicts_1km' (list)\n" ] } ], "source": [ "# Store dictionaries for later use\n", "df_dicts_1km = df_dicts\n", "%store df_dicts_1km" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
962500.0155500.000
819500.0338500.000
378500.0406500.000
706500.0390500.000
897500.0325500.000
............
1096500.0199500.000
535500.0591500.000
337500.0425500.000
232500.0186500.001
1135500.040500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "962500.0 155500.0 0 0\n", "819500.0 338500.0 0 0\n", "378500.0 406500.0 0 0\n", "706500.0 390500.0 0 0\n", "897500.0 325500.0 0 0\n", "... ... ...\n", "1096500.0 199500.0 0 0\n", "535500.0 591500.0 0 0\n", "337500.0 425500.0 0 0\n", "232500.0 186500.0 0 1\n", "1135500.0 40500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
836500.0116500.000
655500.0626500.000
277500.0451500.011
518500.061500.000
746500.0117500.000
............
1017500.0557500.000
374500.0502500.010
248500.0292500.000
183500.0500500.011
1073500.0158500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "836500.0 116500.0 0 0\n", "655500.0 626500.0 0 0\n", "277500.0 451500.0 1 1\n", "518500.0 61500.0 0 0\n", "746500.0 117500.0 0 0\n", "... ... ...\n", "1017500.0 557500.0 0 0\n", "374500.0 502500.0 1 0\n", "248500.0 292500.0 0 0\n", "183500.0 500500.0 1 1\n", "1073500.0 158500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
965500.0565500.000
815500.0297500.000
357500.0224500.000
695500.0254500.000
897500.0689500.000
............
1097500.0515500.000
516500.0560500.000
315500.0568500.000
216500.0594500.010
1135500.018500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "965500.0 565500.0 0 0\n", "815500.0 297500.0 0 0\n", "357500.0 224500.0 0 0\n", "695500.0 254500.0 0 0\n", "897500.0 689500.0 0 0\n", "... ... ...\n", "1097500.0 515500.0 0 0\n", "516500.0 560500.0 0 0\n", "315500.0 568500.0 0 0\n", "216500.0 594500.0 1 0\n", "1135500.0 18500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
948500.0472500.000
799500.0389500.000
347500.0652500.000
683500.0615500.000
880500.0575500.000
............
1086500.0585500.000
499500.0640500.000
312500.0593500.000
218500.0477500.000
1127500.0658500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "948500.0 472500.0 0 0\n", "799500.0 389500.0 0 0\n", "347500.0 652500.0 0 0\n", "683500.0 615500.0 0 0\n", "880500.0 575500.0 0 0\n", "... ... ...\n", "1086500.0 585500.0 0 0\n", "499500.0 640500.0 0 0\n", "312500.0 593500.0 0 0\n", "218500.0 477500.0 0 0\n", "1127500.0 658500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
968500.051500.000
828500.0230500.000
382500.0480500.000
718500.0624500.000
904500.0666500.000
............
1099500.0552500.000
540500.0467500.000
337500.0350500.000
231500.0463500.000
1138500.0581500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "968500.0 51500.0 0 0\n", "828500.0 230500.0 0 0\n", "382500.0 480500.0 0 0\n", "718500.0 624500.0 0 0\n", "904500.0 666500.0 0 0\n", "... ... ...\n", "1099500.0 552500.0 0 0\n", "540500.0 467500.0 0 0\n", "337500.0 350500.0 0 0\n", "231500.0 463500.0 0 0\n", "1138500.0 581500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
949500.06500.000
799500.0470500.000
361500.0282500.000
683500.0278500.010
882500.0446500.000
............
1091500.03500.000
505500.0434500.000
323500.0642500.001
226500.0653500.000
1132500.0613500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "949500.0 6500.0 0 0\n", "799500.0 470500.0 0 0\n", "361500.0 282500.0 0 0\n", "683500.0 278500.0 1 0\n", "882500.0 446500.0 0 0\n", "... ... ...\n", "1091500.0 3500.0 0 0\n", "505500.0 434500.0 0 0\n", "323500.0 642500.0 0 1\n", "226500.0 653500.0 0 0\n", "1132500.0 613500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
969500.0180500.000
824500.0179500.000
378500.0407500.000
712500.0336500.000
903500.0422500.000
............
1099500.045500.000
531500.0276500.000
334500.0534500.000
227500.0170500.000
1138500.0554500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "969500.0 180500.0 0 0\n", "824500.0 179500.0 0 0\n", "378500.0 407500.0 0 0\n", "712500.0 336500.0 0 0\n", "903500.0 422500.0 0 0\n", "... ... ...\n", "1099500.0 45500.0 0 0\n", "531500.0 276500.0 0 0\n", "334500.0 534500.0 0 0\n", "227500.0 170500.0 0 0\n", "1138500.0 554500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
930500.0568500.000
771500.0130500.000
327500.011500.000
645500.0485500.000
858500.0506500.000
............
1074500.0258500.000
456500.0557500.000
293500.0690500.000
210500.0288500.000
1119500.095500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "930500.0 568500.0 0 0\n", "771500.0 130500.0 0 0\n", "327500.0 11500.0 0 0\n", "645500.0 485500.0 0 0\n", "858500.0 506500.0 0 0\n", "... ... ...\n", "1074500.0 258500.0 0 0\n", "456500.0 557500.0 0 0\n", "293500.0 690500.0 0 0\n", "210500.0 288500.0 0 0\n", "1119500.0 95500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
960500.0209500.000
814500.0197500.000
367500.0436500.011
702500.0371500.000
894500.0360500.000
............
1096500.0139500.000
521500.0528500.000
325500.088500.000
220500.0211500.000
1136500.0611500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "960500.0 209500.0 0 0\n", "814500.0 197500.0 0 0\n", "367500.0 436500.0 1 1\n", "702500.0 371500.0 0 0\n", "894500.0 360500.0 0 0\n", "... ... ...\n", "1096500.0 139500.0 0 0\n", "521500.0 528500.0 0 0\n", "325500.0 88500.0 0 0\n", "220500.0 211500.0 0 0\n", "1136500.0 611500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
680500.065500.000
530500.0309500.011
254500.0634500.011
425500.0348500.011
626500.0529500.000
............
861500.0205500.000
322500.0344500.011
230500.0483500.011
180500.0539500.011
935500.0174500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "680500.0 65500.0 0 0\n", "530500.0 309500.0 1 1\n", "254500.0 634500.0 1 1\n", "425500.0 348500.0 1 1\n", "626500.0 529500.0 0 0\n", "... ... ...\n", "861500.0 205500.0 0 0\n", "322500.0 344500.0 1 1\n", "230500.0 483500.0 1 1\n", "180500.0 539500.0 1 1\n", "935500.0 174500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
902500.0540500.000
739500.0369500.000
317500.0554500.001
622500.0469500.000
828500.0584500.000
............
1057500.0582500.000
454500.0632500.000
282500.0318500.001
203500.086500.000
1104500.0550500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "902500.0 540500.0 0 0\n", "739500.0 369500.0 0 0\n", "317500.0 554500.0 0 1\n", "622500.0 469500.0 0 0\n", "828500.0 584500.0 0 0\n", "... ... ...\n", "1057500.0 582500.0 0 0\n", "454500.0 632500.0 0 0\n", "282500.0 318500.0 0 1\n", "203500.0 86500.0 0 0\n", "1104500.0 550500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
950500.0406500.000
809500.02500.000
398500.0691500.000
707500.0615500.000
881500.0442500.000
............
1089500.0549500.000
547500.0154500.000
354500.0260500.000
249500.0254500.000
1131500.0696500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "950500.0 406500.0 0 0\n", "809500.0 2500.0 0 0\n", "398500.0 691500.0 0 0\n", "707500.0 615500.0 0 0\n", "881500.0 442500.0 0 0\n", "... ... ...\n", "1089500.0 549500.0 0 0\n", "547500.0 154500.0 0 0\n", "354500.0 260500.0 0 0\n", "249500.0 254500.0 0 0\n", "1131500.0 696500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
967500.0156500.001
822500.0126500.000
378500.0457500.000
709500.0682500.000
900500.0211500.000
............
1101500.0468500.000
532500.0374500.000
335500.0560500.000
231500.0416500.000
1138500.028500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "967500.0 156500.0 0 1\n", "822500.0 126500.0 0 0\n", "378500.0 457500.0 0 0\n", "709500.0 682500.0 0 0\n", "900500.0 211500.0 0 0\n", "... ... ...\n", "1101500.0 468500.0 0 0\n", "532500.0 374500.0 0 0\n", "335500.0 560500.0 0 0\n", "231500.0 416500.0 0 0\n", "1138500.0 28500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
961500.0396500.000
818500.0565500.000
371500.0430500.001
704500.027500.000
896500.0597500.000
............
1094500.0461500.000
523500.0617500.000
331500.011500.000
230500.079500.000
1132500.0221500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "961500.0 396500.0 0 0\n", "818500.0 565500.0 0 0\n", "371500.0 430500.0 0 1\n", "704500.0 27500.0 0 0\n", "896500.0 597500.0 0 0\n", "... ... ...\n", "1094500.0 461500.0 0 0\n", "523500.0 617500.0 0 0\n", "331500.0 11500.0 0 0\n", "230500.0 79500.0 0 0\n", "1132500.0 221500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
940500.0272500.000
782500.0270500.000
336500.0236500.001
664500.0453500.000
868500.0252500.000
............
1083500.0173500.000
481500.0553500.000
299500.0527500.010
213500.0457500.011
1126500.0490500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "940500.0 272500.0 0 0\n", "782500.0 270500.0 0 0\n", "336500.0 236500.0 0 1\n", "664500.0 453500.0 0 0\n", "868500.0 252500.0 0 0\n", "... ... ...\n", "1083500.0 173500.0 0 0\n", "481500.0 553500.0 0 0\n", "299500.0 527500.0 1 0\n", "213500.0 457500.0 1 1\n", "1126500.0 490500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
969500.016500.000
821500.0474500.000
368500.0295500.000
709500.074500.000
903500.0575500.000
............
1100500.0390500.000
529500.0393500.000
325500.0323500.000
215500.0327500.000
1139500.093500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "969500.0 16500.0 0 0\n", "821500.0 474500.0 0 0\n", "368500.0 295500.0 0 0\n", "709500.0 74500.0 0 0\n", "903500.0 575500.0 0 0\n", "... ... ...\n", "1100500.0 390500.0 0 0\n", "529500.0 393500.0 0 0\n", "325500.0 323500.0 0 0\n", "215500.0 327500.0 0 0\n", "1139500.0 93500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
937500.031500.000
778500.0202500.000
335500.04500.000
659500.0322500.010
863500.0259500.010
............
1080500.0155500.000
474500.0477500.010
295500.095500.000
204500.0658500.000
1123500.0550500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "937500.0 31500.0 0 0\n", "778500.0 202500.0 0 0\n", "335500.0 4500.0 0 0\n", "659500.0 322500.0 1 0\n", "863500.0 259500.0 1 0\n", "... ... ...\n", "1080500.0 155500.0 0 0\n", "474500.0 477500.0 1 0\n", "295500.0 95500.0 0 0\n", "204500.0 658500.0 0 0\n", "1123500.0 550500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
969500.0293500.000
825500.078500.000
379500.0633500.000
713500.0366500.000
901500.0154500.000
............
1099500.0316500.000
532500.0141500.000
336500.0138500.000
232500.0302500.000
1138500.0479500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "969500.0 293500.0 0 0\n", "825500.0 78500.0 0 0\n", "379500.0 633500.0 0 0\n", "713500.0 366500.0 0 0\n", "901500.0 154500.0 0 0\n", "... ... ...\n", "1099500.0 316500.0 0 0\n", "532500.0 141500.0 0 0\n", "336500.0 138500.0 0 0\n", "232500.0 302500.0 0 0\n", "1138500.0 479500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
965500.0325500.010
825500.0144500.010
386500.0276500.001
713500.082500.000
903500.0171500.000
............
1095500.0145500.000
537500.0428500.000
343500.0467500.000
238500.0385500.000
1134500.076500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "965500.0 325500.0 1 0\n", "825500.0 144500.0 1 0\n", "386500.0 276500.0 0 1\n", "713500.0 82500.0 0 0\n", "903500.0 171500.0 0 0\n", "... ... ...\n", "1095500.0 145500.0 0 0\n", "537500.0 428500.0 0 0\n", "343500.0 467500.0 0 0\n", "238500.0 385500.0 0 0\n", "1134500.0 76500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
952500.0101500.000
810500.0233500.000
374500.0364500.011
698500.0209500.000
884500.0398500.000
............
1086500.0454500.000
527500.0207500.001
333500.0528500.000
234500.0614500.011
1127500.0634500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "952500.0 101500.0 0 0\n", "810500.0 233500.0 0 0\n", "374500.0 364500.0 1 1\n", "698500.0 209500.0 0 0\n", "884500.0 398500.0 0 0\n", "... ... ...\n", "1086500.0 454500.0 0 0\n", "527500.0 207500.0 0 1\n", "333500.0 528500.0 0 0\n", "234500.0 614500.0 1 1\n", "1127500.0 634500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Export predictions to CSV for QGIS\n", "RESULTS_PATH = 'Datasets/Machine Learning/Results/1km/'\n", "for dict in df_dicts:\n", " # Join with y_test datafram\n", " result_df = dict['y_test'] \n", " result_df['Predictions'] = dict['predictions_smote']\n", " display(result_df)\n", " result_df.to_csv(RESULTS_PATH + dict['name'] + '.csv')\n", " " ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
251586.6606960.000000e+00Inflowing drainage direction
291579.7996460.000000e+00Chlorothalonil
301579.7996460.000000e+00Glyphosate
311579.7996460.000000e+00Mancozeb
321579.7996460.000000e+00Mecoprop-P
341579.7996460.000000e+00Pendimethalin
181440.9393791.143607e-308Saltmarsh
231417.8796287.271005e-304Surface type
221269.6114056.667737e-273Cumulative catchment area
241223.1980533.502336e-263Outflowing drainage direction
211203.7425584.196966e-259Elevation
171078.6082888.174358e-233Littoral sediment
13978.4727061.050650e-211Freshwater
15853.8117302.457887e-185Supralittoral sediment
3816.9145861.639367e-177Improve grassland
38682.0111937.904841e-149Tri-allate
37676.1493771.402808e-147Sulphur
36673.5754294.960887e-147Prosulfocarb
26605.3291331.806036e-132Fertiliser K
27605.3291331.806036e-132Fertiliser N
28605.3291331.806036e-132Fertiliser P
35504.7548995.949135e-111PropamocarbHydrochloride
33472.9548113.918041e-104Metamitron
16416.3692725.554940e-92Littoral rock
7360.6572635.403022e-80Fen
0243.3782761.130191e-54Deciduous woodland
2223.6312472.134039e-50Arable
19168.9600211.551633e-38Urban
20156.0982479.703696e-36Suburban
1488.0366076.821306e-21Supralittoral rock
970.5042474.773365e-17Heather grassland
452.0916775.410742e-13Neutral grassland
1228.1312551.140877e-07Saltwater
1010.5934821.136010e-03Bog
63.8817274.882264e-02Acid grassland
81.7269791.888063e-01Heather
111.3099282.524160e-01Inland rock
11.1936362.746053e-01Coniferous woodland
50.2754065.997316e-01Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 1586.660696 0.000000e+00 Inflowing drainage direction\n", "29 1579.799646 0.000000e+00 Chlorothalonil\n", "30 1579.799646 0.000000e+00 Glyphosate\n", "31 1579.799646 0.000000e+00 Mancozeb\n", "32 1579.799646 0.000000e+00 Mecoprop-P\n", "34 1579.799646 0.000000e+00 Pendimethalin\n", "18 1440.939379 1.143607e-308 Saltmarsh\n", "23 1417.879628 7.271005e-304 Surface type\n", "22 1269.611405 6.667737e-273 Cumulative catchment area\n", "24 1223.198053 3.502336e-263 Outflowing drainage direction\n", "21 1203.742558 4.196966e-259 Elevation\n", "17 1078.608288 8.174358e-233 Littoral sediment\n", "13 978.472706 1.050650e-211 Freshwater\n", "15 853.811730 2.457887e-185 Supralittoral sediment\n", "3 816.914586 1.639367e-177 Improve grassland\n", "38 682.011193 7.904841e-149 Tri-allate\n", "37 676.149377 1.402808e-147 Sulphur\n", "36 673.575429 4.960887e-147 Prosulfocarb\n", "26 605.329133 1.806036e-132 Fertiliser K\n", "27 605.329133 1.806036e-132 Fertiliser N\n", "28 605.329133 1.806036e-132 Fertiliser P\n", "35 504.754899 5.949135e-111 PropamocarbHydrochloride\n", "33 472.954811 3.918041e-104 Metamitron\n", "16 416.369272 5.554940e-92 Littoral rock\n", "7 360.657263 5.403022e-80 Fen\n", "0 243.378276 1.130191e-54 Deciduous woodland\n", "2 223.631247 2.134039e-50 Arable\n", "19 168.960021 1.551633e-38 Urban\n", "20 156.098247 9.703696e-36 Suburban\n", "14 88.036607 6.821306e-21 Supralittoral rock\n", "9 70.504247 4.773365e-17 Heather grassland\n", "4 52.091677 5.410742e-13 Neutral grassland\n", "12 28.131255 1.140877e-07 Saltwater\n", "10 10.593482 1.136010e-03 Bog\n", "6 3.881727 4.882264e-02 Acid grassland\n", "8 1.726979 1.888063e-01 Heather\n", "11 1.309928 2.524160e-01 Inland rock\n", "1 1.193636 2.746053e-01 Coniferous woodland\n", "5 0.275406 5.997316e-01 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Canada Goose 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
2931307.8227410.000000e+00Chlorothalonil
3031307.8227410.000000e+00Glyphosate
3131307.8227410.000000e+00Mancozeb
3231307.8227410.000000e+00Mecoprop-P
3431307.8227410.000000e+00Pendimethalin
2327980.6519570.000000e+00Surface type
2627539.7575860.000000e+00Fertiliser K
2727539.7575860.000000e+00Fertiliser N
2827539.7575860.000000e+00Fertiliser P
2422192.8535320.000000e+00Outflowing drainage direction
2521798.0738670.000000e+00Inflowing drainage direction
2120557.2695200.000000e+00Elevation
3714416.2718560.000000e+00Sulphur
3614379.0085620.000000e+00Prosulfocarb
3814239.5102040.000000e+00Tri-allate
2210467.9737120.000000e+00Cumulative catchment area
3510058.9305240.000000e+00PropamocarbHydrochloride
339820.8000130.000000e+00Metamitron
39373.9923890.000000e+00Improve grassland
206200.6826740.000000e+00Suburban
04606.4379670.000000e+00Deciduous woodland
24435.5574220.000000e+00Arable
192407.8929970.000000e+00Urban
131994.2185350.000000e+00Freshwater
4591.9474911.305021e-129Neutral grassland
18389.0950294.077898e-86Saltmarsh
7240.5383014.654537e-54Fen
17162.2073434.555336e-37Littoral sediment
556.2171056.651725e-14Calcareous grassland
1554.9885721.241339e-13Supralittoral sediment
1249.2095212.344481e-12Saltwater
118.6893231.542908e-05Coniferous woodland
1016.1829045.763851e-05Bog
1113.0040103.112817e-04Inland rock
910.0570491.519046e-03Heather grassland
163.1943597.390188e-02Littoral rock
141.8316551.759414e-01Supralittoral rock
81.5640302.110850e-01Heather
61.3415712.467655e-01Acid grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "29 31307.822741 0.000000e+00 Chlorothalonil\n", "30 31307.822741 0.000000e+00 Glyphosate\n", "31 31307.822741 0.000000e+00 Mancozeb\n", "32 31307.822741 0.000000e+00 Mecoprop-P\n", "34 31307.822741 0.000000e+00 Pendimethalin\n", "23 27980.651957 0.000000e+00 Surface type\n", "26 27539.757586 0.000000e+00 Fertiliser K\n", "27 27539.757586 0.000000e+00 Fertiliser N\n", "28 27539.757586 0.000000e+00 Fertiliser P\n", "24 22192.853532 0.000000e+00 Outflowing drainage direction\n", "25 21798.073867 0.000000e+00 Inflowing drainage direction\n", "21 20557.269520 0.000000e+00 Elevation\n", "37 14416.271856 0.000000e+00 Sulphur\n", "36 14379.008562 0.000000e+00 Prosulfocarb\n", "38 14239.510204 0.000000e+00 Tri-allate\n", "22 10467.973712 0.000000e+00 Cumulative catchment area\n", "35 10058.930524 0.000000e+00 PropamocarbHydrochloride\n", "33 9820.800013 0.000000e+00 Metamitron\n", "3 9373.992389 0.000000e+00 Improve grassland\n", "20 6200.682674 0.000000e+00 Suburban\n", "0 4606.437967 0.000000e+00 Deciduous woodland\n", "2 4435.557422 0.000000e+00 Arable\n", "19 2407.892997 0.000000e+00 Urban\n", "13 1994.218535 0.000000e+00 Freshwater\n", "4 591.947491 1.305021e-129 Neutral grassland\n", "18 389.095029 4.077898e-86 Saltmarsh\n", "7 240.538301 4.654537e-54 Fen\n", "17 162.207343 4.555336e-37 Littoral sediment\n", "5 56.217105 6.651725e-14 Calcareous grassland\n", "15 54.988572 1.241339e-13 Supralittoral sediment\n", "12 49.209521 2.344481e-12 Saltwater\n", "1 18.689323 1.542908e-05 Coniferous woodland\n", "10 16.182904 5.763851e-05 Bog\n", "11 13.004010 3.112817e-04 Inland rock\n", "9 10.057049 1.519046e-03 Heather grassland\n", "16 3.194359 7.390188e-02 Littoral rock\n", "14 1.831655 1.759414e-01 Supralittoral rock\n", "8 1.564030 2.110850e-01 Heather\n", "6 1.341571 2.467655e-01 Acid grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Egyptian Goose 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
264833.6207410.000000e+00Fertiliser K
274833.6207410.000000e+00Fertiliser N
284833.6207410.000000e+00Fertiliser P
224398.3456840.000000e+00Cumulative catchment area
133391.7285260.000000e+00Freshwater
293198.3351340.000000e+00Chlorothalonil
303198.3351340.000000e+00Glyphosate
313198.3351340.000000e+00Mancozeb
323198.3351340.000000e+00Mecoprop-P
343198.3351340.000000e+00Pendimethalin
242769.9836260.000000e+00Outflowing drainage direction
192688.5637440.000000e+00Urban
232448.1895950.000000e+00Surface type
362166.3453170.000000e+00Prosulfocarb
372164.4651870.000000e+00Sulphur
382130.6791350.000000e+00Tri-allate
331913.8364230.000000e+00Metamitron
251867.1817580.000000e+00Inflowing drainage direction
351851.6379360.000000e+00PropamocarbHydrochloride
201608.1196550.000000e+00Suburban
211508.4462021.037538e-322Elevation
31160.2542195.600729e-250Improve grassland
01025.5497981.228685e-221Deciduous woodland
7631.4761804.722469e-138Fen
2600.1484902.308798e-131Arable
18214.9616501.613752e-48Saltmarsh
466.7954703.118157e-16Neutral grassland
624.5320787.344270e-07Acid grassland
916.1038816.009295e-05Heather grassland
1010.9422509.409617e-04Bog
86.4602871.103570e-02Heather
156.1210621.336303e-02Supralittoral sediment
174.6582083.091261e-02Littoral sediment
53.6540485.594175e-02Calcareous grassland
113.3053916.906195e-02Inland rock
163.0517508.065946e-02Littoral rock
120.8704743.508309e-01Saltwater
140.7567413.843565e-01Supralittoral rock
10.0035479.525091e-01Coniferous woodland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 4833.620741 0.000000e+00 Fertiliser K\n", "27 4833.620741 0.000000e+00 Fertiliser N\n", "28 4833.620741 0.000000e+00 Fertiliser P\n", "22 4398.345684 0.000000e+00 Cumulative catchment area\n", "13 3391.728526 0.000000e+00 Freshwater\n", "29 3198.335134 0.000000e+00 Chlorothalonil\n", "30 3198.335134 0.000000e+00 Glyphosate\n", "31 3198.335134 0.000000e+00 Mancozeb\n", "32 3198.335134 0.000000e+00 Mecoprop-P\n", "34 3198.335134 0.000000e+00 Pendimethalin\n", "24 2769.983626 0.000000e+00 Outflowing drainage direction\n", "19 2688.563744 0.000000e+00 Urban\n", "23 2448.189595 0.000000e+00 Surface type\n", "36 2166.345317 0.000000e+00 Prosulfocarb\n", "37 2164.465187 0.000000e+00 Sulphur\n", "38 2130.679135 0.000000e+00 Tri-allate\n", "33 1913.836423 0.000000e+00 Metamitron\n", "25 1867.181758 0.000000e+00 Inflowing drainage direction\n", "35 1851.637936 0.000000e+00 PropamocarbHydrochloride\n", "20 1608.119655 0.000000e+00 Suburban\n", "21 1508.446202 1.037538e-322 Elevation\n", "3 1160.254219 5.600729e-250 Improve grassland\n", "0 1025.549798 1.228685e-221 Deciduous woodland\n", "7 631.476180 4.722469e-138 Fen\n", "2 600.148490 2.308798e-131 Arable\n", "18 214.961650 1.613752e-48 Saltmarsh\n", "4 66.795470 3.118157e-16 Neutral grassland\n", "6 24.532078 7.344270e-07 Acid grassland\n", "9 16.103881 6.009295e-05 Heather grassland\n", "10 10.942250 9.409617e-04 Bog\n", "8 6.460287 1.103570e-02 Heather\n", "15 6.121062 1.336303e-02 Supralittoral sediment\n", "17 4.658208 3.091261e-02 Littoral sediment\n", "5 3.654048 5.594175e-02 Calcareous grassland\n", "11 3.305391 6.906195e-02 Inland rock\n", "16 3.051750 8.065946e-02 Littoral rock\n", "12 0.870474 3.508309e-01 Saltwater\n", "14 0.756741 3.843565e-01 Supralittoral rock\n", "1 0.003547 9.525091e-01 Coniferous woodland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Gadwall 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
268495.2451300.000000e+00Fertiliser K
278495.2451300.000000e+00Fertiliser N
288495.2451300.000000e+00Fertiliser P
297138.5231240.000000e+00Chlorothalonil
307138.5231240.000000e+00Glyphosate
317138.5231240.000000e+00Mancozeb
327138.5231240.000000e+00Mecoprop-P
347138.5231240.000000e+00Pendimethalin
376747.5116800.000000e+00Sulphur
366716.6730710.000000e+00Prosulfocarb
386693.5250020.000000e+00Tri-allate
355956.4557480.000000e+00PropamocarbHydrochloride
335952.4054490.000000e+00Metamitron
245605.8846280.000000e+00Outflowing drainage direction
225421.2214120.000000e+00Cumulative catchment area
235337.7424150.000000e+00Surface type
254250.8688830.000000e+00Inflowing drainage direction
133657.9504580.000000e+00Freshwater
213513.5201440.000000e+00Elevation
22555.7749400.000000e+00Arable
32162.5401010.000000e+00Improve grassland
201871.4622380.000000e+00Suburban
01487.4870192.357158e-318Deciduous woodland
191271.1778863.134320e-273Urban
18947.2178154.200123e-205Saltmarsh
7892.3208091.714432e-193Fen
4739.3348904.953129e-161Neutral grassland
17160.8260299.095729e-37Littoral sediment
15130.6041413.443944e-30Supralittoral sediment
645.7996901.331664e-11Acid grassland
1232.2801871.345866e-08Saltwater
929.1203476.848560e-08Heather grassland
1021.7036993.194143e-06Bog
817.5600262.791009e-05Heather
117.8082045.203950e-03Inland rock
17.1881617.342254e-03Coniferous woodland
141.7819521.819190e-01Supralittoral rock
50.7358343.910048e-01Calcareous grassland
160.0971517.552781e-01Littoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 8495.245130 0.000000e+00 Fertiliser K\n", "27 8495.245130 0.000000e+00 Fertiliser N\n", "28 8495.245130 0.000000e+00 Fertiliser P\n", "29 7138.523124 0.000000e+00 Chlorothalonil\n", "30 7138.523124 0.000000e+00 Glyphosate\n", "31 7138.523124 0.000000e+00 Mancozeb\n", "32 7138.523124 0.000000e+00 Mecoprop-P\n", "34 7138.523124 0.000000e+00 Pendimethalin\n", "37 6747.511680 0.000000e+00 Sulphur\n", "36 6716.673071 0.000000e+00 Prosulfocarb\n", "38 6693.525002 0.000000e+00 Tri-allate\n", "35 5956.455748 0.000000e+00 PropamocarbHydrochloride\n", "33 5952.405449 0.000000e+00 Metamitron\n", "24 5605.884628 0.000000e+00 Outflowing drainage direction\n", "22 5421.221412 0.000000e+00 Cumulative catchment area\n", "23 5337.742415 0.000000e+00 Surface type\n", "25 4250.868883 0.000000e+00 Inflowing drainage direction\n", "13 3657.950458 0.000000e+00 Freshwater\n", "21 3513.520144 0.000000e+00 Elevation\n", "2 2555.774940 0.000000e+00 Arable\n", "3 2162.540101 0.000000e+00 Improve grassland\n", "20 1871.462238 0.000000e+00 Suburban\n", "0 1487.487019 2.357158e-318 Deciduous woodland\n", "19 1271.177886 3.134320e-273 Urban\n", "18 947.217815 4.200123e-205 Saltmarsh\n", "7 892.320809 1.714432e-193 Fen\n", "4 739.334890 4.953129e-161 Neutral grassland\n", "17 160.826029 9.095729e-37 Littoral sediment\n", "15 130.604141 3.443944e-30 Supralittoral sediment\n", "6 45.799690 1.331664e-11 Acid grassland\n", "12 32.280187 1.345866e-08 Saltwater\n", "9 29.120347 6.848560e-08 Heather grassland\n", "10 21.703699 3.194143e-06 Bog\n", "8 17.560026 2.791009e-05 Heather\n", "11 7.808204 5.203950e-03 Inland rock\n", "1 7.188161 7.342254e-03 Coniferous woodland\n", "14 1.781952 1.819190e-01 Supralittoral rock\n", "5 0.735834 3.910048e-01 Calcareous grassland\n", "16 0.097151 7.552781e-01 Littoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Goshawk 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
231228.0088333.437230e-264Surface type
211131.6589945.687958e-244Elevation
291110.0166422.016393e-239Chlorothalonil
301110.0166422.016393e-239Glyphosate
311110.0166422.016393e-239Mancozeb
321110.0166422.016393e-239Mecoprop-P
341110.0166422.016393e-239Pendimethalin
241068.0372771.373575e-230Outflowing drainage direction
221044.9333011.009602e-225Cumulative catchment area
25919.8890672.517246e-199Inflowing drainage direction
0809.8181715.254241e-176Deciduous woodland
3684.7801082.032079e-149Improve grassland
1397.8091475.441281e-88Coniferous woodland
38378.7433536.890413e-84Tri-allate
37375.2160713.958707e-83Sulphur
36366.3095243.275528e-81Prosulfocarb
6362.4598082.209967e-80Acid grassland
35245.2437314.460776e-55PropamocarbHydrochloride
26234.2554911.066866e-52Fertiliser K
27234.2554911.066866e-52Fertiliser N
28234.2554911.066866e-52Fertiliser P
33226.1609016.042257e-51Metamitron
287.7573917.852555e-21Arable
2079.8037074.343909e-19Suburban
845.5582821.506066e-11Heather
516.0538376.170139e-05Calcareous grassland
1315.7230437.347960e-05Freshwater
188.6930713.196452e-03Saltmarsh
74.2132954.011621e-02Fen
103.2933956.956812e-02Bog
141.4926442.218154e-01Supralittoral rock
191.2357072.663082e-01Urban
90.6530814.190191e-01Heather grassland
110.4163975.187449e-01Inland rock
120.2226896.370020e-01Saltwater
150.0469728.284207e-01Supralittoral sediment
40.0414368.386999e-01Neutral grassland
170.0326898.565239e-01Littoral sediment
160.0027399.582594e-01Littoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 1228.008833 3.437230e-264 Surface type\n", "21 1131.658994 5.687958e-244 Elevation\n", "29 1110.016642 2.016393e-239 Chlorothalonil\n", "30 1110.016642 2.016393e-239 Glyphosate\n", "31 1110.016642 2.016393e-239 Mancozeb\n", "32 1110.016642 2.016393e-239 Mecoprop-P\n", "34 1110.016642 2.016393e-239 Pendimethalin\n", "24 1068.037277 1.373575e-230 Outflowing drainage direction\n", "22 1044.933301 1.009602e-225 Cumulative catchment area\n", "25 919.889067 2.517246e-199 Inflowing drainage direction\n", "0 809.818171 5.254241e-176 Deciduous woodland\n", "3 684.780108 2.032079e-149 Improve grassland\n", "1 397.809147 5.441281e-88 Coniferous woodland\n", "38 378.743353 6.890413e-84 Tri-allate\n", "37 375.216071 3.958707e-83 Sulphur\n", "36 366.309524 3.275528e-81 Prosulfocarb\n", "6 362.459808 2.209967e-80 Acid grassland\n", "35 245.243731 4.460776e-55 PropamocarbHydrochloride\n", "26 234.255491 1.066866e-52 Fertiliser K\n", "27 234.255491 1.066866e-52 Fertiliser N\n", "28 234.255491 1.066866e-52 Fertiliser P\n", "33 226.160901 6.042257e-51 Metamitron\n", "2 87.757391 7.852555e-21 Arable\n", "20 79.803707 4.343909e-19 Suburban\n", "8 45.558282 1.506066e-11 Heather\n", "5 16.053837 6.170139e-05 Calcareous grassland\n", "13 15.723043 7.347960e-05 Freshwater\n", "18 8.693071 3.196452e-03 Saltmarsh\n", "7 4.213295 4.011621e-02 Fen\n", "10 3.293395 6.956812e-02 Bog\n", "14 1.492644 2.218154e-01 Supralittoral rock\n", "19 1.235707 2.663082e-01 Urban\n", "9 0.653081 4.190191e-01 Heather grassland\n", "11 0.416397 5.187449e-01 Inland rock\n", "12 0.222689 6.370020e-01 Saltwater\n", "15 0.046972 8.284207e-01 Supralittoral sediment\n", "4 0.041436 8.386999e-01 Neutral grassland\n", "17 0.032689 8.565239e-01 Littoral sediment\n", "16 0.002739 9.582594e-01 Littoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Grey Partridge 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
268765.0505690.000000e+00Fertiliser K
278765.0505690.000000e+00Fertiliser N
288765.0505690.000000e+00Fertiliser P
378712.4101200.000000e+00Sulphur
368711.4514850.000000e+00Prosulfocarb
388703.7926470.000000e+00Tri-allate
28141.7005890.000000e+00Arable
327660.6090110.000000e+00Mecoprop-P
297659.0489390.000000e+00Chlorothalonil
307659.0489390.000000e+00Glyphosate
317659.0489390.000000e+00Mancozeb
347659.0489390.000000e+00Pendimethalin
357405.4351550.000000e+00PropamocarbHydrochloride
337361.5222640.000000e+00Metamitron
235901.4705560.000000e+00Surface type
244800.4094210.000000e+00Outflowing drainage direction
224601.9061500.000000e+00Cumulative catchment area
254463.9737400.000000e+00Inflowing drainage direction
214389.2623400.000000e+00Elevation
32126.4953990.000000e+00Improve grassland
0901.2387632.221379e-195Deciduous woodland
20518.0098918.599298e-114Suburban
5327.0452669.488789e-73Calcareous grassland
4319.8490113.384407e-71Neutral grassland
1998.7814693.039441e-23Urban
1542.3042727.923464e-11Supralittoral sediment
1842.0651708.952540e-11Saltmarsh
1327.8681201.306903e-07Freshwater
718.3029321.889456e-05Fen
176.2330181.254381e-02Littoral sediment
15.2153002.239529e-02Coniferous woodland
114.7408812.946103e-02Inland rock
144.0219464.491999e-02Supralittoral rock
83.1361137.658531e-02Heather
62.3929101.218961e-01Acid grassland
120.2493306.175506e-01Saltwater
100.1208517.281160e-01Bog
90.0128489.097560e-01Heather grassland
160.0000369.952257e-01Littoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 8765.050569 0.000000e+00 Fertiliser K\n", "27 8765.050569 0.000000e+00 Fertiliser N\n", "28 8765.050569 0.000000e+00 Fertiliser P\n", "37 8712.410120 0.000000e+00 Sulphur\n", "36 8711.451485 0.000000e+00 Prosulfocarb\n", "38 8703.792647 0.000000e+00 Tri-allate\n", "2 8141.700589 0.000000e+00 Arable\n", "32 7660.609011 0.000000e+00 Mecoprop-P\n", "29 7659.048939 0.000000e+00 Chlorothalonil\n", "30 7659.048939 0.000000e+00 Glyphosate\n", "31 7659.048939 0.000000e+00 Mancozeb\n", "34 7659.048939 0.000000e+00 Pendimethalin\n", "35 7405.435155 0.000000e+00 PropamocarbHydrochloride\n", "33 7361.522264 0.000000e+00 Metamitron\n", "23 5901.470556 0.000000e+00 Surface type\n", "24 4800.409421 0.000000e+00 Outflowing drainage direction\n", "22 4601.906150 0.000000e+00 Cumulative catchment area\n", "25 4463.973740 0.000000e+00 Inflowing drainage direction\n", "21 4389.262340 0.000000e+00 Elevation\n", "3 2126.495399 0.000000e+00 Improve grassland\n", "0 901.238763 2.221379e-195 Deciduous woodland\n", "20 518.009891 8.599298e-114 Suburban\n", "5 327.045266 9.488789e-73 Calcareous grassland\n", "4 319.849011 3.384407e-71 Neutral grassland\n", "19 98.781469 3.039441e-23 Urban\n", "15 42.304272 7.923464e-11 Supralittoral sediment\n", "18 42.065170 8.952540e-11 Saltmarsh\n", "13 27.868120 1.306903e-07 Freshwater\n", "7 18.302932 1.889456e-05 Fen\n", "17 6.233018 1.254381e-02 Littoral sediment\n", "1 5.215300 2.239529e-02 Coniferous woodland\n", "11 4.740881 2.946103e-02 Inland rock\n", "14 4.021946 4.491999e-02 Supralittoral rock\n", "8 3.136113 7.658531e-02 Heather\n", "6 2.392910 1.218961e-01 Acid grassland\n", "12 0.249330 6.175506e-01 Saltwater\n", "10 0.120851 7.281160e-01 Bog\n", "9 0.012848 9.097560e-01 Heather grassland\n", "16 0.000036 9.952257e-01 Littoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Indian Peafowl 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
261472.6574852.862598e-315Fertiliser K
271472.6574852.862598e-315Fertiliser N
281472.6574852.862598e-315Fertiliser P
361175.1532344.174421e-253Prosulfocarb
371172.6158211.422851e-252Sulphur
381166.3187962.985253e-251Tri-allate
291150.5131446.221230e-248Chlorothalonil
301150.5131446.221230e-248Glyphosate
311150.5131446.221230e-248Mancozeb
321150.5131446.221230e-248Mecoprop-P
341150.5131446.221230e-248Pendimethalin
35993.5493166.904766e-215PropamocarbHydrochloride
33989.7125204.455187e-214Metamitron
23826.3417131.639780e-179Surface type
22773.1163573.264405e-168Cumulative catchment area
24694.6519081.603430e-151Outflowing drainage direction
2636.3966564.208646e-139Arable
25618.0986983.386540e-135Inflowing drainage direction
21581.2706482.497700e-127Elevation
3579.2898176.621914e-127Improve grassland
0557.9852512.382356e-122Deciduous woodland
20341.3619217.768283e-76Suburban
431.0374532.550632e-08Neutral grassland
1928.4794239.532196e-08Urban
519.5912419.621430e-06Calcareous grassland
711.1274978.515085e-04Fen
139.8728291.678853e-03Freshwater
64.9757472.571178e-02Acid grassland
103.5211246.060014e-02Bog
12.6743231.019882e-01Coniferous woodland
92.2674921.321231e-01Heather grassland
81.4708912.252138e-01Heather
110.7304983.927281e-01Inland rock
120.7177253.968973e-01Saltwater
150.5093394.754303e-01Supralittoral sediment
180.3350805.626872e-01Saltmarsh
140.1322517.161121e-01Supralittoral rock
170.0993037.526692e-01Littoral sediment
160.0342668.531431e-01Littoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 1472.657485 2.862598e-315 Fertiliser K\n", "27 1472.657485 2.862598e-315 Fertiliser N\n", "28 1472.657485 2.862598e-315 Fertiliser P\n", "36 1175.153234 4.174421e-253 Prosulfocarb\n", "37 1172.615821 1.422851e-252 Sulphur\n", "38 1166.318796 2.985253e-251 Tri-allate\n", "29 1150.513144 6.221230e-248 Chlorothalonil\n", "30 1150.513144 6.221230e-248 Glyphosate\n", "31 1150.513144 6.221230e-248 Mancozeb\n", "32 1150.513144 6.221230e-248 Mecoprop-P\n", "34 1150.513144 6.221230e-248 Pendimethalin\n", "35 993.549316 6.904766e-215 PropamocarbHydrochloride\n", "33 989.712520 4.455187e-214 Metamitron\n", "23 826.341713 1.639780e-179 Surface type\n", "22 773.116357 3.264405e-168 Cumulative catchment area\n", "24 694.651908 1.603430e-151 Outflowing drainage direction\n", "2 636.396656 4.208646e-139 Arable\n", "25 618.098698 3.386540e-135 Inflowing drainage direction\n", "21 581.270648 2.497700e-127 Elevation\n", "3 579.289817 6.621914e-127 Improve grassland\n", "0 557.985251 2.382356e-122 Deciduous woodland\n", "20 341.361921 7.768283e-76 Suburban\n", "4 31.037453 2.550632e-08 Neutral grassland\n", "19 28.479423 9.532196e-08 Urban\n", "5 19.591241 9.621430e-06 Calcareous grassland\n", "7 11.127497 8.515085e-04 Fen\n", "13 9.872829 1.678853e-03 Freshwater\n", "6 4.975747 2.571178e-02 Acid grassland\n", "10 3.521124 6.060014e-02 Bog\n", "1 2.674323 1.019882e-01 Coniferous woodland\n", "9 2.267492 1.321231e-01 Heather grassland\n", "8 1.470891 2.252138e-01 Heather\n", "11 0.730498 3.927281e-01 Inland rock\n", "12 0.717725 3.968973e-01 Saltwater\n", "15 0.509339 4.754303e-01 Supralittoral sediment\n", "18 0.335080 5.626872e-01 Saltmarsh\n", "14 0.132251 7.161121e-01 Supralittoral rock\n", "17 0.099303 7.526692e-01 Littoral sediment\n", "16 0.034266 8.531431e-01 Littoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Little Owl 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
2619475.0458220.000000e+00Fertiliser K
2719475.0458220.000000e+00Fertiliser N
2819475.0458220.000000e+00Fertiliser P
3614464.7834370.000000e+00Prosulfocarb
3714463.7645740.000000e+00Sulphur
3814420.9856320.000000e+00Tri-allate
3213365.5963560.000000e+00Mecoprop-P
2913362.7505790.000000e+00Chlorothalonil
3013362.7505790.000000e+00Glyphosate
3113362.7505790.000000e+00Mancozeb
3413362.7505790.000000e+00Pendimethalin
3311175.9989890.000000e+00Metamitron
3511122.1394460.000000e+00PropamocarbHydrochloride
239941.9949170.000000e+00Surface type
29462.7945040.000000e+00Arable
248442.6618240.000000e+00Outflowing drainage direction
227788.8996410.000000e+00Cumulative catchment area
257508.9703310.000000e+00Inflowing drainage direction
216742.5534930.000000e+00Elevation
34944.4736150.000000e+00Improve grassland
202250.9937740.000000e+00Suburban
01224.0860802.281664e-263Deciduous woodland
4630.0205199.656906e-138Neutral grassland
5439.8307065.052213e-97Calcareous grassland
19344.0144252.082536e-76Urban
13191.2207662.273330e-43Freshwater
7143.2226506.146287e-33Fen
1859.7965511.081619e-14Saltmarsh
642.2008318.353273e-11Acid grassland
134.0801885.338007e-09Coniferous woodland
1030.4630893.428286e-08Bog
826.6471552.456208e-07Heather
919.0563621.272986e-05Heather grassland
1516.7545474.264108e-05Supralittoral sediment
167.3721756.627513e-03Littoral rock
117.1375567.552295e-03Inland rock
145.8902951.522985e-02Supralittoral rock
120.1576146.913651e-01Saltwater
170.0950977.577967e-01Littoral sediment
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 19475.045822 0.000000e+00 Fertiliser K\n", "27 19475.045822 0.000000e+00 Fertiliser N\n", "28 19475.045822 0.000000e+00 Fertiliser P\n", "36 14464.783437 0.000000e+00 Prosulfocarb\n", "37 14463.764574 0.000000e+00 Sulphur\n", "38 14420.985632 0.000000e+00 Tri-allate\n", "32 13365.596356 0.000000e+00 Mecoprop-P\n", "29 13362.750579 0.000000e+00 Chlorothalonil\n", "30 13362.750579 0.000000e+00 Glyphosate\n", "31 13362.750579 0.000000e+00 Mancozeb\n", "34 13362.750579 0.000000e+00 Pendimethalin\n", "33 11175.998989 0.000000e+00 Metamitron\n", "35 11122.139446 0.000000e+00 PropamocarbHydrochloride\n", "23 9941.994917 0.000000e+00 Surface type\n", "2 9462.794504 0.000000e+00 Arable\n", "24 8442.661824 0.000000e+00 Outflowing drainage direction\n", "22 7788.899641 0.000000e+00 Cumulative catchment area\n", "25 7508.970331 0.000000e+00 Inflowing drainage direction\n", "21 6742.553493 0.000000e+00 Elevation\n", "3 4944.473615 0.000000e+00 Improve grassland\n", "20 2250.993774 0.000000e+00 Suburban\n", "0 1224.086080 2.281664e-263 Deciduous woodland\n", "4 630.020519 9.656906e-138 Neutral grassland\n", "5 439.830706 5.052213e-97 Calcareous grassland\n", "19 344.014425 2.082536e-76 Urban\n", "13 191.220766 2.273330e-43 Freshwater\n", "7 143.222650 6.146287e-33 Fen\n", "18 59.796551 1.081619e-14 Saltmarsh\n", "6 42.200831 8.353273e-11 Acid grassland\n", "1 34.080188 5.338007e-09 Coniferous woodland\n", "10 30.463089 3.428286e-08 Bog\n", "8 26.647155 2.456208e-07 Heather\n", "9 19.056362 1.272986e-05 Heather grassland\n", "15 16.754547 4.264108e-05 Supralittoral sediment\n", "16 7.372175 6.627513e-03 Littoral rock\n", "11 7.137556 7.552295e-03 Inland rock\n", "14 5.890295 1.522985e-02 Supralittoral rock\n", "12 0.157614 6.913651e-01 Saltwater\n", "17 0.095097 7.577967e-01 Littoral sediment" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Mandarin Duck 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
264982.2706560.000000e+00Fertiliser K
274982.2706560.000000e+00Fertiliser N
284982.2706560.000000e+00Fertiliser P
293746.9478820.000000e+00Chlorothalonil
303746.9478820.000000e+00Glyphosate
313746.9478820.000000e+00Mancozeb
323746.9478820.000000e+00Mecoprop-P
343746.9478820.000000e+00Pendimethalin
223559.7809520.000000e+00Cumulative catchment area
03525.9752950.000000e+00Deciduous woodland
242973.6341050.000000e+00Outflowing drainage direction
232900.2681490.000000e+00Surface type
32556.2070490.000000e+00Improve grassland
372345.2735310.000000e+00Sulphur
362339.2299530.000000e+00Prosulfocarb
382322.5331500.000000e+00Tri-allate
252139.2569630.000000e+00Inflowing drainage direction
212040.5990630.000000e+00Elevation
201659.9811950.000000e+00Suburban
351618.5537410.000000e+00PropamocarbHydrochloride
331589.0762290.000000e+00Metamitron
13792.7054952.254877e-172Freshwater
19434.1601648.347169e-96Urban
2322.3177509.929157e-72Arable
4289.0274101.523840e-64Neutral grassland
586.9865821.158292e-20Calcareous grassland
143.6172364.053481e-11Coniferous woodland
730.4543783.443701e-08Fen
912.6804953.700080e-04Heather grassland
1011.1701548.321583e-04Bog
64.7743782.889326e-02Acid grassland
163.4683176.256379e-02Littoral rock
143.1919977.400873e-02Supralittoral rock
173.0806937.923601e-02Littoral sediment
122.6033021.066509e-01Saltwater
112.2907841.301538e-01Inland rock
151.4089762.352351e-01Supralittoral sediment
80.0233298.786052e-01Heather
180.0046139.458479e-01Saltmarsh
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 4982.270656 0.000000e+00 Fertiliser K\n", "27 4982.270656 0.000000e+00 Fertiliser N\n", "28 4982.270656 0.000000e+00 Fertiliser P\n", "29 3746.947882 0.000000e+00 Chlorothalonil\n", "30 3746.947882 0.000000e+00 Glyphosate\n", "31 3746.947882 0.000000e+00 Mancozeb\n", "32 3746.947882 0.000000e+00 Mecoprop-P\n", "34 3746.947882 0.000000e+00 Pendimethalin\n", "22 3559.780952 0.000000e+00 Cumulative catchment area\n", "0 3525.975295 0.000000e+00 Deciduous woodland\n", "24 2973.634105 0.000000e+00 Outflowing drainage direction\n", "23 2900.268149 0.000000e+00 Surface type\n", "3 2556.207049 0.000000e+00 Improve grassland\n", "37 2345.273531 0.000000e+00 Sulphur\n", "36 2339.229953 0.000000e+00 Prosulfocarb\n", "38 2322.533150 0.000000e+00 Tri-allate\n", "25 2139.256963 0.000000e+00 Inflowing drainage direction\n", "21 2040.599063 0.000000e+00 Elevation\n", "20 1659.981195 0.000000e+00 Suburban\n", "35 1618.553741 0.000000e+00 PropamocarbHydrochloride\n", "33 1589.076229 0.000000e+00 Metamitron\n", "13 792.705495 2.254877e-172 Freshwater\n", "19 434.160164 8.347169e-96 Urban\n", "2 322.317750 9.929157e-72 Arable\n", "4 289.027410 1.523840e-64 Neutral grassland\n", "5 86.986582 1.158292e-20 Calcareous grassland\n", "1 43.617236 4.053481e-11 Coniferous woodland\n", "7 30.454378 3.443701e-08 Fen\n", "9 12.680495 3.700080e-04 Heather grassland\n", "10 11.170154 8.321583e-04 Bog\n", "6 4.774378 2.889326e-02 Acid grassland\n", "16 3.468317 6.256379e-02 Littoral rock\n", "14 3.191997 7.400873e-02 Supralittoral rock\n", "17 3.080693 7.923601e-02 Littoral sediment\n", "12 2.603302 1.066509e-01 Saltwater\n", "11 2.290784 1.301538e-01 Inland rock\n", "15 1.408976 2.352351e-01 Supralittoral sediment\n", "8 0.023329 8.786052e-01 Heather\n", "18 0.004613 9.458479e-01 Saltmarsh" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Mute Swan 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
3043676.9537260.000000e+00Glyphosate
3443676.9537260.000000e+00Pendimethalin
2943659.6427470.000000e+00Chlorothalonil
3143642.3423980.000000e+00Mancozeb
3243625.0526710.000000e+00Mecoprop-P
2341778.6831490.000000e+00Surface type
2537707.8640050.000000e+00Inflowing drainage direction
2132149.8039350.000000e+00Elevation
2424629.7305320.000000e+00Outflowing drainage direction
2619640.2359870.000000e+00Fertiliser K
2719640.2359870.000000e+00Fertiliser N
2819640.2359870.000000e+00Fertiliser P
3714704.0761060.000000e+00Sulphur
3614617.0376230.000000e+00Prosulfocarb
3814559.3601730.000000e+00Tri-allate
359242.0278870.000000e+00PropamocarbHydrochloride
338916.0831950.000000e+00Metamitron
227714.9911720.000000e+00Cumulative catchment area
36922.4294330.000000e+00Improve grassland
205556.7695970.000000e+00Suburban
24548.3090430.000000e+00Arable
03188.8338270.000000e+00Deciduous woodland
192126.9163370.000000e+00Urban
131261.0944234.042871e-271Freshwater
4710.9898835.323266e-155Neutral grassland
17350.9477746.674534e-78Littoral sediment
6274.3005332.317521e-61Acid grassland
18258.6972555.478710e-58Saltmarsh
7204.4399813.082649e-46Fen
15138.8760355.432921e-32Supralittoral sediment
10122.3100532.214177e-28Bog
12113.2024002.149655e-26Saltwater
8103.8161622.411588e-24Heather
988.3795385.738193e-21Heather grassland
1666.6977223.276343e-16Littoral rock
1149.3129982.224191e-12Inland rock
144.6698922.369145e-11Coniferous woodland
1429.3310596.143449e-08Supralittoral rock
58.6985193.186914e-03Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "30 43676.953726 0.000000e+00 Glyphosate\n", "34 43676.953726 0.000000e+00 Pendimethalin\n", "29 43659.642747 0.000000e+00 Chlorothalonil\n", "31 43642.342398 0.000000e+00 Mancozeb\n", "32 43625.052671 0.000000e+00 Mecoprop-P\n", "23 41778.683149 0.000000e+00 Surface type\n", "25 37707.864005 0.000000e+00 Inflowing drainage direction\n", "21 32149.803935 0.000000e+00 Elevation\n", "24 24629.730532 0.000000e+00 Outflowing drainage direction\n", "26 19640.235987 0.000000e+00 Fertiliser K\n", "27 19640.235987 0.000000e+00 Fertiliser N\n", "28 19640.235987 0.000000e+00 Fertiliser P\n", "37 14704.076106 0.000000e+00 Sulphur\n", "36 14617.037623 0.000000e+00 Prosulfocarb\n", "38 14559.360173 0.000000e+00 Tri-allate\n", "35 9242.027887 0.000000e+00 PropamocarbHydrochloride\n", "33 8916.083195 0.000000e+00 Metamitron\n", "22 7714.991172 0.000000e+00 Cumulative catchment area\n", "3 6922.429433 0.000000e+00 Improve grassland\n", "20 5556.769597 0.000000e+00 Suburban\n", "2 4548.309043 0.000000e+00 Arable\n", "0 3188.833827 0.000000e+00 Deciduous woodland\n", "19 2126.916337 0.000000e+00 Urban\n", "13 1261.094423 4.042871e-271 Freshwater\n", "4 710.989883 5.323266e-155 Neutral grassland\n", "17 350.947774 6.674534e-78 Littoral sediment\n", "6 274.300533 2.317521e-61 Acid grassland\n", "18 258.697255 5.478710e-58 Saltmarsh\n", "7 204.439981 3.082649e-46 Fen\n", "15 138.876035 5.432921e-32 Supralittoral sediment\n", "10 122.310053 2.214177e-28 Bog\n", "12 113.202400 2.149655e-26 Saltwater\n", "8 103.816162 2.411588e-24 Heather\n", "9 88.379538 5.738193e-21 Heather grassland\n", "16 66.697722 3.276343e-16 Littoral rock\n", "11 49.312998 2.224191e-12 Inland rock\n", "1 44.669892 2.369145e-11 Coniferous woodland\n", "14 29.331059 6.143449e-08 Supralittoral rock\n", "5 8.698519 3.186914e-03 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pheasant 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
3116151.6129690.000000e+00Mancozeb
3216151.6129690.000000e+00Mecoprop-P
2916147.8919320.000000e+00Chlorothalonil
3016147.8919320.000000e+00Glyphosate
3416147.8919320.000000e+00Pendimethalin
2314828.4393000.000000e+00Surface type
2613583.3669280.000000e+00Fertiliser K
2713583.3669280.000000e+00Fertiliser N
2813583.3669280.000000e+00Fertiliser P
2412411.6643970.000000e+00Outflowing drainage direction
2111511.4363050.000000e+00Elevation
2511025.7489710.000000e+00Inflowing drainage direction
3710813.0518670.000000e+00Sulphur
3610803.0906950.000000e+00Prosulfocarb
3810762.2103550.000000e+00Tri-allate
229363.8618950.000000e+00Cumulative catchment area
357504.7261800.000000e+00PropamocarbHydrochloride
337356.6051390.000000e+00Metamitron
36889.7584020.000000e+00Improve grassland
25020.1154690.000000e+00Arable
03497.6528870.000000e+00Deciduous woodland
201872.6914980.000000e+00Suburban
5415.8584757.152889e-92Calcareous grassland
4355.0693988.637276e-79Neutral grassland
1235.2432636.519726e-53Coniferous woodland
19219.1094542.036749e-49Urban
6141.7403991.292165e-32Acid grassland
13137.7848199.390379e-32Freshwater
888.3978785.685377e-21Heather
757.6731693.176391e-14Fen
1033.1548478.585587e-09Bog
1821.4139453.714720e-06Saltmarsh
1513.1230562.921201e-04Supralittoral sediment
115.4513891.955872e-02Inland rock
94.3622213.675199e-02Heather grassland
162.7516969.716078e-02Littoral rock
120.2023766.528125e-01Saltwater
170.1468867.015312e-01Littoral sediment
140.0773397.809384e-01Supralittoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "31 16151.612969 0.000000e+00 Mancozeb\n", "32 16151.612969 0.000000e+00 Mecoprop-P\n", "29 16147.891932 0.000000e+00 Chlorothalonil\n", "30 16147.891932 0.000000e+00 Glyphosate\n", "34 16147.891932 0.000000e+00 Pendimethalin\n", "23 14828.439300 0.000000e+00 Surface type\n", "26 13583.366928 0.000000e+00 Fertiliser K\n", "27 13583.366928 0.000000e+00 Fertiliser N\n", "28 13583.366928 0.000000e+00 Fertiliser P\n", "24 12411.664397 0.000000e+00 Outflowing drainage direction\n", "21 11511.436305 0.000000e+00 Elevation\n", "25 11025.748971 0.000000e+00 Inflowing drainage direction\n", "37 10813.051867 0.000000e+00 Sulphur\n", "36 10803.090695 0.000000e+00 Prosulfocarb\n", "38 10762.210355 0.000000e+00 Tri-allate\n", "22 9363.861895 0.000000e+00 Cumulative catchment area\n", "35 7504.726180 0.000000e+00 PropamocarbHydrochloride\n", "33 7356.605139 0.000000e+00 Metamitron\n", "3 6889.758402 0.000000e+00 Improve grassland\n", "2 5020.115469 0.000000e+00 Arable\n", "0 3497.652887 0.000000e+00 Deciduous woodland\n", "20 1872.691498 0.000000e+00 Suburban\n", "5 415.858475 7.152889e-92 Calcareous grassland\n", "4 355.069398 8.637276e-79 Neutral grassland\n", "1 235.243263 6.519726e-53 Coniferous woodland\n", "19 219.109454 2.036749e-49 Urban\n", "6 141.740399 1.292165e-32 Acid grassland\n", "13 137.784819 9.390379e-32 Freshwater\n", "8 88.397878 5.685377e-21 Heather\n", "7 57.673169 3.176391e-14 Fen\n", "10 33.154847 8.585587e-09 Bog\n", "18 21.413945 3.714720e-06 Saltmarsh\n", "15 13.123056 2.921201e-04 Supralittoral sediment\n", "11 5.451389 1.955872e-02 Inland rock\n", "9 4.362221 3.675199e-02 Heather grassland\n", "16 2.751696 9.716078e-02 Littoral rock\n", "12 0.202376 6.528125e-01 Saltwater\n", "17 0.146886 7.015312e-01 Littoral sediment\n", "14 0.077339 7.809384e-01 Supralittoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pink-footed Goose 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
297036.7470300.000000e+00Chlorothalonil
307036.7470300.000000e+00Glyphosate
317036.7470300.000000e+00Mancozeb
327036.7470300.000000e+00Mecoprop-P
347036.7470300.000000e+00Pendimethalin
255823.2460060.000000e+00Inflowing drainage direction
235796.3296750.000000e+00Surface type
375571.9935650.000000e+00Sulphur
365543.7222420.000000e+00Prosulfocarb
385512.2223410.000000e+00Tri-allate
214750.0627970.000000e+00Elevation
354557.6281300.000000e+00PropamocarbHydrochloride
244416.4115460.000000e+00Outflowing drainage direction
334315.3904570.000000e+00Metamitron
224111.2407450.000000e+00Cumulative catchment area
24027.3854550.000000e+00Arable
171680.7562570.000000e+00Littoral sediment
31578.7595850.000000e+00Improve grassland
181503.6428981.032597e-321Saltmarsh
201109.1158573.118895e-239Suburban
01064.0141609.660098e-230Deciduous woodland
26924.8526442.244918e-200Fertiliser K
27924.8526442.244918e-200Fertiliser N
28924.8526442.244918e-200Fertiliser P
15852.3357285.051033e-185Supralittoral sediment
19449.4507504.341152e-99Urban
13441.1834512.587866e-97Freshwater
16329.3744672.984579e-73Littoral rock
7117.2078972.872142e-27Fen
1255.2756521.072913e-13Saltwater
450.4842411.225518e-12Neutral grassland
17.4813506.237451e-03Coniferous woodland
63.0247528.201214e-02Acid grassland
142.0012531.571786e-01Supralittoral rock
81.3791742.402504e-01Heather
111.1984632.736371e-01Inland rock
100.0515158.204487e-01Bog
50.0224368.809347e-01Calcareous grassland
90.0023029.617297e-01Heather grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "29 7036.747030 0.000000e+00 Chlorothalonil\n", "30 7036.747030 0.000000e+00 Glyphosate\n", "31 7036.747030 0.000000e+00 Mancozeb\n", "32 7036.747030 0.000000e+00 Mecoprop-P\n", "34 7036.747030 0.000000e+00 Pendimethalin\n", "25 5823.246006 0.000000e+00 Inflowing drainage direction\n", "23 5796.329675 0.000000e+00 Surface type\n", "37 5571.993565 0.000000e+00 Sulphur\n", "36 5543.722242 0.000000e+00 Prosulfocarb\n", "38 5512.222341 0.000000e+00 Tri-allate\n", "21 4750.062797 0.000000e+00 Elevation\n", "35 4557.628130 0.000000e+00 PropamocarbHydrochloride\n", "24 4416.411546 0.000000e+00 Outflowing drainage direction\n", "33 4315.390457 0.000000e+00 Metamitron\n", "22 4111.240745 0.000000e+00 Cumulative catchment area\n", "2 4027.385455 0.000000e+00 Arable\n", "17 1680.756257 0.000000e+00 Littoral sediment\n", "3 1578.759585 0.000000e+00 Improve grassland\n", "18 1503.642898 1.032597e-321 Saltmarsh\n", "20 1109.115857 3.118895e-239 Suburban\n", "0 1064.014160 9.660098e-230 Deciduous woodland\n", "26 924.852644 2.244918e-200 Fertiliser K\n", "27 924.852644 2.244918e-200 Fertiliser N\n", "28 924.852644 2.244918e-200 Fertiliser P\n", "15 852.335728 5.051033e-185 Supralittoral sediment\n", "19 449.450750 4.341152e-99 Urban\n", "13 441.183451 2.587866e-97 Freshwater\n", "16 329.374467 2.984579e-73 Littoral rock\n", "7 117.207897 2.872142e-27 Fen\n", "12 55.275652 1.072913e-13 Saltwater\n", "4 50.484241 1.225518e-12 Neutral grassland\n", "1 7.481350 6.237451e-03 Coniferous woodland\n", "6 3.024752 8.201214e-02 Acid grassland\n", "14 2.001253 1.571786e-01 Supralittoral rock\n", "8 1.379174 2.402504e-01 Heather\n", "11 1.198463 2.736371e-01 Inland rock\n", "10 0.051515 8.204487e-01 Bog\n", "5 0.022436 8.809347e-01 Calcareous grassland\n", "9 0.002302 9.617297e-01 Heather grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pintail 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
291342.9722853.070953e-288Chlorothalonil
301342.9722853.070953e-288Glyphosate
311342.9722853.070953e-288Mancozeb
321342.9722853.070953e-288Mecoprop-P
341342.9722853.070953e-288Pendimethalin
251325.1681831.608067e-284Inflowing drainage direction
231169.8409955.439990e-252Surface type
361152.4051102.491814e-248Prosulfocarb
371150.5980935.970826e-248Sulphur
381144.6363861.067303e-246Tri-allate
261092.4992209.754959e-236Fertiliser K
271092.4992209.754959e-236Fertiliser N
281092.4992209.754959e-236Fertiliser P
21987.2481751.475675e-213Elevation
33964.6581218.682894e-209Metamitron
35958.7626851.527456e-207PropamocarbHydrochloride
24832.2603919.109264e-181Outflowing drainage direction
18829.3982533.685447e-180Saltmarsh
22760.5262431.546155e-165Cumulative catchment area
2723.1688731.361610e-157Arable
17700.4327819.417029e-153Littoral sediment
3435.3628234.604501e-96Improve grassland
20333.6103773.643021e-74Suburban
19306.4160362.680625e-68Urban
0244.3361697.011810e-55Deciduous woodland
4241.5403062.824742e-54Neutral grassland
7156.6172337.482770e-36Fen
15129.0302777.586888e-30Supralittoral sediment
1278.1333761.009712e-18Saltwater
1349.6129111.909316e-12Freshwater
64.7668182.902040e-02Acid grassland
81.6055962.051210e-01Heather
111.4117252.347787e-01Inland rock
91.1353542.866439e-01Heather grassland
10.7355273.911038e-01Coniferous woodland
140.3898455.323851e-01Supralittoral rock
50.1738206.767413e-01Calcareous grassland
160.0491508.245503e-01Littoral rock
100.0342718.531325e-01Bog
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "29 1342.972285 3.070953e-288 Chlorothalonil\n", "30 1342.972285 3.070953e-288 Glyphosate\n", "31 1342.972285 3.070953e-288 Mancozeb\n", "32 1342.972285 3.070953e-288 Mecoprop-P\n", "34 1342.972285 3.070953e-288 Pendimethalin\n", "25 1325.168183 1.608067e-284 Inflowing drainage direction\n", "23 1169.840995 5.439990e-252 Surface type\n", "36 1152.405110 2.491814e-248 Prosulfocarb\n", "37 1150.598093 5.970826e-248 Sulphur\n", "38 1144.636386 1.067303e-246 Tri-allate\n", "26 1092.499220 9.754959e-236 Fertiliser K\n", "27 1092.499220 9.754959e-236 Fertiliser N\n", "28 1092.499220 9.754959e-236 Fertiliser P\n", "21 987.248175 1.475675e-213 Elevation\n", "33 964.658121 8.682894e-209 Metamitron\n", "35 958.762685 1.527456e-207 PropamocarbHydrochloride\n", "24 832.260391 9.109264e-181 Outflowing drainage direction\n", "18 829.398253 3.685447e-180 Saltmarsh\n", "22 760.526243 1.546155e-165 Cumulative catchment area\n", "2 723.168873 1.361610e-157 Arable\n", "17 700.432781 9.417029e-153 Littoral sediment\n", "3 435.362823 4.604501e-96 Improve grassland\n", "20 333.610377 3.643021e-74 Suburban\n", "19 306.416036 2.680625e-68 Urban\n", "0 244.336169 7.011810e-55 Deciduous woodland\n", "4 241.540306 2.824742e-54 Neutral grassland\n", "7 156.617233 7.482770e-36 Fen\n", "15 129.030277 7.586888e-30 Supralittoral sediment\n", "12 78.133376 1.009712e-18 Saltwater\n", "13 49.612911 1.909316e-12 Freshwater\n", "6 4.766818 2.902040e-02 Acid grassland\n", "8 1.605596 2.051210e-01 Heather\n", "11 1.411725 2.347787e-01 Inland rock\n", "9 1.135354 2.866439e-01 Heather grassland\n", "1 0.735527 3.911038e-01 Coniferous woodland\n", "14 0.389845 5.323851e-01 Supralittoral rock\n", "5 0.173820 6.767413e-01 Calcareous grassland\n", "16 0.049150 8.245503e-01 Littoral rock\n", "10 0.034271 8.531325e-01 Bog" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pochard 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
262536.9367660.000000e+00Fertiliser K
272536.9367660.000000e+00Fertiliser N
282536.9367660.000000e+00Fertiliser P
292457.3521550.000000e+00Chlorothalonil
302457.3521550.000000e+00Glyphosate
312457.3521550.000000e+00Mancozeb
322457.3521550.000000e+00Mecoprop-P
342457.3521550.000000e+00Pendimethalin
372207.2087440.000000e+00Sulphur
362202.2313040.000000e+00Prosulfocarb
382198.9617750.000000e+00Tri-allate
332022.0838420.000000e+00Metamitron
351989.8173240.000000e+00PropamocarbHydrochloride
231842.7612840.000000e+00Surface type
21555.5361080.000000e+00Arable
251549.0515650.000000e+00Inflowing drainage direction
241485.8537665.152527e-318Outflowing drainage direction
221392.7329671.268634e-298Cumulative catchment area
211309.1874053.516732e-281Elevation
20894.2341956.746925e-194Suburban
3745.1604922.857352e-162Improve grassland
19743.6818115.893993e-162Urban
0574.4708937.099727e-126Deciduous woodland
13271.8091808.008227e-61Freshwater
4149.3453322.857674e-34Neutral grassland
7131.3446632.375107e-30Fen
1899.8657361.760901e-23Saltmarsh
1546.6756008.521422e-12Supralittoral sediment
1738.9599904.378224e-10Littoral sediment
1213.2900462.672276e-04Saltwater
612.0150675.283914e-04Acid grassland
510.4023391.259780e-03Calcareous grassland
1010.1055141.479624e-03Bog
94.7721902.893001e-02Heather grassland
84.0242744.485804e-02Heather
112.1590901.417381e-01Inland rock
140.8516913.560812e-01Supralittoral rock
10.6320464.266115e-01Coniferous woodland
160.2402356.240394e-01Littoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 2536.936766 0.000000e+00 Fertiliser K\n", "27 2536.936766 0.000000e+00 Fertiliser N\n", "28 2536.936766 0.000000e+00 Fertiliser P\n", "29 2457.352155 0.000000e+00 Chlorothalonil\n", "30 2457.352155 0.000000e+00 Glyphosate\n", "31 2457.352155 0.000000e+00 Mancozeb\n", "32 2457.352155 0.000000e+00 Mecoprop-P\n", "34 2457.352155 0.000000e+00 Pendimethalin\n", "37 2207.208744 0.000000e+00 Sulphur\n", "36 2202.231304 0.000000e+00 Prosulfocarb\n", "38 2198.961775 0.000000e+00 Tri-allate\n", "33 2022.083842 0.000000e+00 Metamitron\n", "35 1989.817324 0.000000e+00 PropamocarbHydrochloride\n", "23 1842.761284 0.000000e+00 Surface type\n", "2 1555.536108 0.000000e+00 Arable\n", "25 1549.051565 0.000000e+00 Inflowing drainage direction\n", "24 1485.853766 5.152527e-318 Outflowing drainage direction\n", "22 1392.732967 1.268634e-298 Cumulative catchment area\n", "21 1309.187405 3.516732e-281 Elevation\n", "20 894.234195 6.746925e-194 Suburban\n", "3 745.160492 2.857352e-162 Improve grassland\n", "19 743.681811 5.893993e-162 Urban\n", "0 574.470893 7.099727e-126 Deciduous woodland\n", "13 271.809180 8.008227e-61 Freshwater\n", "4 149.345332 2.857674e-34 Neutral grassland\n", "7 131.344663 2.375107e-30 Fen\n", "18 99.865736 1.760901e-23 Saltmarsh\n", "15 46.675600 8.521422e-12 Supralittoral sediment\n", "17 38.959990 4.378224e-10 Littoral sediment\n", "12 13.290046 2.672276e-04 Saltwater\n", "6 12.015067 5.283914e-04 Acid grassland\n", "5 10.402339 1.259780e-03 Calcareous grassland\n", "10 10.105514 1.479624e-03 Bog\n", "9 4.772190 2.893001e-02 Heather grassland\n", "8 4.024274 4.485804e-02 Heather\n", "11 2.159090 1.417381e-01 Inland rock\n", "14 0.851691 3.560812e-01 Supralittoral rock\n", "1 0.632046 4.266115e-01 Coniferous woodland\n", "16 0.240235 6.240394e-01 Littoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Red-legged Partridge 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
2613523.6222320.000000e+00Fertiliser K
2713523.6222320.000000e+00Fertiliser N
2813523.6222320.000000e+00Fertiliser P
3711673.8994840.000000e+00Sulphur
3611667.1081990.000000e+00Prosulfocarb
3811666.5747910.000000e+00Tri-allate
2910659.5543410.000000e+00Chlorothalonil
3010659.5543410.000000e+00Glyphosate
3110659.5543410.000000e+00Mancozeb
3210659.5543410.000000e+00Mecoprop-P
3410659.5543410.000000e+00Pendimethalin
29262.5619800.000000e+00Arable
359224.3447580.000000e+00PropamocarbHydrochloride
339063.1572940.000000e+00Metamitron
238310.3473240.000000e+00Surface type
246580.4680600.000000e+00Outflowing drainage direction
256132.3932160.000000e+00Inflowing drainage direction
216122.8566680.000000e+00Elevation
226094.0721730.000000e+00Cumulative catchment area
33761.3823360.000000e+00Improve grassland
01821.3220330.000000e+00Deciduous woodland
20591.4204831.691353e-129Suburban
5325.7576501.798558e-72Calcareous grassland
4108.6945332.073050e-25Neutral grassland
1958.1305102.518487e-14Urban
754.4771321.609616e-13Fen
1338.5145095.499196e-10Freshwater
1819.6209369.473139e-06Saltmarsh
97.2246207.194636e-03Heather grassland
117.1254877.603285e-03Inland rock
154.5322903.326844e-02Supralittoral sediment
84.4598103.470883e-02Heather
163.9795594.606380e-02Littoral rock
103.5053456.117991e-02Bog
12.1153251.458406e-01Coniferous woodland
140.7474303.872974e-01Supralittoral rock
60.2891205.907888e-01Acid grassland
170.1536036.951180e-01Littoral sediment
120.1398987.083844e-01Saltwater
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 13523.622232 0.000000e+00 Fertiliser K\n", "27 13523.622232 0.000000e+00 Fertiliser N\n", "28 13523.622232 0.000000e+00 Fertiliser P\n", "37 11673.899484 0.000000e+00 Sulphur\n", "36 11667.108199 0.000000e+00 Prosulfocarb\n", "38 11666.574791 0.000000e+00 Tri-allate\n", "29 10659.554341 0.000000e+00 Chlorothalonil\n", "30 10659.554341 0.000000e+00 Glyphosate\n", "31 10659.554341 0.000000e+00 Mancozeb\n", "32 10659.554341 0.000000e+00 Mecoprop-P\n", "34 10659.554341 0.000000e+00 Pendimethalin\n", "2 9262.561980 0.000000e+00 Arable\n", "35 9224.344758 0.000000e+00 PropamocarbHydrochloride\n", "33 9063.157294 0.000000e+00 Metamitron\n", "23 8310.347324 0.000000e+00 Surface type\n", "24 6580.468060 0.000000e+00 Outflowing drainage direction\n", "25 6132.393216 0.000000e+00 Inflowing drainage direction\n", "21 6122.856668 0.000000e+00 Elevation\n", "22 6094.072173 0.000000e+00 Cumulative catchment area\n", "3 3761.382336 0.000000e+00 Improve grassland\n", "0 1821.322033 0.000000e+00 Deciduous woodland\n", "20 591.420483 1.691353e-129 Suburban\n", "5 325.757650 1.798558e-72 Calcareous grassland\n", "4 108.694533 2.073050e-25 Neutral grassland\n", "19 58.130510 2.518487e-14 Urban\n", "7 54.477132 1.609616e-13 Fen\n", "13 38.514509 5.499196e-10 Freshwater\n", "18 19.620936 9.473139e-06 Saltmarsh\n", "9 7.224620 7.194636e-03 Heather grassland\n", "11 7.125487 7.603285e-03 Inland rock\n", "15 4.532290 3.326844e-02 Supralittoral sediment\n", "8 4.459810 3.470883e-02 Heather\n", "16 3.979559 4.606380e-02 Littoral rock\n", "10 3.505345 6.117991e-02 Bog\n", "1 2.115325 1.458406e-01 Coniferous woodland\n", "14 0.747430 3.872974e-01 Supralittoral rock\n", "6 0.289120 5.907888e-01 Acid grassland\n", "17 0.153603 6.951180e-01 Littoral sediment\n", "12 0.139898 7.083844e-01 Saltwater" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Ring-necked Parakeet 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
205174.0294800.000000e+00Suburban
194816.2933270.000000e+00Urban
262496.7910100.000000e+00Fertiliser K
272496.7910100.000000e+00Fertiliser N
282496.7910100.000000e+00Fertiliser P
222110.0559970.000000e+00Cumulative catchment area
291731.3453780.000000e+00Chlorothalonil
311731.3453780.000000e+00Mancozeb
321731.3453780.000000e+00Mecoprop-P
301731.0049800.000000e+00Glyphosate
341731.0049800.000000e+00Pendimethalin
231451.1820048.429407e-311Surface type
241239.1020831.629495e-266Outflowing drainage direction
251101.5521881.215523e-237Inflowing drainage direction
21934.4658092.082605e-202Elevation
0644.6953157.138206e-141Deciduous woodland
3590.5309352.620156e-129Improve grassland
36550.7356178.473886e-121Prosulfocarb
37549.9720531.234441e-120Sulphur
38531.8299289.435110e-117Tri-allate
35454.9661092.841247e-100PropamocarbHydrochloride
33447.7604951.001226e-98Metamitron
13266.9082479.184502e-60Freshwater
233.7378816.363711e-09Arable
616.1425905.887779e-05Acid grassland
98.3504273.858472e-03Heather grassland
106.3047421.204628e-02Bog
46.0187661.415966e-02Neutral grassland
85.3546662.067299e-02Heather
14.6306963.141203e-02Coniferous woodland
162.0757821.496627e-01Littoral rock
112.0283601.543966e-01Inland rock
141.7731631.830003e-01Supralittoral rock
171.3430032.465134e-01Littoral sediment
181.0079353.154055e-01Saltmarsh
120.7679933.808449e-01Saltwater
150.1708806.793333e-01Supralittoral sediment
70.1227667.260555e-01Fen
50.0619658.034183e-01Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "20 5174.029480 0.000000e+00 Suburban\n", "19 4816.293327 0.000000e+00 Urban\n", "26 2496.791010 0.000000e+00 Fertiliser K\n", "27 2496.791010 0.000000e+00 Fertiliser N\n", "28 2496.791010 0.000000e+00 Fertiliser P\n", "22 2110.055997 0.000000e+00 Cumulative catchment area\n", "29 1731.345378 0.000000e+00 Chlorothalonil\n", "31 1731.345378 0.000000e+00 Mancozeb\n", "32 1731.345378 0.000000e+00 Mecoprop-P\n", "30 1731.004980 0.000000e+00 Glyphosate\n", "34 1731.004980 0.000000e+00 Pendimethalin\n", "23 1451.182004 8.429407e-311 Surface type\n", "24 1239.102083 1.629495e-266 Outflowing drainage direction\n", "25 1101.552188 1.215523e-237 Inflowing drainage direction\n", "21 934.465809 2.082605e-202 Elevation\n", "0 644.695315 7.138206e-141 Deciduous woodland\n", "3 590.530935 2.620156e-129 Improve grassland\n", "36 550.735617 8.473886e-121 Prosulfocarb\n", "37 549.972053 1.234441e-120 Sulphur\n", "38 531.829928 9.435110e-117 Tri-allate\n", "35 454.966109 2.841247e-100 PropamocarbHydrochloride\n", "33 447.760495 1.001226e-98 Metamitron\n", "13 266.908247 9.184502e-60 Freshwater\n", "2 33.737881 6.363711e-09 Arable\n", "6 16.142590 5.887779e-05 Acid grassland\n", "9 8.350427 3.858472e-03 Heather grassland\n", "10 6.304742 1.204628e-02 Bog\n", "4 6.018766 1.415966e-02 Neutral grassland\n", "8 5.354666 2.067299e-02 Heather\n", "1 4.630696 3.141203e-02 Coniferous woodland\n", "16 2.075782 1.496627e-01 Littoral rock\n", "11 2.028360 1.543966e-01 Inland rock\n", "14 1.773163 1.830003e-01 Supralittoral rock\n", "17 1.343003 2.465134e-01 Littoral sediment\n", "18 1.007935 3.154055e-01 Saltmarsh\n", "12 0.767993 3.808449e-01 Saltwater\n", "15 0.170880 6.793333e-01 Supralittoral sediment\n", "7 0.122766 7.260555e-01 Fen\n", "5 0.061965 8.034183e-01 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Rock Dove 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
2911974.7168650.000000e+00Chlorothalonil
3011974.7168650.000000e+00Glyphosate
3111974.7168650.000000e+00Mancozeb
3211974.7168650.000000e+00Mecoprop-P
3411974.7168650.000000e+00Pendimethalin
239715.2088960.000000e+00Surface type
269320.8178260.000000e+00Fertiliser K
279320.8178260.000000e+00Fertiliser N
289320.8178260.000000e+00Fertiliser P
247716.6494250.000000e+00Outflowing drainage direction
257489.6235130.000000e+00Inflowing drainage direction
377222.0927350.000000e+00Sulphur
367220.9861080.000000e+00Prosulfocarb
217209.1827190.000000e+00Elevation
387185.1982820.000000e+00Tri-allate
226950.6264000.000000e+00Cumulative catchment area
355320.5388370.000000e+00PropamocarbHydrochloride
335174.0728450.000000e+00Metamitron
34736.9713750.000000e+00Improve grassland
204361.9142410.000000e+00Suburban
23272.5668530.000000e+00Arable
01947.2769150.000000e+00Deciduous woodland
191698.7226740.000000e+00Urban
4327.4609807.718845e-73Neutral grassland
5172.8105542.260169e-39Calcareous grassland
13158.4765052.949316e-36Freshwater
1663.3990641.741628e-15Littoral rock
1438.5122315.505612e-10Supralittoral rock
1535.3600402.767982e-09Supralittoral sediment
732.3057381.328301e-08Fen
1815.7332897.308286e-05Saltmarsh
1713.8081232.027922e-04Littoral sediment
115.9395931.480967e-02Inland rock
81.4677242.257138e-01Heather
61.1830742.767391e-01Acid grassland
101.0685423.012825e-01Bog
90.5208294.704932e-01Heather grassland
120.4919054.830835e-01Saltwater
10.3637695.464245e-01Coniferous woodland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "29 11974.716865 0.000000e+00 Chlorothalonil\n", "30 11974.716865 0.000000e+00 Glyphosate\n", "31 11974.716865 0.000000e+00 Mancozeb\n", "32 11974.716865 0.000000e+00 Mecoprop-P\n", "34 11974.716865 0.000000e+00 Pendimethalin\n", "23 9715.208896 0.000000e+00 Surface type\n", "26 9320.817826 0.000000e+00 Fertiliser K\n", "27 9320.817826 0.000000e+00 Fertiliser N\n", "28 9320.817826 0.000000e+00 Fertiliser P\n", "24 7716.649425 0.000000e+00 Outflowing drainage direction\n", "25 7489.623513 0.000000e+00 Inflowing drainage direction\n", "37 7222.092735 0.000000e+00 Sulphur\n", "36 7220.986108 0.000000e+00 Prosulfocarb\n", "21 7209.182719 0.000000e+00 Elevation\n", "38 7185.198282 0.000000e+00 Tri-allate\n", "22 6950.626400 0.000000e+00 Cumulative catchment area\n", "35 5320.538837 0.000000e+00 PropamocarbHydrochloride\n", "33 5174.072845 0.000000e+00 Metamitron\n", "3 4736.971375 0.000000e+00 Improve grassland\n", "20 4361.914241 0.000000e+00 Suburban\n", "2 3272.566853 0.000000e+00 Arable\n", "0 1947.276915 0.000000e+00 Deciduous woodland\n", "19 1698.722674 0.000000e+00 Urban\n", "4 327.460980 7.718845e-73 Neutral grassland\n", "5 172.810554 2.260169e-39 Calcareous grassland\n", "13 158.476505 2.949316e-36 Freshwater\n", "16 63.399064 1.741628e-15 Littoral rock\n", "14 38.512231 5.505612e-10 Supralittoral rock\n", "15 35.360040 2.767982e-09 Supralittoral sediment\n", "7 32.305738 1.328301e-08 Fen\n", "18 15.733289 7.308286e-05 Saltmarsh\n", "17 13.808123 2.027922e-04 Littoral sediment\n", "11 5.939593 1.480967e-02 Inland rock\n", "8 1.467724 2.257138e-01 Heather\n", "6 1.183074 2.767391e-01 Acid grassland\n", "10 1.068542 3.012825e-01 Bog\n", "9 0.520829 4.704932e-01 Heather grassland\n", "12 0.491905 4.830835e-01 Saltwater\n", "1 0.363769 5.464245e-01 Coniferous woodland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Ruddy Duck 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
132084.0238870.000000e+00Freshwater
26611.9738206.880144e-134Fertiliser K
27611.9738206.880144e-134Fertiliser N
28611.9738206.880144e-134Fertiliser P
24574.8004566.036397e-126Outflowing drainage direction
22439.9537634.753911e-97Cumulative catchment area
29420.2533128.124948e-93Chlorothalonil
31420.2533128.124948e-93Mancozeb
32420.2533128.124948e-93Mecoprop-P
30420.1707298.463895e-93Glyphosate
34420.1707298.463895e-93Pendimethalin
37334.7993272.018860e-74Sulphur
23331.6449489.666367e-74Surface type
38327.2599378.529270e-73Tri-allate
36316.6259931.678218e-70Prosulfocarb
35279.5468851.702940e-62PropamocarbHydrochloride
33275.6518781.182909e-61Metamitron
25252.5055851.196889e-56Inflowing drainage direction
19209.7910452.131385e-47Urban
21206.3481081.188914e-46Elevation
0197.5458299.644094e-45Deciduous woodland
4178.4698121.333079e-40Neutral grassland
3159.6581141.632226e-36Improve grassland
20117.6152662.340567e-27Suburban
7105.0451171.299505e-24Fen
254.6797451.452179e-13Arable
1836.7002401.392471e-09Saltmarsh
1518.5781741.635478e-05Supralittoral sediment
1217.7163802.570854e-05Saltwater
63.9353504.728954e-02Acid grassland
172.1782051.399871e-01Littoral sediment
81.9161301.662933e-01Heather
101.3834602.395211e-01Bog
91.2210972.691535e-01Heather grassland
11.0088073.151962e-01Coniferous woodland
140.4454435.045116e-01Supralittoral rock
160.4330815.104857e-01Littoral rock
110.2473356.189611e-01Inland rock
50.0722807.880478e-01Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "13 2084.023887 0.000000e+00 Freshwater\n", "26 611.973820 6.880144e-134 Fertiliser K\n", "27 611.973820 6.880144e-134 Fertiliser N\n", "28 611.973820 6.880144e-134 Fertiliser P\n", "24 574.800456 6.036397e-126 Outflowing drainage direction\n", "22 439.953763 4.753911e-97 Cumulative catchment area\n", "29 420.253312 8.124948e-93 Chlorothalonil\n", "31 420.253312 8.124948e-93 Mancozeb\n", "32 420.253312 8.124948e-93 Mecoprop-P\n", "30 420.170729 8.463895e-93 Glyphosate\n", "34 420.170729 8.463895e-93 Pendimethalin\n", "37 334.799327 2.018860e-74 Sulphur\n", "23 331.644948 9.666367e-74 Surface type\n", "38 327.259937 8.529270e-73 Tri-allate\n", "36 316.625993 1.678218e-70 Prosulfocarb\n", "35 279.546885 1.702940e-62 PropamocarbHydrochloride\n", "33 275.651878 1.182909e-61 Metamitron\n", "25 252.505585 1.196889e-56 Inflowing drainage direction\n", "19 209.791045 2.131385e-47 Urban\n", "21 206.348108 1.188914e-46 Elevation\n", "0 197.545829 9.644094e-45 Deciduous woodland\n", "4 178.469812 1.333079e-40 Neutral grassland\n", "3 159.658114 1.632226e-36 Improve grassland\n", "20 117.615266 2.340567e-27 Suburban\n", "7 105.045117 1.299505e-24 Fen\n", "2 54.679745 1.452179e-13 Arable\n", "18 36.700240 1.392471e-09 Saltmarsh\n", "15 18.578174 1.635478e-05 Supralittoral sediment\n", "12 17.716380 2.570854e-05 Saltwater\n", "6 3.935350 4.728954e-02 Acid grassland\n", "17 2.178205 1.399871e-01 Littoral sediment\n", "8 1.916130 1.662933e-01 Heather\n", "10 1.383460 2.395211e-01 Bog\n", "9 1.221097 2.691535e-01 Heather grassland\n", "1 1.008807 3.151962e-01 Coniferous woodland\n", "14 0.445443 5.045116e-01 Supralittoral rock\n", "16 0.433081 5.104857e-01 Littoral rock\n", "11 0.247335 6.189611e-01 Inland rock\n", "5 0.072280 7.880478e-01 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Whooper Swan 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
251676.5605280.000000e+00Inflowing drainage direction
231555.8842940.000000e+00Surface type
211411.8843251.291051e-302Elevation
291368.2996171.585328e-293Chlorothalonil
311368.2996171.585328e-293Mancozeb
321368.2996171.585328e-293Mecoprop-P
301367.9729431.854762e-293Glyphosate
341367.9729431.854762e-293Pendimethalin
241295.0508373.175931e-278Outflowing drainage direction
221252.1695942.987125e-269Cumulative catchment area
37822.8324709.102816e-179Sulphur
36818.8430216.390379e-178Prosulfocarb
38809.2976076.776178e-176Tri-allate
3560.8702235.752589e-123Improve grassland
35537.8031584.965172e-118PropamocarbHydrochloride
2518.0997398.226528e-114Arable
33491.3205674.509861e-108Metamitron
26428.8923151.130612e-94Fertiliser K
27428.8923151.130612e-94Fertiliser N
28428.8923151.130612e-94Fertiliser P
13302.4570751.918026e-67Freshwater
17294.0970641.224555e-65Littoral sediment
0236.1681414.111276e-53Deciduous woodland
18210.1316281.798147e-47Saltmarsh
7171.0067735.572412e-39Fen
20166.9334974.277570e-38Suburban
4152.8899454.839547e-35Neutral grassland
19129.2047556.950815e-30Urban
988.6597824.982099e-21Heather grassland
1587.3665589.563148e-21Supralittoral sediment
1465.8100605.135459e-16Supralittoral rock
1662.3670712.938167e-15Littoral rock
1036.0896021.904150e-09Bog
125.5022774.442055e-07Coniferous woodland
813.9251161.905575e-04Heather
127.7537715.363096e-03Saltwater
67.5257276.085674e-03Acid grassland
110.3608085.480621e-01Inland rock
50.0287548.653489e-01Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 1676.560528 0.000000e+00 Inflowing drainage direction\n", "23 1555.884294 0.000000e+00 Surface type\n", "21 1411.884325 1.291051e-302 Elevation\n", "29 1368.299617 1.585328e-293 Chlorothalonil\n", "31 1368.299617 1.585328e-293 Mancozeb\n", "32 1368.299617 1.585328e-293 Mecoprop-P\n", "30 1367.972943 1.854762e-293 Glyphosate\n", "34 1367.972943 1.854762e-293 Pendimethalin\n", "24 1295.050837 3.175931e-278 Outflowing drainage direction\n", "22 1252.169594 2.987125e-269 Cumulative catchment area\n", "37 822.832470 9.102816e-179 Sulphur\n", "36 818.843021 6.390379e-178 Prosulfocarb\n", "38 809.297607 6.776178e-176 Tri-allate\n", "3 560.870223 5.752589e-123 Improve grassland\n", "35 537.803158 4.965172e-118 PropamocarbHydrochloride\n", "2 518.099739 8.226528e-114 Arable\n", "33 491.320567 4.509861e-108 Metamitron\n", "26 428.892315 1.130612e-94 Fertiliser K\n", "27 428.892315 1.130612e-94 Fertiliser N\n", "28 428.892315 1.130612e-94 Fertiliser P\n", "13 302.457075 1.918026e-67 Freshwater\n", "17 294.097064 1.224555e-65 Littoral sediment\n", "0 236.168141 4.111276e-53 Deciduous woodland\n", "18 210.131628 1.798147e-47 Saltmarsh\n", "7 171.006773 5.572412e-39 Fen\n", "20 166.933497 4.277570e-38 Suburban\n", "4 152.889945 4.839547e-35 Neutral grassland\n", "19 129.204755 6.950815e-30 Urban\n", "9 88.659782 4.982099e-21 Heather grassland\n", "15 87.366558 9.563148e-21 Supralittoral sediment\n", "14 65.810060 5.135459e-16 Supralittoral rock\n", "16 62.367071 2.938167e-15 Littoral rock\n", "10 36.089602 1.904150e-09 Bog\n", "1 25.502277 4.442055e-07 Coniferous woodland\n", "8 13.925116 1.905575e-04 Heather\n", "12 7.753771 5.363096e-03 Saltwater\n", "6 7.525727 6.085674e-03 Acid grassland\n", "11 0.360808 5.480621e-01 Inland rock\n", "5 0.028754 8.653489e-01 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Wigeon 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
294819.1054690.000000e+00Chlorothalonil
304819.1054690.000000e+00Glyphosate
314819.1054690.000000e+00Mancozeb
324819.1054690.000000e+00Mecoprop-P
344819.1054690.000000e+00Pendimethalin
254543.8589430.000000e+00Inflowing drainage direction
234385.3524010.000000e+00Surface type
213772.5692100.000000e+00Elevation
373368.2722040.000000e+00Sulphur
363344.8819520.000000e+00Prosulfocarb
383316.6647630.000000e+00Tri-allate
243296.2131070.000000e+00Outflowing drainage direction
223018.4470190.000000e+00Cumulative catchment area
352471.1537670.000000e+00PropamocarbHydrochloride
332444.4158220.000000e+00Metamitron
31984.6840920.000000e+00Improve grassland
21640.4040910.000000e+00Arable
261577.3954560.000000e+00Fertiliser K
271577.3954560.000000e+00Fertiliser N
281577.3954560.000000e+00Fertiliser P
01016.5337339.783489e-220Deciduous woodland
20871.9888793.462062e-189Suburban
17839.4392772.736586e-182Littoral sediment
13570.7178514.505394e-125Freshwater
18551.3541326.247919e-121Saltmarsh
19535.1136441.869402e-117Urban
15329.5587172.723634e-73Supralittoral sediment
16261.3812611.439437e-58Littoral rock
7176.2430554.059697e-40Fen
4150.2396401.825651e-34Neutral grassland
12104.3575561.836557e-24Saltwater
1437.2448701.053444e-09Supralittoral rock
814.0970581.739122e-04Heather
112.6804173.700235e-04Coniferous woodland
99.2817862.316259e-03Heather grassland
57.2205277.211058e-03Calcareous grassland
101.4184782.336626e-01Bog
60.9765823.230512e-01Acid grassland
110.0960237.566574e-01Inland rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "29 4819.105469 0.000000e+00 Chlorothalonil\n", "30 4819.105469 0.000000e+00 Glyphosate\n", "31 4819.105469 0.000000e+00 Mancozeb\n", "32 4819.105469 0.000000e+00 Mecoprop-P\n", "34 4819.105469 0.000000e+00 Pendimethalin\n", "25 4543.858943 0.000000e+00 Inflowing drainage direction\n", "23 4385.352401 0.000000e+00 Surface type\n", "21 3772.569210 0.000000e+00 Elevation\n", "37 3368.272204 0.000000e+00 Sulphur\n", "36 3344.881952 0.000000e+00 Prosulfocarb\n", "38 3316.664763 0.000000e+00 Tri-allate\n", "24 3296.213107 0.000000e+00 Outflowing drainage direction\n", "22 3018.447019 0.000000e+00 Cumulative catchment area\n", "35 2471.153767 0.000000e+00 PropamocarbHydrochloride\n", "33 2444.415822 0.000000e+00 Metamitron\n", "3 1984.684092 0.000000e+00 Improve grassland\n", "2 1640.404091 0.000000e+00 Arable\n", "26 1577.395456 0.000000e+00 Fertiliser K\n", "27 1577.395456 0.000000e+00 Fertiliser N\n", "28 1577.395456 0.000000e+00 Fertiliser P\n", "0 1016.533733 9.783489e-220 Deciduous woodland\n", "20 871.988879 3.462062e-189 Suburban\n", "17 839.439277 2.736586e-182 Littoral sediment\n", "13 570.717851 4.505394e-125 Freshwater\n", "18 551.354132 6.247919e-121 Saltmarsh\n", "19 535.113644 1.869402e-117 Urban\n", "15 329.558717 2.723634e-73 Supralittoral sediment\n", "16 261.381261 1.439437e-58 Littoral rock\n", "7 176.243055 4.059697e-40 Fen\n", "4 150.239640 1.825651e-34 Neutral grassland\n", "12 104.357556 1.836557e-24 Saltwater\n", "14 37.244870 1.053444e-09 Supralittoral rock\n", "8 14.097058 1.739122e-04 Heather\n", "1 12.680417 3.700235e-04 Coniferous woodland\n", "9 9.281786 2.316259e-03 Heather grassland\n", "5 7.220527 7.211058e-03 Calcareous grassland\n", "10 1.418478 2.336626e-01 Bog\n", "6 0.976582 3.230512e-01 Acid grassland\n", "11 0.096023 7.566574e-01 Inland rock" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for dict in df_dicts:\n", " print(dict['name'])\n", " display(dict['kbest']['Dataframe'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.9.13 ('env': venv)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "f025c48a9b67ab76bdc0400dfa0f9ba99120976b4a6ec6a63d1c946516165c91" } } }, "nbformat": 4, "nbformat_minor": 2 }