{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import rioxarray\n", "import json, os\n", "\n", "from sklearn.feature_selection import SelectKBest\n", "from sklearn.feature_selection import chi2, f_classif, mutual_info_classif\n", "from sklearn.metrics import f1_score, classification_report\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.model_selection import train_test_split\n", "\n", "from sklearn.linear_model import LogisticRegression, SGDClassifier\n", "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier, StackingClassifier\n", "\n", "from imblearn.over_sampling import RandomOverSampler, SMOTE" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "seed = 42\n", "verbose = False\n", "details = False" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
93500.079500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1112500.0218500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
382500.0137500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
284500.0631500.0008712000000...2.934981e+013.320534e+005.856924e+002.555659e+001.939990e+011.486842e+007.638105e+004.711988e+008.939098e+000
1186500.0407500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "93500.0 79500.0 0 0 0 \n", "1112500.0 218500.0 0 0 0 \n", "382500.0 137500.0 0 0 0 \n", "284500.0 631500.0 0 0 87 \n", "1186500.0 407500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "93500.0 79500.0 0 0 \n", "1112500.0 218500.0 0 0 \n", "382500.0 137500.0 0 0 \n", "284500.0 631500.0 12 0 \n", "1186500.0 407500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "93500.0 79500.0 0 0 0 0 \n", "1112500.0 218500.0 0 0 0 0 \n", "382500.0 137500.0 0 0 0 0 \n", "284500.0 631500.0 0 0 0 0 \n", "1186500.0 407500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "93500.0 79500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1112500.0 218500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "382500.0 137500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "284500.0 631500.0 0 ... 2.934981e+01 3.320534e+00 \n", "1186500.0 407500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "93500.0 79500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1112500.0 218500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "382500.0 137500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "284500.0 631500.0 5.856924e+00 2.555659e+00 1.939990e+01 \n", "1186500.0 407500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "93500.0 79500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1112500.0 218500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "382500.0 137500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "284500.0 631500.0 1.486842e+00 7.638105e+00 4.711988e+00 \n", "1186500.0 407500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "93500.0 79500.0 -3.400000e+38 0 \n", "1112500.0 218500.0 -3.400000e+38 0 \n", "382500.0 137500.0 -3.400000e+38 0 \n", "284500.0 631500.0 8.939098e+00 0 \n", "1186500.0 407500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
323500.077500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1109500.0565500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
815500.0442500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
837500.070500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
64500.095500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "323500.0 77500.0 0 0 0 \n", "1109500.0 565500.0 0 0 0 \n", "815500.0 442500.0 0 0 0 \n", "837500.0 70500.0 0 0 0 \n", "64500.0 95500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "323500.0 77500.0 0 0 \n", "1109500.0 565500.0 0 0 \n", "815500.0 442500.0 0 0 \n", "837500.0 70500.0 0 0 \n", "64500.0 95500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "323500.0 77500.0 0 0 0 0 \n", "1109500.0 565500.0 0 0 0 0 \n", "815500.0 442500.0 0 0 0 0 \n", "837500.0 70500.0 0 0 0 0 \n", "64500.0 95500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "323500.0 77500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1109500.0 565500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "815500.0 442500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "837500.0 70500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "64500.0 95500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "323500.0 77500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1109500.0 565500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "815500.0 442500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "837500.0 70500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "64500.0 95500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "323500.0 77500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1109500.0 565500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "815500.0 442500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "837500.0 70500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "64500.0 95500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "323500.0 77500.0 -3.400000e+38 0 \n", "1109500.0 565500.0 -3.400000e+38 0 \n", "815500.0 442500.0 -3.400000e+38 0 \n", "837500.0 70500.0 -3.400000e+38 0 \n", "64500.0 95500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
239500.034500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
879500.026500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
776500.0139500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
153500.064500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1196500.0395500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "239500.0 34500.0 0 0 0 \n", "879500.0 26500.0 0 0 0 \n", "776500.0 139500.0 0 0 0 \n", "153500.0 64500.0 0 0 0 \n", "1196500.0 395500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "239500.0 34500.0 0 0 \n", "879500.0 26500.0 0 0 \n", "776500.0 139500.0 0 0 \n", "153500.0 64500.0 0 0 \n", "1196500.0 395500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "239500.0 34500.0 0 0 0 0 \n", "879500.0 26500.0 0 0 0 0 \n", "776500.0 139500.0 0 0 0 0 \n", "153500.0 64500.0 0 0 0 0 \n", "1196500.0 395500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "239500.0 34500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "879500.0 26500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "776500.0 139500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "153500.0 64500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1196500.0 395500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "239500.0 34500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "879500.0 26500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "776500.0 139500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "153500.0 64500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1196500.0 395500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "239500.0 34500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "879500.0 26500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "776500.0 139500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "153500.0 64500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1196500.0 395500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "239500.0 34500.0 -3.400000e+38 0 \n", "879500.0 26500.0 -3.400000e+38 0 \n", "776500.0 139500.0 -3.400000e+38 0 \n", "153500.0 64500.0 -3.400000e+38 0 \n", "1196500.0 395500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
416500.0365500.000000099001...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
59500.0473500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
411500.0329500.06000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
941500.0444500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
669500.0201500.0000000000100...3.281482e-033.246878e-041.107886e-03-3.400000e+387.995401e-04-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "416500.0 365500.0 0 0 0 \n", "59500.0 473500.0 0 0 0 \n", "411500.0 329500.0 6 0 0 \n", "941500.0 444500.0 0 0 0 \n", "669500.0 201500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "416500.0 365500.0 0 0 0 \n", "59500.0 473500.0 0 0 0 \n", "411500.0 329500.0 0 0 0 \n", "941500.0 444500.0 0 0 0 \n", "669500.0 201500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "416500.0 365500.0 99 0 0 1 ... \n", "59500.0 473500.0 0 0 0 0 ... \n", "411500.0 329500.0 0 0 0 0 ... \n", "941500.0 444500.0 0 0 0 0 ... \n", "669500.0 201500.0 0 0 0 100 ... \n", "\n", " Glyphosate Mancozeb Mecoprop-P Metamitron \\\n", "y x \n", "416500.0 365500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "59500.0 473500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "411500.0 329500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "941500.0 444500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "669500.0 201500.0 3.281482e-03 3.246878e-04 1.107886e-03 -3.400000e+38 \n", "\n", " Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n", "y x \n", "416500.0 365500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "59500.0 473500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "411500.0 329500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "941500.0 444500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "669500.0 201500.0 7.995401e-04 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur Tri-allate Occurrence \n", "y x \n", "416500.0 365500.0 -3.400000e+38 -3.400000e+38 0 \n", "59500.0 473500.0 -3.400000e+38 -3.400000e+38 0 \n", "411500.0 329500.0 -3.400000e+38 -3.400000e+38 0 \n", "941500.0 444500.0 -3.400000e+38 -3.400000e+38 0 \n", "669500.0 201500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
541500.0493500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
935500.0250500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
431500.0676500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
785500.0520500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
548500.0353500.0815074000020...3.706655e-015.182384e-024.508436e-01-3.400000e+382.045209e-01-3.400000e+383.159968e-029.147858e-033.640364e-020
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "541500.0 493500.0 0 0 0 \n", "935500.0 250500.0 0 0 0 \n", "431500.0 676500.0 0 0 0 \n", "785500.0 520500.0 0 0 0 \n", "548500.0 353500.0 8 15 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "541500.0 493500.0 0 0 0 \n", "935500.0 250500.0 0 0 0 \n", "431500.0 676500.0 0 0 0 \n", "785500.0 520500.0 0 0 0 \n", "548500.0 353500.0 74 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "541500.0 493500.0 0 0 0 0 ... \n", "935500.0 250500.0 0 0 0 0 ... \n", "431500.0 676500.0 0 0 0 0 ... \n", "785500.0 520500.0 0 0 0 0 ... \n", "548500.0 353500.0 0 0 2 0 ... \n", "\n", " Glyphosate Mancozeb Mecoprop-P Metamitron \\\n", "y x \n", "541500.0 493500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "935500.0 250500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "431500.0 676500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "785500.0 520500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "548500.0 353500.0 3.706655e-01 5.182384e-02 4.508436e-01 -3.400000e+38 \n", "\n", " Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n", "y x \n", "541500.0 493500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "935500.0 250500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "431500.0 676500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "785500.0 520500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "548500.0 353500.0 2.045209e-01 -3.400000e+38 3.159968e-02 \n", "\n", " Sulphur Tri-allate Occurrence \n", "y x \n", "541500.0 493500.0 -3.400000e+38 -3.400000e+38 0 \n", "935500.0 250500.0 -3.400000e+38 -3.400000e+38 0 \n", "431500.0 676500.0 -3.400000e+38 -3.400000e+38 0 \n", "785500.0 520500.0 -3.400000e+38 -3.400000e+38 0 \n", "548500.0 353500.0 9.147858e-03 3.640364e-02 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
44500.0476500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
849500.0528500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
741500.099500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
300500.036500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
277500.0579500.0345520000000...1.960884e+014.180075e+014.752119e+003.090225e+011.602428e+012.032311e+012.000400e+012.107320e+002.531016e+010
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "44500.0 476500.0 0 0 0 \n", "849500.0 528500.0 0 0 0 \n", "741500.0 99500.0 0 0 0 \n", "300500.0 36500.0 0 0 0 \n", "277500.0 579500.0 3 45 52 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "44500.0 476500.0 0 0 0 \n", "849500.0 528500.0 0 0 0 \n", "741500.0 99500.0 0 0 0 \n", "300500.0 36500.0 0 0 0 \n", "277500.0 579500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "44500.0 476500.0 0 0 0 0 ... \n", "849500.0 528500.0 0 0 0 0 ... \n", "741500.0 99500.0 0 0 0 0 ... \n", "300500.0 36500.0 0 0 0 0 ... \n", "277500.0 579500.0 0 0 0 0 ... \n", "\n", " Glyphosate Mancozeb Mecoprop-P Metamitron \\\n", "y x \n", "44500.0 476500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "849500.0 528500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "741500.0 99500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "300500.0 36500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "277500.0 579500.0 1.960884e+01 4.180075e+01 4.752119e+00 3.090225e+01 \n", "\n", " Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n", "y x \n", "44500.0 476500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "849500.0 528500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "741500.0 99500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "300500.0 36500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "277500.0 579500.0 1.602428e+01 2.032311e+01 2.000400e+01 \n", "\n", " Sulphur Tri-allate Occurrence \n", "y x \n", "44500.0 476500.0 -3.400000e+38 -3.400000e+38 0 \n", "849500.0 528500.0 -3.400000e+38 -3.400000e+38 0 \n", "741500.0 99500.0 -3.400000e+38 -3.400000e+38 0 \n", "300500.0 36500.0 -3.400000e+38 -3.400000e+38 0 \n", "277500.0 579500.0 2.107320e+00 2.531016e+01 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
634500.090500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
55500.0163500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
762500.0467500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
598500.0285500.06001225000000...2.932732e+004.436833e+009.392037e-015.325498e+001.657875e+002.230249e+002.539865e+008.083963e-013.445391e+000
1123500.0418500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "634500.0 90500.0 0 0 0 \n", "55500.0 163500.0 0 0 0 \n", "762500.0 467500.0 0 0 0 \n", "598500.0 285500.0 60 0 12 \n", "1123500.0 418500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "634500.0 90500.0 0 0 \n", "55500.0 163500.0 0 0 \n", "762500.0 467500.0 0 0 \n", "598500.0 285500.0 25 0 \n", "1123500.0 418500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "634500.0 90500.0 0 0 0 0 \n", "55500.0 163500.0 0 0 0 0 \n", "762500.0 467500.0 0 0 0 0 \n", "598500.0 285500.0 0 0 0 0 \n", "1123500.0 418500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "634500.0 90500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "55500.0 163500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "762500.0 467500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "598500.0 285500.0 0 ... 2.932732e+00 4.436833e+00 \n", "1123500.0 418500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "634500.0 90500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "55500.0 163500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "762500.0 467500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "598500.0 285500.0 9.392037e-01 5.325498e+00 1.657875e+00 \n", "1123500.0 418500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "634500.0 90500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "55500.0 163500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "762500.0 467500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "598500.0 285500.0 2.230249e+00 2.539865e+00 8.083963e-01 \n", "1123500.0 418500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "634500.0 90500.0 -3.400000e+38 0 \n", "55500.0 163500.0 -3.400000e+38 0 \n", "762500.0 467500.0 -3.400000e+38 0 \n", "598500.0 285500.0 3.445391e+00 0 \n", "1123500.0 418500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
1144500.0677500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
835500.0553500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
947500.0507500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1111500.0292500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
764500.0230500.000000031000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1144500.0 677500.0 0 0 0 \n", "835500.0 553500.0 0 0 0 \n", "947500.0 507500.0 0 0 0 \n", "1111500.0 292500.0 0 0 0 \n", "764500.0 230500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1144500.0 677500.0 0 0 \n", "835500.0 553500.0 0 0 \n", "947500.0 507500.0 0 0 \n", "1111500.0 292500.0 0 0 \n", "764500.0 230500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1144500.0 677500.0 0 0 0 0 \n", "835500.0 553500.0 0 0 0 0 \n", "947500.0 507500.0 0 0 0 0 \n", "1111500.0 292500.0 0 0 0 0 \n", "764500.0 230500.0 0 31 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "1144500.0 677500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "835500.0 553500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "947500.0 507500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1111500.0 292500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "764500.0 230500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "1144500.0 677500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "835500.0 553500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "947500.0 507500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1111500.0 292500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "764500.0 230500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "1144500.0 677500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "835500.0 553500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "947500.0 507500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1111500.0 292500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "764500.0 230500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "1144500.0 677500.0 -3.400000e+38 0 \n", "835500.0 553500.0 -3.400000e+38 0 \n", "947500.0 507500.0 -3.400000e+38 0 \n", "1111500.0 292500.0 -3.400000e+38 0 \n", "764500.0 230500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
834500.0414500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
237500.0129500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1223500.0307500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
715500.0513500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
231500.0347500.0108710000000...2.261210e+017.635539e+016.542111e+006.860609e+001.442079e+011.779667e+011.460535e+019.235137e+005.451333e+000
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "834500.0 414500.0 0 0 0 \n", "237500.0 129500.0 0 0 0 \n", "1223500.0 307500.0 0 0 0 \n", "715500.0 513500.0 0 0 0 \n", "231500.0 347500.0 1 0 87 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "834500.0 414500.0 0 0 \n", "237500.0 129500.0 0 0 \n", "1223500.0 307500.0 0 0 \n", "715500.0 513500.0 0 0 \n", "231500.0 347500.0 10 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "834500.0 414500.0 0 0 0 0 \n", "237500.0 129500.0 0 0 0 0 \n", "1223500.0 307500.0 0 0 0 0 \n", "715500.0 513500.0 0 0 0 0 \n", "231500.0 347500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "834500.0 414500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "237500.0 129500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1223500.0 307500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "715500.0 513500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "231500.0 347500.0 0 ... 2.261210e+01 7.635539e+01 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "834500.0 414500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "237500.0 129500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1223500.0 307500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "715500.0 513500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "231500.0 347500.0 6.542111e+00 6.860609e+00 1.442079e+01 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "834500.0 414500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "237500.0 129500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1223500.0 307500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "715500.0 513500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "231500.0 347500.0 1.779667e+01 1.460535e+01 9.235137e+00 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "834500.0 414500.0 -3.400000e+38 0 \n", "237500.0 129500.0 -3.400000e+38 0 \n", "1223500.0 307500.0 -3.400000e+38 0 \n", "715500.0 513500.0 -3.400000e+38 0 \n", "231500.0 347500.0 5.451333e+00 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
60500.0535500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
426500.0635500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
412500.0637500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
249500.0697500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
630500.0193500.088800000004...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "60500.0 535500.0 0 0 0 \n", "426500.0 635500.0 0 0 0 \n", "412500.0 637500.0 0 0 0 \n", "249500.0 697500.0 0 0 0 \n", "630500.0 193500.0 8 88 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "60500.0 535500.0 0 0 0 \n", "426500.0 635500.0 0 0 0 \n", "412500.0 637500.0 0 0 0 \n", "249500.0 697500.0 0 0 0 \n", "630500.0 193500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "60500.0 535500.0 0 0 0 0 ... \n", "426500.0 635500.0 0 0 0 0 ... \n", "412500.0 637500.0 0 0 0 0 ... \n", "249500.0 697500.0 0 0 0 0 ... \n", "630500.0 193500.0 0 0 0 4 ... \n", "\n", " Glyphosate Mancozeb Mecoprop-P Metamitron \\\n", "y x \n", "60500.0 535500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "426500.0 635500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "412500.0 637500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "249500.0 697500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "630500.0 193500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n", "y x \n", "60500.0 535500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "426500.0 635500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "412500.0 637500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "249500.0 697500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "630500.0 193500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur Tri-allate Occurrence \n", "y x \n", "60500.0 535500.0 -3.400000e+38 -3.400000e+38 0 \n", "426500.0 635500.0 -3.400000e+38 -3.400000e+38 0 \n", "412500.0 637500.0 -3.400000e+38 -3.400000e+38 0 \n", "249500.0 697500.0 -3.400000e+38 -3.400000e+38 0 \n", "630500.0 193500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
394500.0189500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
259500.0124500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1007500.0128500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
982500.0569500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
845500.0319500.0066000000331...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "394500.0 189500.0 0 0 0 \n", "259500.0 124500.0 0 0 0 \n", "1007500.0 128500.0 0 0 0 \n", "982500.0 569500.0 0 0 0 \n", "845500.0 319500.0 0 66 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "394500.0 189500.0 0 0 \n", "259500.0 124500.0 0 0 \n", "1007500.0 128500.0 0 0 \n", "982500.0 569500.0 0 0 \n", "845500.0 319500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "394500.0 189500.0 0 0 0 0 \n", "259500.0 124500.0 0 0 0 0 \n", "1007500.0 128500.0 0 0 0 0 \n", "982500.0 569500.0 0 0 0 0 \n", "845500.0 319500.0 0 0 0 33 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "394500.0 189500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "259500.0 124500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1007500.0 128500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "982500.0 569500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "845500.0 319500.0 1 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "394500.0 189500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "259500.0 124500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1007500.0 128500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "982500.0 569500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "845500.0 319500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "394500.0 189500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "259500.0 124500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1007500.0 128500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "982500.0 569500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "845500.0 319500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "394500.0 189500.0 -3.400000e+38 0 \n", "259500.0 124500.0 -3.400000e+38 0 \n", "1007500.0 128500.0 -3.400000e+38 0 \n", "982500.0 569500.0 -3.400000e+38 0 \n", "845500.0 319500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
1104500.0275500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
951500.0447500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1142500.0179500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
171500.0366500.00004000000...4.555925e-024.884500e-032.914841e-02-3.400000e+381.991361e-02-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
479500.0621500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1104500.0 275500.0 0 0 0 \n", "951500.0 447500.0 0 0 0 \n", "1142500.0 179500.0 0 0 0 \n", "171500.0 366500.0 0 0 0 \n", "479500.0 621500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1104500.0 275500.0 0 0 \n", "951500.0 447500.0 0 0 \n", "1142500.0 179500.0 0 0 \n", "171500.0 366500.0 4 0 \n", "479500.0 621500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1104500.0 275500.0 0 0 0 0 \n", "951500.0 447500.0 0 0 0 0 \n", "1142500.0 179500.0 0 0 0 0 \n", "171500.0 366500.0 0 0 0 0 \n", "479500.0 621500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "1104500.0 275500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "951500.0 447500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1142500.0 179500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "171500.0 366500.0 0 ... 4.555925e-02 4.884500e-03 \n", "479500.0 621500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "1104500.0 275500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "951500.0 447500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1142500.0 179500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "171500.0 366500.0 2.914841e-02 -3.400000e+38 1.991361e-02 \n", "479500.0 621500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "1104500.0 275500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "951500.0 447500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1142500.0 179500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "171500.0 366500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "479500.0 621500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "1104500.0 275500.0 -3.400000e+38 0 \n", "951500.0 447500.0 -3.400000e+38 0 \n", "1142500.0 179500.0 -3.400000e+38 0 \n", "171500.0 366500.0 -3.400000e+38 0 \n", "479500.0 621500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
49500.0150500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1215500.073500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
412500.0435500.040676000000...1.704139e+011.605020e+016.290860e+001.952624e+001.655692e+018.721580e+002.710411e+017.718266e+001.247517e+010
1077500.0357500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1168500.0203500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "49500.0 150500.0 0 0 0 \n", "1215500.0 73500.0 0 0 0 \n", "412500.0 435500.0 4 0 67 \n", "1077500.0 357500.0 0 0 0 \n", "1168500.0 203500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "49500.0 150500.0 0 0 \n", "1215500.0 73500.0 0 0 \n", "412500.0 435500.0 6 0 \n", "1077500.0 357500.0 0 0 \n", "1168500.0 203500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "49500.0 150500.0 0 0 0 0 \n", "1215500.0 73500.0 0 0 0 0 \n", "412500.0 435500.0 0 0 0 0 \n", "1077500.0 357500.0 0 0 0 0 \n", "1168500.0 203500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "49500.0 150500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1215500.0 73500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "412500.0 435500.0 0 ... 1.704139e+01 1.605020e+01 \n", "1077500.0 357500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1168500.0 203500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "49500.0 150500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1215500.0 73500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "412500.0 435500.0 6.290860e+00 1.952624e+00 1.655692e+01 \n", "1077500.0 357500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1168500.0 203500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "49500.0 150500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1215500.0 73500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "412500.0 435500.0 8.721580e+00 2.710411e+01 7.718266e+00 \n", "1077500.0 357500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1168500.0 203500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "49500.0 150500.0 -3.400000e+38 0 \n", "1215500.0 73500.0 -3.400000e+38 0 \n", "412500.0 435500.0 1.247517e+01 0 \n", "1077500.0 357500.0 -3.400000e+38 0 \n", "1168500.0 203500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
1074500.0473500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
223500.0271500.03442023001000...7.497127e-021.641769e-021.009910e-01-3.400000e+384.840676e-02-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
300500.0464500.0507316000000...2.592191e+012.126788e+015.929416e+001.453872e+011.707465e+011.009740e+013.347018e+011.095416e+012.199974e+010
962500.095500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
973500.0160500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1074500.0 473500.0 0 0 0 \n", "223500.0 271500.0 34 42 0 \n", "300500.0 464500.0 5 0 73 \n", "962500.0 95500.0 0 0 0 \n", "973500.0 160500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1074500.0 473500.0 0 0 \n", "223500.0 271500.0 23 0 \n", "300500.0 464500.0 16 0 \n", "962500.0 95500.0 0 0 \n", "973500.0 160500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1074500.0 473500.0 0 0 0 0 \n", "223500.0 271500.0 0 1 0 0 \n", "300500.0 464500.0 0 0 0 0 \n", "962500.0 95500.0 0 0 0 0 \n", "973500.0 160500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "1074500.0 473500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "223500.0 271500.0 0 ... 7.497127e-02 1.641769e-02 \n", "300500.0 464500.0 0 ... 2.592191e+01 2.126788e+01 \n", "962500.0 95500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "973500.0 160500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "1074500.0 473500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "223500.0 271500.0 1.009910e-01 -3.400000e+38 4.840676e-02 \n", "300500.0 464500.0 5.929416e+00 1.453872e+01 1.707465e+01 \n", "962500.0 95500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "973500.0 160500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "1074500.0 473500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "223500.0 271500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "300500.0 464500.0 1.009740e+01 3.347018e+01 1.095416e+01 \n", "962500.0 95500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "973500.0 160500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "1074500.0 473500.0 -3.400000e+38 0 \n", "223500.0 271500.0 -3.400000e+38 0 \n", "300500.0 464500.0 2.199974e+01 0 \n", "962500.0 95500.0 -3.400000e+38 0 \n", "973500.0 160500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
933500.03500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
560500.0289500.010100550000322...3.977419e-016.062581e-022.772525e-01-3.400000e+381.669001e-01-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
909500.0518500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1144500.0349500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
84500.0410500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "933500.0 3500.0 0 0 0 \n", "560500.0 289500.0 10 10 0 \n", "909500.0 518500.0 0 0 0 \n", "1144500.0 349500.0 0 0 0 \n", "84500.0 410500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "933500.0 3500.0 0 0 \n", "560500.0 289500.0 55 0 \n", "909500.0 518500.0 0 0 \n", "1144500.0 349500.0 0 0 \n", "84500.0 410500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "933500.0 3500.0 0 0 0 0 \n", "560500.0 289500.0 0 0 0 3 \n", "909500.0 518500.0 0 0 0 0 \n", "1144500.0 349500.0 0 0 0 0 \n", "84500.0 410500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "933500.0 3500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "560500.0 289500.0 22 ... 3.977419e-01 6.062581e-02 \n", "909500.0 518500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1144500.0 349500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "84500.0 410500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "933500.0 3500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "560500.0 289500.0 2.772525e-01 -3.400000e+38 1.669001e-01 \n", "909500.0 518500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1144500.0 349500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "84500.0 410500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "933500.0 3500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "560500.0 289500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "909500.0 518500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1144500.0 349500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "84500.0 410500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "933500.0 3500.0 -3.400000e+38 0 \n", "560500.0 289500.0 -3.400000e+38 0 \n", "909500.0 518500.0 -3.400000e+38 0 \n", "1144500.0 349500.0 -3.400000e+38 0 \n", "84500.0 410500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
750500.0474500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
591500.0432500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1039500.0594500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1154500.0658500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
961500.0628500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "750500.0 474500.0 0 0 0 \n", "591500.0 432500.0 0 0 0 \n", "1039500.0 594500.0 0 0 0 \n", "1154500.0 658500.0 0 0 0 \n", "961500.0 628500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "750500.0 474500.0 0 0 \n", "591500.0 432500.0 0 0 \n", "1039500.0 594500.0 0 0 \n", "1154500.0 658500.0 0 0 \n", "961500.0 628500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "750500.0 474500.0 0 0 0 0 \n", "591500.0 432500.0 0 0 0 0 \n", "1039500.0 594500.0 0 0 0 0 \n", "1154500.0 658500.0 0 0 0 0 \n", "961500.0 628500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "750500.0 474500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "591500.0 432500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1039500.0 594500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1154500.0 658500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "961500.0 628500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "750500.0 474500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "591500.0 432500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1039500.0 594500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1154500.0 658500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "961500.0 628500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "750500.0 474500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "591500.0 432500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1039500.0 594500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1154500.0 658500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "961500.0 628500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "750500.0 474500.0 -3.400000e+38 0 \n", "591500.0 432500.0 -3.400000e+38 0 \n", "1039500.0 594500.0 -3.400000e+38 0 \n", "1154500.0 658500.0 -3.400000e+38 0 \n", "961500.0 628500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
234500.052500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
7500.0454500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
520500.0123500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
232500.0322500.0000000100000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
834500.0681500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "234500.0 52500.0 0 0 0 \n", "7500.0 454500.0 0 0 0 \n", "520500.0 123500.0 0 0 0 \n", "232500.0 322500.0 0 0 0 \n", "834500.0 681500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "234500.0 52500.0 0 0 0 \n", "7500.0 454500.0 0 0 0 \n", "520500.0 123500.0 0 0 0 \n", "232500.0 322500.0 0 0 0 \n", "834500.0 681500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "234500.0 52500.0 0 0 0 0 ... \n", "7500.0 454500.0 0 0 0 0 ... \n", "520500.0 123500.0 0 0 0 0 ... \n", "232500.0 322500.0 100 0 0 0 ... \n", "834500.0 681500.0 0 0 0 0 ... \n", "\n", " Glyphosate Mancozeb Mecoprop-P Metamitron \\\n", "y x \n", "234500.0 52500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "7500.0 454500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "520500.0 123500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "232500.0 322500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "834500.0 681500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Pendimethalin PropamocarbHydrochloride Prosulfocarb \\\n", "y x \n", "234500.0 52500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "7500.0 454500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "520500.0 123500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "232500.0 322500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "834500.0 681500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur Tri-allate Occurrence \n", "y x \n", "234500.0 52500.0 -3.400000e+38 -3.400000e+38 0 \n", "7500.0 454500.0 -3.400000e+38 -3.400000e+38 0 \n", "520500.0 123500.0 -3.400000e+38 -3.400000e+38 0 \n", "232500.0 322500.0 -3.400000e+38 -3.400000e+38 0 \n", "834500.0 681500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
1155500.078500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
554500.0132500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
917500.0587500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
765500.0130500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
957500.0466500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1155500.0 78500.0 0 0 0 \n", "554500.0 132500.0 0 0 0 \n", "917500.0 587500.0 0 0 0 \n", "765500.0 130500.0 0 0 0 \n", "957500.0 466500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1155500.0 78500.0 0 0 \n", "554500.0 132500.0 0 0 \n", "917500.0 587500.0 0 0 \n", "765500.0 130500.0 0 0 \n", "957500.0 466500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1155500.0 78500.0 0 0 0 0 \n", "554500.0 132500.0 0 0 0 0 \n", "917500.0 587500.0 0 0 0 0 \n", "765500.0 130500.0 0 0 0 0 \n", "957500.0 466500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "1155500.0 78500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "554500.0 132500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "917500.0 587500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "765500.0 130500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "957500.0 466500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "1155500.0 78500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "554500.0 132500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "917500.0 587500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "765500.0 130500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "957500.0 466500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "1155500.0 78500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "554500.0 132500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "917500.0 587500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "765500.0 130500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "957500.0 466500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "1155500.0 78500.0 -3.400000e+38 0 \n", "554500.0 132500.0 -3.400000e+38 0 \n", "917500.0 587500.0 -3.400000e+38 0 \n", "765500.0 130500.0 -3.400000e+38 0 \n", "957500.0 466500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
636500.0313500.000050095000...1.450863e-012.292839e-027.954387e-02-3.400000e+385.052060e-02-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
258500.0547500.090041000000...9.966089e-012.871251e-013.092201e-011.212641e-013.717977e-017.553086e-022.008362e-014.586757e-022.622473e-010
705500.0221500.0017000083000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
170500.0603500.0001014000000...2.301957e+006.618243e-025.164155e-01-3.400000e+389.030058e-01-3.400000e+385.312213e-012.615392e-013.595334e-010
1253500.0388500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "636500.0 313500.0 0 0 0 \n", "258500.0 547500.0 9 0 0 \n", "705500.0 221500.0 0 17 0 \n", "170500.0 603500.0 0 0 10 \n", "1253500.0 388500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "636500.0 313500.0 5 0 \n", "258500.0 547500.0 41 0 \n", "705500.0 221500.0 0 0 \n", "170500.0 603500.0 14 0 \n", "1253500.0 388500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "636500.0 313500.0 0 95 0 0 \n", "258500.0 547500.0 0 0 0 0 \n", "705500.0 221500.0 0 83 0 0 \n", "170500.0 603500.0 0 0 0 0 \n", "1253500.0 388500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "636500.0 313500.0 0 ... 1.450863e-01 2.292839e-02 \n", "258500.0 547500.0 0 ... 9.966089e-01 2.871251e-01 \n", "705500.0 221500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "170500.0 603500.0 0 ... 2.301957e+00 6.618243e-02 \n", "1253500.0 388500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "636500.0 313500.0 7.954387e-02 -3.400000e+38 5.052060e-02 \n", "258500.0 547500.0 3.092201e-01 1.212641e-01 3.717977e-01 \n", "705500.0 221500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "170500.0 603500.0 5.164155e-01 -3.400000e+38 9.030058e-01 \n", "1253500.0 388500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "636500.0 313500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "258500.0 547500.0 7.553086e-02 2.008362e-01 4.586757e-02 \n", "705500.0 221500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "170500.0 603500.0 -3.400000e+38 5.312213e-01 2.615392e-01 \n", "1253500.0 388500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "636500.0 313500.0 -3.400000e+38 0 \n", "258500.0 547500.0 2.622473e-01 0 \n", "705500.0 221500.0 -3.400000e+38 0 \n", "170500.0 603500.0 3.595334e-01 0 \n", "1253500.0 388500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...GlyphosateMancozebMecoprop-PMetamitronPendimethalinPropamocarbHydrochlorideProsulfocarbSulphurTri-allateOccurrence
yx
305500.0357500.0307813000000...8.528832e+001.420794e+012.603747e+008.924331e+007.079559e+004.522233e+005.074559e+003.921629e+008.035636e+000
280500.0367500.0405145000000...1.303571e+011.388152e+013.212259e+001.002133e+019.966151e+004.481364e+006.024839e+005.549138e+009.275659e+000
765500.0188500.000000094000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1003500.0159500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1119500.0518500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "305500.0 357500.0 3 0 78 \n", "280500.0 367500.0 4 0 51 \n", "765500.0 188500.0 0 0 0 \n", "1003500.0 159500.0 0 0 0 \n", "1119500.0 518500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "305500.0 357500.0 13 0 \n", "280500.0 367500.0 45 0 \n", "765500.0 188500.0 0 0 \n", "1003500.0 159500.0 0 0 \n", "1119500.0 518500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "305500.0 357500.0 0 0 0 0 \n", "280500.0 367500.0 0 0 0 0 \n", "765500.0 188500.0 0 94 0 0 \n", "1003500.0 159500.0 0 0 0 0 \n", "1119500.0 518500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate Mancozeb \\\n", "y x ... \n", "305500.0 357500.0 0 ... 8.528832e+00 1.420794e+01 \n", "280500.0 367500.0 0 ... 1.303571e+01 1.388152e+01 \n", "765500.0 188500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1003500.0 159500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1119500.0 518500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P Metamitron Pendimethalin \\\n", "y x \n", "305500.0 357500.0 2.603747e+00 8.924331e+00 7.079559e+00 \n", "280500.0 367500.0 3.212259e+00 1.002133e+01 9.966151e+00 \n", "765500.0 188500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1003500.0 159500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1119500.0 518500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride Prosulfocarb Sulphur \\\n", "y x \n", "305500.0 357500.0 4.522233e+00 5.074559e+00 3.921629e+00 \n", "280500.0 367500.0 4.481364e+00 6.024839e+00 5.549138e+00 \n", "765500.0 188500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1003500.0 159500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1119500.0 518500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Tri-allate Occurrence \n", "y x \n", "305500.0 357500.0 8.035636e+00 0 \n", "280500.0 367500.0 9.275659e+00 0 \n", "765500.0 188500.0 -3.400000e+38 0 \n", "1003500.0 159500.0 -3.400000e+38 0 \n", "1119500.0 518500.0 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "INVASIVE_BIRDS_PATH = 'Datasets/Machine Learning/1km Rasters/Birds'\n", "# Use this if using coordinates as separate columns\n", "# df_1km = pd.read_csv('Datasets/Machine Learning/Dataframes/1km_All_Birds_DF.csv')\n", "\n", "# Use this if using coordinates as indices\n", "df_1km = pd.read_csv('Datasets/Machine Learning/Dataframes/1km_All_Birds_DF.csv', index_col=[0,1])\n", "\n", "total_birds = (df_1km['Occurrence']==1).sum()\n", "df_dicts = []\n", "\n", "for file in os.listdir(INVASIVE_BIRDS_PATH):\n", " filename = os.fsdecode(file)\n", " if not filename.endswith('.tif') or filename.endswith('All_Invasive_Birds_1km.tif') :\n", " continue\n", "\n", "\n", "\n", " bird_name = filename[:-4].replace('_', ' ')\n", "\n", " bird_dataset = rioxarray.open_rasterio(f'{INVASIVE_BIRDS_PATH}/{file}')\n", " bird_dataset.name = 'data'\n", " bird_df = bird_dataset.squeeze().drop(\"spatial_ref\").drop(\"band\").to_dataframe()\n", "\n", " # Check if index matches\n", " if not df_1km.index.equals(bird_df.index):\n", " print('Warning: Index does not match')\n", " continue\n", "\n", " bird_df['Occurrence'] = [0 if x == -1 else 1 for x in bird_df['data']]\n", " bird_df = df_1km.drop(columns='Occurrence').join(bird_df.drop(columns='data'))\n", " \n", " bird_dict = {'name' : bird_name, 'dataframe' : bird_df }\n", " df_dicts.append(bird_dict)\n", " display(bird_df.sample(5))\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
376500.0337500.010001000000...0038634410427140
660500.028500.00000000000...0000-9999-9999-1-12550
304500.0547500.0108111000000...0016701128170
1124500.0453500.00000000000...0000-9999-9999-1-12550
85500.0233500.010469000000...00223127136726410
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "376500.0 337500.0 1 0 0 \n", "660500.0 28500.0 0 0 0 \n", "304500.0 547500.0 1 0 81 \n", "1124500.0 453500.0 0 0 0 \n", "85500.0 233500.0 1 0 4 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "376500.0 337500.0 0 10 \n", "660500.0 28500.0 0 0 \n", "304500.0 547500.0 11 0 \n", "1124500.0 453500.0 0 0 \n", "85500.0 233500.0 69 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "376500.0 337500.0 0 0 0 0 \n", "660500.0 28500.0 0 0 0 0 \n", "304500.0 547500.0 0 0 0 0 \n", "1124500.0 453500.0 0 0 0 0 \n", "85500.0 233500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "376500.0 337500.0 0 ... 0 0 \n", "660500.0 28500.0 0 ... 0 0 \n", "304500.0 547500.0 0 ... 0 0 \n", "1124500.0 453500.0 0 ... 0 0 \n", "85500.0 233500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "376500.0 337500.0 3 86 344 104 \n", "660500.0 28500.0 0 0 -9999 -9999 \n", "304500.0 547500.0 1 6 70 11 \n", "1124500.0 453500.0 0 0 -9999 -9999 \n", "85500.0 233500.0 2 23 1271 367 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "376500.0 337500.0 2 7 \n", "660500.0 28500.0 -1 -1 \n", "304500.0 547500.0 2 8 \n", "1124500.0 453500.0 -1 -1 \n", "85500.0 233500.0 2 6 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "376500.0 337500.0 14 0 \n", "660500.0 28500.0 255 0 \n", "304500.0 547500.0 17 0 \n", "1124500.0 453500.0 255 0 \n", "85500.0 233500.0 41 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
194500.0430500.0307125000000...00019645025531
1050500.029500.00000000000...0000-9999-9999-1-12550
719500.0617500.00000000000...0000-9999-9999-1-12550
136500.0477500.0360043000040...0001675825929150
864500.0170500.00000000000...0000-1000-99990-200
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "194500.0 430500.0 3 0 71 \n", "1050500.0 29500.0 0 0 0 \n", "719500.0 617500.0 0 0 0 \n", "136500.0 477500.0 36 0 0 \n", "864500.0 170500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "194500.0 430500.0 25 0 \n", "1050500.0 29500.0 0 0 \n", "719500.0 617500.0 0 0 \n", "136500.0 477500.0 43 0 \n", "864500.0 170500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "194500.0 430500.0 0 0 0 0 \n", "1050500.0 29500.0 0 0 0 0 \n", "719500.0 617500.0 0 0 0 0 \n", "136500.0 477500.0 0 0 0 4 \n", "864500.0 170500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "194500.0 430500.0 0 ... 0 0 \n", "1050500.0 29500.0 0 ... 0 0 \n", "719500.0 617500.0 0 ... 0 0 \n", "136500.0 477500.0 0 ... 0 0 \n", "864500.0 170500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "194500.0 430500.0 0 1 964 50 \n", "1050500.0 29500.0 0 0 -9999 -9999 \n", "719500.0 617500.0 0 0 -9999 -9999 \n", "136500.0 477500.0 0 16 758 259 \n", "864500.0 170500.0 0 0 -1000 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "194500.0 430500.0 2 5 \n", "1050500.0 29500.0 -1 -1 \n", "719500.0 617500.0 -1 -1 \n", "136500.0 477500.0 2 9 \n", "864500.0 170500.0 0 -2 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "194500.0 430500.0 53 1 \n", "1050500.0 29500.0 255 0 \n", "719500.0 617500.0 255 0 \n", "136500.0 477500.0 15 0 \n", "864500.0 170500.0 0 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
585500.0628500.00000000000...0000-9999-9999-1-12550
122500.086500.00000000000...0000-9999-9999-1-12550
806500.0245500.00000000000...000067451429210
486500.0372500.001091008000...0001147267627590
522500.082500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "585500.0 628500.0 0 0 0 \n", "122500.0 86500.0 0 0 0 \n", "806500.0 245500.0 0 0 0 \n", "486500.0 372500.0 0 1 0 \n", "522500.0 82500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "585500.0 628500.0 0 0 0 \n", "122500.0 86500.0 0 0 0 \n", "806500.0 245500.0 0 0 0 \n", "486500.0 372500.0 91 0 0 \n", "522500.0 82500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "585500.0 628500.0 0 0 0 0 ... \n", "122500.0 86500.0 0 0 0 0 ... \n", "806500.0 245500.0 0 0 0 0 ... \n", "486500.0 372500.0 8 0 0 0 ... \n", "522500.0 82500.0 0 0 0 0 ... \n", "\n", " Littoral sediment Saltmarsh Urban Suburban Elevation \\\n", "y x \n", "585500.0 628500.0 0 0 0 0 -9999 \n", "122500.0 86500.0 0 0 0 0 -9999 \n", "806500.0 245500.0 0 0 0 0 6745 \n", "486500.0 372500.0 0 0 0 1 1472 \n", "522500.0 82500.0 0 0 0 0 -9999 \n", "\n", " Cumulative catchment area Surface type \\\n", "y x \n", "585500.0 628500.0 -9999 -1 \n", "122500.0 86500.0 -9999 -1 \n", "806500.0 245500.0 14 2 \n", "486500.0 372500.0 676 2 \n", "522500.0 82500.0 -9999 -1 \n", "\n", " Outflowing drainage direction \\\n", "y x \n", "585500.0 628500.0 -1 \n", "122500.0 86500.0 -1 \n", "806500.0 245500.0 9 \n", "486500.0 372500.0 7 \n", "522500.0 82500.0 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "585500.0 628500.0 255 0 \n", "122500.0 86500.0 255 0 \n", "806500.0 245500.0 21 0 \n", "486500.0 372500.0 59 0 \n", "522500.0 82500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
1086500.0150500.00000000000...0000-9999-9999-1-12550
1159500.0373500.00000000000...0000-9999-9999-1-12550
258500.097500.00000000000...0000-9999-9999-1-12550
1289500.024500.00000000000...0000-9999-9999-1-12550
512500.03500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1086500.0 150500.0 0 0 0 \n", "1159500.0 373500.0 0 0 0 \n", "258500.0 97500.0 0 0 0 \n", "1289500.0 24500.0 0 0 0 \n", "512500.0 3500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1086500.0 150500.0 0 0 \n", "1159500.0 373500.0 0 0 \n", "258500.0 97500.0 0 0 \n", "1289500.0 24500.0 0 0 \n", "512500.0 3500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1086500.0 150500.0 0 0 0 0 \n", "1159500.0 373500.0 0 0 0 0 \n", "258500.0 97500.0 0 0 0 0 \n", "1289500.0 24500.0 0 0 0 0 \n", "512500.0 3500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "1086500.0 150500.0 0 ... 0 0 \n", "1159500.0 373500.0 0 ... 0 0 \n", "258500.0 97500.0 0 ... 0 0 \n", "1289500.0 24500.0 0 ... 0 0 \n", "512500.0 3500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "1086500.0 150500.0 0 0 -9999 -9999 \n", "1159500.0 373500.0 0 0 -9999 -9999 \n", "258500.0 97500.0 0 0 -9999 -9999 \n", "1289500.0 24500.0 0 0 -9999 -9999 \n", "512500.0 3500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "1086500.0 150500.0 -1 -1 \n", "1159500.0 373500.0 -1 -1 \n", "258500.0 97500.0 -1 -1 \n", "1289500.0 24500.0 -1 -1 \n", "512500.0 3500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "1086500.0 150500.0 255 0 \n", "1159500.0 373500.0 255 0 \n", "258500.0 97500.0 255 0 \n", "1289500.0 24500.0 255 0 \n", "512500.0 3500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
693500.060500.00000000000...0000-9999-9999-1-12550
659500.0354500.0000000001000...000042423726340
1286500.0291500.00000000000...0000-9999-9999-1-12550
349500.0585500.00000000000...0000-1000-99990-200
928500.0436500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "693500.0 60500.0 0 0 0 \n", "659500.0 354500.0 0 0 0 \n", "1286500.0 291500.0 0 0 0 \n", "349500.0 585500.0 0 0 0 \n", "928500.0 436500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "693500.0 60500.0 0 0 \n", "659500.0 354500.0 0 0 \n", "1286500.0 291500.0 0 0 \n", "349500.0 585500.0 0 0 \n", "928500.0 436500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "693500.0 60500.0 0 0 0 0 \n", "659500.0 354500.0 0 0 0 100 \n", "1286500.0 291500.0 0 0 0 0 \n", "349500.0 585500.0 0 0 0 0 \n", "928500.0 436500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "693500.0 60500.0 0 ... 0 0 \n", "659500.0 354500.0 0 ... 0 0 \n", "1286500.0 291500.0 0 ... 0 0 \n", "349500.0 585500.0 0 ... 0 0 \n", "928500.0 436500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "693500.0 60500.0 0 0 -9999 -9999 \n", "659500.0 354500.0 0 0 4242 37 \n", "1286500.0 291500.0 0 0 -9999 -9999 \n", "349500.0 585500.0 0 0 -1000 -9999 \n", "928500.0 436500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "693500.0 60500.0 -1 -1 \n", "659500.0 354500.0 2 6 \n", "1286500.0 291500.0 -1 -1 \n", "349500.0 585500.0 0 -2 \n", "928500.0 436500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "693500.0 60500.0 255 0 \n", "659500.0 354500.0 34 0 \n", "1286500.0 291500.0 255 0 \n", "349500.0 585500.0 0 0 \n", "928500.0 436500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
934500.0670500.00000000000...0000-9999-9999-1-12550
1110500.0442500.00000000000...0000-1000-99990-200
523500.0608500.00000000000...0000-9999-9999-1-12550
1270500.0607500.00000000000...0000-9999-9999-1-12550
412500.0684500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "934500.0 670500.0 0 0 0 \n", "1110500.0 442500.0 0 0 0 \n", "523500.0 608500.0 0 0 0 \n", "1270500.0 607500.0 0 0 0 \n", "412500.0 684500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "934500.0 670500.0 0 0 \n", "1110500.0 442500.0 0 0 \n", "523500.0 608500.0 0 0 \n", "1270500.0 607500.0 0 0 \n", "412500.0 684500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "934500.0 670500.0 0 0 0 0 \n", "1110500.0 442500.0 0 0 0 0 \n", "523500.0 608500.0 0 0 0 0 \n", "1270500.0 607500.0 0 0 0 0 \n", "412500.0 684500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "934500.0 670500.0 0 ... 0 0 \n", "1110500.0 442500.0 0 ... 0 0 \n", "523500.0 608500.0 0 ... 0 0 \n", "1270500.0 607500.0 0 ... 0 0 \n", "412500.0 684500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "934500.0 670500.0 0 0 -9999 -9999 \n", "1110500.0 442500.0 0 0 -1000 -9999 \n", "523500.0 608500.0 0 0 -9999 -9999 \n", "1270500.0 607500.0 0 0 -9999 -9999 \n", "412500.0 684500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "934500.0 670500.0 -1 -1 \n", "1110500.0 442500.0 0 -2 \n", "523500.0 608500.0 -1 -1 \n", "1270500.0 607500.0 -1 -1 \n", "412500.0 684500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "934500.0 670500.0 255 0 \n", "1110500.0 442500.0 0 0 \n", "523500.0 608500.0 255 0 \n", "1270500.0 607500.0 255 0 \n", "412500.0 684500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
765500.0263500.0000000001000...000054611027130
335500.0117500.00000000000...0000-9999-9999-1-12550
1078500.0269500.00000000000...0000-9999-9999-1-12550
942500.0100500.00000000000...0000-9999-9999-1-12550
741500.0340500.00043300180450...000022861426220
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "765500.0 263500.0 0 0 0 \n", "335500.0 117500.0 0 0 0 \n", "1078500.0 269500.0 0 0 0 \n", "942500.0 100500.0 0 0 0 \n", "741500.0 340500.0 0 0 4 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "765500.0 263500.0 0 0 \n", "335500.0 117500.0 0 0 \n", "1078500.0 269500.0 0 0 \n", "942500.0 100500.0 0 0 \n", "741500.0 340500.0 33 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "765500.0 263500.0 0 0 0 100 \n", "335500.0 117500.0 0 0 0 0 \n", "1078500.0 269500.0 0 0 0 0 \n", "942500.0 100500.0 0 0 0 0 \n", "741500.0 340500.0 0 18 0 45 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "765500.0 263500.0 0 ... 0 0 \n", "335500.0 117500.0 0 ... 0 0 \n", "1078500.0 269500.0 0 ... 0 0 \n", "942500.0 100500.0 0 ... 0 0 \n", "741500.0 340500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "765500.0 263500.0 0 0 5461 10 \n", "335500.0 117500.0 0 0 -9999 -9999 \n", "1078500.0 269500.0 0 0 -9999 -9999 \n", "942500.0 100500.0 0 0 -9999 -9999 \n", "741500.0 340500.0 0 0 2286 14 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "765500.0 263500.0 2 7 \n", "335500.0 117500.0 -1 -1 \n", "1078500.0 269500.0 -1 -1 \n", "942500.0 100500.0 -1 -1 \n", "741500.0 340500.0 2 6 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "765500.0 263500.0 13 0 \n", "335500.0 117500.0 255 0 \n", "1078500.0 269500.0 255 0 \n", "942500.0 100500.0 255 0 \n", "741500.0 340500.0 22 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
664500.0571500.00000000000...0000-9999-9999-1-12550
1209500.0605500.00000000000...0000-9999-9999-1-12550
813500.0290500.0151036000000...0004421281757927260
1070500.0678500.00000000000...0000-9999-9999-1-12550
880500.0390500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "664500.0 571500.0 0 0 0 \n", "1209500.0 605500.0 0 0 0 \n", "813500.0 290500.0 15 1 0 \n", "1070500.0 678500.0 0 0 0 \n", "880500.0 390500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "664500.0 571500.0 0 0 \n", "1209500.0 605500.0 0 0 \n", "813500.0 290500.0 36 0 \n", "1070500.0 678500.0 0 0 \n", "880500.0 390500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "664500.0 571500.0 0 0 0 0 \n", "1209500.0 605500.0 0 0 0 0 \n", "813500.0 290500.0 0 0 0 0 \n", "1070500.0 678500.0 0 0 0 0 \n", "880500.0 390500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "664500.0 571500.0 0 ... 0 0 \n", "1209500.0 605500.0 0 ... 0 0 \n", "813500.0 290500.0 0 ... 0 0 \n", "1070500.0 678500.0 0 ... 0 0 \n", "880500.0 390500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "664500.0 571500.0 0 0 -9999 -9999 \n", "1209500.0 605500.0 0 0 -9999 -9999 \n", "813500.0 290500.0 0 44 2128 17579 \n", "1070500.0 678500.0 0 0 -9999 -9999 \n", "880500.0 390500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "664500.0 571500.0 -1 -1 \n", "1209500.0 605500.0 -1 -1 \n", "813500.0 290500.0 2 7 \n", "1070500.0 678500.0 -1 -1 \n", "880500.0 390500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "664500.0 571500.0 255 0 \n", "1209500.0 605500.0 255 0 \n", "813500.0 290500.0 26 0 \n", "1070500.0 678500.0 255 0 \n", "880500.0 390500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
763500.0116500.00000000000...0000-1000-99990-200
1230500.0526500.00000000000...0000-9999-9999-1-12550
74500.0377500.00000000000...0000-1000-99990-200
1108500.0303500.00000000000...0000-9999-9999-1-12550
423500.0622500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "763500.0 116500.0 0 0 0 \n", "1230500.0 526500.0 0 0 0 \n", "74500.0 377500.0 0 0 0 \n", "1108500.0 303500.0 0 0 0 \n", "423500.0 622500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "763500.0 116500.0 0 0 \n", "1230500.0 526500.0 0 0 \n", "74500.0 377500.0 0 0 \n", "1108500.0 303500.0 0 0 \n", "423500.0 622500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "763500.0 116500.0 0 0 0 0 \n", "1230500.0 526500.0 0 0 0 0 \n", "74500.0 377500.0 0 0 0 0 \n", "1108500.0 303500.0 0 0 0 0 \n", "423500.0 622500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "763500.0 116500.0 0 ... 0 0 \n", "1230500.0 526500.0 0 ... 0 0 \n", "74500.0 377500.0 0 ... 0 0 \n", "1108500.0 303500.0 0 ... 0 0 \n", "423500.0 622500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "763500.0 116500.0 0 0 -1000 -9999 \n", "1230500.0 526500.0 0 0 -9999 -9999 \n", "74500.0 377500.0 0 0 -1000 -9999 \n", "1108500.0 303500.0 0 0 -9999 -9999 \n", "423500.0 622500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "763500.0 116500.0 0 -2 \n", "1230500.0 526500.0 -1 -1 \n", "74500.0 377500.0 0 -2 \n", "1108500.0 303500.0 -1 -1 \n", "423500.0 622500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "763500.0 116500.0 0 0 \n", "1230500.0 526500.0 255 0 \n", "74500.0 377500.0 0 0 \n", "1108500.0 303500.0 255 0 \n", "423500.0 622500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
551500.0611500.00000000000...0000-9999-9999-1-12550
893500.0605500.00000000000...0000-9999-9999-1-12550
923500.0254500.004100000000...00003116824530
815500.0177500.0371803000000...00003189714150
1076500.0313500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "551500.0 611500.0 0 0 0 \n", "893500.0 605500.0 0 0 0 \n", "923500.0 254500.0 0 41 0 \n", "815500.0 177500.0 37 18 0 \n", "1076500.0 313500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "551500.0 611500.0 0 0 \n", "893500.0 605500.0 0 0 \n", "923500.0 254500.0 0 0 \n", "815500.0 177500.0 3 0 \n", "1076500.0 313500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "551500.0 611500.0 0 0 0 0 \n", "893500.0 605500.0 0 0 0 0 \n", "923500.0 254500.0 0 0 0 0 \n", "815500.0 177500.0 0 0 0 0 \n", "1076500.0 313500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "551500.0 611500.0 0 ... 0 0 \n", "893500.0 605500.0 0 ... 0 0 \n", "923500.0 254500.0 0 ... 0 0 \n", "815500.0 177500.0 0 ... 0 0 \n", "1076500.0 313500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "551500.0 611500.0 0 0 -9999 -9999 \n", "893500.0 605500.0 0 0 -9999 -9999 \n", "923500.0 254500.0 0 0 3116 8 \n", "815500.0 177500.0 0 0 318 97 \n", "1076500.0 313500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "551500.0 611500.0 -1 -1 \n", "893500.0 605500.0 -1 -1 \n", "923500.0 254500.0 2 4 \n", "815500.0 177500.0 1 4 \n", "1076500.0 313500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "551500.0 611500.0 255 0 \n", "893500.0 605500.0 255 0 \n", "923500.0 254500.0 53 0 \n", "815500.0 177500.0 15 0 \n", "1076500.0 313500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
502500.0435500.0105938000000...00015351527210
136500.0662500.00000000000...0000-9999-9999-1-12550
1189500.0511500.00000000000...0000-9999-9999-1-12550
72500.0579500.00000000000...0000-9999-9999-1-12550
1163500.047500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "502500.0 435500.0 1 0 59 \n", "136500.0 662500.0 0 0 0 \n", "1189500.0 511500.0 0 0 0 \n", "72500.0 579500.0 0 0 0 \n", "1163500.0 47500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "502500.0 435500.0 38 0 \n", "136500.0 662500.0 0 0 \n", "1189500.0 511500.0 0 0 \n", "72500.0 579500.0 0 0 \n", "1163500.0 47500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "502500.0 435500.0 0 0 0 0 \n", "136500.0 662500.0 0 0 0 0 \n", "1189500.0 511500.0 0 0 0 0 \n", "72500.0 579500.0 0 0 0 0 \n", "1163500.0 47500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "502500.0 435500.0 0 ... 0 0 \n", "136500.0 662500.0 0 ... 0 0 \n", "1189500.0 511500.0 0 ... 0 0 \n", "72500.0 579500.0 0 ... 0 0 \n", "1163500.0 47500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "502500.0 435500.0 0 1 535 15 \n", "136500.0 662500.0 0 0 -9999 -9999 \n", "1189500.0 511500.0 0 0 -9999 -9999 \n", "72500.0 579500.0 0 0 -9999 -9999 \n", "1163500.0 47500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "502500.0 435500.0 2 7 \n", "136500.0 662500.0 -1 -1 \n", "1189500.0 511500.0 -1 -1 \n", "72500.0 579500.0 -1 -1 \n", "1163500.0 47500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "502500.0 435500.0 21 0 \n", "136500.0 662500.0 255 0 \n", "1189500.0 511500.0 255 0 \n", "72500.0 579500.0 255 0 \n", "1163500.0 47500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
327500.0575500.0203860000000...00007531325280
665500.0248500.00010000000...01896-1000-999925180
253500.00024000000...0094071362760
668500.081500.00000000000...0000-9999-9999-1-12550
1185500.0328500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "327500.0 575500.0 2 0 38 \n", "665500.0 248500.0 0 0 1 \n", " 253500.0 0 0 2 \n", "668500.0 81500.0 0 0 0 \n", "1185500.0 328500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "327500.0 575500.0 60 0 \n", "665500.0 248500.0 0 0 \n", " 253500.0 4 0 \n", "668500.0 81500.0 0 0 \n", "1185500.0 328500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "327500.0 575500.0 0 0 0 0 \n", "665500.0 248500.0 0 0 0 0 \n", " 253500.0 0 0 0 0 \n", "668500.0 81500.0 0 0 0 0 \n", "1185500.0 328500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "327500.0 575500.0 0 ... 0 0 \n", "665500.0 248500.0 0 ... 0 1 \n", " 253500.0 0 ... 0 0 \n", "668500.0 81500.0 0 ... 0 0 \n", "1185500.0 328500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "327500.0 575500.0 0 0 753 13 \n", "665500.0 248500.0 89 6 -1000 -9999 \n", " 253500.0 94 0 71 36 \n", "668500.0 81500.0 0 0 -9999 -9999 \n", "1185500.0 328500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "327500.0 575500.0 2 5 \n", "665500.0 248500.0 2 5 \n", " 253500.0 2 7 \n", "668500.0 81500.0 -1 -1 \n", "1185500.0 328500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "327500.0 575500.0 28 0 \n", "665500.0 248500.0 18 0 \n", " 253500.0 6 0 \n", "668500.0 81500.0 255 0 \n", "1185500.0 328500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
64500.0343500.00000000000...0000-9999-9999-1-12550
1240500.09500.00000000000...0000-9999-9999-1-12550
19500.043500.00000000000...0000-9999-9999-1-12550
1039500.0438500.00000000000...0000-9999-9999-1-12550
204500.0218500.00000000000...0000-1000-99990-200
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "64500.0 343500.0 0 0 0 \n", "1240500.0 9500.0 0 0 0 \n", "19500.0 43500.0 0 0 0 \n", "1039500.0 438500.0 0 0 0 \n", "204500.0 218500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "64500.0 343500.0 0 0 \n", "1240500.0 9500.0 0 0 \n", "19500.0 43500.0 0 0 \n", "1039500.0 438500.0 0 0 \n", "204500.0 218500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "64500.0 343500.0 0 0 0 0 \n", "1240500.0 9500.0 0 0 0 0 \n", "19500.0 43500.0 0 0 0 0 \n", "1039500.0 438500.0 0 0 0 0 \n", "204500.0 218500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "64500.0 343500.0 0 ... 0 0 \n", "1240500.0 9500.0 0 ... 0 0 \n", "19500.0 43500.0 0 ... 0 0 \n", "1039500.0 438500.0 0 ... 0 0 \n", "204500.0 218500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "64500.0 343500.0 0 0 -9999 -9999 \n", "1240500.0 9500.0 0 0 -9999 -9999 \n", "19500.0 43500.0 0 0 -9999 -9999 \n", "1039500.0 438500.0 0 0 -9999 -9999 \n", "204500.0 218500.0 0 0 -1000 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "64500.0 343500.0 -1 -1 \n", "1240500.0 9500.0 -1 -1 \n", "19500.0 43500.0 -1 -1 \n", "1039500.0 438500.0 -1 -1 \n", "204500.0 218500.0 0 -2 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "64500.0 343500.0 255 0 \n", "1240500.0 9500.0 255 0 \n", "19500.0 43500.0 255 0 \n", "1039500.0 438500.0 255 0 \n", "204500.0 218500.0 0 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
1189500.0265500.00000000000...0000-9999-9999-1-12550
72500.0335500.00000000000...0000-9999-9999-1-12550
723500.0319500.039261421000000...000017541124350
1056500.0696500.00000000000...0000-9999-9999-1-12550
223500.0220500.0180079100000...000217751327250
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1189500.0 265500.0 0 0 0 \n", "72500.0 335500.0 0 0 0 \n", "723500.0 319500.0 39 26 14 \n", "1056500.0 696500.0 0 0 0 \n", "223500.0 220500.0 18 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1189500.0 265500.0 0 0 \n", "72500.0 335500.0 0 0 \n", "723500.0 319500.0 21 0 \n", "1056500.0 696500.0 0 0 \n", "223500.0 220500.0 79 1 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1189500.0 265500.0 0 0 0 0 \n", "72500.0 335500.0 0 0 0 0 \n", "723500.0 319500.0 0 0 0 0 \n", "1056500.0 696500.0 0 0 0 0 \n", "223500.0 220500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "1189500.0 265500.0 0 ... 0 0 \n", "72500.0 335500.0 0 ... 0 0 \n", "723500.0 319500.0 0 ... 0 0 \n", "1056500.0 696500.0 0 ... 0 0 \n", "223500.0 220500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "1189500.0 265500.0 0 0 -9999 -9999 \n", "72500.0 335500.0 0 0 -9999 -9999 \n", "723500.0 319500.0 0 0 1754 11 \n", "1056500.0 696500.0 0 0 -9999 -9999 \n", "223500.0 220500.0 0 2 1775 13 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "1189500.0 265500.0 -1 -1 \n", "72500.0 335500.0 -1 -1 \n", "723500.0 319500.0 2 4 \n", "1056500.0 696500.0 -1 -1 \n", "223500.0 220500.0 2 7 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "1189500.0 265500.0 255 0 \n", "72500.0 335500.0 255 0 \n", "723500.0 319500.0 35 0 \n", "1056500.0 696500.0 255 0 \n", "223500.0 220500.0 25 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
814500.0675500.00000000000...0000-9999-9999-1-12550
729500.065500.00000000000...0000-9999-9999-1-12550
239500.0615500.0230705000000...00024111226190
273500.0613500.0007324000000...000337820127180
545500.0324500.0203264000000...00126745328100
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "814500.0 675500.0 0 0 0 \n", "729500.0 65500.0 0 0 0 \n", "239500.0 615500.0 23 0 70 \n", "273500.0 613500.0 0 0 73 \n", "545500.0 324500.0 2 0 32 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "814500.0 675500.0 0 0 0 \n", "729500.0 65500.0 0 0 0 \n", "239500.0 615500.0 5 0 0 \n", "273500.0 613500.0 24 0 0 \n", "545500.0 324500.0 64 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "814500.0 675500.0 0 0 0 0 ... \n", "729500.0 65500.0 0 0 0 0 ... \n", "239500.0 615500.0 0 0 0 0 ... \n", "273500.0 613500.0 0 0 0 0 ... \n", "545500.0 324500.0 0 0 0 0 ... \n", "\n", " Littoral sediment Saltmarsh Urban Suburban Elevation \\\n", "y x \n", "814500.0 675500.0 0 0 0 0 -9999 \n", "729500.0 65500.0 0 0 0 0 -9999 \n", "239500.0 615500.0 0 0 0 2 411 \n", "273500.0 613500.0 0 0 0 3 378 \n", "545500.0 324500.0 0 0 1 2 674 \n", "\n", " Cumulative catchment area Surface type \\\n", "y x \n", "814500.0 675500.0 -9999 -1 \n", "729500.0 65500.0 -9999 -1 \n", "239500.0 615500.0 12 2 \n", "273500.0 613500.0 201 2 \n", "545500.0 324500.0 53 2 \n", "\n", " Outflowing drainage direction \\\n", "y x \n", "814500.0 675500.0 -1 \n", "729500.0 65500.0 -1 \n", "239500.0 615500.0 6 \n", "273500.0 613500.0 7 \n", "545500.0 324500.0 8 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "814500.0 675500.0 255 0 \n", "729500.0 65500.0 255 0 \n", "239500.0 615500.0 19 0 \n", "273500.0 613500.0 18 0 \n", "545500.0 324500.0 10 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
1098500.0233500.00000000000...0000-9999-9999-1-12550
156500.00000000000...0000-9999-9999-1-12550
863500.0232500.03200230041004...000118006426520
225500.0315500.00110300530320...00004379824420
790500.0692500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1098500.0 233500.0 0 0 0 \n", " 156500.0 0 0 0 \n", "863500.0 232500.0 32 0 0 \n", "225500.0 315500.0 0 11 0 \n", "790500.0 692500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1098500.0 233500.0 0 0 \n", " 156500.0 0 0 \n", "863500.0 232500.0 23 0 \n", "225500.0 315500.0 3 0 \n", "790500.0 692500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1098500.0 233500.0 0 0 0 0 \n", " 156500.0 0 0 0 0 \n", "863500.0 232500.0 0 41 0 0 \n", "225500.0 315500.0 0 53 0 32 \n", "790500.0 692500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "1098500.0 233500.0 0 ... 0 0 \n", " 156500.0 0 ... 0 0 \n", "863500.0 232500.0 4 ... 0 0 \n", "225500.0 315500.0 0 ... 0 0 \n", "790500.0 692500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "1098500.0 233500.0 0 0 -9999 -9999 \n", " 156500.0 0 0 -9999 -9999 \n", "863500.0 232500.0 0 1 1800 64 \n", "225500.0 315500.0 0 0 4379 8 \n", "790500.0 692500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "1098500.0 233500.0 -1 -1 \n", " 156500.0 -1 -1 \n", "863500.0 232500.0 2 6 \n", "225500.0 315500.0 2 4 \n", "790500.0 692500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "1098500.0 233500.0 255 0 \n", " 156500.0 255 0 \n", "863500.0 232500.0 52 0 \n", "225500.0 315500.0 42 0 \n", "790500.0 692500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
98500.0380500.0006825000000...000776729926320
287500.0296500.030096000000...000120948627120
502500.0640500.00000000000...0000-9999-9999-1-12550
1246500.0478500.00000000000...0000-9999-9999-1-12550
1271500.0589500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "98500.0 380500.0 0 0 68 \n", "287500.0 296500.0 3 0 0 \n", "502500.0 640500.0 0 0 0 \n", "1246500.0 478500.0 0 0 0 \n", "1271500.0 589500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "98500.0 380500.0 25 0 \n", "287500.0 296500.0 96 0 \n", "502500.0 640500.0 0 0 \n", "1246500.0 478500.0 0 0 \n", "1271500.0 589500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "98500.0 380500.0 0 0 0 0 \n", "287500.0 296500.0 0 0 0 0 \n", "502500.0 640500.0 0 0 0 0 \n", "1246500.0 478500.0 0 0 0 0 \n", "1271500.0 589500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "98500.0 380500.0 0 ... 0 0 \n", "287500.0 296500.0 0 ... 0 0 \n", "502500.0 640500.0 0 ... 0 0 \n", "1246500.0 478500.0 0 ... 0 0 \n", "1271500.0 589500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "98500.0 380500.0 0 7 767 299 \n", "287500.0 296500.0 0 1 2094 86 \n", "502500.0 640500.0 0 0 -9999 -9999 \n", "1246500.0 478500.0 0 0 -9999 -9999 \n", "1271500.0 589500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "98500.0 380500.0 2 6 \n", "287500.0 296500.0 2 7 \n", "502500.0 640500.0 -1 -1 \n", "1246500.0 478500.0 -1 -1 \n", "1271500.0 589500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "98500.0 380500.0 32 0 \n", "287500.0 296500.0 12 0 \n", "502500.0 640500.0 255 0 \n", "1246500.0 478500.0 255 0 \n", "1271500.0 589500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
1023500.0626500.00000000000...0000-9999-9999-1-12550
414500.0100500.00000000000...0000-9999-9999-1-12550
450500.0650500.00000000000...0000-9999-9999-1-12550
1070500.0248500.00000000000...0000-9999-9999-1-12550
1090500.011500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1023500.0 626500.0 0 0 0 \n", "414500.0 100500.0 0 0 0 \n", "450500.0 650500.0 0 0 0 \n", "1070500.0 248500.0 0 0 0 \n", "1090500.0 11500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1023500.0 626500.0 0 0 \n", "414500.0 100500.0 0 0 \n", "450500.0 650500.0 0 0 \n", "1070500.0 248500.0 0 0 \n", "1090500.0 11500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1023500.0 626500.0 0 0 0 0 \n", "414500.0 100500.0 0 0 0 0 \n", "450500.0 650500.0 0 0 0 0 \n", "1070500.0 248500.0 0 0 0 0 \n", "1090500.0 11500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "1023500.0 626500.0 0 ... 0 0 \n", "414500.0 100500.0 0 ... 0 0 \n", "450500.0 650500.0 0 ... 0 0 \n", "1070500.0 248500.0 0 ... 0 0 \n", "1090500.0 11500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "1023500.0 626500.0 0 0 -9999 -9999 \n", "414500.0 100500.0 0 0 -9999 -9999 \n", "450500.0 650500.0 0 0 -9999 -9999 \n", "1070500.0 248500.0 0 0 -9999 -9999 \n", "1090500.0 11500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "1023500.0 626500.0 -1 -1 \n", "414500.0 100500.0 -1 -1 \n", "450500.0 650500.0 -1 -1 \n", "1070500.0 248500.0 -1 -1 \n", "1090500.0 11500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "1023500.0 626500.0 255 0 \n", "414500.0 100500.0 255 0 \n", "450500.0 650500.0 255 0 \n", "1070500.0 248500.0 255 0 \n", "1090500.0 11500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
901500.0533500.00000000000...0000-9999-9999-1-12550
775500.0220500.000000052000...000060656821050
771500.0458500.00000000000...0000-9999-9999-1-12550
867500.0245500.000000380030...00009718626230
101500.0653500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "901500.0 533500.0 0 0 0 \n", "775500.0 220500.0 0 0 0 \n", "771500.0 458500.0 0 0 0 \n", "867500.0 245500.0 0 0 0 \n", "101500.0 653500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "901500.0 533500.0 0 0 0 \n", "775500.0 220500.0 0 0 0 \n", "771500.0 458500.0 0 0 0 \n", "867500.0 245500.0 0 0 38 \n", "101500.0 653500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "901500.0 533500.0 0 0 0 0 ... \n", "775500.0 220500.0 52 0 0 0 ... \n", "771500.0 458500.0 0 0 0 0 ... \n", "867500.0 245500.0 0 0 3 0 ... \n", "101500.0 653500.0 0 0 0 0 ... \n", "\n", " Littoral sediment Saltmarsh Urban Suburban Elevation \\\n", "y x \n", "901500.0 533500.0 0 0 0 0 -9999 \n", "775500.0 220500.0 0 0 0 0 6065 \n", "771500.0 458500.0 0 0 0 0 -9999 \n", "867500.0 245500.0 0 0 0 0 9718 \n", "101500.0 653500.0 0 0 0 0 -9999 \n", "\n", " Cumulative catchment area Surface type \\\n", "y x \n", "901500.0 533500.0 -9999 -1 \n", "775500.0 220500.0 68 2 \n", "771500.0 458500.0 -9999 -1 \n", "867500.0 245500.0 6 2 \n", "101500.0 653500.0 -9999 -1 \n", "\n", " Outflowing drainage direction \\\n", "y x \n", "901500.0 533500.0 -1 \n", "775500.0 220500.0 10 \n", "771500.0 458500.0 -1 \n", "867500.0 245500.0 6 \n", "101500.0 653500.0 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "901500.0 533500.0 255 0 \n", "775500.0 220500.0 5 0 \n", "771500.0 458500.0 255 0 \n", "867500.0 245500.0 23 0 \n", "101500.0 653500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
862500.0105500.00000000000...0000-9999-9999-1-12550
324500.0685500.00000000000...0000-9999-9999-1-12550
759500.0552500.00000000000...0000-9999-9999-1-12550
516500.0674500.00000000000...0000-9999-9999-1-12550
1189500.0583500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "862500.0 105500.0 0 0 0 \n", "324500.0 685500.0 0 0 0 \n", "759500.0 552500.0 0 0 0 \n", "516500.0 674500.0 0 0 0 \n", "1189500.0 583500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "862500.0 105500.0 0 0 \n", "324500.0 685500.0 0 0 \n", "759500.0 552500.0 0 0 \n", "516500.0 674500.0 0 0 \n", "1189500.0 583500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "862500.0 105500.0 0 0 0 0 \n", "324500.0 685500.0 0 0 0 0 \n", "759500.0 552500.0 0 0 0 0 \n", "516500.0 674500.0 0 0 0 0 \n", "1189500.0 583500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "862500.0 105500.0 0 ... 0 0 \n", "324500.0 685500.0 0 ... 0 0 \n", "759500.0 552500.0 0 ... 0 0 \n", "516500.0 674500.0 0 ... 0 0 \n", "1189500.0 583500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "862500.0 105500.0 0 0 -9999 -9999 \n", "324500.0 685500.0 0 0 -9999 -9999 \n", "759500.0 552500.0 0 0 -9999 -9999 \n", "516500.0 674500.0 0 0 -9999 -9999 \n", "1189500.0 583500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "862500.0 105500.0 -1 -1 \n", "324500.0 685500.0 -1 -1 \n", "759500.0 552500.0 -1 -1 \n", "516500.0 674500.0 -1 -1 \n", "1189500.0 583500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "862500.0 105500.0 255 0 \n", "324500.0 685500.0 255 0 \n", "759500.0 552500.0 255 0 \n", "516500.0 674500.0 255 0 \n", "1189500.0 583500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Drop Fertiliser and Pesticide\n", "for dict in df_dicts:\n", " cur_df = dict[\"dataframe\"]\n", " dict[\"dataframe\"].drop(cur_df.iloc[:, 26:-1], inplace=True, axis=1)\n", " display(cur_df.sample(5))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 1km data before drop: \n", " Occurrence\n", "0 909231\n", "1 769\n", "dtype: int64 \n", "\n", "Barnacle Goose 1km data after drop: \n", " Occurrence\n", "0 32315\n", "1 769\n", "dtype: int64 \n", "\n", "Canada Goose 1km data before drop: \n", " Occurrence\n", "0 899853\n", "1 10147\n", "dtype: int64 \n", "\n", "Canada Goose 1km data after drop: \n", " Occurrence\n", "0 22937\n", "1 10147\n", "dtype: int64 \n", "\n", "Egyptian Goose 1km data before drop: \n", " Occurrence\n", "0 909137\n", "1 863\n", "dtype: int64 \n", "\n", "Egyptian Goose 1km data after drop: \n", " Occurrence\n", "0 32221\n", "1 863\n", "dtype: int64 \n", "\n", "Gadwall 1km data before drop: \n", " Occurrence\n", "0 907795\n", "1 2205\n", "dtype: int64 \n", "\n", "Gadwall 1km data after drop: \n", " Occurrence\n", "0 30879\n", "1 2205\n", "dtype: int64 \n", "\n", "Goshawk 1km data before drop: \n", " Occurrence\n", "0 909554\n", "1 446\n", "dtype: int64 \n", "\n", "Goshawk 1km data after drop: \n", " Occurrence\n", "0 32638\n", "1 446\n", "dtype: int64 \n", "\n", "Grey Partridge 1km data before drop: \n", " Occurrence\n", "0 907877\n", "1 2123\n", "dtype: int64 \n", "\n", "Grey Partridge 1km data after drop: \n", " Occurrence\n", "0 30961\n", "1 2123\n", "dtype: int64 \n", "\n", "Indian Peafowl 1km data before drop: \n", " Occurrence\n", "0 909706\n", "1 294\n", "dtype: int64 \n", "\n", "Indian Peafowl 1km data after drop: \n", " Occurrence\n", "0 32790\n", "1 294\n", "dtype: int64 \n", "\n", "Little Owl 1km data before drop: \n", " Occurrence\n", "0 906452\n", "1 3548\n", "dtype: int64 \n", "\n", "Little Owl 1km data after drop: \n", " Occurrence\n", "0 29536\n", "1 3548\n", "dtype: int64 \n", "\n", "Mandarin Duck 1km data before drop: \n", " Occurrence\n", "0 908990\n", "1 1010\n", "dtype: int64 \n", "\n", "Mandarin Duck 1km data after drop: \n", " Occurrence\n", "0 32074\n", "1 1010\n", "dtype: int64 \n", "\n", "Mute Swan 1km data before drop: \n", " Occurrence\n", "0 890876\n", "1 19124\n", "dtype: int64 \n", "\n", "Mute Swan 1km data after drop: \n", " Occurrence\n", "1 19124\n", "0 13960\n", "dtype: int64 \n", "\n", "Pheasant 1km data before drop: \n", " Occurrence\n", "0 904145\n", "1 5855\n", "dtype: int64 \n", "\n", "Pheasant 1km data after drop: \n", " Occurrence\n", "0 27229\n", "1 5855\n", "dtype: int64 \n", "\n", "Pink-footed Goose 1km data before drop: \n", " Occurrence\n", "0 907354\n", "1 2646\n", "dtype: int64 \n", "\n", "Pink-footed Goose 1km data after drop: \n", " Occurrence\n", "0 30438\n", "1 2646\n", "dtype: int64 \n", "\n", "Pintail 1km data before drop: \n", " Occurrence\n", "0 909303\n", "1 697\n", "dtype: int64 \n", "\n", "Pintail 1km data after drop: \n", " Occurrence\n", "0 32387\n", "1 697\n", "dtype: int64 \n", "\n", "Pochard 1km data before drop: \n", " Occurrence\n", "0 908943\n", "1 1057\n", "dtype: int64 \n", "\n", "Pochard 1km data after drop: \n", " Occurrence\n", "0 32027\n", "1 1057\n", "dtype: int64 \n", "\n", "Red-legged Partridge 1km data before drop: \n", " Occurrence\n", "0 907047\n", "1 2953\n", "dtype: int64 \n", "\n", "Red-legged Partridge 1km data after drop: \n", " Occurrence\n", "0 30131\n", "1 2953\n", "dtype: int64 \n", "\n", "Ring-necked Parakeet 1km data before drop: \n", " Occurrence\n", "0 909496\n", "1 504\n", "dtype: int64 \n", "\n", "Ring-necked Parakeet 1km data after drop: \n", " Occurrence\n", "0 32580\n", "1 504\n", "dtype: int64 \n", "\n", "Rock Dove 1km data before drop: \n", " Occurrence\n", "0 906081\n", "1 3919\n", "dtype: int64 \n", "\n", "Rock Dove 1km data after drop: \n", " Occurrence\n", "0 29165\n", "1 3919\n", "dtype: int64 \n", "\n", "Ruddy Duck 1km data before drop: \n", " Occurrence\n", "0 909876\n", "1 124\n", "dtype: int64 \n", "\n", "Ruddy Duck 1km data after drop: \n", " Occurrence\n", "0 32960\n", "1 124\n", "dtype: int64 \n", "\n", "Whooper Swan 1km data before drop: \n", " Occurrence\n", "0 909045\n", "1 955\n", "dtype: int64 \n", "\n", "Whooper Swan 1km data after drop: \n", " Occurrence\n", "0 32129\n", "1 955\n", "dtype: int64 \n", "\n", "Wigeon 1km data before drop: \n", " Occurrence\n", "0 907683\n", "1 2317\n", "dtype: int64 \n", "\n", "Wigeon 1km data after drop: \n", " Occurrence\n", "0 30767\n", "1 2317\n", "dtype: int64 \n", "\n" ] } ], "source": [ "# Data Cleaning\n", "np.random.seed(seed=seed)\n", "\n", "for dict in df_dicts:\n", " cur_df = dict[\"dataframe\"]\n", " cur_df_name = dict[\"name\"]\n", "\n", " print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n", " \n", " no_occurences = cur_df[cur_df['Occurrence']==0].index \n", " sample_size = sum(cur_df['Occurrence']==0) - total_birds + sum(cur_df['Occurrence']==1)\n", " random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n", " dict[\"dataframe\"] = cur_df.drop(random_indices)\n", " \n", " print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')\n", "\n", "\n", "# for dict in df_dicts:\n", "# cur_df = dict[\"dataframe\"]\n", "# cur_df_name = dict[\"name\"]\n", "\n", "# print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n", " \n", "# no_occurences = cur_df[cur_df['Occurrence']==0].index\n", "# sample_size = sum(cur_df['Occurrence']==0) - sum(cur_df['Occurrence']==1)\n", "# random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n", "# dict[\"dataframe\"] = cur_df.drop(random_indices)\n", " \n", "# print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# Standardisation\n", "def standardise(X):\n", " scaler = StandardScaler()\n", " X_scaled = scaler.fit_transform(X)\n", "\n", " # Add headers back\n", " X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)\n", "\n", " # Revert 'Surface type' back to non-standardised column as it is a categorical feature\n", " X_scaled_df['Surface type'] = X['Surface type'].values\n", " return X_scaled_df" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# Feature Selection\n", "\n", "# Check if any columns have NaN in them\n", "# nan_columns = []\n", "# for column in X_scaled_df:\n", "# if X_scaled_df[column].isnull().values.any():\n", "# nan_columns.append(column)\n", "# print(nan_columns if len(nan_columns)!= 0 else 'None')\n", "\n", "\n", "# Using ANOVA F-Score as a feature selection method\n", "def feature_select(X, y):\n", " k_nums = [5, 10, 15, 20]\n", " kbest_dict = {}\n", " for num in k_nums:\n", " # Needs to be 1d array, y.values.ravel() converts y into a 1d array\n", " best_X = SelectKBest(f_classif, k=num).fit(X, y.values.ravel())\n", " # kbest_dict[str(num)] = best_X.get_feature_names_out().tolist()\n", " kbest_dict[str(num)] = best_X\n", " # kbest_dict['40'] = list(X.columns)\n", "\n", " best_X = SelectKBest(f_classif, k='all').fit(X, y.values.ravel())\n", "\n", " feat_scores = pd.DataFrame()\n", " feat_scores[\"F Score\"] = best_X.scores_\n", " feat_scores[\"P Value\"] = best_X.pvalues_\n", " feat_scores[\"Attribute\"] = X.columns\n", " kbest_dict['Dataframe'] = feat_scores.sort_values([\"F Score\", \"P Value\"], ascending=[False, False])\n", "\n", "\n", " if details:\n", " print(f'K-Best Features Dataframe: \\n{kbest_dict[\"Dataframe\"]} \\n')\n", " # print(json.dumps(kbest_dict, indent=4))\n", " return kbest_dict" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# Resample (upsample) minority data\n", "# for dict in df_dicts:\n", "# if sum(dict['dataframe']['Occurence']==1) > sum(dict['dataframe']['Occurence']==0):\n", "# continue\n", "\n", "# from sklearn.utils import resample\n", "\n", "# def upsample(X, y):\n", "# X_1 = X[y['Occurrence'] == 1] # Getting positive occurrences (minority)\n", "# X_0 = X[y['Occurrence'] == 0] # Getting negative occurrences (majority)\n", " \n", "# X_1_upsampled = resample(X_1 ,random_state=seed,n_samples=total_birds/2,replace=True)\n", "\n", "\n", "# print(f'Resampling: \\n {y.value_counts()} \\n')\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "def oversample(X_train, y_train):\n", " over = RandomOverSampler(sampling_strategy='minority', random_state=seed)\n", " smote = SMOTE(random_state=seed, sampling_strategy='minority')\n", " X_smote, y_smote = smote.fit_resample(X_train, y_train)\n", " \n", " if details:\n", " print(f'Resampled Value Counts: \\n {y_smote.value_counts()} \\n')\n", "\n", " return X_smote, y_smote" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NameOccurrence CountPercentage
9Mute Swan 1km191240.578044
1Canada Goose 1km101470.306704
10Pheasant 1km58550.176974
16Rock Dove 1km39190.118456
7Little Owl 1km35480.107242
14Red-legged Partridge 1km29530.089258
11Pink-footed Goose 1km26460.079978
19Wigeon 1km23170.070034
3Gadwall 1km22050.066649
5Grey Partridge 1km21230.064170
13Pochard 1km10570.031949
8Mandarin Duck 1km10100.030528
18Whooper Swan 1km9550.028866
2Egyptian Goose 1km8630.026085
0Barnacle Goose 1km7690.023244
12Pintail 1km6970.021068
15Ring-necked Parakeet 1km5040.015234
4Goshawk 1km4460.013481
6Indian Peafowl 1km2940.008886
17Ruddy Duck 1km1240.003748
\n", "
" ], "text/plain": [ " Name Occurrence Count Percentage\n", "9 Mute Swan 1km 19124 0.578044\n", "1 Canada Goose 1km 10147 0.306704\n", "10 Pheasant 1km 5855 0.176974\n", "16 Rock Dove 1km 3919 0.118456\n", "7 Little Owl 1km 3548 0.107242\n", "14 Red-legged Partridge 1km 2953 0.089258\n", "11 Pink-footed Goose 1km 2646 0.079978\n", "19 Wigeon 1km 2317 0.070034\n", "3 Gadwall 1km 2205 0.066649\n", "5 Grey Partridge 1km 2123 0.064170\n", "13 Pochard 1km 1057 0.031949\n", "8 Mandarin Duck 1km 1010 0.030528\n", "18 Whooper Swan 1km 955 0.028866\n", "2 Egyptian Goose 1km 863 0.026085\n", "0 Barnacle Goose 1km 769 0.023244\n", "12 Pintail 1km 697 0.021068\n", "15 Ring-necked Parakeet 1km 504 0.015234\n", "4 Goshawk 1km 446 0.013481\n", "6 Indian Peafowl 1km 294 0.008886\n", "17 Ruddy Duck 1km 124 0.003748" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "All_bird_occurrences = pd.DataFrame([(dict['name'],sum(dict['dataframe']['Occurrence'] == 1)) for dict in df_dicts], columns=['Name', 'Occurrence Count'])\n", "All_bird_occurrences['Percentage'] = All_bird_occurrences['Occurrence Count']/total_birds\n", "\n", "All_bird_occurrences.sort_values('Occurrence Count', ascending=False)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Training with Barnacle Goose 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9829886182841757,\n", " \"recall\": 0.9941824483228122,\n", " \"f1-score\": 0.9885538461538461,\n", " \"support\": 8079\n", " },\n", " \"1\": {\n", " \"precision\": 0.53,\n", " \"recall\": 0.2760416666666667,\n", " \"f1-score\": 0.363013698630137,\n", " \"support\": 192\n", " },\n", " \"accuracy\": 0.9775117881755532,\n", " \"macro avg\": {\n", " \"precision\": 0.7564943091420879,\n", " \"recall\": 0.6351120574947394,\n", " \"f1-score\": 0.6757837723919915,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9724731044756204,\n", " \"recall\": 0.9775117881755532,\n", " \"f1-score\": 0.9740327836070498,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Barnacle Goose 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9830174747723357,\n", " \"recall\": 0.9887362297314024,\n", " \"f1-score\": 0.9858685590867017,\n", " \"support\": 8079\n", " },\n", " \"1\": {\n", " \"precision\": 0.3724137931034483,\n", " \"recall\": 0.28125,\n", " \"f1-score\": 0.3204747774480712,\n", " \"support\": 192\n", " },\n", " \"accuracy\": 0.9723129004957078,\n", " \"macro avg\": {\n", " \"precision\": 0.677715633937892,\n", " \"recall\": 0.6349931148657012,\n", " \"f1-score\": 0.6531716682673865,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9688431419370768,\n", " \"recall\": 0.9723129004957078,\n", " \"f1-score\": 0.9704223487040856,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Canada Goose 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Canada Goose 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.935126884182408,\n", " \"recall\": 0.8590709903593339,\n", " \"f1-score\": 0.8954869358669834,\n", " \"support\": 5705\n", " },\n", " \"1\": {\n", " \"precision\": 0.7346534653465346,\n", " \"recall\": 0.8674980514419329,\n", " \"f1-score\": 0.7955682630450321,\n", " \"support\": 2566\n", " },\n", " \"accuracy\": 0.8616854068431871,\n", " \"macro avg\": {\n", " \"precision\": 0.8348901747644712,\n", " \"recall\": 0.8632845209006335,\n", " \"f1-score\": 0.8455275994560078,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8729318905017344,\n", " \"recall\": 0.8616854068431871,\n", " \"f1-score\": 0.864488106890907,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Canada Goose 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9002157497303128,\n", " \"recall\": 0.8776511831726556,\n", " \"f1-score\": 0.8887902724771456,\n", " \"support\": 5705\n", " },\n", " \"1\": {\n", " \"precision\": 0.7423403469915097,\n", " \"recall\": 0.7837100545596258,\n", " \"f1-score\": 0.7624644549763032,\n", " \"support\": 2566\n", " },\n", " \"accuracy\": 0.8485068310966026,\n", " \"macro avg\": {\n", " \"precision\": 0.8212780483609112,\n", " \"recall\": 0.8306806188661406,\n", " \"f1-score\": 0.8256273637267244,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8512363901090133,\n", " \"recall\": 0.8485068310966026,\n", " \"f1-score\": 0.8495988750999044,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Egyptian Goose 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Egyptian Goose 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9795518550263255,\n", " \"recall\": 0.9899764880584087,\n", " \"f1-score\": 0.9847365829640572,\n", " \"support\": 8081\n", " },\n", " \"1\": {\n", " \"precision\": 0.22115384615384615,\n", " \"recall\": 0.12105263157894737,\n", " \"f1-score\": 0.1564625850340136,\n", " \"support\": 190\n", " },\n", " \"accuracy\": 0.9700157175674042,\n", " \"macro avg\": {\n", " \"precision\": 0.6003528505900858,\n", " \"recall\": 0.555514559818678,\n", " \"f1-score\": 0.5705995839990354,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9621300654379116,\n", " \"recall\": 0.9700157175674042,\n", " \"f1-score\": 0.9657096140840296,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Egyptian Goose 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9849993852207057,\n", " \"recall\": 0.9913377057294889,\n", " \"f1-score\": 0.9881583816454916,\n", " \"support\": 8081\n", " },\n", " \"1\": {\n", " \"precision\": 0.4927536231884058,\n", " \"recall\": 0.35789473684210527,\n", " \"f1-score\": 0.41463414634146345,\n", " \"support\": 190\n", " },\n", " \"accuracy\": 0.9767863619876678,\n", " \"macro avg\": {\n", " \"precision\": 0.7388765042045558,\n", " \"recall\": 0.6746162212857971,\n", " \"f1-score\": 0.7013962639934775,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9736915996100012,\n", " \"recall\": 0.9767863619876678,\n", " \"f1-score\": 0.9749834808224032,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Gadwall 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Gadwall 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9579474342928661,\n", " \"recall\": 0.9906808180170852,\n", " \"f1-score\": 0.9740391957241028,\n", " \"support\": 7726\n", " },\n", " \"1\": {\n", " \"precision\": 0.7437722419928826,\n", " \"recall\": 0.3834862385321101,\n", " \"f1-score\": 0.5060532687651331,\n", " \"support\": 545\n", " },\n", " \"accuracy\": 0.9506710192237939,\n", " \"macro avg\": {\n", " \"precision\": 0.8508598381428744,\n", " \"recall\": 0.6870835282745976,\n", " \"f1-score\": 0.740046232244618,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.943834814319043,\n", " \"recall\": 0.9506710192237939,\n", " \"f1-score\": 0.9432022557902813,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Gadwall 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9636246786632391,\n", " \"recall\": 0.970359823971007,\n", " \"f1-score\": 0.9669805236682575,\n", " \"support\": 7726\n", " },\n", " \"1\": {\n", " \"precision\": 0.5336048879837068,\n", " \"recall\": 0.48073394495412847,\n", " \"f1-score\": 0.5057915057915059,\n", " \"support\": 545\n", " },\n", " \"accuracy\": 0.9380969653004474,\n", " \"macro avg\": {\n", " \"precision\": 0.7486147833234729,\n", " \"recall\": 0.7255468844625677,\n", " \"f1-score\": 0.7363860147298817,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9352894367432361,\n", " \"recall\": 0.9380969653004474,\n", " \"f1-score\": 0.9365914516403493,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Goshawk 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Goshawk 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9871732817037754,\n", " \"recall\": 0.9991426821800368,\n", " \"f1-score\": 0.9931219185586463,\n", " \"support\": 8165\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 106\n", " },\n", " \"accuracy\": 0.9863378067948253,\n", " \"macro avg\": {\n", " \"precision\": 0.4935866408518877,\n", " \"recall\": 0.4995713410900184,\n", " \"f1-score\": 0.49656095927932314,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9745218045111022,\n", " \"recall\": 0.9863378067948253,\n", " \"f1-score\": 0.9803942044530706,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Goshawk 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9871327992231124,\n", " \"recall\": 0.9959583588487446,\n", " \"f1-score\": 0.9915259403767603,\n", " \"support\": 8165\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 106\n", " },\n", " \"accuracy\": 0.9831942933139887,\n", " \"macro avg\": {\n", " \"precision\": 0.4935663996115562,\n", " \"recall\": 0.4979791794243723,\n", " \"f1-score\": 0.49576297018838017,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9744818408483511,\n", " \"recall\": 0.9831942933139887,\n", " \"f1-score\": 0.9788186801083604,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Grey Partridge 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Grey Partridge 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9372121212121212,\n", " \"recall\": 0.998579362004391,\n", " \"f1-score\": 0.9669230288251109,\n", " \"support\": 7743\n", " },\n", " \"1\": {\n", " \"precision\": 0.47619047619047616,\n", " \"recall\": 0.01893939393939394,\n", " \"f1-score\": 0.03642987249544627,\n", " \"support\": 528\n", " },\n", " \"accuracy\": 0.9360415911014388,\n", " \"macro avg\": {\n", " \"precision\": 0.7067012987012986,\n", " \"recall\": 0.5087593779718925,\n", " \"f1-score\": 0.5016764506602787,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9077816498578196,\n", " \"recall\": 0.9360415911014388,\n", " \"f1-score\": 0.9075226677391404,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Grey Partridge 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9471826547333921,\n", " \"recall\": 0.9704248999095958,\n", " \"f1-score\": 0.958662924215361,\n", " \"support\": 7743\n", " },\n", " \"1\": {\n", " \"precision\": 0.3224852071005917,\n", " \"recall\": 0.20643939393939395,\n", " \"f1-score\": 0.2517321016166282,\n", " \"support\": 528\n", " },\n", " \"accuracy\": 0.9216539717083787,\n", " \"macro avg\": {\n", " \"precision\": 0.6348339309169919,\n", " \"recall\": 0.5884321469244949,\n", " \"f1-score\": 0.6051975129159946,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9073035285878089,\n", " \"recall\": 0.9216539717083787,\n", " \"f1-score\": 0.9135342246225511,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Indian Peafowl 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Indian Peafowl 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9909222948438635,\n", " \"recall\": 0.9989019033674963,\n", " \"f1-score\": 0.994896099161502,\n", " \"support\": 8196\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 75\n", " },\n", " \"accuracy\": 0.9898440333696047,\n", " \"macro avg\": {\n", " \"precision\": 0.49546114742193176,\n", " \"recall\": 0.49945095168374815,\n", " \"f1-score\": 0.497448049580751,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9819367825583732,\n", " \"recall\": 0.9898440333696047,\n", " \"f1-score\": 0.9858745531045424,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Indian Peafowl 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9913908087789499,\n", " \"recall\": 0.997559785261103,\n", " \"f1-score\": 0.9944657300979141,\n", " \"support\": 8196\n", " },\n", " \"1\": {\n", " \"precision\": 0.16666666666666666,\n", " \"recall\": 0.05333333333333334,\n", " \"f1-score\": 0.0808080808080808,\n", " \"support\": 75\n", " },\n", " \"accuracy\": 0.9889977028170717,\n", " \"macro avg\": {\n", " \"precision\": 0.5790287377228083,\n", " \"recall\": 0.5254465592972182,\n", " \"f1-score\": 0.5376369054529975,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9839123526480805,\n", " \"recall\": 0.9889977028170717,\n", " \"f1-score\": 0.9861808402784561,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Little Owl 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Little Owl 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.935244161358811,\n", " \"recall\": 0.9533342350872447,\n", " \"f1-score\": 0.9442025587782168,\n", " \"support\": 7393\n", " },\n", " \"1\": {\n", " \"precision\": 0.5306122448979592,\n", " \"recall\": 0.44419134396355353,\n", " \"f1-score\": 0.48357098574085555,\n", " \"support\": 878\n", " },\n", " \"accuracy\": 0.8992866642485794,\n", " \"macro avg\": {\n", " \"precision\": 0.7329282031283851,\n", " \"recall\": 0.6987627895253992,\n", " \"f1-score\": 0.7138867722595361,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8922908518856365,\n", " \"recall\": 0.8992866642485794,\n", " \"f1-score\": 0.8953046599598389,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Little Owl 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9363194819212088,\n", " \"recall\": 0.9387258217232517,\n", " \"f1-score\": 0.9375211077338738,\n", " \"support\": 7393\n", " },\n", " \"1\": {\n", " \"precision\": 0.47264260768335276,\n", " \"recall\": 0.4624145785876993,\n", " \"f1-score\": 0.4674726540011514,\n", " \"support\": 878\n", " },\n", " \"accuracy\": 0.8881634627010035,\n", " \"macro avg\": {\n", " \"precision\": 0.7044810448022808,\n", " \"recall\": 0.7005702001554754,\n", " \"f1-score\": 0.7024968808675126,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.887098312101255,\n", " \"recall\": 0.8881634627010035,\n", " \"f1-score\": 0.8876235690593084,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Mandarin Duck 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Mandarin Duck 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9761353951053209,\n", " \"recall\": 0.9965195773772529,\n", " \"f1-score\": 0.9862221675482838,\n", " \"support\": 8045\n", " },\n", " \"1\": {\n", " \"precision\": 0.5172413793103449,\n", " \"recall\": 0.13274336283185842,\n", " \"f1-score\": 0.21126760563380284,\n", " \"support\": 226\n", " },\n", " \"accuracy\": 0.9729174223189457,\n", " \"macro avg\": {\n", " \"precision\": 0.7466883872078329,\n", " \"recall\": 0.5646314701045557,\n", " \"f1-score\": 0.5987448865910433,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.963596397696342,\n", " \"recall\": 0.9729174223189457,\n", " \"f1-score\": 0.9650470096480696,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Mandarin Duck 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9784694881889764,\n", " \"recall\": 0.9885643256681168,\n", " \"f1-score\": 0.9834910035243926,\n", " \"support\": 8045\n", " },\n", " \"1\": {\n", " \"precision\": 0.35664335664335667,\n", " \"recall\": 0.22566371681415928,\n", " \"f1-score\": 0.2764227642276423,\n", " \"support\": 226\n", " },\n", " \"accuracy\": 0.9677185346391005,\n", " \"macro avg\": {\n", " \"precision\": 0.6675564224161665,\n", " \"recall\": 0.607114021241138,\n", " \"f1-score\": 0.6299568838760174,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9614784706905711,\n", " \"recall\": 0.9677185346391005,\n", " \"f1-score\": 0.9641707977353627,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Mute Swan 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Mute Swan 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9216121866074262,\n", " \"recall\": 0.8446771378708552,\n", " \"f1-score\": 0.8814691151919867,\n", " \"support\": 3438\n", " },\n", " \"1\": {\n", " \"precision\": 0.895703125,\n", " \"recall\": 0.9488930271053176,\n", " \"f1-score\": 0.9215311966241334,\n", " \"support\": 4833\n", " },\n", " \"accuracy\": 0.9055736912102527,\n", " \"macro avg\": {\n", " \"precision\": 0.9086576558037132,\n", " \"recall\": 0.8967850824880864,\n", " \"f1-score\": 0.90150015590806,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9064727240577115,\n", " \"recall\": 0.9055736912102527,\n", " \"f1-score\": 0.9048786230582139,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Mute Swan 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8850950118764845,\n", " \"recall\": 0.8670738801628854,\n", " \"f1-score\": 0.8759917719659124,\n", " \"support\": 3438\n", " },\n", " \"1\": {\n", " \"precision\": 0.9067917601468488,\n", " \"recall\": 0.9199255121042831,\n", " \"f1-score\": 0.9133114215283485,\n", " \"support\": 4833\n", " },\n", " \"accuracy\": 0.8979567162374562,\n", " \"macro avg\": {\n", " \"precision\": 0.8959433860116667,\n", " \"recall\": 0.8934996961335843,\n", " \"f1-score\": 0.8946515967471305,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8977730900279379,\n", " \"recall\": 0.8979567162374562,\n", " \"f1-score\": 0.8977987924392837,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Pheasant 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pheasant 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8981844589687727,\n", " \"recall\": 0.9068778413257076,\n", " \"f1-score\": 0.9025102159953299,\n", " \"support\": 6819\n", " },\n", " \"1\": {\n", " \"precision\": 0.5418470418470418,\n", " \"recall\": 0.5172176308539945,\n", " \"f1-score\": 0.5292459478505989,\n", " \"support\": 1452\n", " },\n", " \"accuracy\": 0.8384717688308548,\n", " \"macro avg\": {\n", " \"precision\": 0.7200157504079072,\n", " \"recall\": 0.7120477360898511,\n", " \"f1-score\": 0.7158780819229644,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8356283073957159,\n", " \"recall\": 0.8384717688308548,\n", " \"f1-score\": 0.8369825026177274,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Pheasant 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8786086466694831,\n", " \"recall\": 0.9149435401085203,\n", " \"f1-score\": 0.8964080459770115,\n", " \"support\": 6819\n", " },\n", " \"1\": {\n", " \"precision\": 0.5042735042735043,\n", " \"recall\": 0.40633608815426997,\n", " \"f1-score\": 0.45003813882532423,\n", " \"support\": 1452\n", " },\n", " \"accuracy\": 0.825655906178213,\n", " \"macro avg\": {\n", " \"precision\": 0.6914410754714937,\n", " \"recall\": 0.6606398141313952,\n", " \"f1-score\": 0.6732230924011678,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8128929379572402,\n", " \"recall\": 0.825655906178213,\n", " \"f1-score\": 0.8180464083051157,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Pink-footed Goose 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pink-footed Goose 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9385822847888377,\n", " \"recall\": 0.9893630991464215,\n", " \"f1-score\": 0.9633039253292418,\n", " \"support\": 7615\n", " },\n", " \"1\": {\n", " \"precision\": 0.6680327868852459,\n", " \"recall\": 0.24847560975609756,\n", " \"f1-score\": 0.3622222222222223,\n", " \"support\": 656\n", " },\n", " \"accuracy\": 0.9306008946922983,\n", " \"macro avg\": {\n", " \"precision\": 0.8033075358370418,\n", " \"recall\": 0.6189193544512596,\n", " \"f1-score\": 0.6627630737757321,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9171241212506008,\n", " \"recall\": 0.9306008946922983,\n", " \"f1-score\": 0.9156301740007199,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Pink-footed Goose 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.948260250937783,\n", " \"recall\": 0.9627051871306632,\n", " \"f1-score\": 0.9554281245927279,\n", " \"support\": 7615\n", " },\n", " \"1\": {\n", " \"precision\": 0.4740740740740741,\n", " \"recall\": 0.3902439024390244,\n", " \"f1-score\": 0.4280936454849498,\n", " \"support\": 656\n", " },\n", " \"accuracy\": 0.9173014145810664,\n", " \"macro avg\": {\n", " \"precision\": 0.7111671625059286,\n", " \"recall\": 0.6764745447848438,\n", " \"f1-score\": 0.6917608850388388,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9106509978822162,\n", " \"recall\": 0.9173014145810664,\n", " \"f1-score\": 0.9136035062521763,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Pintail 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pintail 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9794728531519494,\n", " \"recall\": 0.9969093831128694,\n", " \"f1-score\": 0.9881142016909692,\n", " \"support\": 8089\n", " },\n", " \"1\": {\n", " \"precision\": 0.34210526315789475,\n", " \"recall\": 0.07142857142857142,\n", " \"f1-score\": 0.11818181818181817,\n", " \"support\": 182\n", " },\n", " \"accuracy\": 0.9765445532583726,\n", " \"macro avg\": {\n", " \"precision\": 0.6607890581549221,\n", " \"recall\": 0.5341689772707204,\n", " \"f1-score\": 0.5531480099363937,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9654478378721866,\n", " \"recall\": 0.9765445532583726,\n", " \"f1-score\": 0.9689716924661276,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Pintail 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9800152749490835,\n", " \"recall\": 0.9517863765607615,\n", " \"f1-score\": 0.9656945751019128,\n", " \"support\": 8089\n", " },\n", " \"1\": {\n", " \"precision\": 0.060240963855421686,\n", " \"recall\": 0.13736263736263737,\n", " \"f1-score\": 0.08375209380234507,\n", " \"support\": 182\n", " },\n", " \"accuracy\": 0.9338653125377826,\n", " \"macro avg\": {\n", " \"precision\": 0.5201281194022526,\n", " \"recall\": 0.5445745069616994,\n", " \"f1-score\": 0.5247233344521289,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9597760143253323,\n", " \"recall\": 0.9338653125377826,\n", " \"f1-score\": 0.9462877885468988,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Pochard 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pochard 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.968296224588577,\n", " \"recall\": 0.9991259832688226,\n", " \"f1-score\": 0.9834695507896516,\n", " \"support\": 8009\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 262\n", " },\n", " \"accuracy\": 0.9674767259098054,\n", " \"macro avg\": {\n", " \"precision\": 0.4841481122942885,\n", " \"recall\": 0.4995629916344113,\n", " \"f1-score\": 0.4917347753948258,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9376235597545536,\n", " \"recall\": 0.9674767259098054,\n", " \"f1-score\": 0.9523162413582782,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Pochard 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9701437523037229,\n", " \"recall\": 0.9858908727681358,\n", " \"f1-score\": 0.9779539261828091,\n", " \"support\": 8009\n", " },\n", " \"1\": {\n", " \"precision\": 0.14393939393939395,\n", " \"recall\": 0.07251908396946564,\n", " \"f1-score\": 0.09644670050761421,\n", " \"support\": 262\n", " },\n", " \"accuracy\": 0.9569580461854673,\n", " \"macro avg\": {\n", " \"precision\": 0.5570415731215584,\n", " \"recall\": 0.5292049783688008,\n", " \"f1-score\": 0.5372003133452117,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.943972123493246,\n", " \"recall\": 0.9569580461854673,\n", " \"f1-score\": 0.9500304715670551,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Red-legged Partridge 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Red-legged Partridge 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9180307842658197,\n", " \"recall\": 0.9929968287526427,\n", " \"f1-score\": 0.9540434175447505,\n", " \"support\": 7568\n", " },\n", " \"1\": {\n", " \"precision\": 0.3764705882352941,\n", " \"recall\": 0.04551920341394026,\n", " \"f1-score\": 0.08121827411167512,\n", " \"support\": 703\n", " },\n", " \"accuracy\": 0.9124652399951638,\n", " \"macro avg\": {\n", " \"precision\": 0.6472506862505569,\n", " \"recall\": 0.5192580160832915,\n", " \"f1-score\": 0.5176308458282128,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8720004592979248,\n", " \"recall\": 0.9124652399951638,\n", " \"f1-score\": 0.8798569738458686,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Red-legged Partridge 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9304915514592934,\n", " \"recall\": 0.9604915433403806,\n", " \"f1-score\": 0.9452535760728219,\n", " \"support\": 7568\n", " },\n", " \"1\": {\n", " \"precision\": 0.3485838779956427,\n", " \"recall\": 0.22759601706970128,\n", " \"f1-score\": 0.27538726333907054,\n", " \"support\": 703\n", " },\n", " \"accuracy\": 0.8981985249667513,\n", " \"macro avg\": {\n", " \"precision\": 0.6395377147274681,\n", " \"recall\": 0.5940437802050409,\n", " \"f1-score\": 0.6103204197059462,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.881031861646097,\n", " \"recall\": 0.8981985249667513,\n", " \"f1-score\": 0.8883177741320859,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Ring-necked Parakeet 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Ring-necked Parakeet 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9898652824125571,\n", " \"recall\": 0.9830612495397079,\n", " \"f1-score\": 0.9864515334400787,\n", " \"support\": 8147\n", " },\n", " \"1\": {\n", " \"precision\": 0.23333333333333334,\n", " \"recall\": 0.3387096774193548,\n", " \"f1-score\": 0.2763157894736842,\n", " \"support\": 124\n", " },\n", " \"accuracy\": 0.973401039777536,\n", " \"macro avg\": {\n", " \"precision\": 0.6115993078729453,\n", " \"recall\": 0.6608854634795314,\n", " \"f1-score\": 0.6313836614568815,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9785232485973203,\n", " \"recall\": 0.973401039777536,\n", " \"f1-score\": 0.9758050780837938,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Ring-necked Parakeet 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.989613880742913,\n", " \"recall\": 0.9941082607094636,\n", " \"f1-score\": 0.9918559794256322,\n", " \"support\": 8147\n", " },\n", " \"1\": {\n", " \"precision\": 0.4482758620689655,\n", " \"recall\": 0.31451612903225806,\n", " \"f1-score\": 0.3696682464454976,\n", " \"support\": 124\n", " },\n", " \"accuracy\": 0.9839197195018741,\n", " \"macro avg\": {\n", " \"precision\": 0.7189448714059392,\n", " \"recall\": 0.6543121948708608,\n", " \"f1-score\": 0.6807621129355649,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9814980647212023,\n", " \"recall\": 0.9839197195018741,\n", " \"f1-score\": 0.9825280530697457,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Rock Dove 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Rock Dove 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8963236229487342,\n", " \"recall\": 0.9767119489880788,\n", " \"f1-score\": 0.9347927031509121,\n", " \"support\": 7214\n", " },\n", " \"1\": {\n", " \"precision\": 0.5902439024390244,\n", " \"recall\": 0.22894985808893092,\n", " \"f1-score\": 0.3299250170415814,\n", " \"support\": 1057\n", " },\n", " \"accuracy\": 0.8811510095514448,\n", " \"macro avg\": {\n", " \"precision\": 0.7432837626938793,\n", " \"recall\": 0.6028309035385049,\n", " \"f1-score\": 0.6323588600962468,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8572078854830393,\n", " \"recall\": 0.8811510095514448,\n", " \"f1-score\": 0.8574930846987826,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Rock Dove 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9075641542388821,\n", " \"recall\": 0.9363737177710009,\n", " \"f1-score\": 0.9217438766459712,\n", " \"support\": 7214\n", " },\n", " \"1\": {\n", " \"precision\": 0.44565217391304346,\n", " \"recall\": 0.3491012298959319,\n", " \"f1-score\": 0.3915119363395225,\n", " \"support\": 1057\n", " },\n", " \"accuracy\": 0.8613226937492443,\n", " \"macro avg\": {\n", " \"precision\": 0.6766081640759628,\n", " \"recall\": 0.6427374738334664,\n", " \"f1-score\": 0.6566279064927469,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8485336907877382,\n", " \"recall\": 0.8613226937492443,\n", " \"f1-score\": 0.8539824015034351,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Ruddy Duck 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Ruddy Duck 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9976944545564859,\n", " \"recall\": 0.9976944545564859,\n", " \"f1-score\": 0.9976944545564859,\n", " \"support\": 8241\n", " },\n", " \"1\": {\n", " \"precision\": 0.36666666666666664,\n", " \"recall\": 0.36666666666666664,\n", " \"f1-score\": 0.36666666666666664,\n", " \"support\": 30\n", " },\n", " \"accuracy\": 0.9954056341433926,\n", " \"macro avg\": {\n", " \"precision\": 0.6821805606115763,\n", " \"recall\": 0.6821805606115763,\n", " \"f1-score\": 0.6821805606115763,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9954056341433926,\n", " \"recall\": 0.9954056341433926,\n", " \"f1-score\": 0.9954056341433926,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Ruddy Duck 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9969715324046032,\n", " \"recall\": 0.9986652105327023,\n", " \"f1-score\": 0.9978176527643065,\n", " \"support\": 8241\n", " },\n", " \"1\": {\n", " \"precision\": 0.3125,\n", " \"recall\": 0.16666666666666666,\n", " \"f1-score\": 0.21739130434782608,\n", " \"support\": 30\n", " },\n", " \"accuracy\": 0.9956474428726877,\n", " \"macro avg\": {\n", " \"precision\": 0.6547357662023017,\n", " \"recall\": 0.5826659385996845,\n", " \"f1-score\": 0.6076044785560663,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9944888645322615,\n", " \"recall\": 0.9956474428726877,\n", " \"f1-score\": 0.994986944210021,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Whooper Swan 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Whooper Swan 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9686478634547876,\n", " \"recall\": 0.9990012484394507,\n", " \"f1-score\": 0.983590436973757,\n", " \"support\": 8010\n", " },\n", " \"1\": {\n", " \"precision\": 0.2,\n", " \"recall\": 0.007662835249042145,\n", " \"f1-score\": 0.014760147601476014,\n", " \"support\": 261\n", " },\n", " \"accuracy\": 0.9677185346391005,\n", " \"macro avg\": {\n", " \"precision\": 0.5843239317273938,\n", " \"recall\": 0.5033320418442464,\n", " \"f1-score\": 0.49917529228761653,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9443923813653546,\n", " \"recall\": 0.9677185346391005,\n", " \"f1-score\": 0.9530179904103228,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Whooper Swan 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9716717479674797,\n", " \"recall\": 0.9549313358302123,\n", " \"f1-score\": 0.9632288124921294,\n", " \"support\": 8010\n", " },\n", " \"1\": {\n", " \"precision\": 0.09523809523809523,\n", " \"recall\": 0.14559386973180077,\n", " \"f1-score\": 0.11515151515151516,\n", " \"support\": 261\n", " },\n", " \"accuracy\": 0.9293918510458228,\n", " \"macro avg\": {\n", " \"precision\": 0.5334549216027875,\n", " \"recall\": 0.5502626027810065,\n", " \"f1-score\": 0.5391901638218223,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9440149732894033,\n", " \"recall\": 0.9293918510458228,\n", " \"f1-score\": 0.936466852075505,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Training with Wigeon 1km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Wigeon 1km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9347108448465583,\n", " \"recall\": 0.9946656258131668,\n", " \"f1-score\": 0.9637566971320518,\n", " \"support\": 7686\n", " },\n", " \"1\": {\n", " \"precision\": 0.5543478260869565,\n", " \"recall\": 0.08717948717948718,\n", " \"f1-score\": 0.15066469719350073,\n", " \"support\": 585\n", " },\n", " \"accuracy\": 0.9304799903276508,\n", " \"macro avg\": {\n", " \"precision\": 0.7445293354667575,\n", " \"recall\": 0.5409225564963269,\n", " \"f1-score\": 0.5572106971627763,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9078081286122014,\n", " \"recall\": 0.9304799903276508,\n", " \"f1-score\": 0.9062474697152881,\n", " \"support\": 8271\n", " }\n", "} \n", "\n", "Wigeon 1km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9417615495354011,\n", " \"recall\": 0.936247723132969,\n", " \"f1-score\": 0.9389965420499772,\n", " \"support\": 7686\n", " },\n", " \"1\": {\n", " \"precision\": 0.2222222222222222,\n", " \"recall\": 0.23931623931623933,\n", " \"f1-score\": 0.23045267489711932,\n", " \"support\": 585\n", " },\n", " \"accuracy\": 0.8869544190545279,\n", " \"macro avg\": {\n", " \"precision\": 0.5819918858788117,\n", " \"recall\": 0.5877819812246041,\n", " \"f1-score\": 0.5847246084735482,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.890869214088876,\n", " \"recall\": 0.8869544190545279,\n", " \"f1-score\": 0.8888819050913964,\n", " \"support\": 8271\n", " }\n", "} \n", "\n" ] } ], "source": [ "# Add model pipeline\n", "estimators = [\n", " ('lr', LogisticRegression(max_iter=10000, solver='saga', random_state=seed, penalty='l2', verbose=verbose)),\n", " ('knn', KNeighborsClassifier(n_neighbors=5, weights='distance')),\n", " ('sgd', SGDClassifier( max_iter=10000, loss='modified_huber', random_state=seed, penalty='l2', verbose=verbose)),\n", " ('rf', RandomForestClassifier(n_estimators=20,max_features=None, random_state=seed, verbose=verbose))\n", "]\n", "\n", "\n", "for dict in df_dicts:\n", " print(f'Training with {dict[\"name\"]} cells... \\n')\n", " # Use this if using coordinates as separate columns\n", " # coords, X, y = data['dataframe'].iloc[:, :2], data['dataframe'].iloc[:, 2:-1], data['dataframe'].iloc[:, [-1]]\n", " # data['coords'] = coords\n", " \n", " # Use this if using coordinates as indices\n", " X, y = dict['dataframe'].iloc[:, 0:-1], dict['dataframe'].iloc[:, [-1]], \n", "\n", " dict['X'] = standardise(X)\n", " dict['y'] = y\n", " dict['kbest'] = feature_select(dict['X'], dict['y'])\n", "\n", " # dict['X'] = dict['kbest']['10'].transform(dict['X'])\n", "\n", " X_train, X_test, y_train, y_test = train_test_split(dict['X'], dict['y'], random_state=seed)\n", " dict['X_train'], dict['X_test'], dict['y_train'], dict['y_test'] = X_train, X_test, y_train, y_test # for debugging purposes\n", "\n", " dict['X_smote'], dict['y_smote'] = oversample(X_train, y_train)\n", "\n", " stack_clf = StackingClassifier(\n", " estimators=estimators, \n", " final_estimator=GradientBoostingClassifier(n_estimators=20, learning_rate=0.5, max_features=None, max_depth=2, random_state=seed)\n", " )\n", "\n", " # Classifier without SMOTE\n", " stack_clf.fit(dict['X_train'], dict['y_train'])\n", " y_pred = stack_clf.predict(X_test)\n", " \n", " dict['predictions'] = y_pred\n", " dict['report'] = classification_report(y_test, y_pred, output_dict=True)\n", " \n", "\n", " # Classifier with SMOTE\n", " stack_clf.fit(dict['X_smote'], dict['y_smote'])\n", " y_pred_smote = stack_clf.predict(X_test)\n", " \n", " dict['predictions_smote'] = y_pred_smote\n", " dict['report_smote'] = classification_report(y_test, y_pred_smote, output_dict=True)\n", " \n", " print(f'{dict[\"name\"]} Classification Report: \\n {json.dumps(dict[\"report\"], indent=4)} \\n')\n", " print(f'{dict[\"name\"]} SMOTE Classification Report: \\n {json.dumps(dict[\"report_smote\"], indent=4)} \\n')\n", "\n" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9829886182841757,\n", " \"recall\": 0.9941824483228122,\n", " \"f1-score\": 0.9885538461538461,\n", " \"support\": 8079\n", " },\n", " \"1\": {\n", " \"precision\": 0.53,\n", " \"recall\": 0.2760416666666667,\n", " \"f1-score\": 0.363013698630137,\n", " \"support\": 192\n", " },\n", " \"accuracy\": 0.9775117881755532,\n", " \"macro avg\": {\n", " \"precision\": 0.7564943091420879,\n", " \"recall\": 0.6351120574947394,\n", " \"f1-score\": 0.6757837723919915,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9724731044756204,\n", " \"recall\": 0.9775117881755532,\n", " \"f1-score\": 0.9740327836070498,\n", " \"support\": 8271\n", " }\n", "}\n", "Canada Goose 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.935126884182408,\n", " \"recall\": 0.8590709903593339,\n", " \"f1-score\": 0.8954869358669834,\n", " \"support\": 5705\n", " },\n", " \"1\": {\n", " \"precision\": 0.7346534653465346,\n", " \"recall\": 0.8674980514419329,\n", " \"f1-score\": 0.7955682630450321,\n", " \"support\": 2566\n", " },\n", " \"accuracy\": 0.8616854068431871,\n", " \"macro avg\": {\n", " \"precision\": 0.8348901747644712,\n", " \"recall\": 0.8632845209006335,\n", " \"f1-score\": 0.8455275994560078,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8729318905017344,\n", " \"recall\": 0.8616854068431871,\n", " \"f1-score\": 0.864488106890907,\n", " \"support\": 8271\n", " }\n", "}\n", "Egyptian Goose 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9795518550263255,\n", " \"recall\": 0.9899764880584087,\n", " \"f1-score\": 0.9847365829640572,\n", " \"support\": 8081\n", " },\n", " \"1\": {\n", " \"precision\": 0.22115384615384615,\n", " \"recall\": 0.12105263157894737,\n", " \"f1-score\": 0.1564625850340136,\n", " \"support\": 190\n", " },\n", " \"accuracy\": 0.9700157175674042,\n", " \"macro avg\": {\n", " \"precision\": 0.6003528505900858,\n", " \"recall\": 0.555514559818678,\n", " \"f1-score\": 0.5705995839990354,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9621300654379116,\n", " \"recall\": 0.9700157175674042,\n", " \"f1-score\": 0.9657096140840296,\n", " \"support\": 8271\n", " }\n", "}\n", "Gadwall 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9579474342928661,\n", " \"recall\": 0.9906808180170852,\n", " \"f1-score\": 0.9740391957241028,\n", " \"support\": 7726\n", " },\n", " \"1\": {\n", " \"precision\": 0.7437722419928826,\n", " \"recall\": 0.3834862385321101,\n", " \"f1-score\": 0.5060532687651331,\n", " \"support\": 545\n", " },\n", " \"accuracy\": 0.9506710192237939,\n", " \"macro avg\": {\n", " \"precision\": 0.8508598381428744,\n", " \"recall\": 0.6870835282745976,\n", " \"f1-score\": 0.740046232244618,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.943834814319043,\n", " \"recall\": 0.9506710192237939,\n", " \"f1-score\": 0.9432022557902813,\n", " \"support\": 8271\n", " }\n", "}\n", "Goshawk 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9871732817037754,\n", " \"recall\": 0.9991426821800368,\n", " \"f1-score\": 0.9931219185586463,\n", " \"support\": 8165\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 106\n", " },\n", " \"accuracy\": 0.9863378067948253,\n", " \"macro avg\": {\n", " \"precision\": 0.4935866408518877,\n", " \"recall\": 0.4995713410900184,\n", " \"f1-score\": 0.49656095927932314,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9745218045111022,\n", " \"recall\": 0.9863378067948253,\n", " \"f1-score\": 0.9803942044530706,\n", " \"support\": 8271\n", " }\n", "}\n", "Grey Partridge 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9372121212121212,\n", " \"recall\": 0.998579362004391,\n", " \"f1-score\": 0.9669230288251109,\n", " \"support\": 7743\n", " },\n", " \"1\": {\n", " \"precision\": 0.47619047619047616,\n", " \"recall\": 0.01893939393939394,\n", " \"f1-score\": 0.03642987249544627,\n", " \"support\": 528\n", " },\n", " \"accuracy\": 0.9360415911014388,\n", " \"macro avg\": {\n", " \"precision\": 0.7067012987012986,\n", " \"recall\": 0.5087593779718925,\n", " \"f1-score\": 0.5016764506602787,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9077816498578196,\n", " \"recall\": 0.9360415911014388,\n", " \"f1-score\": 0.9075226677391404,\n", " \"support\": 8271\n", " }\n", "}\n", "Indian Peafowl 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9909222948438635,\n", " \"recall\": 0.9989019033674963,\n", " \"f1-score\": 0.994896099161502,\n", " \"support\": 8196\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 75\n", " },\n", " \"accuracy\": 0.9898440333696047,\n", " \"macro avg\": {\n", " \"precision\": 0.49546114742193176,\n", " \"recall\": 0.49945095168374815,\n", " \"f1-score\": 0.497448049580751,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9819367825583732,\n", " \"recall\": 0.9898440333696047,\n", " \"f1-score\": 0.9858745531045424,\n", " \"support\": 8271\n", " }\n", "}\n", "Little Owl 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.935244161358811,\n", " \"recall\": 0.9533342350872447,\n", " \"f1-score\": 0.9442025587782168,\n", " \"support\": 7393\n", " },\n", " \"1\": {\n", " \"precision\": 0.5306122448979592,\n", " \"recall\": 0.44419134396355353,\n", " \"f1-score\": 0.48357098574085555,\n", " \"support\": 878\n", " },\n", " \"accuracy\": 0.8992866642485794,\n", " \"macro avg\": {\n", " \"precision\": 0.7329282031283851,\n", " \"recall\": 0.6987627895253992,\n", " \"f1-score\": 0.7138867722595361,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8922908518856365,\n", " \"recall\": 0.8992866642485794,\n", " \"f1-score\": 0.8953046599598389,\n", " \"support\": 8271\n", " }\n", "}\n", "Mandarin Duck 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9761353951053209,\n", " \"recall\": 0.9965195773772529,\n", " \"f1-score\": 0.9862221675482838,\n", " \"support\": 8045\n", " },\n", " \"1\": {\n", " \"precision\": 0.5172413793103449,\n", " \"recall\": 0.13274336283185842,\n", " \"f1-score\": 0.21126760563380284,\n", " \"support\": 226\n", " },\n", " \"accuracy\": 0.9729174223189457,\n", " \"macro avg\": {\n", " \"precision\": 0.7466883872078329,\n", " \"recall\": 0.5646314701045557,\n", " \"f1-score\": 0.5987448865910433,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.963596397696342,\n", " \"recall\": 0.9729174223189457,\n", " \"f1-score\": 0.9650470096480696,\n", " \"support\": 8271\n", " }\n", "}\n", "Mute Swan 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9216121866074262,\n", " \"recall\": 0.8446771378708552,\n", " \"f1-score\": 0.8814691151919867,\n", " \"support\": 3438\n", " },\n", " \"1\": {\n", " \"precision\": 0.895703125,\n", " \"recall\": 0.9488930271053176,\n", " \"f1-score\": 0.9215311966241334,\n", " \"support\": 4833\n", " },\n", " \"accuracy\": 0.9055736912102527,\n", " \"macro avg\": {\n", " \"precision\": 0.9086576558037132,\n", " \"recall\": 0.8967850824880864,\n", " \"f1-score\": 0.90150015590806,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9064727240577115,\n", " \"recall\": 0.9055736912102527,\n", " \"f1-score\": 0.9048786230582139,\n", " \"support\": 8271\n", " }\n", "}\n", "Pheasant 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.8981844589687727,\n", " \"recall\": 0.9068778413257076,\n", " \"f1-score\": 0.9025102159953299,\n", " \"support\": 6819\n", " },\n", " \"1\": {\n", " \"precision\": 0.5418470418470418,\n", " \"recall\": 0.5172176308539945,\n", " \"f1-score\": 0.5292459478505989,\n", " \"support\": 1452\n", " },\n", " \"accuracy\": 0.8384717688308548,\n", " \"macro avg\": {\n", " \"precision\": 0.7200157504079072,\n", " \"recall\": 0.7120477360898511,\n", " \"f1-score\": 0.7158780819229644,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8356283073957159,\n", " \"recall\": 0.8384717688308548,\n", " \"f1-score\": 0.8369825026177274,\n", " \"support\": 8271\n", " }\n", "}\n", "Pink-footed Goose 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9385822847888377,\n", " \"recall\": 0.9893630991464215,\n", " \"f1-score\": 0.9633039253292418,\n", " \"support\": 7615\n", " },\n", " \"1\": {\n", " \"precision\": 0.6680327868852459,\n", " \"recall\": 0.24847560975609756,\n", " \"f1-score\": 0.3622222222222223,\n", " \"support\": 656\n", " },\n", " \"accuracy\": 0.9306008946922983,\n", " \"macro avg\": {\n", " \"precision\": 0.8033075358370418,\n", " \"recall\": 0.6189193544512596,\n", " \"f1-score\": 0.6627630737757321,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9171241212506008,\n", " \"recall\": 0.9306008946922983,\n", " \"f1-score\": 0.9156301740007199,\n", " \"support\": 8271\n", " }\n", "}\n", "Pintail 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9794728531519494,\n", " \"recall\": 0.9969093831128694,\n", " \"f1-score\": 0.9881142016909692,\n", " \"support\": 8089\n", " },\n", " \"1\": {\n", " \"precision\": 0.34210526315789475,\n", " \"recall\": 0.07142857142857142,\n", " \"f1-score\": 0.11818181818181817,\n", " \"support\": 182\n", " },\n", " \"accuracy\": 0.9765445532583726,\n", " \"macro avg\": {\n", " \"precision\": 0.6607890581549221,\n", " \"recall\": 0.5341689772707204,\n", " \"f1-score\": 0.5531480099363937,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9654478378721866,\n", " \"recall\": 0.9765445532583726,\n", " \"f1-score\": 0.9689716924661276,\n", " \"support\": 8271\n", " }\n", "}\n", "Pochard 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.968296224588577,\n", " \"recall\": 0.9991259832688226,\n", " \"f1-score\": 0.9834695507896516,\n", " \"support\": 8009\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 262\n", " },\n", " \"accuracy\": 0.9674767259098054,\n", " \"macro avg\": {\n", " \"precision\": 0.4841481122942885,\n", " \"recall\": 0.4995629916344113,\n", " \"f1-score\": 0.4917347753948258,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9376235597545536,\n", " \"recall\": 0.9674767259098054,\n", " \"f1-score\": 0.9523162413582782,\n", " \"support\": 8271\n", " }\n", "}\n", "Red-legged Partridge 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9180307842658197,\n", " \"recall\": 0.9929968287526427,\n", " \"f1-score\": 0.9540434175447505,\n", " \"support\": 7568\n", " },\n", " \"1\": {\n", " \"precision\": 0.3764705882352941,\n", " \"recall\": 0.04551920341394026,\n", " \"f1-score\": 0.08121827411167512,\n", " \"support\": 703\n", " },\n", " \"accuracy\": 0.9124652399951638,\n", " \"macro avg\": {\n", " \"precision\": 0.6472506862505569,\n", " \"recall\": 0.5192580160832915,\n", " \"f1-score\": 0.5176308458282128,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8720004592979248,\n", " \"recall\": 0.9124652399951638,\n", " \"f1-score\": 0.8798569738458686,\n", " \"support\": 8271\n", " }\n", "}\n", "Ring-necked Parakeet 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9898652824125571,\n", " \"recall\": 0.9830612495397079,\n", " \"f1-score\": 0.9864515334400787,\n", " \"support\": 8147\n", " },\n", " \"1\": {\n", " \"precision\": 0.23333333333333334,\n", " \"recall\": 0.3387096774193548,\n", " \"f1-score\": 0.2763157894736842,\n", " \"support\": 124\n", " },\n", " \"accuracy\": 0.973401039777536,\n", " \"macro avg\": {\n", " \"precision\": 0.6115993078729453,\n", " \"recall\": 0.6608854634795314,\n", " \"f1-score\": 0.6313836614568815,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9785232485973203,\n", " \"recall\": 0.973401039777536,\n", " \"f1-score\": 0.9758050780837938,\n", " \"support\": 8271\n", " }\n", "}\n", "Rock Dove 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.8963236229487342,\n", " \"recall\": 0.9767119489880788,\n", " \"f1-score\": 0.9347927031509121,\n", " \"support\": 7214\n", " },\n", " \"1\": {\n", " \"precision\": 0.5902439024390244,\n", " \"recall\": 0.22894985808893092,\n", " \"f1-score\": 0.3299250170415814,\n", " \"support\": 1057\n", " },\n", " \"accuracy\": 0.8811510095514448,\n", " \"macro avg\": {\n", " \"precision\": 0.7432837626938793,\n", " \"recall\": 0.6028309035385049,\n", " \"f1-score\": 0.6323588600962468,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8572078854830393,\n", " \"recall\": 0.8811510095514448,\n", " \"f1-score\": 0.8574930846987826,\n", " \"support\": 8271\n", " }\n", "}\n", "Ruddy Duck 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9976944545564859,\n", " \"recall\": 0.9976944545564859,\n", " \"f1-score\": 0.9976944545564859,\n", " \"support\": 8241\n", " },\n", " \"1\": {\n", " \"precision\": 0.36666666666666664,\n", " \"recall\": 0.36666666666666664,\n", " \"f1-score\": 0.36666666666666664,\n", " \"support\": 30\n", " },\n", " \"accuracy\": 0.9954056341433926,\n", " \"macro avg\": {\n", " \"precision\": 0.6821805606115763,\n", " \"recall\": 0.6821805606115763,\n", " \"f1-score\": 0.6821805606115763,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9954056341433926,\n", " \"recall\": 0.9954056341433926,\n", " \"f1-score\": 0.9954056341433926,\n", " \"support\": 8271\n", " }\n", "}\n", "Whooper Swan 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9686478634547876,\n", " \"recall\": 0.9990012484394507,\n", " \"f1-score\": 0.983590436973757,\n", " \"support\": 8010\n", " },\n", " \"1\": {\n", " \"precision\": 0.2,\n", " \"recall\": 0.007662835249042145,\n", " \"f1-score\": 0.014760147601476014,\n", " \"support\": 261\n", " },\n", " \"accuracy\": 0.9677185346391005,\n", " \"macro avg\": {\n", " \"precision\": 0.5843239317273938,\n", " \"recall\": 0.5033320418442464,\n", " \"f1-score\": 0.49917529228761653,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9443923813653546,\n", " \"recall\": 0.9677185346391005,\n", " \"f1-score\": 0.9530179904103228,\n", " \"support\": 8271\n", " }\n", "}\n", "Wigeon 1km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9347108448465583,\n", " \"recall\": 0.9946656258131668,\n", " \"f1-score\": 0.9637566971320518,\n", " \"support\": 7686\n", " },\n", " \"1\": {\n", " \"precision\": 0.5543478260869565,\n", " \"recall\": 0.08717948717948718,\n", " \"f1-score\": 0.15066469719350073,\n", " \"support\": 585\n", " },\n", " \"accuracy\": 0.9304799903276508,\n", " \"macro avg\": {\n", " \"precision\": 0.7445293354667575,\n", " \"recall\": 0.5409225564963269,\n", " \"f1-score\": 0.5572106971627763,\n", " \"support\": 8271\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9078081286122014,\n", " \"recall\": 0.9304799903276508,\n", " \"f1-score\": 0.9062474697152881,\n", " \"support\": 8271\n", " }\n", "}\n" ] } ], "source": [ "for dict in df_dicts:\n", " print(dict['name'], '\\n', json.dumps(dict['report'], indent=4))" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5EAAAPHCAYAAACxBc1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADo/ElEQVR4nOzde3zPdf/H8efXNjvaxrChMcxhCk2onDZFc2yUFHKoSAenInIl58OlSKQklS2Ryik5RZgQcxxi5pS4aqXId2YM2/v3h8v352sbH4fMrj3ut9v7dvN5v9+f9+f1+e76Xdeev/fn+5nNGGMEAAAAAIAFBXK7AAAAAABA3kGIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWOaa2wUAeU1mZqZ+++03FSpUSDabLbfLAQAAAG6aMUanTp1SyZIlVaDA1fcaCZHAdfrtt98UHByc22UAAAAAt9zRo0d11113XXUOIRK4ToUKFZJ08f/AfH19c7kaAAAA4OalpKQoODjY8bvu1RAiget06RFWX19fQiQAAAD+p1j5uhYv1gEAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFjmmtsFAHmWn19uVwAAAIC8xpjcruCmsROJPCskJETvvvtubpcBAAAA5CuEyH9Aly5dZLPZ9MILL2QZe/nll2Wz2dSlS5frWtNms2nBggU3XVtaWpoGDhyo8uXLy8PDQ8WKFVNERIS++eabm177Vvrhhx/UsmVLlSxZ8pbdOwAAAICbR4j8hwQHB2v27Nk6c+aMo+/s2bOaNWuWSpcunWt1vfDCC5o3b57ee+897d27V8uWLVObNm10/PjxXKspO6dPn1b16tX1/vvv53YpAAAAAC5DiPyH1KhRQ8HBwZo3b56jb968eSpdurTCw8Od5mb3WOa9996roUOHOsYlqXXr1rLZbI5jSfrmm29Uo0YNeXh4qFy5cho2bJguXLiQY10LFy7Uv/71LzVr1kwhISG677771LNnTz377LOSpMmTJ+uee+5xzF+wYIFsNps+/PBDR1+jRo00aNAgSdLBgwcVHR2twMBA+fj4qFatWvr++++z3N/o0aP17LPPqlChQipdurQ++uijq35+TZs21ciRI9W6deurzrvcxx9/LH9/f61cuVKSFBkZqZ49e6pPnz4qXLiwAgMDNW3aNJ0+fVrPPPOMChUqpNDQUC1dutTyNQAAAID8jhD5D3r22Wc1ffp0x/Gnn36qZ5555rrX2bx5syRp+vTpSk5OdhyvXbtWnTp1Uu/evbVnzx5NnTpVMTExGjVqVI5rBQUFacmSJTp16lS24xEREdqzZ4/+/PNPSdKaNWtUtGhRxcXFSZLOnz+vDRs2KDIyUpKUmpqqZs2aaeXKldq+fbuaNGmili1b6siRI07rjh8/XjVr1tT27dv10ksv6cUXX1RSUtJ1fxY5eeutt/T6669r+fLlevjhhx39sbGxKlq0qDZt2qSePXvqxRdf1BNPPKE6depo27ZteuSRR9SxY0elpaXluHZ6erpSUlKcGgAAAJBvGdxynTt3NtHR0ebYsWPG3d3dHD582Bw+fNh4eHiYP//800RHR5vOnTs75pcpU8ZMmDDBaY3q1aubIUOGOI4lmfnz5zvNefjhh83o0aOd+mbMmGFKlCiRY21r1qwxd911l3FzczM1a9Y0ffr0MevWrXOMZ2ZmmoCAAPP1118bY4y59957zZgxY0xQUJAxxph169YZNzc3c/r06Ryvcffdd5v33nvP6f6efvppp2sUL17cTJkyJcc1LpfdvV9ad8KECaZ///6mRIkS5qeffnIaj4iIMPXq1XMcX7hwwXh7e5uOHTs6+pKTk40ks2HDhhyvP2TIECMpS7NffLcWjUaj0Wg0Go1mvd2h7Ha7kWTsdvs157IT+Q8qVqyYmjdvrpiYGE2fPl3NmzdX0aJFb9n6O3bs0PDhw+Xj4+No3bp1U3Jyco47aw0aNNChQ4e0cuVKtWnTRrt371b9+vU1YsQISRdf4NOgQQPFxcXp5MmT2rNnj1566SWlp6dr7969WrNmjWrVqiUvLy9JF3ci+/Xrp7CwMPn7+8vHx0eJiYlZdiKrVavm+LfNZlNQUJCOHTt205/B+PHjNW3aNK1bt0533313lvHLr+vi4qKAgABVrVrV0RcYGChJV61l4MCBstvtjnb06NGbrhsAAADIqwiR/7Bnn31WMTExio2NdXzv8EoFChSQMcap7/z589dcOzU1VcOGDVNCQoKj7dq1S/v375eHh0eO57m5ual+/foaMGCAli9fruHDh2vEiBE6d+6cpIvfJYyLi9PatWsVHh4uX19fR7Bcs2aNIiIiHGv169dP8+fP1+jRo7V27VolJCSoatWqjrUuv+blbDabMjMzr3mP11K/fn1lZGToq6++yvFer7zu5X02m02SrlqLu7u7fH19nRoAAACQX7nmdgH/65o0aaJz587JZrMpKioq2znFihVTcnKy4zglJUU///yz0xw3NzdlZGQ49dWoUUNJSUkKDQ29qRqrVKmiCxcu6OzZsypYsKAiIiLUp08fff31147vPkZGRur777/X+vXr1bdvX8e569evV5cuXRwvwElNTdXhw4dvqp7rUbt2bfXo0UNNmjSRq6ur+vXrd9uuDQAAAORHhMh/mIuLixITEx3/zs5DDz2kmJgYtWzZUv7+/ho8eHCWuSEhIVq5cqXq1q0rd3d3FS5cWIMHD1aLFi1UunRptWnTRgUKFNCOHTv0008/aeTIkdleKzIyUu3atVPNmjUVEBCgPXv26F//+pcaNmzo2GGrVq2aChcurFmzZmnRokWO8/r16yebzaa6des61qtQoYLmzZunli1bymaz6c0337wlO4ypqak6cOCA4/jnn39WQkKCihQpkuVPpNSpU0dLlixR06ZN5erqqj59+tz09QEAAABkjxB5G1zr8ceBAwfq559/VosWLeTn56cRI0Zk2YkcP368Xn31VU2bNk2lSpXS4cOHFRUVpUWLFmn48OEaO3as3NzcVLlyZXXt2jXHa0VFRSk2Nlb/+te/lJaWppIlS6pFixYaPHiwY47NZlP9+vW1ePFi1atXT9LFYOnr66tKlSrJ29vbMfedd97Rs88+qzp16qho0aIaMGDALXl76ZYtW9SwYUPH8auvvipJ6ty5s2JiYrLMr1evnhYvXqxmzZrJxcVFPXv2vOkarsVPdkk82goAAIDrYMu++4pvt93RbObKL+MBuKqUlBT5+flJhEgAAADcIrmdyi79jmu326+5CcaLdQAAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJa55nYBQJ71up/kkdtFAADyEzPE5HYJAMBOJAAAAADAOkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDLX3C4AyKvsA+3y9fXN7TIAAACA24qdSAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZa65XQCyZ7PZNH/+fLVq1Sq3S7ljDR06VAsWLFBCQkLuFODnlzvXBQAAuMSY3K4A+VC+3Yn8/fff1bNnT5UrV07u7u4KDg5Wy5YttXLlytwu7ZZavXq1WrRooWLFisnDw0Ply5fXk08+qR9++CG3S7uqs2fPqkuXLqpatapcXV0J0wAAAMAdIl+GyMOHD+u+++7TqlWr9Pbbb2vXrl1atmyZGjZsqJdffjm3y7tlPvjgAz388MMKCAjQl19+qaSkJM2fP1916tTRK6+8ktvlXVVGRoY8PT3Vq1cvNWrUKLfLAQAAAPBf+TJEvvTSS7LZbNq0aZMef/xxVaxYUXfffbdeffVVbdy40THvnXfeUdWqVeXt7a3g4GC99NJLSk1NdYzHxMTI399f3333ncLCwuTj46MmTZooOTnZMWfz5s1q3LixihYtKj8/P0VERGjbtm1O9ezfv18NGjSQh4eHqlSpohUrVmSpecCAAapYsaK8vLxUrlw5vfnmmzp//nyO93jkyBH16dNHffr0UWxsrB566CGVKVNG1apVU+/evbVlyxan+XPnztXdd98td3d3hYSEaPz48U7jf//9tzp16qTChQvLy8tLTZs21f79+x3jv/zyi1q2bKnChQvL29tbd999t5YsWeIY/+mnn9S0aVP5+PgoMDBQHTt21F9//ZVj/d7e3poyZYq6deumoKCgHOdd7uDBgypXrpx69OghY4zj57No0SJVqlRJXl5eatOmjdLS0hQbG6uQkBAVLlxYvXr1UkZGhqVrAAAAAPldvguRJ06c0LJly/Tyyy/L29s7y7i/v7/j3wUKFNCkSZO0e/duxcbGatWqVerfv7/T/LS0NI0bN04zZszQDz/8oCNHjqhfv36O8VOnTqlz585at26dNm7cqAoVKqhZs2Y6deqUJCkzM1OPPfaYChYsqPj4eH344YcaMGBAlroKFSqkmJgY7dmzRxMnTtS0adM0YcKEHO9z7ty5On/+fJZ6L7HZbI5/b926VW3bttVTTz2lXbt2aejQoXrzzTcVExPjmNOlSxdt2bJFCxcu1IYNG2SMUbNmzRxB9uWXX1Z6erp++OEH7dq1S2PHjpWPj48k6eTJk3rooYcUHh6uLVu2aNmyZfrjjz/Utm3bHOu/Xjt37lS9evXUvn17TZ482XF/aWlpmjRpkmbPnq1ly5YpLi5OrVu31pIlS7RkyRLNmDFDU6dO1Zw5c3JcOz09XSkpKU4NAAAAyLdMPhMfH28kmXnz5l33uV9//bUJCAhwHE+fPt1IMgcOHHD0vf/++yYwMDDHNTIyMkyhQoXMt99+a4wx5rvvvjOurq7m119/dcxZunSpkWTmz5+f4zpvv/22ue+++3Icf+GFF4yvr69T35w5c4y3t7ej7dy50xhjTPv27U3jxo2d5r722mumSpUqxhhj9u3bZySZ9evXO8b/+usv4+npab766itjjDFVq1Y1Q4cOzbaWESNGmEceecSp7+jRo0aSSUpKyvEeLuncubOJjo7O0j9kyBBTvXp1s379elO4cGEzbtw4p/Hsfj7du3c3Xl5e5tSpU46+qKgo07179xyvP2TIECMpS7Nf/Co7jUaj0Wg0Wu414Bax2+1GkrHb7decm+92Io0xlud+//33evjhh1WqVCkVKlRIHTt21PHjx5WWluaY4+XlpfLlyzuOS5QooWPHjjmO//jjD3Xr1k0VKlSQn5+ffH19lZqaqiNHjkiSEhMTFRwcrJIlSzrOefDBB7PU8uWXX6pu3boKCgqSj4+PBg0a5FgjJ5fvNkpSVFSUEhIStHjxYp0+fdrxCGdiYqLq1q3rNLdu3brav3+/MjIylJiYKFdXV91///2O8YCAAFWqVEmJiYmSpF69emnkyJGqW7euhgwZop07dzrm7tixQ6tXr5aPj4+jVa5cWdLFR1BvxpEjR9S4cWMNHjxYffv2zTJ+5c8nMDBQISEhjl3SS32X/8yuNHDgQNntdkc7evToTdUMAAAA5GX5LkRWqFBBNptNe/fuveq8w4cPq0WLFqpWrZrmzp2rrVu36v3335cknTt3zjHPzc3N6TybzeYUVDt37qyEhARNnDhRP/74oxISEhQQEOC0xrVs2LBBHTp0ULNmzbRo0SJt375db7zxxlXXqFChgux2u37//XdHn4+Pj0JDQ1WmTBnL17aqa9euOnTokDp27Khdu3apZs2aeu+99yRJqampatmypRISEpzape+C3oxixYqpdu3a+uKLL7J9zDS7n092fZmZmTlew93dXb6+vk4NAAAAyK/yXYgsUqSIoqKi9P777+v06dNZxk+ePCnp4vcEMzMzNX78eD3wwAOqWLGifvvtt+u+3vr169WrVy81a9bM8eKay18oExYWpqNHjzq9jOfyl/tI0o8//qgyZcrojTfeUM2aNVWhQgX98ssvV71umzZt5ObmprFjx16zxrCwMK1fvz5L3RUrVpSLi4vCwsJ04cIFxcfHO8aPHz+upKQkValSxdEXHBysF154QfPmzVPfvn01bdo0SVKNGjW0e/duhYSEKDQ01Kll973U6+Hp6alFixbJw8NDUVFRju+aAgAAAPhn5LsQKUnvv/++MjIyVLt2bc2dO1f79+9XYmKiJk2a5HiUNDQ0VOfPn9d7772nQ4cOacaMGfrwww+v+1oVKlTQjBkzlJiYqPj4eHXo0EGenp6O8UaNGqlixYrq3LmzduzYobVr1+qNN97IssaRI0c0e/ZsHTx4UJMmTdL8+fOvet3SpUtr/Pjxmjhxojp37qzVq1fr8OHD2rZtmyZNmiRJcnFxkST17dtXK1eu1IgRI7Rv3z7FxsZq8uTJjhcEVahQQdHR0erWrZvWrVunHTt26Omnn1apUqUUHR0tSerTp4++++47/fzzz9q2bZtWr16tsLAwSRdfunPixAm1a9dOmzdv1sGDB/Xdd9/pmWeeuepbUffs2aOEhASdOHFCdrvdsYN5JW9vby1evFiurq5q2rSp0xt0AQAAANxi//g3NO9Qv/32m3n55ZdNmTJlTMGCBU2pUqXMo48+alavXu2Y884775gSJUoYT09PExUVZT777DMjyfz999/GmIsvbvHz83Nad/78+ebyj3Xbtm2mZs2axsPDw1SoUMF8/fXXpkyZMmbChAmOOUlJSaZevXqmYMGCpmLFimbZsmVGcn6xzmuvvWYCAgKMj4+PefLJJ82ECROyXDs7K1asME2bNjVFihQxrq6uJjAw0LRq1cosW7bMad6cOXNMlSpVjJubmyldurR5++23ncZPnDhhOnbsaPz8/Byfx759+xzjPXr0MOXLlzfu7u6mWLFipmPHjuavv/5yjO/bt8+0bt3a+Pv7G09PT1O5cmXTp08fk5mZmWPtZcqUMVLWF9pccunFOpecOnXK1KlTxzRo0MCkpqZm+/O58hxjcn5xT04ufelYsuf6d+lpNBqNRqPR/smG/ON6XqxjM8aY3AqwQF6UkpIiPz8/SXZJfD8SAAD87yIp5B+Xfse12+3XfAdIvnycFQAAAABwYwiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMtcc7sAIM963U/yyO0igPzBDDG5XQIAAPgvdiIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJa55nYBQF5lH2iXr69vbpcBAAAA3FbsRAIAAAAALCNEAgAAAAAsI0QCAAAAACwjRAIAAAAALCNEAgAAAAAsI0QCAAAAACwjRAIAAAAALCNEAgAAAAAsI0QCAAAAACxzze0CgDzLzy+3KwCA3GdMblcAALjN2InMI2JiYuTv75/bZdxR4uLiZLPZdPLkydwuBQAAAMg3CJF3iC5dushms8lms6lgwYIKDQ3V8OHDdeHChdwu7Zaz2WxasGDBNeeNGjVKderUkZeXFwEaAAAAuEMQIu8gTZo0UXJysvbv36++fftq6NChevvtt3O7rFxz7tw5PfHEE3rxxRdzuxQAAAAA/0WIvIO4u7srKChIZcqU0YsvvqhGjRpp4cKFTnO+++47hYWFycfHxxE6L/fxxx8rLCxMHh4eqly5sj744AOn8QEDBqhixYry8vJSuXLl9Oabb+r8+fOO8R07dqhhw4YqVKiQfH19dd9992nLli2SpOPHj6tdu3YqVaqUvLy8VLVqVX3xxRdO60dGRqpXr17q37+/ihQpoqCgIA0dOtQxHhISIklq3bq1bDab4zg7w4YN0yuvvKKqVata+vzS0tLUtGlT1a1bVydPntThw4dls9n01VdfqX79+vL09FStWrW0b98+bd68WTVr1pSPj4+aNm2qP//809I1AAAAgPyOEHkH8/T01Llz5xzHaWlpGjdunGbMmKEffvhBR44cUb9+/RzjM2fO1ODBgzVq1CglJiZq9OjRevPNNxUbG+uYU6hQIcXExGjPnj2aOHGipk2bpgkTJjjGO3TooLvuukubN2/W1q1b9frrr8vNzU2SdPbsWd13331avHixfvrpJz3//PPq2LGjNm3a5FR3bGysvL29FR8fr7feekvDhw/XihUrJEmbN2+WJE2fPl3JycmO45t18uRJNW7cWJmZmVqxYoXT469DhgzRoEGDtG3bNrm6uqp9+/bq37+/Jk6cqLVr1+rAgQMaPHhwjmunp6crJSXFqQEAAAD5lsEdoXPnziY6OtoYY0xmZqZZsWKFcXd3N/369TPGGDN9+nQjyRw4cMBxzvvvv28CAwMdx+XLlzezZs1yWnfEiBHmwQcfzPG6b7/9trnvvvscx4UKFTIxMTGW627evLnp27ev4zgiIsLUq1fPaU6tWrXMgAEDHMeSzPz58y1fY/r06cbPzy9L/+rVq40kk5iYaKpVq2Yef/xxk56e7hj/+eefjSTz8ccfO/q++OILI8msXLnS0TdmzBhTqVKlHK8/ZMgQIylLs198JyGNRqPl7wYA+J9gt9uNJGO32685lz/xcQdZtGiRfHx8dP78eWVmZqp9+/ZOj4J6eXmpfPnyjuMSJUro2LFjkqTTp0/r4MGDeu6559StWzfHnAsXLsjvsj9F8eWXX2rSpEk6ePCgUlNTdeHCBfn6+jrGX331VXXt2lUzZsxQo0aN9MQTTziumZGRodGjR+urr77Sr7/+qnPnzik9PV1eXl5O91GtWjWn48vr/Cc0btxYtWvX1pdffikXF5cs45fXExgYKElOj8gGBgZetb6BAwfq1VdfdRynpKQoODj4VpQOAAAA5Dk8znoHadiwoRISErR//36dOXPG8VjoJZceK73EZrPJGCNJSk1NlSRNmzZNCQkJjvbTTz9p48aNkqQNGzaoQ4cOatasmRYtWqTt27frjTfecHpkdujQodq9e7eaN2+uVatWqUqVKpo/f74k6e2339bEiRM1YMAArV69WgkJCYqKinI6P6c6MzMzb9GnlFXz5s31ww8/aM+ePdmOX16PzWbLtu9q9bm7u8vX19epAQAAAPkVO5F3EG9vb4WGht7QuYGBgSpZsqQOHTqkDh06ZDvnxx9/VJkyZfTGG284+n755Zcs8ypWrKiKFSvqlVdeUbt27TR9+nS1bt1a69evV3R0tJ5++mlJUmZmpvbt26cqVapcV61ubm7KyMi4rnOu5t///rd8fHz08MMPKy4u7rrrAQAAAGAdIfJ/yLBhw9SrVy/5+fmpSZMmSk9P15YtW/T333/r1VdfVYUKFXTkyBHNnj1btWrV0uLFix27jJJ05swZvfbaa2rTpo3Kli2r//znP9q8ebMef/xxSVKFChU0Z84c/fjjjypcuLDeeecd/fHHH9cd2kJCQrRy5UrVrVtX7u7uKly4cLbzjhw5ohMnTujIkSPKyMhQQkKCJCk0NFQ+Pj5Oc8eNG6eMjAw99NBDiouLU+XKla+rJgAAAADWECL/h3Tt2lVeXl56++239dprr8nb21tVq1ZVnz59JEmPPvqoXnnlFfXo0UPp6elq3ry53nzzTcf3Ll1cXHT8+HF16tRJf/zxh4oWLarHHntMw4YNkyQNGjRIhw4dUlRUlLy8vPT888+rVatWstvt11Xn+PHj9eqrr2ratGkqVaqUDh8+nO28wYMHO71ZNjw8XJK0evVqRUZGZpk/YcIEpyBZsGDB66rrevnJLolHWwHkc7bcLuCf999vjgAA/stmDP/VCFyPlJSU/76siBAJAPkBvykByA8u/Y5rt9uv+Q4QXqwDAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwzDW3CwDyrNf9JI/cLgK3mxlicrsEAACAXMVOJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDLX3C4AyKvsA+3y9fXN7TIAAACA24qdSAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZa65XQBujS5duujkyZNasGBBbpdyW4WEhKhPnz7q06fP7b+4n9/tvyaA/MOY3K4AAIBssRN5G3Tp0kU2m002m01ubm4qW7as+vfvr7Nnz+ZqXZdqstls8vb2VoUKFdSlSxdt3bo1V+u65IcfflDLli1VsmRJ2Wy2fBeQAQAAgDsRIfI2adKkiZKTk3Xo0CFNmDBBU6dO1ZAhQ3K7LE2fPl3JycnavXu33n//faWmpur+++/XZ599ltul6fTp06pevbref//93C4FAAAAwH8RIm8Td3d3BQUFKTg4WK1atVKjRo20YsUKx3h6erp69eql4sWLy8PDQ/Xq1dPmzZud1ti9e7datGghX19fFSpUSPXr19fBgwezvd7mzZtVrFgxjR079qp1+fv7KygoSCEhIXrkkUc0Z84cdejQQT169NDff//tmDd37lzdfffdcnd3V0hIiMaPH+8Y+9e//qX7778/y9rVq1fX8OHDHccff/yxwsLC5OHhocqVK+uDDz64am1NmzbVyJEj1bp166vOu9zHH38sf39/rVy5UpIUGRmpnj17qk+fPipcuLACAwM1bdo0nT59Ws8884wKFSqk0NBQLV261PI1AAAAgPyMEJkLfvrpJ/34448qWLCgo69///6aO3euYmNjtW3bNoWGhioqKkonTpyQJP36669q0KCB3N3dtWrVKm3dulXPPvusLly4kGX9VatWqXHjxho1apQGDBhw3fW98sorOnXqlCPkbt26VW3bttVTTz2lXbt2aejQoXrzzTcVExMjSerQoYM2bdrkFGh3796tnTt3qn379pKkmTNnavDgwRo1apQSExM1evRovfnmm4qNjb3u+nLy1ltv6fXXX9fy5cv18MMPO/pjY2NVtGhRbdq0ST179tSLL76oJ554QnXq1NG2bdv0yCOPqGPHjkpLS8t23fT0dKWkpDg1AAAAIN8y+Md17tzZuLi4GG9vb+Pu7m4kmQIFCpg5c+YYY4xJTU01bm5uZubMmY5zzp07Z0qWLGneeustY4wxAwcONGXLljXnzp3L8RrR0dFm3rx5xsfHx8yePfuadUky8+fPz9J/5swZI8mMHTvWGGNM+/btTePGjZ3mvPbaa6ZKlSqO4+rVq5vhw4c7jgcOHGjuv/9+x3H58uXNrFmznNYYMWKEefDBB69Z59VqLVOmjJkwYYLp37+/KVGihPnpp5+cxiMiIky9evUcxxcuXDDe3t6mY8eOjr7k5GQjyWzYsCHbaw8ZMsRIytLsF197QaPRaP9MAwDgNrLb7UaSsdvt15zLTuRt0rBhQyUkJCg+Pl6dO3fWM888o8cff1ySdPDgQZ0/f15169Z1zHdzc1Pt2rWVmJgoSUpISFD9+vXl5uaW4zXi4+P1xBNPaMaMGXryySdvuFZjjKSLL96RpMTERKfaJKlu3brav3+/MjIyJF3cjZw1a5bj/C+++EIdOnSQdPG7jQcPHtRzzz0nHx8fRxs5cmSOj+Nej/Hjx2vatGlat26d7r777izj1apVc/zbxcVFAQEBqlq1qqMvMDBQknTs2LFs1x84cKDsdrujHT169KZrBgAAAPIqQuRt4u3trdDQUFWvXl2ffvqp4uPj9cknn1g+39PT85pzypcvr8qVK+vTTz/V+fPnb7jWS8G1bNmyls9p166dkpKStG3bNv344486evSoI8impqZKkqZNm6aEhARH++mnn7Rx48YbrvOS+vXrKyMjQ1999VW241cG70tvyb38WJIyMzOzPd/d3V2+vr5ODQAAAMivCJG5oECBAvrXv/6lQYMG6cyZMypfvrwKFiyo9evXO+acP39emzdvVpUqVSRd3E1bu3btVcNh0aJFtWrVKh04cEBt27a94SD57rvvytfXV40aNZIkhYWFOdUmSevXr1fFihXl4uIiSbrrrrsUERGhmTNnaubMmWrcuLGKFy8u6eJOX8mSJXXo0CGFhoY6tesJqjmpXbu2li5dqtGjR2vcuHE3vR4AAACAnBEic8kTTzwhFxcXvf/++/L29taLL76o1157TcuWLdOePXvUrVs3paWl6bnnnpMk9ejRQykpKXrqqae0ZcsW7d+/XzNmzFBSUpLTusWLF9eqVau0d+9etWvXLtsX71zu5MmT+v333/XLL79oxYoVatOmjWbNmqUpU6bI399fktS3b1+tXLlSI0aM0L59+xQbG6vJkyerX79+Tmt16NBBs2fP1tdff+14lPWSYcOGacyYMZo0aZL27dunXbt2afr06XrnnXdyrC01NdWxaylJP//8sxISEnTkyJEsc+vUqaMlS5Zo2LBhevfdd696zwAAAABuHCEyl7i6uqpHjx566623dPr0af373//W448/ro4dO6pGjRo6cOCAvvvuOxUuXFiSFBAQoFWrVik1NVURERG67777NG3atGy/IxkUFKRVq1Zp165d6tChg+N7i9l55plnVKJECVWuXFkvvviifHx8tGnTJsdbVSWpRo0a+uqrrzR79mzdc889Gjx4sIYPH64uXbo4rdWmTRsdP35caWlpatWqldNY165d9fHHH2v69OmqWrWqIiIiFBMTc9WdyC1btig8PFzh4eGSpFdffVXh4eEaPHhwtvPr1aunxYsXa9CgQXrvvfdyXBcAAADAjbOZS29RAWBJSkqK/Pz8JNkl8f1IIK/gf+0AAMjZpd9x7Xb7Nd8Bwk4kAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMtfcLgDIs173kzxyu4j/HWaIye0SAAAAYAE7kQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAy1xzuwAgr7IPtMvX1ze3ywAAAABuK3YiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlrnmdgFAnuXnl9sVAEDeZExuVwAAuAnsROYBNptNCxYsuO7zDh8+LJvNpoSEhFte0826VbXd6GcDAAAA4MYQIu8AXbp0UatWrXIcT05OVtOmTSXlHL6utcbNyMjI0IQJE1S1alV5eHiocOHCatq0qdavX/+PXO+SefPm6ZFHHlFAQMAdG4YBAACA/IYQmQcEBQXJ3d09V65tjNFTTz2l4cOHq3fv3kpMTFRcXJyCg4MVGRn5j+4Cnj59WvXq1dPYsWP/sWsAAAAAuD6EyDzg8kc2y5YtK0kKDw+XzWZTZGSkhg4dqtjYWH3zzTey2Wyy2WyKi4vLdq2ffvpJTZs2lY+PjwIDA9WxY0f99ddfOV77q6++0pw5c/TZZ5+pa9euKlu2rKpXr66PPvpIjz76qLp27arTp0/LbrfLxcVFW7ZskSRlZmaqSJEieuCBBxxrff755woODrZ83x07dtTgwYPVqFEjy+cMGTJEJUqU0M6dOyVJISEhGjlypDp16iQfHx+VKVNGCxcu1J9//qno6Gj5+PioWrVqjroBAAAAXB0hMo/ZtGmTJOn7779XcnKy5s2bp379+qlt27Zq0qSJkpOTlZycrDp16mQ59+TJk3rooYcUHh6uLVu2aNmyZfrjjz/Utm3bHK83a9YsVaxYUS1btswy1rdvXx0/flwrVqyQn5+f7r33Xkd43bVrl2w2m7Zv367U1FRJ0po1axQREXELPoWsjDHq2bOnPvvsM61du1bVqlVzjE2YMEF169bV9u3b1bx5c3Xs2FGdOnXS008/rW3btql8+fLq1KmTTA4vekhPT1dKSopTAwAAAPIrQmQeU6xYMUlSQECAgoKCVKRIEfn4+MjT01Pu7u4KCgpSUFCQChYsmOXcyZMnKzw8XKNHj1blypUVHh6uTz/9VKtXr9a+ffuyvd6+ffsUFhaW7dil/kvnRkZGOkJkXFycGjdurLCwMK1bt87R90+EyAsXLujpp5/WypUrtW7dOoWGhjqNN2vWTN27d1eFChU0ePBgpaSkqFatWnriiSdUsWJFDRgwQImJifrjjz+yXX/MmDHy8/NztOvZTQUAAAD+1xAi85EdO3Zo9erV8vHxcbTKlStLkg4ePJjjeTnt0F0pIiJC69atU0ZGhtasWaPIyEhHsPztt9904MABRUZG3opbcfLKK68oPj5eP/zwg0qVKpVl/PJdycDAQElS1apVs/QdO3Ys2/UHDhwou93uaEePHr2V5QMAAAB5CiEyH0lNTVXLli2VkJDg1Pbv368GDRpke07FihWVmJiY7dil/ooVK0qSGjRooFOnTmnbtm364YcfnELkmjVrVLJkSVWoUOGW31fjxo3166+/6rvvvst23M3NzfFvm82WY19mZma257u7u8vX19epAQAAAPmVa24XgOtz6THVjIyMLP1X9l2pRo0amjt3rkJCQuTqau1H/9RTT6l9+/b69ttvs3wvcvz48QoICFDjxo0lSf7+/qpWrZomT54sNzc3Va5cWcWLF9eTTz6pRYsW/WPfh3z00UfVsmVLtW/fXi4uLnrqqaf+kesAAAAAYCfyjmG327PsEGb32GTx4sXl6enpeCmO3W6XdPEtpDt37lRSUpL++usvnT9/Psu5L7/8sk6cOKF27dpp8+bNOnjwoL777js988wzOQbQp556Sq1bt1bnzp31ySef6PDhw9q5c6e6d++uhQsX6uOPP5a3t7djfmRkpGbOnOkIjEWKFFFYWJi+/PLL6w6RJ06cUEJCgvbs2SNJSkpKUkJCgn7//fcsc1u3bq0ZM2bomWee0Zw5c67rOgAAAACsI0TeIeLi4hQeHu7Uhg0blmWeq6urJk2apKlTp6pkyZKKjo6WJHXr1k2VKlVSzZo1VaxYMa1fvz7LuSVLltT69euVkZGhRx55RFWrVlWfPn3k7++vAgWy/4+CzWbTV199pX/961+aMGGCKlWqpPr16+uXX35RXFycWrVq5TQ/IiJCGRkZTt99jIyMzNJnxcKFCxUeHq7mzZtLuhhow8PD9eGHH2Y7v02bNoqNjVXHjh01b96867rWjfCTXTYZGo1Go11vs8lyAwDceWzG6ltTAEiSUlJS5OfnJ8kuie9HAsA/id9SAOD2uPQ7rt1uv+Y7QNiJBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWOaa2wUAedbrfpJHbheRd5ghJrdLAAAAwC3ATiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAy19wuAMir7APt8vX1ze0yAAAAgNuKnUgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGV3ZIiMi4uTzWbTyZMnc5wzdOhQ3XvvvbetppsVEhKid999N7fLuCorn3tMTIz8/f1vW01Xk+ufqZ+fZLPRaLRLDQAA5As3FSK7dOkim80mm80mNzc3lS1bVv3799fZs2dvVX35xtChQx2fpaurq0JCQvTKK68oNTX1pte1Grbr1Kmj5ORk+fn53dQ1b4UffvhBLVu2VMmSJWWz2bRgwYLcLgkAAACAJNebXaBJkyaaPn26zp8/r61bt6pz586y2WwaO3bsragvX7n77rv1/fff68KFC1q/fr2effZZpaWlaerUqde9ljFGGRkZluefP39eBQsWVFBQ0HVf659w+vRpVa9eXc8++6wee+yx3C4HAAAAwH/d9OOs7u7uCgoKUnBwsFq1aqVGjRppxYoVjvHMzEyNGTNGZcuWlaenp6pXr645c+Y4rbFkyRJVrFhRnp6eatiwoQ4fPnxDtXz88ccKCwuTh4eHKleurA8++MBp/Mcff9S9994rDw8P1axZUwsWLJDNZlNCQoJjzsKFC1WhQgV5eHioYcOGio2N1ZWPeK5bt07169eXp6engoOD1atXL50+fdoxfuzYMbVs2VKenp4qW7asZs6caal+V1dXBQUF6a677tKTTz6pDh06aOHChZKkGTNmqGbNmipUqJCCgoLUvn17HTt2zHHupUdRly5dqvvuu0/u7u76/PPPNWzYMO3YscOxyxkTEyNJstlsmjJlih599FF5e3tr1KhR2T7OGhMTo9KlS8vLy0utW7fW8ePHs9Q9cuRIFS9eXIUKFVLXrl31+uuvZ9n9vNbP5kpNmzbVyJEj1bp1a0uf3aVr+Pv7a+XKlZKkyMhI9ezZU3369FHhwoUVGBioadOm6fTp03rmmWdUqFAhhYaGaunSpZavAQAAAOR75iZ07tzZREdHO4537dplgoKCzP333+/oGzlypKlcubJZtmyZOXjwoJk+fbpxd3c3cXFxxhhjjhw5Ytzd3c2rr75q9u7daz7//HMTGBhoJJm///47x2sPGTLEVK9e3XH8+eefmxIlSpi5c+eaQ4cOmblz55oiRYqYmJgYY4wxdrvdFClSxDz99NNm9+7dZsmSJaZixYpGktm+fbsxxphDhw4ZNzc3069fP7N3717zxRdfmFKlSjnVcuDAAePt7W0mTJhg9u3bZ9avX2/Cw8NNly5dHLU0bdrUVK9e3WzYsMFs2bLF1KlTx3h6epoJEyZYvh9jjOnVq5cpUqSIMcaYTz75xCxZssQcPHjQbNiwwTz44IOmadOmjrmrV682kky1atXM8uXLzYEDB8x//vMf07dvX3P33Xeb5ORkk5ycbNLS0owxxkgyxYsXN59++qk5ePCg+eWXXxxrXLrXjRs3mgIFCpixY8eapKQkM3HiROPv72/8/PycPncPDw/z6aefmqSkJDNs2DDj6+t7XT+ba5Fk5s+fn6W/TJkyjs907NixJiAgwMTHxzvGIyIiTKFChcyIESPMvn37zIgRI4yLi4tp2rSp+eijj8y+ffvMiy++aAICAszp06dzvP7Zs2eN3W53tKNHjxpJxi4ZQ6PR/r8BAIA8y263G0nGbrdfc+5N/a9+586djYuLi/H29jbu7u5GkilQoICZM2eOMebiL99eXl7mxx9/dDrvueeeM+3atTPGGDNw4EBTpUoVp/EBAwaY6w2R5cuXN7NmzXKaM2LECPPggw8aY4yZMmWKCQgIMGfOnHGMT5s2zVweIgcMGGDuuecepzXeeOMNp1qee+458/zzzzvNWbt2rSlQoIA5c+aMSUpKMpLMpk2bHOOJiYlG0nWFyC1btpiiRYuaNm3aZDt/8+bNRpI5deqUMeb/Q+SCBQuuuu4lkkyfPn2c+q4Mke3atTPNmjVzmvPkk086hcj777/fvPzyy05z6tate10/m2u5Vojs37+/KVGihPnpp5+cxiMiIky9evUcxxcuXDDe3t6mY8eOjr7k5GQjyWzYsCHH6w8ZMsRIytIIkTTaFQ0AAORZ1xMib/o7kQ0bNtSUKVN0+vRpTZgwQa6urnr88cclSQcOHFBaWpoaN27sdM65c+cUHh4uSUpMTNT999/vNP7ggw86Hfv4+Dj+/fTTT+vDDz90Gj99+rQOHjyo5557Tt26dXP0X7hwwfGSmKSkJFWrVk0eHh6O8dq1azutk5SUpFq1ajn1XTlnx44d2rlzp9MjqsYYZWZm6ueff9a+ffvk6uqq++67zzFeuXJlS2803bVrl3x8fJSRkaFz586pefPmmjx5siRp69atGjp0qHbs2KG///5bmZmZkqQjR46oSpUqjjVq1qx5zetYnZuYmJjlcdIHH3xQy5YtcxwnJSXppZdecppTu3ZtrVq1SpK1n83NGD9+vE6fPq0tW7aoXLlyWcarVavm+LeLi4sCAgJUtWpVR19gYKAkOT0afKWBAwfq1VdfdRynpKQoODj4pmsHAAAA8qKbDpHe3t4KDQ2VJH366aeqXr26PvnkEz333HOON4suXrxYpUqVcjrP3d3d8jUu/86ir69vlvFL15k2bVqWQOri4mL5Olakpqaqe/fu6tWrV5ax0qVLa9++fTe8dqVKlbRw4UK5urqqZMmSKliwoKSLQSwqKkpRUVGaOXOmihUrpiNHjigqKkrnzp1zWsPb29vy9a5n7o36p3829evX1+LFi/XVV1/p9ddfzzLu5ubmdHzpTcKXH0tyhPLsuLu7X9d/XgEAAID/ZTcdIi9XoEAB/etf/9Krr76q9u3bq0qVKnJ3d9eRI0cUERGR7TlhYWGOl8dcsnHjRqfjSyE1J4GBgSpZsqQOHTqkDh06ZDunUqVK+vzzz5Wenu4IBJs3b84yZ8mSJU59V86pUaOG9uzZk2NNlStX1oULF7R161bHrmZSUtJV//biJQULFsx23b179+r48eP697//7dgB27JlyzXXu7Tm9byl9XJhYWGKj4936rvyZ1OpUiVt3rxZnTp1cvRd/plZ+dncjNq1a6tHjx5q0qSJXF1d1a9fv1t+DQAAAAD/76bfznqlJ554Qi4uLnr//fdVqFAh9evXT6+88opiY2N18OBBbdu2Te+9955iY2MlSS+88IL279+v1157TUlJSZo1a5bjDaLXY9iwYRozZowmTZqkffv2adeuXZo+fbreeecdSVL79u2VmZmp559/XomJifruu+80btw4Sf+/G9W9e3ft3btXAwYM0L59+/TVV185vc1UkgYMGKAff/xRPXr0UEJCgvbv369vvvlGPXr0kHQxVDVp0kTdu3dXfHy8tm7dqq5du8rT0/OGP9PSpUurYMGCeu+993To0CEtXLhQI0aMsHRuSEiIfv75ZyUkJOivv/5Senq65ev26tVLy5Yt07hx47R//35NnjzZ6VFWSerZs6c++eQTxcbGav/+/Ro5cqR27tzp+Lyka/9sspOamqqEhATHLvSlezhy5EiWuXXq1NGSJUs0bNgwvfvuu5bvDwAAAMANuJkvX175dtZLxowZY4oVK2ZSU1NNZmameffdd02lSpWMm5ubKVasmImKijJr1qxxzP/2229NaGiocXd3N/Xr1zeffvqpka7vxTrGGDNz5kxz7733moIFC5rChQubBg0amHnz5jnG169fb6pVq2YKFixo7rvvPjNr1iwjyezdu9cx55tvvnHUEhkZaaZMmWIkOb2QZ9OmTaZx48bGx8fHeHt7m2rVqplRo0Y5xpOTk03z5s2Nu7u7KV26tPnss8+c3iRq9X4uN2vWLBMSEmLc3d3Ngw8+aBYuXGik/38p0JUvxbnk7Nmz5vHHHzf+/v5Gkpk+fboxxhgp68tqslvjk08+MXfddZfx9PQ0LVu2NOPGjXN6sY4xxgwfPtwULVrU+Pj4mGeffdb06tXLPPDAA05zrvWzudKlWq5snTt3dsy58jNds2aN8fb2NpMmTTLGXHyxTu/evZ3Wze7nkN1ncTWOLx3n9ktMaLQ7rQEAgDzrel6sYzPGmNsfXe8MM2fO1DPPPCO73Z7jTuGoUaP04Ycf6ujRo7e5uryrcePGCgoK0owZM3K7lH9ESkrKf18KZJeU9Tu6/0vy7387AAAA5C+Xfse12+3Zvofmcrf0O5F3us8++0zlypVTqVKltGPHDg0YMEBt27Z1CpAffPCBatWqpYCAAK1fv15vv/2241FVZJWWlqYPP/xQUVFRcnFx0RdffKHvv/9eK1asyO3SAAAAAPwD8lWI/P333zV48GD9/vvvKlGihJ544gmNGjXKac6l7/WdOHFCpUuXVt++fTVw4MBcqvjOZ7PZtGTJEo0aNUpnz55VpUqVNHfuXDVq1Ci3SwMAAADwD8jXj7MCN4LHWQEAAPC/5noeZ73lb2cFAAAAAPzvIkQCAAAAACwjRAIAAAAALCNEAgAAAAAsI0QCAAAAACwjRAIAAAAALMtXfycSuKVe95M8cruIf5ZtWPb9Zgh/+wMAACC/YicSAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGAZIRIAAAAAYBkhEgAAAABgGSESAAAAAGCZa24XAORV9oF2+fr65nYZAAAAwG3FTiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAy19wuAMiz/PxyuwIAuHnG5HYFAIA8Js/tRHbp0kWtWrW6rnNsNpsWLFhwXef8/vvvaty4sby9veXv739d594uN3Jf/0sOHz4sm82mhISE3C4FAAAAyDfuuBDZpUsX2Ww22Ww2FSxYUKGhoRo+fLguXLggSZo4caJiYmL+8TomTJig5ORkJSQkaN++fbds3dsd/H7//Xf17t1boaGh8vDwUGBgoOrWraspU6YoLS3tttVxIz766CNFRkbK19dXNptNJ0+ezO2SAAAAgHzvjnyctUmTJpo+fbrS09O1ZMkSvfzyy3Jzc9PAgQPld5seITx48KDuu+8+VahQ4bZc759w6NAh1a1bV/7+/ho9erSqVq0qd3d37dq1Sx999JFKlSqlRx99NLfLzFFaWpqaNGmiJk2aaODAgbldDgAAAADdgTuRkuTu7q6goCCVKVNGL774oho1aqSFCxdKyvo4a2RkpHr16qX+/furSJEiCgoK0tChQ6+6/pAhQ1SiRAnt3Lkz2/GQkBDNnTtXn332mWw2m7p06SJJOnLkiKKjo+Xj4yNfX1+1bdtWf/zxh9O5U6ZMUfny5VWwYEFVqlRJM2bMcFpXklq3bi2bzeY4lqRvvvlGNWrUkIeHh8qVK6dhw4Y5dl8laf/+/WrQoIE8PDxUpUoVrVix4hqfovTSSy/J1dVVW7ZsUdu2bRUWFqZy5copOjpaixcvVsuWLR1zb/bejDEaOnSoSpcuLXd3d5UsWVK9evVyjKenp6tfv34qVaqUvL29df/99ysuLu6q9ffp00evv/66HnjggWveqyRlZGTo2WefVeXKlXXkyBFJF3d+p06dqhYtWsjLy0thYWHasGGDDhw4oMjISHl7e6tOnTo6ePCgpWsAAAAA+d0dGSKv5OnpqXPnzuU4HhsbK29vb8XHx+utt97S8OHDsw1Zxhj17NlTn332mdauXatq1aplu97mzZvVpEkTtW3bVsnJyZo4caIyMzMVHR2tEydOaM2aNVqxYoUOHTqkJ5980nHe/Pnz1bt3b/Xt21c//fSTunfvrmeeeUarV692rCtJ06dPV3JysuN47dq16tSpk3r37q09e/Zo6tSpiomJ0ahRoyRJmZmZeuyxx1SwYEHFx8frww8/1IABA676mR0/flzLly/Xyy+/LG9v72zn2Gw2x/o3e29z587VhAkTNHXqVO3fv18LFixQ1apVHef36NFDGzZs0OzZs7Vz50498cQTatKkifbv33/V+7AqPT1dTzzxhBISErR27VqVLl3aMTZixAh16tRJCQkJqly5stq3b6/u3btr4MCB2rJli4wx6tGjx1XXTklJcWoAAABAvmXuMJ07dzbR0dHGGGMyMzPNihUrjLu7u+nXr1+WcWOMiYiIMPXq1XNao1atWmbAgAGOY0nm66+/Nu3btzdhYWHmP//5zzXriI6ONp07d3YcL1++3Li4uJgjR444+nbv3m0kmU2bNhljjKlTp47p1q2b0zpPPPGEadasmVMt8+fPd5rz8MMPm9GjRzv1zZgxw5QoUcIYY8x3331nXF1dza+//uoYX7p0abZrXbJx40YjycybN8+pPyAgwHh7extvb2/Tv3//W3Zv48ePNxUrVjTnzp3LUssvv/xiXFxcnOq/dN8DBw7Mtv7LrV692kgyf//9t1P/zz//bCSZtWvXmocfftjUq1fPnDx50mmOJDNo0CDH8YYNG4wk88knnzj6vvjiC+Ph4ZHj9YcMGWIkZWn2i+80pNFotLzdAAAwxtjtdiPJ2O32a869I3ciFy1aJB8fH3l4eKhp06Z68sknr/qI6pU7iiVKlNCxY8ec+l555RXFx8frhx9+UKlSpRz9o0ePlo+Pj6NdegzySomJiQoODlZwcLCjr0qVKvL391diYqJjTt26dZ3Oq1u3rmM8Jzt27NDw4cOd6ujWrZuSk5OVlpbmuHbJkiUd5zz44INXXTMnmzZtUkJCgu6++26lp6ffsnt74okndObMGZUrV07dunXT/PnzHY/j7tq1SxkZGapYsaLTPa5Zs+aWPEbarl07nT59WsuXL8/2O7OX/+cjMDBQkpx2SQMDA3X27NkcdxgHDhwou93uaEePHr3pmgEAAIC86o58sU7Dhg01ZcoUFSxYUCVLlpSr69XLdHNzczq22WzKzMx06mvcuLG++OILfffdd+rQoYOj/4UXXlDbtm0dx5cHtdslNTVVw4YN02OPPZZlzMPD44bWDA0Nlc1mU1JSklN/uXLlJF18RPhWCg4OVlJSkr7//nutWLFCL730kt5++22tWbNGqampcnFx0datW+Xi4uJ0no+Pz01fu1mzZvr888+1YcMGPfTQQ1nGL//Px6VHeLPru/I/M5e4u7vL3d39pusEAAAA/hfckSHS29tboaGht3TNRx99VC1btlT79u3l4uKip556SpJUpEgRFSlS5Jrnh4WF6ejRozp69Khjx27Pnj06efKkqlSp4pizfv16de7c2XHe+vXrHePSxfCSkZHhtHaNGjWUlJSU4z1funZycrJKlCghSdq4ceNV6w0ICFDjxo01efJk9ezZM8fvRd7Ke/P09FTLli3VsmVLvfzyy6pcubJ27dql8PBwZWRk6NixY6pfv/5V674RL774ou655x49+uijWrx4sSIiIm75NQAAAABcdEeGyH9K69atNWPGDHXs2FGurq5q06aN5XMbNWqkqlWrqkOHDnr33Xd14cIFvfTSS4qIiFDNmjUlSa+99pratm2r8PBwNWrUSN9++63mzZun77//3rFOSEiIVq5cqbp168rd3V2FCxfW4MGD1aJFC5UuXVpt2rRRgQIFtGPHDv30008aOXKkGjVqpIoVK6pz5856++23lZKSojfeeOOaNX/wwQeqW7euatasqaFDh6patWoqUKCANm/erL179+q+++67ZfcWExOjjIwM3X///fLy8tLnn38uT09PlSlTRgEBAerQoYM6deqk8ePHKzw8XH/++adWrlypatWqqXnz5tnW//vvv+v333/XgQMHJF18LLZQoUIqXbp0luDfs2dPZWRkqEWLFlq6dKnq1atn+WcLAAAA4Drchu9oXpcrX5xzrfGIiAjTu3dvpzlXvhRHcn4BzZdffmk8PDzM3Llzc7zOlWsYc/EFMY8++qjx9vY2hQoVMk888YT5/fffneZ88MEHply5csbNzc1UrFjRfPbZZ07jCxcuNKGhocbV1dWUKVPG0b9s2TJTp04d4+npaXx9fU3t2rXNRx995BhPSkoy9erVMwULFjQVK1Y0y5Yty3Jf2fntt99Mjx49TNmyZY2bm5vx8fExtWvXNm+//bY5ffr0Lbu3+fPnm/vvv9/4+voab29v88ADD5jvv//eMX7u3DkzePBgExISYtzc3EyJEiVM69atzc6dO3OsPacX2kyfPt0Y8/8v1tm+fbvjnPHjx5tChQqZ9evXG2Oy/uyzOyenF/fk5NKXjiV7rr8Pg0aj3RkNAIC87nperGMzxphcSa9AHpWSkvLfF/jYJfnmdjkA7gD8LykAIK+79Duu3W6Xr+/Vf8e9I9/OCgAAAAC4MxEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJa55nYBQJ71up/kkdtF/HPMEJPbJQAAAOAOxE4kAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMtfcLgDIq+wD7fL19c3tMgAAAIDbip1IAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlrrldAJBn+fnldgWAM2NyuwIAAJAPsBOZj8TFxclms+nkyZO5XcotMXToUN177725XQYAAACQrxAi86APP/xQhQoV0oULFxx9qampcnNzU2RkpNPcS8Hx4MGDqlOnjpKTk+WXB3bQzp49qy5duqhq1apydXVVq1atcrskAAAAACJE5kkNGzZUamqqtmzZ4uhbu3atgoKCFB8fr7Nnzzr6V69erdKlS6t8+fIqWLCggoKCZLPZcqPs65KRkSFPT0/16tVLjRo1yu1yAAAAAPwXITIPqlSpkkqUKKG4uDhHX1xcnKKjo1W2bFlt3LjRqb9hw4aOf1/5OOu0adMUHBwsLy8vtW7dWu+88478/f2drvfNN9+oRo0a8vDwULly5TRs2DCnXdAjR44oOjpaPj4+8vX1Vdu2bfXHH384xi89djpjxgyFhITIz89PTz31lE6dOpXjPXp7e2vKlCnq1q2bgoKCLH0uBw8eVLly5dSjRw8ZYxQTEyN/f38tWrRIlSpVkpeXl9q0aaO0tDTFxsYqJCREhQsXVq9evZSRkZHjuunp6UpJSXFqAAAAQH5FiMyjGjZsqNWrVzuOV69ercjISEVERDj6z5w5o/j4eEeIvNL69ev1wgsvqHfv3kpISFDjxo01atQopzlr165Vp06d1Lt3b+3Zs0dTp05VTEyMY15mZqaio6N14sQJrVmzRitWrNChQ4f05JNPOq1z8OBBLViwQIsWLdKiRYu0Zs0a/fvf/75ln8fOnTtVr149tW/fXpMnT3bstqalpWnSpEmaPXu2li1bpri4OLVu3VpLlizRkiVLNGPGDE2dOlVz5szJce0xY8bIz8/P0YKDg29Z3QAAAECeY5AnTZs2zXh7e5vz58+blJQU4+rqao4dO2ZmzZplGjRoYIwxZuXKlUaS+eWXX4wxxqxevdpIMn///bcxxpgnn3zSNG/e3GndDh06GD8/P8fxww8/bEaPHu00Z8aMGaZEiRLGGGOWL19uXFxczJEjRxzju3fvNpLMpk2bjDHGDBkyxHh5eZmUlBTHnNdee83cf//9lu61c+fOJjo6Okv/kCFDTPXq1c369etN4cKFzbhx45zGp0+fbiSZAwcOOPq6d+9uvLy8zKlTpxx9UVFRpnv37jle/+zZs8Zutzva0aNHjSRjv/guTBrtzmkAAAA3yG63G0nGbrdfcy47kXlUZGSkTp8+rc2bN2vt2rWqWLGiihUrpoiICMf3IuPi4lSuXDmVLl062zWSkpJUu3Ztp74rj3fs2KHhw4fLx8fH0bp166bk5GSlpaUpMTFRwcHBTrtzVapUkb+/vxITEx19ISEhKlSokOO4RIkSOnbs2E1/DkeOHFHjxo01ePBg9e3bN8u4l5eXypcv7zgODAxUSEiIfHx8nPquVou7u7t8fX2dGgAAAJBf8Xci86jQ0FDdddddWr16tf7++29FRERIkkqWLKng4GD9+OOPWr16tR566KGbuk5qaqqGDRumxx57LMuYh4eH5XXc3Nycjm02mzIzM2+qNkkqVqyYSpYsqS+++ELPPvtsloCX3XX/qVoAAACA/ICdyDysYcOGiouLU1xcnNOf9mjQoIGWLl2qTZs25fh9SOniC3o2b97s1HflcY0aNZSUlKTQ0NAsrUCBAgoLC9PRo0d19OhRxzl79uzRyZMnVaVKlVtzo1fh6empRYsWycPDQ1FRUVd9WQ8AAACAm0eIzMMaNmyodevWKSEhwbETKUkRERGaOnWqzp07d9UQ2bNnTy1ZskTvvPOO9u/fr6lTp2rp0qVOfwJk8ODB+uyzzzRs2DDt3r1biYmJmj17tgYNGiRJatSokapWraoOHTpo27Zt2rRpkzp16qSIiAjVrFnzpu5vz549SkhI0IkTJ2S325WQkKCEhIQs87y9vbV48WK5urqqadOmSk1NvanrAgAAAMgZITIPa9iwoc6cOaPQ0FAFBgY6+iMiInTq1CnHnwLJSd26dfXhhx/qnXfeUfXq1bVs2TK98sorTo+pRkVFadGiRVq+fLlq1aqlBx54QBMmTFCZMmUkXXwU9JtvvlHhwoXVoEEDNWrUSOXKldOXX3550/fXrFkzhYeH69tvv1VcXJzCw8MVHh6e7VwfHx8tXbpUxhg1b95cp0+fvunrX4uf7LLJ0PJAuwNeeXN7GgAAwG1gM4bfPPD/unXrpr1792rt2rW5XcodKyUlRX5+fpLsknjJTl7Af8sBAABc3aXfce12+zVfJMmLdfK5cePGqXHjxvL29tbSpUsVGxurDz74ILfLAgAAAHCHIkTmc5s2bdJbb72lU6dOqVy5cpo0aZK6du2a22UBAAAAuEMRIvO5r776KrdLAAAAAJCH8GIdAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGW8nRW4Ua/7SR65XcTNMUNMbpcAAACAPIadSAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZYRIAAAAAIBlhEgAAAAAgGWESAAAAACAZa65XQCQV9kH2uXr65vbZQAAAAC3FTuRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJGQJMXExMjf3/8fW3/o0KG69957HcddunRRq1atbumat52fn2Sz0Wg0Gu1ObgCAW44QmYf8/vvv6t27t0JDQ+Xh4aHAwEDVrVtXU6ZMUVpaWm6Xd0udPXtWXbp0UdWqVeXq6nrTgRMAAADAreGa2wXAmkOHDqlu3bry9/fX6NGjVbVqVbm7u2vXrl366KOPVKpUKT366KO5XeYtk5GRIU9PT/Xq1Utz587N7XIAAAAA/Bc7kXnESy+9JFdXV23ZskVt27ZVWFiYypUrp+joaC1evFgtW7Z0zH3nnXdUtWpVeXt7Kzg4WC+99JJSU1Od1ouJiVHp0qXl5eWl1q1b6/jx444xu90uFxcXbdmyRZKUmZmpIkWK6IEHHnDM+fzzzxUcHOw4HjBggCpWrCgvLy+VK1dOb775ps6fP3/D9+vt7a0pU6aoW7duCgoKsnTOwYMHVa5cOfXo0UPGGMcjuosWLVKlSpXk5eWlNm3aKC0tTbGxsQoJCVHhwoXVq1cvZWRk3HCtAAAAQH5CiMwDjh8/ruXLl+vll1+Wt7d3tnNsl33vo0CBApo0aZJ2796t2NhYrVq1Sv3793eMx8fH67nnnlOPHj2UkJCghg0bauTIkY5xPz8/3XvvvYqLi5Mk7dq1SzabTdu3b3eE0TVr1igiIsJxTqFChRQTE6M9e/Zo4sSJmjZtmiZMmHArP4ar2rlzp+rVq6f27dtr8uTJjs8jLS1NkyZN0uzZs7Vs2TLFxcWpdevWWrJkiZYsWaIZM2Zo6tSpmjNnTo5rp6enKyUlxakBAAAA+RUhMg84cOCAjDGqVKmSU3/RokXl4+MjHx8fDRgwwNHfp08fNWzYUCEhIXrooYc0cuRIffXVV47xiRMnqkmTJurfv78qVqyoXr16KSoqymntyMhIR4iMi4tT48aNFRYWpnXr1jn6Lg+RgwYNUp06dRQSEqKWLVuqX79+Ttf8J/3444+KjIxUv379nMKwJJ0/f15TpkxReHi4GjRooDZt2mjdunX65JNPVKVKFbVo0UINGzbU6tWrc1x/zJgx8vPzc7TLd2ABAACA/IYQmYdt2rRJCQkJuvvuu5Wenu7o//777/Xwww+rVKlSKlSokDp27Kjjx487Xr6TmJio+++/32mtBx980Ok4IiJC69atU0ZGhtasWaPIyEhHsPztt9904MABRUZGOuZ/+eWXqlu3roKCguTj46NBgwbpyJEj/9zN/9eRI0fUuHFjDR48WH379s0y7uXlpfLlyzuOAwMDFRISIh8fH6e+Y8eO5XiNgQMHym63O9rRo0dv7U0AAAAAeQghMg8IDQ2VzWZTUlKSU3+5cuUUGhoqT09PR9/hw4fVokULVatWTXPnztXWrVv1/vvvS5LOnTtn+ZoNGjTQqVOntG3bNv3www9OIXLNmjUqWbKkKlSoIEnasGGDOnTooGbNmmnRokXavn273njjjeu63o0qVqyYateurS+++CLbx0zd3Nycjm02W7Z9mZmZOV7D3d1dvr6+Tg0AAADIrwiReUBAQIAaN26syZMn6/Tp01edu3XrVmVmZmr8+PF64IEHVLFiRf32229Oc8LCwhQfH+/Ut3HjRqdjf39/VatWTZMnT5abm5sqV66sBg0aaPv27Vq0aJHTo6w//vijypQpozfeeEM1a9ZUhQoV9Msvv9zkXVvj6empRYsWycPDQ1FRUTp16tRtuS4AAACQXxEi84gPPvhAFy5cUM2aNfXll18qMTFRSUlJ+vzzz7V37165uLhIurhref78eb333ns6dOiQZsyYoQ8//NBprV69emnZsmUaN26c9u/fr8mTJ2vZsmVZrhkZGamZM2c6AmORIkUUFhamL7/80ilEVqhQQUeOHNHs2bN18OBBTZo0SfPnz7/pe96zZ48SEhJ04sQJ2e12JSQkKCEhIcs8b29vLV68WK6urmratGmWN9ECAAAAuHUIkXlE+fLltX37djVq1EgDBw5U9erVVbNmTb333nvq16+fRowYIUmqXr263nnnHY0dO1b33HOPZs6cqTFjxjit9cADD2jatGmaOHGiqlevruXLl2vQoEFZrhkREaGMjAyn7z5GRkZm6Xv00Uf1yiuvqEePHrr33nv1448/6s0337zpe27WrJnCw8P17bffKi4uTuHh4QoPD892ro+Pj5YuXSpjjJo3b37NHdtbwU922WRoNBqNdic327X/+xwAcH1sxhiT20UAeUlKSor8/Pwk2SXx/UgAuNPxmw4AXNul33Htdvs13wHCTiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAyQiQAAAAAwDJCJAAAAADAMkIkAAAAAMAy19wuAMizXveTPHK7iBtjhpjcLgEAAAB5FDuRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAy1xzuwAgr7IPtMvX1ze3ywAAAABuK3YiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWueZ2AUCe5eeX2xUAt44xuV0BAADII9iJhBObzaYFCxbkOH748GHZbDYlJCTctppy0qVLF7Vq1Sq3ywAAAADylXwbIn///Xf17t1boaGh8vDwUGBgoOrWraspU6YoLS3tttcTFxcnm83maIGBgXr88cd16NChW7LuyZMnLc1PTk5W06ZNb+qat0JycrLat2+vihUrqkCBAurTp09ulwQAAABA+TREHjp0SOHh4Vq+fLlGjx6t7du3a8OGDerfv78WLVqk77//Psdzz58//4/WlpSUpN9++01ff/21du/erZYtWyojI+OG1rqeWs+dOydJCgoKkru7+w1d71ZKT09XsWLFNGjQIFWvXj23ywEAAADwX/kyRL700ktydXXVli1b1LZtW4WFhalcuXKKjo7W4sWL1bJlS8dcm82mKVOm6NFHH5W3t7dGjRolSfrmm29Uo0YNeXh4qFy5cho2bJguXLggSXr22WfVokULp2ueP39exYsX1yeffHLV2ooXL64SJUqoQYMGGjx4sPbs2aMDBw5o8+bNaty4sYoWLSo/Pz9FRERo27ZtTudeWWu3bt3UsGFDSVLhwoVls9nUpUsXSVJkZKR69OihPn36qGjRooqKinKscfnjrJs2bVJ4eLg8PDxUs2ZNbd++PUvNCxcuVIUKFeTh4aGGDRsqNjY2y+7nunXrVL9+fXl6eio4OFi9evXS6dOnc/wcQkJCNHHiRHXq1El+Fr97uHnzZhUrVkxjx46VJA0dOlT33nuvPv30U5UuXVo+Pj566aWXlJGRobfeektBQUEqXry442eak/T0dKWkpDg1AAAAIL/KdyHy+PHjWr58uV5++WV5e3tnO8dmszkdDx06VK1bt9auXbv07LPPau3aterUqZN69+6tPXv2aOrUqYqJiXGEka5du2rZsmVKTk52rLFo0SKlpaXpySeftFyrp6enpIu7hKdOnVLnzp21bt06bdy4URUqVFCzZs106tSpHGsdNmyY5s6dK+niDmdycrImTpzomBsbG6uCBQtq/fr1+vDDD7NcPzU1VS1atFCVKlW0detWDR06VP369XOa8/PPP6tNmzZq1aqVduzYoe7du+uNN95wmnPw4EE1adJEjz/+uHbu3Kkvv/xS69atU48ePSx/FteyatUqNW7cWKNGjdKAAQOcrr106VItW7ZMX3zxhT755BM1b95c//nPf7RmzRqNHTtWgwYNUnx8fI5rjxkzRn5+fo4WHBx8y+oGAAAA8hyTz2zcuNFIMvPmzXPqDwgIMN7e3sbb29v079/f0S/J9OnTx2nuww8/bEaPHu3UN2PGDFOiRAnHcZUqVczYsWMdxy1btjRdunTJsa7Vq1cbSebvv/82xhjz22+/mTp16phSpUqZ9PT0LPMzMjJMoUKFzLfffnvVWq9c95KIiAgTHh6eZV1JZv78+cYYY6ZOnWoCAgLMmTNnHONTpkwxksz27duNMcYMGDDA3HPPPU5rvPHGG07XfO6558zzzz/vNGft2rWmQIECTmvnJCIiwvTu3TtLf+fOnU10dLSZN2+e8fHxMbNnz3YaHzJkiPHy8jIpKSmOvqioKBMSEmIyMjIcfZUqVTJjxozJ8fpnz541drvd0Y4ePWokGfvF91nSaP8bDQAA5Gt2u91IMna7/Zpz+RMf/7Vp0yZlZmaqQ4cOSk9PdxqrWbOm0/GOHTu0fv16p8cgMzIydPbsWaWlpcnLy0tdu3bVRx99pP79++uPP/7Q0qVLtWrVqmvWcdddd8kYo7S0NFWvXl1z585VwYIF9ccff2jQoEGKi4vTsWPHlJGRobS0NB05cuSqtV7Nfffdd9XxxMREVatWTR4eHo6+Bx980GlOUlKSatWq5dRXu3Ztp+MdO3Zo586dmjlzpqPPGKPMzEz9/PPPCgsLs1zzleLj47Vo0SLNmTMn2ze1hoSEqFChQo7jwMBAubi4qECBAk59x44dy/Ea7u7ud8T3RAEAAIA7Qb4LkaGhobLZbEpKSnLqL1eunKT/f4T0clc+9pqamqphw4bpscceyzL3UuDq1KmTXn/9dW3YsEE//vijypYtq/r161+zvrVr18rX11fFixd3Cj+dO3fW8ePHNXHiRJUpU0bu7u568MEHHS/EyanWq7meuTcjNTVV3bt3V69evbKMlS5d+qbWLl++vAICAvTpp5+qefPmcnNzcxq/8thms2Xbl5mZeVN1AAAAAPlFvguRAQEBaty4sSZPnqyePXveUJCqUaOGkpKSFBoaetXrtGrVStOnT9eGDRv0zDPPWFq7bNmy8vf3z9K/fv16ffDBB2rWrJkk6ejRo/rrr7+uuV7BggUl6Ybe8BoWFqYZM2bo7NmzjnC8ceNGpzmVKlXSkiVLnPo2b97sdFyjRg3t2bPnqp/XjSpatKjmzZunyMhItW3bVl999VWWkAgAAADg1sl3L9aRpA8++EAXLlxQzZo19eWXXyoxMVFJSUn6/PPPtXfvXrm4uFz1/MGDB+uzzz7TsGHDtHv3biUmJmr27NkaNGiQ07yuXbsqNjZWiYmJ6ty5803VXKFCBc2YMUOJiYmKj49Xhw4dst01vVKZMmVks9m0aNEi/fnnn0pNTbV8zfbt28tms6lbt27as2ePlixZonHjxjnN6d69u/bu3asBAwZo3759+uqrrxQTEyPp/19QNGDAAP3444/q0aOHEhIStH//fn3zzTfXfLFOQkKCEhISlJqaqj///FMJCQnas2dPlnnFixfXqlWrtHfvXrVr187xllwAAAAAt16+DJHly5fX9u3b1ahRIw0cOFDVq1dXzZo19d5776lfv34aMWLEVc+PiorSokWLtHz5ctWqVUsPPPCAJkyYoDJlyjjNa9SokUqUKKGoqCiVLFnypmr+5JNP9Pfff6tGjRrq2LGjevXqpeLFi1/zvFKlSmnYsGF6/fXXFRgYeF1vRPXx8dG3336rXbt2KTw8XG+88Ybjz2dcUrZsWc2ZM0fz5s1TtWrVNGXKFMfbWS99j7BatWpas2aN9u3bp/r16ys8PFyDBw++5mcSHh6u8PBwbd26VbNmzVJ4eLhjJ/ZKQUFBWrVqlXbt2qUOHTrc8N/WvB5+sssm84+2O+B1K7T80gAAACyyGcNvD/+U1NRUlSpVStOnT8/2+5P/q0aNGqUPP/xQR48eze1S/hEpKSn//duVdkm+/+i1+L9OAAAA3A6Xfse12+3y9b3677j57juRt0NmZqb++usvjR8/Xv7+/nr00Udzu6R/1AcffKBatWopICBA69ev19tvv31L/wYkAAAAgDsHIfIfcOTIEZUtW1Z33XWXYmJi5Or6v/0x79+/XyNHjtSJEydUunRp9e3bVwMHDsztsgAAAAD8A3icFbhOPM4KAACA/zXX8zhrvnyxDgAAAADgxhAiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACW/W//7Qngn/S6n+Txz17CNuzWrmeG8LpXAAAA3Bx2IgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlhEiAQAAAACWESIBAAAAAJYRIgEAAAAAlrnmdgFAXmUfaJevr29ulwEAAADcVuxEAgAAAAAsI0QCAAAAACwjRAIAAAAALCNEAgAAAAAsI0QCAAAAACwjRAIAAAAALCNEAgAAAAAsI0QCAAAAACwjRAIAAAAALCNEAgAAAAAsI0RCkhQZGak+ffrctuuFhITo3Xffvak1bnfNWfj5STYb7VIDAABAvkCIzCO6dOkim80mm82mggULKjQ0VMOHD9eFCxdyu7R/xO7du/X4448rJCRENpvtpgMnAAAAgFuDEJmHNGnSRMnJydq/f7/69u2roUOH6u23387tsnKUkZGhzMzMGzo3LS1N5cqV07///W8FBQXd4soAAAAA3ChCZB7i7u6uoKAglSlTRi+++KIaNWqkhQsXSpL+/vtvderUSYULF5aXl5eaNm2q/fv3O52/fv16RUZGysvLS4ULF1ZUVJT+/vtvx3hmZqb69++vIkWKKCgoSEOHDnU6/5133lHVqlXl7e2t4OBgvfTSS0pNTXWMx8TEyN/fXwsXLlSVKlXk7u6uI0eO6NixY2rZsqU8PT1VtmxZzZw585r3WqtWLb399tt66qmn5O7ubunzWbx4sfz8/Bzrd+nSRa1atdLo0aMVGBgof39/x+7ta6+9piJFiuiuu+7S9OnTLa0PAAAAgBCZp3l6eurcuXOSLgamLVu2aOHChdqwYYOMMWrWrJnOnz8vSUpISNDDDz+sKlWqaMOGDVq3bp1atmypjIwMx3qxsbHy9vZWfHy83nrrLQ0fPlwrVqxwjBcoUECTJk3S7t27FRsbq1WrVql///5ONaWlpWns2LH6+OOPtXv3bhUvXlxdunTR0aNHtXr1as2ZM0cffPCBjh07dks/i1mzZqldu3aaOXOmOnTo4OhftWqVfvvtN/3www965513NGTIELVo0UKFCxdWfHy8XnjhBXXv3l3/+c9/clw7PT1dKSkpTg0AAADItwzyhM6dO5vo6GhjjDGZmZlmxYoVxt3d3fTr18/s27fPSDLr1693zP/rr7+Mp6en+eqrr4wxxrRr187UrVs3x/UjIiJMvXr1nPpq1aplBgwYkOM5X3/9tQkICHAcT58+3UgyCQkJjr6kpCQjyWzatMnRl5iYaCSZCRMmWLr3MmXKZDs3IiLC9O7d20yePNn4+fmZuLg4p/HOnTubMmXKmIyMDEdfpUqVTP369R3HFy5cMN7e3uaLL77I8fpDhgwxkrI0u2QM7f8bAAAA8iy73X7xd1y7/ZpzXXMrvOL6LVq0SD4+Pjp//rwyMzPVvn17DR06VCtXrpSrq6vuv/9+x9yAgABVqlRJiYmJki7uRD7xxBNXXb9atWpOxyVKlHDaMfz+++81ZswY7d27VykpKbpw4YLOnj2rtLQ0eXl5SZIKFizotE5iYqJcXV113333OfoqV64sf3//G/4cLjdnzhwdO3ZM69evV61atbKM33333SpQ4P833AMDA3XPPfc4jl1cXBQQEHDVndGBAwfq1VdfdRynpKQoODj4ltQPAAAA5DU8zpqHNGzYUAkJCdq/f7/OnDnjePzUCk9Pz2vOcXNzczq22WyOF+McPnxYLVq0ULVq1TR37lxt3bpV77//viQ5Hqm9dB3bbfxzD+Hh4SpWrJg+/fRTGWOyjGd3T1e7z+y4u7vL19fXqQEAAAD5FSEyD/H29lZoaKhKly4tV9f/30QOCwvThQsXFB8f7+g7fvy4kpKSVKVKFUkXdxlXrlx5w9feunWrMjMzNX78eD3wwAOqWLGifvvtt2ueV7lyZV24cEFbt2519CUlJenkyZM3XMvlypcvr9WrV+ubb75Rz549b8maAAAAAHJGiPwfUKFCBUVHR6tbt25at26dduzYoaefflqlSpVSdHS0pIuPZG7evFkvvfSSdu7cqb1792rKlCn666+/LF0jNDRU58+f13vvvadDhw5pxowZ+vDDD695XqVKldSkSRN1795d8fHx2rp1q7p27XrNndFz584pISFBCQkJOnfunH799VclJCTowIEDWeZWrFhRq1ev1ty5c9WnTx9L9wMAAADgxhAi/0dMnz5d9913n1q0aKEHH3xQxhgtWbLE8ehmxYoVtXz5cu3YsUO1a9fWgw8+qG+++cZpR/NqqlevrnfeeUdjx47VPffco5kzZ2rMmDGWaytZsqQiIiL02GOP6fnnn1fx4sWves5vv/2m8PBwhYeHKzk5WePGjVN4eLi6du2a7fxKlSpp1apV+uKLL9S3b19Ldd00O6/WcWoAAADIF2wmuy+SAchRSkqK/Pz8ZLfb+X4kAAAA/idcz++47EQCAAAAACwjRAIAAAAALCNEAgAAAAAsI0QCAAAAACwjRAIAAAAALCNEAgAAAAAsI0QCAAAAACwjRAIAAAAALCNEAgAAAAAsc83tAoC8ym+Mn+Rx69c1Q8ytXxQAAAC4RdiJBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWOaa2wUAeZV9oF2+vr65XQYAAABwW7ETCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwzDW3CwDyLD+/3K4AuPMYk9sVAACAfxg7kbdRTEyM/P39b3qdw4cPy2azKSEh4abXul1sNpsWLFhwS9fs0qWLWrVqdUvXBAAAAHB1+SJEdunSRTabTS+88EKWsZdfflk2m01dunS5/YXdoODgYCUnJ+uee+65qXVsNpujeXt7q0KFCurSpYu2bt16iyq9ccnJyWrfvr0qVqyoAgUKqE+fPrldEgAAAADlkxApXQxes2fP1pkzZxx9Z8+e1axZs1S6dOlcrOz6nDt3Ti4uLgoKCpKr680/jTx9+nQlJydr9+7dev/995Wamqr7779fn3322S2o9salp6erWLFiGjRokKpXr56rtQAAAAD4f/kmRNaoUUPBwcGaN2+eo2/evHkqXbq0wsPDneYuW7ZM9erVk7+/vwICAtSiRQsdPHjQMX7pcdJ58+apYcOG8vLyUvXq1bVhwwandWJiYlS6dGl5eXmpdevWOn78uNP4wYMHFR0drcDAQPn4+KhWrVr6/vvvneaEhIRoxIgR6tSpk3x9ffX8889neZw1Li5ONptNK1euVM2aNeXl5aU6deooKSnpmp+Lv7+/goKCFBISokceeURz5sxRhw4d1KNHD/3999+SpKFDh+ree+91Ou/dd99VSEiIU9+nn36qu+++W+7u7ipRooR69OiR43WHDBmiEiVKaOfOndmOh4SEaOLEierUqZP8LH73cPPmzSpWrJjGjh3rVPenn36q0qVLy8fHRy+99JIyMjL01ltvKSgoSMWLF9eoUaOuum56erpSUlKcGgAAAJBf5ZsQKUnPPvuspk+f7jj+9NNP9cwzz2SZd/r0ab366qvasmWLVq5cqQIFCqh169bKzMx0mvfGG2+oX79+SkhIUMWKFdWuXTtduHBBkhQfH6/nnntOPXr0UEJCgho2bKiRI0c6nZ+amqpmzZpp5cqV2r59u5o0aaKWLVvqyJEjTvPGjRun6tWra/v27XrzzTdzvL833nhD48eP15YtW+Tq6qpnn332uj8jSXrllVd06tQprVixwvI5U6ZM0csvv6znn39eu3bt0sKFCxUaGpplnjFGPXv21Geffaa1a9eqWrVqN1TjlVatWqXGjRtr1KhRGjBggKP/4MGDWrp0qZYtW6YvvvhCn3zyiZo3b67//Oc/WrNmjcaOHatBgwYpPj4+x7XHjBkjPz8/RwsODr4lNQMAAAB5kskHOnfubKKjo82xY8eMu7u7OXz4sDl8+LDx8PAwf/75p4mOjjadO3fO8fw///zTSDK7du0yxhjz888/G0nm448/dszZvXu3kWQSExONMca0a9fONGvWzGmdJ5980vj5+V211rvvvtu89957juMyZcqYVq1aOc25dP3t27cbY4xZvXq1kWS+//57x5zFixcbSebMmTM5XkuSmT9/fpb+M2fOGElm7NixxhhjhgwZYqpXr+40Z8KECaZMmTKO45IlS5o33njjqtf6+uuvTfv27U1YWJj5z3/+k+PcK0VERJjevXtn6b/0c503b57x8fExs2fPdhofMmSI8fLyMikpKY6+qKgoExISYjIyMhx9lSpVMmPGjMnx+mfPnjV2u93Rjh49aiQZ+8X3UNJotMsbAADIk+x2u5Fk7Hb7Nefmqz/xUaxYMTVv3lwxMTEyxqh58+YqWrRolnn79+/X4MGDFR8fr7/++suxA3nkyBGnl9lcvotWokQJSdKxY8dUuXJlJSYmqnXr1k7rPvjgg1q2bJnjODU1VUOHDtXixYuVnJysCxcu6MyZM1l2ImvWrGnp/nKq53q/82mMkXTxxTtWHDt2TL/99psefvjhq8575ZVX5O7uro0bN2b7ud+I+Ph4LVq0SHPmzMn2Ta0hISEqVKiQ4zgwMFAuLi4qUKCAU9+xY8dyvIa7u7vc3d1vSb0AAABAXpevHmeVLj7SGhMTo9jY2Bwf92zZsqVOnDihadOmKT4+3vGo47lz55zmubm5Of59KXBd+cjr1fTr10/z58/X6NGjtXbtWiUkJKhq1apZruPt7W1pvZut55LExERJUtmyZSVJBQoUcATLS86fP+/4t6enp6V1GzdurF9//VXffffdddeUk/Lly6ty5cr69NNPnWq65PLPRLr4uWTXdyOfEwAAAJAf5bsQ2aRJE507d07nz59XVFRUlvHjx48rKSlJgwYN0sMPP6ywsDDHC2auR1hYWJbv2W3cuNHpeP369erSpYtat26tqlWrKigoSIcPH77ua91q7777rnx9fdWoUSNJF3dwf//9d6cgefnfqCxUqJBCQkK0cuXKq6776KOPatasWeratatmz559S2otWrSoVq1apQMHDqht27bZBkkAAAAAt06+epxVklxcXBw7bS4uLlnGCxcurICAAH300UcqUaKEjhw5otdff/26r9OrVy/VrVtX48aNU3R0tL777junR1klqUKFCpo3b55atmwpm82mN99887bviJ08eVK///670tPTtW/fPk2dOlULFizQZ599Jn9/f0lSZGSk/vzzT7311ltq06aNli1bpqVLl8rX19exztChQ/XCCy+oePHiatq0qU6dOqX169erZ8+eTtdr3bq1ZsyYoY4dO8rV1VVt2rTJsbZLQTU1NVV//vmnEhISVLBgQVWpUsVpXvHixbVq1So1bNhQ7dq10+zZs2/Jnz8BAAAAkFW+24mUJF9fX6cAdLkCBQpo9uzZ2rp1q+655x698sorevvtt6/7Gg888ICmTZumiRMnqnr16lq+fLkGDRrkNOedd95R4cKFVadOHbVs2VJRUVGqUaPGDd3TjXrmmWdUokQJVa5cWS+++KJ8fHy0adMmtW/f3jEnLCxMH3zwgd5//31Vr15dmzZtUr9+/ZzW6dy5s95991198MEHuvvuu9WiRQvt378/22u2adNGsbGx6tixo9OfXLlSeHi4wsPDtXXrVs2aNUvh4eFq1qxZtnODgoK0atUq7dq1Sx06dFBGRsYNfBrXx0922WRotFve7oDX49x4AwAA//Ns5sovuwG4qpSUlP/+7Uq7pOz/nxHAzeC/lQEAwO126Xdcu92e44bbJflyJxIAAAAAcGMIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAywiRAAAAAADLCJEAAAAAAMsIkQAAAAAAy1xzuwAgz3rdT/K4tUuaIfyVeQAAANzZ2IkEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFhGiAQAAAAAWEaIBAAAAABYRogEAAAAAFjmmtsFAHmVfaBdvr6+uV0GAAAAcFuxEwkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQCQAAAACwjBAJAAAAALCMEAkAAAAAsIwQeQ02m00LFizI7TKQg1z9+fj5STYb7WYbAAAA8pR8ESI//PBDFSpUSBcuXHD0paamys3NTZGRkU5z4+LiZLPZdPDgwdtc5e3z559/6sUXX1Tp0qXl7u6uoKAgRUVFaf369bldmpN58+bpkUceUUBAgGw2mxISEnK7JAAAACDfyxchsmHDhkpNTdWWLVscfWvXrlVQUJDi4+N19uxZR//q1atVunRplS9fPjdKvaXOnTuXbf/jjz+u7du3KzY2Vvv27dPChQsVGRmp48eP3+YKr+706dOqV6+exo4dm9ulAAAAAPivfBEiK1WqpBIlSiguLs7RFxcXp+joaJUtW1YbN2506m/YsKHT+X/99Zdat24tLy8vVahQQQsXLnQaX7NmjWrXri13d3eVKFFCr7/+utOuZ3p6unr16qXixYvLw8ND9erV0+bNm52uabPZtHjxYlWrVk0eHh564IEH9NNPPzldZ926dapfv748PT0VHBysXr166fTp047xkJAQjRgxQp06dZKvr6+ef/75LJ/FyZMntXbtWo0dO1YNGzZUmTJlVLt2bQ0cOFCPPvqoJKlfv35q0aKF45x3331XNptNy5Ytc/SFhobq448/liRt3rxZjRs3VtGiReXn56eIiAht27bN6bo2m00ff/zxVT/HK3Xs2FGDBw9Wo0aNrjrvckOGDFGJEiW0c+dOx2cycuRIderUST4+PipTpowWLlyoP//8U9HR0fLx8VG1atWc/h8MAAAAAHKWL0KkdHE3cvXq1Y7j1atXKzIyUhEREY7+M2fOKD4+PkuIHDZsmNq2baudO3eqWbNm6tChg06cOCFJ+vXXX9WsWTPVqlVLO3bs0JQpU/TJJ59o5MiRjvP79++vuXPnKjY2Vtu2bVNoaKiioqIca1zy2muvafz48dq8ebOKFSumli1b6vz585KkgwcPqkmTJnr88ce1c+dOffnll1q3bp169OjhtMa4ceNUvXp1bd++XW+++WaWz8HHx0c+Pj5asGCB0tPTs/2sIiIitG7dOmVkZEi6GJKLFi3qCOG//vqrDh486HgU+NSpU+rcubPWrVunjRs3qkKFCmrWrJlOnTpl+XO8WcYY9ezZU5999pnWrl2ratWqOcYmTJigunXravv27WrevLk6duyoTp066emnn9a2bdtUvnx5derUScaYbNdOT09XSkqKUwMAAADyLZNPTJs2zXh7e5vz58+blJQU4+rqao4dO2ZmzZplGvxfe3cel1P6/w/8dVe6W+8SaSGiPZOK8EmTSKZsIzODoR/ZzZAYy9BYyhjLGMYyYzCifIx1FjPGTmTJDFnubFlKJmMKY2mTtFy/P3w6X7eKE5Hl9Xw8rsejc13Xuc77nA7ut+uc627dWgghRFxcnAAg/vrrL2k/AGLSpEnSdm5urgAgtm3bJoQQ4rPPPhNOTk6ipKRE6rNo0SJhZGQkiouLRW5urqhRo4ZYvXq11H7//n1hbW0tZs+eLYQQYu/evQKAWLdundTn5s2bQl9fX6xfv14IIcTAgQPFkCFDNM7pwIEDQktLS+Tn5wshhGjQoIEIDg5+4rX46aefRM2aNYWenp5o1aqViIiIEElJSVL77du3hZaWlkhMTBQlJSXCzMxMzJw5U7Rs2VIIIcQPP/wg6tatW+H4xcXFwtjYWPz++++yr+PjpKWlCQDixIkTZdoAiB9//FH07t1buLi4iL///lujvUGDBuL//b//J21nZGQIAGLy5MlS3R9//CEAiIyMjHKPHxkZKQCUKVmAECzPXoiIiIio2mVlZT34jJuV9cS+b8xMZJs2bZCXl4fExEQcOHAAjo6OMDc3h5+fn/ReZHx8PBo1aoT69etr7PvwrJahoSFUKhWuX78OAEhOToa3tzcUD60y6ePjg9zcXPz9999ITU1FYWEhfHx8pPYaNWqgRYsWSE5O1jiOt7e39LOZmRmcnJykPklJSYiNjZVmEo2MjBAYGIiSkhKkpaVJ+3l5eT3xWrz//vv4559/sGnTJgQFBSE+Ph5NmzZFbGwsAMDU1BTu7u6Ij4/HqVOnoKuriyFDhuDEiRPIzc3Fvn374OfnJ4137do1DB48GA4ODjAxMYFKpUJubi7S09NlX8dn8cknn+Dw4cPYv38/6tatW6b94eNaWFgAANzc3MrUVRRLREQEsrKypHLlypVnjpmIiIiI6FWlU90BvCj29vaoV68e9u7di9u3b0tJkLW1NWxsbHDo0CHs3bsX/v7+ZfatUaOGxrZCoUBJSckLibtUbm4uhg4divDw8DJtDye9hoaGssbT09ND+/bt0b59e0yePBmDBg1CZGQk+vXrB+BB0h0fHw+lUgk/Pz+YmZnBxcUFBw8exL59+zBmzBhprNDQUNy8eRMLFixAgwYNoFQq4e3tXWZhn+d1Hdu3b4+1a9dix44dCAkJKdP+8HFLk/3y6iqKRalUQqlUPnOcRERERESvgzdmJhJ48F5kfHw84uPjNb7ao3Xr1ti2bRuOHDlS5n3IJ3FxccEff/yh8T5dQkICjI2NUa9ePdjZ2UFXV1fj6zMKCwuRmJgIV1dXjbEeXuDn9u3buHDhAlxcXAAATZs2xdmzZ2Fvb1+m6OrqVirm8ri6umos0lP6XmRcXJx0rdq0aYO1a9fiwoULGtcvISEB4eHh6NixIxo3bgylUol///33mWOS691338WaNWswaNAgrFu37oUdl4iIiIjoTfTGJZEHDx6EWq3WeBzTz88PS5cuxf379yudRA4bNgxXrlzBiBEjcO7cOfz222+IjIzE6NGjoaWlBUNDQ3z88ccYN24ctm/fjrNnz2Lw4MG4e/cuBg4cqDHW559/jri4OJw+fRr9+vVD7dq1ERwcDAAYP348Dh06hLCwMKjValy8eBG//fZbmYV1nuTmzZvw9/fHDz/8gJMnTyItLQ0//vgjZs+eja5du0r9WrdujZycHGzevFkjiVy9ejWsrKzg6Ogo9XVwcMCqVauQnJyMw4cPIyQkBPr6+pWKqzy3bt2CWq3G2bNnAQDnz5+HWq1GZmZmmb7dunXDqlWr0L9/f/z000/PfGwiIiIiIirfG/M4K/AgiczPz4ezs7P0HhzwIInMycmRvgqkMurWrYutW7di3LhxcHd3h5mZGQYOHIhJkyZJfWbNmoWSkhL06dMHOTk58PLywo4dO1CzZk2NsWbNmoWRI0fi4sWL8PDwwO+//y7NMjZp0gT79u3DxIkT4evrCyEE7Ozs0LNnz0rFa2RkhJYtW2LevHnS+5o2NjYYPHgwPvvsM6lfzZo14ebmhmvXrsHZ2RnAg8SypKREIwEHgOXLl2PIkCFo2rQpbGxsMGPGDIwdO7ZScZVn06ZN6N+/v7T94YcfAnjwNR5RUVFl+n/wwQfSddbS0sJ77733zDE8jgmyAKge26eCBV+JiIiIiF5ZCiH4Mbe6lX435e3bt2Fqalrd4dATZGdnw8TEBGASSURERESvidLPuFlZWVCpHv8Z9416nJWIiIiIiIieDZNIIiIiIiIiku2NeifyZdWmTRvwqWIiIiIiInoVcCaSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbv+KD6GlNMAH0Ht9FMVX+cCKSX/NCRERERC8/zkQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2neoOgOhVlRWRBZVKVd1hEBERERG9UJyJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZdKo7AKJXlolJdUdARPR4QlR3BERE9BriTGQ1iIqKgoeHR3WH8cqLj4+HQqHAnTt3qjsUIiIiIqI3xmuZRPbr1w8KhaJMCQoKeuGxKBQK/Prrrxp1Y8eORVxc3As5fkpKCgYMGID69etDqVSibt26aNeuHVavXo2ioqIXEsPTmj59Olq1agUDAwOYmppWdzhERERERITX+HHWoKAgxMTEaNQplcpqikaTkZERjIyMnvtxjhw5goCAADRu3BiLFi2Cs7MzAODo0aNYtGgR3nrrLbi7uz/3OJ7W/fv30b17d3h7e2P58uXVHQ4REREREeE1nYkEHiSMlpaWGqVmzZpS+7lz5/D2229DT08Prq6u2L17t8asob+/P8LCwjTGvHHjBnR1daVZRFtbW0ybNg29evWCoaEh6tati0WLFkn9bW1tAQDdunWDQqGQth99nDUxMRHt27dH7dq1YWJiAj8/Pxw/flzj2AqFAtHR0ejWrRsMDAzg4OCATZs2VXj+Qgj069cPjo6OSEhIQJcuXeDg4AAHBwf06tULBw8eRJMmTaT+p06dgr+/P/T19VGrVi0MGTIEubm5UntJSQk+//xz1KtXD0qlEh4eHti+fbvUfv/+fYSFhcHKygp6enpo0KABZs6cKbXfuXMHgwYNgrm5OVQqFfz9/ZGUlFRh/AAwdepUfPLJJ3Bzc3tsv1J3795Fhw4d4OPjgzt37uDy5ctQKBTYsGEDfH19oa+vj+bNm+PChQtITEyEl5cXjIyM0KFDB9y4cUPWMYiIiIiI3nSvbRL5OMXFxQgODoaBgQEOHz6M77//HhMnTtToM2jQIKxZswYFBQVS3Q8//IC6devC399fqvvqq6/g7u6OEydOYMKECRg5ciR27doF4EFyCAAxMTHIyMiQth+Vk5OD0NBQHDx4EH/++SccHBzQsWNH5OTkaPSbOnUqevTogZMnT6Jjx44ICQnBrVu3yh1TrVYjOTkZY8eOhZZW+b9mhUIBAMjLy0NgYCBq1qyJxMRE/Pjjj9i9e7dGEr1gwQLMnTsXc+bMwcmTJxEYGIh3330XFy9eBAAsXLgQmzZtwoYNG3D+/HmsXr1aSpoBoHv37rh+/Tq2bduGY8eOoWnTpmjXrl2F8VfWnTt30L59e5SUlGDXrl0aj79GRkZi0qRJOH78OHR0dNC7d298+umnWLBgAQ4cOICUlBRMmTKlwrELCgqQnZ2tUYiIiIiI3ljiNRQaGiq0tbWFoaGhRpk+fboQQoht27YJHR0dkZGRIe2za9cuAUBs3LhRCCFEfn6+qFmzpli/fr3Up0mTJiIqKkrabtCggQgKCtI4ds+ePUWHDh2k7YfHLBUZGSnc3d0rjL+4uFgYGxuL33//XWOcSZMmSdu5ubkCgNi2bVu5Y6xbt04AEMePH5fqrl27pnE9Fi1aJIQQ4vvvvxc1a9YUubm5Ut8tW7YILS0tkZmZKYQQwtraWrp+pZo3by6GDRsmhBBixIgRwt/fX5SUlJSJ5cCBA0KlUol79+5p1NvZ2YmlS5dWeB1KxcTECBMTkzL1e/fuFQBEcnKyaNKkiXj//fdFQUGB1J6WliYAiOjoaKlu7dq1AoCIi4uT6mbOnCmcnJwqPH5kZKQAUKZkPVj3kIWFheXlLURERDJlZWUJACIrK+uJfV/bmci2bdtCrVZrlI8++ggAcP78edjY2MDS0lLq36JFC4399fT00KdPH6xYsQIAcPz4cZw+fRr9+vXT6Oft7V1mOzk5uVKxXrt2DYMHD4aDgwNMTEygUqmQm5uL9PR0jX4PP35qaGgIlUqF69evyz5OrVq1pGthamqK+/fvAwCSk5Ph7u4OQ0NDqa+Pjw9KSkpw/vx5ZGdn459//oGPj4/GeD4+PtK59uvXD2q1Gk5OTggPD8fOnTulfklJScjNzUWtWrWk90GNjIyQlpaG1NRU+ReqAu3bt4e9vT3Wr18PXV3dMu0PXzcLCwsA0HhE1sLC4rHXMSIiAllZWVK5cuXKM8dMRERERPSqem0X1jE0NIS9vf0zjTFo0CB4eHjg77//RkxMDPz9/dGgQYMqivD/hIaG4ubNm1iwYAEaNGgApVIJb29vKckrVaNGDY1thUKBkpKScsd0cHAA8CBh9vT0BABoa2tL10RHp2p/9U2bNkVaWhq2bduG3bt3o0ePHggICMBPP/2E3NxcWFlZIT4+vsx+VbHqaqdOnfDzzz/j7Nmz5b4/+fB1K32E99G6iq4j8OD92pdlUSYiIiIiour22s5EPo6TkxOuXLmCa9euSXXlva/o5uYGLy8vLFu2DGvWrMGAAQPK9Pnzzz/LbLu4uEjbNWrUQHFx8WPjSUhIQHh4ODp27IjGjRtDqVTi33//rexpafD09ISzszPmzJnz2AQJAFxcXJCUlIS8vDyNmLS0tODk5ASVSgVra2skJCSUidvV1VXaVqlU6NmzJ5YtW4b169fj559/xq1bt9C0aVNkZmZCR0cH9vb2GqV27drPdJ4AMGvWLISGhqJdu3Y4e/bsM49HREREREQVe21nIgsKCpCZmalRp6Ojg9q1a6N9+/aws7NDaGgoZs+ejZycHEyaNAnA/81UlRo0aBDCwsJgaGiIbt26lTlOQkICZs+ejeDgYOzatQs//vgjtmzZIrXb2toiLi4OPj4+UCqVGivElnJwcMCqVavg5eWF7OxsjBs3Dvr6+s90/gqFAjExMWjfvj18fHwQEREBFxcXFBYWYv/+/bhx4wa0tbUBACEhIYiMjERoaCiioqJw48YNjBgxAn369JEe/xw3bhwiIyNhZ2cHDw8PxMTEQK1WY/Xq1QCAr7/+GlZWVvD09ISWlhZ+/PFHWFpawtTUFAEBAfD29kZwcDBmz54NR0dH/PPPP9iyZQu6desGLy+vcs8hPT0dt27dQnp6OoqLi6FWqwEA9vb2Zb4iZc6cOSguLoa/vz/i4+OlrzMhIiIiIqIq9gLe0XzhQkNDBVB2IZSHF09JTk4WPj4+QldXVzg7O4vff/9dABDbt2/XGCsnJ0cYGBhIC8g8rEGDBmLq1Kmie/fuwsDAQFhaWooFCxZo9Nm0aZOwt7cXOjo6okGDBkKIsgvrHD9+XHh5eQk9PT3h4OAgfvzxR9GgQQMxb948qQ9QdoEeExMTERMT89hrcf78eREaGirq1asndHR0hImJiWjdurVYunSpKCwslPqdPHlStG3bVujp6QkzMzMxePBgkZOTI7UXFxeLqKgoUbduXVGjRg3h7u6usajP999/Lzw8PIShoaFQqVSiXbt2Gov6ZGdnixEjRghra2tRo0YNYWNjI0JCQkR6enqFsVf0e9y7d68Q4v8W1rl9+7a0z4gRI4SVlZU4f/68tLDOiRMnpPby9qlo4Z6KlL50DGRV+5oZLFxvhIiIiKgqVGZhHYUQQrzwzPUllJCQgLfffhspKSmws7OT6i9fvgw7OzskJiaiadOmGvvY2tpi1KhRGDVq1AuOlqpTdnY2TExMAGQBUFV3OPSU+DcfERER0f8p/YyblZUFlerxn3Ff28dZn2Tjxo0wMjKCg4MDUlJSMHLkSPj4+EgJZGFhIW7evIlJkybhP//5T5kEkoiIiIiI6E30xiaROTk5GD9+PNLT01G7dm0EBARg7ty5UntCQgLatm0LR0dH/PTTT9UYKRERERER0cuDj7MSVRIfZ3098G8+IiIiov9TmcdZ38iv+CAiIiIiIqKnwySSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbG/sV3wQPbMJJoDesw8jIrlMKBERERG9OjgTSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2XSqOwCiV1VWRBZUKlV1h0FERERE9EJxJpKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLLpVHcAVD6FQoGNGzciODi4ukN5afXr1w937tzBr7/+Wj0BmJhUz3GJqGJCVHcEREREr73XciayX79+UCgUUqlVqxaCgoJw8uTJ6g7thfv555/h7++PmjVrQl9fH05OThgwYABOnDhR3aE9VkZGBnr37g1HR0doaWlh1KhR1R0SERERERHhNU0iASAoKAgZGRnIyMhAXFwcdHR00Llz52ca8/79+1UU3Ysxfvx49OzZEx4eHti0aRPOnz+PNWvWoFGjRoiIiKju8B6roKAA5ubmmDRpEtzd3as7HCIiIiIi+p/XNolUKpWwtLSEpaUlPDw8MGHCBFy5cgU3btyQ+owfPx6Ojo4wMDBAo0aNMHnyZBQWFkrtUVFR8PDwQHR0NBo2bAg9PT0ADx41jY6ORrdu3WBgYAAHBwds2rRJ2q+4uBgDBw5Ew4YNpdm/BQsWlIlxxYoVaNy4MZRKJaysrBAWFlbh+Vy5cgU9evSAqakpzMzM0LVrV1y+fLnC/n/++Sdmz56Nr7/+Gl9//TV8fX1Rv359NGvWDJMmTcK2bds0+i9evBh2dnbQ1dWFk5MTVq1apdGenp6Orl27wsjICCqVCj169MC1a9ek9qSkJLRt2xbGxsZQqVRo1qwZjh49KrUfPHgQvr6+0NfXh42NDcLDw5GXl1dh/La2tliwYAH69u0LE5mPjSYmJsLc3BxffvklgP/7/a1YsQL169eHkZERhg0bhuLiYsyePRuWlpaoU6cOpk+fLmt8IiIiIiJ6jZPIh+Xm5uKHH36Avb09atWqJdUbGxsjNjYWZ8+exYIFC7Bs2TLMmzdPY9+UlBT8/PPP+OWXX6BWq6X6qVOnokePHjh58iQ6duyIkJAQ3Lp1CwBQUlKCevXq4ccff8TZs2cxZcoUfPbZZ9iwYYO0/+LFizF8+HAMGTIEp06dwqZNm2Bvb19u/IWFhQgMDISxsTEOHDiAhIQEGBkZISgoqMLZ0bVr10pJU3kUCoX088aNGzFy5EiMGTMGp0+fxtChQ9G/f3/s3btXOp+uXbvi1q1b2LdvH3bt2oVLly6hZ8+e0hghISGoV68eEhMTcezYMUyYMAE1atQAAKSmpiIoKAjvv/8+Tp48ifXr1+PgwYOPTZora8+ePWjfvj2mT5+O8ePHS/WpqanYtm0btm/fjrVr12L58uXo1KkT/v77b+zbtw9ffvklJk2ahMOHD1c4dkFBAbKzszUKEREREdEbS7yGQkNDhba2tjA0NBSGhoYCgLCyshLHjh177H5fffWVaNasmbQdGRkpatSoIa5fv67RD4CYNGmStJ2bmysAiG3btlU49vDhw8X7778vbVtbW4uJEydW2B+A2LhxoxBCiFWrVgknJydRUlIitRcUFAh9fX2xY8eOcvcPCgoSTZo00aibO3eudE0MDQ3FnTt3hBBCtGrVSgwePFijb/fu3UXHjh2FEELs3LlTaGtri/T0dKn9zJkzAoA4cuSIEEIIY2NjERsbW24sAwcOFEOGDNGoO3DggNDS0hL5+fkVXoNSfn5+YuTIkWXqQ0NDRdeuXcUvv/wijIyMxLp16zTaIyMjhYGBgcjOzpbqAgMDha2trSguLpbqnJycxMyZMys8fmRkpABQpmQ9WMKDhYXlZSpERET0VLKysgQAkZWV9cS+r+1MZNu2baFWq6FWq3HkyBEEBgaiQ4cO+Ouvv6Q+69evh4+PDywtLWFkZIRJkyYhPT1dY5wGDRrA3Ny8zPhNmjSRfjY0NIRKpcL169elukWLFqFZs2YwNzeHkZERvv/+e2ns69ev459//kG7du1knUtSUhJSUlJgbGwMIyMjGBkZwczMDPfu3UNqaqrsazJgwACo1WosXboUeXl5EEIAAJKTk+Hj46PR18fHB8nJyVK7jY0NbGxspHZXV1eYmppKfUaPHo1BgwYhICAAs2bN0ogrKSkJsbGxUuxGRkYIDAxESUkJ0tLSZMdfnsOHD6N79+5YtWqVxsxoKVtbWxgbG0vbFhYWcHV1hZaWlkbdw7+7R0VERCArK0sqV65ceaaYiYiIiIheZa9tEmloaAh7e3vY29ujefPmiI6ORl5eHpYtWwYA+OOPPxASEoKOHTti8+bNOHHiBCZOnFjm8VBDQ8Nyxy99VLOUQqFASUkJAGDdunUYO3YsBg4ciJ07d0KtVqN///7S2Pr6+pU6l9zcXDRr1kxKikvLhQsX0Lt373L3cXBwwKVLlzTe8TQ1NYW9vT3q1q1bqePLERUVhTNnzqBTp07Ys2cPXF1dsXHjRin+oUOHasSelJSEixcvws7O7pmOa2dnB2dnZ6xYsULjXEuV93t63O+uPEqlEiqVSqMQEREREb2pXtsk8lEKhQJaWlrIz88HABw6dAgNGjTAxIkT4eXlBQcHB41ZymeRkJCAVq1aYdiwYfD09IS9vb3GzJyxsTFsbW0RFxcna7ymTZvi4sWLqFOnjpQYl5aKFp3p1asXcnNz8d133z1xfBcXFyQkJJQ5B1dXV6n9ypUrGjNwZ8+exZ07d6Q+AODo6IhPPvkEO3fuxHvvvYeYmBgp/rNnz5aJ3d7eHrq6urKuQUVq166NPXv2ICUlBT169Cg3kSQiIiIioqrz2iaRBQUFyMzMRGZmJpKTkzFixAjk5uaiS5cuAB7M1KWnp2PdunVITU3FwoULpZmzZ+Xg4ICjR49ix44duHDhAiZPnozExESNPlFRUZg7dy4WLlyIixcv4vjx4/jmm2/KHS8kJAS1a9dG165dceDAAaSlpSE+Ph7h4eH4+++/y93H29sbY8aMwZgxYzB69GgcPHgQf/31F/78808sX75cSqoBYNy4cYiNjcXixYtx8eJFfP311/jll18wduxYAEBAQADc3NwQEhKC48eP48iRI+jbty/8/Pzg5eWF/Px8hIWFIT4+Hn/99RcSEhKQmJgIFxcXAA9WwT106BDCwsKgVqtx8eJF/Pbbb09cWKd01jI3Nxc3btyAWq3G2bNny/SrU6cO9uzZg3PnzqFXr14oKip6/C+IiIiIiIiemk51B/C8bN++HVZWVgAezPw5Ozvjxx9/RJs2bQAA7777Lj755BOEhYWhoKAAnTp1wuTJkxEVFfXMxx46dChOnDiBnj17QqFQoFevXhg2bJjG12qEhobi3r17mDdvHsaOHYvatWvjgw8+KHc8AwMD7N+/H+PHj8d7772HnJwc1K1bF+3atXvso5Vz5sxBixYtsHjxYqxYsQJ3796FhYUFWrdujT/++EPaNzg4GAsWLMCcOXMwcuRINGzYEDExMdK1UigU+O233zBixAi0bt0aWlpaCAoKkpJebW1t3Lx5E3379sW1a9dQu3ZtvPfee5g6dSqAB++P7tu3DxMnToSvry+EELCzsyv3HcaHeXp6Sj8fO3YMa9asQYMGDcr9ahNLS0vs2bMHbdq0QUhICNasWfPYsauCCbIA8NFWopeK4sldnof/vWJORET0RlAIwX/6iCojOzv7f48RM4kkogf4LykREb3qSj/jZmVlPXENkNf2cVYiIiIiIiKqekwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWw61R0A0Strggmg93S7ikhRtbEQEREREb0gnIkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsOtUdANGrKisiCyqVqrrDICIiIiJ6oTgTSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESy6VR3AESvLBOT6o7gxRGiuiMgIiIiopcEZyLfYP369UNwcPALOZatrS3mz58vbSsUCvz6669VOiYRERERET1/TCJfY/369YNCoYBCoYCuri7s7e3x+eefo6ioCACwYMECxMbGVmrMp03+EhMTMWTIENn99+/fjy5dusDa2rpKEk4iIiIiIqoaTCJfc0FBQcjIyMDFixcxZswYREVF4auvvgIAmJiYwNTU9IXEYW5uDgMDA9n98/Ly4O7ujkWLFj3HqIiIiIiIqLKYRL7mlEolLC0t0aBBA3z88ccICAjApk2bAJR9nLVNmzYIDw/Hp59+CjMzM1haWiIqKkpqt7W1BQB069YNCoVC2k5NTUXXrl1hYWEBIyMjNG/eHLt379aIo7KPnnbo0AFffPEFunXrJnuf6OhomJqaIi4uTjqfESNGYNSoUahZsyYsLCywbNky5OXloX///jA2Noa9vT22bdsm+xhERERERG86JpFvGH19fdy/f7/C9pUrV8LQ0BCHDx/G7Nmz8fnnn2PXrl0AHjySCgAxMTHIyMiQtnNzc9GxY0fExcXhxIkTCAoKQpcuXZCenv78T+h/Zs+ejQkTJmDnzp1o166dxvnUrl0bR44cwYgRI/Dxxx+je/fuaNWqFY4fP4533nkHffr0wd27dyscu6CgANnZ2RqFiIiIiOhNxSTyDSGEwO7du7Fjxw74+/tX2K9JkyaIjIyEg4MD+vbtCy8vL2lmz9zcHABgamoKS0tLadvd3R1Dhw7FW2+9BQcHB0ybNg12dnbSjOfzNn78eMyfPx/79u1DixYtNNrc3d0xadIkODg4ICIiAnp6eqhduzYGDx4MBwcHTJkyBTdv3sTJkycrHH/mzJkwMTGRio2NzfM+JSIiIiKilxa/4uM1t3nzZhgZGaGwsBAlJSXo3bu3xiOqj2rSpInGtpWVFa5fv/7YY+Tm5iIqKgpbtmxBRkYGioqKkJ+f/0JmIufOnYu8vDwcPXoUjRo1KtP+8Ploa2ujVq1acHNzk+osLCwA4LHnGBERgdGjR0vb2dnZTCSJiIiI6I3FmcjXXNu2baFWq3Hx4kXk5+dLj6tWpEaNGhrbCoUCJSUljz3G2LFjsXHjRsyYMQMHDhyAWq2Gm5vbYx+brSq+vr4oLi7Ghg0bym0v73werlMoFADw2HNUKpVQqVQahYiIiIjoTcWZyNecoaEh7O3tq2y8GjVqoLi4WKMuISEB/fr1kxbByc3NxeXLl6vsmI/TokULhIWFISgoCDo6Ohg7duwLOS4RERER0ZuKSSRViq2tLeLi4uDj4wOlUomaNWvCwcEBv/zyC7p06QKFQoHJkyc/cfbySXJzc5GSkiJtp6WlQa1Ww8zMDPXr19fo26pVK2zduhUdOnSAjo4ORo0a9UzHJiIiIiKiivFxVqqUuXPnYteuXbCxsYGnpycA4Ouvv0bNmjXRqlUrdOnSBYGBgWjatOkzHefo0aPw9PSUjjF69Gh4enpiypQp5fZ/++23sWXLFkyaNAnffPPNMx1bLhNkQQHxZhQFnnshIiIioleDQgghqjsIoldJdnY2TExMAGQB4PuRVYV/ExERERFVn9LPuFlZWU9cA4QzkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkm051B0D0yppgAuhVfjcRKao+FiIiIiKiF4QzkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkm051B0D0qsqKyIJKparuMIiIiIiIXijORBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISLYqTyIvX74MhUIBtVpd1UNXC1tbW8yfP79Kx2zTpg1GjRpVpWNWlZc5tkfFxsbC1NS0+gIwMQEUChYWFpbyCxER0WuqUklkv379oFAooFAoUKNGDTRs2BCffvop7t27J/WxsbFBRkYG3nrrrSoP9k0RGxsrXWctLS3Uq1cP/fv3x/Xr16s7tGdWmf9kCA8PR7NmzaBUKuHh4fHcYyMiIiIioifTqewOQUFBiImJQWFhIY4dO4bQ0FAoFAp8+eWXAABtbW1YWlpWeaBvGpVKhfPnz6OkpARJSUno378//vnnH+zYseOpxissLESNGjWqOMrnb8CAATh8+DBOnjxZ3aEQERERERGe4nFWpVIJS0tL2NjYIDg4GAEBAdi1a5fU/uhMU3x8PBQKBeLi4uDl5QUDAwO0atUK58+f1xj3iy++QJ06dWBsbIxBgwZhwoQJT5x9atOmDcLDw/Hpp5/CzMwMlpaWiIqK0uhz584dDBo0CObm5lCpVPD390dSUpJGn99//x3NmzeHnp4eateujW7dulV4zOjoaJiamiIuLg4AcPr0aXTo0AFGRkawsLBAnz598O+//0r98/Ly0LdvXxgZGcHKygpz58597DmVUigUsLS0hLW1NTp06IDw8HDs3r0b+fn52L59O95++22YmpqiVq1a6Ny5M1JTU6V9S38H69evh5+fH/T09LB69WrcvHkTvXr1Qt26dWFgYAA3NzesXbv2sXFs2bIFJiYmWL16NQDgypUr6NGjB0xNTWFmZoauXbvi8uXLZa6Ri4sL9PT04OzsjO+++05qa9iwIQDA09MTCoUCbdq0qfDYCxcuxPDhw9GoUSNZ1+zGjRvw8vJCt27dUFBQIN17O3bsgKenJ/T19eHv74/r169j27ZtcHFxgUqlQu/evXH37l1ZxyAiIiIietM90zuRp0+fxqFDh6Crq/vEvhMnTsTcuXNx9OhR6OjoYMCAAVLb6tWrMX36dHz55Zc4duwY6tevj8WLF8uKYeXKlTA0NMThw4cxe/ZsfP755xpJbffu3aWk4dixY2jatCnatWuHW7duAXiQJHXr1g0dO3bEiRMnEBcXhxYtWpR7rNmzZ2PChAnYuXMn2rVrhzt37sDf3x+enp44evQotm/fjmvXrqFHjx7SPuPGjcO+ffvw22+/YefOnYiPj8fx48dlndvD9PX1UVJSgqKiIuTl5WH06NE4evQo4uLioKWlhW7duqGkpERjnwkTJmDkyJFITk5GYGAg7t27h2bNmmHLli04ffo0hgwZgj59+uDIkSPlHnPNmjXo1asXVq9ejZCQEBQWFiIwMBDGxsY4cOAAEhISYGRkhKCgINy/fx/Ag9/llClTMH36dCQnJ2PGjBmYPHkyVq5cCQDSsXbv3o2MjAz88ssvlb4W5bly5Qp8fX3x1ltv4aeffoJSqZTaoqKi8O233+LQoUNSEjx//nysWbMGW7Zswc6dO/HNN99UOHZBQQGys7M1ChERERHRG0tUQmhoqNDW1haGhoZCqVQKAEJLS0v89NNPUp+0tDQBQJw4cUIIIcTevXsFALF7926pz5YtWwQAkZ+fL4QQomXLlmL48OEax/Lx8RHu7u6PjcfPz0+8/fbbGnXNmzcX48ePF0IIceDAAaFSqcS9e/c0+tjZ2YmlS5cKIYTw9vYWISEhFR6jQYMGYt68eeLTTz8VVlZW4vTp01LbtGnTxDvvvKPR/8qVKwKAOH/+vMjJyRG6urpiw4YNUvvNmzeFvr6+GDlyZIXHjImJESYmJtL2hQsXhKOjo/Dy8iq3/40bNwQAcerUKSHE//0O5s+fX+ExSnXq1EmMGTNG2vbz8xMjR44U3377rTAxMRHx8fFS26pVq4STk5MoKSmR6goKCoS+vr7YsWOHEOLBtV2zZo3GMaZNmya8vb01Yiu9P+SIjIws914ovU7nzp0TNjY2Ijw8XCO28u69mTNnCgAiNTVVqhs6dKgIDAx87PEBlClZgBAsLCwsFRUiIqJXSFZWlgAgsrKynti30u9Etm3bFosXL0ZeXh7mzZsHHR0dvP/++0/cr0mTJtLPVlZWAIDr16+jfv36OH/+PIYNG6bRv0WLFtizZw8A4MCBA+jQoYPUtnTpUoSEhJQZt3Ts0gVokpKSkJubi1q1amn0yc/Plx7/VKvVGDx48GNjnzt3LvLy8nD06FGNRyuTkpKwd+9eGBkZldknNTUV+fn5uH//Plq2bCnVm5mZwcnJ6bHHA4CsrCwYGRmhpKQE9+7dw9tvv43o6GgAwMWLFzFlyhQcPnwY//77rzQDmZ6errGgkZeXl8aYxcXFmDFjBjZs2ICrV6/i/v37KCgogIGBgUa/n376CdevX0dCQgKaN2+ucb4pKSkwNjbW6H/v3j2kpqYiLy8PqampGDhwoMY1LSoqgomJyRPP+Wnk5+fD19cXvXv3rnAV3YfvEQsLCxgYGGj8Hi0sLCqcjQWAiIgIjB49WtrOzs6GjY3NswdPRERERPQKqnQSaWhoCHt7ewDAihUr4O7ujuXLl2PgwIGP3e/hRV0U/1v6/NHHLyvi5eWlsZqnhYVFueOWjl06bm5uLqysrBAfH19mzNKvhtDX13/i8X19fbFlyxZs2LABEyZMkOpzc3PRpUsXaVGhh1lZWSElJeWJY1fE2NgYx48fh5aWFqysrDTi7NKlCxo0aIBly5bB2toaJSUleOutt6RHSksZGhpqbH/11VdYsGAB5s+fDzc3NxgaGmLUqFFl9vP09MTx48exYsUKeHl5Sb+v3NxcNGvWTHo/8mHm5ubIzc0FACxbtkwjcQYeLLj0PCiVSgQEBGDz5s0YN24c6tatW6bPo/fe4+6Zio7x8OOxRERERERvskonkQ/T0tLCZ599htGjR6N3796yErLyODk5ITExEX379pXqEhMTpZ/19fWlxLUymjZtiszMTOjo6MDW1rbcPk2aNEFcXBz69+9f4TgtWrRAWFgYgoKCoKOjg7Fjx0rj//zzz7C1tYWOTtlLaWdnhxo1auDw4cOoX78+AOD27du4cOEC/Pz8Hhu7lpZWued88+ZNnD9/HsuWLYOvry8A4ODBg48dq1RCQgK6du2K//f//h+AB0n8hQsX4OrqWibuuXPnok2bNtDW1sa3334rne/69etRp04dqFSqMuObmJjA2toaly5dkmaKH1X6/mxxcbGsmJ9ES0sLq1atQu/evdG2bVvEx8fD2tq6SsYmIiIiIqKynmlhHeDBwjXa2tpYtGjRU48xYsQILF++HCtXrsTFixfxxRdf4OTJk9IM2NMKCAiAt7c3goODsXPnTly+fBmHDh3CxIkTcfToUQBAZGQk1q5di8jISCQnJ+PUqVPlziy2atUKW7duxdSpU6XHJocPH45bt26hV69eSExMRGpqKnbs2IH+/fujuLgYRkZGGDhwIMaNG4c9e/bg9OnT6NevH7S0nv6y16xZE7Vq1cL333+PlJQU7NmzR+NRy8dxcHDArl27cOjQISQnJ2Po0KG4du1auX0dHR2xd+9e/Pzzzxg1ahQAICQkBLVr10bXrl1x4MABpKWlIT4+HuHh4fj7778BAFOnTsXMmTOxcOFCXLhwAadOnUJMTAy+/vprAECdOnWgr68vLUKUlZVVYbwpKSlQq9XIzMxEfn4+1Go11Gp1mZlTbW1trF69Gu7u7vD390dmZqas60FERERERJX3zEmkjo4OwsLCMHv2bOTl5T3VGCEhIYiIiMDYsWPRtGlTpKWloV+/ftDT03um2BQKBbZu3YrWrVujf//+cHR0xIcffoi//vpLeiS2TZs2+PHHH7Fp0yZ4eHjA39+/wvfj3n77bWzZsgWTJk3CN998A2trayQkJKC4uBjvvPMO3NzcMGrUKJiamkqJ4ldffQVfX1906dIFAQEBePvtt9GsWbOnPictLS2sW7cOx44dw1tvvYVPPvkEX331lax9J02ahKZNmyIwMBBt2rSBpaUlgoODK+zv5OSEPXv2YO3atRgzZgwMDAywf/9+1K9fH++99x5cXFwwcOBA3Lt3T5qZHDRoEKKjoxETEwM3Nzf4+fkhNjZW+moPHR0dLFy4EEuXLoW1tTW6du1a4fEHDRoET09PLF26FBcuXICnpyc8PT3xzz//lOmro6ODtWvXonHjxtLXeDxvJsiCAoKFheWh8hIsZ/PyFCIioteUQoiX81+69u3bw9LSEqtWraruUIg0ZGdn/2+hoCwAZR/rJXqTvZz/ohAREdGTlH7GzcrKKvfVtYc90zuRVeXu3btYsmQJAgMDoa2tjbVr12L37t0a3/dIRERERERE1e+lSCJLHzudPn067t27BycnJ/z8888ICAio7tCIiIiIiIjoIS9FEqmvr4/du3dXdxhERERERET0BM+8sA4RERERERG9OZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcn2UnzFB9EraYIJoPfkbiJSPP9YiIiIiIheEM5EEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINp3qDoDoVZUVkQWVSlXdYRARERERvVCciSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIt9AsbGxMDU1faHH7NevH4KDg6t0zPj4eCgUCty5c6dKxyUiIiIioooxiXzJZGZmYuTIkbC3t4eenh4sLCzg4+ODxYsX4+7du9Ud3gs1ffp0tGrVCgYGBi886SUiIiIiovLpVHcA9H8uXboEHx8fmJqaYsaMGXBzc4NSqcSpU6fw/fffo27dunj33XerO8wX5v79++jevTu8vb2xfPny6g6HiIiIiIjAmciXyrBhw6Cjo4OjR4+iR48ecHFxQaNGjdC1a1ds2bIFXbp0kfqmp6eja9euMDIygkqlQo8ePXDt2jWpPSkpCW3btoWxsTFUKhWaNWuGo0ePahxvx44dcHFxgZGREYKCgpCRkSG1JSYmon379qhduzZMTEzg5+eH48ePS+1jx45F586dpe358+dDoVBg+/btUp29vT2io6PLPdfExESYm5vjyy+/rPB6TJ06FZ988gnc3NxkXD3g7t276NChA3x8fHDnzh1cvnwZCoUCGzZsgK+vL/T19dG8eXNcuHABiYmJ8PLygpGRETp06IAbN27IOgYRERER0ZuOSeRL4ubNm9i5cyeGDx8OQ0PDcvsoFAoAQElJCbp27Ypbt25h37592LVrFy5duoSePXtKfUNCQlCvXj0kJibi2LFjmDBhAmrUqCG13717F3PmzMGqVauwf/9+pKenY+zYsVJ7Tk4OQkNDcfDgQfz5559wcHBAx44dkZOTAwDw8/PDwYMHUVxcDADYt28fateujfj4eADA1atXkZqaijZt2pQ5jz179qB9+/aYPn06xo8f/0zXrdSdO3fQvn17lJSUYNeuXRqPv0ZGRmLSpEk4fvw4dHR00Lt3b3z66adYsGABDhw4gJSUFEyZMqXCsQsKCpCdna1RiIiIiIjeVHyc9SWRkpICIQScnJw06mvXro179+4BAIYPH44vv/wScXFxOHXqFNLS0mBjYwMA+O9//4vGjRsjMTERzZs3R3p6OsaNGwdnZ2cAgIODg8a4hYWFWLJkCezs7AAAYWFh+Pzzz6V2f39/jf7ff/89TE1NsW/fPnTu3Bm+vr7IycnBiRMn0KxZM+zfvx/jxo3Dr7/+CuDBojd169aFvb29xjgbN25E3759ER0drZH0PovMzEz07NkTDg4OWLNmDXR1dTXax44di8DAQADAyJEj0atXL8TFxcHHxwcAMHDgQMTGxlY4/syZMzF16tQqiZWIiIiI6FXHmciX3JEjR6BWq9G4cWMUFBQAAJKTk2FjYyMlkADg6uoKU1NTJCcnAwBGjx6NQYMGISAgALNmzUJqaqrGuAYGBlICCQBWVla4fv26tH3t2jUMHjwYDg4OMDExgUqlQm5uLtLT0wEApqamcHd3R3x8PE6dOgVdXV0MGTIEJ06cQG5uLvbt2wc/Pz+NYx4+fBjdu3fHqlWrqiyBBID27dvD3t4e69evL5NAAkCTJk2kny0sLABA4xFZCwsLjXN/VEREBLKysqRy5cqVKoudiIiIiOhVwyTyJWFvbw+FQoHz589r1Ddq1Aj29vbQ19ev1HhRUVE4c+YMOnXqhD179sDV1RUbN26U2h9+tBV48KisEELaDg0NhVqtxoIFC3Do0CGo1WrUqlUL9+/fl/q0adMG8fHxUsJoZmYGFxcXHDx4sNwk0s7ODs7OzlixYgUKCwsrdT6P06lTJ+zfvx9nz54tt/3hcy19JPjRupKSkgrHVyqVUKlUGoWIiIiI6E3FJPIlUatWLbRv3x7ffvst8vLyHtvXxcUFV65c0ZgRO3v2LO7cuQNXV1epztHREZ988gl27tyJ9957DzExMbLjSUhIQHh4ODp27IjGjRtDqVTi33//1ehT+l5kXFyc9O5jmzZtsHbtWly4cKHM+5C1a9fGnj17kJKSgh49elRZIjlr1iyEhoaiXbt2FSaSRERERERUNZhEvkS+++47FBUVwcvLC+vXr0dycjLOnz+PH374AefOnYO2tjYAICAgAG5ubggJCcHx48dx5MgR9O3bF35+fvDy8kJ+fj7CwsIQHx+Pv/76CwkJCUhMTISLi4vsWBwcHLBq1SokJyfj8OHDCAkJKTMb2rp1a+Tk5GDz5s0aSeTq1athZWUFR0fHMuPWqVMHe/bswblz59CrVy8UFRVVGEN6ejrUajXS09NRXFwMtVoNtVqN3NzcMn3nzJmDkJAQ+Pv749y5c7LPk4iIiIiIKodJ5EvEzs4OJ06cQEBAACIiIuDu7g4vLy988803GDt2LKZNmwbgweOXv/32G2rWrInWrVsjICAAjRo1wvr16wEA2trauHnzJvr27QtHR0f06NEDHTp0qNTiMMuXL8ft27fRtGlT9OnTB+Hh4ahTp45Gn5o1a8LNzQ3m5ubSAj6tW7dGSUlJmUdZH2ZpaYk9e/bg1KlTCAkJkVZ4fdSUKVPg6emJyMhI5ObmwtPTE56enmW+qqTUvHnz0KNHD/j7++PChQuyz5WIiIiIiORTiIdfhCOiJ8rOzoaJiQmysrL4fiQRERERvRYq8xmXM5FEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJJtOdQdA9KoymWkC6FXcLiLFiwuGiIiIiOgF4UwkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcmmU90BEL2qsiKyoFKpqjsMIiIiIqIXijORREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUnkM1AoFPj1118BAJcvX4ZCoYBara7WmKrK999/DxsbG2hpaWH+/PlVPn6/fv0QHBz8TGNERUXBw8OjSuJ5KiYmgELxehciIiIioke8kUlkVSQwj7KxsUFGRgbeeuutKh33UbGxsVAoFFAoFNDS0kK9evXQv39/XL9+vcqOkZ2djbCwMIwfPx5Xr17FkCFDqmxsue7du4d+/frBzc0NOjo6Vf77IiIiIiKip6NT3QG8LrS1tWFpaflCjqVSqXD+/HmUlJQgKSkJ/fv3xz///IMdO3ZUyfjp6ekoLCxEp06dYGVlVSVjVlZxcTH09fURHh6On3/+uVpiICIiIiKist7ImchHtWnTBuHh4fj0009hZmYGS0tLREVFafS5ePEiWrduDT09Pbi6umLXrl0a7Y8+zlpcXIyBAweiYcOG0NfXh5OTExYsWKCxT+mM6Jw5c2BlZYVatWph+PDhKCwsfGy8CoUClpaWsLa2RocOHRAeHo7du3cjPz8fABAdHQ0XFxfo6enB2dkZ3333ncb+48ePh6OjIwwMDNCoUSNMnjxZOmZsbCzc3NwAAI0aNYJCocDly5cBAIsXL4adnR10dXXh5OSEVatWSWOOHTsWnTt3lrbnz58PhUKB7du3S3X29vaIjo5+7LmVMjQ0xOLFizF48GDZyXlqaioaNWqEsLAwCCEQGxsLU1NTbN68GU5OTjAwMMAHH3yAu3fvYuXKlbC1tUXNmjURHh6O4uJiWccgIiIiInrTcSbyf1auXInRo0fj8OHD+OOPP9CvXz/4+Pigffv2KCkpwXvvvQcLCwscPnwYWVlZGDVq1GPHKykpQb169fDjjz+iVq1aOHToEIYMGQIrKyv06NFD6rd3715YWVlh7969SElJQc+ePeHh4YHBgwfLjl1fXx8lJSUoKirC6tWrMWXKFHz77bfw9PTEiRMnMHjwYBgaGiI0NBQAYGxsjNjYWFhbW+PUqVMYPHgwjI2N8emnn6Jnz56wsbFBQEAAjhw5AhsbG5ibm2Pjxo0YOXIk5s+fj4CAAGzevBn9+/dHvXr10LZtW/j5+SE6OhrFxcXQ1tbGvn37ULt2bcTHxyMoKAhXr15Famoq2rRp8zS/nic6efIkAgMDMXDgQHzxxRdS/d27d7Fw4UKsW7cOOTk5eO+999CtWzeYmppi69atuHTpEt5//334+PigZ8+e5Y5dUFCAgoICaTs7O/u5nAMRERER0StBvIFCQ0NF165dpW0/Pz/x9ttva/Rp3ry5GD9+vBBCiB07dggdHR1x9epVqX3btm0CgNi4caMQQoi0tDQBQJw4caLC4w4fPly8//77GnE0aNBAFBUVSXXdu3cXPXv2rHCMmJgYYWJiIm1fuHBBODo6Ci8vLyGEEHZ2dmLNmjUa+0ybNk14e3tXOOZXX30lmjVrJm2fOHFCABBpaWlSXatWrcTgwYM19uvevbvo2LGjEEKI27dvCy0tLZGYmChKSkqEmZmZmDlzpmjZsqUQQogffvhB1K1bV+PcH/4dPE5FfSMjI4W7u7tISEgQNWvWFHPmzNFoj4mJEQBESkqKVDd06FBhYGAgcnJypLrAwEAxdOjQCo8fGRkpAJQpWYAQr3shIiIiojdCVlbWg8+4WVlP7MvHWf+nSZMmGttWVlbSYjXJycmwsbGBtbW11O7t7f3EMRctWoRmzZrB3NwcRkZG+P7775Genq7Rp3HjxtDW1i73uBXJysqCkZERDAwM4OTkBAsLC6xevRp5eXlITU3FwIEDYWRkJJUvvvgCqamp0v7r16+Hj48PLC0tYWRkhEmTJpWJ61HJycnw8fHRqPPx8UFycjIAwNTUFO7u7oiPj8epU6egq6uLIUOG4MSJE8jNzcW+ffvg5+f3xGtWWenp6Wjfvj2mTJmCMWPGlGk3MDCAnZ2dtG1hYQFbW1sYGRlp1D3umkdERCArK0sqV65cqdqTICIiIiJ6hfBx1v+pUaOGxrZCoUBJSclTj7du3TqMHTsWc+fOhbe3N4yNjfHVV1/h8OHDz3xcY2NjHD9+HFpaWrCysoK+vj4A4Nq1awCAZcuWoWXLlhr7lCaqf/zxB0JCQjB16lQEBgbCxMQE69atw9y5c5/6XEu1adMG8fHxUCqV8PPzg5mZGVxcXHDw4EHs27ev3CTvWZmbm8Pa2hpr167FgAEDoFKpNNrLu76VveZKpRJKpbLqgiYiIiIieoUxiZTBxcUFV65cQUZGhrRa6Z9//vnYfRISEtCqVSsMGzZMqnt4NvBZaGlpwd7evky9hYUFrK2tcenSJYSEhJS776FDh9CgQQNMnDhRqvvrr7+eeEwXFxckJCRI71UCD87R1dVV2vbz88OKFSugo6ODoKAgAA8Sy7Vr1+LChQvP5X1IfX19bN68GR07dkRgYCB27twJY2PjKj8OERERERE9wCRShoCAADg6OiI0NBRfffUVsrOzNZKw8jg4OOC///0vduzYgYYNG2LVqlVITExEw4YNn2usU6dORXh4OExMTBAUFISCggIcPXoUt2/fxujRo+Hg4ID09HSsW7cOzZs3x5YtW7Bx48Ynjjtu3Dj06NEDnp6eCAgIwO+//45ffvkFu3fvlvq0bt0aOTk52Lx5M2bNmgXgQRL5wQcfwMrKCo6OjpU6l7Nnz+L+/fu4desWcnJypJVvPTw8NPoZGhpiy5Yt6NChAzp06IDt27drPK5KRERERERVh+9EyqClpYWNGzciPz8fLVq0wKBBgzB9+vTH7jN06FC899576NmzJ1q2bImbN29qzEo+L4MGDUJ0dDRiYmLg5uYGPz8/xMbGSsnru+++i08++QRhYWHw8PDAoUOHMHny5CeOGxwcjAULFmDOnDlo3Lgxli5dipiYGI3ZxZo1a8LNzQ3m5uZwdnYG8CCxLCkpear3ITt27AhPT0/8/vvviI+Ph6enJzw9Pcvta2RkhG3btkEIgU6dOiEvL6/Sx6u0rDdgaR0iIiIiokcohOAnRaLKyM7OhomJCbKyssq8g0lERERE9CqqzGdczkQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWw61R0A0avKZKYJoKdZJyJF9QRDRERERPSCcCaSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESy6VR3AESvqqyILKhUquoOg4iIiIjoheJMJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpJNp7oDICIiIiKSo6ioCPfv36/uMIheWXp6etDSevZ5RCaRRE/LxKS6I6A3hRDVHQERUbUSQiA9PR3//vtvdYdC9ErT0tKCq6srlErlM43DJPIlpVAosHHjRgQHB5fbfvnyZTRs2BAnTpyAh4fHC43taURFReHXX3+FWq2usjFftWtARERET6c0gaxbty6MjIyqZCaF6E1TUlKCtLQ0XL58GY6OjlAoFE89FpPIZ9CvXz+sXLkSAKCjo4N69eqhe/fu+Pzzz6Gnp1fN0T1ZVFQUpk6dCgDQ1taGqakpXF1d8d577+Hjjz9+5v+heFbff/891qxZg+PHjyMnJwe3b9+GqalptcZEREREL1ZRUZGUQFpaWlZ3OESvtLp16yItLQ2FhYXQ1dV96nH43zjPKCgoCBkZGbh06RLmzZuHpUuXIjIysrrDkq1x48bIyMhAeno69u7di+7du2PmzJlo1aoVcnJyqjW2u3fvIigoCJ999lm1xkFERETVp/QdSCMjo2qOhOjVVzpJVFRU9EzjMIl8RkqlEpaWlrCxsUFwcDACAgKwa9cuqd3W1hbz58/X2MfDwwNRUVHS9sWLF9G6dWvo6enB1dVVY/9SR44cgaenJ/T09ODl5YUTJ05IbUII2NvbY86cORr7qNVqKBQKpKSkVBi/jo4OLC0tYW1tDTc3N4wYMQL79u3D6dOn8eWXX0r9FAoFfv31V419TU1NERsbK23//fff6NWrF8zMzGBoaAgvLy8cPny43OOmpqaiUaNGCAsLg6jgfa9Ro0ZhwoQJ+M9//lNh/A8rLi7GgAED4OzsjPT0dCnupUuXonPnzjAwMICLiwv++OMPpKSkoE2bNjA0NESrVq2Qmpoq6xhERERUPfgIK9Gze5ZHWB/GP41V6PTp0zh06FClpoZLSkrw3nvvQVdXF4cPH8aSJUswfvx4jT65ubno3LkzXF1dcezYMURFRWHs2LFSu0KhwIABAxATE6OxX0xMDFq3bg17e/tKnYezszM6dOiAX375RfY+ubm58PPzw9WrV7Fp0yYkJSXh008/RUlJSZm+J0+exNtvv43evXvj22+/rZKbuaCgAN27d4darcaBAwdQv359qW3atGno27cv1Go1nJ2d0bt3bwwdOhQRERE4evQohBAICwt77NjZ2dkahYiIiIjoTcV3Ip/R5s2bYWRkhKKiIhQUFEBLSwvffvut7P13796Nc+fOYceOHbC2tgYAzJgxAx06dJD6rFmzBiUlJVi+fDn09PTQuHFj/P333/j444+lPv369cOUKVNw5MgRtGjRAoWFhVizZk2Z2Um5nJ2dsXPnTtn916xZgxs3biAxMRFmZmYAUG7yeujQIXTu3BkTJ07EmDFjniq2R+Xm5qJTp04oKCjA3r17YfLIqqn9+/dHjx49AADjx4+Ht7c3Jk+ejMDAQADAyJEj0b9//wrHnzlzpvTuKBERERHRm45J5DNq27YtFi9ejLy8PMybNw86Ojp4//33Ze+fnJwMGxsbKYEEAG9v7zJ9mjRporFYz6N9rK2t0alTJ6xYsQItWrTA77//Ls3OPQ0hRKVmCNVqNTw9PaUEsjzp6elo3749pk+fjlGjRj1VXOXp1asX6tWrhz179kBfX79Me5MmTaSfLSwsAABubm4adffu3UN2djZUKlWZ/SMiIjB69GhpOzs7GzY2NlUWPxERET0dxdSqeTRPLhHJr1wiAvg46zMzNDSEvb093N3dsWLFChw+fBjLly+X2rW0tMq881dYWPhcYhk0aBDWrVuH/Px8xMTEoGfPnjAwMHiqsZKTk9GwYUNpW6FQPPY8ykveHmVubo4WLVpg7dq1VfpIaMeOHXHy5En88ccf5bbXqFFD+rk0MS6vrrxHb4EH772qVCqNQkRERCTHlStXMGDAAFhbW0NXVxcNGjTAyJEjcfPmzeoO7ZWjUCikYmJiAh8fH+zZs6e6w3qi2NjY1+4bBphEViEtLS189tlnmDRpEvLz8wE8SJwyMjKkPtnZ2UhLS5O2XVxccOXKFY0+f/75p8a4Li4uOHnyJO7du1dhH+BBMmVoaIjFixdj+/btGDBgwFOdx7lz57B9+3aNGdVHz+PixYu4e/eutN2kSROo1WrcunWrwnH19fWxefNm6OnpITAwsMpWf/34448xa9YsvPvuu9i3b1+VjElERET0rC5dugQvLy9cvHgRa9euRUpKCpYsWYK4uDh4e3s/9nPT81a66u3DiouLK/xP9ZdFTEwMMjIykJCQgNq1a6Nz5864dOnSU41V3jUgeZhEVrHu3btDW1sbixYtAgD4+/tj1apVOHDgAE6dOoXQ0FBoa2tL/QMCAuDo6IjQ0FAkJSXhwIEDmDhxosaYvXv3hkKhwODBg3H27Fls3bq13HcdtbW10a9fP0RERMDBwaHMI6/lKSoqQmZmJv755x+cOnUK33zzDfz8/ODh4YFx48ZJ/fz9/fHtt9/ixIkTOHr0KD766CON2bxevXrB0tISwcHBSEhIwKVLl/Dzzz+XmR00NDTEli1boKOjgw4dOiA3N7fC2DIzM6FWq6XVZU+dOlVhojpixAh88cUX6Ny5Mw4ePPjE8yYiIiJ63oYPHw5dXV3s3LkTfn5+qF+/Pjp06IDdu3fj6tWrGp/5CgoKMH78eNjY2ECpVMLe3l7j6bYzZ86gc+fOUKlUMDY2hq+vr7S6fJs2bcq8KhQcHIx+/fpJ27a2ttJigyqVCkOGDJFmyDZt2gRXV1colUqkp6ejoKAAY8eORd26dWFoaIiWLVsiPj5eGqt0vx07dsDFxQVGRkbS1949bMWKFWjcuDGUSiWsrKw0FjK8c+cOBg0aBHNzc6hUKvj7+yMpKemJ19TU1BSWlpZ46623sHjxYuTn50vfbHD69Gl06NABRkZGsLCwQJ8+ffDvv/9K+7Zp0wZhYWEYNWoUateuLa2P8bhrCwDR0dFwcXGBnp4enJ2d8d1330ltly9fhkKhwC+//IK2bdvCwMAA7u7u0mfg+Ph49O/fH1lZWdIsaum3NKxatQpeXl4wNjaGpaUlevfujevXr2uc76ZNm+Dg4AA9PT20bdsWK1euhEKhwJ07d6Q+Bw8ehK+vL/T19WFjY4Pw8HDk5eU98Vo+CyaRVUxHRwdhYWGYPXs28vLyEBERAT8/P3Tu3BmdOnVCcHAw7OzspP5aWlrYuHEj8vPz0aJFCwwaNAjTp0/XGNPIyAi///47Tp06BU9PT0ycOFHj6zceNnDgQNy/f/+xC8U87MyZM7CyskL9+vXRpk0bbNiwAREREThw4IDG9zHNnTsXNjY28PX1Re/evTF27FiNR2VL/4KsU6cOOnbsCDc3N8yaNUsjYX74fLZt2wYhBDp16lThTb5kyRJ4enpi8ODBAIDWrVvD09MTmzZtKrf/qFGjMHXqVHTs2BGHDh2Sdf7PwgRZUECwsDz/ogDLK1SIiADg1q1b2LFjB4YNG1bmtR9LS0uEhIRg/fr10utCffv2xdq1a7Fw4UIkJydj6dKl0mexq1evonXr1lAqldizZw+OHTuGAQMGVPq7/ubMmQN3d3ecOHECkydPBvDge7m//PJLREdH48yZM6hTpw7CwsLwxx9/YN26dTh58iS6d++OoKAgXLx4URrr7t27mDNnDlatWoX9+/cjPT1d49sDFi9ejOHDh2PIkCE4deoUNm3apLHoYvfu3XH9+nVs27YNx44dQ9OmTdGuXbtKzc6WXtf79+/jzp078Pf3h6enJ44ePYrt27fj2rVr0uKKpVauXAldXV0kJCRgyZIlT7y2q1evxpQpUzB9+nQkJydjxowZmDx5MlauXKkx7sSJEzF27Fio1Wo4OjqiV69eKCoqQqtWrTB//nyoVCpkZGQgIyNDuk6FhYWYNm0akpKS8Ouvv+Ly5csaiX9aWho++OADBAcHIykpCUOHDi0z2ZSamoqgoCC8//77OHnyJNavX4+DBw8+9psHqoSg18r+/ftFjRo1RGZmZnWH8trKysoSAASQJQDBwsLColGIqGrl5eWJo0ePiry8vDJtiMILLZXx559/CgBi48aN5bZ//fXXAoC4du2aOH/+vAAgdu3aVW7fiIgI0bBhQ3H//v1y2/38/MTIkSM16rp27SpCQ0Ol7QYNGojg4GCNPjExMQKAUKvVUt1ff/0ltLW1xdWrVzX6tmvXTkRERGjsl5KSIrUvWrRIWFhYSNvW1tZi4sSJ5cZ74MABoVKpxL179zTq7ezsxNKlS8vdRwihcT3z8vLEsGHDhLa2tkhKShLTpk0T77zzjkb/K1euCADi/PnzQogH18nT01Ojz5OurZ2dnVizZo1G3bRp04S3t7cQQoi0tDQBQERHR0vtZ86cEQBEcnKyEOLB9TIxManwvEolJiYKACInJ0cIIcT48ePFW2+9pdFn4sSJAoC4ffu2EEKIgQMHiiFDhmj0OXDggNDS0hL5+flljvG4P0+ln3GzsrKeGCtXZ31NFBQU4MaNG4iKikL37t2lVUiJiIiIqPoIIZ7YR61WQ1tbG35+fhW2+/r6arxK9DS8vLzK1Onq6mqsZH/q1CkUFxfD0dFRo19BQQFq1aolbRsYGGg8XWdlZSU9inn9+nX8888/aNeuXblxJCUlITc3V2M8AMjPz9d4jLQ8vXr1gra2NvLz82Fubo7ly5ejSZMmmDZtGvbu3avxJF2p1NRU6XyaNWum0fa4a5uXl4fU1FQMHDhQejIOePA62KNfKffwNbSysgLw4Do4OztXeC6l3/+elJSE27dvS++jpqenw9XVFefPn0fz5s019mnRooXGdlJSEk6ePInVq1dLdUIIlJSUIC0tDS4uLhUe/1kwiXxNrF27FgMHDoSHhwf++9//Vnc4RERERG80e3t7KBQKJCcno1u3bmXak5OTUbNmTZibmz9xlfsntcv9NgBDQ8Nyx374a91yc3Ohra2NY8eOlXkt6eEE7dGk6+GV/J8Ub25uLqysrDTesyz1pFVM582bh4CAAJiYmMDc3FxjzC5dupT7yldpUgeUvQaPi7V07Y5ly5ahZcuWGm2PXpvKrPwPPEhQAwMDERgYiNWrV8Pc3Bzp6ekIDAys1II/ubm5GDp0KMLDw8u01a9fX/Y4lcUk8jXRr18/jWeoiYiIiKj61KpVC+3bt8d3332HTz75RCNZyczMxOrVq9G3b18oFAq4ubmhpKQE+/btQ0BAQJmxmjRpgpUrV6KwsLDcGbNHV9EvLi7G6dOn0bZt20rH7enpieLiYly/fh2+vr6V3h8AjI2NYWtri7i4uHJjaNq0KTIzM6GjowNbW9tKjW1paanxbuXDY/7888+wtbWFjo78FOdx19bCwgLW1ta4dOkSQkJCKhXnw3R1dVFcXKxRd+7cOdy8eROzZs2Svn/86NGjGn2cnJywdetWjbrExESN7aZNm+Ls2bPlXpPniQvrEBERERE9B99++y0KCgoQGBiI/fv348qVK9i+fTvat2+PunXrSosp2traIjQ0FAMGDMCvv/6KtLQ0xMfHY8OGDQCAsLAwZGdn48MPP8TRo0dx8eJFrFq1CufPnwfwYBX9LVu2YMuWLTh37hw+/vhjjdU7K8PR0REhISHo27cvfvnlF6SlpeHIkSOYOXMmtmzZInucqKgozJ07FwsXLsTFixdx/PhxfPPNNwAefDuBt7c3goODsXPnTly+fBmHDh3CxIkTyyRScg0fPhy3bt1Cr169kJiYiNTUVOzYsQP9+/cvk8A97EnXdurUqZg5cyYWLlyICxcu4NSpU4iJicHXX38tOzZbW1vk5uYiLi4O//77L+7evYv69etDV1cX33zzDS5duoRNmzZh2rRpGvsNHToU586dw/jx43HhwgVs2LABsbGxAP5vtnP8+PE4dOgQwsLCoFarcfHiRfz2229cWIfoZcOFdVhYWB5XiKhqPW4hkFfB5cuXRWhoqLCwsBA1atQQNjY2YsSIEeLff//V6Jefny8++eQTYWVlJXR1dYW9vb1YsWKF1J6UlCTeeecdYWBgIIyNjYWvr69ITU0VQghx//598fHHHwszMzNRp04dMXPmzHIX1pk3b57GMSta8OX+/ftiypQpwtbWVtSoUUNYWVmJbt26iZMnT1a438aNG8WjqcWSJUuEk5OTNMaIESOktuzsbDFixAhhbW0tXZeQkBCRnp5e4bUEKl6oSAghLly4ILp16yZMTU2Fvr6+cHZ2FqNGjRIlJSVCiPIXIBLi8ddWCCFWr14tPDw8hK6urqhZs6Zo3bq1+OWXX4QQ/7ewzokTJ6T+t2/fFgDE3r17pbqPPvpI1KpVSwAQkZGRQggh1qxZI2xtbYVSqRTe3t5i06ZNZcb67bffhL29vVAqlaJNmzZi8eLFAoDGojlHjhwR7du3F0ZGRsLQ0FA0adJETJ8+vdxrVFUL6yiEEOL5pqlEr5fs7Oz/vUydBUBV3eEQ0UuG/6oSVa27d+8iOTkZLi4uGl8vRvQmmj59OpYsWYIrV6481f6P+/NU+hk3KysLKtXjP+PynUgiIiIiIqKX0HfffYfmzZujVq1aSEhIwFdfffX8H1WVgUkkERERERHRS+jixYv44osvcOvWLdSvXx9jxoxBREREdYfFJJKIiIiIiOhlNG/ePMybN6+6wyiDSSTR05pgAjGTLz8RERER0ZuFX/FBREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBtXZyUiIiKiV5JC8WKPJ7goOxEAzkQSERERET0X/fr1g0KhKFNSUlKwf/9+dOnSBdbW1lAoFPj1119ljZmUlIR3330XderUgZ6eHmxtbdGzZ09cv379+Z4M0UOYRBIRERERPSdBQUHIyMjQKA0bNkReXh7c3d2xaNEi2WPduHED7dq1g5mZGXbs2IHk5GTExMTA2toaeXl5z+0cCgsLn9vY9GpiEklERERE9JwolUpYWlpqFG1tbXTo0AFffPEFunXrJnushIQEZGVlITo6Gp6enmjYsCHatm2LefPmoWHDhlK/M2fOoHPnzlCpVDA2Noavry9SU1MBACUlJfj8889Rr149KJVKeHh4YPv27dK+ly9fhkKhwPr16+Hn5wc9PT2sXr0aABAdHQ0XFxfo6enB2dkZ3333XRVdJXrV8J1IoqeUFZFV3SEQERHRG8TS0hJFRUXYuHEjPvjgAyjKeSn06tWraN26Ndq0aYM9e/ZApVIhISEBRUVFAIAFCxZg7ty5WLp0KTw9PbFixQq8++67OHPmDBwcHKRxJkyYgLlz58LT01NKJKdMmYJvv/0Wnp6eOHHiBAYPHgxDQ0OEhoa+sGtALwcmkUREREREz8nmzZthZGQkbXfo0AE//vjjU431n//8B5999hl69+6Njz76CC1atIC/vz/69u0LCwsLAMCiRYtgYmKCdevWoUaNGgAAR0dHaYw5c+Zg/Pjx+PDDDwEAX375Jfbu3Yv58+drPFo7atQovPfee9J2ZGQk5s6dK9U1bNgQZ8+exdKlS5lEvoH4OCsRERER0XPStm1bqNVqqSxcuFDWfjNmzICRkZFU0tPTAQDTp09HZmYmlixZgsaNG2PJkiVwdnbGqVOnAABqtRq+vr5SAvmw7Oxs/PPPP/Dx8dGo9/HxQXJyskadl5eX9HNeXh5SU1MxcOBAjZi++OIL6TFZerNwJpKIiIiI6DkxNDSEvb19pff76KOP0KNHD2nb2tpa+rlWrVro3r07unfvjhkzZsDT0xNz5szBypUroa+vX2Vxl8rNzQUALFu2DC1bttTop62tXSXHo1cLk0giIiIiopeMmZkZzMzMnthPV1cXdnZ20uqsTZo0wcqVK1FYWFhmNlKlUsHa2hoJCQnw8/OT6hMSEtCiRYsKj2FhYQFra2tcunQJISEhT3lG9DphEklERERE9ILl5uYiJSVF2k5LS4NarYaZmRnq169f7j6bN2/GunXr8OGHH8LR0RFCCPz+++/YunUrYmJiAABhYWH45ptv8OGHHyIiIgImJib4888/0aJFCzg5OWHcuHGIjIyEnZ0dPDw8EBMTA7VaLa3AWpGpU6ciPDwcJiYmCAoKQkFBAY4ePYrbt29j9OjRVXdh6JXAJJKIiIiIXklCVHcET+/o0aNo27attF2aiIWGhiI2NrbcfVxdXWFgYIAxY8bgypUrUCqVcHBwQHR0NPr06QPgwaOue/bswbhx4+Dn5wdtbW14eHhI70GGh4cjKysLY8aMwfXr1+Hq6opNmzZprMxankGDBsHAwABfffUVxo0bB0NDQ7i5uWHUqFHPfjHolaMQ4lX+40f04mVnZ8PExARZWVlQqVTVHQ4REdFr7e7du0hOToaLiwsMDAyqOxyiV9rj/jxV5jMuV2clIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIRERHRq0mheLGFnsrNmzdRp04dXL58ubpDeWpLlixBly5dqjuMlwaTSCIiIiKi56Bfv35QKBRlSkpKCgBg//796NKlC6ytraFQKPDrr7/KGjcpKQnvvvsu6tSpAz09Pdja2qJnz564fv36czybpzd9+nR07doVtra2Ut3GjRvxn//8ByYmJjA2Nkbjxo0xatSo5x5LVFQUPDw8Kr3fgAEDcPz4cRw4cKDqg3oFMYkkIiIiInpOgoKCkJGRoVEaNmwIAMjLy4O7uzsWLVoke7wbN26gXbt2MDMzw44dO5CcnIyYmBhYW1sjLy/veZ0GCgsLn2q/u3fvYvny5Rg4cKBUFxcXh549e+L999/HkSNHcOzYMUyfPv2pj/Ei6Orqonfv3li4cGF1h/JSYBJJRERERPScKJVKWFpaahRtbW0AQIcOHfDFF1+gW7dussdLSEhAVlYWoqOj4enpiYYNG6Jt27aYN2+elJwCwJkzZ9C5c2eoVCoYGxvD19cXqampAICSkhJ8/vnnqFevHpRKJTw8PLB9+3Zp38uXL0OhUGD9+vXw8/ODnp4eVq9eDQCIjo6Gi4sL9PT04OzsjO++++6x8W7duhVKpRL/+c9/pLrff/8dPj4+GDduHJycnODo6Ijg4GCNZLp0xnDFihWoX78+jIyMMGzYMBQXF2P27NmwtLREnTp1MH36dI3jpaeno2vXrjAyMoJKpUKPHj1w7do1AEBsbCymTp2KpKQkaVY4NjYWAHDnzh0MGjQI5ubmUKlU8Pf3R1JSksbYXbp0waZNm5Cfny/31/XaYhJJRERERPSKsLS0RFFRETZu3AghRLl9rl69itatW0OpVGLPnj04duwYBgwYgKKiIgDAggULMHfuXMyZMwcnT55EYGAg3n33XVy8eFFjnAkTJmDkyJFITk5GYGAgVq9ejSlTpmD69OlITk7GjBkzMHnyZKxcubLCeA8cOIBmzZqVOYczZ87g9OnTjz3X1NRUbNu2Ddu3b8fatWuxfPlydOrUCX///Tf27duHL7/8EpMmTcLhw4cBPEiOu3btilu3bmHfvn3YtWsXLl26hJ49ewIAevbsiTFjxqBx48bSrHBpW/fu3XH9+nVs27YNx44dQ9OmTdGuXTvcunVLisfLywtFRUXS8d5ogogqJSsrSwAQWVlZ1R0KERHRay8vL08cPXpU5OXllW0EXmyppNDQUKGtrS0MDQ2l8sEHH5TbF4DYuHGjrHE/++wzoaOjI8zMzERQUJCYPXu2yMzMlNojIiJEw4YNxf3798vd39raWkyfPl2jrnnz5mLYsGFCCCHS0tIEADF//nyNPnZ2dmLNmjUaddOmTRPe3t4Vxtq1a1cxYMAAjbrc3FzRsWNHAUA0aNBA9OzZUyxfvlzcu3dP6hMZGSkMDAxEdna2VBcYGChsbW1FcXGxVOfk5CRmzpwphBBi586dQltbW6Snp0vtZ86cEQDEkSNHpHHd3d014jlw4IBQqVQaxy8936VLl2rU1axZU8TGxlZ4vi+7x/15qsxnXM5EEhERERE9J23btoVarZZKZd6pmzFjBoyMjKSSnp4O4MFCNZmZmViyZAkaN26MJUuWwNnZGadOnQIAqNVq+Pr6okaNGmXGzM7Oxj///AMfHx+Neh8fHyQnJ2vUeXl5ST/n5eUhNTUVAwcO1Ijpiy++kB6TLU9+fj709PQ06gwNDbFlyxakpKRg0qRJMDIywpgxY9CiRQvcvXtX6mdrawtjY2Np28LCAq6urtDS0tKoK11QKDk5GTY2NrCxsZHaXV1dYWpqWubcHpaUlITc3FzUqlVL49zS0tLKnJu+vr5GjG8qneoOgIiIiIjodWVoaAh7e/un2vejjz5Cjx49pG1ra2vp51q1aqF79+7o3r07ZsyYAU9PT8yZMwcrV66Evr7+M8cNPIi9VG5uLgBg2bJlaNmypUa/0nc8y1O7dm3cvn273DY7OzvY2dlh0KBBmDhxIhwdHbF+/Xr0798fAMokwQqFoty6kpIS+SdVjtzcXFhZWSE+Pr5Mm6mpqcb2rVu3YG5u/kzHex0wiSQiIiIiegmZmZnBzMzsif10dXVhZ2cnrc7apEkTrFy5EoWFhWWSLpVKBWtrayQkJMDPz0+qT0hIQIsWLSo8hoWFBaytrXHp0iWEhITIPgdPT0/88MMPT+xna2sLAwODZ1ph1sXFBVeuXMGVK1ek2cizZ8/izp07cHV1BfDgWhUXF2vs17RpU2RmZkJHR0fja0gelZqainv37sHT0/OpY3xdMIkkIiIiIqoGubm50ndGAkBaWhrUajXMzMxQv379cvfZvHkz1q1bhw8//BCOjo4QQuD333/H1q1bERMTAwAICwvDN998gw8//BAREREwMTHBn3/+iRYtWsDJyQnjxo1DZGQk7Ozs4OHhgZiYGKjVamkF1opMnToV4eHhMDExQVBQEAoKCnD06FHcvn0bo0ePLnefwMBARERE4Pbt26hZsyaAByuv3r17Fx07dkSDBg1w584dLFy4EIWFhWjfvv3TXEoAQEBAANzc3BASEoL58+ejqKgIw4YNg5+fn/Rorq2trXSd69WrB2NjYwQEBMDb2xvBwcGYPXs2HB0d8c8//2DLli3o1q2btO+BAwfQqFEj2NnZPXWMrwu+E0lEREREr6YXvbROFTt69Cg8PT2lma3Ro0fD09MTU6ZMqXAfV1dXGBgYYMyYMfDw8MB//vMfbNiwAdHR0ejTpw+AB4+67tmzB7m5ufDz80OzZs2wbNkyaVYyPDwco0ePxpgxY+Dm5obt27dj06ZNcHBweGy8gwYNQnR0NGJiYuDm5gY/Pz/ExsZqfLXIo9zc3NC0aVNs2LBBqvPz88OlS5fQt29fODs7o0OHDsjMzMTOnTvh5OQk+/o9SqFQ4LfffkPNmjXRunVrBAQEoFGjRli/fr3U5/3330dQUBDatm0Lc3NzrF27FgqFAlu3bkXr1q3Rv39/ODo64sMPP8Rff/0FCwsLad+1a9di8ODBTx3f60QhxHP4E0H0GsvOzoaJiQmysrKgUqmqOxwiIqLX2t27d5GcnAwXFxcYGBhUdzj0FLZs2YJx48bh9OnTGovivErOnDkDf39/XLhwASYmJtUdzlN73J+nynzG5eOsRERERET03HTq1AkXL17E1atXNVZOfZVkZGTgv//97yudQFYlJpFERERERPRcjRo1qrpDeCYBAQHVHcJL5dWcTyYiIiIiIqJqwSSSiIiIiIiIZGMSSUREREQvvWf9Qnkiqro/R3wnkoiIiIheWnp6etDS0kJaWhrq1q0LpVIJhUJR3WERvXJKSkqQkZEBhUIBpVL5TGMxiSQiIiKil5aWlhZcXV1x+fJlpKWlVXc4RK80hUIBe3t7aGtrP9M4TCKJiIiI6KWmVCrh6OiIwsJCFBUVVXc4RK8spVL5zAkkwCSSiIiIiF4BCoUCurq60NXVre5QiN54XFiHiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZ+E4kUSUJIQAA2dnZ1RwJEREREVHVKP1sW/pZ93GYRBJV0s2bNwEANjY21RwJEREREVHVysnJgYmJyWP7MIkkqiQzMzMAQHp6+hP/gBE9Kjs7GzY2Nrhy5QpUKlV1h0OvGN4/9Cx4/9Cz4P3z+hNCICcnB9bW1k/syySSqJK0tB68SmxiYsK/ROmpqVQq3j/01Hj/0LPg/UPPgvfP603uBAkX1iEiIiIiIiLZmEQSERERERGRbEwiiSpJqVQiMjISSqWyukOhVxDvH3oWvH/oWfD+oWfB+4cephBy1nAlIiIiIiIiAmciiYiIiIiIqBKYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSRRORYtWgRbW1vo6emhZcuWOHLkyGP7//jjj3B2doaenh7c3NywdevWFxQpvYwqc/8sW7YMvr6+qFmzJmrWrImAgIAn3m/0eqvs3z+l1q1bB4VCgeDg4OcbIL3UKnv/3LlzB8OHD4eVlRWUSiUcHR35b9gbrLL3z/z58+Hk5AR9fX3Y2Njgk08+wb17915QtFSdmEQSPWL9+vUYPXo0IiMjcfz4cbi7uyMwMBDXr18vt/+hQ4fQq1cvDBw4ECdOnEBwcDCCg4Nx+vTpFxw5vQwqe//Ex8ejV69e2Lt3L/744w/Y2NjgnXfewdWrV19w5PQyqOz9U+ry5csYO3YsfH19X1Ck9DKq7P1z//59tG/fHpcvX8ZPP/2E8+fPY9myZahbt+4LjpxeBpW9f9asWYMJEyYgMjISycnJWL58OdavX4/PPvvsBUdO1UIQkYYWLVqI4cOHS9vFxcXC2tpazJw5s9z+PXr0EJ06ddKoa9mypRg6dOhzjZNeTpW9fx5VVFQkjI2NxcqVK59XiPQSe5r7p6ioSLRq1UpER0eL0NBQ0bVr1xcQKb2MKnv/LF68WDRq1Ejcv3//RYVIL7HK3j/Dhw8X/v7+GnWjR48WPj4+zzVOejlwJpLoIffv38exY8cQEBAg1WlpaSEgIAB//PFHufv88ccfGv0BIDAwsML+9Pp6mvvnUXfv3kVhYSHMzMyeV5j0knra++fzzz9HnTp1MHDgwBcRJr2knub+2bRpE7y9vTF8+HBYWFjgrbfewowZM1BcXPyiwqaXxNPcP61atcKxY8ekR14vXbqErVu3omPHji8kZqpeOtUdANHL5N9//0VxcTEsLCw06i0sLHDu3Lly98nMzCy3f2Zm5nOLk15OT3P/PGr8+PGwtrYu8x8T9Pp7mvvn4MGDWL58OdRq9QuIkF5mT3P/XLp0CXv27EFISAi2bt2KlJQUDBs2DIWFhYiMjHwRYdNL4mnun969e+Pff//F22+/DSEEioqK8NFHH/Fx1jcEZyKJiF4Ss2bNwrp167Bx40bo6elVdzj0ksvJyUGfPn2wbNky1K5du7rDoVdQSUkJ6tSpg++//x7NmjVDz549MXHiRCxZsqS6Q6NXQHx8PGbMmIHvvvsOx48fxy+//IItW7Zg2rRp1R0avQCciSR6SO3ataGtrY1r165p1F+7dg2Wlpbl7mNpaVmp/vT6epr7p9ScOXMwa9Ys7N69G02aNHmeYdJLqrL3T2pqKi5fvowuXbpIdSUlJQAAHR0dnD9/HnZ2ds83aHppPM3fP1ZWVqhRowa0tbWlOhcXF2RmZuL+/fvQ1dV9rjHTy+Np7p/JkyejT58+GDRoEADAzc0NeXl5GDJkCCZOnAgtLc5Vvc742yV6iK6uLpo1a4a4uDiprqSkBHFxcfD29i53H29vb43+ALBr164K+9Pr62nuHwCYPXs2pk2bhu3bt8PLy+tFhEovocreP87Ozjh16hTUarVU3n33XbRt2xZqtRo2NjYvMnyqZk/z94+Pjw9SUlKk/3wAgAsXLsDKyooJ5Bvmae6fu3fvlkkUS/9DQgjx/IKll0N1r+xD9LJZt26dUCqVIjY2Vpw9e1YMGTJEmJqaiszMTCGEEH369BETJkyQ+ickJAgdHR0xZ84ckZycLCIjI0WNGjXEqVOnqusUqBpV9v6ZNWuW0NXVFT/99JPIyMiQSk5OTnWdAlWjyt4/j+LqrG+2yt4/6enpwtjYWISFhYnz58+LzZs3izp16ogvvviiuk6BqlFl75/IyEhhbGws1q5dKy5duiR27twp7OzsRI8eParrFOgF4uOsRI/o2bMnbty4gSlTpiAzMxMeHh7Yvn279LJ5enq6xv+8tWrVCmvWrMGkSZPw2WefwcHBAb/++iveeuut6joFqkaVvX8WL16M+/fv44MPPtAYJzIyElFRUS8ydHoJVPb+IXpYZe8fGxsb7NixA5988gmaNGmCunXrYuTIkRg/fnx1nQJVo8reP5MmTYJCocCkSZNw9epVmJubo0uXLpg+fXp1nQK9QAohON9MRERERERE8vC/M4mIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpLt/wN7uZO6wbWLeQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
LabelsPrecisionPrecision (Smote)RecallRecall (Smote)F1F1 (Smote)Occurrence CountPercentage
9Mute Swan 1km0.8957030.9067920.9488930.9199260.9215310.913311191240.578044
1Canada Goose 1km0.7346530.7423400.8674980.7837100.7955680.762464101470.306704
10Pheasant 1km0.5418470.5042740.5172180.4063360.5292460.45003858550.176974
16Rock Dove 1km0.5902440.4456520.2289500.3491010.3299250.39151239190.118456
7Little Owl 1km0.5306120.4726430.4441910.4624150.4835710.46747335480.107242
14Red-legged Partridge 1km0.3764710.3485840.0455190.2275960.0812180.27538729530.089258
11Pink-footed Goose 1km0.6680330.4740740.2484760.3902440.3622220.42809426460.079978
19Wigeon 1km0.5543480.2222220.0871790.2393160.1506650.23045323170.070034
3Gadwall 1km0.7437720.5336050.3834860.4807340.5060530.50579222050.066649
5Grey Partridge 1km0.4761900.3224850.0189390.2064390.0364300.25173221230.064170
13Pochard 1km0.0000000.1439390.0000000.0725190.0000000.09644710570.031949
8Mandarin Duck 1km0.5172410.3566430.1327430.2256640.2112680.27642310100.030528
18Whooper Swan 1km0.2000000.0952380.0076630.1455940.0147600.1151529550.028866
2Egyptian Goose 1km0.2211540.4927540.1210530.3578950.1564630.4146348630.026085
0Barnacle Goose 1km0.5300000.3724140.2760420.2812500.3630140.3204757690.023244
12Pintail 1km0.3421050.0602410.0714290.1373630.1181820.0837526970.021068
15Ring-necked Parakeet 1km0.2333330.4482760.3387100.3145160.2763160.3696685040.015234
4Goshawk 1km0.0000000.0000000.0000000.0000000.0000000.0000004460.013481
6Indian Peafowl 1km0.0000000.1666670.0000000.0533330.0000000.0808082940.008886
17Ruddy Duck 1km0.3666670.3125000.3666670.1666670.3666670.2173911240.003748
\n", "
" ], "text/plain": [ " Labels Precision Precision (Smote) Recall \\\n", "9 Mute Swan 1km 0.895703 0.906792 0.948893 \n", "1 Canada Goose 1km 0.734653 0.742340 0.867498 \n", "10 Pheasant 1km 0.541847 0.504274 0.517218 \n", "16 Rock Dove 1km 0.590244 0.445652 0.228950 \n", "7 Little Owl 1km 0.530612 0.472643 0.444191 \n", "14 Red-legged Partridge 1km 0.376471 0.348584 0.045519 \n", "11 Pink-footed Goose 1km 0.668033 0.474074 0.248476 \n", "19 Wigeon 1km 0.554348 0.222222 0.087179 \n", "3 Gadwall 1km 0.743772 0.533605 0.383486 \n", "5 Grey Partridge 1km 0.476190 0.322485 0.018939 \n", "13 Pochard 1km 0.000000 0.143939 0.000000 \n", "8 Mandarin Duck 1km 0.517241 0.356643 0.132743 \n", "18 Whooper Swan 1km 0.200000 0.095238 0.007663 \n", "2 Egyptian Goose 1km 0.221154 0.492754 0.121053 \n", "0 Barnacle Goose 1km 0.530000 0.372414 0.276042 \n", "12 Pintail 1km 0.342105 0.060241 0.071429 \n", "15 Ring-necked Parakeet 1km 0.233333 0.448276 0.338710 \n", "4 Goshawk 1km 0.000000 0.000000 0.000000 \n", "6 Indian Peafowl 1km 0.000000 0.166667 0.000000 \n", "17 Ruddy Duck 1km 0.366667 0.312500 0.366667 \n", "\n", " Recall (Smote) F1 F1 (Smote) Occurrence Count Percentage \n", "9 0.919926 0.921531 0.913311 19124 0.578044 \n", "1 0.783710 0.795568 0.762464 10147 0.306704 \n", "10 0.406336 0.529246 0.450038 5855 0.176974 \n", "16 0.349101 0.329925 0.391512 3919 0.118456 \n", "7 0.462415 0.483571 0.467473 3548 0.107242 \n", "14 0.227596 0.081218 0.275387 2953 0.089258 \n", "11 0.390244 0.362222 0.428094 2646 0.079978 \n", "19 0.239316 0.150665 0.230453 2317 0.070034 \n", "3 0.480734 0.506053 0.505792 2205 0.066649 \n", "5 0.206439 0.036430 0.251732 2123 0.064170 \n", "13 0.072519 0.000000 0.096447 1057 0.031949 \n", "8 0.225664 0.211268 0.276423 1010 0.030528 \n", "18 0.145594 0.014760 0.115152 955 0.028866 \n", "2 0.357895 0.156463 0.414634 863 0.026085 \n", "0 0.281250 0.363014 0.320475 769 0.023244 \n", "12 0.137363 0.118182 0.083752 697 0.021068 \n", "15 0.314516 0.276316 0.369668 504 0.015234 \n", "4 0.000000 0.000000 0.000000 446 0.013481 \n", "6 0.053333 0.000000 0.080808 294 0.008886 \n", "17 0.166667 0.366667 0.217391 124 0.003748 " ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Create graphs to show off data\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "plt.rcParams['figure.figsize'] = [9, 12]\n", "\n", "occurrence_count, occurrence_percentage = All_bird_occurrences['Occurrence Count'], All_bird_occurrences['Percentage']\n", "precision = []\n", "precision_smote = []\n", "recall = []\n", "recall_smote = []\n", "f1 = []\n", "f1_smote = []\n", "labels = []\n", "for dict in df_dicts:\n", " precision.append(dict['report']['1']['precision'])\n", " precision_smote.append(dict['report_smote']['1']['precision'])\n", " recall.append(dict['report']['1']['recall'])\n", " recall_smote.append(dict['report_smote']['1']['recall'])\n", " f1.append(dict['report']['1']['f1-score'])\n", " f1_smote.append(dict['report_smote']['1']['f1-score'])\n", " labels.append(dict['name'])\n", "\n", "\n", "\n", "scores = pd.DataFrame({'Labels' : labels, \n", " 'Precision': precision, 'Precision (Smote)': precision_smote, \n", " 'Recall': recall, 'Recall (Smote)': recall_smote, \n", " 'F1': f1, 'F1 (Smote)': f1_smote,\n", " 'Occurrence Count' : occurrence_count, 'Percentage' : occurrence_percentage} )\n", " \n", "scores.sort_values('Occurrence Count', inplace=True)\n", "\n", "n=20\n", "r = np.arange(n)\n", "height = 0.25\n", "\n", "plt.barh(r, 'Percentage', data=scores, label='Occurrence Percentage', height = height, color='g')\n", "plt.barh(r+height, 'F1', data=scores, label='F1-Score', height= height, color='b')\n", "plt.barh(r+height*2, 'F1 (Smote)', data=scores, label='F1-Score (Smote)', height = height, color='r')\n", "plt.legend(framealpha=1, frameon=True)\n", "plt.yticks(r+height*2, scores['Labels'])\n", "\n", "\n", "plt.show()\n", "\n", "\n", "scores.sort_values('Occurrence Count', ascending=False)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Stored 'df_dicts_1km_no_fp' (list)\n" ] } ], "source": [ "# Store dictionaries for later use\n", "df_dicts_1km_no_fp = df_dicts\n", "%store df_dicts_1km_no_fp" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
962500.0155500.000
819500.0338500.000
378500.0406500.000
706500.0390500.000
897500.0325500.000
............
1096500.0199500.000
535500.0591500.000
337500.0425500.000
232500.0186500.000
1135500.040500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "962500.0 155500.0 0 0\n", "819500.0 338500.0 0 0\n", "378500.0 406500.0 0 0\n", "706500.0 390500.0 0 0\n", "897500.0 325500.0 0 0\n", "... ... ...\n", "1096500.0 199500.0 0 0\n", "535500.0 591500.0 0 0\n", "337500.0 425500.0 0 0\n", "232500.0 186500.0 0 0\n", "1135500.0 40500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
836500.0116500.000
655500.0626500.000
277500.0451500.011
518500.061500.000
746500.0117500.000
............
1017500.0557500.000
374500.0502500.010
248500.0292500.001
183500.0500500.011
1073500.0158500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "836500.0 116500.0 0 0\n", "655500.0 626500.0 0 0\n", "277500.0 451500.0 1 1\n", "518500.0 61500.0 0 0\n", "746500.0 117500.0 0 0\n", "... ... ...\n", "1017500.0 557500.0 0 0\n", "374500.0 502500.0 1 0\n", "248500.0 292500.0 0 1\n", "183500.0 500500.0 1 1\n", "1073500.0 158500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
965500.0565500.000
815500.0297500.000
357500.0224500.000
695500.0254500.000
897500.0689500.000
............
1097500.0515500.000
516500.0560500.000
315500.0568500.000
216500.0594500.011
1135500.018500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "965500.0 565500.0 0 0\n", "815500.0 297500.0 0 0\n", "357500.0 224500.0 0 0\n", "695500.0 254500.0 0 0\n", "897500.0 689500.0 0 0\n", "... ... ...\n", "1097500.0 515500.0 0 0\n", "516500.0 560500.0 0 0\n", "315500.0 568500.0 0 0\n", "216500.0 594500.0 1 1\n", "1135500.0 18500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
948500.0472500.000
799500.0389500.000
347500.0652500.000
683500.0615500.000
880500.0575500.000
............
1086500.0585500.000
499500.0640500.000
312500.0593500.000
218500.0477500.000
1127500.0658500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "948500.0 472500.0 0 0\n", "799500.0 389500.0 0 0\n", "347500.0 652500.0 0 0\n", "683500.0 615500.0 0 0\n", "880500.0 575500.0 0 0\n", "... ... ...\n", "1086500.0 585500.0 0 0\n", "499500.0 640500.0 0 0\n", "312500.0 593500.0 0 0\n", "218500.0 477500.0 0 0\n", "1127500.0 658500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
968500.051500.000
828500.0230500.000
382500.0480500.000
718500.0624500.000
904500.0666500.000
............
1099500.0552500.000
540500.0467500.000
337500.0350500.000
231500.0463500.000
1138500.0581500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "968500.0 51500.0 0 0\n", "828500.0 230500.0 0 0\n", "382500.0 480500.0 0 0\n", "718500.0 624500.0 0 0\n", "904500.0 666500.0 0 0\n", "... ... ...\n", "1099500.0 552500.0 0 0\n", "540500.0 467500.0 0 0\n", "337500.0 350500.0 0 0\n", "231500.0 463500.0 0 0\n", "1138500.0 581500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
949500.06500.000
799500.0470500.000
361500.0282500.000
683500.0278500.010
882500.0446500.000
............
1091500.03500.000
505500.0434500.001
323500.0642500.001
226500.0653500.000
1132500.0613500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "949500.0 6500.0 0 0\n", "799500.0 470500.0 0 0\n", "361500.0 282500.0 0 0\n", "683500.0 278500.0 1 0\n", "882500.0 446500.0 0 0\n", "... ... ...\n", "1091500.0 3500.0 0 0\n", "505500.0 434500.0 0 1\n", "323500.0 642500.0 0 1\n", "226500.0 653500.0 0 0\n", "1132500.0 613500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
969500.0180500.000
824500.0179500.000
378500.0407500.000
712500.0336500.000
903500.0422500.000
............
1099500.045500.000
531500.0276500.000
334500.0534500.000
227500.0170500.000
1138500.0554500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "969500.0 180500.0 0 0\n", "824500.0 179500.0 0 0\n", "378500.0 407500.0 0 0\n", "712500.0 336500.0 0 0\n", "903500.0 422500.0 0 0\n", "... ... ...\n", "1099500.0 45500.0 0 0\n", "531500.0 276500.0 0 0\n", "334500.0 534500.0 0 0\n", "227500.0 170500.0 0 0\n", "1138500.0 554500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
930500.0568500.000
771500.0130500.000
327500.011500.000
645500.0485500.000
858500.0506500.000
............
1074500.0258500.000
456500.0557500.000
293500.0690500.000
210500.0288500.000
1119500.095500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "930500.0 568500.0 0 0\n", "771500.0 130500.0 0 0\n", "327500.0 11500.0 0 0\n", "645500.0 485500.0 0 0\n", "858500.0 506500.0 0 0\n", "... ... ...\n", "1074500.0 258500.0 0 0\n", "456500.0 557500.0 0 0\n", "293500.0 690500.0 0 0\n", "210500.0 288500.0 0 0\n", "1119500.0 95500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
960500.0209500.000
814500.0197500.000
367500.0436500.011
702500.0371500.000
894500.0360500.000
............
1096500.0139500.000
521500.0528500.000
325500.088500.000
220500.0211500.000
1136500.0611500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "960500.0 209500.0 0 0\n", "814500.0 197500.0 0 0\n", "367500.0 436500.0 1 1\n", "702500.0 371500.0 0 0\n", "894500.0 360500.0 0 0\n", "... ... ...\n", "1096500.0 139500.0 0 0\n", "521500.0 528500.0 0 0\n", "325500.0 88500.0 0 0\n", "220500.0 211500.0 0 0\n", "1136500.0 611500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
680500.065500.000
530500.0309500.011
254500.0634500.011
425500.0348500.011
626500.0529500.000
............
861500.0205500.000
322500.0344500.011
230500.0483500.011
180500.0539500.011
935500.0174500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "680500.0 65500.0 0 0\n", "530500.0 309500.0 1 1\n", "254500.0 634500.0 1 1\n", "425500.0 348500.0 1 1\n", "626500.0 529500.0 0 0\n", "... ... ...\n", "861500.0 205500.0 0 0\n", "322500.0 344500.0 1 1\n", "230500.0 483500.0 1 1\n", "180500.0 539500.0 1 1\n", "935500.0 174500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
902500.0540500.000
739500.0369500.000
317500.0554500.000
622500.0469500.000
828500.0584500.000
............
1057500.0582500.000
454500.0632500.000
282500.0318500.000
203500.086500.000
1104500.0550500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "902500.0 540500.0 0 0\n", "739500.0 369500.0 0 0\n", "317500.0 554500.0 0 0\n", "622500.0 469500.0 0 0\n", "828500.0 584500.0 0 0\n", "... ... ...\n", "1057500.0 582500.0 0 0\n", "454500.0 632500.0 0 0\n", "282500.0 318500.0 0 0\n", "203500.0 86500.0 0 0\n", "1104500.0 550500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
950500.0406500.000
809500.02500.000
398500.0691500.000
707500.0615500.000
881500.0442500.000
............
1089500.0549500.000
547500.0154500.000
354500.0260500.000
249500.0254500.000
1131500.0696500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "950500.0 406500.0 0 0\n", "809500.0 2500.0 0 0\n", "398500.0 691500.0 0 0\n", "707500.0 615500.0 0 0\n", "881500.0 442500.0 0 0\n", "... ... ...\n", "1089500.0 549500.0 0 0\n", "547500.0 154500.0 0 0\n", "354500.0 260500.0 0 0\n", "249500.0 254500.0 0 0\n", "1131500.0 696500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
967500.0156500.001
822500.0126500.000
378500.0457500.000
709500.0682500.000
900500.0211500.000
............
1101500.0468500.000
532500.0374500.000
335500.0560500.000
231500.0416500.000
1138500.028500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "967500.0 156500.0 0 1\n", "822500.0 126500.0 0 0\n", "378500.0 457500.0 0 0\n", "709500.0 682500.0 0 0\n", "900500.0 211500.0 0 0\n", "... ... ...\n", "1101500.0 468500.0 0 0\n", "532500.0 374500.0 0 0\n", "335500.0 560500.0 0 0\n", "231500.0 416500.0 0 0\n", "1138500.0 28500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
961500.0396500.000
818500.0565500.000
371500.0430500.000
704500.027500.000
896500.0597500.000
............
1094500.0461500.000
523500.0617500.000
331500.011500.000
230500.079500.000
1132500.0221500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "961500.0 396500.0 0 0\n", "818500.0 565500.0 0 0\n", "371500.0 430500.0 0 0\n", "704500.0 27500.0 0 0\n", "896500.0 597500.0 0 0\n", "... ... ...\n", "1094500.0 461500.0 0 0\n", "523500.0 617500.0 0 0\n", "331500.0 11500.0 0 0\n", "230500.0 79500.0 0 0\n", "1132500.0 221500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
940500.0272500.000
782500.0270500.000
336500.0236500.000
664500.0453500.000
868500.0252500.000
............
1083500.0173500.000
481500.0553500.000
299500.0527500.010
213500.0457500.010
1126500.0490500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "940500.0 272500.0 0 0\n", "782500.0 270500.0 0 0\n", "336500.0 236500.0 0 0\n", "664500.0 453500.0 0 0\n", "868500.0 252500.0 0 0\n", "... ... ...\n", "1083500.0 173500.0 0 0\n", "481500.0 553500.0 0 0\n", "299500.0 527500.0 1 0\n", "213500.0 457500.0 1 0\n", "1126500.0 490500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
969500.016500.000
821500.0474500.000
368500.0295500.000
709500.074500.000
903500.0575500.000
............
1100500.0390500.000
529500.0393500.000
325500.0323500.000
215500.0327500.000
1139500.093500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "969500.0 16500.0 0 0\n", "821500.0 474500.0 0 0\n", "368500.0 295500.0 0 0\n", "709500.0 74500.0 0 0\n", "903500.0 575500.0 0 0\n", "... ... ...\n", "1100500.0 390500.0 0 0\n", "529500.0 393500.0 0 0\n", "325500.0 323500.0 0 0\n", "215500.0 327500.0 0 0\n", "1139500.0 93500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
937500.031500.000
778500.0202500.000
335500.04500.000
659500.0322500.010
863500.0259500.010
............
1080500.0155500.000
474500.0477500.010
295500.095500.000
204500.0658500.000
1123500.0550500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "937500.0 31500.0 0 0\n", "778500.0 202500.0 0 0\n", "335500.0 4500.0 0 0\n", "659500.0 322500.0 1 0\n", "863500.0 259500.0 1 0\n", "... ... ...\n", "1080500.0 155500.0 0 0\n", "474500.0 477500.0 1 0\n", "295500.0 95500.0 0 0\n", "204500.0 658500.0 0 0\n", "1123500.0 550500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
969500.0293500.000
825500.078500.000
379500.0633500.000
713500.0366500.000
901500.0154500.000
............
1099500.0316500.000
532500.0141500.000
336500.0138500.000
232500.0302500.000
1138500.0479500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "969500.0 293500.0 0 0\n", "825500.0 78500.0 0 0\n", "379500.0 633500.0 0 0\n", "713500.0 366500.0 0 0\n", "901500.0 154500.0 0 0\n", "... ... ...\n", "1099500.0 316500.0 0 0\n", "532500.0 141500.0 0 0\n", "336500.0 138500.0 0 0\n", "232500.0 302500.0 0 0\n", "1138500.0 479500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
965500.0325500.010
825500.0144500.010
386500.0276500.001
713500.082500.000
903500.0171500.000
............
1095500.0145500.000
537500.0428500.000
343500.0467500.000
238500.0385500.000
1134500.076500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "965500.0 325500.0 1 0\n", "825500.0 144500.0 1 0\n", "386500.0 276500.0 0 1\n", "713500.0 82500.0 0 0\n", "903500.0 171500.0 0 0\n", "... ... ...\n", "1095500.0 145500.0 0 0\n", "537500.0 428500.0 0 0\n", "343500.0 467500.0 0 0\n", "238500.0 385500.0 0 0\n", "1134500.0 76500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
952500.0101500.000
810500.0233500.000
374500.0364500.010
698500.0209500.000
884500.0398500.000
............
1086500.0454500.000
527500.0207500.001
333500.0528500.000
234500.0614500.010
1127500.0634500.000
\n", "

8271 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "952500.0 101500.0 0 0\n", "810500.0 233500.0 0 0\n", "374500.0 364500.0 1 0\n", "698500.0 209500.0 0 0\n", "884500.0 398500.0 0 0\n", "... ... ...\n", "1086500.0 454500.0 0 0\n", "527500.0 207500.0 0 1\n", "333500.0 528500.0 0 0\n", "234500.0 614500.0 1 0\n", "1127500.0 634500.0 0 0\n", "\n", "[8271 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Export predictions to CSV for QGIS\n", "RESULTS_PATH = 'Datasets/Machine Learning/Results/1km/'\n", "for dict in df_dicts:\n", " # Join with y_test datafram\n", " result_df = dict['y_test'] \n", " result_df['Predictions'] = dict['predictions_smote']\n", " display(result_df)\n", " result_df.to_csv(RESULTS_PATH + dict['name'] + '(without Fertiliser+Pesticides).csv')\n", " " ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
251586.6606960.000000e+00Inflowing drainage direction
181440.9393791.143607e-308Saltmarsh
231417.8796287.271005e-304Surface type
221269.6114056.667737e-273Cumulative catchment area
241223.1980533.502336e-263Outflowing drainage direction
211203.7425584.196966e-259Elevation
171078.6082888.174358e-233Littoral sediment
13978.4727061.050650e-211Freshwater
15853.8117302.457887e-185Supralittoral sediment
3816.9145861.639367e-177Improve grassland
16416.3692725.554940e-92Littoral rock
7360.6572635.403022e-80Fen
0243.3782761.130191e-54Deciduous woodland
2223.6312472.134039e-50Arable
19168.9600211.551633e-38Urban
20156.0982479.703696e-36Suburban
1488.0366076.821306e-21Supralittoral rock
970.5042474.773365e-17Heather grassland
452.0916775.410742e-13Neutral grassland
1228.1312551.140877e-07Saltwater
1010.5934821.136010e-03Bog
63.8817274.882264e-02Acid grassland
81.7269791.888063e-01Heather
111.3099282.524160e-01Inland rock
11.1936362.746053e-01Coniferous woodland
50.2754065.997316e-01Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 1586.660696 0.000000e+00 Inflowing drainage direction\n", "18 1440.939379 1.143607e-308 Saltmarsh\n", "23 1417.879628 7.271005e-304 Surface type\n", "22 1269.611405 6.667737e-273 Cumulative catchment area\n", "24 1223.198053 3.502336e-263 Outflowing drainage direction\n", "21 1203.742558 4.196966e-259 Elevation\n", "17 1078.608288 8.174358e-233 Littoral sediment\n", "13 978.472706 1.050650e-211 Freshwater\n", "15 853.811730 2.457887e-185 Supralittoral sediment\n", "3 816.914586 1.639367e-177 Improve grassland\n", "16 416.369272 5.554940e-92 Littoral rock\n", "7 360.657263 5.403022e-80 Fen\n", "0 243.378276 1.130191e-54 Deciduous woodland\n", "2 223.631247 2.134039e-50 Arable\n", "19 168.960021 1.551633e-38 Urban\n", "20 156.098247 9.703696e-36 Suburban\n", "14 88.036607 6.821306e-21 Supralittoral rock\n", "9 70.504247 4.773365e-17 Heather grassland\n", "4 52.091677 5.410742e-13 Neutral grassland\n", "12 28.131255 1.140877e-07 Saltwater\n", "10 10.593482 1.136010e-03 Bog\n", "6 3.881727 4.882264e-02 Acid grassland\n", "8 1.726979 1.888063e-01 Heather\n", "11 1.309928 2.524160e-01 Inland rock\n", "1 1.193636 2.746053e-01 Coniferous woodland\n", "5 0.275406 5.997316e-01 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Canada Goose 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
2327980.6519570.000000e+00Surface type
2422192.8535320.000000e+00Outflowing drainage direction
2521798.0738670.000000e+00Inflowing drainage direction
2120557.2695200.000000e+00Elevation
2210467.9737120.000000e+00Cumulative catchment area
39373.9923890.000000e+00Improve grassland
206200.6826740.000000e+00Suburban
04606.4379670.000000e+00Deciduous woodland
24435.5574220.000000e+00Arable
192407.8929970.000000e+00Urban
131994.2185350.000000e+00Freshwater
4591.9474911.305021e-129Neutral grassland
18389.0950294.077898e-86Saltmarsh
7240.5383014.654537e-54Fen
17162.2073434.555336e-37Littoral sediment
556.2171056.651725e-14Calcareous grassland
1554.9885721.241339e-13Supralittoral sediment
1249.2095212.344481e-12Saltwater
118.6893231.542908e-05Coniferous woodland
1016.1829045.763851e-05Bog
1113.0040103.112817e-04Inland rock
910.0570491.519046e-03Heather grassland
163.1943597.390188e-02Littoral rock
141.8316551.759414e-01Supralittoral rock
81.5640302.110850e-01Heather
61.3415712.467655e-01Acid grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 27980.651957 0.000000e+00 Surface type\n", "24 22192.853532 0.000000e+00 Outflowing drainage direction\n", "25 21798.073867 0.000000e+00 Inflowing drainage direction\n", "21 20557.269520 0.000000e+00 Elevation\n", "22 10467.973712 0.000000e+00 Cumulative catchment area\n", "3 9373.992389 0.000000e+00 Improve grassland\n", "20 6200.682674 0.000000e+00 Suburban\n", "0 4606.437967 0.000000e+00 Deciduous woodland\n", "2 4435.557422 0.000000e+00 Arable\n", "19 2407.892997 0.000000e+00 Urban\n", "13 1994.218535 0.000000e+00 Freshwater\n", "4 591.947491 1.305021e-129 Neutral grassland\n", "18 389.095029 4.077898e-86 Saltmarsh\n", "7 240.538301 4.654537e-54 Fen\n", "17 162.207343 4.555336e-37 Littoral sediment\n", "5 56.217105 6.651725e-14 Calcareous grassland\n", "15 54.988572 1.241339e-13 Supralittoral sediment\n", "12 49.209521 2.344481e-12 Saltwater\n", "1 18.689323 1.542908e-05 Coniferous woodland\n", "10 16.182904 5.763851e-05 Bog\n", "11 13.004010 3.112817e-04 Inland rock\n", "9 10.057049 1.519046e-03 Heather grassland\n", "16 3.194359 7.390188e-02 Littoral rock\n", "14 1.831655 1.759414e-01 Supralittoral rock\n", "8 1.564030 2.110850e-01 Heather\n", "6 1.341571 2.467655e-01 Acid grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Egyptian Goose 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
224398.3456840.000000e+00Cumulative catchment area
133391.7285260.000000e+00Freshwater
242769.9836260.000000e+00Outflowing drainage direction
192688.5637440.000000e+00Urban
232448.1895950.000000e+00Surface type
251867.1817580.000000e+00Inflowing drainage direction
201608.1196550.000000e+00Suburban
211508.4462021.037538e-322Elevation
31160.2542195.600729e-250Improve grassland
01025.5497981.228685e-221Deciduous woodland
7631.4761804.722469e-138Fen
2600.1484902.308798e-131Arable
18214.9616501.613752e-48Saltmarsh
466.7954703.118157e-16Neutral grassland
624.5320787.344270e-07Acid grassland
916.1038816.009295e-05Heather grassland
1010.9422509.409617e-04Bog
86.4602871.103570e-02Heather
156.1210621.336303e-02Supralittoral sediment
174.6582083.091261e-02Littoral sediment
53.6540485.594175e-02Calcareous grassland
113.3053916.906195e-02Inland rock
163.0517508.065946e-02Littoral rock
120.8704743.508309e-01Saltwater
140.7567413.843565e-01Supralittoral rock
10.0035479.525091e-01Coniferous woodland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "22 4398.345684 0.000000e+00 Cumulative catchment area\n", "13 3391.728526 0.000000e+00 Freshwater\n", "24 2769.983626 0.000000e+00 Outflowing drainage direction\n", "19 2688.563744 0.000000e+00 Urban\n", "23 2448.189595 0.000000e+00 Surface type\n", "25 1867.181758 0.000000e+00 Inflowing drainage direction\n", "20 1608.119655 0.000000e+00 Suburban\n", "21 1508.446202 1.037538e-322 Elevation\n", "3 1160.254219 5.600729e-250 Improve grassland\n", "0 1025.549798 1.228685e-221 Deciduous woodland\n", "7 631.476180 4.722469e-138 Fen\n", "2 600.148490 2.308798e-131 Arable\n", "18 214.961650 1.613752e-48 Saltmarsh\n", "4 66.795470 3.118157e-16 Neutral grassland\n", "6 24.532078 7.344270e-07 Acid grassland\n", "9 16.103881 6.009295e-05 Heather grassland\n", "10 10.942250 9.409617e-04 Bog\n", "8 6.460287 1.103570e-02 Heather\n", "15 6.121062 1.336303e-02 Supralittoral sediment\n", "17 4.658208 3.091261e-02 Littoral sediment\n", "5 3.654048 5.594175e-02 Calcareous grassland\n", "11 3.305391 6.906195e-02 Inland rock\n", "16 3.051750 8.065946e-02 Littoral rock\n", "12 0.870474 3.508309e-01 Saltwater\n", "14 0.756741 3.843565e-01 Supralittoral rock\n", "1 0.003547 9.525091e-01 Coniferous woodland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Gadwall 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
245605.8846280.000000e+00Outflowing drainage direction
225421.2214120.000000e+00Cumulative catchment area
235337.7424150.000000e+00Surface type
254250.8688830.000000e+00Inflowing drainage direction
133657.9504580.000000e+00Freshwater
213513.5201440.000000e+00Elevation
22555.7749400.000000e+00Arable
32162.5401010.000000e+00Improve grassland
201871.4622380.000000e+00Suburban
01487.4870192.357158e-318Deciduous woodland
191271.1778863.134320e-273Urban
18947.2178154.200123e-205Saltmarsh
7892.3208091.714432e-193Fen
4739.3348904.953129e-161Neutral grassland
17160.8260299.095729e-37Littoral sediment
15130.6041413.443944e-30Supralittoral sediment
645.7996901.331664e-11Acid grassland
1232.2801871.345866e-08Saltwater
929.1203476.848560e-08Heather grassland
1021.7036993.194143e-06Bog
817.5600262.791009e-05Heather
117.8082045.203950e-03Inland rock
17.1881617.342254e-03Coniferous woodland
141.7819521.819190e-01Supralittoral rock
50.7358343.910048e-01Calcareous grassland
160.0971517.552781e-01Littoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "24 5605.884628 0.000000e+00 Outflowing drainage direction\n", "22 5421.221412 0.000000e+00 Cumulative catchment area\n", "23 5337.742415 0.000000e+00 Surface type\n", "25 4250.868883 0.000000e+00 Inflowing drainage direction\n", "13 3657.950458 0.000000e+00 Freshwater\n", "21 3513.520144 0.000000e+00 Elevation\n", "2 2555.774940 0.000000e+00 Arable\n", "3 2162.540101 0.000000e+00 Improve grassland\n", "20 1871.462238 0.000000e+00 Suburban\n", "0 1487.487019 2.357158e-318 Deciduous woodland\n", "19 1271.177886 3.134320e-273 Urban\n", "18 947.217815 4.200123e-205 Saltmarsh\n", "7 892.320809 1.714432e-193 Fen\n", "4 739.334890 4.953129e-161 Neutral grassland\n", "17 160.826029 9.095729e-37 Littoral sediment\n", "15 130.604141 3.443944e-30 Supralittoral sediment\n", "6 45.799690 1.331664e-11 Acid grassland\n", "12 32.280187 1.345866e-08 Saltwater\n", "9 29.120347 6.848560e-08 Heather grassland\n", "10 21.703699 3.194143e-06 Bog\n", "8 17.560026 2.791009e-05 Heather\n", "11 7.808204 5.203950e-03 Inland rock\n", "1 7.188161 7.342254e-03 Coniferous woodland\n", "14 1.781952 1.819190e-01 Supralittoral rock\n", "5 0.735834 3.910048e-01 Calcareous grassland\n", "16 0.097151 7.552781e-01 Littoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Goshawk 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
231228.0088333.437230e-264Surface type
211131.6589945.687958e-244Elevation
241068.0372771.373575e-230Outflowing drainage direction
221044.9333011.009602e-225Cumulative catchment area
25919.8890672.517246e-199Inflowing drainage direction
0809.8181715.254241e-176Deciduous woodland
3684.7801082.032079e-149Improve grassland
1397.8091475.441281e-88Coniferous woodland
6362.4598082.209967e-80Acid grassland
287.7573917.852555e-21Arable
2079.8037074.343909e-19Suburban
845.5582821.506066e-11Heather
516.0538376.170139e-05Calcareous grassland
1315.7230437.347960e-05Freshwater
188.6930713.196452e-03Saltmarsh
74.2132954.011621e-02Fen
103.2933956.956812e-02Bog
141.4926442.218154e-01Supralittoral rock
191.2357072.663082e-01Urban
90.6530814.190191e-01Heather grassland
110.4163975.187449e-01Inland rock
120.2226896.370020e-01Saltwater
150.0469728.284207e-01Supralittoral sediment
40.0414368.386999e-01Neutral grassland
170.0326898.565239e-01Littoral sediment
160.0027399.582594e-01Littoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 1228.008833 3.437230e-264 Surface type\n", "21 1131.658994 5.687958e-244 Elevation\n", "24 1068.037277 1.373575e-230 Outflowing drainage direction\n", "22 1044.933301 1.009602e-225 Cumulative catchment area\n", "25 919.889067 2.517246e-199 Inflowing drainage direction\n", "0 809.818171 5.254241e-176 Deciduous woodland\n", "3 684.780108 2.032079e-149 Improve grassland\n", "1 397.809147 5.441281e-88 Coniferous woodland\n", "6 362.459808 2.209967e-80 Acid grassland\n", "2 87.757391 7.852555e-21 Arable\n", "20 79.803707 4.343909e-19 Suburban\n", "8 45.558282 1.506066e-11 Heather\n", "5 16.053837 6.170139e-05 Calcareous grassland\n", "13 15.723043 7.347960e-05 Freshwater\n", "18 8.693071 3.196452e-03 Saltmarsh\n", "7 4.213295 4.011621e-02 Fen\n", "10 3.293395 6.956812e-02 Bog\n", "14 1.492644 2.218154e-01 Supralittoral rock\n", "19 1.235707 2.663082e-01 Urban\n", "9 0.653081 4.190191e-01 Heather grassland\n", "11 0.416397 5.187449e-01 Inland rock\n", "12 0.222689 6.370020e-01 Saltwater\n", "15 0.046972 8.284207e-01 Supralittoral sediment\n", "4 0.041436 8.386999e-01 Neutral grassland\n", "17 0.032689 8.565239e-01 Littoral sediment\n", "16 0.002739 9.582594e-01 Littoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Grey Partridge 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
28141.7005890.000000e+00Arable
235901.4705560.000000e+00Surface type
244800.4094210.000000e+00Outflowing drainage direction
224601.9061500.000000e+00Cumulative catchment area
254463.9737400.000000e+00Inflowing drainage direction
214389.2623400.000000e+00Elevation
32126.4953990.000000e+00Improve grassland
0901.2387632.221379e-195Deciduous woodland
20518.0098918.599298e-114Suburban
5327.0452669.488789e-73Calcareous grassland
4319.8490113.384407e-71Neutral grassland
1998.7814693.039441e-23Urban
1542.3042727.923464e-11Supralittoral sediment
1842.0651708.952540e-11Saltmarsh
1327.8681201.306903e-07Freshwater
718.3029321.889456e-05Fen
176.2330181.254381e-02Littoral sediment
15.2153002.239529e-02Coniferous woodland
114.7408812.946103e-02Inland rock
144.0219464.491999e-02Supralittoral rock
83.1361137.658531e-02Heather
62.3929101.218961e-01Acid grassland
120.2493306.175506e-01Saltwater
100.1208517.281160e-01Bog
90.0128489.097560e-01Heather grassland
160.0000369.952257e-01Littoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "2 8141.700589 0.000000e+00 Arable\n", "23 5901.470556 0.000000e+00 Surface type\n", "24 4800.409421 0.000000e+00 Outflowing drainage direction\n", "22 4601.906150 0.000000e+00 Cumulative catchment area\n", "25 4463.973740 0.000000e+00 Inflowing drainage direction\n", "21 4389.262340 0.000000e+00 Elevation\n", "3 2126.495399 0.000000e+00 Improve grassland\n", "0 901.238763 2.221379e-195 Deciduous woodland\n", "20 518.009891 8.599298e-114 Suburban\n", "5 327.045266 9.488789e-73 Calcareous grassland\n", "4 319.849011 3.384407e-71 Neutral grassland\n", "19 98.781469 3.039441e-23 Urban\n", "15 42.304272 7.923464e-11 Supralittoral sediment\n", "18 42.065170 8.952540e-11 Saltmarsh\n", "13 27.868120 1.306903e-07 Freshwater\n", "7 18.302932 1.889456e-05 Fen\n", "17 6.233018 1.254381e-02 Littoral sediment\n", "1 5.215300 2.239529e-02 Coniferous woodland\n", "11 4.740881 2.946103e-02 Inland rock\n", "14 4.021946 4.491999e-02 Supralittoral rock\n", "8 3.136113 7.658531e-02 Heather\n", "6 2.392910 1.218961e-01 Acid grassland\n", "12 0.249330 6.175506e-01 Saltwater\n", "10 0.120851 7.281160e-01 Bog\n", "9 0.012848 9.097560e-01 Heather grassland\n", "16 0.000036 9.952257e-01 Littoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Indian Peafowl 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
23826.3417131.639780e-179Surface type
22773.1163573.264405e-168Cumulative catchment area
24694.6519081.603430e-151Outflowing drainage direction
2636.3966564.208646e-139Arable
25618.0986983.386540e-135Inflowing drainage direction
21581.2706482.497700e-127Elevation
3579.2898176.621914e-127Improve grassland
0557.9852512.382356e-122Deciduous woodland
20341.3619217.768283e-76Suburban
431.0374532.550632e-08Neutral grassland
1928.4794239.532196e-08Urban
519.5912419.621430e-06Calcareous grassland
711.1274978.515085e-04Fen
139.8728291.678853e-03Freshwater
64.9757472.571178e-02Acid grassland
103.5211246.060014e-02Bog
12.6743231.019882e-01Coniferous woodland
92.2674921.321231e-01Heather grassland
81.4708912.252138e-01Heather
110.7304983.927281e-01Inland rock
120.7177253.968973e-01Saltwater
150.5093394.754303e-01Supralittoral sediment
180.3350805.626872e-01Saltmarsh
140.1322517.161121e-01Supralittoral rock
170.0993037.526692e-01Littoral sediment
160.0342668.531431e-01Littoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 826.341713 1.639780e-179 Surface type\n", "22 773.116357 3.264405e-168 Cumulative catchment area\n", "24 694.651908 1.603430e-151 Outflowing drainage direction\n", "2 636.396656 4.208646e-139 Arable\n", "25 618.098698 3.386540e-135 Inflowing drainage direction\n", "21 581.270648 2.497700e-127 Elevation\n", "3 579.289817 6.621914e-127 Improve grassland\n", "0 557.985251 2.382356e-122 Deciduous woodland\n", "20 341.361921 7.768283e-76 Suburban\n", "4 31.037453 2.550632e-08 Neutral grassland\n", "19 28.479423 9.532196e-08 Urban\n", "5 19.591241 9.621430e-06 Calcareous grassland\n", "7 11.127497 8.515085e-04 Fen\n", "13 9.872829 1.678853e-03 Freshwater\n", "6 4.975747 2.571178e-02 Acid grassland\n", "10 3.521124 6.060014e-02 Bog\n", "1 2.674323 1.019882e-01 Coniferous woodland\n", "9 2.267492 1.321231e-01 Heather grassland\n", "8 1.470891 2.252138e-01 Heather\n", "11 0.730498 3.927281e-01 Inland rock\n", "12 0.717725 3.968973e-01 Saltwater\n", "15 0.509339 4.754303e-01 Supralittoral sediment\n", "18 0.335080 5.626872e-01 Saltmarsh\n", "14 0.132251 7.161121e-01 Supralittoral rock\n", "17 0.099303 7.526692e-01 Littoral sediment\n", "16 0.034266 8.531431e-01 Littoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Little Owl 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
239941.9949170.000000e+00Surface type
29462.7945040.000000e+00Arable
248442.6618240.000000e+00Outflowing drainage direction
227788.8996410.000000e+00Cumulative catchment area
257508.9703310.000000e+00Inflowing drainage direction
216742.5534930.000000e+00Elevation
34944.4736150.000000e+00Improve grassland
202250.9937740.000000e+00Suburban
01224.0860802.281664e-263Deciduous woodland
4630.0205199.656906e-138Neutral grassland
5439.8307065.052213e-97Calcareous grassland
19344.0144252.082536e-76Urban
13191.2207662.273330e-43Freshwater
7143.2226506.146287e-33Fen
1859.7965511.081619e-14Saltmarsh
642.2008318.353273e-11Acid grassland
134.0801885.338007e-09Coniferous woodland
1030.4630893.428286e-08Bog
826.6471552.456208e-07Heather
919.0563621.272986e-05Heather grassland
1516.7545474.264108e-05Supralittoral sediment
167.3721756.627513e-03Littoral rock
117.1375567.552295e-03Inland rock
145.8902951.522985e-02Supralittoral rock
120.1576146.913651e-01Saltwater
170.0950977.577967e-01Littoral sediment
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 9941.994917 0.000000e+00 Surface type\n", "2 9462.794504 0.000000e+00 Arable\n", "24 8442.661824 0.000000e+00 Outflowing drainage direction\n", "22 7788.899641 0.000000e+00 Cumulative catchment area\n", "25 7508.970331 0.000000e+00 Inflowing drainage direction\n", "21 6742.553493 0.000000e+00 Elevation\n", "3 4944.473615 0.000000e+00 Improve grassland\n", "20 2250.993774 0.000000e+00 Suburban\n", "0 1224.086080 2.281664e-263 Deciduous woodland\n", "4 630.020519 9.656906e-138 Neutral grassland\n", "5 439.830706 5.052213e-97 Calcareous grassland\n", "19 344.014425 2.082536e-76 Urban\n", "13 191.220766 2.273330e-43 Freshwater\n", "7 143.222650 6.146287e-33 Fen\n", "18 59.796551 1.081619e-14 Saltmarsh\n", "6 42.200831 8.353273e-11 Acid grassland\n", "1 34.080188 5.338007e-09 Coniferous woodland\n", "10 30.463089 3.428286e-08 Bog\n", "8 26.647155 2.456208e-07 Heather\n", "9 19.056362 1.272986e-05 Heather grassland\n", "15 16.754547 4.264108e-05 Supralittoral sediment\n", "16 7.372175 6.627513e-03 Littoral rock\n", "11 7.137556 7.552295e-03 Inland rock\n", "14 5.890295 1.522985e-02 Supralittoral rock\n", "12 0.157614 6.913651e-01 Saltwater\n", "17 0.095097 7.577967e-01 Littoral sediment" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Mandarin Duck 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
223559.7809520.000000e+00Cumulative catchment area
03525.9752950.000000e+00Deciduous woodland
242973.6341050.000000e+00Outflowing drainage direction
232900.2681490.000000e+00Surface type
32556.2070490.000000e+00Improve grassland
252139.2569630.000000e+00Inflowing drainage direction
212040.5990630.000000e+00Elevation
201659.9811950.000000e+00Suburban
13792.7054952.254877e-172Freshwater
19434.1601648.347169e-96Urban
2322.3177509.929157e-72Arable
4289.0274101.523840e-64Neutral grassland
586.9865821.158292e-20Calcareous grassland
143.6172364.053481e-11Coniferous woodland
730.4543783.443701e-08Fen
912.6804953.700080e-04Heather grassland
1011.1701548.321583e-04Bog
64.7743782.889326e-02Acid grassland
163.4683176.256379e-02Littoral rock
143.1919977.400873e-02Supralittoral rock
173.0806937.923601e-02Littoral sediment
122.6033021.066509e-01Saltwater
112.2907841.301538e-01Inland rock
151.4089762.352351e-01Supralittoral sediment
80.0233298.786052e-01Heather
180.0046139.458479e-01Saltmarsh
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "22 3559.780952 0.000000e+00 Cumulative catchment area\n", "0 3525.975295 0.000000e+00 Deciduous woodland\n", "24 2973.634105 0.000000e+00 Outflowing drainage direction\n", "23 2900.268149 0.000000e+00 Surface type\n", "3 2556.207049 0.000000e+00 Improve grassland\n", "25 2139.256963 0.000000e+00 Inflowing drainage direction\n", "21 2040.599063 0.000000e+00 Elevation\n", "20 1659.981195 0.000000e+00 Suburban\n", "13 792.705495 2.254877e-172 Freshwater\n", "19 434.160164 8.347169e-96 Urban\n", "2 322.317750 9.929157e-72 Arable\n", "4 289.027410 1.523840e-64 Neutral grassland\n", "5 86.986582 1.158292e-20 Calcareous grassland\n", "1 43.617236 4.053481e-11 Coniferous woodland\n", "7 30.454378 3.443701e-08 Fen\n", "9 12.680495 3.700080e-04 Heather grassland\n", "10 11.170154 8.321583e-04 Bog\n", "6 4.774378 2.889326e-02 Acid grassland\n", "16 3.468317 6.256379e-02 Littoral rock\n", "14 3.191997 7.400873e-02 Supralittoral rock\n", "17 3.080693 7.923601e-02 Littoral sediment\n", "12 2.603302 1.066509e-01 Saltwater\n", "11 2.290784 1.301538e-01 Inland rock\n", "15 1.408976 2.352351e-01 Supralittoral sediment\n", "8 0.023329 8.786052e-01 Heather\n", "18 0.004613 9.458479e-01 Saltmarsh" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Mute Swan 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
2341778.6831490.000000e+00Surface type
2537707.8640050.000000e+00Inflowing drainage direction
2132149.8039350.000000e+00Elevation
2424629.7305320.000000e+00Outflowing drainage direction
227714.9911720.000000e+00Cumulative catchment area
36922.4294330.000000e+00Improve grassland
205556.7695970.000000e+00Suburban
24548.3090430.000000e+00Arable
03188.8338270.000000e+00Deciduous woodland
192126.9163370.000000e+00Urban
131261.0944234.042871e-271Freshwater
4710.9898835.323266e-155Neutral grassland
17350.9477746.674534e-78Littoral sediment
6274.3005332.317521e-61Acid grassland
18258.6972555.478710e-58Saltmarsh
7204.4399813.082649e-46Fen
15138.8760355.432921e-32Supralittoral sediment
10122.3100532.214177e-28Bog
12113.2024002.149655e-26Saltwater
8103.8161622.411588e-24Heather
988.3795385.738193e-21Heather grassland
1666.6977223.276343e-16Littoral rock
1149.3129982.224191e-12Inland rock
144.6698922.369145e-11Coniferous woodland
1429.3310596.143449e-08Supralittoral rock
58.6985193.186914e-03Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 41778.683149 0.000000e+00 Surface type\n", "25 37707.864005 0.000000e+00 Inflowing drainage direction\n", "21 32149.803935 0.000000e+00 Elevation\n", "24 24629.730532 0.000000e+00 Outflowing drainage direction\n", "22 7714.991172 0.000000e+00 Cumulative catchment area\n", "3 6922.429433 0.000000e+00 Improve grassland\n", "20 5556.769597 0.000000e+00 Suburban\n", "2 4548.309043 0.000000e+00 Arable\n", "0 3188.833827 0.000000e+00 Deciduous woodland\n", "19 2126.916337 0.000000e+00 Urban\n", "13 1261.094423 4.042871e-271 Freshwater\n", "4 710.989883 5.323266e-155 Neutral grassland\n", "17 350.947774 6.674534e-78 Littoral sediment\n", "6 274.300533 2.317521e-61 Acid grassland\n", "18 258.697255 5.478710e-58 Saltmarsh\n", "7 204.439981 3.082649e-46 Fen\n", "15 138.876035 5.432921e-32 Supralittoral sediment\n", "10 122.310053 2.214177e-28 Bog\n", "12 113.202400 2.149655e-26 Saltwater\n", "8 103.816162 2.411588e-24 Heather\n", "9 88.379538 5.738193e-21 Heather grassland\n", "16 66.697722 3.276343e-16 Littoral rock\n", "11 49.312998 2.224191e-12 Inland rock\n", "1 44.669892 2.369145e-11 Coniferous woodland\n", "14 29.331059 6.143449e-08 Supralittoral rock\n", "5 8.698519 3.186914e-03 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pheasant 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
2314828.4393000.000000e+00Surface type
2412411.6643970.000000e+00Outflowing drainage direction
2111511.4363050.000000e+00Elevation
2511025.7489710.000000e+00Inflowing drainage direction
229363.8618950.000000e+00Cumulative catchment area
36889.7584020.000000e+00Improve grassland
25020.1154690.000000e+00Arable
03497.6528870.000000e+00Deciduous woodland
201872.6914980.000000e+00Suburban
5415.8584757.152889e-92Calcareous grassland
4355.0693988.637276e-79Neutral grassland
1235.2432636.519726e-53Coniferous woodland
19219.1094542.036749e-49Urban
6141.7403991.292165e-32Acid grassland
13137.7848199.390379e-32Freshwater
888.3978785.685377e-21Heather
757.6731693.176391e-14Fen
1033.1548478.585587e-09Bog
1821.4139453.714720e-06Saltmarsh
1513.1230562.921201e-04Supralittoral sediment
115.4513891.955872e-02Inland rock
94.3622213.675199e-02Heather grassland
162.7516969.716078e-02Littoral rock
120.2023766.528125e-01Saltwater
170.1468867.015312e-01Littoral sediment
140.0773397.809384e-01Supralittoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 14828.439300 0.000000e+00 Surface type\n", "24 12411.664397 0.000000e+00 Outflowing drainage direction\n", "21 11511.436305 0.000000e+00 Elevation\n", "25 11025.748971 0.000000e+00 Inflowing drainage direction\n", "22 9363.861895 0.000000e+00 Cumulative catchment area\n", "3 6889.758402 0.000000e+00 Improve grassland\n", "2 5020.115469 0.000000e+00 Arable\n", "0 3497.652887 0.000000e+00 Deciduous woodland\n", "20 1872.691498 0.000000e+00 Suburban\n", "5 415.858475 7.152889e-92 Calcareous grassland\n", "4 355.069398 8.637276e-79 Neutral grassland\n", "1 235.243263 6.519726e-53 Coniferous woodland\n", "19 219.109454 2.036749e-49 Urban\n", "6 141.740399 1.292165e-32 Acid grassland\n", "13 137.784819 9.390379e-32 Freshwater\n", "8 88.397878 5.685377e-21 Heather\n", "7 57.673169 3.176391e-14 Fen\n", "10 33.154847 8.585587e-09 Bog\n", "18 21.413945 3.714720e-06 Saltmarsh\n", "15 13.123056 2.921201e-04 Supralittoral sediment\n", "11 5.451389 1.955872e-02 Inland rock\n", "9 4.362221 3.675199e-02 Heather grassland\n", "16 2.751696 9.716078e-02 Littoral rock\n", "12 0.202376 6.528125e-01 Saltwater\n", "17 0.146886 7.015312e-01 Littoral sediment\n", "14 0.077339 7.809384e-01 Supralittoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pink-footed Goose 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
255823.2460060.000000e+00Inflowing drainage direction
235796.3296750.000000e+00Surface type
214750.0627970.000000e+00Elevation
244416.4115460.000000e+00Outflowing drainage direction
224111.2407450.000000e+00Cumulative catchment area
24027.3854550.000000e+00Arable
171680.7562570.000000e+00Littoral sediment
31578.7595850.000000e+00Improve grassland
181503.6428981.032597e-321Saltmarsh
201109.1158573.118895e-239Suburban
01064.0141609.660098e-230Deciduous woodland
15852.3357285.051033e-185Supralittoral sediment
19449.4507504.341152e-99Urban
13441.1834512.587866e-97Freshwater
16329.3744672.984579e-73Littoral rock
7117.2078972.872142e-27Fen
1255.2756521.072913e-13Saltwater
450.4842411.225518e-12Neutral grassland
17.4813506.237451e-03Coniferous woodland
63.0247528.201214e-02Acid grassland
142.0012531.571786e-01Supralittoral rock
81.3791742.402504e-01Heather
111.1984632.736371e-01Inland rock
100.0515158.204487e-01Bog
50.0224368.809347e-01Calcareous grassland
90.0023029.617297e-01Heather grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 5823.246006 0.000000e+00 Inflowing drainage direction\n", "23 5796.329675 0.000000e+00 Surface type\n", "21 4750.062797 0.000000e+00 Elevation\n", "24 4416.411546 0.000000e+00 Outflowing drainage direction\n", "22 4111.240745 0.000000e+00 Cumulative catchment area\n", "2 4027.385455 0.000000e+00 Arable\n", "17 1680.756257 0.000000e+00 Littoral sediment\n", "3 1578.759585 0.000000e+00 Improve grassland\n", "18 1503.642898 1.032597e-321 Saltmarsh\n", "20 1109.115857 3.118895e-239 Suburban\n", "0 1064.014160 9.660098e-230 Deciduous woodland\n", "15 852.335728 5.051033e-185 Supralittoral sediment\n", "19 449.450750 4.341152e-99 Urban\n", "13 441.183451 2.587866e-97 Freshwater\n", "16 329.374467 2.984579e-73 Littoral rock\n", "7 117.207897 2.872142e-27 Fen\n", "12 55.275652 1.072913e-13 Saltwater\n", "4 50.484241 1.225518e-12 Neutral grassland\n", "1 7.481350 6.237451e-03 Coniferous woodland\n", "6 3.024752 8.201214e-02 Acid grassland\n", "14 2.001253 1.571786e-01 Supralittoral rock\n", "8 1.379174 2.402504e-01 Heather\n", "11 1.198463 2.736371e-01 Inland rock\n", "10 0.051515 8.204487e-01 Bog\n", "5 0.022436 8.809347e-01 Calcareous grassland\n", "9 0.002302 9.617297e-01 Heather grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pintail 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
251325.1681831.608067e-284Inflowing drainage direction
231169.8409955.439990e-252Surface type
21987.2481751.475675e-213Elevation
24832.2603919.109264e-181Outflowing drainage direction
18829.3982533.685447e-180Saltmarsh
22760.5262431.546155e-165Cumulative catchment area
2723.1688731.361610e-157Arable
17700.4327819.417029e-153Littoral sediment
3435.3628234.604501e-96Improve grassland
20333.6103773.643021e-74Suburban
19306.4160362.680625e-68Urban
0244.3361697.011810e-55Deciduous woodland
4241.5403062.824742e-54Neutral grassland
7156.6172337.482770e-36Fen
15129.0302777.586888e-30Supralittoral sediment
1278.1333761.009712e-18Saltwater
1349.6129111.909316e-12Freshwater
64.7668182.902040e-02Acid grassland
81.6055962.051210e-01Heather
111.4117252.347787e-01Inland rock
91.1353542.866439e-01Heather grassland
10.7355273.911038e-01Coniferous woodland
140.3898455.323851e-01Supralittoral rock
50.1738206.767413e-01Calcareous grassland
160.0491508.245503e-01Littoral rock
100.0342718.531325e-01Bog
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 1325.168183 1.608067e-284 Inflowing drainage direction\n", "23 1169.840995 5.439990e-252 Surface type\n", "21 987.248175 1.475675e-213 Elevation\n", "24 832.260391 9.109264e-181 Outflowing drainage direction\n", "18 829.398253 3.685447e-180 Saltmarsh\n", "22 760.526243 1.546155e-165 Cumulative catchment area\n", "2 723.168873 1.361610e-157 Arable\n", "17 700.432781 9.417029e-153 Littoral sediment\n", "3 435.362823 4.604501e-96 Improve grassland\n", "20 333.610377 3.643021e-74 Suburban\n", "19 306.416036 2.680625e-68 Urban\n", "0 244.336169 7.011810e-55 Deciduous woodland\n", "4 241.540306 2.824742e-54 Neutral grassland\n", "7 156.617233 7.482770e-36 Fen\n", "15 129.030277 7.586888e-30 Supralittoral sediment\n", "12 78.133376 1.009712e-18 Saltwater\n", "13 49.612911 1.909316e-12 Freshwater\n", "6 4.766818 2.902040e-02 Acid grassland\n", "8 1.605596 2.051210e-01 Heather\n", "11 1.411725 2.347787e-01 Inland rock\n", "9 1.135354 2.866439e-01 Heather grassland\n", "1 0.735527 3.911038e-01 Coniferous woodland\n", "14 0.389845 5.323851e-01 Supralittoral rock\n", "5 0.173820 6.767413e-01 Calcareous grassland\n", "16 0.049150 8.245503e-01 Littoral rock\n", "10 0.034271 8.531325e-01 Bog" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pochard 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
231842.7612840.000000e+00Surface type
21555.5361080.000000e+00Arable
251549.0515650.000000e+00Inflowing drainage direction
241485.8537665.152527e-318Outflowing drainage direction
221392.7329671.268634e-298Cumulative catchment area
211309.1874053.516732e-281Elevation
20894.2341956.746925e-194Suburban
3745.1604922.857352e-162Improve grassland
19743.6818115.893993e-162Urban
0574.4708937.099727e-126Deciduous woodland
13271.8091808.008227e-61Freshwater
4149.3453322.857674e-34Neutral grassland
7131.3446632.375107e-30Fen
1899.8657361.760901e-23Saltmarsh
1546.6756008.521422e-12Supralittoral sediment
1738.9599904.378224e-10Littoral sediment
1213.2900462.672276e-04Saltwater
612.0150675.283914e-04Acid grassland
510.4023391.259780e-03Calcareous grassland
1010.1055141.479624e-03Bog
94.7721902.893001e-02Heather grassland
84.0242744.485804e-02Heather
112.1590901.417381e-01Inland rock
140.8516913.560812e-01Supralittoral rock
10.6320464.266115e-01Coniferous woodland
160.2402356.240394e-01Littoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 1842.761284 0.000000e+00 Surface type\n", "2 1555.536108 0.000000e+00 Arable\n", "25 1549.051565 0.000000e+00 Inflowing drainage direction\n", "24 1485.853766 5.152527e-318 Outflowing drainage direction\n", "22 1392.732967 1.268634e-298 Cumulative catchment area\n", "21 1309.187405 3.516732e-281 Elevation\n", "20 894.234195 6.746925e-194 Suburban\n", "3 745.160492 2.857352e-162 Improve grassland\n", "19 743.681811 5.893993e-162 Urban\n", "0 574.470893 7.099727e-126 Deciduous woodland\n", "13 271.809180 8.008227e-61 Freshwater\n", "4 149.345332 2.857674e-34 Neutral grassland\n", "7 131.344663 2.375107e-30 Fen\n", "18 99.865736 1.760901e-23 Saltmarsh\n", "15 46.675600 8.521422e-12 Supralittoral sediment\n", "17 38.959990 4.378224e-10 Littoral sediment\n", "12 13.290046 2.672276e-04 Saltwater\n", "6 12.015067 5.283914e-04 Acid grassland\n", "5 10.402339 1.259780e-03 Calcareous grassland\n", "10 10.105514 1.479624e-03 Bog\n", "9 4.772190 2.893001e-02 Heather grassland\n", "8 4.024274 4.485804e-02 Heather\n", "11 2.159090 1.417381e-01 Inland rock\n", "14 0.851691 3.560812e-01 Supralittoral rock\n", "1 0.632046 4.266115e-01 Coniferous woodland\n", "16 0.240235 6.240394e-01 Littoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Red-legged Partridge 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
29262.5619800.000000e+00Arable
238310.3473240.000000e+00Surface type
246580.4680600.000000e+00Outflowing drainage direction
256132.3932160.000000e+00Inflowing drainage direction
216122.8566680.000000e+00Elevation
226094.0721730.000000e+00Cumulative catchment area
33761.3823360.000000e+00Improve grassland
01821.3220330.000000e+00Deciduous woodland
20591.4204831.691353e-129Suburban
5325.7576501.798558e-72Calcareous grassland
4108.6945332.073050e-25Neutral grassland
1958.1305102.518487e-14Urban
754.4771321.609616e-13Fen
1338.5145095.499196e-10Freshwater
1819.6209369.473139e-06Saltmarsh
97.2246207.194636e-03Heather grassland
117.1254877.603285e-03Inland rock
154.5322903.326844e-02Supralittoral sediment
84.4598103.470883e-02Heather
163.9795594.606380e-02Littoral rock
103.5053456.117991e-02Bog
12.1153251.458406e-01Coniferous woodland
140.7474303.872974e-01Supralittoral rock
60.2891205.907888e-01Acid grassland
170.1536036.951180e-01Littoral sediment
120.1398987.083844e-01Saltwater
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "2 9262.561980 0.000000e+00 Arable\n", "23 8310.347324 0.000000e+00 Surface type\n", "24 6580.468060 0.000000e+00 Outflowing drainage direction\n", "25 6132.393216 0.000000e+00 Inflowing drainage direction\n", "21 6122.856668 0.000000e+00 Elevation\n", "22 6094.072173 0.000000e+00 Cumulative catchment area\n", "3 3761.382336 0.000000e+00 Improve grassland\n", "0 1821.322033 0.000000e+00 Deciduous woodland\n", "20 591.420483 1.691353e-129 Suburban\n", "5 325.757650 1.798558e-72 Calcareous grassland\n", "4 108.694533 2.073050e-25 Neutral grassland\n", "19 58.130510 2.518487e-14 Urban\n", "7 54.477132 1.609616e-13 Fen\n", "13 38.514509 5.499196e-10 Freshwater\n", "18 19.620936 9.473139e-06 Saltmarsh\n", "9 7.224620 7.194636e-03 Heather grassland\n", "11 7.125487 7.603285e-03 Inland rock\n", "15 4.532290 3.326844e-02 Supralittoral sediment\n", "8 4.459810 3.470883e-02 Heather\n", "16 3.979559 4.606380e-02 Littoral rock\n", "10 3.505345 6.117991e-02 Bog\n", "1 2.115325 1.458406e-01 Coniferous woodland\n", "14 0.747430 3.872974e-01 Supralittoral rock\n", "6 0.289120 5.907888e-01 Acid grassland\n", "17 0.153603 6.951180e-01 Littoral sediment\n", "12 0.139898 7.083844e-01 Saltwater" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Ring-necked Parakeet 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
205174.0294800.000000e+00Suburban
194816.2933270.000000e+00Urban
222110.0559970.000000e+00Cumulative catchment area
231451.1820048.429407e-311Surface type
241239.1020831.629495e-266Outflowing drainage direction
251101.5521881.215523e-237Inflowing drainage direction
21934.4658092.082605e-202Elevation
0644.6953157.138206e-141Deciduous woodland
3590.5309352.620156e-129Improve grassland
13266.9082479.184502e-60Freshwater
233.7378816.363711e-09Arable
616.1425905.887779e-05Acid grassland
98.3504273.858472e-03Heather grassland
106.3047421.204628e-02Bog
46.0187661.415966e-02Neutral grassland
85.3546662.067299e-02Heather
14.6306963.141203e-02Coniferous woodland
162.0757821.496627e-01Littoral rock
112.0283601.543966e-01Inland rock
141.7731631.830003e-01Supralittoral rock
171.3430032.465134e-01Littoral sediment
181.0079353.154055e-01Saltmarsh
120.7679933.808449e-01Saltwater
150.1708806.793333e-01Supralittoral sediment
70.1227667.260555e-01Fen
50.0619658.034183e-01Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "20 5174.029480 0.000000e+00 Suburban\n", "19 4816.293327 0.000000e+00 Urban\n", "22 2110.055997 0.000000e+00 Cumulative catchment area\n", "23 1451.182004 8.429407e-311 Surface type\n", "24 1239.102083 1.629495e-266 Outflowing drainage direction\n", "25 1101.552188 1.215523e-237 Inflowing drainage direction\n", "21 934.465809 2.082605e-202 Elevation\n", "0 644.695315 7.138206e-141 Deciduous woodland\n", "3 590.530935 2.620156e-129 Improve grassland\n", "13 266.908247 9.184502e-60 Freshwater\n", "2 33.737881 6.363711e-09 Arable\n", "6 16.142590 5.887779e-05 Acid grassland\n", "9 8.350427 3.858472e-03 Heather grassland\n", "10 6.304742 1.204628e-02 Bog\n", "4 6.018766 1.415966e-02 Neutral grassland\n", "8 5.354666 2.067299e-02 Heather\n", "1 4.630696 3.141203e-02 Coniferous woodland\n", "16 2.075782 1.496627e-01 Littoral rock\n", "11 2.028360 1.543966e-01 Inland rock\n", "14 1.773163 1.830003e-01 Supralittoral rock\n", "17 1.343003 2.465134e-01 Littoral sediment\n", "18 1.007935 3.154055e-01 Saltmarsh\n", "12 0.767993 3.808449e-01 Saltwater\n", "15 0.170880 6.793333e-01 Supralittoral sediment\n", "7 0.122766 7.260555e-01 Fen\n", "5 0.061965 8.034183e-01 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Rock Dove 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
239715.2088960.000000e+00Surface type
247716.6494250.000000e+00Outflowing drainage direction
257489.6235130.000000e+00Inflowing drainage direction
217209.1827190.000000e+00Elevation
226950.6264000.000000e+00Cumulative catchment area
34736.9713750.000000e+00Improve grassland
204361.9142410.000000e+00Suburban
23272.5668530.000000e+00Arable
01947.2769150.000000e+00Deciduous woodland
191698.7226740.000000e+00Urban
4327.4609807.718845e-73Neutral grassland
5172.8105542.260169e-39Calcareous grassland
13158.4765052.949316e-36Freshwater
1663.3990641.741628e-15Littoral rock
1438.5122315.505612e-10Supralittoral rock
1535.3600402.767982e-09Supralittoral sediment
732.3057381.328301e-08Fen
1815.7332897.308286e-05Saltmarsh
1713.8081232.027922e-04Littoral sediment
115.9395931.480967e-02Inland rock
81.4677242.257138e-01Heather
61.1830742.767391e-01Acid grassland
101.0685423.012825e-01Bog
90.5208294.704932e-01Heather grassland
120.4919054.830835e-01Saltwater
10.3637695.464245e-01Coniferous woodland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 9715.208896 0.000000e+00 Surface type\n", "24 7716.649425 0.000000e+00 Outflowing drainage direction\n", "25 7489.623513 0.000000e+00 Inflowing drainage direction\n", "21 7209.182719 0.000000e+00 Elevation\n", "22 6950.626400 0.000000e+00 Cumulative catchment area\n", "3 4736.971375 0.000000e+00 Improve grassland\n", "20 4361.914241 0.000000e+00 Suburban\n", "2 3272.566853 0.000000e+00 Arable\n", "0 1947.276915 0.000000e+00 Deciduous woodland\n", "19 1698.722674 0.000000e+00 Urban\n", "4 327.460980 7.718845e-73 Neutral grassland\n", "5 172.810554 2.260169e-39 Calcareous grassland\n", "13 158.476505 2.949316e-36 Freshwater\n", "16 63.399064 1.741628e-15 Littoral rock\n", "14 38.512231 5.505612e-10 Supralittoral rock\n", "15 35.360040 2.767982e-09 Supralittoral sediment\n", "7 32.305738 1.328301e-08 Fen\n", "18 15.733289 7.308286e-05 Saltmarsh\n", "17 13.808123 2.027922e-04 Littoral sediment\n", "11 5.939593 1.480967e-02 Inland rock\n", "8 1.467724 2.257138e-01 Heather\n", "6 1.183074 2.767391e-01 Acid grassland\n", "10 1.068542 3.012825e-01 Bog\n", "9 0.520829 4.704932e-01 Heather grassland\n", "12 0.491905 4.830835e-01 Saltwater\n", "1 0.363769 5.464245e-01 Coniferous woodland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Ruddy Duck 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
132084.0238870.000000e+00Freshwater
24574.8004566.036397e-126Outflowing drainage direction
22439.9537634.753911e-97Cumulative catchment area
23331.6449489.666367e-74Surface type
25252.5055851.196889e-56Inflowing drainage direction
19209.7910452.131385e-47Urban
21206.3481081.188914e-46Elevation
0197.5458299.644094e-45Deciduous woodland
4178.4698121.333079e-40Neutral grassland
3159.6581141.632226e-36Improve grassland
20117.6152662.340567e-27Suburban
7105.0451171.299505e-24Fen
254.6797451.452179e-13Arable
1836.7002401.392471e-09Saltmarsh
1518.5781741.635478e-05Supralittoral sediment
1217.7163802.570854e-05Saltwater
63.9353504.728954e-02Acid grassland
172.1782051.399871e-01Littoral sediment
81.9161301.662933e-01Heather
101.3834602.395211e-01Bog
91.2210972.691535e-01Heather grassland
11.0088073.151962e-01Coniferous woodland
140.4454435.045116e-01Supralittoral rock
160.4330815.104857e-01Littoral rock
110.2473356.189611e-01Inland rock
50.0722807.880478e-01Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "13 2084.023887 0.000000e+00 Freshwater\n", "24 574.800456 6.036397e-126 Outflowing drainage direction\n", "22 439.953763 4.753911e-97 Cumulative catchment area\n", "23 331.644948 9.666367e-74 Surface type\n", "25 252.505585 1.196889e-56 Inflowing drainage direction\n", "19 209.791045 2.131385e-47 Urban\n", "21 206.348108 1.188914e-46 Elevation\n", "0 197.545829 9.644094e-45 Deciduous woodland\n", "4 178.469812 1.333079e-40 Neutral grassland\n", "3 159.658114 1.632226e-36 Improve grassland\n", "20 117.615266 2.340567e-27 Suburban\n", "7 105.045117 1.299505e-24 Fen\n", "2 54.679745 1.452179e-13 Arable\n", "18 36.700240 1.392471e-09 Saltmarsh\n", "15 18.578174 1.635478e-05 Supralittoral sediment\n", "12 17.716380 2.570854e-05 Saltwater\n", "6 3.935350 4.728954e-02 Acid grassland\n", "17 2.178205 1.399871e-01 Littoral sediment\n", "8 1.916130 1.662933e-01 Heather\n", "10 1.383460 2.395211e-01 Bog\n", "9 1.221097 2.691535e-01 Heather grassland\n", "1 1.008807 3.151962e-01 Coniferous woodland\n", "14 0.445443 5.045116e-01 Supralittoral rock\n", "16 0.433081 5.104857e-01 Littoral rock\n", "11 0.247335 6.189611e-01 Inland rock\n", "5 0.072280 7.880478e-01 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Whooper Swan 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
251676.5605280.000000e+00Inflowing drainage direction
231555.8842940.000000e+00Surface type
211411.8843251.291051e-302Elevation
241295.0508373.175931e-278Outflowing drainage direction
221252.1695942.987125e-269Cumulative catchment area
3560.8702235.752589e-123Improve grassland
2518.0997398.226528e-114Arable
13302.4570751.918026e-67Freshwater
17294.0970641.224555e-65Littoral sediment
0236.1681414.111276e-53Deciduous woodland
18210.1316281.798147e-47Saltmarsh
7171.0067735.572412e-39Fen
20166.9334974.277570e-38Suburban
4152.8899454.839547e-35Neutral grassland
19129.2047556.950815e-30Urban
988.6597824.982099e-21Heather grassland
1587.3665589.563148e-21Supralittoral sediment
1465.8100605.135459e-16Supralittoral rock
1662.3670712.938167e-15Littoral rock
1036.0896021.904150e-09Bog
125.5022774.442055e-07Coniferous woodland
813.9251161.905575e-04Heather
127.7537715.363096e-03Saltwater
67.5257276.085674e-03Acid grassland
110.3608085.480621e-01Inland rock
50.0287548.653489e-01Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 1676.560528 0.000000e+00 Inflowing drainage direction\n", "23 1555.884294 0.000000e+00 Surface type\n", "21 1411.884325 1.291051e-302 Elevation\n", "24 1295.050837 3.175931e-278 Outflowing drainage direction\n", "22 1252.169594 2.987125e-269 Cumulative catchment area\n", "3 560.870223 5.752589e-123 Improve grassland\n", "2 518.099739 8.226528e-114 Arable\n", "13 302.457075 1.918026e-67 Freshwater\n", "17 294.097064 1.224555e-65 Littoral sediment\n", "0 236.168141 4.111276e-53 Deciduous woodland\n", "18 210.131628 1.798147e-47 Saltmarsh\n", "7 171.006773 5.572412e-39 Fen\n", "20 166.933497 4.277570e-38 Suburban\n", "4 152.889945 4.839547e-35 Neutral grassland\n", "19 129.204755 6.950815e-30 Urban\n", "9 88.659782 4.982099e-21 Heather grassland\n", "15 87.366558 9.563148e-21 Supralittoral sediment\n", "14 65.810060 5.135459e-16 Supralittoral rock\n", "16 62.367071 2.938167e-15 Littoral rock\n", "10 36.089602 1.904150e-09 Bog\n", "1 25.502277 4.442055e-07 Coniferous woodland\n", "8 13.925116 1.905575e-04 Heather\n", "12 7.753771 5.363096e-03 Saltwater\n", "6 7.525727 6.085674e-03 Acid grassland\n", "11 0.360808 5.480621e-01 Inland rock\n", "5 0.028754 8.653489e-01 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Wigeon 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
254543.8589430.000000e+00Inflowing drainage direction
234385.3524010.000000e+00Surface type
213772.5692100.000000e+00Elevation
243296.2131070.000000e+00Outflowing drainage direction
223018.4470190.000000e+00Cumulative catchment area
31984.6840920.000000e+00Improve grassland
21640.4040910.000000e+00Arable
01016.5337339.783489e-220Deciduous woodland
20871.9888793.462062e-189Suburban
17839.4392772.736586e-182Littoral sediment
13570.7178514.505394e-125Freshwater
18551.3541326.247919e-121Saltmarsh
19535.1136441.869402e-117Urban
15329.5587172.723634e-73Supralittoral sediment
16261.3812611.439437e-58Littoral rock
7176.2430554.059697e-40Fen
4150.2396401.825651e-34Neutral grassland
12104.3575561.836557e-24Saltwater
1437.2448701.053444e-09Supralittoral rock
814.0970581.739122e-04Heather
112.6804173.700235e-04Coniferous woodland
99.2817862.316259e-03Heather grassland
57.2205277.211058e-03Calcareous grassland
101.4184782.336626e-01Bog
60.9765823.230512e-01Acid grassland
110.0960237.566574e-01Inland rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 4543.858943 0.000000e+00 Inflowing drainage direction\n", "23 4385.352401 0.000000e+00 Surface type\n", "21 3772.569210 0.000000e+00 Elevation\n", "24 3296.213107 0.000000e+00 Outflowing drainage direction\n", "22 3018.447019 0.000000e+00 Cumulative catchment area\n", "3 1984.684092 0.000000e+00 Improve grassland\n", "2 1640.404091 0.000000e+00 Arable\n", "0 1016.533733 9.783489e-220 Deciduous woodland\n", "20 871.988879 3.462062e-189 Suburban\n", "17 839.439277 2.736586e-182 Littoral sediment\n", "13 570.717851 4.505394e-125 Freshwater\n", "18 551.354132 6.247919e-121 Saltmarsh\n", "19 535.113644 1.869402e-117 Urban\n", "15 329.558717 2.723634e-73 Supralittoral sediment\n", "16 261.381261 1.439437e-58 Littoral rock\n", "7 176.243055 4.059697e-40 Fen\n", "4 150.239640 1.825651e-34 Neutral grassland\n", "12 104.357556 1.836557e-24 Saltwater\n", "14 37.244870 1.053444e-09 Supralittoral rock\n", "8 14.097058 1.739122e-04 Heather\n", "1 12.680417 3.700235e-04 Coniferous woodland\n", "9 9.281786 2.316259e-03 Heather grassland\n", "5 7.220527 7.211058e-03 Calcareous grassland\n", "10 1.418478 2.336626e-01 Bog\n", "6 0.976582 3.230512e-01 Acid grassland\n", "11 0.096023 7.566574e-01 Inland rock" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for dict in df_dicts:\n", " print(dict['name'])\n", " display(dict['kbest']['Dataframe'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.9.13 ('env': venv)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "f025c48a9b67ab76bdc0400dfa0f9ba99120976b4a6ec6a63d1c946516165c91" } } }, "nbformat": 4, "nbformat_minor": 2 }