{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import rioxarray\n", "import json, os\n", "\n", "from sklearn.feature_selection import SelectKBest\n", "from sklearn.feature_selection import chi2, f_classif, mutual_info_classif\n", "from sklearn.metrics import f1_score, classification_report\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.model_selection import train_test_split\n", "\n", "from sklearn.linear_model import LogisticRegression, SGDClassifier\n", "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier, StackingClassifier\n", "\n", "from imblearn.over_sampling import RandomOverSampler, SMOTE" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "seed = 42\n", "verbose = False\n", "details = False" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
607500.0252500.009700001000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
972500.0427500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
542500.0532500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1282500.0117500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
37500.0272500.0330040030000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "607500.0 252500.0 0 97 0 \n", "972500.0 427500.0 0 0 0 \n", "542500.0 532500.0 0 0 0 \n", "1282500.0 117500.0 0 0 0 \n", "37500.0 272500.0 33 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "607500.0 252500.0 0 0 \n", "972500.0 427500.0 0 0 \n", "542500.0 532500.0 0 0 \n", "1282500.0 117500.0 0 0 \n", "37500.0 272500.0 40 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "607500.0 252500.0 0 1 0 0 \n", "972500.0 427500.0 0 0 0 0 \n", "542500.0 532500.0 0 0 0 0 \n", "1282500.0 117500.0 0 0 0 0 \n", "37500.0 272500.0 3 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "607500.0 252500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "972500.0 427500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "542500.0 532500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1282500.0 117500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "37500.0 272500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "607500.0 252500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "972500.0 427500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "542500.0 532500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1282500.0 117500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "37500.0 272500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "607500.0 252500.0 -3.400000e+38 -3.400000e+38 \n", "972500.0 427500.0 -3.400000e+38 -3.400000e+38 \n", "542500.0 532500.0 -3.400000e+38 -3.400000e+38 \n", "1282500.0 117500.0 -3.400000e+38 -3.400000e+38 \n", "37500.0 272500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "607500.0 252500.0 -3.400000e+38 -3.400000e+38 0 \n", "972500.0 427500.0 -3.400000e+38 -3.400000e+38 0 \n", "542500.0 532500.0 -3.400000e+38 -3.400000e+38 0 \n", "1282500.0 117500.0 -3.400000e+38 -3.400000e+38 0 \n", "37500.0 272500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
802500.0122500.00000000000...8.138728e-041.190874e-044.880362e-04-3.400000e+382.723976e-04-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
657500.0277500.01107315000000...1.030670e+014.352145e-012.785886e+001.125801e+003.565825e+005.041016e-013.888663e+002.837022e+015.658418e+001
397500.0297500.00000000000...3.976332e-011.258106e+002.159117e-015.655438e-013.346499e-013.118947e-015.090066e-014.113150e-02-3.400000e+380
682500.012500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1147500.0577500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "802500.0 122500.0 0 0 0 \n", "657500.0 277500.0 11 0 73 \n", "397500.0 297500.0 0 0 0 \n", "682500.0 12500.0 0 0 0 \n", "1147500.0 577500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "802500.0 122500.0 0 0 \n", "657500.0 277500.0 15 0 \n", "397500.0 297500.0 0 0 \n", "682500.0 12500.0 0 0 \n", "1147500.0 577500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "802500.0 122500.0 0 0 0 0 \n", "657500.0 277500.0 0 0 0 0 \n", "397500.0 297500.0 0 0 0 0 \n", "682500.0 12500.0 0 0 0 0 \n", "1147500.0 577500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "802500.0 122500.0 0 ... 8.138728e-04 1.190874e-04 \n", "657500.0 277500.0 0 ... 1.030670e+01 4.352145e-01 \n", "397500.0 297500.0 0 ... 3.976332e-01 1.258106e+00 \n", "682500.0 12500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1147500.0 577500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "802500.0 122500.0 4.880362e-04 -3.400000e+38 2.723976e-04 \n", "657500.0 277500.0 2.785886e+00 1.125801e+00 3.565825e+00 \n", "397500.0 297500.0 2.159117e-01 5.655438e-01 3.346499e-01 \n", "682500.0 12500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1147500.0 577500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "802500.0 122500.0 -3.400000e+38 -3.400000e+38 \n", "657500.0 277500.0 5.041016e-01 3.888663e+00 \n", "397500.0 297500.0 3.118947e-01 5.090066e-01 \n", "682500.0 12500.0 -3.400000e+38 -3.400000e+38 \n", "1147500.0 577500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "802500.0 122500.0 -3.400000e+38 -3.400000e+38 0 \n", "657500.0 277500.0 2.837022e+01 5.658418e+00 1 \n", "397500.0 297500.0 4.113150e-02 -3.400000e+38 0 \n", "682500.0 12500.0 -3.400000e+38 -3.400000e+38 0 \n", "1147500.0 577500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
1227500.0502500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
567500.067500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
87500.047500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1007500.0572500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1047500.0617500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1227500.0 502500.0 0 0 0 \n", "567500.0 67500.0 0 0 0 \n", "87500.0 47500.0 0 0 0 \n", "1007500.0 572500.0 0 0 0 \n", "1047500.0 617500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1227500.0 502500.0 0 0 \n", "567500.0 67500.0 0 0 \n", "87500.0 47500.0 0 0 \n", "1007500.0 572500.0 0 0 \n", "1047500.0 617500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1227500.0 502500.0 0 0 0 0 \n", "567500.0 67500.0 0 0 0 0 \n", "87500.0 47500.0 0 0 0 0 \n", "1007500.0 572500.0 0 0 0 0 \n", "1047500.0 617500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "1227500.0 502500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "567500.0 67500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "87500.0 47500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1007500.0 572500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1047500.0 617500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "1227500.0 502500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "567500.0 67500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "87500.0 47500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1007500.0 572500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1047500.0 617500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "1227500.0 502500.0 -3.400000e+38 -3.400000e+38 \n", "567500.0 67500.0 -3.400000e+38 -3.400000e+38 \n", "87500.0 47500.0 -3.400000e+38 -3.400000e+38 \n", "1007500.0 572500.0 -3.400000e+38 -3.400000e+38 \n", "1047500.0 617500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "1227500.0 502500.0 -3.400000e+38 -3.400000e+38 0 \n", "567500.0 67500.0 -3.400000e+38 -3.400000e+38 0 \n", "87500.0 47500.0 -3.400000e+38 -3.400000e+38 0 \n", "1007500.0 572500.0 -3.400000e+38 -3.400000e+38 0 \n", "1047500.0 617500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
1287500.0592500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
992500.0257500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
752500.0227500.0000000100000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
52500.0267500.0202671000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
607500.0687500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1287500.0 592500.0 0 0 0 \n", "992500.0 257500.0 0 0 0 \n", "752500.0 227500.0 0 0 0 \n", "52500.0 267500.0 2 0 26 \n", "607500.0 687500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1287500.0 592500.0 0 0 \n", "992500.0 257500.0 0 0 \n", "752500.0 227500.0 0 0 \n", "52500.0 267500.0 71 0 \n", "607500.0 687500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1287500.0 592500.0 0 0 0 0 \n", "992500.0 257500.0 0 0 0 0 \n", "752500.0 227500.0 0 100 0 0 \n", "52500.0 267500.0 0 0 0 0 \n", "607500.0 687500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "1287500.0 592500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "992500.0 257500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "752500.0 227500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "52500.0 267500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "607500.0 687500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "1287500.0 592500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "992500.0 257500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "752500.0 227500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "52500.0 267500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "607500.0 687500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "1287500.0 592500.0 -3.400000e+38 -3.400000e+38 \n", "992500.0 257500.0 -3.400000e+38 -3.400000e+38 \n", "752500.0 227500.0 -3.400000e+38 -3.400000e+38 \n", "52500.0 267500.0 -3.400000e+38 -3.400000e+38 \n", "607500.0 687500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "1287500.0 592500.0 -3.400000e+38 -3.400000e+38 0 \n", "992500.0 257500.0 -3.400000e+38 -3.400000e+38 0 \n", "752500.0 227500.0 -3.400000e+38 -3.400000e+38 0 \n", "52500.0 267500.0 -3.400000e+38 -3.400000e+38 0 \n", "607500.0 687500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
1252500.0657500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
102500.097500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
932500.0647500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1212500.0597500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
792500.0292500.000000000350...2.431922e-013.086462e-022.702676e-01-3.400000e+389.863137e-02-3.400000e+38-3.400000e+38-3.400000e+383.256879e-010
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1252500.0 657500.0 0 0 0 \n", "102500.0 97500.0 0 0 0 \n", "932500.0 647500.0 0 0 0 \n", "1212500.0 597500.0 0 0 0 \n", "792500.0 292500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1252500.0 657500.0 0 0 \n", "102500.0 97500.0 0 0 \n", "932500.0 647500.0 0 0 \n", "1212500.0 597500.0 0 0 \n", "792500.0 292500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1252500.0 657500.0 0 0 0 0 \n", "102500.0 97500.0 0 0 0 0 \n", "932500.0 647500.0 0 0 0 0 \n", "1212500.0 597500.0 0 0 0 0 \n", "792500.0 292500.0 0 0 0 35 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "1252500.0 657500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "102500.0 97500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "932500.0 647500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1212500.0 597500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "792500.0 292500.0 0 ... 2.431922e-01 3.086462e-02 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "1252500.0 657500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "102500.0 97500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "932500.0 647500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1212500.0 597500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "792500.0 292500.0 2.702676e-01 -3.400000e+38 9.863137e-02 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "1252500.0 657500.0 -3.400000e+38 -3.400000e+38 \n", "102500.0 97500.0 -3.400000e+38 -3.400000e+38 \n", "932500.0 647500.0 -3.400000e+38 -3.400000e+38 \n", "1212500.0 597500.0 -3.400000e+38 -3.400000e+38 \n", "792500.0 292500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "1252500.0 657500.0 -3.400000e+38 -3.400000e+38 0 \n", "102500.0 97500.0 -3.400000e+38 -3.400000e+38 0 \n", "932500.0 647500.0 -3.400000e+38 -3.400000e+38 0 \n", "1212500.0 597500.0 -3.400000e+38 -3.400000e+38 0 \n", "792500.0 292500.0 -3.400000e+38 3.256879e-01 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
117500.0527500.0301663000000...8.272594e-012.877053e-021.173386e-013.322592e+014.158661e-012.305974e+013.553085e+018.387117e+006.116870e+001
1247500.0432500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
27500.0567500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
317500.0487500.0140805000000...3.991591e+011.176242e+028.662819e+001.050424e+012.852691e+011.068438e+011.747071e+011.095099e+011.244862e+010
282500.047500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "117500.0 527500.0 3 0 16 \n", "1247500.0 432500.0 0 0 0 \n", "27500.0 567500.0 0 0 0 \n", "317500.0 487500.0 14 0 80 \n", "282500.0 47500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "117500.0 527500.0 63 0 \n", "1247500.0 432500.0 0 0 \n", "27500.0 567500.0 0 0 \n", "317500.0 487500.0 5 0 \n", "282500.0 47500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "117500.0 527500.0 0 0 0 0 \n", "1247500.0 432500.0 0 0 0 0 \n", "27500.0 567500.0 0 0 0 0 \n", "317500.0 487500.0 0 0 0 0 \n", "282500.0 47500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "117500.0 527500.0 0 ... 8.272594e-01 2.877053e-02 \n", "1247500.0 432500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "27500.0 567500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "317500.0 487500.0 0 ... 3.991591e+01 1.176242e+02 \n", "282500.0 47500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "117500.0 527500.0 1.173386e-01 3.322592e+01 4.158661e-01 \n", "1247500.0 432500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "27500.0 567500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "317500.0 487500.0 8.662819e+00 1.050424e+01 2.852691e+01 \n", "282500.0 47500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "117500.0 527500.0 2.305974e+01 3.553085e+01 \n", "1247500.0 432500.0 -3.400000e+38 -3.400000e+38 \n", "27500.0 567500.0 -3.400000e+38 -3.400000e+38 \n", "317500.0 487500.0 1.068438e+01 1.747071e+01 \n", "282500.0 47500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "117500.0 527500.0 8.387117e+00 6.116870e+00 1 \n", "1247500.0 432500.0 -3.400000e+38 -3.400000e+38 0 \n", "27500.0 567500.0 -3.400000e+38 -3.400000e+38 0 \n", "317500.0 487500.0 1.095099e+01 1.244862e+01 0 \n", "282500.0 47500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
297500.0537500.0001000000000...2.708381e+018.271127e+003.800092e+007.832608e+001.923025e+011.577829e+004.102243e+002.988908e+001.949554e+000
212500.0232500.050786000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1147500.0182500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
67500.0337500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
22500.032500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "297500.0 537500.0 0 0 100 \n", "212500.0 232500.0 5 0 7 \n", "1147500.0 182500.0 0 0 0 \n", "67500.0 337500.0 0 0 0 \n", "22500.0 32500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "297500.0 537500.0 0 0 \n", "212500.0 232500.0 86 0 \n", "1147500.0 182500.0 0 0 \n", "67500.0 337500.0 0 0 \n", "22500.0 32500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "297500.0 537500.0 0 0 0 0 \n", "212500.0 232500.0 0 0 0 0 \n", "1147500.0 182500.0 0 0 0 0 \n", "67500.0 337500.0 0 0 0 0 \n", "22500.0 32500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "297500.0 537500.0 0 ... 2.708381e+01 8.271127e+00 \n", "212500.0 232500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1147500.0 182500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "67500.0 337500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "22500.0 32500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "297500.0 537500.0 3.800092e+00 7.832608e+00 1.923025e+01 \n", "212500.0 232500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1147500.0 182500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "67500.0 337500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "22500.0 32500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "297500.0 537500.0 1.577829e+00 4.102243e+00 \n", "212500.0 232500.0 -3.400000e+38 -3.400000e+38 \n", "1147500.0 182500.0 -3.400000e+38 -3.400000e+38 \n", "67500.0 337500.0 -3.400000e+38 -3.400000e+38 \n", "22500.0 32500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "297500.0 537500.0 2.988908e+00 1.949554e+00 0 \n", "212500.0 232500.0 -3.400000e+38 -3.400000e+38 0 \n", "1147500.0 182500.0 -3.400000e+38 -3.400000e+38 0 \n", "67500.0 337500.0 -3.400000e+38 -3.400000e+38 0 \n", "22500.0 32500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
612500.07500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
697500.0292500.0200326003000...9.259985e+004.164787e+016.766146e+00-3.400000e+384.883677e+00-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
762500.0477500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
977500.0132500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
952500.0557500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "612500.0 7500.0 0 0 0 \n", "697500.0 292500.0 20 0 3 \n", "762500.0 477500.0 0 0 0 \n", "977500.0 132500.0 0 0 0 \n", "952500.0 557500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "612500.0 7500.0 0 0 0 \n", "697500.0 292500.0 26 0 0 \n", "762500.0 477500.0 0 0 0 \n", "977500.0 132500.0 0 0 0 \n", "952500.0 557500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "612500.0 7500.0 0 0 0 0 ... \n", "697500.0 292500.0 3 0 0 0 ... \n", "762500.0 477500.0 0 0 0 0 ... \n", "977500.0 132500.0 0 0 0 0 ... \n", "952500.0 557500.0 0 0 0 0 ... \n", "\n", " Glyphosate_5km Mancozeb_5km Mecoprop-P_5km \\\n", "y x \n", "612500.0 7500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "697500.0 292500.0 9.259985e+00 4.164787e+01 6.766146e+00 \n", "762500.0 477500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "977500.0 132500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "952500.0 557500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "612500.0 7500.0 -3.400000e+38 -3.400000e+38 \n", "697500.0 292500.0 -3.400000e+38 4.883677e+00 \n", "762500.0 477500.0 -3.400000e+38 -3.400000e+38 \n", "977500.0 132500.0 -3.400000e+38 -3.400000e+38 \n", "952500.0 557500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "612500.0 7500.0 -3.400000e+38 -3.400000e+38 \n", "697500.0 292500.0 -3.400000e+38 -3.400000e+38 \n", "762500.0 477500.0 -3.400000e+38 -3.400000e+38 \n", "977500.0 132500.0 -3.400000e+38 -3.400000e+38 \n", "952500.0 557500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "612500.0 7500.0 -3.400000e+38 -3.400000e+38 0 \n", "697500.0 292500.0 -3.400000e+38 -3.400000e+38 0 \n", "762500.0 477500.0 -3.400000e+38 -3.400000e+38 0 \n", "977500.0 132500.0 -3.400000e+38 -3.400000e+38 0 \n", "952500.0 557500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
1007500.0467500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1257500.042500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
707500.0462500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
312500.0587500.0806625000000...2.792899e+016.121789e+015.599670e+00-3.400000e+381.756899e+01-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
167500.0167500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1007500.0 467500.0 0 0 0 \n", "1257500.0 42500.0 0 0 0 \n", "707500.0 462500.0 0 0 0 \n", "312500.0 587500.0 8 0 66 \n", "167500.0 167500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1007500.0 467500.0 0 0 \n", "1257500.0 42500.0 0 0 \n", "707500.0 462500.0 0 0 \n", "312500.0 587500.0 25 0 \n", "167500.0 167500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1007500.0 467500.0 0 0 0 0 \n", "1257500.0 42500.0 0 0 0 0 \n", "707500.0 462500.0 0 0 0 0 \n", "312500.0 587500.0 0 0 0 0 \n", "167500.0 167500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "1007500.0 467500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1257500.0 42500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "707500.0 462500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "312500.0 587500.0 0 ... 2.792899e+01 6.121789e+01 \n", "167500.0 167500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "1007500.0 467500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1257500.0 42500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "707500.0 462500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "312500.0 587500.0 5.599670e+00 -3.400000e+38 1.756899e+01 \n", "167500.0 167500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "1007500.0 467500.0 -3.400000e+38 -3.400000e+38 \n", "1257500.0 42500.0 -3.400000e+38 -3.400000e+38 \n", "707500.0 462500.0 -3.400000e+38 -3.400000e+38 \n", "312500.0 587500.0 -3.400000e+38 -3.400000e+38 \n", "167500.0 167500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "1007500.0 467500.0 -3.400000e+38 -3.400000e+38 0 \n", "1257500.0 42500.0 -3.400000e+38 -3.400000e+38 0 \n", "707500.0 462500.0 -3.400000e+38 -3.400000e+38 0 \n", "312500.0 587500.0 -3.400000e+38 -3.400000e+38 0 \n", "167500.0 167500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
977500.0332500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
752500.0432500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
427500.0252500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
167500.0492500.012303000000...1.281384e-011.178061e-024.074233e-024.135025e-014.020740e-023.532492e-013.674308e-011.980207e-02-3.400000e+381
1292500.0252500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "977500.0 332500.0 0 0 0 \n", "752500.0 432500.0 0 0 0 \n", "427500.0 252500.0 0 0 0 \n", "167500.0 492500.0 12 3 0 \n", "1292500.0 252500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "977500.0 332500.0 0 0 \n", "752500.0 432500.0 0 0 \n", "427500.0 252500.0 0 0 \n", "167500.0 492500.0 3 0 \n", "1292500.0 252500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "977500.0 332500.0 0 0 0 0 \n", "752500.0 432500.0 0 0 0 0 \n", "427500.0 252500.0 0 0 0 0 \n", "167500.0 492500.0 0 0 0 0 \n", "1292500.0 252500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "977500.0 332500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "752500.0 432500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "427500.0 252500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "167500.0 492500.0 0 ... 1.281384e-01 1.178061e-02 \n", "1292500.0 252500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "977500.0 332500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "752500.0 432500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "427500.0 252500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "167500.0 492500.0 4.074233e-02 4.135025e-01 4.020740e-02 \n", "1292500.0 252500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "977500.0 332500.0 -3.400000e+38 -3.400000e+38 \n", "752500.0 432500.0 -3.400000e+38 -3.400000e+38 \n", "427500.0 252500.0 -3.400000e+38 -3.400000e+38 \n", "167500.0 492500.0 3.532492e-01 3.674308e-01 \n", "1292500.0 252500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "977500.0 332500.0 -3.400000e+38 -3.400000e+38 0 \n", "752500.0 432500.0 -3.400000e+38 -3.400000e+38 0 \n", "427500.0 252500.0 -3.400000e+38 -3.400000e+38 0 \n", "167500.0 492500.0 1.980207e-02 -3.400000e+38 1 \n", "1292500.0 252500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
482500.0112500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
102500.032500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
662500.0152500.00000000000...6.813936e-017.095788e-022.351900e-01-3.400000e+381.711554e-01-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1217500.0482500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
352500.0672500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "482500.0 112500.0 0 0 0 \n", "102500.0 32500.0 0 0 0 \n", "662500.0 152500.0 0 0 0 \n", "1217500.0 482500.0 0 0 0 \n", "352500.0 672500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "482500.0 112500.0 0 0 \n", "102500.0 32500.0 0 0 \n", "662500.0 152500.0 0 0 \n", "1217500.0 482500.0 0 0 \n", "352500.0 672500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "482500.0 112500.0 0 0 0 0 \n", "102500.0 32500.0 0 0 0 0 \n", "662500.0 152500.0 0 0 0 0 \n", "1217500.0 482500.0 0 0 0 0 \n", "352500.0 672500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "482500.0 112500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "102500.0 32500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "662500.0 152500.0 0 ... 6.813936e-01 7.095788e-02 \n", "1217500.0 482500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "352500.0 672500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "482500.0 112500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "102500.0 32500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "662500.0 152500.0 2.351900e-01 -3.400000e+38 1.711554e-01 \n", "1217500.0 482500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "352500.0 672500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "482500.0 112500.0 -3.400000e+38 -3.400000e+38 \n", "102500.0 32500.0 -3.400000e+38 -3.400000e+38 \n", "662500.0 152500.0 -3.400000e+38 -3.400000e+38 \n", "1217500.0 482500.0 -3.400000e+38 -3.400000e+38 \n", "352500.0 672500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "482500.0 112500.0 -3.400000e+38 -3.400000e+38 0 \n", "102500.0 32500.0 -3.400000e+38 -3.400000e+38 0 \n", "662500.0 152500.0 -3.400000e+38 -3.400000e+38 0 \n", "1217500.0 482500.0 -3.400000e+38 -3.400000e+38 0 \n", "352500.0 672500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
1072500.0252500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1237500.0542500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1157500.0367500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
927500.0617500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1097500.0592500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1072500.0 252500.0 0 0 0 \n", "1237500.0 542500.0 0 0 0 \n", "1157500.0 367500.0 0 0 0 \n", "927500.0 617500.0 0 0 0 \n", "1097500.0 592500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1072500.0 252500.0 0 0 \n", "1237500.0 542500.0 0 0 \n", "1157500.0 367500.0 0 0 \n", "927500.0 617500.0 0 0 \n", "1097500.0 592500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1072500.0 252500.0 0 0 0 0 \n", "1237500.0 542500.0 0 0 0 0 \n", "1157500.0 367500.0 0 0 0 0 \n", "927500.0 617500.0 0 0 0 0 \n", "1097500.0 592500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "1072500.0 252500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1237500.0 542500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1157500.0 367500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "927500.0 617500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1097500.0 592500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "1072500.0 252500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1237500.0 542500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1157500.0 367500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "927500.0 617500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1097500.0 592500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "1072500.0 252500.0 -3.400000e+38 -3.400000e+38 \n", "1237500.0 542500.0 -3.400000e+38 -3.400000e+38 \n", "1157500.0 367500.0 -3.400000e+38 -3.400000e+38 \n", "927500.0 617500.0 -3.400000e+38 -3.400000e+38 \n", "1097500.0 592500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "1072500.0 252500.0 -3.400000e+38 -3.400000e+38 0 \n", "1237500.0 542500.0 -3.400000e+38 -3.400000e+38 0 \n", "1157500.0 367500.0 -3.400000e+38 -3.400000e+38 0 \n", "927500.0 617500.0 -3.400000e+38 -3.400000e+38 0 \n", "1097500.0 592500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
1102500.0642500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
822500.0547500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
237500.0427500.0204553000000...1.510725e+002.534451e+002.723321e-011.764000e+019.751811e-011.104040e+012.994291e+017.676104e+006.142054e+010
292500.0477500.0104356000000...4.988595e+015.187139e+014.879790e+002.720762e+012.823989e+013.644452e+014.140786e+011.372874e+011.559179e+010
197500.0337500.0404152000000...7.785163e-044.027653e-054.539189e-042.452656e+013.015757e-041.320384e+013.131600e+017.590619e+004.133070e+000
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1102500.0 642500.0 0 0 0 \n", "822500.0 547500.0 0 0 0 \n", "237500.0 427500.0 2 0 45 \n", "292500.0 477500.0 1 0 43 \n", "197500.0 337500.0 4 0 41 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1102500.0 642500.0 0 0 \n", "822500.0 547500.0 0 0 \n", "237500.0 427500.0 53 0 \n", "292500.0 477500.0 56 0 \n", "197500.0 337500.0 52 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1102500.0 642500.0 0 0 0 0 \n", "822500.0 547500.0 0 0 0 0 \n", "237500.0 427500.0 0 0 0 0 \n", "292500.0 477500.0 0 0 0 0 \n", "197500.0 337500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "1102500.0 642500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "822500.0 547500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "237500.0 427500.0 0 ... 1.510725e+00 2.534451e+00 \n", "292500.0 477500.0 0 ... 4.988595e+01 5.187139e+01 \n", "197500.0 337500.0 0 ... 7.785163e-04 4.027653e-05 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "1102500.0 642500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "822500.0 547500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "237500.0 427500.0 2.723321e-01 1.764000e+01 9.751811e-01 \n", "292500.0 477500.0 4.879790e+00 2.720762e+01 2.823989e+01 \n", "197500.0 337500.0 4.539189e-04 2.452656e+01 3.015757e-04 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "1102500.0 642500.0 -3.400000e+38 -3.400000e+38 \n", "822500.0 547500.0 -3.400000e+38 -3.400000e+38 \n", "237500.0 427500.0 1.104040e+01 2.994291e+01 \n", "292500.0 477500.0 3.644452e+01 4.140786e+01 \n", "197500.0 337500.0 1.320384e+01 3.131600e+01 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "1102500.0 642500.0 -3.400000e+38 -3.400000e+38 0 \n", "822500.0 547500.0 -3.400000e+38 -3.400000e+38 0 \n", "237500.0 427500.0 7.676104e+00 6.142054e+01 0 \n", "292500.0 477500.0 1.372874e+01 1.559179e+01 0 \n", "197500.0 337500.0 7.590619e+00 4.133070e+00 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
1057500.0367500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1157500.0637500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
552500.0372500.00000008000...1.290396e+011.865693e+003.713252e+00-3.400000e+381.161094e+01-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
232500.0607500.03024610001000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
287500.0302500.0220272000000...1.015345e+018.863521e+002.965853e+002.519909e+008.948292e+001.179017e+001.015588e+002.702603e-017.346404e+000
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1057500.0 367500.0 0 0 0 \n", "1157500.0 637500.0 0 0 0 \n", "552500.0 372500.0 0 0 0 \n", "232500.0 607500.0 3 0 24 \n", "287500.0 302500.0 22 0 2 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1057500.0 367500.0 0 0 \n", "1157500.0 637500.0 0 0 \n", "552500.0 372500.0 0 0 \n", "232500.0 607500.0 61 0 \n", "287500.0 302500.0 72 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1057500.0 367500.0 0 0 0 0 \n", "1157500.0 637500.0 0 0 0 0 \n", "552500.0 372500.0 0 8 0 0 \n", "232500.0 607500.0 0 0 10 0 \n", "287500.0 302500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "1057500.0 367500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1157500.0 637500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "552500.0 372500.0 0 ... 1.290396e+01 1.865693e+00 \n", "232500.0 607500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "287500.0 302500.0 0 ... 1.015345e+01 8.863521e+00 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "1057500.0 367500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1157500.0 637500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "552500.0 372500.0 3.713252e+00 -3.400000e+38 1.161094e+01 \n", "232500.0 607500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "287500.0 302500.0 2.965853e+00 2.519909e+00 8.948292e+00 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "1057500.0 367500.0 -3.400000e+38 -3.400000e+38 \n", "1157500.0 637500.0 -3.400000e+38 -3.400000e+38 \n", "552500.0 372500.0 -3.400000e+38 -3.400000e+38 \n", "232500.0 607500.0 -3.400000e+38 -3.400000e+38 \n", "287500.0 302500.0 1.179017e+00 1.015588e+00 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "1057500.0 367500.0 -3.400000e+38 -3.400000e+38 0 \n", "1157500.0 637500.0 -3.400000e+38 -3.400000e+38 0 \n", "552500.0 372500.0 -3.400000e+38 -3.400000e+38 0 \n", "232500.0 607500.0 -3.400000e+38 -3.400000e+38 0 \n", "287500.0 302500.0 2.702603e-01 7.346404e+00 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
157500.0197500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
537500.087500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1122500.0657500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1092500.0542500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1212500.0522500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "157500.0 197500.0 0 0 0 \n", "537500.0 87500.0 0 0 0 \n", "1122500.0 657500.0 0 0 0 \n", "1092500.0 542500.0 0 0 0 \n", "1212500.0 522500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "157500.0 197500.0 0 0 \n", "537500.0 87500.0 0 0 \n", "1122500.0 657500.0 0 0 \n", "1092500.0 542500.0 0 0 \n", "1212500.0 522500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "157500.0 197500.0 0 0 0 0 \n", "537500.0 87500.0 0 0 0 0 \n", "1122500.0 657500.0 0 0 0 0 \n", "1092500.0 542500.0 0 0 0 0 \n", "1212500.0 522500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "157500.0 197500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "537500.0 87500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1122500.0 657500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1092500.0 542500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1212500.0 522500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "157500.0 197500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "537500.0 87500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1122500.0 657500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1092500.0 542500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1212500.0 522500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "157500.0 197500.0 -3.400000e+38 -3.400000e+38 \n", "537500.0 87500.0 -3.400000e+38 -3.400000e+38 \n", "1122500.0 657500.0 -3.400000e+38 -3.400000e+38 \n", "1092500.0 542500.0 -3.400000e+38 -3.400000e+38 \n", "1212500.0 522500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "157500.0 197500.0 -3.400000e+38 -3.400000e+38 0 \n", "537500.0 87500.0 -3.400000e+38 -3.400000e+38 0 \n", "1122500.0 657500.0 -3.400000e+38 -3.400000e+38 0 \n", "1092500.0 542500.0 -3.400000e+38 -3.400000e+38 0 \n", "1212500.0 522500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
492500.0547500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
142500.0662500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1132500.0242500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
227500.0337500.050883000000...1.227330e+011.728507e+002.646488e+002.411456e-015.769722e+001.155357e-012.341841e-016.491084e-027.424075e-010
502500.0147500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "492500.0 547500.0 0 0 0 \n", "142500.0 662500.0 0 0 0 \n", "1132500.0 242500.0 0 0 0 \n", "227500.0 337500.0 5 0 8 \n", "502500.0 147500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "492500.0 547500.0 0 0 \n", "142500.0 662500.0 0 0 \n", "1132500.0 242500.0 0 0 \n", "227500.0 337500.0 83 0 \n", "502500.0 147500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "492500.0 547500.0 0 0 0 0 \n", "142500.0 662500.0 0 0 0 0 \n", "1132500.0 242500.0 0 0 0 0 \n", "227500.0 337500.0 0 0 0 0 \n", "502500.0 147500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "492500.0 547500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "142500.0 662500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1132500.0 242500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "227500.0 337500.0 0 ... 1.227330e+01 1.728507e+00 \n", "502500.0 147500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "492500.0 547500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "142500.0 662500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1132500.0 242500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "227500.0 337500.0 2.646488e+00 2.411456e-01 5.769722e+00 \n", "502500.0 147500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "492500.0 547500.0 -3.400000e+38 -3.400000e+38 \n", "142500.0 662500.0 -3.400000e+38 -3.400000e+38 \n", "1132500.0 242500.0 -3.400000e+38 -3.400000e+38 \n", "227500.0 337500.0 1.155357e-01 2.341841e-01 \n", "502500.0 147500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "492500.0 547500.0 -3.400000e+38 -3.400000e+38 0 \n", "142500.0 662500.0 -3.400000e+38 -3.400000e+38 0 \n", "1132500.0 242500.0 -3.400000e+38 -3.400000e+38 0 \n", "227500.0 337500.0 6.491084e-02 7.424075e-01 0 \n", "502500.0 147500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
632500.0157500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
362500.0462500.0559332000000...3.219382e+011.068436e+006.758402e+001.672401e+012.361158e+011.341892e+011.552295e+011.054125e+011.673775e+010
857500.0432500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
187500.0507500.050374000000...9.194264e+003.816978e+001.333557e+006.474104e+006.045681e+005.836989e+009.897083e+003.260769e+001.010081e+011
37500.037500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "632500.0 157500.0 0 0 0 \n", "362500.0 462500.0 5 59 33 \n", "857500.0 432500.0 0 0 0 \n", "187500.0 507500.0 5 0 3 \n", "37500.0 37500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "632500.0 157500.0 0 0 0 \n", "362500.0 462500.0 2 0 0 \n", "857500.0 432500.0 0 0 0 \n", "187500.0 507500.0 74 0 0 \n", "37500.0 37500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "632500.0 157500.0 0 0 0 0 ... \n", "362500.0 462500.0 0 0 0 0 ... \n", "857500.0 432500.0 0 0 0 0 ... \n", "187500.0 507500.0 0 0 0 0 ... \n", "37500.0 37500.0 0 0 0 0 ... \n", "\n", " Glyphosate_5km Mancozeb_5km Mecoprop-P_5km \\\n", "y x \n", "632500.0 157500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "362500.0 462500.0 3.219382e+01 1.068436e+00 6.758402e+00 \n", "857500.0 432500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "187500.0 507500.0 9.194264e+00 3.816978e+00 1.333557e+00 \n", "37500.0 37500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "632500.0 157500.0 -3.400000e+38 -3.400000e+38 \n", "362500.0 462500.0 1.672401e+01 2.361158e+01 \n", "857500.0 432500.0 -3.400000e+38 -3.400000e+38 \n", "187500.0 507500.0 6.474104e+00 6.045681e+00 \n", "37500.0 37500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "632500.0 157500.0 -3.400000e+38 -3.400000e+38 \n", "362500.0 462500.0 1.341892e+01 1.552295e+01 \n", "857500.0 432500.0 -3.400000e+38 -3.400000e+38 \n", "187500.0 507500.0 5.836989e+00 9.897083e+00 \n", "37500.0 37500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "632500.0 157500.0 -3.400000e+38 -3.400000e+38 0 \n", "362500.0 462500.0 1.054125e+01 1.673775e+01 0 \n", "857500.0 432500.0 -3.400000e+38 -3.400000e+38 0 \n", "187500.0 507500.0 3.260769e+00 1.010081e+01 1 \n", "37500.0 37500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
1117500.0477500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
347500.0112500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
197500.0667500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
782500.0277500.000000000960...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
567500.0192500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1117500.0 477500.0 0 0 0 \n", "347500.0 112500.0 0 0 0 \n", "197500.0 667500.0 0 0 0 \n", "782500.0 277500.0 0 0 0 \n", "567500.0 192500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1117500.0 477500.0 0 0 \n", "347500.0 112500.0 0 0 \n", "197500.0 667500.0 0 0 \n", "782500.0 277500.0 0 0 \n", "567500.0 192500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1117500.0 477500.0 0 0 0 0 \n", "347500.0 112500.0 0 0 0 0 \n", "197500.0 667500.0 0 0 0 0 \n", "782500.0 277500.0 0 0 0 96 \n", "567500.0 192500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "1117500.0 477500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "347500.0 112500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "197500.0 667500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "782500.0 277500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "567500.0 192500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "1117500.0 477500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "347500.0 112500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "197500.0 667500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "782500.0 277500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "567500.0 192500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "1117500.0 477500.0 -3.400000e+38 -3.400000e+38 \n", "347500.0 112500.0 -3.400000e+38 -3.400000e+38 \n", "197500.0 667500.0 -3.400000e+38 -3.400000e+38 \n", "782500.0 277500.0 -3.400000e+38 -3.400000e+38 \n", "567500.0 192500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "1117500.0 477500.0 -3.400000e+38 -3.400000e+38 0 \n", "347500.0 112500.0 -3.400000e+38 -3.400000e+38 0 \n", "197500.0 667500.0 -3.400000e+38 -3.400000e+38 0 \n", "782500.0 277500.0 -3.400000e+38 -3.400000e+38 0 \n", "567500.0 192500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
47500.0537500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
267500.0217500.00000000000...1.174842e-012.875282e-021.368758e-01-3.400000e+387.710322e-02-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1237500.0187500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
817500.0622500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1162500.0572500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "47500.0 537500.0 0 0 0 \n", "267500.0 217500.0 0 0 0 \n", "1237500.0 187500.0 0 0 0 \n", "817500.0 622500.0 0 0 0 \n", "1162500.0 572500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "47500.0 537500.0 0 0 \n", "267500.0 217500.0 0 0 \n", "1237500.0 187500.0 0 0 \n", "817500.0 622500.0 0 0 \n", "1162500.0 572500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "47500.0 537500.0 0 0 0 0 \n", "267500.0 217500.0 0 0 0 0 \n", "1237500.0 187500.0 0 0 0 0 \n", "817500.0 622500.0 0 0 0 0 \n", "1162500.0 572500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "47500.0 537500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "267500.0 217500.0 0 ... 1.174842e-01 2.875282e-02 \n", "1237500.0 187500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "817500.0 622500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1162500.0 572500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "47500.0 537500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "267500.0 217500.0 1.368758e-01 -3.400000e+38 7.710322e-02 \n", "1237500.0 187500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "817500.0 622500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1162500.0 572500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "47500.0 537500.0 -3.400000e+38 -3.400000e+38 \n", "267500.0 217500.0 -3.400000e+38 -3.400000e+38 \n", "1237500.0 187500.0 -3.400000e+38 -3.400000e+38 \n", "817500.0 622500.0 -3.400000e+38 -3.400000e+38 \n", "1162500.0 572500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "47500.0 537500.0 -3.400000e+38 -3.400000e+38 0 \n", "267500.0 217500.0 -3.400000e+38 -3.400000e+38 0 \n", "1237500.0 187500.0 -3.400000e+38 -3.400000e+38 0 \n", "817500.0 622500.0 -3.400000e+38 -3.400000e+38 0 \n", "1162500.0 572500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
687500.0467500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
637500.0207500.00000000000...2.604617e+001.825517e-011.142017e+00-3.400000e+386.284199e-01-3.400000e+38-3.400000e+38-3.400000e+389.273250e-010
87500.0257500.000000050000...2.477325e+001.834522e+007.743283e-011.164793e+001.839896e+005.867671e-012.048754e+003.985094e-017.494090e-010
402500.087500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1297500.0347500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "687500.0 467500.0 0 0 0 \n", "637500.0 207500.0 0 0 0 \n", "87500.0 257500.0 0 0 0 \n", "402500.0 87500.0 0 0 0 \n", "1297500.0 347500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "687500.0 467500.0 0 0 \n", "637500.0 207500.0 0 0 \n", "87500.0 257500.0 0 0 \n", "402500.0 87500.0 0 0 \n", "1297500.0 347500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "687500.0 467500.0 0 0 0 0 \n", "637500.0 207500.0 0 0 0 0 \n", "87500.0 257500.0 0 50 0 0 \n", "402500.0 87500.0 0 0 0 0 \n", "1297500.0 347500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "687500.0 467500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "637500.0 207500.0 0 ... 2.604617e+00 1.825517e-01 \n", "87500.0 257500.0 0 ... 2.477325e+00 1.834522e+00 \n", "402500.0 87500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1297500.0 347500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "687500.0 467500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "637500.0 207500.0 1.142017e+00 -3.400000e+38 6.284199e-01 \n", "87500.0 257500.0 7.743283e-01 1.164793e+00 1.839896e+00 \n", "402500.0 87500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1297500.0 347500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "687500.0 467500.0 -3.400000e+38 -3.400000e+38 \n", "637500.0 207500.0 -3.400000e+38 -3.400000e+38 \n", "87500.0 257500.0 5.867671e-01 2.048754e+00 \n", "402500.0 87500.0 -3.400000e+38 -3.400000e+38 \n", "1297500.0 347500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "687500.0 467500.0 -3.400000e+38 -3.400000e+38 0 \n", "637500.0 207500.0 -3.400000e+38 9.273250e-01 0 \n", "87500.0 257500.0 3.985094e-01 7.494090e-01 0 \n", "402500.0 87500.0 -3.400000e+38 -3.400000e+38 0 \n", "1297500.0 347500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "INVASIVE_BIRDS_PATH = 'Datasets/Machine Learning/5km Rasters/Birds'\n", "# Use this if using coordinates as separate columns\n", "# df_5km = pd.read_csv('Datasets/Machine Learning/Dataframes/5km_All_Birds_DF.csv')\n", "\n", "# Use this if using coordinates as indices\n", "df_5km = pd.read_csv('Datasets/Machine Learning/Dataframes/5km_All_Birds_DF.csv', index_col=[0,1])\n", "\n", "total_birds = (df_5km['Occurrence']==1).sum()\n", "df_dicts = []\n", "\n", "for file in os.listdir(INVASIVE_BIRDS_PATH):\n", " filename = os.fsdecode(file)\n", " if not filename.endswith('.tif') or filename.endswith('All_Invasive_Birds_5km.tif') :\n", " continue\n", "\n", "\n", "\n", " bird_name = filename[:-4].replace('_', ' ')\n", "\n", " bird_dataset = rioxarray.open_rasterio(f'{INVASIVE_BIRDS_PATH}/{file}')\n", " bird_dataset.name = 'data'\n", " bird_df = bird_dataset.squeeze().drop(\"spatial_ref\").drop(\"band\").to_dataframe()\n", "\n", " # Check if index matches\n", " if not df_5km.index.equals(bird_df.index):\n", " print('Warning: Index does not match')\n", " continue\n", "\n", " bird_df['Occurrence'] = [0 if x == -1 else 1 for x in bird_df['data']]\n", " bird_df = df_5km.drop(columns='Occurrence').join(bird_df.drop(columns='data'))\n", " \n", " bird_dict = {'name' : bird_name, 'dataframe' : bird_df }\n", " df_dicts.append(bird_dict)\n", " display(bird_df.sample(5))\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 5km data before drop: \n", " Occurrence\n", "0 35813\n", "1 587\n", "dtype: int64 \n", "\n", "Barnacle Goose 5km data after drop: \n", " Occurrence\n", "0 7378\n", "1 587\n", "dtype: int64 \n", "\n", "Canada Goose 5km data before drop: \n", " Occurrence\n", "0 32095\n", "1 4305\n", "dtype: int64 \n", "\n", "Canada Goose 5km data after drop: \n", " Occurrence\n", "1 4305\n", "0 3660\n", "dtype: int64 \n", "\n", "Egyptian Goose 5km data before drop: \n", " Occurrence\n", "0 35915\n", "1 485\n", "dtype: int64 \n", "\n", "Egyptian Goose 5km data after drop: \n", " Occurrence\n", "0 7480\n", "1 485\n", "dtype: int64 \n", "\n", "Gadwall 5km data before drop: \n", " Occurrence\n", "0 35001\n", "1 1399\n", "dtype: int64 \n", "\n", "Gadwall 5km data after drop: \n", " Occurrence\n", "0 6566\n", "1 1399\n", "dtype: int64 \n", "\n", "Goshawk 5km data before drop: \n", " Occurrence\n", "0 35954\n", "1 446\n", "dtype: int64 \n", "\n", "Goshawk 5km data after drop: \n", " Occurrence\n", "0 7519\n", "1 446\n", "dtype: int64 \n", "\n", "Grey Partridge 5km data before drop: \n", " Occurrence\n", "0 34771\n", "1 1629\n", "dtype: int64 \n", "\n", "Grey Partridge 5km data after drop: \n", " Occurrence\n", "0 6336\n", "1 1629\n", "dtype: int64 \n", "\n", "Indian Peafowl 5km data before drop: \n", " Occurrence\n", "0 36116\n", "1 284\n", "dtype: int64 \n", "\n", "Indian Peafowl 5km data after drop: \n", " Occurrence\n", "0 7681\n", "1 284\n", "dtype: int64 \n", "\n", "Little Owl 5km data before drop: \n", " Occurrence\n", "0 34242\n", "1 2158\n", "dtype: int64 \n", "\n", "Little Owl 5km data after drop: \n", " Occurrence\n", "0 5807\n", "1 2158\n", "dtype: int64 \n", "\n", "Mandarin Duck 5km data before drop: \n", " Occurrence\n", "0 35686\n", "1 714\n", "dtype: int64 \n", "\n", "Mandarin Duck 5km data after drop: \n", " Occurrence\n", "0 7251\n", "1 714\n", "dtype: int64 \n", "\n", "Mute Swan 5km data before drop: \n", " Occurrence\n", "0 31133\n", "1 5267\n", "dtype: int64 \n", "\n", "Mute Swan 5km data after drop: \n", " Occurrence\n", "1 5267\n", "0 2698\n", "dtype: int64 \n", "\n", "Pheasant 5km data before drop: \n", " Occurrence\n", "0 32552\n", "1 3848\n", "dtype: int64 \n", "\n", "Pheasant 5km data after drop: \n", " Occurrence\n", "0 4117\n", "1 3848\n", "dtype: int64 \n", "\n", "Pink-footed Goose 5km data before drop: \n", " Occurrence\n", "0 35087\n", "1 1313\n", "dtype: int64 \n", "\n", "Pink-footed Goose 5km data after drop: \n", " Occurrence\n", "0 6652\n", "1 1313\n", "dtype: int64 \n", "\n", "Pintail 5km data before drop: \n", " Occurrence\n", "0 35751\n", "1 649\n", "dtype: int64 \n", "\n", "Pintail 5km data after drop: \n", " Occurrence\n", "0 7316\n", "1 649\n", "dtype: int64 \n", "\n", "Pochard 5km data before drop: \n", " Occurrence\n", "0 35458\n", "1 942\n", "dtype: int64 \n", "\n", "Pochard 5km data after drop: \n", " Occurrence\n", "0 7023\n", "1 942\n", "dtype: int64 \n", "\n", "Red-legged Partridge 5km data before drop: \n", " Occurrence\n", "0 34250\n", "1 2150\n", "dtype: int64 \n", "\n", "Red-legged Partridge 5km data after drop: \n", " Occurrence\n", "0 5815\n", "1 2150\n", "dtype: int64 \n", "\n", "Ring-necked Parakeet 5km data before drop: \n", " Occurrence\n", "0 36194\n", "1 206\n", "dtype: int64 \n", "\n", "Ring-necked Parakeet 5km data after drop: \n", " Occurrence\n", "0 7759\n", "1 206\n", "dtype: int64 \n", "\n", "Rock Dove 5km data before drop: \n", " Occurrence\n", "0 33570\n", "1 2830\n", "dtype: int64 \n", "\n", "Rock Dove 5km data after drop: \n", " Occurrence\n", "0 5135\n", "1 2830\n", "dtype: int64 \n", "\n", "Ruddy Duck 5km data before drop: \n", " Occurrence\n", "0 36291\n", "1 109\n", "dtype: int64 \n", "\n", "Ruddy Duck 5km data after drop: \n", " Occurrence\n", "0 7856\n", "1 109\n", "dtype: int64 \n", "\n", "Whooper Swan 5km data before drop: \n", " Occurrence\n", "0 35558\n", "1 842\n", "dtype: int64 \n", "\n", "Whooper Swan 5km data after drop: \n", " Occurrence\n", "0 7123\n", "1 842\n", "dtype: int64 \n", "\n", "Wigeon 5km data before drop: \n", " Occurrence\n", "0 34543\n", "1 1857\n", "dtype: int64 \n", "\n", "Wigeon 5km data after drop: \n", " Occurrence\n", "0 6108\n", "1 1857\n", "dtype: int64 \n", "\n" ] } ], "source": [ "# Data Cleaning\n", "np.random.seed(seed=seed)\n", "\n", "for dict in df_dicts:\n", " cur_df = dict[\"dataframe\"]\n", " cur_df_name = dict[\"name\"]\n", "\n", " print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n", " \n", " no_occurences = cur_df[cur_df['Occurrence']==0].index \n", " sample_size = sum(cur_df['Occurrence']==0) - total_birds + sum(cur_df['Occurrence']==1)\n", " random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n", " dict[\"dataframe\"] = cur_df.drop(random_indices)\n", " \n", " print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')\n", "\n", "\n", "# for dict in df_dicts:\n", "# cur_df = dict[\"dataframe\"]\n", "# cur_df_name = dict[\"name\"]\n", "\n", "# print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n", " \n", "# no_occurences = cur_df[cur_df['Occurrence']==0].index\n", "# sample_size = sum(cur_df['Occurrence']==0) - sum(cur_df['Occurrence']==1)\n", "# random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n", "# dict[\"dataframe\"] = cur_df.drop(random_indices)\n", " \n", "# print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# Standardisation\n", "def standardise(X):\n", " scaler = StandardScaler()\n", " X_scaled = scaler.fit_transform(X)\n", "\n", " # Add headers back\n", " X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)\n", "\n", " # Revert 'Surface type' back to non-standardised column as it is a categorical feature\n", " X_scaled_df['Surface type'] = X['Surface type'].values\n", " return X_scaled_df" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# Feature Selection\n", "\n", "# Check if any columns have NaN in them\n", "# nan_columns = []\n", "# for column in X_scaled_df:\n", "# if X_scaled_df[column].isnull().values.any():\n", "# nan_columns.append(column)\n", "# print(nan_columns if len(nan_columns)!= 0 else 'None')\n", "\n", "\n", "# Using ANOVA F-Score as a feature selection method\n", "def feature_select(X, y):\n", " k_nums = [10, 15, 20, 25, 30, 35]\n", " kbest_dict = {}\n", " for num in k_nums:\n", " # Needs to be 1d array, y.values.ravel() converts y into a 1d array\n", " best_X = SelectKBest(f_classif, k=num).fit(X, y.values.ravel())\n", " # kbest_dict[str(num)] = best_X.get_feature_names_out().tolist()\n", " kbest_dict[str(num)] = best_X\n", " # kbest_dict['40'] = list(X.columns)\n", "\n", " best_X = SelectKBest(f_classif, k='all').fit(X, y.values.ravel())\n", "\n", " feat_scores = pd.DataFrame()\n", " feat_scores[\"F Score\"] = best_X.scores_\n", " feat_scores[\"P Value\"] = best_X.pvalues_\n", " feat_scores[\"Attribute\"] = X.columns\n", " kbest_dict['Dataframe'] = feat_scores.sort_values([\"F Score\", \"P Value\"], ascending=[False, False])\n", "\n", "\n", " if details:\n", " print(f'K-Best Features Dataframe: \\n{kbest_dict[\"Dataframe\"]} \\n')\n", " # print(json.dumps(kbest_dict, indent=4))\n", " return kbest_dict" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# Resample (upsample) minority data\n", "# for dict in df_dicts:\n", "# if sum(dict['dataframe']['Occurence']==1) > sum(dict['dataframe']['Occurence']==0):\n", "# continue\n", "\n", "# from sklearn.utils import resample\n", "\n", "# def upsample(X, y):\n", "# X_1 = X[y['Occurrence'] == 1] # Getting positive occurrences (minority)\n", "# X_0 = X[y['Occurrence'] == 0] # Getting negative occurrences (majority)\n", " \n", "# X_1_upsampled = resample(X_1 ,random_state=seed,n_samples=total_birds/2,replace=True)\n", "\n", "\n", "# print(f'Resampling: \\n {y.value_counts()} \\n')\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "def oversample(X_train, y_train):\n", " over = RandomOverSampler(sampling_strategy='minority', random_state=seed)\n", " smote = SMOTE(random_state=seed, sampling_strategy='minority')\n", " X_smote, y_smote = smote.fit_resample(X_train, y_train)\n", " \n", " if details:\n", " print(f'Resampled Value Counts: \\n {y_smote.value_counts()} \\n')\n", "\n", " return X_smote, y_smote" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NameOccurrence CountPercentage
9Mute Swan 5km52670.661268
1Canada Goose 5km43050.540490
10Pheasant 5km38480.483114
16Rock Dove 5km28300.355304
7Little Owl 5km21580.270935
14Red-legged Partridge 5km21500.269931
19Wigeon 5km18570.233145
5Grey Partridge 5km16290.204520
3Gadwall 5km13990.175643
11Pink-footed Goose 5km13130.164846
13Pochard 5km9420.118267
18Whooper Swan 5km8420.105712
8Mandarin Duck 5km7140.089642
12Pintail 5km6490.081481
0Barnacle Goose 5km5870.073697
2Egyptian Goose 5km4850.060891
4Goshawk 5km4460.055995
6Indian Peafowl 5km2840.035656
15Ring-necked Parakeet 5km2060.025863
17Ruddy Duck 5km1090.013685
\n", "
" ], "text/plain": [ " Name Occurrence Count Percentage\n", "9 Mute Swan 5km 5267 0.661268\n", "1 Canada Goose 5km 4305 0.540490\n", "10 Pheasant 5km 3848 0.483114\n", "16 Rock Dove 5km 2830 0.355304\n", "7 Little Owl 5km 2158 0.270935\n", "14 Red-legged Partridge 5km 2150 0.269931\n", "19 Wigeon 5km 1857 0.233145\n", "5 Grey Partridge 5km 1629 0.204520\n", "3 Gadwall 5km 1399 0.175643\n", "11 Pink-footed Goose 5km 1313 0.164846\n", "13 Pochard 5km 942 0.118267\n", "18 Whooper Swan 5km 842 0.105712\n", "8 Mandarin Duck 5km 714 0.089642\n", "12 Pintail 5km 649 0.081481\n", "0 Barnacle Goose 5km 587 0.073697\n", "2 Egyptian Goose 5km 485 0.060891\n", "4 Goshawk 5km 446 0.055995\n", "6 Indian Peafowl 5km 284 0.035656\n", "15 Ring-necked Parakeet 5km 206 0.025863\n", "17 Ruddy Duck 5km 109 0.013685" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "All_bird_occurrences = pd.DataFrame([(dict['name'],sum(dict['dataframe']['Occurrence'] == 1)) for dict in df_dicts], columns=['Name', 'Occurrence Count'])\n", "All_bird_occurrences['Percentage'] = All_bird_occurrences['Occurrence Count']/total_birds\n", "\n", "All_bird_occurrences.sort_values('Occurrence Count', ascending=False)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Training with Barnacle Goose 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9358316221765913,\n", " \"recall\": 0.9886117136659436,\n", " \"f1-score\": 0.9614978902953586,\n", " \"support\": 1844\n", " },\n", " \"1\": {\n", " \"precision\": 0.5227272727272727,\n", " \"recall\": 0.1554054054054054,\n", " \"f1-score\": 0.23958333333333334,\n", " \"support\": 148\n", " },\n", " \"accuracy\": 0.9267068273092369,\n", " \"macro avg\": {\n", " \"precision\": 0.729279447451932,\n", " \"recall\": 0.5720085595356745,\n", " \"f1-score\": 0.6005406118143459,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9051391303500355,\n", " \"recall\": 0.9267068273092369,\n", " \"f1-score\": 0.9078616681917543,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Barnacle Goose 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9397066811515481,\n", " \"recall\": 0.938177874186551,\n", " \"f1-score\": 0.9389416553595659,\n", " \"support\": 1844\n", " },\n", " \"1\": {\n", " \"precision\": 0.24503311258278146,\n", " \"recall\": 0.25,\n", " \"f1-score\": 0.2474916387959866,\n", " \"support\": 148\n", " },\n", " \"accuracy\": 0.8870481927710844,\n", " \"macro avg\": {\n", " \"precision\": 0.5923698968671648,\n", " \"recall\": 0.5940889370932755,\n", " \"f1-score\": 0.5932166470777762,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.888094387904471,\n", " \"recall\": 0.8870481927710844,\n", " \"f1-score\": 0.8875688629642798,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Canada Goose 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Canada Goose 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9355971896955504,\n", " \"recall\": 0.871319520174482,\n", " \"f1-score\": 0.9023150762281198,\n", " \"support\": 917\n", " },\n", " \"1\": {\n", " \"precision\": 0.8963093145869947,\n", " \"recall\": 0.9488372093023256,\n", " \"f1-score\": 0.921825576140985,\n", " \"support\": 1075\n", " },\n", " \"accuracy\": 0.9131526104417671,\n", " \"macro avg\": {\n", " \"precision\": 0.9159532521412725,\n", " \"recall\": 0.9100783647384039,\n", " \"f1-score\": 0.9120703261845524,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9143951486605617,\n", " \"recall\": 0.9131526104417671,\n", " \"f1-score\": 0.9128440859702533,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Canada Goose 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9213483146067416,\n", " \"recall\": 0.8942202835332607,\n", " \"f1-score\": 0.9075816270060874,\n", " \"support\": 917\n", " },\n", " \"1\": {\n", " \"precision\": 0.911978221415608,\n", " \"recall\": 0.9348837209302325,\n", " \"f1-score\": 0.9232889297197979,\n", " \"support\": 1075\n", " },\n", " \"accuracy\": 0.9161646586345381,\n", " \"macro avg\": {\n", " \"precision\": 0.9166632680111748,\n", " \"recall\": 0.9145520022317466,\n", " \"f1-score\": 0.9154352783629427,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9162916629097192,\n", " \"recall\": 0.9161646586345381,\n", " \"f1-score\": 0.9160582085408459,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Egyptian Goose 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Egyptian Goose 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9595588235294118,\n", " \"recall\": 0.981203007518797,\n", " \"f1-score\": 0.9702602230483273,\n", " \"support\": 1862\n", " },\n", " \"1\": {\n", " \"precision\": 0.6022727272727273,\n", " \"recall\": 0.4076923076923077,\n", " \"f1-score\": 0.4862385321100917,\n", " \"support\": 130\n", " },\n", " \"accuracy\": 0.9437751004016064,\n", " \"macro avg\": {\n", " \"precision\": 0.7809157754010696,\n", " \"recall\": 0.6944476576055523,\n", " \"f1-score\": 0.7282493775792095,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9362419598178812,\n", " \"recall\": 0.9437751004016064,\n", " \"f1-score\": 0.9386724620935227,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Egyptian Goose 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9638874137015401,\n", " \"recall\": 0.9747583243823845,\n", " \"f1-score\": 0.9692923898531375,\n", " \"support\": 1862\n", " },\n", " \"1\": {\n", " \"precision\": 0.5688073394495413,\n", " \"recall\": 0.47692307692307695,\n", " \"f1-score\": 0.5188284518828452,\n", " \"support\": 130\n", " },\n", " \"accuracy\": 0.9422690763052208,\n", " \"macro avg\": {\n", " \"precision\": 0.7663473765755406,\n", " \"recall\": 0.7258407006527308,\n", " \"f1-score\": 0.7440604208679913,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9381040755224437,\n", " \"recall\": 0.9422690763052208,\n", " \"f1-score\": 0.939894642897245,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Gadwall 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Gadwall 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9131195335276968,\n", " \"recall\": 0.9566279780085523,\n", " \"f1-score\": 0.9343675417661097,\n", " \"support\": 1637\n", " },\n", " \"1\": {\n", " \"precision\": 0.7436823104693141,\n", " \"recall\": 0.5802816901408451,\n", " \"f1-score\": 0.6518987341772152,\n", " \"support\": 355\n", " },\n", " \"accuracy\": 0.8895582329317269,\n", " \"macro avg\": {\n", " \"precision\": 0.8284009219985055,\n", " \"recall\": 0.7684548340746986,\n", " \"f1-score\": 0.7931331379716624,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8829236428722119,\n", " \"recall\": 0.8895582329317269,\n", " \"f1-score\": 0.8840279701325467,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Gadwall 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9126040428061831,\n", " \"recall\": 0.9376908979841173,\n", " \"f1-score\": 0.9249774028321783,\n", " \"support\": 1637\n", " },\n", " \"1\": {\n", " \"precision\": 0.6709677419354839,\n", " \"recall\": 0.5859154929577465,\n", " \"f1-score\": 0.6255639097744361,\n", " \"support\": 355\n", " },\n", " \"accuracy\": 0.875,\n", " \"macro avg\": {\n", " \"precision\": 0.7917858923708335,\n", " \"recall\": 0.7618031954709319,\n", " \"f1-score\": 0.7752706563033072,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.869541348624909,\n", " \"recall\": 0.875,\n", " \"f1-score\": 0.8716180704850405,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Goshawk 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Goshawk 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.954337899543379,\n", " \"recall\": 0.9926121372031662,\n", " \"f1-score\": 0.9730988101396792,\n", " \"support\": 1895\n", " },\n", " \"1\": {\n", " \"precision\": 0.3333333333333333,\n", " \"recall\": 0.07216494845360824,\n", " \"f1-score\": 0.11864406779661016,\n", " \"support\": 97\n", " },\n", " \"accuracy\": 0.9477911646586346,\n", " \"macro avg\": {\n", " \"precision\": 0.6438356164383562,\n", " \"recall\": 0.5323885428283872,\n", " \"f1-score\": 0.5458714389681447,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9240982193614641,\n", " \"recall\": 0.9477911646586346,\n", " \"f1-score\": 0.9314913251962669,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Goshawk 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9625195210827694,\n", " \"recall\": 0.9757255936675462,\n", " \"f1-score\": 0.9690775681341719,\n", " \"support\": 1895\n", " },\n", " \"1\": {\n", " \"precision\": 0.352112676056338,\n", " \"recall\": 0.25773195876288657,\n", " \"f1-score\": 0.2976190476190476,\n", " \"support\": 97\n", " },\n", " \"accuracy\": 0.9407630522088354,\n", " \"macro avg\": {\n", " \"precision\": 0.6573160985695536,\n", " \"recall\": 0.6167287762152164,\n", " \"f1-score\": 0.6333483078766098,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9327958945930285,\n", " \"recall\": 0.9407630522088354,\n", " \"f1-score\": 0.9363810437918191,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Grey Partridge 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Grey Partridge 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9587491683300067,\n", " \"recall\": 0.902316844082655,\n", " \"f1-score\": 0.9296774193548387,\n", " \"support\": 1597\n", " },\n", " \"1\": {\n", " \"precision\": 0.6809815950920245,\n", " \"recall\": 0.8430379746835444,\n", " \"f1-score\": 0.7533936651583709,\n", " \"support\": 395\n", " },\n", " \"accuracy\": 0.8905622489959839,\n", " \"macro avg\": {\n", " \"precision\": 0.8198653817110155,\n", " \"recall\": 0.8726774093830997,\n", " \"f1-score\": 0.8415355422566049,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9036697549620333,\n", " \"recall\": 0.8905622489959839,\n", " \"f1-score\": 0.8947215544413825,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Grey Partridge 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9104385423100679,\n", " \"recall\": 0.9229805886036319,\n", " \"f1-score\": 0.9166666666666666,\n", " \"support\": 1597\n", " },\n", " \"1\": {\n", " \"precision\": 0.6702412868632708,\n", " \"recall\": 0.6329113924050633,\n", " \"f1-score\": 0.6510416666666667,\n", " \"support\": 395\n", " },\n", " \"accuracy\": 0.8654618473895582,\n", " \"macro avg\": {\n", " \"precision\": 0.7903399145866694,\n", " \"recall\": 0.7779459905043475,\n", " \"f1-score\": 0.7838541666666667,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8628090664559088,\n", " \"recall\": 0.8654618473895582,\n", " \"f1-score\": 0.8639950426706827,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Indian Peafowl 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Indian Peafowl 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9617706237424547,\n", " \"recall\": 0.9979123173277662,\n", " \"f1-score\": 0.9795081967213115,\n", " \"support\": 1916\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 76\n", " },\n", " \"accuracy\": 0.9598393574297188,\n", " \"macro avg\": {\n", " \"precision\": 0.48088531187122735,\n", " \"recall\": 0.4989561586638831,\n", " \"f1-score\": 0.48975409836065575,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9250765638004735,\n", " \"recall\": 0.9598393574297188,\n", " \"f1-score\": 0.9421374020672856,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Indian Peafowl 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9646878198567042,\n", " \"recall\": 0.9838204592901879,\n", " \"f1-score\": 0.9741602067183461,\n", " \"support\": 1916\n", " },\n", " \"1\": {\n", " \"precision\": 0.18421052631578946,\n", " \"recall\": 0.09210526315789473,\n", " \"f1-score\": 0.12280701754385964,\n", " \"support\": 76\n", " },\n", " \"accuracy\": 0.9497991967871486,\n", " \"macro avg\": {\n", " \"precision\": 0.5744491730862468,\n", " \"recall\": 0.5379628612240414,\n", " \"f1-score\": 0.5484836121311029,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9349105737175929,\n", " \"recall\": 0.9497991967871486,\n", " \"f1-score\": 0.9416788601434158,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Little Owl 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Little Owl 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9746376811594203,\n", " \"recall\": 0.9069453809844908,\n", " \"f1-score\": 0.9395738735592035,\n", " \"support\": 1483\n", " },\n", " \"1\": {\n", " \"precision\": 0.7745098039215687,\n", " \"recall\": 0.931237721021611,\n", " \"f1-score\": 0.8456735057983942,\n", " \"support\": 509\n", " },\n", " \"accuracy\": 0.9131526104417671,\n", " \"macro avg\": {\n", " \"precision\": 0.8745737425404945,\n", " \"recall\": 0.9190915510030508,\n", " \"f1-score\": 0.8926236896787989,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9235005880298688,\n", " \"recall\": 0.9131526104417671,\n", " \"f1-score\": 0.9155802554918079,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Little Owl 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9678800856531049,\n", " \"recall\": 0.9143627781523938,\n", " \"f1-score\": 0.9403606102635229,\n", " \"support\": 1483\n", " },\n", " \"1\": {\n", " \"precision\": 0.7851099830795262,\n", " \"recall\": 0.9115913555992141,\n", " \"f1-score\": 0.8436363636363637,\n", " \"support\": 509\n", " },\n", " \"accuracy\": 0.9136546184738956,\n", " \"macro avg\": {\n", " \"precision\": 0.8764950343663156,\n", " \"recall\": 0.9129770668758039,\n", " \"f1-score\": 0.8919984869499433,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9211782873549366,\n", " \"recall\": 0.9136546184738956,\n", " \"f1-score\": 0.9156454287709406,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Mandarin Duck 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Mandarin Duck 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9385775862068966,\n", " \"recall\": 0.963495575221239,\n", " \"f1-score\": 0.9508733624454149,\n", " \"support\": 1808\n", " },\n", " \"1\": {\n", " \"precision\": 0.5147058823529411,\n", " \"recall\": 0.3804347826086957,\n", " \"f1-score\": 0.4375,\n", " \"support\": 184\n", " },\n", " \"accuracy\": 0.9096385542168675,\n", " \"macro avg\": {\n", " \"precision\": 0.7266417342799188,\n", " \"recall\": 0.6719651789149673,\n", " \"f1-score\": 0.6941866812227074,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8994247782203867,\n", " \"recall\": 0.9096385542168675,\n", " \"f1-score\": 0.9034533329825853,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Mandarin Duck 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9399449035812673,\n", " \"recall\": 0.9435840707964602,\n", " \"f1-score\": 0.9417609715705216,\n", " \"support\": 1808\n", " },\n", " \"1\": {\n", " \"precision\": 0.423728813559322,\n", " \"recall\": 0.4076086956521739,\n", " \"f1-score\": 0.41551246537396125,\n", " \"support\": 184\n", " },\n", " \"accuracy\": 0.8940763052208835,\n", " \"macro avg\": {\n", " \"precision\": 0.6818368585702946,\n", " \"recall\": 0.675596383224317,\n", " \"f1-score\": 0.6786367184722415,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8922622928563486,\n", " \"recall\": 0.8940763052208835,\n", " \"f1-score\": 0.8931516718013615,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Mute Swan 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Mute Swan 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.92776886035313,\n", " \"recall\": 0.8328530259365994,\n", " \"f1-score\": 0.8777524677296886,\n", " \"support\": 694\n", " },\n", " \"1\": {\n", " \"precision\": 0.9152666179693206,\n", " \"recall\": 0.9653312788906009,\n", " \"f1-score\": 0.9396325459317585,\n", " \"support\": 1298\n", " },\n", " \"accuracy\": 0.9191767068273092,\n", " \"macro avg\": {\n", " \"precision\": 0.9215177391612253,\n", " \"recall\": 0.8990921524136002,\n", " \"f1-score\": 0.9086925068307236,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9196223188801458,\n", " \"recall\": 0.9191767068273092,\n", " \"f1-score\": 0.9180739243091497,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Mute Swan 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8452054794520548,\n", " \"recall\": 0.8890489913544669,\n", " \"f1-score\": 0.8665730337078652,\n", " \"support\": 694\n", " },\n", " \"1\": {\n", " \"precision\": 0.938985736925515,\n", " \"recall\": 0.9129429892141756,\n", " \"f1-score\": 0.92578125,\n", " \"support\": 1298\n", " },\n", " \"accuracy\": 0.9046184738955824,\n", " \"macro avg\": {\n", " \"precision\": 0.892095608188785,\n", " \"recall\": 0.9009959902843212,\n", " \"f1-score\": 0.8961771418539326,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9063132978258255,\n", " \"recall\": 0.9046184738955824,\n", " \"f1-score\": 0.9051534878982221,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Pheasant 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pheasant 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9282744282744283,\n", " \"recall\": 0.8636363636363636,\n", " \"f1-score\": 0.8947895791583166,\n", " \"support\": 1034\n", " },\n", " \"1\": {\n", " \"precision\": 0.8631067961165049,\n", " \"recall\": 0.9279749478079332,\n", " \"f1-score\": 0.8943661971830986,\n", " \"support\": 958\n", " },\n", " \"accuracy\": 0.8945783132530121,\n", " \"macro avg\": {\n", " \"precision\": 0.8956906121954666,\n", " \"recall\": 0.8958056557221484,\n", " \"f1-score\": 0.8945778881707076,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8969337698370333,\n", " \"recall\": 0.8945783132530121,\n", " \"f1-score\": 0.8945859647344919,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Pheasant 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9408658922914467,\n", " \"recall\": 0.8617021276595744,\n", " \"f1-score\": 0.8995456839979807,\n", " \"support\": 1034\n", " },\n", " \"1\": {\n", " \"precision\": 0.8631578947368421,\n", " \"recall\": 0.941544885177453,\n", " \"f1-score\": 0.9006490264603096,\n", " \"support\": 958\n", " },\n", " \"accuracy\": 0.9001004016064257,\n", " \"macro avg\": {\n", " \"precision\": 0.9020118935141443,\n", " \"recall\": 0.9016235064185137,\n", " \"f1-score\": 0.9000973552291451,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9034942749935997,\n", " \"recall\": 0.9001004016064257,\n", " \"f1-score\": 0.9000763075315706,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Pink-footed Goose 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pink-footed Goose 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9011173184357542,\n", " \"recall\": 0.9641362821279139,\n", " \"f1-score\": 0.9315622292809702,\n", " \"support\": 1673\n", " },\n", " \"1\": {\n", " \"precision\": 0.7029702970297029,\n", " \"recall\": 0.445141065830721,\n", " \"f1-score\": 0.5451055662188099,\n", " \"support\": 319\n", " },\n", " \"accuracy\": 0.8810240963855421,\n", " \"macro avg\": {\n", " \"precision\": 0.8020438077327285,\n", " \"recall\": 0.7046386739793175,\n", " \"f1-score\": 0.7383338977498901,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8693859430198253,\n", " \"recall\": 0.8810240963855421,\n", " \"f1-score\": 0.869674841973325,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Pink-footed Goose 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9275184275184275,\n", " \"recall\": 0.9025702331141662,\n", " \"f1-score\": 0.9148742805210542,\n", " \"support\": 1673\n", " },\n", " \"1\": {\n", " \"precision\": 0.5521978021978022,\n", " \"recall\": 0.6300940438871473,\n", " \"f1-score\": 0.588579795021962,\n", " \"support\": 319\n", " },\n", " \"accuracy\": 0.8589357429718876,\n", " \"macro avg\": {\n", " \"precision\": 0.7398581148581149,\n", " \"recall\": 0.7663321385006567,\n", " \"f1-score\": 0.7517270377715082,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8674143715559378,\n", " \"recall\": 0.8589357429718876,\n", " \"f1-score\": 0.8626212981544827,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Pintail 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pintail 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9353671147880042,\n", " \"recall\": 0.9820846905537459,\n", " \"f1-score\": 0.9581567796610171,\n", " \"support\": 1842\n", " },\n", " \"1\": {\n", " \"precision\": 0.43103448275862066,\n", " \"recall\": 0.16666666666666666,\n", " \"f1-score\": 0.2403846153846154,\n", " \"support\": 150\n", " },\n", " \"accuracy\": 0.9206827309236948,\n", " \"macro avg\": {\n", " \"precision\": 0.6832007987733124,\n", " \"recall\": 0.5743756786102063,\n", " \"f1-score\": 0.5992706975228163,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8973902599665144,\n", " \"recall\": 0.9206827309236948,\n", " \"f1-score\": 0.904107670905264,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Pintail 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9503311258278145,\n", " \"recall\": 0.9348534201954397,\n", " \"f1-score\": 0.9425287356321839,\n", " \"support\": 1842\n", " },\n", " \"1\": {\n", " \"precision\": 0.3333333333333333,\n", " \"recall\": 0.4,\n", " \"f1-score\": 0.3636363636363636,\n", " \"support\": 150\n", " },\n", " \"accuracy\": 0.8945783132530121,\n", " \"macro avg\": {\n", " \"precision\": 0.641832229580574,\n", " \"recall\": 0.6674267100977198,\n", " \"f1-score\": 0.6530825496342737,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9038704486821457,\n", " \"recall\": 0.8945783132530121,\n", " \"f1-score\": 0.8989374425602095,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Pochard 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pochard 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9102564102564102,\n", " \"recall\": 0.9709401709401709,\n", " \"f1-score\": 0.9396195202646815,\n", " \"support\": 1755\n", " },\n", " \"1\": {\n", " \"precision\": 0.575,\n", " \"recall\": 0.2911392405063291,\n", " \"f1-score\": 0.38655462184873945,\n", " \"support\": 237\n", " },\n", " \"accuracy\": 0.8900602409638554,\n", " \"macro avg\": {\n", " \"precision\": 0.7426282051282052,\n", " \"recall\": 0.63103970572325,\n", " \"f1-score\": 0.6630870710567105,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8703689759036145,\n", " \"recall\": 0.8900602409638554,\n", " \"f1-score\": 0.8738181242182065,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Pochard 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9073464912280702,\n", " \"recall\": 0.9430199430199431,\n", " \"f1-score\": 0.9248393405979324,\n", " \"support\": 1755\n", " },\n", " \"1\": {\n", " \"precision\": 0.40476190476190477,\n", " \"recall\": 0.2869198312236287,\n", " \"f1-score\": 0.3358024691358025,\n", " \"support\": 237\n", " },\n", " \"accuracy\": 0.8649598393574297,\n", " \"macro avg\": {\n", " \"precision\": 0.6560541979949874,\n", " \"recall\": 0.6149698871217859,\n", " \"f1-score\": 0.6303209048668674,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8475510359105595,\n", " \"recall\": 0.8649598393574297,\n", " \"f1-score\": 0.8547581465534921,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Red-legged Partridge 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Red-legged Partridge 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9474789915966386,\n", " \"recall\": 0.9135719108710331,\n", " \"f1-score\": 0.9302165692677895,\n", " \"support\": 1481\n", " },\n", " \"1\": {\n", " \"precision\": 0.7730496453900709,\n", " \"recall\": 0.8532289628180039,\n", " \"f1-score\": 0.8111627906976744,\n", " \"support\": 511\n", " },\n", " \"accuracy\": 0.8980923694779116,\n", " \"macro avg\": {\n", " \"precision\": 0.8602643184933547,\n", " \"recall\": 0.8834004368445185,\n", " \"f1-score\": 0.870689679982732,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9027333109181466,\n", " \"recall\": 0.8980923694779116,\n", " \"f1-score\": 0.899676167234994,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Red-legged Partridge 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9483734087694484,\n", " \"recall\": 0.9054692775151925,\n", " \"f1-score\": 0.9264248704663213,\n", " \"support\": 1481\n", " },\n", " \"1\": {\n", " \"precision\": 0.7577854671280276,\n", " \"recall\": 0.8571428571428571,\n", " \"f1-score\": 0.8044077134986225,\n", " \"support\": 511\n", " },\n", " \"accuracy\": 0.8930722891566265,\n", " \"macro avg\": {\n", " \"precision\": 0.8530794379487381,\n", " \"recall\": 0.8813060673290247,\n", " \"f1-score\": 0.8654162919824719,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8994826265511923,\n", " \"recall\": 0.8930722891566265,\n", " \"f1-score\": 0.8951242845172781,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Ring-necked Parakeet 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Ring-necked Parakeet 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9810159055926116,\n", " \"recall\": 0.9881136950904392,\n", " \"f1-score\": 0.984552008238929,\n", " \"support\": 1935\n", " },\n", " \"1\": {\n", " \"precision\": 0.46511627906976744,\n", " \"recall\": 0.3508771929824561,\n", " \"f1-score\": 0.4,\n", " \"support\": 57\n", " },\n", " \"accuracy\": 0.9698795180722891,\n", " \"macro avg\": {\n", " \"precision\": 0.7230660923311896,\n", " \"recall\": 0.6694954440364477,\n", " \"f1-score\": 0.6922760041194644,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9662537174842774,\n", " \"recall\": 0.9698795180722891,\n", " \"f1-score\": 0.9678253694489596,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Ring-necked Parakeet 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9809964047252183,\n", " \"recall\": 0.9870801033591732,\n", " \"f1-score\": 0.9840288511076766,\n", " \"support\": 1935\n", " },\n", " \"1\": {\n", " \"precision\": 0.4444444444444444,\n", " \"recall\": 0.3508771929824561,\n", " \"f1-score\": 0.39215686274509803,\n", " \"support\": 57\n", " },\n", " \"accuracy\": 0.9688755020080321,\n", " \"macro avg\": {\n", " \"precision\": 0.7127204245848313,\n", " \"recall\": 0.6689786481708146,\n", " \"f1-score\": 0.6880928569263873,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9656432612834492,\n", " \"recall\": 0.9688755020080321,\n", " \"f1-score\": 0.9670927550551328,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Rock Dove 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Rock Dove 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9165302782324058,\n", " \"recall\": 0.8543096872616324,\n", " \"f1-score\": 0.8843268851164627,\n", " \"support\": 1311\n", " },\n", " \"1\": {\n", " \"precision\": 0.7519480519480519,\n", " \"recall\": 0.8502202643171806,\n", " \"f1-score\": 0.7980702963473466,\n", " \"support\": 681\n", " },\n", " \"accuracy\": 0.8529116465863453,\n", " \"macro avg\": {\n", " \"precision\": 0.8342391650902289,\n", " \"recall\": 0.8522649757894065,\n", " \"f1-score\": 0.8411985907319046,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8602649689454356,\n", " \"recall\": 0.8529116465863453,\n", " \"f1-score\": 0.8548385633535269,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Rock Dove 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9233937397034596,\n", " \"recall\": 0.855072463768116,\n", " \"f1-score\": 0.887920792079208,\n", " \"support\": 1311\n", " },\n", " \"1\": {\n", " \"precision\": 0.7557840616966581,\n", " \"recall\": 0.8634361233480177,\n", " \"f1-score\": 0.8060315284441397,\n", " \"support\": 681\n", " },\n", " \"accuracy\": 0.8579317269076305,\n", " \"macro avg\": {\n", " \"precision\": 0.8395889007000589,\n", " \"recall\": 0.8592542935580668,\n", " \"f1-score\": 0.8469761602616739,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8660934431559536,\n", " \"recall\": 0.8579317269076305,\n", " \"f1-score\": 0.8599255167099904,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Ruddy Duck 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Ruddy Duck 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9834254143646409,\n", " \"recall\": 0.9994895354772844,\n", " \"f1-score\": 0.9913924050632913,\n", " \"support\": 1959\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 33\n", " },\n", " \"accuracy\": 0.9829317269076305,\n", " \"macro avg\": {\n", " \"precision\": 0.49171270718232046,\n", " \"recall\": 0.4997447677386422,\n", " \"f1-score\": 0.49569620253164565,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.967133728283299,\n", " \"recall\": 0.9829317269076305,\n", " \"f1-score\": 0.9749687357023031,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Ruddy Duck 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9848637739656912,\n", " \"recall\": 0.9964267483409903,\n", " \"f1-score\": 0.9906115199188025,\n", " \"support\": 1959\n", " },\n", " \"1\": {\n", " \"precision\": 0.3,\n", " \"recall\": 0.09090909090909091,\n", " \"f1-score\": 0.13953488372093023,\n", " \"support\": 33\n", " },\n", " \"accuracy\": 0.981425702811245,\n", " \"macro avg\": {\n", " \"precision\": 0.6424318869828456,\n", " \"recall\": 0.5436679196250406,\n", " \"f1-score\": 0.5650732018198663,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9735181391560187,\n", " \"recall\": 0.981425702811245,\n", " \"f1-score\": 0.9765123587769704,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Whooper Swan 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Whooper Swan 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9047864127637674,\n", " \"recall\": 0.9854260089686099,\n", " \"f1-score\": 0.9433861014220553,\n", " \"support\": 1784\n", " },\n", " \"1\": {\n", " \"precision\": 0.46938775510204084,\n", " \"recall\": 0.11057692307692307,\n", " \"f1-score\": 0.17898832684824903,\n", " \"support\": 208\n", " },\n", " \"accuracy\": 0.8940763052208835,\n", " \"macro avg\": {\n", " \"precision\": 0.6870870839329041,\n", " \"recall\": 0.5480014660227664,\n", " \"f1-score\": 0.5611872141351522,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8593230991123421,\n", " \"recall\": 0.8940763052208835,\n", " \"f1-score\": 0.8635694663259952,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Whooper Swan 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9271597967250141,\n", " \"recall\": 0.9204035874439462,\n", " \"f1-score\": 0.9237693389592125,\n", " \"support\": 1784\n", " },\n", " \"1\": {\n", " \"precision\": 0.3574660633484163,\n", " \"recall\": 0.3798076923076923,\n", " \"f1-score\": 0.36829836829836826,\n", " \"support\": 208\n", " },\n", " \"accuracy\": 0.8639558232931727,\n", " \"macro avg\": {\n", " \"precision\": 0.6423129300367152,\n", " \"recall\": 0.6501056398758193,\n", " \"f1-score\": 0.6460338536287904,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.867673704083281,\n", " \"recall\": 0.8639558232931727,\n", " \"f1-score\": 0.8657683540709316,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Wigeon 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Wigeon 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8940092165898618,\n", " \"recall\": 0.8846905537459283,\n", " \"f1-score\": 0.8893254747871644,\n", " \"support\": 1535\n", " },\n", " \"1\": {\n", " \"precision\": 0.6257928118393234,\n", " \"recall\": 0.6477024070021882,\n", " \"f1-score\": 0.6365591397849463,\n", " \"support\": 457\n", " },\n", " \"accuracy\": 0.8303212851405622,\n", " \"macro avg\": {\n", " \"precision\": 0.7599010142145926,\n", " \"recall\": 0.7661964803740582,\n", " \"f1-score\": 0.7629423072860553,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8324756337730967,\n", " \"recall\": 0.8303212851405622,\n", " \"f1-score\": 0.8313364109839447,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Wigeon 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8759791122715405,\n", " \"recall\": 0.8742671009771987,\n", " \"f1-score\": 0.8751222693185523,\n", " \"support\": 1535\n", " },\n", " \"1\": {\n", " \"precision\": 0.5804347826086956,\n", " \"recall\": 0.5842450765864332,\n", " \"f1-score\": 0.5823336968375136,\n", " \"support\": 457\n", " },\n", " \"accuracy\": 0.8077309236947792,\n", " \"macro avg\": {\n", " \"precision\": 0.728206947440118,\n", " \"recall\": 0.729256088781816,\n", " \"f1-score\": 0.7287279830780329,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8081760205768014,\n", " \"recall\": 0.8077309236947792,\n", " \"f1-score\": 0.8079513970174305,\n", " \"support\": 1992\n", " }\n", "} \n", "\n" ] } ], "source": [ "# Add model pipeline\n", "estimators = [\n", " ('lr', LogisticRegression(max_iter=10000, solver='saga', random_state=seed, penalty='l2', verbose=verbose)),\n", " ('knn', KNeighborsClassifier(n_neighbors=5, weights='distance')),\n", " ('sgd', SGDClassifier( max_iter=10000, loss='modified_huber', random_state=seed, penalty='l2', verbose=verbose)),\n", " ('rf', RandomForestClassifier(n_estimators=20,max_features=None, random_state=seed, verbose=verbose))\n", "]\n", "\n", "\n", "for dict in df_dicts:\n", " print(f'Training with {dict[\"name\"]} cells... \\n')\n", " # Use this if using coordinates as separate columns\n", " # coords, X, y = data['dataframe'].iloc[:, :2], data['dataframe'].iloc[:, 2:-1], data['dataframe'].iloc[:, [-1]]\n", " # data['coords'] = coords\n", " \n", " # Use this if using coordinates as indices\n", " X, y = dict['dataframe'].iloc[:, 0:-1], dict['dataframe'].iloc[:, [-1]], \n", "\n", " dict['X'] = standardise(X)\n", " dict['y'] = y\n", " dict['kbest'] = feature_select(dict['X'], dict['y'])\n", "\n", " # dict['X'] = dict['kbest']['10'].transform(dict['X'])\n", "\n", " X_train, X_test, y_train, y_test = train_test_split(dict['X'], dict['y'], random_state=seed)\n", " dict['X_train'], dict['X_test'], dict['y_train'], dict['y_test'] = X_train, X_test, y_train, y_test # for debugging purposes\n", "\n", " dict['X_smote'], dict['y_smote'] = oversample(X_train, y_train)\n", "\n", " stack_clf = StackingClassifier(\n", " estimators=estimators, \n", " final_estimator=GradientBoostingClassifier(n_estimators=20, learning_rate=0.5, max_features=None, max_depth=2, random_state=seed)\n", " )\n", "\n", " # Classifier without SMOTE\n", " stack_clf.fit(dict['X_train'], dict['y_train'])\n", " y_pred = stack_clf.predict(X_test)\n", " \n", " dict['predictions'] = y_pred\n", " dict['report'] = classification_report(y_test, y_pred, output_dict=True)\n", " \n", "\n", " # Classifier with SMOTE\n", " stack_clf.fit(dict['X_smote'], dict['y_smote'])\n", " y_pred_smote = stack_clf.predict(X_test)\n", " \n", " dict['predictions_smote'] = y_pred_smote\n", " dict['report_smote'] = classification_report(y_test, y_pred_smote, output_dict=True)\n", " \n", " print(f'{dict[\"name\"]} Classification Report: \\n {json.dumps(dict[\"report\"], indent=4)} \\n')\n", " print(f'{dict[\"name\"]} SMOTE Classification Report: \\n {json.dumps(dict[\"report_smote\"], indent=4)} \\n')\n", "\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9358316221765913,\n", " \"recall\": 0.9886117136659436,\n", " \"f1-score\": 0.9614978902953586,\n", " \"support\": 1844\n", " },\n", " \"1\": {\n", " \"precision\": 0.5227272727272727,\n", " \"recall\": 0.1554054054054054,\n", " \"f1-score\": 0.23958333333333334,\n", " \"support\": 148\n", " },\n", " \"accuracy\": 0.9267068273092369,\n", " \"macro avg\": {\n", " \"precision\": 0.729279447451932,\n", " \"recall\": 0.5720085595356745,\n", " \"f1-score\": 0.6005406118143459,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9051391303500355,\n", " \"recall\": 0.9267068273092369,\n", " \"f1-score\": 0.9078616681917543,\n", " \"support\": 1992\n", " }\n", "}\n", "Canada Goose 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9355971896955504,\n", " \"recall\": 0.871319520174482,\n", " \"f1-score\": 0.9023150762281198,\n", " \"support\": 917\n", " },\n", " \"1\": {\n", " \"precision\": 0.8963093145869947,\n", " \"recall\": 0.9488372093023256,\n", " \"f1-score\": 0.921825576140985,\n", " \"support\": 1075\n", " },\n", " \"accuracy\": 0.9131526104417671,\n", " \"macro avg\": {\n", " \"precision\": 0.9159532521412725,\n", " \"recall\": 0.9100783647384039,\n", " \"f1-score\": 0.9120703261845524,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9143951486605617,\n", " \"recall\": 0.9131526104417671,\n", " \"f1-score\": 0.9128440859702533,\n", " \"support\": 1992\n", " }\n", "}\n", "Egyptian Goose 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9595588235294118,\n", " \"recall\": 0.981203007518797,\n", " \"f1-score\": 0.9702602230483273,\n", " \"support\": 1862\n", " },\n", " \"1\": {\n", " \"precision\": 0.6022727272727273,\n", " \"recall\": 0.4076923076923077,\n", " \"f1-score\": 0.4862385321100917,\n", " \"support\": 130\n", " },\n", " \"accuracy\": 0.9437751004016064,\n", " \"macro avg\": {\n", " \"precision\": 0.7809157754010696,\n", " \"recall\": 0.6944476576055523,\n", " \"f1-score\": 0.7282493775792095,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9362419598178812,\n", " \"recall\": 0.9437751004016064,\n", " \"f1-score\": 0.9386724620935227,\n", " \"support\": 1992\n", " }\n", "}\n", "Gadwall 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9131195335276968,\n", " \"recall\": 0.9566279780085523,\n", " \"f1-score\": 0.9343675417661097,\n", " \"support\": 1637\n", " },\n", " \"1\": {\n", " \"precision\": 0.7436823104693141,\n", " \"recall\": 0.5802816901408451,\n", " \"f1-score\": 0.6518987341772152,\n", " \"support\": 355\n", " },\n", " \"accuracy\": 0.8895582329317269,\n", " \"macro avg\": {\n", " \"precision\": 0.8284009219985055,\n", " \"recall\": 0.7684548340746986,\n", " \"f1-score\": 0.7931331379716624,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8829236428722119,\n", " \"recall\": 0.8895582329317269,\n", " \"f1-score\": 0.8840279701325467,\n", " \"support\": 1992\n", " }\n", "}\n", "Goshawk 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.954337899543379,\n", " \"recall\": 0.9926121372031662,\n", " \"f1-score\": 0.9730988101396792,\n", " \"support\": 1895\n", " },\n", " \"1\": {\n", " \"precision\": 0.3333333333333333,\n", " \"recall\": 0.07216494845360824,\n", " \"f1-score\": 0.11864406779661016,\n", " \"support\": 97\n", " },\n", " \"accuracy\": 0.9477911646586346,\n", " \"macro avg\": {\n", " \"precision\": 0.6438356164383562,\n", " \"recall\": 0.5323885428283872,\n", " \"f1-score\": 0.5458714389681447,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9240982193614641,\n", " \"recall\": 0.9477911646586346,\n", " \"f1-score\": 0.9314913251962669,\n", " \"support\": 1992\n", " }\n", "}\n", "Grey Partridge 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9587491683300067,\n", " \"recall\": 0.902316844082655,\n", " \"f1-score\": 0.9296774193548387,\n", " \"support\": 1597\n", " },\n", " \"1\": {\n", " \"precision\": 0.6809815950920245,\n", " \"recall\": 0.8430379746835444,\n", " \"f1-score\": 0.7533936651583709,\n", " \"support\": 395\n", " },\n", " \"accuracy\": 0.8905622489959839,\n", " \"macro avg\": {\n", " \"precision\": 0.8198653817110155,\n", " \"recall\": 0.8726774093830997,\n", " \"f1-score\": 0.8415355422566049,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9036697549620333,\n", " \"recall\": 0.8905622489959839,\n", " \"f1-score\": 0.8947215544413825,\n", " \"support\": 1992\n", " }\n", "}\n", "Indian Peafowl 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9617706237424547,\n", " \"recall\": 0.9979123173277662,\n", " \"f1-score\": 0.9795081967213115,\n", " \"support\": 1916\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 76\n", " },\n", " \"accuracy\": 0.9598393574297188,\n", " \"macro avg\": {\n", " \"precision\": 0.48088531187122735,\n", " \"recall\": 0.4989561586638831,\n", " \"f1-score\": 0.48975409836065575,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9250765638004735,\n", " \"recall\": 0.9598393574297188,\n", " \"f1-score\": 0.9421374020672856,\n", " \"support\": 1992\n", " }\n", "}\n", "Little Owl 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9746376811594203,\n", " \"recall\": 0.9069453809844908,\n", " \"f1-score\": 0.9395738735592035,\n", " \"support\": 1483\n", " },\n", " \"1\": {\n", " \"precision\": 0.7745098039215687,\n", " \"recall\": 0.931237721021611,\n", " \"f1-score\": 0.8456735057983942,\n", " \"support\": 509\n", " },\n", " \"accuracy\": 0.9131526104417671,\n", " \"macro avg\": {\n", " \"precision\": 0.8745737425404945,\n", " \"recall\": 0.9190915510030508,\n", " \"f1-score\": 0.8926236896787989,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9235005880298688,\n", " \"recall\": 0.9131526104417671,\n", " \"f1-score\": 0.9155802554918079,\n", " \"support\": 1992\n", " }\n", "}\n", "Mandarin Duck 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9385775862068966,\n", " \"recall\": 0.963495575221239,\n", " \"f1-score\": 0.9508733624454149,\n", " \"support\": 1808\n", " },\n", " \"1\": {\n", " \"precision\": 0.5147058823529411,\n", " \"recall\": 0.3804347826086957,\n", " \"f1-score\": 0.4375,\n", " \"support\": 184\n", " },\n", " \"accuracy\": 0.9096385542168675,\n", " \"macro avg\": {\n", " \"precision\": 0.7266417342799188,\n", " \"recall\": 0.6719651789149673,\n", " \"f1-score\": 0.6941866812227074,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8994247782203867,\n", " \"recall\": 0.9096385542168675,\n", " \"f1-score\": 0.9034533329825853,\n", " \"support\": 1992\n", " }\n", "}\n", "Mute Swan 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.92776886035313,\n", " \"recall\": 0.8328530259365994,\n", " \"f1-score\": 0.8777524677296886,\n", " \"support\": 694\n", " },\n", " \"1\": {\n", " \"precision\": 0.9152666179693206,\n", " \"recall\": 0.9653312788906009,\n", " \"f1-score\": 0.9396325459317585,\n", " \"support\": 1298\n", " },\n", " \"accuracy\": 0.9191767068273092,\n", " \"macro avg\": {\n", " \"precision\": 0.9215177391612253,\n", " \"recall\": 0.8990921524136002,\n", " \"f1-score\": 0.9086925068307236,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9196223188801458,\n", " \"recall\": 0.9191767068273092,\n", " \"f1-score\": 0.9180739243091497,\n", " \"support\": 1992\n", " }\n", "}\n", "Pheasant 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9282744282744283,\n", " \"recall\": 0.8636363636363636,\n", " \"f1-score\": 0.8947895791583166,\n", " \"support\": 1034\n", " },\n", " \"1\": {\n", " \"precision\": 0.8631067961165049,\n", " \"recall\": 0.9279749478079332,\n", " \"f1-score\": 0.8943661971830986,\n", " \"support\": 958\n", " },\n", " \"accuracy\": 0.8945783132530121,\n", " \"macro avg\": {\n", " \"precision\": 0.8956906121954666,\n", " \"recall\": 0.8958056557221484,\n", " \"f1-score\": 0.8945778881707076,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8969337698370333,\n", " \"recall\": 0.8945783132530121,\n", " \"f1-score\": 0.8945859647344919,\n", " \"support\": 1992\n", " }\n", "}\n", "Pink-footed Goose 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9011173184357542,\n", " \"recall\": 0.9641362821279139,\n", " \"f1-score\": 0.9315622292809702,\n", " \"support\": 1673\n", " },\n", " \"1\": {\n", " \"precision\": 0.7029702970297029,\n", " \"recall\": 0.445141065830721,\n", " \"f1-score\": 0.5451055662188099,\n", " \"support\": 319\n", " },\n", " \"accuracy\": 0.8810240963855421,\n", " \"macro avg\": {\n", " \"precision\": 0.8020438077327285,\n", " \"recall\": 0.7046386739793175,\n", " \"f1-score\": 0.7383338977498901,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8693859430198253,\n", " \"recall\": 0.8810240963855421,\n", " \"f1-score\": 0.869674841973325,\n", " \"support\": 1992\n", " }\n", "}\n", "Pintail 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9353671147880042,\n", " \"recall\": 0.9820846905537459,\n", " \"f1-score\": 0.9581567796610171,\n", " \"support\": 1842\n", " },\n", " \"1\": {\n", " \"precision\": 0.43103448275862066,\n", " \"recall\": 0.16666666666666666,\n", " \"f1-score\": 0.2403846153846154,\n", " \"support\": 150\n", " },\n", " \"accuracy\": 0.9206827309236948,\n", " \"macro avg\": {\n", " \"precision\": 0.6832007987733124,\n", " \"recall\": 0.5743756786102063,\n", " \"f1-score\": 0.5992706975228163,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8973902599665144,\n", " \"recall\": 0.9206827309236948,\n", " \"f1-score\": 0.904107670905264,\n", " \"support\": 1992\n", " }\n", "}\n", "Pochard 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9102564102564102,\n", " \"recall\": 0.9709401709401709,\n", " \"f1-score\": 0.9396195202646815,\n", " \"support\": 1755\n", " },\n", " \"1\": {\n", " \"precision\": 0.575,\n", " \"recall\": 0.2911392405063291,\n", " \"f1-score\": 0.38655462184873945,\n", " \"support\": 237\n", " },\n", " \"accuracy\": 0.8900602409638554,\n", " \"macro avg\": {\n", " \"precision\": 0.7426282051282052,\n", " \"recall\": 0.63103970572325,\n", " \"f1-score\": 0.6630870710567105,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8703689759036145,\n", " \"recall\": 0.8900602409638554,\n", " \"f1-score\": 0.8738181242182065,\n", " \"support\": 1992\n", " }\n", "}\n", "Red-legged Partridge 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9474789915966386,\n", " \"recall\": 0.9135719108710331,\n", " \"f1-score\": 0.9302165692677895,\n", " \"support\": 1481\n", " },\n", " \"1\": {\n", " \"precision\": 0.7730496453900709,\n", " \"recall\": 0.8532289628180039,\n", " \"f1-score\": 0.8111627906976744,\n", " \"support\": 511\n", " },\n", " \"accuracy\": 0.8980923694779116,\n", " \"macro avg\": {\n", " \"precision\": 0.8602643184933547,\n", " \"recall\": 0.8834004368445185,\n", " \"f1-score\": 0.870689679982732,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9027333109181466,\n", " \"recall\": 0.8980923694779116,\n", " \"f1-score\": 0.899676167234994,\n", " \"support\": 1992\n", " }\n", "}\n", "Ring-necked Parakeet 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9810159055926116,\n", " \"recall\": 0.9881136950904392,\n", " \"f1-score\": 0.984552008238929,\n", " \"support\": 1935\n", " },\n", " \"1\": {\n", " \"precision\": 0.46511627906976744,\n", " \"recall\": 0.3508771929824561,\n", " \"f1-score\": 0.4,\n", " \"support\": 57\n", " },\n", " \"accuracy\": 0.9698795180722891,\n", " \"macro avg\": {\n", " \"precision\": 0.7230660923311896,\n", " \"recall\": 0.6694954440364477,\n", " \"f1-score\": 0.6922760041194644,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9662537174842774,\n", " \"recall\": 0.9698795180722891,\n", " \"f1-score\": 0.9678253694489596,\n", " \"support\": 1992\n", " }\n", "}\n", "Rock Dove 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9165302782324058,\n", " \"recall\": 0.8543096872616324,\n", " \"f1-score\": 0.8843268851164627,\n", " \"support\": 1311\n", " },\n", " \"1\": {\n", " \"precision\": 0.7519480519480519,\n", " \"recall\": 0.8502202643171806,\n", " \"f1-score\": 0.7980702963473466,\n", " \"support\": 681\n", " },\n", " \"accuracy\": 0.8529116465863453,\n", " \"macro avg\": {\n", " \"precision\": 0.8342391650902289,\n", " \"recall\": 0.8522649757894065,\n", " \"f1-score\": 0.8411985907319046,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8602649689454356,\n", " \"recall\": 0.8529116465863453,\n", " \"f1-score\": 0.8548385633535269,\n", " \"support\": 1992\n", " }\n", "}\n", "Ruddy Duck 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9834254143646409,\n", " \"recall\": 0.9994895354772844,\n", " \"f1-score\": 0.9913924050632913,\n", " \"support\": 1959\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 33\n", " },\n", " \"accuracy\": 0.9829317269076305,\n", " \"macro avg\": {\n", " \"precision\": 0.49171270718232046,\n", " \"recall\": 0.4997447677386422,\n", " \"f1-score\": 0.49569620253164565,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.967133728283299,\n", " \"recall\": 0.9829317269076305,\n", " \"f1-score\": 0.9749687357023031,\n", " \"support\": 1992\n", " }\n", "}\n", "Whooper Swan 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9047864127637674,\n", " \"recall\": 0.9854260089686099,\n", " \"f1-score\": 0.9433861014220553,\n", " \"support\": 1784\n", " },\n", " \"1\": {\n", " \"precision\": 0.46938775510204084,\n", " \"recall\": 0.11057692307692307,\n", " \"f1-score\": 0.17898832684824903,\n", " \"support\": 208\n", " },\n", " \"accuracy\": 0.8940763052208835,\n", " \"macro avg\": {\n", " \"precision\": 0.6870870839329041,\n", " \"recall\": 0.5480014660227664,\n", " \"f1-score\": 0.5611872141351522,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8593230991123421,\n", " \"recall\": 0.8940763052208835,\n", " \"f1-score\": 0.8635694663259952,\n", " \"support\": 1992\n", " }\n", "}\n", "Wigeon 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.8940092165898618,\n", " \"recall\": 0.8846905537459283,\n", " \"f1-score\": 0.8893254747871644,\n", " \"support\": 1535\n", " },\n", " \"1\": {\n", " \"precision\": 0.6257928118393234,\n", " \"recall\": 0.6477024070021882,\n", " \"f1-score\": 0.6365591397849463,\n", " \"support\": 457\n", " },\n", " \"accuracy\": 0.8303212851405622,\n", " \"macro avg\": {\n", " \"precision\": 0.7599010142145926,\n", " \"recall\": 0.7661964803740582,\n", " \"f1-score\": 0.7629423072860553,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8324756337730967,\n", " \"recall\": 0.8303212851405622,\n", " \"f1-score\": 0.8313364109839447,\n", " \"support\": 1992\n", " }\n", "}\n" ] } ], "source": [ "for dict in df_dicts:\n", " print(dict['name'], '\\n', json.dumps(dict['report'], indent=4))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5EAAAPHCAYAAACxBc1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADwlUlEQVR4nOzdeXgO9/7/8dct+yIJsSQ0EkQIFbVVURIttQunrRa1dNFFUVqqutmpqtJVN1sVpfaqqi1R+x6UCKJKS6tVEqFCks/vDz/zdTcJo1Rono/rel+X+cxnZt73zTknr/OZmTiMMUYAAAAAANhQIK8bAAAAAADcOgiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA21zzugHgVpOVlaUjR46oYMGCcjgced0OAAAAcM2MMTp16pRKlCihAgUuv9ZIiASu0pEjRxQSEpLXbQAAAADX3eHDh3Xbbbdddg4hErhKBQsWlHThP2B+fn553A0AAABw7VJTUxUSEmL9rHs5hEjgKl28hdXPz48QCQAAgP8UO49r8WIdAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAba553QBwy/L3z+sOAAAAcLMzJq87uO5YicQty+FwaN68eXndBgAAAJCvECL/BV26dJHD4dDTTz+dbd+zzz4rh8OhLl26XNU5r1dgOnPmjPr376+yZcvK09NTRYsWVXR0tObPn3/N576eBg4cKIfD4VQVKlTI67YAAACAfI/bWf8lISEh+vLLLzVmzBh5eXlJks6ePatp06apVKlSedbX008/rQ0bNui9995TxYoVdfz4ca1du1bHjx/Ps55yU6lSJS1btszadnXlnysAAACQ11iJ/JdUq1ZNISEhmjNnjjU2Z84clSpVSlWrVnWaGxYWprFjxzqN3XHHHRo4cKC1X5LatGkjh8NhbUvS/PnzVa1aNXl6eqpMmTIaNGiQMjIycu1rwYIFevnll9WsWTOFhYWpevXq6tGjhx577DFJ0vvvv6/bb7/dmj9v3jw5HA599NFH1ljDhg316quvSpKSk5MVGxur4sWLy9fXVzVr1nQKfhf7Hz58uB577DEVLFhQpUqV0ieffHL5L1AXQmNQUJBVRYoUuez8AQMGKDg4WDt27LCuO3ToUHXq1Em+vr4KDQ3VggUL9Pvvvys2Nla+vr6KiorS5s2br9gLAAAAgAsIkf+ixx57TBMnTrS2J0yYoEcfffSqz7Np0yZJ0sSJE3X06FFre9WqVerUqZOee+457d69Wx9//LEmTZqkYcOG5XquoKAgLVq0SKdOncpxf3R0tHbv3q3ff/9dkrRy5UoVKVJE8fHxkqTz589r3bp1iomJkSSlpaWpWbNmWr58ubZt26YmTZqoZcuWOnTokNN5R48erRo1amjbtm3q1q2bnnnmGSUlJV32c+/bt08lSpRQmTJl1KFDh2znvMgYox49eujzzz/XqlWrFBUVZe0bM2aM6tatq23btql58+bq2LGjOnXqpEceeURbt25V2bJl1alTJ5nLPPCcnp6u1NRUpwIAAADyLYPrrnPnziY2NtYcO3bMeHh4mIMHD5qDBw8aT09P8/vvv5vY2FjTuXNna35oaKgZM2aM0zmqVKliBgwYYG1LMnPnznWac++995rhw4c7jU2ZMsUEBwfn2tvKlSvNbbfdZtzc3EyNGjVMr169zOrVq639WVlZJjAw0Hz11VfGGGPuuOMOM2LECBMUFGSMMWb16tXGzc3NnD59OtdrVKpUybz33ntOn++RRx5xukaxYsXMuHHjcj3HokWLzMyZM8327dvN4sWLTe3atU2pUqVMamqq03fy1Vdfmfbt25vIyEjz888/O53j79c9evSokWRee+01a2zdunVGkjl69GiuvQwYMMBIylYpF961RVEURVEURVG51y0iJSXFSDIpKSlXnMtK5L+oaNGiat68uSZNmqSJEyeqefPmV7wl82ps375dgwcPlq+vr1Vdu3bV0aNHdebMmRyPqV+/vg4cOKDly5frgQce0K5du1SvXj0NGTJE0oUX+NSvX1/x8fE6efKkdu/erW7duik9PV179uzRypUrVbNmTXl7e0u6sBLZp08fRUZGKiAgQL6+vkpMTMy2anjp6qDD4VBQUJCOHTuW62dr2rSpHnzwQUVFRalx48ZatGiRTp48qZkzZzrN6927tzZs2KDvv/9eJUuWzHaeS69bvHhxSVLlypWzjV2ul/79+yslJcWqw4cP5zoXAAAA+K/jTSX/sscee0zdu3eXJH3wwQc5zilQoICMMU5j58+fv+K509LSNGjQIP3vf//Lts/T0zPX49zc3FSvXj3Vq1dP/fr109ChQzV48GD169dP7u7uiomJ0SeffKJVq1apatWq8vPzs4LlypUrFR0dbZ2rT58+Wrp0qd566y2Fh4fLy8tLDzzwgM6dO5ftmpdyOBzKysq64me8KCAgQBEREdq/f7/TeKNGjTR9+nR999136tChQ46f9dJr5jZ2uV48PDzk4eFhu1cAAADgv4wQ+S9r0qSJzp07J4fDocaNG+c4p2jRojp69Ki1nZqaqh9//NFpjpubmzIzM53GqlWrpqSkJIWHh19TjxUrVlRGRobOnj0rd3d3RUdHq1evXvrqq6+sZx9jYmK0bNkyrVmzRi+88IJ17Jo1a9SlSxe1adNG0oVge/DgwWvqJydpaWlKTk5Wx44dncZbtWqlli1bqn379nJxcdHDDz983a8NAAAA4P8QIv9lLi4uSkxMtP6ck3vuuUeTJk1Sy5YtFRAQoNdffz3b3LCwMC1fvlx169aVh4eHChUqpNdff10tWrRQqVKl9MADD6hAgQLavn27fvjhBw0dOjTHa8XExKhdu3aqUaOGAgMDtXv3br388stq0KCB/Pz8JF24BbRQoUKaNm2aFi5caB3Xp08fORwO1a1b1zpfuXLlNGfOHLVs2VIOh0OvvfbaVa0w5qZPnz5q2bKlQkNDdeTIEQ0YMEAuLi5q165dtrlt2rTRlClT1LFjR7m6uuqBBx645usDAAAAyBkh8ga4GM5y079/f/34449q0aKF/P39NWTIkGwrkaNHj9bzzz+vTz/9VCVLltTBgwfVuHFjLVy4UIMHD9bIkSPl5uamChUq6Iknnsj1Wo0bN9bkyZP18ssv68yZMypRooRatGih119/3ZrjcDhUr149ffPNN7r77rslXQiWfn5+Kl++vHx8fKy5b7/9th577DHVqVNHRYoUUb9+/a7L20t//vlntWvXTsePH1fRokV19913a/369SpatGiO8x944AFlZWWpY8eOKlCgQI63+F5v/kqRdPm/WwAAAORzDnvT/vZ0203NYf7+MB6Ay0pNTZW/v79EiAQAAMB1ktep7OLPuCkpKVdcBOPtrAAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANtc87oB4Jb1kr/kmddNAABwazIDTF63AOAfYiUSAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgm2teNwDcqlL6p8jPzy+v2wAAAABuKFYiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ueZ1A8iZw+HQ3Llz1bp167xu5abVpUsXnTx5UvPmzcubBvz98+a6AAAAuPkZk9cd/Gvy7Urkr7/+qh49eqhMmTLy8PBQSEiIWrZsqeXLl+d1a9dVXFycWrRooaJFi8rT01Nly5bVQw89pO+//z6vW7usgwcPyuFwZKv169fndWsAAABAvpYvVyIPHjyounXrKiAgQKNGjVLlypV1/vx5fffdd3r22We1Z8+evG7xuvjwww/VvXt3dezYUTNmzFDZsmWVkpKiuLg49e7dW1u2bMnrFq9o2bJlqlSpkrUdGBiYh90AAAAAyJcrkd26dZPD4dDGjRt1//33KyIiQpUqVdLzzz/vtNL19ttvq3LlyvLx8VFISIi6deumtLQ0a/+kSZMUEBCg7777TpGRkfL19VWTJk109OhRa86mTZvUqFEjFSlSRP7+/oqOjtbWrVud+tm3b5/q168vT09PVaxYUUuXLs3Wc79+/RQRESFvb2+VKVNGr732ms6fP5/rZzx06JB69eqlXr16afLkybrnnnsUGhqqqKgoPffcc9q8ebPT/NmzZ6tSpUry8PBQWFiYRo8e7bT/xIkT6tSpkwoVKiRvb281bdpU+/bts/b/9NNPatmypQoVKiQfHx9VqlRJixYtsvb/8MMPatq0qXx9fVW8eHF17NhRf/zxR679XxQYGKigoCCr3Nzccp27adMmFS1aVCNHjpQkDRw4UHfccYcmTJigUqVKydfXV926dVNmZqbefPNNBQUFqVixYho2bNgV+wAAAABwQb4LkX/++acWL16sZ599Vj4+Ptn2BwQEWH8uUKCA3n33Xe3atUuTJ0/WihUr9OKLLzrNP3PmjN566y1NmTJF33//vQ4dOqQ+ffpY+0+dOqXOnTtr9erVWr9+vcqVK6dmzZrp1KlTkqSsrCz973//k7u7uzZs2KCPPvpI/fr1y9ZXwYIFNWnSJO3evVvvvPOOPv30U40ZMybXzzl79mydP38+W78XORwO689btmxR27Zt9fDDD2vnzp0aOHCgXnvtNU2aNMma06VLF23evFkLFizQunXrZIxRs2bNrCD77LPPKj09Xd9//7127typkSNHytfXV5J08uRJ3XPPPapatao2b96sxYsX67ffflPbtm1z7f+iVq1aqVixYrr77ru1YMGCXOetWLFCjRo10rBhw5y+v+TkZH377bdavHixpk+frvHjx6t58+b6+eeftXLlSo0cOVKvvvqqNmzYkOu509PTlZqa6lQAAABAvmXymQ0bNhhJZs6cOVd97FdffWUCAwOt7YkTJxpJZv/+/dbYBx98YIoXL57rOTIzM03BggXN119/bYwx5rvvvjOurq7ml19+seZ8++23RpKZO3durucZNWqUqV69eq77n376aePn5+c0NmvWLOPj42PVjh07jDHGtG/f3jRq1Mhpbt++fU3FihWNMcbs3bvXSDJr1qyx9v/xxx/Gy8vLzJw50xhjTOXKlc3AgQNz7GXIkCHmvvvucxo7fPiwkWSSkpJyPOb33383o0ePNuvXrzcbN240/fr1Mw6Hw8yfP9+a07lzZxMbG2vmzJljfH19zZdfful0jgEDBhhvb2+TmppqjTVu3NiEhYWZzMxMa6x8+fJmxIgROfZx8TySslXKhcelKYqiKIqiKCp73WJSUlKMJJOSknLFufnumUhjjO25y5Yt04gRI7Rnzx6lpqYqIyNDZ8+e1ZkzZ+Tt7S1J8vb2VtmyZa1jgoODdezYMWv7t99+06uvvqr4+HgdO3ZMmZmZOnPmjA4dOiRJSkxMVEhIiEqUKGEdU7t27Wy9zJgxQ++++66Sk5OVlpamjIwM+fn5Xbb/S1cbJalx48ZKSEjQL7/8opiYGGVmZlo9xMbGOs2tW7euxo4dq8zMTCUmJsrV1VW1atWy9gcGBqp8+fJKTEyUJPXs2VPPPPOMlixZooYNG+r+++9XVFSUJGn79u2Ki4uzViYvlZycrIiIiGzjRYoU0fPPP29t16xZU0eOHNGoUaPUqlUra3zDhg1auHChZs2aleObbMPCwlSwYEFru3jx4nJxcVGBAgWcxi79O/u7/v37O/WSmpqqkJCQXOcDAAAA/2X57nbWcuXKyeFwXPHlOQcPHlSLFi0UFRWl2bNna8uWLfrggw8kSefOnbPm/f0ZPYfD4RRUO3furISEBL3zzjtau3atEhISFBgY6HSOK1m3bp06dOigZs2aaeHChdq2bZteeeWVy56jXLlySklJ0a+//mqN+fr6Kjw8XKGhobavbdcTTzyhAwcOqGPHjtq5c6dq1Kih9957T5KUlpamli1bKiEhwakuPgtqV61atbR//36nsbJly6pChQqaMGFCjs+I5vT3k9NYVlZWrtf18PCQn5+fUwEAAAD5Vb4LkYULF1bjxo31wQcf6PTp09n2nzx5UtKF5wSzsrI0evRo3XXXXYqIiNCRI0eu+npr1qxRz5491axZM+vFNZe+UCYyMlKHDx92ehnP33+Nxdq1axUaGqpXXnlFNWrUULly5fTTTz9d9roPPPCA3NzcrJfMXE5kZKTWrFmTre+IiAi5uLgoMjJSGRkZTs8NHj9+XElJSapYsaI1FhISoqefflpz5szRCy+8oE8//VSSVK1aNe3atUthYWEKDw93qpyeS81NQkKCgoODncaKFCmiFStWaP/+/Wrbtu1lXzYEAAAA4NrluxApSR988IEyMzN15513avbs2dq3b58SExP17rvvWreShoeH6/z583rvvfd04MABTZkyRR999NFVX6tcuXKaMmWKEhMTtWHDBnXo0EFeXl7W/oYNGyoiIkKdO3fW9u3btWrVKr3yyivZznHo0CF9+eWXSk5O1rvvvqu5c+de9rqlSpXS6NGj9c4776hz586Ki4vTwYMHtXXrVr377ruSJBcXF0nSCy+8oOXLl2vIkCHau3evJk+erPfff996QVC5cuUUGxurrl27avXq1dq+fbseeeQRlSxZ0roNtlevXvruu+/0448/auvWrYqLi1NkZKSkCy/d+fPPP9WuXTtt2rRJycnJ+u677/Too49at9T+3eTJkzV9+nTt2bNHe/bs0fDhwzVhwgT16NEj29xixYppxYoV2rNnj9q1a6eMjAw7fzUAAAAA/ol//QnNm9SRI0fMs88+a0JDQ427u7spWbKkadWqlYmLi7PmvP322yY4ONh4eXmZxo0bm88//9xIMidOnDDGXHixjr+/v9N5586day79Wrdu3Wpq1KhhPD09Tbly5cxXX31lQkNDzZgxY6w5SUlJ5u677zbu7u4mIiLCLF682EjOL9bp27evCQwMNL6+vuahhx4yY8aMyXbtnCxdutQ0bdrUFC5c2Li6uprixYub1q1bm8WLFzvNmzVrlqlYsaJxc3MzpUqVMqNGjXLa/+eff5qOHTsaf39/6/vYu3evtb979+6mbNmyxsPDwxQtWtR07NjR/PHHH9b+vXv3mjZt2piAgADj5eVlKlSoYHr16mWysrJy7HvSpEkmMjLSeHt7Gz8/P3PnnXear776ymnOxRfrXHTkyBETERFh2rZtazIyMsyAAQNMlSpVLnuMMcZER0eb55577grf5P+5+NCxlJLnz2tTFEVRFEVRN1/diq7mxToOY4zJ0xQL3GJSU1Pl7+8vKUUSz0cCAADA2a2YsC7+jJuSknLFd4Dky9tZAQAAAAD/DCESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYJtrXjcA3LJe8pc887oJAMCNYAaYvG4BAG4arEQCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGxzzesGgFtVSv8U+fn55XUbAAAAwA3FSiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA217xuALhl+fvndQcAAAD4txiT1x3ctFiJvEVMmjRJAQEBed3GTYXvBAAAALjxCJE3iS5dusjhcMjhcMjd3V3h4eEaPHiwMjIy8rq1687hcGjevHlXnBcWFmZ9JxfrjTfe+PcbBAAAAJArbme9iTRp0kQTJ05Uenq6Fi1apGeffVZubm7q379/XreWZwYPHqyuXbta2wULFszDbgAAAACwEnkT8fDwUFBQkEJDQ/XMM8+oYcOGWrBggdOc7777TpGRkfL19VWTJk109OhRp/2fffaZIiMj5enpqQoVKujDDz902t+vXz9FRETI29tbZcqU0Wuvvabz589b+7dv364GDRqoYMGC8vPzU/Xq1bV582ZJ0vHjx9WuXTuVLFlS3t7eqly5sqZPn+50/piYGPXs2VMvvviiChcurKCgIA0cONDaHxYWJklq06aNHA6HtZ2bggULKigoyCofH59c5/7++++qUaOG2rRpo/T0dMXHx8vhcOi7775T1apV5eXlpXvuuUfHjh3Tt99+q8jISPn5+al9+/Y6c+bMZfsAAAAAcAEh8ibm5eWlc+fOWdtnzpzRW2+9pSlTpuj777/XoUOH1KdPH2v/1KlT9frrr2vYsGFKTEzU8OHD9dprr2ny5MnWnIIFC2rSpEnavXu33nnnHX366acaM2aMtb9Dhw667bbbtGnTJm3ZskUvvfSS3NzcJElnz55V9erV9c033+iHH37Qk08+qY4dO2rjxo1OfU+ePFk+Pj7asGGD3nzzTQ0ePFhLly6VJG3atEmSNHHiRB09etTazs0bb7yhwMBAVa1aVaNGjcr19t7Dhw+rXr16uv322zVr1ix5eHhY+wYOHKj3339fa9eu1eHDh9W2bVuNHTtW06ZN0zfffKMlS5bovffey7WH9PR0paamOhUAAACQbxncFDp37mxiY2ONMcZkZWWZpUuXGg8PD9OnTx9jjDETJ040ksz+/futYz744ANTvHhxa7ts2bJm2rRpTucdMmSIqV27dq7XHTVqlKlevbq1XbBgQTNp0iTbfTdv3ty88MIL1nZ0dLS5++67nebUrFnT9OvXz9qWZObOnXvFc48ePdrExcWZ7du3m3HjxpmAgADTu3dva//EiRONv7+/2bNnjwkJCTE9e/Y0WVlZ1v64uDgjySxbtswaGzFihJFkkpOTrbGnnnrKNG7cONc+BgwYYCRlq5QL7+yiKIqiKIqi/ouVz6SkpBhJJiUl5YpzeSbyJrJw4UL5+vrq/PnzysrKUvv27Z1uBfX29lbZsmWt7eDgYB07dkySdPr0aSUnJ+vxxx93eoYwIyND/pf8KooZM2bo3XffVXJystLS0pSRkSE/Pz9r//PPP68nnnhCU6ZMUcOGDfXggw9a18zMzNTw4cM1c+ZM/fLLLzp37pzS09Pl7e3t9DmioqKcti/t82o8//zzTud0d3fXU089pREjRlgrjX/99Zfq1aun9u3ba+zYsTme59J+ihcvbt3Ke+nY31dTL9W/f3+nXlJTUxUSEnLVnwcAAAD4L+B21ptIgwYNlJCQoH379umvv/6ybgu96OJtpRc5HA4ZYyRJaWlpkqRPP/1UCQkJVv3www9av369JGndunXq0KGDmjVrpoULF2rbtm165ZVXnG6ZHThwoHbt2qXmzZtrxYoVqlixoubOnStJGjVqlN555x3169dPcXFxSkhIUOPGjZ2Oz63PrKysa/5+atWqpYyMDB08eNAa8/DwUMOGDbVw4UL98ssvOR53aT8Oh+Oq+/Pw8JCfn59TAQAAAPkVK5E3ER8fH4WHh/+jY4sXL64SJUrowIED6tChQ45z1q5dq9DQUL3yyivW2E8//ZRtXkREhCIiItS7d2+1a9dOEydOVJs2bbRmzRrFxsbqkUcekSRlZWVp7969qlix4lX16ubmpszMzKs6RpISEhJUoEABFStWzBorUKCApkyZovbt26tBgwaKj49XiRIlrvrcAAAAAOwhRP6HDBo0SD179pS/v7+aNGmi9PR0bd68WSdOnNDzzz+vcuXK6dChQ/ryyy9Vs2ZNffPNN9Yqo3Th1tC+ffvqgQceUOnSpfXzzz9r06ZNuv/++yVJ5cqV06xZs7R27VoVKlRIb7/9tn777berDpFhYWFavny56tatKw8PDxUqVCjbnHXr1mnDhg3Wm2LXrVun3r1765FHHsk238XFRVOnTlW7du10zz33KD4+XkFBQf/gGwQAAABwJYTI/5AnnnhC3t7eGjVqlPr27SsfHx9VrlxZvXr1kiS1atVKvXv3Vvfu3ZWenq7mzZvrtddes567dHFx0fHjx9WpUyf99ttvKlKkiP73v/9p0KBBkqRXX31VBw4cUOPGjeXt7a0nn3xSrVu3VkpKylX1OXr0aD3//PP69NNPVbJkSafbUy/y8PDQl19+qYEDByo9PV2lS5dW7969nZ5NvJSrq6umT5+uhx56yAqS/zZ/pUji1lYAAID/gv//lBhscBjD1wVcjdTU1P//siJCJAAAwH9Ffk9FF3/GTUlJueI7QHixDgAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDbXvG4AuGW95C955nUTAHDrMwNMXrcAALgKrEQCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsc83rBoBbVUr/FPn5+eV1GwAAAMANxUokAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA217xuANdHly5ddPLkSc2bNy+vW7mhHA6H5s6dq9atW9/4i/v73/hrAgAA/JuMyesOcAtgJfIG6NKlixwOhxwOh9zc3FS6dGm9+OKLOnv2bJ72dbEnh8MhHx8flStXTl26dNGWLVvytK+LBg4c6NSjw+FQhQoV8rotAAAAIF8jRN4gTZo00dGjR3XgwAGNGTNGH3/8sQYMGJDXbWnixIk6evSodu3apQ8++EBpaWmqVauWPv/887xuTZJUqVIlHT161KrVq1fndUsAAABAvkaIvEE8PDwUFBSkkJAQtW7dWg0bNtTSpUut/enp6erZs6eKFSsmT09P3X333dq0aZPTOXbt2qUWLVrIz89PBQsWVL169ZScnJzj9TZt2qSiRYtq5MiRl+0rICBAQUFBCgsL03333adZs2apQ4cO6t69u06cOGHNmz17tipVqiQPDw+FhYVp9OjR1r6XX35ZtWrVynbuKlWqaPDgwdb2Z599psjISHl6eqpChQr68MMPL/+lSXJ1dVVQUJBVRYoUuez8AQMGKDg4WDt27JAkhYWFaejQoerUqZN8fX0VGhqqBQsW6Pfff1dsbKx8fX0VFRWlzZs3X7EXAAAAAITIPPHDDz9o7dq1cnd3t8ZefPFFzZ49W5MnT9bWrVsVHh6uxo0b688//5Qk/fLLL6pfv748PDy0YsUKbdmyRY899pgyMjKynX/FihVq1KiRhg0bpn79+l11f71799apU6eskLtlyxa1bdtWDz/8sHbu3KmBAwfqtdde06RJkyRJHTp00MaNG50C7a5du7Rjxw61b99ekjR16lS9/vrrGjZsmBITEzV8+HC99tprmjx58mV72bdvn0qUKKEyZcqoQ4cOOnToUI7zjDHq0aOHPv/8c61atUpRUVHWvjFjxqhu3bratm2bmjdvro4dO6pTp0565JFHtHXrVpUtW1adOnWSyeUZgPT0dKWmpjoVAAAAkG8Z/Os6d+5sXFxcjI+Pj/Hw8DCSTIECBcysWbOMMcakpaUZNzc3M3XqVOuYc+fOmRIlSpg333zTGGNM//79TenSpc25c+dyvUZsbKyZM2eO8fX1NV9++eUV+5Jk5s6dm238r7/+MpLMyJEjjTHGtG/f3jRq1MhpTt++fU3FihWt7SpVqpjBgwdb2/379ze1atWytsuWLWumTZvmdI4hQ4aY2rVr59rfokWLzMyZM8327dvN4sWLTe3atU2pUqVMamqq02f46quvTPv27U1kZKT5+eefnc4RGhpqHnnkEWv76NGjRpJ57bXXrLF169YZSebo0aM59jFgwAAjKVulXHj0nKIoiqIo6r9TyLdSUlKMJJOSknLFuaxE3iANGjRQQkKCNmzYoM6dO+vRRx/V/fffL0lKTk7W+fPnVbduXWu+m5ub7rzzTiUmJkqSEhISVK9ePbm5ueV6jQ0bNujBBx/UlClT9NBDD/3jXo0xki68eEeSEhMTnXqTpLp162rfvn3KzMyUdGE1ctq0adbx06dPV4cOHSRJp0+fVnJysh5//HH5+vpaNXTo0Fxvx5Wkpk2b6sEHH1RUVJQaN26sRYsW6eTJk5o5c6bTvN69e2vDhg36/vvvVbJkyWznuXRVsnjx4pKkypUrZxs7duxYjn30799fKSkpVh0+fDjXngEAAID/OkLkDeLj46Pw8HBVqVJFEyZM0IYNGzR+/Hjbx3t5eV1xTtmyZVWhQgVNmDBB58+f/8e9XgyupUuXtn1Mu3btlJSUpK1bt2rt2rU6fPiwFWTT0tIkSZ9++qkSEhKs+uGHH7R+/Xrb1wgICFBERIT279/vNN6oUSP98ssv+u6773I87tLgfTEY5zSWlZWV4/EeHh7y8/NzKgAAACC/IkTmgQIFCujll1/Wq6++qr/++ktly5aVu7u71qxZY805f/68Nm3apIoVK0q6sJq2atWqy4bDIkWKaMWKFdq/f7/atm37j4Pk2LFj5efnp4YNG0qSIiMjnXqTpDVr1igiIkIuLi6SpNtuu03R0dGaOnWqpk6dqkaNGqlYsWKSLqz0lShRQgcOHFB4eLhTXU1QTUtLU3JysoKDg53GW7VqpWnTpumJJ57Ql19++Y8+MwAAAAB7CJF55MEHH5SLi4s++OAD+fj46JlnnlHfvn21ePFi7d69W127dtWZM2f0+OOPS5K6d++u1NRUPfzww9q8ebP27dunKVOmKCkpyem8xYoV04oVK7Rnzx61a9cuxxfvXOrkyZP69ddf9dNPP2np0qV64IEHNG3aNI0bN04BAQGSpBdeeEHLly/XkCFDtHfvXk2ePFnvv/+++vTp43SuDh066Msvv9RXX31l3cp60aBBgzRixAi9++672rt3r3bu3KmJEyfq7bffzrW3Pn36aOXKlTp48KDWrl2rNm3ayMXFRe3atcs2t02bNpoyZYoeffRRzZo167KfGQAAAMA1+Nef0IT10pu/GzFihClatKhJS0szf/31l+nRo4cpUqSI8fDwMHXr1jUbN250mr99+3Zz3333GW9vb1OwYEFTr149k5ycnOM1jhw5YiIiIkzbtm1NRkZGjn1J//eSGE9PT1O2bFnTuXNns2XLlmxzZ82aZSpWrGjc3NxMqVKlzKhRo7LNOXHihPHw8DDe3t7m1KlT2fZPnTrV3HHHHcbd3d0UKlTI1K9f38yZMyfX7+2hhx4ywcHBxt3d3ZQsWdI89NBDZv/+/dk+w6UvB5oxY4bx9PQ0s2fPNsZceLHOmDFjLnvMjz/+aCSZbdu25drLpayHjvP6wXeKoiiKoqjrXci3rubFOg5jjMm7CAvcelJTU+Xv7y8pRRLPRwIAgFsTKQCXuvgzbkpKyhXfAcLtrAAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANtc87oB4Jb1kr/kmddNAPg3mQEmr1sAAOCmw0okAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA217xuALhVpfRPkZ+fX163AQAAANxQrEQCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsc83rBoBblr9/XncAAABw6zImrzvAP8RK5C3A4XBo3rx5V33cwYMH5XA4lJCQcN17ulbXo7eb+fMBAAAA/1WEyJtAly5d1Lp161z3Hz16VE2bNpWUe3C60jmuRWZmpsaMGaPKlSvL09NThQoVUtOmTbVmzZp/5XoXdenSRQ6Hw6maNGnyr14TAAAAwOURIm8BQUFB8vDwyJNrG2P08MMPa/DgwXruueeUmJio+Ph4hYSEKCYm5h+tkF6NJk2a6OjRo1ZNnz79X70eAAAAgMsjRN4CLr2dtXTp0pKkqlWryuFwKCYmRgMHDtTkyZM1f/58a8UuPj4+x3P98MMPatq0qXx9fVW8eHF17NhRf/zxR67XnjlzpmbNmqXPP/9cTzzxhEqXLq0qVarok08+UatWrfTEE0/o9OnTSklJkYuLizZv3ixJysrKUuHChXXXXXdZ5/riiy8UEhJyVZ/dw8NDQUFBVhUqVCjXuZmZmXrsscdUoUIFHTp0SNKF7+7jjz9WixYt5O3trcjISK1bt0779+9XTEyMfHx8VKdOHSUnJ19VXwAAAEB+RYi8xWzcuFGStGzZMh09elRz5sxRnz591LZtW6dVuzp16mQ79uTJk7rnnntUtWpVbd68WYsXL9Zvv/2mtm3b5nq9adOmKSIiQi1btsy274UXXtDx48e1dOlS+fv764477rDC686dO+VwOLRt2zalpaVJklauXKno6Oir+rzx8fEqVqyYypcvr2eeeUbHjx/PcV56eroefPBBJSQkaNWqVSpVqpS1b8iQIerUqZMSEhJUoUIFtW/fXk899ZT69++vzZs3yxij7t2759pDenq6UlNTnQoAAADIrwiRt5iiRYtKkgIDAxUUFKTChQvL19dXXl5eTqt27u7u2Y59//33VbVqVQ0fPlwVKlRQ1apVNWHCBMXFxWnv3r05Xm/v3r2KjIzMcd/F8YvHxsTEWCEyPj5ejRo1UmRkpFavXm2NXU2IbNKkiT7//HMtX75cI0eO1MqVK9W0aVNlZmY6zUtLS1Pz5s31+++/Ky4uzvqOLnr00UfVtm1bRUREqF+/fjp48KA6dOigxo0bKzIyUs8991yuK7eSNGLECPn7+1t1taupAAAAwH8Jv+IjH9m+fbvi4uLk6+ubbV9ycrIiIiJyPM7YfP1ydHS0xo8fr8zMTK1cuVL33XefgoKCFB8fr6ioKOsWUrsefvhh68+VK1dWVFSUypYtq/j4eN17773Wvnbt2um2227TihUr5OXlle08UVFR1p+LFy9une/SsbNnzyo1NVV+fn7Zju/fv7+ef/55azs1NZUgCQAAgHyLlch8JC0tTS1btlRCQoJT7du3T/Xr18/xmIiICCUmJua47+L4xfBZv359nTp1Slu3btX333+vmJgYa3Vy5cqVKlGihMqVK/eP+y9TpoyKFCmi/fv3O403a9ZMO3bs0Lp163I8zs3Nzfqzw+HIdSwrKyvH4z08POTn5+dUAAAAQH5FiLzFXLxN9e+3dLq7u2cb+7tq1app165dCgsLU3h4uFP5+PjkeMzDDz+sffv26euvv862b/To0QoMDFSjRo0kSQEBAYqKitL7778vNzc3VahQQfXr19e2bdu0cOHCq34e8u9+/vlnHT9+XMHBwU7jzzzzjN544w21atVKK1euvKZrAAAAALg8QuRNIiUlJdsK4eHDh7PNK1asmLy8vKyX4qSkpEiSwsLCtGPHDiUlJemPP/7Q+fPnsx377LPP6s8//1S7du20adMmJScn67vvvtOjjz6aawB9+OGH1aZNG3Xu3Fnjx4/XwYMHtWPHDj311FNasGCBPvvsM6cAGhMTo6lTp1qBsXDhwoqMjNSMGTOuKkSmpaWpb9++Wr9+vQ4ePKjly5crNjZW4eHhaty4cbb5PXr00NChQ9WiRQvrGUwAAAAA1x/PRN4k4uPjVbVqVaexxx9/XJ999pnTmKurq959910NHjxYr7/+uurVq6f4+Hh17dpV8fHxqlGjhtLS0hQXF6ewsDCnY0uUKKE1a9aoX79+uu+++5Senq7Q0FA1adJEBQrk/P8nOBwOzZw5U2PHjtWYMWPUrVs3eXp6qnbt2oqPj1fdunWd5kdHR2vs2LFOzz7GxMRo+/btV/U8pIuLi3bs2KHJkyfr5MmTKlGihO677z4NGTIk19+Z2atXL2VlZalZs2ZavHhxjm+ovZ78lSKJW1sBAAD+EYdk89UbuMk4jN23pgCQdOHFOv7+/hIhEgAA4JqQRG4eF3/GTUlJueI7QLidFQAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYJtrXjcA3LJe8pc887oJ4MYyA0xetwAAAPIYK5EAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbXPO6AeBWldI/RX5+fnndBgAAAHBDsRIJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALDtpgyR8fHxcjgcOnnyZK5zBg4cqDvuuOOG9XStwsLCNHbs2Lxu47LsfO+TJk1SQEDADevpchwOh+bNm5d3Dfj7Sw4HRVEURVHUf6MAm64pRHbp0kUOh0MOh0Nubm4qXbq0XnzxRZ09e/Z69ZdvDBw40PouXV1dFRYWpt69eystLe2az2s3bNepU0dHjx6Vv7//NV3zerj0+7hYFSpUyOu2AAAAgHzP9VpP0KRJE02cOFHnz5/Xli1b1LlzZzkcDo0cOfJ69JevVKpUScuWLVNGRobWrFmjxx57TGfOnNHHH3981ecyxigzM9P2/PPnz8vd3V1BQUFXfa1/y8Xv4yJX12v+5woAAADgGl3z7aweHh4KCgpSSEiIWrdurYYNG2rp0qXW/qysLI0YMUKlS5eWl5eXqlSpolmzZjmdY9GiRYqIiJCXl5caNGiggwcP/qNePvvsM0VGRsrT01MVKlTQhx9+6LR/7dq1uuOOO+Tp6akaNWpo3rx5cjgcSkhIsOYsWLBA5cqVk6enpxo0aKDJkyfr77d4rl69WvXq1ZOXl5dCQkLUs2dPnT592tp/7NgxtWzZUl5eXipdurSmTp1qq39XV1cFBQXptttu00MPPaQOHTpowYIFkqQpU6aoRo0aKliwoIKCgtS+fXsdO3bMOvbirajffvutqlevLg8PD33xxRcaNGiQtm/fbq3mTZo0SZLkcDg0btw4tWrVSj4+Pho2bFiOt7NOmjRJpUqVkre3t9q0aaPjx49n63vo0KEqVqyYChYsqCeeeEIvvfRSttXPK/3dXO77uFhFihS57PwBAwYoODhYO3bskHThFuKhQ4eqU6dO8vX1VWhoqBYsWKDff/9dsbGx8vX1VVRUlDZv3nzFXgAAAAD8f+YadO7c2cTGxlrbO3fuNEFBQaZWrVrW2NChQ02FChXM4sWLTXJyspk4caLx8PAw8fHxxhhjDh06ZDw8PMzzzz9v9uzZY7744gtTvHhxI8mcOHEi12sPGDDAVKlSxdr+4osvTHBwsJk9e7Y5cOCAmT17tilcuLCZNGmSMcaYlJQUU7hwYfPII4+YXbt2mUWLFpmIiAgjyWzbts0YY8yBAweMm5ub6dOnj9mzZ4+ZPn26KVmypFMv+/fvNz4+PmbMmDFm7969Zs2aNaZq1aqmS5cuVi9NmzY1VapUMevWrTObN282derUMV5eXmbMmDG2P48xxvTs2dMULlzYGGPM+PHjzaJFi0xycrJZt26dqV27tmnatKk1Ny4uzkgyUVFRZsmSJWb//v3m559/Ni+88IKpVKmSOXr0qDl69Kg5c+aMMcYYSaZYsWJmwoQJJjk52fz000/WOS5+1vXr15sCBQqYkSNHmqSkJPPOO++YgIAA4+/v7/S9e3p6mgkTJpikpCQzaNAg4+fnd1V/N7l9H97e3iY4ONiULl3atG/f3vz0009OcySZuXPnmqysLNO9e3cTFhZm9u3bZ+0PDQ01hQsXNh999JHZu3eveeaZZ4yfn59p0qSJmTlzpklKSjKtW7c2kZGRJisrK9dezp49a1JSUqw6fPiwkWRSJGMoiqIoiqL+K4V8LSUlxUgyKSkpV5x7Tf9aOnfubFxcXIyPj4/x8PAwkkyBAgXMrFmzjDEXfvj29vY2a9eudTru8ccfN+3atTPGGNO/f39TsWJFp/39+vUzVxsiy5Yta6ZNm+Y0Z8iQIaZ27drGGGPGjRtnAgMDzV9//WXt//TTT82lIbJfv37m9ttvdzrHK6+84tTL448/bp588kmnOatWrTIFChQwf/31l0lKSjKSzMaNG639iYmJRtJVhcjNmzebIkWKmAceeCDH+Zs2bTKSzKlTp4wx/xci582bd9nzXiTJ9OrVy2ns7yGyXbt2plmzZk5zHnroIacQWatWLfPss886zalbt+5V/d3kZNGiRWbmzJlm+/btZvHixaZ27dqmVKlSJjU11ekzfPXVV6Z9+/YmMjLS/Pzzz07nCA0NNY888oi1ffToUSPJvPbaa9bYunXrjCRz9OjRXHsZMGCAkZStCJEURVEURf2nCvna1YTIa37IrEGDBho3bpxOnz6tMWPGyNXVVffff78kaf/+/Tpz5owaNWrkdMy5c+dUtWpVSVJiYqJq1arltL927dpO276+vtafH3nkEX300UdO+0+fPq3k5GQ9/vjj6tq1qzWekZFhvSQmKSlJUVFR8vT0tPbfeeedTudJSkpSzZo1ncb+Pmf79u3asWOH0y2qxhhlZWXpxx9/1N69e+Xq6qrq1atb+ytUqGDrjaY7d+6Ur6+vMjMzde7cOTVv3lzvv/++JGnLli0aOHCgtm/frhMnTigrK0uSdOjQIVWsWNE6R40aNa54HbtzExMT1aZNG6ex2rVra/HixdZ2UlKSunXr5jTnzjvv1IoVKyTZ+7vJSdOmTa0/R0VFqVatWgoNDdXMmTP1+OOPW/t69+4tDw8PrV+/PsfbXaOioqw/Fy9eXJJUuXLlbGPHjh3L9XnQ/v376/nnn7e2U1NTFRISkmvvAAAAwH/ZNYdIHx8fhYeHS5ImTJigKlWqaPz48Xr88cetN4t+8803KlmypNNxHh4etq9x6TOLfn5+2fZfvM6nn36aLZC6uLjYvo4daWlpeuqpp9SzZ89s+0qVKqW9e/f+43OXL19eCxYskKurq0qUKCF3d3dJF4JY48aN1bhxY02dOlVFixbVoUOH1LhxY507d87pHD4+PravdzVz/6nr9XcTEBCgiIgI7d+/32m8UaNGmj59ur777jt16NAh23Fubm7Wnx3//9XVOY1dDOU58fDwuKp/rwAAAMB/2XV93WWBAgX08ssv6/nnn1f79u1VsWJFeXh46NChQ4qOjs7xmMjISOvlMRetX7/eaftiSM1N8eLFVaJECR04cCDHICFdCGhffPGF0tPTrUCwadOmbHMWLVrkNPb3OdWqVdPu3btz7alChQrKyMjQli1brFXNpKSky/7uxYvc3d1zPO+ePXt0/PhxvfHGG9YKmN2Xwbi7u1/VW1ovFRkZqQ0bNjiN/f3vpnz58tq0aZM6depkjV36ndn5u7EjLS1NycnJ6tixo9N4q1at1LJlS7Vv314uLi56+OGH//E1AAAAAFzZNb+d9e8efPBBubi46IMPPlDBggXVp08f9e7dW5MnT1ZycrK2bt2q9957T5MnT5YkPf3009q3b5/69u2rpKQkTZs2zXqD6NUYNGiQRowYoXfffVd79+7Vzp07NXHiRL399tuSpPbt2ysrK0tPPvmkEhMT9d133+mtt96S9H+rUU899ZT27Nmjfv36ae/evZo5c6bT20wlqV+/flq7dq26d++uhIQE7du3T/Pnz1f37t0lXQhVTZo00VNPPaUNGzZoy5YteuKJJ+Tl5fWPv9NSpUrJ3d1d7733ng4cOKAFCxZoyJAhto4NCwvTjz/+qISEBP3xxx9KT0+3fd2ePXtq8eLFeuutt7Rv3z69//77TreySlKPHj00fvx4TZ48Wfv27dPQoUO1Y8cO6/uSrvx3k5M+ffpo5cqVOnjwoNauXas2bdrIxcVF7dq1yza3TZs2mjJlih599NFsb/4FAAAAcJ1dy8OXf38760UjRowwRYsWNWlpaSYrK8uMHTvWlC9f3ri5uZmiRYuaxo0bm5UrV1rzv/76axMeHm48PDxMvXr1zIQJE4x0dS/WMcaYqVOnmjvuuMO4u7ubQoUKmfr165s5c+ZY+9esWWOioqKMu7u7qV69upk2bZqRZPbs2WPNmT9/vtVLTEyMGTdunJHk9EKejRs3mkaNGhlfX1/j4+NjoqKizLBhw6z9R48eNc2bNzceHh6mVKlS5vPPPzehoaFX/XbWS02bNs2EhYUZDw8PU7t2bbNgwQIj/d9Lgf7+UpyLzp49a+6//34TEBBgJJmJEycaY4yRLrzZ9FI5nWP8+PHmtttuM15eXqZly5bmrbfecnqxjjHGDB482BQpUsT4+vqaxx57zPTs2dPcddddTnOu9Hfzdw899JAJDg427u7upmTJkuahhx4y+/fvd5rz988wY8YM4+npaWbPnm2MMTl+538/5scff3T6Hu2wHjrO64ffKYqiKIqirmchX7uaF+s4jDEmT9LrTWDq1Kl69NFHlZKSkutK4bBhw/TRRx/p8OHDN7i7W1ejRo0UFBSkKVOm5HUr/4rU1NT//1KgFEnZn9EFAAD4r8i/SSH/ufgzbkpKSo7vobnUdX0m8mb3+eefq0yZMipZsqS2b9+ufv36qW3btk4B8sMPP1TNmjUVGBioNWvWaNSoUdatqsjuzJkz+uijj9S4cWO5uLho+vTpWrZsmZYuXZrXrQEAAAD4F+SrEPnrr7/q9ddf16+//qrg4GA9+OCDGjZsmNOci8/1/fnnnypVqpReeOEF9e/fP486vvk5HA4tWrRIw4YN09mzZ1W+fHnNnj1bDRs2zOvWAAAAAPwL8vXtrMA/we2sAAAgvyAp5B9XczvrdX87KwAAAADgv4sQCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALAtX/2eSOC6eslf8szrJoAbxwzgPe8AAICVSAAAAADAVSBEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbHPN6waAW1VK/xT5+fnldRsAAADADcVKJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDbXvG4AuGX5++d1BwCA/zJj8roDAMgRK5H5SHx8vBwOh06ePJnXrVwXXbp0UevWrfO6DQAAACBfIUTegj766CMVLFhQGRkZ1lhaWprc3NwUExPjNPdicExOTladOnV09OhR+d8CK2gHDx6Uw+HIVuvXr8/r1gAAAIB8jdtZb0ENGjRQWlqaNm/erLvuukuStGrVKgUFBWnDhg06e/asPD09JUlxcXEqVaqUypYtK0kKCgrKs77/iWXLlqlSpUrWdmBgYB52AwAAAICVyFtQ+fLlFRwcrPj4eGssPj5esbGxKl26tNNqXXx8vBo0aGD9+e+3s3766acKCQmRt7e32rRpo7ffflsBAQFO15s/f76qVasmT09PlSlTRoMGDXJaBT106JBiY2Pl6+srPz8/tW3bVr/99pu1f+DAgbrjjjs0ZcoUhYWFyd/fXw8//LBOnTp1xc8aGBiooKAgq9zc3HKdu2nTJhUtWlQjR450uu6ECRNUqlQp+fr6qlu3bsrMzNSbb76poKAgFStWTMOGDbtiHwAAAAAuIETeoho0aKC4uDhrOy4uTjExMYqOjrbG//rrL23YsMEKkX+3Zs0aPf3003ruueeUkJCgRo0aZQtUq1atUqdOnfTcc89p9+7d+vjjjzVp0iRrXlZWlmJjY/Xnn39q5cqVWrp0qQ4cOKCHHnrI6TzJycmaN2+eFi5cqIULF2rlypV64403rvg5W7VqpWLFiunuu+/WggULcp23YsUKq/9+/fo5Xffbb7/V4sWLNX36dI0fP17NmzfXzz//rJUrV2rkyJF69dVXtWHDhlzPnZ6ertTUVKcCAAAA8i2DW9Knn35qfHx8zPnz501qaqpxdXU1x44dM9OmTTP169c3xhizfPlyI8n89NNPxhhj4uLijCRz4sQJY4wxDz30kGnevLnTeTt06GD8/f2t7XvvvdcMHz7cac6UKVNMcHCwMcaYJUuWGBcXF3Po0CFr/65du4wks3HjRmOMMQMGDDDe3t4mNTXVmtO3b19Tq1atXD/f77//bkaPHm3Wr19vNm7caPr162ccDoeZP3++Nadz584mNjbWzJkzx/j6+povv/zS6Rw5Xbdx48YmLCzMZGZmWmPly5c3I0aMyLWXAQMGGEnZKuXCe/MoiqIo6t8pALiBUlJSjCSTkpJyxbk8E3mLiomJ0enTp7Vp0yadOHFCERERKlq0qKKjo/Xoo4/q7Nmzio+PV5kyZVSqVKkcz5GUlKQ2bdo4jd15551auHChtb19+3atWbPGaYUyMzNTZ8+e1ZkzZ5SYmKiQkBCFhIRY+ytWrKiAgAAlJiaqZs2akqSwsDAVLFjQmhMcHKxjx47l+vmKFCmi559/3tquWbOmjhw5olGjRqlVq1bW+IYNG7Rw4ULNmjUrxze1/v26xYsXl4uLiwoUKOA0drle+vfv79RLamqq0+cFAAAA8hNC5C0qPDxct912m+Li4nTixAlFR0dLkkqUKKGQkBCtXbtWcXFxuueee67pOmlpaRo0aJD+97//Zdt38eU9dvz9WUaHw6GsrKyr6qVWrVpaunSp01jZsmUVGBioCRMmqHnz5tmuk9N1r7YXDw8PeXh4XFWvAAAAwH8Vz0Tewho0aKD4+HjFx8c7/WqP+vXr69tvv9XGjRtzfR5SuvCCnk2bNjmN/X27WrVqSkpKUnh4eLYqUKCAIiMjdfjwYR0+fNg6Zvfu3Tp58qQqVqx4fT7o/5eQkKDg4GCnsSJFimjFihXav3+/2rZtq/Pnz1/XawIAAABwxkrkLaxBgwZ69tlndf78eWslUpKio6PVvXt3nTt37rIhskePHqpfv77efvtttWzZUitWrNC3334rh8NhzXn99dfVokULlSpVSg888IAKFCig7du364cfftDQoUPVsGFDVa5cWR06dNDYsWOVkZGhbt26KTo6WjVq1PjHn23y5Mlyd3dX1apVJUlz5szRhAkT9Nlnn2WbW6xYMa1YsUINGjRQu3bt9OWXX8rVlX/aAAAAwL+BlchbWIMGDfTXX38pPDxcxYsXt8ajo6N16tQp61eB5KZu3br66KOP9Pbbb6tKlSpavHixevfu7XSbauPGjbVw4UItWbJENWvW1F133aUxY8YoNDRU0oVbQefPn69ChQqpfv36atiwocqUKaMZM2Zc8+cbMmSIqlevrlq1amn+/PmaMWOGHn300RznBgUFacWKFdq5c6c6dOigzMzMa77+lfgrRQ4ZiqIoivp3yqGbtgDkbw5jjMnrJnDz6Nq1q/bs2aNVq1bldSs3rdTUVPn7+0tKkeSX1+0AAHDD8dMj8N9z8WfclJQU+fld/mdc7vnL59566y01atRIPj4++vbbbzV58mR9+OGHed0WAAAAgJsUITKf27hxo958802dOnVKZcqU0bvvvqsnnngir9sCAAAAcJMiROZzM2fOzOsWAAAAANxCeLEOAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANn7FB/BPveQveeZ1E4BkBpi8bgEAAOQjrEQCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsc83rBoBbVUr/FPn5+eV1GwAAAMANxUokAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA217xuALhl+fvndQcAANzcjMnrDgD8C1iJhBOHw6F58+bluv/gwYNyOBxKSEi4YT3lJiYmRr169crrNgAAAIB8Jd+GyF9//VXPPfecwsPD5enpqeLFi6tu3boaN26czpw5c8P7iY+Pl8PhsKp48eK6//77deDAgety3pMnT9qaf/ToUTVt2vSarnk9/P37uFi//vprXrcGAAAA5Gv58nbWAwcOqG7dugoICNDw4cNVuXJleXh4aOfOnfrkk09UsmRJtWrVKsdjz58/Lzc3t3+tt6SkJBUsWFD79u3Tk08+qZYtW2rHjh1ycXG56nOdP3/e9txz587J3d1dQUFBV32df1NSUpL8/Pys7WLFiuVhNwAAAADy5Upkt27d5Orqqs2bN6tt27aKjIxUmTJlFBsbq2+++UYtW7a05jocDo0bN06tWrWSj4+Phg0bJkmaP3++qlWrJk9PT5UpU0aDBg1SRkaGJOmxxx5TixYtnK55/vx5FStWTOPHj79sb8WKFVNwcLDq16+v119/Xbt379b+/fu1adMmNWrUSEWKFJG/v7+io6O1detWp2P/3mvXrl3VoEEDSVKhQoXkcDjUpUsXSRduBe3evbt69eqlIkWKqHHjxtY5Lr2ddePGjapatao8PT1Vo0YNbdu2LVvPCxYsULly5eTp6akGDRpo8uTJ2VY/V69erXr16snLy0shISHq2bOnTp8+fdnv4uL3ERQUZFWBArn/k/3mm2/k7++vqVOnSpK6dOmi1q1ba/jw4SpevLgCAgI0ePBgZWRkqG/fvipcuLBuu+02TZw48bI9pKenKzU11akAAACAfMvkM3/88YdxOBxmxIgRtuZLMsWKFTMTJkwwycnJ5qeffjLff/+98fPzM5MmTTLJyclmyZIlJiwszAwcONAYY8yaNWuMi4uLOXLkiHWeOXPmGB8fH3Pq1KkcrxMXF2ckmRMnTjgdI8ns2LHDLF++3EyZMsUkJiaa3bt3m8cff9wUL17cpKam5trrwYMHzezZs40kk5SUZI4ePWpOnjxpjDEmOjra+Pr6mr59+5o9e/aYPXv2WOeYO3euMcaYU6dOmaJFi5r27dubH374wXz99demTJkyRpLZtm2bMcaYAwcOGDc3N9OnTx+zZ88eM336dFOyZEmnz7J//37j4+NjxowZY/bu3WvWrFljqlatarp06ZLr937x+wgNDTVBQUGmYcOGZvXq1U5zoqOjzXPPPWeMMWbq1KmmYMGC5uuvv7b2d+7c2RQsWNA8++yzZs+ePWb8+PFGkmncuLEZNmyY2bt3rxkyZIhxc3Mzhw8fzrWXAQMGGEnZKuXC6wIoiqIoisqtANwyUlJSjCSTkpJyxbn57j/d69evN5LMnDlznMYDAwONj4+P8fHxMS+++KI1Lsn06tXLae69995rhg8f7jQ2ZcoUExwcbG1XrFjRjBw50tpu2bKlrdB0MXgdOXLE1KlTx5QsWdKkp6dnm5+ZmZktNOXUa07h1JgLAaxq1arZzntpiPz4449NYGCg+euvv6z948aNM5eGyH79+pnbb7/d6RyvvPKK0zUff/xx8+STTzrNWbVqlSlQoIDTuS+1Z88e89FHH5nNmzebNWvWmEcffdS4urqaLVu2OH2G5557zrz//vvG39/fxMfHO52jc+fOJjQ01GRmZlpj5cuXN/Xq1bO2MzIyjI+Pj5k+fXqOfRhjzNmzZ01KSopVhw8fNoRIiqIoirJRAG4ZVxMi8+UzkTnZuHGjsrKy1KFDB6Wnpzvtq1GjhtP29u3btWbNGuvWVknKzMzU2bNndebMGXl7e+uJJ57QJ598ohdffFG//fabvv32W61YseKKfdx2220yxujMmTOqUqWKZs+eLXd3d/3222969dVXFR8fr2PHjikzM1NnzpzRoUOHLtvr5VSvXv2y+xMTExUVFSVPT09rrHbt2k5zkpKSVLNmTaexO++802l7+/bt2rFjh3WbqSQZY5SVlaUff/xRkZGR2a5dvnx5lS9f3tquU6eOkpOTNWbMGE2ZMsUanzVrlo4dO6Y1a9Zk60OSKlWq5HQLbPHixXX77bdb2y4uLgoMDNSxY8dy/R48PDzk4eGR634AAAAgP8l3ITI8PFwOh0NJSUlO42XKlJEkeXl5ZTvGx8fHaTstLU2DBg3S//73v2xzLwauTp066aWXXtK6deu0du1alS5dWvXq1btif6tWrZKfn5+KFSumggULWuOdO3fW8ePH9c477yg0NFQeHh6qXbu2zp07d9leL+dq5l6LtLQ0PfXUU+rZs2e2faVKlbJ9njvvvFOrV692Gqtataq2bt2qCRMmqEaNGnI4HE77//4SJIfDkeNYVlaW7T4AAACA/CzfhcjAwEA1atRI77//vnr06PGPglS1atWUlJSk8PDwy16ndevWmjhxotatW6dHH33U1rlLly6tgICAbONr1qzRhx9+qGbNmkmSDh8+rD/++OOK53N3d5d0YaX0akVGRmrKlCk6e/asFY7Xr1/vNKd8+fJatGiR09imTZuctqtVq6bdu3df9vuyIyEhQcHBwU5jZcuW1ejRoxUTEyMXFxe9//7713QNAAAAAJeXL9/O+uGHHyojI0M1atTQjBkzlJiYqKSkJH3xxRfas2fPFX+dxuuvv67PP/9cgwYN0q5du5SYmKgvv/xSr776qtO8J554QpMnT1ZiYqI6d+58TT2XK1dOU6ZMUWJiojZs2KAOHTrkuGr6d6GhoXI4HFq4cKF+//13paWl2b5m+/bt5XA41LVrV+3evVuLFi3SW2+95TTnqaee0p49e9SvXz/t3btXM2fO1KRJkyTJWhXs16+f1q5dq+7duyshIUH79u3T/Pnz1b1791yvPXbsWM2fP1/79+/XDz/8oF69emnFihV69tlns82NiIhQXFycZs+erV69etn+fAAAAACuXr4MkWXLltW2bdvUsGFD9e/fX1WqVFGNGjX03nvvqU+fPhoyZMhlj2/cuLEWLlyoJUuWqGbNmrrrrrs0ZswYhYaGOs1r2LChgoOD1bhxY5UoUeKaeh4/frxOnDihatWqqWPHjurZs6et35lYsmRJDRo0SC+99JKKFy9+2eD2d76+vvr666+1c+dOVa1aVa+88opGjhzpNKd06dKaNWuW5syZo6ioKI0bN06vvPKKJFnPEUZFRWnlypXau3ev6tWrp6pVq+r111+/7Hdy7tw5vfDCC6pcubKio6O1fft2LVu2TPfee2+O88uXL68VK1Zo+vTpeuGFF2x/xmvhrxQ5ZCiKoiiKyq0coi5TwK3KYYwxed3Ef1VaWppKliypiRMn5vj85H/VsGHD9NFHH+nw4cN53cq/IjU1Vf7+/pJSJPnldTsAAOAWxU/huJlc/Bk3JSVFfn6X/xk33z0TeSNkZWXpjz/+0OjRoxUQEKBWrVrldUv/qg8//FA1a9ZUYGCg1qxZo1GjRl3ViicAAACAWwch8l9w6NAhlS5dWrfddpsmTZokV9f/9te8b98+DR06VH/++adKlSqlF154Qf3798/rtgAAAAD8C7idFbhK3M4KAACuB34Kx83kam5nzZcv1gEAAAAA/DOESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbf/t3z0B/Jte8pc887oJ3IrMAF7HBwAAbl2sRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbHPN6waAW1VK/xT5+fnldRsAAADADcVKJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANte8bgA3h0mTJqlXr146efLkv3L+gQMHat68eUpISJAkdenSRSdPntS8efP+8Tmvxzmuib9/3lwXAIB/mzF53QGAmxgrkbeQX3/9Vc8995zCw8Pl6emp4sWLq27duho3bpzOnDmT1+1dVwcPHpTD4chW69evz+vWAAAAgHyNlchbxIEDB1S3bl0FBARo+PDhqly5sjw8PLRz50598sknKlmypFq1apXXbV53y5YtU6VKlaztwMDAPOwGAAAAACuRt4hu3brJ1dVVmzdvVtu2bRUZGakyZcooNjZW33zzjVq2bGnNffvtt1W5cmX5+PgoJCRE3bp1U1pamtP5Jk2apFKlSsnb21tt2rTR8ePHrX0pKSlycXHR5s2bJUlZWVkqXLiw7rrrLmvOF198oZCQEGu7X79+ioiIkLe3t8qUKaPXXntN58+fv+bPHRgYqKCgIKvc3Nxynbtp0yYVLVpUI0eOlHThFto77rhDEyZMUKlSpeTr66tu3bopMzNTb775poKCglSsWDENGzbsmvsEAAAA8gtC5C3g+PHjWrJkiZ599ln5+PjkOMfhcFh/LlCggN59913t2rVLkydP1ooVK/Tiiy9a+zds2KDHH39c3bt3V0JCgho0aKChQ4da+/39/XXHHXcoPj5ekrRz5045HA5t27bNCqMrV65UdHS0dUzBggU1adIk7d69W++8844+/fRTjRkz5po/e6tWrVSsWDHdfffdWrBgQa7zVqxYoUaNGmnYsGHq16+fNZ6cnKxvv/1Wixcv1vTp0zV+/Hg1b95cP//8s1auXKmRI0fq1Vdf1YYNG3I9d3p6ulJTU50KAAAAyK8IkbeA/fv3yxij8uXLO40XKVJEvr6+8vX1dQpOvXr1UoMGDRQWFqZ77rlHQ4cO1cyZM63977zzjpo0aaIXX3xRERER6tmzpxo3bux07piYGCtExsfHq1GjRoqMjNTq1autsUtD5Kuvvqo6deooLCxMLVu2VJ8+fZyuebV8fX01evRoffXVV/rmm2909913q3Xr1jkGyblz5yo2NlYff/yxnnzySad9WVlZmjBhgipWrKiWLVuqQYMGSkpK0tixY1W+fHk9+uijKl++vOLi4nLtZcSIEfL397fq0hVYAAAAIL/hmchb2MaNG5WVlaUOHTooPT3dGl+2bJlGjBihPXv2KDU1VRkZGTp79qzOnDkjb29vJSYmqk2bNk7nql27thYvXmxtR0dHa/z48crMzNTKlSt13333KSgoSPHx8YqKitL+/fsVExNjzZ8xY4beffddJScnKy0tTRkZGfLz8/vHn61IkSJ6/vnnre2aNWvqyJEjGjVqlNOznxs2bNDChQs1a9YstW7dOtt5wsLCVLBgQWu7ePHicnFxUYECBZzGjh07lmsv/fv3d+olNTWVIAkAAIB8i5XIW0B4eLgcDoeSkpKcxsuUKaPw8HB5eXlZYwcPHlSLFi0UFRWl2bNna8uWLfrggw8kSefOnbN9zfr16+vUqVPaunWrvv/+e8XExFirkytXrlSJEiVUrlw5SdK6devUoUMHNWvWTAsXLtS2bdv0yiuvXNX17KhVq5b279/vNFa2bFlVqFBBEyZMyPEZzL8/Q+lwOHIcy8rKyvW6Hh4e8vPzcyoAAAAgvyJE3gICAwPVqFEjvf/++zp9+vRl527ZskVZWVkaPXq07rrrLkVEROjIkSNOcyIjI7M9A/j3X50REBCgqKgovf/++3Jzc1OFChVUv359bdu2TQsXLnS6lXXt2rUKDQ3VK6+8oho1aqhcuXL66aefrvFTZ5eQkKDg4GCnsSJFimjFihXav3+/2rZte11e5gMAAAAgd4TIW8SHH36ojIwM1ahRQzNmzFBiYqKSkpL0xRdfaM+ePXJxcZF0YdXy/Pnzeu+993TgwAFNmTJFH330kdO5evbsqcWLF+utt97Svn379P777zvdynpRTEyMpk6dagXGwoULKzIyUjNmzHAKkeXKldOhQ4f05ZdfKjk5We+++67mzp17TZ938uTJmj59uvbs2aM9e/Zo+PDhmjBhgnr06JFtbrFixbRixQrt2bNH7dq1U0ZGxjVdGwAAAEDuCJG3iLJly2rbtm1q2LCh+vfvrypVqqhGjRp677331KdPHw0ZMkSSVKVKFb399tsaOXKkbr/9dk2dOlUjRoxwOtddd92lTz/9VO+8846qVKmiJUuW6NVXX812zejoaGVmZjo9+xgTE5NtrFWrVurdu7e6d++uO+64Q2vXrtVrr712zZ95yJAhql69umrVqqX58+drxowZevTRR3OcGxQUpBUrVmjnzp3q0KGDMjMzr/n6V+KvFDlkKIqiKOq/Vw5dlwLw3+Qwxpi8bgK4laSmpsrf319SiiSejwQAIDf8lAncOi7+jJuSknLFd4CwEgkAAAAAsI0QCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALDNNa8bAG5ZL/lLnnndBG4EM8DkdQsAAAA3DVYiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAtrnmdQPArSqlf4r8/Pzyug0AAADghmIlEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgm2teNwDcsvz987oDAEB+Y0xedwAAt95KZJcuXdS6deurOsbhcGjevHlXdcyvv/6qRo0aycfHRwEBAVd17I3yTz7Xf0l8fLwcDodOnjyZ160AAAAA+cZNFyK7dOkih8Mhh8Mhd3d3hYeHa/DgwcrIyJAkvfPOO5o0adK/3seYMWN09OhRJSQkaO/evdftvDc6+P3666967rnnFB4eLk9PTxUvXlx169bVuHHjdObMmRvWxz8RExNj/Vu4WE8//XRetwUAAADkazfl7axNmjTRxIkTlZ6erkWLFunZZ5+Vm5ub+vfvL/8bdAthcnKyqlevrnLlyt2Q6/0bDhw4oLp16yogIEDDhw9X5cqV5eHhoZ07d+qTTz5RyZIl1apVq7xu87K6du2qwYMHW9ve3t552A0AAACAm24lUpI8PDwUFBSk0NBQPfPMM2rYsKEWLFggKfvtrDExMerZs6defPFFFS5cWEFBQRo4cOBlzz9gwAAFBwdrx44dOe4PCwvT7Nmz9fnnn8vhcKhLly6SpEOHDik2Nla+vr7y8/NT27Zt9dtvvzkdO27cOJUtW1bu7u4qX768pkyZ4nReSWrTpo0cDoe1LUnz589XtWrV5OnpqTJlymjQoEHW6qsk7du3T/Xr15enp6cqVqyopUuXXuFblLp16yZXV1dt3rxZbdu2VWRkpMqUKaPY2Fh98803atmypTX3Wj+bMUYDBw5UqVKl5OHhoRIlSqhnz57W/vT0dPXp00clS5aUj4+PatWqpfj4+Ct+Bm9vbwUFBVnl5+eX69wzZ86oadOmqlu3rk6ePKmDBw/K4XBo5syZqlevnry8vFSzZk3t3btXmzZtUo0aNeTr66umTZvq999/z/W86enpSk1NdSoAAAAg3zI3mc6dO5vY2FinsVatWplq1arluD86Otr4+fmZgQMHmr1795rJkycbh8NhlixZYs2RZObOnWuysrJM9+7dTVhYmNm3b1+uPRw7dsw0adLEtG3b1hw9etScPHnSZGZmmjvuuMPcfffdZvPmzWb9+vWmevXqJjo62jpuzpw5xs3NzXzwwQcmKSnJjB492ri4uJgVK1ZY55VkJk6caI4ePWqOHTtmjDHm+++/N35+fmbSpEkmOTnZLFmyxISFhZmBAwcaY4zJzMw0t99+u7n33ntNQkKCWblypalatar1uXLyxx9/GIfDYUaMGHHF7/x6fLavvvrK+Pn5mUWLFpmffvrJbNiwwXzyySfW8U888YSpU6eO+f77783+/fvNqFGjjIeHh9m7d2+ufUVHR5siRYqYwMBAU6lSJfPSSy+Z06dPW/vj4uKMJHPixAlz4sQJU6dOHXPfffdZc3788UcjyVSoUMEsXrzY7N6929x1112mevXqJiYmxqxevdps3brVhIeHm6effjrXPgYMGGAkZauUC683oCiKoqgbVwDwL0lJSTGSTEpKyhXn3nT/bXRpSMzKyjJLly41Hh4epk+fPtn2G3MhaNx9991O56hZs6bp16+ftS3JfPXVV6Z9+/YmMjLS/Pzzz1fsIzY21nTu3NnaXrJkiXFxcTGHDh2yxnbt2mUkmY0bNxpjjKlTp47p2rWr03kefPBB06xZM6de/h787r33XjN8+HCnsSlTppjg4GBjjDHfffedcXV1Nb/88ou1/9tvv83xXBetX7/eSDJz5sxxGg8MDDQ+Pj7Gx8fHvPjii9fts40ePdpERESYc+fOZevlp59+Mi4uLk79X/zc/fv3z7F/Y4z5+OOPzeLFi82OHTvMF198YUqWLGnatGlj7b8YIhMTE01UVJS5//77TXp6urX/Yoj87LPPrLHp06cbSWb58uXW2IgRI0z58uVz7ePs2bMmJSXFqsOHDxtCJEVRFJUnBQD/kqsJkTfl7awLFy6Ur6+vPD091bRpUz300EOXvUU1KirKaTs4OFjHjh1zGuvdu7c2bNig77//XiVLlrTGhw8fLl9fX6sOHTqU4zUSExMVEhKikJAQa6xixYoKCAhQYmKiNadu3bpOx9WtW9fan5vt27dr8ODBTn107dpVR48e1ZkzZ6xrlyhRwjqmdu3alz1nbjZu3KiEhARVqlRJ6enp1+2zPfjgg/rrr79UpkwZde3aVXPnzrVux925c6cyMzMVERHh9BlXrlyp5OTkXHt98skn1bhxY1WuXFkdOnTQ559/rrlz52Y7plGjRgoPD9eMGTPk7u6e7TyX/vsoXry4JKly5cpOY3//93IpDw8P+fn5ORUAAACQX92UL9Zp0KCBxo0bJ3d3d5UoUUKurpdv083NzWnb4XAoKyvLaaxRo0aaPn26vvvuO3Xo0MEaf/rpp9W2bVtr+9KgdqOkpaVp0KBB+t///pdtn6en5z86Z3h4uBwOh5KSkpzGy5QpI0ny8vL6R+fNTUhIiJKSkrRs2TItXbpU3bp106hRo7Ry5UqlpaXJxcVFW7ZskYuLi9Nxvr6+tq9Rq1YtSdL+/ftVtmxZa7x58+aaPXu2du/e7RQOL7r034fD4chx7O//XgAAAADk7KYMkT4+PgoPD7+u52zVqpVatmyp9u3by8XFRQ8//LAkqXDhwipcuPAVj4+MjNThw4d1+PBha8Vu9+7dOnnypCpWrGjNWbNmjTp37mwdt2bNGmu/dCG8ZGZmOp27WrVqSkpKyvUzX7z20aNHFRwcLElav379ZfsNDAxUo0aN9P7776tHjx7y8fH51z+bl5eXWrZsqZYtW+rZZ59VhQoVtHPnTlWtWlWZmZk6duyY6tWrd9m+LychIUGSrO/gojfeeEO+vr669957FR8f79QTAAAAgOvrpgyR/5Y2bdpoypQp6tixo1xdXfXAAw/YPrZhw4bWbZVjx45VRkaGunXrpujoaNWoUUOS1LdvX7Vt21ZVq1ZVw4YN9fXXX2vOnDlatmyZdZ6wsDAtX75cdevWlYeHhwoVKqTXX39dLVq0UKlSpfTAAw+oQIEC2r59u3744QcNHTpUDRs2VEREhDp37qxRo0YpNTVVr7zyyhV7/vDDD1W3bl3VqFFDAwcOVFRUlAoUKKBNmzZpz549ql69+nX7bJMmTVJmZqZq1aolb29vffHFF/Ly8lJoaKgCAwPVoUMHderUSaNHj1bVqlX1+++/a/ny5YqKilLz5s2z9Z6cnKxp06apWbNmCgwM1I4dO9S7d2/Vr18/2+3LkvTWW28pMzNT99xzj+Lj41WhQgXbf7cAAAAArsINeEbzquT0dtbL7Y+OjjbPPfec05y/vxRHcn4BzYwZM4ynp6eZPXt2rtf5+zmMufCCmFatWhkfHx9TsGBB8+CDD5pff/3Vac6HH35oypQpY9zc3ExERIT5/PPPnfYvWLDAhIeHG1dXVxMaGmqNL1682NSpU8d4eXkZPz8/c+eddzq93TQpKcncfffdxt3d3URERJjFixdn+1w5OXLkiOnevbspXbq0cXNzM76+vubOO+80o0aNcnrT6bV+trlz55patWoZPz8/4+PjY+666y6zbNkya/+5c+fM66+/bsLCwoybm5sJDg42bdq0MTt27Mix70OHDpn69eubwoULGw8PDxMeHm769u3r9KDvpW9nvahHjx4mODjYJCUlWS/W2bZt22WPmThxovH397/s93ipiw8dSyl5/n4FiqIo6sYXAPwXXc2LdRzGGJOHGRa45aSmpsrf319SiiResgMA+Q0/OQH4L7r4M25KSsoVXyR5U76dFQAAAABwcyJEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsc83rBoBb1kv+kmdeN4HrwQzgN4cDAADYxUokAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA217xuALhVpfRPkZ+fX163AQAAANxQrEQCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjREKSFBMTo169et2w64WFhWns2LF5fo5r4u8vORwURd0KBQAArhtC5C2iS5cucjgccjgccnd3V3h4uAYPHqyMjIy8bu1fMWnSJOvzXixPT8+8bgsAAADI91zzugHY16RJE02cOFHp6elatGiRnn32Wbm5ual///553VqOMjMz5XA4VKDAP/v/Kvz8/JSUlGRtO1hNAAAAAPIcK5G3EA8PDwUFBSk0NFTPPPOMGjZsqAULFkiSTpw4oU6dOqlQoULy9vZW06ZNtW/fPqfj16xZo5iYGHl7e6tQoUJq3LixTpw4Ye3PysrSiy++qMKFCysoKEgDBw50Ov7tt99W5cqV5ePjo5CQEHXr1k1paWnW/kmTJikgIEALFixQxYoV5eHhoUOHDunYsWNq2bKlvLy8VLp0aU2dOtXW53U4HAoKCrKqePHil53/2WefKSAgQMuXL5d04RbdHj16qFevXipUqJCKFy+uTz/9VKdPn9ajjz6qggULKjw8XN9++62tfgAAAAAQIm9pXl5eOnfunKQLt7tu3rxZCxYs0Lp162SMUbNmzXT+/HlJUkJCgu69915VrFhR69at0+rVq9WyZUtlZmZa55s8ebJ8fHy0YcMGvfnmmxo8eLCWLl1q7S9QoIDeffdd7dq1S5MnT9aKFSv04osvOvV05swZjRw5Up999pl27dqlYsWKqUuXLjp8+LDi4uI0a9Ysffjhhzp27NgVP19aWppCQ0MVEhKi2NhY7dq1K9e5b775pl566SUtWbJE9957r9NnKlKkiDZu3KgePXromWee0YMPPqg6depo69atuu+++9SxY0edOXMm13Onp6crNTXVqQAAAIB8y+CW0LlzZxMbG2uMMSYrK8ssXbrUeHh4mD59+pi9e/caSWbNmjXW/D/++MN4eXmZmTNnGmOMadeunalbt26u54+OjjZ3332301jNmjVNv379cj3mq6++MoGBgdb2xIkTjSSTkJBgjSUlJRlJZuPGjdZYYmKikWTGjBmT67nXrl1rJk+ebLZt22bi4+NNixYtjJ+fnzl8+LA1JzQ01IwZM8a8+OKLJjg42Pzwww+X/UwZGRnGx8fHdOzY0Ro7evSokWTWrVuXay8DBgwwkrJVimQMRVG3RgEAgMtKSUkxkkxKSsoV5/JM5C1k4cKF8vX11fnz55WVlaX27dtr4MCBWr58uVxdXVWrVi1rbmBgoMqXL6/ExERJF1YiH3zwwcuePyoqymk7ODjYacVw2bJlGjFihPbs2aPU1FRlZGTo7NmzOnPmjLy9vSVJ7u7uTudJTEyUq6urqlevbo1VqFBBAQEBl+2ldu3aql27trVdp04dRUZG6uOPP9aQIUOs8dGjR+v06dPavHmzypQpc9nP5OLiosDAQFWuXNkau3iL7OVWRvv376/nn3/e2k5NTVVISMhl+wcAAAD+q7id9RbSoEEDJSQkaN++ffrrr7+s20/t8PLyuuIcNzc3p22Hw6GsrCxJ0sGDB9WiRQtFRUVp9uzZ2rJliz744ANJsm6pvXidf+MFOG5ubqpatar279/vNF6vXj1lZmZq5syZuR53KYfD4TR2sdeLnzMnHh4e8vPzcyoAAAAgvyJE3kJ8fHwUHh6uUqVKydX1/xaRIyMjlZGRoQ0bNlhjx48fV1JSkipWrCjpworcxRfO/BNbtmxRVlaWRo8erbvuuksRERE6cuTIFY+rUKGCMjIytGXLFmssKSlJJ0+evKrrZ2ZmaufOnQoODnYav/POO/Xtt99q+PDheuutt67qnAAAAACuHiHyP6BcuXKKjY1V165dtXr1am3fvl2PPPKISpYsqdjYWEkXbsnctGmTunXrph07dmjPnj0aN26c/vjjD1vXCA8P1/nz5/Xee+/pwIEDmjJlij766KMrHle+fHk1adJETz31lDZs2KAtW7boiSeeuOLK6ODBg7VkyRIdOHBAW7du1SOPPKKffvpJTzzxRLa5derU0aJFizRo0CCNHTvW1ucBAAAA8M8QIv8jJk6cqOrVq6tFixaqXbu2jDFatGiRdetmRESElixZou3bt+vOO+9U7dq1NX/+fKcVzcupUqWK3n77bY0cOVK33367pk6dqhEjRtjurUSJEoqOjtb//vc/PfnkkypWrNhljzlx4oS6du2qyMhINWvWTKmpqVq7dq21svp3d999t7755hu9+uqreu+992z1da38lSKHDEVRt0I5dFMVAAC3MocxxuR1E8CtJDU1Vf7+/pJSJPF8JICrx//yAgBuNhd/xk1JSbniO0BYiQQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANjmmtcNALesl/wlz7xu4tZnBpi8bgEAAABXgZVIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAba553QBwq0rpnyI/P7+8bgMAAAC4oViJBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADY5prXDQC3LH//vO4AwM3AmLzuAACAG4qVyCtwOByaN29eXreBHBw8eFAOh0MJCQl53QoAAACQb+SLEPnRRx+pYMGCysjIsMbS0tLk5uammJgYp7nx8fFyOBxKTk6+wV3eOL///rueeeYZlSpVSh4eHgoKClLjxo21Zs2avG7NSZcuXeRwOJyqSZMmed0WAAAAkK/li9tZGzRooLS0NG3evFl33XWXJGnVqlUKCgrShg0bdPbsWXl6ekqS4uLiVKpUKZUtWzYvW74uzp07J3d392zj999/v86dO6fJkyerTJky+u2337R8+XIdP348D7q8vCZNmmjixInWtoeHRx52AwAAACBfrESWL19ewcHBio+Pt8bi4+MVGxur0qVLa/369U7jDRo0cDr+jz/+UJs2beTt7a1y5cppwYIFTvtXrlypO++8Ux4eHgoODtZLL73ktOqZnp6unj17qlixYvL09NTdd9+tTZs2OV3T4XDom2++UVRUlDw9PXXXXXfphx9+cLrO6tWrVa9ePXl5eSkkJEQ9e/bU6dOnrf1hYWEaMmSIOnXqJD8/Pz355JPZvouTJ09q1apVGjlypBo0aKDQ0FDdeeed6t+/v1q1aiVJ6tOnj1q0aGEdM3bsWDkcDi1evNgaCw8P12effSZJ2rRpkxo1aqQiRYrI399f0dHR2rp1q9N1HQ6HPvvss8t+jzm5uFJ6sQoVKpTr3MzMTD322GOqUKGCDh06ZF33448/VosWLeTt7a3IyEitW7dO+/fvV0xMjHx8fFSnTp3Lrjynp6crNTXVqQAAAID8Kl+ESOnCamRcXJy1HRcXp5iYGEVHR1vjf/31lzZs2JAtRA4aNEht27bVjh071KxZM3Xo0EF//vmnJOmXX35Rs2bNVLNmTW3fvl3jxo3T+PHjNXToUOv4F198UbNnz9bkyZO1detWhYeHq3HjxtY5Lurbt69Gjx6tTZs2qWjRomrZsqXOnz8vSUpOTlaTJk10//33a8eOHZoxY4ZWr16t7t27O53jrbfeUpUqVbRt2za99tpr2b4HX19f+fr6at68eUpPT8/xu4qOjtbq1auVmZkp6UJILlKkiBXCf/nlFyUnJ1u3Ap86dUqdO3fW6tWrtX79epUrV07NmjXTqVOnbH+PuYmPj1exYsVUvnx5PfPMM7mulqanp+vBBx9UQkKCVq1apVKlSln7LgbrhIQEVahQQe3bt9dTTz2l/v37a/PmzTLGZPseLzVixAj5+/tbFRISctmeAQAAgP80k098+umnxsfHx5w/f96kpqYaV1dXc+zYMTNt2jRTv359Y4wxy5cvN5LMTz/9ZB0nybz66qvWdlpampFkvv32W2OMMS+//LIpX768ycrKsuZ88MEHxtfX12RmZpq0tDTj5uZmpk6dau0/d+6cKVGihHnzzTeNMcbExcUZSebLL7+05hw/ftx4eXmZGTNmGGOMefzxx82TTz7p9JlWrVplChQoYP766y9jjDGhoaGmdevWV/wuZs2aZQoVKmQ8PT1NnTp1TP/+/c327dut/SdOnDAFChQwmzZtMllZWaZw4cJmxIgRplatWsYYY7744gtTsmTJXM+fmZlpChYsaL7++mvb32NOpk+fbubPn2927Nhh5s6dayIjI03NmjVNRkaGMcaYH3/80Ugyq1atMvfee6+5++67zcmTJ53O8ffrrlu3zkgy48ePd7qOp6dnrn2cPXvWpKSkWHX48GEjyaRceCcjRVH5vQAA+A9ISUkxkkxKSsoV5+ablciYmBidPn1amzZt0qpVqxQREaGiRYsqOjraei4yPj5eZcqUcVrFkqSoqCjrzz4+PvLz89OxY8ckSYmJiapdu7YcDoc1p27dukpLS9PPP/+s5ORknT9/XnXr1rX2u7m56c4771RiYqLTdWrXrm39uXDhwipfvrw1Z/v27Zo0aZK1kujr66vGjRsrKytLP/74o3VcjRo1rvhd3H///Tpy5IgWLFigJk2aKD4+XtWqVdOkSZMkSQEBAapSpYri4+O1c+dOubu768knn9S2bduUlpamlStXKjo62jrfb7/9pq5du6pcuXLy9/eXn5+f0tLSrFtK7XyPOXn44YfVqlUrVa5cWa1bt9bChQu1adMmp9uSJaldu3Y6ffq0lixZIv8cfu3GpdctXry4JKly5cpOY2fPns31NlUPDw/5+fk5FQAAAJBf5ZsQGR4erttuu01xcXGKi4uzQlCJEiUUEhKitWvXKi4uTvfcc0+2Y93c3Jy2HQ6HsrKybkjfF6Wlpempp55SQkKCVdu3b9e+ffucXgLk4+Nj63yenp5q1KiRXnvtNa1du1ZdunTRgAEDrP0xMTGKj4+3AmPhwoUVGRmp1atXZwuRnTt3VkJCgt555x2tXbtWCQkJCgwM1Llz55yuea3fY5kyZVSkSBHt37/fabxZs2basWOH1q1bl+Nxl173YtjPaexG/50CAAAAt6J8EyKlC89FxsfHKz4+3ulXe9SvX1/ffvutNm7cmO15yCu5+KIWY4w1tmbNGhUsWFC33XabypYtK3d3d6dfn3H+/Hlt2rRJFStWdDrXpS/4OXHihPbu3avIyEhJUrVq1bR7926Fh4dnq5zewHq1Klas6PSSnovPRS5fvtz6rmJiYjR9+nTt3bvX6ftbs2aNevbsqWbNmqlSpUry8PDQH3/8cc09/d3PP/+s48ePKzg42Gn8mWee0RtvvKFWrVpp5cqV1/26AAAAAP5PvguRq1evVkJCgtNKWnR0tD7++GOdO3fuqkNkt27ddPjwYfXo0UN79uzR/PnzNWDAAD3//PMqUKCAfHx89Mwzz6hv375avHixdu/era5du+rMmTN6/PHHnc41ePBgLV++XD/88IO6dOmiIkWKqHXr1pKkfv36ae3aterevbsSEhK0b98+zZ8//7IvhMnJ8ePHdc899+iLL77Qjh079OOPP+qrr77Sm2++qdjYWGte/fr1derUKS1cuNApRE6dOlXBwcGKiIiw5pYrV05TpkxRYmKiNmzYoA4dOsjLy+uq+vq7tLQ09e3bV+vXr9fBgwe1fPlyxcbGWi8l+rsePXpo6NChatGihVavXn1N1wYAAACQu3zxeyIvatCggf766y9VqFDBejZOuhAiT506Zf0qkKtRsmRJLVq0SH379lWVKlVUuHBhPf7443r11VetOW+88YaysrLUsWNHnTp1SjVq1NB3332X7ddVvPHGG3ruuee0b98+3XHHHfr666+tVcaoqCitXLlSr7zyiurVqydjjMqWLauHHnroqvr19fVVrVq1NGbMGOt5zZCQEHXt2lUvv/yyNa9QoUKqXLmyfvvtN1WoUEHShWCZlZXlFMAlafz48XryySdVrVo1hYSEaPjw4erTp89V9fV3Li4u2rFjhyZPnqyTJ0+qRIkSuu+++zRkyJBcf1dkr169lJWVpWbNmmnx4sWqU6fONfVwJf5KkcTzkfnJJTccAAAA5FsOY/ixKK9d/N2UJ06cUEBAQF63gytITU39/y/wIUTmN/y3JQAA+K+6+DNuSkrKFV8kma9uZwUAAAAAXBtCJAAAAADAtnz1TOTNKiYmRtxVDAAAAOBWwEokAAAAAMA2QiSA/9fencfllP7/A3/dlfbuO4UWUrQJUYQhqciUfRnL0Ifs5oOxGxpGYSxjGZlhMBplfKxjMPY1GTJ2ZUsUTQbJWEpJWq7fH36dr1uLk+22vJ6Px/V4dK5zneu8z+lk7vdc17luIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbV2clelkTVIC+poN4t4kQrjpMRERE9KHhSCQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGTT0XQARO+r9OB0KJVKTYdBRERERPRWcSSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYl8iyIjI2FqavrK/SQnJ0OhUCA2NvaV+3pbFAoFNm/e/Fr79PHxwciRI19rn2WiUgEKBQsLC4vmCxER0Vv0USSRffr0gUKhwBdffFFk39ChQ6FQKNCnT5+3H9hLsrGxwa1bt1C7du1X6kehUEjFyMgIjo6O6NOnD06dOvWaIn150dHRavEVltTUVE2HRkRERET0UfsokkjgaeK1du1aZGdnS3WPHz/G6tWrUbVqVQ1GVjZPnjyBtrY2LC0toaOj88r9RURE4NatW7hw4QIWLVqEzMxMNGrUCL/++utriPbVJSQk4NatW1KpVKmSpkMiIiIiIvqofTRJZL169WBjY4ONGzdKdRs3bkTVqlXh7u6u1nbXrl1o2rQpTE1NYW5ujrZt2yIpKUnaXziddOPGjfD19YWhoSHq1q2Lv/76S62fyMhIVK1aFYaGhujUqRPu3r2rtj8pKQkdOnSAhYUFjI2N0aBBA+zbt0+tjZ2dHaZNm4bevXtDqVRi0KBBRaazFo7a7d+/Hx4eHjA0NESTJk2QkJDwwvtiamoKS0tL2NnZ4dNPP8WGDRsQGBiIYcOG4f79+wCA0NBQuLm5qR0XFhYGOzs7tbrly5ejVq1a0NPTg5WVFYYNG1bieUNCQmBlZYWzZ8+WGl+lSpVgaWkpFS2tkh/Z7du3Q6VSYdWqVQCejkB37NgRM2bMgIWFBUxNTTF16lTk5eVh3LhxMDMzQ5UqVRAREVFqDERERERE9H8+miQSAPr166eWMCxfvhx9+/Yt0i4rKwujR4/GyZMnsX//fmhpaaFTp04oKChQazdx4kSMHTsWsbGxcHJyQo8ePZCXlwcAOHbsGPr3749hw4YhNjYWvr6++Pbbb9WOz8zMROvWrbF//36cOXMGAQEBaNeuHVJSUtTazZ07F3Xr1sWZM2fwzTfflHh9EydOxLx583Dy5Eno6OigX79+Zb5HADBq1Cg8fPgQe/fulX3M4sWLMXToUAwaNAjnzp3Dli1b4ODgUKSdEAJffvklfv31Vxw6dAh16tQptV83NzdYWVmhZcuWiImJKbHd6tWr0aNHD6xatQqBgYFSfVRUFG7evIk///wT33//PUJCQtC2bVuUL18ex44dwxdffIHBgwfjn3/+KbHvnJwcZGRkqBUiIiIioo+W+AgEBQWJDh06iLS0NKGnpyeSk5NFcnKy0NfXF3fu3BEdOnQQQUFBJR5/584dAUCcO3dOCCHEtWvXBAARHh4utblw4YIAIOLj44UQQvTo0UO0bt1arZ/u3bsLlUpVaqy1atUSP/74o7Rta2srOnbsqNam8PxnzpwRQghx4MABAUDs27dParN9+3YBQGRnZ5d4LgBi06ZNReqzs7MFAPHdd98JIYQICQkRdevWVWszf/58YWtrK21bW1uLiRMnlnqu3377TfTs2VO4uLiIf/75p8S2Qghx6dIlsWTJEnHy5EkRExMj+vbtK3R0dMSpU6ekNt7e3mLEiBFi4cKFQqVSiejoaLU+goKChK2trcjPz5fqnJ2dhZeXl7Sdl5cnjIyMxJo1a0qMJSQkRAAoUtIBIVhYWFjehUJERPSK0tPTBQCRnp7+wrav/lLde6RixYpo06YNIiMjIYRAmzZtUKFChSLtrly5gsmTJ+PYsWP4999/pRHIlJQUtcVsnh1Fs7KyAgCkpaWhRo0aiI+PR6dOndT6bdy4MXbt2iVtZ2ZmIjQ0FNu3b8etW7eQl5eH7OzsIiORHh4esq6vpHjK+s6nEALA04V35EhLS8PNmzfRokWLUtuNGjUKenp6OHr0aLH3/VnOzs5wdnaWtps0aYKkpCTMnz8fK1eulOo3bNiAtLQ0xMTEoEGDBkX6qVWrltoUWAsLC7Xfoba2NszNzZGWllZiLMHBwRg9erS0nZGRARsbm1LjJyIiIiL6UH1U01mBp1NaIyMjsWLFihKne7Zr1w737t3DsmXLcOzYMRw7dgzA00VtnlWuXDnp58KE6/kpr6UZO3YsNm3ahBkzZuDQoUOIjY2Fq6trkfMYGRnJ6u9V4ykUHx8PAKhWrRoAQEtLS0osC+Xm5ko/GxgYyOq3ZcuWuHHjBnbv3l3mmACgYcOGSExMVKtzd3dHxYoVsXz58iIxAur3BHh6X4qrK+0+6enpQalUqhUiIiIioo/VRzUSCQABAQF48uQJFAoF/P39i+y/e/cuEhISsGzZMnh5eQEADh8+XObzuLi4SMlnoaNHj6ptx8TEoE+fPtKIZWZmJpKTk8t8rtctLCwMSqUSfn5+AJ6O4KampkIIISWnz35HpYmJCezs7LB//374+vqW2G/79u3Rrl079OzZE9ra2vj888/LFFdsbKw0wlrI3t4e8+bNg4+PD7S1tbFw4cIy9UlERERERGXz0SWR2tra0kibtrZ2kf3ly5eHubk5fv75Z1hZWSElJQUTJkwo83mGDx8OT09PzJ07Fx06dMDu3bvVprICgKOjIzZu3Ih27dpBoVDgm2++eamRw1fx4MEDpKamIicnB5cvX8bSpUuxefNm/PrrrzA1NQUA+Pj44M6dO5g9eza6dOmCXbt2YefOnWojcqGhofjiiy9QqVIltGrVCg8fPkRMTAy+/PJLtfN16tQJK1euRK9evaCjo4MuXboUG1dYWBiqVauGWrVq4fHjxwgPD0dUVBT27NlTpK2TkxMOHDgAHx8f6OjoICws7LXdHyIiIiIiUvfRJZEASp2OqKWlhbVr12L48OGoXbs2nJ2d8cMPP8DHx6dM5/jkk0+wbNkyhISEYPLkyfDz88OkSZMwbdo0qc3333+Pfv36oUmTJqhQoQLGjx//1lf+LFydVl9fH5UrV0bTpk1x/Phx1KtXT2rj4uKCn376CTNmzMC0adPw2WefYezYsfj555+lNkFBQXj8+DHmz5+PsWPHokKFCiUmiF26dEFBQQF69eoFLS0tdO7cuUibJ0+eYMyYMbhx4wYMDQ1Rp04d7Nu3r8SRTmdnZ0RFRUkjkvPmzXuV2yKLCukAOLWViN4B8l5hL1ExbwMQERGVSCGKe5GMiEqUkZEBlUoFMIkkog8EPwkQEVHhZ9z09PQXrgHy0S2sQ0RERERERC+PSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSTUfTARC9tyaoAH1NB/H2iRCh6RCIiIiISIM4EklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItl0NB0A0fsqPTgdSqVS02EQEREREb1VHIkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItl0NB0A0XtLpdJ0BESkKUJoOgIiIiKN4UjkR6xPnz7o2LHjWzmXnZ0dwsLCpG2FQoHNmze/Up+vow8iIiIiIiobJpEfsD59+kChUEChUEBXVxcODg6YOnUq8vLyAAALFixAZGRkmfp82cTtxIkTGDRokOz2oaGhUuyFpUaNGmU+LxERERERvV6czvqBCwgIQEREBHJycrBjxw4MHToU5cqVQ3BwMFRvcTpmxYoVy3xMrVq1sG/fPmlbR4ePKxERERGRpnEk8gOnp6cHS0tL2Nra4r///S/8/PywZcsWAEWns/r4+GD48OH46quvYGZmBktLS4SGhkr77ezsAACdOnWCQqGQtpOSktChQwdYWFjA2NgYDRo0UEv+Co99djqrHDo6OrC0tJRKhQoVSm0fEhICKysrnD17Vjrnt99+i969e8PY2Bi2trbYsmUL7ty5gw4dOsDY2Bh16tTByZMnyxQXEREREdHHjEnkR8bAwABPnjwpcf+KFStgZGSEY8eOYfbs2Zg6dSr27t0L4OmUVACIiIjArVu3pO3MzEy0bt0a+/fvx5kzZxAQEIB27dohJSXllWK9cuUKrK2tUb16dQQGBpbYnxACX375JX799VccOnQIderUkfbNnz8fnp6eOHPmDNq0aYNevXqhd+/e+M9//oPTp0/D3t4evXv3hihlkYycnBxkZGSoFSIiIiKijxWTyI+EEAL79u3D7t270bx58xLb1alTByEhIXB0dETv3r3h4eGB/fv3A/i/KammpqawtLSUtuvWrYvBgwejdu3acHR0xLRp02Bvby+NeL6MRo0aITIyErt27cLixYtx7do1eHl54eHDh2rt8vLy8J///Af79+/H4cOH4eDgoLa/devWGDx4MBwdHTF58mRkZGSgQYMG6Nq1K5ycnDB+/HjEx8fj9u3bJcYyc+ZMqFQqqdjY2Lz0dRERERERve/4ktkHbtu2bTA2NkZubi4KCgrQs2dPtSmqz3t2FA8ArKyskJaWVuo5MjMzERoaiu3bt+PWrVvIy8tDdnb2K41EtmrVSi2mRo0awdbWFuvXr0f//v2lfaNGjYKenh6OHj1a7HTXZ6/HwsICAODq6lqkLi0tDZaWlsXGEhwcjNGjR0vbGRkZTCSJiIiI6KPFkcgPnK+vL2JjY3HlyhVkZ2dL01VLUq5cObVthUKBgoKCUs8xduxYbNq0CTNmzMChQ4cQGxsLV1fXUqfNlpWpqSmcnJyQmJioVt+yZUvcuHEDu3fvLva4Z69HoVCUWFfaNerp6UGpVKoVIiIiIqKPFUciP3BGRkZFpni+inLlyiE/P1+tLiYmBn369EGnTp0APB2ZTE5Ofm3nLOwzKSkJvXr1Uqtv37492rVrh549e0JbWxuff/75az0vERERERGp40gklYmdnR3279+P1NRU3L9/HwDg6OiIjRs3IjY2FnFxcejZs+cLRy9fZOzYsTh48CCSk5Nx5MgRdOrUCdra2ujRo0eRtp06dcLKlSvRt29fbNiw4ZXOS0REREREpeNIJJXJvHnzMHr0aCxbtgyVK1dGcnIyvv/+e/Tr1w9NmjRBhQoVMH78+FdewfSff/5Bjx49cPfuXVSsWBFNmzbF0aNHS/y+yS5duqCgoAC9evWClpYWOnfu/Ernl0OFdACc2krvrlIWHSYiIiJ6aQpR2ncbEFERGRkZUKlUAJNIesfxX3ciIiKSq/Azbnp6+gvXAOF0ViIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCSbjqYDIHpvTVAB+poO4s0RIfymeiIiIiIqiiORREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSTUfTARC9r9KD06FUKjUdBhERERHRW8WRSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYk8h2lUCiwefNmTYfxTvPx8cHIkSM1F4BKBSgULCzvVyEiIiJ6RR9kEtmnTx8oFAqpmJubIyAgAGfPntV0aG/d77//jubNm6N8+fIwMDCAs7Mz+vXrhzNnzmg6tFJFR0er/Q4LS2pqqqZDIyIiIiL6qH2QSSQABAQE4NatW7h16xb2798PHR0dtG3b9pX6fPLkyWuK7u0YP348unfvDjc3N2zZsgUJCQlYvXo1qlevjuDgYE2HJ0tCQoL0e7x16xYqVaqk6ZCIiIiIiD5qH2wSqaenB0tLS1haWsLNzQ0TJkzA9evXcefOHanN+PHj4eTkBENDQ1SvXh3ffPMNcnNzpf2hoaFwc3NDeHg4qlWrBn19fQCAQqFAeHg4OnXqBENDQzg6OmLLli3Scfn5+ejfvz+qVasmjf4tWLCgSIzLly9HrVq1oKenBysrKwwbNqzE67l+/Tq6desGU1NTmJmZoUOHDkhOTi6x/dGjRzF79mx8//33+P777+Hl5YWqVauifv36mDRpEnbu3KnWfvHixbC3t4euri6cnZ2xcuVKtf0pKSno0KEDjI2NoVQq0a1bN9y+fVvaHxcXB19fX5iYmECpVKJ+/fo4efKktP/w4cPw8vKCgYEBbGxsMHz4cGRlZZUYf6FKlSpJv0dLS0toaZX8yG7fvh0qlQqrVq0C8HREumPHjpgxYwYsLCxgamqKqVOnIi8vD+PGjYOZmRmqVKmCiIiIF8ZBRERERERPfbBJ5LMyMzPxv//9Dw4ODjA3N5fqTUxMEBkZiYsXL2LBggVYtmwZ5s+fr3ZsYmIifv/9d2zcuBGxsbFS/ZQpU9CtWzecPXsWrVu3RmBgIO7duwcAKCgoQJUqVfDbb7/h4sWLmDx5Mr7++musX79eOn7x4sUYOnQoBg0ahHPnzmHLli1wcHAoNv7c3Fz4+/vDxMQEhw4dQkxMDIyNjREQEFDi6OiaNWtgbGyMIUOGFLtf8cy7UZs2bcKIESMwZswYnD9/HoMHD0bfvn1x4MAB6Xo6dOiAe/fu4eDBg9i7dy+uXr2K7t27S30EBgaiSpUqOHHiBE6dOoUJEyagXLlyAICkpCQEBATgs88+w9mzZ7Fu3TocPny41KS5kJubG6ysrNCyZUvExMSU2G716tXo0aMHVq1ahcDAQKk+KioKN2/exJ9//onvv/8eISEhaNu2LcqXL49jx47hiy++wODBg/HPP/+U2HdOTg4yMjLUChERERHRR0t8gIKCgoS2trYwMjISRkZGAoCwsrISp06dKvW4OXPmiPr160vbISEholy5ciItLU2tHQAxadIkaTszM1MAEDt37iyx76FDh4rPPvtM2ra2thYTJ04ssT0AsWnTJiGEECtXrhTOzs6ioKBA2p+TkyMMDAzE7t27iz0+ICBA1KlTR61u3rx50j0xMjISDx48EEII0aRJEzFw4EC1tl27dhWtW7cWQgixZ88eoa2tLVJSUqT9Fy5cEADE8ePHhRBCmJiYiMjIyGJj6d+/vxg0aJBa3aFDh4SWlpbIzs4u9phLly6JJUuWiJMnT4qYmBjRt29foaOjo/Y79Pb2FiNGjBALFy4UKpVKREdHq/URFBQkbG1tRX5+vlTn7OwsvLy8pO28vDxhZGQk1qxZU2wcQjx9DgAUKemAECws71shIiIiKkZ6eroAINLT01/Y9oMdifT19UVsbCxiY2Nx/Phx+Pv7o1WrVvj777+lNuvWrYOnpycsLS1hbGyMSZMmISUlRa0fW1tbVKxYsUj/derUkX42MjKCUqlEWlqaVLdo0SLUr18fFStWhLGxMX7++Wep77S0NNy8eRMtWrSQdS1xcXFITEyEiYkJjI2NYWxsDDMzMzx+/BhJSUmy70m/fv0QGxuLpUuXIisrC0IIAEB8fDw8PT3V2np6eiI+Pl7ab2NjAxsbG2l/zZo1YWpqKrUZPXo0BgwYAD8/P8yaNUstrri4OERGRkqxGxsbw9/fHwUFBbh27VqxsTo7O2Pw4MGoX78+mjRpguXLl6NJkyZFRoo3bNiAUaNGYe/evfD29i7ST61atdSmwFpYWMDV1VXa1tbWhrm5udrv7nnBwcFIT0+XyvXr10tsS0RERET0oftgk0gjIyM4ODjAwcEBDRo0QHh4OLKysrBs2TIAwF9//YXAwEC0bt0a27Ztw5kzZzBx4sQi00ONjIyK7b9wqmYhhUKBgoICAMDatWsxduxY9O/fH3v27EFsbCz69u0r9W1gYFCma8nMzET9+vWlpLiwXL58GT179iz2GEdHR1y9elXtHU9TU1M4ODigcuXKZTq/HKGhobhw4QLatGmDqKgo1KxZE5s2bZLiHzx4sFrscXFxuHLlCuzt7WWfo2HDhkhMTFSrc3d3R8WKFbF8+XIpKX5Wcb+n0n53xdHT04NSqVQrREREREQfqw82iXyeQqGAlpYWsrOzAQBHjhyBra0tJk6cCA8PDzg6OqqNUr6KmJgYNGnSBEOGDIG7uzscHBzURuZMTExgZ2eH/fv3y+qvXr16uHLlCipVqiQlxoVFpVIVe0yPHj2QmZmJn3766YX9u7i4FHnfMCYmBjVr1pT2X79+XW0E7uLFi3jw4IHUBgCcnJwwatQo7NmzB507d5YWrKlXrx4uXrxYJHYHBwfo6urKugcAEBsbCysrK7U6e3t7HDhwAH/88Qe+/PJL2X0REREREdHL0dF0AG9KTk6O9J2C9+/fx8KFC5GZmYl27doBeDpSl5KSgrVr16JBgwbYvn27NHL2qhwdHfHrr79i9+7dqFatGlauXIkTJ06gWrVqUpvQ0FB88cUXqFSpElq1aoWHDx8iJiam2EQoMDAQc+bMQYcOHTB16lRUqVIFf//9NzZu3IivvvoKVapUKXJM48aNMWbMGIwZMwZ///03OnfuDBsbG9y6dQu//PKLlFQDwLhx49CtWze4u7vDz88PW7duxcaNG7Fv3z4AgJ+fH1xdXREYGIiwsDDk5eVhyJAh8Pb2hoeHB7KzszFu3Dh06dIF1apVwz///IMTJ07gs88+A/B0FdxPPvkEw4YNw4ABA2BkZISLFy9i7969WLhwYbH3MCwsDNWqVUOtWrXw+PFjhIeHIyoqCnv27CnS1snJCQcOHICPjw90dHQQFhZW5t8ZERERERHJ88Emkbt27ZJGrUxMTFCjRg389ttv8PHxAQC0b98eo0aNwrBhw5CTk4M2bdrgm2++QWho6Cufe/DgwThz5gy6d+8OhUKBHj16YMiQIWpfqxEUFITHjx9j/vz5GDt2LCpUqIAuXboU25+hoSH+/PNPjB8/Hp07d8bDhw9RuXJltGjRotSplXPnzkXDhg2xePFiLF++HI8ePYKFhQWaNWuGv/76Szq2Y8eOWLBgAebOnYsRI0agWrVqiIiIkO6VQqGQRvqaNWsGLS0tBAQE4McffwTw9L3Cu3fvonfv3rh9+zYqVKiAzp07Y8qUKQCevj968OBBTJw4EV5eXhBCwN7eXm111+c9efIEY8aMwY0bN2BoaIg6depg37598PX1Lba9s7MzoqKi4OPjA21tbcybN6/kX9BrokI6AE5tpXdTMbO7iYiIiF4LhSjuRTIiKlFGRsb/n0bMJJLeXfyXnYiIiMqi8DNuenr6C9cA+WjeiSQiIiIiIqJXxySSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERyaaj6QCI3lsTVIC+poN4PUSI0HQIRERERPSe4EgkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhk09F0AETvq/TgdCiVSk2HQURERET0VnEkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhk09F0AETvLZVK0xEQEZFcQmg6AiKiDwZHIjUgNDQUbm5umg7jvRcZGQlTU1NNh0FERERE9FH5IJPIPn36QKFQFCkBAQFvPRaFQoHNmzer1Y0dOxb79+9/K+dPTExEv379ULVqVejp6aFy5cpo0aIFVq1ahby8vLcSw8uys7Mr8jucNWuWpsMiIiIiIvqofbDTWQMCAhAREaFWp6enp6Fo1BkbG8PY2PiNn+f48ePw8/NDrVq1sGjRItSoUQMAcPLkSSxatAi1a9dG3bp133gcr2Lq1KkYOHCgtG1iYqLBaIiIiIiI6IMciQSeJoyWlpZqpXz58tL+S5cuoWnTptDX10fNmjWxb98+tVHD5s2bY9iwYWp93rlzB7q6utIoop2dHaZNm4YePXrAyMgIlStXxqJFi6T2dnZ2AIBOnTpBoVBI289PZz1x4gRatmyJChUqQKVSwdvbG6dPn1Y7t0KhQHh4ODp16gRDQ0M4Ojpiy5YtJV6/EAJ9+vSBk5MTYmJi0K5dOzg6OsLR0RE9evTA4cOHUadOHan9uXPn0Lx5cxgYGMDc3ByDBg1CZmamtL+goABTp05FlSpVoKenBzc3N+zatUva/+TJEwwbNgxWVlbQ19eHra0tZs6cKe1/8OABBgwYgIoVK0KpVKJ58+aIi4srMf5CJiYmar9DIyOjEtveuXMHHh4e6NSpE3JychAdHQ2FQoHdu3fD3d0dBgYGaN68OdLS0rBz5064uLhAqVSiZ8+eePTo0QtjISIiIiKiDziJLE1+fj46duwIQ0NDHDt2DD///DMmTpyo1mbAgAFYvXo1cnJypLr//e9/qFy5Mpo3by7VzZkzB3Xr1sWZM2cwYcIEjBgxAnv37gXwNDkEgIiICNy6dUvaft7Dhw8RFBSEw4cP4+jRo3B0dETr1q3x8OFDtXZTpkxBt27dcPbsWbRu3RqBgYG4d+9esX3GxsYiPj4eY8eOhZZW8b9mhUIBAMjKyoK/vz/Kly+PEydO4LfffsO+ffvUkugFCxZg3rx5mDt3Ls6ePQt/f3+0b98eV65cAQD88MMP2LJlC9avX4+EhASsWrVKSpoBoGvXrlLydurUKdSrVw8tWrQoMf5Cs2bNgrm5Odzd3TFnzpwSp+Bev34dXl5eqF27NjZs2KA26hwaGoqFCxfiyJEjuH79Orp164awsDCsXr0a27dvx549e/Djjz+WGENOTg4yMjLUChERERHRR0t8gIKCgoS2trYwMjJSK9OnTxdCCLFz506ho6Mjbt26JR2zd+9eAUBs2rRJCCFEdna2KF++vFi3bp3Upk6dOiI0NFTatrW1FQEBAWrn7t69u2jVqpW0/WyfhUJCQkTdunVLjD8/P1+YmJiIrVu3qvUzadIkaTszM1MAEDt37iy2j7Vr1woA4vTp01Ld7du31e7HokWLhBBC/Pzzz6J8+fIiMzNTart9+3ahpaUlUlNThRBCWFtbS/evUIMGDcSQIUOEEEJ8+eWXonnz5qKgoKBILIcOHRJKpVI8fvxYrd7e3l4sXbq0xPswb948ceDAAREXFycWL14sTE1NxahRo6T9ERERQqVSiUuXLgkbGxsxfPhwtfMfOHBAABD79u2T6mbOnCkAiKSkJKlu8ODBwt/fv8Q4QkJCBIAiJf3pWn8sLCwsLO9DISKiUqWnpwsAIj09/YVtP9h3In19fbF48WK1OjMzMwBAQkICbGxsYGlpKe1r2LChWlt9fX306tULy5cvR7du3XD69GmcP3++yBTSxo0bF9kOCwsrU6y3b9/GpEmTEB0djbS0NOTn5+PRo0dISUlRa/fs9FMjIyMolUqkpaXJPo+5uTliY2MBAD4+Pnjy5AkAID4+HnXr1lWbKurp6YmCggIkJCTAwMAAN2/ehKenp1p/np6e0pTUPn36oGXLlnB2dkZAQADatm2LTz/9FAAQFxeHzMxMmJubqx2fnZ2NpKSkEuMdPXq02rXr6upi8ODBmDlzpjTSmJ2dDS8vL/Ts2bPE+/7sfbOwsIChoSGqV6+uVnf8+PES4wgODlaLJSMjAzY2NiW2JyIiIiL6kH2wSaSRkREcHBxeqY8BAwbAzc0N//zzDyIiItC8eXPY2tq+pgj/T1BQEO7evYsFCxbA1tYWenp6aNy4sZTkFSpXrpzatkKhQEFBQbF9Ojo6AniaMLu7uwMAtLW1pXuio/N6f/X16tXDtWvXsHPnTuzbtw/dunWDn58fNmzYgMzMTFhZWSE6OrrIcWX5io5GjRohLy8PycnJcHZ2BvD03Vc/Pz9s27YN48aNQ+XKlYsc9+x9UygUZbqPhed4VxZlIiIiIiLStI/ynUhnZ2dcv34dt2/fluqKe1/R1dUVHh4eWLZsGVavXo1+/foVaXP06NEi2y4uLtJ2uXLlkJ+fX2o8MTExGD58OFq3bo1atWpBT08P//77b1kvS427uztq1KiBuXPnlpogAYCLiwvi4uKQlZWlFpOWlhacnZ2hVCphbW2NmJiYInHXrFlT2lYqlejevTuWLVuGdevW4ffff8e9e/dQr149pKamQkdHBw4ODmqlQoUKsq8pNjYWWlpaqFSpklSnpaWFlStXon79+vD19cXNmzdl90dERERERGX3wSaROTk5SE1NVSuFiVnLli1hb2+PoKAgnD17FjExMZg0aRKA/1tsptCAAQMwa9YsCCHQqVOnIueJiYnB7NmzcfnyZSxatAi//fYbRowYIe23s7PD/v37kZqaivv37xcbq6OjI1auXIn4+HgcO3YMgYGBMDAweKXrVygUiIiIQEJCAjw9PbFlyxZcuXIFFy9exJIlS3Dnzh1oa2sDAAIDA6Gvr4+goCCcP38eBw4cwJdffolevXrBwsICADBu3Dh89913WLduHRISEjBhwgTExsZK1/r9999jzZo1uHTpEi5fvozffvsNlpaWMDU1hZ+fHxo3boyOHTtiz549SE5OxpEjRzBx4kScPHmy2Pj/+usvhIWFIS4uDlevXsWqVaswatQo/Oc//1FbZRd4OsK6atUq1K1bF82bN0dqauor3TsiIiIiIirFm39F8+0LCgoSQNGFUJydnaU28fHxwtPTU+jq6ooaNWqIrVu3CgBi165dan09fPhQGBoaSgvIPMvW1lZMmTJFdO3aVRgaGgpLS0uxYMECtTZbtmwRDg4OQkdHR9ja2gohii6sc/r0aeHh4SH09fWFo6Oj+O2334Stra2YP3++1AYoukCPSqUSERERpd6LhIQEERQUJKpUqSJ0dHSESqUSzZo1E0uXLhW5ublSu7NnzwpfX1+hr68vzMzMxMCBA8XDhw+l/fn5+SI0NFRUrlxZlCtXTtStW1dtUZ+ff/5ZuLm5CSMjI6FUKkWLFi3UFvXJyMgQX375pbC2thblypUTNjY2IjAwUKSkpBQb96lTp0SjRo2ESqUS+vr6wsXFRcyYMUNtcZ7ChXUK5ebmis6dOwsXFxdx+/ZtaWGd+/fvl3iMEC9e6Oh5hS8dA+kaXyeChYWF5UMqRESkOWVZWEchhBCaSmDfJTExMWjatCkSExNhb28v1ScnJ8Pe3h4nTpxAvXr11I6xs7PDyJEjMXLkyLccLWlSRkYGVCoVgHQASk2HQ0T0weAnEiIizSn8jJueng6lsvTPuB/swjovsmnTJhgbG8PR0RGJiYkYMWIEPD09pQQyNzcXd+/exaRJk/DJJ58USSCJiIiIiIg+Rh9tEvnw4UOMHz8eKSkpqFChAvz8/DBv3jxpf0xMDHx9feHk5IQNGzZoMFIiIiIiIqJ3B6ezEpURp7MSEb0Z/ERCRKQ5ZZnO+sGuzkpERERERESvH5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItk+2u+JJHplE1SAvqaDeDERwjXziYiIiOj14UgkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcmmo+kAiN5X6cHpUCqVmg6DiIiIiOit4kgkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxL5EYqMjISpqelbPWefPn3QsWPH19qnJq5DjUoFKBQsLCwvW4iIiOi9xCTyHZOamooRI0bAwcEB+vr6sLCwgKenJxYvXoxHjx5pOry3ys7ODgqFQq3MmjVL02EREREREX3UdDQdAP2fq1evwtPTE6amppgxYwZcXV2hp6eHc+fO4eeff0blypXRvn17TYf5Vk2dOhUDBw6Utk1MTDQYDRERERERcSTyHTJkyBDo6Ojg5MmT6NatG1xcXFC9enV06NAB27dvR7t27aS2KSkp6NChA4yNjaFUKtGtWzfcvn1b2h8XFwdfX1+YmJhAqVSifv36OHnypNr5du/eDRcXFxgbGyMgIAC3bt2S9p04cQItW7ZEhQoVoFKp4O3tjdOnT0v7x44di7Zt20rbYWFhUCgU2LVrl1Tn4OCA8PDwYq/1xIkTqFixIr777rtS74mJiQksLS2lYmRkVGLbO3fuwMPDA506dUJOTg6io6OhUCiwe/duuLu7w8DAAM2bN0daWhp27twJFxcXKJVK9OzZ86Mb5SUiIiIiellMIt8Rd+/exZ49ezB06NASEyXF/3+HqKCgAB06dMC9e/dw8OBB7N27F1evXkX37t2ltoGBgahSpQpOnDiBU6dOYcKECShXrpy0/9GjR5g7dy5WrlyJP//8EykpKRg7dqy0/+HDhwgKCsLhw4dx9OhRODo6onXr1nj48CEAwNvbG4cPH0Z+fj4A4ODBg6hQoQKio6MBADdu3EBSUhJ8fHyKXEdUVBRatmyJ6dOnY/z48aXel1mzZsHc3Bzu7u6YM2cO8vLyim13/fp1eHl5oXbt2tiwYQP09PSkfaGhoVi4cCGOHDmC69evo1u3bggLC8Pq1auxfft27NmzBz/++GOJMeTk5CAjI0OtEBERERF9tAS9E44ePSoAiI0bN6rVm5ubCyMjI2FkZCS++uorIYQQe/bsEdra2iIlJUVqd+HCBQFAHD9+XAghhImJiYiMjCz2XBEREQKASExMlOoWLVokLCwsSowvPz9fmJiYiK1btwohhLh//77Q0tISJ06cEAUFBcLMzEzMnDlTNGrUSAghxP/+9z9RuXJl6figoCDRoUMHsXHjRmFsbCzWrl37wnsyb948ceDAAREXFycWL14sTE1NxahRo9SuQ6VSiUuXLgkbGxsxfPhwUVBQIO0/cOCAACD27dsn1c2cOVMAEElJSVLd4MGDhb+/f4lxhISECABFSjogBAsLy8sXIiIiemekp6cLACI9Pf2FbTkS+Y47fvw4YmNjUatWLeTk5AAA4uPjYWNjAxsbG6ldzZo1YWpqivj4eADA6NGjMWDAAPj5+WHWrFlISkpS69fQ0BD29vbStpWVFdLS0qTt27dvY+DAgXB0dIRKpYJSqURmZiZSUlIAAKampqhbty6io6Nx7tw56OrqYtCgQThz5gwyMzNx8OBBeHt7q53z2LFj6Nq1K1auXKk2alqS0aNHw8fHB3Xq1MEXX3yBefPm4ccff5TuAwBkZ2fDy8sLnTt3xoIFC6TR2mfVqVNH+tnCwgKGhoaoXr26Wt2z1/684OBgpKenS+X69esvjJ2IiIiI6EPFJPId4eDgAIVCgYSEBLX66tWrw8HBAQYGBmXqLzQ0FBcuXECbNm0QFRWFmjVrYtOmTdL+Z6e2Ak+nygohpO2goCDExsZiwYIFOHLkCGJjY2Fubo4nT55IbXx8fBAdHS0ljGZmZnBxccHhw4eLTSLt7e1Ro0YNLF++HLm5uWW6HgBo1KgR8vLykJycLNXp6enBz88P27Ztw40bN4o97tlrVSgUxV57QUFBiefV09ODUqlUK0REREREHysmke8Ic3NztGzZEgsXLkRWVlapbV1cXHD9+nW1EbGLFy/iwYMHqFmzplTn5OSEUaNGYc+ePejcuTMiIiJkxxMTE4Phw4ejdevWqFWrFvT09PDvv/+qtSl8L3L//v3Su48+Pj5Ys2YNLl++XOR9yAoVKiAqKgqJiYno1q1bmRPJ2NhYaGlpoVKlSlKdlpYWVq5cifr168PX1xc3b94sU59ERERERFQ2TCLfIT/99BPy8vLg4eGBdevWIT4+HgkJCfjf//6HS5cuQVtbGwDg5+cHV1dXBAYG4vTp0zh+/Dh69+4Nb29veHh4IDs7G8OGDUN0dDT+/vtvxMTE4MSJE3BxcZEdi6OjI1auXIn4+HgcO3YMgYGBRUZDmzVrhocPH2Lbtm1qSeSqVatgZWUFJyenIv1WqlQJUVFRuHTpEnr06FHiQjl//fUXwsLCEBcXh6tXr2LVqlUYNWoU/vOf/6B8+fJqbbW1tbFq1SrUrVsXzZs3R2pqquzrJCIiIiKismES+Q6xt7fHmTNn4Ofnh+DgYNStWxceHh748ccfMXbsWEybNg3A0+mXf/zxB8qXL49mzZrBz88P1atXx7p16wA8Taru3r2L3r17w8nJCd26dUOrVq0wZcoU2bH88ssvuH//PurVq4devXph+PDhaiOAAFC+fHm4urqiYsWKqFGjBoCniWVBQUGRqazPsrS0RFRUFM6dO4fAwEBphddn6enpYe3atfD29katWrUwffp0jBo1Cj///HOxfero6GDNmjWoVauW9DUeb5oK6VBAsLxieQeWd2HRVCEiIqL3kkII/pecqCwyMjKgUqkApAPg+5Gviv8CEREREWle4Wfc9PT0F64BwpFIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpJNR9MBEL23JqgAfU0HUZQIEZoOgYiIiIg+YByJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbDqaDoDofZUenA6lUqnpMIiIiIiI3iqORBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbDqaDoDovaVSaTqCD48Qmo6AiIiIiF6AI5GvQKFQYPPmzQCA5ORkKBQKxMbGajSm1+Xnn3+GjY0NtLS0EBYW9tr779OnDzp27KjxPoiIiIiIqGw+yiTyTSQfNjY2uHXrFmrXrv1a+31eZGQkFAoFFAoFtLS0UKVKFfTt2xdpaWmv7RwZGRkYNmwYxo8fjxs3bmDQoEGvrW+5CpPy58vRo0ffeixERERERPR/OJ31NdHW1oalpeVbOZdSqURCQgIKCgoQFxeHvn374ubNm9i9e/dr6T8lJQW5ublo06YNrKysXkufL2vfvn2oVauWtG1ubq7BaIiIiIiI6KMciXyej48Phg8fjq+++gpmZmawtLREaGioWpsrV66gWbNm0NfXR82aNbF37161/c9PZ83Pz0f//v1RrVo1GBgYwNnZGQsWLFA7pnBEdO7cubCysoK5uTmGDh2K3NzcUuNVKBSwtLSEtbU1WrVqheHDh2Pfvn3Izs4GAISHh8PFxQX6+vqoUaMGfvrpJ7Xjx48fDycnJxgaGqJ69er45ptvpHNGRkbC1dUVAFC9enUoFAokJycDABYvXgx7e3vo6urC2dkZK1eulPocO3Ys2rZtK22HhYVBoVBg165dUp2DgwPCw8NLvbbnmZubw9LSUirlypUrse2JEydQsWJFfPfddwCA0NBQuLm5Yfny5ahatSqMjY0xZMgQ5OfnY/bs2bC0tESlSpUwffr0MsVERERERPQx40jk/7dixQqMHj0ax44dw19//YU+ffrA09MTLVu2REFBATp37gwLCwscO3YM6enpGDlyZKn9FRQUoEqVKvjtt99gbm6OI0eOYNCgQbCyskK3bt2kdgcOHICVlRUOHDiAxMREdO/eHW5ubhg4cKDs2A0MDFBQUIC8vDysWrUKkydPxsKFC+Hu7o4zZ85g4MCBMDIyQlBQEADAxMQEkZGRsLa2xrlz5zBw4ECYmJjgq6++Qvfu3WFjYwM/Pz8cP34cNjY2qFixIjZt2oQRI0YgLCwMfn5+2LZtG/r27YsqVarA19cX3t7eCA8PR35+PrS1tXHw4EFUqFAB0dHRCAgIwI0bN5CUlAQfH58y/V7at2+Px48fw8nJCV999RXat29fbLuoqCh07twZs2fPVpt+m5SUhJ07d2LXrl1ISkpCly5dcPXqVTg5OeHgwYM4cuQI+vXrBz8/PzRq1KjYvnNycpCTkyNtZ2RklOkaiIiIiIg+KOIjFBQUJDp06CBte3t7i6ZNm6q1adCggRg/frwQQojdu3cLHR0dcePGDWn/zp07BQCxadMmIYQQ165dEwDEmTNnSjzv0KFDxWeffaYWh62trcjLy5PqunbtKrp3715iHxEREUKlUknbly9fFk5OTsLDw0MIIYS9vb1YvXq12jHTpk0TjRs3LrHPOXPmiPr160vbZ86cEQDEtWvXpLomTZqIgQMHqh3XtWtX0bp1ayGEEPfv3xdaWlrixIkToqCgQJiZmYmZM2eKRo0aCSGE+N///icqV66sdu3P/g6ed+fOHTFv3jxx9OhRcfz4cTF+/HihUCjEH3/8UaSPjRs3CmNjY7F27Vq1PkJCQoShoaHIyMiQ6vz9/YWdnZ3Iz8+X6pydncXMmTNLjCUkJEQAKFLSn64lyvI6CxERERFpRHp6+tPPuOnpL2zLkcj/r06dOmrbVlZW0mI18fHxsLGxgbW1tbS/cePGL+xz0aJFWL58OVJSUpCdnY0nT57Azc1NrU2tWrWgra2tdt5z586V2m96ejqMjY1RUFCAx48fo2nTpggPD0dWVhaSkpLQv39/tZHMvLw8qJ75Oop169bhhx9+QFJSEjIzM5GXlwelUlnqOePj44sssOPp6SlN0TU1NUXdunURHR0NXV1d6OrqYtCgQQgJCUFmZiYOHjwIb2/vUs/xrAoVKmD06NHSdoMGDXDz5k3MmTNHbTTy2LFj2LZtGzZs2FDsYkl2dnYwMTGRti0sLKCtrQ0tLS21utIWJgoODlaLJSMjAzY2NrKvhYiIiIjoQ8Ik8v97/l07hUKBgoKCl+5v7dq1GDt2LObNm4fGjRvDxMQEc+bMwbFjx175vCYmJjh9+jS0tLRgZWUFAwMDAMDt27cBAMuWLSsyNbMwUf3rr78QGBiIKVOmwN/fHyqVCmvXrsW8efNe+loL+fj4IDo6Gnp6evD29oaZmRlcXFxw+PBhHDx4EGPGjHml/hs1alTkXVR7e3uYm5tj+fLlaNOmTZH7Wdz9Les919PTg56e3ivFTkRERET0oWASKYOLiwuuX7+OW7duSauVvuirJmJiYtCkSRMMGTJEqktKSnot8WhpacHBwaFIvYWFBaytrXH16lUEBgYWe+yRI0dga2uLiRMnSnV///33C8/p4uKCmJgY6b1K4Ok11qxZU9r29vbG8uXLoaOjg4CAAABPE8s1a9bg8uXLZX4f8nmxsbFFVoutUKECNm7cCB8fH3Tr1g3r168vdfEdIiIiIiJ6NUwiZfDz84OTkxOCgoIwZ84cZGRkqCVhxXF0dMSvv/6K3bt3o1q1ali5ciVOnDiBatWqvdFYp0yZguHDh0OlUiEgIAA5OTk4efIk7t+/j9GjR8PR0REpKSlYu3YtGjRogO3bt2PTpk0v7HfcuHHo1q0b3N3d4efnh61bt2Ljxo3Yt2+f1KZZs2Z4+PAhtm3bhlmzZgF4mkR26dIFVlZWcHJykn0dK1asgK6uLtzd3QEAGzduxPLly4td3bVSpUqIioqCr68vevTogbVr10JHh482EREREdGbwK/4kEFLSwubNm1CdnY2GjZsiAEDBrzwayEGDx6Mzp07o3v37mjUqBHu3r2rNir5pgwYMADh4eGIiIiAq6srvL29ERkZKSWv7du3x6hRozBs2DC4ubnhyJEj+Oabb17Yb8eOHbFgwQLMnTsXtWrVwtKlSxEREaE2uli+fHm4urqiYsWKqFGjBoCniWVBQUGZ3ocsNG3aNNSvXx+NGjXCH3/8gXXr1qFv377FtrW0tERUVBTOnTuHwMBA5Ofnl/l8ZZbOpXVeeyEiIiKid55CCH5yIyqLjIwMqFQqpKenv3BBIiIiIiKi90FZPuNyJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZNPRdABE7yvVTBWg/+b6FyHizXVORERERPSSOBJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLLpaDoAovdVenA6lEqlpsMgIiIiInqrOBJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZXnsSmZycDIVCgdjY2NfdtUbY2dkhLCzstfbp4+ODkSNHvtY+X5d3ObbnhYaGws3NTXMBqFSAQsHCwsLy6oWIiOg9UqYksk+fPlAoFFAoFChXrhyqVauGr776Co8fP5ba2NjY4NatW6hdu/ZrD/ZjERkZKd1nLS0tVKlSBX379kVaWpqmQ3tlZfmfDIX34Nmydu3aNx8kERERERGVSKesBwQEBCAiIgK5ubk4deoUgoKCoFAo8N133wEAtLW1YWlp+doD/dgolUokJCSgoKAAcXFx6Nu3L27evIndu3e/VH+5ubkoV67ca47yzYuIiEBAQIC0bWpqqrlgiIiIiIio7NNZ9fT0YGlpCRsbG3Ts2BF+fn7Yu3evtP/5kabo6GgoFArs378fHh4eMDQ0RJMmTZCQkKDW77fffotKlSrBxMQEAwYMwIQJE144VdHHxwfDhw/HV199BTMzM1haWiI0NFStzYMHDzBgwABUrFgRSqUSzZs3R1xcnFqbrVu3okGDBtDX10eFChXQqVOnEs8ZHh4OU1NT7N+/HwBw/vx5tGrVCsbGxrCwsECvXr3w77//Su2zsrLQu3dvGBsbw8rKCvPmzSv1mgopFApYWlrC2toarVq1wvDhw7Fv3z5kZ2dj165daNq0KUxNTWFubo62bdsiKSlJOrbwd7Bu3Tp4e3tDX18fq1atwt27d9GjRw9UrlwZhoaGcHV1xZo1a0qNY/v27VCpVFi1ahUA4Pr16+jWrRtMTU1hZmaGDh06IDk5ucg9cnFxgb6+PmrUqIGffvpJ2letWjUAgLu7OxQKBXx8fEo9v6mpKSwtLaWir69fYtukpCRUr14dw4YNgxACkZGRMDU1xbZt2+Ds7AxDQ0N06dIFjx49wooVK2BnZ4fy5ctj+PDhyM/PLzUOIiIiIiJ66pXeiTx//jyOHDkCXV3dF7adOHEi5s2bh5MnT0JHRwf9+vWT9q1atQrTp0/Hd999h1OnTqFq1apYvHixrBhWrFgBIyMjHDt2DLNnz8bUqVPVktquXbsiLS0NO3fuxKlTp1CvXj20aNEC9+7dA/A0SerUqRNat26NM2fOYP/+/WjYsGGx55o9ezYmTJiAPXv2oEWLFnjw4AGaN28Od3d3nDx5Ert27cLt27fRrVs36Zhx48bh4MGD+OOPP7Bnzx5ER0fj9OnTsq7tWQYGBigoKEBeXh6ysrIwevRonDx5Evv374eWlhY6deqEgoICtWMmTJiAESNGID4+Hv7+/nj8+DHq16+P7du34/z58xg0aBB69eqF48ePF3vO1atXo0ePHli1ahUCAwORm5sLf39/mJiY4NChQ4iJiYGxsTECAgLw5MkTAE9/l5MnT8b06dMRHx+PGTNm4JtvvsGKFSsAQDrXvn37cOvWLWzcuLHU6x46dCgqVKiAhg0bYvny5RBCFNvu7NmzaNq0KXr27ImFCxdC8f/fMXr06BF++OEHrF27Frt27UJ0dDQ6deqEHTt2YMeOHVi5ciWWLl2KDRs2lBhDTk4OMjIy1AoRERER0UdLlEFQUJDQ1tYWRkZGQk9PTwAQWlpaYsOGDVKba9euCQDizJkzQgghDhw4IACIffv2SW22b98uAIjs7GwhhBCNGjUSQ4cOVTuXp6enqFu3bqnxeHt7i6ZNm6rVNWjQQIwfP14IIcShQ4eEUqkUjx8/Vmtjb28vli5dKoQQonHjxiIwMLDEc9ja2or58+eLr776SlhZWYnz589L+6ZNmyY+/fRTtfbXr18XAERCQoJ4+PCh0NXVFevXr5f23717VxgYGIgRI0aUeM6IiAihUqmk7cuXLwsnJyfh4eFRbPs7d+4IAOLcuXNCiP/7HYSFhZV4jkJt2rQRY8aMkba9vb3FiBEjxMKFC4VKpRLR0dHSvpUrVwpnZ2dRUFAg1eXk5AgDAwOxe/duIcTTe7t69Wq1c0ybNk00btxYLbbC56M0U6dOFYcPHxanT58Ws2bNEnp6emLBggXS/pCQEFG3bl0RExMjypcvL+bOnat2fEREhAAgEhMTpbrBgwcLQ0ND8fDhQ6nO399fDB48uMQ4QkJCBIAiJR0QgoWFheV1FCIiIg1LT08XAER6evoL25b5nUhfX18sXrwYWVlZmD9/PnR0dPDZZ5+98Lg6depIP1tZWQEA0tLSULVqVSQkJGDIkCFq7Rs2bIioqCgAwKFDh9CqVStp39KlSxEYGFik38K+CxegiYuLQ2ZmJszNzdXaZGdnS9M/Y2NjMXDgwFJjnzdvHrKysnDy5ElUr15dqo+Li8OBAwdgbGxc5JikpCRkZ2fjyZMnaNSokVRvZmYGZ2fnUs8HAOnp6TA2NkZBQQEeP36Mpk2bIjw8HABw5coVTJ48GceOHcO///4rjUCmpKSoLWjk4eGh1md+fj5mzJiB9evX48aNG3jy5AlycnJgaGio1m7Dhg1IS0tDTEwMGjRooHa9iYmJMDExUWv/+PFjJCUlISsrC0lJSejfv7/aPc3Ly4NKpXrhNT/vm2++kX52d3dHVlYW5syZg+HDh0v1KSkpaNmyJaZPn17sqrKGhoawt7eXti0sLGBnZ6f2O7OwsCh10aLg4GCMHj1a2s7IyICNjU2Zr4eIiIiI6ENQ5iTSyMgIDg4OAIDly5ejbt26+OWXX9C/f/9Sj3t2UZfCqYbPT78siYeHh9pqnhYWFsX2W9h3Yb+ZmZmwsrJCdHR0kT4LF2gxMDB44fm9vLywfft2rF+/HhMmTJDqMzMz0a5dO2lRoWdZWVkhMTHxhX2XxMTEBKdPn4aWlhasrKzU4mzXrh1sbW2xbNkyWFtbo6CgALVr15amlBYyMjJS254zZw4WLFiAsLAwuLq6wsjICCNHjixynLu7O06fPo3ly5fDw8ND+n1lZmaifv360vuRz6pYsSIyMzMBAMuWLVNLnIGnCy69qkaNGmHatGnIycmBnp6edF5ra2usWbMG/fr1g1KpVDumuOejtGemOHp6etL5iIiIiIg+dmVOIp+lpaWFr7/+GqNHj0bPnj1lJWTFcXZ2xokTJ9C7d2+p7sSJE9LPBgYGUuJaFvXq1UNqaip0dHRgZ2dXbJs6depg//796Nu3b4n9NGzYEMOGDUNAQAB0dHQwduxYqf/ff/8ddnZ20NEpeivt7e1Rrlw5HDt2DFWrVgUA3L9/H5cvX4a3t3epsWtpaRV7zXfv3kVCQgKWLVsGLy8vAMDhw4dL7atQTEwMOnTogP/85z8Anibxly9fRs2aNYvEPW/ePPj4+EBbWxsLFy6UrnfdunWoVKlSkWQNAFQqFaytrXH16lVppPh5he/PvsxCNrGxsShfvrxaQmdgYIBt27ahdevW8Pf3x549e4qMlBIRERER0evzSgvrAE8XrtHW1saiRYteuo8vv/wSv/zyC1asWIErV67g22+/xdmzZ6URsJfl5+eHxo0bo2PHjtizZw+Sk5Nx5MgRTJw4ESdPngQAhISEYM2aNQgJCUF8fDzOnTtX7MhikyZNsGPHDkyZMgVhYWEAni76cu/ePfTo0QMnTpxAUlISdu/ejb59+yI/Px/Gxsbo378/xo0bh6ioKJw/fx59+vSBltbL3/by5cvD3NwcP//8MxITExEVFaU21bI0jo6O2Lt3L44cOYL4+HgMHjwYt2/fLratk5MTDhw4gN9//12aJhoYGIgKFSqgQ4cOOHToEK5du4bo6GgMHz4c//zzDwBgypQpmDlzJn744QdcvnwZ586dQ0REBL7//nsAQKVKlWBgYCAtQpSenl7s+bdu3Yrw8HCcP38eiYmJWLx4MWbMmIEvv/yySFsjIyNs374dOjo6aNWqlTQiSkREREREr98rJ5E6OjoYNmwYZs+ejaysrJfqIzAwEMHBwRg7dizq1auHa9euoU+fPqV+nYMcCoUCO3bsQLNmzdC3b184OTnh888/x99//y1NifXx8cFvv/2GLVu2wM3NDc2bNy9xtdKmTZti+/btmDRpEn788UdYW1sjJiYG+fn5+PTTT+Hq6oqRI0fC1NRUShTnzJkDLy8vtGvXDn5+fmjatCnq16//0tekpaWFtWvX4tSpU6hduzZGjRqFOXPmyDp20qRJqFevHvz9/eHj4wNLS0t07NixxPbOzs6IiorCmjVrMGbMGBgaGuLPP/9E1apV0blzZ7i4uKB///54/PixNDI5YMAAhIeHIyIiAq6urvD29kZkZKT01R46Ojr44YcfsHTpUlhbW6NDhw7FnrtcuXJYtGgRGjduDDc3NyxduhTff/89QkJCim1vbGyMnTt3QgiBNm3avPSzWBYqpEMBwcLCwvLqRYEihYiI6F2lEEIITQdRnJYtW8LS0hIrV67UdChEajIyMv7/QkHpAIpO6yUieh3ezf86ExHRh6rwM256enqxr64965XeiXxdHj16hCVLlsDf3x/a2tpYs2YN9u3bp/Z9j0RERERERKR570QSWTjtdPr06Xj8+DGcnZ3x+++/w8/PT9OhERERERER0TPeiSTSwMAA+/bt03QYRERERERE9AKvvLAOERERERERfTyYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJ9k58xQfRe2mCCtB/tS5EiHg9sRARERERvSUciSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWw6mg6A6H2VHpwOpVKp6TCIiIiIiN4qjkQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2XQ0HQARERERkRx5eXl48uSJpsMgei/p6upCR+f1pH9MIolelkql6QhICE1HQEREb4EQAikpKfj33381HQrRe61ChQqoWrUqFArFK/XDJPIdpVAosGnTJnTs2LHY/cnJyahWrRrOnDkDNze3txrbywgNDcXmzZsRGxv72vqMjo6Gr68v7t+/D1NT09fWLxEREb1bChPIypUrw9jYGFpafCOLqCwKCgqQmZmJGzduAABsbW1fqT8mka+gT58+WLFiBQBAR0cHVapUQdeuXTF16lTo6+trOLoXCw0NxZQpUwAA2traMDU1Rc2aNdG5c2f897//hZ6enkbj8/HxwcGDB9XqBg8ejCVLlmgoIiIiInrb8vLypATS0tJS0+EQvbeMjY0BADdu3EDlypVfaWork8hXFBAQgIiICOTm5uLUqVMICgqCQqHAd999p+nQZKlVqxb27duHgoIC3L17F9HR0fj222+xcuVKREdHw8TERKPxDRw4EFOnTpW2DQ0NNRgNERERvW2F70AWfgAmopdX+Hf05MmTV0oiORfgFenp6cHS0hI2Njbo2LEj/Pz8sHfvXmm/nZ0dwsLC1I5xc3NDaGiotH3lyhU0a9YM+vr6qFmzptrxhY4fPw53d3fo6+vDw8MDZ86ckfYJIeDg4IC5c+eqHRMbGwuFQoHExMQS49fR0YGlpSWsra3h6uqKL7/8EgcPHsT58+fVEmGFQoHNmzerHWtqaorIyEhp+59//kGPHj1gZmYGIyMjeHh44NixY8WeNykpCdWrV8ewYcMgSnmvzdDQEJaWllJRKpUltn306BFatWoFT09PPHjwAMnJyVAoFFi/fj28vLxgYGCABg0a4PLlyzhx4gQ8PDxgbGyMVq1a4c6dOyX2S0RERJrHKaxEr+51/R3xr/E1On/+PI4cOQJdXV3ZxxQUFKBz587Q1dXFsWPHsGTJEowfP16tTWZmJtq2bYuaNWvi1KlTCA0NxdixY6X9CoUC/fr1Q0REhNpxERERaNasGRwcHMp0HTVq1ECrVq2wceNG2cdkZmbC29sbN27cwJYtWxAXF4evvvoKBQUFRdqePXsWTZs2Rc+ePbFw4cJSX+xdtWoVKlSogNq1ayM4OBiPHj0qtt2DBw/QsmVLFBQUYO/evWrvSIaEhGDSpEk4ffo0dHR00LNnT3z11VdYsGABDh06hMTEREyePLnEGHJycpCRkaFWiIiIiIg+VpzO+oq2bdsGY2Nj5OXlIScnB1paWli4cKHs4/ft24dLly5h9+7dsLa2BgDMmDEDrVq1ktqsXr0aBQUF+OWXX6Cvr49atWrhn3/+wX//+1+pTZ8+fTB58mQcP34cDRs2RG5uLlavXl1kdFKuGjVqYM+ePbLbr169Gnfu3MGJEydgZmYGAMUmr0eOHEHbtm0xceJEjBkzptQ+e/bsCVtbW1hbW+Ps2bMYP348EhISiiS3qamp6N69OxwdHbF69eoiSfzYsWPh7+8PABgxYgR69OiB/fv3w9PTEwDQv39/tRHV582cOVN6d5SIiIiI6GPHJPIV+fr6YvHixcjKysL8+fOho6ODzz77TPbx8fHxsLGxkRJIAGjcuHGRNnXq1FFbrOf5NtbW1mjTpg2WL1+Ohg0bYuvWrcjJyUHXrl1f6rqEEGVa+jc2Nhbu7u5SAlmclJQUtGzZEtOnT8fIkSNf2OegQYOkn11dXWFlZYUWLVogKSkJ9vb20r6WLVuiYcOGWLduHbS1tYv0U6dOHelnCwsLqb9n69LS0kqMIzg4GKNHj5a2MzIyYGNj88L4iYiI6M1STHm1rykoKxHCr5YiAjid9ZUZGRnBwcEBdevWxfLly3Hs2DH88ssv0n4tLa0i7/zl5ua+kVgGDBiAtWvXIjs7GxEREejevftLL0QTHx+PatWqSdsKhaLU6zAwMHhhnxUrVkTDhg2xZs2al5oS2qhRIwAo8o5nmzZt8Oeff+LixYvFHleuXDnp58LE+Pm64qbdFtLT04NSqVQrRERERHJcv34d/fr1g7W1NXR1dWFra4sRI0bg7t27mg7tvaNQKKSiUqng6emJqKgoTYf1QpGRkR/c19ExiXyNtLS08PXXX2PSpEnIzs4G8DRxunXrltQmIyMD165dk7ZdXFxw/fp1tTZHjx5V69fFxQVnz57F48ePS2wDAK1bt4aRkREWL16MXbt2oV+/fi91HZcuXcKuXbvURlSfv44rV66ovZ9Yp04dxMbG4t69eyX2a2BggG3btkFfXx/+/v54+PBhmeIq/I5JKysrtfpZs2YhKCgILVq0KDGRJCIiInrbrl69Cg8PD1y5cgVr1qxBYmIilixZgv3796Nx48alfm560wpXvX1Wfn5+qf9j/V0QERGBW7duISYmBhUqVEDbtm1x9erVl+qruHtA8jCJfM26du0KbW1tLFq0CADQvHlzrFy5EocOHcK5c+cQFBSkNuXSz88PTk5OCAoKQlxcHA4dOoSJEyeq9dmzZ08oFAoMHDgQFy9exI4dO4p911FbWxt9+vRBcHAwHB0di0x5LU5eXh5SU1Nx8+ZNnDt3Dj/++CO8vb3h5uaGcePGSe2aN2+OhQsX4syZMzh58iS++OILtdG8Hj16wNLSEh07dkRMTAyuXr2K33//HX/99Zfa+YyMjLB9+3bo6OigVatWyMzMLDaupKQkTJs2DadOnUJycjK2bNmC3r17o1mzZmrTUwvNnTsXgYGBaN68OS5duvTC6yYiIiJ604YOHQpdXV3s2bMH3t7eqFq1Klq1aoV9+/bhxo0bap/5cnJyMH78eNjY2EBPTw8ODg5qs9suXLiAtm3bQqlUwsTEBF5eXkhKSgLw9Lu1n39VqGPHjujTp4+0bWdnh2nTpqF3795QKpUYNGiQNEK2ZcsW1KxZE3p6ekhJSUFOTg7Gjh2LypUrw8jICI0aNUJ0dLTUV+Fxu3fvhouLC4yNjREQEKA24AAAy5cvR61ataCnpwcrKysMGzZM2vfgwQMMGDAAFStWhFKpRPPmzREXF/fCe2pqagpLS0vUrl0bixcvRnZ2tvTNBufPn0erVq1gbGwMCwsL9OrVC//++690rI+PD4YNG4aRI0eiQoUK0poZpd1bAAgPD4eLiwv09fVRo0YN/PTTT9K+wm8D2LhxI3x9fWFoaIi6detKn4Gjo6PRt29fpKenS6Oohd/SsHLlSnh4eMDExASWlpbo2bNnkVestmzZAkdHR+jr68PX1xcrVqyAQqHAgwcPpDaHDx+WvonAxsYGw4cPR1ZW1gvv5atgEvma6ejoYNiwYZg9ezaysrIQHBwMb29vtG3bFm3atEHHjh3V3ufT0tLCpk2bkJ2djYYNG2LAgAGYPn26Wp/GxsbYunUrzp07B3d3d0ycOLHE76Hs378/njx5gr59+8qK98KFC7CyskLVqlXh4+OD9evXIzg4GIcOHVL7PqZ58+bBxsYGXl5e6NmzJ8aOHas2VbbwH8hKlSqhdevWcHV1xaxZs4p9R9HY2Bg7d+6EEAJt2rQp9iHX1dXFvn378Omnn6JGjRoYM2YMPvvsM2zdurXEa5k/fz66deuG5s2b4/Lly7Ku/5WkpwNCsGiyEBERvaPu3buH3bt3Y8iQIUVe+7G0tERgYCDWrVsnvS7Uu3dvrFmzBj/88APi4+OxdOlStS+Hb9asGfT09BAVFYVTp06hX79+yMvLK1NMc+fORd26dXHmzBl88803AJ5+Rdp3332H8PBwXLhwAZUqVcKwYcPw119/Ye3atTh79iy6du2KgIAAXLlyRerr0aNHmDt3LlauXIk///wTKSkpat8esHjxYgwdOhSDBg3CuXPnsGXLFrVFF7t27Yq0tDTs3LkTp06dQr169dCiRYsyjc4W3tcnT57gwYMHaN68Odzd3XHy5Ens2rULt2/fRrdu3dSOWbFiBXR1dRETE4MlS5a88N6uWrUKkydPxvTp0xEfH48ZM2bgm2++wYoVK9T6nThxIsaOHYvY2Fg4OTmhR48eyMvLQ5MmTRAWFgalUolbt27h1q1b0n3Kzc3FtGnTEBcXh82bNyM5OVkt8b927Rq6dOmCjh07Ii4uDoMHDy4y2JSUlISAgAB89tlnOHv2LNatW4fDhw+rJexvhKAPyp9//inKlSsnUlNTNR3KBys9PV0AEOnp6ZoOhYiI6IOXlZUlTp48KbKysorsQyjeaimLo0ePCgBi06ZNxe7//vvvBQBx+/ZtkZCQIACIvXv3Fts2ODhYVKtWTTx58qTY/d7e3mLEiBFqdR06dBBBQUHStq2trejYsaNam4iICAFAxMbGSnV///230NbWFjdu3FBr26JFCxEcHKx2XGJiorR/0aJFwsLCQtq2trYWEydOLDbeQ4cOCaVSKR4/fqxWb29vL5YuXVrsMUIItfuZlZUlhgwZIrS1tUVcXJyYNm2a+PTTT9XaX79+XQAQCQkJQoin98nd3V2tzYvurb29vVi9erVa3bRp00Tjxo2FEEJcu3ZNABDh4eHS/gsXLggAIj4+Xgjx9H6pVKoSr6vQiRMnBADx8OFDIYQQ48ePF7Vr11ZrM3HiRAFA3L9/XwghRP/+/cWgQYPU2hw6dEhoaWmJ7OzsIuco7e+pLJ9xuTrrByInJwd37txBaGgounbtKq1CSkRERESaI2TMnImNjYW2tja8vb1L3O/l5aX2KtHL8PDwKFKnq6ur9qrQuXPnkJ+fDycnJ7V2OTk5MDc3l7YNDQ3VZtdZWVlJUzHT0tJw8+ZNtGjRotg44uLikJmZqdYfAGRnZ6tNIy1Ojx49oK2tjezsbFSsWBG//PIL6tSpg2nTpuHAgQNqM+kKJSUlSddTv359tX2l3dusrCwkJSWhf//+GDhwoFSfl5cHlUql1vbZe1i4fkdaWhpq1KhR4rUUfv97XFwc7t+/L72PmpKSgpo1ayIhIQENGjRQO6Zhw4Zq23FxcTh79ixWrVol1QkhUFBQgGvXrsHFxaXE878KJpEfiDVr1qB///5wc3PDr7/+qulwiIiIiD5qDg4OUCgUiI+PR6dOnYrsj4+PR/ny5VGxYsUXrnL/ov1yvw3AyMio2L6f/Vq3zMxMaGtr49SpU0VeS3o2QXs+6Xp2Jf8XxZuZmQkrKyu19ywLvWgV0/nz58PPzw8qlQoVK1ZU67Ndu3bFvvL17KKMz9+D0mItXLtj2bJl0rcEFHr+3hT3bQClLVKUlZUFf39/+Pv7Y9WqVahYsSJSUlLg7+9fpgV/MjMzMXjwYAwfPrzIvqpVq8rup6yYRH4g+vTpozaHmoiIiIg0x9zcHC1btsRPP/2EUaNGqSUrqampWLVqFXr37g2FQgFXV1cUFBTg4MGD8PPzK9JXnTp1sGLFCuTm5hY7Yvb8Kvr5+fk4f/48fH19yxy3u7s78vPzkZaWBi8vrzIfDwAmJiaws7PD/v37i42hXr16SE1NhY6ODuzs7MrUt6Wlpdq7lc/2+fvvv8POzg46OvJTnNLurYWFBaytrXH16lUEBgaWKc5n6erqIj8/X63u0qVLuHv3LmbNmiV9//jJkyfV2jg7O2PHjh1qdSdOnFDbrlevHi5evFjsPXmTuLAOEREREdEbsHDhQuTk5MDf3x9//vknrl+/jl27dqFly5aoXLmytJiinZ0dgoKC0K9fP2zevBnXrl1DdHQ01q9fDwAYNmwYMjIy8Pnnn+PkyZO4cuUKVq5ciYSEBABPV9Hfvn07tm/fjkuXLuG///2v2uqdZeHk5ITAwED07t0bGzduxLVr13D8+HHMnDkT27dvl91PaGgo5s2bhx9++AFXrlzB6dOn8eOPPwJ4+u0EjRs3RseOHbFnzx4kJyfjyJEjmDhxYpFESq6hQ4fi3r176NGjB06cOIGkpCTs3r0bffv2LZLAPetF93bKlCmYOXMmfvjhB1y+fBnnzp1DREQEvv/+e9mx2dnZITMzE/v378e///6LR48eoWrVqtDV1cWPP/6Iq1evYsuWLZg2bZracYMHD8alS5cwfvx4XL58GevXr0dkZCSA/xvtHD9+PI4cOYJhw4YhNjYWV65cwR9//MGFdYjeNVxYh4iI6O0pbSGQ90FycrIICgoSFhYWoly5csLGxkZ8+eWX4t9//1Vrl52dLUaNGiWsrKyErq6ucHBwEMuXL5f2x8XFiU8//VQYGhoKExMT4eXlJZKSkoQQQjx58kT897//FWZmZqJSpUpi5syZxS6sM3/+fLVzlrTgy5MnT8TkyZOFnZ2dKFeunLCyshKdOnUSZ8+eLfG4TZs2iedTiyVLlghnZ2epjy+//FLal5GRIb788kthbW0t3ZfAwECRkpJS4r1EKQsVCSHE5cuXRadOnYSpqakwMDAQNWrUECNHjhQFBQVCiOIXIBKi9HsrhBCrVq0Sbm5uQldXV5QvX140a9ZMbNy4UQjxfwvrnDlzRmp///59AUAcOHBAqvviiy+Eubm5ACBCQkKEEEKsXr1a2NnZCT09PdG4cWOxZcuWIn398ccfwsHBQejp6QkfHx+xePFiAUBt0Zzjx4+Lli1bCmNjY2FkZCTq1Kkjpk+fXuw9el0L6yiE4Dr5RGWRkZEBlUqF9PR0KJVKTYdDRET0QXv06BHi4+Ph4uKi9vViRB+j6dOnY8mSJbh+/fpLHV/a31NZPuPynUgiIiIiIqJ30E8//YQGDRrA3NwcMTExmDNnzpufqioDk0giIiIiIqJ30JUrV/Dtt9/i3r17qFq1KsaMGYPg4GBNh8UkkoiIiIiI6F00f/58zJ8/X9NhFMEkkuglqWaqAP2S94sQvm5MRERERB8efsUHERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxcnZWIiIiI3ksKxds9n+DC60QAOBJJRERERPRG9OnTBwqFokhJTEzEn3/+iXbt2sHa2hoKhQKbN2+W1WdcXBzat2+PSpUqQV9fH3Z2dujevTvS0tLe7MUQPYNJJBERERHRGxIQEIBbt26plWrVqiErKwt169bFokWLZPd1584dtGjRAmZmZti9ezfi4+MREREBa2trZGVlvbFryM3NfWN90/uJSSQRERER0Ruip6cHS0tLtaKtrY1WrVrh22+/RadOnWT3FRMTg/T0dISHh8Pd3R3VqlWDr68v5s+fj2rVqkntLly4gLZt20KpVMLExAReXl5ISkoCABQUFGDq1KmoUqUK9PT04Obmhl27dknHJicnQ6FQYN26dfD29oa+vj5WrVoFAAgPD4eLiwv09fVRo0YN/PTTT6/pLtH7hu9EEr2k9OB0KJVKTYdBREREHwlLS0vk5eVh06ZN6NKlCxTFvBR648YNNGvWDD4+PoiKioJSqURMTAzy8vIAAAsWLMC8efOwdOlSuLu7Y/ny5Wjfvj0uXLgAR0dHqZ8JEyZg3rx5cHd3lxLJyZMnY+HChXB3d8eZM2cwcOBAGBkZISgo6K3dA3o3MIkkIiIiInpDtm3bBmNjY2m7VatW+O23316qr08++QRff/01evbsiS+++AINGzZE8+bN0bt3b1hYWAAAFi1aBJVKhbVr16JcuXIAACcnJ6mPuXPnYvz48fj8888BAN999x0OHDiAsLAwtam1I0eOROfOnaXtkJAQzJs3T6qrVq0aLl68iKVLlzKJ/AhxOisRERER0Rvi6+uL2NhYqfzwww+yjpsxYwaMjY2lkpKSAgCYPn06UlNTsWTJEtSqVQtLlixBjRo1cO7cOQBAbGwsvLy8pATyWRkZGbh58yY8PT3V6j09PREfH69W5+HhIf2clZWFpKQk9O/fXy2mb7/9VpomSx8XjkQSEREREb0hRkZGcHBwKPNxX3zxBbp16yZtW1tbSz+bm5uja9eu6Nq1K2bMmAF3d3fMnTsXK1asgIGBwWuLu1BmZiYAYNmyZWjUqJFaO21t7ddyPnq/MIkkIiIiInrHmJmZwczM7IXtdHV1YW9vL63OWqdOHaxYsQK5ublFRiOVSiWsra0RExMDb29vqT4mJgYNGzYs8RwWFhawtrbG1atXERgY+JJXRB8SJpFERERERG9ZZmYmEhMTpe1r164hNjYWZmZmqFq1arHHbNu2DWvXrsXnn38OJycnCCGwdetW7NixAxEREQCAYcOG4ccff8Tnn3+O4OBgqFQqHD16FA0bNoSzszPGjRuHkJAQ2Nvbw83NDREREYiNjZVWYC3JlClTMHz4cKhUKgQEBCAnJwcnT57E/fv3MXr06Nd3Y+i9wCSSiIiIiN5LQmg6gpd38uRJ+Pr6StuFiVhQUBAiIyOLPaZmzZowNDTEmDFjcP36dejp6cHR0RHh4eHo1asXgKdTXaOiojBu3Dh4e3tDW1sbbm5u0nuQw4cPR3p6OsaMGYO0tDTUrFkTW7ZsUVuZtTgDBgyAoaEh5syZg3HjxsHIyAiurq4YOXLkq98Meu8ohHif//yI3r6MjAyoVCqkp/MrPoiIiN60R48eIT4+Hi4uLjA0NNR0OETvtdL+nsryGZersxIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiOj9pFC83UIv5e7du6hUqRKSk5M1HcpLW7JkCdq1a6fpMN4ZTCKJiIiIiN6APn36QKFQFCmJiYkAgD///BPt2rWDtbU1FAoFNm/eLKvfuLg4tG/fHpUqVYK+vj7s7OzQvXt3pKWlvcGreXnTp09Hhw4dYGdnJ9Vt2rQJn3zyCVQqFUxMTFCrVi2MHDnyjccSGhoKNze3Mh/Xr18/nD59GocOHXr9Qb2HmEQSEREREb0hAQEBuHXrllqpVq0aACArKwt169bFokWLZPd3584dtGjRAmZmZti9ezfi4+MREREBa2trZGVlvanLQG5u7ksd9+jRI/zyyy/o37+/VLd//350794dn332GY4fP45Tp05h+vTpL32Ot0FXVxc9e/bEDz/8oOlQ3glMIomIiIiI3hA9PT1YWlqqFW1tbQBAq1at8O2336JTp06y+4uJiUF6ejrCw8Ph7u6OatWqwdfXF/Pnz5eSUwC4cOEC2rZtC6VSCRMTE3h5eSEpKQkAUFBQgKlTp6JKlSrQ09ODm5sbdu3aJR2bnJwMhUKBdevWwdvbG/r6+li1ahUAIDw8HC4uLtDX10eNGjXw008/lRrvjh07oKenh08++USq27p1Kzw9PTFu3Dg4OzvDyckJHTt2VEumC0cMly9fjqpVq8LY2BhDhgxBfn4+Zs+eDUtLS1SqVAnTp09XO19KSgo6dOgAY2NjKJVKdOvWDbdv3wYAREZGYsqUKYiLi5NGhSMjIwEADx48wIABA1CxYkUolUo0b94ccXFxan23a9cOW7ZsQXZ2ttxf1weLSSQRERER0XvC0tISeXl52LRpE4QQxba5ceMGmjVrBj09PURFReHUqVPo168f8vLyAAALFizAvHnzMHfuXJw9exb+/v5o3749rly5otbPhAkTMGLECMTHx8Pf3x+rVq3C5MmTMX36dMTHx2PGjBn45ptvsGLFihLjPXToEOrXr1/kGi5cuIDz58+Xeq1JSUnYuXMndu3ahTVr1uCXX35BmzZt8M8//+DgwYP47rvvMGnSJBw7dgzA0+S4Q4cOuHfvHg4ePIi9e/fi6tWr6N69OwCge/fuGDNmDGrVqiWNChfu69q1K9LS0rBz506cOnUK9erVQ4sWLXDv3j0pHg8PD+Tl5Unn+6gJIiqT9PR0AUCkp6drOhQiIqIPXlZWljh58qTIysoquhN4u6WMgoKChLa2tjAyMpJKly5dim0LQGzatElWv19//bXQ0dERZmZmIiAgQMyePVukpqZK+4ODg0W1atXEkydPij3e2tpaTJ8+Xa2uQYMGYsiQIUIIIa5duyYAiLCwMLU29vb2YvXq1Wp106ZNE40bNy4x1g4dOoh+/fqp1WVmZorWrVsLAMLW1lZ0795d/PLLL+Lx48dSm5CQEGFoaCgyMjKkOn9/f2FnZyfy8/OlOmdnZzFz5kwhhBB79uwR2traIiUlRdp/4cIFAUAcP35c6rdu3bpq8Rw6dEgolUq18xde79KlS9XqypcvLyIjI0u83nddaX9PZfmMy5FIIiIiIqI3xNfXF7GxsVIpyzt1M2bMgLGxsVRSUlIAPF2oJjU1FUuWLEGtWrWwZMkS1KhRA+fOnQMAxMbGwsvLC+XKlSvSZ0ZGBm7evAlPT0+1ek9PT8THx6vVeXh4SD9nZWUhKSkJ/fv3V4vp22+/labJFic7Oxv6+vpqdUZGRti+fTsSExMxadIkGBsbY8yYMWjYsCEePXoktbOzs4OJiYm0bWFhgZo1a0JLS0utrnBBofj4eNjY2MDGxkbaX7NmTZiamha5tmfFxcUhMzMT5ubmatd27dq1ItdmYGCgFuPHSkfTARARERERfaiMjIzg4ODwUsd+8cUX6Natm7RtbW0t/Wxubo6uXbuia9eumDFjBtzd3TF37lysWLECBgYGrxw38DT2QpmZmQCAZcuWoVGjRmrtCt/xLE6FChVw//79YvfZ29vD3t4eAwYMwMSJE+Hk5IR169ahb9++AFAkCVYoFMXWFRQUyL+oYmRmZsLKygrR0dFF9pmamqpt37t3DxUrVnyl830ImEQSEREREb2DzMzMYGZm9sJ2urq6sLe3l1ZnrVOnDlasWIHc3NwiSZdSqYS1tTViYmLg7e0t1cfExKBhw4YlnsPCwgLW1ta4evUqAgMDZV+Du7s7/ve//72wnZ2dHQwNDV9phVkXFxdcv34d169fl0YjL168iAcPHqBmzZoAnt6r/Px8tePq1auH1NRU6OjoqH0NyfOSkpLw+PFjuLu7v3SMHwomkUREREREGpCZmSl9ZyQAXLt2DbGxsTAzM0PVqlWLPWbbtm1Yu3YtPv/8czg5OUEIga1bt2LHjh2IiIgAAAwbNgw//vgjPv/8cwQHB0OlUuHo0aNo2LAhnJ2dMW7cOISEhMDe3h5ubm6IiIhAbGystAJrSaZMmYLhw4dDpVIhICAAOTk5OHnyJO7fv4/Ro0cXe4y/vz+Cg4Nx//59lC9fHsDTlVcfPXqE1q1bw9bWFg8ePMAPP/yA3NxctGzZ8mVuJQDAz88Prq6uCAwMRFhYGPLy8jBkyBB4e3tLU3Pt7Oyk+1ylShWYmJjAz88PjRs3RseOHTF79mw4OTnh5s2b2L59Ozp16iQde+jQIVSvXh329vYvHeOHgu9EEhEREdH76W0vrfOanTx5Eu7u7tLI1ujRo+Hu7o7JkyeXeEzNmjVhaGiIMWPGwM3NDZ988gnWr1+P8PBw9OrVC8DTqa5RUVHIzMyEt7c36tevj2XLlkmjksOHD8fo0aMxZswYuLq6YteuXdiyZQscHR1LjXfAgAEIDw9HREQEXF1d4e3tjcjISLWvFnmeq6sr6tWrh/Xr10t13t7euHr1Knr37o0aNWqgVatWSE1NxZ49e+Ds7Cz7/j1PoVDgjz/+QPny5dGsWTP4+fmhevXqWLdundTms88+Q0BAAHx9fVGxYkWsWbMGCoUCO3bsQLNmzdC3b184OTnh888/x99//w0LCwvp2DVr1mDgwIEvHd+HRCHEG/iLIPqAZWRkQKVSIT09HUqlUtPhEBERfdAePXqE+Ph4uLi4wNDQUNPh0EvYvn07xo0bh/Pnz6stivM+uXDhApo3b47Lly9DpVJpOpyXVtrfU1k+43I6KxERERERvTFt2rTBlStXcOPGDbWVU98nt27dwq+//vpeJ5CvE5NIIiIiIiJ6o0aOHKnpEF6Jn5+fpkN4p7yf48lERERERESkEUwiiYiIiIiISDYmkURERET0znvVL5Qnov/7O1IoFK/UD9+JJCIiIqJ3lr6+PrS0tHDt2jVUrlwZenp6r/wBmOhjI4RATk4Obty4AS0tLejp6b1Sf0wiiYiIiOidpaWlhZo1ayI5ORnXrl3TdDhE7zVjY2M4OTm98letMIkkIiIioneanp4enJyckJubi7y8PE2HQ/Re0tHRQbly5V7LSD6TSCIiIiJ65ykUCujq6kJXV1fToRB99LiwDhEREREREcnGJJKIiIiIiIhkYxJJREREREREsvGdSKIyEkIAADIyMjQcCRERERHR61H42bbws25pmEQSldHdu3cBADY2NhqOhIiIiIjo9Xr48CFUKlWpbZhEEpWRmZkZACAlJeWFf2BEwNP/s2djY4Pr169DqVRqOhx6D/CZoZfB54bKis8MPUsIgYcPH8La2vqFbZlEEpVR4ZezqlQq/oNLZaJUKvnMUJnwmaGXweeGyorPDBWSO0DChXWIiIiIiIhINiaRREREREREJBuTSKIy0tPTQ0hICPT09DQdCr0n+MxQWfGZoZfB54bKis8MvSyFkLOGKxERERERERE4EklERERERERlwCSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYqxaNEi2NnZQV9fH40aNcLx48dLbf/bb7+hRo0a0NfXh6urK3bs2PGWIqV3RVmemWXLlsHLywvly5dH+fLl4efn98JnjD48Zf13ptDatWuhUCjQsWPHNxsgvZPK+tw8ePAAQ4cOhZWVFfT09ODk5MT/Rn1kyvrMhIWFwdnZGQYGBrCxscGoUaPw+PHjtxQtvS+YRBI9Z926dRg9ejRCQkJw+vRp1K1bF/7+/khLSyu2/ZEjR9CjRw/0798fZ86cQceOHdGxY0ecP3/+LUdOmlLWZyY6Oho9evTAgQMH8Ndff8HGxgaffvopbty48ZYjJ00p6zNTKDk5GWPHjoWXl9dbipTeJWV9bp48eYKWLVsiOTkZGzZsQEJCApYtW4bKlSu/5chJU8r6zKxevRoTJkxASEgI4uPj8csvv2DdunX4+uuv33Lk9M4TRKSmYcOGYujQodJ2fn6+sLa2FjNnziy2fbdu3USbNm3U6ho1aiQGDx78RuOkd0dZn5nn5eXlCRMTE7FixYo3FSK9Y17mmcnLyxNNmjQR4eHhIigoSHTo0OEtRErvkrI+N4sXLxbVq1cXT548eVsh0jumrM/M0KFDRfPmzdXqRo8eLTw9Pd9onPT+4Ugk0TOePHmCU6dOwc/PT6rT0tKCn58f/vrrr2KP+euvv9TaA4C/v3+J7enD8jLPzPMePXqE3NxcmJmZvakw6R3yss/M1KlTUalSJfTv3/9thEnvmJd5brZs2YLGjRtj6NChsLCwQO3atTFjxgzk5+e/rbBJg17mmWnSpAlOnTolTXm9evUqduzYgdatW7+VmOn9oaPpAIjeJf/++y/y8/NhYWGhVm9hYYFLly4Ve0xqamqx7VNTU99YnPTueJln5nnjx4+HtbV1kf8ZQR+ml3lmDh8+jF9++QWxsbFvIUJ6F73Mc3P16lVERUUhMDAQO3bsQGJiIoYMGYLc3FyEhIS8jbBJg17mmenZsyf+/fdfNG3aFEII5OXl4YsvvuB0ViqCI5FERBo0a9YsrF27Fps2bYK+vr6mw6F30MOHD9GrVy8sW7YMFSpU0HQ49B4pKChApUqV8PPPP6N+/fro3r07Jk6ciCVLlmg6NHpHRUdHY8aMGfjpp59w+vRpbNy4Edu3b8e0adM0HRq9YzgSSfSMChUqQFtbG7dv31arv337NiwtLYs9xtLSskzt6cPyMs9Moblz52LWrFnYt28f6tSp8ybDpHdIWZ+ZpKQkJCcno127dlJdQUEBAEBHRwcJCQmwt7d/s0GTxr3MvzVWVlYoV64ctLW1pToXFxekpqbiyZMn0NXVfaMxk2a9zDPzzTffoFevXhgwYAAAwNXVFVlZWRg0aBAmTpwILS2OP9FTfBKInqGrq4v69etj//79Ul1BQQH279+Pxo0bF3tM48aN1doDwN69e0tsTx+Wl3lmAGD27NmYNm0adu3aBQ8Pj7cRKr0jyvrM1KhRA+fOnUNsbKxU2rdvD19fX8TGxsLGxuZthk8a8jL/1nh6eiIxMVH6nw4AcPnyZVhZWTGB/Ai8zDPz6NGjIoli4f+EEEK8uWDp/aPplX2I3jVr164Venp6IjIyUly8eFEMGjRImJqaitTUVCGEEL169RITJkyQ2sfExAgdHR0xd+5cER8fL0JCQkS5cuXEuXPnNHUJ9JaV9ZmZNWuW0NXVFRs2bBC3bt2SysOHDzV1CfSWlfWZeR5XZ/04lfW5SUlJESYmJmLYsGEiISFBbNu2TVSqVEl8++23mroEesvK+syEhIQIExMTsWbNGnH16lWxZ88eYW9vL7p166apS6B3FKezEj2ne/fuuHPnDiZPnozU1FS4ublh165d0ovpKSkpav+XrkmTJli9ejUmTZqEr7/+Go6Ojti8eTNq166tqUugt6ysz8zixYvx5MkTdOnSRa2fkJAQhIaGvs3QSUPK+swQAWV/bmxsbLB7926MGjUKderUQeXKlTFixAiMHz9eU5dAb1lZn5lJkyZBoVBg0qRJuHHjBipWrIh27dph+vTpmroEekcphODYNBEREREREcnD/81JREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbP8PDepdrz8nUgAAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
LabelsPrecisionPrecision (Smote)RecallRecall (Smote)F1F1 (Smote)Occurrence CountPercentage
9Mute Swan 5km0.9152670.9389860.9653310.9129430.9396330.92578152670.661268
1Canada Goose 5km0.8963090.9119780.9488370.9348840.9218260.92328943050.540490
10Pheasant 5km0.8631070.8631580.9279750.9415450.8943660.90064938480.483114
16Rock Dove 5km0.7519480.7557840.8502200.8634360.7980700.80603228300.355304
7Little Owl 5km0.7745100.7851100.9312380.9115910.8456740.84363621580.270935
14Red-legged Partridge 5km0.7730500.7577850.8532290.8571430.8111630.80440821500.269931
19Wigeon 5km0.6257930.5804350.6477020.5842450.6365590.58233418570.233145
5Grey Partridge 5km0.6809820.6702410.8430380.6329110.7533940.65104216290.204520
3Gadwall 5km0.7436820.6709680.5802820.5859150.6518990.62556413990.175643
11Pink-footed Goose 5km0.7029700.5521980.4451410.6300940.5451060.58858013130.164846
13Pochard 5km0.5750000.4047620.2911390.2869200.3865550.3358029420.118267
18Whooper Swan 5km0.4693880.3574660.1105770.3798080.1789880.3682988420.105712
8Mandarin Duck 5km0.5147060.4237290.3804350.4076090.4375000.4155127140.089642
12Pintail 5km0.4310340.3333330.1666670.4000000.2403850.3636366490.081481
0Barnacle Goose 5km0.5227270.2450330.1554050.2500000.2395830.2474925870.073697
2Egyptian Goose 5km0.6022730.5688070.4076920.4769230.4862390.5188284850.060891
4Goshawk 5km0.3333330.3521130.0721650.2577320.1186440.2976194460.055995
6Indian Peafowl 5km0.0000000.1842110.0000000.0921050.0000000.1228072840.035656
15Ring-necked Parakeet 5km0.4651160.4444440.3508770.3508770.4000000.3921572060.025863
17Ruddy Duck 5km0.0000000.3000000.0000000.0909090.0000000.1395351090.013685
\n", "
" ], "text/plain": [ " Labels Precision Precision (Smote) Recall \\\n", "9 Mute Swan 5km 0.915267 0.938986 0.965331 \n", "1 Canada Goose 5km 0.896309 0.911978 0.948837 \n", "10 Pheasant 5km 0.863107 0.863158 0.927975 \n", "16 Rock Dove 5km 0.751948 0.755784 0.850220 \n", "7 Little Owl 5km 0.774510 0.785110 0.931238 \n", "14 Red-legged Partridge 5km 0.773050 0.757785 0.853229 \n", "19 Wigeon 5km 0.625793 0.580435 0.647702 \n", "5 Grey Partridge 5km 0.680982 0.670241 0.843038 \n", "3 Gadwall 5km 0.743682 0.670968 0.580282 \n", "11 Pink-footed Goose 5km 0.702970 0.552198 0.445141 \n", "13 Pochard 5km 0.575000 0.404762 0.291139 \n", "18 Whooper Swan 5km 0.469388 0.357466 0.110577 \n", "8 Mandarin Duck 5km 0.514706 0.423729 0.380435 \n", "12 Pintail 5km 0.431034 0.333333 0.166667 \n", "0 Barnacle Goose 5km 0.522727 0.245033 0.155405 \n", "2 Egyptian Goose 5km 0.602273 0.568807 0.407692 \n", "4 Goshawk 5km 0.333333 0.352113 0.072165 \n", "6 Indian Peafowl 5km 0.000000 0.184211 0.000000 \n", "15 Ring-necked Parakeet 5km 0.465116 0.444444 0.350877 \n", "17 Ruddy Duck 5km 0.000000 0.300000 0.000000 \n", "\n", " Recall (Smote) F1 F1 (Smote) Occurrence Count Percentage \n", "9 0.912943 0.939633 0.925781 5267 0.661268 \n", "1 0.934884 0.921826 0.923289 4305 0.540490 \n", "10 0.941545 0.894366 0.900649 3848 0.483114 \n", "16 0.863436 0.798070 0.806032 2830 0.355304 \n", "7 0.911591 0.845674 0.843636 2158 0.270935 \n", "14 0.857143 0.811163 0.804408 2150 0.269931 \n", "19 0.584245 0.636559 0.582334 1857 0.233145 \n", "5 0.632911 0.753394 0.651042 1629 0.204520 \n", "3 0.585915 0.651899 0.625564 1399 0.175643 \n", "11 0.630094 0.545106 0.588580 1313 0.164846 \n", "13 0.286920 0.386555 0.335802 942 0.118267 \n", "18 0.379808 0.178988 0.368298 842 0.105712 \n", "8 0.407609 0.437500 0.415512 714 0.089642 \n", "12 0.400000 0.240385 0.363636 649 0.081481 \n", "0 0.250000 0.239583 0.247492 587 0.073697 \n", "2 0.476923 0.486239 0.518828 485 0.060891 \n", "4 0.257732 0.118644 0.297619 446 0.055995 \n", "6 0.092105 0.000000 0.122807 284 0.035656 \n", "15 0.350877 0.400000 0.392157 206 0.025863 \n", "17 0.090909 0.000000 0.139535 109 0.013685 " ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Create graphs to show off data\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "plt.rcParams['figure.figsize'] = [9, 12]\n", "\n", "occurrence_count, occurrence_percentage = All_bird_occurrences['Occurrence Count'], All_bird_occurrences['Percentage']\n", "precision = []\n", "precision_smote = []\n", "recall = []\n", "recall_smote = []\n", "f1 = []\n", "f1_smote = []\n", "labels = []\n", "for dict in df_dicts:\n", " precision.append(dict['report']['1']['precision'])\n", " precision_smote.append(dict['report_smote']['1']['precision'])\n", " recall.append(dict['report']['1']['recall'])\n", " recall_smote.append(dict['report_smote']['1']['recall'])\n", " f1.append(dict['report']['1']['f1-score'])\n", " f1_smote.append(dict['report_smote']['1']['f1-score'])\n", " labels.append(dict['name'])\n", "\n", "\n", "\n", "scores = pd.DataFrame({'Labels' : labels, \n", " 'Precision': precision, 'Precision (Smote)': precision_smote, \n", " 'Recall': recall, 'Recall (Smote)': recall_smote, \n", " 'F1': f1, 'F1 (Smote)': f1_smote,\n", " 'Occurrence Count' : occurrence_count, 'Percentage' : occurrence_percentage} )\n", " \n", "scores.sort_values('Occurrence Count', inplace=True)\n", "\n", "n=20\n", "r = np.arange(n)\n", "height = 0.25\n", "\n", "plt.barh(r, 'Percentage', data=scores, label='Occurrence Percentage', height = height, color='g')\n", "plt.barh(r+height, 'F1', data=scores, label='F1-Score', height= height, color='b')\n", "plt.barh(r+height*2, 'F1 (Smote)', data=scores, label='F1-Score (Smote)', height = height, color='r')\n", "plt.legend(framealpha=1, frameon=True)\n", "plt.yticks(r+height*2, scores['Labels'])\n", "\n", "\n", "plt.show()\n", "\n", "\n", "scores.sort_values('Occurrence Count', ascending=False)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Stored 'df_dicts_5km' (list)\n" ] } ], "source": [ "# Store dictionaries for later use\n", "df_dicts_5km = df_dicts\n", "%store df_dicts_5km" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
842500.0367500.000
22500.0197500.001
27500.000
247500.0252500.000
737500.062500.000
............
862500.0567500.000
152500.0232500.000
1252500.0592500.000
1002500.0322500.000
192500.0167500.000
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "842500.0 367500.0 0 0\n", "22500.0 197500.0 0 1\n", " 27500.0 0 0\n", "247500.0 252500.0 0 0\n", "737500.0 62500.0 0 0\n", "... ... ...\n", "862500.0 567500.0 0 0\n", "152500.0 232500.0 0 0\n", "1252500.0 592500.0 0 0\n", "1002500.0 322500.0 0 0\n", "192500.0 167500.0 0 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
572500.0282500.011
32500.0162500.011
37500.0667500.000
182500.0367500.011
477500.0332500.011
............
592500.0122500.000
132500.0482500.011
1207500.0432500.000
772500.0297500.000
152500.0387500.011
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "572500.0 282500.0 1 1\n", "32500.0 162500.0 1 1\n", "37500.0 667500.0 0 0\n", "182500.0 367500.0 1 1\n", "477500.0 332500.0 1 1\n", "... ... ...\n", "592500.0 122500.0 0 0\n", "132500.0 482500.0 1 1\n", "1207500.0 432500.0 0 0\n", "772500.0 297500.0 0 0\n", "152500.0 387500.0 1 1\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
827500.027500.000
22500.0392500.000
262500.000
212500.0317500.000
727500.0312500.000
............
847500.082500.000
142500.0512500.011
1252500.0512500.000
1002500.0337500.000
167500.017500.000
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "827500.0 27500.0 0 0\n", "22500.0 392500.0 0 0\n", " 262500.0 0 0\n", "212500.0 317500.0 0 0\n", "727500.0 312500.0 0 0\n", "... ... ...\n", "847500.0 82500.0 0 0\n", "142500.0 512500.0 1 1\n", "1252500.0 512500.0 0 0\n", "1002500.0 337500.0 0 0\n", "167500.0 17500.0 0 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
787500.087500.000
22500.02500.000
27500.0562500.000
217500.0457500.011
682500.0387500.000
............
812500.0382500.000
142500.0342500.011
1242500.0372500.000
972500.0182500.000
177500.0587500.010
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "787500.0 87500.0 0 0\n", "22500.0 2500.0 0 0\n", "27500.0 562500.0 0 0\n", "217500.0 457500.0 1 1\n", "682500.0 387500.0 0 0\n", "... ... ...\n", "812500.0 382500.0 0 0\n", "142500.0 342500.0 1 1\n", "1242500.0 372500.0 0 0\n", "972500.0 182500.0 0 0\n", "177500.0 587500.0 1 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
822500.0422500.000
22500.0647500.000
547500.000
232500.0392500.000
727500.0507500.000
............
837500.062500.000
142500.0447500.000
1247500.0517500.000
987500.0287500.000
182500.0672500.000
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "822500.0 422500.0 0 0\n", "22500.0 647500.0 0 0\n", " 547500.0 0 0\n", "232500.0 392500.0 0 0\n", "727500.0 507500.0 0 0\n", "... ... ...\n", "837500.0 62500.0 0 0\n", "142500.0 447500.0 0 0\n", "1247500.0 517500.0 0 0\n", "987500.0 287500.0 0 0\n", "182500.0 672500.0 0 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
767500.0547500.000
27500.0627500.000
507500.000
222500.0412500.000
662500.0517500.000
............
787500.0567500.000
147500.0522500.010
1242500.092500.000
957500.0387500.000
177500.0557500.010
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "767500.0 547500.0 0 0\n", "27500.0 627500.0 0 0\n", " 507500.0 0 0\n", "222500.0 412500.0 0 0\n", "662500.0 517500.0 0 0\n", "... ... ...\n", "787500.0 567500.0 0 0\n", "147500.0 522500.0 1 0\n", "1242500.0 92500.0 0 0\n", "957500.0 387500.0 0 0\n", "177500.0 557500.0 1 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
827500.087500.000
22500.047500.000
27500.0567500.000
227500.0152500.000
732500.0562500.000
............
852500.0692500.000
142500.0577500.001
1252500.0597500.000
997500.0562500.000
177500.0557500.000
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "827500.0 87500.0 0 0\n", "22500.0 47500.0 0 0\n", "27500.0 567500.0 0 0\n", "227500.0 152500.0 0 0\n", "732500.0 562500.0 0 0\n", "... ... ...\n", "852500.0 692500.0 0 0\n", "142500.0 577500.0 0 1\n", "1252500.0 597500.0 0 0\n", "997500.0 562500.0 0 0\n", "177500.0 557500.0 0 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
722500.0412500.000
27500.0267500.000
62500.000
197500.097500.000
602500.0512500.000
............
747500.0412500.000
137500.0152500.000
1242500.0692500.000
932500.0162500.000
162500.0537500.010
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "722500.0 412500.0 0 0\n", "27500.0 267500.0 0 0\n", " 62500.0 0 0\n", "197500.0 97500.0 0 0\n", "602500.0 512500.0 0 0\n", "... ... ...\n", "747500.0 412500.0 0 0\n", "137500.0 152500.0 0 0\n", "1242500.0 692500.0 0 0\n", "932500.0 162500.0 0 0\n", "162500.0 537500.0 1 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
822500.092500.000
22500.0217500.000
137500.000
212500.0292500.001
717500.0197500.000
............
842500.0372500.000
137500.0392500.010
1247500.087500.000
997500.0362500.000
172500.0532500.000
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "822500.0 92500.0 0 0\n", "22500.0 217500.0 0 0\n", " 137500.0 0 0\n", "212500.0 292500.0 0 1\n", "717500.0 197500.0 0 0\n", "... ... ...\n", "842500.0 372500.0 0 0\n", "137500.0 392500.0 1 0\n", "1247500.0 87500.0 0 0\n", "997500.0 362500.0 0 0\n", "172500.0 532500.0 0 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
582500.0287500.011
42500.0192500.001
72500.000
192500.0557500.011
487500.0317500.011
............
607500.0422500.011
137500.0302500.011
1192500.0637500.000
737500.0417500.000
162500.0482500.011
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "582500.0 287500.0 1 1\n", "42500.0 192500.0 0 1\n", " 72500.0 0 0\n", "192500.0 557500.0 1 1\n", "487500.0 317500.0 1 1\n", "... ... ...\n", "607500.0 422500.0 1 1\n", "137500.0 302500.0 1 1\n", "1192500.0 637500.0 0 0\n", "737500.0 417500.0 0 0\n", "162500.0 482500.0 1 1\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
642500.0327500.011
32500.0142500.001
37500.0577500.000
192500.0352500.011
537500.087500.010
............
662500.0347500.001
137500.0512500.011
1217500.0402500.000
837500.0182500.011
157500.0212500.000
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "642500.0 327500.0 1 1\n", "32500.0 142500.0 0 1\n", "37500.0 577500.0 0 0\n", "192500.0 352500.0 1 1\n", "537500.0 87500.0 1 0\n", "... ... ...\n", "662500.0 347500.0 0 1\n", "137500.0 512500.0 1 1\n", "1217500.0 402500.0 0 0\n", "837500.0 182500.0 1 1\n", "157500.0 212500.0 0 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
817500.0352500.011
22500.037500.000
27500.0642500.000
272500.0297500.000
722500.0327500.011
............
837500.0372500.011
162500.067500.000
1242500.0212500.000
972500.0452500.000
212500.0597500.011
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "817500.0 352500.0 1 1\n", "22500.0 37500.0 0 0\n", "27500.0 642500.0 0 0\n", "272500.0 297500.0 0 0\n", "722500.0 327500.0 1 1\n", "... ... ...\n", "837500.0 372500.0 1 1\n", "162500.0 67500.0 0 0\n", "1242500.0 212500.0 0 0\n", "972500.0 452500.0 0 0\n", "212500.0 597500.0 1 1\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
837500.0152500.001
22500.0367500.000
222500.000
237500.0217500.001
722500.0332500.010
............
857500.0267500.010
147500.0287500.011
1252500.0152500.000
1012500.092500.000
187500.0572500.001
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "837500.0 152500.0 0 1\n", "22500.0 367500.0 0 0\n", " 222500.0 0 0\n", "237500.0 217500.0 0 1\n", "722500.0 332500.0 1 0\n", "... ... ...\n", "857500.0 267500.0 1 0\n", "147500.0 287500.0 1 1\n", "1252500.0 152500.0 0 0\n", "1012500.0 92500.0 0 0\n", "187500.0 572500.0 0 1\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
807500.0247500.000
17500.027500.000
22500.0507500.000
222500.032500.000
707500.0677500.000
............
827500.0362500.000
142500.0302500.001
1242500.0242500.000
982500.0582500.000
177500.0462500.010
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "807500.0 247500.0 0 0\n", "17500.0 27500.0 0 0\n", "22500.0 507500.0 0 0\n", "222500.0 32500.0 0 0\n", "707500.0 677500.0 0 0\n", "... ... ...\n", "827500.0 362500.0 0 0\n", "142500.0 302500.0 0 1\n", "1242500.0 242500.0 0 0\n", "982500.0 582500.0 0 0\n", "177500.0 462500.0 1 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
747500.0162500.000
32500.0612500.000
482500.000
207500.0202500.000
627500.0272500.000
............
772500.0292500.000
142500.0532500.011
1242500.0452500.000
937500.0542500.000
167500.0307500.000
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "747500.0 162500.0 0 0\n", "32500.0 612500.0 0 0\n", " 482500.0 0 0\n", "207500.0 202500.0 0 0\n", "627500.0 272500.0 0 0\n", "... ... ...\n", "772500.0 292500.0 0 0\n", "142500.0 532500.0 1 1\n", "1242500.0 452500.0 0 0\n", "937500.0 542500.0 0 0\n", "167500.0 307500.0 0 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
857500.0647500.000
22500.0632500.000
562500.000
227500.0442500.000
752500.0517500.000
............
872500.0267500.000
147500.0322500.000
1252500.0547500.000
1017500.0362500.000
177500.037500.000
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "857500.0 647500.0 0 0\n", "22500.0 632500.0 0 0\n", " 562500.0 0 0\n", "227500.0 442500.0 0 0\n", "752500.0 517500.0 0 0\n", "... ... ...\n", "872500.0 267500.0 0 0\n", "147500.0 322500.0 0 0\n", "1252500.0 547500.0 0 0\n", "1017500.0 362500.0 0 0\n", "177500.0 37500.0 0 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
712500.0332500.010
27500.0437500.000
137500.001
197500.0447500.011
607500.0247500.000
............
732500.0332500.001
142500.0692500.000
1232500.0552500.000
902500.0302500.000
167500.0562500.011
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "712500.0 332500.0 1 0\n", "27500.0 437500.0 0 0\n", " 137500.0 0 1\n", "197500.0 447500.0 1 1\n", "607500.0 247500.0 0 0\n", "... ... ...\n", "732500.0 332500.0 0 1\n", "142500.0 692500.0 0 0\n", "1232500.0 552500.0 0 0\n", "902500.0 302500.0 0 0\n", "167500.0 562500.0 1 1\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
857500.0512500.000
22500.0587500.000
447500.000
237500.0512500.000
752500.077500.000
............
872500.0512500.000
142500.0167500.000
1252500.0422500.000
1007500.072500.000
182500.0142500.000
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "857500.0 512500.0 0 0\n", "22500.0 587500.0 0 0\n", " 447500.0 0 0\n", "237500.0 512500.0 0 0\n", "752500.0 77500.0 0 0\n", "... ... ...\n", "872500.0 512500.0 0 0\n", "142500.0 167500.0 0 0\n", "1252500.0 422500.0 0 0\n", "1007500.0 72500.0 0 0\n", "182500.0 142500.0 0 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
847500.0507500.000
27500.0597500.000
472500.000
267500.0387500.000
742500.0197500.000
............
862500.0607500.000
162500.0447500.000
1247500.087500.000
1002500.0462500.000
202500.0237500.000
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "847500.0 507500.0 0 0\n", "27500.0 597500.0 0 0\n", " 472500.0 0 0\n", "267500.0 387500.0 0 0\n", "742500.0 197500.0 0 0\n", "... ... ...\n", "862500.0 607500.0 0 0\n", "162500.0 447500.0 0 0\n", "1247500.0 87500.0 0 0\n", "1002500.0 462500.0 0 0\n", "202500.0 237500.0 0 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
787500.097500.000
27500.0167500.000
107500.000
232500.0602500.010
687500.072500.000
............
807500.0192500.011
147500.0602500.001
1237500.0332500.000
957500.0122500.000
182500.0582500.010
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "787500.0 97500.0 0 0\n", "27500.0 167500.0 0 0\n", " 107500.0 0 0\n", "232500.0 602500.0 1 0\n", "687500.0 72500.0 0 0\n", "... ... ...\n", "807500.0 192500.0 1 1\n", "147500.0 602500.0 0 1\n", "1237500.0 332500.0 0 0\n", "957500.0 122500.0 0 0\n", "182500.0 582500.0 1 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Export predictions to CSV for QGIS\n", "RESULTS_PATH = 'Datasets/Machine Learning/Results/5km/'\n", "for dict in df_dicts:\n", " # Join with y_test datafram\n", " result_df = dict['y_test'] \n", " result_df['Predictions'] = dict['predictions_smote']\n", " display(result_df)\n", " result_df.to_csv(RESULTS_PATH + dict['name'] + '.csv')\n", " " ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
251227.9490772.545634e-250Inflowing drainage direction
231020.7488207.391612e-211Surface type
21983.0532441.401801e-203Elevation
26511.4434168.364957e-110Fertiliser K
27511.4434168.364957e-110Fertiliser N
28511.4434168.364957e-110Fertiliser P
3462.2922591.002663e-99Improve grassland
22360.9824119.334063e-79Cumulative catchment area
24322.5884119.713871e-71Outflowing drainage direction
2322.2618981.136958e-70Arable
17293.1806161.430076e-64Littoral sediment
29292.8964021.640917e-64Chlorothalonil_5km
30292.8964021.640917e-64Glyphosate_5km
31292.8964021.640917e-64Mancozeb_5km
32292.8964021.640917e-64Mecoprop-P_5km
34292.8964021.640917e-64Pendimethalin_5km
0289.7221627.626146e-64Deciduous woodland
18257.0741865.771923e-57Saltmarsh
38203.7692941.146737e-45Tri-allate_5km
20199.3097461.019948e-44Suburban
36182.8493763.290272e-41Prosulfocarb_5km
37182.8493763.290272e-41Sulphur_5km
13169.0841492.871633e-38Freshwater
19143.2091801.008505e-32Urban
33124.4161311.113518e-28Metamitron_5km
35115.8517777.830557e-27PropamocarbHydrochloride_5km
15113.3180972.759452e-26Supralittoral sediment
768.1890031.724869e-16Fen
1647.3384646.425274e-12Littoral rock
919.8579718.455492e-06Heather grassland
419.0448781.292914e-05Neutral grassland
1212.5132504.063766e-04Saltwater
1411.6446706.470725e-04Supralittoral rock
102.7100609.975671e-02Bog
11.0867562.972228e-01Coniferous woodland
80.5796504.464720e-01Heather
110.2192956.395903e-01Inland rock
50.1011987.504047e-01Calcareous grassland
60.0157749.000546e-01Acid grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 1227.949077 2.545634e-250 Inflowing drainage direction\n", "23 1020.748820 7.391612e-211 Surface type\n", "21 983.053244 1.401801e-203 Elevation\n", "26 511.443416 8.364957e-110 Fertiliser K\n", "27 511.443416 8.364957e-110 Fertiliser N\n", "28 511.443416 8.364957e-110 Fertiliser P\n", "3 462.292259 1.002663e-99 Improve grassland\n", "22 360.982411 9.334063e-79 Cumulative catchment area\n", "24 322.588411 9.713871e-71 Outflowing drainage direction\n", "2 322.261898 1.136958e-70 Arable\n", "17 293.180616 1.430076e-64 Littoral sediment\n", "29 292.896402 1.640917e-64 Chlorothalonil_5km\n", "30 292.896402 1.640917e-64 Glyphosate_5km\n", "31 292.896402 1.640917e-64 Mancozeb_5km\n", "32 292.896402 1.640917e-64 Mecoprop-P_5km\n", "34 292.896402 1.640917e-64 Pendimethalin_5km\n", "0 289.722162 7.626146e-64 Deciduous woodland\n", "18 257.074186 5.771923e-57 Saltmarsh\n", "38 203.769294 1.146737e-45 Tri-allate_5km\n", "20 199.309746 1.019948e-44 Suburban\n", "36 182.849376 3.290272e-41 Prosulfocarb_5km\n", "37 182.849376 3.290272e-41 Sulphur_5km\n", "13 169.084149 2.871633e-38 Freshwater\n", "19 143.209180 1.008505e-32 Urban\n", "33 124.416131 1.113518e-28 Metamitron_5km\n", "35 115.851777 7.830557e-27 PropamocarbHydrochloride_5km\n", "15 113.318097 2.759452e-26 Supralittoral sediment\n", "7 68.189003 1.724869e-16 Fen\n", "16 47.338464 6.425274e-12 Littoral rock\n", "9 19.857971 8.455492e-06 Heather grassland\n", "4 19.044878 1.292914e-05 Neutral grassland\n", "12 12.513250 4.063766e-04 Saltwater\n", "14 11.644670 6.470725e-04 Supralittoral rock\n", "10 2.710060 9.975671e-02 Bog\n", "1 1.086756 2.972228e-01 Coniferous woodland\n", "8 0.579650 4.464720e-01 Heather\n", "11 0.219295 6.395903e-01 Inland rock\n", "5 0.101198 7.504047e-01 Calcareous grassland\n", "6 0.015774 9.000546e-01 Acid grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Canada Goose 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
2313690.1491070.000000e+00Surface type
2113106.1211050.000000e+00Elevation
2510572.0952140.000000e+00Inflowing drainage direction
267654.2977330.000000e+00Fertiliser K
277654.2977330.000000e+00Fertiliser N
287654.2977330.000000e+00Fertiliser P
294195.6052630.000000e+00Chlorothalonil_5km
304195.6052630.000000e+00Glyphosate_5km
314195.6052630.000000e+00Mancozeb_5km
324195.6052630.000000e+00Mecoprop-P_5km
344195.6052630.000000e+00Pendimethalin_5km
32983.7784160.000000e+00Improve grassland
382914.2297370.000000e+00Tri-allate_5km
362857.8635870.000000e+00Prosulfocarb_5km
372857.8635870.000000e+00Sulphur_5km
352212.5635330.000000e+00PropamocarbHydrochloride_5km
332201.5437820.000000e+00Metamitron_5km
21898.9376190.000000e+00Arable
241801.9025100.000000e+00Outflowing drainage direction
01196.5912762.090563e-244Deciduous woodland
20930.0732032.679934e-193Suburban
22451.7474921.483732e-97Cumulative catchment area
19231.4117211.548806e-51Urban
4100.4122781.704563e-23Neutral grassland
1390.6593622.217209e-21Freshwater
747.5281905.835888e-12Fen
546.4193321.024185e-11Calcareous grassland
1738.8121814.903074e-10Littoral sediment
1837.3598011.028497e-09Saltmarsh
631.0342852.617748e-08Acid grassland
1216.1899005.782912e-05Saltwater
111.0170439.068339e-04Coniferous woodland
154.5223323.348587e-02Supralittoral sediment
83.6647755.560996e-02Heather
141.6173602.034974e-01Supralittoral rock
101.3268602.493992e-01Bog
90.9195563.376208e-01Heather grassland
160.6734094.118901e-01Littoral rock
110.4886124.845674e-01Inland rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 13690.149107 0.000000e+00 Surface type\n", "21 13106.121105 0.000000e+00 Elevation\n", "25 10572.095214 0.000000e+00 Inflowing drainage direction\n", "26 7654.297733 0.000000e+00 Fertiliser K\n", "27 7654.297733 0.000000e+00 Fertiliser N\n", "28 7654.297733 0.000000e+00 Fertiliser P\n", "29 4195.605263 0.000000e+00 Chlorothalonil_5km\n", "30 4195.605263 0.000000e+00 Glyphosate_5km\n", "31 4195.605263 0.000000e+00 Mancozeb_5km\n", "32 4195.605263 0.000000e+00 Mecoprop-P_5km\n", "34 4195.605263 0.000000e+00 Pendimethalin_5km\n", "3 2983.778416 0.000000e+00 Improve grassland\n", "38 2914.229737 0.000000e+00 Tri-allate_5km\n", "36 2857.863587 0.000000e+00 Prosulfocarb_5km\n", "37 2857.863587 0.000000e+00 Sulphur_5km\n", "35 2212.563533 0.000000e+00 PropamocarbHydrochloride_5km\n", "33 2201.543782 0.000000e+00 Metamitron_5km\n", "2 1898.937619 0.000000e+00 Arable\n", "24 1801.902510 0.000000e+00 Outflowing drainage direction\n", "0 1196.591276 2.090563e-244 Deciduous woodland\n", "20 930.073203 2.679934e-193 Suburban\n", "22 451.747492 1.483732e-97 Cumulative catchment area\n", "19 231.411721 1.548806e-51 Urban\n", "4 100.412278 1.704563e-23 Neutral grassland\n", "13 90.659362 2.217209e-21 Freshwater\n", "7 47.528190 5.835888e-12 Fen\n", "5 46.419332 1.024185e-11 Calcareous grassland\n", "17 38.812181 4.903074e-10 Littoral sediment\n", "18 37.359801 1.028497e-09 Saltmarsh\n", "6 31.034285 2.617748e-08 Acid grassland\n", "12 16.189900 5.782912e-05 Saltwater\n", "1 11.017043 9.068339e-04 Coniferous woodland\n", "15 4.522332 3.348587e-02 Supralittoral sediment\n", "8 3.664775 5.560996e-02 Heather\n", "14 1.617360 2.034974e-01 Supralittoral rock\n", "10 1.326860 2.493992e-01 Bog\n", "9 0.919556 3.376208e-01 Heather grassland\n", "16 0.673409 4.118901e-01 Littoral rock\n", "11 0.488612 4.845674e-01 Inland rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Egyptian Goose 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
262983.1287600.000000e+00Fertiliser K
272983.1287600.000000e+00Fertiliser N
282983.1287600.000000e+00Fertiliser P
231377.4216053.086937e-278Surface type
25992.1426942.448748e-205Inflowing drainage direction
21919.2573193.425183e-191Elevation
2913.9216503.757007e-190Arable
29777.0912202.934139e-163Chlorothalonil_5km
30777.0912202.934139e-163Glyphosate_5km
31777.0912202.934139e-163Mancozeb_5km
32777.0912202.934139e-163Mecoprop-P_5km
34777.0912202.934139e-163Pendimethalin_5km
20722.7224721.869674e-152Suburban
0717.2049132.355405e-151Deciduous woodland
24654.7488117.529947e-139Outflowing drainage direction
19618.5537451.465513e-131Urban
38582.8293952.461927e-124Tri-allate_5km
33532.5577714.086890e-114Metamitron_5km
35532.3445204.517297e-114PropamocarbHydrochloride_5km
36528.8871942.291119e-113Prosulfocarb_5km
37528.1318353.267028e-113Sulphur_5km
3503.7676493.107615e-108Improve grassland
22287.1575362.639912e-63Cumulative catchment area
13187.8102922.876500e-42Freshwater
797.4432767.494184e-23Fen
485.8559492.448264e-20Neutral grassland
1820.3039176.700810e-06Saltmarsh
611.6598496.418219e-04Acid grassland
157.1271697.607861e-03Supralittoral sediment
96.9182328.548545e-03Heather grassland
106.2597661.237095e-02Bog
13.7427315.307308e-02Coniferous woodland
83.2154027.298622e-02Heather
172.5947091.072608e-01Littoral sediment
112.3337541.266359e-01Inland rock
51.5572882.120994e-01Calcareous grassland
121.3870372.389413e-01Saltwater
161.3186192.508746e-01Littoral rock
140.7069954.004684e-01Supralittoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 2983.128760 0.000000e+00 Fertiliser K\n", "27 2983.128760 0.000000e+00 Fertiliser N\n", "28 2983.128760 0.000000e+00 Fertiliser P\n", "23 1377.421605 3.086937e-278 Surface type\n", "25 992.142694 2.448748e-205 Inflowing drainage direction\n", "21 919.257319 3.425183e-191 Elevation\n", "2 913.921650 3.757007e-190 Arable\n", "29 777.091220 2.934139e-163 Chlorothalonil_5km\n", "30 777.091220 2.934139e-163 Glyphosate_5km\n", "31 777.091220 2.934139e-163 Mancozeb_5km\n", "32 777.091220 2.934139e-163 Mecoprop-P_5km\n", "34 777.091220 2.934139e-163 Pendimethalin_5km\n", "20 722.722472 1.869674e-152 Suburban\n", "0 717.204913 2.355405e-151 Deciduous woodland\n", "24 654.748811 7.529947e-139 Outflowing drainage direction\n", "19 618.553745 1.465513e-131 Urban\n", "38 582.829395 2.461927e-124 Tri-allate_5km\n", "33 532.557771 4.086890e-114 Metamitron_5km\n", "35 532.344520 4.517297e-114 PropamocarbHydrochloride_5km\n", "36 528.887194 2.291119e-113 Prosulfocarb_5km\n", "37 528.131835 3.267028e-113 Sulphur_5km\n", "3 503.767649 3.107615e-108 Improve grassland\n", "22 287.157536 2.639912e-63 Cumulative catchment area\n", "13 187.810292 2.876500e-42 Freshwater\n", "7 97.443276 7.494184e-23 Fen\n", "4 85.855949 2.448264e-20 Neutral grassland\n", "18 20.303917 6.700810e-06 Saltmarsh\n", "6 11.659849 6.418219e-04 Acid grassland\n", "15 7.127169 7.607861e-03 Supralittoral sediment\n", "9 6.918232 8.548545e-03 Heather grassland\n", "10 6.259766 1.237095e-02 Bog\n", "1 3.742731 5.307308e-02 Coniferous woodland\n", "8 3.215402 7.298622e-02 Heather\n", "17 2.594709 1.072608e-01 Littoral sediment\n", "11 2.333754 1.266359e-01 Inland rock\n", "5 1.557288 2.120994e-01 Calcareous grassland\n", "12 1.387037 2.389413e-01 Saltwater\n", "16 1.318619 2.508746e-01 Littoral rock\n", "14 0.706995 4.004684e-01 Supralittoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Gadwall 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
264515.3302130.000000e+00Fertiliser K
274515.3302130.000000e+00Fertiliser N
284515.3302130.000000e+00Fertiliser P
233184.9920110.000000e+00Surface type
252723.1337620.000000e+00Inflowing drainage direction
212406.0221150.000000e+00Elevation
21966.2444950.000000e+00Arable
31231.0567956.618329e-251Improve grassland
291214.0465691.060403e-247Chlorothalonil_5km
301214.0465691.060403e-247Glyphosate_5km
311214.0465691.060403e-247Mancozeb_5km
321214.0465691.060403e-247Mecoprop-P_5km
341214.0465691.060403e-247Pendimethalin_5km
361197.4868341.416014e-244Prosulfocarb_5km
371195.6174153.193534e-244Sulphur_5km
331131.8785623.895579e-232Metamitron_5km
351098.6575598.392032e-226PropamocarbHydrochloride_5km
381097.5008421.395745e-225Tri-allate_5km
201080.9124342.072104e-222Suburban
24981.0220233.465257e-203Outflowing drainage direction
0755.8937084.696371e-159Deciduous woodland
22606.2741954.426528e-129Cumulative catchment area
19438.6278597.506556e-95Urban
13217.2645731.552531e-48Freshwater
4138.3004021.144010e-31Neutral grassland
7133.0238711.560292e-30Fen
1889.4481054.061749e-21Saltmarsh
1760.7498937.300004e-15Littoral sediment
629.0598877.218540e-08Acid grassland
1525.2660495.103069e-07Supralittoral sediment
1222.7751121.853532e-06Saltwater
813.5018622.398918e-04Heather
1013.0047223.126078e-04Bog
912.5025614.087045e-04Heather grassland
116.3934291.147351e-02Inland rock
144.0493424.422218e-02Supralittoral rock
52.1002841.473112e-01Calcareous grassland
161.2689472.599982e-01Littoral rock
10.2950375.870261e-01Coniferous woodland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 4515.330213 0.000000e+00 Fertiliser K\n", "27 4515.330213 0.000000e+00 Fertiliser N\n", "28 4515.330213 0.000000e+00 Fertiliser P\n", "23 3184.992011 0.000000e+00 Surface type\n", "25 2723.133762 0.000000e+00 Inflowing drainage direction\n", "21 2406.022115 0.000000e+00 Elevation\n", "2 1966.244495 0.000000e+00 Arable\n", "3 1231.056795 6.618329e-251 Improve grassland\n", "29 1214.046569 1.060403e-247 Chlorothalonil_5km\n", "30 1214.046569 1.060403e-247 Glyphosate_5km\n", "31 1214.046569 1.060403e-247 Mancozeb_5km\n", "32 1214.046569 1.060403e-247 Mecoprop-P_5km\n", "34 1214.046569 1.060403e-247 Pendimethalin_5km\n", "36 1197.486834 1.416014e-244 Prosulfocarb_5km\n", "37 1195.617415 3.193534e-244 Sulphur_5km\n", "33 1131.878562 3.895579e-232 Metamitron_5km\n", "35 1098.657559 8.392032e-226 PropamocarbHydrochloride_5km\n", "38 1097.500842 1.395745e-225 Tri-allate_5km\n", "20 1080.912434 2.072104e-222 Suburban\n", "24 981.022023 3.465257e-203 Outflowing drainage direction\n", "0 755.893708 4.696371e-159 Deciduous woodland\n", "22 606.274195 4.426528e-129 Cumulative catchment area\n", "19 438.627859 7.506556e-95 Urban\n", "13 217.264573 1.552531e-48 Freshwater\n", "4 138.300402 1.144010e-31 Neutral grassland\n", "7 133.023871 1.560292e-30 Fen\n", "18 89.448105 4.061749e-21 Saltmarsh\n", "17 60.749893 7.300004e-15 Littoral sediment\n", "6 29.059887 7.218540e-08 Acid grassland\n", "15 25.266049 5.103069e-07 Supralittoral sediment\n", "12 22.775112 1.853532e-06 Saltwater\n", "8 13.501862 2.398918e-04 Heather\n", "10 13.004722 3.126078e-04 Bog\n", "9 12.502561 4.087045e-04 Heather grassland\n", "11 6.393429 1.147351e-02 Inland rock\n", "14 4.049342 4.422218e-02 Supralittoral rock\n", "5 2.100284 1.473112e-01 Calcareous grassland\n", "16 1.268947 2.599982e-01 Littoral rock\n", "1 0.295037 5.870261e-01 Coniferous woodland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Goshawk 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
211152.9573683.838405e-236Elevation
231141.4755185.825497e-234Surface type
25949.1989775.121685e-197Inflowing drainage direction
29787.7227862.305292e-165Chlorothalonil_5km
30787.7227862.305292e-165Glyphosate_5km
31787.7227862.305292e-165Mancozeb_5km
32787.7227862.305292e-165Mecoprop-P_5km
34787.7227862.305292e-165Pendimethalin_5km
0657.4000772.208469e-139Deciduous woodland
3627.3924112.416062e-133Improve grassland
38583.7846881.576392e-124Tri-allate_5km
36568.0936002.402274e-121Prosulfocarb_5km
37568.0936002.402274e-121Sulphur_5km
35454.9188103.298942e-98PropamocarbHydrochloride_5km
33431.3435802.391684e-93Metamitron_5km
24405.8118954.555045e-88Outflowing drainage direction
1319.9537903.459450e-70Coniferous woodland
6272.3369403.480601e-60Acid grassland
26200.3477266.132138e-45Fertiliser K
27200.3477266.132138e-45Fertiliser N
28200.3477266.132138e-45Fertiliser P
2296.3382731.300727e-22Cumulative catchment area
273.5019541.195416e-17Arable
2071.5436283.195845e-17Suburban
836.2197791.840737e-09Heather
528.1587661.147703e-07Calcareous grassland
723.3219601.395826e-06Fen
178.1134334.405104e-03Littoral sediment
105.6065751.791696e-02Bog
94.8417642.780707e-02Heather grassland
183.5063146.117194e-02Saltmarsh
43.4453946.346521e-02Neutral grassland
131.8346451.756183e-01Freshwater
161.3570662.440815e-01Littoral rock
141.2494992.636818e-01Supralittoral rock
191.2378992.659099e-01Urban
150.7272293.938086e-01Supralittoral sediment
120.2055926.502571e-01Saltwater
110.0247298.750493e-01Inland rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "21 1152.957368 3.838405e-236 Elevation\n", "23 1141.475518 5.825497e-234 Surface type\n", "25 949.198977 5.121685e-197 Inflowing drainage direction\n", "29 787.722786 2.305292e-165 Chlorothalonil_5km\n", "30 787.722786 2.305292e-165 Glyphosate_5km\n", "31 787.722786 2.305292e-165 Mancozeb_5km\n", "32 787.722786 2.305292e-165 Mecoprop-P_5km\n", "34 787.722786 2.305292e-165 Pendimethalin_5km\n", "0 657.400077 2.208469e-139 Deciduous woodland\n", "3 627.392411 2.416062e-133 Improve grassland\n", "38 583.784688 1.576392e-124 Tri-allate_5km\n", "36 568.093600 2.402274e-121 Prosulfocarb_5km\n", "37 568.093600 2.402274e-121 Sulphur_5km\n", "35 454.918810 3.298942e-98 PropamocarbHydrochloride_5km\n", "33 431.343580 2.391684e-93 Metamitron_5km\n", "24 405.811895 4.555045e-88 Outflowing drainage direction\n", "1 319.953790 3.459450e-70 Coniferous woodland\n", "6 272.336940 3.480601e-60 Acid grassland\n", "26 200.347726 6.132138e-45 Fertiliser K\n", "27 200.347726 6.132138e-45 Fertiliser N\n", "28 200.347726 6.132138e-45 Fertiliser P\n", "22 96.338273 1.300727e-22 Cumulative catchment area\n", "2 73.501954 1.195416e-17 Arable\n", "20 71.543628 3.195845e-17 Suburban\n", "8 36.219779 1.840737e-09 Heather\n", "5 28.158766 1.147703e-07 Calcareous grassland\n", "7 23.321960 1.395826e-06 Fen\n", "17 8.113433 4.405104e-03 Littoral sediment\n", "10 5.606575 1.791696e-02 Bog\n", "9 4.841764 2.780707e-02 Heather grassland\n", "18 3.506314 6.117194e-02 Saltmarsh\n", "4 3.445394 6.346521e-02 Neutral grassland\n", "13 1.834645 1.756183e-01 Freshwater\n", "16 1.357066 2.440815e-01 Littoral rock\n", "14 1.249499 2.636818e-01 Supralittoral rock\n", "19 1.237899 2.659099e-01 Urban\n", "15 0.727229 3.938086e-01 Supralittoral sediment\n", "12 0.205592 6.502571e-01 Saltwater\n", "11 0.024729 8.750493e-01 Inland rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Grey Partridge 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
266271.9356550.000000e+00Fertiliser K
276271.9356550.000000e+00Fertiliser N
286271.9356550.000000e+00Fertiliser P
234597.2383540.000000e+00Surface type
24174.6601370.000000e+00Arable
213785.7840650.000000e+00Elevation
253602.8497510.000000e+00Inflowing drainage direction
291561.5639805.115844e-312Chlorothalonil_5km
301561.5639805.115844e-312Glyphosate_5km
311561.5639805.115844e-312Mancozeb_5km
321561.5639805.115844e-312Mecoprop-P_5km
341561.5639805.115844e-312Pendimethalin_5km
31404.4408313.099099e-283Improve grassland
381380.0113011.022893e-278Tri-allate_5km
361349.5365514.605203e-273Prosulfocarb_5km
371349.5365514.605203e-273Sulphur_5km
331263.0546076.434266e-257Metamitron_5km
351235.7196408.776294e-252PropamocarbHydrochloride_5km
241226.7516704.278275e-250Outflowing drainage direction
0692.2332422.294955e-146Deciduous woodland
22574.6809391.105711e-122Cumulative catchment area
20546.0434257.306351e-117Suburban
5140.3541254.140347e-32Calcareous grassland
493.8149584.583868e-22Neutral grassland
1977.6109021.521430e-18Urban
1829.2010636.713033e-08Saltmarsh
725.0488875.709287e-07Fen
1714.7974411.206320e-04Littoral sediment
1314.4775781.429000e-04Freshwater
156.1238021.335804e-02Supralittoral sediment
103.5894505.818367e-02Bog
112.8158149.337877e-02Inland rock
142.6528851.034017e-01Supralittoral rock
12.4006151.213273e-01Coniferous woodland
60.4137225.201047e-01Acid grassland
80.1312287.171721e-01Heather
160.0916177.621390e-01Littoral rock
90.0781787.797887e-01Heather grassland
120.0413448.388804e-01Saltwater
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 6271.935655 0.000000e+00 Fertiliser K\n", "27 6271.935655 0.000000e+00 Fertiliser N\n", "28 6271.935655 0.000000e+00 Fertiliser P\n", "23 4597.238354 0.000000e+00 Surface type\n", "2 4174.660137 0.000000e+00 Arable\n", "21 3785.784065 0.000000e+00 Elevation\n", "25 3602.849751 0.000000e+00 Inflowing drainage direction\n", "29 1561.563980 5.115844e-312 Chlorothalonil_5km\n", "30 1561.563980 5.115844e-312 Glyphosate_5km\n", "31 1561.563980 5.115844e-312 Mancozeb_5km\n", "32 1561.563980 5.115844e-312 Mecoprop-P_5km\n", "34 1561.563980 5.115844e-312 Pendimethalin_5km\n", "3 1404.440831 3.099099e-283 Improve grassland\n", "38 1380.011301 1.022893e-278 Tri-allate_5km\n", "36 1349.536551 4.605203e-273 Prosulfocarb_5km\n", "37 1349.536551 4.605203e-273 Sulphur_5km\n", "33 1263.054607 6.434266e-257 Metamitron_5km\n", "35 1235.719640 8.776294e-252 PropamocarbHydrochloride_5km\n", "24 1226.751670 4.278275e-250 Outflowing drainage direction\n", "0 692.233242 2.294955e-146 Deciduous woodland\n", "22 574.680939 1.105711e-122 Cumulative catchment area\n", "20 546.043425 7.306351e-117 Suburban\n", "5 140.354125 4.140347e-32 Calcareous grassland\n", "4 93.814958 4.583868e-22 Neutral grassland\n", "19 77.610902 1.521430e-18 Urban\n", "18 29.201063 6.713033e-08 Saltmarsh\n", "7 25.048887 5.709287e-07 Fen\n", "17 14.797441 1.206320e-04 Littoral sediment\n", "13 14.477578 1.429000e-04 Freshwater\n", "15 6.123802 1.335804e-02 Supralittoral sediment\n", "10 3.589450 5.818367e-02 Bog\n", "11 2.815814 9.337877e-02 Inland rock\n", "14 2.652885 1.034017e-01 Supralittoral rock\n", "1 2.400615 1.213273e-01 Coniferous woodland\n", "6 0.413722 5.201047e-01 Acid grassland\n", "8 0.131228 7.171721e-01 Heather\n", "16 0.091617 7.621390e-01 Littoral rock\n", "9 0.078178 7.797887e-01 Heather grassland\n", "12 0.041344 8.388804e-01 Saltwater" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Indian Peafowl 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
261401.1509331.256201e-282Fertiliser K
271401.1509331.256201e-282Fertiliser N
281401.1509331.256201e-282Fertiliser P
23792.2631642.915059e-166Surface type
2701.1044873.862323e-148Arable
21578.1483052.189384e-123Elevation
3545.8271228.086054e-117Improve grassland
25524.3823311.902480e-112Inflowing drainage direction
38487.2906677.370916e-105Tri-allate_5km
29444.3475814.966029e-96Chlorothalonil_5km
30444.3475814.966029e-96Glyphosate_5km
31444.3475814.966029e-96Mancozeb_5km
32444.3475814.966029e-96Mecoprop-P_5km
34444.3475814.966029e-96Pendimethalin_5km
36419.5860736.426713e-91Prosulfocarb_5km
37419.0065358.468818e-91Sulphur_5km
33411.7059972.742416e-89Metamitron_5km
35402.1673702.591400e-87PropamocarbHydrochloride_5km
0331.1505151.570489e-72Deciduous woodland
24310.9176682.706177e-68Outflowing drainage direction
20305.0591864.582354e-67Suburban
22218.3504159.130323e-49Cumulative catchment area
1947.9210424.781891e-12Urban
725.8294713.814352e-07Fen
420.1437967.284259e-06Neutral grassland
1314.7291351.250737e-04Freshwater
93.5351596.011705e-02Heather grassland
53.3467296.737607e-02Calcareous grassland
101.5672002.106509e-01Bog
161.4644492.262594e-01Littoral rock
61.4273182.322381e-01Acid grassland
171.2168572.700117e-01Littoral sediment
81.2031092.727343e-01Heather
140.8192303.654327e-01Supralittoral rock
150.6753354.112224e-01Supralittoral sediment
120.1732246.772735e-01Saltwater
10.1634876.859768e-01Coniferous woodland
180.1111577.388395e-01Saltmarsh
110.0183978.921123e-01Inland rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 1401.150933 1.256201e-282 Fertiliser K\n", "27 1401.150933 1.256201e-282 Fertiliser N\n", "28 1401.150933 1.256201e-282 Fertiliser P\n", "23 792.263164 2.915059e-166 Surface type\n", "2 701.104487 3.862323e-148 Arable\n", "21 578.148305 2.189384e-123 Elevation\n", "3 545.827122 8.086054e-117 Improve grassland\n", "25 524.382331 1.902480e-112 Inflowing drainage direction\n", "38 487.290667 7.370916e-105 Tri-allate_5km\n", "29 444.347581 4.966029e-96 Chlorothalonil_5km\n", "30 444.347581 4.966029e-96 Glyphosate_5km\n", "31 444.347581 4.966029e-96 Mancozeb_5km\n", "32 444.347581 4.966029e-96 Mecoprop-P_5km\n", "34 444.347581 4.966029e-96 Pendimethalin_5km\n", "36 419.586073 6.426713e-91 Prosulfocarb_5km\n", "37 419.006535 8.468818e-91 Sulphur_5km\n", "33 411.705997 2.742416e-89 Metamitron_5km\n", "35 402.167370 2.591400e-87 PropamocarbHydrochloride_5km\n", "0 331.150515 1.570489e-72 Deciduous woodland\n", "24 310.917668 2.706177e-68 Outflowing drainage direction\n", "20 305.059186 4.582354e-67 Suburban\n", "22 218.350415 9.130323e-49 Cumulative catchment area\n", "19 47.921042 4.781891e-12 Urban\n", "7 25.829471 3.814352e-07 Fen\n", "4 20.143796 7.284259e-06 Neutral grassland\n", "13 14.729135 1.250737e-04 Freshwater\n", "9 3.535159 6.011705e-02 Heather grassland\n", "5 3.346729 6.737607e-02 Calcareous grassland\n", "10 1.567200 2.106509e-01 Bog\n", "16 1.464449 2.262594e-01 Littoral rock\n", "6 1.427318 2.322381e-01 Acid grassland\n", "17 1.216857 2.700117e-01 Littoral sediment\n", "8 1.203109 2.727343e-01 Heather\n", "14 0.819230 3.654327e-01 Supralittoral rock\n", "15 0.675335 4.112224e-01 Supralittoral sediment\n", "12 0.173224 6.772735e-01 Saltwater\n", "1 0.163487 6.859768e-01 Coniferous woodland\n", "18 0.111157 7.388395e-01 Saltmarsh\n", "11 0.018397 8.921123e-01 Inland rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Little Owl 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
2614865.9815720.000000e+00Fertiliser K
2714865.9815720.000000e+00Fertiliser N
2814865.9815720.000000e+00Fertiliser P
236857.7481930.000000e+00Surface type
255386.2459940.000000e+00Inflowing drainage direction
215359.3552450.000000e+00Elevation
24395.4439970.000000e+00Arable
293029.2292500.000000e+00Chlorothalonil_5km
303029.2292500.000000e+00Glyphosate_5km
313029.2292500.000000e+00Mancozeb_5km
323029.2292500.000000e+00Mecoprop-P_5km
343029.2292500.000000e+00Pendimethalin_5km
362708.7019070.000000e+00Prosulfocarb_5km
372708.7019070.000000e+00Sulphur_5km
382676.1008790.000000e+00Tri-allate_5km
332338.7584750.000000e+00Metamitron_5km
352301.4339510.000000e+00PropamocarbHydrochloride_5km
32284.8113760.000000e+00Improve grassland
241686.9786670.000000e+00Outflowing drainage direction
201070.4182472.117710e-220Suburban
0964.9449124.507157e-200Deciduous woodland
22328.7878524.899488e-72Cumulative catchment area
19216.3634842.412088e-48Urban
4173.7957222.823657e-39Neutral grassland
5153.7492435.519369e-35Calcareous grassland
1361.7089074.501866e-15Freshwater
739.9678052.720897e-10Fen
1817.2632053.288316e-05Saltmarsh
616.2981375.462439e-05Acid grassland
1011.6000666.627543e-04Bog
910.4295451.245185e-03Heather grassland
87.6818205.590941e-03Heather
146.7339519.476830e-03Supralittoral rock
116.4480221.112645e-02Inland rock
166.2603001.236722e-02Littoral rock
174.6304793.143876e-02Littoral sediment
123.8035865.117799e-02Saltwater
13.7004815.443238e-02Coniferous woodland
152.1594131.417383e-01Supralittoral sediment
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 14865.981572 0.000000e+00 Fertiliser K\n", "27 14865.981572 0.000000e+00 Fertiliser N\n", "28 14865.981572 0.000000e+00 Fertiliser P\n", "23 6857.748193 0.000000e+00 Surface type\n", "25 5386.245994 0.000000e+00 Inflowing drainage direction\n", "21 5359.355245 0.000000e+00 Elevation\n", "2 4395.443997 0.000000e+00 Arable\n", "29 3029.229250 0.000000e+00 Chlorothalonil_5km\n", "30 3029.229250 0.000000e+00 Glyphosate_5km\n", "31 3029.229250 0.000000e+00 Mancozeb_5km\n", "32 3029.229250 0.000000e+00 Mecoprop-P_5km\n", "34 3029.229250 0.000000e+00 Pendimethalin_5km\n", "36 2708.701907 0.000000e+00 Prosulfocarb_5km\n", "37 2708.701907 0.000000e+00 Sulphur_5km\n", "38 2676.100879 0.000000e+00 Tri-allate_5km\n", "33 2338.758475 0.000000e+00 Metamitron_5km\n", "35 2301.433951 0.000000e+00 PropamocarbHydrochloride_5km\n", "3 2284.811376 0.000000e+00 Improve grassland\n", "24 1686.978667 0.000000e+00 Outflowing drainage direction\n", "20 1070.418247 2.117710e-220 Suburban\n", "0 964.944912 4.507157e-200 Deciduous woodland\n", "22 328.787852 4.899488e-72 Cumulative catchment area\n", "19 216.363484 2.412088e-48 Urban\n", "4 173.795722 2.823657e-39 Neutral grassland\n", "5 153.749243 5.519369e-35 Calcareous grassland\n", "13 61.708907 4.501866e-15 Freshwater\n", "7 39.967805 2.720897e-10 Fen\n", "18 17.263205 3.288316e-05 Saltmarsh\n", "6 16.298137 5.462439e-05 Acid grassland\n", "10 11.600066 6.627543e-04 Bog\n", "9 10.429545 1.245185e-03 Heather grassland\n", "8 7.681820 5.590941e-03 Heather\n", "14 6.733951 9.476830e-03 Supralittoral rock\n", "11 6.448022 1.112645e-02 Inland rock\n", "16 6.260300 1.236722e-02 Littoral rock\n", "17 4.630479 3.143876e-02 Littoral sediment\n", "12 3.803586 5.117799e-02 Saltwater\n", "1 3.700481 5.443238e-02 Coniferous woodland\n", "15 2.159413 1.417383e-01 Supralittoral sediment" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Mandarin Duck 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
263499.3369530.000000e+00Fertiliser K
273499.3369530.000000e+00Fertiliser N
283499.3369530.000000e+00Fertiliser P
232033.8217700.000000e+00Surface type
291803.0026740.000000e+00Chlorothalonil_5km
301803.0026740.000000e+00Glyphosate_5km
311803.0026740.000000e+00Mancozeb_5km
321803.0026740.000000e+00Mecoprop-P_5km
341803.0026740.000000e+00Pendimethalin_5km
361714.7306500.000000e+00Prosulfocarb_5km
371714.7306500.000000e+00Sulphur_5km
381692.2071600.000000e+00Tri-allate_5km
31610.0988728.211371e-321Improve grassland
211587.6071559.646045e-317Elevation
251464.8137592.371236e-294Inflowing drainage direction
331418.0994149.333415e-286Metamitron_5km
351415.6710992.618218e-285PropamocarbHydrochloride_5km
01284.8952605.209143e-261Deciduous woodland
20929.3295473.740071e-193Suburban
24655.3923045.590929e-139Outflowing drainage direction
22510.5897821.250228e-109Cumulative catchment area
2432.7176931.244580e-93Arable
19225.5238332.743268e-50Urban
4123.3060071.931753e-28Neutral grassland
557.2847894.192614e-14Calcareous grassland
1357.0655304.683352e-14Freshwater
120.4427276.233113e-06Coniferous woodland
76.2818641.221775e-02Fen
103.9559214.674092e-02Bog
112.2042901.376669e-01Inland rock
92.0625531.509963e-01Heather grassland
141.9730091.601679e-01Supralittoral rock
161.2830702.573631e-01Littoral rock
180.9413243.319671e-01Saltmarsh
150.9316513.344636e-01Supralittoral sediment
170.5032724.780867e-01Littoral sediment
60.3261505.679510e-01Acid grassland
120.2298976.316136e-01Saltwater
80.0000289.957553e-01Heather
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 3499.336953 0.000000e+00 Fertiliser K\n", "27 3499.336953 0.000000e+00 Fertiliser N\n", "28 3499.336953 0.000000e+00 Fertiliser P\n", "23 2033.821770 0.000000e+00 Surface type\n", "29 1803.002674 0.000000e+00 Chlorothalonil_5km\n", "30 1803.002674 0.000000e+00 Glyphosate_5km\n", "31 1803.002674 0.000000e+00 Mancozeb_5km\n", "32 1803.002674 0.000000e+00 Mecoprop-P_5km\n", "34 1803.002674 0.000000e+00 Pendimethalin_5km\n", "36 1714.730650 0.000000e+00 Prosulfocarb_5km\n", "37 1714.730650 0.000000e+00 Sulphur_5km\n", "38 1692.207160 0.000000e+00 Tri-allate_5km\n", "3 1610.098872 8.211371e-321 Improve grassland\n", "21 1587.607155 9.646045e-317 Elevation\n", "25 1464.813759 2.371236e-294 Inflowing drainage direction\n", "33 1418.099414 9.333415e-286 Metamitron_5km\n", "35 1415.671099 2.618218e-285 PropamocarbHydrochloride_5km\n", "0 1284.895260 5.209143e-261 Deciduous woodland\n", "20 929.329547 3.740071e-193 Suburban\n", "24 655.392304 5.590929e-139 Outflowing drainage direction\n", "22 510.589782 1.250228e-109 Cumulative catchment area\n", "2 432.717693 1.244580e-93 Arable\n", "19 225.523833 2.743268e-50 Urban\n", "4 123.306007 1.931753e-28 Neutral grassland\n", "5 57.284789 4.192614e-14 Calcareous grassland\n", "13 57.065530 4.683352e-14 Freshwater\n", "1 20.442727 6.233113e-06 Coniferous woodland\n", "7 6.281864 1.221775e-02 Fen\n", "10 3.955921 4.674092e-02 Bog\n", "11 2.204290 1.376669e-01 Inland rock\n", "9 2.062553 1.509963e-01 Heather grassland\n", "14 1.973009 1.601679e-01 Supralittoral rock\n", "16 1.283070 2.573631e-01 Littoral rock\n", "18 0.941324 3.319671e-01 Saltmarsh\n", "15 0.931651 3.344636e-01 Supralittoral sediment\n", "17 0.503272 4.780867e-01 Littoral sediment\n", "6 0.326150 5.679510e-01 Acid grassland\n", "12 0.229897 6.316136e-01 Saltwater\n", "8 0.000028 9.957553e-01 Heather" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Mute Swan 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
2113258.1035790.000000e+00Elevation
2311515.1174940.000000e+00Surface type
2510658.2856440.000000e+00Inflowing drainage direction
264008.8504430.000000e+00Fertiliser K
274008.8504430.000000e+00Fertiliser N
284008.8504430.000000e+00Fertiliser P
292394.7083880.000000e+00Chlorothalonil_5km
302394.7083880.000000e+00Glyphosate_5km
312394.7083880.000000e+00Mancozeb_5km
322394.7083880.000000e+00Mecoprop-P_5km
342394.7083880.000000e+00Pendimethalin_5km
32061.0877900.000000e+00Improve grassland
361696.1726270.000000e+00Prosulfocarb_5km
371696.1726270.000000e+00Sulphur_5km
381662.8478930.000000e+00Tri-allate_5km
21662.0304330.000000e+00Arable
241429.1129508.705042e-288Outflowing drainage direction
351265.2760942.465302e-257PropamocarbHydrochloride_5km
331248.6696403.226801e-254Metamitron_5km
0897.4304186.218893e-187Deciduous woodland
20696.8981752.677486e-147Suburban
22366.5162656.572976e-80Cumulative catchment area
19200.8411304.814901e-45Urban
475.0984685.364636e-18Neutral grassland
1367.7416702.159976e-16Freshwater
1756.5081936.205420e-14Littoral sediment
734.8691463.670966e-09Fen
1834.1917365.191196e-09Saltmarsh
1224.5494947.391787e-07Saltwater
523.4110801.332813e-06Calcareous grassland
1518.9918031.329292e-05Supralittoral sediment
111.6494406.454178e-04Coniferous woodland
1611.2543577.980745e-04Littoral rock
108.4052393.751635e-03Bog
142.5004971.138501e-01Supralittoral rock
111.3586362.438089e-01Inland rock
60.9298413.349335e-01Acid grassland
80.4910474.834813e-01Heather
90.4476005.034964e-01Heather grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "21 13258.103579 0.000000e+00 Elevation\n", "23 11515.117494 0.000000e+00 Surface type\n", "25 10658.285644 0.000000e+00 Inflowing drainage direction\n", "26 4008.850443 0.000000e+00 Fertiliser K\n", "27 4008.850443 0.000000e+00 Fertiliser N\n", "28 4008.850443 0.000000e+00 Fertiliser P\n", "29 2394.708388 0.000000e+00 Chlorothalonil_5km\n", "30 2394.708388 0.000000e+00 Glyphosate_5km\n", "31 2394.708388 0.000000e+00 Mancozeb_5km\n", "32 2394.708388 0.000000e+00 Mecoprop-P_5km\n", "34 2394.708388 0.000000e+00 Pendimethalin_5km\n", "3 2061.087790 0.000000e+00 Improve grassland\n", "36 1696.172627 0.000000e+00 Prosulfocarb_5km\n", "37 1696.172627 0.000000e+00 Sulphur_5km\n", "38 1662.847893 0.000000e+00 Tri-allate_5km\n", "2 1662.030433 0.000000e+00 Arable\n", "24 1429.112950 8.705042e-288 Outflowing drainage direction\n", "35 1265.276094 2.465302e-257 PropamocarbHydrochloride_5km\n", "33 1248.669640 3.226801e-254 Metamitron_5km\n", "0 897.430418 6.218893e-187 Deciduous woodland\n", "20 696.898175 2.677486e-147 Suburban\n", "22 366.516265 6.572976e-80 Cumulative catchment area\n", "19 200.841130 4.814901e-45 Urban\n", "4 75.098468 5.364636e-18 Neutral grassland\n", "13 67.741670 2.159976e-16 Freshwater\n", "17 56.508193 6.205420e-14 Littoral sediment\n", "7 34.869146 3.670966e-09 Fen\n", "18 34.191736 5.191196e-09 Saltmarsh\n", "12 24.549494 7.391787e-07 Saltwater\n", "5 23.411080 1.332813e-06 Calcareous grassland\n", "15 18.991803 1.329292e-05 Supralittoral sediment\n", "1 11.649440 6.454178e-04 Coniferous woodland\n", "16 11.254357 7.980745e-04 Littoral rock\n", "10 8.405239 3.751635e-03 Bog\n", "14 2.500497 1.138501e-01 Supralittoral rock\n", "11 1.358636 2.438089e-01 Inland rock\n", "6 0.929841 3.349335e-01 Acid grassland\n", "8 0.491047 4.834813e-01 Heather\n", "9 0.447600 5.034964e-01 Heather grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pheasant 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
2310050.2712920.000000e+00Surface type
218841.9432800.000000e+00Elevation
257309.2949010.000000e+00Inflowing drainage direction
265420.4351990.000000e+00Fertiliser K
275420.4351990.000000e+00Fertiliser N
285420.4351990.000000e+00Fertiliser P
293270.5202920.000000e+00Chlorothalonil_5km
303270.5202920.000000e+00Glyphosate_5km
313270.5202920.000000e+00Mancozeb_5km
323270.5202920.000000e+00Mecoprop-P_5km
343270.5202920.000000e+00Pendimethalin_5km
32659.8035030.000000e+00Improve grassland
382399.8755800.000000e+00Tri-allate_5km
372281.5054010.000000e+00Sulphur_5km
362278.6778510.000000e+00Prosulfocarb_5km
351870.1571190.000000e+00PropamocarbHydrochloride_5km
331859.2919900.000000e+00Metamitron_5km
21812.0327100.000000e+00Arable
241787.0975800.000000e+00Outflowing drainage direction
01174.2992913.445172e-240Deciduous woodland
22962.0801471.619598e-199Cumulative catchment area
20712.9854611.636740e-150Suburban
19108.9508852.423079e-25Urban
597.2273408.346693e-23Calcareous grassland
177.1187831.947244e-18Coniferous woodland
472.7897841.709221e-17Neutral grassland
661.7567414.394643e-15Acid grassland
1334.7494233.902749e-09Freshwater
730.1557784.109808e-08Fen
818.6528381.587154e-05Heather
1816.9571603.861930e-05Saltmarsh
1716.4676934.995926e-05Littoral sediment
1016.4169895.131069e-05Bog
157.6937375.554180e-03Supralittoral sediment
117.0514537.935868e-03Inland rock
124.7238402.977661e-02Saltwater
142.4279931.192252e-01Supralittoral rock
91.9574111.618294e-01Heather grassland
160.0748827.843642e-01Littoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 10050.271292 0.000000e+00 Surface type\n", "21 8841.943280 0.000000e+00 Elevation\n", "25 7309.294901 0.000000e+00 Inflowing drainage direction\n", "26 5420.435199 0.000000e+00 Fertiliser K\n", "27 5420.435199 0.000000e+00 Fertiliser N\n", "28 5420.435199 0.000000e+00 Fertiliser P\n", "29 3270.520292 0.000000e+00 Chlorothalonil_5km\n", "30 3270.520292 0.000000e+00 Glyphosate_5km\n", "31 3270.520292 0.000000e+00 Mancozeb_5km\n", "32 3270.520292 0.000000e+00 Mecoprop-P_5km\n", "34 3270.520292 0.000000e+00 Pendimethalin_5km\n", "3 2659.803503 0.000000e+00 Improve grassland\n", "38 2399.875580 0.000000e+00 Tri-allate_5km\n", "37 2281.505401 0.000000e+00 Sulphur_5km\n", "36 2278.677851 0.000000e+00 Prosulfocarb_5km\n", "35 1870.157119 0.000000e+00 PropamocarbHydrochloride_5km\n", "33 1859.291990 0.000000e+00 Metamitron_5km\n", "2 1812.032710 0.000000e+00 Arable\n", "24 1787.097580 0.000000e+00 Outflowing drainage direction\n", "0 1174.299291 3.445172e-240 Deciduous woodland\n", "22 962.080147 1.619598e-199 Cumulative catchment area\n", "20 712.985461 1.636740e-150 Suburban\n", "19 108.950885 2.423079e-25 Urban\n", "5 97.227340 8.346693e-23 Calcareous grassland\n", "1 77.118783 1.947244e-18 Coniferous woodland\n", "4 72.789784 1.709221e-17 Neutral grassland\n", "6 61.756741 4.394643e-15 Acid grassland\n", "13 34.749423 3.902749e-09 Freshwater\n", "7 30.155778 4.109808e-08 Fen\n", "8 18.652838 1.587154e-05 Heather\n", "18 16.957160 3.861930e-05 Saltmarsh\n", "17 16.467693 4.995926e-05 Littoral sediment\n", "10 16.416989 5.131069e-05 Bog\n", "15 7.693737 5.554180e-03 Supralittoral sediment\n", "11 7.051453 7.935868e-03 Inland rock\n", "12 4.723840 2.977661e-02 Saltwater\n", "14 2.427993 1.192252e-01 Supralittoral rock\n", "9 1.957411 1.618294e-01 Heather grassland\n", "16 0.074882 7.843642e-01 Littoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pink-footed Goose 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
253058.3573640.000000e+00Inflowing drainage direction
232873.8398680.000000e+00Surface type
212752.7436240.000000e+00Elevation
21607.9835421.980709e-320Arable
24900.5621851.520435e-187Outflowing drainage direction
3796.7682193.749922e-167Improve grassland
26532.6162853.976135e-114Fertiliser K
27532.6162853.976135e-114Fertiliser N
28532.6162853.976135e-114Fertiliser P
0495.3391431.652140e-106Deciduous woodland
17274.5206901.206526e-60Littoral sediment
20270.6483027.898492e-60Suburban
29247.8056995.245303e-55Chlorothalonil_5km
30247.8056995.245303e-55Glyphosate_5km
31247.8056995.245303e-55Mancozeb_5km
32247.8056995.245303e-55Mecoprop-P_5km
34247.8056995.245303e-55Pendimethalin_5km
22209.7652736.085933e-47Cumulative catchment area
36178.3581522.992833e-40Prosulfocarb_5km
37177.8596943.824203e-40Sulphur_5km
38156.9405001.142502e-35Tri-allate_5km
35130.8308834.625347e-30PropamocarbHydrochloride_5km
19129.9281837.235400e-30Urban
33126.6757233.629620e-29Metamitron_5km
18117.5328423.396210e-27Saltmarsh
1588.6710485.989848e-21Supralittoral sediment
1648.0433704.494345e-12Littoral rock
440.1703802.454146e-10Neutral grassland
133.0820179.161935e-09Coniferous woodland
1331.8488041.723696e-08Freshwater
728.3629861.033171e-07Fen
811.7462156.127553e-04Heather
1011.5872456.673323e-04Bog
67.9984344.693475e-03Acid grassland
95.1720072.298017e-02Heather grassland
122.3711591.236350e-01Saltwater
111.1358782.865572e-01Inland rock
140.3725745.416222e-01Supralittoral rock
50.1269537.216219e-01Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 3058.357364 0.000000e+00 Inflowing drainage direction\n", "23 2873.839868 0.000000e+00 Surface type\n", "21 2752.743624 0.000000e+00 Elevation\n", "2 1607.983542 1.980709e-320 Arable\n", "24 900.562185 1.520435e-187 Outflowing drainage direction\n", "3 796.768219 3.749922e-167 Improve grassland\n", "26 532.616285 3.976135e-114 Fertiliser K\n", "27 532.616285 3.976135e-114 Fertiliser N\n", "28 532.616285 3.976135e-114 Fertiliser P\n", "0 495.339143 1.652140e-106 Deciduous woodland\n", "17 274.520690 1.206526e-60 Littoral sediment\n", "20 270.648302 7.898492e-60 Suburban\n", "29 247.805699 5.245303e-55 Chlorothalonil_5km\n", "30 247.805699 5.245303e-55 Glyphosate_5km\n", "31 247.805699 5.245303e-55 Mancozeb_5km\n", "32 247.805699 5.245303e-55 Mecoprop-P_5km\n", "34 247.805699 5.245303e-55 Pendimethalin_5km\n", "22 209.765273 6.085933e-47 Cumulative catchment area\n", "36 178.358152 2.992833e-40 Prosulfocarb_5km\n", "37 177.859694 3.824203e-40 Sulphur_5km\n", "38 156.940500 1.142502e-35 Tri-allate_5km\n", "35 130.830883 4.625347e-30 PropamocarbHydrochloride_5km\n", "19 129.928183 7.235400e-30 Urban\n", "33 126.675723 3.629620e-29 Metamitron_5km\n", "18 117.532842 3.396210e-27 Saltmarsh\n", "15 88.671048 5.989848e-21 Supralittoral sediment\n", "16 48.043370 4.494345e-12 Littoral rock\n", "4 40.170380 2.454146e-10 Neutral grassland\n", "1 33.082017 9.161935e-09 Coniferous woodland\n", "13 31.848804 1.723696e-08 Freshwater\n", "7 28.362986 1.033171e-07 Fen\n", "8 11.746215 6.127553e-04 Heather\n", "10 11.587245 6.673323e-04 Bog\n", "6 7.998434 4.693475e-03 Acid grassland\n", "9 5.172007 2.298017e-02 Heather grassland\n", "12 2.371159 1.236350e-01 Saltwater\n", "11 1.135878 2.865572e-01 Inland rock\n", "14 0.372574 5.416222e-01 Supralittoral rock\n", "5 0.126953 7.216219e-01 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pintail 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
251193.3906868.415495e-244Inflowing drainage direction
261059.1176903.107133e-218Fertiliser K
271059.1176903.107133e-218Fertiliser N
281059.1176903.107133e-218Fertiliser P
231044.6220831.885397e-215Surface type
21953.9806436.038807e-198Elevation
2678.9150301.065146e-143Arable
3511.5701317.880582e-110Improve grassland
29437.4581381.308414e-94Chlorothalonil_5km
30437.4581381.308414e-94Glyphosate_5km
31437.4581381.308414e-94Mancozeb_5km
32437.4581381.308414e-94Mecoprop-P_5km
34437.4581381.308414e-94Pendimethalin_5km
20365.2668341.196351e-79Suburban
24328.7005315.109936e-72Outflowing drainage direction
38311.1637222.403093e-68Tri-allate_5km
19308.8363417.392246e-68Urban
36300.7088073.750857e-66Prosulfocarb_5km
37300.1672504.873345e-66Sulphur_5km
33280.6001306.328572e-62Metamitron_5km
17278.6563971.623719e-61Littoral sediment
22271.2150675.999103e-60Cumulative catchment area
35269.3945231.451568e-59PropamocarbHydrochloride_5km
18185.2377071.017662e-41Saltmarsh
0155.1895022.711014e-35Deciduous woodland
4143.7150937.852766e-33Neutral grassland
1297.0950408.916265e-23Saltwater
792.2785519.873618e-22Fen
1323.9141911.026991e-06Freshwater
1515.4621698.488716e-05Supralittoral sediment
611.5510166.804429e-04Acid grassland
85.1591562.315071e-02Heather
144.6072373.186741e-02Supralittoral rock
112.3829591.227047e-01Inland rock
102.1574681.419178e-01Bog
91.8209811.772349e-01Heather grassland
11.4000842.367449e-01Coniferous woodland
160.3217585.705693e-01Littoral rock
50.1001967.516032e-01Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 1193.390686 8.415495e-244 Inflowing drainage direction\n", "26 1059.117690 3.107133e-218 Fertiliser K\n", "27 1059.117690 3.107133e-218 Fertiliser N\n", "28 1059.117690 3.107133e-218 Fertiliser P\n", "23 1044.622083 1.885397e-215 Surface type\n", "21 953.980643 6.038807e-198 Elevation\n", "2 678.915030 1.065146e-143 Arable\n", "3 511.570131 7.880582e-110 Improve grassland\n", "29 437.458138 1.308414e-94 Chlorothalonil_5km\n", "30 437.458138 1.308414e-94 Glyphosate_5km\n", "31 437.458138 1.308414e-94 Mancozeb_5km\n", "32 437.458138 1.308414e-94 Mecoprop-P_5km\n", "34 437.458138 1.308414e-94 Pendimethalin_5km\n", "20 365.266834 1.196351e-79 Suburban\n", "24 328.700531 5.109936e-72 Outflowing drainage direction\n", "38 311.163722 2.403093e-68 Tri-allate_5km\n", "19 308.836341 7.392246e-68 Urban\n", "36 300.708807 3.750857e-66 Prosulfocarb_5km\n", "37 300.167250 4.873345e-66 Sulphur_5km\n", "33 280.600130 6.328572e-62 Metamitron_5km\n", "17 278.656397 1.623719e-61 Littoral sediment\n", "22 271.215067 5.999103e-60 Cumulative catchment area\n", "35 269.394523 1.451568e-59 PropamocarbHydrochloride_5km\n", "18 185.237707 1.017662e-41 Saltmarsh\n", "0 155.189502 2.711014e-35 Deciduous woodland\n", "4 143.715093 7.852766e-33 Neutral grassland\n", "12 97.095040 8.916265e-23 Saltwater\n", "7 92.278551 9.873618e-22 Fen\n", "13 23.914191 1.026991e-06 Freshwater\n", "15 15.462169 8.488716e-05 Supralittoral sediment\n", "6 11.551016 6.804429e-04 Acid grassland\n", "8 5.159156 2.315071e-02 Heather\n", "14 4.607237 3.186741e-02 Supralittoral rock\n", "11 2.382959 1.227047e-01 Inland rock\n", "10 2.157468 1.419178e-01 Bog\n", "9 1.820981 1.772349e-01 Heather grassland\n", "1 1.400084 2.367449e-01 Coniferous woodland\n", "16 0.321758 5.705693e-01 Littoral rock\n", "5 0.100196 7.516032e-01 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pochard 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
262671.4422570.000000e+00Fertiliser K
272671.4422570.000000e+00Fertiliser N
282671.4422570.000000e+00Fertiliser P
231871.2688130.000000e+00Surface type
251596.2933172.578949e-318Inflowing drainage direction
211458.0597854.121005e-293Elevation
21323.5911023.098156e-268Arable
29806.5400254.403351e-169Chlorothalonil_5km
30806.5400254.403351e-169Glyphosate_5km
31806.5400254.403351e-169Mancozeb_5km
32806.5400254.403351e-169Mecoprop-P_5km
34806.5400254.403351e-169Pendimethalin_5km
36791.5732233.991040e-166Prosulfocarb_5km
37791.5732233.991040e-166Sulphur_5km
38782.8360542.137179e-164Tri-allate_5km
3780.8872575.196046e-164Improve grassland
33771.4631143.825963e-162Metamitron_5km
35734.1178921.003605e-154PropamocarbHydrochloride_5km
20732.0606242.577445e-154Suburban
22658.6332041.248489e-139Cumulative catchment area
24618.4379041.546567e-131Outflowing drainage direction
19481.9161889.330097e-104Urban
0430.4174973.714651e-93Deciduous woodland
4110.5550131.090677e-25Neutral grassland
784.2379335.501599e-20Fen
1861.6910344.542600e-15Saltmarsh
1348.8361313.007200e-12Freshwater
1720.9066094.895094e-06Littoral sediment
1214.1959591.659125e-04Saltwater
1010.0956581.491870e-03Bog
67.3108656.868452e-03Acid grassland
93.2524357.135523e-02Heather grassland
82.8954858.886706e-02Heather
112.3386841.262358e-01Inland rock
151.7288441.885965e-01Supralittoral sediment
51.1890552.755532e-01Calcareous grassland
140.3490725.546558e-01Supralittoral rock
10.1371877.111031e-01Coniferous woodland
160.1262747.223367e-01Littoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 2671.442257 0.000000e+00 Fertiliser K\n", "27 2671.442257 0.000000e+00 Fertiliser N\n", "28 2671.442257 0.000000e+00 Fertiliser P\n", "23 1871.268813 0.000000e+00 Surface type\n", "25 1596.293317 2.578949e-318 Inflowing drainage direction\n", "21 1458.059785 4.121005e-293 Elevation\n", "2 1323.591102 3.098156e-268 Arable\n", "29 806.540025 4.403351e-169 Chlorothalonil_5km\n", "30 806.540025 4.403351e-169 Glyphosate_5km\n", "31 806.540025 4.403351e-169 Mancozeb_5km\n", "32 806.540025 4.403351e-169 Mecoprop-P_5km\n", "34 806.540025 4.403351e-169 Pendimethalin_5km\n", "36 791.573223 3.991040e-166 Prosulfocarb_5km\n", "37 791.573223 3.991040e-166 Sulphur_5km\n", "38 782.836054 2.137179e-164 Tri-allate_5km\n", "3 780.887257 5.196046e-164 Improve grassland\n", "33 771.463114 3.825963e-162 Metamitron_5km\n", "35 734.117892 1.003605e-154 PropamocarbHydrochloride_5km\n", "20 732.060624 2.577445e-154 Suburban\n", "22 658.633204 1.248489e-139 Cumulative catchment area\n", "24 618.437904 1.546567e-131 Outflowing drainage direction\n", "19 481.916188 9.330097e-104 Urban\n", "0 430.417497 3.714651e-93 Deciduous woodland\n", "4 110.555013 1.090677e-25 Neutral grassland\n", "7 84.237933 5.501599e-20 Fen\n", "18 61.691034 4.542600e-15 Saltmarsh\n", "13 48.836131 3.007200e-12 Freshwater\n", "17 20.906609 4.895094e-06 Littoral sediment\n", "12 14.195959 1.659125e-04 Saltwater\n", "10 10.095658 1.491870e-03 Bog\n", "6 7.310865 6.868452e-03 Acid grassland\n", "9 3.252435 7.135523e-02 Heather grassland\n", "8 2.895485 8.886706e-02 Heather\n", "11 2.338684 1.262358e-01 Inland rock\n", "15 1.728844 1.885965e-01 Supralittoral sediment\n", "5 1.189055 2.755532e-01 Calcareous grassland\n", "14 0.349072 5.546558e-01 Supralittoral rock\n", "1 0.137187 7.111031e-01 Coniferous woodland\n", "16 0.126274 7.223367e-01 Littoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Red-legged Partridge 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
2610028.0815440.000000e+00Fertiliser K
2710028.0815440.000000e+00Fertiliser N
2810028.0815440.000000e+00Fertiliser P
236569.0786570.000000e+00Surface type
215268.4306300.000000e+00Elevation
254818.5812610.000000e+00Inflowing drainage direction
24323.6122480.000000e+00Arable
292736.2859440.000000e+00Chlorothalonil_5km
302736.2859440.000000e+00Glyphosate_5km
312736.2859440.000000e+00Mancozeb_5km
322736.2859440.000000e+00Mecoprop-P_5km
342736.2859440.000000e+00Pendimethalin_5km
382359.0168090.000000e+00Tri-allate_5km
32303.4164080.000000e+00Improve grassland
372250.3367010.000000e+00Sulphur_5km
362245.4128370.000000e+00Prosulfocarb_5km
331967.9043940.000000e+00Metamitron_5km
351927.3078300.000000e+00PropamocarbHydrochloride_5km
241545.1343474.967533e-309Outflowing drainage direction
01070.9924671.643813e-220Deciduous woodland
22779.6270699.230330e-164Cumulative catchment area
20675.3063815.632102e-143Suburban
5107.3119555.478702e-25Calcareous grassland
1967.1773752.868836e-16Urban
462.3842373.203360e-15Neutral grassland
1332.2561371.398832e-08Freshwater
731.3790822.193271e-08Fen
1813.8666341.976067e-04Saltmarsh
118.9063082.850500e-03Inland rock
85.1055222.387671e-02Heather
144.4677193.457209e-02Supralittoral rock
173.0833857.913418e-02Littoral sediment
12.8442929.173816e-02Coniferous woodland
92.0638991.508631e-01Heather grassland
120.9795143.223488e-01Saltwater
150.8767413.491243e-01Supralittoral sediment
100.3596435.487215e-01Bog
160.0754047.836319e-01Littoral rock
60.0372318.470000e-01Acid grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 10028.081544 0.000000e+00 Fertiliser K\n", "27 10028.081544 0.000000e+00 Fertiliser N\n", "28 10028.081544 0.000000e+00 Fertiliser P\n", "23 6569.078657 0.000000e+00 Surface type\n", "21 5268.430630 0.000000e+00 Elevation\n", "25 4818.581261 0.000000e+00 Inflowing drainage direction\n", "2 4323.612248 0.000000e+00 Arable\n", "29 2736.285944 0.000000e+00 Chlorothalonil_5km\n", "30 2736.285944 0.000000e+00 Glyphosate_5km\n", "31 2736.285944 0.000000e+00 Mancozeb_5km\n", "32 2736.285944 0.000000e+00 Mecoprop-P_5km\n", "34 2736.285944 0.000000e+00 Pendimethalin_5km\n", "38 2359.016809 0.000000e+00 Tri-allate_5km\n", "3 2303.416408 0.000000e+00 Improve grassland\n", "37 2250.336701 0.000000e+00 Sulphur_5km\n", "36 2245.412837 0.000000e+00 Prosulfocarb_5km\n", "33 1967.904394 0.000000e+00 Metamitron_5km\n", "35 1927.307830 0.000000e+00 PropamocarbHydrochloride_5km\n", "24 1545.134347 4.967533e-309 Outflowing drainage direction\n", "0 1070.992467 1.643813e-220 Deciduous woodland\n", "22 779.627069 9.230330e-164 Cumulative catchment area\n", "20 675.306381 5.632102e-143 Suburban\n", "5 107.311955 5.478702e-25 Calcareous grassland\n", "19 67.177375 2.868836e-16 Urban\n", "4 62.384237 3.203360e-15 Neutral grassland\n", "13 32.256137 1.398832e-08 Freshwater\n", "7 31.379082 2.193271e-08 Fen\n", "18 13.866634 1.976067e-04 Saltmarsh\n", "11 8.906308 2.850500e-03 Inland rock\n", "8 5.105522 2.387671e-02 Heather\n", "14 4.467719 3.457209e-02 Supralittoral rock\n", "17 3.083385 7.913418e-02 Littoral sediment\n", "1 2.844292 9.173816e-02 Coniferous woodland\n", "9 2.063899 1.508631e-01 Heather grassland\n", "12 0.979514 3.223488e-01 Saltwater\n", "15 0.876741 3.491243e-01 Supralittoral sediment\n", "10 0.359643 5.487215e-01 Bog\n", "16 0.075404 7.836319e-01 Littoral rock\n", "6 0.037231 8.470000e-01 Acid grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Ring-necked Parakeet 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
201621.4754877.410985e-323Suburban
191336.9709839.993620e-271Urban
261074.1834744.023650e-221Fertiliser K
271074.1834744.023650e-221Fertiliser N
281074.1834744.023650e-221Fertiliser P
23565.9968736.403263e-121Surface type
25427.5272391.468349e-92Inflowing drainage direction
21400.0207177.218079e-87Elevation
29391.1237585.053244e-85Chlorothalonil_5km
30391.1237585.053244e-85Glyphosate_5km
31391.1237585.053244e-85Mancozeb_5km
32391.1237585.053244e-85Mecoprop-P_5km
34391.1237585.053244e-85Pendimethalin_5km
0352.0394506.823027e-77Deciduous woodland
38339.1089723.409990e-74Tri-allate_5km
36319.1461895.106623e-70Prosulfocarb_5km
37319.1461895.106623e-70Sulphur_5km
35318.1527148.245376e-70PropamocarbHydrochloride_5km
33317.2198121.293078e-69Metamitron_5km
24285.3559036.317471e-63Outflowing drainage direction
3283.3404991.677140e-62Improve grassland
250.3573891.391539e-12Arable
1348.8116993.044664e-12Freshwater
2235.8674472.203758e-09Cumulative catchment area
719.3003291.131332e-05Fen
66.9526408.385814e-03Acid grassland
43.7824385.182829e-02Neutral grassland
93.5244366.050691e-02Heather grassland
82.7331699.832354e-02Heather
102.5329261.115330e-01Bog
12.2721921.317531e-01Coniferous woodland
170.8998223.428583e-01Littoral sediment
110.8619683.532166e-01Inland rock
160.7901423.740841e-01Littoral rock
140.5897044.425563e-01Supralittoral rock
180.4123705.207875e-01Saltmarsh
150.0085449.263560e-01Supralittoral sediment
120.0013719.704634e-01Saltwater
50.0003969.841293e-01Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "20 1621.475487 7.410985e-323 Suburban\n", "19 1336.970983 9.993620e-271 Urban\n", "26 1074.183474 4.023650e-221 Fertiliser K\n", "27 1074.183474 4.023650e-221 Fertiliser N\n", "28 1074.183474 4.023650e-221 Fertiliser P\n", "23 565.996873 6.403263e-121 Surface type\n", "25 427.527239 1.468349e-92 Inflowing drainage direction\n", "21 400.020717 7.218079e-87 Elevation\n", "29 391.123758 5.053244e-85 Chlorothalonil_5km\n", "30 391.123758 5.053244e-85 Glyphosate_5km\n", "31 391.123758 5.053244e-85 Mancozeb_5km\n", "32 391.123758 5.053244e-85 Mecoprop-P_5km\n", "34 391.123758 5.053244e-85 Pendimethalin_5km\n", "0 352.039450 6.823027e-77 Deciduous woodland\n", "38 339.108972 3.409990e-74 Tri-allate_5km\n", "36 319.146189 5.106623e-70 Prosulfocarb_5km\n", "37 319.146189 5.106623e-70 Sulphur_5km\n", "35 318.152714 8.245376e-70 PropamocarbHydrochloride_5km\n", "33 317.219812 1.293078e-69 Metamitron_5km\n", "24 285.355903 6.317471e-63 Outflowing drainage direction\n", "3 283.340499 1.677140e-62 Improve grassland\n", "2 50.357389 1.391539e-12 Arable\n", "13 48.811699 3.044664e-12 Freshwater\n", "22 35.867447 2.203758e-09 Cumulative catchment area\n", "7 19.300329 1.131332e-05 Fen\n", "6 6.952640 8.385814e-03 Acid grassland\n", "4 3.782438 5.182829e-02 Neutral grassland\n", "9 3.524436 6.050691e-02 Heather grassland\n", "8 2.733169 9.832354e-02 Heather\n", "10 2.532926 1.115330e-01 Bog\n", "1 2.272192 1.317531e-01 Coniferous woodland\n", "17 0.899822 3.428583e-01 Littoral sediment\n", "11 0.861968 3.532166e-01 Inland rock\n", "16 0.790142 3.740841e-01 Littoral rock\n", "14 0.589704 4.425563e-01 Supralittoral rock\n", "18 0.412370 5.207875e-01 Saltmarsh\n", "15 0.008544 9.263560e-01 Supralittoral sediment\n", "12 0.001371 9.704634e-01 Saltwater\n", "5 0.000396 9.841293e-01 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Rock Dove 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
236619.0080280.000000e+00Surface type
215838.7032140.000000e+00Elevation
255360.0174920.000000e+00Inflowing drainage direction
264904.9713270.000000e+00Fertiliser K
274904.9713270.000000e+00Fertiliser N
284904.9713270.000000e+00Fertiliser P
292334.7278810.000000e+00Chlorothalonil_5km
302334.7278810.000000e+00Glyphosate_5km
312334.7278810.000000e+00Mancozeb_5km
322334.7278810.000000e+00Mecoprop-P_5km
342334.7278810.000000e+00Pendimethalin_5km
32261.3087080.000000e+00Improve grassland
381862.7437560.000000e+00Tri-allate_5km
361750.4545210.000000e+00Prosulfocarb_5km
371750.4545210.000000e+00Sulphur_5km
21729.6477560.000000e+00Arable
351470.1941912.442119e-295PropamocarbHydrochloride_5km
331464.2569233.000378e-294Metamitron_5km
241406.9734551.055522e-283Outflowing drainage direction
201158.5287763.363250e-237Suburban
01035.9531838.748264e-214Deciduous woodland
22751.1300294.149641e-158Cumulative catchment area
19315.7779312.592399e-69Urban
493.8073854.601235e-22Neutral grassland
564.3970831.162344e-15Calcareous grassland
1353.3063543.129215e-13Freshwater
734.9045933.605024e-09Fen
1720.2668086.831707e-06Littoral sediment
1818.5236321.698188e-05Saltmarsh
1617.2620563.290300e-05Littoral rock
1514.6197931.325292e-04Supralittoral sediment
148.6078793.356669e-03Supralittoral rock
16.1971871.281560e-02Coniferous woodland
115.7129491.686333e-02Inland rock
95.6825241.715800e-02Heather grassland
105.1347402.347832e-02Bog
121.9178291.661350e-01Saltwater
61.5504002.131130e-01Acid grassland
80.2926125.885664e-01Heather
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 6619.008028 0.000000e+00 Surface type\n", "21 5838.703214 0.000000e+00 Elevation\n", "25 5360.017492 0.000000e+00 Inflowing drainage direction\n", "26 4904.971327 0.000000e+00 Fertiliser K\n", "27 4904.971327 0.000000e+00 Fertiliser N\n", "28 4904.971327 0.000000e+00 Fertiliser P\n", "29 2334.727881 0.000000e+00 Chlorothalonil_5km\n", "30 2334.727881 0.000000e+00 Glyphosate_5km\n", "31 2334.727881 0.000000e+00 Mancozeb_5km\n", "32 2334.727881 0.000000e+00 Mecoprop-P_5km\n", "34 2334.727881 0.000000e+00 Pendimethalin_5km\n", "3 2261.308708 0.000000e+00 Improve grassland\n", "38 1862.743756 0.000000e+00 Tri-allate_5km\n", "36 1750.454521 0.000000e+00 Prosulfocarb_5km\n", "37 1750.454521 0.000000e+00 Sulphur_5km\n", "2 1729.647756 0.000000e+00 Arable\n", "35 1470.194191 2.442119e-295 PropamocarbHydrochloride_5km\n", "33 1464.256923 3.000378e-294 Metamitron_5km\n", "24 1406.973455 1.055522e-283 Outflowing drainage direction\n", "20 1158.528776 3.363250e-237 Suburban\n", "0 1035.953183 8.748264e-214 Deciduous woodland\n", "22 751.130029 4.149641e-158 Cumulative catchment area\n", "19 315.777931 2.592399e-69 Urban\n", "4 93.807385 4.601235e-22 Neutral grassland\n", "5 64.397083 1.162344e-15 Calcareous grassland\n", "13 53.306354 3.129215e-13 Freshwater\n", "7 34.904593 3.605024e-09 Fen\n", "17 20.266808 6.831707e-06 Littoral sediment\n", "18 18.523632 1.698188e-05 Saltmarsh\n", "16 17.262056 3.290300e-05 Littoral rock\n", "15 14.619793 1.325292e-04 Supralittoral sediment\n", "14 8.607879 3.356669e-03 Supralittoral rock\n", "1 6.197187 1.281560e-02 Coniferous woodland\n", "11 5.712949 1.686333e-02 Inland rock\n", "9 5.682524 1.715800e-02 Heather grassland\n", "10 5.134740 2.347832e-02 Bog\n", "12 1.917829 1.661350e-01 Saltwater\n", "6 1.550400 2.131130e-01 Acid grassland\n", "8 0.292612 5.885664e-01 Heather" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Ruddy Duck 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
26506.0115181.079756e-108Fertiliser K
27506.0115181.079756e-108Fertiliser N
28506.0115181.079756e-108Fertiliser P
20283.1736401.818362e-62Suburban
19266.7725775.184196e-59Urban
23265.1607491.134062e-58Surface type
13254.2194282.313511e-56Freshwater
25195.8413015.587129e-44Inflowing drainage direction
21180.1451871.243031e-40Elevation
3160.6257791.855127e-36Improve grassland
24147.9832549.521754e-34Outflowing drainage direction
29127.2510762.728551e-29Chlorothalonil_5km
30127.2510762.728551e-29Glyphosate_5km
31127.2510762.728551e-29Mancozeb_5km
32127.2510762.728551e-29Mecoprop-P_5km
34127.2510762.728551e-29Pendimethalin_5km
33124.0286281.349605e-28Metamitron_5km
36120.8002756.701485e-28Prosulfocarb_5km
37120.8002756.701485e-28Sulphur_5km
2120.6236467.315784e-28Arable
38116.4091655.935908e-27Tri-allate_5km
35114.6246341.441129e-26PropamocarbHydrochloride_5km
487.7399749.541108e-21Neutral grassland
2247.9294794.761481e-12Cumulative catchment area
029.3006056.378079e-08Deciduous woodland
1523.1051651.561879e-06Supralittoral sediment
712.0776475.130188e-04Fen
63.5379906.001455e-02Acid grassland
92.3700841.237201e-01Heather grassland
182.2119371.369862e-01Saltmarsh
81.9976671.575807e-01Heather
11.7429251.868066e-01Coniferous woodland
101.5151712.183881e-01Bog
170.4144635.197314e-01Littoral sediment
50.4127005.206209e-01Calcareous grassland
140.4079715.230193e-01Supralittoral rock
160.3878265.334622e-01Littoral rock
110.3789895.381623e-01Inland rock
120.0155529.007570e-01Saltwater
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 506.011518 1.079756e-108 Fertiliser K\n", "27 506.011518 1.079756e-108 Fertiliser N\n", "28 506.011518 1.079756e-108 Fertiliser P\n", "20 283.173640 1.818362e-62 Suburban\n", "19 266.772577 5.184196e-59 Urban\n", "23 265.160749 1.134062e-58 Surface type\n", "13 254.219428 2.313511e-56 Freshwater\n", "25 195.841301 5.587129e-44 Inflowing drainage direction\n", "21 180.145187 1.243031e-40 Elevation\n", "3 160.625779 1.855127e-36 Improve grassland\n", "24 147.983254 9.521754e-34 Outflowing drainage direction\n", "29 127.251076 2.728551e-29 Chlorothalonil_5km\n", "30 127.251076 2.728551e-29 Glyphosate_5km\n", "31 127.251076 2.728551e-29 Mancozeb_5km\n", "32 127.251076 2.728551e-29 Mecoprop-P_5km\n", "34 127.251076 2.728551e-29 Pendimethalin_5km\n", "33 124.028628 1.349605e-28 Metamitron_5km\n", "36 120.800275 6.701485e-28 Prosulfocarb_5km\n", "37 120.800275 6.701485e-28 Sulphur_5km\n", "2 120.623646 7.315784e-28 Arable\n", "38 116.409165 5.935908e-27 Tri-allate_5km\n", "35 114.624634 1.441129e-26 PropamocarbHydrochloride_5km\n", "4 87.739974 9.541108e-21 Neutral grassland\n", "22 47.929479 4.761481e-12 Cumulative catchment area\n", "0 29.300605 6.378079e-08 Deciduous woodland\n", "15 23.105165 1.561879e-06 Supralittoral sediment\n", "7 12.077647 5.130188e-04 Fen\n", "6 3.537990 6.001455e-02 Acid grassland\n", "9 2.370084 1.237201e-01 Heather grassland\n", "18 2.211937 1.369862e-01 Saltmarsh\n", "8 1.997667 1.575807e-01 Heather\n", "1 1.742925 1.868066e-01 Coniferous woodland\n", "10 1.515171 2.183881e-01 Bog\n", "17 0.414463 5.197314e-01 Littoral sediment\n", "5 0.412700 5.206209e-01 Calcareous grassland\n", "14 0.407971 5.230193e-01 Supralittoral rock\n", "16 0.387826 5.334622e-01 Littoral rock\n", "11 0.378989 5.381623e-01 Inland rock\n", "12 0.015552 9.007570e-01 Saltwater" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Whooper Swan 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
251446.4735445.550292e-291Inflowing drainage direction
211251.2476691.058098e-254Elevation
231191.3750812.023384e-243Surface type
3445.7222492.586255e-96Improve grassland
2374.0664181.765675e-81Arable
24320.0363263.324479e-70Outflowing drainage direction
0238.8209654.174954e-53Deciduous woodland
26223.2044188.516960e-50Fertiliser K
27223.2044188.516960e-50Fertiliser N
28223.2044188.516960e-50Fertiliser P
29197.4753222.507116e-44Chlorothalonil_5km
30197.4753222.507116e-44Glyphosate_5km
31197.4753222.507116e-44Mancozeb_5km
32197.4753222.507116e-44Mecoprop-P_5km
34197.4753222.507116e-44Pendimethalin_5km
17121.3145105.191402e-28Littoral sediment
38114.7820901.332627e-26Tri-allate_5km
36107.7597194.383959e-25Prosulfocarb_5km
37107.7597194.383959e-25Sulphur_5km
3597.7745876.352410e-23PropamocarbHydrochloride_5km
3394.0436254.089261e-22Metamitron_5km
2090.0453003.013566e-21Suburban
2279.6871985.373532e-19Cumulative catchment area
1377.3480711.735747e-18Freshwater
1963.0661512.272035e-15Urban
1853.2712043.185333e-13Saltmarsh
153.2015273.299568e-13Coniferous woodland
1050.8307011.095016e-12Bog
1545.2368691.866498e-11Supralittoral sediment
942.5124947.451361e-11Heather grassland
432.9161619.974305e-09Neutral grassland
1432.9071501.002046e-08Supralittoral rock
1629.9040984.677093e-08Littoral rock
724.5120537.536372e-07Fen
124.3527553.698086e-02Saltwater
82.6339001.046440e-01Heather
52.2266581.356866e-01Calcareous grassland
61.5911942.071926e-01Acid grassland
110.0204658.862510e-01Inland rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 1446.473544 5.550292e-291 Inflowing drainage direction\n", "21 1251.247669 1.058098e-254 Elevation\n", "23 1191.375081 2.023384e-243 Surface type\n", "3 445.722249 2.586255e-96 Improve grassland\n", "2 374.066418 1.765675e-81 Arable\n", "24 320.036326 3.324479e-70 Outflowing drainage direction\n", "0 238.820965 4.174954e-53 Deciduous woodland\n", "26 223.204418 8.516960e-50 Fertiliser K\n", "27 223.204418 8.516960e-50 Fertiliser N\n", "28 223.204418 8.516960e-50 Fertiliser P\n", "29 197.475322 2.507116e-44 Chlorothalonil_5km\n", "30 197.475322 2.507116e-44 Glyphosate_5km\n", "31 197.475322 2.507116e-44 Mancozeb_5km\n", "32 197.475322 2.507116e-44 Mecoprop-P_5km\n", "34 197.475322 2.507116e-44 Pendimethalin_5km\n", "17 121.314510 5.191402e-28 Littoral sediment\n", "38 114.782090 1.332627e-26 Tri-allate_5km\n", "36 107.759719 4.383959e-25 Prosulfocarb_5km\n", "37 107.759719 4.383959e-25 Sulphur_5km\n", "35 97.774587 6.352410e-23 PropamocarbHydrochloride_5km\n", "33 94.043625 4.089261e-22 Metamitron_5km\n", "20 90.045300 3.013566e-21 Suburban\n", "22 79.687198 5.373532e-19 Cumulative catchment area\n", "13 77.348071 1.735747e-18 Freshwater\n", "19 63.066151 2.272035e-15 Urban\n", "18 53.271204 3.185333e-13 Saltmarsh\n", "1 53.201527 3.299568e-13 Coniferous woodland\n", "10 50.830701 1.095016e-12 Bog\n", "15 45.236869 1.866498e-11 Supralittoral sediment\n", "9 42.512494 7.451361e-11 Heather grassland\n", "4 32.916161 9.974305e-09 Neutral grassland\n", "14 32.907150 1.002046e-08 Supralittoral rock\n", "16 29.904098 4.677093e-08 Littoral rock\n", "7 24.512053 7.536372e-07 Fen\n", "12 4.352755 3.698086e-02 Saltwater\n", "8 2.633900 1.046440e-01 Heather\n", "5 2.226658 1.356866e-01 Calcareous grassland\n", "6 1.591194 2.071926e-01 Acid grassland\n", "11 0.020465 8.862510e-01 Inland rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Wigeon 5km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
253527.3049110.000000e+00Inflowing drainage direction
233350.4818280.000000e+00Surface type
213275.7220080.000000e+00Elevation
261560.6751797.419696e-312Fertiliser K
271560.6751797.419696e-312Fertiliser N
281560.6751797.419696e-312Fertiliser P
31300.3497466.719167e-264Improve grassland
21127.7642792.364062e-231Arable
24888.4942563.471083e-185Outflowing drainage direction
29847.0527264.617711e-177Chlorothalonil_5km
30847.0527264.617711e-177Glyphosate_5km
31847.0527264.617711e-177Mancozeb_5km
32847.0527264.617711e-177Mecoprop-P_5km
34847.0527264.617711e-177Pendimethalin_5km
36676.5204603.215919e-143Prosulfocarb_5km
37675.1986925.919142e-143Sulphur_5km
38659.4659958.494090e-140Tri-allate_5km
0583.1456852.124075e-124Deciduous woodland
33550.3317869.792385e-118Metamitron_5km
35548.5864162.218553e-117PropamocarbHydrochloride_5km
20461.3331121.579205e-99Suburban
19215.2551594.147517e-48Urban
22187.3025383.691076e-42Cumulative catchment area
17171.0514231.090041e-38Littoral sediment
1892.8136737.557806e-22Saltmarsh
486.1298052.134802e-20Neutral grassland
771.4321563.379892e-17Fen
1352.3568075.058361e-13Freshwater
1640.7339851.841863e-10Littoral rock
1539.1286654.172586e-10Supralittoral sediment
1238.3067796.344354e-10Saltwater
922.0137382.752216e-06Heather grassland
1413.6028332.273482e-04Supralittoral rock
112.1988574.807841e-04Coniferous woodland
108.1180674.393870e-03Bog
57.6602255.658186e-03Calcareous grassland
84.8789142.721508e-02Heather
60.9724963.240885e-01Acid grassland
110.0007209.785954e-01Inland rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 3527.304911 0.000000e+00 Inflowing drainage direction\n", "23 3350.481828 0.000000e+00 Surface type\n", "21 3275.722008 0.000000e+00 Elevation\n", "26 1560.675179 7.419696e-312 Fertiliser K\n", "27 1560.675179 7.419696e-312 Fertiliser N\n", "28 1560.675179 7.419696e-312 Fertiliser P\n", "3 1300.349746 6.719167e-264 Improve grassland\n", "2 1127.764279 2.364062e-231 Arable\n", "24 888.494256 3.471083e-185 Outflowing drainage direction\n", "29 847.052726 4.617711e-177 Chlorothalonil_5km\n", "30 847.052726 4.617711e-177 Glyphosate_5km\n", "31 847.052726 4.617711e-177 Mancozeb_5km\n", "32 847.052726 4.617711e-177 Mecoprop-P_5km\n", "34 847.052726 4.617711e-177 Pendimethalin_5km\n", "36 676.520460 3.215919e-143 Prosulfocarb_5km\n", "37 675.198692 5.919142e-143 Sulphur_5km\n", "38 659.465995 8.494090e-140 Tri-allate_5km\n", "0 583.145685 2.124075e-124 Deciduous woodland\n", "33 550.331786 9.792385e-118 Metamitron_5km\n", "35 548.586416 2.218553e-117 PropamocarbHydrochloride_5km\n", "20 461.333112 1.579205e-99 Suburban\n", "19 215.255159 4.147517e-48 Urban\n", "22 187.302538 3.691076e-42 Cumulative catchment area\n", "17 171.051423 1.090041e-38 Littoral sediment\n", "18 92.813673 7.557806e-22 Saltmarsh\n", "4 86.129805 2.134802e-20 Neutral grassland\n", "7 71.432156 3.379892e-17 Fen\n", "13 52.356807 5.058361e-13 Freshwater\n", "16 40.733985 1.841863e-10 Littoral rock\n", "15 39.128665 4.172586e-10 Supralittoral sediment\n", "12 38.306779 6.344354e-10 Saltwater\n", "9 22.013738 2.752216e-06 Heather grassland\n", "14 13.602833 2.273482e-04 Supralittoral rock\n", "1 12.198857 4.807841e-04 Coniferous woodland\n", "10 8.118067 4.393870e-03 Bog\n", "5 7.660225 5.658186e-03 Calcareous grassland\n", "8 4.878914 2.721508e-02 Heather\n", "6 0.972496 3.240885e-01 Acid grassland\n", "11 0.000720 9.785954e-01 Inland rock" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for dict in df_dicts:\n", " print(dict['name'])\n", " display(dict['kbest']['Dataframe'])" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.9.13 ('env': venv)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "f025c48a9b67ab76bdc0400dfa0f9ba99120976b4a6ec6a63d1c946516165c91" } } }, "nbformat": 4, "nbformat_minor": 2 }