{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import rioxarray\n",
"import json, os\n",
"\n",
"from sklearn.feature_selection import SelectKBest\n",
"from sklearn.feature_selection import chi2, f_classif, mutual_info_classif\n",
"from sklearn.metrics import f1_score, classification_report\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"from sklearn.linear_model import LogisticRegression, SGDClassifier\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier, StackingClassifier\n",
"\n",
"from imblearn.over_sampling import RandomOverSampler, SMOTE"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"seed = 42\n",
"verbose = False\n",
"details = False"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 607500.0 | \n",
" 252500.0 | \n",
" 0 | \n",
" 97 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 972500.0 | \n",
" 427500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 542500.0 | \n",
" 532500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1282500.0 | \n",
" 117500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 37500.0 | \n",
" 272500.0 | \n",
" 33 | \n",
" 0 | \n",
" 0 | \n",
" 40 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"607500.0 252500.0 0 97 0 \n",
"972500.0 427500.0 0 0 0 \n",
"542500.0 532500.0 0 0 0 \n",
"1282500.0 117500.0 0 0 0 \n",
"37500.0 272500.0 33 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"607500.0 252500.0 0 0 \n",
"972500.0 427500.0 0 0 \n",
"542500.0 532500.0 0 0 \n",
"1282500.0 117500.0 0 0 \n",
"37500.0 272500.0 40 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"607500.0 252500.0 0 1 0 0 \n",
"972500.0 427500.0 0 0 0 0 \n",
"542500.0 532500.0 0 0 0 0 \n",
"1282500.0 117500.0 0 0 0 0 \n",
"37500.0 272500.0 3 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"607500.0 252500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"972500.0 427500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"542500.0 532500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1282500.0 117500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"37500.0 272500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"607500.0 252500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"972500.0 427500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"542500.0 532500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1282500.0 117500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"37500.0 272500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"607500.0 252500.0 -3.400000e+38 -3.400000e+38 \n",
"972500.0 427500.0 -3.400000e+38 -3.400000e+38 \n",
"542500.0 532500.0 -3.400000e+38 -3.400000e+38 \n",
"1282500.0 117500.0 -3.400000e+38 -3.400000e+38 \n",
"37500.0 272500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"607500.0 252500.0 -3.400000e+38 -3.400000e+38 0 \n",
"972500.0 427500.0 -3.400000e+38 -3.400000e+38 0 \n",
"542500.0 532500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1282500.0 117500.0 -3.400000e+38 -3.400000e+38 0 \n",
"37500.0 272500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 802500.0 | \n",
" 122500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 8.138728e-04 | \n",
" 1.190874e-04 | \n",
" 4.880362e-04 | \n",
" -3.400000e+38 | \n",
" 2.723976e-04 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 657500.0 | \n",
" 277500.0 | \n",
" 11 | \n",
" 0 | \n",
" 73 | \n",
" 15 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.030670e+01 | \n",
" 4.352145e-01 | \n",
" 2.785886e+00 | \n",
" 1.125801e+00 | \n",
" 3.565825e+00 | \n",
" 5.041016e-01 | \n",
" 3.888663e+00 | \n",
" 2.837022e+01 | \n",
" 5.658418e+00 | \n",
" 1 | \n",
"
\n",
" \n",
" 397500.0 | \n",
" 297500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 3.976332e-01 | \n",
" 1.258106e+00 | \n",
" 2.159117e-01 | \n",
" 5.655438e-01 | \n",
" 3.346499e-01 | \n",
" 3.118947e-01 | \n",
" 5.090066e-01 | \n",
" 4.113150e-02 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 682500.0 | \n",
" 12500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1147500.0 | \n",
" 577500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"802500.0 122500.0 0 0 0 \n",
"657500.0 277500.0 11 0 73 \n",
"397500.0 297500.0 0 0 0 \n",
"682500.0 12500.0 0 0 0 \n",
"1147500.0 577500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"802500.0 122500.0 0 0 \n",
"657500.0 277500.0 15 0 \n",
"397500.0 297500.0 0 0 \n",
"682500.0 12500.0 0 0 \n",
"1147500.0 577500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"802500.0 122500.0 0 0 0 0 \n",
"657500.0 277500.0 0 0 0 0 \n",
"397500.0 297500.0 0 0 0 0 \n",
"682500.0 12500.0 0 0 0 0 \n",
"1147500.0 577500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"802500.0 122500.0 0 ... 8.138728e-04 1.190874e-04 \n",
"657500.0 277500.0 0 ... 1.030670e+01 4.352145e-01 \n",
"397500.0 297500.0 0 ... 3.976332e-01 1.258106e+00 \n",
"682500.0 12500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1147500.0 577500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"802500.0 122500.0 4.880362e-04 -3.400000e+38 2.723976e-04 \n",
"657500.0 277500.0 2.785886e+00 1.125801e+00 3.565825e+00 \n",
"397500.0 297500.0 2.159117e-01 5.655438e-01 3.346499e-01 \n",
"682500.0 12500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1147500.0 577500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"802500.0 122500.0 -3.400000e+38 -3.400000e+38 \n",
"657500.0 277500.0 5.041016e-01 3.888663e+00 \n",
"397500.0 297500.0 3.118947e-01 5.090066e-01 \n",
"682500.0 12500.0 -3.400000e+38 -3.400000e+38 \n",
"1147500.0 577500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"802500.0 122500.0 -3.400000e+38 -3.400000e+38 0 \n",
"657500.0 277500.0 2.837022e+01 5.658418e+00 1 \n",
"397500.0 297500.0 4.113150e-02 -3.400000e+38 0 \n",
"682500.0 12500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1147500.0 577500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1227500.0 | \n",
" 502500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 567500.0 | \n",
" 67500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 87500.0 | \n",
" 47500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1007500.0 | \n",
" 572500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1047500.0 | \n",
" 617500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1227500.0 502500.0 0 0 0 \n",
"567500.0 67500.0 0 0 0 \n",
"87500.0 47500.0 0 0 0 \n",
"1007500.0 572500.0 0 0 0 \n",
"1047500.0 617500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1227500.0 502500.0 0 0 \n",
"567500.0 67500.0 0 0 \n",
"87500.0 47500.0 0 0 \n",
"1007500.0 572500.0 0 0 \n",
"1047500.0 617500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1227500.0 502500.0 0 0 0 0 \n",
"567500.0 67500.0 0 0 0 0 \n",
"87500.0 47500.0 0 0 0 0 \n",
"1007500.0 572500.0 0 0 0 0 \n",
"1047500.0 617500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"1227500.0 502500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"567500.0 67500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"87500.0 47500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1007500.0 572500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1047500.0 617500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"1227500.0 502500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"567500.0 67500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"87500.0 47500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1007500.0 572500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1047500.0 617500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"1227500.0 502500.0 -3.400000e+38 -3.400000e+38 \n",
"567500.0 67500.0 -3.400000e+38 -3.400000e+38 \n",
"87500.0 47500.0 -3.400000e+38 -3.400000e+38 \n",
"1007500.0 572500.0 -3.400000e+38 -3.400000e+38 \n",
"1047500.0 617500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"1227500.0 502500.0 -3.400000e+38 -3.400000e+38 0 \n",
"567500.0 67500.0 -3.400000e+38 -3.400000e+38 0 \n",
"87500.0 47500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1007500.0 572500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1047500.0 617500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1287500.0 | \n",
" 592500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 992500.0 | \n",
" 257500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 752500.0 | \n",
" 227500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 100 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 52500.0 | \n",
" 267500.0 | \n",
" 2 | \n",
" 0 | \n",
" 26 | \n",
" 71 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 607500.0 | \n",
" 687500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1287500.0 592500.0 0 0 0 \n",
"992500.0 257500.0 0 0 0 \n",
"752500.0 227500.0 0 0 0 \n",
"52500.0 267500.0 2 0 26 \n",
"607500.0 687500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1287500.0 592500.0 0 0 \n",
"992500.0 257500.0 0 0 \n",
"752500.0 227500.0 0 0 \n",
"52500.0 267500.0 71 0 \n",
"607500.0 687500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1287500.0 592500.0 0 0 0 0 \n",
"992500.0 257500.0 0 0 0 0 \n",
"752500.0 227500.0 0 100 0 0 \n",
"52500.0 267500.0 0 0 0 0 \n",
"607500.0 687500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"1287500.0 592500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"992500.0 257500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"752500.0 227500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"52500.0 267500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"607500.0 687500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"1287500.0 592500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"992500.0 257500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"752500.0 227500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"52500.0 267500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"607500.0 687500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"1287500.0 592500.0 -3.400000e+38 -3.400000e+38 \n",
"992500.0 257500.0 -3.400000e+38 -3.400000e+38 \n",
"752500.0 227500.0 -3.400000e+38 -3.400000e+38 \n",
"52500.0 267500.0 -3.400000e+38 -3.400000e+38 \n",
"607500.0 687500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"1287500.0 592500.0 -3.400000e+38 -3.400000e+38 0 \n",
"992500.0 257500.0 -3.400000e+38 -3.400000e+38 0 \n",
"752500.0 227500.0 -3.400000e+38 -3.400000e+38 0 \n",
"52500.0 267500.0 -3.400000e+38 -3.400000e+38 0 \n",
"607500.0 687500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1252500.0 | \n",
" 657500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 102500.0 | \n",
" 97500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 932500.0 | \n",
" 647500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1212500.0 | \n",
" 597500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 792500.0 | \n",
" 292500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 35 | \n",
" 0 | \n",
" ... | \n",
" 2.431922e-01 | \n",
" 3.086462e-02 | \n",
" 2.702676e-01 | \n",
" -3.400000e+38 | \n",
" 9.863137e-02 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 3.256879e-01 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1252500.0 657500.0 0 0 0 \n",
"102500.0 97500.0 0 0 0 \n",
"932500.0 647500.0 0 0 0 \n",
"1212500.0 597500.0 0 0 0 \n",
"792500.0 292500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1252500.0 657500.0 0 0 \n",
"102500.0 97500.0 0 0 \n",
"932500.0 647500.0 0 0 \n",
"1212500.0 597500.0 0 0 \n",
"792500.0 292500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1252500.0 657500.0 0 0 0 0 \n",
"102500.0 97500.0 0 0 0 0 \n",
"932500.0 647500.0 0 0 0 0 \n",
"1212500.0 597500.0 0 0 0 0 \n",
"792500.0 292500.0 0 0 0 35 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"1252500.0 657500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"102500.0 97500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"932500.0 647500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1212500.0 597500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"792500.0 292500.0 0 ... 2.431922e-01 3.086462e-02 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"1252500.0 657500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"102500.0 97500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"932500.0 647500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1212500.0 597500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"792500.0 292500.0 2.702676e-01 -3.400000e+38 9.863137e-02 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"1252500.0 657500.0 -3.400000e+38 -3.400000e+38 \n",
"102500.0 97500.0 -3.400000e+38 -3.400000e+38 \n",
"932500.0 647500.0 -3.400000e+38 -3.400000e+38 \n",
"1212500.0 597500.0 -3.400000e+38 -3.400000e+38 \n",
"792500.0 292500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"1252500.0 657500.0 -3.400000e+38 -3.400000e+38 0 \n",
"102500.0 97500.0 -3.400000e+38 -3.400000e+38 0 \n",
"932500.0 647500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1212500.0 597500.0 -3.400000e+38 -3.400000e+38 0 \n",
"792500.0 292500.0 -3.400000e+38 3.256879e-01 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 117500.0 | \n",
" 527500.0 | \n",
" 3 | \n",
" 0 | \n",
" 16 | \n",
" 63 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 8.272594e-01 | \n",
" 2.877053e-02 | \n",
" 1.173386e-01 | \n",
" 3.322592e+01 | \n",
" 4.158661e-01 | \n",
" 2.305974e+01 | \n",
" 3.553085e+01 | \n",
" 8.387117e+00 | \n",
" 6.116870e+00 | \n",
" 1 | \n",
"
\n",
" \n",
" 1247500.0 | \n",
" 432500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 567500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 317500.0 | \n",
" 487500.0 | \n",
" 14 | \n",
" 0 | \n",
" 80 | \n",
" 5 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 3.991591e+01 | \n",
" 1.176242e+02 | \n",
" 8.662819e+00 | \n",
" 1.050424e+01 | \n",
" 2.852691e+01 | \n",
" 1.068438e+01 | \n",
" 1.747071e+01 | \n",
" 1.095099e+01 | \n",
" 1.244862e+01 | \n",
" 0 | \n",
"
\n",
" \n",
" 282500.0 | \n",
" 47500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"117500.0 527500.0 3 0 16 \n",
"1247500.0 432500.0 0 0 0 \n",
"27500.0 567500.0 0 0 0 \n",
"317500.0 487500.0 14 0 80 \n",
"282500.0 47500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"117500.0 527500.0 63 0 \n",
"1247500.0 432500.0 0 0 \n",
"27500.0 567500.0 0 0 \n",
"317500.0 487500.0 5 0 \n",
"282500.0 47500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"117500.0 527500.0 0 0 0 0 \n",
"1247500.0 432500.0 0 0 0 0 \n",
"27500.0 567500.0 0 0 0 0 \n",
"317500.0 487500.0 0 0 0 0 \n",
"282500.0 47500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"117500.0 527500.0 0 ... 8.272594e-01 2.877053e-02 \n",
"1247500.0 432500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"27500.0 567500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"317500.0 487500.0 0 ... 3.991591e+01 1.176242e+02 \n",
"282500.0 47500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"117500.0 527500.0 1.173386e-01 3.322592e+01 4.158661e-01 \n",
"1247500.0 432500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"27500.0 567500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"317500.0 487500.0 8.662819e+00 1.050424e+01 2.852691e+01 \n",
"282500.0 47500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"117500.0 527500.0 2.305974e+01 3.553085e+01 \n",
"1247500.0 432500.0 -3.400000e+38 -3.400000e+38 \n",
"27500.0 567500.0 -3.400000e+38 -3.400000e+38 \n",
"317500.0 487500.0 1.068438e+01 1.747071e+01 \n",
"282500.0 47500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"117500.0 527500.0 8.387117e+00 6.116870e+00 1 \n",
"1247500.0 432500.0 -3.400000e+38 -3.400000e+38 0 \n",
"27500.0 567500.0 -3.400000e+38 -3.400000e+38 0 \n",
"317500.0 487500.0 1.095099e+01 1.244862e+01 0 \n",
"282500.0 47500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 297500.0 | \n",
" 537500.0 | \n",
" 0 | \n",
" 0 | \n",
" 100 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.708381e+01 | \n",
" 8.271127e+00 | \n",
" 3.800092e+00 | \n",
" 7.832608e+00 | \n",
" 1.923025e+01 | \n",
" 1.577829e+00 | \n",
" 4.102243e+00 | \n",
" 2.988908e+00 | \n",
" 1.949554e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 212500.0 | \n",
" 232500.0 | \n",
" 5 | \n",
" 0 | \n",
" 7 | \n",
" 86 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1147500.0 | \n",
" 182500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 67500.0 | \n",
" 337500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 32500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"297500.0 537500.0 0 0 100 \n",
"212500.0 232500.0 5 0 7 \n",
"1147500.0 182500.0 0 0 0 \n",
"67500.0 337500.0 0 0 0 \n",
"22500.0 32500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"297500.0 537500.0 0 0 \n",
"212500.0 232500.0 86 0 \n",
"1147500.0 182500.0 0 0 \n",
"67500.0 337500.0 0 0 \n",
"22500.0 32500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"297500.0 537500.0 0 0 0 0 \n",
"212500.0 232500.0 0 0 0 0 \n",
"1147500.0 182500.0 0 0 0 0 \n",
"67500.0 337500.0 0 0 0 0 \n",
"22500.0 32500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"297500.0 537500.0 0 ... 2.708381e+01 8.271127e+00 \n",
"212500.0 232500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1147500.0 182500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"67500.0 337500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"22500.0 32500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"297500.0 537500.0 3.800092e+00 7.832608e+00 1.923025e+01 \n",
"212500.0 232500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1147500.0 182500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"67500.0 337500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"22500.0 32500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"297500.0 537500.0 1.577829e+00 4.102243e+00 \n",
"212500.0 232500.0 -3.400000e+38 -3.400000e+38 \n",
"1147500.0 182500.0 -3.400000e+38 -3.400000e+38 \n",
"67500.0 337500.0 -3.400000e+38 -3.400000e+38 \n",
"22500.0 32500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"297500.0 537500.0 2.988908e+00 1.949554e+00 0 \n",
"212500.0 232500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1147500.0 182500.0 -3.400000e+38 -3.400000e+38 0 \n",
"67500.0 337500.0 -3.400000e+38 -3.400000e+38 0 \n",
"22500.0 32500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 612500.0 | \n",
" 7500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 697500.0 | \n",
" 292500.0 | \n",
" 20 | \n",
" 0 | \n",
" 3 | \n",
" 26 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 9.259985e+00 | \n",
" 4.164787e+01 | \n",
" 6.766146e+00 | \n",
" -3.400000e+38 | \n",
" 4.883677e+00 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 762500.0 | \n",
" 477500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 977500.0 | \n",
" 132500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 952500.0 | \n",
" 557500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"612500.0 7500.0 0 0 0 \n",
"697500.0 292500.0 20 0 3 \n",
"762500.0 477500.0 0 0 0 \n",
"977500.0 132500.0 0 0 0 \n",
"952500.0 557500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"612500.0 7500.0 0 0 0 \n",
"697500.0 292500.0 26 0 0 \n",
"762500.0 477500.0 0 0 0 \n",
"977500.0 132500.0 0 0 0 \n",
"952500.0 557500.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"612500.0 7500.0 0 0 0 0 ... \n",
"697500.0 292500.0 3 0 0 0 ... \n",
"762500.0 477500.0 0 0 0 0 ... \n",
"977500.0 132500.0 0 0 0 0 ... \n",
"952500.0 557500.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_5km Mancozeb_5km Mecoprop-P_5km \\\n",
"y x \n",
"612500.0 7500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"697500.0 292500.0 9.259985e+00 4.164787e+01 6.766146e+00 \n",
"762500.0 477500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"977500.0 132500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"952500.0 557500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"612500.0 7500.0 -3.400000e+38 -3.400000e+38 \n",
"697500.0 292500.0 -3.400000e+38 4.883677e+00 \n",
"762500.0 477500.0 -3.400000e+38 -3.400000e+38 \n",
"977500.0 132500.0 -3.400000e+38 -3.400000e+38 \n",
"952500.0 557500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"612500.0 7500.0 -3.400000e+38 -3.400000e+38 \n",
"697500.0 292500.0 -3.400000e+38 -3.400000e+38 \n",
"762500.0 477500.0 -3.400000e+38 -3.400000e+38 \n",
"977500.0 132500.0 -3.400000e+38 -3.400000e+38 \n",
"952500.0 557500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"612500.0 7500.0 -3.400000e+38 -3.400000e+38 0 \n",
"697500.0 292500.0 -3.400000e+38 -3.400000e+38 0 \n",
"762500.0 477500.0 -3.400000e+38 -3.400000e+38 0 \n",
"977500.0 132500.0 -3.400000e+38 -3.400000e+38 0 \n",
"952500.0 557500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1007500.0 | \n",
" 467500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1257500.0 | \n",
" 42500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 707500.0 | \n",
" 462500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 312500.0 | \n",
" 587500.0 | \n",
" 8 | \n",
" 0 | \n",
" 66 | \n",
" 25 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.792899e+01 | \n",
" 6.121789e+01 | \n",
" 5.599670e+00 | \n",
" -3.400000e+38 | \n",
" 1.756899e+01 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 167500.0 | \n",
" 167500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1007500.0 467500.0 0 0 0 \n",
"1257500.0 42500.0 0 0 0 \n",
"707500.0 462500.0 0 0 0 \n",
"312500.0 587500.0 8 0 66 \n",
"167500.0 167500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1007500.0 467500.0 0 0 \n",
"1257500.0 42500.0 0 0 \n",
"707500.0 462500.0 0 0 \n",
"312500.0 587500.0 25 0 \n",
"167500.0 167500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1007500.0 467500.0 0 0 0 0 \n",
"1257500.0 42500.0 0 0 0 0 \n",
"707500.0 462500.0 0 0 0 0 \n",
"312500.0 587500.0 0 0 0 0 \n",
"167500.0 167500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"1007500.0 467500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1257500.0 42500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"707500.0 462500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"312500.0 587500.0 0 ... 2.792899e+01 6.121789e+01 \n",
"167500.0 167500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"1007500.0 467500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1257500.0 42500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"707500.0 462500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"312500.0 587500.0 5.599670e+00 -3.400000e+38 1.756899e+01 \n",
"167500.0 167500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"1007500.0 467500.0 -3.400000e+38 -3.400000e+38 \n",
"1257500.0 42500.0 -3.400000e+38 -3.400000e+38 \n",
"707500.0 462500.0 -3.400000e+38 -3.400000e+38 \n",
"312500.0 587500.0 -3.400000e+38 -3.400000e+38 \n",
"167500.0 167500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"1007500.0 467500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1257500.0 42500.0 -3.400000e+38 -3.400000e+38 0 \n",
"707500.0 462500.0 -3.400000e+38 -3.400000e+38 0 \n",
"312500.0 587500.0 -3.400000e+38 -3.400000e+38 0 \n",
"167500.0 167500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 977500.0 | \n",
" 332500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 752500.0 | \n",
" 432500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 427500.0 | \n",
" 252500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 167500.0 | \n",
" 492500.0 | \n",
" 12 | \n",
" 3 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.281384e-01 | \n",
" 1.178061e-02 | \n",
" 4.074233e-02 | \n",
" 4.135025e-01 | \n",
" 4.020740e-02 | \n",
" 3.532492e-01 | \n",
" 3.674308e-01 | \n",
" 1.980207e-02 | \n",
" -3.400000e+38 | \n",
" 1 | \n",
"
\n",
" \n",
" 1292500.0 | \n",
" 252500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"977500.0 332500.0 0 0 0 \n",
"752500.0 432500.0 0 0 0 \n",
"427500.0 252500.0 0 0 0 \n",
"167500.0 492500.0 12 3 0 \n",
"1292500.0 252500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"977500.0 332500.0 0 0 \n",
"752500.0 432500.0 0 0 \n",
"427500.0 252500.0 0 0 \n",
"167500.0 492500.0 3 0 \n",
"1292500.0 252500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"977500.0 332500.0 0 0 0 0 \n",
"752500.0 432500.0 0 0 0 0 \n",
"427500.0 252500.0 0 0 0 0 \n",
"167500.0 492500.0 0 0 0 0 \n",
"1292500.0 252500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"977500.0 332500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"752500.0 432500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"427500.0 252500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"167500.0 492500.0 0 ... 1.281384e-01 1.178061e-02 \n",
"1292500.0 252500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"977500.0 332500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"752500.0 432500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"427500.0 252500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"167500.0 492500.0 4.074233e-02 4.135025e-01 4.020740e-02 \n",
"1292500.0 252500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"977500.0 332500.0 -3.400000e+38 -3.400000e+38 \n",
"752500.0 432500.0 -3.400000e+38 -3.400000e+38 \n",
"427500.0 252500.0 -3.400000e+38 -3.400000e+38 \n",
"167500.0 492500.0 3.532492e-01 3.674308e-01 \n",
"1292500.0 252500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"977500.0 332500.0 -3.400000e+38 -3.400000e+38 0 \n",
"752500.0 432500.0 -3.400000e+38 -3.400000e+38 0 \n",
"427500.0 252500.0 -3.400000e+38 -3.400000e+38 0 \n",
"167500.0 492500.0 1.980207e-02 -3.400000e+38 1 \n",
"1292500.0 252500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 482500.0 | \n",
" 112500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 102500.0 | \n",
" 32500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 662500.0 | \n",
" 152500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 6.813936e-01 | \n",
" 7.095788e-02 | \n",
" 2.351900e-01 | \n",
" -3.400000e+38 | \n",
" 1.711554e-01 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1217500.0 | \n",
" 482500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 352500.0 | \n",
" 672500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"482500.0 112500.0 0 0 0 \n",
"102500.0 32500.0 0 0 0 \n",
"662500.0 152500.0 0 0 0 \n",
"1217500.0 482500.0 0 0 0 \n",
"352500.0 672500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"482500.0 112500.0 0 0 \n",
"102500.0 32500.0 0 0 \n",
"662500.0 152500.0 0 0 \n",
"1217500.0 482500.0 0 0 \n",
"352500.0 672500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"482500.0 112500.0 0 0 0 0 \n",
"102500.0 32500.0 0 0 0 0 \n",
"662500.0 152500.0 0 0 0 0 \n",
"1217500.0 482500.0 0 0 0 0 \n",
"352500.0 672500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"482500.0 112500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"102500.0 32500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"662500.0 152500.0 0 ... 6.813936e-01 7.095788e-02 \n",
"1217500.0 482500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"352500.0 672500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"482500.0 112500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"102500.0 32500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"662500.0 152500.0 2.351900e-01 -3.400000e+38 1.711554e-01 \n",
"1217500.0 482500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"352500.0 672500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"482500.0 112500.0 -3.400000e+38 -3.400000e+38 \n",
"102500.0 32500.0 -3.400000e+38 -3.400000e+38 \n",
"662500.0 152500.0 -3.400000e+38 -3.400000e+38 \n",
"1217500.0 482500.0 -3.400000e+38 -3.400000e+38 \n",
"352500.0 672500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"482500.0 112500.0 -3.400000e+38 -3.400000e+38 0 \n",
"102500.0 32500.0 -3.400000e+38 -3.400000e+38 0 \n",
"662500.0 152500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1217500.0 482500.0 -3.400000e+38 -3.400000e+38 0 \n",
"352500.0 672500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1072500.0 | \n",
" 252500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1237500.0 | \n",
" 542500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1157500.0 | \n",
" 367500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 927500.0 | \n",
" 617500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1097500.0 | \n",
" 592500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1072500.0 252500.0 0 0 0 \n",
"1237500.0 542500.0 0 0 0 \n",
"1157500.0 367500.0 0 0 0 \n",
"927500.0 617500.0 0 0 0 \n",
"1097500.0 592500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1072500.0 252500.0 0 0 \n",
"1237500.0 542500.0 0 0 \n",
"1157500.0 367500.0 0 0 \n",
"927500.0 617500.0 0 0 \n",
"1097500.0 592500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1072500.0 252500.0 0 0 0 0 \n",
"1237500.0 542500.0 0 0 0 0 \n",
"1157500.0 367500.0 0 0 0 0 \n",
"927500.0 617500.0 0 0 0 0 \n",
"1097500.0 592500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"1072500.0 252500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1237500.0 542500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1157500.0 367500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"927500.0 617500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1097500.0 592500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"1072500.0 252500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1237500.0 542500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1157500.0 367500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"927500.0 617500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1097500.0 592500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"1072500.0 252500.0 -3.400000e+38 -3.400000e+38 \n",
"1237500.0 542500.0 -3.400000e+38 -3.400000e+38 \n",
"1157500.0 367500.0 -3.400000e+38 -3.400000e+38 \n",
"927500.0 617500.0 -3.400000e+38 -3.400000e+38 \n",
"1097500.0 592500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"1072500.0 252500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1237500.0 542500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1157500.0 367500.0 -3.400000e+38 -3.400000e+38 0 \n",
"927500.0 617500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1097500.0 592500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1102500.0 | \n",
" 642500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 822500.0 | \n",
" 547500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 237500.0 | \n",
" 427500.0 | \n",
" 2 | \n",
" 0 | \n",
" 45 | \n",
" 53 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.510725e+00 | \n",
" 2.534451e+00 | \n",
" 2.723321e-01 | \n",
" 1.764000e+01 | \n",
" 9.751811e-01 | \n",
" 1.104040e+01 | \n",
" 2.994291e+01 | \n",
" 7.676104e+00 | \n",
" 6.142054e+01 | \n",
" 0 | \n",
"
\n",
" \n",
" 292500.0 | \n",
" 477500.0 | \n",
" 1 | \n",
" 0 | \n",
" 43 | \n",
" 56 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 4.988595e+01 | \n",
" 5.187139e+01 | \n",
" 4.879790e+00 | \n",
" 2.720762e+01 | \n",
" 2.823989e+01 | \n",
" 3.644452e+01 | \n",
" 4.140786e+01 | \n",
" 1.372874e+01 | \n",
" 1.559179e+01 | \n",
" 0 | \n",
"
\n",
" \n",
" 197500.0 | \n",
" 337500.0 | \n",
" 4 | \n",
" 0 | \n",
" 41 | \n",
" 52 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 7.785163e-04 | \n",
" 4.027653e-05 | \n",
" 4.539189e-04 | \n",
" 2.452656e+01 | \n",
" 3.015757e-04 | \n",
" 1.320384e+01 | \n",
" 3.131600e+01 | \n",
" 7.590619e+00 | \n",
" 4.133070e+00 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1102500.0 642500.0 0 0 0 \n",
"822500.0 547500.0 0 0 0 \n",
"237500.0 427500.0 2 0 45 \n",
"292500.0 477500.0 1 0 43 \n",
"197500.0 337500.0 4 0 41 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1102500.0 642500.0 0 0 \n",
"822500.0 547500.0 0 0 \n",
"237500.0 427500.0 53 0 \n",
"292500.0 477500.0 56 0 \n",
"197500.0 337500.0 52 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1102500.0 642500.0 0 0 0 0 \n",
"822500.0 547500.0 0 0 0 0 \n",
"237500.0 427500.0 0 0 0 0 \n",
"292500.0 477500.0 0 0 0 0 \n",
"197500.0 337500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"1102500.0 642500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"822500.0 547500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"237500.0 427500.0 0 ... 1.510725e+00 2.534451e+00 \n",
"292500.0 477500.0 0 ... 4.988595e+01 5.187139e+01 \n",
"197500.0 337500.0 0 ... 7.785163e-04 4.027653e-05 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"1102500.0 642500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"822500.0 547500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"237500.0 427500.0 2.723321e-01 1.764000e+01 9.751811e-01 \n",
"292500.0 477500.0 4.879790e+00 2.720762e+01 2.823989e+01 \n",
"197500.0 337500.0 4.539189e-04 2.452656e+01 3.015757e-04 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"1102500.0 642500.0 -3.400000e+38 -3.400000e+38 \n",
"822500.0 547500.0 -3.400000e+38 -3.400000e+38 \n",
"237500.0 427500.0 1.104040e+01 2.994291e+01 \n",
"292500.0 477500.0 3.644452e+01 4.140786e+01 \n",
"197500.0 337500.0 1.320384e+01 3.131600e+01 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"1102500.0 642500.0 -3.400000e+38 -3.400000e+38 0 \n",
"822500.0 547500.0 -3.400000e+38 -3.400000e+38 0 \n",
"237500.0 427500.0 7.676104e+00 6.142054e+01 0 \n",
"292500.0 477500.0 1.372874e+01 1.559179e+01 0 \n",
"197500.0 337500.0 7.590619e+00 4.133070e+00 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1057500.0 | \n",
" 367500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1157500.0 | \n",
" 637500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 552500.0 | \n",
" 372500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 8 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.290396e+01 | \n",
" 1.865693e+00 | \n",
" 3.713252e+00 | \n",
" -3.400000e+38 | \n",
" 1.161094e+01 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 232500.0 | \n",
" 607500.0 | \n",
" 3 | \n",
" 0 | \n",
" 24 | \n",
" 61 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 10 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 287500.0 | \n",
" 302500.0 | \n",
" 22 | \n",
" 0 | \n",
" 2 | \n",
" 72 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.015345e+01 | \n",
" 8.863521e+00 | \n",
" 2.965853e+00 | \n",
" 2.519909e+00 | \n",
" 8.948292e+00 | \n",
" 1.179017e+00 | \n",
" 1.015588e+00 | \n",
" 2.702603e-01 | \n",
" 7.346404e+00 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1057500.0 367500.0 0 0 0 \n",
"1157500.0 637500.0 0 0 0 \n",
"552500.0 372500.0 0 0 0 \n",
"232500.0 607500.0 3 0 24 \n",
"287500.0 302500.0 22 0 2 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1057500.0 367500.0 0 0 \n",
"1157500.0 637500.0 0 0 \n",
"552500.0 372500.0 0 0 \n",
"232500.0 607500.0 61 0 \n",
"287500.0 302500.0 72 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1057500.0 367500.0 0 0 0 0 \n",
"1157500.0 637500.0 0 0 0 0 \n",
"552500.0 372500.0 0 8 0 0 \n",
"232500.0 607500.0 0 0 10 0 \n",
"287500.0 302500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"1057500.0 367500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1157500.0 637500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"552500.0 372500.0 0 ... 1.290396e+01 1.865693e+00 \n",
"232500.0 607500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"287500.0 302500.0 0 ... 1.015345e+01 8.863521e+00 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"1057500.0 367500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1157500.0 637500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"552500.0 372500.0 3.713252e+00 -3.400000e+38 1.161094e+01 \n",
"232500.0 607500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"287500.0 302500.0 2.965853e+00 2.519909e+00 8.948292e+00 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"1057500.0 367500.0 -3.400000e+38 -3.400000e+38 \n",
"1157500.0 637500.0 -3.400000e+38 -3.400000e+38 \n",
"552500.0 372500.0 -3.400000e+38 -3.400000e+38 \n",
"232500.0 607500.0 -3.400000e+38 -3.400000e+38 \n",
"287500.0 302500.0 1.179017e+00 1.015588e+00 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"1057500.0 367500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1157500.0 637500.0 -3.400000e+38 -3.400000e+38 0 \n",
"552500.0 372500.0 -3.400000e+38 -3.400000e+38 0 \n",
"232500.0 607500.0 -3.400000e+38 -3.400000e+38 0 \n",
"287500.0 302500.0 2.702603e-01 7.346404e+00 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 157500.0 | \n",
" 197500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 537500.0 | \n",
" 87500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1122500.0 | \n",
" 657500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1092500.0 | \n",
" 542500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1212500.0 | \n",
" 522500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"157500.0 197500.0 0 0 0 \n",
"537500.0 87500.0 0 0 0 \n",
"1122500.0 657500.0 0 0 0 \n",
"1092500.0 542500.0 0 0 0 \n",
"1212500.0 522500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"157500.0 197500.0 0 0 \n",
"537500.0 87500.0 0 0 \n",
"1122500.0 657500.0 0 0 \n",
"1092500.0 542500.0 0 0 \n",
"1212500.0 522500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"157500.0 197500.0 0 0 0 0 \n",
"537500.0 87500.0 0 0 0 0 \n",
"1122500.0 657500.0 0 0 0 0 \n",
"1092500.0 542500.0 0 0 0 0 \n",
"1212500.0 522500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"157500.0 197500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"537500.0 87500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1122500.0 657500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1092500.0 542500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1212500.0 522500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"157500.0 197500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"537500.0 87500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1122500.0 657500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1092500.0 542500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1212500.0 522500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"157500.0 197500.0 -3.400000e+38 -3.400000e+38 \n",
"537500.0 87500.0 -3.400000e+38 -3.400000e+38 \n",
"1122500.0 657500.0 -3.400000e+38 -3.400000e+38 \n",
"1092500.0 542500.0 -3.400000e+38 -3.400000e+38 \n",
"1212500.0 522500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"157500.0 197500.0 -3.400000e+38 -3.400000e+38 0 \n",
"537500.0 87500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1122500.0 657500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1092500.0 542500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1212500.0 522500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 492500.0 | \n",
" 547500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 142500.0 | \n",
" 662500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1132500.0 | \n",
" 242500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 227500.0 | \n",
" 337500.0 | \n",
" 5 | \n",
" 0 | \n",
" 8 | \n",
" 83 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.227330e+01 | \n",
" 1.728507e+00 | \n",
" 2.646488e+00 | \n",
" 2.411456e-01 | \n",
" 5.769722e+00 | \n",
" 1.155357e-01 | \n",
" 2.341841e-01 | \n",
" 6.491084e-02 | \n",
" 7.424075e-01 | \n",
" 0 | \n",
"
\n",
" \n",
" 502500.0 | \n",
" 147500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"492500.0 547500.0 0 0 0 \n",
"142500.0 662500.0 0 0 0 \n",
"1132500.0 242500.0 0 0 0 \n",
"227500.0 337500.0 5 0 8 \n",
"502500.0 147500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"492500.0 547500.0 0 0 \n",
"142500.0 662500.0 0 0 \n",
"1132500.0 242500.0 0 0 \n",
"227500.0 337500.0 83 0 \n",
"502500.0 147500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"492500.0 547500.0 0 0 0 0 \n",
"142500.0 662500.0 0 0 0 0 \n",
"1132500.0 242500.0 0 0 0 0 \n",
"227500.0 337500.0 0 0 0 0 \n",
"502500.0 147500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"492500.0 547500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"142500.0 662500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1132500.0 242500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"227500.0 337500.0 0 ... 1.227330e+01 1.728507e+00 \n",
"502500.0 147500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"492500.0 547500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"142500.0 662500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1132500.0 242500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"227500.0 337500.0 2.646488e+00 2.411456e-01 5.769722e+00 \n",
"502500.0 147500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"492500.0 547500.0 -3.400000e+38 -3.400000e+38 \n",
"142500.0 662500.0 -3.400000e+38 -3.400000e+38 \n",
"1132500.0 242500.0 -3.400000e+38 -3.400000e+38 \n",
"227500.0 337500.0 1.155357e-01 2.341841e-01 \n",
"502500.0 147500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"492500.0 547500.0 -3.400000e+38 -3.400000e+38 0 \n",
"142500.0 662500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1132500.0 242500.0 -3.400000e+38 -3.400000e+38 0 \n",
"227500.0 337500.0 6.491084e-02 7.424075e-01 0 \n",
"502500.0 147500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 632500.0 | \n",
" 157500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 362500.0 | \n",
" 462500.0 | \n",
" 5 | \n",
" 59 | \n",
" 33 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 3.219382e+01 | \n",
" 1.068436e+00 | \n",
" 6.758402e+00 | \n",
" 1.672401e+01 | \n",
" 2.361158e+01 | \n",
" 1.341892e+01 | \n",
" 1.552295e+01 | \n",
" 1.054125e+01 | \n",
" 1.673775e+01 | \n",
" 0 | \n",
"
\n",
" \n",
" 857500.0 | \n",
" 432500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 187500.0 | \n",
" 507500.0 | \n",
" 5 | \n",
" 0 | \n",
" 3 | \n",
" 74 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 9.194264e+00 | \n",
" 3.816978e+00 | \n",
" 1.333557e+00 | \n",
" 6.474104e+00 | \n",
" 6.045681e+00 | \n",
" 5.836989e+00 | \n",
" 9.897083e+00 | \n",
" 3.260769e+00 | \n",
" 1.010081e+01 | \n",
" 1 | \n",
"
\n",
" \n",
" 37500.0 | \n",
" 37500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"632500.0 157500.0 0 0 0 \n",
"362500.0 462500.0 5 59 33 \n",
"857500.0 432500.0 0 0 0 \n",
"187500.0 507500.0 5 0 3 \n",
"37500.0 37500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"632500.0 157500.0 0 0 0 \n",
"362500.0 462500.0 2 0 0 \n",
"857500.0 432500.0 0 0 0 \n",
"187500.0 507500.0 74 0 0 \n",
"37500.0 37500.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"632500.0 157500.0 0 0 0 0 ... \n",
"362500.0 462500.0 0 0 0 0 ... \n",
"857500.0 432500.0 0 0 0 0 ... \n",
"187500.0 507500.0 0 0 0 0 ... \n",
"37500.0 37500.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_5km Mancozeb_5km Mecoprop-P_5km \\\n",
"y x \n",
"632500.0 157500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"362500.0 462500.0 3.219382e+01 1.068436e+00 6.758402e+00 \n",
"857500.0 432500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"187500.0 507500.0 9.194264e+00 3.816978e+00 1.333557e+00 \n",
"37500.0 37500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"632500.0 157500.0 -3.400000e+38 -3.400000e+38 \n",
"362500.0 462500.0 1.672401e+01 2.361158e+01 \n",
"857500.0 432500.0 -3.400000e+38 -3.400000e+38 \n",
"187500.0 507500.0 6.474104e+00 6.045681e+00 \n",
"37500.0 37500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"632500.0 157500.0 -3.400000e+38 -3.400000e+38 \n",
"362500.0 462500.0 1.341892e+01 1.552295e+01 \n",
"857500.0 432500.0 -3.400000e+38 -3.400000e+38 \n",
"187500.0 507500.0 5.836989e+00 9.897083e+00 \n",
"37500.0 37500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"632500.0 157500.0 -3.400000e+38 -3.400000e+38 0 \n",
"362500.0 462500.0 1.054125e+01 1.673775e+01 0 \n",
"857500.0 432500.0 -3.400000e+38 -3.400000e+38 0 \n",
"187500.0 507500.0 3.260769e+00 1.010081e+01 1 \n",
"37500.0 37500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1117500.0 | \n",
" 477500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 347500.0 | \n",
" 112500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 197500.0 | \n",
" 667500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 782500.0 | \n",
" 277500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 96 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 567500.0 | \n",
" 192500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1117500.0 477500.0 0 0 0 \n",
"347500.0 112500.0 0 0 0 \n",
"197500.0 667500.0 0 0 0 \n",
"782500.0 277500.0 0 0 0 \n",
"567500.0 192500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1117500.0 477500.0 0 0 \n",
"347500.0 112500.0 0 0 \n",
"197500.0 667500.0 0 0 \n",
"782500.0 277500.0 0 0 \n",
"567500.0 192500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1117500.0 477500.0 0 0 0 0 \n",
"347500.0 112500.0 0 0 0 0 \n",
"197500.0 667500.0 0 0 0 0 \n",
"782500.0 277500.0 0 0 0 96 \n",
"567500.0 192500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"1117500.0 477500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"347500.0 112500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"197500.0 667500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"782500.0 277500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"567500.0 192500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"1117500.0 477500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"347500.0 112500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"197500.0 667500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"782500.0 277500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"567500.0 192500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"1117500.0 477500.0 -3.400000e+38 -3.400000e+38 \n",
"347500.0 112500.0 -3.400000e+38 -3.400000e+38 \n",
"197500.0 667500.0 -3.400000e+38 -3.400000e+38 \n",
"782500.0 277500.0 -3.400000e+38 -3.400000e+38 \n",
"567500.0 192500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"1117500.0 477500.0 -3.400000e+38 -3.400000e+38 0 \n",
"347500.0 112500.0 -3.400000e+38 -3.400000e+38 0 \n",
"197500.0 667500.0 -3.400000e+38 -3.400000e+38 0 \n",
"782500.0 277500.0 -3.400000e+38 -3.400000e+38 0 \n",
"567500.0 192500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 47500.0 | \n",
" 537500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 267500.0 | \n",
" 217500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.174842e-01 | \n",
" 2.875282e-02 | \n",
" 1.368758e-01 | \n",
" -3.400000e+38 | \n",
" 7.710322e-02 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1237500.0 | \n",
" 187500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 817500.0 | \n",
" 622500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1162500.0 | \n",
" 572500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"47500.0 537500.0 0 0 0 \n",
"267500.0 217500.0 0 0 0 \n",
"1237500.0 187500.0 0 0 0 \n",
"817500.0 622500.0 0 0 0 \n",
"1162500.0 572500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"47500.0 537500.0 0 0 \n",
"267500.0 217500.0 0 0 \n",
"1237500.0 187500.0 0 0 \n",
"817500.0 622500.0 0 0 \n",
"1162500.0 572500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"47500.0 537500.0 0 0 0 0 \n",
"267500.0 217500.0 0 0 0 0 \n",
"1237500.0 187500.0 0 0 0 0 \n",
"817500.0 622500.0 0 0 0 0 \n",
"1162500.0 572500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"47500.0 537500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"267500.0 217500.0 0 ... 1.174842e-01 2.875282e-02 \n",
"1237500.0 187500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"817500.0 622500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1162500.0 572500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"47500.0 537500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"267500.0 217500.0 1.368758e-01 -3.400000e+38 7.710322e-02 \n",
"1237500.0 187500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"817500.0 622500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1162500.0 572500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"47500.0 537500.0 -3.400000e+38 -3.400000e+38 \n",
"267500.0 217500.0 -3.400000e+38 -3.400000e+38 \n",
"1237500.0 187500.0 -3.400000e+38 -3.400000e+38 \n",
"817500.0 622500.0 -3.400000e+38 -3.400000e+38 \n",
"1162500.0 572500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"47500.0 537500.0 -3.400000e+38 -3.400000e+38 0 \n",
"267500.0 217500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1237500.0 187500.0 -3.400000e+38 -3.400000e+38 0 \n",
"817500.0 622500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1162500.0 572500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 687500.0 | \n",
" 467500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 637500.0 | \n",
" 207500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.604617e+00 | \n",
" 1.825517e-01 | \n",
" 1.142017e+00 | \n",
" -3.400000e+38 | \n",
" 6.284199e-01 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 9.273250e-01 | \n",
" 0 | \n",
"
\n",
" \n",
" 87500.0 | \n",
" 257500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 50 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.477325e+00 | \n",
" 1.834522e+00 | \n",
" 7.743283e-01 | \n",
" 1.164793e+00 | \n",
" 1.839896e+00 | \n",
" 5.867671e-01 | \n",
" 2.048754e+00 | \n",
" 3.985094e-01 | \n",
" 7.494090e-01 | \n",
" 0 | \n",
"
\n",
" \n",
" 402500.0 | \n",
" 87500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1297500.0 | \n",
" 347500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"687500.0 467500.0 0 0 0 \n",
"637500.0 207500.0 0 0 0 \n",
"87500.0 257500.0 0 0 0 \n",
"402500.0 87500.0 0 0 0 \n",
"1297500.0 347500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"687500.0 467500.0 0 0 \n",
"637500.0 207500.0 0 0 \n",
"87500.0 257500.0 0 0 \n",
"402500.0 87500.0 0 0 \n",
"1297500.0 347500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"687500.0 467500.0 0 0 0 0 \n",
"637500.0 207500.0 0 0 0 0 \n",
"87500.0 257500.0 0 50 0 0 \n",
"402500.0 87500.0 0 0 0 0 \n",
"1297500.0 347500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"687500.0 467500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"637500.0 207500.0 0 ... 2.604617e+00 1.825517e-01 \n",
"87500.0 257500.0 0 ... 2.477325e+00 1.834522e+00 \n",
"402500.0 87500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1297500.0 347500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"687500.0 467500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"637500.0 207500.0 1.142017e+00 -3.400000e+38 6.284199e-01 \n",
"87500.0 257500.0 7.743283e-01 1.164793e+00 1.839896e+00 \n",
"402500.0 87500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1297500.0 347500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"687500.0 467500.0 -3.400000e+38 -3.400000e+38 \n",
"637500.0 207500.0 -3.400000e+38 -3.400000e+38 \n",
"87500.0 257500.0 5.867671e-01 2.048754e+00 \n",
"402500.0 87500.0 -3.400000e+38 -3.400000e+38 \n",
"1297500.0 347500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"687500.0 467500.0 -3.400000e+38 -3.400000e+38 0 \n",
"637500.0 207500.0 -3.400000e+38 9.273250e-01 0 \n",
"87500.0 257500.0 3.985094e-01 7.494090e-01 0 \n",
"402500.0 87500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1297500.0 347500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"INVASIVE_BIRDS_PATH = 'Datasets/Machine Learning/5km Rasters/Birds'\n",
"# Use this if using coordinates as separate columns\n",
"# df_5km = pd.read_csv('Datasets/Machine Learning/Dataframes/5km_All_Birds_DF.csv')\n",
"\n",
"# Use this if using coordinates as indices\n",
"df_5km = pd.read_csv('Datasets/Machine Learning/Dataframes/5km_All_Birds_DF.csv', index_col=[0,1])\n",
"\n",
"total_birds = (df_5km['Occurrence']==1).sum()\n",
"df_dicts = []\n",
"\n",
"for file in os.listdir(INVASIVE_BIRDS_PATH):\n",
" filename = os.fsdecode(file)\n",
" if not filename.endswith('.tif') or filename.endswith('All_Invasive_Birds_5km.tif') :\n",
" continue\n",
"\n",
"\n",
"\n",
" bird_name = filename[:-4].replace('_', ' ')\n",
"\n",
" bird_dataset = rioxarray.open_rasterio(f'{INVASIVE_BIRDS_PATH}/{file}')\n",
" bird_dataset.name = 'data'\n",
" bird_df = bird_dataset.squeeze().drop(\"spatial_ref\").drop(\"band\").to_dataframe()\n",
"\n",
" # Check if index matches\n",
" if not df_5km.index.equals(bird_df.index):\n",
" print('Warning: Index does not match')\n",
" continue\n",
"\n",
" bird_df['Occurrence'] = [0 if x == -1 else 1 for x in bird_df['data']]\n",
" bird_df = df_5km.drop(columns='Occurrence').join(bird_df.drop(columns='data'))\n",
" \n",
" bird_dict = {'name' : bird_name, 'dataframe' : bird_df }\n",
" df_dicts.append(bird_dict)\n",
" display(bird_df.sample(5))\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 5km data before drop: \n",
" Occurrence\n",
"0 35813\n",
"1 587\n",
"dtype: int64 \n",
"\n",
"Barnacle Goose 5km data after drop: \n",
" Occurrence\n",
"0 7378\n",
"1 587\n",
"dtype: int64 \n",
"\n",
"Canada Goose 5km data before drop: \n",
" Occurrence\n",
"0 32095\n",
"1 4305\n",
"dtype: int64 \n",
"\n",
"Canada Goose 5km data after drop: \n",
" Occurrence\n",
"1 4305\n",
"0 3660\n",
"dtype: int64 \n",
"\n",
"Egyptian Goose 5km data before drop: \n",
" Occurrence\n",
"0 35915\n",
"1 485\n",
"dtype: int64 \n",
"\n",
"Egyptian Goose 5km data after drop: \n",
" Occurrence\n",
"0 7480\n",
"1 485\n",
"dtype: int64 \n",
"\n",
"Gadwall 5km data before drop: \n",
" Occurrence\n",
"0 35001\n",
"1 1399\n",
"dtype: int64 \n",
"\n",
"Gadwall 5km data after drop: \n",
" Occurrence\n",
"0 6566\n",
"1 1399\n",
"dtype: int64 \n",
"\n",
"Goshawk 5km data before drop: \n",
" Occurrence\n",
"0 35954\n",
"1 446\n",
"dtype: int64 \n",
"\n",
"Goshawk 5km data after drop: \n",
" Occurrence\n",
"0 7519\n",
"1 446\n",
"dtype: int64 \n",
"\n",
"Grey Partridge 5km data before drop: \n",
" Occurrence\n",
"0 34771\n",
"1 1629\n",
"dtype: int64 \n",
"\n",
"Grey Partridge 5km data after drop: \n",
" Occurrence\n",
"0 6336\n",
"1 1629\n",
"dtype: int64 \n",
"\n",
"Indian Peafowl 5km data before drop: \n",
" Occurrence\n",
"0 36116\n",
"1 284\n",
"dtype: int64 \n",
"\n",
"Indian Peafowl 5km data after drop: \n",
" Occurrence\n",
"0 7681\n",
"1 284\n",
"dtype: int64 \n",
"\n",
"Little Owl 5km data before drop: \n",
" Occurrence\n",
"0 34242\n",
"1 2158\n",
"dtype: int64 \n",
"\n",
"Little Owl 5km data after drop: \n",
" Occurrence\n",
"0 5807\n",
"1 2158\n",
"dtype: int64 \n",
"\n",
"Mandarin Duck 5km data before drop: \n",
" Occurrence\n",
"0 35686\n",
"1 714\n",
"dtype: int64 \n",
"\n",
"Mandarin Duck 5km data after drop: \n",
" Occurrence\n",
"0 7251\n",
"1 714\n",
"dtype: int64 \n",
"\n",
"Mute Swan 5km data before drop: \n",
" Occurrence\n",
"0 31133\n",
"1 5267\n",
"dtype: int64 \n",
"\n",
"Mute Swan 5km data after drop: \n",
" Occurrence\n",
"1 5267\n",
"0 2698\n",
"dtype: int64 \n",
"\n",
"Pheasant 5km data before drop: \n",
" Occurrence\n",
"0 32552\n",
"1 3848\n",
"dtype: int64 \n",
"\n",
"Pheasant 5km data after drop: \n",
" Occurrence\n",
"0 4117\n",
"1 3848\n",
"dtype: int64 \n",
"\n",
"Pink-footed Goose 5km data before drop: \n",
" Occurrence\n",
"0 35087\n",
"1 1313\n",
"dtype: int64 \n",
"\n",
"Pink-footed Goose 5km data after drop: \n",
" Occurrence\n",
"0 6652\n",
"1 1313\n",
"dtype: int64 \n",
"\n",
"Pintail 5km data before drop: \n",
" Occurrence\n",
"0 35751\n",
"1 649\n",
"dtype: int64 \n",
"\n",
"Pintail 5km data after drop: \n",
" Occurrence\n",
"0 7316\n",
"1 649\n",
"dtype: int64 \n",
"\n",
"Pochard 5km data before drop: \n",
" Occurrence\n",
"0 35458\n",
"1 942\n",
"dtype: int64 \n",
"\n",
"Pochard 5km data after drop: \n",
" Occurrence\n",
"0 7023\n",
"1 942\n",
"dtype: int64 \n",
"\n",
"Red-legged Partridge 5km data before drop: \n",
" Occurrence\n",
"0 34250\n",
"1 2150\n",
"dtype: int64 \n",
"\n",
"Red-legged Partridge 5km data after drop: \n",
" Occurrence\n",
"0 5815\n",
"1 2150\n",
"dtype: int64 \n",
"\n",
"Ring-necked Parakeet 5km data before drop: \n",
" Occurrence\n",
"0 36194\n",
"1 206\n",
"dtype: int64 \n",
"\n",
"Ring-necked Parakeet 5km data after drop: \n",
" Occurrence\n",
"0 7759\n",
"1 206\n",
"dtype: int64 \n",
"\n",
"Rock Dove 5km data before drop: \n",
" Occurrence\n",
"0 33570\n",
"1 2830\n",
"dtype: int64 \n",
"\n",
"Rock Dove 5km data after drop: \n",
" Occurrence\n",
"0 5135\n",
"1 2830\n",
"dtype: int64 \n",
"\n",
"Ruddy Duck 5km data before drop: \n",
" Occurrence\n",
"0 36291\n",
"1 109\n",
"dtype: int64 \n",
"\n",
"Ruddy Duck 5km data after drop: \n",
" Occurrence\n",
"0 7856\n",
"1 109\n",
"dtype: int64 \n",
"\n",
"Whooper Swan 5km data before drop: \n",
" Occurrence\n",
"0 35558\n",
"1 842\n",
"dtype: int64 \n",
"\n",
"Whooper Swan 5km data after drop: \n",
" Occurrence\n",
"0 7123\n",
"1 842\n",
"dtype: int64 \n",
"\n",
"Wigeon 5km data before drop: \n",
" Occurrence\n",
"0 34543\n",
"1 1857\n",
"dtype: int64 \n",
"\n",
"Wigeon 5km data after drop: \n",
" Occurrence\n",
"0 6108\n",
"1 1857\n",
"dtype: int64 \n",
"\n"
]
}
],
"source": [
"# Data Cleaning\n",
"np.random.seed(seed=seed)\n",
"\n",
"for dict in df_dicts:\n",
" cur_df = dict[\"dataframe\"]\n",
" cur_df_name = dict[\"name\"]\n",
"\n",
" print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n",
" \n",
" no_occurences = cur_df[cur_df['Occurrence']==0].index \n",
" sample_size = sum(cur_df['Occurrence']==0) - total_birds + sum(cur_df['Occurrence']==1)\n",
" random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n",
" dict[\"dataframe\"] = cur_df.drop(random_indices)\n",
" \n",
" print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')\n",
"\n",
"\n",
"# for dict in df_dicts:\n",
"# cur_df = dict[\"dataframe\"]\n",
"# cur_df_name = dict[\"name\"]\n",
"\n",
"# print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n",
" \n",
"# no_occurences = cur_df[cur_df['Occurrence']==0].index\n",
"# sample_size = sum(cur_df['Occurrence']==0) - sum(cur_df['Occurrence']==1)\n",
"# random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n",
"# dict[\"dataframe\"] = cur_df.drop(random_indices)\n",
" \n",
"# print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# Standardisation\n",
"def standardise(X):\n",
" scaler = StandardScaler()\n",
" X_scaled = scaler.fit_transform(X)\n",
"\n",
" # Add headers back\n",
" X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)\n",
"\n",
" # Revert 'Surface type' back to non-standardised column as it is a categorical feature\n",
" X_scaled_df['Surface type'] = X['Surface type'].values\n",
" return X_scaled_df"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# Feature Selection\n",
"\n",
"# Check if any columns have NaN in them\n",
"# nan_columns = []\n",
"# for column in X_scaled_df:\n",
"# if X_scaled_df[column].isnull().values.any():\n",
"# nan_columns.append(column)\n",
"# print(nan_columns if len(nan_columns)!= 0 else 'None')\n",
"\n",
"\n",
"# Using ANOVA F-Score as a feature selection method\n",
"def feature_select(X, y):\n",
" k_nums = [10, 15, 20, 25, 30, 35]\n",
" kbest_dict = {}\n",
" for num in k_nums:\n",
" # Needs to be 1d array, y.values.ravel() converts y into a 1d array\n",
" best_X = SelectKBest(f_classif, k=num).fit(X, y.values.ravel())\n",
" # kbest_dict[str(num)] = best_X.get_feature_names_out().tolist()\n",
" kbest_dict[str(num)] = best_X\n",
" # kbest_dict['40'] = list(X.columns)\n",
"\n",
" best_X = SelectKBest(f_classif, k='all').fit(X, y.values.ravel())\n",
"\n",
" feat_scores = pd.DataFrame()\n",
" feat_scores[\"F Score\"] = best_X.scores_\n",
" feat_scores[\"P Value\"] = best_X.pvalues_\n",
" feat_scores[\"Attribute\"] = X.columns\n",
" kbest_dict['Dataframe'] = feat_scores.sort_values([\"F Score\", \"P Value\"], ascending=[False, False])\n",
"\n",
"\n",
" if details:\n",
" print(f'K-Best Features Dataframe: \\n{kbest_dict[\"Dataframe\"]} \\n')\n",
" # print(json.dumps(kbest_dict, indent=4))\n",
" return kbest_dict"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Resample (upsample) minority data\n",
"# for dict in df_dicts:\n",
"# if sum(dict['dataframe']['Occurence']==1) > sum(dict['dataframe']['Occurence']==0):\n",
"# continue\n",
"\n",
"# from sklearn.utils import resample\n",
"\n",
"# def upsample(X, y):\n",
"# X_1 = X[y['Occurrence'] == 1] # Getting positive occurrences (minority)\n",
"# X_0 = X[y['Occurrence'] == 0] # Getting negative occurrences (majority)\n",
" \n",
"# X_1_upsampled = resample(X_1 ,random_state=seed,n_samples=total_birds/2,replace=True)\n",
"\n",
"\n",
"# print(f'Resampling: \\n {y.value_counts()} \\n')\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"def oversample(X_train, y_train):\n",
" over = RandomOverSampler(sampling_strategy='minority', random_state=seed)\n",
" smote = SMOTE(random_state=seed, sampling_strategy='minority')\n",
" X_smote, y_smote = smote.fit_resample(X_train, y_train)\n",
" \n",
" if details:\n",
" print(f'Resampled Value Counts: \\n {y_smote.value_counts()} \\n')\n",
"\n",
" return X_smote, y_smote"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Name | \n",
" Occurrence Count | \n",
" Percentage | \n",
"
\n",
" \n",
" \n",
" \n",
" 9 | \n",
" Mute Swan 5km | \n",
" 5267 | \n",
" 0.661268 | \n",
"
\n",
" \n",
" 1 | \n",
" Canada Goose 5km | \n",
" 4305 | \n",
" 0.540490 | \n",
"
\n",
" \n",
" 10 | \n",
" Pheasant 5km | \n",
" 3848 | \n",
" 0.483114 | \n",
"
\n",
" \n",
" 16 | \n",
" Rock Dove 5km | \n",
" 2830 | \n",
" 0.355304 | \n",
"
\n",
" \n",
" 7 | \n",
" Little Owl 5km | \n",
" 2158 | \n",
" 0.270935 | \n",
"
\n",
" \n",
" 14 | \n",
" Red-legged Partridge 5km | \n",
" 2150 | \n",
" 0.269931 | \n",
"
\n",
" \n",
" 19 | \n",
" Wigeon 5km | \n",
" 1857 | \n",
" 0.233145 | \n",
"
\n",
" \n",
" 5 | \n",
" Grey Partridge 5km | \n",
" 1629 | \n",
" 0.204520 | \n",
"
\n",
" \n",
" 3 | \n",
" Gadwall 5km | \n",
" 1399 | \n",
" 0.175643 | \n",
"
\n",
" \n",
" 11 | \n",
" Pink-footed Goose 5km | \n",
" 1313 | \n",
" 0.164846 | \n",
"
\n",
" \n",
" 13 | \n",
" Pochard 5km | \n",
" 942 | \n",
" 0.118267 | \n",
"
\n",
" \n",
" 18 | \n",
" Whooper Swan 5km | \n",
" 842 | \n",
" 0.105712 | \n",
"
\n",
" \n",
" 8 | \n",
" Mandarin Duck 5km | \n",
" 714 | \n",
" 0.089642 | \n",
"
\n",
" \n",
" 12 | \n",
" Pintail 5km | \n",
" 649 | \n",
" 0.081481 | \n",
"
\n",
" \n",
" 0 | \n",
" Barnacle Goose 5km | \n",
" 587 | \n",
" 0.073697 | \n",
"
\n",
" \n",
" 2 | \n",
" Egyptian Goose 5km | \n",
" 485 | \n",
" 0.060891 | \n",
"
\n",
" \n",
" 4 | \n",
" Goshawk 5km | \n",
" 446 | \n",
" 0.055995 | \n",
"
\n",
" \n",
" 6 | \n",
" Indian Peafowl 5km | \n",
" 284 | \n",
" 0.035656 | \n",
"
\n",
" \n",
" 15 | \n",
" Ring-necked Parakeet 5km | \n",
" 206 | \n",
" 0.025863 | \n",
"
\n",
" \n",
" 17 | \n",
" Ruddy Duck 5km | \n",
" 109 | \n",
" 0.013685 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Name Occurrence Count Percentage\n",
"9 Mute Swan 5km 5267 0.661268\n",
"1 Canada Goose 5km 4305 0.540490\n",
"10 Pheasant 5km 3848 0.483114\n",
"16 Rock Dove 5km 2830 0.355304\n",
"7 Little Owl 5km 2158 0.270935\n",
"14 Red-legged Partridge 5km 2150 0.269931\n",
"19 Wigeon 5km 1857 0.233145\n",
"5 Grey Partridge 5km 1629 0.204520\n",
"3 Gadwall 5km 1399 0.175643\n",
"11 Pink-footed Goose 5km 1313 0.164846\n",
"13 Pochard 5km 942 0.118267\n",
"18 Whooper Swan 5km 842 0.105712\n",
"8 Mandarin Duck 5km 714 0.089642\n",
"12 Pintail 5km 649 0.081481\n",
"0 Barnacle Goose 5km 587 0.073697\n",
"2 Egyptian Goose 5km 485 0.060891\n",
"4 Goshawk 5km 446 0.055995\n",
"6 Indian Peafowl 5km 284 0.035656\n",
"15 Ring-necked Parakeet 5km 206 0.025863\n",
"17 Ruddy Duck 5km 109 0.013685"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"All_bird_occurrences = pd.DataFrame([(dict['name'],sum(dict['dataframe']['Occurrence'] == 1)) for dict in df_dicts], columns=['Name', 'Occurrence Count'])\n",
"All_bird_occurrences['Percentage'] = All_bird_occurrences['Occurrence Count']/total_birds\n",
"\n",
"All_bird_occurrences.sort_values('Occurrence Count', ascending=False)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training with Barnacle Goose 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9358316221765913,\n",
" \"recall\": 0.9886117136659436,\n",
" \"f1-score\": 0.9614978902953586,\n",
" \"support\": 1844\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5227272727272727,\n",
" \"recall\": 0.1554054054054054,\n",
" \"f1-score\": 0.23958333333333334,\n",
" \"support\": 148\n",
" },\n",
" \"accuracy\": 0.9267068273092369,\n",
" \"macro avg\": {\n",
" \"precision\": 0.729279447451932,\n",
" \"recall\": 0.5720085595356745,\n",
" \"f1-score\": 0.6005406118143459,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9051391303500355,\n",
" \"recall\": 0.9267068273092369,\n",
" \"f1-score\": 0.9078616681917543,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Barnacle Goose 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9397066811515481,\n",
" \"recall\": 0.938177874186551,\n",
" \"f1-score\": 0.9389416553595659,\n",
" \"support\": 1844\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.24503311258278146,\n",
" \"recall\": 0.25,\n",
" \"f1-score\": 0.2474916387959866,\n",
" \"support\": 148\n",
" },\n",
" \"accuracy\": 0.8870481927710844,\n",
" \"macro avg\": {\n",
" \"precision\": 0.5923698968671648,\n",
" \"recall\": 0.5940889370932755,\n",
" \"f1-score\": 0.5932166470777762,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.888094387904471,\n",
" \"recall\": 0.8870481927710844,\n",
" \"f1-score\": 0.8875688629642798,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Canada Goose 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Canada Goose 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9355971896955504,\n",
" \"recall\": 0.871319520174482,\n",
" \"f1-score\": 0.9023150762281198,\n",
" \"support\": 917\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8963093145869947,\n",
" \"recall\": 0.9488372093023256,\n",
" \"f1-score\": 0.921825576140985,\n",
" \"support\": 1075\n",
" },\n",
" \"accuracy\": 0.9131526104417671,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9159532521412725,\n",
" \"recall\": 0.9100783647384039,\n",
" \"f1-score\": 0.9120703261845524,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9143951486605617,\n",
" \"recall\": 0.9131526104417671,\n",
" \"f1-score\": 0.9128440859702533,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Canada Goose 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9213483146067416,\n",
" \"recall\": 0.8942202835332607,\n",
" \"f1-score\": 0.9075816270060874,\n",
" \"support\": 917\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.911978221415608,\n",
" \"recall\": 0.9348837209302325,\n",
" \"f1-score\": 0.9232889297197979,\n",
" \"support\": 1075\n",
" },\n",
" \"accuracy\": 0.9161646586345381,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9166632680111748,\n",
" \"recall\": 0.9145520022317466,\n",
" \"f1-score\": 0.9154352783629427,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9162916629097192,\n",
" \"recall\": 0.9161646586345381,\n",
" \"f1-score\": 0.9160582085408459,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Egyptian Goose 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Egyptian Goose 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9595588235294118,\n",
" \"recall\": 0.981203007518797,\n",
" \"f1-score\": 0.9702602230483273,\n",
" \"support\": 1862\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6022727272727273,\n",
" \"recall\": 0.4076923076923077,\n",
" \"f1-score\": 0.4862385321100917,\n",
" \"support\": 130\n",
" },\n",
" \"accuracy\": 0.9437751004016064,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7809157754010696,\n",
" \"recall\": 0.6944476576055523,\n",
" \"f1-score\": 0.7282493775792095,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9362419598178812,\n",
" \"recall\": 0.9437751004016064,\n",
" \"f1-score\": 0.9386724620935227,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Egyptian Goose 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9638874137015401,\n",
" \"recall\": 0.9747583243823845,\n",
" \"f1-score\": 0.9692923898531375,\n",
" \"support\": 1862\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5688073394495413,\n",
" \"recall\": 0.47692307692307695,\n",
" \"f1-score\": 0.5188284518828452,\n",
" \"support\": 130\n",
" },\n",
" \"accuracy\": 0.9422690763052208,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7663473765755406,\n",
" \"recall\": 0.7258407006527308,\n",
" \"f1-score\": 0.7440604208679913,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9381040755224437,\n",
" \"recall\": 0.9422690763052208,\n",
" \"f1-score\": 0.939894642897245,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Gadwall 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gadwall 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9131195335276968,\n",
" \"recall\": 0.9566279780085523,\n",
" \"f1-score\": 0.9343675417661097,\n",
" \"support\": 1637\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7436823104693141,\n",
" \"recall\": 0.5802816901408451,\n",
" \"f1-score\": 0.6518987341772152,\n",
" \"support\": 355\n",
" },\n",
" \"accuracy\": 0.8895582329317269,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8284009219985055,\n",
" \"recall\": 0.7684548340746986,\n",
" \"f1-score\": 0.7931331379716624,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8829236428722119,\n",
" \"recall\": 0.8895582329317269,\n",
" \"f1-score\": 0.8840279701325467,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Gadwall 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9126040428061831,\n",
" \"recall\": 0.9376908979841173,\n",
" \"f1-score\": 0.9249774028321783,\n",
" \"support\": 1637\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6709677419354839,\n",
" \"recall\": 0.5859154929577465,\n",
" \"f1-score\": 0.6255639097744361,\n",
" \"support\": 355\n",
" },\n",
" \"accuracy\": 0.875,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7917858923708335,\n",
" \"recall\": 0.7618031954709319,\n",
" \"f1-score\": 0.7752706563033072,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.869541348624909,\n",
" \"recall\": 0.875,\n",
" \"f1-score\": 0.8716180704850405,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Goshawk 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Goshawk 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.954337899543379,\n",
" \"recall\": 0.9926121372031662,\n",
" \"f1-score\": 0.9730988101396792,\n",
" \"support\": 1895\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.3333333333333333,\n",
" \"recall\": 0.07216494845360824,\n",
" \"f1-score\": 0.11864406779661016,\n",
" \"support\": 97\n",
" },\n",
" \"accuracy\": 0.9477911646586346,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6438356164383562,\n",
" \"recall\": 0.5323885428283872,\n",
" \"f1-score\": 0.5458714389681447,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9240982193614641,\n",
" \"recall\": 0.9477911646586346,\n",
" \"f1-score\": 0.9314913251962669,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Goshawk 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9625195210827694,\n",
" \"recall\": 0.9757255936675462,\n",
" \"f1-score\": 0.9690775681341719,\n",
" \"support\": 1895\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.352112676056338,\n",
" \"recall\": 0.25773195876288657,\n",
" \"f1-score\": 0.2976190476190476,\n",
" \"support\": 97\n",
" },\n",
" \"accuracy\": 0.9407630522088354,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6573160985695536,\n",
" \"recall\": 0.6167287762152164,\n",
" \"f1-score\": 0.6333483078766098,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9327958945930285,\n",
" \"recall\": 0.9407630522088354,\n",
" \"f1-score\": 0.9363810437918191,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Grey Partridge 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Grey Partridge 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9587491683300067,\n",
" \"recall\": 0.902316844082655,\n",
" \"f1-score\": 0.9296774193548387,\n",
" \"support\": 1597\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6809815950920245,\n",
" \"recall\": 0.8430379746835444,\n",
" \"f1-score\": 0.7533936651583709,\n",
" \"support\": 395\n",
" },\n",
" \"accuracy\": 0.8905622489959839,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8198653817110155,\n",
" \"recall\": 0.8726774093830997,\n",
" \"f1-score\": 0.8415355422566049,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9036697549620333,\n",
" \"recall\": 0.8905622489959839,\n",
" \"f1-score\": 0.8947215544413825,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Grey Partridge 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9104385423100679,\n",
" \"recall\": 0.9229805886036319,\n",
" \"f1-score\": 0.9166666666666666,\n",
" \"support\": 1597\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6702412868632708,\n",
" \"recall\": 0.6329113924050633,\n",
" \"f1-score\": 0.6510416666666667,\n",
" \"support\": 395\n",
" },\n",
" \"accuracy\": 0.8654618473895582,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7903399145866694,\n",
" \"recall\": 0.7779459905043475,\n",
" \"f1-score\": 0.7838541666666667,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8628090664559088,\n",
" \"recall\": 0.8654618473895582,\n",
" \"f1-score\": 0.8639950426706827,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Indian Peafowl 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Indian Peafowl 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9617706237424547,\n",
" \"recall\": 0.9979123173277662,\n",
" \"f1-score\": 0.9795081967213115,\n",
" \"support\": 1916\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.0,\n",
" \"recall\": 0.0,\n",
" \"f1-score\": 0.0,\n",
" \"support\": 76\n",
" },\n",
" \"accuracy\": 0.9598393574297188,\n",
" \"macro avg\": {\n",
" \"precision\": 0.48088531187122735,\n",
" \"recall\": 0.4989561586638831,\n",
" \"f1-score\": 0.48975409836065575,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9250765638004735,\n",
" \"recall\": 0.9598393574297188,\n",
" \"f1-score\": 0.9421374020672856,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Indian Peafowl 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9646878198567042,\n",
" \"recall\": 0.9838204592901879,\n",
" \"f1-score\": 0.9741602067183461,\n",
" \"support\": 1916\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.18421052631578946,\n",
" \"recall\": 0.09210526315789473,\n",
" \"f1-score\": 0.12280701754385964,\n",
" \"support\": 76\n",
" },\n",
" \"accuracy\": 0.9497991967871486,\n",
" \"macro avg\": {\n",
" \"precision\": 0.5744491730862468,\n",
" \"recall\": 0.5379628612240414,\n",
" \"f1-score\": 0.5484836121311029,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9349105737175929,\n",
" \"recall\": 0.9497991967871486,\n",
" \"f1-score\": 0.9416788601434158,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Little Owl 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Little Owl 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9746376811594203,\n",
" \"recall\": 0.9069453809844908,\n",
" \"f1-score\": 0.9395738735592035,\n",
" \"support\": 1483\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7745098039215687,\n",
" \"recall\": 0.931237721021611,\n",
" \"f1-score\": 0.8456735057983942,\n",
" \"support\": 509\n",
" },\n",
" \"accuracy\": 0.9131526104417671,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8745737425404945,\n",
" \"recall\": 0.9190915510030508,\n",
" \"f1-score\": 0.8926236896787989,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9235005880298688,\n",
" \"recall\": 0.9131526104417671,\n",
" \"f1-score\": 0.9155802554918079,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Little Owl 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9678800856531049,\n",
" \"recall\": 0.9143627781523938,\n",
" \"f1-score\": 0.9403606102635229,\n",
" \"support\": 1483\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7851099830795262,\n",
" \"recall\": 0.9115913555992141,\n",
" \"f1-score\": 0.8436363636363637,\n",
" \"support\": 509\n",
" },\n",
" \"accuracy\": 0.9136546184738956,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8764950343663156,\n",
" \"recall\": 0.9129770668758039,\n",
" \"f1-score\": 0.8919984869499433,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9211782873549366,\n",
" \"recall\": 0.9136546184738956,\n",
" \"f1-score\": 0.9156454287709406,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Mandarin Duck 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mandarin Duck 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9385775862068966,\n",
" \"recall\": 0.963495575221239,\n",
" \"f1-score\": 0.9508733624454149,\n",
" \"support\": 1808\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5147058823529411,\n",
" \"recall\": 0.3804347826086957,\n",
" \"f1-score\": 0.4375,\n",
" \"support\": 184\n",
" },\n",
" \"accuracy\": 0.9096385542168675,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7266417342799188,\n",
" \"recall\": 0.6719651789149673,\n",
" \"f1-score\": 0.6941866812227074,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8994247782203867,\n",
" \"recall\": 0.9096385542168675,\n",
" \"f1-score\": 0.9034533329825853,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Mandarin Duck 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9399449035812673,\n",
" \"recall\": 0.9435840707964602,\n",
" \"f1-score\": 0.9417609715705216,\n",
" \"support\": 1808\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.423728813559322,\n",
" \"recall\": 0.4076086956521739,\n",
" \"f1-score\": 0.41551246537396125,\n",
" \"support\": 184\n",
" },\n",
" \"accuracy\": 0.8940763052208835,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6818368585702946,\n",
" \"recall\": 0.675596383224317,\n",
" \"f1-score\": 0.6786367184722415,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8922622928563486,\n",
" \"recall\": 0.8940763052208835,\n",
" \"f1-score\": 0.8931516718013615,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Mute Swan 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mute Swan 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.92776886035313,\n",
" \"recall\": 0.8328530259365994,\n",
" \"f1-score\": 0.8777524677296886,\n",
" \"support\": 694\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9152666179693206,\n",
" \"recall\": 0.9653312788906009,\n",
" \"f1-score\": 0.9396325459317585,\n",
" \"support\": 1298\n",
" },\n",
" \"accuracy\": 0.9191767068273092,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9215177391612253,\n",
" \"recall\": 0.8990921524136002,\n",
" \"f1-score\": 0.9086925068307236,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9196223188801458,\n",
" \"recall\": 0.9191767068273092,\n",
" \"f1-score\": 0.9180739243091497,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Mute Swan 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8452054794520548,\n",
" \"recall\": 0.8890489913544669,\n",
" \"f1-score\": 0.8665730337078652,\n",
" \"support\": 694\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.938985736925515,\n",
" \"recall\": 0.9129429892141756,\n",
" \"f1-score\": 0.92578125,\n",
" \"support\": 1298\n",
" },\n",
" \"accuracy\": 0.9046184738955824,\n",
" \"macro avg\": {\n",
" \"precision\": 0.892095608188785,\n",
" \"recall\": 0.9009959902843212,\n",
" \"f1-score\": 0.8961771418539326,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9063132978258255,\n",
" \"recall\": 0.9046184738955824,\n",
" \"f1-score\": 0.9051534878982221,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Pheasant 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pheasant 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9282744282744283,\n",
" \"recall\": 0.8636363636363636,\n",
" \"f1-score\": 0.8947895791583166,\n",
" \"support\": 1034\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8631067961165049,\n",
" \"recall\": 0.9279749478079332,\n",
" \"f1-score\": 0.8943661971830986,\n",
" \"support\": 958\n",
" },\n",
" \"accuracy\": 0.8945783132530121,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8956906121954666,\n",
" \"recall\": 0.8958056557221484,\n",
" \"f1-score\": 0.8945778881707076,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8969337698370333,\n",
" \"recall\": 0.8945783132530121,\n",
" \"f1-score\": 0.8945859647344919,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Pheasant 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9408658922914467,\n",
" \"recall\": 0.8617021276595744,\n",
" \"f1-score\": 0.8995456839979807,\n",
" \"support\": 1034\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8631578947368421,\n",
" \"recall\": 0.941544885177453,\n",
" \"f1-score\": 0.9006490264603096,\n",
" \"support\": 958\n",
" },\n",
" \"accuracy\": 0.9001004016064257,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9020118935141443,\n",
" \"recall\": 0.9016235064185137,\n",
" \"f1-score\": 0.9000973552291451,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9034942749935997,\n",
" \"recall\": 0.9001004016064257,\n",
" \"f1-score\": 0.9000763075315706,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Pink-footed Goose 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pink-footed Goose 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9011173184357542,\n",
" \"recall\": 0.9641362821279139,\n",
" \"f1-score\": 0.9315622292809702,\n",
" \"support\": 1673\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7029702970297029,\n",
" \"recall\": 0.445141065830721,\n",
" \"f1-score\": 0.5451055662188099,\n",
" \"support\": 319\n",
" },\n",
" \"accuracy\": 0.8810240963855421,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8020438077327285,\n",
" \"recall\": 0.7046386739793175,\n",
" \"f1-score\": 0.7383338977498901,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8693859430198253,\n",
" \"recall\": 0.8810240963855421,\n",
" \"f1-score\": 0.869674841973325,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Pink-footed Goose 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9275184275184275,\n",
" \"recall\": 0.9025702331141662,\n",
" \"f1-score\": 0.9148742805210542,\n",
" \"support\": 1673\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5521978021978022,\n",
" \"recall\": 0.6300940438871473,\n",
" \"f1-score\": 0.588579795021962,\n",
" \"support\": 319\n",
" },\n",
" \"accuracy\": 0.8589357429718876,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7398581148581149,\n",
" \"recall\": 0.7663321385006567,\n",
" \"f1-score\": 0.7517270377715082,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8674143715559378,\n",
" \"recall\": 0.8589357429718876,\n",
" \"f1-score\": 0.8626212981544827,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Pintail 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pintail 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9353671147880042,\n",
" \"recall\": 0.9820846905537459,\n",
" \"f1-score\": 0.9581567796610171,\n",
" \"support\": 1842\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.43103448275862066,\n",
" \"recall\": 0.16666666666666666,\n",
" \"f1-score\": 0.2403846153846154,\n",
" \"support\": 150\n",
" },\n",
" \"accuracy\": 0.9206827309236948,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6832007987733124,\n",
" \"recall\": 0.5743756786102063,\n",
" \"f1-score\": 0.5992706975228163,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8973902599665144,\n",
" \"recall\": 0.9206827309236948,\n",
" \"f1-score\": 0.904107670905264,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Pintail 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9503311258278145,\n",
" \"recall\": 0.9348534201954397,\n",
" \"f1-score\": 0.9425287356321839,\n",
" \"support\": 1842\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.3333333333333333,\n",
" \"recall\": 0.4,\n",
" \"f1-score\": 0.3636363636363636,\n",
" \"support\": 150\n",
" },\n",
" \"accuracy\": 0.8945783132530121,\n",
" \"macro avg\": {\n",
" \"precision\": 0.641832229580574,\n",
" \"recall\": 0.6674267100977198,\n",
" \"f1-score\": 0.6530825496342737,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9038704486821457,\n",
" \"recall\": 0.8945783132530121,\n",
" \"f1-score\": 0.8989374425602095,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Pochard 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pochard 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9102564102564102,\n",
" \"recall\": 0.9709401709401709,\n",
" \"f1-score\": 0.9396195202646815,\n",
" \"support\": 1755\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.575,\n",
" \"recall\": 0.2911392405063291,\n",
" \"f1-score\": 0.38655462184873945,\n",
" \"support\": 237\n",
" },\n",
" \"accuracy\": 0.8900602409638554,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7426282051282052,\n",
" \"recall\": 0.63103970572325,\n",
" \"f1-score\": 0.6630870710567105,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8703689759036145,\n",
" \"recall\": 0.8900602409638554,\n",
" \"f1-score\": 0.8738181242182065,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Pochard 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9073464912280702,\n",
" \"recall\": 0.9430199430199431,\n",
" \"f1-score\": 0.9248393405979324,\n",
" \"support\": 1755\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.40476190476190477,\n",
" \"recall\": 0.2869198312236287,\n",
" \"f1-score\": 0.3358024691358025,\n",
" \"support\": 237\n",
" },\n",
" \"accuracy\": 0.8649598393574297,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6560541979949874,\n",
" \"recall\": 0.6149698871217859,\n",
" \"f1-score\": 0.6303209048668674,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8475510359105595,\n",
" \"recall\": 0.8649598393574297,\n",
" \"f1-score\": 0.8547581465534921,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Red-legged Partridge 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Red-legged Partridge 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9474789915966386,\n",
" \"recall\": 0.9135719108710331,\n",
" \"f1-score\": 0.9302165692677895,\n",
" \"support\": 1481\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7730496453900709,\n",
" \"recall\": 0.8532289628180039,\n",
" \"f1-score\": 0.8111627906976744,\n",
" \"support\": 511\n",
" },\n",
" \"accuracy\": 0.8980923694779116,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8602643184933547,\n",
" \"recall\": 0.8834004368445185,\n",
" \"f1-score\": 0.870689679982732,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9027333109181466,\n",
" \"recall\": 0.8980923694779116,\n",
" \"f1-score\": 0.899676167234994,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Red-legged Partridge 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9483734087694484,\n",
" \"recall\": 0.9054692775151925,\n",
" \"f1-score\": 0.9264248704663213,\n",
" \"support\": 1481\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7577854671280276,\n",
" \"recall\": 0.8571428571428571,\n",
" \"f1-score\": 0.8044077134986225,\n",
" \"support\": 511\n",
" },\n",
" \"accuracy\": 0.8930722891566265,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8530794379487381,\n",
" \"recall\": 0.8813060673290247,\n",
" \"f1-score\": 0.8654162919824719,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8994826265511923,\n",
" \"recall\": 0.8930722891566265,\n",
" \"f1-score\": 0.8951242845172781,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Ring-necked Parakeet 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ring-necked Parakeet 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9810159055926116,\n",
" \"recall\": 0.9881136950904392,\n",
" \"f1-score\": 0.984552008238929,\n",
" \"support\": 1935\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.46511627906976744,\n",
" \"recall\": 0.3508771929824561,\n",
" \"f1-score\": 0.4,\n",
" \"support\": 57\n",
" },\n",
" \"accuracy\": 0.9698795180722891,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7230660923311896,\n",
" \"recall\": 0.6694954440364477,\n",
" \"f1-score\": 0.6922760041194644,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9662537174842774,\n",
" \"recall\": 0.9698795180722891,\n",
" \"f1-score\": 0.9678253694489596,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Ring-necked Parakeet 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9809964047252183,\n",
" \"recall\": 0.9870801033591732,\n",
" \"f1-score\": 0.9840288511076766,\n",
" \"support\": 1935\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4444444444444444,\n",
" \"recall\": 0.3508771929824561,\n",
" \"f1-score\": 0.39215686274509803,\n",
" \"support\": 57\n",
" },\n",
" \"accuracy\": 0.9688755020080321,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7127204245848313,\n",
" \"recall\": 0.6689786481708146,\n",
" \"f1-score\": 0.6880928569263873,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9656432612834492,\n",
" \"recall\": 0.9688755020080321,\n",
" \"f1-score\": 0.9670927550551328,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Rock Dove 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rock Dove 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9165302782324058,\n",
" \"recall\": 0.8543096872616324,\n",
" \"f1-score\": 0.8843268851164627,\n",
" \"support\": 1311\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7519480519480519,\n",
" \"recall\": 0.8502202643171806,\n",
" \"f1-score\": 0.7980702963473466,\n",
" \"support\": 681\n",
" },\n",
" \"accuracy\": 0.8529116465863453,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8342391650902289,\n",
" \"recall\": 0.8522649757894065,\n",
" \"f1-score\": 0.8411985907319046,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8602649689454356,\n",
" \"recall\": 0.8529116465863453,\n",
" \"f1-score\": 0.8548385633535269,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Rock Dove 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9233937397034596,\n",
" \"recall\": 0.855072463768116,\n",
" \"f1-score\": 0.887920792079208,\n",
" \"support\": 1311\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7557840616966581,\n",
" \"recall\": 0.8634361233480177,\n",
" \"f1-score\": 0.8060315284441397,\n",
" \"support\": 681\n",
" },\n",
" \"accuracy\": 0.8579317269076305,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8395889007000589,\n",
" \"recall\": 0.8592542935580668,\n",
" \"f1-score\": 0.8469761602616739,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8660934431559536,\n",
" \"recall\": 0.8579317269076305,\n",
" \"f1-score\": 0.8599255167099904,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Ruddy Duck 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ruddy Duck 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9834254143646409,\n",
" \"recall\": 0.9994895354772844,\n",
" \"f1-score\": 0.9913924050632913,\n",
" \"support\": 1959\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.0,\n",
" \"recall\": 0.0,\n",
" \"f1-score\": 0.0,\n",
" \"support\": 33\n",
" },\n",
" \"accuracy\": 0.9829317269076305,\n",
" \"macro avg\": {\n",
" \"precision\": 0.49171270718232046,\n",
" \"recall\": 0.4997447677386422,\n",
" \"f1-score\": 0.49569620253164565,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.967133728283299,\n",
" \"recall\": 0.9829317269076305,\n",
" \"f1-score\": 0.9749687357023031,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Ruddy Duck 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9848637739656912,\n",
" \"recall\": 0.9964267483409903,\n",
" \"f1-score\": 0.9906115199188025,\n",
" \"support\": 1959\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.3,\n",
" \"recall\": 0.09090909090909091,\n",
" \"f1-score\": 0.13953488372093023,\n",
" \"support\": 33\n",
" },\n",
" \"accuracy\": 0.981425702811245,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6424318869828456,\n",
" \"recall\": 0.5436679196250406,\n",
" \"f1-score\": 0.5650732018198663,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9735181391560187,\n",
" \"recall\": 0.981425702811245,\n",
" \"f1-score\": 0.9765123587769704,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Whooper Swan 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Whooper Swan 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9047864127637674,\n",
" \"recall\": 0.9854260089686099,\n",
" \"f1-score\": 0.9433861014220553,\n",
" \"support\": 1784\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.46938775510204084,\n",
" \"recall\": 0.11057692307692307,\n",
" \"f1-score\": 0.17898832684824903,\n",
" \"support\": 208\n",
" },\n",
" \"accuracy\": 0.8940763052208835,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6870870839329041,\n",
" \"recall\": 0.5480014660227664,\n",
" \"f1-score\": 0.5611872141351522,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8593230991123421,\n",
" \"recall\": 0.8940763052208835,\n",
" \"f1-score\": 0.8635694663259952,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Whooper Swan 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9271597967250141,\n",
" \"recall\": 0.9204035874439462,\n",
" \"f1-score\": 0.9237693389592125,\n",
" \"support\": 1784\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.3574660633484163,\n",
" \"recall\": 0.3798076923076923,\n",
" \"f1-score\": 0.36829836829836826,\n",
" \"support\": 208\n",
" },\n",
" \"accuracy\": 0.8639558232931727,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6423129300367152,\n",
" \"recall\": 0.6501056398758193,\n",
" \"f1-score\": 0.6460338536287904,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.867673704083281,\n",
" \"recall\": 0.8639558232931727,\n",
" \"f1-score\": 0.8657683540709316,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Wigeon 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Wigeon 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8940092165898618,\n",
" \"recall\": 0.8846905537459283,\n",
" \"f1-score\": 0.8893254747871644,\n",
" \"support\": 1535\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6257928118393234,\n",
" \"recall\": 0.6477024070021882,\n",
" \"f1-score\": 0.6365591397849463,\n",
" \"support\": 457\n",
" },\n",
" \"accuracy\": 0.8303212851405622,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7599010142145926,\n",
" \"recall\": 0.7661964803740582,\n",
" \"f1-score\": 0.7629423072860553,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8324756337730967,\n",
" \"recall\": 0.8303212851405622,\n",
" \"f1-score\": 0.8313364109839447,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Wigeon 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8759791122715405,\n",
" \"recall\": 0.8742671009771987,\n",
" \"f1-score\": 0.8751222693185523,\n",
" \"support\": 1535\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5804347826086956,\n",
" \"recall\": 0.5842450765864332,\n",
" \"f1-score\": 0.5823336968375136,\n",
" \"support\": 457\n",
" },\n",
" \"accuracy\": 0.8077309236947792,\n",
" \"macro avg\": {\n",
" \"precision\": 0.728206947440118,\n",
" \"recall\": 0.729256088781816,\n",
" \"f1-score\": 0.7287279830780329,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8081760205768014,\n",
" \"recall\": 0.8077309236947792,\n",
" \"f1-score\": 0.8079513970174305,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n"
]
}
],
"source": [
"# Add model pipeline\n",
"estimators = [\n",
" ('lr', LogisticRegression(max_iter=10000, solver='saga', random_state=seed, penalty='l2', verbose=verbose)),\n",
" ('knn', KNeighborsClassifier(n_neighbors=5, weights='distance')),\n",
" ('sgd', SGDClassifier( max_iter=10000, loss='modified_huber', random_state=seed, penalty='l2', verbose=verbose)),\n",
" ('rf', RandomForestClassifier(n_estimators=20,max_features=None, random_state=seed, verbose=verbose))\n",
"]\n",
"\n",
"\n",
"for dict in df_dicts:\n",
" print(f'Training with {dict[\"name\"]} cells... \\n')\n",
" # Use this if using coordinates as separate columns\n",
" # coords, X, y = data['dataframe'].iloc[:, :2], data['dataframe'].iloc[:, 2:-1], data['dataframe'].iloc[:, [-1]]\n",
" # data['coords'] = coords\n",
" \n",
" # Use this if using coordinates as indices\n",
" X, y = dict['dataframe'].iloc[:, 0:-1], dict['dataframe'].iloc[:, [-1]], \n",
"\n",
" dict['X'] = standardise(X)\n",
" dict['y'] = y\n",
" dict['kbest'] = feature_select(dict['X'], dict['y'])\n",
"\n",
" # dict['X'] = dict['kbest']['10'].transform(dict['X'])\n",
"\n",
" X_train, X_test, y_train, y_test = train_test_split(dict['X'], dict['y'], random_state=seed)\n",
" dict['X_train'], dict['X_test'], dict['y_train'], dict['y_test'] = X_train, X_test, y_train, y_test # for debugging purposes\n",
"\n",
" dict['X_smote'], dict['y_smote'] = oversample(X_train, y_train)\n",
"\n",
" stack_clf = StackingClassifier(\n",
" estimators=estimators, \n",
" final_estimator=GradientBoostingClassifier(n_estimators=20, learning_rate=0.5, max_features=None, max_depth=2, random_state=seed)\n",
" )\n",
"\n",
" # Classifier without SMOTE\n",
" stack_clf.fit(dict['X_train'], dict['y_train'])\n",
" y_pred = stack_clf.predict(X_test)\n",
" \n",
" dict['predictions'] = y_pred\n",
" dict['report'] = classification_report(y_test, y_pred, output_dict=True)\n",
" \n",
"\n",
" # Classifier with SMOTE\n",
" stack_clf.fit(dict['X_smote'], dict['y_smote'])\n",
" y_pred_smote = stack_clf.predict(X_test)\n",
" \n",
" dict['predictions_smote'] = y_pred_smote\n",
" dict['report_smote'] = classification_report(y_test, y_pred_smote, output_dict=True)\n",
" \n",
" print(f'{dict[\"name\"]} Classification Report: \\n {json.dumps(dict[\"report\"], indent=4)} \\n')\n",
" print(f'{dict[\"name\"]} SMOTE Classification Report: \\n {json.dumps(dict[\"report_smote\"], indent=4)} \\n')\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9358316221765913,\n",
" \"recall\": 0.9886117136659436,\n",
" \"f1-score\": 0.9614978902953586,\n",
" \"support\": 1844\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5227272727272727,\n",
" \"recall\": 0.1554054054054054,\n",
" \"f1-score\": 0.23958333333333334,\n",
" \"support\": 148\n",
" },\n",
" \"accuracy\": 0.9267068273092369,\n",
" \"macro avg\": {\n",
" \"precision\": 0.729279447451932,\n",
" \"recall\": 0.5720085595356745,\n",
" \"f1-score\": 0.6005406118143459,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9051391303500355,\n",
" \"recall\": 0.9267068273092369,\n",
" \"f1-score\": 0.9078616681917543,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Canada Goose 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9355971896955504,\n",
" \"recall\": 0.871319520174482,\n",
" \"f1-score\": 0.9023150762281198,\n",
" \"support\": 917\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8963093145869947,\n",
" \"recall\": 0.9488372093023256,\n",
" \"f1-score\": 0.921825576140985,\n",
" \"support\": 1075\n",
" },\n",
" \"accuracy\": 0.9131526104417671,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9159532521412725,\n",
" \"recall\": 0.9100783647384039,\n",
" \"f1-score\": 0.9120703261845524,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9143951486605617,\n",
" \"recall\": 0.9131526104417671,\n",
" \"f1-score\": 0.9128440859702533,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Egyptian Goose 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9595588235294118,\n",
" \"recall\": 0.981203007518797,\n",
" \"f1-score\": 0.9702602230483273,\n",
" \"support\": 1862\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6022727272727273,\n",
" \"recall\": 0.4076923076923077,\n",
" \"f1-score\": 0.4862385321100917,\n",
" \"support\": 130\n",
" },\n",
" \"accuracy\": 0.9437751004016064,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7809157754010696,\n",
" \"recall\": 0.6944476576055523,\n",
" \"f1-score\": 0.7282493775792095,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9362419598178812,\n",
" \"recall\": 0.9437751004016064,\n",
" \"f1-score\": 0.9386724620935227,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Gadwall 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9131195335276968,\n",
" \"recall\": 0.9566279780085523,\n",
" \"f1-score\": 0.9343675417661097,\n",
" \"support\": 1637\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7436823104693141,\n",
" \"recall\": 0.5802816901408451,\n",
" \"f1-score\": 0.6518987341772152,\n",
" \"support\": 355\n",
" },\n",
" \"accuracy\": 0.8895582329317269,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8284009219985055,\n",
" \"recall\": 0.7684548340746986,\n",
" \"f1-score\": 0.7931331379716624,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8829236428722119,\n",
" \"recall\": 0.8895582329317269,\n",
" \"f1-score\": 0.8840279701325467,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Goshawk 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.954337899543379,\n",
" \"recall\": 0.9926121372031662,\n",
" \"f1-score\": 0.9730988101396792,\n",
" \"support\": 1895\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.3333333333333333,\n",
" \"recall\": 0.07216494845360824,\n",
" \"f1-score\": 0.11864406779661016,\n",
" \"support\": 97\n",
" },\n",
" \"accuracy\": 0.9477911646586346,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6438356164383562,\n",
" \"recall\": 0.5323885428283872,\n",
" \"f1-score\": 0.5458714389681447,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9240982193614641,\n",
" \"recall\": 0.9477911646586346,\n",
" \"f1-score\": 0.9314913251962669,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Grey Partridge 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9587491683300067,\n",
" \"recall\": 0.902316844082655,\n",
" \"f1-score\": 0.9296774193548387,\n",
" \"support\": 1597\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6809815950920245,\n",
" \"recall\": 0.8430379746835444,\n",
" \"f1-score\": 0.7533936651583709,\n",
" \"support\": 395\n",
" },\n",
" \"accuracy\": 0.8905622489959839,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8198653817110155,\n",
" \"recall\": 0.8726774093830997,\n",
" \"f1-score\": 0.8415355422566049,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9036697549620333,\n",
" \"recall\": 0.8905622489959839,\n",
" \"f1-score\": 0.8947215544413825,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Indian Peafowl 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9617706237424547,\n",
" \"recall\": 0.9979123173277662,\n",
" \"f1-score\": 0.9795081967213115,\n",
" \"support\": 1916\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.0,\n",
" \"recall\": 0.0,\n",
" \"f1-score\": 0.0,\n",
" \"support\": 76\n",
" },\n",
" \"accuracy\": 0.9598393574297188,\n",
" \"macro avg\": {\n",
" \"precision\": 0.48088531187122735,\n",
" \"recall\": 0.4989561586638831,\n",
" \"f1-score\": 0.48975409836065575,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9250765638004735,\n",
" \"recall\": 0.9598393574297188,\n",
" \"f1-score\": 0.9421374020672856,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Little Owl 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9746376811594203,\n",
" \"recall\": 0.9069453809844908,\n",
" \"f1-score\": 0.9395738735592035,\n",
" \"support\": 1483\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7745098039215687,\n",
" \"recall\": 0.931237721021611,\n",
" \"f1-score\": 0.8456735057983942,\n",
" \"support\": 509\n",
" },\n",
" \"accuracy\": 0.9131526104417671,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8745737425404945,\n",
" \"recall\": 0.9190915510030508,\n",
" \"f1-score\": 0.8926236896787989,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9235005880298688,\n",
" \"recall\": 0.9131526104417671,\n",
" \"f1-score\": 0.9155802554918079,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Mandarin Duck 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9385775862068966,\n",
" \"recall\": 0.963495575221239,\n",
" \"f1-score\": 0.9508733624454149,\n",
" \"support\": 1808\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5147058823529411,\n",
" \"recall\": 0.3804347826086957,\n",
" \"f1-score\": 0.4375,\n",
" \"support\": 184\n",
" },\n",
" \"accuracy\": 0.9096385542168675,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7266417342799188,\n",
" \"recall\": 0.6719651789149673,\n",
" \"f1-score\": 0.6941866812227074,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8994247782203867,\n",
" \"recall\": 0.9096385542168675,\n",
" \"f1-score\": 0.9034533329825853,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Mute Swan 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.92776886035313,\n",
" \"recall\": 0.8328530259365994,\n",
" \"f1-score\": 0.8777524677296886,\n",
" \"support\": 694\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9152666179693206,\n",
" \"recall\": 0.9653312788906009,\n",
" \"f1-score\": 0.9396325459317585,\n",
" \"support\": 1298\n",
" },\n",
" \"accuracy\": 0.9191767068273092,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9215177391612253,\n",
" \"recall\": 0.8990921524136002,\n",
" \"f1-score\": 0.9086925068307236,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9196223188801458,\n",
" \"recall\": 0.9191767068273092,\n",
" \"f1-score\": 0.9180739243091497,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Pheasant 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9282744282744283,\n",
" \"recall\": 0.8636363636363636,\n",
" \"f1-score\": 0.8947895791583166,\n",
" \"support\": 1034\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8631067961165049,\n",
" \"recall\": 0.9279749478079332,\n",
" \"f1-score\": 0.8943661971830986,\n",
" \"support\": 958\n",
" },\n",
" \"accuracy\": 0.8945783132530121,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8956906121954666,\n",
" \"recall\": 0.8958056557221484,\n",
" \"f1-score\": 0.8945778881707076,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8969337698370333,\n",
" \"recall\": 0.8945783132530121,\n",
" \"f1-score\": 0.8945859647344919,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Pink-footed Goose 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9011173184357542,\n",
" \"recall\": 0.9641362821279139,\n",
" \"f1-score\": 0.9315622292809702,\n",
" \"support\": 1673\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7029702970297029,\n",
" \"recall\": 0.445141065830721,\n",
" \"f1-score\": 0.5451055662188099,\n",
" \"support\": 319\n",
" },\n",
" \"accuracy\": 0.8810240963855421,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8020438077327285,\n",
" \"recall\": 0.7046386739793175,\n",
" \"f1-score\": 0.7383338977498901,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8693859430198253,\n",
" \"recall\": 0.8810240963855421,\n",
" \"f1-score\": 0.869674841973325,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Pintail 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9353671147880042,\n",
" \"recall\": 0.9820846905537459,\n",
" \"f1-score\": 0.9581567796610171,\n",
" \"support\": 1842\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.43103448275862066,\n",
" \"recall\": 0.16666666666666666,\n",
" \"f1-score\": 0.2403846153846154,\n",
" \"support\": 150\n",
" },\n",
" \"accuracy\": 0.9206827309236948,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6832007987733124,\n",
" \"recall\": 0.5743756786102063,\n",
" \"f1-score\": 0.5992706975228163,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8973902599665144,\n",
" \"recall\": 0.9206827309236948,\n",
" \"f1-score\": 0.904107670905264,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Pochard 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9102564102564102,\n",
" \"recall\": 0.9709401709401709,\n",
" \"f1-score\": 0.9396195202646815,\n",
" \"support\": 1755\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.575,\n",
" \"recall\": 0.2911392405063291,\n",
" \"f1-score\": 0.38655462184873945,\n",
" \"support\": 237\n",
" },\n",
" \"accuracy\": 0.8900602409638554,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7426282051282052,\n",
" \"recall\": 0.63103970572325,\n",
" \"f1-score\": 0.6630870710567105,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8703689759036145,\n",
" \"recall\": 0.8900602409638554,\n",
" \"f1-score\": 0.8738181242182065,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Red-legged Partridge 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9474789915966386,\n",
" \"recall\": 0.9135719108710331,\n",
" \"f1-score\": 0.9302165692677895,\n",
" \"support\": 1481\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7730496453900709,\n",
" \"recall\": 0.8532289628180039,\n",
" \"f1-score\": 0.8111627906976744,\n",
" \"support\": 511\n",
" },\n",
" \"accuracy\": 0.8980923694779116,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8602643184933547,\n",
" \"recall\": 0.8834004368445185,\n",
" \"f1-score\": 0.870689679982732,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9027333109181466,\n",
" \"recall\": 0.8980923694779116,\n",
" \"f1-score\": 0.899676167234994,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Ring-necked Parakeet 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9810159055926116,\n",
" \"recall\": 0.9881136950904392,\n",
" \"f1-score\": 0.984552008238929,\n",
" \"support\": 1935\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.46511627906976744,\n",
" \"recall\": 0.3508771929824561,\n",
" \"f1-score\": 0.4,\n",
" \"support\": 57\n",
" },\n",
" \"accuracy\": 0.9698795180722891,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7230660923311896,\n",
" \"recall\": 0.6694954440364477,\n",
" \"f1-score\": 0.6922760041194644,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9662537174842774,\n",
" \"recall\": 0.9698795180722891,\n",
" \"f1-score\": 0.9678253694489596,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Rock Dove 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9165302782324058,\n",
" \"recall\": 0.8543096872616324,\n",
" \"f1-score\": 0.8843268851164627,\n",
" \"support\": 1311\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7519480519480519,\n",
" \"recall\": 0.8502202643171806,\n",
" \"f1-score\": 0.7980702963473466,\n",
" \"support\": 681\n",
" },\n",
" \"accuracy\": 0.8529116465863453,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8342391650902289,\n",
" \"recall\": 0.8522649757894065,\n",
" \"f1-score\": 0.8411985907319046,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8602649689454356,\n",
" \"recall\": 0.8529116465863453,\n",
" \"f1-score\": 0.8548385633535269,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Ruddy Duck 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9834254143646409,\n",
" \"recall\": 0.9994895354772844,\n",
" \"f1-score\": 0.9913924050632913,\n",
" \"support\": 1959\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.0,\n",
" \"recall\": 0.0,\n",
" \"f1-score\": 0.0,\n",
" \"support\": 33\n",
" },\n",
" \"accuracy\": 0.9829317269076305,\n",
" \"macro avg\": {\n",
" \"precision\": 0.49171270718232046,\n",
" \"recall\": 0.4997447677386422,\n",
" \"f1-score\": 0.49569620253164565,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.967133728283299,\n",
" \"recall\": 0.9829317269076305,\n",
" \"f1-score\": 0.9749687357023031,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Whooper Swan 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9047864127637674,\n",
" \"recall\": 0.9854260089686099,\n",
" \"f1-score\": 0.9433861014220553,\n",
" \"support\": 1784\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.46938775510204084,\n",
" \"recall\": 0.11057692307692307,\n",
" \"f1-score\": 0.17898832684824903,\n",
" \"support\": 208\n",
" },\n",
" \"accuracy\": 0.8940763052208835,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6870870839329041,\n",
" \"recall\": 0.5480014660227664,\n",
" \"f1-score\": 0.5611872141351522,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8593230991123421,\n",
" \"recall\": 0.8940763052208835,\n",
" \"f1-score\": 0.8635694663259952,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Wigeon 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8940092165898618,\n",
" \"recall\": 0.8846905537459283,\n",
" \"f1-score\": 0.8893254747871644,\n",
" \"support\": 1535\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6257928118393234,\n",
" \"recall\": 0.6477024070021882,\n",
" \"f1-score\": 0.6365591397849463,\n",
" \"support\": 457\n",
" },\n",
" \"accuracy\": 0.8303212851405622,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7599010142145926,\n",
" \"recall\": 0.7661964803740582,\n",
" \"f1-score\": 0.7629423072860553,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8324756337730967,\n",
" \"recall\": 0.8303212851405622,\n",
" \"f1-score\": 0.8313364109839447,\n",
" \"support\": 1992\n",
" }\n",
"}\n"
]
}
],
"source": [
"for dict in df_dicts:\n",
" print(dict['name'], '\\n', json.dumps(dict['report'], indent=4))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA5EAAAPHCAYAAACxBc1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADwlUlEQVR4nOzdeXgO9/7/8dct+yIJsSQ0EkQIFbVVURIttQunrRa1dNFFUVqqutmpqtJVN1sVpfaqqi1R+x6UCKJKS6tVEqFCks/vDz/zdTcJo1Rono/rel+X+cxnZt73zTknr/OZmTiMMUYAAAAAANhQIK8bAAAAAADcOgiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA21zzugHgVpOVlaUjR46oYMGCcjgced0OAAAAcM2MMTp16pRKlCihAgUuv9ZIiASu0pEjRxQSEpLXbQAAAADX3eHDh3Xbbbdddg4hErhKBQsWlHThP2B+fn553A0AAABw7VJTUxUSEmL9rHs5hEjgKl28hdXPz48QCQAAgP8UO49r8WIdAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAba553QBwy/L3z+sOAAAAcLMzJq87uO5YicQty+FwaN68eXndBgAAAJCvECL/BV26dJHD4dDTTz+dbd+zzz4rh8OhLl26XNU5r1dgOnPmjPr376+yZcvK09NTRYsWVXR0tObPn3/N576eBg4cKIfD4VQVKlTI67YAAACAfI/bWf8lISEh+vLLLzVmzBh5eXlJks6ePatp06apVKlSedbX008/rQ0bNui9995TxYoVdfz4ca1du1bHjx/Ps55yU6lSJS1btszadnXlnysAAACQ11iJ/JdUq1ZNISEhmjNnjjU2Z84clSpVSlWrVnWaGxYWprFjxzqN3XHHHRo4cKC1X5LatGkjh8NhbUvS/PnzVa1aNXl6eqpMmTIaNGiQMjIycu1rwYIFevnll9WsWTOFhYWpevXq6tGjhx577DFJ0vvvv6/bb7/dmj9v3jw5HA599NFH1ljDhg316quvSpKSk5MVGxur4sWLy9fXVzVr1nQKfhf7Hz58uB577DEVLFhQpUqV0ieffHL5L1AXQmNQUJBVRYoUuez8AQMGKDg4WDt27LCuO3ToUHXq1Em+vr4KDQ3VggUL9Pvvvys2Nla+vr6KiorS5s2br9gLAAAAgAsIkf+ixx57TBMnTrS2J0yYoEcfffSqz7Np0yZJ0sSJE3X06FFre9WqVerUqZOee+457d69Wx9//LEmTZqkYcOG5XquoKAgLVq0SKdOncpxf3R0tHbv3q3ff/9dkrRy5UoVKVJE8fHxkqTz589r3bp1iomJkSSlpaWpWbNmWr58ubZt26YmTZqoZcuWOnTokNN5R48erRo1amjbtm3q1q2bnnnmGSUlJV32c+/bt08lSpRQmTJl1KFDh2znvMgYox49eujzzz/XqlWrFBUVZe0bM2aM6tatq23btql58+bq2LGjOnXqpEceeURbt25V2bJl1alTJ5nLPPCcnp6u1NRUpwIAAADyLYPrrnPnziY2NtYcO3bMeHh4mIMHD5qDBw8aT09P8/vvv5vY2FjTuXNna35oaKgZM2aM0zmqVKliBgwYYG1LMnPnznWac++995rhw4c7jU2ZMsUEBwfn2tvKlSvNbbfdZtzc3EyNGjVMr169zOrVq639WVlZJjAw0Hz11VfGGGPuuOMOM2LECBMUFGSMMWb16tXGzc3NnD59OtdrVKpUybz33ntOn++RRx5xukaxYsXMuHHjcj3HokWLzMyZM8327dvN4sWLTe3atU2pUqVMamqq03fy1Vdfmfbt25vIyEjz888/O53j79c9evSokWRee+01a2zdunVGkjl69GiuvQwYMMBIylYpF961RVEURVEURVG51y0iJSXFSDIpKSlXnMtK5L+oaNGiat68uSZNmqSJEyeqefPmV7wl82ps375dgwcPlq+vr1Vdu3bV0aNHdebMmRyPqV+/vg4cOKDly5frgQce0K5du1SvXj0NGTJE0oUX+NSvX1/x8fE6efKkdu/erW7duik9PV179uzRypUrVbNmTXl7e0u6sBLZp08fRUZGKiAgQL6+vkpMTMy2anjp6qDD4VBQUJCOHTuW62dr2rSpHnzwQUVFRalx48ZatGiRTp48qZkzZzrN6927tzZs2KDvv/9eJUuWzHaeS69bvHhxSVLlypWzjV2ul/79+yslJcWqw4cP5zoXAAAA+K/jTSX/sscee0zdu3eXJH3wwQc5zilQoICMMU5j58+fv+K509LSNGjQIP3vf//Lts/T0zPX49zc3FSvXj3Vq1dP/fr109ChQzV48GD169dP7u7uiomJ0SeffKJVq1apatWq8vPzs4LlypUrFR0dbZ2rT58+Wrp0qd566y2Fh4fLy8tLDzzwgM6dO5ftmpdyOBzKysq64me8KCAgQBEREdq/f7/TeKNGjTR9+nR999136tChQ46f9dJr5jZ2uV48PDzk4eFhu1cAAADgv4wQ+S9r0qSJzp07J4fDocaNG+c4p2jRojp69Ki1nZqaqh9//NFpjpubmzIzM53GqlWrpqSkJIWHh19TjxUrVlRGRobOnj0rd3d3RUdHq1evXvrqq6+sZx9jYmK0bNkyrVmzRi+88IJ17Jo1a9SlSxe1adNG0oVge/DgwWvqJydpaWlKTk5Wx44dncZbtWqlli1bqn379nJxcdHDDz983a8NAAAA4P8QIv9lLi4uSkxMtP6ck3vuuUeTJk1Sy5YtFRAQoNdffz3b3LCwMC1fvlx169aVh4eHChUqpNdff10tWrRQqVKl9MADD6hAgQLavn27fvjhBw0dOjTHa8XExKhdu3aqUaOGAgMDtXv3br388stq0KCB/Pz8JF24BbRQoUKaNm2aFi5caB3Xp08fORwO1a1b1zpfuXLlNGfOHLVs2VIOh0OvvfbaVa0w5qZPnz5q2bKlQkNDdeTIEQ0YMEAuLi5q165dtrlt2rTRlClT1LFjR7m6uuqBBx645usDAAAAyBkh8ga4GM5y079/f/34449q0aKF/P39NWTIkGwrkaNHj9bzzz+vTz/9VCVLltTBgwfVuHFjLVy4UIMHD9bIkSPl5uamChUq6Iknnsj1Wo0bN9bkyZP18ssv68yZMypRooRatGih119/3ZrjcDhUr149ffPNN7r77rslXQiWfn5+Kl++vHx8fKy5b7/9th577DHVqVNHRYoUUb9+/a7L20t//vlntWvXTsePH1fRokV19913a/369SpatGiO8x944AFlZWWpY8eOKlCgQI63+F5v/kqRdPm/WwAAAORzDnvT/vZ0203NYf7+MB6Ay0pNTZW/v79EiAQAAMB1ktep7OLPuCkpKVdcBOPtrAAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANtc87oB4Jb1kr/kmddNAABwazIDTF63AOAfYiUSAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgm2teNwDcqlL6p8jPzy+v2wAAAABuKFYiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ueZ1A8iZw+HQ3Llz1bp167xu5abVpUsXnTx5UvPmzcubBvz98+a6AAAAuPkZk9cd/Gvy7Urkr7/+qh49eqhMmTLy8PBQSEiIWrZsqeXLl+d1a9dVXFycWrRooaJFi8rT01Nly5bVQw89pO+//z6vW7usgwcPyuFwZKv169fndWsAAABAvpYvVyIPHjyounXrKiAgQKNGjVLlypV1/vx5fffdd3r22We1Z8+evG7xuvjwww/VvXt3dezYUTNmzFDZsmWVkpKiuLg49e7dW1u2bMnrFq9o2bJlqlSpkrUdGBiYh90AAAAAyJcrkd26dZPD4dDGjRt1//33KyIiQpUqVdLzzz/vtNL19ttvq3LlyvLx8VFISIi6deumtLQ0a/+kSZMUEBCg7777TpGRkfL19VWTJk109OhRa86mTZvUqFEjFSlSRP7+/oqOjtbWrVud+tm3b5/q168vT09PVaxYUUuXLs3Wc79+/RQRESFvb2+VKVNGr732ms6fP5/rZzx06JB69eqlXr16afLkybrnnnsUGhqqqKgoPffcc9q8ebPT/NmzZ6tSpUry8PBQWFiYRo8e7bT/xIkT6tSpkwoVKiRvb281bdpU+/bts/b/9NNPatmypQoVKiQfHx9VqlRJixYtsvb/8MMPatq0qXx9fVW8eHF17NhRf/zxR679XxQYGKigoCCr3Nzccp27adMmFS1aVCNHjpQkDRw4UHfccYcmTJigUqVKydfXV926dVNmZqbefPNNBQUFqVixYho2bNgV+wAAAABwQb4LkX/++acWL16sZ599Vj4+Ptn2BwQEWH8uUKCA3n33Xe3atUuTJ0/WihUr9OKLLzrNP3PmjN566y1NmTJF33//vQ4dOqQ+ffpY+0+dOqXOnTtr9erVWr9+vcqVK6dmzZrp1KlTkqSsrCz973//k7u7uzZs2KCPPvpI/fr1y9ZXwYIFNWnSJO3evVvvvPOOPv30U40ZMybXzzl79mydP38+W78XORwO689btmxR27Zt9fDDD2vnzp0aOHCgXnvtNU2aNMma06VLF23evFkLFizQunXrZIxRs2bNrCD77LPPKj09Xd9//7127typkSNHytfXV5J08uRJ3XPPPapatao2b96sxYsX67ffflPbtm1z7f+iVq1aqVixYrr77ru1YMGCXOetWLFCjRo10rBhw5y+v+TkZH377bdavHixpk+frvHjx6t58+b6+eeftXLlSo0cOVKvvvqqNmzYkOu509PTlZqa6lQAAABAvmXymQ0bNhhJZs6cOVd97FdffWUCAwOt7YkTJxpJZv/+/dbYBx98YIoXL57rOTIzM03BggXN119/bYwx5rvvvjOurq7ml19+seZ8++23RpKZO3durucZNWqUqV69eq77n376aePn5+c0NmvWLOPj42PVjh07jDHGtG/f3jRq1Mhpbt++fU3FihWNMcbs3bvXSDJr1qyx9v/xxx/Gy8vLzJw50xhjTOXKlc3AgQNz7GXIkCHmvvvucxo7fPiwkWSSkpJyPOb33383o0ePNuvXrzcbN240/fr1Mw6Hw8yfP9+a07lzZxMbG2vmzJljfH19zZdfful0jgEDBhhvb2+TmppqjTVu3NiEhYWZzMxMa6x8+fJmxIgROfZx8TySslXKhcelKYqiKIqiKCp73WJSUlKMJJOSknLFufnumUhjjO25y5Yt04gRI7Rnzx6lpqYqIyNDZ8+e1ZkzZ+Tt7S1J8vb2VtmyZa1jgoODdezYMWv7t99+06uvvqr4+HgdO3ZMmZmZOnPmjA4dOiRJSkxMVEhIiEqUKGEdU7t27Wy9zJgxQ++++66Sk5OVlpamjIwM+fn5Xbb/S1cbJalx48ZKSEjQL7/8opiYGGVmZlo9xMbGOs2tW7euxo4dq8zMTCUmJsrV1VW1atWy9gcGBqp8+fJKTEyUJPXs2VPPPPOMlixZooYNG+r+++9XVFSUJGn79u2Ki4uzViYvlZycrIiIiGzjRYoU0fPPP29t16xZU0eOHNGoUaPUqlUra3zDhg1auHChZs2aleObbMPCwlSwYEFru3jx4nJxcVGBAgWcxi79O/u7/v37O/WSmpqqkJCQXOcDAAAA/2X57nbWcuXKyeFwXPHlOQcPHlSLFi0UFRWl2bNna8uWLfrggw8kSefOnbPm/f0ZPYfD4RRUO3furISEBL3zzjtau3atEhISFBgY6HSOK1m3bp06dOigZs2aaeHChdq2bZteeeWVy56jXLlySklJ0a+//mqN+fr6Kjw8XKGhobavbdcTTzyhAwcOqGPHjtq5c6dq1Kih9957T5KUlpamli1bKiEhwakuPgtqV61atbR//36nsbJly6pChQqaMGFCjs+I5vT3k9NYVlZWrtf18PCQn5+fUwEAAAD5Vb4LkYULF1bjxo31wQcf6PTp09n2nzx5UtKF5wSzsrI0evRo3XXXXYqIiNCRI0eu+npr1qxRz5491axZM+vFNZe+UCYyMlKHDx92ehnP33+Nxdq1axUaGqpXXnlFNWrUULly5fTTTz9d9roPPPCA3NzcrJfMXE5kZKTWrFmTre+IiAi5uLgoMjJSGRkZTs8NHj9+XElJSapYsaI1FhISoqefflpz5szRCy+8oE8//VSSVK1aNe3atUthYWEKDw93qpyeS81NQkKCgoODncaKFCmiFStWaP/+/Wrbtu1lXzYEAAAA4NrluxApSR988IEyMzN15513avbs2dq3b58SExP17rvvWreShoeH6/z583rvvfd04MABTZkyRR999NFVX6tcuXKaMmWKEhMTtWHDBnXo0EFeXl7W/oYNGyoiIkKdO3fW9u3btWrVKr3yyivZznHo0CF9+eWXSk5O1rvvvqu5c+de9rqlSpXS6NGj9c4776hz586Ki4vTwYMHtXXrVr377ruSJBcXF0nSCy+8oOXLl2vIkCHau3evJk+erPfff996QVC5cuUUGxurrl27avXq1dq+fbseeeQRlSxZ0roNtlevXvruu+/0448/auvWrYqLi1NkZKSkCy/d+fPPP9WuXTtt2rRJycnJ+u677/Too49at9T+3eTJkzV9+nTt2bNHe/bs0fDhwzVhwgT16NEj29xixYppxYoV2rNnj9q1a6eMjAw7fzUAAAAA/ol//QnNm9SRI0fMs88+a0JDQ427u7spWbKkadWqlYmLi7PmvP322yY4ONh4eXmZxo0bm88//9xIMidOnDDGXHixjr+/v9N5586day79Wrdu3Wpq1KhhPD09Tbly5cxXX31lQkNDzZgxY6w5SUlJ5u677zbu7u4mIiLCLF682EjOL9bp27evCQwMNL6+vuahhx4yY8aMyXbtnCxdutQ0bdrUFC5c2Li6uprixYub1q1bm8WLFzvNmzVrlqlYsaJxc3MzpUqVMqNGjXLa/+eff5qOHTsaf39/6/vYu3evtb979+6mbNmyxsPDwxQtWtR07NjR/PHHH9b+vXv3mjZt2piAgADj5eVlKlSoYHr16mWysrJy7HvSpEkmMjLSeHt7Gz8/P3PnnXear776ymnOxRfrXHTkyBETERFh2rZtazIyMsyAAQNMlSpVLnuMMcZER0eb55577grf5P+5+NCxlJLnz2tTFEVRFEVRN1/diq7mxToOY4zJ0xQL3GJSU1Pl7+8vKUUSz0cCAADA2a2YsC7+jJuSknLFd4Dky9tZAQAAAAD/DCESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYJtrXjcA3LJe8pc887oJAMCNYAaYvG4BAG4arEQCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGxzzesGgFtVSv8U+fn55XUbAAAAwA3FSiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA217xuALhl+fvndQcAAAD4txiT1x3ctFiJvEVMmjRJAQEBed3GTYXvBAAAALjxCJE3iS5dusjhcMjhcMjd3V3h4eEaPHiwMjIy8rq1687hcGjevHlXnBcWFmZ9JxfrjTfe+PcbBAAAAJArbme9iTRp0kQTJ05Uenq6Fi1apGeffVZubm7q379/XreWZwYPHqyuXbta2wULFszDbgAAAACwEnkT8fDwUFBQkEJDQ/XMM8+oYcOGWrBggdOc7777TpGRkfL19VWTJk109OhRp/2fffaZIiMj5enpqQoVKujDDz902t+vXz9FRETI29tbZcqU0Wuvvabz589b+7dv364GDRqoYMGC8vPzU/Xq1bV582ZJ0vHjx9WuXTuVLFlS3t7eqly5sqZPn+50/piYGPXs2VMvvviiChcurKCgIA0cONDaHxYWJklq06aNHA6HtZ2bggULKigoyCofH59c5/7++++qUaOG2rRpo/T0dMXHx8vhcOi7775T1apV5eXlpXvuuUfHjh3Tt99+q8jISPn5+al9+/Y6c+bMZfsAAAAAcAEh8ibm5eWlc+fOWdtnzpzRW2+9pSlTpuj777/XoUOH1KdPH2v/1KlT9frrr2vYsGFKTEzU8OHD9dprr2ny5MnWnIIFC2rSpEnavXu33nnnHX366acaM2aMtb9Dhw667bbbtGnTJm3ZskUvvfSS3NzcJElnz55V9erV9c033+iHH37Qk08+qY4dO2rjxo1OfU+ePFk+Pj7asGGD3nzzTQ0ePFhLly6VJG3atEmSNHHiRB09etTazs0bb7yhwMBAVa1aVaNGjcr19t7Dhw+rXr16uv322zVr1ix5eHhY+wYOHKj3339fa9eu1eHDh9W2bVuNHTtW06ZN0zfffKMlS5bovffey7WH9PR0paamOhUAAACQbxncFDp37mxiY2ONMcZkZWWZpUuXGg8PD9OnTx9jjDETJ040ksz+/futYz744ANTvHhxa7ts2bJm2rRpTucdMmSIqV27dq7XHTVqlKlevbq1XbBgQTNp0iTbfTdv3ty88MIL1nZ0dLS5++67nebUrFnT9OvXz9qWZObOnXvFc48ePdrExcWZ7du3m3HjxpmAgADTu3dva//EiRONv7+/2bNnjwkJCTE9e/Y0WVlZ1v64uDgjySxbtswaGzFihJFkkpOTrbGnnnrKNG7cONc+BgwYYCRlq5QL7+yiKIqiKIqi/ouVz6SkpBhJJiUl5YpzeSbyJrJw4UL5+vrq/PnzysrKUvv27Z1uBfX29lbZsmWt7eDgYB07dkySdPr0aSUnJ+vxxx93eoYwIyND/pf8KooZM2bo3XffVXJystLS0pSRkSE/Pz9r//PPP68nnnhCU6ZMUcOGDfXggw9a18zMzNTw4cM1c+ZM/fLLLzp37pzS09Pl7e3t9DmioqKcti/t82o8//zzTud0d3fXU089pREjRlgrjX/99Zfq1aun9u3ba+zYsTme59J+ihcvbt3Ke+nY31dTL9W/f3+nXlJTUxUSEnLVnwcAAAD4L+B21ptIgwYNlJCQoH379umvv/6ybgu96OJtpRc5HA4ZYyRJaWlpkqRPP/1UCQkJVv3www9av369JGndunXq0KGDmjVrpoULF2rbtm165ZVXnG6ZHThwoHbt2qXmzZtrxYoVqlixoubOnStJGjVqlN555x3169dPcXFxSkhIUOPGjZ2Oz63PrKysa/5+atWqpYyMDB08eNAa8/DwUMOGDbVw4UL98ssvOR53aT8Oh+Oq+/Pw8JCfn59TAQAAAPkVK5E3ER8fH4WHh/+jY4sXL64SJUrowIED6tChQ45z1q5dq9DQUL3yyivW2E8//ZRtXkREhCIiItS7d2+1a9dOEydOVJs2bbRmzRrFxsbqkUcekSRlZWVp7969qlix4lX16ubmpszMzKs6RpISEhJUoEABFStWzBorUKCApkyZovbt26tBgwaKj49XiRIlrvrcAAAAAOwhRP6HDBo0SD179pS/v7+aNGmi9PR0bd68WSdOnNDzzz+vcuXK6dChQ/ryyy9Vs2ZNffPNN9Yqo3Th1tC+ffvqgQceUOnSpfXzzz9r06ZNuv/++yVJ5cqV06xZs7R27VoVKlRIb7/9tn777berDpFhYWFavny56tatKw8PDxUqVCjbnHXr1mnDhg3Wm2LXrVun3r1765FHHsk238XFRVOnTlW7du10zz33KD4+XkFBQf/gGwQAAABwJYTI/5AnnnhC3t7eGjVqlPr27SsfHx9VrlxZvXr1kiS1atVKvXv3Vvfu3ZWenq7mzZvrtddes567dHFx0fHjx9WpUyf99ttvKlKkiP73v/9p0KBBkqRXX31VBw4cUOPGjeXt7a0nn3xSrVu3VkpKylX1OXr0aD3//PP69NNPVbJkSafbUy/y8PDQl19+qYEDByo9PV2lS5dW7969nZ5NvJSrq6umT5+uhx56yAqS/zZ/pUji1lYAAID/gv//lBhscBjD1wVcjdTU1P//siJCJAAAwH9Ffk9FF3/GTUlJueI7QHixDgAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDbXvG4AuGW95C955nUTAHDrMwNMXrcAALgKrEQCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsc83rBoBbVUr/FPn5+eV1GwAAAMANxUokAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA217xuANdHly5ddPLkSc2bNy+vW7mhHA6H5s6dq9atW9/4i/v73/hrAgAA/JuMyesOcAtgJfIG6NKlixwOhxwOh9zc3FS6dGm9+OKLOnv2bJ72dbEnh8MhHx8flStXTl26dNGWLVvytK+LBg4c6NSjw+FQhQoV8rotAAAAIF8jRN4gTZo00dGjR3XgwAGNGTNGH3/8sQYMGJDXbWnixIk6evSodu3apQ8++EBpaWmqVauWPv/887xuTZJUqVIlHT161KrVq1fndUsAAABAvkaIvEE8PDwUFBSkkJAQtW7dWg0bNtTSpUut/enp6erZs6eKFSsmT09P3X333dq0aZPTOXbt2qUWLVrIz89PBQsWVL169ZScnJzj9TZt2qSiRYtq5MiRl+0rICBAQUFBCgsL03333adZs2apQ4cO6t69u06cOGHNmz17tipVqiQPDw+FhYVp9OjR1r6XX35ZtWrVynbuKlWqaPDgwdb2Z599psjISHl6eqpChQr68MMPL/+lSXJ1dVVQUJBVRYoUuez8AQMGKDg4WDt27JAkhYWFaejQoerUqZN8fX0VGhqqBQsW6Pfff1dsbKx8fX0VFRWlzZs3X7EXAAAAAITIPPHDDz9o7dq1cnd3t8ZefPFFzZ49W5MnT9bWrVsVHh6uxo0b688//5Qk/fLLL6pfv748PDy0YsUKbdmyRY899pgyMjKynX/FihVq1KiRhg0bpn79+l11f71799apU6eskLtlyxa1bdtWDz/8sHbu3KmBAwfqtdde06RJkyRJHTp00MaNG50C7a5du7Rjxw61b99ekjR16lS9/vrrGjZsmBITEzV8+HC99tprmjx58mV72bdvn0qUKKEyZcqoQ4cOOnToUI7zjDHq0aOHPv/8c61atUpRUVHWvjFjxqhu3bratm2bmjdvro4dO6pTp0565JFHtHXrVpUtW1adOnWSyeUZgPT0dKWmpjoVAAAAkG8Z/Os6d+5sXFxcjI+Pj/Hw8DCSTIECBcysWbOMMcakpaUZNzc3M3XqVOuYc+fOmRIlSpg333zTGGNM//79TenSpc25c+dyvUZsbKyZM2eO8fX1NV9++eUV+5Jk5s6dm238r7/+MpLMyJEjjTHGtG/f3jRq1MhpTt++fU3FihWt7SpVqpjBgwdb2/379ze1atWytsuWLWumTZvmdI4hQ4aY2rVr59rfokWLzMyZM8327dvN4sWLTe3atU2pUqVMamqq02f46quvTPv27U1kZKT5+eefnc4RGhpqHnnkEWv76NGjRpJ57bXXrLF169YZSebo0aM59jFgwAAjKVulXHj0nKIoiqIo6r9TyLdSUlKMJJOSknLFuaxE3iANGjRQQkKCNmzYoM6dO+vRRx/V/fffL0lKTk7W+fPnVbduXWu+m5ub7rzzTiUmJkqSEhISVK9ePbm5ueV6jQ0bNujBBx/UlClT9NBDD/3jXo0xki68eEeSEhMTnXqTpLp162rfvn3KzMyUdGE1ctq0adbx06dPV4cOHSRJp0+fVnJysh5//HH5+vpaNXTo0Fxvx5Wkpk2b6sEHH1RUVJQaN26sRYsW6eTJk5o5c6bTvN69e2vDhg36/vvvVbJkyWznuXRVsnjx4pKkypUrZxs7duxYjn30799fKSkpVh0+fDjXngEAAID/OkLkDeLj46Pw8HBVqVJFEyZM0IYNGzR+/Hjbx3t5eV1xTtmyZVWhQgVNmDBB58+f/8e9XgyupUuXtn1Mu3btlJSUpK1bt2rt2rU6fPiwFWTT0tIkSZ9++qkSEhKs+uGHH7R+/Xrb1wgICFBERIT279/vNN6oUSP98ssv+u6773I87tLgfTEY5zSWlZWV4/EeHh7y8/NzKgAAACC/IkTmgQIFCujll1/Wq6++qr/++ktly5aVu7u71qxZY805f/68Nm3apIoVK0q6sJq2atWqy4bDIkWKaMWKFdq/f7/atm37j4Pk2LFj5efnp4YNG0qSIiMjnXqTpDVr1igiIkIuLi6SpNtuu03R0dGaOnWqpk6dqkaNGqlYsWKSLqz0lShRQgcOHFB4eLhTXU1QTUtLU3JysoKDg53GW7VqpWnTpumJJ57Ql19++Y8+MwAAAAB7CJF55MEHH5SLi4s++OAD+fj46JlnnlHfvn21ePFi7d69W127dtWZM2f0+OOPS5K6d++u1NRUPfzww9q8ebP27dunKVOmKCkpyem8xYoV04oVK7Rnzx61a9cuxxfvXOrkyZP69ddf9dNPP2np0qV64IEHNG3aNI0bN04BAQGSpBdeeEHLly/XkCFDtHfvXk2ePFnvv/+++vTp43SuDh066Msvv9RXX31l3cp60aBBgzRixAi9++672rt3r3bu3KmJEyfq7bffzrW3Pn36aOXKlTp48KDWrl2rNm3ayMXFRe3atcs2t02bNpoyZYoeffRRzZo167KfGQAAAMA1+Nef0IT10pu/GzFihClatKhJS0szf/31l+nRo4cpUqSI8fDwMHXr1jUbN250mr99+3Zz3333GW9vb1OwYEFTr149k5ycnOM1jhw5YiIiIkzbtm1NRkZGjn1J//eSGE9PT1O2bFnTuXNns2XLlmxzZ82aZSpWrGjc3NxMqVKlzKhRo7LNOXHihPHw8DDe3t7m1KlT2fZPnTrV3HHHHcbd3d0UKlTI1K9f38yZMyfX7+2hhx4ywcHBxt3d3ZQsWdI89NBDZv/+/dk+w6UvB5oxY4bx9PQ0s2fPNsZceLHOmDFjLnvMjz/+aCSZbdu25drLpayHjvP6wXeKoiiKoqjrXci3rubFOg5jjMm7CAvcelJTU+Xv7y8pRRLPRwIAgFsTKQCXuvgzbkpKyhXfAcLtrAAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANtc87oB4Jb1kr/kmddNAPg3mQEmr1sAAOCmw0okAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA217xuALhVpfRPkZ+fX163AQAAANxQrEQCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsc83rBoBblr9/XncAAABw6zImrzvAP8RK5C3A4XBo3rx5V33cwYMH5XA4lJCQcN17ulbXo7eb+fMBAAAA/1WEyJtAly5d1Lp161z3Hz16VE2bNpWUe3C60jmuRWZmpsaMGaPKlSvL09NThQoVUtOmTbVmzZp/5XoXdenSRQ6Hw6maNGnyr14TAAAAwOURIm8BQUFB8vDwyJNrG2P08MMPa/DgwXruueeUmJio+Ph4hYSEKCYm5h+tkF6NJk2a6OjRo1ZNnz79X70eAAAAgMsjRN4CLr2dtXTp0pKkqlWryuFwKCYmRgMHDtTkyZM1f/58a8UuPj4+x3P98MMPatq0qXx9fVW8eHF17NhRf/zxR67XnjlzpmbNmqXPP/9cTzzxhEqXLq0qVarok08+UatWrfTEE0/o9OnTSklJkYuLizZv3ixJysrKUuHChXXXXXdZ5/riiy8UEhJyVZ/dw8NDQUFBVhUqVCjXuZmZmXrsscdUoUIFHTp0SNKF7+7jjz9WixYt5O3trcjISK1bt0779+9XTEyMfHx8VKdOHSUnJ19VXwAAAEB+RYi8xWzcuFGStGzZMh09elRz5sxRnz591LZtW6dVuzp16mQ79uTJk7rnnntUtWpVbd68WYsXL9Zvv/2mtm3b5nq9adOmKSIiQi1btsy274UXXtDx48e1dOlS+fv764477rDC686dO+VwOLRt2zalpaVJklauXKno6Oir+rzx8fEqVqyYypcvr2eeeUbHjx/PcV56eroefPBBJSQkaNWqVSpVqpS1b8iQIerUqZMSEhJUoUIFtW/fXk899ZT69++vzZs3yxij7t2759pDenq6UlNTnQoAAADIrwiRt5iiRYtKkgIDAxUUFKTChQvL19dXXl5eTqt27u7u2Y59//33VbVqVQ0fPlwVKlRQ1apVNWHCBMXFxWnv3r05Xm/v3r2KjIzMcd/F8YvHxsTEWCEyPj5ejRo1UmRkpFavXm2NXU2IbNKkiT7//HMtX75cI0eO1MqVK9W0aVNlZmY6zUtLS1Pz5s31+++/Ky4uzvqOLnr00UfVtm1bRUREqF+/fjp48KA6dOigxo0bKzIyUs8991yuK7eSNGLECPn7+1t1taupAAAAwH8Jv+IjH9m+fbvi4uLk6+ubbV9ycrIiIiJyPM7YfP1ydHS0xo8fr8zMTK1cuVL33XefgoKCFB8fr6ioKOsWUrsefvhh68+VK1dWVFSUypYtq/j4eN17773Wvnbt2um2227TihUr5OXlle08UVFR1p+LFy9une/SsbNnzyo1NVV+fn7Zju/fv7+ef/55azs1NZUgCQAAgHyLlch8JC0tTS1btlRCQoJT7du3T/Xr18/xmIiICCUmJua47+L4xfBZv359nTp1Slu3btX333+vmJgYa3Vy5cqVKlGihMqVK/eP+y9TpoyKFCmi/fv3O403a9ZMO3bs0Lp163I8zs3Nzfqzw+HIdSwrKyvH4z08POTn5+dUAAAAQH5FiLzFXLxN9e+3dLq7u2cb+7tq1app165dCgsLU3h4uFP5+PjkeMzDDz+sffv26euvv862b/To0QoMDFSjRo0kSQEBAYqKitL7778vNzc3VahQQfXr19e2bdu0cOHCq34e8u9+/vlnHT9+XMHBwU7jzzzzjN544w21atVKK1euvKZrAAAAALg8QuRNIiUlJdsK4eHDh7PNK1asmLy8vKyX4qSkpEiSwsLCtGPHDiUlJemPP/7Q+fPnsx377LPP6s8//1S7du20adMmJScn67vvvtOjjz6aawB9+OGH1aZNG3Xu3Fnjx4/XwYMHtWPHDj311FNasGCBPvvsM6cAGhMTo6lTp1qBsXDhwoqMjNSMGTOuKkSmpaWpb9++Wr9+vQ4ePKjly5crNjZW4eHhaty4cbb5PXr00NChQ9WiRQvrGUwAAAAA1x/PRN4k4uPjVbVqVaexxx9/XJ999pnTmKurq959910NHjxYr7/+uurVq6f4+Hh17dpV8fHxqlGjhtLS0hQXF6ewsDCnY0uUKKE1a9aoX79+uu+++5Senq7Q0FA1adJEBQrk/P8nOBwOzZw5U2PHjtWYMWPUrVs3eXp6qnbt2oqPj1fdunWd5kdHR2vs2LFOzz7GxMRo+/btV/U8pIuLi3bs2KHJkyfr5MmTKlGihO677z4NGTIk19+Z2atXL2VlZalZs2ZavHhxjm+ovZ78lSKJW1sBAAD+EYdk89UbuMk4jN23pgCQdOHFOv7+/hIhEgAA4JqQRG4eF3/GTUlJueI7QLidFQAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYJtrXjcA3LJe8pc887oJ4MYyA0xetwAAAPIYK5EAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbXPO6AeBWldI/RX5+fnndBgAAAHBDsRIJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALDtpgyR8fHxcjgcOnnyZK5zBg4cqDvuuOOG9XStwsLCNHbs2Lxu47LsfO+TJk1SQEDADevpchwOh+bNm5d3Dfj7Sw4HRVEURVHUf6MAm64pRHbp0kUOh0MOh0Nubm4qXbq0XnzxRZ09e/Z69ZdvDBw40PouXV1dFRYWpt69eystLe2az2s3bNepU0dHjx6Vv7//NV3zerj0+7hYFSpUyOu2AAAAgHzP9VpP0KRJE02cOFHnz5/Xli1b1LlzZzkcDo0cOfJ69JevVKpUScuWLVNGRobWrFmjxx57TGfOnNHHH3981ecyxigzM9P2/PPnz8vd3V1BQUFXfa1/y8Xv4yJX12v+5woAAADgGl3z7aweHh4KCgpSSEiIWrdurYYNG2rp0qXW/qysLI0YMUKlS5eWl5eXqlSpolmzZjmdY9GiRYqIiJCXl5caNGiggwcP/qNePvvsM0VGRsrT01MVKlTQhx9+6LR/7dq1uuOOO+Tp6akaNWpo3rx5cjgcSkhIsOYsWLBA5cqVk6enpxo0aKDJkyfr77d4rl69WvXq1ZOXl5dCQkLUs2dPnT592tp/7NgxtWzZUl5eXipdurSmTp1qq39XV1cFBQXptttu00MPPaQOHTpowYIFkqQpU6aoRo0aKliwoIKCgtS+fXsdO3bMOvbirajffvutqlevLg8PD33xxRcaNGiQtm/fbq3mTZo0SZLkcDg0btw4tWrVSj4+Pho2bFiOt7NOmjRJpUqVkre3t9q0aaPjx49n63vo0KEqVqyYChYsqCeeeEIvvfRSttXPK/3dXO77uFhFihS57PwBAwYoODhYO3bskHThFuKhQ4eqU6dO8vX1VWhoqBYsWKDff/9dsbGx8vX1VVRUlDZv3nzFXgAAAAD8f+YadO7c2cTGxlrbO3fuNEFBQaZWrVrW2NChQ02FChXM4sWLTXJyspk4caLx8PAw8fHxxhhjDh06ZDw8PMzzzz9v9uzZY7744gtTvHhxI8mcOHEi12sPGDDAVKlSxdr+4osvTHBwsJk9e7Y5cOCAmT17tilcuLCZNGmSMcaYlJQUU7hwYfPII4+YXbt2mUWLFpmIiAgjyWzbts0YY8yBAweMm5ub6dOnj9mzZ4+ZPn26KVmypFMv+/fvNz4+PmbMmDFm7969Zs2aNaZq1aqmS5cuVi9NmzY1VapUMevWrTObN282derUMV5eXmbMmDG2P48xxvTs2dMULlzYGGPM+PHjzaJFi0xycrJZt26dqV27tmnatKk1Ny4uzkgyUVFRZsmSJWb//v3m559/Ni+88IKpVKmSOXr0qDl69Kg5c+aMMcYYSaZYsWJmwoQJJjk52fz000/WOS5+1vXr15sCBQqYkSNHmqSkJPPOO++YgIAA4+/v7/S9e3p6mgkTJpikpCQzaNAg4+fnd1V/N7l9H97e3iY4ONiULl3atG/f3vz0009OcySZuXPnmqysLNO9e3cTFhZm9u3bZ+0PDQ01hQsXNh999JHZu3eveeaZZ4yfn59p0qSJmTlzpklKSjKtW7c2kZGRJisrK9dezp49a1JSUqw6fPiwkWRSJGMoiqIoiqL+K4V8LSUlxUgyKSkpV5x7Tf9aOnfubFxcXIyPj4/x8PAwkkyBAgXMrFmzjDEXfvj29vY2a9eudTru8ccfN+3atTPGGNO/f39TsWJFp/39+vUzVxsiy5Yta6ZNm+Y0Z8iQIaZ27drGGGPGjRtnAgMDzV9//WXt//TTT82lIbJfv37m9ttvdzrHK6+84tTL448/bp588kmnOatWrTIFChQwf/31l0lKSjKSzMaNG639iYmJRtJVhcjNmzebIkWKmAceeCDH+Zs2bTKSzKlTp4wx/xci582bd9nzXiTJ9OrVy2ns7yGyXbt2plmzZk5zHnroIacQWatWLfPss886zalbt+5V/d3kZNGiRWbmzJlm+/btZvHixaZ27dqmVKlSJjU11ekzfPXVV6Z9+/YmMjLS/Pzzz07nCA0NNY888oi1ffToUSPJvPbaa9bYunXrjCRz9OjRXHsZMGCAkZStCJEURVEURf2nCvna1YTIa37IrEGDBho3bpxOnz6tMWPGyNXVVffff78kaf/+/Tpz5owaNWrkdMy5c+dUtWpVSVJiYqJq1arltL927dpO276+vtafH3nkEX300UdO+0+fPq3k5GQ9/vjj6tq1qzWekZFhvSQmKSlJUVFR8vT0tPbfeeedTudJSkpSzZo1ncb+Pmf79u3asWOH0y2qxhhlZWXpxx9/1N69e+Xq6qrq1atb+ytUqGDrjaY7d+6Ur6+vMjMzde7cOTVv3lzvv/++JGnLli0aOHCgtm/frhMnTigrK0uSdOjQIVWsWNE6R40aNa54HbtzExMT1aZNG6ex2rVra/HixdZ2UlKSunXr5jTnzjvv1IoVKyTZ+7vJSdOmTa0/R0VFqVatWgoNDdXMmTP1+OOPW/t69+4tDw8PrV+/PsfbXaOioqw/Fy9eXJJUuXLlbGPHjh3L9XnQ/v376/nnn7e2U1NTFRISkmvvAAAAwH/ZNYdIHx8fhYeHS5ImTJigKlWqaPz48Xr88cetN4t+8803KlmypNNxHh4etq9x6TOLfn5+2fZfvM6nn36aLZC6uLjYvo4daWlpeuqpp9SzZ89s+0qVKqW9e/f+43OXL19eCxYskKurq0qUKCF3d3dJF4JY48aN1bhxY02dOlVFixbVoUOH1LhxY507d87pHD4+PravdzVz/6nr9XcTEBCgiIgI7d+/32m8UaNGmj59ur777jt16NAh23Fubm7Wnx3//9XVOY1dDOU58fDwuKp/rwAAAMB/2XV93WWBAgX08ssv6/nnn1f79u1VsWJFeXh46NChQ4qOjs7xmMjISOvlMRetX7/eaftiSM1N8eLFVaJECR04cCDHICFdCGhffPGF0tPTrUCwadOmbHMWLVrkNPb3OdWqVdPu3btz7alChQrKyMjQli1brFXNpKSky/7uxYvc3d1zPO+ePXt0/PhxvfHGG9YKmN2Xwbi7u1/VW1ovFRkZqQ0bNjiN/f3vpnz58tq0aZM6depkjV36ndn5u7EjLS1NycnJ6tixo9N4q1at1LJlS7Vv314uLi56+OGH//E1AAAAAFzZNb+d9e8efPBBubi46IMPPlDBggXVp08f9e7dW5MnT1ZycrK2bt2q9957T5MnT5YkPf3009q3b5/69u2rpKQkTZs2zXqD6NUYNGiQRowYoXfffVd79+7Vzp07NXHiRL399tuSpPbt2ysrK0tPPvmkEhMT9d133+mtt96S9H+rUU899ZT27Nmjfv36ae/evZo5c6bT20wlqV+/flq7dq26d++uhIQE7du3T/Pnz1f37t0lXQhVTZo00VNPPaUNGzZoy5YteuKJJ+Tl5fWPv9NSpUrJ3d1d7733ng4cOKAFCxZoyJAhto4NCwvTjz/+qISEBP3xxx9KT0+3fd2ePXtq8eLFeuutt7Rv3z69//77TreySlKPHj00fvx4TZ48Wfv27dPQoUO1Y8cO6/uSrvx3k5M+ffpo5cqVOnjwoNauXas2bdrIxcVF7dq1yza3TZs2mjJlih599NFsb/4FAAAAcJ1dy8OXf38760UjRowwRYsWNWlpaSYrK8uMHTvWlC9f3ri5uZmiRYuaxo0bm5UrV1rzv/76axMeHm48PDxMvXr1zIQJE4x0dS/WMcaYqVOnmjvuuMO4u7ubQoUKmfr165s5c+ZY+9esWWOioqKMu7u7qV69upk2bZqRZPbs2WPNmT9/vtVLTEyMGTdunJHk9EKejRs3mkaNGhlfX1/j4+NjoqKizLBhw6z9R48eNc2bNzceHh6mVKlS5vPPPzehoaFX/XbWS02bNs2EhYUZDw8PU7t2bbNgwQIj/d9Lgf7+UpyLzp49a+6//34TEBBgJJmJEycaY4yRLrzZ9FI5nWP8+PHmtttuM15eXqZly5bmrbfecnqxjjHGDB482BQpUsT4+vqaxx57zPTs2dPcddddTnOu9Hfzdw899JAJDg427u7upmTJkuahhx4y+/fvd5rz988wY8YM4+npaWbPnm2MMTl+538/5scff3T6Hu2wHjrO64ffKYqiKIqirmchX7uaF+s4jDEmT9LrTWDq1Kl69NFHlZKSkutK4bBhw/TRRx/p8OHDN7i7W1ejRo0UFBSkKVOm5HUr/4rU1NT//1KgFEnZn9EFAAD4r8i/SSH/ufgzbkpKSo7vobnUdX0m8mb3+eefq0yZMipZsqS2b9+ufv36qW3btk4B8sMPP1TNmjUVGBioNWvWaNSoUdatqsjuzJkz+uijj9S4cWO5uLho+vTpWrZsmZYuXZrXrQEAAAD4F+SrEPnrr7/q9ddf16+//qrg4GA9+OCDGjZsmNOci8/1/fnnnypVqpReeOEF9e/fP486vvk5HA4tWrRIw4YN09mzZ1W+fHnNnj1bDRs2zOvWAAAAAPwL8vXtrMA/we2sAAAgvyAp5B9XczvrdX87KwAAAADgv4sQCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALAtX/2eSOC6eslf8szrJoAbxwzgPe8AAICVSAAAAADAVSBEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbHPN6waAW1VK/xT5+fnldRsAAADADcVKJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDbXvG4AuGX5++d1BwCA/zJj8roDAMgRK5H5SHx8vBwOh06ePJnXrVwXXbp0UevWrfO6DQAAACBfIUTegj766CMVLFhQGRkZ1lhaWprc3NwUExPjNPdicExOTladOnV09OhR+d8CK2gHDx6Uw+HIVuvXr8/r1gAAAIB8jdtZb0ENGjRQWlqaNm/erLvuukuStGrVKgUFBWnDhg06e/asPD09JUlxcXEqVaqUypYtK0kKCgrKs77/iWXLlqlSpUrWdmBgYB52AwAAAICVyFtQ+fLlFRwcrPj4eGssPj5esbGxKl26tNNqXXx8vBo0aGD9+e+3s3766acKCQmRt7e32rRpo7ffflsBAQFO15s/f76qVasmT09PlSlTRoMGDXJaBT106JBiY2Pl6+srPz8/tW3bVr/99pu1f+DAgbrjjjs0ZcoUhYWFyd/fXw8//LBOnTp1xc8aGBiooKAgq9zc3HKdu2nTJhUtWlQjR450uu6ECRNUqlQp+fr6qlu3bsrMzNSbb76poKAgFStWTMOGDbtiHwAAAAAuIETeoho0aKC4uDhrOy4uTjExMYqOjrbG//rrL23YsMEKkX+3Zs0aPf3003ruueeUkJCgRo0aZQtUq1atUqdOnfTcc89p9+7d+vjjjzVp0iRrXlZWlmJjY/Xnn39q5cqVWrp0qQ4cOKCHHnrI6TzJycmaN2+eFi5cqIULF2rlypV64403rvg5W7VqpWLFiunuu+/WggULcp23YsUKq/9+/fo5Xffbb7/V4sWLNX36dI0fP17NmzfXzz//rJUrV2rkyJF69dVXtWHDhlzPnZ6ertTUVKcCAAAA8i2DW9Knn35qfHx8zPnz501qaqpxdXU1x44dM9OmTTP169c3xhizfPlyI8n89NNPxhhj4uLijCRz4sQJY4wxDz30kGnevLnTeTt06GD8/f2t7XvvvdcMHz7cac6UKVNMcHCwMcaYJUuWGBcXF3Po0CFr/65du4wks3HjRmOMMQMGDDDe3t4mNTXVmtO3b19Tq1atXD/f77//bkaPHm3Wr19vNm7caPr162ccDoeZP3++Nadz584mNjbWzJkzx/j6+povv/zS6Rw5Xbdx48YmLCzMZGZmWmPly5c3I0aMyLWXAQMGGEnZKuXCe/MoiqIo6t8pALiBUlJSjCSTkpJyxbk8E3mLiomJ0enTp7Vp0yadOHFCERERKlq0qKKjo/Xoo4/q7Nmzio+PV5kyZVSqVKkcz5GUlKQ2bdo4jd15551auHChtb19+3atWbPGaYUyMzNTZ8+e1ZkzZ5SYmKiQkBCFhIRY+ytWrKiAgAAlJiaqZs2akqSwsDAVLFjQmhMcHKxjx47l+vmKFCmi559/3tquWbOmjhw5olGjRqlVq1bW+IYNG7Rw4ULNmjUrxze1/v26xYsXl4uLiwoUKOA0drle+vfv79RLamqq0+cFAAAA8hNC5C0qPDxct912m+Li4nTixAlFR0dLkkqUKKGQkBCtXbtWcXFxuueee67pOmlpaRo0aJD+97//Zdt38eU9dvz9WUaHw6GsrKyr6qVWrVpaunSp01jZsmUVGBioCRMmqHnz5tmuk9N1r7YXDw8PeXh4XFWvAAAAwH8Vz0Tewho0aKD4+HjFx8c7/WqP+vXr69tvv9XGjRtzfR5SuvCCnk2bNjmN/X27WrVqSkpKUnh4eLYqUKCAIiMjdfjwYR0+fNg6Zvfu3Tp58qQqVqx4fT7o/5eQkKDg4GCnsSJFimjFihXav3+/2rZtq/Pnz1/XawIAAABwxkrkLaxBgwZ69tlndf78eWslUpKio6PVvXt3nTt37rIhskePHqpfv77efvtttWzZUitWrNC3334rh8NhzXn99dfVokULlSpVSg888IAKFCig7du364cfftDQoUPVsGFDVa5cWR06dNDYsWOVkZGhbt26KTo6WjVq1PjHn23y5Mlyd3dX1apVJUlz5szRhAkT9Nlnn2WbW6xYMa1YsUINGjRQu3bt9OWXX8rVlX/aAAAAwL+BlchbWIMGDfTXX38pPDxcxYsXt8ajo6N16tQp61eB5KZu3br66KOP9Pbbb6tKlSpavHixevfu7XSbauPGjbVw4UItWbJENWvW1F133aUxY8YoNDRU0oVbQefPn69ChQqpfv36atiwocqUKaMZM2Zc8+cbMmSIqlevrlq1amn+/PmaMWOGHn300RznBgUFacWKFdq5c6c6dOigzMzMa77+lfgrRQ4ZiqIoivp3yqGbtgDkbw5jjMnrJnDz6Nq1q/bs2aNVq1bldSs3rdTUVPn7+0tKkeSX1+0AAHDD8dMj8N9z8WfclJQU+fld/mdc7vnL59566y01atRIPj4++vbbbzV58mR9+OGHed0WAAAAgJsUITKf27hxo958802dOnVKZcqU0bvvvqsnnngir9sCAAAAcJMiROZzM2fOzOsWAAAAANxCeLEOAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANn7FB/BPveQveeZ1E4BkBpi8bgEAAOQjrEQCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsc83rBoBbVUr/FPn5+eV1GwAAAMANxUokAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA217xuALhl+fvndQcAANzcjMnrDgD8C1iJhBOHw6F58+bluv/gwYNyOBxKSEi4YT3lJiYmRr169crrNgAAAIB8Jd+GyF9//VXPPfecwsPD5enpqeLFi6tu3boaN26czpw5c8P7iY+Pl8PhsKp48eK6//77deDAgety3pMnT9qaf/ToUTVt2vSarnk9/P37uFi//vprXrcGAAAA5Gv58nbWAwcOqG7dugoICNDw4cNVuXJleXh4aOfOnfrkk09UsmRJtWrVKsdjz58/Lzc3t3+tt6SkJBUsWFD79u3Tk08+qZYtW2rHjh1ycXG56nOdP3/e9txz587J3d1dQUFBV32df1NSUpL8/Pys7WLFiuVhNwAAAADy5Upkt27d5Orqqs2bN6tt27aKjIxUmTJlFBsbq2+++UYtW7a05jocDo0bN06tWrWSj4+Phg0bJkmaP3++qlWrJk9PT5UpU0aDBg1SRkaGJOmxxx5TixYtnK55/vx5FStWTOPHj79sb8WKFVNwcLDq16+v119/Xbt379b+/fu1adMmNWrUSEWKFJG/v7+io6O1detWp2P/3mvXrl3VoEEDSVKhQoXkcDjUpUsXSRduBe3evbt69eqlIkWKqHHjxtY5Lr2ddePGjapatao8PT1Vo0YNbdu2LVvPCxYsULly5eTp6akGDRpo8uTJ2VY/V69erXr16snLy0shISHq2bOnTp8+fdnv4uL3ERQUZFWBArn/k/3mm2/k7++vqVOnSpK6dOmi1q1ba/jw4SpevLgCAgI0ePBgZWRkqG/fvipcuLBuu+02TZw48bI9pKenKzU11akAAACAfMvkM3/88YdxOBxmxIgRtuZLMsWKFTMTJkwwycnJ5qeffjLff/+98fPzM5MmTTLJyclmyZIlJiwszAwcONAYY8yaNWuMi4uLOXLkiHWeOXPmGB8fH3Pq1KkcrxMXF2ckmRMnTjgdI8ns2LHDLF++3EyZMsUkJiaa3bt3m8cff9wUL17cpKam5trrwYMHzezZs40kk5SUZI4ePWpOnjxpjDEmOjra+Pr6mr59+5o9e/aYPXv2WOeYO3euMcaYU6dOmaJFi5r27dubH374wXz99demTJkyRpLZtm2bMcaYAwcOGDc3N9OnTx+zZ88eM336dFOyZEmnz7J//37j4+NjxowZY/bu3WvWrFljqlatarp06ZLr937x+wgNDTVBQUGmYcOGZvXq1U5zoqOjzXPPPWeMMWbq1KmmYMGC5uuvv7b2d+7c2RQsWNA8++yzZs+ePWb8+PFGkmncuLEZNmyY2bt3rxkyZIhxc3Mzhw8fzrWXAQMGGEnZKuXC6wIoiqIoisqtANwyUlJSjCSTkpJyxbn57j/d69evN5LMnDlznMYDAwONj4+P8fHxMS+++KI1Lsn06tXLae69995rhg8f7jQ2ZcoUExwcbG1XrFjRjBw50tpu2bKlrdB0MXgdOXLE1KlTx5QsWdKkp6dnm5+ZmZktNOXUa07h1JgLAaxq1arZzntpiPz4449NYGCg+euvv6z948aNM5eGyH79+pnbb7/d6RyvvPKK0zUff/xx8+STTzrNWbVqlSlQoIDTuS+1Z88e89FHH5nNmzebNWvWmEcffdS4urqaLVu2OH2G5557zrz//vvG39/fxMfHO52jc+fOJjQ01GRmZlpj5cuXN/Xq1bO2MzIyjI+Pj5k+fXqOfRhjzNmzZ01KSopVhw8fNoRIiqIoirJRAG4ZVxMi8+UzkTnZuHGjsrKy1KFDB6Wnpzvtq1GjhtP29u3btWbNGuvWVknKzMzU2bNndebMGXl7e+uJJ57QJ598ohdffFG//fabvv32W61YseKKfdx2220yxujMmTOqUqWKZs+eLXd3d/3222969dVXFR8fr2PHjikzM1NnzpzRoUOHLtvr5VSvXv2y+xMTExUVFSVPT09rrHbt2k5zkpKSVLNmTaexO++802l7+/bt2rFjh3WbqSQZY5SVlaUff/xRkZGR2a5dvnx5lS9f3tquU6eOkpOTNWbMGE2ZMsUanzVrlo4dO6Y1a9Zk60OSKlWq5HQLbPHixXX77bdb2y4uLgoMDNSxY8dy/R48PDzk4eGR634AAAAgP8l3ITI8PFwOh0NJSUlO42XKlJEkeXl5ZTvGx8fHaTstLU2DBg3S//73v2xzLwauTp066aWXXtK6deu0du1alS5dWvXq1btif6tWrZKfn5+KFSumggULWuOdO3fW8ePH9c477yg0NFQeHh6qXbu2zp07d9leL+dq5l6LtLQ0PfXUU+rZs2e2faVKlbJ9njvvvFOrV692Gqtataq2bt2qCRMmqEaNGnI4HE77//4SJIfDkeNYVlaW7T4AAACA/CzfhcjAwEA1atRI77//vnr06PGPglS1atWUlJSk8PDwy16ndevWmjhxotatW6dHH33U1rlLly6tgICAbONr1qzRhx9+qGbNmkmSDh8+rD/++OOK53N3d5d0YaX0akVGRmrKlCk6e/asFY7Xr1/vNKd8+fJatGiR09imTZuctqtVq6bdu3df9vuyIyEhQcHBwU5jZcuW1ejRoxUTEyMXFxe9//7713QNAAAAAJeXL9/O+uGHHyojI0M1atTQjBkzlJiYqKSkJH3xxRfas2fPFX+dxuuvv67PP/9cgwYN0q5du5SYmKgvv/xSr776qtO8J554QpMnT1ZiYqI6d+58TT2XK1dOU6ZMUWJiojZs2KAOHTrkuGr6d6GhoXI4HFq4cKF+//13paWl2b5m+/bt5XA41LVrV+3evVuLFi3SW2+95TTnqaee0p49e9SvXz/t3btXM2fO1KRJkyTJWhXs16+f1q5dq+7duyshIUH79u3T/Pnz1b1791yvPXbsWM2fP1/79+/XDz/8oF69emnFihV69tlns82NiIhQXFycZs+erV69etn+fAAAAACuXr4MkWXLltW2bdvUsGFD9e/fX1WqVFGNGjX03nvvqU+fPhoyZMhlj2/cuLEWLlyoJUuWqGbNmrrrrrs0ZswYhYaGOs1r2LChgoOD1bhxY5UoUeKaeh4/frxOnDihatWqqWPHjurZs6et35lYsmRJDRo0SC+99JKKFy9+2eD2d76+vvr666+1c+dOVa1aVa+88opGjhzpNKd06dKaNWuW5syZo6ioKI0bN06vvPKKJFnPEUZFRWnlypXau3ev6tWrp6pVq+r111+/7Hdy7tw5vfDCC6pcubKio6O1fft2LVu2TPfee2+O88uXL68VK1Zo+vTpeuGFF2x/xmvhrxQ5ZCiKoiiKyq0coi5TwK3KYYwxed3Ef1VaWppKliypiRMn5vj85H/VsGHD9NFHH+nw4cN53cq/IjU1Vf7+/pJSJPnldTsAAOAWxU/huJlc/Bk3JSVFfn6X/xk33z0TeSNkZWXpjz/+0OjRoxUQEKBWrVrldUv/qg8//FA1a9ZUYGCg1qxZo1GjRl3ViicAAACAWwch8l9w6NAhlS5dWrfddpsmTZokV9f/9te8b98+DR06VH/++adKlSqlF154Qf3798/rtgAAAAD8C7idFbhK3M4KAACuB34Kx83kam5nzZcv1gEAAAAA/DOESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbf/t3z0B/Jte8pc887oJ3IrMAF7HBwAAbl2sRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbHPN6waAW1VK/xT5+fnldRsAAADADcVKJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANte8bgA3h0mTJqlXr146efLkv3L+gQMHat68eUpISJAkdenSRSdPntS8efP+8Tmvxzmuib9/3lwXAIB/mzF53QGAmxgrkbeQX3/9Vc8995zCw8Pl6emp4sWLq27duho3bpzOnDmT1+1dVwcPHpTD4chW69evz+vWAAAAgHyNlchbxIEDB1S3bl0FBARo+PDhqly5sjw8PLRz50598sknKlmypFq1apXXbV53y5YtU6VKlaztwMDAPOwGAAAAACuRt4hu3brJ1dVVmzdvVtu2bRUZGakyZcooNjZW33zzjVq2bGnNffvtt1W5cmX5+PgoJCRE3bp1U1pamtP5Jk2apFKlSsnb21tt2rTR8ePHrX0pKSlycXHR5s2bJUlZWVkqXLiw7rrrLmvOF198oZCQEGu7X79+ioiIkLe3t8qUKaPXXntN58+fv+bPHRgYqKCgIKvc3Nxynbtp0yYVLVpUI0eOlHThFto77rhDEyZMUKlSpeTr66tu3bopMzNTb775poKCglSsWDENGzbsmvsEAAAA8gtC5C3g+PHjWrJkiZ599ln5+PjkOMfhcFh/LlCggN59913t2rVLkydP1ooVK/Tiiy9a+zds2KDHH39c3bt3V0JCgho0aKChQ4da+/39/XXHHXcoPj5ekrRz5045HA5t27bNCqMrV65UdHS0dUzBggU1adIk7d69W++8844+/fRTjRkz5po/e6tWrVSsWDHdfffdWrBgQa7zVqxYoUaNGmnYsGHq16+fNZ6cnKxvv/1Wixcv1vTp0zV+/Hg1b95cP//8s1auXKmRI0fq1Vdf1YYNG3I9d3p6ulJTU50KAAAAyK8IkbeA/fv3yxij8uXLO40XKVJEvr6+8vX1dQpOvXr1UoMGDRQWFqZ77rlHQ4cO1cyZM63977zzjpo0aaIXX3xRERER6tmzpxo3bux07piYGCtExsfHq1GjRoqMjNTq1autsUtD5Kuvvqo6deooLCxMLVu2VJ8+fZyuebV8fX01evRoffXVV/rmm2909913q3Xr1jkGyblz5yo2NlYff/yxnnzySad9WVlZmjBhgipWrKiWLVuqQYMGSkpK0tixY1W+fHk9+uijKl++vOLi4nLtZcSIEfL397fq0hVYAAAAIL/hmchb2MaNG5WVlaUOHTooPT3dGl+2bJlGjBihPXv2KDU1VRkZGTp79qzOnDkjb29vJSYmqk2bNk7nql27thYvXmxtR0dHa/z48crMzNTKlSt13333KSgoSPHx8YqKitL+/fsVExNjzZ8xY4beffddJScnKy0tTRkZGfLz8/vHn61IkSJ6/vnnre2aNWvqyJEjGjVqlNOznxs2bNDChQs1a9YstW7dOtt5wsLCVLBgQWu7ePHicnFxUYECBZzGjh07lmsv/fv3d+olNTWVIAkAAIB8i5XIW0B4eLgcDoeSkpKcxsuUKaPw8HB5eXlZYwcPHlSLFi0UFRWl2bNna8uWLfrggw8kSefOnbN9zfr16+vUqVPaunWrvv/+e8XExFirkytXrlSJEiVUrlw5SdK6devUoUMHNWvWTAsXLtS2bdv0yiuvXNX17KhVq5b279/vNFa2bFlVqFBBEyZMyPEZzL8/Q+lwOHIcy8rKyvW6Hh4e8vPzcyoAAAAgvyJE3gICAwPVqFEjvf/++zp9+vRl527ZskVZWVkaPXq07rrrLkVEROjIkSNOcyIjI7M9A/j3X50REBCgqKgovf/++3Jzc1OFChVUv359bdu2TQsXLnS6lXXt2rUKDQ3VK6+8oho1aqhcuXL66aefrvFTZ5eQkKDg4GCnsSJFimjFihXav3+/2rZte11e5gMAAAAgd4TIW8SHH36ojIwM1ahRQzNmzFBiYqKSkpL0xRdfaM+ePXJxcZF0YdXy/Pnzeu+993TgwAFNmTJFH330kdO5evbsqcWLF+utt97Svn379P777zvdynpRTEyMpk6dagXGwoULKzIyUjNmzHAKkeXKldOhQ4f05ZdfKjk5We+++67mzp17TZ938uTJmj59uvbs2aM9e/Zo+PDhmjBhgnr06JFtbrFixbRixQrt2bNH7dq1U0ZGxjVdGwAAAEDuCJG3iLJly2rbtm1q2LCh+vfvrypVqqhGjRp677331KdPHw0ZMkSSVKVKFb399tsaOXKkbr/9dk2dOlUjRoxwOtddd92lTz/9VO+8846qVKmiJUuW6NVXX812zejoaGVmZjo9+xgTE5NtrFWrVurdu7e6d++uO+64Q2vXrtVrr712zZ95yJAhql69umrVqqX58+drxowZevTRR3OcGxQUpBUrVmjnzp3q0KGDMjMzr/n6V+KvFDlkKIqiKOq/Vw5dlwLw3+Qwxpi8bgK4laSmpsrf319SiiSejwQAIDf8lAncOi7+jJuSknLFd4CwEgkAAAAAsI0QCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALDNNa8bAG5ZL/lLnnndBG4EM8DkdQsAAAA3DVYiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAtrnmdQPArSqlf4r8/Pzyug0AAADghmIlEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgm2teNwDcsvz987oDAEB+Y0xedwAAt95KZJcuXdS6deurOsbhcGjevHlXdcyvv/6qRo0aycfHRwEBAVd17I3yTz7Xf0l8fLwcDodOnjyZ160AAAAA+cZNFyK7dOkih8Mhh8Mhd3d3hYeHa/DgwcrIyJAkvfPOO5o0adK/3seYMWN09OhRJSQkaO/evdftvDc6+P3666967rnnFB4eLk9PTxUvXlx169bVuHHjdObMmRvWxz8RExNj/Vu4WE8//XRetwUAAADkazfl7axNmjTRxIkTlZ6erkWLFunZZ5+Vm5ub+vfvL/8bdAthcnKyqlevrnLlyt2Q6/0bDhw4oLp16yogIEDDhw9X5cqV5eHhoZ07d+qTTz5RyZIl1apVq7xu87K6du2qwYMHW9ve3t552A0AAACAm24lUpI8PDwUFBSk0NBQPfPMM2rYsKEWLFggKfvtrDExMerZs6defPFFFS5cWEFBQRo4cOBlzz9gwAAFBwdrx44dOe4PCwvT7Nmz9fnnn8vhcKhLly6SpEOHDik2Nla+vr7y8/NT27Zt9dtvvzkdO27cOJUtW1bu7u4qX768pkyZ4nReSWrTpo0cDoe1LUnz589XtWrV5OnpqTJlymjQoEHW6qsk7du3T/Xr15enp6cqVqyopUuXXuFblLp16yZXV1dt3rxZbdu2VWRkpMqUKaPY2Fh98803atmypTX3Wj+bMUYDBw5UqVKl5OHhoRIlSqhnz57W/vT0dPXp00clS5aUj4+PatWqpfj4+Ct+Bm9vbwUFBVnl5+eX69wzZ86oadOmqlu3rk6ePKmDBw/K4XBo5syZqlevnry8vFSzZk3t3btXmzZtUo0aNeTr66umTZvq999/z/W86enpSk1NdSoAAAAg3zI3mc6dO5vY2FinsVatWplq1arluD86Otr4+fmZgQMHmr1795rJkycbh8NhlixZYs2RZObOnWuysrJM9+7dTVhYmNm3b1+uPRw7dsw0adLEtG3b1hw9etScPHnSZGZmmjvuuMPcfffdZvPmzWb9+vWmevXqJjo62jpuzpw5xs3NzXzwwQcmKSnJjB492ri4uJgVK1ZY55VkJk6caI4ePWqOHTtmjDHm+++/N35+fmbSpEkmOTnZLFmyxISFhZmBAwcaY4zJzMw0t99+u7n33ntNQkKCWblypalatar1uXLyxx9/GIfDYUaMGHHF7/x6fLavvvrK+Pn5mUWLFpmffvrJbNiwwXzyySfW8U888YSpU6eO+f77783+/fvNqFGjjIeHh9m7d2+ufUVHR5siRYqYwMBAU6lSJfPSSy+Z06dPW/vj4uKMJHPixAlz4sQJU6dOHXPfffdZc3788UcjyVSoUMEsXrzY7N6929x1112mevXqJiYmxqxevdps3brVhIeHm6effjrXPgYMGGAkZauUC683oCiKoqgbVwDwL0lJSTGSTEpKyhXn3nT/bXRpSMzKyjJLly41Hh4epk+fPtn2G3MhaNx9991O56hZs6bp16+ftS3JfPXVV6Z9+/YmMjLS/Pzzz1fsIzY21nTu3NnaXrJkiXFxcTGHDh2yxnbt2mUkmY0bNxpjjKlTp47p2rWr03kefPBB06xZM6de/h787r33XjN8+HCnsSlTppjg4GBjjDHfffedcXV1Nb/88ou1/9tvv83xXBetX7/eSDJz5sxxGg8MDDQ+Pj7Gx8fHvPjii9fts40ePdpERESYc+fOZevlp59+Mi4uLk79X/zc/fv3z7F/Y4z5+OOPzeLFi82OHTvMF198YUqWLGnatGlj7b8YIhMTE01UVJS5//77TXp6urX/Yoj87LPPrLHp06cbSWb58uXW2IgRI0z58uVz7ePs2bMmJSXFqsOHDxtCJEVRFJUnBQD/kqsJkTfl7awLFy6Ur6+vPD091bRpUz300EOXvUU1KirKaTs4OFjHjh1zGuvdu7c2bNig77//XiVLlrTGhw8fLl9fX6sOHTqU4zUSExMVEhKikJAQa6xixYoKCAhQYmKiNadu3bpOx9WtW9fan5vt27dr8ODBTn107dpVR48e1ZkzZ6xrlyhRwjqmdu3alz1nbjZu3KiEhARVqlRJ6enp1+2zPfjgg/rrr79UpkwZde3aVXPnzrVux925c6cyMzMVERHh9BlXrlyp5OTkXHt98skn1bhxY1WuXFkdOnTQ559/rrlz52Y7plGjRgoPD9eMGTPk7u6e7TyX/vsoXry4JKly5cpOY3//93IpDw8P+fn5ORUAAACQX92UL9Zp0KCBxo0bJ3d3d5UoUUKurpdv083NzWnb4XAoKyvLaaxRo0aaPn26vvvuO3Xo0MEaf/rpp9W2bVtr+9KgdqOkpaVp0KBB+t///pdtn6en5z86Z3h4uBwOh5KSkpzGy5QpI0ny8vL6R+fNTUhIiJKSkrRs2TItXbpU3bp106hRo7Ry5UqlpaXJxcVFW7ZskYuLi9Nxvr6+tq9Rq1YtSdL+/ftVtmxZa7x58+aaPXu2du/e7RQOL7r034fD4chx7O//XgAAAADk7KYMkT4+PgoPD7+u52zVqpVatmyp9u3by8XFRQ8//LAkqXDhwipcuPAVj4+MjNThw4d1+PBha8Vu9+7dOnnypCpWrGjNWbNmjTp37mwdt2bNGmu/dCG8ZGZmOp27WrVqSkpKyvUzX7z20aNHFRwcLElav379ZfsNDAxUo0aN9P7776tHjx7y8fH51z+bl5eXWrZsqZYtW+rZZ59VhQoVtHPnTlWtWlWZmZk6duyY6tWrd9m+LychIUGSrO/gojfeeEO+vr669957FR8f79QTAAAAgOvrpgyR/5Y2bdpoypQp6tixo1xdXfXAAw/YPrZhw4bWbZVjx45VRkaGunXrpujoaNWoUUOS1LdvX7Vt21ZVq1ZVw4YN9fXXX2vOnDlatmyZdZ6wsDAtX75cdevWlYeHhwoVKqTXX39dLVq0UKlSpfTAAw+oQIEC2r59u3744QcNHTpUDRs2VEREhDp37qxRo0YpNTVVr7zyyhV7/vDDD1W3bl3VqFFDAwcOVFRUlAoUKKBNmzZpz549ql69+nX7bJMmTVJmZqZq1aolb29vffHFF/Ly8lJoaKgCAwPVoUMHderUSaNHj1bVqlX1+++/a/ny5YqKilLz5s2z9Z6cnKxp06apWbNmCgwM1I4dO9S7d2/Vr18/2+3LkvTWW28pMzNT99xzj+Lj41WhQgXbf7cAAAAArsINeEbzquT0dtbL7Y+OjjbPPfec05y/vxRHcn4BzYwZM4ynp6eZPXt2rtf5+zmMufCCmFatWhkfHx9TsGBB8+CDD5pff/3Vac6HH35oypQpY9zc3ExERIT5/PPPnfYvWLDAhIeHG1dXVxMaGmqNL1682NSpU8d4eXkZPz8/c+eddzq93TQpKcncfffdxt3d3URERJjFixdn+1w5OXLkiOnevbspXbq0cXNzM76+vubOO+80o0aNcnrT6bV+trlz55patWoZPz8/4+PjY+666y6zbNkya/+5c+fM66+/bsLCwoybm5sJDg42bdq0MTt27Mix70OHDpn69eubwoULGw8PDxMeHm769u3r9KDvpW9nvahHjx4mODjYJCUlWS/W2bZt22WPmThxovH397/s93ipiw8dSyl5/n4FiqIo6sYXAPwXXc2LdRzGGJOHGRa45aSmpsrf319SiiResgMA+Q0/OQH4L7r4M25KSsoVXyR5U76dFQAAAABwcyJEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsc83rBoBb1kv+kmdeN4HrwQzgN4cDAADYxUokAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA217xuALhVpfRPkZ+fX163AQAAANxQrEQCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjREKSFBMTo169et2w64WFhWns2LF5fo5r4u8vORwURd0KBQAArhtC5C2iS5cucjgccjgccnd3V3h4uAYPHqyMjIy8bu1fMWnSJOvzXixPT8+8bgsAAADI91zzugHY16RJE02cOFHp6elatGiRnn32Wbm5ual///553VqOMjMz5XA4VKDAP/v/Kvz8/JSUlGRtO1hNAAAAAPIcK5G3EA8PDwUFBSk0NFTPPPOMGjZsqAULFkiSTpw4oU6dOqlQoULy9vZW06ZNtW/fPqfj16xZo5iYGHl7e6tQoUJq3LixTpw4Ye3PysrSiy++qMKFCysoKEgDBw50Ov7tt99W5cqV5ePjo5CQEHXr1k1paWnW/kmTJikgIEALFixQxYoV5eHhoUOHDunYsWNq2bKlvLy8VLp0aU2dOtXW53U4HAoKCrKqePHil53/2WefKSAgQMuXL5d04RbdHj16qFevXipUqJCKFy+uTz/9VKdPn9ajjz6qggULKjw8XN9++62tfgAAAAAQIm9pXl5eOnfunKQLt7tu3rxZCxYs0Lp162SMUbNmzXT+/HlJUkJCgu69915VrFhR69at0+rVq9WyZUtlZmZa55s8ebJ8fHy0YcMGvfnmmxo8eLCWLl1q7S9QoIDeffdd7dq1S5MnT9aKFSv04osvOvV05swZjRw5Up999pl27dqlYsWKqUuXLjp8+LDi4uI0a9Ysffjhhzp27NgVP19aWppCQ0MVEhKi2NhY7dq1K9e5b775pl566SUtWbJE9957r9NnKlKkiDZu3KgePXromWee0YMPPqg6depo69atuu+++9SxY0edOXMm13Onp6crNTXVqQAAAIB8y+CW0LlzZxMbG2uMMSYrK8ssXbrUeHh4mD59+pi9e/caSWbNmjXW/D/++MN4eXmZmTNnGmOMadeunalbt26u54+OjjZ3332301jNmjVNv379cj3mq6++MoGBgdb2xIkTjSSTkJBgjSUlJRlJZuPGjdZYYmKikWTGjBmT67nXrl1rJk+ebLZt22bi4+NNixYtjJ+fnzl8+LA1JzQ01IwZM8a8+OKLJjg42Pzwww+X/UwZGRnGx8fHdOzY0Ro7evSokWTWrVuXay8DBgwwkrJVimQMRVG3RgEAgMtKSUkxkkxKSsoV5/JM5C1k4cKF8vX11fnz55WVlaX27dtr4MCBWr58uVxdXVWrVi1rbmBgoMqXL6/ExERJF1YiH3zwwcuePyoqymk7ODjYacVw2bJlGjFihPbs2aPU1FRlZGTo7NmzOnPmjLy9vSVJ7u7uTudJTEyUq6urqlevbo1VqFBBAQEBl+2ldu3aql27trVdp04dRUZG6uOPP9aQIUOs8dGjR+v06dPavHmzypQpc9nP5OLiosDAQFWuXNkau3iL7OVWRvv376/nn3/e2k5NTVVISMhl+wcAAAD+q7id9RbSoEEDJSQkaN++ffrrr7+s20/t8PLyuuIcNzc3p22Hw6GsrCxJ0sGDB9WiRQtFRUVp9uzZ2rJliz744ANJsm6pvXidf+MFOG5ubqpatar279/vNF6vXj1lZmZq5syZuR53KYfD4TR2sdeLnzMnHh4e8vPzcyoAAAAgvyJE3kJ8fHwUHh6uUqVKydX1/xaRIyMjlZGRoQ0bNlhjx48fV1JSkipWrCjpworcxRfO/BNbtmxRVlaWRo8erbvuuksRERE6cuTIFY+rUKGCMjIytGXLFmssKSlJJ0+evKrrZ2ZmaufOnQoODnYav/POO/Xtt99q+PDheuutt67qnAAAAACuHiHyP6BcuXKKjY1V165dtXr1am3fvl2PPPKISpYsqdjYWEkXbsnctGmTunXrph07dmjPnj0aN26c/vjjD1vXCA8P1/nz5/Xee+/pwIEDmjJlij766KMrHle+fHk1adJETz31lDZs2KAtW7boiSeeuOLK6ODBg7VkyRIdOHBAW7du1SOPPKKffvpJTzzxRLa5derU0aJFizRo0CCNHTvW1ucBAAAA8M8QIv8jJk6cqOrVq6tFixaqXbu2jDFatGiRdetmRESElixZou3bt+vOO+9U7dq1NX/+fKcVzcupUqWK3n77bY0cOVK33367pk6dqhEjRtjurUSJEoqOjtb//vc/PfnkkypWrNhljzlx4oS6du2qyMhINWvWTKmpqVq7dq21svp3d999t7755hu9+uqreu+992z1da38lSKHDEVRt0I5dFMVAAC3MocxxuR1E8CtJDU1Vf7+/pJSJPF8JICrx//yAgBuNhd/xk1JSbniO0BYiQQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANjmmtcNALesl/wlz7xu4tZnBpi8bgEAAABXgZVIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAba553QBwq0rpnyI/P7+8bgMAAAC4oViJBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADY5prXDQC3LH//vO4AwM3AmLzuAACAG4qVyCtwOByaN29eXreBHBw8eFAOh0MJCQl53QoAAACQb+SLEPnRRx+pYMGCysjIsMbS0tLk5uammJgYp7nx8fFyOBxKTk6+wV3eOL///rueeeYZlSpVSh4eHgoKClLjxo21Zs2avG7NSZcuXeRwOJyqSZMmed0WAAAAkK/li9tZGzRooLS0NG3evFl33XWXJGnVqlUKCgrShg0bdPbsWXl6ekqS4uLiVKpUKZUtWzYvW74uzp07J3d392zj999/v86dO6fJkyerTJky+u2337R8+XIdP348D7q8vCZNmmjixInWtoeHRx52AwAAACBfrESWL19ewcHBio+Pt8bi4+MVGxur0qVLa/369U7jDRo0cDr+jz/+UJs2beTt7a1y5cppwYIFTvtXrlypO++8Ux4eHgoODtZLL73ktOqZnp6unj17qlixYvL09NTdd9+tTZs2OV3T4XDom2++UVRUlDw9PXXXXXfphx9+cLrO6tWrVa9ePXl5eSkkJEQ9e/bU6dOnrf1hYWEaMmSIOnXqJD8/Pz355JPZvouTJ09q1apVGjlypBo0aKDQ0FDdeeed6t+/v1q1aiVJ6tOnj1q0aGEdM3bsWDkcDi1evNgaCw8P12effSZJ2rRpkxo1aqQiRYrI399f0dHR2rp1q9N1HQ6HPvvss8t+jzm5uFJ6sQoVKpTr3MzMTD322GOqUKGCDh06ZF33448/VosWLeTt7a3IyEitW7dO+/fvV0xMjHx8fFSnTp3Lrjynp6crNTXVqQAAAID8Kl+ESOnCamRcXJy1HRcXp5iYGEVHR1vjf/31lzZs2JAtRA4aNEht27bVjh071KxZM3Xo0EF//vmnJOmXX35Rs2bNVLNmTW3fvl3jxo3T+PHjNXToUOv4F198UbNnz9bkyZO1detWhYeHq3HjxtY5Lurbt69Gjx6tTZs2qWjRomrZsqXOnz8vSUpOTlaTJk10//33a8eOHZoxY4ZWr16t7t27O53jrbfeUpUqVbRt2za99tpr2b4HX19f+fr6at68eUpPT8/xu4qOjtbq1auVmZkp6UJILlKkiBXCf/nlFyUnJ1u3Ap86dUqdO3fW6tWrtX79epUrV07NmjXTqVOnbH+PuYmPj1exYsVUvnx5PfPMM7mulqanp+vBBx9UQkKCVq1apVKlSln7LgbrhIQEVahQQe3bt9dTTz2l/v37a/PmzTLGZPseLzVixAj5+/tbFRISctmeAQAAgP80k098+umnxsfHx5w/f96kpqYaV1dXc+zYMTNt2jRTv359Y4wxy5cvN5LMTz/9ZB0nybz66qvWdlpampFkvv32W2OMMS+//LIpX768ycrKsuZ88MEHxtfX12RmZpq0tDTj5uZmpk6dau0/d+6cKVGihHnzzTeNMcbExcUZSebLL7+05hw/ftx4eXmZGTNmGGOMefzxx82TTz7p9JlWrVplChQoYP766y9jjDGhoaGmdevWV/wuZs2aZQoVKmQ8PT1NnTp1TP/+/c327dut/SdOnDAFChQwmzZtMllZWaZw4cJmxIgRplatWsYYY7744gtTsmTJXM+fmZlpChYsaL7++mvb32NOpk+fbubPn2927Nhh5s6dayIjI03NmjVNRkaGMcaYH3/80Ugyq1atMvfee6+5++67zcmTJ53O8ffrrlu3zkgy48ePd7qOp6dnrn2cPXvWpKSkWHX48GEjyaRceCcjRVH5vQAA+A9ISUkxkkxKSsoV5+ablciYmBidPn1amzZt0qpVqxQREaGiRYsqOjraei4yPj5eZcqUcVrFkqSoqCjrzz4+PvLz89OxY8ckSYmJiapdu7YcDoc1p27dukpLS9PPP/+s5ORknT9/XnXr1rX2u7m56c4771RiYqLTdWrXrm39uXDhwipfvrw1Z/v27Zo0aZK1kujr66vGjRsrKytLP/74o3VcjRo1rvhd3H///Tpy5IgWLFigJk2aKD4+XtWqVdOkSZMkSQEBAapSpYri4+O1c+dOubu768knn9S2bduUlpamlStXKjo62jrfb7/9pq5du6pcuXLy9/eXn5+f0tLSrFtK7XyPOXn44YfVqlUrVa5cWa1bt9bChQu1adMmp9uSJaldu3Y6ffq0lixZIv8cfu3GpdctXry4JKly5cpOY2fPns31NlUPDw/5+fk5FQAAAJBf5ZsQGR4erttuu01xcXGKi4uzQlCJEiUUEhKitWvXKi4uTvfcc0+2Y93c3Jy2HQ6HsrKybkjfF6Wlpempp55SQkKCVdu3b9e+ffucXgLk4+Nj63yenp5q1KiRXnvtNa1du1ZdunTRgAEDrP0xMTGKj4+3AmPhwoUVGRmp1atXZwuRnTt3VkJCgt555x2tXbtWCQkJCgwM1Llz55yuea3fY5kyZVSkSBHt37/fabxZs2basWOH1q1bl+Nxl173YtjPaexG/50CAAAAt6J8EyKlC89FxsfHKz4+3ulXe9SvX1/ffvutNm7cmO15yCu5+KIWY4w1tmbNGhUsWFC33XabypYtK3d3d6dfn3H+/Hlt2rRJFStWdDrXpS/4OXHihPbu3avIyEhJUrVq1bR7926Fh4dnq5zewHq1Klas6PSSnovPRS5fvtz6rmJiYjR9+nTt3bvX6ftbs2aNevbsqWbNmqlSpUry8PDQH3/8cc09/d3PP/+s48ePKzg42Gn8mWee0RtvvKFWrVpp5cqV1/26AAAAAP5PvguRq1evVkJCgtNKWnR0tD7++GOdO3fuqkNkt27ddPjwYfXo0UN79uzR/PnzNWDAAD3//PMqUKCAfHx89Mwzz6hv375avHixdu/era5du+rMmTN6/PHHnc41ePBgLV++XD/88IO6dOmiIkWKqHXr1pKkfv36ae3aterevbsSEhK0b98+zZ8//7IvhMnJ8ePHdc899+iLL77Qjh079OOPP+qrr77Sm2++qdjYWGte/fr1derUKS1cuNApRE6dOlXBwcGKiIiw5pYrV05TpkxRYmKiNmzYoA4dOsjLy+uq+vq7tLQ09e3bV+vXr9fBgwe1fPlyxcbGWi8l+rsePXpo6NChatGihVavXn1N1wYAAACQu3zxeyIvatCggf766y9VqFDBejZOuhAiT506Zf0qkKtRsmRJLVq0SH379lWVKlVUuHBhPf7443r11VetOW+88YaysrLUsWNHnTp1SjVq1NB3332X7ddVvPHGG3ruuee0b98+3XHHHfr666+tVcaoqCitXLlSr7zyiurVqydjjMqWLauHHnroqvr19fVVrVq1NGbMGOt5zZCQEHXt2lUvv/yyNa9QoUKqXLmyfvvtN1WoUEHShWCZlZXlFMAlafz48XryySdVrVo1hYSEaPjw4erTp89V9fV3Li4u2rFjhyZPnqyTJ0+qRIkSuu+++zRkyJBcf1dkr169lJWVpWbNmmnx4sWqU6fONfVwJf5KkcTzkfnJJTccAAAA5FsOY/ixKK9d/N2UJ06cUEBAQF63gytITU39/y/wIUTmN/y3JQAA+K+6+DNuSkrKFV8kma9uZwUAAAAAXBtCJAAAAADAtnz1TOTNKiYmRtxVDAAAAOBWwEokAAAAAMA2QiSA/9fencfllP7/A3/dlfbuO4UWUrQJUYQhqciUfRnL0Ifs5oOxGxpGYSxjGZlhMBplfKxjMPY1GTJ2ZUsUTQbJWEpJWq7fH36dr1uLk+22vJ6Px/V4dK5zneu8z+lk7vdc17luIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbV2clelkTVIC+poN4t4kQrjpMRERE9KHhSCQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGTT0XQARO+r9OB0KJVKTYdBRERERPRWcSSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYl8iyIjI2FqavrK/SQnJ0OhUCA2NvaV+3pbFAoFNm/e/Fr79PHxwciRI19rn2WiUgEKBQsLC4vmCxER0Vv0USSRffr0gUKhwBdffFFk39ChQ6FQKNCnT5+3H9hLsrGxwa1bt1C7du1X6kehUEjFyMgIjo6O6NOnD06dOvWaIn150dHRavEVltTUVE2HRkRERET0UfsokkjgaeK1du1aZGdnS3WPHz/G6tWrUbVqVQ1GVjZPnjyBtrY2LC0toaOj88r9RURE4NatW7hw4QIWLVqEzMxMNGrUCL/++utriPbVJSQk4NatW1KpVKmSpkMiIiIiIvqofTRJZL169WBjY4ONGzdKdRs3bkTVqlXh7u6u1nbXrl1o2rQpTE1NYW5ujrZt2yIpKUnaXziddOPGjfD19YWhoSHq1q2Lv/76S62fyMhIVK1aFYaGhujUqRPu3r2rtj8pKQkdOnSAhYUFjI2N0aBBA+zbt0+tjZ2dHaZNm4bevXtDqVRi0KBBRaazFo7a7d+/Hx4eHjA0NESTJk2QkJDwwvtiamoKS0tL2NnZ4dNPP8WGDRsQGBiIYcOG4f79+wCA0NBQuLm5qR0XFhYGOzs7tbrly5ejVq1a0NPTg5WVFYYNG1bieUNCQmBlZYWzZ8+WGl+lSpVgaWkpFS2tkh/Z7du3Q6VSYdWqVQCejkB37NgRM2bMgIWFBUxNTTF16lTk5eVh3LhxMDMzQ5UqVRAREVFqDERERERE9H8+miQSAPr166eWMCxfvhx9+/Yt0i4rKwujR4/GyZMnsX//fmhpaaFTp04oKChQazdx4kSMHTsWsbGxcHJyQo8ePZCXlwcAOHbsGPr3749hw4YhNjYWvr6++Pbbb9WOz8zMROvWrbF//36cOXMGAQEBaNeuHVJSUtTazZ07F3Xr1sWZM2fwzTfflHh9EydOxLx583Dy5Eno6OigX79+Zb5HADBq1Cg8fPgQe/fulX3M4sWLMXToUAwaNAjnzp3Dli1b4ODgUKSdEAJffvklfv31Vxw6dAh16tQptV83NzdYWVmhZcuWiImJKbHd6tWr0aNHD6xatQqBgYFSfVRUFG7evIk///wT33//PUJCQtC2bVuUL18ex44dwxdffIHBgwfjn3/+KbHvnJwcZGRkqBUiIiIioo+W+AgEBQWJDh06iLS0NKGnpyeSk5NFcnKy0NfXF3fu3BEdOnQQQUFBJR5/584dAUCcO3dOCCHEtWvXBAARHh4utblw4YIAIOLj44UQQvTo0UO0bt1arZ/u3bsLlUpVaqy1atUSP/74o7Rta2srOnbsqNam8PxnzpwRQghx4MABAUDs27dParN9+3YBQGRnZ5d4LgBi06ZNReqzs7MFAPHdd98JIYQICQkRdevWVWszf/58YWtrK21bW1uLiRMnlnqu3377TfTs2VO4uLiIf/75p8S2Qghx6dIlsWTJEnHy5EkRExMj+vbtK3R0dMSpU6ekNt7e3mLEiBFi4cKFQqVSiejoaLU+goKChK2trcjPz5fqnJ2dhZeXl7Sdl5cnjIyMxJo1a0qMJSQkRAAoUtIBIVhYWFjehUJERPSK0tPTBQCRnp7+wrav/lLde6RixYpo06YNIiMjIYRAmzZtUKFChSLtrly5gsmTJ+PYsWP4999/pRHIlJQUtcVsnh1Fs7KyAgCkpaWhRo0aiI+PR6dOndT6bdy4MXbt2iVtZ2ZmIjQ0FNu3b8etW7eQl5eH7OzsIiORHh4esq6vpHjK+s6nEALA04V35EhLS8PNmzfRokWLUtuNGjUKenp6OHr0aLH3/VnOzs5wdnaWtps0aYKkpCTMnz8fK1eulOo3bNiAtLQ0xMTEoEGDBkX6qVWrltoUWAsLC7Xfoba2NszNzZGWllZiLMHBwRg9erS0nZGRARsbm1LjJyIiIiL6UH1U01mBp1NaIyMjsWLFihKne7Zr1w737t3DsmXLcOzYMRw7dgzA00VtnlWuXDnp58KE6/kpr6UZO3YsNm3ahBkzZuDQoUOIjY2Fq6trkfMYGRnJ6u9V4ykUHx8PAKhWrRoAQEtLS0osC+Xm5ko/GxgYyOq3ZcuWuHHjBnbv3l3mmACgYcOGSExMVKtzd3dHxYoVsXz58iIxAur3BHh6X4qrK+0+6enpQalUqhUiIiIioo/VRzUSCQABAQF48uQJFAoF/P39i+y/e/cuEhISsGzZMnh5eQEADh8+XObzuLi4SMlnoaNHj6ptx8TEoE+fPtKIZWZmJpKTk8t8rtctLCwMSqUSfn5+AJ6O4KampkIIISWnz35HpYmJCezs7LB//374+vqW2G/79u3Rrl079OzZE9ra2vj888/LFFdsbKw0wlrI3t4e8+bNg4+PD7S1tbFw4cIy9UlERERERGXz0SWR2tra0kibtrZ2kf3ly5eHubk5fv75Z1hZWSElJQUTJkwo83mGDx8OT09PzJ07Fx06dMDu3bvVprICgKOjIzZu3Ih27dpBoVDgm2++eamRw1fx4MEDpKamIicnB5cvX8bSpUuxefNm/PrrrzA1NQUA+Pj44M6dO5g9eza6dOmCXbt2YefOnWojcqGhofjiiy9QqVIltGrVCg8fPkRMTAy+/PJLtfN16tQJK1euRK9evaCjo4MuXboUG1dYWBiqVauGWrVq4fHjxwgPD0dUVBT27NlTpK2TkxMOHDgAHx8f6OjoICws7LXdHyIiIiIiUvfRJZEASp2OqKWlhbVr12L48OGoXbs2nJ2d8cMPP8DHx6dM5/jkk0+wbNkyhISEYPLkyfDz88OkSZMwbdo0qc3333+Pfv36oUmTJqhQoQLGjx//1lf+LFydVl9fH5UrV0bTpk1x/Phx1KtXT2rj4uKCn376CTNmzMC0adPw2WefYezYsfj555+lNkFBQXj8+DHmz5+PsWPHokKFCiUmiF26dEFBQQF69eoFLS0tdO7cuUibJ0+eYMyYMbhx4wYMDQ1Rp04d7Nu3r8SRTmdnZ0RFRUkjkvPmzXuV2yKLCukAOLWViN4B8l5hL1ExbwMQERGVSCGKe5GMiEqUkZEBlUoFMIkkog8EPwkQEVHhZ9z09PQXrgHy0S2sQ0RERERERC+PSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSTUfTARC9tyaoAH1NB/H2iRCh6RCIiIiISIM4EklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItl0NB0A0fsqPTgdSqVS02EQEREREb1VHIkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItl0NB0A0XtLpdJ0BESkKUJoOgIiIiKN4UjkR6xPnz7o2LHjWzmXnZ0dwsLCpG2FQoHNmze/Up+vow8iIiIiIiobJpEfsD59+kChUEChUEBXVxcODg6YOnUq8vLyAAALFixAZGRkmfp82cTtxIkTGDRokOz2oaGhUuyFpUaNGmU+LxERERERvV6czvqBCwgIQEREBHJycrBjxw4MHToU5cqVQ3BwMFRvcTpmxYoVy3xMrVq1sG/fPmlbR4ePKxERERGRpnEk8gOnp6cHS0tL2Nra4r///S/8/PywZcsWAEWns/r4+GD48OH46quvYGZmBktLS4SGhkr77ezsAACdOnWCQqGQtpOSktChQwdYWFjA2NgYDRo0UEv+Co99djqrHDo6OrC0tJRKhQoVSm0fEhICKysrnD17Vjrnt99+i969e8PY2Bi2trbYsmUL7ty5gw4dOsDY2Bh16tTByZMnyxQXEREREdHHjEnkR8bAwABPnjwpcf+KFStgZGSEY8eOYfbs2Zg6dSr27t0L4OmUVACIiIjArVu3pO3MzEy0bt0a+/fvx5kzZxAQEIB27dohJSXllWK9cuUKrK2tUb16dQQGBpbYnxACX375JX799VccOnQIderUkfbNnz8fnp6eOHPmDNq0aYNevXqhd+/e+M9//oPTp0/D3t4evXv3hihlkYycnBxkZGSoFSIiIiKijxWTyI+EEAL79u3D7t270bx58xLb1alTByEhIXB0dETv3r3h4eGB/fv3A/i/KammpqawtLSUtuvWrYvBgwejdu3acHR0xLRp02Bvby+NeL6MRo0aITIyErt27cLixYtx7do1eHl54eHDh2rt8vLy8J///Af79+/H4cOH4eDgoLa/devWGDx4MBwdHTF58mRkZGSgQYMG6Nq1K5ycnDB+/HjEx8fj9u3bJcYyc+ZMqFQqqdjY2Lz0dRERERERve/4ktkHbtu2bTA2NkZubi4KCgrQs2dPtSmqz3t2FA8ArKyskJaWVuo5MjMzERoaiu3bt+PWrVvIy8tDdnb2K41EtmrVSi2mRo0awdbWFuvXr0f//v2lfaNGjYKenh6OHj1a7HTXZ6/HwsICAODq6lqkLi0tDZaWlsXGEhwcjNGjR0vbGRkZTCSJiIiI6KPFkcgPnK+vL2JjY3HlyhVkZ2dL01VLUq5cObVthUKBgoKCUs8xduxYbNq0CTNmzMChQ4cQGxsLV1fXUqfNlpWpqSmcnJyQmJioVt+yZUvcuHEDu3fvLva4Z69HoVCUWFfaNerp6UGpVKoVIiIiIqKPFUciP3BGRkZFpni+inLlyiE/P1+tLiYmBn369EGnTp0APB2ZTE5Ofm3nLOwzKSkJvXr1Uqtv37492rVrh549e0JbWxuff/75az0vERERERGp40gklYmdnR3279+P1NRU3L9/HwDg6OiIjRs3IjY2FnFxcejZs+cLRy9fZOzYsTh48CCSk5Nx5MgRdOrUCdra2ujRo0eRtp06dcLKlSvRt29fbNiw4ZXOS0REREREpeNIJJXJvHnzMHr0aCxbtgyVK1dGcnIyvv/+e/Tr1w9NmjRBhQoVMH78+FdewfSff/5Bjx49cPfuXVSsWBFNmzbF0aNHS/y+yS5duqCgoAC9evWClpYWOnfu/Ernl0OFdACc2krvrlIWHSYiIiJ6aQpR2ncbEFERGRkZUKlUAJNIesfxX3ciIiKSq/Azbnp6+gvXAOF0ViIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCSbjqYDIHpvTVAB+poO4s0RIfymeiIiIiIqiiORREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSTUfTARC9r9KD06FUKjUdBhERERHRW8WRSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYk8h2lUCiwefNmTYfxTvPx8cHIkSM1F4BKBSgULCzvVyEiIiJ6RR9kEtmnTx8oFAqpmJubIyAgAGfPntV0aG/d77//jubNm6N8+fIwMDCAs7Mz+vXrhzNnzmg6tFJFR0er/Q4LS2pqqqZDIyIiIiL6qH2QSSQABAQE4NatW7h16xb2798PHR0dtG3b9pX6fPLkyWuK7u0YP348unfvDjc3N2zZsgUJCQlYvXo1qlevjuDgYE2HJ0tCQoL0e7x16xYqVaqk6ZCIiIiIiD5qH2wSqaenB0tLS1haWsLNzQ0TJkzA9evXcefOHanN+PHj4eTkBENDQ1SvXh3ffPMNcnNzpf2hoaFwc3NDeHg4qlWrBn19fQCAQqFAeHg4OnXqBENDQzg6OmLLli3Scfn5+ejfvz+qVasmjf4tWLCgSIzLly9HrVq1oKenBysrKwwbNqzE67l+/Tq6desGU1NTmJmZoUOHDkhOTi6x/dGjRzF79mx8//33+P777+Hl5YWqVauifv36mDRpEnbu3KnWfvHixbC3t4euri6cnZ2xcuVKtf0pKSno0KEDjI2NoVQq0a1bN9y+fVvaHxcXB19fX5iYmECpVKJ+/fo4efKktP/w4cPw8vKCgYEBbGxsMHz4cGRlZZUYf6FKlSpJv0dLS0toaZX8yG7fvh0qlQqrVq0C8HREumPHjpgxYwYsLCxgamqKqVOnIi8vD+PGjYOZmRmqVKmCiIiIF8ZBRERERERPfbBJ5LMyMzPxv//9Dw4ODjA3N5fqTUxMEBkZiYsXL2LBggVYtmwZ5s+fr3ZsYmIifv/9d2zcuBGxsbFS/ZQpU9CtWzecPXsWrVu3RmBgIO7duwcAKCgoQJUqVfDbb7/h4sWLmDx5Mr7++musX79eOn7x4sUYOnQoBg0ahHPnzmHLli1wcHAoNv7c3Fz4+/vDxMQEhw4dQkxMDIyNjREQEFDi6OiaNWtgbGyMIUOGFLtf8cy7UZs2bcKIESMwZswYnD9/HoMHD0bfvn1x4MAB6Xo6dOiAe/fu4eDBg9i7dy+uXr2K7t27S30EBgaiSpUqOHHiBE6dOoUJEyagXLlyAICkpCQEBATgs88+w9mzZ7Fu3TocPny41KS5kJubG6ysrNCyZUvExMSU2G716tXo0aMHVq1ahcDAQKk+KioKN2/exJ9//onvv/8eISEhaNu2LcqXL49jx47hiy++wODBg/HPP/+U2HdOTg4yMjLUChERERHRR0t8gIKCgoS2trYwMjISRkZGAoCwsrISp06dKvW4OXPmiPr160vbISEholy5ciItLU2tHQAxadIkaTszM1MAEDt37iyx76FDh4rPPvtM2ra2thYTJ04ssT0AsWnTJiGEECtXrhTOzs6ioKBA2p+TkyMMDAzE7t27iz0+ICBA1KlTR61u3rx50j0xMjISDx48EEII0aRJEzFw4EC1tl27dhWtW7cWQgixZ88eoa2tLVJSUqT9Fy5cEADE8ePHhRBCmJiYiMjIyGJj6d+/vxg0aJBa3aFDh4SWlpbIzs4u9phLly6JJUuWiJMnT4qYmBjRt29foaOjo/Y79Pb2FiNGjBALFy4UKpVKREdHq/URFBQkbG1tRX5+vlTn7OwsvLy8pO28vDxhZGQk1qxZU2wcQjx9DgAUKemAECws71shIiIiKkZ6eroAINLT01/Y9oMdifT19UVsbCxiY2Nx/Phx+Pv7o1WrVvj777+lNuvWrYOnpycsLS1hbGyMSZMmISUlRa0fW1tbVKxYsUj/derUkX42MjKCUqlEWlqaVLdo0SLUr18fFStWhLGxMX7++Wep77S0NNy8eRMtWrSQdS1xcXFITEyEiYkJjI2NYWxsDDMzMzx+/BhJSUmy70m/fv0QGxuLpUuXIisrC0IIAEB8fDw8PT3V2np6eiI+Pl7ab2NjAxsbG2l/zZo1YWpqKrUZPXo0BgwYAD8/P8yaNUstrri4OERGRkqxGxsbw9/fHwUFBbh27VqxsTo7O2Pw4MGoX78+mjRpguXLl6NJkyZFRoo3bNiAUaNGYe/evfD29i7ST61atdSmwFpYWMDV1VXa1tbWhrm5udrv7nnBwcFIT0+XyvXr10tsS0RERET0oftgk0gjIyM4ODjAwcEBDRo0QHh4OLKysrBs2TIAwF9//YXAwEC0bt0a27Ztw5kzZzBx4sQi00ONjIyK7b9wqmYhhUKBgoICAMDatWsxduxY9O/fH3v27EFsbCz69u0r9W1gYFCma8nMzET9+vWlpLiwXL58GT179iz2GEdHR1y9elXtHU9TU1M4ODigcuXKZTq/HKGhobhw4QLatGmDqKgo1KxZE5s2bZLiHzx4sFrscXFxuHLlCuzt7WWfo2HDhkhMTFSrc3d3R8WKFbF8+XIpKX5Wcb+n0n53xdHT04NSqVQrREREREQfqw82iXyeQqGAlpYWsrOzAQBHjhyBra0tJk6cCA8PDzg6OqqNUr6KmJgYNGnSBEOGDIG7uzscHBzURuZMTExgZ2eH/fv3y+qvXr16uHLlCipVqiQlxoVFpVIVe0yPHj2QmZmJn3766YX9u7i4FHnfMCYmBjVr1pT2X79+XW0E7uLFi3jw4IHUBgCcnJwwatQo7NmzB507d5YWrKlXrx4uXrxYJHYHBwfo6urKugcAEBsbCysrK7U6e3t7HDhwAH/88Qe+/PJL2X0REREREdHL0dF0AG9KTk6O9J2C9+/fx8KFC5GZmYl27doBeDpSl5KSgrVr16JBgwbYvn27NHL2qhwdHfHrr79i9+7dqFatGlauXIkTJ06gWrVqUpvQ0FB88cUXqFSpElq1aoWHDx8iJiam2EQoMDAQc+bMQYcOHTB16lRUqVIFf//9NzZu3IivvvoKVapUKXJM48aNMWbMGIwZMwZ///03OnfuDBsbG9y6dQu//PKLlFQDwLhx49CtWze4u7vDz88PW7duxcaNG7Fv3z4AgJ+fH1xdXREYGIiwsDDk5eVhyJAh8Pb2hoeHB7KzszFu3Dh06dIF1apVwz///IMTJ07gs88+A/B0FdxPPvkEw4YNw4ABA2BkZISLFy9i7969WLhwYbH3MCwsDNWqVUOtWrXw+PFjhIeHIyoqCnv27CnS1snJCQcOHICPjw90dHQQFhZW5t8ZERERERHJ88Emkbt27ZJGrUxMTFCjRg389ttv8PHxAQC0b98eo0aNwrBhw5CTk4M2bdrgm2++QWho6Cufe/DgwThz5gy6d+8OhUKBHj16YMiQIWpfqxEUFITHjx9j/vz5GDt2LCpUqIAuXboU25+hoSH+/PNPjB8/Hp07d8bDhw9RuXJltGjRotSplXPnzkXDhg2xePFiLF++HI8ePYKFhQWaNWuGv/76Szq2Y8eOWLBgAebOnYsRI0agWrVqiIiIkO6VQqGQRvqaNWsGLS0tBAQE4McffwTw9L3Cu3fvonfv3rh9+zYqVKiAzp07Y8qUKQCevj968OBBTJw4EV5eXhBCwN7eXm111+c9efIEY8aMwY0bN2BoaIg6depg37598PX1Lba9s7MzoqKi4OPjA21tbcybN6/kX9BrokI6AE5tpXdTMbO7iYiIiF4LhSjuRTIiKlFGRsb/n0bMJJLeXfyXnYiIiMqi8DNuenr6C9cA+WjeiSQiIiIiIqJXxySSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERyaaj6QCI3lsTVIC+poN4PUSI0HQIRERERPSe4EgkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhk09F0AETvq/TgdCiVSk2HQURERET0VnEkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhk09F0AETvLZVK0xEQEZFcQmg6AiKiDwZHIjUgNDQUbm5umg7jvRcZGQlTU1NNh0FERERE9FH5IJPIPn36QKFQFCkBAQFvPRaFQoHNmzer1Y0dOxb79+9/K+dPTExEv379ULVqVejp6aFy5cpo0aIFVq1ahby8vLcSw8uys7Mr8jucNWuWpsMiIiIiIvqofbDTWQMCAhAREaFWp6enp6Fo1BkbG8PY2PiNn+f48ePw8/NDrVq1sGjRItSoUQMAcPLkSSxatAi1a9dG3bp133gcr2Lq1KkYOHCgtG1iYqLBaIiIiIiI6IMciQSeJoyWlpZqpXz58tL+S5cuoWnTptDX10fNmjWxb98+tVHD5s2bY9iwYWp93rlzB7q6utIoop2dHaZNm4YePXrAyMgIlStXxqJFi6T2dnZ2AIBOnTpBoVBI289PZz1x4gRatmyJChUqQKVSwdvbG6dPn1Y7t0KhQHh4ODp16gRDQ0M4Ojpiy5YtJV6/EAJ9+vSBk5MTYmJi0K5dOzg6OsLR0RE9evTA4cOHUadOHan9uXPn0Lx5cxgYGMDc3ByDBg1CZmamtL+goABTp05FlSpVoKenBzc3N+zatUva/+TJEwwbNgxWVlbQ19eHra0tZs6cKe1/8OABBgwYgIoVK0KpVKJ58+aIi4srMf5CJiYmar9DIyOjEtveuXMHHh4e6NSpE3JychAdHQ2FQoHdu3fD3d0dBgYGaN68OdLS0rBz5064uLhAqVSiZ8+eePTo0QtjISIiIiKiDziJLE1+fj46duwIQ0NDHDt2DD///DMmTpyo1mbAgAFYvXo1cnJypLr//e9/qFy5Mpo3by7VzZkzB3Xr1sWZM2cwYcIEjBgxAnv37gXwNDkEgIiICNy6dUvaft7Dhw8RFBSEw4cP4+jRo3B0dETr1q3x8OFDtXZTpkxBt27dcPbsWbRu3RqBgYG4d+9esX3GxsYiPj4eY8eOhZZW8b9mhUIBAMjKyoK/vz/Kly+PEydO4LfffsO+ffvUkugFCxZg3rx5mDt3Ls6ePQt/f3+0b98eV65cAQD88MMP2LJlC9avX4+EhASsWrVKSpoBoGvXrlLydurUKdSrVw8tWrQoMf5Cs2bNgrm5Odzd3TFnzpwSp+Bev34dXl5eqF27NjZs2KA26hwaGoqFCxfiyJEjuH79Orp164awsDCsXr0a27dvx549e/Djjz+WGENOTg4yMjLUChERERHRR0t8gIKCgoS2trYwMjJSK9OnTxdCCLFz506ho6Mjbt26JR2zd+9eAUBs2rRJCCFEdna2KF++vFi3bp3Upk6dOiI0NFTatrW1FQEBAWrn7t69u2jVqpW0/WyfhUJCQkTdunVLjD8/P1+YmJiIrVu3qvUzadIkaTszM1MAEDt37iy2j7Vr1woA4vTp01Ld7du31e7HokWLhBBC/Pzzz6J8+fIiMzNTart9+3ahpaUlUlNThRBCWFtbS/evUIMGDcSQIUOEEEJ8+eWXonnz5qKgoKBILIcOHRJKpVI8fvxYrd7e3l4sXbq0xPswb948ceDAAREXFycWL14sTE1NxahRo6T9ERERQqVSiUuXLgkbGxsxfPhwtfMfOHBAABD79u2T6mbOnCkAiKSkJKlu8ODBwt/fv8Q4QkJCBIAiJf3pWn8sLCwsLO9DISKiUqWnpwsAIj09/YVtP9h3In19fbF48WK1OjMzMwBAQkICbGxsYGlpKe1r2LChWlt9fX306tULy5cvR7du3XD69GmcP3++yBTSxo0bF9kOCwsrU6y3b9/GpEmTEB0djbS0NOTn5+PRo0dISUlRa/fs9FMjIyMolUqkpaXJPo+5uTliY2MBAD4+Pnjy5AkAID4+HnXr1lWbKurp6YmCggIkJCTAwMAAN2/ehKenp1p/np6e0pTUPn36oGXLlnB2dkZAQADatm2LTz/9FAAQFxeHzMxMmJubqx2fnZ2NpKSkEuMdPXq02rXr6upi8ODBmDlzpjTSmJ2dDS8vL/Ts2bPE+/7sfbOwsIChoSGqV6+uVnf8+PES4wgODlaLJSMjAzY2NiW2JyIiIiL6kH2wSaSRkREcHBxeqY8BAwbAzc0N//zzDyIiItC8eXPY2tq+pgj/T1BQEO7evYsFCxbA1tYWenp6aNy4sZTkFSpXrpzatkKhQEFBQbF9Ojo6AniaMLu7uwMAtLW1pXuio/N6f/X16tXDtWvXsHPnTuzbtw/dunWDn58fNmzYgMzMTFhZWSE6OrrIcWX5io5GjRohLy8PycnJcHZ2BvD03Vc/Pz9s27YN48aNQ+XKlYsc9+x9UygUZbqPhed4VxZlIiIiIiLStI/ynUhnZ2dcv34dt2/fluqKe1/R1dUVHh4eWLZsGVavXo1+/foVaXP06NEi2y4uLtJ2uXLlkJ+fX2o8MTExGD58OFq3bo1atWpBT08P//77b1kvS427uztq1KiBuXPnlpogAYCLiwvi4uKQlZWlFpOWlhacnZ2hVCphbW2NmJiYInHXrFlT2lYqlejevTuWLVuGdevW4ffff8e9e/dQr149pKamQkdHBw4ODmqlQoUKsq8pNjYWWlpaqFSpklSnpaWFlStXon79+vD19cXNmzdl90dERERERGX3wSaROTk5SE1NVSuFiVnLli1hb2+PoKAgnD17FjExMZg0aRKA/1tsptCAAQMwa9YsCCHQqVOnIueJiYnB7NmzcfnyZSxatAi//fYbRowYIe23s7PD/v37kZqaivv37xcbq6OjI1auXIn4+HgcO3YMgYGBMDAweKXrVygUiIiIQEJCAjw9PbFlyxZcuXIFFy9exJIlS3Dnzh1oa2sDAAIDA6Gvr4+goCCcP38eBw4cwJdffolevXrBwsICADBu3Dh89913WLduHRISEjBhwgTExsZK1/r9999jzZo1uHTpEi5fvozffvsNlpaWMDU1hZ+fHxo3boyOHTtiz549SE5OxpEjRzBx4kScPHmy2Pj/+usvhIWFIS4uDlevXsWqVaswatQo/Oc//1FbZRd4OsK6atUq1K1bF82bN0dqauor3TsiIiIiIirFm39F8+0LCgoSQNGFUJydnaU28fHxwtPTU+jq6ooaNWqIrVu3CgBi165dan09fPhQGBoaSgvIPMvW1lZMmTJFdO3aVRgaGgpLS0uxYMECtTZbtmwRDg4OQkdHR9ja2gohii6sc/r0aeHh4SH09fWFo6Oj+O2334Stra2YP3++1AYoukCPSqUSERERpd6LhIQEERQUJKpUqSJ0dHSESqUSzZo1E0uXLhW5ublSu7NnzwpfX1+hr68vzMzMxMCBA8XDhw+l/fn5+SI0NFRUrlxZlCtXTtStW1dtUZ+ff/5ZuLm5CSMjI6FUKkWLFi3UFvXJyMgQX375pbC2thblypUTNjY2IjAwUKSkpBQb96lTp0SjRo2ESqUS+vr6wsXFRcyYMUNtcZ7ChXUK5ebmis6dOwsXFxdx+/ZtaWGd+/fvl3iMEC9e6Oh5hS8dA+kaXyeChYWF5UMqRESkOWVZWEchhBCaSmDfJTExMWjatCkSExNhb28v1ScnJ8Pe3h4nTpxAvXr11I6xs7PDyJEjMXLkyLccLWlSRkYGVCoVgHQASk2HQ0T0weAnEiIizSn8jJueng6lsvTPuB/swjovsmnTJhgbG8PR0RGJiYkYMWIEPD09pQQyNzcXd+/exaRJk/DJJ58USSCJiIiIiIg+Rh9tEvnw4UOMHz8eKSkpqFChAvz8/DBv3jxpf0xMDHx9feHk5IQNGzZoMFIiIiIiIqJ3B6ezEpURp7MSEb0Z/ERCRKQ5ZZnO+sGuzkpERERERESvH5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItk+2u+JJHplE1SAvqaDeDERwjXziYiIiOj14UgkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcmmo+kAiN5X6cHpUCqVmg6DiIiIiOit4kgkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxL5EYqMjISpqelbPWefPn3QsWPH19qnJq5DjUoFKBQsLCwvW4iIiOi9xCTyHZOamooRI0bAwcEB+vr6sLCwgKenJxYvXoxHjx5pOry3ys7ODgqFQq3MmjVL02EREREREX3UdDQdAP2fq1evwtPTE6amppgxYwZcXV2hp6eHc+fO4eeff0blypXRvn17TYf5Vk2dOhUDBw6Utk1MTDQYDRERERERcSTyHTJkyBDo6Ojg5MmT6NatG1xcXFC9enV06NAB27dvR7t27aS2KSkp6NChA4yNjaFUKtGtWzfcvn1b2h8XFwdfX1+YmJhAqVSifv36OHnypNr5du/eDRcXFxgbGyMgIAC3bt2S9p04cQItW7ZEhQoVoFKp4O3tjdOnT0v7x44di7Zt20rbYWFhUCgU2LVrl1Tn4OCA8PDwYq/1xIkTqFixIr777rtS74mJiQksLS2lYmRkVGLbO3fuwMPDA506dUJOTg6io6OhUCiwe/duuLu7w8DAAM2bN0daWhp27twJFxcXKJVK9OzZ86Mb5SUiIiIiellMIt8Rd+/exZ49ezB06NASEyXF/3+HqKCgAB06dMC9e/dw8OBB7N27F1evXkX37t2ltoGBgahSpQpOnDiBU6dOYcKECShXrpy0/9GjR5g7dy5WrlyJP//8EykpKRg7dqy0/+HDhwgKCsLhw4dx9OhRODo6onXr1nj48CEAwNvbG4cPH0Z+fj4A4ODBg6hQoQKio6MBADdu3EBSUhJ8fHyKXEdUVBRatmyJ6dOnY/z48aXel1mzZsHc3Bzu7u6YM2cO8vLyim13/fp1eHl5oXbt2tiwYQP09PSkfaGhoVi4cCGOHDmC69evo1u3bggLC8Pq1auxfft27NmzBz/++GOJMeTk5CAjI0OtEBERERF9tAS9E44ePSoAiI0bN6rVm5ubCyMjI2FkZCS++uorIYQQe/bsEdra2iIlJUVqd+HCBQFAHD9+XAghhImJiYiMjCz2XBEREQKASExMlOoWLVokLCwsSowvPz9fmJiYiK1btwohhLh//77Q0tISJ06cEAUFBcLMzEzMnDlTNGrUSAghxP/+9z9RuXJl6figoCDRoUMHsXHjRmFsbCzWrl37wnsyb948ceDAAREXFycWL14sTE1NxahRo9SuQ6VSiUuXLgkbGxsxfPhwUVBQIO0/cOCAACD27dsn1c2cOVMAEElJSVLd4MGDhb+/f4lxhISECABFSjogBAsLy8sXIiIiemekp6cLACI9Pf2FbTkS+Y47fvw4YmNjUatWLeTk5AAA4uPjYWNjAxsbG6ldzZo1YWpqivj4eADA6NGjMWDAAPj5+WHWrFlISkpS69fQ0BD29vbStpWVFdLS0qTt27dvY+DAgXB0dIRKpYJSqURmZiZSUlIAAKampqhbty6io6Nx7tw56OrqYtCgQThz5gwyMzNx8OBBeHt7q53z2LFj6Nq1K1auXKk2alqS0aNHw8fHB3Xq1MEXX3yBefPm4ccff5TuAwBkZ2fDy8sLnTt3xoIFC6TR2mfVqVNH+tnCwgKGhoaoXr26Wt2z1/684OBgpKenS+X69esvjJ2IiIiI6EPFJPId4eDgAIVCgYSEBLX66tWrw8HBAQYGBmXqLzQ0FBcuXECbNm0QFRWFmjVrYtOmTdL+Z6e2Ak+nygohpO2goCDExsZiwYIFOHLkCGJjY2Fubo4nT55IbXx8fBAdHS0ljGZmZnBxccHhw4eLTSLt7e1Ro0YNLF++HLm5uWW6HgBo1KgR8vLykJycLNXp6enBz88P27Ztw40bN4o97tlrVSgUxV57QUFBiefV09ODUqlUK0REREREHysmke8Ic3NztGzZEgsXLkRWVlapbV1cXHD9+nW1EbGLFy/iwYMHqFmzplTn5OSEUaNGYc+ePejcuTMiIiJkxxMTE4Phw4ejdevWqFWrFvT09PDvv/+qtSl8L3L//v3Su48+Pj5Ys2YNLl++XOR9yAoVKiAqKgqJiYno1q1bmRPJ2NhYaGlpoVKlSlKdlpYWVq5cifr168PX1xc3b94sU59ERERERFQ2TCLfIT/99BPy8vLg4eGBdevWIT4+HgkJCfjf//6HS5cuQVtbGwDg5+cHV1dXBAYG4vTp0zh+/Dh69+4Nb29veHh4IDs7G8OGDUN0dDT+/vtvxMTE4MSJE3BxcZEdi6OjI1auXIn4+HgcO3YMgYGBRUZDmzVrhocPH2Lbtm1qSeSqVatgZWUFJyenIv1WqlQJUVFRuHTpEnr06FHiQjl//fUXwsLCEBcXh6tXr2LVqlUYNWoU/vOf/6B8+fJqbbW1tbFq1SrUrVsXzZs3R2pqquzrJCIiIiKismES+Q6xt7fHmTNn4Ofnh+DgYNStWxceHh748ccfMXbsWEybNg3A0+mXf/zxB8qXL49mzZrBz88P1atXx7p16wA8Taru3r2L3r17w8nJCd26dUOrVq0wZcoU2bH88ssvuH//PurVq4devXph+PDhaiOAAFC+fHm4urqiYsWKqFGjBoCniWVBQUGRqazPsrS0RFRUFM6dO4fAwEBphddn6enpYe3atfD29katWrUwffp0jBo1Cj///HOxfero6GDNmjWoVauW9DUeb5oK6VBAsLxieQeWd2HRVCEiIqL3kkII/pecqCwyMjKgUqkApAPg+5Gviv8CEREREWle4Wfc9PT0F64BwpFIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpJNR9MBEL23JqgAfU0HUZQIEZoOgYiIiIg+YByJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbDqaDoDofZUenA6lUqnpMIiIiIiI3iqORBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbDqaDoDovaVSaTqCD48Qmo6AiIiIiF6AI5GvQKFQYPPmzQCA5ORkKBQKxMbGajSm1+Xnn3+GjY0NtLS0EBYW9tr779OnDzp27KjxPoiIiIiIqGw+yiTyTSQfNjY2uHXrFmrXrv1a+31eZGQkFAoFFAoFtLS0UKVKFfTt2xdpaWmv7RwZGRkYNmwYxo8fjxs3bmDQoEGvrW+5CpPy58vRo0ffeixERERERPR/OJ31NdHW1oalpeVbOZdSqURCQgIKCgoQFxeHvn374ubNm9i9e/dr6T8lJQW5ublo06YNrKysXkufL2vfvn2oVauWtG1ubq7BaIiIiIiI6KMciXyej48Phg8fjq+++gpmZmawtLREaGioWpsrV66gWbNm0NfXR82aNbF37161/c9PZ83Pz0f//v1RrVo1GBgYwNnZGQsWLFA7pnBEdO7cubCysoK5uTmGDh2K3NzcUuNVKBSwtLSEtbU1WrVqheHDh2Pfvn3Izs4GAISHh8PFxQX6+vqoUaMGfvrpJ7Xjx48fDycnJxgaGqJ69er45ptvpHNGRkbC1dUVAFC9enUoFAokJycDABYvXgx7e3vo6urC2dkZK1eulPocO3Ys2rZtK22HhYVBoVBg165dUp2DgwPCw8NLvbbnmZubw9LSUirlypUrse2JEydQsWJFfPfddwCA0NBQuLm5Yfny5ahatSqMjY0xZMgQ5OfnY/bs2bC0tESlSpUwffr0MsVERERERPQx40jk/7dixQqMHj0ax44dw19//YU+ffrA09MTLVu2REFBATp37gwLCwscO3YM6enpGDlyZKn9FRQUoEqVKvjtt99gbm6OI0eOYNCgQbCyskK3bt2kdgcOHICVlRUOHDiAxMREdO/eHW5ubhg4cKDs2A0MDFBQUIC8vDysWrUKkydPxsKFC+Hu7o4zZ85g4MCBMDIyQlBQEADAxMQEkZGRsLa2xrlz5zBw4ECYmJjgq6++Qvfu3WFjYwM/Pz8cP34cNjY2qFixIjZt2oQRI0YgLCwMfn5+2LZtG/r27YsqVarA19cX3t7eCA8PR35+PrS1tXHw4EFUqFAB0dHRCAgIwI0bN5CUlAQfH58y/V7at2+Px48fw8nJCV999RXat29fbLuoqCh07twZs2fPVpt+m5SUhJ07d2LXrl1ISkpCly5dcPXqVTg5OeHgwYM4cuQI+vXrBz8/PzRq1KjYvnNycpCTkyNtZ2RklOkaiIiIiIg+KOIjFBQUJDp06CBte3t7i6ZNm6q1adCggRg/frwQQojdu3cLHR0dcePGDWn/zp07BQCxadMmIYQQ165dEwDEmTNnSjzv0KFDxWeffaYWh62trcjLy5PqunbtKrp3715iHxEREUKlUknbly9fFk5OTsLDw0MIIYS9vb1YvXq12jHTpk0TjRs3LrHPOXPmiPr160vbZ86cEQDEtWvXpLomTZqIgQMHqh3XtWtX0bp1ayGEEPfv3xdaWlrixIkToqCgQJiZmYmZM2eKRo0aCSGE+N///icqV66sdu3P/g6ed+fOHTFv3jxx9OhRcfz4cTF+/HihUCjEH3/8UaSPjRs3CmNjY7F27Vq1PkJCQoShoaHIyMiQ6vz9/YWdnZ3Iz8+X6pydncXMmTNLjCUkJEQAKFLSn64lyvI6CxERERFpRHp6+tPPuOnpL2zLkcj/r06dOmrbVlZW0mI18fHxsLGxgbW1tbS/cePGL+xz0aJFWL58OVJSUpCdnY0nT57Azc1NrU2tWrWgra2tdt5z586V2m96ejqMjY1RUFCAx48fo2nTpggPD0dWVhaSkpLQv39/tZHMvLw8qJ75Oop169bhhx9+QFJSEjIzM5GXlwelUlnqOePj44sssOPp6SlN0TU1NUXdunURHR0NXV1d6OrqYtCgQQgJCUFmZiYOHjwIb2/vUs/xrAoVKmD06NHSdoMGDXDz5k3MmTNHbTTy2LFj2LZtGzZs2FDsYkl2dnYwMTGRti0sLKCtrQ0tLS21utIWJgoODlaLJSMjAzY2NrKvhYiIiIjoQ8Ik8v97/l07hUKBgoKCl+5v7dq1GDt2LObNm4fGjRvDxMQEc+bMwbFjx175vCYmJjh9+jS0tLRgZWUFAwMDAMDt27cBAMuWLSsyNbMwUf3rr78QGBiIKVOmwN/fHyqVCmvXrsW8efNe+loL+fj4IDo6Gnp6evD29oaZmRlcXFxw+PBhHDx4EGPGjHml/hs1alTkXVR7e3uYm5tj+fLlaNOmTZH7Wdz9Les919PTg56e3ivFTkRERET0oWASKYOLiwuuX7+OW7duSauVvuirJmJiYtCkSRMMGTJEqktKSnot8WhpacHBwaFIvYWFBaytrXH16lUEBgYWe+yRI0dga2uLiRMnSnV///33C8/p4uKCmJgY6b1K4Ok11qxZU9r29vbG8uXLoaOjg4CAAABPE8s1a9bg8uXLZX4f8nmxsbFFVoutUKECNm7cCB8fH3Tr1g3r168vdfEdIiIiIiJ6NUwiZfDz84OTkxOCgoIwZ84cZGRkqCVhxXF0dMSvv/6K3bt3o1q1ali5ciVOnDiBatWqvdFYp0yZguHDh0OlUiEgIAA5OTk4efIk7t+/j9GjR8PR0REpKSlYu3YtGjRogO3bt2PTpk0v7HfcuHHo1q0b3N3d4efnh61bt2Ljxo3Yt2+f1KZZs2Z4+PAhtm3bhlmzZgF4mkR26dIFVlZWcHJykn0dK1asgK6uLtzd3QEAGzduxPLly4td3bVSpUqIioqCr68vevTogbVr10JHh482EREREdGbwK/4kEFLSwubNm1CdnY2GjZsiAEDBrzwayEGDx6Mzp07o3v37mjUqBHu3r2rNir5pgwYMADh4eGIiIiAq6srvL29ERkZKSWv7du3x6hRozBs2DC4ubnhyJEj+Oabb17Yb8eOHbFgwQLMnTsXtWrVwtKlSxEREaE2uli+fHm4urqiYsWKqFGjBoCniWVBQUGZ3ocsNG3aNNSvXx+NGjXCH3/8gXXr1qFv377FtrW0tERUVBTOnTuHwMBA5Ofnl/l8ZZbOpXVeeyEiIiKid55CCH5yIyqLjIwMqFQqpKenv3BBIiIiIiKi90FZPuNyJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZNPRdABE7yvVTBWg/+b6FyHizXVORERERPSSOBJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLLpaDoAovdVenA6lEqlpsMgIiIiInqrOBJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZXnsSmZycDIVCgdjY2NfdtUbY2dkhLCzstfbp4+ODkSNHvtY+X5d3ObbnhYaGws3NTXMBqFSAQsHCwsLy6oWIiOg9UqYksk+fPlAoFFAoFChXrhyqVauGr776Co8fP5ba2NjY4NatW6hdu/ZrD/ZjERkZKd1nLS0tVKlSBX379kVaWpqmQ3tlZfmfDIX34Nmydu3aNx8kERERERGVSKesBwQEBCAiIgK5ubk4deoUgoKCoFAo8N133wEAtLW1YWlp+doD/dgolUokJCSgoKAAcXFx6Nu3L27evIndu3e/VH+5ubkoV67ca47yzYuIiEBAQIC0bWpqqrlgiIiIiIio7NNZ9fT0YGlpCRsbG3Ts2BF+fn7Yu3evtP/5kabo6GgoFArs378fHh4eMDQ0RJMmTZCQkKDW77fffotKlSrBxMQEAwYMwIQJE144VdHHxwfDhw/HV199BTMzM1haWiI0NFStzYMHDzBgwABUrFgRSqUSzZs3R1xcnFqbrVu3okGDBtDX10eFChXQqVOnEs8ZHh4OU1NT7N+/HwBw/vx5tGrVCsbGxrCwsECvXr3w77//Su2zsrLQu3dvGBsbw8rKCvPmzSv1mgopFApYWlrC2toarVq1wvDhw7Fv3z5kZ2dj165daNq0KUxNTWFubo62bdsiKSlJOrbwd7Bu3Tp4e3tDX18fq1atwt27d9GjRw9UrlwZhoaGcHV1xZo1a0qNY/v27VCpVFi1ahUA4Pr16+jWrRtMTU1hZmaGDh06IDk5ucg9cnFxgb6+PmrUqIGffvpJ2letWjUAgLu7OxQKBXx8fEo9v6mpKSwtLaWir69fYtukpCRUr14dw4YNgxACkZGRMDU1xbZt2+Ds7AxDQ0N06dIFjx49wooVK2BnZ4fy5ctj+PDhyM/PLzUOIiIiIiJ66pXeiTx//jyOHDkCXV3dF7adOHEi5s2bh5MnT0JHRwf9+vWT9q1atQrTp0/Hd999h1OnTqFq1apYvHixrBhWrFgBIyMjHDt2DLNnz8bUqVPVktquXbsiLS0NO3fuxKlTp1CvXj20aNEC9+7dA/A0SerUqRNat26NM2fOYP/+/WjYsGGx55o9ezYmTJiAPXv2oEWLFnjw4AGaN28Od3d3nDx5Ert27cLt27fRrVs36Zhx48bh4MGD+OOPP7Bnzx5ER0fj9OnTsq7tWQYGBigoKEBeXh6ysrIwevRonDx5Evv374eWlhY6deqEgoICtWMmTJiAESNGID4+Hv7+/nj8+DHq16+P7du34/z58xg0aBB69eqF48ePF3vO1atXo0ePHli1ahUCAwORm5sLf39/mJiY4NChQ4iJiYGxsTECAgLw5MkTAE9/l5MnT8b06dMRHx+PGTNm4JtvvsGKFSsAQDrXvn37cOvWLWzcuLHU6x46dCgqVKiAhg0bYvny5RBCFNvu7NmzaNq0KXr27ImFCxdC8f/fMXr06BF++OEHrF27Frt27UJ0dDQ6deqEHTt2YMeOHVi5ciWWLl2KDRs2lBhDTk4OMjIy1AoRERER0UdLlEFQUJDQ1tYWRkZGQk9PTwAQWlpaYsOGDVKba9euCQDizJkzQgghDhw4IACIffv2SW22b98uAIjs7GwhhBCNGjUSQ4cOVTuXp6enqFu3bqnxeHt7i6ZNm6rVNWjQQIwfP14IIcShQ4eEUqkUjx8/Vmtjb28vli5dKoQQonHjxiIwMLDEc9ja2or58+eLr776SlhZWYnz589L+6ZNmyY+/fRTtfbXr18XAERCQoJ4+PCh0NXVFevXr5f23717VxgYGIgRI0aUeM6IiAihUqmk7cuXLwsnJyfh4eFRbPs7d+4IAOLcuXNCiP/7HYSFhZV4jkJt2rQRY8aMkba9vb3FiBEjxMKFC4VKpRLR0dHSvpUrVwpnZ2dRUFAg1eXk5AgDAwOxe/duIcTTe7t69Wq1c0ybNk00btxYLbbC56M0U6dOFYcPHxanT58Ws2bNEnp6emLBggXS/pCQEFG3bl0RExMjypcvL+bOnat2fEREhAAgEhMTpbrBgwcLQ0ND8fDhQ6nO399fDB48uMQ4QkJCBIAiJR0QgoWFheV1FCIiIg1LT08XAER6evoL25b5nUhfX18sXrwYWVlZmD9/PnR0dPDZZ5+98Lg6depIP1tZWQEA0tLSULVqVSQkJGDIkCFq7Rs2bIioqCgAwKFDh9CqVStp39KlSxEYGFik38K+CxegiYuLQ2ZmJszNzdXaZGdnS9M/Y2NjMXDgwFJjnzdvHrKysnDy5ElUr15dqo+Li8OBAwdgbGxc5JikpCRkZ2fjyZMnaNSokVRvZmYGZ2fnUs8HAOnp6TA2NkZBQQEeP36Mpk2bIjw8HABw5coVTJ48GceOHcO///4rjUCmpKSoLWjk4eGh1md+fj5mzJiB9evX48aNG3jy5AlycnJgaGio1m7Dhg1IS0tDTEwMGjRooHa9iYmJMDExUWv/+PFjJCUlISsrC0lJSejfv7/aPc3Ly4NKpXrhNT/vm2++kX52d3dHVlYW5syZg+HDh0v1KSkpaNmyJaZPn17sqrKGhoawt7eXti0sLGBnZ6f2O7OwsCh10aLg4GCMHj1a2s7IyICNjU2Zr4eIiIiI6ENQ5iTSyMgIDg4OAIDly5ejbt26+OWXX9C/f/9Sj3t2UZfCqYbPT78siYeHh9pqnhYWFsX2W9h3Yb+ZmZmwsrJCdHR0kT4LF2gxMDB44fm9vLywfft2rF+/HhMmTJDqMzMz0a5dO2lRoWdZWVkhMTHxhX2XxMTEBKdPn4aWlhasrKzU4mzXrh1sbW2xbNkyWFtbo6CgALVr15amlBYyMjJS254zZw4WLFiAsLAwuLq6wsjICCNHjixynLu7O06fPo3ly5fDw8ND+n1lZmaifv360vuRz6pYsSIyMzMBAMuWLVNLnIGnCy69qkaNGmHatGnIycmBnp6edF5ra2usWbMG/fr1g1KpVDumuOejtGemOHp6etL5iIiIiIg+dmVOIp+lpaWFr7/+GqNHj0bPnj1lJWTFcXZ2xokTJ9C7d2+p7sSJE9LPBgYGUuJaFvXq1UNqaip0dHRgZ2dXbJs6depg//796Nu3b4n9NGzYEMOGDUNAQAB0dHQwduxYqf/ff/8ddnZ20NEpeivt7e1Rrlw5HDt2DFWrVgUA3L9/H5cvX4a3t3epsWtpaRV7zXfv3kVCQgKWLVsGLy8vAMDhw4dL7atQTEwMOnTogP/85z8Anibxly9fRs2aNYvEPW/ePPj4+EBbWxsLFy6UrnfdunWoVKlSkWQNAFQqFaytrXH16lVppPh5he/PvsxCNrGxsShfvrxaQmdgYIBt27ahdevW8Pf3x549e4qMlBIRERER0evzSgvrAE8XrtHW1saiRYteuo8vv/wSv/zyC1asWIErV67g22+/xdmzZ6URsJfl5+eHxo0bo2PHjtizZw+Sk5Nx5MgRTJw4ESdPngQAhISEYM2aNQgJCUF8fDzOnTtX7MhikyZNsGPHDkyZMgVhYWEAni76cu/ePfTo0QMnTpxAUlISdu/ejb59+yI/Px/Gxsbo378/xo0bh6ioKJw/fx59+vSBltbL3/by5cvD3NwcP//8MxITExEVFaU21bI0jo6O2Lt3L44cOYL4+HgMHjwYt2/fLratk5MTDhw4gN9//12aJhoYGIgKFSqgQ4cOOHToEK5du4bo6GgMHz4c//zzDwBgypQpmDlzJn744QdcvnwZ586dQ0REBL7//nsAQKVKlWBgYCAtQpSenl7s+bdu3Yrw8HCcP38eiYmJWLx4MWbMmIEvv/yySFsjIyNs374dOjo6aNWqlTQiSkREREREr98rJ5E6OjoYNmwYZs+ejaysrJfqIzAwEMHBwRg7dizq1auHa9euoU+fPqV+nYMcCoUCO3bsQLNmzdC3b184OTnh888/x99//y1NifXx8cFvv/2GLVu2wM3NDc2bNy9xtdKmTZti+/btmDRpEn788UdYW1sjJiYG+fn5+PTTT+Hq6oqRI0fC1NRUShTnzJkDLy8vtGvXDn5+fmjatCnq16//0tekpaWFtWvX4tSpU6hduzZGjRqFOXPmyDp20qRJqFevHvz9/eHj4wNLS0t07NixxPbOzs6IiorCmjVrMGbMGBgaGuLPP/9E1apV0blzZ7i4uKB///54/PixNDI5YMAAhIeHIyIiAq6urvD29kZkZKT01R46Ojr44YcfsHTpUlhbW6NDhw7FnrtcuXJYtGgRGjduDDc3NyxduhTff/89QkJCim1vbGyMnTt3QgiBNm3avPSzWBYqpEMBwcLCwvLqRYEihYiI6F2lEEIITQdRnJYtW8LS0hIrV67UdChEajIyMv7/QkHpAIpO6yUieh3ezf86ExHRh6rwM256enqxr64965XeiXxdHj16hCVLlsDf3x/a2tpYs2YN9u3bp/Z9j0RERERERKR570QSWTjtdPr06Xj8+DGcnZ3x+++/w8/PT9OhERERERER0TPeiSTSwMAA+/bt03QYRERERERE9AKvvLAOERERERERfTyYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJ9k58xQfRe2mCCtB/tS5EiHg9sRARERERvSUciSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWw6mg6A6H2VHpwOpVKp6TCIiIiIiN4qjkQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2XQ0HQARERERkRx5eXl48uSJpsMgei/p6upCR+f1pH9MIolelkql6QhICE1HQEREb4EQAikpKfj33381HQrRe61ChQqoWrUqFArFK/XDJPIdpVAosGnTJnTs2LHY/cnJyahWrRrOnDkDNze3txrbywgNDcXmzZsRGxv72vqMjo6Gr68v7t+/D1NT09fWLxEREb1bChPIypUrw9jYGFpafCOLqCwKCgqQmZmJGzduAABsbW1fqT8mka+gT58+WLFiBQBAR0cHVapUQdeuXTF16lTo6+trOLoXCw0NxZQpUwAA2traMDU1Rc2aNdG5c2f897//hZ6enkbj8/HxwcGDB9XqBg8ejCVLlmgoIiIiInrb8vLypATS0tJS0+EQvbeMjY0BADdu3EDlypVfaWork8hXFBAQgIiICOTm5uLUqVMICgqCQqHAd999p+nQZKlVqxb27duHgoIC3L17F9HR0fj222+xcuVKREdHw8TERKPxDRw4EFOnTpW2DQ0NNRgNERERvW2F70AWfgAmopdX+Hf05MmTV0oiORfgFenp6cHS0hI2Njbo2LEj/Pz8sHfvXmm/nZ0dwsLC1I5xc3NDaGiotH3lyhU0a9YM+vr6qFmzptrxhY4fPw53d3fo6+vDw8MDZ86ckfYJIeDg4IC5c+eqHRMbGwuFQoHExMQS49fR0YGlpSWsra3h6uqKL7/8EgcPHsT58+fVEmGFQoHNmzerHWtqaorIyEhp+59//kGPHj1gZmYGIyMjeHh44NixY8WeNykpCdWrV8ewYcMgSnmvzdDQEJaWllJRKpUltn306BFatWoFT09PPHjwAMnJyVAoFFi/fj28vLxgYGCABg0a4PLlyzhx4gQ8PDxgbGyMVq1a4c6dOyX2S0RERJrHKaxEr+51/R3xr/E1On/+PI4cOQJdXV3ZxxQUFKBz587Q1dXFsWPHsGTJEowfP16tTWZmJtq2bYuaNWvi1KlTCA0NxdixY6X9CoUC/fr1Q0REhNpxERERaNasGRwcHMp0HTVq1ECrVq2wceNG2cdkZmbC29sbN27cwJYtWxAXF4evvvoKBQUFRdqePXsWTZs2Rc+ePbFw4cJSX+xdtWoVKlSogNq1ayM4OBiPHj0qtt2DBw/QsmVLFBQUYO/evWrvSIaEhGDSpEk4ffo0dHR00LNnT3z11VdYsGABDh06hMTEREyePLnEGHJycpCRkaFWiIiIiIg+VpzO+oq2bdsGY2Nj5OXlIScnB1paWli4cKHs4/ft24dLly5h9+7dsLa2BgDMmDEDrVq1ktqsXr0aBQUF+OWXX6Cvr49atWrhn3/+wX//+1+pTZ8+fTB58mQcP34cDRs2RG5uLlavXl1kdFKuGjVqYM+ePbLbr169Gnfu3MGJEydgZmYGAMUmr0eOHEHbtm0xceJEjBkzptQ+e/bsCVtbW1hbW+Ps2bMYP348EhISiiS3qamp6N69OxwdHbF69eoiSfzYsWPh7+8PABgxYgR69OiB/fv3w9PTEwDQv39/tRHV582cOVN6d5SIiIiI6GPHJPIV+fr6YvHixcjKysL8+fOho6ODzz77TPbx8fHxsLGxkRJIAGjcuHGRNnXq1FFbrOf5NtbW1mjTpg2WL1+Ohg0bYuvWrcjJyUHXrl1f6rqEEGVa+jc2Nhbu7u5SAlmclJQUtGzZEtOnT8fIkSNf2OegQYOkn11dXWFlZYUWLVogKSkJ9vb20r6WLVuiYcOGWLduHbS1tYv0U6dOHelnCwsLqb9n69LS0kqMIzg4GKNHj5a2MzIyYGNj88L4iYiI6M1STHm1rykoKxHCr5YiAjid9ZUZGRnBwcEBdevWxfLly3Hs2DH88ssv0n4tLa0i7/zl5ua+kVgGDBiAtWvXIjs7GxEREejevftLL0QTHx+PatWqSdsKhaLU6zAwMHhhnxUrVkTDhg2xZs2al5oS2qhRIwAo8o5nmzZt8Oeff+LixYvFHleuXDnp58LE+Pm64qbdFtLT04NSqVQrRERERHJcv34d/fr1g7W1NXR1dWFra4sRI0bg7t27mg7tvaNQKKSiUqng6emJqKgoTYf1QpGRkR/c19ExiXyNtLS08PXXX2PSpEnIzs4G8DRxunXrltQmIyMD165dk7ZdXFxw/fp1tTZHjx5V69fFxQVnz57F48ePS2wDAK1bt4aRkREWL16MXbt2oV+/fi91HZcuXcKuXbvURlSfv44rV66ovZ9Yp04dxMbG4t69eyX2a2BggG3btkFfXx/+/v54+PBhmeIq/I5JKysrtfpZs2YhKCgILVq0KDGRJCIiInrbrl69Cg8PD1y5cgVr1qxBYmIilixZgv3796Nx48alfm560wpXvX1Wfn5+qf9j/V0QERGBW7duISYmBhUqVEDbtm1x9erVl+qruHtA8jCJfM26du0KbW1tLFq0CADQvHlzrFy5EocOHcK5c+cQFBSkNuXSz88PTk5OCAoKQlxcHA4dOoSJEyeq9dmzZ08oFAoMHDgQFy9exI4dO4p911FbWxt9+vRBcHAwHB0di0x5LU5eXh5SU1Nx8+ZNnDt3Dj/++CO8vb3h5uaGcePGSe2aN2+OhQsX4syZMzh58iS++OILtdG8Hj16wNLSEh07dkRMTAyuXr2K33//HX/99Zfa+YyMjLB9+3bo6OigVatWyMzMLDaupKQkTJs2DadOnUJycjK2bNmC3r17o1mzZmrTUwvNnTsXgYGBaN68OS5duvTC6yYiIiJ604YOHQpdXV3s2bMH3t7eqFq1Klq1aoV9+/bhxo0bap/5cnJyMH78eNjY2EBPTw8ODg5qs9suXLiAtm3bQqlUwsTEBF5eXkhKSgLw9Lu1n39VqGPHjujTp4+0bWdnh2nTpqF3795QKpUYNGiQNEK2ZcsW1KxZE3p6ekhJSUFOTg7Gjh2LypUrw8jICI0aNUJ0dLTUV+Fxu3fvhouLC4yNjREQEKA24AAAy5cvR61ataCnpwcrKysMGzZM2vfgwQMMGDAAFStWhFKpRPPmzREXF/fCe2pqagpLS0vUrl0bixcvRnZ2tvTNBufPn0erVq1gbGwMCwsL9OrVC//++690rI+PD4YNG4aRI0eiQoUK0poZpd1bAAgPD4eLiwv09fVRo0YN/PTTT9K+wm8D2LhxI3x9fWFoaIi6detKn4Gjo6PRt29fpKenS6Oohd/SsHLlSnh4eMDExASWlpbo2bNnkVestmzZAkdHR+jr68PX1xcrVqyAQqHAgwcPpDaHDx+WvonAxsYGw4cPR1ZW1gvv5atgEvma6ejoYNiwYZg9ezaysrIQHBwMb29vtG3bFm3atEHHjh3V3ufT0tLCpk2bkJ2djYYNG2LAgAGYPn26Wp/GxsbYunUrzp07B3d3d0ycOLHE76Hs378/njx5gr59+8qK98KFC7CyskLVqlXh4+OD9evXIzg4GIcOHVL7PqZ58+bBxsYGXl5e6NmzJ8aOHas2VbbwH8hKlSqhdevWcHV1xaxZs4p9R9HY2Bg7d+6EEAJt2rQp9iHX1dXFvn378Omnn6JGjRoYM2YMPvvsM2zdurXEa5k/fz66deuG5s2b4/Lly7Ku/5WkpwNCsGiyEBERvaPu3buH3bt3Y8iQIUVe+7G0tERgYCDWrVsnvS7Uu3dvrFmzBj/88APi4+OxdOlStS+Hb9asGfT09BAVFYVTp06hX79+yMvLK1NMc+fORd26dXHmzBl88803AJ5+Rdp3332H8PBwXLhwAZUqVcKwYcPw119/Ye3atTh79iy6du2KgIAAXLlyRerr0aNHmDt3LlauXIk///wTKSkpat8esHjxYgwdOhSDBg3CuXPnsGXLFrVFF7t27Yq0tDTs3LkTp06dQr169dCiRYsyjc4W3tcnT57gwYMHaN68Odzd3XHy5Ens2rULt2/fRrdu3dSOWbFiBXR1dRETE4MlS5a88N6uWrUKkydPxvTp0xEfH48ZM2bgm2++wYoVK9T6nThxIsaOHYvY2Fg4OTmhR48eyMvLQ5MmTRAWFgalUolbt27h1q1b0n3Kzc3FtGnTEBcXh82bNyM5OVkt8b927Rq6dOmCjh07Ii4uDoMHDy4y2JSUlISAgAB89tlnOHv2LNatW4fDhw+rJexvhKAPyp9//inKlSsnUlNTNR3KBys9PV0AEOnp6ZoOhYiI6IOXlZUlTp48KbKysorsQyjeaimLo0ePCgBi06ZNxe7//vvvBQBx+/ZtkZCQIACIvXv3Fts2ODhYVKtWTTx58qTY/d7e3mLEiBFqdR06dBBBQUHStq2trejYsaNam4iICAFAxMbGSnV///230NbWFjdu3FBr26JFCxEcHKx2XGJiorR/0aJFwsLCQtq2trYWEydOLDbeQ4cOCaVSKR4/fqxWb29vL5YuXVrsMUIItfuZlZUlhgwZIrS1tUVcXJyYNm2a+PTTT9XaX79+XQAQCQkJQoin98nd3V2tzYvurb29vVi9erVa3bRp00Tjxo2FEEJcu3ZNABDh4eHS/gsXLggAIj4+Xgjx9H6pVKoSr6vQiRMnBADx8OFDIYQQ48ePF7Vr11ZrM3HiRAFA3L9/XwghRP/+/cWgQYPU2hw6dEhoaWmJ7OzsIuco7e+pLJ9xuTrrByInJwd37txBaGgounbtKq1CSkRERESaI2TMnImNjYW2tja8vb1L3O/l5aX2KtHL8PDwKFKnq6ur9qrQuXPnkJ+fDycnJ7V2OTk5MDc3l7YNDQ3VZtdZWVlJUzHT0tJw8+ZNtGjRotg44uLikJmZqdYfAGRnZ6tNIy1Ojx49oK2tjezsbFSsWBG//PIL6tSpg2nTpuHAgQNqM+kKJSUlSddTv359tX2l3dusrCwkJSWhf//+GDhwoFSfl5cHlUql1vbZe1i4fkdaWhpq1KhR4rUUfv97XFwc7t+/L72PmpKSgpo1ayIhIQENGjRQO6Zhw4Zq23FxcTh79ixWrVol1QkhUFBQgGvXrsHFxaXE878KJpEfiDVr1qB///5wc3PDr7/+qulwiIiIiD5qDg4OUCgUiI+PR6dOnYrsj4+PR/ny5VGxYsUXrnL/ov1yvw3AyMio2L6f/Vq3zMxMaGtr49SpU0VeS3o2QXs+6Xp2Jf8XxZuZmQkrKyu19ywLvWgV0/nz58PPzw8qlQoVK1ZU67Ndu3bFvvL17KKMz9+D0mItXLtj2bJl0rcEFHr+3hT3bQClLVKUlZUFf39/+Pv7Y9WqVahYsSJSUlLg7+9fpgV/MjMzMXjwYAwfPrzIvqpVq8rup6yYRH4g+vTpozaHmoiIiIg0x9zcHC1btsRPP/2EUaNGqSUrqampWLVqFXr37g2FQgFXV1cUFBTg4MGD8PPzK9JXnTp1sGLFCuTm5hY7Yvb8Kvr5+fk4f/48fH19yxy3u7s78vPzkZaWBi8vrzIfDwAmJiaws7PD/v37i42hXr16SE1NhY6ODuzs7MrUt6Wlpdq7lc/2+fvvv8POzg46OvJTnNLurYWFBaytrXH16lUEBgaWKc5n6erqIj8/X63u0qVLuHv3LmbNmiV9//jJkyfV2jg7O2PHjh1qdSdOnFDbrlevHi5evFjsPXmTuLAOEREREdEbsHDhQuTk5MDf3x9//vknrl+/jl27dqFly5aoXLmytJiinZ0dgoKC0K9fP2zevBnXrl1DdHQ01q9fDwAYNmwYMjIy8Pnnn+PkyZO4cuUKVq5ciYSEBABPV9Hfvn07tm/fjkuXLuG///2v2uqdZeHk5ITAwED07t0bGzduxLVr13D8+HHMnDkT27dvl91PaGgo5s2bhx9++AFXrlzB6dOn8eOPPwJ4+u0EjRs3RseOHbFnzx4kJyfjyJEjmDhxYpFESq6hQ4fi3r176NGjB06cOIGkpCTs3r0bffv2LZLAPetF93bKlCmYOXMmfvjhB1y+fBnnzp1DREQEvv/+e9mx2dnZITMzE/v378e///6LR48eoWrVqtDV1cWPP/6Iq1evYsuWLZg2bZracYMHD8alS5cwfvx4XL58GevXr0dkZCSA/xvtHD9+PI4cOYJhw4YhNjYWV65cwR9//MGFdYjeNVxYh4iI6O0pbSGQ90FycrIICgoSFhYWoly5csLGxkZ8+eWX4t9//1Vrl52dLUaNGiWsrKyErq6ucHBwEMuXL5f2x8XFiU8//VQYGhoKExMT4eXlJZKSkoQQQjx58kT897//FWZmZqJSpUpi5syZxS6sM3/+fLVzlrTgy5MnT8TkyZOFnZ2dKFeunLCyshKdOnUSZ8+eLfG4TZs2iedTiyVLlghnZ2epjy+//FLal5GRIb788kthbW0t3ZfAwECRkpJS4r1EKQsVCSHE5cuXRadOnYSpqakwMDAQNWrUECNHjhQFBQVCiOIXIBKi9HsrhBCrVq0Sbm5uQldXV5QvX140a9ZMbNy4UQjxfwvrnDlzRmp///59AUAcOHBAqvviiy+Eubm5ACBCQkKEEEKsXr1a2NnZCT09PdG4cWOxZcuWIn398ccfwsHBQejp6QkfHx+xePFiAUBt0Zzjx4+Lli1bCmNjY2FkZCTq1Kkjpk+fXuw9el0L6yiE4Dr5RGWRkZEBlUqF9PR0KJVKTYdDRET0QXv06BHi4+Ph4uKi9vViRB+j6dOnY8mSJbh+/fpLHV/a31NZPuPynUgiIiIiIqJ30E8//YQGDRrA3NwcMTExmDNnzpufqioDk0giIiIiIqJ30JUrV/Dtt9/i3r17qFq1KsaMGYPg4GBNh8UkkoiIiIiI6F00f/58zJ8/X9NhFMEkkuglqWaqAP2S94sQvm5MRERERB8efsUHERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxcnZWIiIiI3ksKxds9n+DC60QAOBJJRERERPRG9OnTBwqFokhJTEzEn3/+iXbt2sHa2hoKhQKbN2+W1WdcXBzat2+PSpUqQV9fH3Z2dujevTvS0tLe7MUQPYNJJBERERHRGxIQEIBbt26plWrVqiErKwt169bFokWLZPd1584dtGjRAmZmZti9ezfi4+MREREBa2trZGVlvbFryM3NfWN90/uJSSQRERER0Ruip6cHS0tLtaKtrY1WrVrh22+/RadOnWT3FRMTg/T0dISHh8Pd3R3VqlWDr68v5s+fj2rVqkntLly4gLZt20KpVMLExAReXl5ISkoCABQUFGDq1KmoUqUK9PT04Obmhl27dknHJicnQ6FQYN26dfD29oa+vj5WrVoFAAgPD4eLiwv09fVRo0YN/PTTT6/pLtH7hu9EEr2k9OB0KJVKTYdBREREHwlLS0vk5eVh06ZN6NKlCxTFvBR648YNNGvWDD4+PoiKioJSqURMTAzy8vIAAAsWLMC8efOwdOlSuLu7Y/ny5Wjfvj0uXLgAR0dHqZ8JEyZg3rx5cHd3lxLJyZMnY+HChXB3d8eZM2cwcOBAGBkZISgo6K3dA3o3MIkkIiIiInpDtm3bBmNjY2m7VatW+O23316qr08++QRff/01evbsiS+++AINGzZE8+bN0bt3b1hYWAAAFi1aBJVKhbVr16JcuXIAACcnJ6mPuXPnYvz48fj8888BAN999x0OHDiAsLAwtam1I0eOROfOnaXtkJAQzJs3T6qrVq0aLl68iKVLlzKJ/AhxOisRERER0Rvi6+uL2NhYqfzwww+yjpsxYwaMjY2lkpKSAgCYPn06UlNTsWTJEtSqVQtLlixBjRo1cO7cOQBAbGwsvLy8pATyWRkZGbh58yY8PT3V6j09PREfH69W5+HhIf2clZWFpKQk9O/fXy2mb7/9VpomSx8XjkQSEREREb0hRkZGcHBwKPNxX3zxBbp16yZtW1tbSz+bm5uja9eu6Nq1K2bMmAF3d3fMnTsXK1asgIGBwWuLu1BmZiYAYNmyZWjUqJFaO21t7ddyPnq/MIkkIiIiInrHmJmZwczM7IXtdHV1YW9vL63OWqdOHaxYsQK5ublFRiOVSiWsra0RExMDb29vqT4mJgYNGzYs8RwWFhawtrbG1atXERgY+JJXRB8SJpFERERERG9ZZmYmEhMTpe1r164hNjYWZmZmqFq1arHHbNu2DWvXrsXnn38OJycnCCGwdetW7NixAxEREQCAYcOG4ccff8Tnn3+O4OBgqFQqHD16FA0bNoSzszPGjRuHkJAQ2Nvbw83NDREREYiNjZVWYC3JlClTMHz4cKhUKgQEBCAnJwcnT57E/fv3MXr06Nd3Y+i9wCSSiIiIiN5LQmg6gpd38uRJ+Pr6StuFiVhQUBAiIyOLPaZmzZowNDTEmDFjcP36dejp6cHR0RHh4eHo1asXgKdTXaOiojBu3Dh4e3tDW1sbbm5u0nuQw4cPR3p6OsaMGYO0tDTUrFkTW7ZsUVuZtTgDBgyAoaEh5syZg3HjxsHIyAiurq4YOXLkq98Meu8ohHif//yI3r6MjAyoVCqkp/MrPoiIiN60R48eIT4+Hi4uLjA0NNR0OETvtdL+nsryGZersxIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiOj9pFC83UIv5e7du6hUqRKSk5M1HcpLW7JkCdq1a6fpMN4ZTCKJiIiIiN6APn36QKFQFCmJiYkAgD///BPt2rWDtbU1FAoFNm/eLKvfuLg4tG/fHpUqVYK+vj7s7OzQvXt3pKWlvcGreXnTp09Hhw4dYGdnJ9Vt2rQJn3zyCVQqFUxMTFCrVi2MHDnyjccSGhoKNze3Mh/Xr18/nD59GocOHXr9Qb2HmEQSEREREb0hAQEBuHXrllqpVq0aACArKwt169bFokWLZPd3584dtGjRAmZmZti9ezfi4+MREREBa2trZGVlvanLQG5u7ksd9+jRI/zyyy/o37+/VLd//350794dn332GY4fP45Tp05h+vTpL32Ot0FXVxc9e/bEDz/8oOlQ3glMIomIiIiI3hA9PT1YWlqqFW1tbQBAq1at8O2336JTp06y+4uJiUF6ejrCw8Ph7u6OatWqwdfXF/Pnz5eSUwC4cOEC2rZtC6VSCRMTE3h5eSEpKQkAUFBQgKlTp6JKlSrQ09ODm5sbdu3aJR2bnJwMhUKBdevWwdvbG/r6+li1ahUAIDw8HC4uLtDX10eNGjXw008/lRrvjh07oKenh08++USq27p1Kzw9PTFu3Dg4OzvDyckJHTt2VEumC0cMly9fjqpVq8LY2BhDhgxBfn4+Zs+eDUtLS1SqVAnTp09XO19KSgo6dOgAY2NjKJVKdOvWDbdv3wYAREZGYsqUKYiLi5NGhSMjIwEADx48wIABA1CxYkUolUo0b94ccXFxan23a9cOW7ZsQXZ2ttxf1weLSSQRERER0XvC0tISeXl52LRpE4QQxba5ceMGmjVrBj09PURFReHUqVPo168f8vLyAAALFizAvHnzMHfuXJw9exb+/v5o3749rly5otbPhAkTMGLECMTHx8Pf3x+rVq3C5MmTMX36dMTHx2PGjBn45ptvsGLFihLjPXToEOrXr1/kGi5cuIDz58+Xeq1JSUnYuXMndu3ahTVr1uCXX35BmzZt8M8//+DgwYP47rvvMGnSJBw7dgzA0+S4Q4cOuHfvHg4ePIi9e/fi6tWr6N69OwCge/fuGDNmDGrVqiWNChfu69q1K9LS0rBz506cOnUK9erVQ4sWLXDv3j0pHg8PD+Tl5Unn+6gJIiqT9PR0AUCkp6drOhQiIqIPXlZWljh58qTIysoquhN4u6WMgoKChLa2tjAyMpJKly5dim0LQGzatElWv19//bXQ0dERZmZmIiAgQMyePVukpqZK+4ODg0W1atXEkydPij3e2tpaTJ8+Xa2uQYMGYsiQIUIIIa5duyYAiLCwMLU29vb2YvXq1Wp106ZNE40bNy4x1g4dOoh+/fqp1WVmZorWrVsLAMLW1lZ0795d/PLLL+Lx48dSm5CQEGFoaCgyMjKkOn9/f2FnZyfy8/OlOmdnZzFz5kwhhBB79uwR2traIiUlRdp/4cIFAUAcP35c6rdu3bpq8Rw6dEgolUq18xde79KlS9XqypcvLyIjI0u83nddaX9PZfmMy5FIIiIiIqI3xNfXF7GxsVIpyzt1M2bMgLGxsVRSUlIAPF2oJjU1FUuWLEGtWrWwZMkS1KhRA+fOnQMAxMbGwsvLC+XKlSvSZ0ZGBm7evAlPT0+1ek9PT8THx6vVeXh4SD9nZWUhKSkJ/fv3V4vp22+/labJFic7Oxv6+vpqdUZGRti+fTsSExMxadIkGBsbY8yYMWjYsCEePXoktbOzs4OJiYm0bWFhgZo1a0JLS0utrnBBofj4eNjY2MDGxkbaX7NmTZiamha5tmfFxcUhMzMT5ubmatd27dq1ItdmYGCgFuPHSkfTARARERERfaiMjIzg4ODwUsd+8cUX6Natm7RtbW0t/Wxubo6uXbuia9eumDFjBtzd3TF37lysWLECBgYGrxw38DT2QpmZmQCAZcuWoVGjRmrtCt/xLE6FChVw//79YvfZ29vD3t4eAwYMwMSJE+Hk5IR169ahb9++AFAkCVYoFMXWFRQUyL+oYmRmZsLKygrR0dFF9pmamqpt37t3DxUrVnyl830ImEQSEREREb2DzMzMYGZm9sJ2urq6sLe3l1ZnrVOnDlasWIHc3NwiSZdSqYS1tTViYmLg7e0t1cfExKBhw4YlnsPCwgLW1ta4evUqAgMDZV+Du7s7/ve//72wnZ2dHQwNDV9phVkXFxdcv34d169fl0YjL168iAcPHqBmzZoAnt6r/Px8tePq1auH1NRU6OjoqH0NyfOSkpLw+PFjuLu7v3SMHwomkUREREREGpCZmSl9ZyQAXLt2DbGxsTAzM0PVqlWLPWbbtm1Yu3YtPv/8czg5OUEIga1bt2LHjh2IiIgAAAwbNgw//vgjPv/8cwQHB0OlUuHo0aNo2LAhnJ2dMW7cOISEhMDe3h5ubm6IiIhAbGystAJrSaZMmYLhw4dDpVIhICAAOTk5OHnyJO7fv4/Ro0cXe4y/vz+Cg4Nx//59lC9fHsDTlVcfPXqE1q1bw9bWFg8ePMAPP/yA3NxctGzZ8mVuJQDAz88Prq6uCAwMRFhYGPLy8jBkyBB4e3tLU3Pt7Oyk+1ylShWYmJjAz88PjRs3RseOHTF79mw4OTnh5s2b2L59Ozp16iQde+jQIVSvXh329vYvHeOHgu9EEhEREdH76W0vrfOanTx5Eu7u7tLI1ujRo+Hu7o7JkyeXeEzNmjVhaGiIMWPGwM3NDZ988gnWr1+P8PBw9OrVC8DTqa5RUVHIzMyEt7c36tevj2XLlkmjksOHD8fo0aMxZswYuLq6YteuXdiyZQscHR1LjXfAgAEIDw9HREQEXF1d4e3tjcjISLWvFnmeq6sr6tWrh/Xr10t13t7euHr1Knr37o0aNWqgVatWSE1NxZ49e+Ds7Cz7/j1PoVDgjz/+QPny5dGsWTP4+fmhevXqWLdundTms88+Q0BAAHx9fVGxYkWsWbMGCoUCO3bsQLNmzdC3b184OTnh888/x99//w0LCwvp2DVr1mDgwIEvHd+HRCHEG/iLIPqAZWRkQKVSIT09HUqlUtPhEBERfdAePXqE+Ph4uLi4wNDQUNPh0EvYvn07xo0bh/Pnz6stivM+uXDhApo3b47Lly9DpVJpOpyXVtrfU1k+43I6KxERERERvTFt2rTBlStXcOPGDbWVU98nt27dwq+//vpeJ5CvE5NIIiIiIiJ6o0aOHKnpEF6Jn5+fpkN4p7yf48lERERERESkEUwiiYiIiIiISDYmkURERET0znvVL5Qnov/7O1IoFK/UD9+JJCIiIqJ3lr6+PrS0tHDt2jVUrlwZenp6r/wBmOhjI4RATk4Obty4AS0tLejp6b1Sf0wiiYiIiOidpaWlhZo1ayI5ORnXrl3TdDhE7zVjY2M4OTm98letMIkkIiIioneanp4enJyckJubi7y8PE2HQ/Re0tHRQbly5V7LSD6TSCIiIiJ65ykUCujq6kJXV1fToRB99LiwDhEREREREcnGJJKIiIiIiIhkYxJJREREREREsvGdSKIyEkIAADIyMjQcCRERERHR61H42bbws25pmEQSldHdu3cBADY2NhqOhIiIiIjo9Xr48CFUKlWpbZhEEpWRmZkZACAlJeWFf2BEwNP/s2djY4Pr169DqVRqOhx6D/CZoZfB54bKis8MPUsIgYcPH8La2vqFbZlEEpVR4ZezqlQq/oNLZaJUKvnMUJnwmaGXweeGyorPDBWSO0DChXWIiIiIiIhINiaRREREREREJBuTSKIy0tPTQ0hICPT09DQdCr0n+MxQWfGZoZfB54bKis8MvSyFkLOGKxERERERERE4EklERERERERlwCSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYqxaNEi2NnZQV9fH40aNcLx48dLbf/bb7+hRo0a0NfXh6urK3bs2PGWIqV3RVmemWXLlsHLywvly5dH+fLl4efn98JnjD48Zf13ptDatWuhUCjQsWPHNxsgvZPK+tw8ePAAQ4cOhZWVFfT09ODk5MT/Rn1kyvrMhIWFwdnZGQYGBrCxscGoUaPw+PHjtxQtvS+YRBI9Z926dRg9ejRCQkJw+vRp1K1bF/7+/khLSyu2/ZEjR9CjRw/0798fZ86cQceOHdGxY0ecP3/+LUdOmlLWZyY6Oho9evTAgQMH8Ndff8HGxgaffvopbty48ZYjJ00p6zNTKDk5GWPHjoWXl9dbipTeJWV9bp48eYKWLVsiOTkZGzZsQEJCApYtW4bKlSu/5chJU8r6zKxevRoTJkxASEgI4uPj8csvv2DdunX4+uuv33Lk9M4TRKSmYcOGYujQodJ2fn6+sLa2FjNnziy2fbdu3USbNm3U6ho1aiQGDx78RuOkd0dZn5nn5eXlCRMTE7FixYo3FSK9Y17mmcnLyxNNmjQR4eHhIigoSHTo0OEtRErvkrI+N4sXLxbVq1cXT548eVsh0jumrM/M0KFDRfPmzdXqRo8eLTw9Pd9onPT+4Ugk0TOePHmCU6dOwc/PT6rT0tKCn58f/vrrr2KP+euvv9TaA4C/v3+J7enD8jLPzPMePXqE3NxcmJmZvakw6R3yss/M1KlTUalSJfTv3/9thEnvmJd5brZs2YLGjRtj6NChsLCwQO3atTFjxgzk5+e/rbBJg17mmWnSpAlOnTolTXm9evUqduzYgdatW7+VmOn9oaPpAIjeJf/++y/y8/NhYWGhVm9hYYFLly4Ve0xqamqx7VNTU99YnPTueJln5nnjx4+HtbV1kf8ZQR+ml3lmDh8+jF9++QWxsbFvIUJ6F73Mc3P16lVERUUhMDAQO3bsQGJiIoYMGYLc3FyEhIS8jbBJg17mmenZsyf+/fdfNG3aFEII5OXl4YsvvuB0ViqCI5FERBo0a9YsrF27Fps2bYK+vr6mw6F30MOHD9GrVy8sW7YMFSpU0HQ49B4pKChApUqV8PPPP6N+/fro3r07Jk6ciCVLlmg6NHpHRUdHY8aMGfjpp59w+vRpbNy4Edu3b8e0adM0HRq9YzgSSfSMChUqQFtbG7dv31arv337NiwtLYs9xtLSskzt6cPyMs9Moblz52LWrFnYt28f6tSp8ybDpHdIWZ+ZpKQkJCcno127dlJdQUEBAEBHRwcJCQmwt7d/s0GTxr3MvzVWVlYoV64ctLW1pToXFxekpqbiyZMn0NXVfaMxk2a9zDPzzTffoFevXhgwYAAAwNXVFVlZWRg0aBAmTpwILS2OP9FTfBKInqGrq4v69etj//79Ul1BQQH279+Pxo0bF3tM48aN1doDwN69e0tsTx+Wl3lmAGD27NmYNm0adu3aBQ8Pj7cRKr0jyvrM1KhRA+fOnUNsbKxU2rdvD19fX8TGxsLGxuZthk8a8jL/1nh6eiIxMVH6nw4AcPnyZVhZWTGB/Ai8zDPz6NGjIoli4f+EEEK8uWDp/aPplX2I3jVr164Venp6IjIyUly8eFEMGjRImJqaitTUVCGEEL169RITJkyQ2sfExAgdHR0xd+5cER8fL0JCQkS5cuXEuXPnNHUJ9JaV9ZmZNWuW0NXVFRs2bBC3bt2SysOHDzV1CfSWlfWZeR5XZ/04lfW5SUlJESYmJmLYsGEiISFBbNu2TVSqVEl8++23mroEesvK+syEhIQIExMTsWbNGnH16lWxZ88eYW9vL7p166apS6B3FKezEj2ne/fuuHPnDiZPnozU1FS4ublh165d0ovpKSkpav+XrkmTJli9ejUmTZqEr7/+Go6Ojti8eTNq166tqUugt6ysz8zixYvx5MkTdOnSRa2fkJAQhIaGvs3QSUPK+swQAWV/bmxsbLB7926MGjUKderUQeXKlTFixAiMHz9eU5dAb1lZn5lJkyZBoVBg0qRJuHHjBipWrIh27dph+vTpmroEekcphODYNBEREREREcnD/81JREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbP8PDepdrz8nUgAAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Labels | \n",
" Precision | \n",
" Precision (Smote) | \n",
" Recall | \n",
" Recall (Smote) | \n",
" F1 | \n",
" F1 (Smote) | \n",
" Occurrence Count | \n",
" Percentage | \n",
"
\n",
" \n",
" \n",
" \n",
" 9 | \n",
" Mute Swan 5km | \n",
" 0.915267 | \n",
" 0.938986 | \n",
" 0.965331 | \n",
" 0.912943 | \n",
" 0.939633 | \n",
" 0.925781 | \n",
" 5267 | \n",
" 0.661268 | \n",
"
\n",
" \n",
" 1 | \n",
" Canada Goose 5km | \n",
" 0.896309 | \n",
" 0.911978 | \n",
" 0.948837 | \n",
" 0.934884 | \n",
" 0.921826 | \n",
" 0.923289 | \n",
" 4305 | \n",
" 0.540490 | \n",
"
\n",
" \n",
" 10 | \n",
" Pheasant 5km | \n",
" 0.863107 | \n",
" 0.863158 | \n",
" 0.927975 | \n",
" 0.941545 | \n",
" 0.894366 | \n",
" 0.900649 | \n",
" 3848 | \n",
" 0.483114 | \n",
"
\n",
" \n",
" 16 | \n",
" Rock Dove 5km | \n",
" 0.751948 | \n",
" 0.755784 | \n",
" 0.850220 | \n",
" 0.863436 | \n",
" 0.798070 | \n",
" 0.806032 | \n",
" 2830 | \n",
" 0.355304 | \n",
"
\n",
" \n",
" 7 | \n",
" Little Owl 5km | \n",
" 0.774510 | \n",
" 0.785110 | \n",
" 0.931238 | \n",
" 0.911591 | \n",
" 0.845674 | \n",
" 0.843636 | \n",
" 2158 | \n",
" 0.270935 | \n",
"
\n",
" \n",
" 14 | \n",
" Red-legged Partridge 5km | \n",
" 0.773050 | \n",
" 0.757785 | \n",
" 0.853229 | \n",
" 0.857143 | \n",
" 0.811163 | \n",
" 0.804408 | \n",
" 2150 | \n",
" 0.269931 | \n",
"
\n",
" \n",
" 19 | \n",
" Wigeon 5km | \n",
" 0.625793 | \n",
" 0.580435 | \n",
" 0.647702 | \n",
" 0.584245 | \n",
" 0.636559 | \n",
" 0.582334 | \n",
" 1857 | \n",
" 0.233145 | \n",
"
\n",
" \n",
" 5 | \n",
" Grey Partridge 5km | \n",
" 0.680982 | \n",
" 0.670241 | \n",
" 0.843038 | \n",
" 0.632911 | \n",
" 0.753394 | \n",
" 0.651042 | \n",
" 1629 | \n",
" 0.204520 | \n",
"
\n",
" \n",
" 3 | \n",
" Gadwall 5km | \n",
" 0.743682 | \n",
" 0.670968 | \n",
" 0.580282 | \n",
" 0.585915 | \n",
" 0.651899 | \n",
" 0.625564 | \n",
" 1399 | \n",
" 0.175643 | \n",
"
\n",
" \n",
" 11 | \n",
" Pink-footed Goose 5km | \n",
" 0.702970 | \n",
" 0.552198 | \n",
" 0.445141 | \n",
" 0.630094 | \n",
" 0.545106 | \n",
" 0.588580 | \n",
" 1313 | \n",
" 0.164846 | \n",
"
\n",
" \n",
" 13 | \n",
" Pochard 5km | \n",
" 0.575000 | \n",
" 0.404762 | \n",
" 0.291139 | \n",
" 0.286920 | \n",
" 0.386555 | \n",
" 0.335802 | \n",
" 942 | \n",
" 0.118267 | \n",
"
\n",
" \n",
" 18 | \n",
" Whooper Swan 5km | \n",
" 0.469388 | \n",
" 0.357466 | \n",
" 0.110577 | \n",
" 0.379808 | \n",
" 0.178988 | \n",
" 0.368298 | \n",
" 842 | \n",
" 0.105712 | \n",
"
\n",
" \n",
" 8 | \n",
" Mandarin Duck 5km | \n",
" 0.514706 | \n",
" 0.423729 | \n",
" 0.380435 | \n",
" 0.407609 | \n",
" 0.437500 | \n",
" 0.415512 | \n",
" 714 | \n",
" 0.089642 | \n",
"
\n",
" \n",
" 12 | \n",
" Pintail 5km | \n",
" 0.431034 | \n",
" 0.333333 | \n",
" 0.166667 | \n",
" 0.400000 | \n",
" 0.240385 | \n",
" 0.363636 | \n",
" 649 | \n",
" 0.081481 | \n",
"
\n",
" \n",
" 0 | \n",
" Barnacle Goose 5km | \n",
" 0.522727 | \n",
" 0.245033 | \n",
" 0.155405 | \n",
" 0.250000 | \n",
" 0.239583 | \n",
" 0.247492 | \n",
" 587 | \n",
" 0.073697 | \n",
"
\n",
" \n",
" 2 | \n",
" Egyptian Goose 5km | \n",
" 0.602273 | \n",
" 0.568807 | \n",
" 0.407692 | \n",
" 0.476923 | \n",
" 0.486239 | \n",
" 0.518828 | \n",
" 485 | \n",
" 0.060891 | \n",
"
\n",
" \n",
" 4 | \n",
" Goshawk 5km | \n",
" 0.333333 | \n",
" 0.352113 | \n",
" 0.072165 | \n",
" 0.257732 | \n",
" 0.118644 | \n",
" 0.297619 | \n",
" 446 | \n",
" 0.055995 | \n",
"
\n",
" \n",
" 6 | \n",
" Indian Peafowl 5km | \n",
" 0.000000 | \n",
" 0.184211 | \n",
" 0.000000 | \n",
" 0.092105 | \n",
" 0.000000 | \n",
" 0.122807 | \n",
" 284 | \n",
" 0.035656 | \n",
"
\n",
" \n",
" 15 | \n",
" Ring-necked Parakeet 5km | \n",
" 0.465116 | \n",
" 0.444444 | \n",
" 0.350877 | \n",
" 0.350877 | \n",
" 0.400000 | \n",
" 0.392157 | \n",
" 206 | \n",
" 0.025863 | \n",
"
\n",
" \n",
" 17 | \n",
" Ruddy Duck 5km | \n",
" 0.000000 | \n",
" 0.300000 | \n",
" 0.000000 | \n",
" 0.090909 | \n",
" 0.000000 | \n",
" 0.139535 | \n",
" 109 | \n",
" 0.013685 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Labels Precision Precision (Smote) Recall \\\n",
"9 Mute Swan 5km 0.915267 0.938986 0.965331 \n",
"1 Canada Goose 5km 0.896309 0.911978 0.948837 \n",
"10 Pheasant 5km 0.863107 0.863158 0.927975 \n",
"16 Rock Dove 5km 0.751948 0.755784 0.850220 \n",
"7 Little Owl 5km 0.774510 0.785110 0.931238 \n",
"14 Red-legged Partridge 5km 0.773050 0.757785 0.853229 \n",
"19 Wigeon 5km 0.625793 0.580435 0.647702 \n",
"5 Grey Partridge 5km 0.680982 0.670241 0.843038 \n",
"3 Gadwall 5km 0.743682 0.670968 0.580282 \n",
"11 Pink-footed Goose 5km 0.702970 0.552198 0.445141 \n",
"13 Pochard 5km 0.575000 0.404762 0.291139 \n",
"18 Whooper Swan 5km 0.469388 0.357466 0.110577 \n",
"8 Mandarin Duck 5km 0.514706 0.423729 0.380435 \n",
"12 Pintail 5km 0.431034 0.333333 0.166667 \n",
"0 Barnacle Goose 5km 0.522727 0.245033 0.155405 \n",
"2 Egyptian Goose 5km 0.602273 0.568807 0.407692 \n",
"4 Goshawk 5km 0.333333 0.352113 0.072165 \n",
"6 Indian Peafowl 5km 0.000000 0.184211 0.000000 \n",
"15 Ring-necked Parakeet 5km 0.465116 0.444444 0.350877 \n",
"17 Ruddy Duck 5km 0.000000 0.300000 0.000000 \n",
"\n",
" Recall (Smote) F1 F1 (Smote) Occurrence Count Percentage \n",
"9 0.912943 0.939633 0.925781 5267 0.661268 \n",
"1 0.934884 0.921826 0.923289 4305 0.540490 \n",
"10 0.941545 0.894366 0.900649 3848 0.483114 \n",
"16 0.863436 0.798070 0.806032 2830 0.355304 \n",
"7 0.911591 0.845674 0.843636 2158 0.270935 \n",
"14 0.857143 0.811163 0.804408 2150 0.269931 \n",
"19 0.584245 0.636559 0.582334 1857 0.233145 \n",
"5 0.632911 0.753394 0.651042 1629 0.204520 \n",
"3 0.585915 0.651899 0.625564 1399 0.175643 \n",
"11 0.630094 0.545106 0.588580 1313 0.164846 \n",
"13 0.286920 0.386555 0.335802 942 0.118267 \n",
"18 0.379808 0.178988 0.368298 842 0.105712 \n",
"8 0.407609 0.437500 0.415512 714 0.089642 \n",
"12 0.400000 0.240385 0.363636 649 0.081481 \n",
"0 0.250000 0.239583 0.247492 587 0.073697 \n",
"2 0.476923 0.486239 0.518828 485 0.060891 \n",
"4 0.257732 0.118644 0.297619 446 0.055995 \n",
"6 0.092105 0.000000 0.122807 284 0.035656 \n",
"15 0.350877 0.400000 0.392157 206 0.025863 \n",
"17 0.090909 0.000000 0.139535 109 0.013685 "
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create graphs to show off data\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"plt.rcParams['figure.figsize'] = [9, 12]\n",
"\n",
"occurrence_count, occurrence_percentage = All_bird_occurrences['Occurrence Count'], All_bird_occurrences['Percentage']\n",
"precision = []\n",
"precision_smote = []\n",
"recall = []\n",
"recall_smote = []\n",
"f1 = []\n",
"f1_smote = []\n",
"labels = []\n",
"for dict in df_dicts:\n",
" precision.append(dict['report']['1']['precision'])\n",
" precision_smote.append(dict['report_smote']['1']['precision'])\n",
" recall.append(dict['report']['1']['recall'])\n",
" recall_smote.append(dict['report_smote']['1']['recall'])\n",
" f1.append(dict['report']['1']['f1-score'])\n",
" f1_smote.append(dict['report_smote']['1']['f1-score'])\n",
" labels.append(dict['name'])\n",
"\n",
"\n",
"\n",
"scores = pd.DataFrame({'Labels' : labels, \n",
" 'Precision': precision, 'Precision (Smote)': precision_smote, \n",
" 'Recall': recall, 'Recall (Smote)': recall_smote, \n",
" 'F1': f1, 'F1 (Smote)': f1_smote,\n",
" 'Occurrence Count' : occurrence_count, 'Percentage' : occurrence_percentage} )\n",
" \n",
"scores.sort_values('Occurrence Count', inplace=True)\n",
"\n",
"n=20\n",
"r = np.arange(n)\n",
"height = 0.25\n",
"\n",
"plt.barh(r, 'Percentage', data=scores, label='Occurrence Percentage', height = height, color='g')\n",
"plt.barh(r+height, 'F1', data=scores, label='F1-Score', height= height, color='b')\n",
"plt.barh(r+height*2, 'F1 (Smote)', data=scores, label='F1-Score (Smote)', height = height, color='r')\n",
"plt.legend(framealpha=1, frameon=True)\n",
"plt.yticks(r+height*2, scores['Labels'])\n",
"\n",
"\n",
"plt.show()\n",
"\n",
"\n",
"scores.sort_values('Occurrence Count', ascending=False)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Stored 'df_dicts_5km' (list)\n"
]
}
],
"source": [
"# Store dictionaries for later use\n",
"df_dicts_5km = df_dicts\n",
"%store df_dicts_5km"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 842500.0 | \n",
" 367500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 197500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 247500.0 | \n",
" 252500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 737500.0 | \n",
" 62500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 862500.0 | \n",
" 567500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 152500.0 | \n",
" 232500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1252500.0 | \n",
" 592500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1002500.0 | \n",
" 322500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 192500.0 | \n",
" 167500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"842500.0 367500.0 0 0\n",
"22500.0 197500.0 0 1\n",
" 27500.0 0 0\n",
"247500.0 252500.0 0 0\n",
"737500.0 62500.0 0 0\n",
"... ... ...\n",
"862500.0 567500.0 0 0\n",
"152500.0 232500.0 0 0\n",
"1252500.0 592500.0 0 0\n",
"1002500.0 322500.0 0 0\n",
"192500.0 167500.0 0 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 572500.0 | \n",
" 282500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 32500.0 | \n",
" 162500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 37500.0 | \n",
" 667500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 182500.0 | \n",
" 367500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 477500.0 | \n",
" 332500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 592500.0 | \n",
" 122500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 132500.0 | \n",
" 482500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 1207500.0 | \n",
" 432500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 772500.0 | \n",
" 297500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 152500.0 | \n",
" 387500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"572500.0 282500.0 1 1\n",
"32500.0 162500.0 1 1\n",
"37500.0 667500.0 0 0\n",
"182500.0 367500.0 1 1\n",
"477500.0 332500.0 1 1\n",
"... ... ...\n",
"592500.0 122500.0 0 0\n",
"132500.0 482500.0 1 1\n",
"1207500.0 432500.0 0 0\n",
"772500.0 297500.0 0 0\n",
"152500.0 387500.0 1 1\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 827500.0 | \n",
" 27500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 392500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 262500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 212500.0 | \n",
" 317500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 727500.0 | \n",
" 312500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 847500.0 | \n",
" 82500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 142500.0 | \n",
" 512500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 1252500.0 | \n",
" 512500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1002500.0 | \n",
" 337500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 167500.0 | \n",
" 17500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"827500.0 27500.0 0 0\n",
"22500.0 392500.0 0 0\n",
" 262500.0 0 0\n",
"212500.0 317500.0 0 0\n",
"727500.0 312500.0 0 0\n",
"... ... ...\n",
"847500.0 82500.0 0 0\n",
"142500.0 512500.0 1 1\n",
"1252500.0 512500.0 0 0\n",
"1002500.0 337500.0 0 0\n",
"167500.0 17500.0 0 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 787500.0 | \n",
" 87500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 2500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 562500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 217500.0 | \n",
" 457500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 682500.0 | \n",
" 387500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 812500.0 | \n",
" 382500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 142500.0 | \n",
" 342500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 1242500.0 | \n",
" 372500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 972500.0 | \n",
" 182500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 177500.0 | \n",
" 587500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"787500.0 87500.0 0 0\n",
"22500.0 2500.0 0 0\n",
"27500.0 562500.0 0 0\n",
"217500.0 457500.0 1 1\n",
"682500.0 387500.0 0 0\n",
"... ... ...\n",
"812500.0 382500.0 0 0\n",
"142500.0 342500.0 1 1\n",
"1242500.0 372500.0 0 0\n",
"972500.0 182500.0 0 0\n",
"177500.0 587500.0 1 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 822500.0 | \n",
" 422500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 647500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 547500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 232500.0 | \n",
" 392500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 727500.0 | \n",
" 507500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 837500.0 | \n",
" 62500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 142500.0 | \n",
" 447500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1247500.0 | \n",
" 517500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 987500.0 | \n",
" 287500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 182500.0 | \n",
" 672500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"822500.0 422500.0 0 0\n",
"22500.0 647500.0 0 0\n",
" 547500.0 0 0\n",
"232500.0 392500.0 0 0\n",
"727500.0 507500.0 0 0\n",
"... ... ...\n",
"837500.0 62500.0 0 0\n",
"142500.0 447500.0 0 0\n",
"1247500.0 517500.0 0 0\n",
"987500.0 287500.0 0 0\n",
"182500.0 672500.0 0 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 767500.0 | \n",
" 547500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 627500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 507500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 222500.0 | \n",
" 412500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 662500.0 | \n",
" 517500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 787500.0 | \n",
" 567500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 147500.0 | \n",
" 522500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 1242500.0 | \n",
" 92500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 957500.0 | \n",
" 387500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 177500.0 | \n",
" 557500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"767500.0 547500.0 0 0\n",
"27500.0 627500.0 0 0\n",
" 507500.0 0 0\n",
"222500.0 412500.0 0 0\n",
"662500.0 517500.0 0 0\n",
"... ... ...\n",
"787500.0 567500.0 0 0\n",
"147500.0 522500.0 1 0\n",
"1242500.0 92500.0 0 0\n",
"957500.0 387500.0 0 0\n",
"177500.0 557500.0 1 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 827500.0 | \n",
" 87500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 47500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 567500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 227500.0 | \n",
" 152500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 732500.0 | \n",
" 562500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 852500.0 | \n",
" 692500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 142500.0 | \n",
" 577500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 1252500.0 | \n",
" 597500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 997500.0 | \n",
" 562500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 177500.0 | \n",
" 557500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"827500.0 87500.0 0 0\n",
"22500.0 47500.0 0 0\n",
"27500.0 567500.0 0 0\n",
"227500.0 152500.0 0 0\n",
"732500.0 562500.0 0 0\n",
"... ... ...\n",
"852500.0 692500.0 0 0\n",
"142500.0 577500.0 0 1\n",
"1252500.0 597500.0 0 0\n",
"997500.0 562500.0 0 0\n",
"177500.0 557500.0 0 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 722500.0 | \n",
" 412500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 267500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 62500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 197500.0 | \n",
" 97500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 602500.0 | \n",
" 512500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 747500.0 | \n",
" 412500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 137500.0 | \n",
" 152500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1242500.0 | \n",
" 692500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 932500.0 | \n",
" 162500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 162500.0 | \n",
" 537500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"722500.0 412500.0 0 0\n",
"27500.0 267500.0 0 0\n",
" 62500.0 0 0\n",
"197500.0 97500.0 0 0\n",
"602500.0 512500.0 0 0\n",
"... ... ...\n",
"747500.0 412500.0 0 0\n",
"137500.0 152500.0 0 0\n",
"1242500.0 692500.0 0 0\n",
"932500.0 162500.0 0 0\n",
"162500.0 537500.0 1 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 822500.0 | \n",
" 92500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 217500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 137500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 212500.0 | \n",
" 292500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 717500.0 | \n",
" 197500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 842500.0 | \n",
" 372500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 137500.0 | \n",
" 392500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 1247500.0 | \n",
" 87500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 997500.0 | \n",
" 362500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 172500.0 | \n",
" 532500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"822500.0 92500.0 0 0\n",
"22500.0 217500.0 0 0\n",
" 137500.0 0 0\n",
"212500.0 292500.0 0 1\n",
"717500.0 197500.0 0 0\n",
"... ... ...\n",
"842500.0 372500.0 0 0\n",
"137500.0 392500.0 1 0\n",
"1247500.0 87500.0 0 0\n",
"997500.0 362500.0 0 0\n",
"172500.0 532500.0 0 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 582500.0 | \n",
" 287500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 42500.0 | \n",
" 192500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 72500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 192500.0 | \n",
" 557500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 487500.0 | \n",
" 317500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 607500.0 | \n",
" 422500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 137500.0 | \n",
" 302500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 1192500.0 | \n",
" 637500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 737500.0 | \n",
" 417500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 162500.0 | \n",
" 482500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"582500.0 287500.0 1 1\n",
"42500.0 192500.0 0 1\n",
" 72500.0 0 0\n",
"192500.0 557500.0 1 1\n",
"487500.0 317500.0 1 1\n",
"... ... ...\n",
"607500.0 422500.0 1 1\n",
"137500.0 302500.0 1 1\n",
"1192500.0 637500.0 0 0\n",
"737500.0 417500.0 0 0\n",
"162500.0 482500.0 1 1\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 642500.0 | \n",
" 327500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 32500.0 | \n",
" 142500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 37500.0 | \n",
" 577500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 192500.0 | \n",
" 352500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 537500.0 | \n",
" 87500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 662500.0 | \n",
" 347500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 137500.0 | \n",
" 512500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 1217500.0 | \n",
" 402500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 837500.0 | \n",
" 182500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 157500.0 | \n",
" 212500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"642500.0 327500.0 1 1\n",
"32500.0 142500.0 0 1\n",
"37500.0 577500.0 0 0\n",
"192500.0 352500.0 1 1\n",
"537500.0 87500.0 1 0\n",
"... ... ...\n",
"662500.0 347500.0 0 1\n",
"137500.0 512500.0 1 1\n",
"1217500.0 402500.0 0 0\n",
"837500.0 182500.0 1 1\n",
"157500.0 212500.0 0 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 817500.0 | \n",
" 352500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 37500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 642500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 272500.0 | \n",
" 297500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 722500.0 | \n",
" 327500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 837500.0 | \n",
" 372500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 162500.0 | \n",
" 67500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1242500.0 | \n",
" 212500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 972500.0 | \n",
" 452500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 212500.0 | \n",
" 597500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"817500.0 352500.0 1 1\n",
"22500.0 37500.0 0 0\n",
"27500.0 642500.0 0 0\n",
"272500.0 297500.0 0 0\n",
"722500.0 327500.0 1 1\n",
"... ... ...\n",
"837500.0 372500.0 1 1\n",
"162500.0 67500.0 0 0\n",
"1242500.0 212500.0 0 0\n",
"972500.0 452500.0 0 0\n",
"212500.0 597500.0 1 1\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 837500.0 | \n",
" 152500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 367500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 222500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 237500.0 | \n",
" 217500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 722500.0 | \n",
" 332500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 857500.0 | \n",
" 267500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 147500.0 | \n",
" 287500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 1252500.0 | \n",
" 152500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1012500.0 | \n",
" 92500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 187500.0 | \n",
" 572500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"837500.0 152500.0 0 1\n",
"22500.0 367500.0 0 0\n",
" 222500.0 0 0\n",
"237500.0 217500.0 0 1\n",
"722500.0 332500.0 1 0\n",
"... ... ...\n",
"857500.0 267500.0 1 0\n",
"147500.0 287500.0 1 1\n",
"1252500.0 152500.0 0 0\n",
"1012500.0 92500.0 0 0\n",
"187500.0 572500.0 0 1\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 807500.0 | \n",
" 247500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 17500.0 | \n",
" 27500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 507500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 222500.0 | \n",
" 32500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 707500.0 | \n",
" 677500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 827500.0 | \n",
" 362500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 142500.0 | \n",
" 302500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 1242500.0 | \n",
" 242500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 982500.0 | \n",
" 582500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 177500.0 | \n",
" 462500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"807500.0 247500.0 0 0\n",
"17500.0 27500.0 0 0\n",
"22500.0 507500.0 0 0\n",
"222500.0 32500.0 0 0\n",
"707500.0 677500.0 0 0\n",
"... ... ...\n",
"827500.0 362500.0 0 0\n",
"142500.0 302500.0 0 1\n",
"1242500.0 242500.0 0 0\n",
"982500.0 582500.0 0 0\n",
"177500.0 462500.0 1 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 747500.0 | \n",
" 162500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 32500.0 | \n",
" 612500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 482500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 207500.0 | \n",
" 202500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 627500.0 | \n",
" 272500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 772500.0 | \n",
" 292500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 142500.0 | \n",
" 532500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 1242500.0 | \n",
" 452500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 937500.0 | \n",
" 542500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 167500.0 | \n",
" 307500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"747500.0 162500.0 0 0\n",
"32500.0 612500.0 0 0\n",
" 482500.0 0 0\n",
"207500.0 202500.0 0 0\n",
"627500.0 272500.0 0 0\n",
"... ... ...\n",
"772500.0 292500.0 0 0\n",
"142500.0 532500.0 1 1\n",
"1242500.0 452500.0 0 0\n",
"937500.0 542500.0 0 0\n",
"167500.0 307500.0 0 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 857500.0 | \n",
" 647500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 632500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 562500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 227500.0 | \n",
" 442500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 752500.0 | \n",
" 517500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 872500.0 | \n",
" 267500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 147500.0 | \n",
" 322500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1252500.0 | \n",
" 547500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1017500.0 | \n",
" 362500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 177500.0 | \n",
" 37500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"857500.0 647500.0 0 0\n",
"22500.0 632500.0 0 0\n",
" 562500.0 0 0\n",
"227500.0 442500.0 0 0\n",
"752500.0 517500.0 0 0\n",
"... ... ...\n",
"872500.0 267500.0 0 0\n",
"147500.0 322500.0 0 0\n",
"1252500.0 547500.0 0 0\n",
"1017500.0 362500.0 0 0\n",
"177500.0 37500.0 0 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 712500.0 | \n",
" 332500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 437500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 137500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 197500.0 | \n",
" 447500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 607500.0 | \n",
" 247500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 732500.0 | \n",
" 332500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 142500.0 | \n",
" 692500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1232500.0 | \n",
" 552500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 902500.0 | \n",
" 302500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 167500.0 | \n",
" 562500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"712500.0 332500.0 1 0\n",
"27500.0 437500.0 0 0\n",
" 137500.0 0 1\n",
"197500.0 447500.0 1 1\n",
"607500.0 247500.0 0 0\n",
"... ... ...\n",
"732500.0 332500.0 0 1\n",
"142500.0 692500.0 0 0\n",
"1232500.0 552500.0 0 0\n",
"902500.0 302500.0 0 0\n",
"167500.0 562500.0 1 1\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 857500.0 | \n",
" 512500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 587500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 447500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 237500.0 | \n",
" 512500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 752500.0 | \n",
" 77500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 872500.0 | \n",
" 512500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 142500.0 | \n",
" 167500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1252500.0 | \n",
" 422500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1007500.0 | \n",
" 72500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 182500.0 | \n",
" 142500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"857500.0 512500.0 0 0\n",
"22500.0 587500.0 0 0\n",
" 447500.0 0 0\n",
"237500.0 512500.0 0 0\n",
"752500.0 77500.0 0 0\n",
"... ... ...\n",
"872500.0 512500.0 0 0\n",
"142500.0 167500.0 0 0\n",
"1252500.0 422500.0 0 0\n",
"1007500.0 72500.0 0 0\n",
"182500.0 142500.0 0 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 847500.0 | \n",
" 507500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 597500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 472500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 267500.0 | \n",
" 387500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 742500.0 | \n",
" 197500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 862500.0 | \n",
" 607500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 162500.0 | \n",
" 447500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1247500.0 | \n",
" 87500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1002500.0 | \n",
" 462500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 202500.0 | \n",
" 237500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"847500.0 507500.0 0 0\n",
"27500.0 597500.0 0 0\n",
" 472500.0 0 0\n",
"267500.0 387500.0 0 0\n",
"742500.0 197500.0 0 0\n",
"... ... ...\n",
"862500.0 607500.0 0 0\n",
"162500.0 447500.0 0 0\n",
"1247500.0 87500.0 0 0\n",
"1002500.0 462500.0 0 0\n",
"202500.0 237500.0 0 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 787500.0 | \n",
" 97500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 167500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 107500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 232500.0 | \n",
" 602500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 687500.0 | \n",
" 72500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 807500.0 | \n",
" 192500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 147500.0 | \n",
" 602500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 1237500.0 | \n",
" 332500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 957500.0 | \n",
" 122500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 182500.0 | \n",
" 582500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"787500.0 97500.0 0 0\n",
"27500.0 167500.0 0 0\n",
" 107500.0 0 0\n",
"232500.0 602500.0 1 0\n",
"687500.0 72500.0 0 0\n",
"... ... ...\n",
"807500.0 192500.0 1 1\n",
"147500.0 602500.0 0 1\n",
"1237500.0 332500.0 0 0\n",
"957500.0 122500.0 0 0\n",
"182500.0 582500.0 1 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Export predictions to CSV for QGIS\n",
"RESULTS_PATH = 'Datasets/Machine Learning/Results/5km/'\n",
"for dict in df_dicts:\n",
" # Join with y_test datafram\n",
" result_df = dict['y_test'] \n",
" result_df['Predictions'] = dict['predictions_smote']\n",
" display(result_df)\n",
" result_df.to_csv(RESULTS_PATH + dict['name'] + '.csv')\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 1227.949077 | \n",
" 2.545634e-250 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 23 | \n",
" 1020.748820 | \n",
" 7.391612e-211 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 983.053244 | \n",
" 1.401801e-203 | \n",
" Elevation | \n",
"
\n",
" \n",
" 26 | \n",
" 511.443416 | \n",
" 8.364957e-110 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 511.443416 | \n",
" 8.364957e-110 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 511.443416 | \n",
" 8.364957e-110 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 3 | \n",
" 462.292259 | \n",
" 1.002663e-99 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 22 | \n",
" 360.982411 | \n",
" 9.334063e-79 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 24 | \n",
" 322.588411 | \n",
" 9.713871e-71 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 2 | \n",
" 322.261898 | \n",
" 1.136958e-70 | \n",
" Arable | \n",
"
\n",
" \n",
" 17 | \n",
" 293.180616 | \n",
" 1.430076e-64 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 29 | \n",
" 292.896402 | \n",
" 1.640917e-64 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 292.896402 | \n",
" 1.640917e-64 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 292.896402 | \n",
" 1.640917e-64 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 292.896402 | \n",
" 1.640917e-64 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 292.896402 | \n",
" 1.640917e-64 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 0 | \n",
" 289.722162 | \n",
" 7.626146e-64 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 18 | \n",
" 257.074186 | \n",
" 5.771923e-57 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 38 | \n",
" 203.769294 | \n",
" 1.146737e-45 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 20 | \n",
" 199.309746 | \n",
" 1.019948e-44 | \n",
" Suburban | \n",
"
\n",
" \n",
" 36 | \n",
" 182.849376 | \n",
" 3.290272e-41 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 182.849376 | \n",
" 3.290272e-41 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 13 | \n",
" 169.084149 | \n",
" 2.871633e-38 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 19 | \n",
" 143.209180 | \n",
" 1.008505e-32 | \n",
" Urban | \n",
"
\n",
" \n",
" 33 | \n",
" 124.416131 | \n",
" 1.113518e-28 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 35 | \n",
" 115.851777 | \n",
" 7.830557e-27 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 15 | \n",
" 113.318097 | \n",
" 2.759452e-26 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 7 | \n",
" 68.189003 | \n",
" 1.724869e-16 | \n",
" Fen | \n",
"
\n",
" \n",
" 16 | \n",
" 47.338464 | \n",
" 6.425274e-12 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 9 | \n",
" 19.857971 | \n",
" 8.455492e-06 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 19.044878 | \n",
" 1.292914e-05 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 12.513250 | \n",
" 4.063766e-04 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 14 | \n",
" 11.644670 | \n",
" 6.470725e-04 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 2.710060 | \n",
" 9.975671e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 1 | \n",
" 1.086756 | \n",
" 2.972228e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 8 | \n",
" 0.579650 | \n",
" 4.464720e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 11 | \n",
" 0.219295 | \n",
" 6.395903e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 5 | \n",
" 0.101198 | \n",
" 7.504047e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 6 | \n",
" 0.015774 | \n",
" 9.000546e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 1227.949077 2.545634e-250 Inflowing drainage direction\n",
"23 1020.748820 7.391612e-211 Surface type\n",
"21 983.053244 1.401801e-203 Elevation\n",
"26 511.443416 8.364957e-110 Fertiliser K\n",
"27 511.443416 8.364957e-110 Fertiliser N\n",
"28 511.443416 8.364957e-110 Fertiliser P\n",
"3 462.292259 1.002663e-99 Improve grassland\n",
"22 360.982411 9.334063e-79 Cumulative catchment area\n",
"24 322.588411 9.713871e-71 Outflowing drainage direction\n",
"2 322.261898 1.136958e-70 Arable\n",
"17 293.180616 1.430076e-64 Littoral sediment\n",
"29 292.896402 1.640917e-64 Chlorothalonil_5km\n",
"30 292.896402 1.640917e-64 Glyphosate_5km\n",
"31 292.896402 1.640917e-64 Mancozeb_5km\n",
"32 292.896402 1.640917e-64 Mecoprop-P_5km\n",
"34 292.896402 1.640917e-64 Pendimethalin_5km\n",
"0 289.722162 7.626146e-64 Deciduous woodland\n",
"18 257.074186 5.771923e-57 Saltmarsh\n",
"38 203.769294 1.146737e-45 Tri-allate_5km\n",
"20 199.309746 1.019948e-44 Suburban\n",
"36 182.849376 3.290272e-41 Prosulfocarb_5km\n",
"37 182.849376 3.290272e-41 Sulphur_5km\n",
"13 169.084149 2.871633e-38 Freshwater\n",
"19 143.209180 1.008505e-32 Urban\n",
"33 124.416131 1.113518e-28 Metamitron_5km\n",
"35 115.851777 7.830557e-27 PropamocarbHydrochloride_5km\n",
"15 113.318097 2.759452e-26 Supralittoral sediment\n",
"7 68.189003 1.724869e-16 Fen\n",
"16 47.338464 6.425274e-12 Littoral rock\n",
"9 19.857971 8.455492e-06 Heather grassland\n",
"4 19.044878 1.292914e-05 Neutral grassland\n",
"12 12.513250 4.063766e-04 Saltwater\n",
"14 11.644670 6.470725e-04 Supralittoral rock\n",
"10 2.710060 9.975671e-02 Bog\n",
"1 1.086756 2.972228e-01 Coniferous woodland\n",
"8 0.579650 4.464720e-01 Heather\n",
"11 0.219295 6.395903e-01 Inland rock\n",
"5 0.101198 7.504047e-01 Calcareous grassland\n",
"6 0.015774 9.000546e-01 Acid grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Canada Goose 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 13690.149107 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 13106.121105 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 25 | \n",
" 10572.095214 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 26 | \n",
" 7654.297733 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 7654.297733 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 7654.297733 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 29 | \n",
" 4195.605263 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 4195.605263 | \n",
" 0.000000e+00 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 4195.605263 | \n",
" 0.000000e+00 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 4195.605263 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 4195.605263 | \n",
" 0.000000e+00 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 3 | \n",
" 2983.778416 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 38 | \n",
" 2914.229737 | \n",
" 0.000000e+00 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 36 | \n",
" 2857.863587 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 2857.863587 | \n",
" 0.000000e+00 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 35 | \n",
" 2212.563533 | \n",
" 0.000000e+00 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 33 | \n",
" 2201.543782 | \n",
" 0.000000e+00 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 2 | \n",
" 1898.937619 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 1801.902510 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 1196.591276 | \n",
" 2.090563e-244 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 930.073203 | \n",
" 2.679934e-193 | \n",
" Suburban | \n",
"
\n",
" \n",
" 22 | \n",
" 451.747492 | \n",
" 1.483732e-97 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 19 | \n",
" 231.411721 | \n",
" 1.548806e-51 | \n",
" Urban | \n",
"
\n",
" \n",
" 4 | \n",
" 100.412278 | \n",
" 1.704563e-23 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 90.659362 | \n",
" 2.217209e-21 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 47.528190 | \n",
" 5.835888e-12 | \n",
" Fen | \n",
"
\n",
" \n",
" 5 | \n",
" 46.419332 | \n",
" 1.024185e-11 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 38.812181 | \n",
" 4.903074e-10 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 18 | \n",
" 37.359801 | \n",
" 1.028497e-09 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 6 | \n",
" 31.034285 | \n",
" 2.617748e-08 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 16.189900 | \n",
" 5.782912e-05 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 1 | \n",
" 11.017043 | \n",
" 9.068339e-04 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 15 | \n",
" 4.522332 | \n",
" 3.348587e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 8 | \n",
" 3.664775 | \n",
" 5.560996e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 14 | \n",
" 1.617360 | \n",
" 2.034974e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 1.326860 | \n",
" 2.493992e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 9 | \n",
" 0.919556 | \n",
" 3.376208e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.673409 | \n",
" 4.118901e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 0.488612 | \n",
" 4.845674e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 13690.149107 0.000000e+00 Surface type\n",
"21 13106.121105 0.000000e+00 Elevation\n",
"25 10572.095214 0.000000e+00 Inflowing drainage direction\n",
"26 7654.297733 0.000000e+00 Fertiliser K\n",
"27 7654.297733 0.000000e+00 Fertiliser N\n",
"28 7654.297733 0.000000e+00 Fertiliser P\n",
"29 4195.605263 0.000000e+00 Chlorothalonil_5km\n",
"30 4195.605263 0.000000e+00 Glyphosate_5km\n",
"31 4195.605263 0.000000e+00 Mancozeb_5km\n",
"32 4195.605263 0.000000e+00 Mecoprop-P_5km\n",
"34 4195.605263 0.000000e+00 Pendimethalin_5km\n",
"3 2983.778416 0.000000e+00 Improve grassland\n",
"38 2914.229737 0.000000e+00 Tri-allate_5km\n",
"36 2857.863587 0.000000e+00 Prosulfocarb_5km\n",
"37 2857.863587 0.000000e+00 Sulphur_5km\n",
"35 2212.563533 0.000000e+00 PropamocarbHydrochloride_5km\n",
"33 2201.543782 0.000000e+00 Metamitron_5km\n",
"2 1898.937619 0.000000e+00 Arable\n",
"24 1801.902510 0.000000e+00 Outflowing drainage direction\n",
"0 1196.591276 2.090563e-244 Deciduous woodland\n",
"20 930.073203 2.679934e-193 Suburban\n",
"22 451.747492 1.483732e-97 Cumulative catchment area\n",
"19 231.411721 1.548806e-51 Urban\n",
"4 100.412278 1.704563e-23 Neutral grassland\n",
"13 90.659362 2.217209e-21 Freshwater\n",
"7 47.528190 5.835888e-12 Fen\n",
"5 46.419332 1.024185e-11 Calcareous grassland\n",
"17 38.812181 4.903074e-10 Littoral sediment\n",
"18 37.359801 1.028497e-09 Saltmarsh\n",
"6 31.034285 2.617748e-08 Acid grassland\n",
"12 16.189900 5.782912e-05 Saltwater\n",
"1 11.017043 9.068339e-04 Coniferous woodland\n",
"15 4.522332 3.348587e-02 Supralittoral sediment\n",
"8 3.664775 5.560996e-02 Heather\n",
"14 1.617360 2.034974e-01 Supralittoral rock\n",
"10 1.326860 2.493992e-01 Bog\n",
"9 0.919556 3.376208e-01 Heather grassland\n",
"16 0.673409 4.118901e-01 Littoral rock\n",
"11 0.488612 4.845674e-01 Inland rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Egyptian Goose 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 2983.128760 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 2983.128760 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 2983.128760 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 23 | \n",
" 1377.421605 | \n",
" 3.086937e-278 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 992.142694 | \n",
" 2.448748e-205 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 919.257319 | \n",
" 3.425183e-191 | \n",
" Elevation | \n",
"
\n",
" \n",
" 2 | \n",
" 913.921650 | \n",
" 3.757007e-190 | \n",
" Arable | \n",
"
\n",
" \n",
" 29 | \n",
" 777.091220 | \n",
" 2.934139e-163 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 777.091220 | \n",
" 2.934139e-163 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 777.091220 | \n",
" 2.934139e-163 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 777.091220 | \n",
" 2.934139e-163 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 777.091220 | \n",
" 2.934139e-163 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 20 | \n",
" 722.722472 | \n",
" 1.869674e-152 | \n",
" Suburban | \n",
"
\n",
" \n",
" 0 | \n",
" 717.204913 | \n",
" 2.355405e-151 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 24 | \n",
" 654.748811 | \n",
" 7.529947e-139 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 19 | \n",
" 618.553745 | \n",
" 1.465513e-131 | \n",
" Urban | \n",
"
\n",
" \n",
" 38 | \n",
" 582.829395 | \n",
" 2.461927e-124 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 33 | \n",
" 532.557771 | \n",
" 4.086890e-114 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 35 | \n",
" 532.344520 | \n",
" 4.517297e-114 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 36 | \n",
" 528.887194 | \n",
" 2.291119e-113 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 528.131835 | \n",
" 3.267028e-113 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 3 | \n",
" 503.767649 | \n",
" 3.107615e-108 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 22 | \n",
" 287.157536 | \n",
" 2.639912e-63 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 13 | \n",
" 187.810292 | \n",
" 2.876500e-42 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 97.443276 | \n",
" 7.494184e-23 | \n",
" Fen | \n",
"
\n",
" \n",
" 4 | \n",
" 85.855949 | \n",
" 2.448264e-20 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 20.303917 | \n",
" 6.700810e-06 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 6 | \n",
" 11.659849 | \n",
" 6.418219e-04 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 15 | \n",
" 7.127169 | \n",
" 7.607861e-03 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 9 | \n",
" 6.918232 | \n",
" 8.548545e-03 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 6.259766 | \n",
" 1.237095e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 1 | \n",
" 3.742731 | \n",
" 5.307308e-02 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 8 | \n",
" 3.215402 | \n",
" 7.298622e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 17 | \n",
" 2.594709 | \n",
" 1.072608e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 11 | \n",
" 2.333754 | \n",
" 1.266359e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 5 | \n",
" 1.557288 | \n",
" 2.120994e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 1.387037 | \n",
" 2.389413e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 16 | \n",
" 1.318619 | \n",
" 2.508746e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 14 | \n",
" 0.706995 | \n",
" 4.004684e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 2983.128760 0.000000e+00 Fertiliser K\n",
"27 2983.128760 0.000000e+00 Fertiliser N\n",
"28 2983.128760 0.000000e+00 Fertiliser P\n",
"23 1377.421605 3.086937e-278 Surface type\n",
"25 992.142694 2.448748e-205 Inflowing drainage direction\n",
"21 919.257319 3.425183e-191 Elevation\n",
"2 913.921650 3.757007e-190 Arable\n",
"29 777.091220 2.934139e-163 Chlorothalonil_5km\n",
"30 777.091220 2.934139e-163 Glyphosate_5km\n",
"31 777.091220 2.934139e-163 Mancozeb_5km\n",
"32 777.091220 2.934139e-163 Mecoprop-P_5km\n",
"34 777.091220 2.934139e-163 Pendimethalin_5km\n",
"20 722.722472 1.869674e-152 Suburban\n",
"0 717.204913 2.355405e-151 Deciduous woodland\n",
"24 654.748811 7.529947e-139 Outflowing drainage direction\n",
"19 618.553745 1.465513e-131 Urban\n",
"38 582.829395 2.461927e-124 Tri-allate_5km\n",
"33 532.557771 4.086890e-114 Metamitron_5km\n",
"35 532.344520 4.517297e-114 PropamocarbHydrochloride_5km\n",
"36 528.887194 2.291119e-113 Prosulfocarb_5km\n",
"37 528.131835 3.267028e-113 Sulphur_5km\n",
"3 503.767649 3.107615e-108 Improve grassland\n",
"22 287.157536 2.639912e-63 Cumulative catchment area\n",
"13 187.810292 2.876500e-42 Freshwater\n",
"7 97.443276 7.494184e-23 Fen\n",
"4 85.855949 2.448264e-20 Neutral grassland\n",
"18 20.303917 6.700810e-06 Saltmarsh\n",
"6 11.659849 6.418219e-04 Acid grassland\n",
"15 7.127169 7.607861e-03 Supralittoral sediment\n",
"9 6.918232 8.548545e-03 Heather grassland\n",
"10 6.259766 1.237095e-02 Bog\n",
"1 3.742731 5.307308e-02 Coniferous woodland\n",
"8 3.215402 7.298622e-02 Heather\n",
"17 2.594709 1.072608e-01 Littoral sediment\n",
"11 2.333754 1.266359e-01 Inland rock\n",
"5 1.557288 2.120994e-01 Calcareous grassland\n",
"12 1.387037 2.389413e-01 Saltwater\n",
"16 1.318619 2.508746e-01 Littoral rock\n",
"14 0.706995 4.004684e-01 Supralittoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gadwall 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 4515.330213 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 4515.330213 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 4515.330213 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 23 | \n",
" 3184.992011 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 2723.133762 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 2406.022115 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 2 | \n",
" 1966.244495 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 3 | \n",
" 1231.056795 | \n",
" 6.618329e-251 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 29 | \n",
" 1214.046569 | \n",
" 1.060403e-247 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 1214.046569 | \n",
" 1.060403e-247 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 1214.046569 | \n",
" 1.060403e-247 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 1214.046569 | \n",
" 1.060403e-247 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 1214.046569 | \n",
" 1.060403e-247 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 36 | \n",
" 1197.486834 | \n",
" 1.416014e-244 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 1195.617415 | \n",
" 3.193534e-244 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 33 | \n",
" 1131.878562 | \n",
" 3.895579e-232 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 35 | \n",
" 1098.657559 | \n",
" 8.392032e-226 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 38 | \n",
" 1097.500842 | \n",
" 1.395745e-225 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 20 | \n",
" 1080.912434 | \n",
" 2.072104e-222 | \n",
" Suburban | \n",
"
\n",
" \n",
" 24 | \n",
" 981.022023 | \n",
" 3.465257e-203 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 755.893708 | \n",
" 4.696371e-159 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 22 | \n",
" 606.274195 | \n",
" 4.426528e-129 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 19 | \n",
" 438.627859 | \n",
" 7.506556e-95 | \n",
" Urban | \n",
"
\n",
" \n",
" 13 | \n",
" 217.264573 | \n",
" 1.552531e-48 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 4 | \n",
" 138.300402 | \n",
" 1.144010e-31 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 133.023871 | \n",
" 1.560292e-30 | \n",
" Fen | \n",
"
\n",
" \n",
" 18 | \n",
" 89.448105 | \n",
" 4.061749e-21 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 17 | \n",
" 60.749893 | \n",
" 7.300004e-15 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 6 | \n",
" 29.059887 | \n",
" 7.218540e-08 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 15 | \n",
" 25.266049 | \n",
" 5.103069e-07 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 22.775112 | \n",
" 1.853532e-06 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 8 | \n",
" 13.501862 | \n",
" 2.398918e-04 | \n",
" Heather | \n",
"
\n",
" \n",
" 10 | \n",
" 13.004722 | \n",
" 3.126078e-04 | \n",
" Bog | \n",
"
\n",
" \n",
" 9 | \n",
" 12.502561 | \n",
" 4.087045e-04 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 6.393429 | \n",
" 1.147351e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 14 | \n",
" 4.049342 | \n",
" 4.422218e-02 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 5 | \n",
" 2.100284 | \n",
" 1.473112e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 1.268947 | \n",
" 2.599982e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 1 | \n",
" 0.295037 | \n",
" 5.870261e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 4515.330213 0.000000e+00 Fertiliser K\n",
"27 4515.330213 0.000000e+00 Fertiliser N\n",
"28 4515.330213 0.000000e+00 Fertiliser P\n",
"23 3184.992011 0.000000e+00 Surface type\n",
"25 2723.133762 0.000000e+00 Inflowing drainage direction\n",
"21 2406.022115 0.000000e+00 Elevation\n",
"2 1966.244495 0.000000e+00 Arable\n",
"3 1231.056795 6.618329e-251 Improve grassland\n",
"29 1214.046569 1.060403e-247 Chlorothalonil_5km\n",
"30 1214.046569 1.060403e-247 Glyphosate_5km\n",
"31 1214.046569 1.060403e-247 Mancozeb_5km\n",
"32 1214.046569 1.060403e-247 Mecoprop-P_5km\n",
"34 1214.046569 1.060403e-247 Pendimethalin_5km\n",
"36 1197.486834 1.416014e-244 Prosulfocarb_5km\n",
"37 1195.617415 3.193534e-244 Sulphur_5km\n",
"33 1131.878562 3.895579e-232 Metamitron_5km\n",
"35 1098.657559 8.392032e-226 PropamocarbHydrochloride_5km\n",
"38 1097.500842 1.395745e-225 Tri-allate_5km\n",
"20 1080.912434 2.072104e-222 Suburban\n",
"24 981.022023 3.465257e-203 Outflowing drainage direction\n",
"0 755.893708 4.696371e-159 Deciduous woodland\n",
"22 606.274195 4.426528e-129 Cumulative catchment area\n",
"19 438.627859 7.506556e-95 Urban\n",
"13 217.264573 1.552531e-48 Freshwater\n",
"4 138.300402 1.144010e-31 Neutral grassland\n",
"7 133.023871 1.560292e-30 Fen\n",
"18 89.448105 4.061749e-21 Saltmarsh\n",
"17 60.749893 7.300004e-15 Littoral sediment\n",
"6 29.059887 7.218540e-08 Acid grassland\n",
"15 25.266049 5.103069e-07 Supralittoral sediment\n",
"12 22.775112 1.853532e-06 Saltwater\n",
"8 13.501862 2.398918e-04 Heather\n",
"10 13.004722 3.126078e-04 Bog\n",
"9 12.502561 4.087045e-04 Heather grassland\n",
"11 6.393429 1.147351e-02 Inland rock\n",
"14 4.049342 4.422218e-02 Supralittoral rock\n",
"5 2.100284 1.473112e-01 Calcareous grassland\n",
"16 1.268947 2.599982e-01 Littoral rock\n",
"1 0.295037 5.870261e-01 Coniferous woodland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Goshawk 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 21 | \n",
" 1152.957368 | \n",
" 3.838405e-236 | \n",
" Elevation | \n",
"
\n",
" \n",
" 23 | \n",
" 1141.475518 | \n",
" 5.825497e-234 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 949.198977 | \n",
" 5.121685e-197 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 29 | \n",
" 787.722786 | \n",
" 2.305292e-165 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 787.722786 | \n",
" 2.305292e-165 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 787.722786 | \n",
" 2.305292e-165 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 787.722786 | \n",
" 2.305292e-165 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 787.722786 | \n",
" 2.305292e-165 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 0 | \n",
" 657.400077 | \n",
" 2.208469e-139 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 3 | \n",
" 627.392411 | \n",
" 2.416062e-133 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 38 | \n",
" 583.784688 | \n",
" 1.576392e-124 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 36 | \n",
" 568.093600 | \n",
" 2.402274e-121 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 568.093600 | \n",
" 2.402274e-121 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 35 | \n",
" 454.918810 | \n",
" 3.298942e-98 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 33 | \n",
" 431.343580 | \n",
" 2.391684e-93 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 24 | \n",
" 405.811895 | \n",
" 4.555045e-88 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 1 | \n",
" 319.953790 | \n",
" 3.459450e-70 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 6 | \n",
" 272.336940 | \n",
" 3.480601e-60 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 26 | \n",
" 200.347726 | \n",
" 6.132138e-45 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 200.347726 | \n",
" 6.132138e-45 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 200.347726 | \n",
" 6.132138e-45 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 22 | \n",
" 96.338273 | \n",
" 1.300727e-22 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 2 | \n",
" 73.501954 | \n",
" 1.195416e-17 | \n",
" Arable | \n",
"
\n",
" \n",
" 20 | \n",
" 71.543628 | \n",
" 3.195845e-17 | \n",
" Suburban | \n",
"
\n",
" \n",
" 8 | \n",
" 36.219779 | \n",
" 1.840737e-09 | \n",
" Heather | \n",
"
\n",
" \n",
" 5 | \n",
" 28.158766 | \n",
" 1.147703e-07 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 23.321960 | \n",
" 1.395826e-06 | \n",
" Fen | \n",
"
\n",
" \n",
" 17 | \n",
" 8.113433 | \n",
" 4.405104e-03 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 10 | \n",
" 5.606575 | \n",
" 1.791696e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 9 | \n",
" 4.841764 | \n",
" 2.780707e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 3.506314 | \n",
" 6.117194e-02 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 4 | \n",
" 3.445394 | \n",
" 6.346521e-02 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 1.834645 | \n",
" 1.756183e-01 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 16 | \n",
" 1.357066 | \n",
" 2.440815e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 14 | \n",
" 1.249499 | \n",
" 2.636818e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 19 | \n",
" 1.237899 | \n",
" 2.659099e-01 | \n",
" Urban | \n",
"
\n",
" \n",
" 15 | \n",
" 0.727229 | \n",
" 3.938086e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 0.205592 | \n",
" 6.502571e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 11 | \n",
" 0.024729 | \n",
" 8.750493e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"21 1152.957368 3.838405e-236 Elevation\n",
"23 1141.475518 5.825497e-234 Surface type\n",
"25 949.198977 5.121685e-197 Inflowing drainage direction\n",
"29 787.722786 2.305292e-165 Chlorothalonil_5km\n",
"30 787.722786 2.305292e-165 Glyphosate_5km\n",
"31 787.722786 2.305292e-165 Mancozeb_5km\n",
"32 787.722786 2.305292e-165 Mecoprop-P_5km\n",
"34 787.722786 2.305292e-165 Pendimethalin_5km\n",
"0 657.400077 2.208469e-139 Deciduous woodland\n",
"3 627.392411 2.416062e-133 Improve grassland\n",
"38 583.784688 1.576392e-124 Tri-allate_5km\n",
"36 568.093600 2.402274e-121 Prosulfocarb_5km\n",
"37 568.093600 2.402274e-121 Sulphur_5km\n",
"35 454.918810 3.298942e-98 PropamocarbHydrochloride_5km\n",
"33 431.343580 2.391684e-93 Metamitron_5km\n",
"24 405.811895 4.555045e-88 Outflowing drainage direction\n",
"1 319.953790 3.459450e-70 Coniferous woodland\n",
"6 272.336940 3.480601e-60 Acid grassland\n",
"26 200.347726 6.132138e-45 Fertiliser K\n",
"27 200.347726 6.132138e-45 Fertiliser N\n",
"28 200.347726 6.132138e-45 Fertiliser P\n",
"22 96.338273 1.300727e-22 Cumulative catchment area\n",
"2 73.501954 1.195416e-17 Arable\n",
"20 71.543628 3.195845e-17 Suburban\n",
"8 36.219779 1.840737e-09 Heather\n",
"5 28.158766 1.147703e-07 Calcareous grassland\n",
"7 23.321960 1.395826e-06 Fen\n",
"17 8.113433 4.405104e-03 Littoral sediment\n",
"10 5.606575 1.791696e-02 Bog\n",
"9 4.841764 2.780707e-02 Heather grassland\n",
"18 3.506314 6.117194e-02 Saltmarsh\n",
"4 3.445394 6.346521e-02 Neutral grassland\n",
"13 1.834645 1.756183e-01 Freshwater\n",
"16 1.357066 2.440815e-01 Littoral rock\n",
"14 1.249499 2.636818e-01 Supralittoral rock\n",
"19 1.237899 2.659099e-01 Urban\n",
"15 0.727229 3.938086e-01 Supralittoral sediment\n",
"12 0.205592 6.502571e-01 Saltwater\n",
"11 0.024729 8.750493e-01 Inland rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Grey Partridge 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 6271.935655 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 6271.935655 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 6271.935655 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 23 | \n",
" 4597.238354 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 2 | \n",
" 4174.660137 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 21 | \n",
" 3785.784065 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 25 | \n",
" 3602.849751 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 29 | \n",
" 1561.563980 | \n",
" 5.115844e-312 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 1561.563980 | \n",
" 5.115844e-312 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 1561.563980 | \n",
" 5.115844e-312 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 1561.563980 | \n",
" 5.115844e-312 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 1561.563980 | \n",
" 5.115844e-312 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 3 | \n",
" 1404.440831 | \n",
" 3.099099e-283 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 38 | \n",
" 1380.011301 | \n",
" 1.022893e-278 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 36 | \n",
" 1349.536551 | \n",
" 4.605203e-273 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 1349.536551 | \n",
" 4.605203e-273 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 33 | \n",
" 1263.054607 | \n",
" 6.434266e-257 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 35 | \n",
" 1235.719640 | \n",
" 8.776294e-252 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 24 | \n",
" 1226.751670 | \n",
" 4.278275e-250 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 692.233242 | \n",
" 2.294955e-146 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 22 | \n",
" 574.680939 | \n",
" 1.105711e-122 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 20 | \n",
" 546.043425 | \n",
" 7.306351e-117 | \n",
" Suburban | \n",
"
\n",
" \n",
" 5 | \n",
" 140.354125 | \n",
" 4.140347e-32 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 93.814958 | \n",
" 4.583868e-22 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 19 | \n",
" 77.610902 | \n",
" 1.521430e-18 | \n",
" Urban | \n",
"
\n",
" \n",
" 18 | \n",
" 29.201063 | \n",
" 6.713033e-08 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 7 | \n",
" 25.048887 | \n",
" 5.709287e-07 | \n",
" Fen | \n",
"
\n",
" \n",
" 17 | \n",
" 14.797441 | \n",
" 1.206320e-04 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 13 | \n",
" 14.477578 | \n",
" 1.429000e-04 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 15 | \n",
" 6.123802 | \n",
" 1.335804e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 10 | \n",
" 3.589450 | \n",
" 5.818367e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 11 | \n",
" 2.815814 | \n",
" 9.337877e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 14 | \n",
" 2.652885 | \n",
" 1.034017e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 1 | \n",
" 2.400615 | \n",
" 1.213273e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 6 | \n",
" 0.413722 | \n",
" 5.201047e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 0.131228 | \n",
" 7.171721e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 16 | \n",
" 0.091617 | \n",
" 7.621390e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 9 | \n",
" 0.078178 | \n",
" 7.797887e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 0.041344 | \n",
" 8.388804e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 6271.935655 0.000000e+00 Fertiliser K\n",
"27 6271.935655 0.000000e+00 Fertiliser N\n",
"28 6271.935655 0.000000e+00 Fertiliser P\n",
"23 4597.238354 0.000000e+00 Surface type\n",
"2 4174.660137 0.000000e+00 Arable\n",
"21 3785.784065 0.000000e+00 Elevation\n",
"25 3602.849751 0.000000e+00 Inflowing drainage direction\n",
"29 1561.563980 5.115844e-312 Chlorothalonil_5km\n",
"30 1561.563980 5.115844e-312 Glyphosate_5km\n",
"31 1561.563980 5.115844e-312 Mancozeb_5km\n",
"32 1561.563980 5.115844e-312 Mecoprop-P_5km\n",
"34 1561.563980 5.115844e-312 Pendimethalin_5km\n",
"3 1404.440831 3.099099e-283 Improve grassland\n",
"38 1380.011301 1.022893e-278 Tri-allate_5km\n",
"36 1349.536551 4.605203e-273 Prosulfocarb_5km\n",
"37 1349.536551 4.605203e-273 Sulphur_5km\n",
"33 1263.054607 6.434266e-257 Metamitron_5km\n",
"35 1235.719640 8.776294e-252 PropamocarbHydrochloride_5km\n",
"24 1226.751670 4.278275e-250 Outflowing drainage direction\n",
"0 692.233242 2.294955e-146 Deciduous woodland\n",
"22 574.680939 1.105711e-122 Cumulative catchment area\n",
"20 546.043425 7.306351e-117 Suburban\n",
"5 140.354125 4.140347e-32 Calcareous grassland\n",
"4 93.814958 4.583868e-22 Neutral grassland\n",
"19 77.610902 1.521430e-18 Urban\n",
"18 29.201063 6.713033e-08 Saltmarsh\n",
"7 25.048887 5.709287e-07 Fen\n",
"17 14.797441 1.206320e-04 Littoral sediment\n",
"13 14.477578 1.429000e-04 Freshwater\n",
"15 6.123802 1.335804e-02 Supralittoral sediment\n",
"10 3.589450 5.818367e-02 Bog\n",
"11 2.815814 9.337877e-02 Inland rock\n",
"14 2.652885 1.034017e-01 Supralittoral rock\n",
"1 2.400615 1.213273e-01 Coniferous woodland\n",
"6 0.413722 5.201047e-01 Acid grassland\n",
"8 0.131228 7.171721e-01 Heather\n",
"16 0.091617 7.621390e-01 Littoral rock\n",
"9 0.078178 7.797887e-01 Heather grassland\n",
"12 0.041344 8.388804e-01 Saltwater"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Indian Peafowl 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 1401.150933 | \n",
" 1.256201e-282 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 1401.150933 | \n",
" 1.256201e-282 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 1401.150933 | \n",
" 1.256201e-282 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 23 | \n",
" 792.263164 | \n",
" 2.915059e-166 | \n",
" Surface type | \n",
"
\n",
" \n",
" 2 | \n",
" 701.104487 | \n",
" 3.862323e-148 | \n",
" Arable | \n",
"
\n",
" \n",
" 21 | \n",
" 578.148305 | \n",
" 2.189384e-123 | \n",
" Elevation | \n",
"
\n",
" \n",
" 3 | \n",
" 545.827122 | \n",
" 8.086054e-117 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 25 | \n",
" 524.382331 | \n",
" 1.902480e-112 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 38 | \n",
" 487.290667 | \n",
" 7.370916e-105 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 29 | \n",
" 444.347581 | \n",
" 4.966029e-96 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 444.347581 | \n",
" 4.966029e-96 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 444.347581 | \n",
" 4.966029e-96 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 444.347581 | \n",
" 4.966029e-96 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 444.347581 | \n",
" 4.966029e-96 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 36 | \n",
" 419.586073 | \n",
" 6.426713e-91 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 419.006535 | \n",
" 8.468818e-91 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 33 | \n",
" 411.705997 | \n",
" 2.742416e-89 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 35 | \n",
" 402.167370 | \n",
" 2.591400e-87 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 0 | \n",
" 331.150515 | \n",
" 1.570489e-72 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 24 | \n",
" 310.917668 | \n",
" 2.706177e-68 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 20 | \n",
" 305.059186 | \n",
" 4.582354e-67 | \n",
" Suburban | \n",
"
\n",
" \n",
" 22 | \n",
" 218.350415 | \n",
" 9.130323e-49 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 19 | \n",
" 47.921042 | \n",
" 4.781891e-12 | \n",
" Urban | \n",
"
\n",
" \n",
" 7 | \n",
" 25.829471 | \n",
" 3.814352e-07 | \n",
" Fen | \n",
"
\n",
" \n",
" 4 | \n",
" 20.143796 | \n",
" 7.284259e-06 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 14.729135 | \n",
" 1.250737e-04 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 9 | \n",
" 3.535159 | \n",
" 6.011705e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 3.346729 | \n",
" 6.737607e-02 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 1.567200 | \n",
" 2.106509e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 16 | \n",
" 1.464449 | \n",
" 2.262594e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 6 | \n",
" 1.427318 | \n",
" 2.322381e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 1.216857 | \n",
" 2.700117e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 8 | \n",
" 1.203109 | \n",
" 2.727343e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 14 | \n",
" 0.819230 | \n",
" 3.654327e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 15 | \n",
" 0.675335 | \n",
" 4.112224e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 0.173224 | \n",
" 6.772735e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 1 | \n",
" 0.163487 | \n",
" 6.859768e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 18 | \n",
" 0.111157 | \n",
" 7.388395e-01 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 11 | \n",
" 0.018397 | \n",
" 8.921123e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 1401.150933 1.256201e-282 Fertiliser K\n",
"27 1401.150933 1.256201e-282 Fertiliser N\n",
"28 1401.150933 1.256201e-282 Fertiliser P\n",
"23 792.263164 2.915059e-166 Surface type\n",
"2 701.104487 3.862323e-148 Arable\n",
"21 578.148305 2.189384e-123 Elevation\n",
"3 545.827122 8.086054e-117 Improve grassland\n",
"25 524.382331 1.902480e-112 Inflowing drainage direction\n",
"38 487.290667 7.370916e-105 Tri-allate_5km\n",
"29 444.347581 4.966029e-96 Chlorothalonil_5km\n",
"30 444.347581 4.966029e-96 Glyphosate_5km\n",
"31 444.347581 4.966029e-96 Mancozeb_5km\n",
"32 444.347581 4.966029e-96 Mecoprop-P_5km\n",
"34 444.347581 4.966029e-96 Pendimethalin_5km\n",
"36 419.586073 6.426713e-91 Prosulfocarb_5km\n",
"37 419.006535 8.468818e-91 Sulphur_5km\n",
"33 411.705997 2.742416e-89 Metamitron_5km\n",
"35 402.167370 2.591400e-87 PropamocarbHydrochloride_5km\n",
"0 331.150515 1.570489e-72 Deciduous woodland\n",
"24 310.917668 2.706177e-68 Outflowing drainage direction\n",
"20 305.059186 4.582354e-67 Suburban\n",
"22 218.350415 9.130323e-49 Cumulative catchment area\n",
"19 47.921042 4.781891e-12 Urban\n",
"7 25.829471 3.814352e-07 Fen\n",
"4 20.143796 7.284259e-06 Neutral grassland\n",
"13 14.729135 1.250737e-04 Freshwater\n",
"9 3.535159 6.011705e-02 Heather grassland\n",
"5 3.346729 6.737607e-02 Calcareous grassland\n",
"10 1.567200 2.106509e-01 Bog\n",
"16 1.464449 2.262594e-01 Littoral rock\n",
"6 1.427318 2.322381e-01 Acid grassland\n",
"17 1.216857 2.700117e-01 Littoral sediment\n",
"8 1.203109 2.727343e-01 Heather\n",
"14 0.819230 3.654327e-01 Supralittoral rock\n",
"15 0.675335 4.112224e-01 Supralittoral sediment\n",
"12 0.173224 6.772735e-01 Saltwater\n",
"1 0.163487 6.859768e-01 Coniferous woodland\n",
"18 0.111157 7.388395e-01 Saltmarsh\n",
"11 0.018397 8.921123e-01 Inland rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Little Owl 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 14865.981572 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 14865.981572 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 14865.981572 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 23 | \n",
" 6857.748193 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 5386.245994 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 5359.355245 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 2 | \n",
" 4395.443997 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 29 | \n",
" 3029.229250 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 3029.229250 | \n",
" 0.000000e+00 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 3029.229250 | \n",
" 0.000000e+00 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 3029.229250 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 3029.229250 | \n",
" 0.000000e+00 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 36 | \n",
" 2708.701907 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 2708.701907 | \n",
" 0.000000e+00 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 38 | \n",
" 2676.100879 | \n",
" 0.000000e+00 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 33 | \n",
" 2338.758475 | \n",
" 0.000000e+00 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 35 | \n",
" 2301.433951 | \n",
" 0.000000e+00 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 3 | \n",
" 2284.811376 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 24 | \n",
" 1686.978667 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 20 | \n",
" 1070.418247 | \n",
" 2.117710e-220 | \n",
" Suburban | \n",
"
\n",
" \n",
" 0 | \n",
" 964.944912 | \n",
" 4.507157e-200 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 22 | \n",
" 328.787852 | \n",
" 4.899488e-72 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 19 | \n",
" 216.363484 | \n",
" 2.412088e-48 | \n",
" Urban | \n",
"
\n",
" \n",
" 4 | \n",
" 173.795722 | \n",
" 2.823657e-39 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 153.749243 | \n",
" 5.519369e-35 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 61.708907 | \n",
" 4.501866e-15 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 39.967805 | \n",
" 2.720897e-10 | \n",
" Fen | \n",
"
\n",
" \n",
" 18 | \n",
" 17.263205 | \n",
" 3.288316e-05 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 6 | \n",
" 16.298137 | \n",
" 5.462439e-05 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 11.600066 | \n",
" 6.627543e-04 | \n",
" Bog | \n",
"
\n",
" \n",
" 9 | \n",
" 10.429545 | \n",
" 1.245185e-03 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 7.681820 | \n",
" 5.590941e-03 | \n",
" Heather | \n",
"
\n",
" \n",
" 14 | \n",
" 6.733951 | \n",
" 9.476830e-03 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 6.448022 | \n",
" 1.112645e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 16 | \n",
" 6.260300 | \n",
" 1.236722e-02 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 17 | \n",
" 4.630479 | \n",
" 3.143876e-02 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 3.803586 | \n",
" 5.117799e-02 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 1 | \n",
" 3.700481 | \n",
" 5.443238e-02 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 15 | \n",
" 2.159413 | \n",
" 1.417383e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 14865.981572 0.000000e+00 Fertiliser K\n",
"27 14865.981572 0.000000e+00 Fertiliser N\n",
"28 14865.981572 0.000000e+00 Fertiliser P\n",
"23 6857.748193 0.000000e+00 Surface type\n",
"25 5386.245994 0.000000e+00 Inflowing drainage direction\n",
"21 5359.355245 0.000000e+00 Elevation\n",
"2 4395.443997 0.000000e+00 Arable\n",
"29 3029.229250 0.000000e+00 Chlorothalonil_5km\n",
"30 3029.229250 0.000000e+00 Glyphosate_5km\n",
"31 3029.229250 0.000000e+00 Mancozeb_5km\n",
"32 3029.229250 0.000000e+00 Mecoprop-P_5km\n",
"34 3029.229250 0.000000e+00 Pendimethalin_5km\n",
"36 2708.701907 0.000000e+00 Prosulfocarb_5km\n",
"37 2708.701907 0.000000e+00 Sulphur_5km\n",
"38 2676.100879 0.000000e+00 Tri-allate_5km\n",
"33 2338.758475 0.000000e+00 Metamitron_5km\n",
"35 2301.433951 0.000000e+00 PropamocarbHydrochloride_5km\n",
"3 2284.811376 0.000000e+00 Improve grassland\n",
"24 1686.978667 0.000000e+00 Outflowing drainage direction\n",
"20 1070.418247 2.117710e-220 Suburban\n",
"0 964.944912 4.507157e-200 Deciduous woodland\n",
"22 328.787852 4.899488e-72 Cumulative catchment area\n",
"19 216.363484 2.412088e-48 Urban\n",
"4 173.795722 2.823657e-39 Neutral grassland\n",
"5 153.749243 5.519369e-35 Calcareous grassland\n",
"13 61.708907 4.501866e-15 Freshwater\n",
"7 39.967805 2.720897e-10 Fen\n",
"18 17.263205 3.288316e-05 Saltmarsh\n",
"6 16.298137 5.462439e-05 Acid grassland\n",
"10 11.600066 6.627543e-04 Bog\n",
"9 10.429545 1.245185e-03 Heather grassland\n",
"8 7.681820 5.590941e-03 Heather\n",
"14 6.733951 9.476830e-03 Supralittoral rock\n",
"11 6.448022 1.112645e-02 Inland rock\n",
"16 6.260300 1.236722e-02 Littoral rock\n",
"17 4.630479 3.143876e-02 Littoral sediment\n",
"12 3.803586 5.117799e-02 Saltwater\n",
"1 3.700481 5.443238e-02 Coniferous woodland\n",
"15 2.159413 1.417383e-01 Supralittoral sediment"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mandarin Duck 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 3499.336953 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 3499.336953 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 3499.336953 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 23 | \n",
" 2033.821770 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 29 | \n",
" 1803.002674 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 1803.002674 | \n",
" 0.000000e+00 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 1803.002674 | \n",
" 0.000000e+00 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 1803.002674 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 1803.002674 | \n",
" 0.000000e+00 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 36 | \n",
" 1714.730650 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 1714.730650 | \n",
" 0.000000e+00 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 38 | \n",
" 1692.207160 | \n",
" 0.000000e+00 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 3 | \n",
" 1610.098872 | \n",
" 8.211371e-321 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 21 | \n",
" 1587.607155 | \n",
" 9.646045e-317 | \n",
" Elevation | \n",
"
\n",
" \n",
" 25 | \n",
" 1464.813759 | \n",
" 2.371236e-294 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 33 | \n",
" 1418.099414 | \n",
" 9.333415e-286 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 35 | \n",
" 1415.671099 | \n",
" 2.618218e-285 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 0 | \n",
" 1284.895260 | \n",
" 5.209143e-261 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 929.329547 | \n",
" 3.740071e-193 | \n",
" Suburban | \n",
"
\n",
" \n",
" 24 | \n",
" 655.392304 | \n",
" 5.590929e-139 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 510.589782 | \n",
" 1.250228e-109 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 2 | \n",
" 432.717693 | \n",
" 1.244580e-93 | \n",
" Arable | \n",
"
\n",
" \n",
" 19 | \n",
" 225.523833 | \n",
" 2.743268e-50 | \n",
" Urban | \n",
"
\n",
" \n",
" 4 | \n",
" 123.306007 | \n",
" 1.931753e-28 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 57.284789 | \n",
" 4.192614e-14 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 57.065530 | \n",
" 4.683352e-14 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 1 | \n",
" 20.442727 | \n",
" 6.233113e-06 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 7 | \n",
" 6.281864 | \n",
" 1.221775e-02 | \n",
" Fen | \n",
"
\n",
" \n",
" 10 | \n",
" 3.955921 | \n",
" 4.674092e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 11 | \n",
" 2.204290 | \n",
" 1.376669e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 9 | \n",
" 2.062553 | \n",
" 1.509963e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 1.973009 | \n",
" 1.601679e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 16 | \n",
" 1.283070 | \n",
" 2.573631e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 18 | \n",
" 0.941324 | \n",
" 3.319671e-01 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 15 | \n",
" 0.931651 | \n",
" 3.344636e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 17 | \n",
" 0.503272 | \n",
" 4.780867e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 6 | \n",
" 0.326150 | \n",
" 5.679510e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 0.229897 | \n",
" 6.316136e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 8 | \n",
" 0.000028 | \n",
" 9.957553e-01 | \n",
" Heather | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 3499.336953 0.000000e+00 Fertiliser K\n",
"27 3499.336953 0.000000e+00 Fertiliser N\n",
"28 3499.336953 0.000000e+00 Fertiliser P\n",
"23 2033.821770 0.000000e+00 Surface type\n",
"29 1803.002674 0.000000e+00 Chlorothalonil_5km\n",
"30 1803.002674 0.000000e+00 Glyphosate_5km\n",
"31 1803.002674 0.000000e+00 Mancozeb_5km\n",
"32 1803.002674 0.000000e+00 Mecoprop-P_5km\n",
"34 1803.002674 0.000000e+00 Pendimethalin_5km\n",
"36 1714.730650 0.000000e+00 Prosulfocarb_5km\n",
"37 1714.730650 0.000000e+00 Sulphur_5km\n",
"38 1692.207160 0.000000e+00 Tri-allate_5km\n",
"3 1610.098872 8.211371e-321 Improve grassland\n",
"21 1587.607155 9.646045e-317 Elevation\n",
"25 1464.813759 2.371236e-294 Inflowing drainage direction\n",
"33 1418.099414 9.333415e-286 Metamitron_5km\n",
"35 1415.671099 2.618218e-285 PropamocarbHydrochloride_5km\n",
"0 1284.895260 5.209143e-261 Deciduous woodland\n",
"20 929.329547 3.740071e-193 Suburban\n",
"24 655.392304 5.590929e-139 Outflowing drainage direction\n",
"22 510.589782 1.250228e-109 Cumulative catchment area\n",
"2 432.717693 1.244580e-93 Arable\n",
"19 225.523833 2.743268e-50 Urban\n",
"4 123.306007 1.931753e-28 Neutral grassland\n",
"5 57.284789 4.192614e-14 Calcareous grassland\n",
"13 57.065530 4.683352e-14 Freshwater\n",
"1 20.442727 6.233113e-06 Coniferous woodland\n",
"7 6.281864 1.221775e-02 Fen\n",
"10 3.955921 4.674092e-02 Bog\n",
"11 2.204290 1.376669e-01 Inland rock\n",
"9 2.062553 1.509963e-01 Heather grassland\n",
"14 1.973009 1.601679e-01 Supralittoral rock\n",
"16 1.283070 2.573631e-01 Littoral rock\n",
"18 0.941324 3.319671e-01 Saltmarsh\n",
"15 0.931651 3.344636e-01 Supralittoral sediment\n",
"17 0.503272 4.780867e-01 Littoral sediment\n",
"6 0.326150 5.679510e-01 Acid grassland\n",
"12 0.229897 6.316136e-01 Saltwater\n",
"8 0.000028 9.957553e-01 Heather"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mute Swan 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 21 | \n",
" 13258.103579 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 23 | \n",
" 11515.117494 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 10658.285644 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 26 | \n",
" 4008.850443 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 4008.850443 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 4008.850443 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 29 | \n",
" 2394.708388 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 2394.708388 | \n",
" 0.000000e+00 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 2394.708388 | \n",
" 0.000000e+00 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 2394.708388 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 2394.708388 | \n",
" 0.000000e+00 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 3 | \n",
" 2061.087790 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 36 | \n",
" 1696.172627 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 1696.172627 | \n",
" 0.000000e+00 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 38 | \n",
" 1662.847893 | \n",
" 0.000000e+00 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 2 | \n",
" 1662.030433 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 1429.112950 | \n",
" 8.705042e-288 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 35 | \n",
" 1265.276094 | \n",
" 2.465302e-257 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 33 | \n",
" 1248.669640 | \n",
" 3.226801e-254 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 0 | \n",
" 897.430418 | \n",
" 6.218893e-187 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 696.898175 | \n",
" 2.677486e-147 | \n",
" Suburban | \n",
"
\n",
" \n",
" 22 | \n",
" 366.516265 | \n",
" 6.572976e-80 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 19 | \n",
" 200.841130 | \n",
" 4.814901e-45 | \n",
" Urban | \n",
"
\n",
" \n",
" 4 | \n",
" 75.098468 | \n",
" 5.364636e-18 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 67.741670 | \n",
" 2.159976e-16 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 17 | \n",
" 56.508193 | \n",
" 6.205420e-14 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 7 | \n",
" 34.869146 | \n",
" 3.670966e-09 | \n",
" Fen | \n",
"
\n",
" \n",
" 18 | \n",
" 34.191736 | \n",
" 5.191196e-09 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 12 | \n",
" 24.549494 | \n",
" 7.391787e-07 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 5 | \n",
" 23.411080 | \n",
" 1.332813e-06 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 15 | \n",
" 18.991803 | \n",
" 1.329292e-05 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 1 | \n",
" 11.649440 | \n",
" 6.454178e-04 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 16 | \n",
" 11.254357 | \n",
" 7.980745e-04 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 8.405239 | \n",
" 3.751635e-03 | \n",
" Bog | \n",
"
\n",
" \n",
" 14 | \n",
" 2.500497 | \n",
" 1.138501e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 1.358636 | \n",
" 2.438089e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 6 | \n",
" 0.929841 | \n",
" 3.349335e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 0.491047 | \n",
" 4.834813e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 9 | \n",
" 0.447600 | \n",
" 5.034964e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"21 13258.103579 0.000000e+00 Elevation\n",
"23 11515.117494 0.000000e+00 Surface type\n",
"25 10658.285644 0.000000e+00 Inflowing drainage direction\n",
"26 4008.850443 0.000000e+00 Fertiliser K\n",
"27 4008.850443 0.000000e+00 Fertiliser N\n",
"28 4008.850443 0.000000e+00 Fertiliser P\n",
"29 2394.708388 0.000000e+00 Chlorothalonil_5km\n",
"30 2394.708388 0.000000e+00 Glyphosate_5km\n",
"31 2394.708388 0.000000e+00 Mancozeb_5km\n",
"32 2394.708388 0.000000e+00 Mecoprop-P_5km\n",
"34 2394.708388 0.000000e+00 Pendimethalin_5km\n",
"3 2061.087790 0.000000e+00 Improve grassland\n",
"36 1696.172627 0.000000e+00 Prosulfocarb_5km\n",
"37 1696.172627 0.000000e+00 Sulphur_5km\n",
"38 1662.847893 0.000000e+00 Tri-allate_5km\n",
"2 1662.030433 0.000000e+00 Arable\n",
"24 1429.112950 8.705042e-288 Outflowing drainage direction\n",
"35 1265.276094 2.465302e-257 PropamocarbHydrochloride_5km\n",
"33 1248.669640 3.226801e-254 Metamitron_5km\n",
"0 897.430418 6.218893e-187 Deciduous woodland\n",
"20 696.898175 2.677486e-147 Suburban\n",
"22 366.516265 6.572976e-80 Cumulative catchment area\n",
"19 200.841130 4.814901e-45 Urban\n",
"4 75.098468 5.364636e-18 Neutral grassland\n",
"13 67.741670 2.159976e-16 Freshwater\n",
"17 56.508193 6.205420e-14 Littoral sediment\n",
"7 34.869146 3.670966e-09 Fen\n",
"18 34.191736 5.191196e-09 Saltmarsh\n",
"12 24.549494 7.391787e-07 Saltwater\n",
"5 23.411080 1.332813e-06 Calcareous grassland\n",
"15 18.991803 1.329292e-05 Supralittoral sediment\n",
"1 11.649440 6.454178e-04 Coniferous woodland\n",
"16 11.254357 7.980745e-04 Littoral rock\n",
"10 8.405239 3.751635e-03 Bog\n",
"14 2.500497 1.138501e-01 Supralittoral rock\n",
"11 1.358636 2.438089e-01 Inland rock\n",
"6 0.929841 3.349335e-01 Acid grassland\n",
"8 0.491047 4.834813e-01 Heather\n",
"9 0.447600 5.034964e-01 Heather grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pheasant 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 10050.271292 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 8841.943280 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 25 | \n",
" 7309.294901 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 26 | \n",
" 5420.435199 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 5420.435199 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 5420.435199 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 29 | \n",
" 3270.520292 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 3270.520292 | \n",
" 0.000000e+00 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 3270.520292 | \n",
" 0.000000e+00 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 3270.520292 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 3270.520292 | \n",
" 0.000000e+00 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 3 | \n",
" 2659.803503 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 38 | \n",
" 2399.875580 | \n",
" 0.000000e+00 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 2281.505401 | \n",
" 0.000000e+00 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 36 | \n",
" 2278.677851 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 35 | \n",
" 1870.157119 | \n",
" 0.000000e+00 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 33 | \n",
" 1859.291990 | \n",
" 0.000000e+00 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 2 | \n",
" 1812.032710 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 1787.097580 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 1174.299291 | \n",
" 3.445172e-240 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 22 | \n",
" 962.080147 | \n",
" 1.619598e-199 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 20 | \n",
" 712.985461 | \n",
" 1.636740e-150 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 108.950885 | \n",
" 2.423079e-25 | \n",
" Urban | \n",
"
\n",
" \n",
" 5 | \n",
" 97.227340 | \n",
" 8.346693e-23 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 77.118783 | \n",
" 1.947244e-18 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 4 | \n",
" 72.789784 | \n",
" 1.709221e-17 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 6 | \n",
" 61.756741 | \n",
" 4.394643e-15 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 34.749423 | \n",
" 3.902749e-09 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 30.155778 | \n",
" 4.109808e-08 | \n",
" Fen | \n",
"
\n",
" \n",
" 8 | \n",
" 18.652838 | \n",
" 1.587154e-05 | \n",
" Heather | \n",
"
\n",
" \n",
" 18 | \n",
" 16.957160 | \n",
" 3.861930e-05 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 17 | \n",
" 16.467693 | \n",
" 4.995926e-05 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 10 | \n",
" 16.416989 | \n",
" 5.131069e-05 | \n",
" Bog | \n",
"
\n",
" \n",
" 15 | \n",
" 7.693737 | \n",
" 5.554180e-03 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 11 | \n",
" 7.051453 | \n",
" 7.935868e-03 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 12 | \n",
" 4.723840 | \n",
" 2.977661e-02 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 14 | \n",
" 2.427993 | \n",
" 1.192252e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 9 | \n",
" 1.957411 | \n",
" 1.618294e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.074882 | \n",
" 7.843642e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 10050.271292 0.000000e+00 Surface type\n",
"21 8841.943280 0.000000e+00 Elevation\n",
"25 7309.294901 0.000000e+00 Inflowing drainage direction\n",
"26 5420.435199 0.000000e+00 Fertiliser K\n",
"27 5420.435199 0.000000e+00 Fertiliser N\n",
"28 5420.435199 0.000000e+00 Fertiliser P\n",
"29 3270.520292 0.000000e+00 Chlorothalonil_5km\n",
"30 3270.520292 0.000000e+00 Glyphosate_5km\n",
"31 3270.520292 0.000000e+00 Mancozeb_5km\n",
"32 3270.520292 0.000000e+00 Mecoprop-P_5km\n",
"34 3270.520292 0.000000e+00 Pendimethalin_5km\n",
"3 2659.803503 0.000000e+00 Improve grassland\n",
"38 2399.875580 0.000000e+00 Tri-allate_5km\n",
"37 2281.505401 0.000000e+00 Sulphur_5km\n",
"36 2278.677851 0.000000e+00 Prosulfocarb_5km\n",
"35 1870.157119 0.000000e+00 PropamocarbHydrochloride_5km\n",
"33 1859.291990 0.000000e+00 Metamitron_5km\n",
"2 1812.032710 0.000000e+00 Arable\n",
"24 1787.097580 0.000000e+00 Outflowing drainage direction\n",
"0 1174.299291 3.445172e-240 Deciduous woodland\n",
"22 962.080147 1.619598e-199 Cumulative catchment area\n",
"20 712.985461 1.636740e-150 Suburban\n",
"19 108.950885 2.423079e-25 Urban\n",
"5 97.227340 8.346693e-23 Calcareous grassland\n",
"1 77.118783 1.947244e-18 Coniferous woodland\n",
"4 72.789784 1.709221e-17 Neutral grassland\n",
"6 61.756741 4.394643e-15 Acid grassland\n",
"13 34.749423 3.902749e-09 Freshwater\n",
"7 30.155778 4.109808e-08 Fen\n",
"8 18.652838 1.587154e-05 Heather\n",
"18 16.957160 3.861930e-05 Saltmarsh\n",
"17 16.467693 4.995926e-05 Littoral sediment\n",
"10 16.416989 5.131069e-05 Bog\n",
"15 7.693737 5.554180e-03 Supralittoral sediment\n",
"11 7.051453 7.935868e-03 Inland rock\n",
"12 4.723840 2.977661e-02 Saltwater\n",
"14 2.427993 1.192252e-01 Supralittoral rock\n",
"9 1.957411 1.618294e-01 Heather grassland\n",
"16 0.074882 7.843642e-01 Littoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pink-footed Goose 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 3058.357364 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 23 | \n",
" 2873.839868 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 2752.743624 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 2 | \n",
" 1607.983542 | \n",
" 1.980709e-320 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 900.562185 | \n",
" 1.520435e-187 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 3 | \n",
" 796.768219 | \n",
" 3.749922e-167 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 26 | \n",
" 532.616285 | \n",
" 3.976135e-114 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 532.616285 | \n",
" 3.976135e-114 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 532.616285 | \n",
" 3.976135e-114 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 0 | \n",
" 495.339143 | \n",
" 1.652140e-106 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 17 | \n",
" 274.520690 | \n",
" 1.206526e-60 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 20 | \n",
" 270.648302 | \n",
" 7.898492e-60 | \n",
" Suburban | \n",
"
\n",
" \n",
" 29 | \n",
" 247.805699 | \n",
" 5.245303e-55 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 247.805699 | \n",
" 5.245303e-55 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 247.805699 | \n",
" 5.245303e-55 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 247.805699 | \n",
" 5.245303e-55 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 247.805699 | \n",
" 5.245303e-55 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 22 | \n",
" 209.765273 | \n",
" 6.085933e-47 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 36 | \n",
" 178.358152 | \n",
" 2.992833e-40 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 177.859694 | \n",
" 3.824203e-40 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 38 | \n",
" 156.940500 | \n",
" 1.142502e-35 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 35 | \n",
" 130.830883 | \n",
" 4.625347e-30 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 19 | \n",
" 129.928183 | \n",
" 7.235400e-30 | \n",
" Urban | \n",
"
\n",
" \n",
" 33 | \n",
" 126.675723 | \n",
" 3.629620e-29 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 18 | \n",
" 117.532842 | \n",
" 3.396210e-27 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 15 | \n",
" 88.671048 | \n",
" 5.989848e-21 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 16 | \n",
" 48.043370 | \n",
" 4.494345e-12 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 4 | \n",
" 40.170380 | \n",
" 2.454146e-10 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 33.082017 | \n",
" 9.161935e-09 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 13 | \n",
" 31.848804 | \n",
" 1.723696e-08 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 28.362986 | \n",
" 1.033171e-07 | \n",
" Fen | \n",
"
\n",
" \n",
" 8 | \n",
" 11.746215 | \n",
" 6.127553e-04 | \n",
" Heather | \n",
"
\n",
" \n",
" 10 | \n",
" 11.587245 | \n",
" 6.673323e-04 | \n",
" Bog | \n",
"
\n",
" \n",
" 6 | \n",
" 7.998434 | \n",
" 4.693475e-03 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 9 | \n",
" 5.172007 | \n",
" 2.298017e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 2.371159 | \n",
" 1.236350e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 11 | \n",
" 1.135878 | \n",
" 2.865572e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 14 | \n",
" 0.372574 | \n",
" 5.416222e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 5 | \n",
" 0.126953 | \n",
" 7.216219e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 3058.357364 0.000000e+00 Inflowing drainage direction\n",
"23 2873.839868 0.000000e+00 Surface type\n",
"21 2752.743624 0.000000e+00 Elevation\n",
"2 1607.983542 1.980709e-320 Arable\n",
"24 900.562185 1.520435e-187 Outflowing drainage direction\n",
"3 796.768219 3.749922e-167 Improve grassland\n",
"26 532.616285 3.976135e-114 Fertiliser K\n",
"27 532.616285 3.976135e-114 Fertiliser N\n",
"28 532.616285 3.976135e-114 Fertiliser P\n",
"0 495.339143 1.652140e-106 Deciduous woodland\n",
"17 274.520690 1.206526e-60 Littoral sediment\n",
"20 270.648302 7.898492e-60 Suburban\n",
"29 247.805699 5.245303e-55 Chlorothalonil_5km\n",
"30 247.805699 5.245303e-55 Glyphosate_5km\n",
"31 247.805699 5.245303e-55 Mancozeb_5km\n",
"32 247.805699 5.245303e-55 Mecoprop-P_5km\n",
"34 247.805699 5.245303e-55 Pendimethalin_5km\n",
"22 209.765273 6.085933e-47 Cumulative catchment area\n",
"36 178.358152 2.992833e-40 Prosulfocarb_5km\n",
"37 177.859694 3.824203e-40 Sulphur_5km\n",
"38 156.940500 1.142502e-35 Tri-allate_5km\n",
"35 130.830883 4.625347e-30 PropamocarbHydrochloride_5km\n",
"19 129.928183 7.235400e-30 Urban\n",
"33 126.675723 3.629620e-29 Metamitron_5km\n",
"18 117.532842 3.396210e-27 Saltmarsh\n",
"15 88.671048 5.989848e-21 Supralittoral sediment\n",
"16 48.043370 4.494345e-12 Littoral rock\n",
"4 40.170380 2.454146e-10 Neutral grassland\n",
"1 33.082017 9.161935e-09 Coniferous woodland\n",
"13 31.848804 1.723696e-08 Freshwater\n",
"7 28.362986 1.033171e-07 Fen\n",
"8 11.746215 6.127553e-04 Heather\n",
"10 11.587245 6.673323e-04 Bog\n",
"6 7.998434 4.693475e-03 Acid grassland\n",
"9 5.172007 2.298017e-02 Heather grassland\n",
"12 2.371159 1.236350e-01 Saltwater\n",
"11 1.135878 2.865572e-01 Inland rock\n",
"14 0.372574 5.416222e-01 Supralittoral rock\n",
"5 0.126953 7.216219e-01 Calcareous grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pintail 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 1193.390686 | \n",
" 8.415495e-244 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 26 | \n",
" 1059.117690 | \n",
" 3.107133e-218 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 1059.117690 | \n",
" 3.107133e-218 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 1059.117690 | \n",
" 3.107133e-218 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 23 | \n",
" 1044.622083 | \n",
" 1.885397e-215 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 953.980643 | \n",
" 6.038807e-198 | \n",
" Elevation | \n",
"
\n",
" \n",
" 2 | \n",
" 678.915030 | \n",
" 1.065146e-143 | \n",
" Arable | \n",
"
\n",
" \n",
" 3 | \n",
" 511.570131 | \n",
" 7.880582e-110 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 29 | \n",
" 437.458138 | \n",
" 1.308414e-94 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 437.458138 | \n",
" 1.308414e-94 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 437.458138 | \n",
" 1.308414e-94 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 437.458138 | \n",
" 1.308414e-94 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 437.458138 | \n",
" 1.308414e-94 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 20 | \n",
" 365.266834 | \n",
" 1.196351e-79 | \n",
" Suburban | \n",
"
\n",
" \n",
" 24 | \n",
" 328.700531 | \n",
" 5.109936e-72 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 38 | \n",
" 311.163722 | \n",
" 2.403093e-68 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 19 | \n",
" 308.836341 | \n",
" 7.392246e-68 | \n",
" Urban | \n",
"
\n",
" \n",
" 36 | \n",
" 300.708807 | \n",
" 3.750857e-66 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 300.167250 | \n",
" 4.873345e-66 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 33 | \n",
" 280.600130 | \n",
" 6.328572e-62 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 17 | \n",
" 278.656397 | \n",
" 1.623719e-61 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 22 | \n",
" 271.215067 | \n",
" 5.999103e-60 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 35 | \n",
" 269.394523 | \n",
" 1.451568e-59 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 18 | \n",
" 185.237707 | \n",
" 1.017662e-41 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 0 | \n",
" 155.189502 | \n",
" 2.711014e-35 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 4 | \n",
" 143.715093 | \n",
" 7.852766e-33 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 97.095040 | \n",
" 8.916265e-23 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 7 | \n",
" 92.278551 | \n",
" 9.873618e-22 | \n",
" Fen | \n",
"
\n",
" \n",
" 13 | \n",
" 23.914191 | \n",
" 1.026991e-06 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 15 | \n",
" 15.462169 | \n",
" 8.488716e-05 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 6 | \n",
" 11.551016 | \n",
" 6.804429e-04 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 5.159156 | \n",
" 2.315071e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 14 | \n",
" 4.607237 | \n",
" 3.186741e-02 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 2.382959 | \n",
" 1.227047e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 10 | \n",
" 2.157468 | \n",
" 1.419178e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 9 | \n",
" 1.820981 | \n",
" 1.772349e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 1.400084 | \n",
" 2.367449e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.321758 | \n",
" 5.705693e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 5 | \n",
" 0.100196 | \n",
" 7.516032e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 1193.390686 8.415495e-244 Inflowing drainage direction\n",
"26 1059.117690 3.107133e-218 Fertiliser K\n",
"27 1059.117690 3.107133e-218 Fertiliser N\n",
"28 1059.117690 3.107133e-218 Fertiliser P\n",
"23 1044.622083 1.885397e-215 Surface type\n",
"21 953.980643 6.038807e-198 Elevation\n",
"2 678.915030 1.065146e-143 Arable\n",
"3 511.570131 7.880582e-110 Improve grassland\n",
"29 437.458138 1.308414e-94 Chlorothalonil_5km\n",
"30 437.458138 1.308414e-94 Glyphosate_5km\n",
"31 437.458138 1.308414e-94 Mancozeb_5km\n",
"32 437.458138 1.308414e-94 Mecoprop-P_5km\n",
"34 437.458138 1.308414e-94 Pendimethalin_5km\n",
"20 365.266834 1.196351e-79 Suburban\n",
"24 328.700531 5.109936e-72 Outflowing drainage direction\n",
"38 311.163722 2.403093e-68 Tri-allate_5km\n",
"19 308.836341 7.392246e-68 Urban\n",
"36 300.708807 3.750857e-66 Prosulfocarb_5km\n",
"37 300.167250 4.873345e-66 Sulphur_5km\n",
"33 280.600130 6.328572e-62 Metamitron_5km\n",
"17 278.656397 1.623719e-61 Littoral sediment\n",
"22 271.215067 5.999103e-60 Cumulative catchment area\n",
"35 269.394523 1.451568e-59 PropamocarbHydrochloride_5km\n",
"18 185.237707 1.017662e-41 Saltmarsh\n",
"0 155.189502 2.711014e-35 Deciduous woodland\n",
"4 143.715093 7.852766e-33 Neutral grassland\n",
"12 97.095040 8.916265e-23 Saltwater\n",
"7 92.278551 9.873618e-22 Fen\n",
"13 23.914191 1.026991e-06 Freshwater\n",
"15 15.462169 8.488716e-05 Supralittoral sediment\n",
"6 11.551016 6.804429e-04 Acid grassland\n",
"8 5.159156 2.315071e-02 Heather\n",
"14 4.607237 3.186741e-02 Supralittoral rock\n",
"11 2.382959 1.227047e-01 Inland rock\n",
"10 2.157468 1.419178e-01 Bog\n",
"9 1.820981 1.772349e-01 Heather grassland\n",
"1 1.400084 2.367449e-01 Coniferous woodland\n",
"16 0.321758 5.705693e-01 Littoral rock\n",
"5 0.100196 7.516032e-01 Calcareous grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pochard 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 2671.442257 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 2671.442257 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 2671.442257 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 23 | \n",
" 1871.268813 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 1596.293317 | \n",
" 2.578949e-318 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 1458.059785 | \n",
" 4.121005e-293 | \n",
" Elevation | \n",
"
\n",
" \n",
" 2 | \n",
" 1323.591102 | \n",
" 3.098156e-268 | \n",
" Arable | \n",
"
\n",
" \n",
" 29 | \n",
" 806.540025 | \n",
" 4.403351e-169 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 806.540025 | \n",
" 4.403351e-169 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 806.540025 | \n",
" 4.403351e-169 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 806.540025 | \n",
" 4.403351e-169 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 806.540025 | \n",
" 4.403351e-169 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 36 | \n",
" 791.573223 | \n",
" 3.991040e-166 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 791.573223 | \n",
" 3.991040e-166 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 38 | \n",
" 782.836054 | \n",
" 2.137179e-164 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 3 | \n",
" 780.887257 | \n",
" 5.196046e-164 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 33 | \n",
" 771.463114 | \n",
" 3.825963e-162 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 35 | \n",
" 734.117892 | \n",
" 1.003605e-154 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 20 | \n",
" 732.060624 | \n",
" 2.577445e-154 | \n",
" Suburban | \n",
"
\n",
" \n",
" 22 | \n",
" 658.633204 | \n",
" 1.248489e-139 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 24 | \n",
" 618.437904 | \n",
" 1.546567e-131 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 19 | \n",
" 481.916188 | \n",
" 9.330097e-104 | \n",
" Urban | \n",
"
\n",
" \n",
" 0 | \n",
" 430.417497 | \n",
" 3.714651e-93 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 4 | \n",
" 110.555013 | \n",
" 1.090677e-25 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 84.237933 | \n",
" 5.501599e-20 | \n",
" Fen | \n",
"
\n",
" \n",
" 18 | \n",
" 61.691034 | \n",
" 4.542600e-15 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 13 | \n",
" 48.836131 | \n",
" 3.007200e-12 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 17 | \n",
" 20.906609 | \n",
" 4.895094e-06 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 14.195959 | \n",
" 1.659125e-04 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 10 | \n",
" 10.095658 | \n",
" 1.491870e-03 | \n",
" Bog | \n",
"
\n",
" \n",
" 6 | \n",
" 7.310865 | \n",
" 6.868452e-03 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 9 | \n",
" 3.252435 | \n",
" 7.135523e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 2.895485 | \n",
" 8.886706e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 11 | \n",
" 2.338684 | \n",
" 1.262358e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 15 | \n",
" 1.728844 | \n",
" 1.885965e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 5 | \n",
" 1.189055 | \n",
" 2.755532e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 0.349072 | \n",
" 5.546558e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 1 | \n",
" 0.137187 | \n",
" 7.111031e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.126274 | \n",
" 7.223367e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 2671.442257 0.000000e+00 Fertiliser K\n",
"27 2671.442257 0.000000e+00 Fertiliser N\n",
"28 2671.442257 0.000000e+00 Fertiliser P\n",
"23 1871.268813 0.000000e+00 Surface type\n",
"25 1596.293317 2.578949e-318 Inflowing drainage direction\n",
"21 1458.059785 4.121005e-293 Elevation\n",
"2 1323.591102 3.098156e-268 Arable\n",
"29 806.540025 4.403351e-169 Chlorothalonil_5km\n",
"30 806.540025 4.403351e-169 Glyphosate_5km\n",
"31 806.540025 4.403351e-169 Mancozeb_5km\n",
"32 806.540025 4.403351e-169 Mecoprop-P_5km\n",
"34 806.540025 4.403351e-169 Pendimethalin_5km\n",
"36 791.573223 3.991040e-166 Prosulfocarb_5km\n",
"37 791.573223 3.991040e-166 Sulphur_5km\n",
"38 782.836054 2.137179e-164 Tri-allate_5km\n",
"3 780.887257 5.196046e-164 Improve grassland\n",
"33 771.463114 3.825963e-162 Metamitron_5km\n",
"35 734.117892 1.003605e-154 PropamocarbHydrochloride_5km\n",
"20 732.060624 2.577445e-154 Suburban\n",
"22 658.633204 1.248489e-139 Cumulative catchment area\n",
"24 618.437904 1.546567e-131 Outflowing drainage direction\n",
"19 481.916188 9.330097e-104 Urban\n",
"0 430.417497 3.714651e-93 Deciduous woodland\n",
"4 110.555013 1.090677e-25 Neutral grassland\n",
"7 84.237933 5.501599e-20 Fen\n",
"18 61.691034 4.542600e-15 Saltmarsh\n",
"13 48.836131 3.007200e-12 Freshwater\n",
"17 20.906609 4.895094e-06 Littoral sediment\n",
"12 14.195959 1.659125e-04 Saltwater\n",
"10 10.095658 1.491870e-03 Bog\n",
"6 7.310865 6.868452e-03 Acid grassland\n",
"9 3.252435 7.135523e-02 Heather grassland\n",
"8 2.895485 8.886706e-02 Heather\n",
"11 2.338684 1.262358e-01 Inland rock\n",
"15 1.728844 1.885965e-01 Supralittoral sediment\n",
"5 1.189055 2.755532e-01 Calcareous grassland\n",
"14 0.349072 5.546558e-01 Supralittoral rock\n",
"1 0.137187 7.111031e-01 Coniferous woodland\n",
"16 0.126274 7.223367e-01 Littoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Red-legged Partridge 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 10028.081544 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 10028.081544 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 10028.081544 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 23 | \n",
" 6569.078657 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 5268.430630 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 25 | \n",
" 4818.581261 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 2 | \n",
" 4323.612248 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 29 | \n",
" 2736.285944 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 2736.285944 | \n",
" 0.000000e+00 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 2736.285944 | \n",
" 0.000000e+00 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 2736.285944 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 2736.285944 | \n",
" 0.000000e+00 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 38 | \n",
" 2359.016809 | \n",
" 0.000000e+00 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 3 | \n",
" 2303.416408 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 37 | \n",
" 2250.336701 | \n",
" 0.000000e+00 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 36 | \n",
" 2245.412837 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 33 | \n",
" 1967.904394 | \n",
" 0.000000e+00 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 35 | \n",
" 1927.307830 | \n",
" 0.000000e+00 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 24 | \n",
" 1545.134347 | \n",
" 4.967533e-309 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 1070.992467 | \n",
" 1.643813e-220 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 22 | \n",
" 779.627069 | \n",
" 9.230330e-164 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 20 | \n",
" 675.306381 | \n",
" 5.632102e-143 | \n",
" Suburban | \n",
"
\n",
" \n",
" 5 | \n",
" 107.311955 | \n",
" 5.478702e-25 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 19 | \n",
" 67.177375 | \n",
" 2.868836e-16 | \n",
" Urban | \n",
"
\n",
" \n",
" 4 | \n",
" 62.384237 | \n",
" 3.203360e-15 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 32.256137 | \n",
" 1.398832e-08 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 31.379082 | \n",
" 2.193271e-08 | \n",
" Fen | \n",
"
\n",
" \n",
" 18 | \n",
" 13.866634 | \n",
" 1.976067e-04 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 11 | \n",
" 8.906308 | \n",
" 2.850500e-03 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 8 | \n",
" 5.105522 | \n",
" 2.387671e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 14 | \n",
" 4.467719 | \n",
" 3.457209e-02 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 17 | \n",
" 3.083385 | \n",
" 7.913418e-02 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 1 | \n",
" 2.844292 | \n",
" 9.173816e-02 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 9 | \n",
" 2.063899 | \n",
" 1.508631e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 0.979514 | \n",
" 3.223488e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 15 | \n",
" 0.876741 | \n",
" 3.491243e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 10 | \n",
" 0.359643 | \n",
" 5.487215e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 16 | \n",
" 0.075404 | \n",
" 7.836319e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 6 | \n",
" 0.037231 | \n",
" 8.470000e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 10028.081544 0.000000e+00 Fertiliser K\n",
"27 10028.081544 0.000000e+00 Fertiliser N\n",
"28 10028.081544 0.000000e+00 Fertiliser P\n",
"23 6569.078657 0.000000e+00 Surface type\n",
"21 5268.430630 0.000000e+00 Elevation\n",
"25 4818.581261 0.000000e+00 Inflowing drainage direction\n",
"2 4323.612248 0.000000e+00 Arable\n",
"29 2736.285944 0.000000e+00 Chlorothalonil_5km\n",
"30 2736.285944 0.000000e+00 Glyphosate_5km\n",
"31 2736.285944 0.000000e+00 Mancozeb_5km\n",
"32 2736.285944 0.000000e+00 Mecoprop-P_5km\n",
"34 2736.285944 0.000000e+00 Pendimethalin_5km\n",
"38 2359.016809 0.000000e+00 Tri-allate_5km\n",
"3 2303.416408 0.000000e+00 Improve grassland\n",
"37 2250.336701 0.000000e+00 Sulphur_5km\n",
"36 2245.412837 0.000000e+00 Prosulfocarb_5km\n",
"33 1967.904394 0.000000e+00 Metamitron_5km\n",
"35 1927.307830 0.000000e+00 PropamocarbHydrochloride_5km\n",
"24 1545.134347 4.967533e-309 Outflowing drainage direction\n",
"0 1070.992467 1.643813e-220 Deciduous woodland\n",
"22 779.627069 9.230330e-164 Cumulative catchment area\n",
"20 675.306381 5.632102e-143 Suburban\n",
"5 107.311955 5.478702e-25 Calcareous grassland\n",
"19 67.177375 2.868836e-16 Urban\n",
"4 62.384237 3.203360e-15 Neutral grassland\n",
"13 32.256137 1.398832e-08 Freshwater\n",
"7 31.379082 2.193271e-08 Fen\n",
"18 13.866634 1.976067e-04 Saltmarsh\n",
"11 8.906308 2.850500e-03 Inland rock\n",
"8 5.105522 2.387671e-02 Heather\n",
"14 4.467719 3.457209e-02 Supralittoral rock\n",
"17 3.083385 7.913418e-02 Littoral sediment\n",
"1 2.844292 9.173816e-02 Coniferous woodland\n",
"9 2.063899 1.508631e-01 Heather grassland\n",
"12 0.979514 3.223488e-01 Saltwater\n",
"15 0.876741 3.491243e-01 Supralittoral sediment\n",
"10 0.359643 5.487215e-01 Bog\n",
"16 0.075404 7.836319e-01 Littoral rock\n",
"6 0.037231 8.470000e-01 Acid grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ring-necked Parakeet 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 20 | \n",
" 1621.475487 | \n",
" 7.410985e-323 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 1336.970983 | \n",
" 9.993620e-271 | \n",
" Urban | \n",
"
\n",
" \n",
" 26 | \n",
" 1074.183474 | \n",
" 4.023650e-221 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 1074.183474 | \n",
" 4.023650e-221 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 1074.183474 | \n",
" 4.023650e-221 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 23 | \n",
" 565.996873 | \n",
" 6.403263e-121 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 427.527239 | \n",
" 1.468349e-92 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 400.020717 | \n",
" 7.218079e-87 | \n",
" Elevation | \n",
"
\n",
" \n",
" 29 | \n",
" 391.123758 | \n",
" 5.053244e-85 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 391.123758 | \n",
" 5.053244e-85 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 391.123758 | \n",
" 5.053244e-85 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 391.123758 | \n",
" 5.053244e-85 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 391.123758 | \n",
" 5.053244e-85 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 0 | \n",
" 352.039450 | \n",
" 6.823027e-77 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 38 | \n",
" 339.108972 | \n",
" 3.409990e-74 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 36 | \n",
" 319.146189 | \n",
" 5.106623e-70 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 319.146189 | \n",
" 5.106623e-70 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 35 | \n",
" 318.152714 | \n",
" 8.245376e-70 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 33 | \n",
" 317.219812 | \n",
" 1.293078e-69 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 24 | \n",
" 285.355903 | \n",
" 6.317471e-63 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 3 | \n",
" 283.340499 | \n",
" 1.677140e-62 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 50.357389 | \n",
" 1.391539e-12 | \n",
" Arable | \n",
"
\n",
" \n",
" 13 | \n",
" 48.811699 | \n",
" 3.044664e-12 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 22 | \n",
" 35.867447 | \n",
" 2.203758e-09 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 7 | \n",
" 19.300329 | \n",
" 1.131332e-05 | \n",
" Fen | \n",
"
\n",
" \n",
" 6 | \n",
" 6.952640 | \n",
" 8.385814e-03 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 3.782438 | \n",
" 5.182829e-02 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 9 | \n",
" 3.524436 | \n",
" 6.050691e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 2.733169 | \n",
" 9.832354e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 10 | \n",
" 2.532926 | \n",
" 1.115330e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 1 | \n",
" 2.272192 | \n",
" 1.317531e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 17 | \n",
" 0.899822 | \n",
" 3.428583e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 11 | \n",
" 0.861968 | \n",
" 3.532166e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 16 | \n",
" 0.790142 | \n",
" 3.740841e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 14 | \n",
" 0.589704 | \n",
" 4.425563e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 18 | \n",
" 0.412370 | \n",
" 5.207875e-01 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 15 | \n",
" 0.008544 | \n",
" 9.263560e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 0.001371 | \n",
" 9.704634e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 5 | \n",
" 0.000396 | \n",
" 9.841293e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"20 1621.475487 7.410985e-323 Suburban\n",
"19 1336.970983 9.993620e-271 Urban\n",
"26 1074.183474 4.023650e-221 Fertiliser K\n",
"27 1074.183474 4.023650e-221 Fertiliser N\n",
"28 1074.183474 4.023650e-221 Fertiliser P\n",
"23 565.996873 6.403263e-121 Surface type\n",
"25 427.527239 1.468349e-92 Inflowing drainage direction\n",
"21 400.020717 7.218079e-87 Elevation\n",
"29 391.123758 5.053244e-85 Chlorothalonil_5km\n",
"30 391.123758 5.053244e-85 Glyphosate_5km\n",
"31 391.123758 5.053244e-85 Mancozeb_5km\n",
"32 391.123758 5.053244e-85 Mecoprop-P_5km\n",
"34 391.123758 5.053244e-85 Pendimethalin_5km\n",
"0 352.039450 6.823027e-77 Deciduous woodland\n",
"38 339.108972 3.409990e-74 Tri-allate_5km\n",
"36 319.146189 5.106623e-70 Prosulfocarb_5km\n",
"37 319.146189 5.106623e-70 Sulphur_5km\n",
"35 318.152714 8.245376e-70 PropamocarbHydrochloride_5km\n",
"33 317.219812 1.293078e-69 Metamitron_5km\n",
"24 285.355903 6.317471e-63 Outflowing drainage direction\n",
"3 283.340499 1.677140e-62 Improve grassland\n",
"2 50.357389 1.391539e-12 Arable\n",
"13 48.811699 3.044664e-12 Freshwater\n",
"22 35.867447 2.203758e-09 Cumulative catchment area\n",
"7 19.300329 1.131332e-05 Fen\n",
"6 6.952640 8.385814e-03 Acid grassland\n",
"4 3.782438 5.182829e-02 Neutral grassland\n",
"9 3.524436 6.050691e-02 Heather grassland\n",
"8 2.733169 9.832354e-02 Heather\n",
"10 2.532926 1.115330e-01 Bog\n",
"1 2.272192 1.317531e-01 Coniferous woodland\n",
"17 0.899822 3.428583e-01 Littoral sediment\n",
"11 0.861968 3.532166e-01 Inland rock\n",
"16 0.790142 3.740841e-01 Littoral rock\n",
"14 0.589704 4.425563e-01 Supralittoral rock\n",
"18 0.412370 5.207875e-01 Saltmarsh\n",
"15 0.008544 9.263560e-01 Supralittoral sediment\n",
"12 0.001371 9.704634e-01 Saltwater\n",
"5 0.000396 9.841293e-01 Calcareous grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rock Dove 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 6619.008028 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 5838.703214 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 25 | \n",
" 5360.017492 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 26 | \n",
" 4904.971327 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 4904.971327 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 4904.971327 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 29 | \n",
" 2334.727881 | \n",
" 0.000000e+00 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 2334.727881 | \n",
" 0.000000e+00 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 2334.727881 | \n",
" 0.000000e+00 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 2334.727881 | \n",
" 0.000000e+00 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 2334.727881 | \n",
" 0.000000e+00 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 3 | \n",
" 2261.308708 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 38 | \n",
" 1862.743756 | \n",
" 0.000000e+00 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 36 | \n",
" 1750.454521 | \n",
" 0.000000e+00 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 1750.454521 | \n",
" 0.000000e+00 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 2 | \n",
" 1729.647756 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 35 | \n",
" 1470.194191 | \n",
" 2.442119e-295 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 33 | \n",
" 1464.256923 | \n",
" 3.000378e-294 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 24 | \n",
" 1406.973455 | \n",
" 1.055522e-283 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 20 | \n",
" 1158.528776 | \n",
" 3.363250e-237 | \n",
" Suburban | \n",
"
\n",
" \n",
" 0 | \n",
" 1035.953183 | \n",
" 8.748264e-214 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 22 | \n",
" 751.130029 | \n",
" 4.149641e-158 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 19 | \n",
" 315.777931 | \n",
" 2.592399e-69 | \n",
" Urban | \n",
"
\n",
" \n",
" 4 | \n",
" 93.807385 | \n",
" 4.601235e-22 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 64.397083 | \n",
" 1.162344e-15 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 53.306354 | \n",
" 3.129215e-13 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 34.904593 | \n",
" 3.605024e-09 | \n",
" Fen | \n",
"
\n",
" \n",
" 17 | \n",
" 20.266808 | \n",
" 6.831707e-06 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 18 | \n",
" 18.523632 | \n",
" 1.698188e-05 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 16 | \n",
" 17.262056 | \n",
" 3.290300e-05 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 15 | \n",
" 14.619793 | \n",
" 1.325292e-04 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 14 | \n",
" 8.607879 | \n",
" 3.356669e-03 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 1 | \n",
" 6.197187 | \n",
" 1.281560e-02 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 11 | \n",
" 5.712949 | \n",
" 1.686333e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 9 | \n",
" 5.682524 | \n",
" 1.715800e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 5.134740 | \n",
" 2.347832e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 12 | \n",
" 1.917829 | \n",
" 1.661350e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 6 | \n",
" 1.550400 | \n",
" 2.131130e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 0.292612 | \n",
" 5.885664e-01 | \n",
" Heather | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 6619.008028 0.000000e+00 Surface type\n",
"21 5838.703214 0.000000e+00 Elevation\n",
"25 5360.017492 0.000000e+00 Inflowing drainage direction\n",
"26 4904.971327 0.000000e+00 Fertiliser K\n",
"27 4904.971327 0.000000e+00 Fertiliser N\n",
"28 4904.971327 0.000000e+00 Fertiliser P\n",
"29 2334.727881 0.000000e+00 Chlorothalonil_5km\n",
"30 2334.727881 0.000000e+00 Glyphosate_5km\n",
"31 2334.727881 0.000000e+00 Mancozeb_5km\n",
"32 2334.727881 0.000000e+00 Mecoprop-P_5km\n",
"34 2334.727881 0.000000e+00 Pendimethalin_5km\n",
"3 2261.308708 0.000000e+00 Improve grassland\n",
"38 1862.743756 0.000000e+00 Tri-allate_5km\n",
"36 1750.454521 0.000000e+00 Prosulfocarb_5km\n",
"37 1750.454521 0.000000e+00 Sulphur_5km\n",
"2 1729.647756 0.000000e+00 Arable\n",
"35 1470.194191 2.442119e-295 PropamocarbHydrochloride_5km\n",
"33 1464.256923 3.000378e-294 Metamitron_5km\n",
"24 1406.973455 1.055522e-283 Outflowing drainage direction\n",
"20 1158.528776 3.363250e-237 Suburban\n",
"0 1035.953183 8.748264e-214 Deciduous woodland\n",
"22 751.130029 4.149641e-158 Cumulative catchment area\n",
"19 315.777931 2.592399e-69 Urban\n",
"4 93.807385 4.601235e-22 Neutral grassland\n",
"5 64.397083 1.162344e-15 Calcareous grassland\n",
"13 53.306354 3.129215e-13 Freshwater\n",
"7 34.904593 3.605024e-09 Fen\n",
"17 20.266808 6.831707e-06 Littoral sediment\n",
"18 18.523632 1.698188e-05 Saltmarsh\n",
"16 17.262056 3.290300e-05 Littoral rock\n",
"15 14.619793 1.325292e-04 Supralittoral sediment\n",
"14 8.607879 3.356669e-03 Supralittoral rock\n",
"1 6.197187 1.281560e-02 Coniferous woodland\n",
"11 5.712949 1.686333e-02 Inland rock\n",
"9 5.682524 1.715800e-02 Heather grassland\n",
"10 5.134740 2.347832e-02 Bog\n",
"12 1.917829 1.661350e-01 Saltwater\n",
"6 1.550400 2.131130e-01 Acid grassland\n",
"8 0.292612 5.885664e-01 Heather"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ruddy Duck 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 506.011518 | \n",
" 1.079756e-108 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 506.011518 | \n",
" 1.079756e-108 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 506.011518 | \n",
" 1.079756e-108 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 20 | \n",
" 283.173640 | \n",
" 1.818362e-62 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 266.772577 | \n",
" 5.184196e-59 | \n",
" Urban | \n",
"
\n",
" \n",
" 23 | \n",
" 265.160749 | \n",
" 1.134062e-58 | \n",
" Surface type | \n",
"
\n",
" \n",
" 13 | \n",
" 254.219428 | \n",
" 2.313511e-56 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 25 | \n",
" 195.841301 | \n",
" 5.587129e-44 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 180.145187 | \n",
" 1.243031e-40 | \n",
" Elevation | \n",
"
\n",
" \n",
" 3 | \n",
" 160.625779 | \n",
" 1.855127e-36 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 24 | \n",
" 147.983254 | \n",
" 9.521754e-34 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 29 | \n",
" 127.251076 | \n",
" 2.728551e-29 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 127.251076 | \n",
" 2.728551e-29 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 127.251076 | \n",
" 2.728551e-29 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 127.251076 | \n",
" 2.728551e-29 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 127.251076 | \n",
" 2.728551e-29 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 33 | \n",
" 124.028628 | \n",
" 1.349605e-28 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 36 | \n",
" 120.800275 | \n",
" 6.701485e-28 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 120.800275 | \n",
" 6.701485e-28 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 2 | \n",
" 120.623646 | \n",
" 7.315784e-28 | \n",
" Arable | \n",
"
\n",
" \n",
" 38 | \n",
" 116.409165 | \n",
" 5.935908e-27 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 35 | \n",
" 114.624634 | \n",
" 1.441129e-26 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 4 | \n",
" 87.739974 | \n",
" 9.541108e-21 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 22 | \n",
" 47.929479 | \n",
" 4.761481e-12 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 0 | \n",
" 29.300605 | \n",
" 6.378079e-08 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 15 | \n",
" 23.105165 | \n",
" 1.561879e-06 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 7 | \n",
" 12.077647 | \n",
" 5.130188e-04 | \n",
" Fen | \n",
"
\n",
" \n",
" 6 | \n",
" 3.537990 | \n",
" 6.001455e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 9 | \n",
" 2.370084 | \n",
" 1.237201e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 2.211937 | \n",
" 1.369862e-01 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 8 | \n",
" 1.997667 | \n",
" 1.575807e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 1 | \n",
" 1.742925 | \n",
" 1.868066e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 10 | \n",
" 1.515171 | \n",
" 2.183881e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 17 | \n",
" 0.414463 | \n",
" 5.197314e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 5 | \n",
" 0.412700 | \n",
" 5.206209e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 0.407971 | \n",
" 5.230193e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 16 | \n",
" 0.387826 | \n",
" 5.334622e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 0.378989 | \n",
" 5.381623e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 12 | \n",
" 0.015552 | \n",
" 9.007570e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 506.011518 1.079756e-108 Fertiliser K\n",
"27 506.011518 1.079756e-108 Fertiliser N\n",
"28 506.011518 1.079756e-108 Fertiliser P\n",
"20 283.173640 1.818362e-62 Suburban\n",
"19 266.772577 5.184196e-59 Urban\n",
"23 265.160749 1.134062e-58 Surface type\n",
"13 254.219428 2.313511e-56 Freshwater\n",
"25 195.841301 5.587129e-44 Inflowing drainage direction\n",
"21 180.145187 1.243031e-40 Elevation\n",
"3 160.625779 1.855127e-36 Improve grassland\n",
"24 147.983254 9.521754e-34 Outflowing drainage direction\n",
"29 127.251076 2.728551e-29 Chlorothalonil_5km\n",
"30 127.251076 2.728551e-29 Glyphosate_5km\n",
"31 127.251076 2.728551e-29 Mancozeb_5km\n",
"32 127.251076 2.728551e-29 Mecoprop-P_5km\n",
"34 127.251076 2.728551e-29 Pendimethalin_5km\n",
"33 124.028628 1.349605e-28 Metamitron_5km\n",
"36 120.800275 6.701485e-28 Prosulfocarb_5km\n",
"37 120.800275 6.701485e-28 Sulphur_5km\n",
"2 120.623646 7.315784e-28 Arable\n",
"38 116.409165 5.935908e-27 Tri-allate_5km\n",
"35 114.624634 1.441129e-26 PropamocarbHydrochloride_5km\n",
"4 87.739974 9.541108e-21 Neutral grassland\n",
"22 47.929479 4.761481e-12 Cumulative catchment area\n",
"0 29.300605 6.378079e-08 Deciduous woodland\n",
"15 23.105165 1.561879e-06 Supralittoral sediment\n",
"7 12.077647 5.130188e-04 Fen\n",
"6 3.537990 6.001455e-02 Acid grassland\n",
"9 2.370084 1.237201e-01 Heather grassland\n",
"18 2.211937 1.369862e-01 Saltmarsh\n",
"8 1.997667 1.575807e-01 Heather\n",
"1 1.742925 1.868066e-01 Coniferous woodland\n",
"10 1.515171 2.183881e-01 Bog\n",
"17 0.414463 5.197314e-01 Littoral sediment\n",
"5 0.412700 5.206209e-01 Calcareous grassland\n",
"14 0.407971 5.230193e-01 Supralittoral rock\n",
"16 0.387826 5.334622e-01 Littoral rock\n",
"11 0.378989 5.381623e-01 Inland rock\n",
"12 0.015552 9.007570e-01 Saltwater"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Whooper Swan 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 1446.473544 | \n",
" 5.550292e-291 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 1251.247669 | \n",
" 1.058098e-254 | \n",
" Elevation | \n",
"
\n",
" \n",
" 23 | \n",
" 1191.375081 | \n",
" 2.023384e-243 | \n",
" Surface type | \n",
"
\n",
" \n",
" 3 | \n",
" 445.722249 | \n",
" 2.586255e-96 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 374.066418 | \n",
" 1.765675e-81 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 320.036326 | \n",
" 3.324479e-70 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 238.820965 | \n",
" 4.174954e-53 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 26 | \n",
" 223.204418 | \n",
" 8.516960e-50 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 223.204418 | \n",
" 8.516960e-50 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 223.204418 | \n",
" 8.516960e-50 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 29 | \n",
" 197.475322 | \n",
" 2.507116e-44 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 197.475322 | \n",
" 2.507116e-44 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 197.475322 | \n",
" 2.507116e-44 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 197.475322 | \n",
" 2.507116e-44 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 197.475322 | \n",
" 2.507116e-44 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 17 | \n",
" 121.314510 | \n",
" 5.191402e-28 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 38 | \n",
" 114.782090 | \n",
" 1.332627e-26 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 36 | \n",
" 107.759719 | \n",
" 4.383959e-25 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 107.759719 | \n",
" 4.383959e-25 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 35 | \n",
" 97.774587 | \n",
" 6.352410e-23 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 33 | \n",
" 94.043625 | \n",
" 4.089261e-22 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 20 | \n",
" 90.045300 | \n",
" 3.013566e-21 | \n",
" Suburban | \n",
"
\n",
" \n",
" 22 | \n",
" 79.687198 | \n",
" 5.373532e-19 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 13 | \n",
" 77.348071 | \n",
" 1.735747e-18 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 19 | \n",
" 63.066151 | \n",
" 2.272035e-15 | \n",
" Urban | \n",
"
\n",
" \n",
" 18 | \n",
" 53.271204 | \n",
" 3.185333e-13 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 1 | \n",
" 53.201527 | \n",
" 3.299568e-13 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 10 | \n",
" 50.830701 | \n",
" 1.095016e-12 | \n",
" Bog | \n",
"
\n",
" \n",
" 15 | \n",
" 45.236869 | \n",
" 1.866498e-11 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 9 | \n",
" 42.512494 | \n",
" 7.451361e-11 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 32.916161 | \n",
" 9.974305e-09 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 32.907150 | \n",
" 1.002046e-08 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 16 | \n",
" 29.904098 | \n",
" 4.677093e-08 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 7 | \n",
" 24.512053 | \n",
" 7.536372e-07 | \n",
" Fen | \n",
"
\n",
" \n",
" 12 | \n",
" 4.352755 | \n",
" 3.698086e-02 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 8 | \n",
" 2.633900 | \n",
" 1.046440e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 5 | \n",
" 2.226658 | \n",
" 1.356866e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 6 | \n",
" 1.591194 | \n",
" 2.071926e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 0.020465 | \n",
" 8.862510e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 1446.473544 5.550292e-291 Inflowing drainage direction\n",
"21 1251.247669 1.058098e-254 Elevation\n",
"23 1191.375081 2.023384e-243 Surface type\n",
"3 445.722249 2.586255e-96 Improve grassland\n",
"2 374.066418 1.765675e-81 Arable\n",
"24 320.036326 3.324479e-70 Outflowing drainage direction\n",
"0 238.820965 4.174954e-53 Deciduous woodland\n",
"26 223.204418 8.516960e-50 Fertiliser K\n",
"27 223.204418 8.516960e-50 Fertiliser N\n",
"28 223.204418 8.516960e-50 Fertiliser P\n",
"29 197.475322 2.507116e-44 Chlorothalonil_5km\n",
"30 197.475322 2.507116e-44 Glyphosate_5km\n",
"31 197.475322 2.507116e-44 Mancozeb_5km\n",
"32 197.475322 2.507116e-44 Mecoprop-P_5km\n",
"34 197.475322 2.507116e-44 Pendimethalin_5km\n",
"17 121.314510 5.191402e-28 Littoral sediment\n",
"38 114.782090 1.332627e-26 Tri-allate_5km\n",
"36 107.759719 4.383959e-25 Prosulfocarb_5km\n",
"37 107.759719 4.383959e-25 Sulphur_5km\n",
"35 97.774587 6.352410e-23 PropamocarbHydrochloride_5km\n",
"33 94.043625 4.089261e-22 Metamitron_5km\n",
"20 90.045300 3.013566e-21 Suburban\n",
"22 79.687198 5.373532e-19 Cumulative catchment area\n",
"13 77.348071 1.735747e-18 Freshwater\n",
"19 63.066151 2.272035e-15 Urban\n",
"18 53.271204 3.185333e-13 Saltmarsh\n",
"1 53.201527 3.299568e-13 Coniferous woodland\n",
"10 50.830701 1.095016e-12 Bog\n",
"15 45.236869 1.866498e-11 Supralittoral sediment\n",
"9 42.512494 7.451361e-11 Heather grassland\n",
"4 32.916161 9.974305e-09 Neutral grassland\n",
"14 32.907150 1.002046e-08 Supralittoral rock\n",
"16 29.904098 4.677093e-08 Littoral rock\n",
"7 24.512053 7.536372e-07 Fen\n",
"12 4.352755 3.698086e-02 Saltwater\n",
"8 2.633900 1.046440e-01 Heather\n",
"5 2.226658 1.356866e-01 Calcareous grassland\n",
"6 1.591194 2.071926e-01 Acid grassland\n",
"11 0.020465 8.862510e-01 Inland rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Wigeon 5km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 3527.304911 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 23 | \n",
" 3350.481828 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 3275.722008 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 26 | \n",
" 1560.675179 | \n",
" 7.419696e-312 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 1560.675179 | \n",
" 7.419696e-312 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 1560.675179 | \n",
" 7.419696e-312 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 3 | \n",
" 1300.349746 | \n",
" 6.719167e-264 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 1127.764279 | \n",
" 2.364062e-231 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 888.494256 | \n",
" 3.471083e-185 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 29 | \n",
" 847.052726 | \n",
" 4.617711e-177 | \n",
" Chlorothalonil_5km | \n",
"
\n",
" \n",
" 30 | \n",
" 847.052726 | \n",
" 4.617711e-177 | \n",
" Glyphosate_5km | \n",
"
\n",
" \n",
" 31 | \n",
" 847.052726 | \n",
" 4.617711e-177 | \n",
" Mancozeb_5km | \n",
"
\n",
" \n",
" 32 | \n",
" 847.052726 | \n",
" 4.617711e-177 | \n",
" Mecoprop-P_5km | \n",
"
\n",
" \n",
" 34 | \n",
" 847.052726 | \n",
" 4.617711e-177 | \n",
" Pendimethalin_5km | \n",
"
\n",
" \n",
" 36 | \n",
" 676.520460 | \n",
" 3.215919e-143 | \n",
" Prosulfocarb_5km | \n",
"
\n",
" \n",
" 37 | \n",
" 675.198692 | \n",
" 5.919142e-143 | \n",
" Sulphur_5km | \n",
"
\n",
" \n",
" 38 | \n",
" 659.465995 | \n",
" 8.494090e-140 | \n",
" Tri-allate_5km | \n",
"
\n",
" \n",
" 0 | \n",
" 583.145685 | \n",
" 2.124075e-124 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 33 | \n",
" 550.331786 | \n",
" 9.792385e-118 | \n",
" Metamitron_5km | \n",
"
\n",
" \n",
" 35 | \n",
" 548.586416 | \n",
" 2.218553e-117 | \n",
" PropamocarbHydrochloride_5km | \n",
"
\n",
" \n",
" 20 | \n",
" 461.333112 | \n",
" 1.579205e-99 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 215.255159 | \n",
" 4.147517e-48 | \n",
" Urban | \n",
"
\n",
" \n",
" 22 | \n",
" 187.302538 | \n",
" 3.691076e-42 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 17 | \n",
" 171.051423 | \n",
" 1.090041e-38 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 18 | \n",
" 92.813673 | \n",
" 7.557806e-22 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 4 | \n",
" 86.129805 | \n",
" 2.134802e-20 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 71.432156 | \n",
" 3.379892e-17 | \n",
" Fen | \n",
"
\n",
" \n",
" 13 | \n",
" 52.356807 | \n",
" 5.058361e-13 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 16 | \n",
" 40.733985 | \n",
" 1.841863e-10 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 15 | \n",
" 39.128665 | \n",
" 4.172586e-10 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 38.306779 | \n",
" 6.344354e-10 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 9 | \n",
" 22.013738 | \n",
" 2.752216e-06 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 13.602833 | \n",
" 2.273482e-04 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 1 | \n",
" 12.198857 | \n",
" 4.807841e-04 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 10 | \n",
" 8.118067 | \n",
" 4.393870e-03 | \n",
" Bog | \n",
"
\n",
" \n",
" 5 | \n",
" 7.660225 | \n",
" 5.658186e-03 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 4.878914 | \n",
" 2.721508e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 6 | \n",
" 0.972496 | \n",
" 3.240885e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 0.000720 | \n",
" 9.785954e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 3527.304911 0.000000e+00 Inflowing drainage direction\n",
"23 3350.481828 0.000000e+00 Surface type\n",
"21 3275.722008 0.000000e+00 Elevation\n",
"26 1560.675179 7.419696e-312 Fertiliser K\n",
"27 1560.675179 7.419696e-312 Fertiliser N\n",
"28 1560.675179 7.419696e-312 Fertiliser P\n",
"3 1300.349746 6.719167e-264 Improve grassland\n",
"2 1127.764279 2.364062e-231 Arable\n",
"24 888.494256 3.471083e-185 Outflowing drainage direction\n",
"29 847.052726 4.617711e-177 Chlorothalonil_5km\n",
"30 847.052726 4.617711e-177 Glyphosate_5km\n",
"31 847.052726 4.617711e-177 Mancozeb_5km\n",
"32 847.052726 4.617711e-177 Mecoprop-P_5km\n",
"34 847.052726 4.617711e-177 Pendimethalin_5km\n",
"36 676.520460 3.215919e-143 Prosulfocarb_5km\n",
"37 675.198692 5.919142e-143 Sulphur_5km\n",
"38 659.465995 8.494090e-140 Tri-allate_5km\n",
"0 583.145685 2.124075e-124 Deciduous woodland\n",
"33 550.331786 9.792385e-118 Metamitron_5km\n",
"35 548.586416 2.218553e-117 PropamocarbHydrochloride_5km\n",
"20 461.333112 1.579205e-99 Suburban\n",
"19 215.255159 4.147517e-48 Urban\n",
"22 187.302538 3.691076e-42 Cumulative catchment area\n",
"17 171.051423 1.090041e-38 Littoral sediment\n",
"18 92.813673 7.557806e-22 Saltmarsh\n",
"4 86.129805 2.134802e-20 Neutral grassland\n",
"7 71.432156 3.379892e-17 Fen\n",
"13 52.356807 5.058361e-13 Freshwater\n",
"16 40.733985 1.841863e-10 Littoral rock\n",
"15 39.128665 4.172586e-10 Supralittoral sediment\n",
"12 38.306779 6.344354e-10 Saltwater\n",
"9 22.013738 2.752216e-06 Heather grassland\n",
"14 13.602833 2.273482e-04 Supralittoral rock\n",
"1 12.198857 4.807841e-04 Coniferous woodland\n",
"10 8.118067 4.393870e-03 Bog\n",
"5 7.660225 5.658186e-03 Calcareous grassland\n",
"8 4.878914 2.721508e-02 Heather\n",
"6 0.972496 3.240885e-01 Acid grassland\n",
"11 0.000720 9.785954e-01 Inland rock"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for dict in df_dicts:\n",
" print(dict['name'])\n",
" display(dict['kbest']['Dataframe'])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.13 ('env': venv)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "f025c48a9b67ab76bdc0400dfa0f9ba99120976b4a6ec6a63d1c946516165c91"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}