{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import rioxarray\n",
"import json, os\n",
"\n",
"from sklearn.feature_selection import SelectKBest\n",
"from sklearn.feature_selection import chi2, f_classif, mutual_info_classif\n",
"from sklearn.metrics import f1_score, classification_report\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"from sklearn.linear_model import LogisticRegression, SGDClassifier\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier, StackingClassifier\n",
"\n",
"from imblearn.over_sampling import RandomOverSampler, SMOTE"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"seed = 42\n",
"verbose = False\n",
"details = False"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 712500.0 | \n",
" 267500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 99 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.798783e+01 | \n",
" 1.979030e+01 | \n",
" 1.630712e+01 | \n",
" 3.329318e+00 | \n",
" 8.434404e+00 | \n",
" 2.052438e+01 | \n",
" 7.809389e+00 | \n",
" 1.718280e+01 | \n",
" 8.873806e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 912500.0 | \n",
" 617500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 952500.0 | \n",
" 7500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 202500.0 | \n",
" 322500.0 | \n",
" 0 | \n",
" 20 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 67 | \n",
" 0 | \n",
" 0 | \n",
" 5 | \n",
" ... | \n",
" 1.277848e+00 | \n",
" 3.201799e-02 | \n",
" 9.166379e-01 | \n",
" -3.400000e+38 | \n",
" 3.987500e-01 | \n",
" -3.400000e+38 | \n",
" 4.136672e+00 | \n",
" 2.444737e+00 | \n",
" 2.649246e+01 | \n",
" 0 | \n",
"
\n",
" \n",
" 1237500.0 | \n",
" 447500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"712500.0 267500.0 0 0 0 \n",
"912500.0 617500.0 0 0 0 \n",
"952500.0 7500.0 0 0 0 \n",
"202500.0 322500.0 0 20 0 \n",
"1237500.0 447500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"712500.0 267500.0 0 0 \n",
"912500.0 617500.0 0 0 \n",
"952500.0 7500.0 0 0 \n",
"202500.0 322500.0 0 0 \n",
"1237500.0 447500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"712500.0 267500.0 0 99 0 0 \n",
"912500.0 617500.0 0 0 0 0 \n",
"952500.0 7500.0 0 0 0 0 \n",
"202500.0 322500.0 0 67 0 0 \n",
"1237500.0 447500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"712500.0 267500.0 0 ... 1.798783e+01 1.979030e+01 \n",
"912500.0 617500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"952500.0 7500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"202500.0 322500.0 5 ... 1.277848e+00 3.201799e-02 \n",
"1237500.0 447500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"712500.0 267500.0 1.630712e+01 3.329318e+00 8.434404e+00 \n",
"912500.0 617500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"952500.0 7500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"202500.0 322500.0 9.166379e-01 -3.400000e+38 3.987500e-01 \n",
"1237500.0 447500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"712500.0 267500.0 2.052438e+01 7.809389e+00 \n",
"912500.0 617500.0 -3.400000e+38 -3.400000e+38 \n",
"952500.0 7500.0 -3.400000e+38 -3.400000e+38 \n",
"202500.0 322500.0 -3.400000e+38 4.136672e+00 \n",
"1237500.0 447500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"712500.0 267500.0 1.718280e+01 8.873806e+00 0 \n",
"912500.0 617500.0 -3.400000e+38 -3.400000e+38 0 \n",
"952500.0 7500.0 -3.400000e+38 -3.400000e+38 0 \n",
"202500.0 322500.0 2.444737e+00 2.649246e+01 0 \n",
"1237500.0 447500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 982500.0 | \n",
" 692500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 482500.0 | \n",
" 77500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 57500.0 | \n",
" 677500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 627500.0 | \n",
" 662500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 602500.0 | \n",
" 657500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"982500.0 692500.0 0 0 0 \n",
"482500.0 77500.0 0 0 0 \n",
"57500.0 677500.0 0 0 0 \n",
"627500.0 662500.0 0 0 0 \n",
"602500.0 657500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"982500.0 692500.0 0 0 0 \n",
"482500.0 77500.0 0 0 0 \n",
"57500.0 677500.0 0 0 0 \n",
"627500.0 662500.0 0 0 0 \n",
"602500.0 657500.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"982500.0 692500.0 0 0 0 0 ... \n",
"482500.0 77500.0 0 0 0 0 ... \n",
"57500.0 677500.0 0 0 0 0 ... \n",
"627500.0 662500.0 0 0 0 0 ... \n",
"602500.0 657500.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_5km Mancozeb_5km Mecoprop-P_5km \\\n",
"y x \n",
"982500.0 692500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"482500.0 77500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"57500.0 677500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"627500.0 662500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"602500.0 657500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"982500.0 692500.0 -3.400000e+38 -3.400000e+38 \n",
"482500.0 77500.0 -3.400000e+38 -3.400000e+38 \n",
"57500.0 677500.0 -3.400000e+38 -3.400000e+38 \n",
"627500.0 662500.0 -3.400000e+38 -3.400000e+38 \n",
"602500.0 657500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"982500.0 692500.0 -3.400000e+38 -3.400000e+38 \n",
"482500.0 77500.0 -3.400000e+38 -3.400000e+38 \n",
"57500.0 677500.0 -3.400000e+38 -3.400000e+38 \n",
"627500.0 662500.0 -3.400000e+38 -3.400000e+38 \n",
"602500.0 657500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"982500.0 692500.0 -3.400000e+38 -3.400000e+38 0 \n",
"482500.0 77500.0 -3.400000e+38 -3.400000e+38 0 \n",
"57500.0 677500.0 -3.400000e+38 -3.400000e+38 0 \n",
"627500.0 662500.0 -3.400000e+38 -3.400000e+38 0 \n",
"602500.0 657500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 132500.0 | \n",
" 607500.0 | \n",
" 0 | \n",
" 0 | \n",
" 99 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 367500.0 | \n",
" 177500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 5.604231e-01 | \n",
" 1.088421e-01 | \n",
" 4.968090e-01 | \n",
" 2.101036e+00 | \n",
" 3.069444e-01 | \n",
" 1.085213e+00 | \n",
" 1.441999e+00 | \n",
" 5.178424e-01 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 677500.0 | \n",
" 107500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 937500.0 | \n",
" 577500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 847500.0 | \n",
" 127500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 21 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 11 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"132500.0 607500.0 0 0 99 \n",
"367500.0 177500.0 0 0 0 \n",
"677500.0 107500.0 0 0 0 \n",
"937500.0 577500.0 0 0 0 \n",
"847500.0 127500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"132500.0 607500.0 0 0 0 \n",
"367500.0 177500.0 0 0 0 \n",
"677500.0 107500.0 0 0 0 \n",
"937500.0 577500.0 0 0 0 \n",
"847500.0 127500.0 21 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"132500.0 607500.0 0 1 0 0 ... \n",
"367500.0 177500.0 0 0 0 0 ... \n",
"677500.0 107500.0 0 0 0 0 ... \n",
"937500.0 577500.0 0 0 0 0 ... \n",
"847500.0 127500.0 0 0 0 11 ... \n",
"\n",
" Glyphosate_5km Mancozeb_5km Mecoprop-P_5km \\\n",
"y x \n",
"132500.0 607500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"367500.0 177500.0 5.604231e-01 1.088421e-01 4.968090e-01 \n",
"677500.0 107500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"937500.0 577500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"847500.0 127500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"132500.0 607500.0 -3.400000e+38 -3.400000e+38 \n",
"367500.0 177500.0 2.101036e+00 3.069444e-01 \n",
"677500.0 107500.0 -3.400000e+38 -3.400000e+38 \n",
"937500.0 577500.0 -3.400000e+38 -3.400000e+38 \n",
"847500.0 127500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"132500.0 607500.0 -3.400000e+38 -3.400000e+38 \n",
"367500.0 177500.0 1.085213e+00 1.441999e+00 \n",
"677500.0 107500.0 -3.400000e+38 -3.400000e+38 \n",
"937500.0 577500.0 -3.400000e+38 -3.400000e+38 \n",
"847500.0 127500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"132500.0 607500.0 -3.400000e+38 -3.400000e+38 0 \n",
"367500.0 177500.0 5.178424e-01 -3.400000e+38 0 \n",
"677500.0 107500.0 -3.400000e+38 -3.400000e+38 0 \n",
"937500.0 577500.0 -3.400000e+38 -3.400000e+38 0 \n",
"847500.0 127500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 437500.0 | \n",
" 172500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 897500.0 | \n",
" 432500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 942500.0 | \n",
" 267500.0 | \n",
" 0 | \n",
" 32 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1162500.0 | \n",
" 327500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 852500.0 | \n",
" 7500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"437500.0 172500.0 0 0 0 \n",
"897500.0 432500.0 0 0 0 \n",
"942500.0 267500.0 0 32 0 \n",
"1162500.0 327500.0 0 0 0 \n",
"852500.0 7500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"437500.0 172500.0 0 0 \n",
"897500.0 432500.0 0 0 \n",
"942500.0 267500.0 0 0 \n",
"1162500.0 327500.0 0 0 \n",
"852500.0 7500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"437500.0 172500.0 0 0 0 0 \n",
"897500.0 432500.0 0 0 0 0 \n",
"942500.0 267500.0 0 0 0 0 \n",
"1162500.0 327500.0 0 0 0 0 \n",
"852500.0 7500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"437500.0 172500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"897500.0 432500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"942500.0 267500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1162500.0 327500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"852500.0 7500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"437500.0 172500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"897500.0 432500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"942500.0 267500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1162500.0 327500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"852500.0 7500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"437500.0 172500.0 -3.400000e+38 -3.400000e+38 \n",
"897500.0 432500.0 -3.400000e+38 -3.400000e+38 \n",
"942500.0 267500.0 -3.400000e+38 -3.400000e+38 \n",
"1162500.0 327500.0 -3.400000e+38 -3.400000e+38 \n",
"852500.0 7500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"437500.0 172500.0 -3.400000e+38 -3.400000e+38 0 \n",
"897500.0 432500.0 -3.400000e+38 -3.400000e+38 0 \n",
"942500.0 267500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1162500.0 327500.0 -3.400000e+38 -3.400000e+38 0 \n",
"852500.0 7500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 847500.0 | \n",
" 617500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 32500.0 | \n",
" 452500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 852500.0 | \n",
" 52500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 432500.0 | \n",
" 647500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 587500.0 | \n",
" 602500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"847500.0 617500.0 0 0 0 \n",
"32500.0 452500.0 0 0 0 \n",
"852500.0 52500.0 0 0 0 \n",
"432500.0 647500.0 0 0 0 \n",
"587500.0 602500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"847500.0 617500.0 0 0 0 \n",
"32500.0 452500.0 0 0 0 \n",
"852500.0 52500.0 0 0 0 \n",
"432500.0 647500.0 0 0 0 \n",
"587500.0 602500.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"847500.0 617500.0 0 0 0 0 ... \n",
"32500.0 452500.0 0 0 0 0 ... \n",
"852500.0 52500.0 0 0 0 0 ... \n",
"432500.0 647500.0 0 0 0 0 ... \n",
"587500.0 602500.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_5km Mancozeb_5km Mecoprop-P_5km \\\n",
"y x \n",
"847500.0 617500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"32500.0 452500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"852500.0 52500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"432500.0 647500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"587500.0 602500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"847500.0 617500.0 -3.400000e+38 -3.400000e+38 \n",
"32500.0 452500.0 -3.400000e+38 -3.400000e+38 \n",
"852500.0 52500.0 -3.400000e+38 -3.400000e+38 \n",
"432500.0 647500.0 -3.400000e+38 -3.400000e+38 \n",
"587500.0 602500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"847500.0 617500.0 -3.400000e+38 -3.400000e+38 \n",
"32500.0 452500.0 -3.400000e+38 -3.400000e+38 \n",
"852500.0 52500.0 -3.400000e+38 -3.400000e+38 \n",
"432500.0 647500.0 -3.400000e+38 -3.400000e+38 \n",
"587500.0 602500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"847500.0 617500.0 -3.400000e+38 -3.400000e+38 0 \n",
"32500.0 452500.0 -3.400000e+38 -3.400000e+38 0 \n",
"852500.0 52500.0 -3.400000e+38 -3.400000e+38 0 \n",
"432500.0 647500.0 -3.400000e+38 -3.400000e+38 0 \n",
"587500.0 602500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1192500.0 | \n",
" 62500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 667500.0 | \n",
" 492500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 337500.0 | \n",
" 37500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1142500.0 | \n",
" 162500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 297500.0 | \n",
" 232500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 4.729528e-03 | \n",
" 1.255404e-03 | \n",
" 4.127780e-03 | \n",
" -3.400000e+38 | \n",
" 2.866850e-03 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1192500.0 62500.0 0 0 0 \n",
"667500.0 492500.0 0 0 0 \n",
"337500.0 37500.0 0 0 0 \n",
"1142500.0 162500.0 0 0 0 \n",
"297500.0 232500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1192500.0 62500.0 0 0 \n",
"667500.0 492500.0 0 0 \n",
"337500.0 37500.0 0 0 \n",
"1142500.0 162500.0 0 0 \n",
"297500.0 232500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1192500.0 62500.0 0 0 0 0 \n",
"667500.0 492500.0 0 0 0 0 \n",
"337500.0 37500.0 0 0 0 0 \n",
"1142500.0 162500.0 0 0 0 0 \n",
"297500.0 232500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"1192500.0 62500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"667500.0 492500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"337500.0 37500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1142500.0 162500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"297500.0 232500.0 0 ... 4.729528e-03 1.255404e-03 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"1192500.0 62500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"667500.0 492500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"337500.0 37500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1142500.0 162500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"297500.0 232500.0 4.127780e-03 -3.400000e+38 2.866850e-03 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"1192500.0 62500.0 -3.400000e+38 -3.400000e+38 \n",
"667500.0 492500.0 -3.400000e+38 -3.400000e+38 \n",
"337500.0 37500.0 -3.400000e+38 -3.400000e+38 \n",
"1142500.0 162500.0 -3.400000e+38 -3.400000e+38 \n",
"297500.0 232500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"1192500.0 62500.0 -3.400000e+38 -3.400000e+38 0 \n",
"667500.0 492500.0 -3.400000e+38 -3.400000e+38 0 \n",
"337500.0 37500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1142500.0 162500.0 -3.400000e+38 -3.400000e+38 0 \n",
"297500.0 232500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 307500.0 | \n",
" 42500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 622500.0 | \n",
" 97500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1212500.0 | \n",
" 462500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 95 | \n",
" 4 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 962500.0 | \n",
" 102500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 702500.0 | \n",
" 617500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"307500.0 42500.0 0 0 0 \n",
"622500.0 97500.0 0 0 0 \n",
"1212500.0 462500.0 0 0 0 \n",
"962500.0 102500.0 0 0 0 \n",
"702500.0 617500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"307500.0 42500.0 0 0 \n",
"622500.0 97500.0 0 0 \n",
"1212500.0 462500.0 95 4 \n",
"962500.0 102500.0 0 0 \n",
"702500.0 617500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"307500.0 42500.0 0 0 0 0 \n",
"622500.0 97500.0 0 0 0 0 \n",
"1212500.0 462500.0 0 0 0 0 \n",
"962500.0 102500.0 0 0 0 0 \n",
"702500.0 617500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"307500.0 42500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"622500.0 97500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1212500.0 462500.0 1 ... -3.400000e+38 -3.400000e+38 \n",
"962500.0 102500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"702500.0 617500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"307500.0 42500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"622500.0 97500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1212500.0 462500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"962500.0 102500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"702500.0 617500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"307500.0 42500.0 -3.400000e+38 -3.400000e+38 \n",
"622500.0 97500.0 -3.400000e+38 -3.400000e+38 \n",
"1212500.0 462500.0 -3.400000e+38 -3.400000e+38 \n",
"962500.0 102500.0 -3.400000e+38 -3.400000e+38 \n",
"702500.0 617500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"307500.0 42500.0 -3.400000e+38 -3.400000e+38 0 \n",
"622500.0 97500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1212500.0 462500.0 -3.400000e+38 -3.400000e+38 0 \n",
"962500.0 102500.0 -3.400000e+38 -3.400000e+38 0 \n",
"702500.0 617500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 157500.0 | \n",
" 317500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.039940e+00 | \n",
" 9.736983e-01 | \n",
" 4.649050e-01 | \n",
" 1.416382e+01 | \n",
" 5.824835e-01 | \n",
" 7.660726e+00 | \n",
" 1.317793e+01 | \n",
" 4.763658e-01 | \n",
" 2.666079e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 102500.0 | \n",
" 497500.0 | \n",
" 0 | \n",
" 0 | \n",
" 60 | \n",
" 20 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.453516e-01 | \n",
" 2.766496e-02 | \n",
" 9.993535e-02 | \n",
" -3.400000e+38 | \n",
" 8.190275e-02 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 1.525854e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 982500.0 | \n",
" 657500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 277500.0 | \n",
" 357500.0 | \n",
" 18 | \n",
" 0 | \n",
" 24 | \n",
" 56 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 3.466839e-01 | \n",
" 8.026547e-02 | \n",
" 2.348484e-01 | \n",
" 6.775991e+00 | \n",
" 1.820343e-01 | \n",
" 3.088803e+00 | \n",
" 1.260376e+01 | \n",
" 9.621822e+00 | \n",
" 3.166261e-01 | \n",
" 0 | \n",
"
\n",
" \n",
" 837500.0 | \n",
" 442500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"157500.0 317500.0 0 0 0 \n",
"102500.0 497500.0 0 0 60 \n",
"982500.0 657500.0 0 0 0 \n",
"277500.0 357500.0 18 0 24 \n",
"837500.0 442500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"157500.0 317500.0 0 0 0 \n",
"102500.0 497500.0 20 0 0 \n",
"982500.0 657500.0 0 0 0 \n",
"277500.0 357500.0 56 0 0 \n",
"837500.0 442500.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"157500.0 317500.0 0 0 0 0 ... \n",
"102500.0 497500.0 0 0 0 0 ... \n",
"982500.0 657500.0 0 0 0 0 ... \n",
"277500.0 357500.0 0 0 0 0 ... \n",
"837500.0 442500.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_5km Mancozeb_5km Mecoprop-P_5km \\\n",
"y x \n",
"157500.0 317500.0 1.039940e+00 9.736983e-01 4.649050e-01 \n",
"102500.0 497500.0 2.453516e-01 2.766496e-02 9.993535e-02 \n",
"982500.0 657500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"277500.0 357500.0 3.466839e-01 8.026547e-02 2.348484e-01 \n",
"837500.0 442500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"157500.0 317500.0 1.416382e+01 5.824835e-01 \n",
"102500.0 497500.0 -3.400000e+38 8.190275e-02 \n",
"982500.0 657500.0 -3.400000e+38 -3.400000e+38 \n",
"277500.0 357500.0 6.775991e+00 1.820343e-01 \n",
"837500.0 442500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"157500.0 317500.0 7.660726e+00 1.317793e+01 \n",
"102500.0 497500.0 -3.400000e+38 -3.400000e+38 \n",
"982500.0 657500.0 -3.400000e+38 -3.400000e+38 \n",
"277500.0 357500.0 3.088803e+00 1.260376e+01 \n",
"837500.0 442500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"157500.0 317500.0 4.763658e-01 2.666079e+00 0 \n",
"102500.0 497500.0 -3.400000e+38 1.525854e+00 0 \n",
"982500.0 657500.0 -3.400000e+38 -3.400000e+38 0 \n",
"277500.0 357500.0 9.621822e+00 3.166261e-01 0 \n",
"837500.0 442500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 382500.0 | \n",
" 287500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.014876e+01 | \n",
" 1.258746e+01 | \n",
" 8.709696e+00 | \n",
" 1.525128e+00 | \n",
" 1.512782e+01 | \n",
" 8.309065e-01 | \n",
" 1.292195e+00 | \n",
" 1.240951e-01 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 872500.0 | \n",
" 532500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 207500.0 | \n",
" 277500.0 | \n",
" 1 | \n",
" 24 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 75 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.179403e+01 | \n",
" 5.411642e+00 | \n",
" 3.950109e+00 | \n",
" -3.400000e+38 | \n",
" 1.388328e+01 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 1.120048e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 492500.0 | \n",
" 552500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1227500.0 | \n",
" 597500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"382500.0 287500.0 0 0 0 \n",
"872500.0 532500.0 0 0 0 \n",
"207500.0 277500.0 1 24 0 \n",
"492500.0 552500.0 0 0 0 \n",
"1227500.0 597500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"382500.0 287500.0 0 0 \n",
"872500.0 532500.0 0 0 \n",
"207500.0 277500.0 0 0 \n",
"492500.0 552500.0 0 0 \n",
"1227500.0 597500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"382500.0 287500.0 0 0 0 0 \n",
"872500.0 532500.0 0 0 0 0 \n",
"207500.0 277500.0 0 75 0 0 \n",
"492500.0 552500.0 0 0 0 0 \n",
"1227500.0 597500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"382500.0 287500.0 0 ... 2.014876e+01 1.258746e+01 \n",
"872500.0 532500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"207500.0 277500.0 0 ... 1.179403e+01 5.411642e+00 \n",
"492500.0 552500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1227500.0 597500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"382500.0 287500.0 8.709696e+00 1.525128e+00 1.512782e+01 \n",
"872500.0 532500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"207500.0 277500.0 3.950109e+00 -3.400000e+38 1.388328e+01 \n",
"492500.0 552500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1227500.0 597500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"382500.0 287500.0 8.309065e-01 1.292195e+00 \n",
"872500.0 532500.0 -3.400000e+38 -3.400000e+38 \n",
"207500.0 277500.0 -3.400000e+38 -3.400000e+38 \n",
"492500.0 552500.0 -3.400000e+38 -3.400000e+38 \n",
"1227500.0 597500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"382500.0 287500.0 1.240951e-01 -3.400000e+38 0 \n",
"872500.0 532500.0 -3.400000e+38 -3.400000e+38 0 \n",
"207500.0 277500.0 -3.400000e+38 1.120048e+00 0 \n",
"492500.0 552500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1227500.0 597500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 572500.0 | \n",
" 297500.0 | \n",
" 0 | \n",
" 0 | \n",
" 14 | \n",
" 39 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 1 | \n",
"
\n",
" \n",
" 517500.0 | \n",
" 322500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 92 | \n",
" 0 | \n",
" 5 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1012500.0 | \n",
" 412500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 997500.0 | \n",
" 172500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1037500.0 | \n",
" 432500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"572500.0 297500.0 0 0 14 \n",
"517500.0 322500.0 0 0 0 \n",
"1012500.0 412500.0 0 0 0 \n",
"997500.0 172500.0 0 0 0 \n",
"1037500.0 432500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"572500.0 297500.0 39 0 \n",
"517500.0 322500.0 3 0 \n",
"1012500.0 412500.0 0 0 \n",
"997500.0 172500.0 0 0 \n",
"1037500.0 432500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"572500.0 297500.0 0 0 0 0 \n",
"517500.0 322500.0 0 92 0 5 \n",
"1012500.0 412500.0 0 0 0 0 \n",
"997500.0 172500.0 0 0 0 0 \n",
"1037500.0 432500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"572500.0 297500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"517500.0 322500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1012500.0 412500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"997500.0 172500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1037500.0 432500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"572500.0 297500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"517500.0 322500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1012500.0 412500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"997500.0 172500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1037500.0 432500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"572500.0 297500.0 -3.400000e+38 -3.400000e+38 \n",
"517500.0 322500.0 -3.400000e+38 -3.400000e+38 \n",
"1012500.0 412500.0 -3.400000e+38 -3.400000e+38 \n",
"997500.0 172500.0 -3.400000e+38 -3.400000e+38 \n",
"1037500.0 432500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"572500.0 297500.0 -3.400000e+38 -3.400000e+38 1 \n",
"517500.0 322500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1012500.0 412500.0 -3.400000e+38 -3.400000e+38 0 \n",
"997500.0 172500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1037500.0 432500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 572500.0 | \n",
" 497500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 492500.0 | \n",
" 57500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 1 | \n",
"
\n",
" \n",
" 922500.0 | \n",
" 567500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 47500.0 | \n",
" 697500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1127500.0 | \n",
" 387500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"572500.0 497500.0 0 0 0 \n",
"492500.0 57500.0 0 0 0 \n",
"922500.0 567500.0 0 0 0 \n",
"47500.0 697500.0 0 0 0 \n",
"1127500.0 387500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"572500.0 497500.0 0 0 \n",
"492500.0 57500.0 0 0 \n",
"922500.0 567500.0 0 0 \n",
"47500.0 697500.0 0 0 \n",
"1127500.0 387500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"572500.0 497500.0 0 0 0 0 \n",
"492500.0 57500.0 0 0 0 0 \n",
"922500.0 567500.0 0 0 0 0 \n",
"47500.0 697500.0 0 0 0 0 \n",
"1127500.0 387500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"572500.0 497500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"492500.0 57500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"922500.0 567500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"47500.0 697500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1127500.0 387500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"572500.0 497500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"492500.0 57500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"922500.0 567500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"47500.0 697500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1127500.0 387500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"572500.0 497500.0 -3.400000e+38 -3.400000e+38 \n",
"492500.0 57500.0 -3.400000e+38 -3.400000e+38 \n",
"922500.0 567500.0 -3.400000e+38 -3.400000e+38 \n",
"47500.0 697500.0 -3.400000e+38 -3.400000e+38 \n",
"1127500.0 387500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"572500.0 497500.0 -3.400000e+38 -3.400000e+38 0 \n",
"492500.0 57500.0 -3.400000e+38 -3.400000e+38 1 \n",
"922500.0 567500.0 -3.400000e+38 -3.400000e+38 0 \n",
"47500.0 697500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1127500.0 387500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1042500.0 | \n",
" 317500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1137500.0 | \n",
" 27500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 412500.0 | \n",
" 372500.0 | \n",
" 16 | \n",
" 0 | \n",
" 0 | \n",
" 18 | \n",
" 7 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 4.812847e-01 | \n",
" 3.832059e-01 | \n",
" 1.223652e-01 | \n",
" 9.612413e+00 | \n",
" 6.272641e-01 | \n",
" 1.787285e+01 | \n",
" 3.912202e+01 | \n",
" 8.795641e+00 | \n",
" 8.603662e+00 | \n",
" 1 | \n",
"
\n",
" \n",
" 327500.0 | \n",
" 302500.0 | \n",
" 0 | \n",
" 6 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 87 | \n",
" 0 | \n",
" 7 | \n",
" 0 | \n",
" ... | \n",
" 1.069695e+01 | \n",
" 2.152610e+01 | \n",
" 3.006510e+00 | \n",
" 6.767461e-01 | \n",
" 1.180971e+01 | \n",
" 3.648056e-01 | \n",
" 1.054585e+00 | \n",
" 6.870680e-01 | \n",
" 6.149307e-01 | \n",
" 0 | \n",
"
\n",
" \n",
" 297500.0 | \n",
" 187500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1042500.0 317500.0 0 0 0 \n",
"1137500.0 27500.0 0 0 0 \n",
"412500.0 372500.0 16 0 0 \n",
"327500.0 302500.0 0 6 0 \n",
"297500.0 187500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1042500.0 317500.0 0 0 \n",
"1137500.0 27500.0 0 0 \n",
"412500.0 372500.0 18 7 \n",
"327500.0 302500.0 0 0 \n",
"297500.0 187500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1042500.0 317500.0 0 0 0 0 \n",
"1137500.0 27500.0 0 0 0 0 \n",
"412500.0 372500.0 0 0 0 0 \n",
"327500.0 302500.0 0 87 0 7 \n",
"297500.0 187500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"1042500.0 317500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1137500.0 27500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"412500.0 372500.0 0 ... 4.812847e-01 3.832059e-01 \n",
"327500.0 302500.0 0 ... 1.069695e+01 2.152610e+01 \n",
"297500.0 187500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"1042500.0 317500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1137500.0 27500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"412500.0 372500.0 1.223652e-01 9.612413e+00 6.272641e-01 \n",
"327500.0 302500.0 3.006510e+00 6.767461e-01 1.180971e+01 \n",
"297500.0 187500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"1042500.0 317500.0 -3.400000e+38 -3.400000e+38 \n",
"1137500.0 27500.0 -3.400000e+38 -3.400000e+38 \n",
"412500.0 372500.0 1.787285e+01 3.912202e+01 \n",
"327500.0 302500.0 3.648056e-01 1.054585e+00 \n",
"297500.0 187500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"1042500.0 317500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1137500.0 27500.0 -3.400000e+38 -3.400000e+38 0 \n",
"412500.0 372500.0 8.795641e+00 8.603662e+00 1 \n",
"327500.0 302500.0 6.870680e-01 6.149307e-01 0 \n",
"297500.0 187500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 682500.0 | \n",
" 607500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 382500.0 | \n",
" 507500.0 | \n",
" 21 | \n",
" 0 | \n",
" 78 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 92500.0 | \n",
" 322500.0 | \n",
" 14 | \n",
" 3 | \n",
" 0 | \n",
" 83 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 3.587797e+01 | \n",
" 4.035234e+00 | \n",
" 6.205773e+00 | \n",
" -3.400000e+38 | \n",
" 1.283332e+01 | \n",
" -3.400000e+38 | \n",
" 2.534976e+00 | \n",
" 1.620783e+00 | \n",
" 6.527980e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 687500.0 | \n",
" 352500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 832500.0 | \n",
" 602500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"682500.0 607500.0 0 0 0 \n",
"382500.0 507500.0 21 0 78 \n",
"92500.0 322500.0 14 3 0 \n",
"687500.0 352500.0 0 0 0 \n",
"832500.0 602500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"682500.0 607500.0 0 0 0 \n",
"382500.0 507500.0 1 0 0 \n",
"92500.0 322500.0 83 0 0 \n",
"687500.0 352500.0 0 0 0 \n",
"832500.0 602500.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"682500.0 607500.0 0 0 0 0 ... \n",
"382500.0 507500.0 0 0 0 0 ... \n",
"92500.0 322500.0 0 0 0 0 ... \n",
"687500.0 352500.0 0 0 0 0 ... \n",
"832500.0 602500.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_5km Mancozeb_5km Mecoprop-P_5km \\\n",
"y x \n",
"682500.0 607500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"382500.0 507500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"92500.0 322500.0 3.587797e+01 4.035234e+00 6.205773e+00 \n",
"687500.0 352500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"832500.0 602500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"682500.0 607500.0 -3.400000e+38 -3.400000e+38 \n",
"382500.0 507500.0 -3.400000e+38 -3.400000e+38 \n",
"92500.0 322500.0 -3.400000e+38 1.283332e+01 \n",
"687500.0 352500.0 -3.400000e+38 -3.400000e+38 \n",
"832500.0 602500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"682500.0 607500.0 -3.400000e+38 -3.400000e+38 \n",
"382500.0 507500.0 -3.400000e+38 -3.400000e+38 \n",
"92500.0 322500.0 -3.400000e+38 2.534976e+00 \n",
"687500.0 352500.0 -3.400000e+38 -3.400000e+38 \n",
"832500.0 602500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"682500.0 607500.0 -3.400000e+38 -3.400000e+38 0 \n",
"382500.0 507500.0 -3.400000e+38 -3.400000e+38 0 \n",
"92500.0 322500.0 1.620783e+00 6.527980e+00 0 \n",
"687500.0 352500.0 -3.400000e+38 -3.400000e+38 0 \n",
"832500.0 602500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 187500.0 | \n",
" 352500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.477417e+01 | \n",
" 2.679824e-01 | \n",
" 1.659697e+00 | \n",
" -3.400000e+38 | \n",
" 8.258803e+00 | \n",
" -3.400000e+38 | \n",
" 1.503984e+01 | \n",
" 8.817699e+00 | \n",
" 1.427644e+01 | \n",
" 0 | \n",
"
\n",
" \n",
" 802500.0 | \n",
" 77500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 297500.0 | \n",
" 202500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.849020e-01 | \n",
" 6.871427e-02 | \n",
" 2.899346e-01 | \n",
" -3.400000e+38 | \n",
" 1.796557e-01 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 887500.0 | \n",
" 627500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 347500.0 | \n",
" 322500.0 | \n",
" 15 | \n",
" 5 | \n",
" 0 | \n",
" 21 | \n",
" 0 | \n",
" 0 | \n",
" 31 | \n",
" 0 | \n",
" 23 | \n",
" 0 | \n",
" ... | \n",
" 1.635319e-01 | \n",
" 4.662686e-02 | \n",
" 1.295188e-01 | \n",
" -3.400000e+38 | \n",
" 7.957139e-02 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"187500.0 352500.0 0 0 0 \n",
"802500.0 77500.0 0 0 0 \n",
"297500.0 202500.0 0 0 0 \n",
"887500.0 627500.0 0 0 0 \n",
"347500.0 322500.0 15 5 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"187500.0 352500.0 0 0 0 \n",
"802500.0 77500.0 0 0 0 \n",
"297500.0 202500.0 0 0 0 \n",
"887500.0 627500.0 0 0 0 \n",
"347500.0 322500.0 21 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"187500.0 352500.0 0 0 0 0 ... \n",
"802500.0 77500.0 0 0 0 0 ... \n",
"297500.0 202500.0 0 0 0 0 ... \n",
"887500.0 627500.0 0 0 0 0 ... \n",
"347500.0 322500.0 31 0 23 0 ... \n",
"\n",
" Glyphosate_5km Mancozeb_5km Mecoprop-P_5km \\\n",
"y x \n",
"187500.0 352500.0 1.477417e+01 2.679824e-01 1.659697e+00 \n",
"802500.0 77500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"297500.0 202500.0 2.849020e-01 6.871427e-02 2.899346e-01 \n",
"887500.0 627500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"347500.0 322500.0 1.635319e-01 4.662686e-02 1.295188e-01 \n",
"\n",
" Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"187500.0 352500.0 -3.400000e+38 8.258803e+00 \n",
"802500.0 77500.0 -3.400000e+38 -3.400000e+38 \n",
"297500.0 202500.0 -3.400000e+38 1.796557e-01 \n",
"887500.0 627500.0 -3.400000e+38 -3.400000e+38 \n",
"347500.0 322500.0 -3.400000e+38 7.957139e-02 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"187500.0 352500.0 -3.400000e+38 1.503984e+01 \n",
"802500.0 77500.0 -3.400000e+38 -3.400000e+38 \n",
"297500.0 202500.0 -3.400000e+38 -3.400000e+38 \n",
"887500.0 627500.0 -3.400000e+38 -3.400000e+38 \n",
"347500.0 322500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"187500.0 352500.0 8.817699e+00 1.427644e+01 0 \n",
"802500.0 77500.0 -3.400000e+38 -3.400000e+38 0 \n",
"297500.0 202500.0 -3.400000e+38 -3.400000e+38 0 \n",
"887500.0 627500.0 -3.400000e+38 -3.400000e+38 0 \n",
"347500.0 322500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 172500.0 | \n",
" 362500.0 | \n",
" 14 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 3.912434e+01 | \n",
" 3.640354e+00 | \n",
" 5.398479e+00 | \n",
" -3.400000e+38 | \n",
" 1.433207e+01 | \n",
" -3.400000e+38 | \n",
" 2.191259e+01 | \n",
" 1.031152e+01 | \n",
" 1.028668e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 542500.0 | \n",
" 552500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1202500.0 | \n",
" 72500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 182500.0 | \n",
" 567500.0 | \n",
" 0 | \n",
" 0 | \n",
" 53 | \n",
" 18 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 777500.0 | \n",
" 162500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"172500.0 362500.0 14 0 0 \n",
"542500.0 552500.0 0 0 0 \n",
"1202500.0 72500.0 0 0 0 \n",
"182500.0 567500.0 0 0 53 \n",
"777500.0 162500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"172500.0 362500.0 0 0 \n",
"542500.0 552500.0 0 0 \n",
"1202500.0 72500.0 0 0 \n",
"182500.0 567500.0 18 0 \n",
"777500.0 162500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"172500.0 362500.0 0 0 0 0 \n",
"542500.0 552500.0 0 0 0 0 \n",
"1202500.0 72500.0 0 0 0 0 \n",
"182500.0 567500.0 0 0 0 0 \n",
"777500.0 162500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"172500.0 362500.0 0 ... 3.912434e+01 3.640354e+00 \n",
"542500.0 552500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1202500.0 72500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"182500.0 567500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"777500.0 162500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"172500.0 362500.0 5.398479e+00 -3.400000e+38 1.433207e+01 \n",
"542500.0 552500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1202500.0 72500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"182500.0 567500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"777500.0 162500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"172500.0 362500.0 -3.400000e+38 2.191259e+01 \n",
"542500.0 552500.0 -3.400000e+38 -3.400000e+38 \n",
"1202500.0 72500.0 -3.400000e+38 -3.400000e+38 \n",
"182500.0 567500.0 -3.400000e+38 -3.400000e+38 \n",
"777500.0 162500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"172500.0 362500.0 1.031152e+01 1.028668e+00 0 \n",
"542500.0 552500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1202500.0 72500.0 -3.400000e+38 -3.400000e+38 0 \n",
"182500.0 567500.0 -3.400000e+38 -3.400000e+38 0 \n",
"777500.0 162500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 402500.0 | \n",
" 597500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 407500.0 | \n",
" 222500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 47500.0 | \n",
" 337500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1167500.0 | \n",
" 492500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 292500.0 | \n",
" 562500.0 | \n",
" 0 | \n",
" 0 | \n",
" 100 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.675856e+01 | \n",
" 8.376548e+00 | \n",
" 3.281430e+00 | \n",
" -3.400000e+38 | \n",
" 1.165780e+01 | \n",
" -3.400000e+38 | \n",
" 4.417632e+00 | \n",
" 3.699409e+00 | \n",
" 5.309461e+00 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"402500.0 597500.0 0 0 0 \n",
"407500.0 222500.0 0 0 0 \n",
"47500.0 337500.0 0 0 0 \n",
"1167500.0 492500.0 0 0 0 \n",
"292500.0 562500.0 0 0 100 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"402500.0 597500.0 0 0 \n",
"407500.0 222500.0 0 0 \n",
"47500.0 337500.0 0 0 \n",
"1167500.0 492500.0 0 0 \n",
"292500.0 562500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"402500.0 597500.0 0 0 0 0 \n",
"407500.0 222500.0 0 0 0 0 \n",
"47500.0 337500.0 0 0 0 0 \n",
"1167500.0 492500.0 0 0 0 0 \n",
"292500.0 562500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"402500.0 597500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"407500.0 222500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"47500.0 337500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1167500.0 492500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"292500.0 562500.0 0 ... 2.675856e+01 8.376548e+00 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"402500.0 597500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"407500.0 222500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"47500.0 337500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1167500.0 492500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"292500.0 562500.0 3.281430e+00 -3.400000e+38 1.165780e+01 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"402500.0 597500.0 -3.400000e+38 -3.400000e+38 \n",
"407500.0 222500.0 -3.400000e+38 -3.400000e+38 \n",
"47500.0 337500.0 -3.400000e+38 -3.400000e+38 \n",
"1167500.0 492500.0 -3.400000e+38 -3.400000e+38 \n",
"292500.0 562500.0 -3.400000e+38 4.417632e+00 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"402500.0 597500.0 -3.400000e+38 -3.400000e+38 0 \n",
"407500.0 222500.0 -3.400000e+38 -3.400000e+38 0 \n",
"47500.0 337500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1167500.0 492500.0 -3.400000e+38 -3.400000e+38 0 \n",
"292500.0 562500.0 3.699409e+00 5.309461e+00 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1097500.0 | \n",
" 367500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 472500.0 | \n",
" 367500.0 | \n",
" 6 | \n",
" 0 | \n",
" 3 | \n",
" 89 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.437559e+01 | \n",
" 3.220966e+00 | \n",
" 2.944471e+00 | \n",
" 1.022916e+00 | \n",
" 1.498519e+01 | \n",
" 6.039355e-01 | \n",
" 1.314591e+00 | \n",
" 2.093061e-01 | \n",
" 1.596312e+01 | \n",
" 0 | \n",
"
\n",
" \n",
" 782500.0 | \n",
" 547500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 842500.0 | \n",
" 327500.0 | \n",
" 11 | \n",
" 8 | \n",
" 7 | \n",
" 59 | \n",
" 0 | \n",
" 0 | \n",
" 10 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.968980e+00 | \n",
" 1.555213e-01 | \n",
" 2.060352e+00 | \n",
" 3.130774e+00 | \n",
" 9.114452e-01 | \n",
" 1.572151e+00 | \n",
" 5.525377e-01 | \n",
" 3.950021e+00 | \n",
" 1.179231e+01 | \n",
" 0 | \n",
"
\n",
" \n",
" 1062500.0 | \n",
" 202500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1097500.0 367500.0 0 0 0 \n",
"472500.0 367500.0 6 0 3 \n",
"782500.0 547500.0 0 0 0 \n",
"842500.0 327500.0 11 8 7 \n",
"1062500.0 202500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1097500.0 367500.0 0 0 \n",
"472500.0 367500.0 89 0 \n",
"782500.0 547500.0 0 0 \n",
"842500.0 327500.0 59 0 \n",
"1062500.0 202500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1097500.0 367500.0 0 0 0 0 \n",
"472500.0 367500.0 0 0 0 0 \n",
"782500.0 547500.0 0 0 0 0 \n",
"842500.0 327500.0 0 10 0 0 \n",
"1062500.0 202500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"1097500.0 367500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"472500.0 367500.0 0 ... 1.437559e+01 3.220966e+00 \n",
"782500.0 547500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"842500.0 327500.0 0 ... 1.968980e+00 1.555213e-01 \n",
"1062500.0 202500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"1097500.0 367500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"472500.0 367500.0 2.944471e+00 1.022916e+00 1.498519e+01 \n",
"782500.0 547500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"842500.0 327500.0 2.060352e+00 3.130774e+00 9.114452e-01 \n",
"1062500.0 202500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"1097500.0 367500.0 -3.400000e+38 -3.400000e+38 \n",
"472500.0 367500.0 6.039355e-01 1.314591e+00 \n",
"782500.0 547500.0 -3.400000e+38 -3.400000e+38 \n",
"842500.0 327500.0 1.572151e+00 5.525377e-01 \n",
"1062500.0 202500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"1097500.0 367500.0 -3.400000e+38 -3.400000e+38 0 \n",
"472500.0 367500.0 2.093061e-01 1.596312e+01 0 \n",
"782500.0 547500.0 -3.400000e+38 -3.400000e+38 0 \n",
"842500.0 327500.0 3.950021e+00 1.179231e+01 0 \n",
"1062500.0 202500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 272500.0 | \n",
" 142500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 457500.0 | \n",
" 532500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 792500.0 | \n",
" 272500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 100 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1057500.0 | \n",
" 12500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1257500.0 | \n",
" 562500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"272500.0 142500.0 0 0 0 \n",
"457500.0 532500.0 0 0 0 \n",
"792500.0 272500.0 0 0 0 \n",
"1057500.0 12500.0 0 0 0 \n",
"1257500.0 562500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"272500.0 142500.0 0 0 \n",
"457500.0 532500.0 0 0 \n",
"792500.0 272500.0 0 0 \n",
"1057500.0 12500.0 0 0 \n",
"1257500.0 562500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"272500.0 142500.0 0 0 0 0 \n",
"457500.0 532500.0 0 0 0 0 \n",
"792500.0 272500.0 0 0 0 100 \n",
"1057500.0 12500.0 0 0 0 0 \n",
"1257500.0 562500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"272500.0 142500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"457500.0 532500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"792500.0 272500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1057500.0 12500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1257500.0 562500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"272500.0 142500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"457500.0 532500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"792500.0 272500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1057500.0 12500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1257500.0 562500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"272500.0 142500.0 -3.400000e+38 -3.400000e+38 \n",
"457500.0 532500.0 -3.400000e+38 -3.400000e+38 \n",
"792500.0 272500.0 -3.400000e+38 -3.400000e+38 \n",
"1057500.0 12500.0 -3.400000e+38 -3.400000e+38 \n",
"1257500.0 562500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"272500.0 142500.0 -3.400000e+38 -3.400000e+38 0 \n",
"457500.0 532500.0 -3.400000e+38 -3.400000e+38 0 \n",
"792500.0 272500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1057500.0 12500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1257500.0 562500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 182500.0 | \n",
" 112500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 922500.0 | \n",
" 497500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1252500.0 | \n",
" 647500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1202500.0 | \n",
" 62500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1127500.0 | \n",
" 87500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"182500.0 112500.0 0 0 0 \n",
"922500.0 497500.0 0 0 0 \n",
"1252500.0 647500.0 0 0 0 \n",
"1202500.0 62500.0 0 0 0 \n",
"1127500.0 87500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"182500.0 112500.0 0 0 \n",
"922500.0 497500.0 0 0 \n",
"1252500.0 647500.0 0 0 \n",
"1202500.0 62500.0 0 0 \n",
"1127500.0 87500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"182500.0 112500.0 0 0 0 0 \n",
"922500.0 497500.0 0 0 0 0 \n",
"1252500.0 647500.0 0 0 0 0 \n",
"1202500.0 62500.0 0 0 0 0 \n",
"1127500.0 87500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n",
"y x ... \n",
"182500.0 112500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"922500.0 497500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1252500.0 647500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1202500.0 62500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1127500.0 87500.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"182500.0 112500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"922500.0 497500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1252500.0 647500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1202500.0 62500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1127500.0 87500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"182500.0 112500.0 -3.400000e+38 -3.400000e+38 \n",
"922500.0 497500.0 -3.400000e+38 -3.400000e+38 \n",
"1252500.0 647500.0 -3.400000e+38 -3.400000e+38 \n",
"1202500.0 62500.0 -3.400000e+38 -3.400000e+38 \n",
"1127500.0 87500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"182500.0 112500.0 -3.400000e+38 -3.400000e+38 0 \n",
"922500.0 497500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1252500.0 647500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1202500.0 62500.0 -3.400000e+38 -3.400000e+38 0 \n",
"1127500.0 87500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_5km | \n",
" Mancozeb_5km | \n",
" Mecoprop-P_5km | \n",
" Metamitron_5km | \n",
" Pendimethalin_5km | \n",
" PropamocarbHydrochloride_5km | \n",
" Prosulfocarb_5km | \n",
" Sulphur_5km | \n",
" Tri-allate_5km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 617500.0 | \n",
" 22500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 632500.0 | \n",
" 132500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 72500.0 | \n",
" 282500.0 | \n",
" 4 | \n",
" 0 | \n",
" 58 | \n",
" 30 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 207500.0 | \n",
" 222500.0 | \n",
" 17 | \n",
" 0 | \n",
" 0 | \n",
" 8 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 4 | \n",
" ... | \n",
" 4.860930e-03 | \n",
" 1.019901e-03 | \n",
" 6.186086e-03 | \n",
" -3.400000e+38 | \n",
" 2.953693e-03 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 602500.0 | \n",
" 397500.0 | \n",
" 4 | \n",
" 0 | \n",
" 26 | \n",
" 69 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"617500.0 22500.0 0 0 0 \n",
"632500.0 132500.0 0 0 0 \n",
"72500.0 282500.0 4 0 58 \n",
"207500.0 222500.0 17 0 0 \n",
"602500.0 397500.0 4 0 26 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"617500.0 22500.0 0 0 0 \n",
"632500.0 132500.0 0 0 0 \n",
"72500.0 282500.0 30 0 0 \n",
"207500.0 222500.0 8 0 0 \n",
"602500.0 397500.0 69 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"617500.0 22500.0 0 0 0 0 ... \n",
"632500.0 132500.0 0 0 0 0 ... \n",
"72500.0 282500.0 0 0 0 0 ... \n",
"207500.0 222500.0 0 0 3 4 ... \n",
"602500.0 397500.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_5km Mancozeb_5km Mecoprop-P_5km \\\n",
"y x \n",
"617500.0 22500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"632500.0 132500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"72500.0 282500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"207500.0 222500.0 4.860930e-03 1.019901e-03 6.186086e-03 \n",
"602500.0 397500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_5km Pendimethalin_5km \\\n",
"y x \n",
"617500.0 22500.0 -3.400000e+38 -3.400000e+38 \n",
"632500.0 132500.0 -3.400000e+38 -3.400000e+38 \n",
"72500.0 282500.0 -3.400000e+38 -3.400000e+38 \n",
"207500.0 222500.0 -3.400000e+38 2.953693e-03 \n",
"602500.0 397500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n",
"y x \n",
"617500.0 22500.0 -3.400000e+38 -3.400000e+38 \n",
"632500.0 132500.0 -3.400000e+38 -3.400000e+38 \n",
"72500.0 282500.0 -3.400000e+38 -3.400000e+38 \n",
"207500.0 222500.0 -3.400000e+38 -3.400000e+38 \n",
"602500.0 397500.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_5km Tri-allate_5km Occurrence \n",
"y x \n",
"617500.0 22500.0 -3.400000e+38 -3.400000e+38 0 \n",
"632500.0 132500.0 -3.400000e+38 -3.400000e+38 0 \n",
"72500.0 282500.0 -3.400000e+38 -3.400000e+38 0 \n",
"207500.0 222500.0 -3.400000e+38 -3.400000e+38 0 \n",
"602500.0 397500.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"INVASIVE_BIRDS_PATH = 'Datasets/Machine Learning/5km Rasters/Birds'\n",
"# Use this if using coordinates as separate columns\n",
"# df_5km = pd.read_csv('Datasets/Machine Learning/Dataframes/5km_All_Birds_DF.csv')\n",
"\n",
"# Use this if using coordinates as indices\n",
"df_5km = pd.read_csv('Datasets/Machine Learning/Dataframes/5km_All_Birds_DF.csv', index_col=[0,1])\n",
"\n",
"total_birds = (df_5km['Occurrence']==1).sum()\n",
"df_dicts = []\n",
"\n",
"for file in os.listdir(INVASIVE_BIRDS_PATH):\n",
" filename = os.fsdecode(file)\n",
" if not filename.endswith('.tif') or filename.endswith('All_Invasive_Birds_5km.tif') :\n",
" continue\n",
"\n",
"\n",
"\n",
" bird_name = filename[:-4].replace('_', ' ')\n",
"\n",
" bird_dataset = rioxarray.open_rasterio(f'{INVASIVE_BIRDS_PATH}/{file}')\n",
" bird_dataset.name = 'data'\n",
" bird_df = bird_dataset.squeeze().drop(\"spatial_ref\").drop(\"band\").to_dataframe()\n",
"\n",
" # Check if index matches\n",
" if not df_5km.index.equals(bird_df.index):\n",
" print('Warning: Index does not match')\n",
" continue\n",
"\n",
" bird_df['Occurrence'] = [0 if x == -1 else 1 for x in bird_df['data']]\n",
" bird_df = df_5km.drop(columns='Occurrence').join(bird_df.drop(columns='data'))\n",
" \n",
" bird_dict = {'name' : bird_name, 'dataframe' : bird_df }\n",
" df_dicts.append(bird_dict)\n",
" display(bird_df.sample(5))\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 957500.0 | \n",
" 177500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 717500.0 | \n",
" 92500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 357500.0 | \n",
" 197500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 757500.0 | \n",
" 27500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 792500.0 | \n",
" 7500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"957500.0 177500.0 0 0 0 \n",
"717500.0 92500.0 0 0 0 \n",
"357500.0 197500.0 0 0 0 \n",
"757500.0 27500.0 0 0 0 \n",
"792500.0 7500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"957500.0 177500.0 0 0 0 \n",
"717500.0 92500.0 0 0 0 \n",
"357500.0 197500.0 0 0 0 \n",
"757500.0 27500.0 0 0 0 \n",
"792500.0 7500.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"957500.0 177500.0 0 0 0 0 ... \n",
"717500.0 92500.0 0 0 0 0 ... \n",
"357500.0 197500.0 0 0 0 0 ... \n",
"757500.0 27500.0 0 0 0 0 ... \n",
"792500.0 7500.0 0 0 0 0 ... \n",
"\n",
" Littoral sediment Saltmarsh Urban Suburban Elevation \\\n",
"y x \n",
"957500.0 177500.0 0 0 0 0 -9999 \n",
"717500.0 92500.0 0 0 0 0 -9999 \n",
"357500.0 197500.0 0 0 0 0 -9999 \n",
"757500.0 27500.0 0 0 0 0 -9999 \n",
"792500.0 7500.0 0 0 0 0 -9999 \n",
"\n",
" Cumulative catchment area Surface type \\\n",
"y x \n",
"957500.0 177500.0 -9999 -1 \n",
"717500.0 92500.0 -9999 -1 \n",
"357500.0 197500.0 -9999 -1 \n",
"757500.0 27500.0 -9999 -1 \n",
"792500.0 7500.0 -9999 -1 \n",
"\n",
" Outflowing drainage direction \\\n",
"y x \n",
"957500.0 177500.0 -1 \n",
"717500.0 92500.0 -1 \n",
"357500.0 197500.0 -1 \n",
"757500.0 27500.0 -1 \n",
"792500.0 7500.0 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"957500.0 177500.0 255 0 \n",
"717500.0 92500.0 255 0 \n",
"357500.0 197500.0 255 0 \n",
"757500.0 27500.0 255 0 \n",
"792500.0 7500.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1082500.0 | \n",
" 462500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 942500.0 | \n",
" 192500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 547500.0 | \n",
" 292500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1237500.0 | \n",
" 172500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 107500.0 | \n",
" 687500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1082500.0 462500.0 0 0 0 \n",
"942500.0 192500.0 0 0 0 \n",
"547500.0 292500.0 0 0 0 \n",
"1237500.0 172500.0 0 0 0 \n",
"107500.0 687500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1082500.0 462500.0 0 0 \n",
"942500.0 192500.0 0 0 \n",
"547500.0 292500.0 0 0 \n",
"1237500.0 172500.0 0 0 \n",
"107500.0 687500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1082500.0 462500.0 0 0 0 0 \n",
"942500.0 192500.0 0 0 0 0 \n",
"547500.0 292500.0 0 0 0 0 \n",
"1237500.0 172500.0 0 0 0 0 \n",
"107500.0 687500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"1082500.0 462500.0 0 ... 0 0 \n",
"942500.0 192500.0 0 ... 0 0 \n",
"547500.0 292500.0 0 ... 0 0 \n",
"1237500.0 172500.0 0 ... 0 0 \n",
"107500.0 687500.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"1082500.0 462500.0 0 0 -9999 -9999 \n",
"942500.0 192500.0 0 0 -9999 -9999 \n",
"547500.0 292500.0 0 0 -9999 -9999 \n",
"1237500.0 172500.0 0 0 -9999 -9999 \n",
"107500.0 687500.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"1082500.0 462500.0 -1 -1 \n",
"942500.0 192500.0 -1 -1 \n",
"547500.0 292500.0 -1 -1 \n",
"1237500.0 172500.0 -1 -1 \n",
"107500.0 687500.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"1082500.0 462500.0 255 0 \n",
"942500.0 192500.0 255 0 \n",
"547500.0 292500.0 255 0 \n",
"1237500.0 172500.0 255 0 \n",
"107500.0 687500.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 262500.0 | \n",
" 592500.0 | \n",
" 6 | \n",
" 8 | \n",
" 78 | \n",
" 4 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 5 | \n",
" 696 | \n",
" 21 | \n",
" 2 | \n",
" 8 | \n",
" 6 | \n",
" 0 | \n",
"
\n",
" \n",
" 292500.0 | \n",
" 567500.0 | \n",
" 1 | \n",
" 0 | \n",
" 32 | \n",
" 63 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 5 | \n",
" 2003 | \n",
" 2 | \n",
" 34 | \n",
" 16 | \n",
" 1 | \n",
"
\n",
" \n",
" 167500.0 | \n",
" 562500.0 | \n",
" 3 | \n",
" 0 | \n",
" 77 | \n",
" 1 | \n",
" 0 | \n",
" 13 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 5 | \n",
" 1019 | \n",
" 2 | \n",
" 2 | \n",
" 6 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 67500.0 | \n",
" 277500.0 | \n",
" 6 | \n",
" 7 | \n",
" 53 | \n",
" 33 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 2 | \n",
" 1070 | \n",
" 10 | \n",
" 2 | \n",
" 6 | \n",
" 8 | \n",
" 0 | \n",
"
\n",
" \n",
" 152500.0 | \n",
" 552500.0 | \n",
" 48 | \n",
" 0 | \n",
" 0 | \n",
" 24 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 28 | \n",
" 1988 | \n",
" 10 | \n",
" 2 | \n",
" 8 | \n",
" 7 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"262500.0 592500.0 6 8 78 \n",
"292500.0 567500.0 1 0 32 \n",
"167500.0 562500.0 3 0 77 \n",
"67500.0 277500.0 6 7 53 \n",
"152500.0 552500.0 48 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"262500.0 592500.0 4 0 0 \n",
"292500.0 567500.0 63 0 0 \n",
"167500.0 562500.0 1 0 13 \n",
"67500.0 277500.0 33 0 0 \n",
"152500.0 552500.0 24 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"262500.0 592500.0 0 0 0 0 ... \n",
"292500.0 567500.0 0 3 0 0 ... \n",
"167500.0 562500.0 0 0 0 0 ... \n",
"67500.0 277500.0 0 0 0 0 ... \n",
"152500.0 552500.0 0 0 0 0 ... \n",
"\n",
" Littoral sediment Saltmarsh Urban Suburban Elevation \\\n",
"y x \n",
"262500.0 592500.0 0 0 0 5 696 \n",
"292500.0 567500.0 0 0 0 1 5 \n",
"167500.0 562500.0 0 0 0 5 1019 \n",
"67500.0 277500.0 0 0 0 2 1070 \n",
"152500.0 552500.0 0 0 0 28 1988 \n",
"\n",
" Cumulative catchment area Surface type \\\n",
"y x \n",
"262500.0 592500.0 21 2 \n",
"292500.0 567500.0 2003 2 \n",
"167500.0 562500.0 2 2 \n",
"67500.0 277500.0 10 2 \n",
"152500.0 552500.0 10 2 \n",
"\n",
" Outflowing drainage direction \\\n",
"y x \n",
"262500.0 592500.0 8 \n",
"292500.0 567500.0 34 \n",
"167500.0 562500.0 6 \n",
"67500.0 277500.0 6 \n",
"152500.0 552500.0 8 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"262500.0 592500.0 6 0 \n",
"292500.0 567500.0 16 1 \n",
"167500.0 562500.0 1 0 \n",
"67500.0 277500.0 8 0 \n",
"152500.0 552500.0 7 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 512500.0 | \n",
" 42500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1022500.0 | \n",
" 217500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 737500.0 | \n",
" 322500.0 | \n",
" 15 | \n",
" 0 | \n",
" 71 | \n",
" 13 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 2 | \n",
" 738 | \n",
" 35 | \n",
" 2 | \n",
" 1 | \n",
" 20 | \n",
" 0 | \n",
"
\n",
" \n",
" 1217500.0 | \n",
" 622500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1277500.0 | \n",
" 497500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"512500.0 42500.0 0 0 0 \n",
"1022500.0 217500.0 0 0 0 \n",
"737500.0 322500.0 15 0 71 \n",
"1217500.0 622500.0 0 0 0 \n",
"1277500.0 497500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"512500.0 42500.0 0 0 \n",
"1022500.0 217500.0 0 0 \n",
"737500.0 322500.0 13 0 \n",
"1217500.0 622500.0 0 0 \n",
"1277500.0 497500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"512500.0 42500.0 0 0 0 0 \n",
"1022500.0 217500.0 0 0 0 0 \n",
"737500.0 322500.0 0 0 0 0 \n",
"1217500.0 622500.0 0 0 0 0 \n",
"1277500.0 497500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"512500.0 42500.0 0 ... 0 0 \n",
"1022500.0 217500.0 0 ... 0 0 \n",
"737500.0 322500.0 0 ... 0 0 \n",
"1217500.0 622500.0 0 ... 0 0 \n",
"1277500.0 497500.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"512500.0 42500.0 0 0 -9999 -9999 \n",
"1022500.0 217500.0 0 0 -9999 -9999 \n",
"737500.0 322500.0 0 2 738 35 \n",
"1217500.0 622500.0 0 0 -9999 -9999 \n",
"1277500.0 497500.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"512500.0 42500.0 -1 -1 \n",
"1022500.0 217500.0 -1 -1 \n",
"737500.0 322500.0 2 1 \n",
"1217500.0 622500.0 -1 -1 \n",
"1277500.0 497500.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"512500.0 42500.0 255 0 \n",
"1022500.0 217500.0 255 0 \n",
"737500.0 322500.0 20 0 \n",
"1217500.0 622500.0 255 0 \n",
"1277500.0 497500.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 772500.0 | \n",
" 437500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 597500.0 | \n",
" 127500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1182500.0 | \n",
" 637500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 497500.0 | \n",
" 587500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 207500.0 | \n",
" 42500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"772500.0 437500.0 0 0 0 \n",
"597500.0 127500.0 0 0 0 \n",
"1182500.0 637500.0 0 0 0 \n",
"497500.0 587500.0 0 0 0 \n",
"207500.0 42500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"772500.0 437500.0 0 0 \n",
"597500.0 127500.0 0 0 \n",
"1182500.0 637500.0 0 0 \n",
"497500.0 587500.0 0 0 \n",
"207500.0 42500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"772500.0 437500.0 0 0 0 0 \n",
"597500.0 127500.0 0 0 0 0 \n",
"1182500.0 637500.0 0 0 0 0 \n",
"497500.0 587500.0 0 0 0 0 \n",
"207500.0 42500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"772500.0 437500.0 0 ... 0 0 \n",
"597500.0 127500.0 0 ... 0 0 \n",
"1182500.0 637500.0 0 ... 0 0 \n",
"497500.0 587500.0 0 ... 0 0 \n",
"207500.0 42500.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"772500.0 437500.0 0 0 -9999 -9999 \n",
"597500.0 127500.0 0 0 -9999 -9999 \n",
"1182500.0 637500.0 0 0 -9999 -9999 \n",
"497500.0 587500.0 0 0 -9999 -9999 \n",
"207500.0 42500.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"772500.0 437500.0 -1 -1 \n",
"597500.0 127500.0 -1 -1 \n",
"1182500.0 637500.0 -1 -1 \n",
"497500.0 587500.0 -1 -1 \n",
"207500.0 42500.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"772500.0 437500.0 255 0 \n",
"597500.0 127500.0 255 0 \n",
"1182500.0 637500.0 255 0 \n",
"497500.0 587500.0 255 0 \n",
"207500.0 42500.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 577500.0 | \n",
" 342500.0 | \n",
" 13 | \n",
" 3 | \n",
" 0 | \n",
" 85 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 883 | \n",
" 1 | \n",
" 2 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 137500.0 | \n",
" 682500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 422500.0 | \n",
" 667500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 152500.0 | \n",
" 362500.0 | \n",
" 0 | \n",
" 0 | \n",
" 32 | \n",
" 68 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1786 | \n",
" 25 | \n",
" 2 | \n",
" 8 | \n",
" 2 | \n",
" 0 | \n",
"
\n",
" \n",
" 1287500.0 | \n",
" 22500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"577500.0 342500.0 13 3 0 \n",
"137500.0 682500.0 0 0 0 \n",
"422500.0 667500.0 0 0 0 \n",
"152500.0 362500.0 0 0 32 \n",
"1287500.0 22500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"577500.0 342500.0 85 0 \n",
"137500.0 682500.0 0 0 \n",
"422500.0 667500.0 0 0 \n",
"152500.0 362500.0 68 0 \n",
"1287500.0 22500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"577500.0 342500.0 0 0 0 0 \n",
"137500.0 682500.0 0 0 0 0 \n",
"422500.0 667500.0 0 0 0 0 \n",
"152500.0 362500.0 0 0 0 0 \n",
"1287500.0 22500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"577500.0 342500.0 0 ... 0 0 \n",
"137500.0 682500.0 0 ... 0 0 \n",
"422500.0 667500.0 0 ... 0 0 \n",
"152500.0 362500.0 0 ... 0 0 \n",
"1287500.0 22500.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"577500.0 342500.0 0 0 883 1 \n",
"137500.0 682500.0 0 0 -9999 -9999 \n",
"422500.0 667500.0 0 0 -9999 -9999 \n",
"152500.0 362500.0 0 0 1786 25 \n",
"1287500.0 22500.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"577500.0 342500.0 2 2 \n",
"137500.0 682500.0 -1 -1 \n",
"422500.0 667500.0 -1 -1 \n",
"152500.0 362500.0 2 8 \n",
"1287500.0 22500.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"577500.0 342500.0 0 0 \n",
"137500.0 682500.0 255 0 \n",
"422500.0 667500.0 255 0 \n",
"152500.0 362500.0 2 0 \n",
"1287500.0 22500.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1217500.0 | \n",
" 357500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 982500.0 | \n",
" 157500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 917500.0 | \n",
" 227500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 99 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 4460 | \n",
" 4 | \n",
" 2 | \n",
" 3 | \n",
" 32 | \n",
" 0 | \n",
"
\n",
" \n",
" 712500.0 | \n",
" 7500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 607500.0 | \n",
" 607500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1217500.0 357500.0 0 0 0 \n",
"982500.0 157500.0 0 0 0 \n",
"917500.0 227500.0 0 0 0 \n",
"712500.0 7500.0 0 0 0 \n",
"607500.0 607500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1217500.0 357500.0 0 0 \n",
"982500.0 157500.0 0 0 \n",
"917500.0 227500.0 0 0 \n",
"712500.0 7500.0 0 0 \n",
"607500.0 607500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1217500.0 357500.0 0 0 0 0 \n",
"982500.0 157500.0 0 0 0 0 \n",
"917500.0 227500.0 0 99 0 0 \n",
"712500.0 7500.0 0 0 0 0 \n",
"607500.0 607500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"1217500.0 357500.0 0 ... 0 0 \n",
"982500.0 157500.0 0 ... 0 0 \n",
"917500.0 227500.0 0 ... 0 0 \n",
"712500.0 7500.0 0 ... 0 0 \n",
"607500.0 607500.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"1217500.0 357500.0 0 0 -9999 -9999 \n",
"982500.0 157500.0 0 0 -9999 -9999 \n",
"917500.0 227500.0 0 0 4460 4 \n",
"712500.0 7500.0 0 0 -9999 -9999 \n",
"607500.0 607500.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"1217500.0 357500.0 -1 -1 \n",
"982500.0 157500.0 -1 -1 \n",
"917500.0 227500.0 2 3 \n",
"712500.0 7500.0 -1 -1 \n",
"607500.0 607500.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"1217500.0 357500.0 255 0 \n",
"982500.0 157500.0 255 0 \n",
"917500.0 227500.0 32 0 \n",
"712500.0 7500.0 255 0 \n",
"607500.0 607500.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1092500.0 | \n",
" 2500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 17500.0 | \n",
" 422500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1242500.0 | \n",
" 497500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 272500.0 | \n",
" 387500.0 | \n",
" 1 | \n",
" 0 | \n",
" 61 | \n",
" 18 | \n",
" 16 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 2 | \n",
" 611 | \n",
" 1 | \n",
" 2 | \n",
" 6 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1217500.0 | \n",
" 427500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1092500.0 2500.0 0 0 0 \n",
"17500.0 422500.0 0 0 0 \n",
"1242500.0 497500.0 0 0 0 \n",
"272500.0 387500.0 1 0 61 \n",
"1217500.0 427500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1092500.0 2500.0 0 0 \n",
"17500.0 422500.0 0 0 \n",
"1242500.0 497500.0 0 0 \n",
"272500.0 387500.0 18 16 \n",
"1217500.0 427500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1092500.0 2500.0 0 0 0 0 \n",
"17500.0 422500.0 0 0 0 0 \n",
"1242500.0 497500.0 0 0 0 0 \n",
"272500.0 387500.0 0 0 0 0 \n",
"1217500.0 427500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"1092500.0 2500.0 0 ... 0 0 \n",
"17500.0 422500.0 0 ... 0 0 \n",
"1242500.0 497500.0 0 ... 0 0 \n",
"272500.0 387500.0 0 ... 0 0 \n",
"1217500.0 427500.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"1092500.0 2500.0 0 0 -9999 -9999 \n",
"17500.0 422500.0 0 0 -9999 -9999 \n",
"1242500.0 497500.0 0 0 -9999 -9999 \n",
"272500.0 387500.0 1 2 611 1 \n",
"1217500.0 427500.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"1092500.0 2500.0 -1 -1 \n",
"17500.0 422500.0 -1 -1 \n",
"1242500.0 497500.0 -1 -1 \n",
"272500.0 387500.0 2 6 \n",
"1217500.0 427500.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"1092500.0 2500.0 255 0 \n",
"17500.0 422500.0 255 0 \n",
"1242500.0 497500.0 255 0 \n",
"272500.0 387500.0 0 0 \n",
"1217500.0 427500.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 797500.0 | \n",
" 542500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 557500.0 | \n",
" 237500.0 | \n",
" 5 | \n",
" 0 | \n",
" 1 | \n",
" 88 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 2 | \n",
" 300 | \n",
" 9 | \n",
" 2 | \n",
" 4 | \n",
" 148 | \n",
" 0 | \n",
"
\n",
" \n",
" 967500.0 | \n",
" 222500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -1000 | \n",
" -9999 | \n",
" 0 | \n",
" -2 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 972500.0 | \n",
" 512500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 592500.0 | \n",
" 677500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"797500.0 542500.0 0 0 0 \n",
"557500.0 237500.0 5 0 1 \n",
"967500.0 222500.0 0 0 0 \n",
"972500.0 512500.0 0 0 0 \n",
"592500.0 677500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"797500.0 542500.0 0 0 0 \n",
"557500.0 237500.0 88 0 0 \n",
"967500.0 222500.0 0 0 0 \n",
"972500.0 512500.0 0 0 0 \n",
"592500.0 677500.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"797500.0 542500.0 0 0 0 0 ... \n",
"557500.0 237500.0 0 0 0 0 ... \n",
"967500.0 222500.0 0 0 0 0 ... \n",
"972500.0 512500.0 0 0 0 0 ... \n",
"592500.0 677500.0 0 0 0 0 ... \n",
"\n",
" Littoral sediment Saltmarsh Urban Suburban Elevation \\\n",
"y x \n",
"797500.0 542500.0 0 0 0 0 -9999 \n",
"557500.0 237500.0 0 0 0 2 300 \n",
"967500.0 222500.0 0 0 0 0 -1000 \n",
"972500.0 512500.0 0 0 0 0 -9999 \n",
"592500.0 677500.0 0 0 0 0 -9999 \n",
"\n",
" Cumulative catchment area Surface type \\\n",
"y x \n",
"797500.0 542500.0 -9999 -1 \n",
"557500.0 237500.0 9 2 \n",
"967500.0 222500.0 -9999 0 \n",
"972500.0 512500.0 -9999 -1 \n",
"592500.0 677500.0 -9999 -1 \n",
"\n",
" Outflowing drainage direction \\\n",
"y x \n",
"797500.0 542500.0 -1 \n",
"557500.0 237500.0 4 \n",
"967500.0 222500.0 -2 \n",
"972500.0 512500.0 -1 \n",
"592500.0 677500.0 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"797500.0 542500.0 255 0 \n",
"557500.0 237500.0 148 0 \n",
"967500.0 222500.0 0 0 \n",
"972500.0 512500.0 255 0 \n",
"592500.0 677500.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 902500.0 | \n",
" 487500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 457500.0 | \n",
" 292500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 747500.0 | \n",
" 697500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 762500.0 | \n",
" 282500.0 | \n",
" 0 | \n",
" 48 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 39 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 3268 | \n",
" 1 | \n",
" 2 | \n",
" 8 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 962500.0 | \n",
" 552500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"902500.0 487500.0 0 0 0 \n",
"457500.0 292500.0 0 0 0 \n",
"747500.0 697500.0 0 0 0 \n",
"762500.0 282500.0 0 48 0 \n",
"962500.0 552500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"902500.0 487500.0 0 0 0 \n",
"457500.0 292500.0 0 0 0 \n",
"747500.0 697500.0 0 0 0 \n",
"762500.0 282500.0 0 0 0 \n",
"962500.0 552500.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"902500.0 487500.0 0 0 0 0 ... \n",
"457500.0 292500.0 0 0 0 0 ... \n",
"747500.0 697500.0 0 0 0 0 ... \n",
"762500.0 282500.0 1 0 39 0 ... \n",
"962500.0 552500.0 0 0 0 0 ... \n",
"\n",
" Littoral sediment Saltmarsh Urban Suburban Elevation \\\n",
"y x \n",
"902500.0 487500.0 0 0 0 0 -9999 \n",
"457500.0 292500.0 0 0 0 0 -9999 \n",
"747500.0 697500.0 0 0 0 0 -9999 \n",
"762500.0 282500.0 0 0 0 0 3268 \n",
"962500.0 552500.0 0 0 0 0 -9999 \n",
"\n",
" Cumulative catchment area Surface type \\\n",
"y x \n",
"902500.0 487500.0 -9999 -1 \n",
"457500.0 292500.0 -9999 -1 \n",
"747500.0 697500.0 -9999 -1 \n",
"762500.0 282500.0 1 2 \n",
"962500.0 552500.0 -9999 -1 \n",
"\n",
" Outflowing drainage direction \\\n",
"y x \n",
"902500.0 487500.0 -1 \n",
"457500.0 292500.0 -1 \n",
"747500.0 697500.0 -1 \n",
"762500.0 282500.0 8 \n",
"962500.0 552500.0 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"902500.0 487500.0 255 0 \n",
"457500.0 292500.0 255 0 \n",
"747500.0 697500.0 255 0 \n",
"762500.0 282500.0 0 0 \n",
"962500.0 552500.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 52500.0 | \n",
" 397500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1102500.0 | \n",
" 497500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1202500.0 | \n",
" 202500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1122500.0 | \n",
" 297500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 857500.0 | \n",
" 282500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 11 | \n",
" 38 | \n",
" 0 | \n",
" 0 | \n",
" 35 | \n",
" 1 | \n",
" 2 | \n",
" 8 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"52500.0 397500.0 0 0 0 \n",
"1102500.0 497500.0 0 0 0 \n",
"1202500.0 202500.0 0 0 0 \n",
"1122500.0 297500.0 0 0 0 \n",
"857500.0 282500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"52500.0 397500.0 0 0 \n",
"1102500.0 497500.0 0 0 \n",
"1202500.0 202500.0 0 0 \n",
"1122500.0 297500.0 0 0 \n",
"857500.0 282500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"52500.0 397500.0 0 0 0 0 \n",
"1102500.0 497500.0 0 0 0 0 \n",
"1202500.0 202500.0 0 0 0 0 \n",
"1122500.0 297500.0 0 0 0 0 \n",
"857500.0 282500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"52500.0 397500.0 0 ... 0 0 \n",
"1102500.0 497500.0 0 ... 0 0 \n",
"1202500.0 202500.0 0 ... 0 0 \n",
"1122500.0 297500.0 0 ... 0 0 \n",
"857500.0 282500.0 0 ... 11 38 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"52500.0 397500.0 0 0 -9999 -9999 \n",
"1102500.0 497500.0 0 0 -9999 -9999 \n",
"1202500.0 202500.0 0 0 -9999 -9999 \n",
"1122500.0 297500.0 0 0 -9999 -9999 \n",
"857500.0 282500.0 0 0 35 1 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"52500.0 397500.0 -1 -1 \n",
"1102500.0 497500.0 -1 -1 \n",
"1202500.0 202500.0 -1 -1 \n",
"1122500.0 297500.0 -1 -1 \n",
"857500.0 282500.0 2 8 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"52500.0 397500.0 255 0 \n",
"1102500.0 497500.0 255 0 \n",
"1202500.0 202500.0 255 0 \n",
"1122500.0 297500.0 255 0 \n",
"857500.0 282500.0 0 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 617500.0 | \n",
" 587500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1002500.0 | \n",
" 567500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1137500.0 | \n",
" 697500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1147500.0 | \n",
" 262500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1177500.0 | \n",
" 667500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"617500.0 587500.0 0 0 0 \n",
"1002500.0 567500.0 0 0 0 \n",
"1137500.0 697500.0 0 0 0 \n",
"1147500.0 262500.0 0 0 0 \n",
"1177500.0 667500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"617500.0 587500.0 0 0 \n",
"1002500.0 567500.0 0 0 \n",
"1137500.0 697500.0 0 0 \n",
"1147500.0 262500.0 0 0 \n",
"1177500.0 667500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"617500.0 587500.0 0 0 0 0 \n",
"1002500.0 567500.0 0 0 0 0 \n",
"1137500.0 697500.0 0 0 0 0 \n",
"1147500.0 262500.0 0 0 0 0 \n",
"1177500.0 667500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"617500.0 587500.0 0 ... 0 0 \n",
"1002500.0 567500.0 0 ... 0 0 \n",
"1137500.0 697500.0 0 ... 0 0 \n",
"1147500.0 262500.0 0 ... 0 0 \n",
"1177500.0 667500.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"617500.0 587500.0 0 0 -9999 -9999 \n",
"1002500.0 567500.0 0 0 -9999 -9999 \n",
"1137500.0 697500.0 0 0 -9999 -9999 \n",
"1147500.0 262500.0 0 0 -9999 -9999 \n",
"1177500.0 667500.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"617500.0 587500.0 -1 -1 \n",
"1002500.0 567500.0 -1 -1 \n",
"1137500.0 697500.0 -1 -1 \n",
"1147500.0 262500.0 -1 -1 \n",
"1177500.0 667500.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"617500.0 587500.0 255 0 \n",
"1002500.0 567500.0 255 0 \n",
"1137500.0 697500.0 255 0 \n",
"1147500.0 262500.0 255 0 \n",
"1177500.0 667500.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1107500.0 | \n",
" 97500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1042500.0 | \n",
" 502500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 777500.0 | \n",
" 627500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1012500.0 | \n",
" 457500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 522500.0 | \n",
" 502500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1107500.0 97500.0 0 0 0 \n",
"1042500.0 502500.0 0 0 0 \n",
"777500.0 627500.0 0 0 0 \n",
"1012500.0 457500.0 0 0 0 \n",
"522500.0 502500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1107500.0 97500.0 0 0 \n",
"1042500.0 502500.0 0 0 \n",
"777500.0 627500.0 0 0 \n",
"1012500.0 457500.0 0 0 \n",
"522500.0 502500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1107500.0 97500.0 0 0 0 0 \n",
"1042500.0 502500.0 0 0 0 0 \n",
"777500.0 627500.0 0 0 0 0 \n",
"1012500.0 457500.0 0 0 0 0 \n",
"522500.0 502500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"1107500.0 97500.0 0 ... 0 0 \n",
"1042500.0 502500.0 0 ... 0 0 \n",
"777500.0 627500.0 0 ... 0 0 \n",
"1012500.0 457500.0 0 ... 0 0 \n",
"522500.0 502500.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"1107500.0 97500.0 0 0 -9999 -9999 \n",
"1042500.0 502500.0 0 0 -9999 -9999 \n",
"777500.0 627500.0 0 0 -9999 -9999 \n",
"1012500.0 457500.0 0 0 -9999 -9999 \n",
"522500.0 502500.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"1107500.0 97500.0 -1 -1 \n",
"1042500.0 502500.0 -1 -1 \n",
"777500.0 627500.0 -1 -1 \n",
"1012500.0 457500.0 -1 -1 \n",
"522500.0 502500.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"1107500.0 97500.0 255 0 \n",
"1042500.0 502500.0 255 0 \n",
"777500.0 627500.0 255 0 \n",
"1012500.0 457500.0 255 0 \n",
"522500.0 502500.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 797500.0 | \n",
" 252500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 100 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 4891 | \n",
" 35 | \n",
" 2 | \n",
" 1 | \n",
" 128 | \n",
" 0 | \n",
"
\n",
" \n",
" 422500.0 | \n",
" 127500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 52500.0 | \n",
" 382500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 152500.0 | \n",
" 142500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 982500.0 | \n",
" 647500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"797500.0 252500.0 0 0 0 \n",
"422500.0 127500.0 0 0 0 \n",
"52500.0 382500.0 0 0 0 \n",
"152500.0 142500.0 0 0 0 \n",
"982500.0 647500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"797500.0 252500.0 0 0 0 \n",
"422500.0 127500.0 0 0 0 \n",
"52500.0 382500.0 0 0 0 \n",
"152500.0 142500.0 0 0 0 \n",
"982500.0 647500.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"797500.0 252500.0 0 0 100 0 ... \n",
"422500.0 127500.0 0 0 0 0 ... \n",
"52500.0 382500.0 0 0 0 0 ... \n",
"152500.0 142500.0 0 0 0 0 ... \n",
"982500.0 647500.0 0 0 0 0 ... \n",
"\n",
" Littoral sediment Saltmarsh Urban Suburban Elevation \\\n",
"y x \n",
"797500.0 252500.0 0 0 0 0 4891 \n",
"422500.0 127500.0 0 0 0 0 -9999 \n",
"52500.0 382500.0 0 0 0 0 -9999 \n",
"152500.0 142500.0 0 0 0 0 -9999 \n",
"982500.0 647500.0 0 0 0 0 -9999 \n",
"\n",
" Cumulative catchment area Surface type \\\n",
"y x \n",
"797500.0 252500.0 35 2 \n",
"422500.0 127500.0 -9999 -1 \n",
"52500.0 382500.0 -9999 -1 \n",
"152500.0 142500.0 -9999 -1 \n",
"982500.0 647500.0 -9999 -1 \n",
"\n",
" Outflowing drainage direction \\\n",
"y x \n",
"797500.0 252500.0 1 \n",
"422500.0 127500.0 -1 \n",
"52500.0 382500.0 -1 \n",
"152500.0 142500.0 -1 \n",
"982500.0 647500.0 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"797500.0 252500.0 128 0 \n",
"422500.0 127500.0 255 0 \n",
"52500.0 382500.0 255 0 \n",
"152500.0 142500.0 255 0 \n",
"982500.0 647500.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1037500.0 | \n",
" 652500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1117500.0 | \n",
" 522500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 722500.0 | \n",
" 62500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 582500.0 | \n",
" 442500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 877500.0 | \n",
" 32500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1037500.0 652500.0 0 0 0 \n",
"1117500.0 522500.0 0 0 0 \n",
"722500.0 62500.0 0 0 0 \n",
"582500.0 442500.0 0 0 0 \n",
"877500.0 32500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1037500.0 652500.0 0 0 \n",
"1117500.0 522500.0 0 0 \n",
"722500.0 62500.0 0 0 \n",
"582500.0 442500.0 0 0 \n",
"877500.0 32500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1037500.0 652500.0 0 0 0 0 \n",
"1117500.0 522500.0 0 0 0 0 \n",
"722500.0 62500.0 0 0 0 0 \n",
"582500.0 442500.0 0 0 0 0 \n",
"877500.0 32500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"1037500.0 652500.0 0 ... 0 0 \n",
"1117500.0 522500.0 0 ... 0 0 \n",
"722500.0 62500.0 0 ... 0 0 \n",
"582500.0 442500.0 0 ... 0 0 \n",
"877500.0 32500.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"1037500.0 652500.0 0 0 -9999 -9999 \n",
"1117500.0 522500.0 0 0 -9999 -9999 \n",
"722500.0 62500.0 0 0 -9999 -9999 \n",
"582500.0 442500.0 0 0 -9999 -9999 \n",
"877500.0 32500.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"1037500.0 652500.0 -1 -1 \n",
"1117500.0 522500.0 -1 -1 \n",
"722500.0 62500.0 -1 -1 \n",
"582500.0 442500.0 -1 -1 \n",
"877500.0 32500.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"1037500.0 652500.0 255 0 \n",
"1117500.0 522500.0 255 0 \n",
"722500.0 62500.0 255 0 \n",
"582500.0 442500.0 255 0 \n",
"877500.0 32500.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 302500.0 | \n",
" 297500.0 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 97 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 3764 | \n",
" 18 | \n",
" 2 | \n",
" 7 | \n",
" 2 | \n",
" 0 | \n",
"
\n",
" \n",
" 912500.0 | \n",
" 297500.0 | \n",
" 18 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 81 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 2301 | \n",
" 3 | \n",
" 2 | \n",
" 1 | \n",
" 64 | \n",
" 0 | \n",
"
\n",
" \n",
" 1152500.0 | \n",
" 472500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1042500.0 | \n",
" 172500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 802500.0 | \n",
" 532500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"302500.0 297500.0 0 3 0 \n",
"912500.0 297500.0 18 0 0 \n",
"1152500.0 472500.0 0 0 0 \n",
"1042500.0 172500.0 0 0 0 \n",
"802500.0 532500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"302500.0 297500.0 0 0 \n",
"912500.0 297500.0 1 0 \n",
"1152500.0 472500.0 0 0 \n",
"1042500.0 172500.0 0 0 \n",
"802500.0 532500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"302500.0 297500.0 0 97 0 0 \n",
"912500.0 297500.0 0 0 0 81 \n",
"1152500.0 472500.0 0 0 0 0 \n",
"1042500.0 172500.0 0 0 0 0 \n",
"802500.0 532500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"302500.0 297500.0 0 ... 0 0 \n",
"912500.0 297500.0 0 ... 0 0 \n",
"1152500.0 472500.0 0 ... 0 0 \n",
"1042500.0 172500.0 0 ... 0 0 \n",
"802500.0 532500.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"302500.0 297500.0 0 0 3764 18 \n",
"912500.0 297500.0 0 0 2301 3 \n",
"1152500.0 472500.0 0 0 -9999 -9999 \n",
"1042500.0 172500.0 0 0 -9999 -9999 \n",
"802500.0 532500.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"302500.0 297500.0 2 7 \n",
"912500.0 297500.0 2 1 \n",
"1152500.0 472500.0 -1 -1 \n",
"1042500.0 172500.0 -1 -1 \n",
"802500.0 532500.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"302500.0 297500.0 2 0 \n",
"912500.0 297500.0 64 0 \n",
"1152500.0 472500.0 255 0 \n",
"1042500.0 172500.0 255 0 \n",
"802500.0 532500.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1122500.0 | \n",
" 637500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 267500.0 | \n",
" 242500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -1000 | \n",
" -9999 | \n",
" 0 | \n",
" -2 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 172500.0 | \n",
" 202500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 802500.0 | \n",
" 322500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 8 | \n",
" 0 | \n",
" 92 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 4998 | \n",
" 4 | \n",
" 2 | \n",
" 3 | \n",
" 32 | \n",
" 0 | \n",
"
\n",
" \n",
" 512500.0 | \n",
" 522500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1122500.0 637500.0 0 0 0 \n",
"267500.0 242500.0 0 0 0 \n",
"172500.0 202500.0 0 0 0 \n",
"802500.0 322500.0 0 0 0 \n",
"512500.0 522500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1122500.0 637500.0 0 0 \n",
"267500.0 242500.0 0 0 \n",
"172500.0 202500.0 0 0 \n",
"802500.0 322500.0 0 0 \n",
"512500.0 522500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1122500.0 637500.0 0 0 0 0 \n",
"267500.0 242500.0 0 0 0 0 \n",
"172500.0 202500.0 0 0 0 0 \n",
"802500.0 322500.0 0 8 0 92 \n",
"512500.0 522500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"1122500.0 637500.0 0 ... 0 0 \n",
"267500.0 242500.0 0 ... 0 0 \n",
"172500.0 202500.0 0 ... 0 0 \n",
"802500.0 322500.0 0 ... 0 0 \n",
"512500.0 522500.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"1122500.0 637500.0 0 0 -9999 -9999 \n",
"267500.0 242500.0 0 0 -1000 -9999 \n",
"172500.0 202500.0 0 0 -9999 -9999 \n",
"802500.0 322500.0 0 0 4998 4 \n",
"512500.0 522500.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"1122500.0 637500.0 -1 -1 \n",
"267500.0 242500.0 0 -2 \n",
"172500.0 202500.0 -1 -1 \n",
"802500.0 322500.0 2 3 \n",
"512500.0 522500.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"1122500.0 637500.0 255 0 \n",
"267500.0 242500.0 0 0 \n",
"172500.0 202500.0 255 0 \n",
"802500.0 322500.0 32 0 \n",
"512500.0 522500.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 502500.0 | \n",
" 397500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 5413 | \n",
" 8 | \n",
" 2 | \n",
" 3 | \n",
" 40 | \n",
" 0 | \n",
"
\n",
" \n",
" 1062500.0 | \n",
" 372500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1232500.0 | \n",
" 82500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 2500.0 | \n",
" 342500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1287500.0 | \n",
" 7500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"502500.0 397500.0 0 0 0 \n",
"1062500.0 372500.0 0 0 0 \n",
"1232500.0 82500.0 0 0 0 \n",
"2500.0 342500.0 0 0 0 \n",
"1287500.0 7500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"502500.0 397500.0 0 0 \n",
"1062500.0 372500.0 0 0 \n",
"1232500.0 82500.0 0 0 \n",
"2500.0 342500.0 0 0 \n",
"1287500.0 7500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"502500.0 397500.0 0 0 0 0 \n",
"1062500.0 372500.0 0 0 0 0 \n",
"1232500.0 82500.0 0 0 0 0 \n",
"2500.0 342500.0 0 0 0 0 \n",
"1287500.0 7500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"502500.0 397500.0 0 ... 0 0 \n",
"1062500.0 372500.0 0 ... 0 0 \n",
"1232500.0 82500.0 0 ... 0 0 \n",
"2500.0 342500.0 0 ... 0 0 \n",
"1287500.0 7500.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"502500.0 397500.0 0 0 5413 8 \n",
"1062500.0 372500.0 0 0 -9999 -9999 \n",
"1232500.0 82500.0 0 0 -9999 -9999 \n",
"2500.0 342500.0 0 0 -9999 -9999 \n",
"1287500.0 7500.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"502500.0 397500.0 2 3 \n",
"1062500.0 372500.0 -1 -1 \n",
"1232500.0 82500.0 -1 -1 \n",
"2500.0 342500.0 -1 -1 \n",
"1287500.0 7500.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"502500.0 397500.0 40 0 \n",
"1062500.0 372500.0 255 0 \n",
"1232500.0 82500.0 255 0 \n",
"2500.0 342500.0 255 0 \n",
"1287500.0 7500.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 102500.0 | \n",
" 257500.0 | \n",
" 30 | \n",
" 11 | \n",
" 0 | \n",
" 60 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 982 | \n",
" 202 | \n",
" 2 | \n",
" 9 | \n",
" 15 | \n",
" 0 | \n",
"
\n",
" \n",
" 1232500.0 | \n",
" 332500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1182500.0 | \n",
" 37500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 557500.0 | \n",
" 52500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 187500.0 | \n",
" 212500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -1000 | \n",
" -9999 | \n",
" 0 | \n",
" -2 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"102500.0 257500.0 30 11 0 \n",
"1232500.0 332500.0 0 0 0 \n",
"1182500.0 37500.0 0 0 0 \n",
"557500.0 52500.0 0 0 0 \n",
"187500.0 212500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"102500.0 257500.0 60 0 \n",
"1232500.0 332500.0 0 0 \n",
"1182500.0 37500.0 0 0 \n",
"557500.0 52500.0 0 0 \n",
"187500.0 212500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"102500.0 257500.0 0 0 0 0 \n",
"1232500.0 332500.0 0 0 0 0 \n",
"1182500.0 37500.0 0 0 0 0 \n",
"557500.0 52500.0 0 0 0 0 \n",
"187500.0 212500.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"102500.0 257500.0 0 ... 0 0 \n",
"1232500.0 332500.0 0 ... 0 0 \n",
"1182500.0 37500.0 0 ... 0 0 \n",
"557500.0 52500.0 0 ... 0 0 \n",
"187500.0 212500.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"102500.0 257500.0 0 0 982 202 \n",
"1232500.0 332500.0 0 0 -9999 -9999 \n",
"1182500.0 37500.0 0 0 -9999 -9999 \n",
"557500.0 52500.0 0 0 -9999 -9999 \n",
"187500.0 212500.0 0 0 -1000 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"102500.0 257500.0 2 9 \n",
"1232500.0 332500.0 -1 -1 \n",
"1182500.0 37500.0 -1 -1 \n",
"557500.0 52500.0 -1 -1 \n",
"187500.0 212500.0 0 -2 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"102500.0 257500.0 15 0 \n",
"1232500.0 332500.0 255 0 \n",
"1182500.0 37500.0 255 0 \n",
"557500.0 52500.0 255 0 \n",
"187500.0 212500.0 0 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1147500.0 | \n",
" 547500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1027500.0 | \n",
" 172500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1247500.0 | \n",
" 612500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 62500.0 | \n",
" 372500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -1000 | \n",
" -9999 | \n",
" 0 | \n",
" -2 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 752500.0 | \n",
" 272500.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 100 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 6182 | \n",
" 4 | \n",
" 2 | \n",
" 7 | \n",
" 4 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1147500.0 547500.0 0 0 0 \n",
"1027500.0 172500.0 0 0 0 \n",
"1247500.0 612500.0 0 0 0 \n",
"62500.0 372500.0 0 0 0 \n",
"752500.0 272500.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1147500.0 547500.0 0 0 \n",
"1027500.0 172500.0 0 0 \n",
"1247500.0 612500.0 0 0 \n",
"62500.0 372500.0 0 0 \n",
"752500.0 272500.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1147500.0 547500.0 0 0 0 0 \n",
"1027500.0 172500.0 0 0 0 0 \n",
"1247500.0 612500.0 0 0 0 0 \n",
"62500.0 372500.0 0 0 0 0 \n",
"752500.0 272500.0 0 0 0 100 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"1147500.0 547500.0 0 ... 0 0 \n",
"1027500.0 172500.0 0 ... 0 0 \n",
"1247500.0 612500.0 0 ... 0 0 \n",
"62500.0 372500.0 0 ... 0 0 \n",
"752500.0 272500.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"1147500.0 547500.0 0 0 -9999 -9999 \n",
"1027500.0 172500.0 0 0 -9999 -9999 \n",
"1247500.0 612500.0 0 0 -9999 -9999 \n",
"62500.0 372500.0 0 0 -1000 -9999 \n",
"752500.0 272500.0 0 0 6182 4 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"1147500.0 547500.0 -1 -1 \n",
"1027500.0 172500.0 -1 -1 \n",
"1247500.0 612500.0 -1 -1 \n",
"62500.0 372500.0 0 -2 \n",
"752500.0 272500.0 2 7 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"1147500.0 547500.0 255 0 \n",
"1027500.0 172500.0 255 0 \n",
"1247500.0 612500.0 255 0 \n",
"62500.0 372500.0 0 0 \n",
"752500.0 272500.0 4 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Drop Fertiliser and Pesticide\n",
"for dict in df_dicts:\n",
" cur_df = dict[\"dataframe\"]\n",
" dict[\"dataframe\"].drop(cur_df.iloc[:, 26:-1], inplace=True, axis=1)\n",
" display(cur_df.sample(5))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 5km data before drop: \n",
" Occurrence\n",
"0 35813\n",
"1 587\n",
"dtype: int64 \n",
"\n",
"Barnacle Goose 5km data after drop: \n",
" Occurrence\n",
"0 7378\n",
"1 587\n",
"dtype: int64 \n",
"\n",
"Canada Goose 5km data before drop: \n",
" Occurrence\n",
"0 32095\n",
"1 4305\n",
"dtype: int64 \n",
"\n",
"Canada Goose 5km data after drop: \n",
" Occurrence\n",
"1 4305\n",
"0 3660\n",
"dtype: int64 \n",
"\n",
"Egyptian Goose 5km data before drop: \n",
" Occurrence\n",
"0 35915\n",
"1 485\n",
"dtype: int64 \n",
"\n",
"Egyptian Goose 5km data after drop: \n",
" Occurrence\n",
"0 7480\n",
"1 485\n",
"dtype: int64 \n",
"\n",
"Gadwall 5km data before drop: \n",
" Occurrence\n",
"0 35001\n",
"1 1399\n",
"dtype: int64 \n",
"\n",
"Gadwall 5km data after drop: \n",
" Occurrence\n",
"0 6566\n",
"1 1399\n",
"dtype: int64 \n",
"\n",
"Goshawk 5km data before drop: \n",
" Occurrence\n",
"0 35954\n",
"1 446\n",
"dtype: int64 \n",
"\n",
"Goshawk 5km data after drop: \n",
" Occurrence\n",
"0 7519\n",
"1 446\n",
"dtype: int64 \n",
"\n",
"Grey Partridge 5km data before drop: \n",
" Occurrence\n",
"0 34771\n",
"1 1629\n",
"dtype: int64 \n",
"\n",
"Grey Partridge 5km data after drop: \n",
" Occurrence\n",
"0 6336\n",
"1 1629\n",
"dtype: int64 \n",
"\n",
"Indian Peafowl 5km data before drop: \n",
" Occurrence\n",
"0 36116\n",
"1 284\n",
"dtype: int64 \n",
"\n",
"Indian Peafowl 5km data after drop: \n",
" Occurrence\n",
"0 7681\n",
"1 284\n",
"dtype: int64 \n",
"\n",
"Little Owl 5km data before drop: \n",
" Occurrence\n",
"0 34242\n",
"1 2158\n",
"dtype: int64 \n",
"\n",
"Little Owl 5km data after drop: \n",
" Occurrence\n",
"0 5807\n",
"1 2158\n",
"dtype: int64 \n",
"\n",
"Mandarin Duck 5km data before drop: \n",
" Occurrence\n",
"0 35686\n",
"1 714\n",
"dtype: int64 \n",
"\n",
"Mandarin Duck 5km data after drop: \n",
" Occurrence\n",
"0 7251\n",
"1 714\n",
"dtype: int64 \n",
"\n",
"Mute Swan 5km data before drop: \n",
" Occurrence\n",
"0 31133\n",
"1 5267\n",
"dtype: int64 \n",
"\n",
"Mute Swan 5km data after drop: \n",
" Occurrence\n",
"1 5267\n",
"0 2698\n",
"dtype: int64 \n",
"\n",
"Pheasant 5km data before drop: \n",
" Occurrence\n",
"0 32552\n",
"1 3848\n",
"dtype: int64 \n",
"\n",
"Pheasant 5km data after drop: \n",
" Occurrence\n",
"0 4117\n",
"1 3848\n",
"dtype: int64 \n",
"\n",
"Pink-footed Goose 5km data before drop: \n",
" Occurrence\n",
"0 35087\n",
"1 1313\n",
"dtype: int64 \n",
"\n",
"Pink-footed Goose 5km data after drop: \n",
" Occurrence\n",
"0 6652\n",
"1 1313\n",
"dtype: int64 \n",
"\n",
"Pintail 5km data before drop: \n",
" Occurrence\n",
"0 35751\n",
"1 649\n",
"dtype: int64 \n",
"\n",
"Pintail 5km data after drop: \n",
" Occurrence\n",
"0 7316\n",
"1 649\n",
"dtype: int64 \n",
"\n",
"Pochard 5km data before drop: \n",
" Occurrence\n",
"0 35458\n",
"1 942\n",
"dtype: int64 \n",
"\n",
"Pochard 5km data after drop: \n",
" Occurrence\n",
"0 7023\n",
"1 942\n",
"dtype: int64 \n",
"\n",
"Red-legged Partridge 5km data before drop: \n",
" Occurrence\n",
"0 34250\n",
"1 2150\n",
"dtype: int64 \n",
"\n",
"Red-legged Partridge 5km data after drop: \n",
" Occurrence\n",
"0 5815\n",
"1 2150\n",
"dtype: int64 \n",
"\n",
"Ring-necked Parakeet 5km data before drop: \n",
" Occurrence\n",
"0 36194\n",
"1 206\n",
"dtype: int64 \n",
"\n",
"Ring-necked Parakeet 5km data after drop: \n",
" Occurrence\n",
"0 7759\n",
"1 206\n",
"dtype: int64 \n",
"\n",
"Rock Dove 5km data before drop: \n",
" Occurrence\n",
"0 33570\n",
"1 2830\n",
"dtype: int64 \n",
"\n",
"Rock Dove 5km data after drop: \n",
" Occurrence\n",
"0 5135\n",
"1 2830\n",
"dtype: int64 \n",
"\n",
"Ruddy Duck 5km data before drop: \n",
" Occurrence\n",
"0 36291\n",
"1 109\n",
"dtype: int64 \n",
"\n",
"Ruddy Duck 5km data after drop: \n",
" Occurrence\n",
"0 7856\n",
"1 109\n",
"dtype: int64 \n",
"\n",
"Whooper Swan 5km data before drop: \n",
" Occurrence\n",
"0 35558\n",
"1 842\n",
"dtype: int64 \n",
"\n",
"Whooper Swan 5km data after drop: \n",
" Occurrence\n",
"0 7123\n",
"1 842\n",
"dtype: int64 \n",
"\n",
"Wigeon 5km data before drop: \n",
" Occurrence\n",
"0 34543\n",
"1 1857\n",
"dtype: int64 \n",
"\n",
"Wigeon 5km data after drop: \n",
" Occurrence\n",
"0 6108\n",
"1 1857\n",
"dtype: int64 \n",
"\n"
]
}
],
"source": [
"# Data Cleaning\n",
"np.random.seed(seed=seed)\n",
"\n",
"for dict in df_dicts:\n",
" cur_df = dict[\"dataframe\"]\n",
" cur_df_name = dict[\"name\"]\n",
"\n",
" print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n",
" \n",
" no_occurences = cur_df[cur_df['Occurrence']==0].index \n",
" sample_size = sum(cur_df['Occurrence']==0) - total_birds + sum(cur_df['Occurrence']==1)\n",
" random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n",
" dict[\"dataframe\"] = cur_df.drop(random_indices)\n",
" \n",
" print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')\n",
"\n",
"\n",
"# for dict in df_dicts:\n",
"# cur_df = dict[\"dataframe\"]\n",
"# cur_df_name = dict[\"name\"]\n",
"\n",
"# print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n",
" \n",
"# no_occurences = cur_df[cur_df['Occurrence']==0].index\n",
"# sample_size = sum(cur_df['Occurrence']==0) - sum(cur_df['Occurrence']==1)\n",
"# random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n",
"# dict[\"dataframe\"] = cur_df.drop(random_indices)\n",
" \n",
"# print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# Standardisation\n",
"def standardise(X):\n",
" scaler = StandardScaler()\n",
" X_scaled = scaler.fit_transform(X)\n",
"\n",
" # Add headers back\n",
" X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)\n",
"\n",
" # Revert 'Surface type' back to non-standardised column as it is a categorical feature\n",
" X_scaled_df['Surface type'] = X['Surface type'].values\n",
" return X_scaled_df"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Feature Selection\n",
"\n",
"# Check if any columns have NaN in them\n",
"# nan_columns = []\n",
"# for column in X_scaled_df:\n",
"# if X_scaled_df[column].isnull().values.any():\n",
"# nan_columns.append(column)\n",
"# print(nan_columns if len(nan_columns)!= 0 else 'None')\n",
"\n",
"\n",
"# Using ANOVA F-Score as a feature selection method\n",
"def feature_select(X, y):\n",
" k_nums = [5, 10, 15, 20]\n",
" kbest_dict = {}\n",
" for num in k_nums:\n",
" # Needs to be 1d array, y.values.ravel() converts y into a 1d array\n",
" best_X = SelectKBest(f_classif, k=num).fit(X, y.values.ravel())\n",
" # kbest_dict[str(num)] = best_X.get_feature_names_out().tolist()\n",
" kbest_dict[str(num)] = best_X\n",
" # kbest_dict['40'] = list(X.columns)\n",
"\n",
" best_X = SelectKBest(f_classif, k='all').fit(X, y.values.ravel())\n",
"\n",
" feat_scores = pd.DataFrame()\n",
" feat_scores[\"F Score\"] = best_X.scores_\n",
" feat_scores[\"P Value\"] = best_X.pvalues_\n",
" feat_scores[\"Attribute\"] = X.columns\n",
" kbest_dict['Dataframe'] = feat_scores.sort_values([\"F Score\", \"P Value\"], ascending=[False, False])\n",
"\n",
"\n",
" if details:\n",
" print(f'K-Best Features Dataframe: \\n{kbest_dict[\"Dataframe\"]} \\n')\n",
" # print(json.dumps(kbest_dict, indent=4))\n",
" return kbest_dict"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# Resample (upsample) minority data\n",
"# for dict in df_dicts:\n",
"# if sum(dict['dataframe']['Occurence']==1) > sum(dict['dataframe']['Occurence']==0):\n",
"# continue\n",
"\n",
"# from sklearn.utils import resample\n",
"\n",
"# def upsample(X, y):\n",
"# X_1 = X[y['Occurrence'] == 1] # Getting positive occurrences (minority)\n",
"# X_0 = X[y['Occurrence'] == 0] # Getting negative occurrences (majority)\n",
" \n",
"# X_1_upsampled = resample(X_1 ,random_state=seed,n_samples=total_birds/2,replace=True)\n",
"\n",
"\n",
"# print(f'Resampling: \\n {y.value_counts()} \\n')\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"def oversample(X_train, y_train):\n",
" over = RandomOverSampler(sampling_strategy='minority', random_state=seed)\n",
" smote = SMOTE(random_state=seed, sampling_strategy='minority')\n",
" X_smote, y_smote = smote.fit_resample(X_train, y_train)\n",
" \n",
" if details:\n",
" print(f'Resampled Value Counts: \\n {y_smote.value_counts()} \\n')\n",
"\n",
" return X_smote, y_smote"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Name | \n",
" Occurrence Count | \n",
" Percentage | \n",
"
\n",
" \n",
" \n",
" \n",
" 9 | \n",
" Mute Swan 5km | \n",
" 5267 | \n",
" 0.661268 | \n",
"
\n",
" \n",
" 1 | \n",
" Canada Goose 5km | \n",
" 4305 | \n",
" 0.540490 | \n",
"
\n",
" \n",
" 10 | \n",
" Pheasant 5km | \n",
" 3848 | \n",
" 0.483114 | \n",
"
\n",
" \n",
" 16 | \n",
" Rock Dove 5km | \n",
" 2830 | \n",
" 0.355304 | \n",
"
\n",
" \n",
" 7 | \n",
" Little Owl 5km | \n",
" 2158 | \n",
" 0.270935 | \n",
"
\n",
" \n",
" 14 | \n",
" Red-legged Partridge 5km | \n",
" 2150 | \n",
" 0.269931 | \n",
"
\n",
" \n",
" 19 | \n",
" Wigeon 5km | \n",
" 1857 | \n",
" 0.233145 | \n",
"
\n",
" \n",
" 5 | \n",
" Grey Partridge 5km | \n",
" 1629 | \n",
" 0.204520 | \n",
"
\n",
" \n",
" 3 | \n",
" Gadwall 5km | \n",
" 1399 | \n",
" 0.175643 | \n",
"
\n",
" \n",
" 11 | \n",
" Pink-footed Goose 5km | \n",
" 1313 | \n",
" 0.164846 | \n",
"
\n",
" \n",
" 13 | \n",
" Pochard 5km | \n",
" 942 | \n",
" 0.118267 | \n",
"
\n",
" \n",
" 18 | \n",
" Whooper Swan 5km | \n",
" 842 | \n",
" 0.105712 | \n",
"
\n",
" \n",
" 8 | \n",
" Mandarin Duck 5km | \n",
" 714 | \n",
" 0.089642 | \n",
"
\n",
" \n",
" 12 | \n",
" Pintail 5km | \n",
" 649 | \n",
" 0.081481 | \n",
"
\n",
" \n",
" 0 | \n",
" Barnacle Goose 5km | \n",
" 587 | \n",
" 0.073697 | \n",
"
\n",
" \n",
" 2 | \n",
" Egyptian Goose 5km | \n",
" 485 | \n",
" 0.060891 | \n",
"
\n",
" \n",
" 4 | \n",
" Goshawk 5km | \n",
" 446 | \n",
" 0.055995 | \n",
"
\n",
" \n",
" 6 | \n",
" Indian Peafowl 5km | \n",
" 284 | \n",
" 0.035656 | \n",
"
\n",
" \n",
" 15 | \n",
" Ring-necked Parakeet 5km | \n",
" 206 | \n",
" 0.025863 | \n",
"
\n",
" \n",
" 17 | \n",
" Ruddy Duck 5km | \n",
" 109 | \n",
" 0.013685 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Name Occurrence Count Percentage\n",
"9 Mute Swan 5km 5267 0.661268\n",
"1 Canada Goose 5km 4305 0.540490\n",
"10 Pheasant 5km 3848 0.483114\n",
"16 Rock Dove 5km 2830 0.355304\n",
"7 Little Owl 5km 2158 0.270935\n",
"14 Red-legged Partridge 5km 2150 0.269931\n",
"19 Wigeon 5km 1857 0.233145\n",
"5 Grey Partridge 5km 1629 0.204520\n",
"3 Gadwall 5km 1399 0.175643\n",
"11 Pink-footed Goose 5km 1313 0.164846\n",
"13 Pochard 5km 942 0.118267\n",
"18 Whooper Swan 5km 842 0.105712\n",
"8 Mandarin Duck 5km 714 0.089642\n",
"12 Pintail 5km 649 0.081481\n",
"0 Barnacle Goose 5km 587 0.073697\n",
"2 Egyptian Goose 5km 485 0.060891\n",
"4 Goshawk 5km 446 0.055995\n",
"6 Indian Peafowl 5km 284 0.035656\n",
"15 Ring-necked Parakeet 5km 206 0.025863\n",
"17 Ruddy Duck 5km 109 0.013685"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"All_bird_occurrences = pd.DataFrame([(dict['name'],sum(dict['dataframe']['Occurrence'] == 1)) for dict in df_dicts], columns=['Name', 'Occurrence Count'])\n",
"All_bird_occurrences['Percentage'] = All_bird_occurrences['Occurrence Count']/total_birds\n",
"\n",
"All_bird_occurrences.sort_values('Occurrence Count', ascending=False)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training with Barnacle Goose 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.934793683138054,\n",
" \"recall\": 0.995119305856833,\n",
" \"f1-score\": 0.9640136590491201,\n",
" \"support\": 1844\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6896551724137931,\n",
" \"recall\": 0.13513513513513514,\n",
" \"f1-score\": 0.22598870056497178,\n",
" \"support\": 148\n",
" },\n",
" \"accuracy\": 0.9312248995983936,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8122244277759236,\n",
" \"recall\": 0.5651272204959841,\n",
" \"f1-score\": 0.5950011798070459,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9165805809356491,\n",
" \"recall\": 0.9312248995983936,\n",
" \"f1-score\": 0.9091804794027075,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Barnacle Goose 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9457964601769911,\n",
" \"recall\": 0.9273318872017353,\n",
" \"f1-score\": 0.936473165388828,\n",
" \"support\": 1844\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.2717391304347826,\n",
" \"recall\": 0.33783783783783783,\n",
" \"f1-score\": 0.3012048192771084,\n",
" \"support\": 148\n",
" },\n",
" \"accuracy\": 0.8835341365461847,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6087677953058869,\n",
" \"recall\": 0.6325848625197865,\n",
" \"f1-score\": 0.6188389923329682,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8957158955174294,\n",
" \"recall\": 0.8835341365461847,\n",
" \"f1-score\": 0.8892745131676761,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Canada Goose 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Canada Goose 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9504830917874396,\n",
" \"recall\": 0.8582333696837514,\n",
" \"f1-score\": 0.9020057306590258,\n",
" \"support\": 917\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8883161512027491,\n",
" \"recall\": 0.9618604651162791,\n",
" \"f1-score\": 0.923626619026351,\n",
" \"support\": 1075\n",
" },\n",
" \"accuracy\": 0.9141566265060241,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9193996214950944,\n",
" \"recall\": 0.9100469174000152,\n",
" \"f1-score\": 0.9128161748426884,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.916934165518091,\n",
" \"recall\": 0.9141566265060241,\n",
" \"f1-score\": 0.9136736297528384,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Canada Goose 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9319492502883506,\n",
" \"recall\": 0.88113413304253,\n",
" \"f1-score\": 0.905829596412556,\n",
" \"support\": 917\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9031111111111111,\n",
" \"recall\": 0.9451162790697675,\n",
" \"f1-score\": 0.9236363636363636,\n",
" \"support\": 1075\n",
" },\n",
" \"accuracy\": 0.9156626506024096,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9175301806997309,\n",
" \"recall\": 0.9131252060561488,\n",
" \"f1-score\": 0.9147329800244598,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9163864994773404,\n",
" \"recall\": 0.9156626506024096,\n",
" \"f1-score\": 0.9154391720980948,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Egyptian Goose 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Egyptian Goose 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9474768280123584,\n",
" \"recall\": 0.9881847475832438,\n",
" \"f1-score\": 0.9674027339642481,\n",
" \"support\": 1862\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.56,\n",
" \"recall\": 0.2153846153846154,\n",
" \"f1-score\": 0.3111111111111111,\n",
" \"support\": 130\n",
" },\n",
" \"accuracy\": 0.9377510040160643,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7537384140061792,\n",
" \"recall\": 0.6017846814839296,\n",
" \"f1-score\": 0.6392569225376796,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9221896856219937,\n",
" \"recall\": 0.9377510040160643,\n",
" \"f1-score\": 0.924572457372427,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Egyptian Goose 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9553571428571429,\n",
" \"recall\": 0.976906552094522,\n",
" \"f1-score\": 0.9660116834838025,\n",
" \"support\": 1862\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5113636363636364,\n",
" \"recall\": 0.34615384615384615,\n",
" \"f1-score\": 0.41284403669724773,\n",
" \"support\": 130\n",
" },\n",
" \"accuracy\": 0.9357429718875502,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7333603896103896,\n",
" \"recall\": 0.6615301991241841,\n",
" \"f1-score\": 0.6894278600905251,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9263816630156991,\n",
" \"recall\": 0.9357429718875502,\n",
" \"f1-score\": 0.9299113852497402,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Gadwall 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gadwall 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9283965728274174,\n",
" \"recall\": 0.9266951740989615,\n",
" \"f1-score\": 0.9275450932436564,\n",
" \"support\": 1637\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.664804469273743,\n",
" \"recall\": 0.6704225352112676,\n",
" \"f1-score\": 0.667601683029453,\n",
" \"support\": 355\n",
" },\n",
" \"accuracy\": 0.8810240963855421,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7966005210505802,\n",
" \"recall\": 0.7985588546551146,\n",
" \"f1-score\": 0.7975733881365548,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.881421072445111,\n",
" \"recall\": 0.8810240963855421,\n",
" \"f1-score\": 0.8812198369052818,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Gadwall 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.905727923627685,\n",
" \"recall\": 0.9273060476481368,\n",
" \"f1-score\": 0.9163899788711137,\n",
" \"support\": 1637\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6234177215189873,\n",
" \"recall\": 0.5549295774647888,\n",
" \"f1-score\": 0.587183308494784,\n",
" \"support\": 355\n",
" },\n",
" \"accuracy\": 0.8609437751004017,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7645728225733361,\n",
" \"recall\": 0.7411178125564628,\n",
" \"f1-score\": 0.7517866436829488,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8554166175289963,\n",
" \"recall\": 0.8609437751004017,\n",
" \"f1-score\": 0.8577211194415972,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Goshawk 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Goshawk 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9532994923857868,\n",
" \"recall\": 0.9910290237467019,\n",
" \"f1-score\": 0.9717981888745149,\n",
" \"support\": 1895\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.22727272727272727,\n",
" \"recall\": 0.05154639175257732,\n",
" \"f1-score\": 0.08403361344537814,\n",
" \"support\": 97\n",
" },\n",
" \"accuracy\": 0.945281124497992,\n",
" \"macro avg\": {\n",
" \"precision\": 0.590286109829257,\n",
" \"recall\": 0.5212877077496396,\n",
" \"f1-score\": 0.5279159011599465,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9179457794259641,\n",
" \"recall\": 0.945281124497992,\n",
" \"f1-score\": 0.92856868896657,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Goshawk 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9608967674661105,\n",
" \"recall\": 0.9725593667546174,\n",
" \"f1-score\": 0.966692892735379,\n",
" \"support\": 1895\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.2972972972972973,\n",
" \"recall\": 0.2268041237113402,\n",
" \"f1-score\": 0.2573099415204678,\n",
" \"support\": 97\n",
" },\n",
" \"accuracy\": 0.9362449799196787,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6290970323817039,\n",
" \"recall\": 0.5996817452329788,\n",
" \"f1-score\": 0.6120014171279233,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9285829378444365,\n",
" \"recall\": 0.9362449799196787,\n",
" \"f1-score\": 0.9321496466169821,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Grey Partridge 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Grey Partridge 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9430628272251309,\n",
" \"recall\": 0.902316844082655,\n",
" \"f1-score\": 0.92224,\n",
" \"support\": 1597\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6637931034482759,\n",
" \"recall\": 0.779746835443038,\n",
" \"f1-score\": 0.7171129220023283,\n",
" \"support\": 395\n",
" },\n",
" \"accuracy\": 0.8780120481927711,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8034279653367034,\n",
" \"recall\": 0.8410318397628465,\n",
" \"f1-score\": 0.8196764610011642,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8876855476609453,\n",
" \"recall\": 0.8780120481927711,\n",
" \"f1-score\": 0.881564700899056,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Grey Partridge 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8988278840222085,\n",
" \"recall\": 0.9123356293049468,\n",
" \"f1-score\": 0.9055313859540087,\n",
" \"support\": 1597\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6226415094339622,\n",
" \"recall\": 0.5848101265822785,\n",
" \"f1-score\": 0.6031331592689295,\n",
" \"support\": 395\n",
" },\n",
" \"accuracy\": 0.8473895582329317,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7607346967280854,\n",
" \"recall\": 0.7485728779436127,\n",
" \"f1-score\": 0.7543322726114692,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8440620115511456,\n",
" \"recall\": 0.8473895582329317,\n",
" \"f1-score\": 0.8455678821685638,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Indian Peafowl 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Indian Peafowl 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9617321248741189,\n",
" \"recall\": 0.9968684759916493,\n",
" \"f1-score\": 0.9789851358277807,\n",
" \"support\": 1916\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.0,\n",
" \"recall\": 0.0,\n",
" \"f1-score\": 0.0,\n",
" \"support\": 76\n",
" },\n",
" \"accuracy\": 0.9588353413654619,\n",
" \"macro avg\": {\n",
" \"precision\": 0.4808660624370594,\n",
" \"recall\": 0.49843423799582465,\n",
" \"f1-score\": 0.48949256791389034,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9250395337644637,\n",
" \"recall\": 0.9588353413654619,\n",
" \"f1-score\": 0.941634297312263,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Indian Peafowl 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9655172413793104,\n",
" \"recall\": 0.9791231732776617,\n",
" \"f1-score\": 0.9722726094843224,\n",
" \"support\": 1916\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.1836734693877551,\n",
" \"recall\": 0.11842105263157894,\n",
" \"f1-score\": 0.144,\n",
" \"support\": 76\n",
" },\n",
" \"accuracy\": 0.946285140562249,\n",
" \"macro avg\": {\n",
" \"precision\": 0.5745953553835328,\n",
" \"recall\": 0.5487721129546204,\n",
" \"f1-score\": 0.5581363047421611,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9356878605201948,\n",
" \"recall\": 0.946285140562249,\n",
" \"f1-score\": 0.9406718472750811,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Little Owl 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Little Owl 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9757174392935982,\n",
" \"recall\": 0.8941335131490222,\n",
" \"f1-score\": 0.9331456720619283,\n",
" \"support\": 1483\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7519747235387045,\n",
" \"recall\": 0.9351669941060904,\n",
" \"f1-score\": 0.8336252189141856,\n",
" \"support\": 509\n",
" },\n",
" \"accuracy\": 0.9046184738955824,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8638460814161514,\n",
" \"recall\": 0.9146502536275563,\n",
" \"f1-score\": 0.883385445488057,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9185462333100436,\n",
" \"recall\": 0.9046184738955824,\n",
" \"f1-score\": 0.9077159980397391,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Little Owl 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9462897526501767,\n",
" \"recall\": 0.9028995279838166,\n",
" \"f1-score\": 0.9240855762594893,\n",
" \"support\": 1483\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7504332755632582,\n",
" \"recall\": 0.8506876227897839,\n",
" \"f1-score\": 0.7974217311233885,\n",
" \"support\": 509\n",
" },\n",
" \"accuracy\": 0.8895582329317269,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8483615141067175,\n",
" \"recall\": 0.8767935753868003,\n",
" \"f1-score\": 0.8607536536914389,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8962440966073847,\n",
" \"recall\": 0.8895582329317269,\n",
" \"f1-score\": 0.8917201660314393,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Mandarin Duck 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mandarin Duck 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9205194805194805,\n",
" \"recall\": 0.9800884955752213,\n",
" \"f1-score\": 0.9493704795070987,\n",
" \"support\": 1808\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4626865671641791,\n",
" \"recall\": 0.16847826086956522,\n",
" \"f1-score\": 0.24701195219123506,\n",
" \"support\": 184\n",
" },\n",
" \"accuracy\": 0.9051204819277109,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6916030238418298,\n",
" \"recall\": 0.5742833782223933,\n",
" \"f1-score\": 0.5981912158491669,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8782296933420832,\n",
" \"recall\": 0.9051204819277109,\n",
" \"f1-score\": 0.8844939890321394,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Mandarin Duck 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9320282762370854,\n",
" \"recall\": 0.9480088495575221,\n",
" \"f1-score\": 0.9399506443652318,\n",
" \"support\": 1808\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.38562091503267976,\n",
" \"recall\": 0.32065217391304346,\n",
" \"f1-score\": 0.3501483679525223,\n",
" \"support\": 184\n",
" },\n",
" \"accuracy\": 0.8900602409638554,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6588245956348826,\n",
" \"recall\": 0.6343305117352828,\n",
" \"f1-score\": 0.645049506158877,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8815569135555539,\n",
" \"recall\": 0.8900602409638554,\n",
" \"f1-score\": 0.8854709160218891,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Mute Swan 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mute Swan 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9235668789808917,\n",
" \"recall\": 0.8357348703170029,\n",
" \"f1-score\": 0.8774583963691377,\n",
" \"support\": 694\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9164222873900293,\n",
" \"recall\": 0.963020030816641,\n",
" \"f1-score\": 0.9391435011269722,\n",
" \"support\": 1298\n",
" },\n",
" \"accuracy\": 0.9186746987951807,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9199945831854606,\n",
" \"recall\": 0.899377450566822,\n",
" \"f1-score\": 0.9083009487480549,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9189114171912635,\n",
" \"recall\": 0.9186746987951807,\n",
" \"f1-score\": 0.9176528069994937,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Mute Swan 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8382749326145552,\n",
" \"recall\": 0.8962536023054755,\n",
" \"f1-score\": 0.8662952646239555,\n",
" \"support\": 694\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9424,\n",
" \"recall\": 0.9075500770416025,\n",
" \"f1-score\": 0.9246467817896389,\n",
" \"support\": 1298\n",
" },\n",
" \"accuracy\": 0.9036144578313253,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8903374663072776,\n",
" \"recall\": 0.901901839673539,\n",
" \"f1-score\": 0.8954710232067972,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9061234955996493,\n",
" \"recall\": 0.9036144578313253,\n",
" \"f1-score\": 0.9043174881586227,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Pheasant 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pheasant 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.931321540062435,\n",
" \"recall\": 0.8655705996131529,\n",
" \"f1-score\": 0.8972431077694236,\n",
" \"support\": 1034\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8651794374393792,\n",
" \"recall\": 0.9311064718162839,\n",
" \"f1-score\": 0.8969331322272499,\n",
" \"support\": 958\n",
" },\n",
" \"accuracy\": 0.8970883534136547,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8982504887509071,\n",
" \"recall\": 0.8983385357147184,\n",
" \"f1-score\": 0.8970881199983367,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8995122356884955,\n",
" \"recall\": 0.8970883534136547,\n",
" \"f1-score\": 0.8970940331863902,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Pheasant 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9376321353065539,\n",
" \"recall\": 0.8578336557059961,\n",
" \"f1-score\": 0.895959595959596,\n",
" \"support\": 1034\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8594646271510517,\n",
" \"recall\": 0.9384133611691023,\n",
" \"f1-score\": 0.8972055888223555,\n",
" \"support\": 958\n",
" },\n",
" \"accuracy\": 0.8965863453815262,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8985483812288028,\n",
" \"recall\": 0.8981235084375492,\n",
" \"f1-score\": 0.8965825923909757,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.900039528472733,\n",
" \"recall\": 0.8965863453815262,\n",
" \"f1-score\": 0.8965588234508226,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Pink-footed Goose 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pink-footed Goose 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9038018433179723,\n",
" \"recall\": 0.9378362223550508,\n",
" \"f1-score\": 0.9205045467879144,\n",
" \"support\": 1673\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.59375,\n",
" \"recall\": 0.47648902821316613,\n",
" \"f1-score\": 0.528695652173913,\n",
" \"support\": 319\n",
" },\n",
" \"accuracy\": 0.8639558232931727,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7487759216589862,\n",
" \"recall\": 0.7071626252841084,\n",
" \"f1-score\": 0.7246000994809136,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8541499668026946,\n",
" \"recall\": 0.8639558232931727,\n",
" \"f1-score\": 0.8577600501102707,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Pink-footed Goose 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9159925326695706,\n",
" \"recall\": 0.8798565451285116,\n",
" \"f1-score\": 0.8975609756097561,\n",
" \"support\": 1673\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4779220779220779,\n",
" \"recall\": 0.5768025078369906,\n",
" \"f1-score\": 0.5227272727272727,\n",
" \"support\": 319\n",
" },\n",
" \"accuracy\": 0.8313253012048193,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6969573052958242,\n",
" \"recall\": 0.7283295264827512,\n",
" \"f1-score\": 0.7101441241685145,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8458396837416337,\n",
" \"recall\": 0.8313253012048193,\n",
" \"f1-score\": 0.8375348956802822,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Pintail 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pintail 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.937856033143449,\n",
" \"recall\": 0.9831704668838219,\n",
" \"f1-score\": 0.9599787967134905,\n",
" \"support\": 1842\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4918032786885246,\n",
" \"recall\": 0.2,\n",
" \"f1-score\": 0.2843601895734597,\n",
" \"support\": 150\n",
" },\n",
" \"accuracy\": 0.9241967871485943,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7148296559159868,\n",
" \"recall\": 0.5915852334419109,\n",
" \"f1-score\": 0.6221694931434751,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.904267723320036,\n",
" \"recall\": 0.9241967871485943,\n",
" \"f1-score\": 0.9091039015975243,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Pintail 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.945693911135491,\n",
" \"recall\": 0.9359391965255157,\n",
" \"f1-score\": 0.9407912687585266,\n",
" \"support\": 1842\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.30177514792899407,\n",
" \"recall\": 0.34,\n",
" \"f1-score\": 0.31974921630094044,\n",
" \"support\": 150\n",
" },\n",
" \"accuracy\": 0.8910642570281124,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6237345295322425,\n",
" \"recall\": 0.6379695982627579,\n",
" \"f1-score\": 0.6302702425297335,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8972060524603029,\n",
" \"recall\": 0.8910642570281124,\n",
" \"f1-score\": 0.8940260539650337,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Pochard 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pochard 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9050188882892607,\n",
" \"recall\": 0.9555555555555556,\n",
" \"f1-score\": 0.9296008869179603,\n",
" \"support\": 1755\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.43884892086330934,\n",
" \"recall\": 0.25738396624472576,\n",
" \"f1-score\": 0.32446808510638303,\n",
" \"support\": 237\n",
" },\n",
" \"accuracy\": 0.8724899598393574,\n",
" \"macro avg\": {\n",
" \"precision\": 0.671933904576285,\n",
" \"recall\": 0.6064697609001407,\n",
" \"f1-score\": 0.6270344860121717,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8495558951768358,\n",
" \"recall\": 0.8724899598393574,\n",
" \"f1-score\": 0.8576046650156792,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Pochard 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9162946428571429,\n",
" \"recall\": 0.9356125356125357,\n",
" \"f1-score\": 0.9258528333803214,\n",
" \"support\": 1755\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.435,\n",
" \"recall\": 0.3670886075949367,\n",
" \"f1-score\": 0.39816933638443935,\n",
" \"support\": 237\n",
" },\n",
" \"accuracy\": 0.8679718875502008,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6756473214285714,\n",
" \"recall\": 0.6513505716037362,\n",
" \"f1-score\": 0.6620110848823804,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8590321778184166,\n",
" \"recall\": 0.8679718875502008,\n",
" \"f1-score\": 0.8630712125027993,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Red-legged Partridge 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Red-legged Partridge 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9553314121037464,\n",
" \"recall\": 0.8953409858203917,\n",
" \"f1-score\": 0.9243638898570932,\n",
" \"support\": 1481\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7433774834437086,\n",
" \"recall\": 0.8786692759295499,\n",
" \"f1-score\": 0.8053811659192824,\n",
" \"support\": 511\n",
" },\n",
" \"accuracy\": 0.8910642570281124,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8493544477737275,\n",
" \"recall\": 0.8870051308749708,\n",
" \"f1-score\": 0.8648725278881878,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.900959696468566,\n",
" \"recall\": 0.8910642570281124,\n",
" \"f1-score\": 0.8938417151923235,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Red-legged Partridge 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9372355430183357,\n",
" \"recall\": 0.8973666441593517,\n",
" \"f1-score\": 0.9168678854777509,\n",
" \"support\": 1481\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.735191637630662,\n",
" \"recall\": 0.8258317025440313,\n",
" \"f1-score\": 0.7778801843317972,\n",
" \"support\": 511\n",
" },\n",
" \"accuracy\": 0.8790160642570282,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8362135903244988,\n",
" \"recall\": 0.8615991733516914,\n",
" \"f1-score\": 0.847374034904774,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8854060070479034,\n",
" \"recall\": 0.8790160642570282,\n",
" \"f1-score\": 0.8812139119408119,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Ring-necked Parakeet 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ring-necked Parakeet 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9845599588265569,\n",
" \"recall\": 0.9886304909560724,\n",
" \"f1-score\": 0.9865910263022177,\n",
" \"support\": 1935\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5510204081632653,\n",
" \"recall\": 0.47368421052631576,\n",
" \"f1-score\": 0.5094339622641509,\n",
" \"support\": 57\n",
" },\n",
" \"accuracy\": 0.9738955823293173,\n",
" \"macro avg\": {\n",
" \"precision\": 0.767790183494911,\n",
" \"recall\": 0.731157350741194,\n",
" \"f1-score\": 0.7480124942831843,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9721544596358903,\n",
" \"recall\": 0.9738955823293173,\n",
" \"f1-score\": 0.9729374356143815,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Ring-necked Parakeet 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9816044966785897,\n",
" \"recall\": 0.992764857881137,\n",
" \"f1-score\": 0.9871531346351491,\n",
" \"support\": 1935\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6,\n",
" \"recall\": 0.3684210526315789,\n",
" \"f1-score\": 0.4565217391304348,\n",
" \"support\": 57\n",
" },\n",
" \"accuracy\": 0.9748995983935743,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7908022483392949,\n",
" \"recall\": 0.680592955256358,\n",
" \"f1-score\": 0.721837436882792,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9706850909001362,\n",
" \"recall\": 0.9748995983935743,\n",
" \"f1-score\": 0.9719694049445021,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Rock Dove 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rock Dove 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9191176470588235,\n",
" \"recall\": 0.8581235697940504,\n",
" \"f1-score\": 0.8875739644970413,\n",
" \"support\": 1311\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7578125,\n",
" \"recall\": 0.8546255506607929,\n",
" \"f1-score\": 0.8033126293995859,\n",
" \"support\": 681\n",
" },\n",
" \"accuracy\": 0.8569277108433735,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8384650735294117,\n",
" \"recall\": 0.8563745602274216,\n",
" \"f1-score\": 0.8454432969483137,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8639726645552799,\n",
" \"recall\": 0.8569277108433735,\n",
" \"f1-score\": 0.8587677550586039,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Rock Dove 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9181669394435352,\n",
" \"recall\": 0.8558352402745996,\n",
" \"f1-score\": 0.8859060402684564,\n",
" \"support\": 1311\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7545454545454545,\n",
" \"recall\": 0.8531571218795888,\n",
" \"f1-score\": 0.800827015851137,\n",
" \"support\": 681\n",
" },\n",
" \"accuracy\": 0.8549196787148594,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8363561969944948,\n",
" \"recall\": 0.8544961810770941,\n",
" \"f1-score\": 0.8433665280597967,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8622300763834986,\n",
" \"recall\": 0.8549196787148594,\n",
" \"f1-score\": 0.8568202894510897,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Ruddy Duck 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ruddy Duck 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9834254143646409,\n",
" \"recall\": 0.9994895354772844,\n",
" \"f1-score\": 0.9913924050632913,\n",
" \"support\": 1959\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.0,\n",
" \"recall\": 0.0,\n",
" \"f1-score\": 0.0,\n",
" \"support\": 33\n",
" },\n",
" \"accuracy\": 0.9829317269076305,\n",
" \"macro avg\": {\n",
" \"precision\": 0.49171270718232046,\n",
" \"recall\": 0.4997447677386422,\n",
" \"f1-score\": 0.49569620253164565,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.967133728283299,\n",
" \"recall\": 0.9829317269076305,\n",
" \"f1-score\": 0.9749687357023031,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Ruddy Duck 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9833501513622603,\n",
" \"recall\": 0.9948953547728433,\n",
" \"f1-score\": 0.989089063689419,\n",
" \"support\": 1959\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.0,\n",
" \"recall\": 0.0,\n",
" \"f1-score\": 0.0,\n",
" \"support\": 33\n",
" },\n",
" \"accuracy\": 0.9784136546184738,\n",
" \"macro avg\": {\n",
" \"precision\": 0.49167507568113017,\n",
" \"recall\": 0.49744767738642165,\n",
" \"f1-score\": 0.4945445318447095,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9670597121077651,\n",
" \"recall\": 0.9784136546184738,\n",
" \"f1-score\": 0.9727035520921545,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Whooper Swan 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Whooper Swan 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8978658536585366,\n",
" \"recall\": 0.9904708520179372,\n",
" \"f1-score\": 0.9418976545842217,\n",
" \"support\": 1784\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.2916666666666667,\n",
" \"recall\": 0.03365384615384615,\n",
" \"f1-score\": 0.06034482758620689,\n",
" \"support\": 208\n",
" },\n",
" \"accuracy\": 0.8905622489959839,\n",
" \"macro avg\": {\n",
" \"precision\": 0.5947662601626016,\n",
" \"recall\": 0.5120623490858917,\n",
" \"f1-score\": 0.5011212410852143,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8345679465830803,\n",
" \"recall\": 0.8905622489959839,\n",
" \"f1-score\": 0.8498479618053124,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Whooper Swan 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9171332586786114,\n",
" \"recall\": 0.9181614349775785,\n",
" \"f1-score\": 0.9176470588235294,\n",
" \"support\": 1784\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.2912621359223301,\n",
" \"recall\": 0.28846153846153844,\n",
" \"f1-score\": 0.28985507246376807,\n",
" \"support\": 208\n",
" },\n",
" \"accuracy\": 0.8524096385542169,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6041976973004708,\n",
" \"recall\": 0.6033114867195585,\n",
" \"f1-score\": 0.6037510656436487,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.851781253892815,\n",
" \"recall\": 0.8524096385542169,\n",
" \"f1-score\": 0.8520944819345583,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Training with Wigeon 5km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Wigeon 5km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8922470433639947,\n",
" \"recall\": 0.8846905537459283,\n",
" \"f1-score\": 0.8884527314360484,\n",
" \"support\": 1535\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6234042553191489,\n",
" \"recall\": 0.6411378555798687,\n",
" \"f1-score\": 0.6321467098166127,\n",
" \"support\": 457\n",
" },\n",
" \"accuracy\": 0.8288152610441767,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7578256493415718,\n",
" \"recall\": 0.7629142046628985,\n",
" \"f1-score\": 0.7602997206263306,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.830569757150895,\n",
" \"recall\": 0.8288152610441767,\n",
" \"f1-score\": 0.8296516009741597,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n",
"Wigeon 5km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8767213114754099,\n",
" \"recall\": 0.8710097719869707,\n",
" \"f1-score\": 0.8738562091503269,\n",
" \"support\": 1535\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.576017130620985,\n",
" \"recall\": 0.5886214442013129,\n",
" \"f1-score\": 0.5822510822510824,\n",
" \"support\": 457\n",
" },\n",
" \"accuracy\": 0.8062248995983936,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7263692210481975,\n",
" \"recall\": 0.7298156080941418,\n",
" \"f1-score\": 0.7280536457007046,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.807734458739229,\n",
" \"recall\": 0.8062248995983936,\n",
" \"f1-score\": 0.8069568401779601,\n",
" \"support\": 1992\n",
" }\n",
"} \n",
"\n"
]
}
],
"source": [
"# Add model pipeline\n",
"estimators = [\n",
" ('lr', LogisticRegression(max_iter=10000, solver='saga', random_state=seed, penalty='l2', verbose=verbose)),\n",
" ('knn', KNeighborsClassifier(n_neighbors=5, weights='distance')),\n",
" ('sgd', SGDClassifier( max_iter=10000, loss='modified_huber', random_state=seed, penalty='l2', verbose=verbose)),\n",
" ('rf', RandomForestClassifier(n_estimators=20,max_features=None, random_state=seed, verbose=verbose))\n",
"]\n",
"\n",
"\n",
"for dict in df_dicts:\n",
" print(f'Training with {dict[\"name\"]} cells... \\n')\n",
" # Use this if using coordinates as separate columns\n",
" # coords, X, y = data['dataframe'].iloc[:, :2], data['dataframe'].iloc[:, 2:-1], data['dataframe'].iloc[:, [-1]]\n",
" # data['coords'] = coords\n",
" \n",
" # Use this if using coordinates as indices\n",
" X, y = dict['dataframe'].iloc[:, 0:-1], dict['dataframe'].iloc[:, [-1]], \n",
"\n",
" dict['X'] = standardise(X)\n",
" dict['y'] = y\n",
" dict['kbest'] = feature_select(dict['X'], dict['y'])\n",
"\n",
" # dict['X'] = dict['kbest']['10'].transform(dict['X'])\n",
"\n",
" X_train, X_test, y_train, y_test = train_test_split(dict['X'], dict['y'], random_state=seed)\n",
" dict['X_train'], dict['X_test'], dict['y_train'], dict['y_test'] = X_train, X_test, y_train, y_test # for debugging purposes\n",
"\n",
" dict['X_smote'], dict['y_smote'] = oversample(X_train, y_train)\n",
"\n",
" stack_clf = StackingClassifier(\n",
" estimators=estimators, \n",
" final_estimator=GradientBoostingClassifier(n_estimators=20, learning_rate=0.5, max_features=None, max_depth=2, random_state=seed)\n",
" )\n",
"\n",
" # Classifier without SMOTE\n",
" stack_clf.fit(dict['X_train'], dict['y_train'])\n",
" y_pred = stack_clf.predict(X_test)\n",
" \n",
" dict['predictions'] = y_pred\n",
" dict['report'] = classification_report(y_test, y_pred, output_dict=True)\n",
" \n",
"\n",
" # Classifier with SMOTE\n",
" stack_clf.fit(dict['X_smote'], dict['y_smote'])\n",
" y_pred_smote = stack_clf.predict(X_test)\n",
" \n",
" dict['predictions_smote'] = y_pred_smote\n",
" dict['report_smote'] = classification_report(y_test, y_pred_smote, output_dict=True)\n",
" \n",
" print(f'{dict[\"name\"]} Classification Report: \\n {json.dumps(dict[\"report\"], indent=4)} \\n')\n",
" print(f'{dict[\"name\"]} SMOTE Classification Report: \\n {json.dumps(dict[\"report_smote\"], indent=4)} \\n')\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.934793683138054,\n",
" \"recall\": 0.995119305856833,\n",
" \"f1-score\": 0.9640136590491201,\n",
" \"support\": 1844\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6896551724137931,\n",
" \"recall\": 0.13513513513513514,\n",
" \"f1-score\": 0.22598870056497178,\n",
" \"support\": 148\n",
" },\n",
" \"accuracy\": 0.9312248995983936,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8122244277759236,\n",
" \"recall\": 0.5651272204959841,\n",
" \"f1-score\": 0.5950011798070459,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9165805809356491,\n",
" \"recall\": 0.9312248995983936,\n",
" \"f1-score\": 0.9091804794027075,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Canada Goose 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9504830917874396,\n",
" \"recall\": 0.8582333696837514,\n",
" \"f1-score\": 0.9020057306590258,\n",
" \"support\": 917\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8883161512027491,\n",
" \"recall\": 0.9618604651162791,\n",
" \"f1-score\": 0.923626619026351,\n",
" \"support\": 1075\n",
" },\n",
" \"accuracy\": 0.9141566265060241,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9193996214950944,\n",
" \"recall\": 0.9100469174000152,\n",
" \"f1-score\": 0.9128161748426884,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.916934165518091,\n",
" \"recall\": 0.9141566265060241,\n",
" \"f1-score\": 0.9136736297528384,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Egyptian Goose 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9474768280123584,\n",
" \"recall\": 0.9881847475832438,\n",
" \"f1-score\": 0.9674027339642481,\n",
" \"support\": 1862\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.56,\n",
" \"recall\": 0.2153846153846154,\n",
" \"f1-score\": 0.3111111111111111,\n",
" \"support\": 130\n",
" },\n",
" \"accuracy\": 0.9377510040160643,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7537384140061792,\n",
" \"recall\": 0.6017846814839296,\n",
" \"f1-score\": 0.6392569225376796,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9221896856219937,\n",
" \"recall\": 0.9377510040160643,\n",
" \"f1-score\": 0.924572457372427,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Gadwall 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9283965728274174,\n",
" \"recall\": 0.9266951740989615,\n",
" \"f1-score\": 0.9275450932436564,\n",
" \"support\": 1637\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.664804469273743,\n",
" \"recall\": 0.6704225352112676,\n",
" \"f1-score\": 0.667601683029453,\n",
" \"support\": 355\n",
" },\n",
" \"accuracy\": 0.8810240963855421,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7966005210505802,\n",
" \"recall\": 0.7985588546551146,\n",
" \"f1-score\": 0.7975733881365548,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.881421072445111,\n",
" \"recall\": 0.8810240963855421,\n",
" \"f1-score\": 0.8812198369052818,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Goshawk 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9532994923857868,\n",
" \"recall\": 0.9910290237467019,\n",
" \"f1-score\": 0.9717981888745149,\n",
" \"support\": 1895\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.22727272727272727,\n",
" \"recall\": 0.05154639175257732,\n",
" \"f1-score\": 0.08403361344537814,\n",
" \"support\": 97\n",
" },\n",
" \"accuracy\": 0.945281124497992,\n",
" \"macro avg\": {\n",
" \"precision\": 0.590286109829257,\n",
" \"recall\": 0.5212877077496396,\n",
" \"f1-score\": 0.5279159011599465,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9179457794259641,\n",
" \"recall\": 0.945281124497992,\n",
" \"f1-score\": 0.92856868896657,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Grey Partridge 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9430628272251309,\n",
" \"recall\": 0.902316844082655,\n",
" \"f1-score\": 0.92224,\n",
" \"support\": 1597\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6637931034482759,\n",
" \"recall\": 0.779746835443038,\n",
" \"f1-score\": 0.7171129220023283,\n",
" \"support\": 395\n",
" },\n",
" \"accuracy\": 0.8780120481927711,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8034279653367034,\n",
" \"recall\": 0.8410318397628465,\n",
" \"f1-score\": 0.8196764610011642,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8876855476609453,\n",
" \"recall\": 0.8780120481927711,\n",
" \"f1-score\": 0.881564700899056,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Indian Peafowl 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9617321248741189,\n",
" \"recall\": 0.9968684759916493,\n",
" \"f1-score\": 0.9789851358277807,\n",
" \"support\": 1916\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.0,\n",
" \"recall\": 0.0,\n",
" \"f1-score\": 0.0,\n",
" \"support\": 76\n",
" },\n",
" \"accuracy\": 0.9588353413654619,\n",
" \"macro avg\": {\n",
" \"precision\": 0.4808660624370594,\n",
" \"recall\": 0.49843423799582465,\n",
" \"f1-score\": 0.48949256791389034,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9250395337644637,\n",
" \"recall\": 0.9588353413654619,\n",
" \"f1-score\": 0.941634297312263,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Little Owl 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9757174392935982,\n",
" \"recall\": 0.8941335131490222,\n",
" \"f1-score\": 0.9331456720619283,\n",
" \"support\": 1483\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7519747235387045,\n",
" \"recall\": 0.9351669941060904,\n",
" \"f1-score\": 0.8336252189141856,\n",
" \"support\": 509\n",
" },\n",
" \"accuracy\": 0.9046184738955824,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8638460814161514,\n",
" \"recall\": 0.9146502536275563,\n",
" \"f1-score\": 0.883385445488057,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9185462333100436,\n",
" \"recall\": 0.9046184738955824,\n",
" \"f1-score\": 0.9077159980397391,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Mandarin Duck 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9205194805194805,\n",
" \"recall\": 0.9800884955752213,\n",
" \"f1-score\": 0.9493704795070987,\n",
" \"support\": 1808\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4626865671641791,\n",
" \"recall\": 0.16847826086956522,\n",
" \"f1-score\": 0.24701195219123506,\n",
" \"support\": 184\n",
" },\n",
" \"accuracy\": 0.9051204819277109,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6916030238418298,\n",
" \"recall\": 0.5742833782223933,\n",
" \"f1-score\": 0.5981912158491669,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8782296933420832,\n",
" \"recall\": 0.9051204819277109,\n",
" \"f1-score\": 0.8844939890321394,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Mute Swan 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9235668789808917,\n",
" \"recall\": 0.8357348703170029,\n",
" \"f1-score\": 0.8774583963691377,\n",
" \"support\": 694\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9164222873900293,\n",
" \"recall\": 0.963020030816641,\n",
" \"f1-score\": 0.9391435011269722,\n",
" \"support\": 1298\n",
" },\n",
" \"accuracy\": 0.9186746987951807,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9199945831854606,\n",
" \"recall\": 0.899377450566822,\n",
" \"f1-score\": 0.9083009487480549,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9189114171912635,\n",
" \"recall\": 0.9186746987951807,\n",
" \"f1-score\": 0.9176528069994937,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Pheasant 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.931321540062435,\n",
" \"recall\": 0.8655705996131529,\n",
" \"f1-score\": 0.8972431077694236,\n",
" \"support\": 1034\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8651794374393792,\n",
" \"recall\": 0.9311064718162839,\n",
" \"f1-score\": 0.8969331322272499,\n",
" \"support\": 958\n",
" },\n",
" \"accuracy\": 0.8970883534136547,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8982504887509071,\n",
" \"recall\": 0.8983385357147184,\n",
" \"f1-score\": 0.8970881199983367,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8995122356884955,\n",
" \"recall\": 0.8970883534136547,\n",
" \"f1-score\": 0.8970940331863902,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Pink-footed Goose 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9038018433179723,\n",
" \"recall\": 0.9378362223550508,\n",
" \"f1-score\": 0.9205045467879144,\n",
" \"support\": 1673\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.59375,\n",
" \"recall\": 0.47648902821316613,\n",
" \"f1-score\": 0.528695652173913,\n",
" \"support\": 319\n",
" },\n",
" \"accuracy\": 0.8639558232931727,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7487759216589862,\n",
" \"recall\": 0.7071626252841084,\n",
" \"f1-score\": 0.7246000994809136,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8541499668026946,\n",
" \"recall\": 0.8639558232931727,\n",
" \"f1-score\": 0.8577600501102707,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Pintail 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.937856033143449,\n",
" \"recall\": 0.9831704668838219,\n",
" \"f1-score\": 0.9599787967134905,\n",
" \"support\": 1842\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4918032786885246,\n",
" \"recall\": 0.2,\n",
" \"f1-score\": 0.2843601895734597,\n",
" \"support\": 150\n",
" },\n",
" \"accuracy\": 0.9241967871485943,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7148296559159868,\n",
" \"recall\": 0.5915852334419109,\n",
" \"f1-score\": 0.6221694931434751,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.904267723320036,\n",
" \"recall\": 0.9241967871485943,\n",
" \"f1-score\": 0.9091039015975243,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Pochard 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9050188882892607,\n",
" \"recall\": 0.9555555555555556,\n",
" \"f1-score\": 0.9296008869179603,\n",
" \"support\": 1755\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.43884892086330934,\n",
" \"recall\": 0.25738396624472576,\n",
" \"f1-score\": 0.32446808510638303,\n",
" \"support\": 237\n",
" },\n",
" \"accuracy\": 0.8724899598393574,\n",
" \"macro avg\": {\n",
" \"precision\": 0.671933904576285,\n",
" \"recall\": 0.6064697609001407,\n",
" \"f1-score\": 0.6270344860121717,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8495558951768358,\n",
" \"recall\": 0.8724899598393574,\n",
" \"f1-score\": 0.8576046650156792,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Red-legged Partridge 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9553314121037464,\n",
" \"recall\": 0.8953409858203917,\n",
" \"f1-score\": 0.9243638898570932,\n",
" \"support\": 1481\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7433774834437086,\n",
" \"recall\": 0.8786692759295499,\n",
" \"f1-score\": 0.8053811659192824,\n",
" \"support\": 511\n",
" },\n",
" \"accuracy\": 0.8910642570281124,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8493544477737275,\n",
" \"recall\": 0.8870051308749708,\n",
" \"f1-score\": 0.8648725278881878,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.900959696468566,\n",
" \"recall\": 0.8910642570281124,\n",
" \"f1-score\": 0.8938417151923235,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Ring-necked Parakeet 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9845599588265569,\n",
" \"recall\": 0.9886304909560724,\n",
" \"f1-score\": 0.9865910263022177,\n",
" \"support\": 1935\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5510204081632653,\n",
" \"recall\": 0.47368421052631576,\n",
" \"f1-score\": 0.5094339622641509,\n",
" \"support\": 57\n",
" },\n",
" \"accuracy\": 0.9738955823293173,\n",
" \"macro avg\": {\n",
" \"precision\": 0.767790183494911,\n",
" \"recall\": 0.731157350741194,\n",
" \"f1-score\": 0.7480124942831843,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9721544596358903,\n",
" \"recall\": 0.9738955823293173,\n",
" \"f1-score\": 0.9729374356143815,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Rock Dove 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9191176470588235,\n",
" \"recall\": 0.8581235697940504,\n",
" \"f1-score\": 0.8875739644970413,\n",
" \"support\": 1311\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7578125,\n",
" \"recall\": 0.8546255506607929,\n",
" \"f1-score\": 0.8033126293995859,\n",
" \"support\": 681\n",
" },\n",
" \"accuracy\": 0.8569277108433735,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8384650735294117,\n",
" \"recall\": 0.8563745602274216,\n",
" \"f1-score\": 0.8454432969483137,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8639726645552799,\n",
" \"recall\": 0.8569277108433735,\n",
" \"f1-score\": 0.8587677550586039,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Ruddy Duck 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9834254143646409,\n",
" \"recall\": 0.9994895354772844,\n",
" \"f1-score\": 0.9913924050632913,\n",
" \"support\": 1959\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.0,\n",
" \"recall\": 0.0,\n",
" \"f1-score\": 0.0,\n",
" \"support\": 33\n",
" },\n",
" \"accuracy\": 0.9829317269076305,\n",
" \"macro avg\": {\n",
" \"precision\": 0.49171270718232046,\n",
" \"recall\": 0.4997447677386422,\n",
" \"f1-score\": 0.49569620253164565,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.967133728283299,\n",
" \"recall\": 0.9829317269076305,\n",
" \"f1-score\": 0.9749687357023031,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Whooper Swan 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8978658536585366,\n",
" \"recall\": 0.9904708520179372,\n",
" \"f1-score\": 0.9418976545842217,\n",
" \"support\": 1784\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.2916666666666667,\n",
" \"recall\": 0.03365384615384615,\n",
" \"f1-score\": 0.06034482758620689,\n",
" \"support\": 208\n",
" },\n",
" \"accuracy\": 0.8905622489959839,\n",
" \"macro avg\": {\n",
" \"precision\": 0.5947662601626016,\n",
" \"recall\": 0.5120623490858917,\n",
" \"f1-score\": 0.5011212410852143,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8345679465830803,\n",
" \"recall\": 0.8905622489959839,\n",
" \"f1-score\": 0.8498479618053124,\n",
" \"support\": 1992\n",
" }\n",
"}\n",
"Wigeon 5km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8922470433639947,\n",
" \"recall\": 0.8846905537459283,\n",
" \"f1-score\": 0.8884527314360484,\n",
" \"support\": 1535\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6234042553191489,\n",
" \"recall\": 0.6411378555798687,\n",
" \"f1-score\": 0.6321467098166127,\n",
" \"support\": 457\n",
" },\n",
" \"accuracy\": 0.8288152610441767,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7578256493415718,\n",
" \"recall\": 0.7629142046628985,\n",
" \"f1-score\": 0.7602997206263306,\n",
" \"support\": 1992\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.830569757150895,\n",
" \"recall\": 0.8288152610441767,\n",
" \"f1-score\": 0.8296516009741597,\n",
" \"support\": 1992\n",
" }\n",
"}\n"
]
}
],
"source": [
"for dict in df_dicts:\n",
" print(dict['name'], '\\n', json.dumps(dict['report'], indent=4))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA5EAAAPHCAYAAACxBc1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADwl0lEQVR4nOzdeXgO9/7/8dct+yIJsSQ0EkQIFbVVURItjX05bbWopYsuitJS1c1OVZWuutmqKLVXVa1R+x6UCKJKS6tVEqFCks/vDz/zdTcJo1SkeT6u631d5jOfmXnfN+ecvM5nZuIwxhgBAAAAAGBDgdxuAAAAAACQdxAiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAtrnmdgNAXpOZmamjR4+qYMGCcjgcud0OAAAAcN2MMTp9+rRKlCihAgWuvNZIiASu0dGjRxUSEpLbbQAAAAA33JEjR3TbbbddcQ4hErhGBQsWlHTxP2B+fn653A0AAABw/VJSUhQSEmL9rHslhEjgGl26hdXPz48QCQAAgP8UO49r8WIdAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAba653QCQZ/n753YHAAAAuNUZk9sd3HCsRCLPcjgcmjdvXm63AQAAAOQrhMh/QZcuXeRwOPT0009n2ffss8/K4XCoS5cu13TOGxWYzp49q/79+6ts2bLy9PRU0aJFFR0drfnz51/3uW+kgQMHyuFwOFWFChVyuy0AAAAg3+N21n9JSEiIvvzyS40ZM0ZeXl6SpHPnzmnatGkqVapUrvX19NNPa+PGjXrvvfdUsWJFnThxQuvWrdOJEydyraecVKpUScuWLbO2XV355woAAADkNlYi/yXVqlVTSEiI5syZY43NmTNHpUqVUtWqVZ3mhoWFaezYsU5jd9xxhwYOHGjtl6Q2bdrI4XBY25I0f/58VatWTZ6enipTpowGDRqk9PT0HPtasGCBXn75ZTVt2lRhYWGqXr26evTooccee0yS9P777+v222+35s+bN08Oh0MfffSRNdawYUO9+uqrkqSkpCS1atVKxYsXl6+vr2rWrOkU/C71P3z4cD322GMqWLCgSpUqpU8++eTKX6AuhsagoCCrihQpcsX5AwYMUHBwsHbu3Gldd+jQoerUqZN8fX0VGhqqBQsW6Pfff1erVq3k6+urqKgobdmy5aq9AAAAALiIEPkveuyxxzRx4kRre8KECXr00Uev+TybN2+WJE2cOFHHjh2ztlevXq1OnTrpueee0549e/Txxx9r0qRJGjZsWI7nCgoK0qJFi3T69Ols90dHR2vPnj36/fffJUmrVq1SkSJFFBcXJ0m6cOGC1q9fr5iYGElSamqqmjZtquXLl2v79u1q3LixWrRoocOHDzudd/To0apRo4a2b9+ubt266ZlnnlFiYuIVP/f+/ftVokQJlSlTRh06dMhyzkuMMerRo4c+//xzrV69WlFRUda+MWPGqG7dutq+fbuaNWumjh07qlOnTnrkkUe0bds2lS1bVp06dZK5wgPPaWlpSklJcSoAAAAg3zK44Tp37mxatWpljh8/bjw8PMyhQ4fMoUOHjKenp/n9999Nq1atTOfOna35oaGhZsyYMU7nqFKlihkwYIC1LcnMnTvXac69995rhg8f7jQ2ZcoUExwcnGNvq1atMrfddptxc3MzNWrUML169TJr1qyx9mdmZprAwEDz1VdfGWOMueOOO8yIESNMUFCQMcaYNWvWGDc3N3PmzJkcr1GpUiXz3nvvOX2+Rx55xOkaxYoVM+PGjcvxHIsWLTIzZ840O3bsMIsXLza1a9c2pUqVMikpKU7fyVdffWXat29vIiMjzc8//+x0jr9f99ixY0aSee2116yx9evXG0nm2LFjOfYyYMAAIylLJV981xZFURRFURRF5Vx5RHJyspFkkpOTrzqXlch/UdGiRdWsWTNNmjRJEydOVLNmza56S+a12LFjhwYPHixfX1+runbtqmPHjuns2bPZHlO/fn0dPHhQy5cv1wMPPKDdu3erXr16GjJkiKSLL/CpX7++4uLidOrUKe3Zs0fdunVTWlqa9u7dq1WrVqlmzZry9vaWdHElsk+fPoqMjFRAQIB8fX2VkJCQZdXw8tVBh8OhoKAgHT9+PMfP1qRJEz344IOKiopSbGysFi1apFOnTmnmzJlO83r37q2NGzfq+++/V8mSJbOc5/LrFi9eXJJUuXLlLGNX6qV///5KTk626siRIznOBQAAAP7reFPJv+yxxx5T9+7dJUkffPBBtnMKFCggY4zT2IULF6567tTUVA0aNEj/+9//suzz9PTM8Tg3NzfVq1dP9erVU79+/TR06FANHjxY/fr1k7u7u2JiYvTJJ59o9erVqlq1qvz8/KxguWrVKkVHR1vn6tOnj5YuXaq33npL4eHh8vLy0gMPPKDz589nueblHA6HMjMzr/oZLwkICFBERIQOHDjgNN6oUSNNnz5d3333nTp06JDtZ738mjmNXakXDw8PeXh42O4VAAAA+C8jRP7LGjdurPPnz8vhcCg2NjbbOUWLFtWxY8es7ZSUFP34449Oc9zc3JSRkeE0Vq1aNSUmJio8PPy6eqxYsaLS09N17tw5ubu7Kzo6Wr169dJXX31lPfsYExOjZcuWae3atXrhhResY9euXasuXbqoTZs2ki4G20OHDl1XP9lJTU1VUlKSOnbs6DTesmVLtWjRQu3bt5eLi4sefvjhG35tAAAAAP+HEPkvc3FxUUJCgvXn7Nxzzz2aNGmSWrRooYCAAL3++utZ5oaFhWn58uWqW7euPDw8VKhQIb3++utq3ry5SpUqpQceeEAFChTQjh079MMPP2jo0KHZXismJkbt2rVTjRo1FBgYqD179ujll19WgwYN5OfnJ+niLaCFChXStGnTtHDhQuu4Pn36yOFwqG7dutb5ypUrpzlz5qhFixZyOBx67bXXrmmFMSd9+vRRixYtFBoaqqNHj2rAgAFycXFRu3btssxt06aNpkyZoo4dO8rV1VUPPPDAdV8fAAAAQPYIkTfBpXCWk/79++vHH39U8+bN5e/vryFDhmRZiRw9erSef/55ffrppypZsqQOHTqk2NhYLVy4UIMHD9bIkSPl5uamChUq6IknnsjxWrGxsZo8ebJefvllnT17ViVKlFDz5s31+uuvW3McDofq1aunb775Rnfffbeki8HSz89P5cuXl4+PjzX37bff1mOPPaY6deqoSJEi6tev3w15e+nPP/+sdu3a6cSJEypatKjuvvtubdiwQUWLFs12/gMPPKDMzEx17NhRBQoUyPYW3xvNX8mSrvx3CwAAgHzOYW/a355uu6U5zN8fxgNwRSkpKfL395cIkQAAALhBcjuVXfoZNzk5+aqLYLydFQAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYJtrbjcA5Fkv+Uueud0EAAB5kxlgcrsFAP8QK5EAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbXHO7ASCvSu6fLD8/v9xuAwAAALipWIkEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANjmmtsNIHsOh0Nz585V69atc7uVW1aXLl106tQpzZs3L3ca8PfPnesCAAAgbzAmtzv4V+Tblchff/1VPXr0UJkyZeTh4aGQkBC1aNFCy5cvz+3WbqiVK1eqefPmKlq0qDw9PVW2bFk99NBD+v7773O7tSs6dOiQHA5HltqwYUNutwYAAADka/lyJfLQoUOqW7euAgICNGrUKFWuXFkXLlzQd999p2effVZ79+7N7RZviA8//FDdu3dXx44dNWPGDJUtW1bJyclauXKlevfura1bt+Z2i1e1bNkyVapUydoODAzMxW4AAAAA5MuVyG7dusnhcGjTpk26//77FRERoUqVKun55593Wul6++23VblyZfn4+CgkJETdunVTamqqtX/SpEkKCAjQd999p8jISPn6+qpx48Y6duyYNWfz5s1q1KiRihQpIn9/f0VHR2vbtm1O/ezfv1/169eXp6enKlasqKVLl2bpuV+/foqIiJC3t7fKlCmj1157TRcuXMjxMx4+fFi9evVSr169NHnyZN1zzz0KDQ1VVFSUnnvuOW3ZssVp/uzZs1WpUiV5eHgoLCxMo0ePdtp/8uRJderUSYUKFZK3t7eaNGmi/fv3W/t/+ukntWjRQoUKFZKPj48qVaqkRYsWWft/+OEHNWnSRL6+vipevLg6duyoP/74I8f+LwkMDFRQUJBVbm5uOc7dvHmzihYtqpEjR0qSBg4cqDvuuEMTJkxQqVKl5Ovrq27duikjI0NvvvmmgoKCVKxYMQ0bNuyqfQAAAAC4KN+FyD///FOLFy/Ws88+Kx8fnyz7AwICrD8XKFBA7777rnbv3q3JkydrxYoVevHFF53mnz17Vm+99ZamTJmi77//XocPH1afPn2s/adPn1bnzp21Zs0abdiwQeXKlVPTpk11+vRpSVJmZqb+97//yd3dXRs3btRHH32kfv36ZemrYMGCmjRpkvbs2aN33nlHn376qcaMGZPj55w9e7YuXLiQpd9LHA6H9eetW7eqbdu2evjhh7Vr1y4NHDhQr732miZNmmTN6dKli7Zs2aIFCxZo/fr1MsaoadOmVpB99tlnlZaWpu+//167du3SyJEj5evrK0k6deqU7rnnHlWtWlVbtmzR4sWL9dtvv6lt27Y59n9Jy5YtVaxYMd19991asGBBjvNWrFihRo0aadiwYU7fX1JSkr799lstXrxY06dP1/jx49WsWTP9/PPPWrVqlUaOHKlXX31VGzduzPHcaWlpSklJcSoAAAAg3zL5zMaNG40kM2fOnGs+9quvvjKBgYHW9sSJE40kc+DAAWvsgw8+MMWLF8/xHBkZGaZgwYLm66+/NsYY89133xlXV1fzyy+/WHO+/fZbI8nMnTs3x/OMGjXKVK9ePcf9Tz/9tPHz83MamzVrlvHx8bFq586dxhhj2rdvbxo1auQ0t2/fvqZixYrGGGP27dtnJJm1a9da+//44w/j5eVlZs6caYwxpnLlymbgwIHZ9jJkyBBz3333OY0dOXLESDKJiYnZHvP777+b0aNHmw0bNphNmzaZfv36GYfDYebPn2/N6dy5s2nVqpWZM2eO8fX1NV9++aXTOQYMGGC8vb1NSkqKNRYbG2vCwsJMRkaGNVa+fHkzYsSIbPu4dB5JWSr54qPSFEVRFEVRFJV95SHJyclGkklOTr7q3Hz3TKQxxvbcZcuWacSIEdq7d69SUlKUnp6uc+fO6ezZs/L29pYkeXt7q2zZstYxwcHBOn78uLX922+/6dVXX1VcXJyOHz+ujIwMnT17VocPH5YkJSQkKCQkRCVKlLCOqV27dpZeZsyYoXfffVdJSUlKTU1Venq6/Pz8rtj/5auNkhQbG6v4+Hj98ssviomJUUZGhtVDq1atnObWrVtXY8eOVUZGhhISEuTq6qpatWpZ+wMDA1W+fHklJCRIknr27KlnnnlGS5YsUcOGDXX//fcrKipKkrRjxw6tXLnSWpm8XFJSkiIiIrKMFylSRM8//7y1XbNmTR09elSjRo1Sy5YtrfGNGzdq4cKFmjVrVrZvsg0LC1PBggWt7eLFi8vFxUUFChRwGrv87+zv+vfv79RLSkqKQkJCcpwPAAAA/Jflu9tZy5UrJ4fDcdWX5xw6dEjNmzdXVFSUZs+era1bt+qDDz6QJJ0/f96a9/dn9BwOh1NQ7dy5s+Lj4/XOO+9o3bp1io+PV2BgoNM5rmb9+vXq0KGDmjZtqoULF2r79u165ZVXrniOcuXKKTk5Wb/++qs15uvrq/DwcIWGhtq+tl1PPPGEDh48qI4dO2rXrl2qUaOG3nvvPUlSamqqWrRoofj4eKe69CyoXbVq1dKBAwecxsqWLasKFSpowoQJ2T4jmt3fT3ZjmZmZOV7Xw8NDfn5+TgUAAADkV/kuRBYuXFixsbH64IMPdObMmSz7T506Jenic4KZmZkaPXq07rrrLkVEROjo0aPXfL21a9eqZ8+eatq0qfXimstfKBMZGakjR444vYzn77/GYt26dQoNDdUrr7yiGjVqqFy5cvrpp5+ueN0HHnhAbm5u1ktmriQyMlJr167N0ndERIRcXFwUGRmp9PR0p+cGT5w4ocTERFWsWNEaCwkJ0dNPP605c+bohRde0KeffipJqlatmnbv3q2wsDCFh4c7VXbPpeYkPj5ewcHBTmNFihTRihUrdODAAbVt2/aKLxsCAAAAcP3yXYiUpA8++EAZGRm68847NXv2bO3fv18JCQl69913rVtJw8PDdeHCBb333ns6ePCgpkyZoo8++uiar1WuXDlNmTJFCQkJ2rhxozp06CAvLy9rf8OGDRUREaHOnTtrx44dWr16tV555ZUs5zh8+LC+/PJLJSUl6d1339XcuXOveN1SpUpp9OjReuedd9S5c2etXLlShw4d0rZt2/Tuu+9KklxcXCRJL7zwgpYvX64hQ4Zo3759mjx5st5//33rBUHlypVTq1at1LVrV61Zs0Y7duzQI488opIlS1q3wfbq1UvfffedfvzxR23btk0rV65UZGSkpIsv3fnzzz/Vrl07bd68WUlJSfruu+/06KOPWrfU/t3kyZM1ffp07d27V3v37tXw4cM1YcIE9ejRI8vcYsWKacWKFdq7d6/atWun9PR0O381AAAAAP6Jf/0JzVvU0aNHzbPPPmtCQ0ONu7u7KVmypGnZsqVZuXKlNeftt982wcHBxsvLy8TGxprPP//cSDInT540xlx8sY6/v7/TeefOnWsu/1q3bdtmatSoYTw9PU25cuXMV199ZUJDQ82YMWOsOYmJiebuu+827u7uJiIiwixevNhIzi/W6du3rwkMDDS+vr7moYceMmPGjMly7ewsXbrUNGnSxBQuXNi4urqa4sWLm9atW5vFixc7zZs1a5apWLGicXNzM6VKlTKjRo1y2v/nn3+ajh07Gn9/f+v72Ldvn7W/e/fupmzZssbDw8MULVrUdOzY0fzxxx/W/n379pk2bdqYgIAA4+XlZSpUqGB69eplMjMzs+170qRJJjIy0nh7exs/Pz9z5513mq+++sppzqUX61xy9OhRExERYdq2bWvS09PNgAEDTJUqVa54jDHGREdHm+eee+4q3+T/ufTQsZSc689qUxRFURRFUbdu5SXX8mIdhzHG5GqKBfKYlJQU+fv7S0qWxPORAAAAyF5eSlqXfsZNTk6+6jtA8uXtrAAAAACAf4YQCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALDNNbcbAPKsl/wlz9xuAgBwM5gBJrdbAIBbBiuRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbXHO7ASCvSu6fLD8/v9xuAwAAALipWIkEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADY5prbDQB5lr9/bncAAACAG82Y3O7glsdKZB4xadIkBQQE5HYbtxS+EwAAAODmI0TeIrp06SKHwyGHwyF3d3eFh4dr8ODBSk9Pz+3WbjiHw6F58+ZddV5YWJj1nVyqN954499vEAAAAECOuJ31FtK4cWNNnDhRaWlpWrRokZ599lm5ubmpf//+ud1arhk8eLC6du1qbRcsWDAXuwEAAADASuQtxMPDQ0FBQQoNDdUzzzyjhg0basGCBU5zvvvuO0VGRsrX11eNGzfWsWPHnPZ/9tlnioyMlKenpypUqKAPP/zQaX+/fv0UEREhb29vlSlTRq+99pouXLhg7d+xY4caNGigggULys/PT9WrV9eWLVskSSdOnFC7du1UsmRJeXt7q3Llypo+fbrT+WNiYtSzZ0+9+OKLKly4sIKCgjRw4EBrf1hYmCSpTZs2cjgc1nZOChYsqKCgIKt8fHxynPv777+rRo0aatOmjdLS0hQXFyeHw6HvvvtOVatWlZeXl+655x4dP35c3377rSIjI+Xn56f27dvr7NmzV+wDAAAAwEWEyFuYl5eXzp8/b22fPXtWb731lqZMmaLvv/9ehw8fVp8+faz9U6dO1euvv65hw4YpISFBw4cP12uvvabJkydbcwoWLKhJkyZpz549euedd/Tpp59qzJgx1v4OHTrotttu0+bNm7V161a99NJLcnNzkySdO3dO1atX1zfffKMffvhBTz75pDp27KhNmzY59T158mT5+Pho48aNevPNNzV48GAtXbpUkrR582ZJ0sSJE3Xs2DFrOydvvPGGAgMDVbVqVY0aNSrH23uPHDmievXq6fbbb9esWbPk4eFh7Rs4cKDef/99rVu3TkeOHFHbtm01duxYTZs2Td98842WLFmi9957L8ce0tLSlJKS4lQAAABAvmVwS+jcubNp1aqVMcaYzMxMs3TpUuPh4WH69OljjDFm4sSJRpI5cOCAdcwHH3xgihcvbm2XLVvWTJs2zem8Q4YMMbVr187xuqNGjTLVq1e3tgsWLGgmTZpku+9mzZqZF154wdqOjo42d999t9OcmjVrmn79+lnbkszcuXOveu7Ro0eblStXmh07dphx48aZgIAA07t3b2v/xIkTjb+/v9m7d68JCQkxPXv2NJmZmdb+lStXGklm2bJl1tiIESOMJJOUlGSNPfXUUyY2NjbHPgYMGGAkZanki+/uoiiKoiiKov5LlU8lJycbSSY5Ofmqc3km8haycOFC+fr66sKFC8rMzFT79u2dbgX19vZW2bJlre3g4GAdP35cknTmzBklJSXp8ccfd3qGMD09Xf6X/SqKGTNm6N1331VSUpJSU1OVnp4uPz8/a//zzz+vJ554QlOmTFHDhg314IMPWtfMyMjQ8OHDNXPmTP3yyy86f/680tLS5O3t7fQ5oqKinLYv7/NaPP/8807ndHd311NPPaURI0ZYK41//fWX6tWrp/bt22vs2LHZnufyfooXL27dynv52N9XUy/Xv39/p15SUlIUEhJyzZ8HAAAA+C/gdtZbSIMGDRQfH6/9+/frr7/+sm4LveTSbaWXOBwOGWMkSampqZKkTz/9VPHx8Vb98MMP2rBhgyRp/fr16tChg5o2baqFCxdq+/bteuWVV5xumR04cKB2796tZs2aacWKFapYsaLmzp0rSRo1apTeeecd9evXTytXrlR8fLxiY2Odjs+pz8zMzOv+fmrVqqX09HQdOnTIGvPw8FDDhg21cOFC/fLLL9ked3k/Dofjmvvz8PCQn5+fUwEAAAD5FSuRtxAfHx+Fh4f/o2OLFy+uEiVK6ODBg+rQoUO2c9atW6fQ0FC98sor1thPP/2UZV5ERIQiIiLUu3dvtWvXThMnTlSbNm20du1atWrVSo888ogkKTMzU/v27VPFihWvqVc3NzdlZGRc0zGSFB8frwIFCqhYsWLWWIECBTRlyhS1b99eDRo0UFxcnEqUKHHN5wYAAABgDyHyP2TQoEHq2bOn/P391bhxY6WlpWnLli06efKknn/+eZUrV06HDx/Wl19+qZo1a+qbb76xVhmli7eG9u3bVw888IBKly6tn3/+WZs3b9b9998vSSpXrpxmzZqldevWqVChQnr77bf122+/XXOIDAsL0/Lly1W3bl15eHioUKFCWeasX79eGzdutN4Uu379evXu3VuPPPJIlvkuLi6aOnWq2rVrp3vuuUdxcXEKCgr6B98gAAAAgKshRP6HPPHEE/L29taoUaPUt29f+fj4qHLlyurVq5ckqWXLlurdu7e6d++utLQ0NWvWTK+99pr13KWLi4tOnDihTp066bffflORIkX0v//9T4MGDZIkvfrqqzp48KBiY2Pl7e2tJ598Uq1bt1ZycvI19Tl69Gg9//zz+vTTT1WyZEmn21Mv8fDw0JdffqmBAwcqLS1NpUuXVu/evZ2eTbycq6urpk+froceesgKkv82fyVL4tZWAACA/xKT2w3kAQ5z6aE6ALakpKT8/5cVESIBAAD+a/JrOrr0M25ycvJV3wHCi3UAAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ueZ2A0Ce9ZK/5JnbTQBA3mcGmNxuAQBwDViJBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2Oaa2w0AeVVy/2T5+fnldhsAAADATcVKJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANtfcbgA3RpcuXXTq1CnNmzcvt1u5qRwOh+bOnavWrVvf/Iv7+9/8awIAANxoxuR2B8hjWIm8Cbp06SKHwyGHwyE3NzeVLl1aL774os6dO5erfV3qyeFwyMfHR+XKlVOXLl20devWXO3rkoEDBzr16HA4VKFChdxuCwAAAMjXCJE3SePGjXXs2DEdPHhQY8aM0ccff6wBAwbkdluaOHGijh07pt27d+uDDz5QamqqatWqpc8//zy3W5MkVapUSceOHbNqzZo1ud0SAAAAkK8RIm8SDw8PBQUFKSQkRK1bt1bDhg21dOlSa39aWpp69uypYsWKydPTU3fffbc2b97sdI7du3erefPm8vPzU8GCBVWvXj0lJSVle73NmzeraNGiGjly5BX7CggIUFBQkMLCwnTfffdp1qxZ6tChg7p3766TJ09a82bPnq1KlSrJw8NDYWFhGj16tLXv5ZdfVq1atbKcu0qVKho8eLC1/dlnnykyMlKenp6qUKGCPvzwwyt/aZJcXV0VFBRkVZEiRa44f8CAAQoODtbOnTslSWFhYRo6dKg6deokX19fhYaGasGCBfr999/VqlUr+fr6KioqSlu2bLlqLwAAAAAIkbnihx9+0Lp16+Tu7m6Nvfjii5o9e7YmT56sbdu2KTw8XLGxsfrzzz8lSb/88ovq168vDw8PrVixQlu3btVjjz2m9PT0LOdfsWKFGjVqpGHDhqlfv37X3F/v3r11+vRpK+Ru3bpVbdu21cMPP6xdu3Zp4MCBeu211zRp0iRJUocOHbRp0yanQLt7927t3LlT7du3lyRNnTpVr7/+uoYNG6aEhAQNHz5cr732miZPnnzFXvbv368SJUqoTJky6tChgw4fPpztPGOMevTooc8//1yrV69WVFSUtW/MmDGqW7eutm/frmbNmqljx47q1KmTHnnkEW3btk1ly5ZVp06dZHJ4HiAtLU0pKSlOBQAAAORbBv+6zp07GxcXF+Pj42M8PDyMJFOgQAEza9YsY4wxqampxs3NzUydOtU65vz586ZEiRLmzTffNMYY079/f1O6dGlz/vz5HK/RqlUrM2fOHOPr62u+/PLLq/YlycydOzfL+F9//WUkmZEjRxpjjGnfvr1p1KiR05y+ffuaihUrWttVqlQxgwcPtrb79+9vatWqZW2XLVvWTJs2zekcQ4YMMbVr186xv0WLFpmZM2eaHTt2mMWLF5vatWubUqVKmZSUFKfP8NVXX5n27dubyMhI8/PPPzudIzQ01DzyyCPW9rFjx4wk89prr1lj69evN5LMsWPHsu1jwIABRlKWSr74GDpFURRFUVTeLsAYk5ycbCSZ5OTkq85lJfImadCggeLj47Vx40Z17txZjz76qO6//35JUlJSki5cuKC6deta893c3HTnnXcqISFBkhQfH6969erJzc0tx2ts3LhRDz74oKZMmaKHHnroH/dqjJF08cU7kpSQkODUmyTVrVtX+/fvV0ZGhqSLq5HTpk2zjp8+fbo6dOggSTpz5oySkpL0+OOPy9fX16qhQ4fmeDuuJDVp0kQPPvigoqKiFBsbq0WLFunUqVOaOXOm07zevXtr48aN+v7771WyZMks57l8VbJ48eKSpMqVK2cZO378eLZ99O/fX8nJyVYdOXIkx54BAACA/zpC5E3i4+Oj8PBwValSRRMmTNDGjRs1fvx428d7eXlddU7ZsmVVoUIFTZgwQRcuXPjHvV4KrqVLl7Z9TLt27ZSYmKht27Zp3bp1OnLkiBVkU1NTJUmffvqp4uPjrfrhhx+0YcMG29cICAhQRESEDhw44DTeqFEj/fLLL/ruu++yPe7y4H0pGGc3lpmZme3xHh4e8vPzcyoAAAAgvyJE5oICBQro5Zdf1quvvqq//vpLZcuWlbu7u9auXWvNuXDhgjZv3qyKFStKuriatnr16iuGwyJFimjFihU6cOCA2rZt+4+D5NixY+Xn56eGDRtKkiIjI516k6S1a9cqIiJCLi4ukqTbbrtN0dHRmjp1qqZOnapGjRqpWLFiki6u9JUoUUIHDx5UeHi4U11LUE1NTVVSUpKCg4Odxlu2bKlp06bpiSee0JdffvmPPjMAAAAAewiRueTBBx+Ui4uLPvjgA/n4+OiZZ55R3759tXjxYu3Zs0ddu3bV2bNn9fjjj0uSunfvrpSUFD388MPasmWL9u/frylTpigxMdHpvMWKFdOKFSu0d+9etWvXLtsX71zu1KlT+vXXX/XTTz9p6dKleuCBBzRt2jSNGzdOAQEBkqQXXnhBy5cv15AhQ7Rv3z5NnjxZ77//vvr06eN0rg4dOujLL7/UV199Zd3KesmgQYM0YsQIvfvuu9q3b5927dqliRMn6u23386xtz59+mjVqlU6dOiQ1q1bpzZt2sjFxUXt2rXLMrdNmzaaMmWKHn30Uc2aNeuKnxkAAADAdfjXn9CE9dKbvxsxYoQpWrSoSU1NNX/99Zfp0aOHKVKkiPHw8DB169Y1mzZtcpq/Y8cOc9999xlvb29TsGBBU69ePZOUlJTtNY4ePWoiIiJM27ZtTXp6erZ9Sf/3khhPT09TtmxZ07lzZ7N169Ysc2fNmmUqVqxo3NzcTKlSpcyoUaOyzDl58qTx8PAw3t7e5vTp01n2T5061dxxxx3G3d3dFCpUyNSvX9/MmTMnx+/toYceMsHBwcbd3d2ULFnSPPTQQ+bAgQNZPsPlLweaMWOG8fT0NLNnzzbGXHyxzpgxY654zI8//mgkme3bt+fYy+Wsh45z+yF4iqIoiqKoG1GAubYX6ziMMSb3IiyQ96SkpMjf319SsiSejwQAAP8NpIL87dLPuMnJyVd9Bwi3swIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGxzze0GgDzrJX/JM7ebAPBvMgNMbrcAAMAth5VIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBtrrndAJBXJfdPlp+fX263AQAAANxUrEQCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsc83tBoA8y98/tzsAAAD454zJ7Q6QR7ESmQc4HA7Nmzfvmo87dOiQHA6H4uPjb3hP1+tG9HYrfz4AAADgv4oQeQvo0qWLWrduneP+Y8eOqUmTJpJyDk5XO8f1yMjI0JgxY1S5cmV5enqqUKFCatKkidauXfuvXO+SLl26yOFwOFXjxo3/1WsCAAAAuDJCZB4QFBQkDw+PXLm2MUYPP/ywBg8erOeee04JCQmKi4tTSEiIYmJi/tEK6bVo3Lixjh07ZtX06dP/1esBAAAAuDJCZB5w+e2spUuXliRVrVpVDodDMTExGjhwoCZPnqz58+dbK3ZxcXHZnuuHH35QkyZN5Ovrq+LFi6tjx476448/crz2zJkzNWvWLH3++ed64oknVLp0aVWpUkWffPKJWrZsqSeeeEJnzpxRcnKyXFxctGXLFklSZmamChcurLvuuss61xdffKGQkJBr+uweHh4KCgqyqlChQjnOzcjI0GOPPaYKFSro8OHDki5+dx9//LGaN28ub29vRUZGav369Tpw4IBiYmLk4+OjOnXqKCkp6Zr6AgAAAPIrQmQes2nTJknSsmXLdOzYMc2ZM0d9+vRR27ZtnVbt6tSpk+XYU6dO6Z577lHVqlW1ZcsWLV68WL/99pvatm2b4/WmTZumiIgItWjRIsu+F154QSdOnNDSpUvl7++vO+64wwqvu3btksPh0Pbt25WamipJWrVqlaKjo6/p88bFxalYsWIqX768nnnmGZ04cSLbeWlpaXrwwQcVHx+v1atXq1SpUta+IUOGqFOnToqPj1eFChXUvn17PfXUU+rfv7+2bNkiY4y6d++eYw9paWlKSUlxKgAAACC/IkTmMUWLFpUkBQYGKigoSIULF5avr6+8vLycVu3c3d2zHPv++++ratWqGj58uCpUqKCqVatqwoQJWrlypfbt25ft9fbt26fIyMhs910av3RsTEyMFSLj4uLUqFEjRUZGas2aNdbYtYTIxo0b6/PPP9fy5cs1cuRIrVq1Sk2aNFFGRobTvNTUVDVr1ky///67Vq5caX1Hlzz66KNq27atIiIi1K9fPx06dEgdOnRQbGysIiMj9dxzz+W4citJI0aMkL+/v1XXupoKAAAA/JfwKz7ykR07dmjlypXy9fXNsi8pKUkRERHZHmdsvv45Ojpa48ePV0ZGhlatWqX77rtPQUFBiouLU1RUlHULqV0PP/yw9efKlSsrKipKZcuWVVxcnO69915rX7t27XTbbbdpxYoV8vLyynKeqKgo68/Fixe3znf52Llz55SSkiI/P78sx/fv31/PP/+8tZ2SkkKQBAAAQL7FSmQ+kpqaqhYtWig+Pt6p9u/fr/r162d7TEREhBISErLdd2n8UvisX7++Tp8+rW3btun7779XTEyMtTq5atUqlShRQuXKlfvH/ZcpU0ZFihTRgQMHnMabNm2qnTt3av369dke5+bmZv3Z4XDkOJaZmZnt8R4eHvLz83MqAAAAIL8iROYxl25T/fstne7u7lnG/q5atWravXu3wsLCFB4e7lQ+Pj7ZHvPwww9r//79+vrrr7PsGz16tAIDA9WoUSNJUkBAgKKiovT+++/Lzc1NFSpUUP369bV9+3YtXLjwmp+H/Luff/5ZJ06cUHBwsNP4M888ozfeeEMtW7bUqlWrrusaAAAAAK6MEHmLSE5OzrJCeOTIkSzzihUrJi8vL+ulOMnJyZKksLAw7dy5U4mJifrjjz904cKFLMc+++yz+vPPP9WuXTtt3rxZSUlJ+u677/Too4/mGEAffvhhtWnTRp07d9b48eN16NAh7dy5U0899ZQWLFigzz77zCmAxsTEaOrUqVZgLFy4sCIjIzVjxoxrCpGpqanq27evNmzYoEOHDmn58uVq1aqVwsPDFRsbm2V+jx49NHToUDVv3tx6BhMAAADAjcczkbeIuLg4Va1a1Wns8ccf12effeY05urqqnfffVeDBw/W66+/rnr16ikuLk5du3ZVXFycatSoodTUVK1cuVJhYWFOx5YoUUJr165Vv379dN999yktLU2hoaFq3LixChTI/v9PcDgcmjlzpsaOHasxY8aoW7du8vT0VO3atRUXF6e6des6zY+OjtbYsWOdnn2MiYnRjh07rul5SBcXF+3cuVOTJ0/WqVOnVKJECd13330aMmRIjr8zs1evXsrMzFTTpk21ePHibN9QeyP5K1kSt7YCAIA8yvHvX8LmqzWQxziM3bemAJB08cU6/v7+EiESAADgikgaeceln3GTk5Ov+g4QbmcFAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADY5prbDQB51kv+kmduNwHcXGaAye0WAABALmMlEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYJtrbjcA5FXJ/ZPl5+eX220AAAAANxUrkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA227JEBkXFyeHw6FTp07lOGfgwIG64447blpP1yssLExjx47N7TauyM73PmnSJAUEBNy0nq7E4XBo3rx5udeAv7/kcFAURVEUReVuATfZdYXILl26yOFwyOFwyM3NTaVLl9aLL76oc+fO3aj+8o2BAwda36Wrq6vCwsLUu3dvpaamXvd57YbtOnXq6NixY/L397+ua94Il38fl6pChQq53RYAAACQ77le7wkaN26siRMn6sKFC9q6das6d+4sh8OhkSNH3oj+8pVKlSpp2bJlSk9P19q1a/XYY4/p7Nmz+vjjj6/5XMYYZWRk2J5/4cIFubu7Kygo6Jqv9W+59H1c4up63f9cAQAAAFyn676d1cPDQ0FBQQoJCVHr1q3VsGFDLV261NqfmZmpESNGqHTp0vLy8lKVKlU0a9Ysp3MsWrRIERER8vLyUoMGDXTo0KF/1Mtnn32myMhIeXp6qkKFCvrwww+d9q9bt0533HGHPD09VaNGDc2bN08Oh0Px8fHWnAULFqhcuXLy9PRUgwYNNHnyZP39Fs81a9aoXr168vLyUkhIiHr27KkzZ85Y+48fP64WLVrIy8tLpUuX1tSpU2317+rqqqCgIN1222166KGH1KFDBy1YsECSNGXKFNWoUUMFCxZUUFCQ2rdvr+PHj1vHXroV9dtvv1X16tXl4eGhL774QoMGDdKOHTus1bxJkyZJkhwOh8aNG6eWLVvKx8dHw4YNy/Z21kmTJqlUqVLy9vZWmzZtdOLEiSx9Dx06VMWKFVPBggX1xBNP6KWXXsqy+nm1v5srfR+XqkiRIlecP2DAAAUHB2vnzp2SLt5CPHToUHXq1Em+vr4KDQ3VggUL9Pvvv6tVq1by9fVVVFSUtmzZctVeAAAAAPx/5jp07tzZtGrVytretWuXCQoKMrVq1bLGhg4daipUqGAWL15skpKSzMSJE42Hh4eJi4szxhhz+PBh4+HhYZ5//nmzd+9e88UXX5jixYsbSebkyZM5XnvAgAGmSpUq1vYXX3xhgoODzezZs83BgwfN7NmzTeHChc2kSZOMMcYkJyebwoULm0ceecTs3r3bLFq0yERERBhJZvv27cYYYw4ePGjc3NxMnz59zN69e8306dNNyZIlnXo5cOCA8fHxMWPGjDH79u0za9euNVWrVjVdunSxemnSpImpUqWKWb9+vdmyZYupU6eO8fLyMmPGjLH9eYwxpmfPnqZw4cLGGGPGjx9vFi1aZJKSksz69etN7dq1TZMmTay5K1euNJJMVFSUWbJkiTlw4ID5+eefzQsvvGAqVapkjh07Zo4dO2bOnj1rjDFGkilWrJiZMGGCSUpKMj/99JN1jkufdcOGDaZAgQJm5MiRJjEx0bzzzjsmICDA+Pv7O33vnp6eZsKECSYxMdEMGjTI+Pn5XdPfTU7fh7e3twkODjalS5c27du3Nz/99JPTHElm7ty5JjMz03Tv3t2EhYWZ/fv3W/tDQ0NN4cKFzUcffWT27dtnnnnmGePn52caN25sZs6caRITE03r1q1NZGSkyczMzLGXc+fOmeTkZKuOHDliJJlkyRiKoiiKoqjcLuAGSE5ONpJMcnLyVede17+6zp07GxcXF+Pj42M8PDyMJFOgQAEza9YsY8zFH769vb3NunXrnI57/PHHTbt27YwxxvTv399UrFjRaX+/fv3MtYbIsmXLmmnTpjnNGTJkiKldu7Yxxphx48aZwMBA89dff1n7P/30U3N5iOzXr5+5/fbbnc7xyiuvOPXy+OOPmyeffNJpzurVq02BAgXMX3/9ZRITE40ks2nTJmt/QkKCkXRNIXLLli2mSJEi5oEHHsh2/ubNm40kc/r0aWPM/4XIefPmXfG8l0gyvXr1chr7e4hs166dadq0qdOchx56yClE1qpVyzz77LNOc+rWrXtNfzfZWbRokZk5c6bZsWOHWbx4saldu7YpVaqUSUlJcfoMX331lWnfvr2JjIw0P//8s9M5QkNDzSOPPGJtHzt2zEgyr732mjW2fv16I8kcO3Ysx14GDBhgJGUpQiRFURRFUbdEATfAtYTI637IrEGDBho3bpzOnDmjMWPGyNXVVffff78k6cCBAzp79qwaNWrkdMz58+dVtWpVSVJCQoJq1arltL927dpO276+vtafH3nkEX300UdO+8+cOaOkpCQ9/vjj6tq1qzWenp5uvSQmMTFRUVFR8vT0tPbfeeedTudJTExUzZo1ncb+PmfHjh3auXOn0y2qxhhlZmbqxx9/1L59++Tq6qrq1atb+ytUqGDrjaa7du2Sr6+vMjIydP78eTVr1kzvv/++JGnr1q0aOHCgduzYoZMnTyozM1OSdPjwYVWsWNE6R40aNa56HbtzExIS1KZNG6ex2rVra/HixdZ2YmKiunXr5jTnzjvv1IoVKyTZ+7vJTpMmTaw/R0VFqVatWgoNDdXMmTP1+OOPW/t69+4tDw8PbdiwIdvbXaOioqw/Fy9eXJJUuXLlLGPHjx/P8XnQ/v376/nnn7e2U1JSFBISkmPvAAAAwH/ZdYdIHx8fhYeHS5ImTJigKlWqaPz48Xr88cetN4t+8803KlmypNNxHh4etq9x+TOLfn5+WfZfus6nn36aJZC6uLjYvo4dqampeuqpp9SzZ88s+0qVKqV9+/b943OXL19eCxYskKurq0qUKCF3d3dJF4NYbGysYmNjNXXqVBUtWlSHDx9WbGyszp8/73QOHx8f29e7lrn/1I36uwkICFBERIQOHDjgNN6oUSNNnz5d3333nTp06JDlODc3N+vPjv//Cuzsxi6F8ux4eHhc079XAAAA4L/shr7uskCBAnr55Zf1/PPPq3379qpYsaI8PDx0+PBhRUdHZ3tMZGSk9fKYSzZs2OC0fSmk5qR48eIqUaKEDh48mG2QkC4GtC+++EJpaWlWINi8eXOWOYsWLXIa+/ucatWqac+ePTn2VKFCBaWnp2vr1q3WqmZiYuIVf/fiJe7u7tmed+/evTpx4oTeeOMNawXM7stg3N3dr+ktrZeLjIzUxo0bncb+/ndTvnx5bd68WZ06dbLGLv/O7Pzd2JGamqqkpCR17NjRabxly5Zq0aKF2rdvLxcXFz388MP/+BoAAAAAru663876dw8++KBcXFz0wQcfqGDBgurTp4969+6tyZMnKykpSdu2bdN7772nyZMnS5Kefvpp7d+/X3379lViYqKmTZtmvUH0WgwaNEgjRozQu+++q3379mnXrl2aOHGi3n77bUlS+/btlZmZqSeffFIJCQn67rvv9NZbb0n6v9Wop556Snv37lW/fv20b98+zZw50+ltppLUr18/rVu3Tt27d1d8fLz279+v+fPnq3v37pIuhqrGjRvrqaee0saNG7V161Y98cQT8vLy+sffaalSpeTu7q733ntPBw8e1IIFCzRkyBBbx4aFhenHH39UfHy8/vjjD6Wlpdm+bs+ePbV48WK99dZb2r9/v95//32nW1klqUePHho/frwmT56s/fv3a+jQodq5c6f1fUlX/7vJTp8+fbRq1SodOnRI69atU5s2beTi4qJ27dplmdumTRtNmTJFjz76aJY3/wIAAAC4wa7n4cu/v531khEjRpiiRYua1NRUk5mZacaOHWvKly9v3NzcTNGiRU1sbKxZtWqVNf/rr7824eHhxsPDw9SrV89MmDDBSNf2Yh1jjJk6daq54447jLu7uylUqJCpX7++mTNnjrV/7dq1Jioqyri7u5vq1aubadOmGUlm79691pz58+dbvcTExJhx48YZSU4v5Nm0aZNp1KiR8fX1NT4+PiYqKsoMGzbM2n/s2DHTrFkz4+HhYUqVKmU+//xzExoaes1vZ73ctGnTTFhYmPHw8DC1a9c2CxYsMNL/vRTo7y/FueTcuXPm/vvvNwEBAUaSmThxojHGGOnim00vl905xo8fb2677Tbj5eVlWrRoYd566y2nF+sYY8zgwYNNkSJFjK+vr3nsscdMz549zV133eU052p/N3/30EMPmeDgYOPu7m5KlixpHnroIXPgwAGnOX//DDNmzDCenp5m9uzZxhiT7Xf+92N+/PFHp+/RDuuh49x+iJ6iKIqiKEqy/TMMcCXX8mIdhzHG5Ep6vQVMnTpVjz76qJKTk3NcKRw2bJg++ugjHTly5CZ3l3c1atRIQUFBmjJlSm638q9ISUn5/y8FSpaU9RldAACAvCr/JgNc+hk3OTk52/fQXO6GPhN5q/v8889VpkwZlSxZUjt27FC/fv3Utm1bpwD54YcfqmbNmgoMDNTatWs1atQo61ZVZHX27Fl99NFHio2NlYuLi6ZPn65ly5Zp6dKlud0aAAAAgH9BvgqRv/76q15//XX9+uuvCg4O1oMPPqhhw4Y5zbn0XN+ff/6pUqVK6YUXXlD//v1zqeNbn8Ph0KJFizRs2DCdO3dO5cuX1+zZs9WwYcPcbg0AAADAvyBf384K/BPczgoAAP6rSAb517XcznrD384KAAAAAPjvIkQCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbMtXvycSuKFe8pc8c7sJ4OYyA3j3OwAA+R0rkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA21xzuwEgr0runyw/P7/cbgMAAAC4qViJBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2Oaa2w0AeZa/f253AAD4LzMmtzsAgGyxEpmPxMXFyeFw6NSpU7ndyg3RpUsXtW7dOrfbAAAAAPIVQmQe9NFHH6lgwYJKT0+3xlJTU+Xm5qaYmBinuZeCY1JSkurUqaNjx47JPw+soB06dEgOhyNLbdiwIbdbAwAAAPI1bmfNgxo0aKDU1FRt2bJFd911lyRp9erVCgoK0saNG3Xu3Dl5enpKklauXKlSpUqpbNmykqSgoKBc6/ufWLZsmSpVqmRtBwYG5mI3AAAAAFiJzIPKly+v4OBgxcXFWWNxcXFq1aqVSpcu7bRaFxcXpwYNGlh//vvtrJ9++qlCQkLk7e2tNm3a6O2331ZAQIDT9ebPn69q1arJ09NTZcqU0aBBg5xWQQ8fPqxWrVrJ19dXfn5+atu2rX777Tdr/8CBA3XHHXdoypQpCgsLk7+/vx5++GGdPn36qp81MDBQQUFBVrm5ueU4d/PmzSpatKhGjhzpdN0JEyaoVKlS8vX1Vbdu3ZSRkaE333xTQUFBKlasmIYNG3bVPgAAAABcRIjMoxo0aKCVK1da2ytXrlRMTIyio6Ot8b/++ksbN260QuTfrV27Vk8//bSee+45xcfHq1GjRlkC1erVq9WpUyc999xz2rNnjz7++GNNmjTJmpeZmalWrVrpzz//1KpVq7R06VIdPHhQDz30kNN5kpKSNG/ePC1cuFALFy7UqlWr9MYbb1z1c7Zs2VLFihXT3XffrQULFuQ4b8WKFVb//fr1c7rut99+q8WLF2v69OkaP368mjVrpp9//lmrVq3SyJEj9eqrr2rjxo05njstLU0pKSlOBQAAAORbBnnSp59+anx8fMyFCxdMSkqKcXV1NcePHzfTpk0z9evXN8YYs3z5ciPJ/PTTT8YYY1auXGkkmZMnTxpjjHnooYdMs2bNnM7boUMH4+/vb23fe++9Zvjw4U5zpkyZYoKDg40xxixZssS4uLiYw4cPW/t3795tJJlNmzYZY4wZMGCA8fb2NikpKdacvn37mlq1auX4+X7//XczevRos2HDBrNp0ybTr18/43A4zPz58605nTt3Nq1atTJz5swxvr6+5ssvv3Q6R3bXjY2NNWFhYSYjI8MaK1++vBkxYkSOvQwYMMBIylLJF9+bR1EURVH/TgHATZScnGwkmeTk5KvO5ZnIPComJkZnzpzR5s2bdfLkSUVERKho0aKKjo7Wo48+qnPnzikuLk5lypRRqVKlsj1HYmKi2rRp4zR25513auHChdb2jh07tHbtWqcVyoyMDJ07d05nz55VQkKCQkJCFBISYu2vWLGiAgIClJCQoJo1a0qSwsLCVLBgQWtOcHCwjh8/nuPnK1KkiJ5//nlru2bNmjp69KhGjRqlli1bWuMbN27UwoULNWvWrGzf1Pr36xYvXlwuLi4qUKCA09iVeunfv79TLykpKU6fFwAAAMhPCJF5VHh4uG677TatXLlSJ0+eVHR0tCSpRIkSCgkJ0bp167Ry5Urdc88913Wd1NRUDRo0SP/73/+y7Lv08h47/v4so8PhUGZm5jX1UqtWLS1dutRprGzZsgoMDNSECRPUrFmzLNfJ7rrX2ouHh4c8PDyuqVcAAADgv4pnIvOwBg0aKC4uTnFxcU6/2qN+/fr69ttvtWnTphyfh5QuvqBn8+bNTmN/365WrZoSExMVHh6epQoUKKDIyEgdOXJER44csY7Zs2ePTp06pYoVK96YD/r/xcfHKzg42GmsSJEiWrFihQ4cOKC2bdvqwoULN/SaAAAAAJyxEpmHNWjQQM8++6wuXLhgrURKUnR0tLp3767z589fMUT26NFD9evX19tvv60WLVpoxYoV+vbbb+VwOKw5r7/+upo3b65SpUrpgQceUIECBbRjxw798MMPGjp0qBo2bKjKlSurQ4cOGjt2rNLT09WtWzdFR0erRo0a//izTZ48We7u7qpataokac6cOZowYYI+++yzLHOLFSumFStWqEGDBmrXrp2+/PJLubryTxsAAAD4N7ASmYc1aNBAf/31l8LDw1W8eHFrPDo6WqdPn7Z+FUhO6tatq48++khvv/22qlSposWLF6t3795Ot6nGxsZq4cKFWrJkiWrWrKm77rpLY8aMUWhoqKSLt4LOnz9fhQoVUv369dWwYUOVKVNGM2bMuO7PN2TIEFWvXl21atXS/PnzNWPGDD366KPZzg0KCtKKFSu0a9cudejQQRkZGdd9/avxV7IcMhRFURT175RDt1QBwCUOY4zJ7SZw6+jatav27t2r1atX53Yrt6yUlBT5+/tLSpbkl9vtAABwU/ATI/Dfduln3OTkZPn5XflnXO75y+feeustNWrUSD4+Pvr22281efJkffjhh7ndFgAAAIBbFCEyn9u0aZPefPNNnT59WmXKlNG7776rJ554IrfbAgAAAHCLIkTmczNnzsztFgAAAADkIbxYBwAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBu/4gP4p17ylzxzuwngIjPA5HYLAAAgn2AlEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYJtrbjcA5FXJ/ZPl5+eX220AAAAANxUrkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA21xzuwEgz/L3z+0OAADInjG53QGA/zBWIuHE4XBo3rx5Oe4/dOiQHA6H4uPjb1pPOYmJiVGvXr1yuw0AAAAgX8m3IfLXX3/Vc889p/DwcHl6eqp48eKqW7euxo0bp7Nnz970fuLi4uRwOKwqXry47r//fh08ePCGnPfUqVO25h87dkxNmjS5rmveCH//Pi7Vr7/+mtutAQAAAPlavryd9eDBg6pbt64CAgI0fPhwVa5cWR4eHtq1a5c++eQTlSxZUi1btsz22AsXLsjNze1f6y0xMVEFCxbU/v379eSTT6pFixbauXOnXFxcrvlcFy5csD33/Pnzcnd3V1BQ0DVf59+UmJgoPz8/a7tYsWK52A0AAACAfLkS2a1bN7m6umrLli1q27atIiMjVaZMGbVq1UrffPONWrRoYc11OBwaN26cWrZsKR8fHw0bNkySNH/+fFWrVk2enp4qU6aMBg0apPT0dEnSY489pubNmztd88KFCypWrJjGjx9/xd6KFSum4OBg1a9fX6+//rr27NmjAwcOaPPmzWrUqJGKFCkif39/RUdHa9u2bU7H/r3Xrl27qkGDBpKkQoUKyeFwqEuXLpIu3gravXt39erVS0WKFFFsbKx1jstvZ920aZOqVq0qT09P1ahRQ9u3b8/S84IFC1SuXDl5enqqQYMGmjx5cpbVzzVr1qhevXry8vJSSEiIevbsqTNnzlzxu7j0fQQFBVlVoEDO/2S/+eYb+fv7a+rUqZKkLl26qHXr1ho+fLiKFy+ugIAADR48WOnp6erbt68KFy6s2267TRMnTrxiD2lpaUpJSXEqAAAAIN8y+cwff/xhHA6HGTFihK35kkyxYsXMhAkTTFJSkvnpp5/M999/b/z8/MykSZNMUlKSWbJkiQkLCzMDBw40xhizdu1a4+LiYo4ePWqdZ86cOcbHx8ecPn062+usXLnSSDInT550OkaS2blzp1m+fLmZMmWKSUhIMHv27DGPP/64KV68uElJScmx10OHDpnZs2cbSSYxMdEcO3bMnDp1yhhjTHR0tPH19TV9+/Y1e/fuNXv37rXOMXfuXGOMMadPnzZFixY17du3Nz/88IP5+uuvTZkyZYwks337dmOMMQcPHjRubm6mT58+Zu/evWb69OmmZMmSTp/lwIEDxsfHx4wZM8bs27fPrF271lStWtV06dIlx+/90vcRGhpqgoKCTMOGDc2aNWuc5kRHR5vnnnvOGGPM1KlTTcGCBc3XX39t7e/cubMpWLCgefbZZ83evXvN+PHjjSQTGxtrhg0bZvbt22eGDBli3NzczJEjR3LsZcCAAUZSlkq++NoCiqIoirr1CgCuUXJyspFkkpOTrzo33/23zIYNG4wkM2fOHKfxwMBA4+PjY3x8fMyLL75ojUsyvXr1cpp77733muHDhzuNTZkyxQQHB1vbFStWNCNHjrS2W7RoYSs0XQpeR48eNXXq1DElS5Y0aWlpWeZnZGRkCU3Z9ZpdODXmYgCrWrVqlvNeHiI//vhjExgYaP766y9r/7hx48zlIbJfv37m9ttvdzrHK6+84nTNxx9/3Dz55JNOc1avXm0KFCjgdO7L7d2713z00Udmy5YtZu3atebRRx81rq6uZuvWrU6f4bnnnjPvv/++8ff3N3FxcU7n6Ny5swkNDTUZGRnWWPny5U29evWs7fT0dOPj42OmT5+ebR/GGHPu3DmTnJxs1ZEjRwwhkqIoirqlCwCu0bWEyHz5TGR2Nm3apMzMTHXo0EFpaWlO+2rUqOG0vWPHDq1du9a6tVWSMjIydO7cOZ09e1be3t564okn9Mknn+jFF1/Ub7/9pm+//VYrVqy4ah+33XabjDE6e/asqlSpotmzZ8vd3V2//fabXn31VcXFxen48ePKyMjQ2bNndfjw4Sv2eiXVq1e/4v6EhARFRUXJ09PTGqtdu7bTnMTERNWsWdNp7M4773Ta3rFjh3bu3GndZipJxhhlZmbqxx9/VGRkZJZrly9fXuXLl7e269Spo6SkJI0ZM0ZTpkyxxmfNmqXjx49r7dq1WfqQpEqVKjndAlu8eHHdfvvt1raLi4sCAwN1/PjxHL8HDw8PeXh45LgfAAAAyE/yXYgMDw+Xw+FQYmKi03iZMmUkSV5eXlmO8fHxcdpOTU3VoEGD9L///S/L3EuBq1OnTnrppZe0fv16rVu3TqVLl1a9evWu2t/q1avl5+enYsWKqWDBgtZ4586ddeLECb3zzjsKDQ2Vh4eHateurfPnz1+x1yu5lrnXIzU1VU899ZR69uyZZV+pUqVsn+fOO+/UmjVrnMaqVq2qbdu2acKECapRo4YcDofT/r+/BMnhcGQ7lpmZabsPAAAAID/LdyEyMDBQjRo10vvvv68ePXr8oyBVrVo1JSYmKjw8/IrXad26tSZOnKj169fr0UcftXXu0qVLKyAgIMv42rVr9eGHH6pp06aSpCNHjuiPP/646vnc3d0lXVwpvVaRkZGaMmWKzp07Z4XjDRs2OM0pX768Fi1a5DS2efNmp+1q1appz549V/y+7IiPj1dwcLDTWNmyZTV69GjFxMTIxcVF77///nVdAwAAAMCV5cu3s3744YdKT09XjRo1NGPGDCUkJCgxMVFffPGF9u7de9Vfp/H666/r888/16BBg7R7924lJCToyy+/1Kuvvuo074knntDkyZOVkJCgzp07X1fP5cqV05QpU5SQkKCNGzeqQ4cO2a6a/l1oaKgcDocWLlyo33//Xampqbav2b59ezkcDnXt2lV79uzRokWL9NZbbznNeeqpp7R3717169dP+/bt08yZMzVp0iRJslYF+/Xrp3Xr1ql79+6Kj4/X/v37NX/+fHXv3j3Ha48dO1bz58/XgQMH9MMPP6hXr15asWKFnn322SxzIyIitHLlSs2ePVu9evWy/fkAAAAAXLt8GSLLli2r7du3q2HDhurfv7+qVKmiGjVq6L333lOfPn00ZMiQKx4fGxurhQsXasmSJapZs6buuusujRkzRqGhoU7zGjZsqODgYMXGxqpEiRLX1fP48eN18uRJVatWTR07dlTPnj1t/c7EkiVLatCgQXrppZdUvHjxKwa3v/P19dXXX3+tXbt2qWrVqnrllVc0cuRIpzmlS5fWrFmzNGfOHEVFRWncuHF65ZVXJMl6jjAqKkqrVq3Svn37VK9ePVWtWlWvv/76Fb+T8+fP64UXXlDlypUVHR2tHTt2aNmyZbr33nuznV++fHmtWLFC06dP1wsvvGD7M14PfyXLIUNRFEVRt145RF1nAciZwxhjcruJ/6rU1FSVLFlSEydOzPb5yf+qYcOG6aOPPtKRI0dyu5V/RUpKivz9/SUlS/LL7XYAAMC/gJ+Qkd9c+hk3OTlZfn5X/hk33z0TeTNkZmbqjz/+0OjRoxUQEKCWLVvmdkv/qg8//FA1a9ZUYGCg1q5dq1GjRl3TiicAAACAvIMQ+S84fPiwSpcurdtuu02TJk2Sq+t/+2vev3+/hg4dqj///FOlSpXSCy+8oP79++d2WwAAAAD+BdzOClwjbmcFAOC/j5+Qkd9cy+2s+fLFOgAAAACAf4YQCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACw7b/9uyeAf9NL/pJnbjeBvMgM4JV/AAAg72IlEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgm2tuNwDkVcn9k+Xn55fbbQAAAAA3FSuRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbXHO7AdwaJk2apF69eunUqVP/yvkHDhyoefPmKT4+XpLUpUsXnTp1SvPmzfvH57wR57gu/v65c10AQP5kTG53AACSWInMU3799Vc999xzCg8Pl6enp4oXL666detq3LhxOnv2bG63d0MdOnRIDocjS23YsCG3WwMAAADyNVYi84iDBw+qbt26CggI0PDhw1W5cmV5eHho165d+uSTT1SyZEm1bNkyt9u84ZYtW6ZKlSpZ24GBgbnYDQAAAABWIvOIbt26ydXVVVu2bFHbtm0VGRmpMmXKqFWrVvrmm2/UokULa+7bb7+typUry8fHRyEhIerWrZtSU1Odzjdp0iSVKlVK3t7eatOmjU6cOGHtS05OlouLi7Zs2SJJyszMVOHChXXXXXdZc7744guFhIRY2/369VNERIS8vb1VpkwZvfbaa7pw4cJ1f+7AwEAFBQVZ5ebmluPczZs3q2jRoho5cqSki7fQ3nHHHZowYYJKlSolX19fdevWTRkZGXrzzTcVFBSkYsWKadiwYdfdJwAAAJBfECLzgBMnTmjJkiV69tln5ePjk+0ch8Nh/blAgQJ69913tXv3bk2ePFkrVqzQiy++aO3fuHGjHn/8cXXv3l3x8fFq0KCBhg4dau339/fXHXfcobi4OEnSrl275HA4tH37diuMrlq1StHR0dYxBQsW1KRJk7Rnzx698847+vTTTzVmzJjr/uwtW7ZUsWLFdPfdd2vBggU5zluxYoUaNWqkYcOGqV+/ftZ4UlKSvv32Wy1evFjTp0/X+PHj1axZM/38889atWqVRo4cqVdffVUbN27M8dxpaWlKSUlxKgAAACC/IkTmAQcOHJAxRuXLl3caL1KkiHx9feXr6+sUnHr16qUGDRooLCxM99xzj4YOHaqZM2da+9955x01btxYL774oiIiItSzZ0/FxsY6nTsmJsYKkXFxcWrUqJEiIyO1Zs0aa+zyEPnqq6+qTp06CgsLU4sWLdSnTx+na14rX19fjR49Wl999ZW++eYb3X333WrdunW2QXLu3Llq1aqVPv74Yz355JNO+zIzMzVhwgRVrFhRLVq0UIMGDZSYmKixY8eqfPnyevTRR1W+fHmtXLkyx15GjBghf39/qy5fgQUAAADyG56JzMM2bdqkzMxMdejQQWlpadb4smXLNGLECO3du1cpKSlKT0/XuXPndPbsWXl7eyshIUFt2rRxOlft2rW1ePFiazs6Olrjx49XRkaGVq1apfvuu09BQUGKi4tTVFSUDhw4oJiYGGv+jBkz9O677yopKUmpqalKT0+Xn5/fP/5sRYoU0fPPP29t16xZU0ePHtWoUaOcnv3cuHGjFi5cqFmzZql169ZZzhMWFqaCBQta28WLF5eLi4sKFCjgNHb8+PEce+nfv79TLykpKQRJAAAA5FusROYB4eHhcjgcSkxMdBovU6aMwsPD5eXlZY0dOnRIzZs3V1RUlGbPnq2tW7fqgw8+kCSdP3/e9jXr16+v06dPa9u2bfr+++8VExNjrU6uWrVKJUqUULly5SRJ69evV4cOHdS0aVMtXLhQ27dv1yuvvHJN17OjVq1aOnDggNNY2bJlVaFCBU2YMCHbZzD//gylw+HIdiwzMzPH63p4eMjPz8+pAAAAgPyKEJkHBAYGqlGjRnr//fd15syZK87dunWrMjMzNXr0aN11112KiIjQ0aNHneZERkZmeQbw7786IyAgQFFRUXr//ffl5uamChUqqH79+tq+fbsWLlzodCvrunXrFBoaqldeeUU1atRQuXLl9NNPP13np84qPj5ewcHBTmNFihTRihUrdODAAbVt2/aGvMwHAAAAQM4IkXnEhx9+qPT0dNWoUUMzZsxQQkKCEhMT9cUXX2jv3r1ycXGRdHHV8sKFC3rvvfd08OBBTZkyRR999JHTuXr27KnFixfrrbfe0v79+/X+++873cp6SUxMjKZOnWoFxsKFCysyMlIzZsxwCpHlypXT4cOH9eWXXyopKUnvvvuu5s6de12fd/LkyZo+fbr27t2rvXv3avjw4ZowYYJ69OiRZW6xYsW0YsUK7d27V+3atVN6evp1XRsAAABAzgiReUTZsmW1fft2NWzYUP3791eVKlVUo0YNvffee+rTp4+GDBkiSapSpYrefvttjRw5UrfffrumTp2qESNGOJ3rrrvu0qeffqp33nlHVapU0ZIlS/Tqq69muWZ0dLQyMjKcnn2MiYnJMtayZUv17t1b3bt31x133KF169bptddeu+7PPGTIEFWvXl21atXS/PnzNWPGDD366KPZzg0KCtKKFSu0a9cudejQQRkZGdd9/avxV7IcMhRFURR1c8qh/3wByBscxhiT200AeUlKSor8/f0lJUvi+UgAAG4UfioFcs+ln3GTk5Ov+g4QViIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ueZ2A0Ce9ZK/5JnbTeBmMANMbrcAAABwy2AlEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYJtrbjcA5FXJ/ZPl5+eX220AAAAANxUrkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA21xzuwEgz/L3z+0OAAD/hDG53QEA5Gl5biWyS5cuat269TUd43A4NG/evGs65tdff1WjRo3k4+OjgICAazr2Zvknn+u/JC4uTg6HQ6dOncrtVgAAAIB845YLkV26dJHD4ZDD4ZC7u7vCw8M1ePBgpaenS5LeeecdTZo06V/vY8yYMTp27Jji4+O1b9++G3bemx38fv31Vz333HMKDw+Xp6enihcvrrp162rcuHE6e/bsTevjn4iJibH+LVyqp59+OrfbAgAAAPK1W/J21saNG2vixIlKS0vTokWL9Oyzz8rNzU39+/eX/026hTApKUnVq1dXuXLlbsr1/g0HDx5U3bp1FRAQoOHDh6ty5cry8PDQrl279Mknn6hkyZJq2bJlbrd5RV27dtXgwYOtbW9v71zsBgAAAMAttxIpSR4eHgoKClJoaKieeeYZNWzYUAsWLJCU9XbWmJgY9ezZUy+++KIKFy6soKAgDRw48IrnHzBggIKDg7Vz585s94eFhWn27Nn6/PPP5XA41KVLF0nS4cOH1apVK/n6+srPz09t27bVb7/95nTsuHHjVLZsWbm7u6t8+fKaMmWK03klqU2bNnI4HNa2JM2fP1/VqlWTp6enypQpo0GDBlmrr5K0f/9+1a9fX56enqpYsaKWLl16lW9R6tatm1xdXbVlyxa1bdtWkZGRKlOmjFq1aqVvvvlGLVq0sOZe72czxmjgwIEqVaqUPDw8VKJECfXs2dPan5aWpj59+qhkyZLy8fFRrVq1FBcXd9XP4O3traCgIKv8/PxynHv27Fk1adJEdevW1alTp3To0CE5HA7NnDlT9erVk5eXl2rWrKl9+/Zp8+bNqlGjhnx9fdWkSRP9/vvvOZ43LS1NKSkpTgUAAADkW+YW07lzZ9OqVSunsZYtW5pq1apluz86Otr4+fmZgQMHmn379pnJkycbh8NhlixZYs2RZObOnWsyMzNN9+7dTVhYmNm/f3+OPRw/ftw0btzYtG3b1hw7dsycOnXKZGRkmDvuuMPcfffdZsuWLWbDhg2mevXqJjo62jpuzpw5xs3NzXzwwQcmMTHRjB492ri4uJgVK1ZY55VkJk6caI4dO2aOHz9ujDHm+++/N35+fmbSpEkmKSnJLFmyxISFhZmBAwcaY4zJyMgwt99+u7n33ntNfHy8WbVqlalatar1ubLzxx9/GIfDYUaMGHHV7/xGfLavvvrK+Pn5mUWLFpmffvrJbNy40XzyySfW8U888YSpU6eO+f77782BAwfMqFGjjIeHh9m3b1+OfUVHR5siRYqYwMBAU6lSJfPSSy+ZM2fOWPtXrlxpJJmTJ0+akydPmjp16pj77rvPmvPjjz8aSaZChQpm8eLFZs+ePeauu+4y1atXNzExMWbNmjVm27ZtJjw83Dz99NM59jFgwAAjKUslX3w1A0VRFJXXCgCQRXJyspFkkpOTrzr3lvtv0stDYmZmplm6dKnx8PAwffr0ybLfmItB4+6773Y6R82aNU2/fv2sbUnmq6++Mu3btzeRkZHm559/vmofrVq1Mp07d7a2lyxZYlxcXMzhw4etsd27dxtJZtOmTcYYY+rUqWO6du3qdJ4HH3zQNG3a1KmXvwe/e++91wwfPtxpbMqUKSY4ONgYY8x3331nXF1dzS+//GLt//bbb7M91yUbNmwwksycOXOcxgMDA42Pj4/x8fExL7744g37bKNHjzYRERHm/PnzWXr56aefjIuLi1P/lz53//79s+3fGGM+/vhjs3jxYrNz507zxRdfmJIlS5o2bdpY+y+FyISEBBMVFWXuv/9+k5aWZu2/FCI/++wza2z69OlGklm+fLk1NmLECFO+fPkc+zh37pxJTk626siRI4YQSVEUlYcLAJDFtYTIW/J21oULF8rX11eenp5q0qSJHnrooSveohoVFeW0HRwcrOPHjzuN9e7dWxs3btT333+vkiVLWuPDhw+Xr6+vVYcPH872GgkJCQoJCVFISIg1VrFiRQUEBCghIcGaU7duXafj6tata+3PyY4dOzR48GCnPrp27apjx47p7Nmz1rVLlChhHVO7du0rnjMnmzZtUnx8vCpVqqS0tLQb9tkefPBB/fXXXypTpoy6du2quXPnWrfj7tq1SxkZGYqIiHD6jKtWrVJSUlKOvT755JOKjY1V5cqV1aFDB33++eeaO3dulmMaNWqk8PBwzZgxQ+7u7lnOc/m/j+LFi0uSKleu7DT2938vl/Pw8JCfn59TAQAAAPnVLflinQYNGmjcuHFyd3dXiRIl5Op65Tbd3Nycth0OhzIzM53GGjVqpOnTp+u7775Thw4drPGnn35abdu2tbYvD2o3S2pqqgYNGqT//e9/WfZ5enr+o3OGh4fL4XAoMTHRabxMmTKSJC8vr3903pyEhIQoMTFRy5Yt09KlS9WtWzeNGjVKq1atUmpqqlxcXLR161a5uLg4Hefr62v7GrVq1ZIkHThwQGXLlrXGmzVrptmzZ2vPnj1O4fCSy/99OByObMf+/u8FAAAAQPZuyRDp4+Oj8PDwG3rOli1bqkWLFmrfvr1cXFz08MMPS5IKFy6swoULX/X4yMhIHTlyREeOHLFW7Pbs2aNTp06pYsWK1py1a9eqc+fO1nFr16619ksXw0tGRobTuatVq6bExMQcP/Olax87dkzBwcGSpA0bNlyx38DAQDVq1Ejvv/++evToIR8fn3/9s3l5ealFixZq0aKFnn32WVWoUEG7du1S1apVlZGRoePHj6tevXpX7PtK4uPjJcn6Di5544035Ovrq3vvvVdxcXFOPQEAAAC4sW7JEPlvadOmjaZMmaKOHTvK1dVVDzzwgO1jGzZsaN1WOXbsWKWnp6tbt26Kjo5WjRo1JEl9+/ZV27ZtVbVqVTVs2FBff/215syZo2XLllnnCQsL0/Lly1W3bl15eHioUKFCev3119W8eXOVKlVKDzzwgAoUKKAdO3bohx9+0NChQ9WwYUNFRESoc+fOGjVqlFJSUvTKK69ctecPP/xQdevWVY0aNTRw4EBFRUWpQIEC2rx5s/bu3avq1avfsM82adIkZWRkqFatWvL29tYXX3whLy8vhYaGKjAwUB06dFCnTp00evRoVa1aVb///ruWL1+uqKgoNWvWLEvvSUlJmjZtmpo2barAwEDt3LlTvXv3Vv369bPcvixJb731ljIyMnTPPfcoLi5OFSpUsP13CwAAAOAa3IRnNK9Jdm9nvdL+6Oho89xzzznN+ftLcSTnF9DMmDHDeHp6mtmzZ+d4nb+fw5iLL4hp2bKl8fHxMQULFjQPPvig+fXXX53mfPjhh6ZMmTLGzc3NREREmM8//9xp/4IFC0x4eLhxdXU1oaGh1vjixYtNnTp1jJeXl/Hz8zN33nmn09tNExMTzd13323c3d1NRESEWbx4cZbPlZ2jR4+a7t27m9KlSxs3Nzfj6+tr7rzzTjNq1CinN51e72ebO3euqVWrlvHz8zM+Pj7mrrvuMsuWLbP2nz9/3rz++usmLCzMuLm5meDgYNOmTRuzc+fObPs+fPiwqV+/vilcuLDx8PAw4eHhpm/fvk4P+l7+dtZLevToYYKDg01iYqL1Yp3t27df8ZiJEycaf3//K36Pl7v00LGUnOvvhqAoiqJuTAFAfnctL9ZxGGNMLmZYIM9JSUmRv7+/pGRJvGQHAP4L+GkIQH536Wfc5OTkq75I8pZ8OysAAAAA4NZEiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2Oaa2w0AedZL/pJnbjeBG8EM4LeMAwAA2MVKJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANtfcbgDIq5L7J8vPzy+32wAAAABuKlYiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIhSYqJiVGvXr1u2vXCwsI0duzYXD/HdfH3lxwOiqKoG18AANzCCJF5RJcuXeRwOORwOOTu7q7w8HANHjxY6enpud3av2LSpEnW571Unp6eud0WAAAAkO+55nYDsK9x48aaOHGi0tLStGjRIj377LNyc3NT//79c7u1bGVkZMjhcKhAgX/2/1X4+fkpMTHR2nbw/84DAAAAuY6VyDzEw8NDQUFBCg0N1TPPPKOGDRtqwYIFkqSTJ0+qU6dOKlSokLy9vdWkSRPt37/f6fi1a9cqJiZG3t7eKlSokGJjY3Xy5Elrf2Zmpl588UUVLlxYQUFBGjhwoNPxb7/9tipXriwfHx+FhISoW7duSk1NtfZPmjRJAQEBWrBggSpWrCgPDw8dPnxYx48fV4sWLeTl5aXSpUtr6tSptj6vw+FQUFCQVcWLF7/i/M8++0wBAQFavny5pIu36Pbo0UO9evVSoUKFVLx4cX366ac6c+aMHn30URUsWFDh4eH69ttvbfUDAAAAgBCZp3l5een8+fOSLt7uumXLFi1YsEDr16+XMUZNmzbVhQsXJEnx8fG69957VbFiRa1fv15r1qxRixYtlJGRYZ1v8uTJ8vHx0caNG/Xmm29q8ODBWrp0qbW/QIECevfdd7V7925NnjxZK1as0IsvvujU09mzZzVy5Eh99tln2r17t4oVK6YuXbroyJEjWrlypWbNmqUPP/xQx48fv+rnS01NVWhoqEJCQtSqVSvt3r07x7lvvvmmXnrpJS1ZskT33nuv02cqUqSINm3apB49euiZZ57Rgw8+qDp16mjbtm2677771LFjR509ezbHc6elpSklJcWpAAAAgHzLIE/o3LmzadWqlTHGmMzMTLN06VLj4eFh+vTpY/bt22ckmbVr11rz//jjD+Pl5WVmzpxpjDGmXbt2pm7dujmePzo62tx9991OYzVr1jT9+vXL8ZivvvrKBAYGWtsTJ040kkx8fLw1lpiYaCSZTZs2WWMJCQlGkhkzZkyO5163bp2ZPHmy2b59u4mLizPNmzc3fn5+5siRI9ac0NBQM2bMGPPiiy+a4OBg88MPP1zxM6WnpxsfHx/TsWNHa+zYsWNGklm/fn2OvQwYMMBIylLJkjEURVH/RgEAcJMlJycbSSY5Ofmqc3kmMg9ZuHChfH19deHCBWVmZqp9+/YaOHCgli9fLldXV9WqVcuaGxgYqPLlyyshIUHSxZXIBx988Irnj4qKctoODg52WjFctmyZRowYob179yolJUXp6ek6d+6czp49K29vb0mSu7u703kSEhLk6uqq6tWrW2MVKlRQQEDAFXupXbu2ateubW3XqVNHkZGR+vjjjzVkyBBrfPTo0Tpz5oy2bNmiMmXKXPEzubi4KDAwUJUrV7bGLt0ie6WV0f79++v555+3tlNSUhQSEnLF/gEAAID/Km5nzUMaNGig+Ph47d+/X3/99Zd1+6kdXl5eV53j5ubmtO1wOJSZmSlJOnTokJo3b66oqCjNnj1bW7du1QcffCBJ1i21l67zb7wAx83NTVWrVtWBAwecxuvVq6eMjAzNnDkzx+Mu53A4nMYu9Xrpc2bHw8NDfn5+TgUAAADkV4TIPMTHx0fh4eEqVaqUXF3/bxE5MjJS6enp2rhxozV24sQJJSYmqmLFipIurshdeuHMP7F161ZlZmZq9OjRuuuuuxQREaGjR49e9bgKFSooPT1dW7dutcYSExN16tSpa7p+RkaGdu3apeDgYKfxO++8U99++62GDx+ut95665rOCQAAAODaESL/A8qVK6dWrVqpa9euWrNmjXbs2KFHHnlEJUuWVKtWrSRdvCVz8+bN6tatm3bu3Km9e/dq3Lhx+uOPP2xdIzw8XBcuXNB7772ngwcPasqUKfroo4+uelz58uXVuHFjPfXUU9q4caO2bt2qJ5544qoro4MHD9aSJUt08OBBbdu2TY888oh++uknPfHEE1nm1qlTR4sWLdKgQYM0duxYW58HAAAAwD9DiPyPmDhxoqpXr67mzZurdu3aMsZo0aJF1q2bERERWrJkiXbs2KE777xTtWvX1vz5851WNK+kSpUqevvttzVy5Ejdfvvtmjp1qkaMGGG7txIlSig6Olr/+9//9OSTT6pYsWJXPObkyZPq2rWrIiMj1bRpU6WkpGjdunXWyurf3X333frmm2/06quv6r333rPV1/XyV7IcMhRF3QJ1C7wK58YWAAC3MIcx/K8VcC1SUlLk7+8vKVkSz0cCtwL+lwwAgOtz6Wfc5OTkq74DhJVIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAba653QCQZ73kL3nmdhN5nxlgcrsFAAAAXANWIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALa55nYDQF6V3D9Zfn5+ud0GAAAAcFOxEgkAAAAAsI0QCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALCNEAkAAAAAsM01txsA8ix//9zuAMg7jMntDgAAwA3CSuRVOBwOzZs3L7fbQDYOHTokh8Oh+Pj43G4FAAAAyDfyRYj86KOPVLBgQaWnp1tjqampcnNzU0xMjNPcuLg4ORwOJSUl3eQub57ff/9dzzzzjEqVKiUPDw8FBQUpNjZWa9euze3WnHTp0kUOh8OpGjdunNttAQAAAPlavridtUGDBkpNTdWWLVt01113SZJWr16toKAgbdy4UefOnZOnp6ckaeXKlSpVqpTKli2bmy3fEOfPn5e7u3uW8fvvv1/nz5/X5MmTVaZMGf32229avny5Tpw4kQtdXlnjxo01ceJEa9vDwyMXuwEAAACQL1Yiy5cvr+DgYMXFxVljcXFxatWqlUqXLq0NGzY4jTdo0MDp+D/++ENt2rSRt7e3ypUrpwULFjjtX7Vqle688055eHgoODhYL730ktOqZ1pamnr27KlixYrJ09NTd999tzZv3ux0TYfDoW+++UZRUVHy9PTUXXfdpR9++MHpOmvWrFG9evXk5eWlkJAQ9ezZU2fOnLH2h4WFaciQIerUqZP8/Pz05JNPZvkuTp06pdWrV2vkyJFq0KCBQkNDdeedd6p///5q2bKlJKlPnz5q3ry5dczYsWPlcDi0ePFiayw8PFyfffaZJGnz5s1q1KiRihQpIn9/f0VHR2vbtm1O13U4HPrss8+u+D1m59JK6aUqVKhQjnMzMjL02GOPqUKFCjp8+LB13Y8//ljNmzeXt7e3IiMjtX79eh04cEAxMTHy8fFRnTp1rrjynJaWppSUFKcCAAAA8qt8ESKli6uRK1eutLZXrlypmJgYRUdHW+N//fWXNm7cmCVEDho0SG3bttXOnTvVtGlTdejQQX/++ack6ZdfflHTpk1Vs2ZN7dixQ+PGjdP48eM1dOhQ6/gXX3xRs2fP1uTJk7Vt2zaFh4crNjbWOsclffv21ejRo7V582YVLVpULVq00IULFyRJSUlJaty4se6//37t3LlTM2bM0Jo1a9S9e3enc7z11luqUqWKtm/frtdeey3L9+Dr6ytfX1/NmzdPaWlp2X5X0dHRWrNmjTIyMiRdDMlFihSxQvgvv/yipKQk61bg06dPq3PnzlqzZo02bNigcuXKqWnTpjp9+rTt7zEncXFxKlasmMqXL69nnnkmx9XStLQ0Pfjgg4qPj9fq1atVqlQpa9+lYB0fH68KFSqoffv2euqpp9S/f39t2bJFxpgs3+PlRowYIX9/f6tCQkKu2DMAAADwn2byiU8//dT4+PiYCxcumJSUFOPq6mqOHz9upk2bZurXr2+MMWb58uVGkvnpp5+s4ySZV1991dpOTU01ksy3335rjDHm5ZdfNuXLlzeZmZnWnA8++MD4+vqajIwMk5qaatzc3MzUqVOt/efPnzclSpQwb775pjHGmJUrVxpJ5ssvv7TmnDhxwnh5eZkZM2YYY4x5/PHHzZNPPun0mVavXm0KFChg/vrrL2OMMaGhoaZ169ZX/S5mzZplChUqZDw9PU2dOnVM//79zY4dO6z9J0+eNAUKFDCbN282mZmZpnDhwmbEiBGmVq1axhhjvvjiC1OyZMkcz5+RkWEKFixovv76a9vfY3amT59u5s+fb3bu3Gnmzp1rIiMjTc2aNU16eroxxpgff/zRSDKrV6829957r7n77rvNqVOnnM7x9+uuX7/eSDLjx493uo6np2eOfZw7d84kJydbdeTIESPJJF983yRFUXYKAADc0pKTk40kk5ycfNW5+WYlMiYmRmfOnNHmzZu1evVqRUREqGjRooqOjraei4yLi1OZMmWcVrEkKSoqyvqzj4+P/Pz8dPz4cUlSQkKCateuLYfDYc2pW7euUlNT9fPPPyspKUkXLlxQ3bp1rf1ubm668847lZCQ4HSd2rVrW38uXLiwypcvb83ZsWOHJk2aZK0k+vr6KjY2VpmZmfrxxx+t42rUqHHV7+L+++/X0aNHtWDBAjVu3FhxcXGqVq2aJk2aJEkKCAhQlSpVFBcXp127dsnd3V1PPvmktm/frtTUVK1atUrR0dHW+X777Td17dpV5cqVk7+/v/z8/JSammrdUmrne8zOww8/rJYtW6py5cpq3bq1Fi5cqM2bNzvdlixJ7dq105kzZ7RkyRL5Z/NrNy6/bvHixSVJlStXdho7d+5cjrepenh4yM/Pz6kAAACA/CrfhMjw8HDddtttWrlypVauXGmFoBIlSigkJETr1q3TypUrdc8992Q51s3NzWnb4XAoMzPzpvR9SWpqqp566inFx8dbtWPHDu3fv9/pJUA+Pj62zufp6alGjRrptdde07p169SlSxcNGDDA2h8TE6O4uDgrMBYuXFiRkZFas2ZNlhDZuXNnxcfH65133tG6desUHx+vwMBAnT9/3uma1/s9lilTRkWKFNGBAwecxps2baqdO3dq/fr12R53+XUvhf3sxm723ykAAACQF+WbECldfC4yLi5OcXFxTr/ao379+vr222+1adOmLM9DXs2lF7UYY6yxtWvXqmDBgrrttttUtmxZubu7O/36jAsXLmjz5s2qWLGi07kuf8HPyZMntW/fPkVGRkqSqlWrpj179ig8PDxLZfcG1mtVsWJFp5f0XHoucvny5dZ3FRMTo+nTp2vfvn1O39/atWvVs2dPNW3aVJUqVZKHh4f++OOP6+7p737++WedOHFCwcHBTuPPPPOM3njjDbVs2VKrVq264dcFAAAA8H/yXYhcs2aN4uPjnVbSoqOj9fHHH+v8+fPXHCK7deumI0eOqEePHtq7d6/mz5+vAQMG6Pnnn1eBAgXk4+OjZ555Rn379tXixYu1Z88ede3aVWfPntXjjz/udK7Bgwdr+fLl+uGHH9SlSxcVKVJErVu3liT169dP69atU/fu3RUfH6/9+/dr/vz5V3whTHZOnDihe+65R1988YV27typH3/8UV999ZXefPNNtWrVyppXv359nT59WgsXLnQKkVOnTlVwcLAiIiKsueXKldOUKVOUkJCgjRs3qkOHDvLy8rqmvv4uNTVVffv21YYNG3To0CEtX75crVq1sl5K9Hc9evTQ0KFD1bx5c61Zs+a6rg0AAAAgZ/ni90Re0qBBA/3111+qUKGC9WycdDFEnj592vpVINeiZMmSWrRokfr27asqVaqocOHCevzxx/Xqq69ac9544w1lZmaqY8eOOn36tGrUqKHvvvsuy6+reOONN/Tcc89p//79uuOOO/T1119bq4xRUVFatWqVXnnlFdWrV0/GGJUtW1YPPfTQNfXr6+urWrVqacyYMdbzmiEhIeratatefvlla16hQoVUuXJl/fbbb6pQoYKki8EyMzPTKYBL0vjx4/Xkk0+qWrVqCgkJ0fDhw9WnT59r6uvvXFxctHPnTk2ePFmnTp1SiRIldN9992nIkCE5/q7IXr16KTMzU02bNtXixYtVp06d6+rhavyVLOnWfj7ysgVyAAAA4IZwGMOPmbnt0u+mPHnypAICAnK7HVxFSkrK/3+BDyESAAAA/w2XfsZNTk6+6osk89XtrAAAAACA60OIBAAAAADYlq+eibxVxcTEiLuKAQAAAOQFrEQCAAAA+H/t3XlcTun/P/DXXeluve8UWohoE6IIQ1KRKXuMZehDdvOxr4NhFMYylpEZBqNRxsc6hhn7LkPGEsqWKJoMkrGUktbr94df5+vW4mTL8no+Htfj0bnOda7zPuc+5X67zrkOkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnG2VmJXtZENaBX1kGUTDGtbPcvgjjrMBEREdGHhiORREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSTaesAyB6X6VOSoVKpSrrMIiIiIiI3iqORBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkW9ReHg4TExMXrmfxMREKBQKREdHv3Jfb4tCocDvv//+Wvv08vLCqFGjXmufpaJWAwoFCwvLh1SIiIjohT6KJLJPnz5QKBT44osvCq0bOnQoFAoF+vTp8/YDe0nW1ta4ffs26tSp80r9KBQKqRgaGsLe3h59+vTB6dOnX1OkLy8iIkIjvoKSnJxc1qEREREREX3UPookEniaeK1fvx6ZmZlS3ZMnT7B27VpUrVq1DCMrnezsbGhra8PCwgI6Ojqv3F9YWBhu376NixcvYsmSJUhPT0fjxo3xyy+/vIZoX11cXBxu374tlUqVKpV1SEREREREH7WPJomsX78+rK2tsXnzZqlu8+bNqFq1KlxdXTXa7t69G82aNYOJiQnMzMzQrl07JCQkSOsLbifdvHkzvL29YWBggHr16uGvv/7S6Cc8PBxVq1aFgYEBOnXqhHv37mmsT0hIQMeOHWFubg4jIyM0bNgQ+/fv12hjY2ODGTNmoHfv3lCpVBg0aFCh21kLRu0OHDgANzc3GBgYoGnTpoiLi3vheTExMYGFhQVsbGzw6aefYtOmTQgICMCwYcPw4MEDAEBwcDBcXFw0tgsJCYGNjY1G3cqVK1G7dm0olUpYWlpi2LBhxe43KCgIlpaWOHfuXInxVapUCRYWFlLR0ir+kt2xYwfUajXWrFkD4OkItL+/P2bNmgVzc3OYmJhg+vTpyM3Nxfjx42FqaooqVaogLCysxBiIiIiIiOj/fDRJJAD069dPI2FYuXIl+vbtW6hdRkYGxowZg6ioKBw4cABaWlro1KkT8vPzNdpNnjwZ48aNQ3R0NBwcHNCjRw/k5uYCAE6cOIH+/ftj2LBhiI6Ohre3N7755huN7dPT09GmTRscOHAAZ8+ehZ+fH9q3b4+kpCSNdvPnz0e9evVw9uxZfP3118Ue3+TJk7FgwQJERUVBR0cH/fr1K/U5AoDRo0fj0aNH2Ldvn+xtli5diqFDh2LQoEE4f/48tm7dCjs7u0LthBAYPnw4fvnlFxw5cgR169YtsV8XFxdYWlqiVatWiIyMLLbd2rVr0aNHD6xZswYBAQFS/cGDB3Hr1i38+eef+O677xAUFIR27dqhfPnyOHHiBL744gsMHjwY//zzT7F9Z2VlIS0tTaMQEREREX20xEcgMDBQdOzYUaSkpAilUikSExNFYmKi0NPTE3fv3hUdO3YUgYGBxW5/9+5dAUCcP39eCCHE9evXBQARGhoqtbl48aIAIGJjY4UQQvTo0UO0adNGo5/u3bsLtVpdYqy1a9cWP/zwg7RcrVo14e/vr9GmYP9nz54VQghx6NAhAUDs379farNjxw4BQGRmZha7LwBiy5YtheozMzMFAPHtt98KIYQICgoS9erV02izcOFCUa1aNWnZyspKTJ48ucR9/frrr6Jnz57CyclJ/PPPP8W2FUKIy5cvi2XLlomoqCgRGRkp+vbtK3R0dMTp06elNp6enmLkyJFi8eLFQq1Wi4iICI0+AgMDRbVq1UReXp5U5+joKDw8PKTl3NxcYWhoKNatW1dsLEFBQQJAoZIKCMHCwvJhFSIioo9UamqqACBSU1Nf2PbVH6p7j1SsWBFt27ZFeHg4hBBo27YtKlSoUKjd1atXMXXqVJw4cQL//vuvNAKZlJSkMZnNs6NolpaWAICUlBTUrFkTsbGx6NSpk0a/TZo0we7du6Xl9PR0BAcHY8eOHbh9+zZyc3ORmZlZaCTSzc1N1vEVF09pn/kUQgB4OvGOHCkpKbh16xZatmxZYrvRo0dDqVTi+PHjRZ73Zzk6OsLR0VFabtq0KRISErBw4UKsXr1aqt+0aRNSUlIQGRmJhg0bFuqndu3aGrfAmpuba3yG2traMDMzQ0pKSrGxTJo0CWPGjJGW09LSYG1tXWL8REREREQfqo/qdlbg6S2t4eHhWLVqVbG3e7Zv3x7379/HihUrcOLECZw4cQLA00ltnlWuXDnp54KE6/lbXksybtw4bNmyBbNmzcKRI0cQHR0NZ2fnQvsxNDSU1d+rxlMgNjYWAFC9enUAgJaWlpRYFsjJyZF+1tfXl9Vvq1atcPPmTezZs6fUMQFAo0aNEB8fr1Hn6uqKihUrYuXKlYViBDTPCfD0vBRVV9J5UiqVUKlUGoWIiIiI6GP1UY1EAoCfnx+ys7OhUCjg6+tbaP29e/cQFxeHFStWwMPDAwBw9OjRUu/HyclJSj4LHD9+XGM5MjISffr0kUYs09PTkZiYWOp9vW4hISFQqVTw8fEB8HQENzk5GUIIKTl99h2VxsbGsLGxwYEDB+Dt7V1svx06dED79u3Rs2dPaGtr4/PPPy9VXNHR0dIIawFbW1ssWLAAXl5e0NbWxuLFi0vVJxERERERlc5Hl0Rqa2tLI23a2tqF1pcvXx5mZmb46aefYGlpiaSkJEycOLHU+xkxYgTc3d0xf/58dOzYEXv27NG4lRUA7O3tsXnzZrRv3x4KhQJff/31S40cvoqHDx8iOTkZWVlZuHLlCpYvX47ff/8dv/zyC0xMTAAAXl5euHv3LubOnYsuXbpg9+7d2LVrl8aIXHBwML744gtUqlQJrVu3xqNHjxAZGYnhw4dr7K9Tp05YvXo1evXqBR0dHXTp0qXIuEJCQlC9enXUrl0bT548QWhoKA4ePIi9e/cWauvg4IBDhw7By8sLOjo6CAkJeW3nh4iIiIiINH10t7MCKPGWRC0tLaxfvx6nT59GnTp1MHr0aMybN6/U+/jkk0+wYsUKLFq0CPXq1cPevXsxZcoUjTbfffcdypcvj6ZNm6J9+/bw9fVF/fr1X+qYXlbfvn1haWmJmjVr4r///S+MjIxw8uRJ9OzZU2rj5OSEH3/8EUuWLEG9evVw8uRJjBs3TqOfwMBAhISE4Mcff0Tt2rXRrl07XL16tch9dunSBatWrUKvXr00XrnyrOzsbIwdOxbOzs7w9PRETEwM9u/fX+xzl46Ojjh48CDWrVuHsWPHvuTZKB01UqGAYGF5b8o7MG3Nu1+IiIjohRSiqAfJiKhYaWlpUKvVAFIB8PlIen/wrz0REREVp+A7bmpq6gvnAPkoRyKJiIiIiIjo5TCJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLLplHUARO+tiWpAr6yDePtEkCjrEIiIiIioDHEkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsumUdQBE76vUSalQqVRlHQYRERER0VvFkUgiIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIikk2nrAMgem+p1WUdAdHHTYiyjoCIiOijxJHIj1ifPn3g7+//VvZlY2ODkJAQaVmhUOD3339/pT5fRx9ERERERFQ6TCI/YH369IFCoYBCoYCuri7s7Owwffp05ObmAgAWLVqE8PDwUvX5sonbqVOnMGjQINntg4ODpdgLSs2aNUu9XyIiIiIier14O+sHzs/PD2FhYcjKysLOnTsxdOhQlCtXDpMmTYL6Ld6OWbFixVJvU7t2bezfv19a1tHh5UpEREREVNY4EvmBUyqVsLCwQLVq1fDf//4XPj4+2Lp1K4DCt7N6eXlhxIgR+PLLL2FqagoLCwsEBwdL621sbAAAnTp1gkKhkJYTEhLQsWNHmJubw8jICA0bNtRI/gq2ffZ2Vjl0dHRgYWEhlQoVKpTYPigoCJaWljh37py0z2+++Qa9e/eGkZERqlWrhq1bt+Lu3bvo2LEjjIyMULduXURFRZUqLiIiIiKijxmTyI+Mvr4+srOzi12/atUqGBoa4sSJE5g7dy6mT5+Offv2AXh6SyoAhIWF4fbt29Jyeno62rRpgwMHDuDs2bPw8/ND+/btkZSU9EqxXr16FVZWVqhRowYCAgKK7U8IgeHDh+OXX37BkSNHULduXWndwoUL4e7ujrNnz6Jt27bo1asXevfujf/85z84c+YMbG1t0bt3b4gSJujIyspCWlqaRiEiIiIi+lgxifxICCGwf/9+7NmzBy1atCi2Xd26dREUFAR7e3v07t0bbm5uOHDgAID/uyXVxMQEFhYW0nK9evUwePBg1KlTB/b29pgxYwZsbW2lEc+X0bhxY4SHh2P37t1YunQprl+/Dg8PDzx69EijXW5uLv7zn//gwIEDOHr0KOzs7DTWt2nTBoMHD4a9vT2mTp2KtLQ0NGzYEF27doWDgwMmTJiA2NhY3Llzp9hYZs+eDbVaLRVra+uXPi4iIiIiovcdHzL7wG3fvh1GRkbIyclBfn4+evbsqXGL6vOeHcUDAEtLS6SkpJS4j/T0dAQHB2PHjh24ffs2cnNzkZmZ+Uojka1bt9aIqXHjxqhWrRo2btyI/v37S+tGjx4NpVKJ48ePF3m767PHY25uDgBwdnYuVJeSkgILC4siY5k0aRLGjBkjLaelpTGRJCIiIqKPFkciP3De3t6Ijo7G1atXkZmZKd2uWpxy5cppLCsUCuTn55e4j3HjxmHLli2YNWsWjhw5gujoaDg7O5d422xpmZiYwMHBAfHx8Rr1rVq1ws2bN7Fnz54it3v2eBQKRbF1JR2jUqmESqXSKEREREREHyuORH7gDA0NC93i+SrKlSuHvLw8jbrIyEj06dMHnTp1AvB0ZDIxMfG17bOgz4SEBPTq1UujvkOHDmjfvj169uwJbW1tfP755691v0REREREpIkjkVQqNjY2OHDgAJKTk/HgwQMAgL29PTZv3ozo6GjExMSgZ8+eLxy9fJFx48bh8OHDSExMxLFjx9CpUydoa2ujR48ehdp26tQJq1evRt++fbFp06ZX2i8REREREZWMI5FUKgsWLMCYMWOwYsUKVK5cGYmJifjuu+/Qr18/NG3aFBUqVMCECRNeeQbTf/75Bz169MC9e/dQsWJFNGvWDMePHy/2fZNdunRBfn4+evXqBS0tLXTu3PmV9i+HGqkAeGsrUVFKmPCYiIiI3nMKUdK7DYiokLS0NKjVaoBJJFGx+C8LERHR+6XgO25qauoL5wDh7axEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINp2yDoDovTVRDeiVdRBvjgji2+KJiIiIqDCORBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDadsg6A6H2VOikVKpWqrMMgIiIiInqrOBJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZdMo6ACqaQqHAli1b4O/vX9ahvLO8vLzg4uKCkJCQsglArS6b/RJ9iIQo6wiIiIhIpg9yJLJPnz5QKBRSMTMzg5+fH86dO1fWob11v/32G1q0aIHy5ctDX18fjo6O6NevH86ePVvWoZUoIiJC4zMsKMnJyWUdGhERERHRR+2DTCIBwM/PD7dv38bt27dx4MAB6OjooF27dq/UZ3Z29muK7u2YMGECunfvDhcXF2zduhVxcXFYu3YtatSogUmTJpV1eLLExcVJn+Pt27dRqVKlsg6JiIiIiOij9sEmkUqlEhYWFrCwsICLiwsmTpyIGzdu4O7du1KbCRMmwMHBAQYGBqhRowa+/vpr5OTkSOuDg4Ph4uKC0NBQVK9eHXp6egCe3moaGhqKTp06wcDAAPb29ti6dau0XV5eHvr374/q1atLo3+LFi0qFOPKlStRu3ZtKJVKWFpaYtiwYcUez40bN9CtWzeYmJjA1NQUHTt2RGJiYrHtjx8/jrlz5+K7777Dd999Bw8PD1StWhUNGjTAlClTsGvXLo32S5cuha2tLXR1deHo6IjVq1drrE9KSkLHjh1hZGQElUqFbt264c6dO9L6mJgYeHt7w9jYGCqVCg0aNEBUVJS0/ujRo/Dw8IC+vj6sra0xYsQIZGRkFBt/gUqVKkmfo4WFBbS0ir9kd+zYAbVajTVr1gB4OiLt7++PWbNmwdzcHCYmJpg+fTpyc3Mxfvx4mJqaokqVKggLC3thHERERERE9NQHm0Q+Kz09Hf/73/9gZ2cHMzMzqd7Y2Bjh4eG4dOkSFi1ahBUrVmDhwoUa28bHx+O3337D5s2bER0dLdVPmzYN3bp1w7lz59CmTRsEBATg/v37AID8/HxUqVIFv/76Ky5duoSpU6fiq6++wsaNG6Xtly5diqFDh2LQoEE4f/48tm7dCjs7uyLjz8nJga+vL4yNjXHkyBFERkbCyMgIfn5+xY6Orlu3DkZGRhgyZEiR6xUKhfTzli1bMHLkSIwdOxYXLlzA4MGD0bdvXxw6dEg6no4dO+L+/fs4fPgw9u3bh2vXrqF79+5SHwEBAahSpQpOnTqF06dPY+LEiShXrhwAICEhAX5+fvjss89w7tw5bNiwAUePHi0xaS7g4uICS0tLtGrVCpGRkcW2W7t2LXr06IE1a9YgICBAqj948CBu3bqFP//8E9999x2CgoLQrl07lC9fHidOnMAXX3yBwYMH459//im276ysLKSlpWkUIiIiIqKPlvgABQYGCm1tbWFoaCgMDQ0FAGFpaSlOnz5d4nbz5s0TDRo0kJaDgoJEuXLlREpKikY7AGLKlCnScnp6ugAgdu3aVWzfQ4cOFZ999pm0bGVlJSZPnlxsewBiy5YtQgghVq9eLRwdHUV+fr60PisrS+jr64s9e/YUub2fn5+oW7euRt2CBQukc2JoaCgePnwohBCiadOmYuDAgRptu3btKtq0aSOEEGLv3r1CW1tbJCUlSesvXrwoAIiTJ08KIYQwNjYW4eHhRcbSv39/MWjQII26I0eOCC0tLZGZmVnkNpcvXxbLli0TUVFRIjIyUvTt21fo6OhofIaenp5i5MiRYvHixUKtVouIiAiNPgIDA0W1atVEXl6eVOfo6Cg8PDyk5dzcXGFoaCjWrVtXZBxCPL0OABQqqU+nAmFhYXkdhYiIiMpUamqqACBSU1Nf2PaDHYn09vZGdHQ0oqOjcfLkSfj6+qJ169b4+++/pTYbNmyAu7s7LCwsYGRkhClTpiApKUmjn2rVqqFixYqF+q9bt670s6GhIVQqFVJSUqS6JUuWoEGDBqhYsSKMjIzw008/SX2npKTg1q1baNmypaxjiYmJQXx8PIyNjWFkZAQjIyOYmpriyZMnSEhIkH1O+vXrh+joaCxfvhwZGRkQQgAAYmNj4e7urtHW3d0dsbGx0npra2tYW1tL62vVqgUTExOpzZgxYzBgwAD4+Phgzpw5GnHFxMQgPDxcit3IyAi+vr7Iz8/H9evXi4zV0dERgwcPRoMGDdC0aVOsXLkSTZs2LTRSvGnTJowePRr79u2Dp6dnoX5q166tcQusubk5nJ2dpWVtbW2YmZlpfHbPmzRpElJTU6Vy48aNYtsSEREREX3oPtgk0tDQEHZ2drCzs0PDhg0RGhqKjIwMrFixAgDw119/ISAgAG3atMH27dtx9uxZTJ48udDtoYaGhkX2X3CrZgGFQoH8/HwAwPr16zFu3Dj0798fe/fuRXR0NPr27Sv1ra+vX6pjSU9PR4MGDaSkuKBcuXIFPXv2LHIbe3t7XLt2TeMZTxMTE9jZ2aFy5cql2r8cwcHBuHjxItq2bYuDBw+iVq1a2LJlixT/4MGDNWKPiYnB1atXYWtrK3sfjRo1Qnx8vEadq6srKlasiJUrV0pJ8bOK+pxK+uyKolQqoVKpNAoRERER0cfqg00in6dQKKClpYXMzEwAwLFjx1CtWjVMnjwZbm5usLe31xilfBWRkZFo2rQphgwZAldXV9jZ2WmMzBkbG8PGxgYHDhyQ1V/9+vVx9epVVKpUSUqMC4q6mHcV9ujRA+np6fjxxx9f2L+Tk1Oh5w0jIyNRq1Ytaf2NGzc0RuAuXbqEhw8fSm0AwMHBAaNHj8bevXvRuXNnacKa+vXr49KlS4Vit7Ozg66urqxzAADR0dGwtLTUqLO1tcWhQ4fwxx9/YPjw4bL7IiIiIiKil6NT1gG8KVlZWdI7BR88eIDFixcjPT0d7du3B/B0pC4pKQnr169Hw4YNsWPHDmnk7FXZ29vjl19+wZ49e1C9enWsXr0ap06dQvXq1aU2wcHB+OKLL1CpUiW0bt0ajx49QmRkZJGJUEBAAObNm4eOHTti+vTpqFKlCv7++29s3rwZX375JapUqVJomyZNmmDs2LEYO3Ys/v77b3Tu3BnW1ta4ffs2fv75ZympBoDx48ejW7ducHV1hY+PD7Zt24bNmzdj//79AAAfHx84OzsjICAAISEhyM3NxZAhQ+Dp6Qk3NzdkZmZi/Pjx6NKlC6pXr45//vkHp06dwmeffQbg6Sy4n3zyCYYNG4YBAwbA0NAQly5dwr59+7B48eIiz2FISAiqV6+O2rVr48mTJwgNDcXBgwexd+/eQm0dHBxw6NAheHl5QUdHByEhIaX+zIiIiIiISJ4PNoncvXu3NGplbGyMmjVr4tdff4WXlxcAoEOHDhg9ejSGDRuGrKwstG3bFl9//TWCg4Nfed+DBw/G2bNn0b17dygUCvTo0QNDhgzReK1GYGAgnjx5goULF2LcuHGoUKECunTpUmR/BgYG+PPPPzFhwgR07twZjx49QuXKldGyZcsSb62cP38+GjVqhKVLl2LlypV4/PgxzM3N0bx5c/z111/Stv7+/li0aBHmz5+PkSNHonr16ggLC5POlUKhkEb6mjdvDi0tLfj5+eGHH34A8PS5wnv37qF37964c+cOKlSogM6dO2PatGkAnj4/evjwYUyePBkeHh4QQsDW1lZjdtfnZWdnY+zYsbh58yYMDAxQt25d7N+/H97e3kW2d3R0xMGDB+Hl5QVtbW0sWLCg+A/oNVEjFQBvbaW3q4i7tomIiIjeKoUo6kEyIipWWlra/7+NmEkkvX38i01ERERvQsF33NTU1BfOAfLRPBNJREREREREr45JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpJNp6wDIHpvTVQDemUdxOshgkRZh0BERERE7wmORBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDadsg6A6H2VOikVKpWqrMMgIiIiInqrOBJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLLplHUARO8ttbqsIyAiAoQo6wiIiOgjw5HIMhAcHAwXF5eyDuO9Fx4eDhMTk7IOg4iIiIjoo/JBJpF9+vSBQqEoVPz8/N56LAqFAr///rtG3bhx43DgwIG3sv/4+Hj069cPVatWhVKpROXKldGyZUusWbMGubm5byWGl2VjY1PoM5wzZ05Zh0VERERE9FH7YG9n9fPzQ1hYmEadUqkso2g0GRkZwcjI6I3v5+TJk/Dx8UHt2rWxZMkS1KxZEwAQFRWFJUuWoE6dOqhXr94bj+NVTJ8+HQMHDpSWjY2NyzAaIiIiIiL6IEcigacJo4WFhUYpX768tP7y5cto1qwZ9PT0UKtWLezfv19j1LBFixYYNmyYRp93796Frq6uNIpoY2ODGTNmoEePHjA0NETlypWxZMkSqb2NjQ0AoFOnTlAoFNLy87eznjp1Cq1atUKFChWgVqvh6emJM2fOaOxboVAgNDQUnTp1goGBAezt7bF169Zij18IgT59+sDBwQGRkZFo37497O3tYW9vjx49euDo0aOoW7eu1P78+fNo0aIF9PX1YWZmhkGDBiE9PV1an5+fj+nTp6NKlSpQKpVwcXHB7t27pfXZ2dkYNmwYLC0toaenh2rVqmH27NnS+ocPH2LAgAGoWLEiVCoVWrRogZiYmGLjL2BsbKzxGRoaGhbb9u7du3Bzc0OnTp2QlZWFiIgIKBQK7NmzB66urtDX10eLFi2QkpKCXbt2wcnJCSqVCj179sTjx49fGAsREREREX3ASWRJ8vLy4O/vDwMDA5w4cQI//fQTJk+erNFmwIABWLt2LbKysqS6//3vf6hcuTJatGgh1c2bNw/16tXD2bNnMXHiRIwcORL79u0D8DQ5BICwsDDcvn1bWn7eo0ePEBgYiKNHj+L48eOwt7dHmzZt8OjRI41206ZNQ7du3XDu3Dm0adMGAQEBuH//fpF9RkdHIzY2FuPGjYOWVtEfs0KhAABkZGTA19cX5cuXx6lTp/Drr79i//79Gkn0okWLsGDBAsyfPx/nzp2Dr68vOnTogKtXrwIAvv/+e2zduhUbN25EXFwc1qxZIyXNANC1a1cpeTt9+jTq16+Pli1bFht/gTlz5sDMzAyurq6YN29esbfg3rhxAx4eHqhTpw42bdqkMeocHByMxYsX49ixY7hx4wa6deuGkJAQrF27Fjt27MDevXvxww8/FBtDVlYW0tLSNAoRERER0UdLfIACAwOFtra2MDQ01CgzZ84UQgixa9cuoaOjI27fvi1ts2/fPgFAbNmyRQghRGZmpihfvrzYsGGD1KZu3boiODhYWq5WrZrw8/PT2Hf37t1F69atpeVn+ywQFBQk6tWrV2z8eXl5wtjYWGzbtk2jnylTpkjL6enpAoDYtWtXkX2sX79eABBnzpyR6u7cuaNxPpYsWSKEEOKnn34S5cuXF+np6VLbHTt2CC0tLZGcnCyEEMLKyko6fwUaNmwohgwZIoQQYvjw4aJFixYiPz+/UCxHjhwRKpVKPHnyRKPe1tZWLF++vNjzsGDBAnHo0CERExMjli5dKkxMTMTo0aOl9WFhYUKtVovLly8La2trMWLECI39Hzp0SAAQ+/fvl+pmz54tAIiEhASpbvDgwcLX17fYOIKCggSAQiX16ZyILCwsLGVbiIiIXoPU1FQBQKSmpr6w7Qf7TKS3tzeWLl2qUWdqagoAiIuLg7W1NSwsLKR1jRo10mirp6eHXr16YeXKlejWrRvOnDmDCxcuFLqFtEmTJoWWQ0JCShXrnTt3MGXKFERERCAlJQV5eXl4/PgxkpKSNNo9e/upoaEhVCoVUlJSZO/HzMwM0dHRAAAvLy9kZ2cDAGJjY1GvXj2NW0Xd3d2Rn5+PuLg46Ovr49atW3B3d9foz93dXboltU+fPmjVqhUcHR3h5+eHdu3a4dNPPwUAxMTEID09HWZmZhrbZ2ZmIiEhodh4x4wZo3Hsurq6GDx4MGbPni2NNGZmZsLDwwM9e/Ys9rw/e97Mzc1hYGCAGjVqaNSdPHmy2DgmTZqkEUtaWhqsra2LbU9ERERE9CH7YJNIQ0ND2NnZvVIfAwYMgIuLC/755x+EhYWhRYsWqFat2muK8P8EBgbi3r17WLRoEapVqwalUokmTZpISV6BcuXKaSwrFArk5+cX2ae9vT2Apwmzq6srAEBbW1s6Jzo6r/ejr1+/Pq5fv45du3Zh//796NatG3x8fLBp0yakp6fD0tISERERhbYrzSs6GjdujNzcXCQmJsLR0RHA02dffXx8sH37dowfPx6VK1cutN2z502hUJTqPBbs412ZlImIiIiIqKx9lM9EOjo64saNG7hz545UV9Tzis7OznBzc8OKFSuwdu1a9OvXr1Cb48ePF1p2cnKSlsuVK4e8vLwS44mMjMSIESPQpk0b1K5dG0qlEv/++29pD0uDq6sratasifnz55eYIAGAk5MTYmJikJGRoRGTlpYWHB0doVKpYGVlhcjIyEJx16pVS1pWqVTo3r07VqxYgQ0bNuC3337D/fv3Ub9+fSQnJ0NHRwd2dnYapUKFCrKPKTo6GlpaWqhUqZJUp6WlhdWrV6NBgwbw9vbGrVu3ZPdHRERERESl98EmkVlZWUhOTtYoBYlZq1atYGtri8DAQJw7dw6RkZGYMmUKgP+bbKbAgAEDMGfOHAgh0KlTp0L7iYyMxNy5c3HlyhUsWbIEv/76K0aOHCmtt7GxwYEDB5CcnIwHDx4UGau9vT1Wr16N2NhYnDhxAgEBAdDX13+l41coFAgLC0NcXBzc3d2xdetWXL16FZcuXcKyZctw9+5daGtrAwACAgKgp6eHwMBAXLhwAYcOHcLw4cPRq1cvmJubAwDGjx+Pb7/9Fhs2bEBcXBwmTpyI6Oho6Vi/++47rFu3DpcvX8aVK1fw66+/wsLCAiYmJvDx8UGTJk3g7++PvXv3IjExEceOHcPkyZMRFRVVZPx//fUXQkJCEBMTg2vXrmHNmjUYPXo0/vOf/2jMsgs8HWFds2YN6tWrhxYtWiA5OfmVzh0REREREZXgzT+i+fYFBgYKoPBEKI6OjlKb2NhY4e7uLnR1dUXNmjXFtm3bBACxe/dujb4ePXokDAwMpAlknlWtWjUxbdo00bVrV2FgYCAsLCzEokWLNNps3bpV2NnZCR0dHVGtWjUhROGJdc6cOSPc3NyEnp6esLe3F7/++quoVq2aWLhwodQGKDxBj1qtFmFhYSWei7i4OBEYGCiqVKkidHR0hFqtFs2bNxfLly8XOTk5Urtz584Jb29voaenJ0xNTcXAgQPFo0ePpPV5eXkiODhYVK5cWZQrV07Uq1dPY1Kfn376Sbi4uAhDQ0OhUqlEy5YtNSb1SUtLE8OHDxdWVlaiXLlywtraWgQEBIikpKQi4z59+rRo3LixUKvVQk9PTzg5OYlZs2ZpTM5TMLFOgZycHNG5c2fh5OQk7ty5I02s8+DBg2K3EeLFEx09r+ChYyC1zOfTYGH5GAoRERG9eaWZWEchhBBllcC+SyIjI9GsWTPEx8fD1tZWqk9MTIStrS1OnTqF+vXra2xjY2ODUaNGYdSoUW85WipLaWlpUKvVAFIBqMo6HKIPHv+VIiIievMKvuOmpqZCpSr5O+4HO7HOi2zZsgVGRkawt7dHfHw8Ro4cCXd3dymBzMnJwb179zBlyhR88sknhRJIIiIiIiKij9FHm0Q+evQIEyZMQFJSEipUqAAfHx8sWLBAWh8ZGQlvb284ODhg06ZNZRgpERERERHRu4O3sxKVEm9nJXq7+K8UERHRm1ea21k/2NlZiYiIiIiI6PVjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQk20f7nkiiVzZRDeiVdRAvJoL4fgQiIiIien04EklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsumUdQBE76vUSalQqVRlHQYRERER0VvFkUgiIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJPIjFB4eDhMTk7e6zz59+sDf3/+19lkWx6FBrQYUChaWD6cQERERycAk8h2TnJyMkSNHws7ODnp6ejA3N4e7uzuWLl2Kx48fl3V4b5WNjQ0UCoVGmTNnTlmHRURERET0UdMp6wDo/1y7dg3u7u4wMTHBrFmz4OzsDKVSifPnz+Onn35C5cqV0aFDh7IO862aPn06Bg4cKC0bGxuXYTRERERERMSRyHfIkCFDoKOjg6ioKHTr1g1OTk6oUaMGOnbsiB07dqB9+/ZS26SkJHTs2BFGRkZQqVTo1q0b7ty5I62PiYmBt7c3jI2NoVKp0KBBA0RFRWnsb8+ePXBycoKRkRH8/Pxw+/Ztad2pU6fQqlUrVKhQAWq1Gp6enjhz5oy0fty4cWjXrp20HBISAoVCgd27d0t1dnZ2CA0NLfJYT506hYoVK+Lbb78t8ZwYGxvDwsJCKoaGhsW2vXv3Ltzc3NCpUydkZWUhIiICCoUCe/bsgaurK/T19dGiRQukpKRg165dcHJygkqlQs+ePT+6UV4iIiIiopfFJPIdce/ePezduxdDhw4tNlFS/P9nlvLz89GxY0fcv38fhw8fxr59+3Dt2jV0795dahsQEIAqVarg1KlTOH36NCZOnIhy5cpJ6x8/foz58+dj9erV+PPPP5GUlIRx48ZJ6x89eoTAwEAcPXoUx48fh729Pdq0aYNHjx4BADw9PXH06FHk5eUBAA4fPowKFSogIiICAHDz5k0kJCTAy8ur0HEcPHgQrVq1wsyZMzFhwoQSz8ucOXNgZmYGV1dXzJs3D7m5uUW2u3HjBjw8PFCnTh1s2rQJSqVSWhccHIzFixfj2LFjuHHjBrp164aQkBCsXbsWO3bswN69e/HDDz8UG0NWVhbS0tI0ChERERHRR0vQO+H48eMCgNi8ebNGvZmZmTA0NBSGhobiyy+/FEIIsXfvXqGtrS2SkpKkdhcvXhQAxMmTJ4UQQhgbG4vw8PAi9xUWFiYAiPj4eKluyZIlwtzcvNj48vLyhLGxsdi2bZsQQogHDx4ILS0tcerUKZGfny9MTU3F7NmzRePGjYUQQvzvf/8TlStXlrYPDAwUHTt2FJs3bxZGRkZi/fr1LzwnCxYsEIcOHRIxMTFi6dKlwsTERIwePVrjONRqtbh8+bKwtrYWI0aMEPn5+dL6Q4cOCQBi//79Ut3s2bMFAJGQkCDVDR48WPj6+hYbR1BQkABQqKQCQrCwfEiFiIiIPlqpqakCgEhNTX1hW45EvuNOnjyJ6Oho1K5dG1lZWQCA2NhYWFtbw9raWmpXq1YtmJiYIDY2FgAwZswYDBgwAD4+PpgzZw4SEhI0+jUwMICtra20bGlpiZSUFGn5zp07GDhwIOzt7aFWq6FSqZCeno6kpCQAgImJCerVq4eIiAicP38eurq6GDRoEM6ePYv09HQcPnwYnp6eGvs8ceIEunbtitWrV2uMmhZnzJgx8PLyQt26dfHFF19gwYIF+OGHH6TzAACZmZnw8PBA586dsWjRImm09ll169aVfjY3N4eBgQFq1KihUffssT9v0qRJSE1NlcqNGzdeGDsRERER0YeKSeQ7ws7ODgqFAnFxcRr1NWrUgJ2dHfT19UvVX3BwMC5evIi2bdvi4MGDqFWrFrZs2SKtf/bWVuDprbJCCGk5MDAQ0dHRWLRoEY4dO4bo6GiYmZkhOztbauPl5YWIiAgpYTQ1NYWTkxOOHj1aZBJpa2uLmjVrYuXKlcjJySnV8QBA48aNkZubi8TERKlOqVTCx8cH27dvx82bN4vc7tljVSgURR57fn5+sftVKpVQqVQahYiIiIjoY8Uk8h1hZmaGVq1aYfHixcjIyCixrZOTE27cuKExInbp0iU8fPgQtWrVkuocHBwwevRo7N27F507d0ZYWJjseCIjIzFixAi0adMGtWvXhlKpxL///qvRpuC5yAMHDkjPPnp5eWHdunW4cuVKoechK1SogIMHDyI+Ph7dunUrdSIZHR0NLS0tVKpUSarT0tLC6tWr0aBBA3h7e+PWrVul6pOIiIiIiEqHSeQ75Mcff0Rubi7c3NywYcMGxMbGIi4uDv/73/9w+fJlaGtrAwB8fHzg7OyMgIAAnDlzBidPnkTv3r3h6ekJNzc3ZGZmYtiwYYiIiMDff/+NyMhInDp1Ck5OTrJjsbe3x+rVqxEbG4sTJ04gICCg0Gho8+bN8ejRI2zfvl0jiVyzZg0sLS3h4OBQqN9KlSrh4MGDuHz5Mnr06FHsRDl//fUXQkJCEBMTg2vXrmHNmjUYPXo0/vOf/6B8+fIabbW1tbFmzRrUq1cPLVq0QHJysuzjJCIiIiKi0mES+Q6xtbXF2bNn4ePjg0mTJqFevXpwc3PDDz/8gHHjxmHGjBkAnt5++ccff6B8+fJo3rw5fHx8UKNGDWzYsAHA06Tq3r176N27NxwcHNCtWze0bt0a06ZNkx3Lzz//jAcPHqB+/fro1asXRowYoTECCADly5eHs7MzKlasiJo1awJ4mljm5+cXupX1WRYWFjh48CDOnz+PgIAAaYbXZymVSqxfvx6enp6oXbs2Zs6cidGjR+Onn34qsk8dHR2sW7cOtWvXll7j8aapkQoFxAdf3oHpXljeViEiIiKSQSEEvzkQlUZaWhrUajWAVAAf/vOR/AtBRERE9OEr+I6bmpr6wjlAOBJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLLplHUARO+tiWpAr6yDKEwEibIOgYiIiIg+YByJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbDplHQDR+yp1UipUKlVZh0FERERE9FZxJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZNMp6wCI3ltqdVlHQM8SoqwjICIiIvoocCTyFSgUCvz+++8AgMTERCgUCkRHR5dpTK/LTz/9BGtra2hpaSEkJOS199+nTx/4+/uXeR9ERERERFQ6H2US+SaSD2tra9y+fRt16tR5rf0+Lzw8HAqFAgqFAlpaWqhSpQr69u2LlJSU17aPtLQ0DBs2DBMmTMDNmzcxaNCg19a3XAVJ+fPl+PHjbz0WIiIiIiL6P7yd9TXR1taGhYXFW9mXSqVCXFwc8vPzERMTg759++LWrVvYs2fPa+k/KSkJOTk5aNu2LSwtLV9Lny9r//79qF27trRsZmZWhtEQEREREdFHORL5PC8vL4wYMQJffvklTE1NYWFhgeDgYI02V69eRfPmzaGnp4datWph3759Guufv501Ly8P/fv3R/Xq1aGvrw9HR0csWrRIY5uCEdH58+fD0tISZmZmGDp0KHJyckqMV6FQwMLCAlZWVmjdujVGjBiB/fv3IzMzEwAQGhoKJycn6OnpoWbNmvjxxx81tp8wYQIcHBxgYGCAGjVq4Ouvv5b2GR4eDmdnZwBAjRo1oFAokJiYCABYunQpbG1toaurC0dHR6xevVrqc9y4cWjXrp20HBISAoVCgd27d0t1dnZ2CA0NLfHYnmdmZgYLCwuplCtXrti2p06dQsWKFfHtt98CAIKDg+Hi4oKVK1eiatWqMDIywpAhQ5CXl4e5c+fCwsIClSpVwsyZM0sVExERERHRx4wjkf/fqlWrMGbMGJw4cQJ//fUX+vTpA3d3d7Rq1Qr5+fno3LkzzM3NceLECaSmpmLUqFEl9pefn48qVarg119/hZmZGY4dO4ZBgwbB0tIS3bp1k9odOnQIlpaWOHToEOLj49G9e3e4uLhg4MCBsmPX19dHfn4+cnNzsWbNGkydOhWLFy+Gq6srzp49i4EDB8LQ0BCBgYEAAGNjY4SHh8PKygrnz5/HwIEDYWxsjC+//BLdu3eHtbU1fHx8cPLkSVhbW6NixYrYsmULRo4ciZCQEPj4+GD79u3o27cvqlSpAm9vb3h6eiI0NBR5eXnQ1tbG4cOHUaFCBURERMDPzw83b95EQkICvLy8SvW5dOjQAU+ePIGDgwO+/PJLdOjQoch2Bw8eROfOnTF37lyN228TEhKwa9cu7N69GwkJCejSpQuuXbsGBwcHHD58GMeOHUO/fv3g4+ODxo0bF9l3VlYWsrKypOW0tLRSHQMRERER0QdFfIQCAwNFx44dpWVPT0/RrFkzjTYNGzYUEyZMEEIIsWfPHqGjoyNu3rwprd+1a5cAILZs2SKEEOL69esCgDh79myx+x06dKj47LPPNOKoVq2ayM3Nleq6du0qunfvXmwfYWFhQq1WS8tXrlwRDg4Ows3NTQghhK2trVi7dq3GNjNmzBBNmjQpts958+aJBg0aSMtnz54VAMT169eluqZNm4qBAwdqbNe1a1fRpk0bIYQQDx48EFpaWuLUqVMiPz9fmJqaitmzZ4vGjRsLIYT43//+JypXrqxx7M9+Bs+7e/euWLBggTh+/Lg4efKkmDBhglAoFOKPP/4o1MfmzZuFkZGRWL9+vUYfQUFBwsDAQKSlpUl1vr6+wsbGRuTl5Ul1jo6OYvbs2cXGEhQUJAAUKqlP5wNleVcKEREREb201NTUp99xU1Nf2JYjkf9f3bp1NZYtLS2lyWpiY2NhbW0NKysraX2TJk1e2OeSJUuwcuVKJCUlITMzE9nZ2XBxcdFoU7t2bWhra2vs9/z58yX2m5qaCiMjI+Tn5+PJkydo1qwZQkNDkZGRgYSEBPTv319jJDM3NxfqZ15HsWHDBnz//fdISEhAeno6cnNzoVKpStxnbGxsoQl23N3dpVt0TUxMUK9ePUREREBXVxe6uroYNGgQgoKCkJ6ejsOHD8PT07PEfTyrQoUKGDNmjLTcsGFD3Lp1C/PmzdMYjTxx4gS2b9+OTZs2FTlZko2NDYyNjaVlc3NzaGtrQ0tLS6OupImJJk2apBFLWloarK2tZR8LEREREdGHhEnk//f8s3YKhQL5+fkv3d/69esxbtw4LFiwAE2aNIGxsTHmzZuHEydOvPJ+jY2NcebMGWhpacHS0hL6+voAgDt37gAAVqxYUejWzIJE9a+//kJAQACmTZsGX19fqNVqrF+/HgsWLHjpYy3g5eWFiIgIKJVKeHp6wtTUFE5OTjh69CgOHz6MsWPHvlL/jRs3LvQsqq2tLczMzLBy5Uq0bdu20Pks6vyW9pwrlUoolcpXip2IiIiI6EPBJFIGJycn3LhxA7dv35ZmK33RqyYiIyPRtGlTDBkyRKpLSEh4LfFoaWnBzs6uUL25uTmsrKxw7do1BAQEFLntsWPHUK1aNUyePFmq+/vvv1+4TycnJ0RGRkrPVQJPj7FWrVrSsqenJ1auXAkdHR34+fkBeJpYrlu3DleuXCn185DPi46OLjRbbIUKFbB582Z4eXmhW7du2LhxY4mT7xARERER0athEimDj48PHBwcEBgYiHnz5iEtLU0jCSuKvb09fvnlF+zZswfVq1fH6tWrcerUKVSvXv2Nxjpt2jSMGDECarUafn5+yMrKQlRUFB48eIAxY8bA3t4eSUlJWL9+PRo2bIgdO3Zgy5YtL+x3/Pjx6NatG1xdXeHj44Nt27Zh8+bN2L9/v9SmefPmePToEbZv3445c+YAeJpEdunSBZaWlnBwcJB9HKtWrYKuri5cXV0BAJs3b8bKlSuLnN21UqVKOHjwILy9vdGjRw+sX78eOjq8tImIiIiI3gS+4kMGLS0tbNmyBZmZmWjUqBEGDBjwwtdCDB48GJ07d0b37t3RuHFj3Lt3T2NU8k0ZMGAAQkNDERYWBmdnZ3h6eiI8PFxKXjt06IDRo0dj2LBhcHFxwbFjx/D111+/sF9/f38sWrQI8+fPR+3atbF8+XKEhYVpjC6WL18ezs7OqFixImrWrAngaWKZn59fquchC8yYMQMNGjRA48aN8ccff2DDhg3o27dvkW0tLCxw8OBBnD9/HgEBAcjLyyv1/kotlVPrvFOFiIiIiN4KhRD89kVUGmlpaVCr1UhNTX3hhERERERERO+D0nzH5UgkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcmmU9YBEL2v1LPVgN6b618EiTfXORERERHRS+JIJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJplPWARC9r1InpUKlUpV1GEREREREbxVHIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJNtrTyITExOhUCgQHR39ursuEzY2NggJCXmtfXp5eWHUqFGvtc/X5V2O7XnBwcFwcXEpuwDUakChYGFhYfl4CxERfZRKlUT26dMHCoUCCoUC5cqVQ/Xq1fHll1/iyZMnUhtra2vcvn0bderUee3BfizCw8Ol86ylpYUqVaqgb9++SElJKevQXllp/pOh4Bw8W9avX//mgyQiIiIiomLplHYDPz8/hIWFIScnB6dPn0ZgYCAUCgW+/fZbAIC2tjYsLCxee6AfG5VKhbi4OOTn5yMmJgZ9+/bFrVu3sGfPnpfqLycnB+XKlXvNUb55YWFh8PPzk5ZNTEzKLhgiIiIiIir97axKpRIWFhawtraGv78/fHx8sG/fPmn98yNNERERUCgUOHDgANzc3GBgYICmTZsiLi5Oo99vvvkGlSpVgrGxMQYMGICJEye+8FZFLy8vjBgxAl9++SVMTU1hYWGB4OBgjTYPHz7EgAEDULFiRahUKrRo0QIxMTEabbZt24aGDRtCT08PFSpUQKdOnYrdZ2hoKExMTHDgwAEAwIULF9C6dWsYGRnB3NwcvXr1wr///iu1z8jIQO/evWFkZARLS0ssWLCgxGMqoFAoYGFhASsrK7Ru3RojRozA/v37kZmZid27d6NZs2YwMTGBmZkZ2rVrh4SEBGnbgs9gw4YN8PT0hJ6eHtasWYN79+6hR48eqFy5MgwMDODs7Ix169aVGMeOHTugVquxZs0aAMCNGzfQrVs3mJiYwNTUFB07dkRiYmKhc+Tk5AQ9PT3UrFkTP/74o7SuevXqAABXV1coFAp4eXmVuH8TExNYWFhIRU9Pr9i2CQkJqFGjBoYNGwYhBMLDw2FiYoLt27fD0dERBgYG6NKlCx4/foxVq1bBxsYG5cuXx4gRI5CXl1diHERERERE9NQrPRN54cIFHDt2DLq6ui9sO3nyZCxYsABRUVHQ0dFBv379pHVr1qzBzJkz8e233+L06dOoWrUqli5dKiuGVatWwdDQECdOnMDcuXMxffp0jaS2a9euSElJwa5du3D69GnUr18fLVu2xP379wE8TZI6deqENm3a4OzZszhw4AAaNWpU5L7mzp2LiRMnYu/evWjZsiUePnyIFi1awNXVFVFRUdi9ezfu3LmDbt26SduMHz8ehw8fxh9//IG9e/ciIiICZ86ckXVsz9LX10d+fj5yc3ORkZGBMWPGICoqCgcOHICWlhY6deqE/Px8jW0mTpyIkSNHIjY2Fr6+vnjy5AkaNGiAHTt24MKFCxg0aBB69eqFkydPFrnPtWvXokePHlizZg0CAgKQk5MDX19fGBsb48iRI4iMjISRkRH8/PyQnZ0N4OlnOXXqVMycOROxsbGYNWsWvv76a6xatQoApH3t378ft2/fxubNm0s87qFDh6JChQpo1KgRVq5cCSFEke3OnTuHZs2aoWfPnli8eDEU//9ZncePH+P777/H+vXrsXv3bkRERKBTp07YuXMndu7cidWrV2P58uXYtGlTsTFkZWUhLS1NoxARERERfbREKQQGBgptbW1haGgolEqlACC0tLTEpk2bpDbXr18XAMTZs2eFEEIcOnRIABD79++X2uzYsUMAEJmZmUIIIRo3biyGDh2qsS93d3dRr169EuPx9PQUzZo106hr2LChmDBhghBCiCNHjgiVSiWePHmi0cbW1lYsX75cCCFEkyZNREBAQLH7qFatmli4cKH48ssvhaWlpbhw4YK0bsaMGeLTTz/VaH/jxg0BQMTFxYlHjx4JXV1dsXHjRmn9vXv3hL6+vhg5cmSx+wwLCxNqtVpavnLlinBwcBBubm5Ftr97964AIM6fPy+E+L/PICQkpNh9FGjbtq0YO3astOzp6SlGjhwpFi9eLNRqtYiIiJDWrV69Wjg6Oor8/HypLisrS+jr64s9e/YIIZ6e27Vr12rsY8aMGaJJkyYasRVcHyWZPn26OHr0qDhz5oyYM2eOUCqVYtGiRdL6oKAgUa9ePREZGSnKly8v5s+fr7F9WFiYACDi4+OlusGDBwsDAwPx6NEjqc7X11cMHjy42DiCgoIEgEIlFRCChYWF5WMuRET0wUhNTRUARGpq6gvblvqZSG9vbyxduhQZGRlYuHAhdHR08Nlnn71wu7p160o/W1paAgBSUlJQtWpVxMXFYciQIRrtGzVqhIMHDwIAjhw5gtatW0vrli9fjoCAgEL9FvRdMAFNTEwM0tPTYWZmptEmMzNTuv0zOjoaAwcOLDH2BQsWICMjA1FRUahRo4ZUHxMTg0OHDsHIyKjQNgkJCcjMzER2djYaN24s1ZuamsLR0bHE/QFAamoqjIyMkJ+fjydPnqBZs2YIDQ0FAFy9ehVTp07FiRMn8O+//0ojkElJSRoTGrm5uWn0mZeXh1mzZmHjxo24efMmsrOzkZWVBQMDA412mzZtQkpKCiIjI9GwYUON442Pj4exsbFG+ydPniAhIQEZGRlISEhA//79Nc5pbm4u1Gr1C4/5eV9//bX0s6urKzIyMjBv3jyMGDFCqk9KSkKrVq0wc+bMImeVNTAwgK2trbRsbm4OGxsbjc/M3Ny8xEmLJk2ahDFjxkjLaWlpsLa2LvXxEBERERF9CEqdRBoaGsLOzg4AsHLlStSrVw8///wz+vfvX+J2z07qUnCr4fO3XxbHzc1NYzZPc3PzIvst6Lug3/T0dFhaWiIiIqJQnwUTtOjr679w/x4eHtixYwc2btyIiRMnSvXp6elo3769NKnQsywtLREfH//CvotjbGyMM2fOQEtLC5aWlhpxtm/fHtWqVcOKFStgZWWF/Px81KlTR7qltIChoaHG8rx587Bo0SKEhITA2dkZhoaGGDVqVKHtXF1dcebMGaxcuRJubm7S55Weno4GDRpIz0c+q2LFikhPTwcArFixQiNxBp5OuPSqGjdujBkzZiArKwtKpVLar5WVFdatW4d+/fpBpVJpbFPU9VHSNVMUpVIp7Y+IiIiI6GNX6iTyWVpaWvjqq68wZswY9OzZU1ZCVhRHR0ecOnUKvXv3lupOnTol/ayvry8lrqVRv359JCcnQ0dHBzY2NkW2qVu3Lg4cOIC+ffsW20+jRo0wbNgw+Pn5QUdHB+PGjZP6/+2332BjYwMdncKn0tbWFuXKlcOJEydQtWpVAMCDBw9w5coVeHp6lhi7lpZWkcd87949xMXFYcWKFfDw8AAAHD16tMS+CkRGRqJjx474z3/+A+BpEn/lyhXUqlWrUNwLFiyAl5cXtLW1sXjxYul4N2zYgEqVKhVK1gBArVbDysoK165dk0aKn1fw/OzLTGQTHR2N8uXLayR0+vr62L59O9q0aQNfX1/s3bu30EgpERERERG9Pq80sQ7wdOIabW1tLFmy5KX7GD58OH7++WesWrUKV69exTfffINz585JI2Avy8fHB02aNIG/vz/27t2LxMREHDt2DJMnT0ZUVBQAICgoCOvWrUNQUBBiY2Nx/vz5IkcWmzZtip07d2LatGkICQkB8HTSl/v376NHjx44deoUEhISsGfPHvTt2xd5eXkwMjJC//79MX78eBw8eBAXLlxAnz59oKX18qe9fPnyMDMzw08//YT4+HgcPHhQ41bLktjb22Pfvn04duwYYmNjMXjwYNy5c6fItg4ODjh06BB+++036TbRgIAAVKhQAR07dsSRI0dw/fp1REREYMSIEfjnn38AANOmTcPs2bPx/fff48qVKzh//jzCwsLw3XffAQAqVaoEfX19aRKi1NTUIve/bds2hIaG4sKFC4iPj8fSpUsxa9YsDB8+vFBbQ0ND7NixAzo6OmjdurU0IkpERERERK/fKyeROjo6GDZsGObOnYuMjIyX6iMgIACTJk3CuHHjUL9+fVy/fh19+vQp8XUOcigUCuzcuRPNmzdH37594eDggM8//xx///23dEusl5cXfv31V2zduhUuLi5o0aJFsbOVNmvWDDt27MCUKVPwww8/wMrKCpGRkcjLy8Onn34KZ2dnjBo1CiYmJlKiOG/ePHh4eKB9+/bw8fFBs2bN0KBBg5c+Ji0tLaxfvx6nT59GnTp1MHr0aMybN0/WtlOmTEH9+vXh6+sLLy8vWFhYwN/fv9j2jo6OOHjwINatW4exY8fCwMAAf/75J6pWrYrOnTvDyckJ/fv3x5MnT6SRyQEDBiA0NBRhYWFwdnaGp6cnwsPDpVd76Ojo4Pvvv8fy5cthZWWFjh07FrnvcuXKYcmSJWjSpAlcXFywfPlyfPfddwgKCiqyvZGREXbt2gUhBNq2bfvS12JpqJEKBQQLCwvLx1sUeOcKERG9eQohhCjrIIrSqlUrWFhYYPXq1WUdCpGGtLS0/z9RUCqAwrf1EhFR2Xk3v9UQEb37Cr7jpqamFvno2rNe6ZnI1+Xx48dYtmwZfH19oa2tjXXr1mH//v0a73skIiIiIiKisvdOJJEFt53OnDkTT548gaOjI3777Tf4+PiUdWhERERERET0jHciidTX18f+/fvLOgwiIiIiIiJ6gVeeWIeIiIiIiIg+HkwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGR7J17xQfRemqgG9F6tCxEkXk8sRERERERvCUciiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkm05ZB0D0vkqdlAqVSlXWYRARERERvVUciSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESy6ZR1AEREREREcuTm5iI7O7uswyB6L+nq6kJH5/Wkf0wiiYiIiOidJoRAUlIS/v3337IOhei9VqFCBVStWhUKheKV+mES+Y5SKBTYsmUL/P39i1yfmJiI6tWr4+zZs3BxcXmrsb2M4OBg/P7774iOjn5tfUZERMDb2xsPHjyAiYnJa+uXiIiI3i0FCWTlypVhZGQELS0+kUVUGvn5+UhPT8fNmzcBANWqVXul/phEvoI+ffpg1apVAAAdHR1UqVIFXbt2xfTp06Gnp1fG0b1YcHAwpk2bBgDQ1taGiYkJatWqhc6dO+O///0vlEplmcbn5eWFw4cPa9QNHjwYy5YtK6OIiIiI6G3Lzc2VEkgLC4uyDofovWVkZAQAuHnzJipXrvxKt7YyiXxFfn5+CAsLQ05ODk6fPo3AwEAoFAp8++23ZR2aLLVr18b+/fuRn5+Pe/fuISIiAt988w1Wr16NiIgIGBsbl2l8AwcOxPTp06VlAwODMoyGiIiI3raCZyALvgAT0csr+D3Kzs5+pSSS9wK8IqVSCQsLC1hbW8Pf3x8+Pj7Yt2+ftN7GxgYhISEa27i4uCA4OFhavnr1Kpo3bw49PT3UqlVLY/sCJ0+ehKurK/T09ODm5oazZ89K64QQsLOzw/z58zW2iY6OhkKhQHx8fLHx6+jowMLCAlZWVnB2dsbw4cNx+PBhXLhwQSMRVigU+P333zW2NTExQXh4uLT8zz//oEePHjA1NYWhoSHc3Nxw4sSJIvebkJCAGjVqYNiwYRBCFBufgYEBLCwspKJSqYpt+/jxY7Ru3Rru7u54+PAhEhMToVAosHHjRnh4eEBfXx8NGzbElStXcOrUKbi5ucHIyAitW7fG3bt3i+2XiIiIyh5vYSV6da/r94i/ja/RhQsXcOzYMejq6sreJj8/H507d4auri5OnDiBZcuWYcKECRpt0tPT0a5dO9SqVQunT59GcHAwxo0bJ61XKBTo168fwsLCNLYLCwtD8+bNYWdnV6rjqFmzJlq3bo3NmzfL3iY9PR2enp64efMmtm7dipiYGHz55ZfIz88v1PbcuXNo1qwZevbsicWLF5f4YO+aNWtQoUIF1KlTB5MmTcLjx4+LbPfw4UO0atUK+fn52Ldvn8YzkkFBQZgyZQrOnDkDHR0d9OzZE19++SUWLVqEI0eOID4+HlOnTi02hqysLKSlpWkUIiIiIqKPFW9nfUXbt2+HkZERcnNzkZWVBS0tLSxevFj29vv378fly5exZ88eWFlZAQBmzZqF1q1bS23Wrl2L/Px8/Pzzz9DT00Pt2rXxzz//4L///a/Upk+fPpg6dSpOnjyJRo0aIScnB2vXri00OilXzZo1sXfvXtnt165di7t37+LUqVMwNTUFgCKT12PHjqFdu3aYPHkyxo4dW2KfPXv2RLVq1WBlZYVz585hwoQJiIuLK5TcJicno3v37rC3t8fatWsLJfHjxo2Dr68vAGDkyJHo0aMHDhw4AHd3dwBA//79NUZUnzd79mzp2VEiIiIioo8dk8hX5O3tjaVLlyIjIwMLFy6Ejo4OPvvsM9nbx8bGwtraWkogAaBJkyaF2tStW1djsp7n21hZWaFt27ZYuXIlGjVqhG3btiErKwtdu3Z9qeMSQpRq6t/o6Gi4urpKCWRRkpKS0KpVK8ycOROjRo16YZ+DBg2SfnZ2doalpSVatmyJhIQE2NraSutatWqFRo0aYcOGDdDW1i7UT926daWfzc3Npf6erUtJSSk2jkmTJmHMmDHSclpaGqytrV8YPxEREb1Zimmv9pqC0hJBxT+CQ/Qx4e2sr8jQ0BB2dnaoV68eVq5ciRMnTuDnn3+W1mtpaRV65i8nJ+eNxDJgwACsX78emZmZCAsLQ/fu3V96IprY2FhUr15dWlYoFCUeh76+/gv7rFixIho1aoR169a91C2hjRs3BoBCz3i2bdsWf/75Jy5dulTkduXKlZN+LkiMn68r6rbbAkqlEiqVSqMQERERyXHjxg3069cPVlZW0NXVRbVq1TBy5Ejcu3evrEN77ygUCqmo1Wq4u7vj4MGDZR3WC4WHh39wr6NjEvkaaWlp4auvvsKUKVOQmZkJ4GnidPv2balNWloarl+/Li07OTnhxo0bGm2OHz+u0a+TkxPOnTuHJ0+eFNsGANq0aQNDQ0MsXboUu3fvRr9+/V7qOC5fvozdu3drjKg+fxxXr17VeD6xbt26iI6Oxv3794vtV19fH9u3b4eenh58fX3x6NGjUsVV8I5JS0tLjfo5c+YgMDAQLVu2LDaRJCIiInrbrl27Bjc3N1y9ehXr1q1DfHw8li1bhgMHDqBJkyYlfm960wpmvX1WXl5eif+x/i4ICwvD7du3ERkZiQoVKqBdu3a4du3aS/VV1DkgeZhEvmZdu3aFtrY2lixZAgBo0aIFVq9ejSNHjuD8+fMIDAzUuOXSx8cHDg4OCAwMRExMDI4cOYLJkydr9NmzZ08oFAoMHDgQly5dws6dO4t81lFbWxt9+vTBpEmTYG9vX+iW16Lk5uYiOTkZt27dwvnz5/HDDz/A09MTLi4uGD9+vNSuRYsWWLx4Mc6ePYuoqCh88cUXGqN5PXr0gIWFBfz9/REZGYlr167ht99+w19//aWxP0NDQ+zYsQM6Ojpo3bo10tPTi4wrISEBM2bMwOnTp5GYmIitW7eid+/eaN68ucbtqQXmz5+PgIAAtGjRApcvX37hcRMRERG9aUOHDoWuri727t0LT09PVK1aFa1bt8b+/ftx8+ZNje98WVlZmDBhAqytraFUKmFnZ6dxd9vFixfRrl07qFQqGBsbw8PDAwkJCQCevlv7+UeF/P390adPH2nZxsYGM2bMQO/evaFSqTBo0CBphGzr1q2oVasWlEolkpKSkJWVhXHjxqFy5cowNDRE48aNERERIfVVsN2ePXvg5OQEIyMj+Pn5aQw4AMDKlStRu3ZtKJVKWFpaYtiwYdK6hw8fYsCAAahYsSJUKhVatGiBmJiYF55TExMTWFhYoE6dOli6dCkyMzOlNxtcuHABrVu3hpGREczNzdGrVy/8+++/0rZeXl4YNmwYRo0ahQoVKkhzZpR0bgEgNDQUTk5O0NPTQ82aNfHjjz9K6wreBrB582Z4e3vDwMAA9erVk74DR0REoG/fvkhNTZVGUQve0rB69Wq4ubnB2NgYFhYW6NmzZ6FHrLZu3Qp7e3vo6enB29sbq1atgkKhwMOHD6U2R48eld5EYG1tjREjRiAjI+OF5/JVMIl8zXR0dDBs2DDMnTsXGRkZmDRpEjw9PdGuXTu0bdsW/v7+Gs/zaWlpYcuWLcjMzESjRo0wYMAAzJw5U6NPIyMjbNu2DefPn4erqysmT55c7Hso+/fvj+zsbPTt21dWvBcvXoSlpSWqVq0KLy8vbNy4EZMmTcKRI0c03se0YMECWFtbw8PDAz179sS4ceM0bpUt+ANZqVIltGnTBs7OzpgzZ06RzygaGRlh165dEEKgbdu2RV7kurq62L9/Pz799FPUrFkTY8eOxWeffYZt27YVeywLFy5Et27d0KJFC1y5ckXW8RMRERG9Cffv38eePXswZMiQQo/9WFhYICAgABs2bJAeF+rduzfWrVuH77//HrGxsVi+fLnGy+GbN28OpVKJgwcP4vTp0+jXrx9yc3NLFdP8+fNRr149nD17Fl9//TWAp69I+/bbbxEaGoqLFy+iUqVKGDZsGP766y+sX78e586dQ9euXeHn54erV69KfT1+/Bjz58/H6tWr8eeffyIpKUnj7QFLly7F0KFDMWjQIJw/fx5bt27VmHSxa9euSElJwa5du3D69GnUr18fLVu2LNXobMF5zc7OxsOHD9GiRQu4uroiKioKu3fvxp07d9CtWzeNbVatWgVdXV1ERkZi2bJlLzy3a9aswdSpUzFz5kzExsZi1qxZ+Prrr7Fq1SqNfidPnoxx48YhOjoaDg4O6NGjB3Jzc9G0aVOEhIRApVLh9u3buH37tnSecnJyMGPGDMTExOD3339HYmKiRuJ//fp1dOnSBf7+/oiJicHgwYMLDTYlJCTAz88Pn332Gc6dO4cNGzbg6NGjGgn7GyHog/Lnn3+KcuXKieTk5LIO5YOVmpoqAIjU1NSyDoWIiOiDl5GRIaKiokRGRkahdQjGWy2lcfz4cQFAbNmypcj13333nQAg7ty5I+Li4gQAsW/fviLbTpo0SVSvXl1kZ2cXud7T01OMHDlSo65jx44iMDBQWq5WrZrw9/fXaBMWFiYAiOjoaKnu77//Ftra2uLmzZsabVu2bCkmTZqksV18fLy0fsmSJcLc3FxatrKyEpMnTy4y3iNHjgiVSiWePHmiUW9rayuWL19e5DZCCI3zmZGRIYYMGSK0tbVFTEyMmDFjhvj000812t+4cUMAEHFxcUKIp+fJ1dVVo82Lzq2tra1Yu3atRt2MGTNEkyZNhBBCXL9+XQAQoaGh0vqLFy8KACI2NlYI8fR8qdXqYo+rwKlTpwQA8ejRIyGEEBMmTBB16tTRaDN58mQBQDx48EAIIUT//v3FoEGDNNocOXJEaGlpiczMzEL7KOn3qTTfcTk76wciKysLd+/eRXBwMLp27SrNQkpEREREZUeIF8/oGh0dDW1tbXh6eha73sPDQ+NRopfh5uZWqE5XV1fjUaHz588jLy8PDg4OGu2ysrJgZmYmLRsYGGjcXWdpaSndipmSkoJbt26hZcuWRcYRExOD9PR0jf4AIDMzU+M20qL06NED2trayMzMRMWKFfHzzz+jbt26mDFjBg4dOqRxJ12BhIQE6XgaNGigsa6kc5uRkYGEhAT0798fAwcOlOpzc3OhVqs12j57Dgvm70hJSUHNmjWLPZaC97/HxMTgwYMH0vOoSUlJqFWrFuLi4tCwYUONbRo1aqSxHBMTg3PnzmHNmjVSnRAC+fn5uH79OpycnIrd/6tgEvmBWLduHfr37w8XFxf88ssvZR0OERER0UfNzs4OCoUCsbGx6NSpU6H1sbGxKF++PCpWrPjCWe5ftF7u2wAMDQ2L7PvZ17qlp6dDW1sbp0+fLvRY0rMJ2vNJ17Mz+b8o3vT0dFhaWmo8Z1ngRbOYLly4ED4+PlCr1ahYsaJGn+3bty/yka9nJ2V8/hyUFGvB3B0rVqyQ3hJQ4PlzU9TbAEqapCgjIwO+vr7w9fXFmjVrULFiRSQlJcHX17dUE/6kp6dj8ODBGDFiRKF1VatWld1PaTGJ/ED06dNH4x5qIiIiIio7ZmZmaNWqFX788UeMHj1aI1lJTk7GmjVr0Lt3bygUCjg7OyM/Px+HDx+Gj49Pob7q1q2LVatWIScnp8gRs+dn0c/Ly8OFCxfg7e1d6rhdXV2Rl5eHlJQUeHh4lHp7ADA2NoaNjQ0OHDhQZAz169dHcnIydHR0YGNjU6q+LSwsNJ6tfLbP3377DTY2NtDRkZ/ilHRuzc3NYWVlhWvXriEgIKBUcT5LV1cXeXl5GnWXL1/GvXv3MGfOHOn941FRURptHB0dsXPnTo26U6dOaSzXr18fly5dKvKcvEmcWIeIiIiI6A1YvHgxsrKy4Ovriz///BM3btzA7t270apVK1SuXFmaTNHGxgaBgYHo168ffv/9d1y/fh0RERHYuHEjAGDYsGFIS0vD559/jqioKFy9ehWrV69GXFwcgKez6O/YsQM7duzA5cuX8d///ldj9s7ScHBwQEBAAHr37o3Nmzfj+vXrOHnyJGbPno0dO3bI7ic4OBgLFizA999/j6tXr+LMmTP44YcfADx9O0GTJk3g7++PvXv3IjExEceOHcPkyZMLJVJyDR06FPfv30ePHj1w6tQpJCQkYM+ePejbt2+hBO5ZLzq306ZNw+zZs/H999/jypUrOH/+PMLCwvDdd9/Jjs3Gxgbp6ek4cOAA/v33Xzx+/BhVq1aFrq4ufvjhB1y7dg1bt27FjBkzNLYbPHgwLl++jAkTJuDKlSvYuHEjwsPDAfzfaOeECRNw7NgxDBs2DNHR0bh69Sr++OMPTqxD9K7hxDpERERvT0kTgbwPEhMTRWBgoDA3NxflypUT1tbWYvjw4eLff//VaJeZmSlGjx4tLC0tha6urrCzsxMrV66U1sfExIhPP/1UGBgYCGNjY+Hh4SESEhKEEEJkZ2eL//73v8LU1FRUqlRJzJ49u8iJdRYuXKixz+ImfMnOzhZTp04VNjY2oly5csLS0lJ06tRJnDt3rtjttmzZIp5PLZYtWyYcHR2lPoYPHy6tS0tLE8OHDxdWVlbSeQkICBBJSUnFnkuUMFGREEJcuXJFdOrUSZiYmAh9fX1Rs2ZNMWrUKJGfny+EKHoCIiFKPrdCCLFmzRrh4uIidHV1Rfny5UXz5s3F5s2bhRD/N7HO2bNnpfYPHjwQAMShQ4ekui+++EKYmZkJACIoKEgIIcTatWuFjY2NUCqVokmTJmLr1q2F+vrjjz+EnZ2dUCqVwsvLSyxdulQA0Jg05+TJk6JVq1bCyMhIGBoairp164qZM2cWeY5e18Q6CiFkPO1LRJK0tDSo1WqkpqZCpVKVdThEREQftMePHyM2NhZOTk4arxcj+hjNnDkTy5Ytw40bN15q+5J+n0rzHZfPRBIREREREb2DfvzxRzRs2BBmZmaIjIzEvHnz3vytqjIwiSQiIiIiInoHXb16Fd988w3u37+PqlWrYuzYsZg0aVJZh8UkkoiIiIiI6F20cOFCLFy4sKzDKIRJJNFLUs9WA3rFrxdBfNyYiIiIiD48fMUHERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWycnZWIiIiI3ksKxdvdn+DE60QAOBJJRERERPRG9OnTBwqFolCJj4/Hn3/+ifbt28PKygoKhQK///67rD5jYmLQoUMHVKpUCXp6erCxsUH37t2RkpLyZg+G6BlMIomIiIiI3hA/Pz/cvn1bo1SvXh0ZGRmoV68elixZIruvu3fvomXLljA1NcWePXsQGxuLsLAwWFlZISMj440dQ05Ozhvrm95PTCKJiIiIiN4QpVIJCwsLjaKtrY3WrVvjm2++QadOnWT3FRkZidTUVISGhsLV1RXVq1eHt7c3Fi5ciOrVq0vtLl68iHbt2kGlUsHY2BgeHh5ISEgAAOTn52P69OmoUqUKlEolXFxcsHv3bmnbxMREKBQKbNiwAZ6entDT08OaNWsAAKGhoXBycoKenh5q1qyJH3/88TWdJXrf8JlIopeUOikVKpWqrMMgIiKij4SFhQVyc3OxZcsWdOnSBYoiHgq9efMmmjdvDi8vLxw8eBAqlQqRkZHIzc0FACxatAgLFizA8uXL4erqipUrV6JDhw64ePEi7O3tpX4mTpyIBQsWwNXVVUokp06disWLF8PV1RVnz57FwIEDYWhoiMDAwLd2DujdwCSSiIiIiOgN2b59O4yMjKTl1q1b49dff32pvj755BN89dVX6NmzJ7744gs0atQILVq0QO/evWFubg4AWLJkCdRqNdavX49y5coBABwcHKQ+5s+fjwkTJuDzzz8HAHz77bc4dOgQQkJCNG6tHTVqFDp37iwtBwUFYcGCBVJd9erVcenSJSxfvpxJ5EeIt7MSEREREb0h3t7eiI6Olsr3338va7tZs2bByMhIKklJSQCAmTNnIjk5GcuWLUPt2rWxbNky1KxZE+fPnwcAREdHw8PDQ0ogn5WWloZbt27B3d1do97d3R2xsbEadW5ubtLPGRkZSEhIQP/+/TVi+uabb6TbZOnjwpFIIiIiIqI3xNDQEHZ2dqXe7osvvkC3bt2kZSsrK+lnMzMzdO3aFV27dsWsWbPg6uqK+fPnY9WqVdDX139tcRdIT08HAKxYsQKNGzfWaKetrf1a9kfvFyaRRERERETvGFNTU5iamr6wna6uLmxtbaXZWevWrYtVq1YhJyen0GikSqWClZUVIiMj4enpKdVHRkaiUaNGxe7D3NwcVlZWuHbtGgICAl7yiOhDwiSSiIiIiOgtS09PR3x8vLR8/fp1REdHw9TUFFWrVi1ym+3bt2P9+vX4/PPP4eDgACEEtm3bhp07dyIsLAwAMGzYMPzwww/4/PPPMWnSJKjVahw/fhyNGjWCo6Mjxo8fj6CgINja2sLFxQVhYWGIjo6WZmAtzrRp0zBixAio1Wr4+fkhKysLUVFRePDgAcaMGfP6Tgy9F5hEEhEREdF7SYiyjuDlRUVFwdvbW1ouSMQCAwMRHh5e5Da1atWCgYEBxo4dixs3bkCpVMLe3h6hoaHo1asXgKe3uh48eBDjx4+Hp6cntLW14eLiIj0HOWLECKSmpmLs2LFISUlBrVq1sHXrVo2ZWYsyYMAAGBgYYN68eRg/fjwMDQ3h7OyMUaNGvfrJoPeOQoj3+deP6O1LS0uDWq1Gaipf8UFERPSmPX78GLGxsXBycoKBgUFZh0P0Xivp96k033E5OysRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIjeTwrF2y30Uu7du4dKlSohMTGxrEN5acuWLUP79u3LOox3BpNIIiIiIqI3oE+fPlAoFIVKfHw8AODPP/9E+/btYWVlBYVCgd9//11WvzExMejQoQMqVaoEPT092NjYoHv37khJSXmDR/PyZs6ciY4dO8LGxkaq27JlCz755BOo1WoYGxujdu3aGDVq1BuPJTg4GC4uLqXerl+/fjhz5gyOHDny+oN6DzGJJCIiIiJ6Q/z8/HD79m2NUr16dQBARkYG6tWrhyVLlsju7+7du2jZsiVMTU2xZ88exMbGIiwsDFZWVsjIyHhTh4GcnJyX2u7x48f4+eef0b9/f6nuwIED6N69Oz777DOcPHkSp0+fxsyZM196H2+Drq4uevbsie+//76sQ3knMIkkIiIiInpDlEolLCwsNIq2tjYAoHXr1vjmm2/QqVMn2f1FRkYiNTUVoaGhcHV1RfXq1eHt7Y2FCxdKySkAXLx4Ee3atYNKpYKxsTE8PDyQkJAAAMjPz8f06dNRpUoVKJVKuLi4YPfu3dK2iYmJUCgU2LBhAzw9PaGnp4c1a9YAAEJDQ+Hk5AQ9PT3UrFkTP/74Y4nx7ty5E0qlEp988olUt23bNri7u2P8+PFwdHSEg4MD/P39NZLpghHDlStXomrVqjAyMsKQIUOQl5eHuXPnwsLCApUqVcLMmTM19peUlISOHTvCyMgIKpUK3bp1w507dwAA4eHhmDZtGmJiYqRR4fDwcADAw4cPMWDAAFSsWBEqlQotWrRATEyMRt/t27fH1q1bkZmZKffj+mAxiSQiIiIiek9YWFggNzcXW7ZsgRCiyDY3b95E8+bNoVQqcfDgQZw+fRr9+vVDbm4uAGDRokVYsGAB5s+fj3PnzsHX1xcdOnTA1atXNfqZOHEiRo4cidjYWPj6+mLNmjWYOnUqZs6cidjYWMyaNQtff/01Vq1aVWy8R44cQYMGDQodw8WLF3HhwoUSjzUhIQG7du3C7t27sW7dOvz8889o27Yt/vnnHxw+fBjffvstpkyZghMnTgB4mhx37NgR9+/fx+HDh7Fv3z5cu3YN3bt3BwB0794dY8eORe3ataVR4YJ1Xbt2RUpKCnbt2oXTp0+jfv36aNmyJe7fvy/F4+bmhtzcXGl/HzVBRKWSmpoqAIjU1NSyDoWIiOiDl5GRIaKiokRGRkbhlcDbLaUUGBgotLW1haGhoVS6dOlSZFsAYsuWLbL6/eqrr4SOjo4wNTUVfn5+Yu7cuSI5OVlaP2nSJFG9enWRnZ1d5PZWVlZi5syZGnUNGzYUQ4YMEUIIcf36dQFAhISEaLSxtbUVa9eu1aibMWOGaNKkSbGxduzYUfTr10+jLj09XbRp00YAENWqVRPdu3cXP//8s3jy5InUJigoSBgYGIi0tDSpztfXV9jY2Ii8vDypztHRUcyePVsIIcTevXuFtra2SEpKktZfvHhRABAnT56U+q1Xr55GPEeOHBEqlUpj/wXHu3z5co268uXLi/Dw8GKP911X0u9Tab7jciSSiIiIiOgN8fb2RnR0tFRK80zdrFmzYGRkJJWkpCQATyeqSU5OxrJly1C7dm0sW7YMNWvWxPnz5wEA0dHR8PDwQLly5Qr1mZaWhlu3bsHd3V2j3t3dHbGxsRp1bm5u0s8ZGRlISEhA//79NWL65ptvpNtki5KZmQk9PT2NOkNDQ+zYsQPx8fGYMmUKjIyMMHbsWDRq1AiPHz+W2tnY2MDY2FhaNjc3R61ataClpaVRVzChUGxsLKytrWFtbS2tr1WrFkxMTAod27NiYmKQnp4OMzMzjWO7fv16oWPT19fXiPFjpVPWARARERERfagMDQ1hZ2f3Utt+8cUX6Natm7RsZWUl/WxmZoauXbuia9eumDVrFlxdXTF//nysWrUK+vr6rxw38DT2Aunp6QCAFStWoHHjxhrtCp7xLEqFChXw4MGDItfZ2trC1tYWAwYMwOTJk+Hg4IANGzagb9++AFAoCVYoFEXW5efnyz+oIqSnp8PS0hIRERGF1pmYmGgs379/HxUrVnyl/X0ImEQSEREREb2DTE1NYWpq+sJ2urq6sLW1lWZnrVu3LlatWoWcnJxCSZdKpYKVlRUiIyPh6ekp1UdGRqJRo0bF7sPc3BxWVla4du0aAgICZB+Dq6sr/ve//72wnY2NDQwMDF5phlknJyfcuHEDN27ckEYjL126hIcPH6JWrVoAnp6rvLw8je3q16+P5ORk6OjoaLyG5HkJCQl48uQJXF1dXzrGDwWTSCIiIiKiMpCeni69MxIArl+/jujoaJiamqJq1apFbrN9+3asX78en3/+ORwcHCCEwLZt27Bz506EhYUBAIYNG4YffvgBn3/+OSZNmgS1Wo3jx4+jUaNGcHR0xPjx4xEUFARbW1u4uLggLCwM0dHR0gysxZk2bRpGjBgBtVoNPz8/ZGVlISoqCg8ePMCYMWOK3MbX1xeTJk3CgwcPUL58eQBPZ159/Pgx2rRpg2rVquHhw4f4/vvvkZOTg1atWr3MqQQA+Pj4wNnZGQEBAQgJCUFubi6GDBkCT09P6dZcGxsb6TxXqVIFxsbG8PHxQZMmTeDv74+5c+fCwcEBt27dwo4dO9CpUydp2yNHjqBGjRqwtbV96Rg/FHwmkoiIiIjeT297ap3XLCoqCq6urtLI1pgxY+Dq6oqpU6cWu02tWrVgYGCAsWPHwsXFBZ988gk2btyI0NBQ9OrVC8DTW10PHjyI9PR0eHp6okGDBlixYoU0KjlixAiMGTMGY8eOhbOzM3bv3o2tW7fC3t6+xHgHDBiA0NBQhIWFwdnZGZ6enggPD9d4tcjznJ2dUb9+fWzcuFGq8/T0xLVr19C7d2/UrFkTrVu3RnJyMvbu3QtHR0fZ5+95CoUCf/zxB8qXL4/mzZvDx8cHNWrUwIYNG6Q2n332Gfz8/ODt7Y2KFSti3bp1UCgU2LlzJ5o3b46+ffvCwcEBn3/+Of7++2+Ym5tL265btw4DBw586fg+JAoh3sBvBNEHLC0tDWq1GqmpqVCpVGUdDhER0Qft8ePHiI2NhZOTEwwMDMo6HHoJO3bswPjx43HhwgWNSXHeJxcvXkSLFi1w5coVqNXqsg7npZX0+1Sa77i8nZWIiIiIiN6Ytm3b4urVq7h586bGzKnvk9u3b+OXX355rxPI14lJJBERERERvVGjRo0q6xBeiY+PT1mH8E55P8eTiYiIiIiIqEwwiSQiIiIiIiLZmEQSERER0TvvVV8oT0T/93ukUCheqR8+E0lERERE7yw9PT1oaWnh+vXrqFy5MpRK5St/ASb62AghkJWVhZs3b0JLSwtKpfKV+mMSSURERETvLC0tLdSqVQuJiYm4fv16WYdD9F4zMjKCg4PDK79qhUkkEREREb3TlEolHBwckJOTg9zc3LIOh+i9pKOjg3Llyr2WkXwmkURERET0zlMoFNDV1YWurm5Zh0L00ePEOkRERERERCQbk0giIiIiIiKSjUkkERERERERycZnIolKSQgBAEhLSyvjSIiIiIiIXo+C77YF33VLwiSSqJTu3bsHALC2ti7jSIiIiIiIXq9Hjx5BrVaX2IZJJFEpmZqaAgCSkpJe+AtGBDz9nz1ra2vcuHEDKpWqrMOh9wSvGyotXjNUWrxm6FlCCDx69AhWVlYvbMskkqiUCl7Oqlar+QeXSkWlUvGaoVLjdUOlxWuGSovXDBWQO0DCiXWIiIiIiIhINiaRREREREREJBuTSKJSUiqVCAoKglKpLOtQ6D3Ba4ZeBq8bKi1eM1RavGboZSmEnDlciYiIiIiIiMCRSCIiIiIiIioFJpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJVIQlS5bAxsYGenp6aNy4MU6ePFli+19//RU1a9aEnp4enJ2dsXPnzrcUKb0rSnPNrFixAh4eHihfvjzKly8PHx+fF15j9OEp7d+ZAuvXr4dCoYC/v/+bDZDeSaW9bh4+fIihQ4fC0tISSqUSDg4O/DfqI1PaayYkJASOjo7Q19eHtbU1Ro8ejSdPnrylaOl9wSSS6DkbNmzAmDFjEBQUhDNnzqBevXrw9fVFSkpKke2PHTuGHj16oH///jh79iz8/f3h7++PCxcuvOXIqayU9pqJiIhAjx49cOjQIfz111+wtrbGp59+ips3b77lyKmslPaaKZCYmIhx48bBw8PjLUVK75LSXjfZ2dlo1aoVEhMTsWnTJsTFxWHFihWoXLnyW46cykppr5m1a9di4sSJCAoKQmxsLH7++Wds2LABX3311VuOnN55gog0NGrUSAwdOlRazsvLE1ZWVmL27NlFtu/WrZto27atRl3jxo3F4MGD32ic9O4o7TXzvNzcXGFsbCxWrVr1pkKkd8zLXDO5ubmiadOmIjQ0VAQGBoqOHTu+hUjpXVLa62bp0qWiRo0aIjs7+22FSO+Y0l4zQ4cOFS1atNCoGzNmjHB3d3+jcdL7hyORRM/Izs7G6dOn4ePjI9VpaWnBx8cHf/31V5Hb/PXXXxrtAcDX17fY9vRheZlr5nmPHz9GTk4OTE1N31SY9A552Wtm+vTpqFSpEvr37/82wqR3zMtcN1u3bkWTJk0wdOhQmJubo06dOpg1axby8vLeVthUhl7mmmnatClOnz4t3fJ67do17Ny5E23atHkrMdP7Q6esAyB6l/z777/Iy8uDubm5Rr25uTkuX75c5DbJyclFtk9OTn5jcdK742WumedNmDABVlZWhf4zgj5ML3PNHD16FD///DOio6PfQoT0LnqZ6+batWs4ePAgAgICsHPnTsTHx2PIkCHIyclBUFDQ2wibytDLXDM9e/bEv//+i2bNmkEIgdzcXHzxxRe8nZUK4UgkEVEZmjNnDtavX48tW7ZAT0+vrMOhd9CjR4/Qq1cvrFixAhUqVCjrcOg9kp+fj0qVKuGnn35CgwYN0L17d0yePBnLli0r69DoHRUREYFZs2bhxx9/xJkzZ7B582bs2LEDM2bMKOvQ6B3DkUiiZ1SoUAHa2tq4c+eORv2dO3dgYWFR5DYWFhalak8flpe5ZgrMnz8fc+bMwf79+1G3bt03GSa9Q0p7zSQkJCAxMRHt27eX6vLz8wEAOjo6iIuLg62t7ZsNmsrcy/ytsbS0RLly5aCtrS3VOTk5ITk5GdnZ2dDV1X2jMVPZeplr5uuvv0avXr0wYMAAAICzszMyMjIwaNAgTJ48GVpaHH+ip3glED1DV1cXDRo0wIEDB6S6/Px8HDhwAE2aNClymyZNmmi0B4B9+/YV254+LC9zzQDA3LlzMWPGDOzevRtubm5vI1R6R5T2mqlZsybOnz+P6OhoqXTo0AHe3t6Ijo6GtbX12wyfysjL/K1xd3dHfHy89J8OAHDlyhVYWloygfwIvMw18/jx40KJYsF/Qggh3lyw9P4p65l9iN4169evF0qlUoSHh4tLly6JQYMGCRMTE5GcnCyEEKJXr15i4sSJUvvIyEiho6Mj5s+fL2JjY0VQUJAoV66cOH/+fFkdAr1lpb1m5syZI3R1dcWmTZvE7du3pfLo0aOyOgR6y0p7zTyPs7N+nEp73SQlJQljY2MxbNgwERcXJ7Zv3y4qVaokvvnmm7I6BHrLSnvNBAUFCWNjY7Fu3Tpx7do1sXfvXmFrayu6detWVodA7yjezkr0nO7du+Pu3buYOnUqkpOT4eLigt27d0sPpiclJWn8L13Tpk2xdu1aTJkyBV999RXs7e3x+++/o06dOmV1CPSWlfaaWbp0KbKzs9GlSxeNfoKCghAcHPw2Q6cyUtprhggo/XVjbW2NPXv2YPTo0ahbty4qV66MkSNHYsKECWV1CPSWlfaamTJlChQKBaZMmYKbN2+iYsWKaN++PWbOnFlWh0DvKIUQHJsmIiIiIiIiefjfnERERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcn2/wAp02C9D4k64AAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Labels | \n",
" Precision | \n",
" Precision (Smote) | \n",
" Recall | \n",
" Recall (Smote) | \n",
" F1 | \n",
" F1 (Smote) | \n",
" Occurrence Count | \n",
" Percentage | \n",
"
\n",
" \n",
" \n",
" \n",
" 9 | \n",
" Mute Swan 5km | \n",
" 0.916422 | \n",
" 0.942400 | \n",
" 0.963020 | \n",
" 0.907550 | \n",
" 0.939144 | \n",
" 0.924647 | \n",
" 5267 | \n",
" 0.661268 | \n",
"
\n",
" \n",
" 1 | \n",
" Canada Goose 5km | \n",
" 0.888316 | \n",
" 0.903111 | \n",
" 0.961860 | \n",
" 0.945116 | \n",
" 0.923627 | \n",
" 0.923636 | \n",
" 4305 | \n",
" 0.540490 | \n",
"
\n",
" \n",
" 10 | \n",
" Pheasant 5km | \n",
" 0.865179 | \n",
" 0.859465 | \n",
" 0.931106 | \n",
" 0.938413 | \n",
" 0.896933 | \n",
" 0.897206 | \n",
" 3848 | \n",
" 0.483114 | \n",
"
\n",
" \n",
" 16 | \n",
" Rock Dove 5km | \n",
" 0.757812 | \n",
" 0.754545 | \n",
" 0.854626 | \n",
" 0.853157 | \n",
" 0.803313 | \n",
" 0.800827 | \n",
" 2830 | \n",
" 0.355304 | \n",
"
\n",
" \n",
" 7 | \n",
" Little Owl 5km | \n",
" 0.751975 | \n",
" 0.750433 | \n",
" 0.935167 | \n",
" 0.850688 | \n",
" 0.833625 | \n",
" 0.797422 | \n",
" 2158 | \n",
" 0.270935 | \n",
"
\n",
" \n",
" 14 | \n",
" Red-legged Partridge 5km | \n",
" 0.743377 | \n",
" 0.735192 | \n",
" 0.878669 | \n",
" 0.825832 | \n",
" 0.805381 | \n",
" 0.777880 | \n",
" 2150 | \n",
" 0.269931 | \n",
"
\n",
" \n",
" 19 | \n",
" Wigeon 5km | \n",
" 0.623404 | \n",
" 0.576017 | \n",
" 0.641138 | \n",
" 0.588621 | \n",
" 0.632147 | \n",
" 0.582251 | \n",
" 1857 | \n",
" 0.233145 | \n",
"
\n",
" \n",
" 5 | \n",
" Grey Partridge 5km | \n",
" 0.663793 | \n",
" 0.622642 | \n",
" 0.779747 | \n",
" 0.584810 | \n",
" 0.717113 | \n",
" 0.603133 | \n",
" 1629 | \n",
" 0.204520 | \n",
"
\n",
" \n",
" 3 | \n",
" Gadwall 5km | \n",
" 0.664804 | \n",
" 0.623418 | \n",
" 0.670423 | \n",
" 0.554930 | \n",
" 0.667602 | \n",
" 0.587183 | \n",
" 1399 | \n",
" 0.175643 | \n",
"
\n",
" \n",
" 11 | \n",
" Pink-footed Goose 5km | \n",
" 0.593750 | \n",
" 0.477922 | \n",
" 0.476489 | \n",
" 0.576803 | \n",
" 0.528696 | \n",
" 0.522727 | \n",
" 1313 | \n",
" 0.164846 | \n",
"
\n",
" \n",
" 13 | \n",
" Pochard 5km | \n",
" 0.438849 | \n",
" 0.435000 | \n",
" 0.257384 | \n",
" 0.367089 | \n",
" 0.324468 | \n",
" 0.398169 | \n",
" 942 | \n",
" 0.118267 | \n",
"
\n",
" \n",
" 18 | \n",
" Whooper Swan 5km | \n",
" 0.291667 | \n",
" 0.291262 | \n",
" 0.033654 | \n",
" 0.288462 | \n",
" 0.060345 | \n",
" 0.289855 | \n",
" 842 | \n",
" 0.105712 | \n",
"
\n",
" \n",
" 8 | \n",
" Mandarin Duck 5km | \n",
" 0.462687 | \n",
" 0.385621 | \n",
" 0.168478 | \n",
" 0.320652 | \n",
" 0.247012 | \n",
" 0.350148 | \n",
" 714 | \n",
" 0.089642 | \n",
"
\n",
" \n",
" 12 | \n",
" Pintail 5km | \n",
" 0.491803 | \n",
" 0.301775 | \n",
" 0.200000 | \n",
" 0.340000 | \n",
" 0.284360 | \n",
" 0.319749 | \n",
" 649 | \n",
" 0.081481 | \n",
"
\n",
" \n",
" 0 | \n",
" Barnacle Goose 5km | \n",
" 0.689655 | \n",
" 0.271739 | \n",
" 0.135135 | \n",
" 0.337838 | \n",
" 0.225989 | \n",
" 0.301205 | \n",
" 587 | \n",
" 0.073697 | \n",
"
\n",
" \n",
" 2 | \n",
" Egyptian Goose 5km | \n",
" 0.560000 | \n",
" 0.511364 | \n",
" 0.215385 | \n",
" 0.346154 | \n",
" 0.311111 | \n",
" 0.412844 | \n",
" 485 | \n",
" 0.060891 | \n",
"
\n",
" \n",
" 4 | \n",
" Goshawk 5km | \n",
" 0.227273 | \n",
" 0.297297 | \n",
" 0.051546 | \n",
" 0.226804 | \n",
" 0.084034 | \n",
" 0.257310 | \n",
" 446 | \n",
" 0.055995 | \n",
"
\n",
" \n",
" 6 | \n",
" Indian Peafowl 5km | \n",
" 0.000000 | \n",
" 0.183673 | \n",
" 0.000000 | \n",
" 0.118421 | \n",
" 0.000000 | \n",
" 0.144000 | \n",
" 284 | \n",
" 0.035656 | \n",
"
\n",
" \n",
" 15 | \n",
" Ring-necked Parakeet 5km | \n",
" 0.551020 | \n",
" 0.600000 | \n",
" 0.473684 | \n",
" 0.368421 | \n",
" 0.509434 | \n",
" 0.456522 | \n",
" 206 | \n",
" 0.025863 | \n",
"
\n",
" \n",
" 17 | \n",
" Ruddy Duck 5km | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 109 | \n",
" 0.013685 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Labels Precision Precision (Smote) Recall \\\n",
"9 Mute Swan 5km 0.916422 0.942400 0.963020 \n",
"1 Canada Goose 5km 0.888316 0.903111 0.961860 \n",
"10 Pheasant 5km 0.865179 0.859465 0.931106 \n",
"16 Rock Dove 5km 0.757812 0.754545 0.854626 \n",
"7 Little Owl 5km 0.751975 0.750433 0.935167 \n",
"14 Red-legged Partridge 5km 0.743377 0.735192 0.878669 \n",
"19 Wigeon 5km 0.623404 0.576017 0.641138 \n",
"5 Grey Partridge 5km 0.663793 0.622642 0.779747 \n",
"3 Gadwall 5km 0.664804 0.623418 0.670423 \n",
"11 Pink-footed Goose 5km 0.593750 0.477922 0.476489 \n",
"13 Pochard 5km 0.438849 0.435000 0.257384 \n",
"18 Whooper Swan 5km 0.291667 0.291262 0.033654 \n",
"8 Mandarin Duck 5km 0.462687 0.385621 0.168478 \n",
"12 Pintail 5km 0.491803 0.301775 0.200000 \n",
"0 Barnacle Goose 5km 0.689655 0.271739 0.135135 \n",
"2 Egyptian Goose 5km 0.560000 0.511364 0.215385 \n",
"4 Goshawk 5km 0.227273 0.297297 0.051546 \n",
"6 Indian Peafowl 5km 0.000000 0.183673 0.000000 \n",
"15 Ring-necked Parakeet 5km 0.551020 0.600000 0.473684 \n",
"17 Ruddy Duck 5km 0.000000 0.000000 0.000000 \n",
"\n",
" Recall (Smote) F1 F1 (Smote) Occurrence Count Percentage \n",
"9 0.907550 0.939144 0.924647 5267 0.661268 \n",
"1 0.945116 0.923627 0.923636 4305 0.540490 \n",
"10 0.938413 0.896933 0.897206 3848 0.483114 \n",
"16 0.853157 0.803313 0.800827 2830 0.355304 \n",
"7 0.850688 0.833625 0.797422 2158 0.270935 \n",
"14 0.825832 0.805381 0.777880 2150 0.269931 \n",
"19 0.588621 0.632147 0.582251 1857 0.233145 \n",
"5 0.584810 0.717113 0.603133 1629 0.204520 \n",
"3 0.554930 0.667602 0.587183 1399 0.175643 \n",
"11 0.576803 0.528696 0.522727 1313 0.164846 \n",
"13 0.367089 0.324468 0.398169 942 0.118267 \n",
"18 0.288462 0.060345 0.289855 842 0.105712 \n",
"8 0.320652 0.247012 0.350148 714 0.089642 \n",
"12 0.340000 0.284360 0.319749 649 0.081481 \n",
"0 0.337838 0.225989 0.301205 587 0.073697 \n",
"2 0.346154 0.311111 0.412844 485 0.060891 \n",
"4 0.226804 0.084034 0.257310 446 0.055995 \n",
"6 0.118421 0.000000 0.144000 284 0.035656 \n",
"15 0.368421 0.509434 0.456522 206 0.025863 \n",
"17 0.000000 0.000000 0.000000 109 0.013685 "
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create graphs to show off data\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"plt.rcParams['figure.figsize'] = [9, 12]\n",
"\n",
"occurrence_count, occurrence_percentage = All_bird_occurrences['Occurrence Count'], All_bird_occurrences['Percentage']\n",
"precision = []\n",
"precision_smote = []\n",
"recall = []\n",
"recall_smote = []\n",
"f1 = []\n",
"f1_smote = []\n",
"labels = []\n",
"for dict in df_dicts:\n",
" precision.append(dict['report']['1']['precision'])\n",
" precision_smote.append(dict['report_smote']['1']['precision'])\n",
" recall.append(dict['report']['1']['recall'])\n",
" recall_smote.append(dict['report_smote']['1']['recall'])\n",
" f1.append(dict['report']['1']['f1-score'])\n",
" f1_smote.append(dict['report_smote']['1']['f1-score'])\n",
" labels.append(dict['name'])\n",
"\n",
"\n",
"\n",
"scores = pd.DataFrame({'Labels' : labels, \n",
" 'Precision': precision, 'Precision (Smote)': precision_smote, \n",
" 'Recall': recall, 'Recall (Smote)': recall_smote, \n",
" 'F1': f1, 'F1 (Smote)': f1_smote,\n",
" 'Occurrence Count' : occurrence_count, 'Percentage' : occurrence_percentage} )\n",
" \n",
"scores.sort_values('Occurrence Count', inplace=True)\n",
"\n",
"n=20\n",
"r = np.arange(n)\n",
"height = 0.25\n",
"\n",
"plt.barh(r, 'Percentage', data=scores, label='Occurrence Percentage', height = height, color='g')\n",
"plt.barh(r+height, 'F1', data=scores, label='F1-Score', height= height, color='b')\n",
"plt.barh(r+height*2, 'F1 (Smote)', data=scores, label='F1-Score (Smote)', height = height, color='r')\n",
"plt.legend(framealpha=1, frameon=True)\n",
"plt.yticks(r+height*2, scores['Labels'])\n",
"\n",
"\n",
"plt.show()\n",
"\n",
"\n",
"scores.sort_values('Occurrence Count', ascending=False)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Stored 'df_dicts_5km_no_fp' (list)\n"
]
}
],
"source": [
"# Store dictionaries for later use\n",
"df_dicts_5km_no_fp = df_dicts\n",
"%store df_dicts_5km_no_fp"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 842500.0 | \n",
" 367500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 197500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 247500.0 | \n",
" 252500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 737500.0 | \n",
" 62500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 862500.0 | \n",
" 567500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 152500.0 | \n",
" 232500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1252500.0 | \n",
" 592500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1002500.0 | \n",
" 322500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 192500.0 | \n",
" 167500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"842500.0 367500.0 0 0\n",
"22500.0 197500.0 0 1\n",
" 27500.0 0 0\n",
"247500.0 252500.0 0 0\n",
"737500.0 62500.0 0 0\n",
"... ... ...\n",
"862500.0 567500.0 0 0\n",
"152500.0 232500.0 0 0\n",
"1252500.0 592500.0 0 0\n",
"1002500.0 322500.0 0 0\n",
"192500.0 167500.0 0 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 572500.0 | \n",
" 282500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 32500.0 | \n",
" 162500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 37500.0 | \n",
" 667500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 182500.0 | \n",
" 367500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 477500.0 | \n",
" 332500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 592500.0 | \n",
" 122500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 132500.0 | \n",
" 482500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 1207500.0 | \n",
" 432500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 772500.0 | \n",
" 297500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 152500.0 | \n",
" 387500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"572500.0 282500.0 1 1\n",
"32500.0 162500.0 1 1\n",
"37500.0 667500.0 0 0\n",
"182500.0 367500.0 1 1\n",
"477500.0 332500.0 1 1\n",
"... ... ...\n",
"592500.0 122500.0 0 0\n",
"132500.0 482500.0 1 1\n",
"1207500.0 432500.0 0 0\n",
"772500.0 297500.0 0 0\n",
"152500.0 387500.0 1 1\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 827500.0 | \n",
" 27500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 392500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 262500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 212500.0 | \n",
" 317500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 727500.0 | \n",
" 312500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 847500.0 | \n",
" 82500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 142500.0 | \n",
" 512500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 1252500.0 | \n",
" 512500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1002500.0 | \n",
" 337500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 167500.0 | \n",
" 17500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"827500.0 27500.0 0 0\n",
"22500.0 392500.0 0 0\n",
" 262500.0 0 0\n",
"212500.0 317500.0 0 0\n",
"727500.0 312500.0 0 0\n",
"... ... ...\n",
"847500.0 82500.0 0 0\n",
"142500.0 512500.0 1 0\n",
"1252500.0 512500.0 0 0\n",
"1002500.0 337500.0 0 0\n",
"167500.0 17500.0 0 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 787500.0 | \n",
" 87500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 2500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 562500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 217500.0 | \n",
" 457500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 682500.0 | \n",
" 387500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 812500.0 | \n",
" 382500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 142500.0 | \n",
" 342500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 1242500.0 | \n",
" 372500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 972500.0 | \n",
" 182500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 177500.0 | \n",
" 587500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"787500.0 87500.0 0 0\n",
"22500.0 2500.0 0 0\n",
"27500.0 562500.0 0 0\n",
"217500.0 457500.0 1 1\n",
"682500.0 387500.0 0 0\n",
"... ... ...\n",
"812500.0 382500.0 0 0\n",
"142500.0 342500.0 1 0\n",
"1242500.0 372500.0 0 0\n",
"972500.0 182500.0 0 0\n",
"177500.0 587500.0 1 1\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 822500.0 | \n",
" 422500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 647500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 547500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 232500.0 | \n",
" 392500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 727500.0 | \n",
" 507500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 837500.0 | \n",
" 62500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 142500.0 | \n",
" 447500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1247500.0 | \n",
" 517500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 987500.0 | \n",
" 287500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 182500.0 | \n",
" 672500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"822500.0 422500.0 0 0\n",
"22500.0 647500.0 0 0\n",
" 547500.0 0 0\n",
"232500.0 392500.0 0 0\n",
"727500.0 507500.0 0 0\n",
"... ... ...\n",
"837500.0 62500.0 0 0\n",
"142500.0 447500.0 0 0\n",
"1247500.0 517500.0 0 0\n",
"987500.0 287500.0 0 0\n",
"182500.0 672500.0 0 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 767500.0 | \n",
" 547500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 627500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 507500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 222500.0 | \n",
" 412500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 662500.0 | \n",
" 517500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 787500.0 | \n",
" 567500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 147500.0 | \n",
" 522500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 1242500.0 | \n",
" 92500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 957500.0 | \n",
" 387500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 177500.0 | \n",
" 557500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"767500.0 547500.0 0 0\n",
"27500.0 627500.0 0 0\n",
" 507500.0 0 0\n",
"222500.0 412500.0 0 0\n",
"662500.0 517500.0 0 0\n",
"... ... ...\n",
"787500.0 567500.0 0 0\n",
"147500.0 522500.0 1 0\n",
"1242500.0 92500.0 0 0\n",
"957500.0 387500.0 0 0\n",
"177500.0 557500.0 1 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 827500.0 | \n",
" 87500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 47500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 567500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 227500.0 | \n",
" 152500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 732500.0 | \n",
" 562500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 852500.0 | \n",
" 692500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 142500.0 | \n",
" 577500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 1252500.0 | \n",
" 597500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 997500.0 | \n",
" 562500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 177500.0 | \n",
" 557500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"827500.0 87500.0 0 0\n",
"22500.0 47500.0 0 0\n",
"27500.0 567500.0 0 0\n",
"227500.0 152500.0 0 0\n",
"732500.0 562500.0 0 0\n",
"... ... ...\n",
"852500.0 692500.0 0 0\n",
"142500.0 577500.0 0 1\n",
"1252500.0 597500.0 0 0\n",
"997500.0 562500.0 0 0\n",
"177500.0 557500.0 0 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 722500.0 | \n",
" 412500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 267500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 62500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 197500.0 | \n",
" 97500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 602500.0 | \n",
" 512500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 747500.0 | \n",
" 412500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 137500.0 | \n",
" 152500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1242500.0 | \n",
" 692500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 932500.0 | \n",
" 162500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 162500.0 | \n",
" 537500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"722500.0 412500.0 0 0\n",
"27500.0 267500.0 0 0\n",
" 62500.0 0 0\n",
"197500.0 97500.0 0 0\n",
"602500.0 512500.0 0 0\n",
"... ... ...\n",
"747500.0 412500.0 0 0\n",
"137500.0 152500.0 0 0\n",
"1242500.0 692500.0 0 0\n",
"932500.0 162500.0 0 0\n",
"162500.0 537500.0 1 1\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 822500.0 | \n",
" 92500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 217500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 137500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 212500.0 | \n",
" 292500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 717500.0 | \n",
" 197500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 842500.0 | \n",
" 372500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 137500.0 | \n",
" 392500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 1247500.0 | \n",
" 87500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 997500.0 | \n",
" 362500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 172500.0 | \n",
" 532500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"822500.0 92500.0 0 0\n",
"22500.0 217500.0 0 0\n",
" 137500.0 0 0\n",
"212500.0 292500.0 0 0\n",
"717500.0 197500.0 0 0\n",
"... ... ...\n",
"842500.0 372500.0 0 0\n",
"137500.0 392500.0 1 0\n",
"1247500.0 87500.0 0 0\n",
"997500.0 362500.0 0 0\n",
"172500.0 532500.0 0 1\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 582500.0 | \n",
" 287500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 42500.0 | \n",
" 192500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 72500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 192500.0 | \n",
" 557500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 487500.0 | \n",
" 317500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 607500.0 | \n",
" 422500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 137500.0 | \n",
" 302500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 1192500.0 | \n",
" 637500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 737500.0 | \n",
" 417500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 162500.0 | \n",
" 482500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"582500.0 287500.0 1 1\n",
"42500.0 192500.0 0 1\n",
" 72500.0 0 0\n",
"192500.0 557500.0 1 1\n",
"487500.0 317500.0 1 1\n",
"... ... ...\n",
"607500.0 422500.0 1 1\n",
"137500.0 302500.0 1 1\n",
"1192500.0 637500.0 0 0\n",
"737500.0 417500.0 0 0\n",
"162500.0 482500.0 1 1\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 642500.0 | \n",
" 327500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 32500.0 | \n",
" 142500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 37500.0 | \n",
" 577500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 192500.0 | \n",
" 352500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 537500.0 | \n",
" 87500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 662500.0 | \n",
" 347500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 137500.0 | \n",
" 512500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 1217500.0 | \n",
" 402500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 837500.0 | \n",
" 182500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 157500.0 | \n",
" 212500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"642500.0 327500.0 1 1\n",
"32500.0 142500.0 0 1\n",
"37500.0 577500.0 0 0\n",
"192500.0 352500.0 1 1\n",
"537500.0 87500.0 1 0\n",
"... ... ...\n",
"662500.0 347500.0 0 1\n",
"137500.0 512500.0 1 1\n",
"1217500.0 402500.0 0 0\n",
"837500.0 182500.0 1 0\n",
"157500.0 212500.0 0 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 817500.0 | \n",
" 352500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 37500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 642500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 272500.0 | \n",
" 297500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 722500.0 | \n",
" 327500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 837500.0 | \n",
" 372500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 162500.0 | \n",
" 67500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1242500.0 | \n",
" 212500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 972500.0 | \n",
" 452500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 212500.0 | \n",
" 597500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"817500.0 352500.0 1 1\n",
"22500.0 37500.0 0 0\n",
"27500.0 642500.0 0 0\n",
"272500.0 297500.0 0 1\n",
"722500.0 327500.0 1 1\n",
"... ... ...\n",
"837500.0 372500.0 1 1\n",
"162500.0 67500.0 0 0\n",
"1242500.0 212500.0 0 0\n",
"972500.0 452500.0 0 0\n",
"212500.0 597500.0 1 1\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 837500.0 | \n",
" 152500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 367500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 222500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 237500.0 | \n",
" 217500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 722500.0 | \n",
" 332500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 857500.0 | \n",
" 267500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 147500.0 | \n",
" 287500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 1252500.0 | \n",
" 152500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1012500.0 | \n",
" 92500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 187500.0 | \n",
" 572500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"837500.0 152500.0 0 1\n",
"22500.0 367500.0 0 0\n",
" 222500.0 0 0\n",
"237500.0 217500.0 0 0\n",
"722500.0 332500.0 1 0\n",
"... ... ...\n",
"857500.0 267500.0 1 0\n",
"147500.0 287500.0 1 0\n",
"1252500.0 152500.0 0 0\n",
"1012500.0 92500.0 0 0\n",
"187500.0 572500.0 0 1\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 807500.0 | \n",
" 247500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 17500.0 | \n",
" 27500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 507500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 222500.0 | \n",
" 32500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 707500.0 | \n",
" 677500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 827500.0 | \n",
" 362500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 142500.0 | \n",
" 302500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 1242500.0 | \n",
" 242500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 982500.0 | \n",
" 582500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 177500.0 | \n",
" 462500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"807500.0 247500.0 0 0\n",
"17500.0 27500.0 0 0\n",
"22500.0 507500.0 0 0\n",
"222500.0 32500.0 0 0\n",
"707500.0 677500.0 0 0\n",
"... ... ...\n",
"827500.0 362500.0 0 0\n",
"142500.0 302500.0 0 1\n",
"1242500.0 242500.0 0 0\n",
"982500.0 582500.0 0 0\n",
"177500.0 462500.0 1 1\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 747500.0 | \n",
" 162500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 32500.0 | \n",
" 612500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 482500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 207500.0 | \n",
" 202500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 627500.0 | \n",
" 272500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 772500.0 | \n",
" 292500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 142500.0 | \n",
" 532500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 1242500.0 | \n",
" 452500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 937500.0 | \n",
" 542500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 167500.0 | \n",
" 307500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"747500.0 162500.0 0 0\n",
"32500.0 612500.0 0 0\n",
" 482500.0 0 0\n",
"207500.0 202500.0 0 0\n",
"627500.0 272500.0 0 0\n",
"... ... ...\n",
"772500.0 292500.0 0 1\n",
"142500.0 532500.0 1 1\n",
"1242500.0 452500.0 0 0\n",
"937500.0 542500.0 0 0\n",
"167500.0 307500.0 0 1\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 857500.0 | \n",
" 647500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 632500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 562500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 227500.0 | \n",
" 442500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 752500.0 | \n",
" 517500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 872500.0 | \n",
" 267500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 147500.0 | \n",
" 322500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1252500.0 | \n",
" 547500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1017500.0 | \n",
" 362500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 177500.0 | \n",
" 37500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"857500.0 647500.0 0 0\n",
"22500.0 632500.0 0 0\n",
" 562500.0 0 0\n",
"227500.0 442500.0 0 0\n",
"752500.0 517500.0 0 0\n",
"... ... ...\n",
"872500.0 267500.0 0 0\n",
"147500.0 322500.0 0 0\n",
"1252500.0 547500.0 0 0\n",
"1017500.0 362500.0 0 0\n",
"177500.0 37500.0 0 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 712500.0 | \n",
" 332500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 437500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 137500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 197500.0 | \n",
" 447500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 607500.0 | \n",
" 247500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 732500.0 | \n",
" 332500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 142500.0 | \n",
" 692500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1232500.0 | \n",
" 552500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 902500.0 | \n",
" 302500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 167500.0 | \n",
" 562500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"712500.0 332500.0 1 1\n",
"27500.0 437500.0 0 0\n",
" 137500.0 0 1\n",
"197500.0 447500.0 1 1\n",
"607500.0 247500.0 0 0\n",
"... ... ...\n",
"732500.0 332500.0 0 1\n",
"142500.0 692500.0 0 0\n",
"1232500.0 552500.0 0 0\n",
"902500.0 302500.0 0 0\n",
"167500.0 562500.0 1 1\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 857500.0 | \n",
" 512500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22500.0 | \n",
" 587500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 447500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 237500.0 | \n",
" 512500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 752500.0 | \n",
" 77500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 872500.0 | \n",
" 512500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 142500.0 | \n",
" 167500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1252500.0 | \n",
" 422500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1007500.0 | \n",
" 72500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 182500.0 | \n",
" 142500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"857500.0 512500.0 0 0\n",
"22500.0 587500.0 0 0\n",
" 447500.0 0 0\n",
"237500.0 512500.0 0 0\n",
"752500.0 77500.0 0 0\n",
"... ... ...\n",
"872500.0 512500.0 0 0\n",
"142500.0 167500.0 0 0\n",
"1252500.0 422500.0 0 0\n",
"1007500.0 72500.0 0 0\n",
"182500.0 142500.0 0 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 847500.0 | \n",
" 507500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 597500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 472500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 267500.0 | \n",
" 387500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 742500.0 | \n",
" 197500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 862500.0 | \n",
" 607500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 162500.0 | \n",
" 447500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1247500.0 | \n",
" 87500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1002500.0 | \n",
" 462500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 202500.0 | \n",
" 237500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"847500.0 507500.0 0 0\n",
"27500.0 597500.0 0 0\n",
" 472500.0 0 0\n",
"267500.0 387500.0 0 0\n",
"742500.0 197500.0 0 0\n",
"... ... ...\n",
"862500.0 607500.0 0 0\n",
"162500.0 447500.0 0 0\n",
"1247500.0 87500.0 0 0\n",
"1002500.0 462500.0 0 0\n",
"202500.0 237500.0 0 1\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 787500.0 | \n",
" 97500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 27500.0 | \n",
" 167500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 107500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 232500.0 | \n",
" 602500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 687500.0 | \n",
" 72500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 807500.0 | \n",
" 192500.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 147500.0 | \n",
" 602500.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 1237500.0 | \n",
" 332500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 957500.0 | \n",
" 122500.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 182500.0 | \n",
" 582500.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1992 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"787500.0 97500.0 0 0\n",
"27500.0 167500.0 0 1\n",
" 107500.0 0 0\n",
"232500.0 602500.0 1 1\n",
"687500.0 72500.0 0 0\n",
"... ... ...\n",
"807500.0 192500.0 1 1\n",
"147500.0 602500.0 0 1\n",
"1237500.0 332500.0 0 0\n",
"957500.0 122500.0 0 0\n",
"182500.0 582500.0 1 0\n",
"\n",
"[1992 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Export predictions to CSV for QGIS\n",
"RESULTS_PATH = 'Datasets/Machine Learning/Results/5km/'\n",
"for dict in df_dicts:\n",
" # Join with y_test datafram\n",
" result_df = dict['y_test'] \n",
" result_df['Predictions'] = dict['predictions_smote']\n",
" display(result_df)\n",
" result_df.to_csv(RESULTS_PATH + dict['name'] + '(without Fertiliser+Pesticides).csv')\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 1586.660696 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 18 | \n",
" 1440.939379 | \n",
" 1.143607e-308 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 23 | \n",
" 1417.879628 | \n",
" 7.271005e-304 | \n",
" Surface type | \n",
"
\n",
" \n",
" 22 | \n",
" 1269.611405 | \n",
" 6.667737e-273 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 24 | \n",
" 1223.198053 | \n",
" 3.502336e-263 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 1203.742558 | \n",
" 4.196966e-259 | \n",
" Elevation | \n",
"
\n",
" \n",
" 17 | \n",
" 1078.608288 | \n",
" 8.174358e-233 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 13 | \n",
" 978.472706 | \n",
" 1.050650e-211 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 15 | \n",
" 853.811730 | \n",
" 2.457887e-185 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 3 | \n",
" 816.914586 | \n",
" 1.639367e-177 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 416.369272 | \n",
" 5.554940e-92 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 7 | \n",
" 360.657263 | \n",
" 5.403022e-80 | \n",
" Fen | \n",
"
\n",
" \n",
" 0 | \n",
" 243.378276 | \n",
" 1.130191e-54 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 2 | \n",
" 223.631247 | \n",
" 2.134039e-50 | \n",
" Arable | \n",
"
\n",
" \n",
" 19 | \n",
" 168.960021 | \n",
" 1.551633e-38 | \n",
" Urban | \n",
"
\n",
" \n",
" 20 | \n",
" 156.098247 | \n",
" 9.703696e-36 | \n",
" Suburban | \n",
"
\n",
" \n",
" 14 | \n",
" 88.036607 | \n",
" 6.821306e-21 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 9 | \n",
" 70.504247 | \n",
" 4.773365e-17 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 52.091677 | \n",
" 5.410742e-13 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 28.131255 | \n",
" 1.140877e-07 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 10 | \n",
" 10.593482 | \n",
" 1.136010e-03 | \n",
" Bog | \n",
"
\n",
" \n",
" 6 | \n",
" 3.881727 | \n",
" 4.882264e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 1.726979 | \n",
" 1.888063e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 11 | \n",
" 1.309928 | \n",
" 2.524160e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 1 | \n",
" 1.193636 | \n",
" 2.746053e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 5 | \n",
" 0.275406 | \n",
" 5.997316e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 1586.660696 0.000000e+00 Inflowing drainage direction\n",
"18 1440.939379 1.143607e-308 Saltmarsh\n",
"23 1417.879628 7.271005e-304 Surface type\n",
"22 1269.611405 6.667737e-273 Cumulative catchment area\n",
"24 1223.198053 3.502336e-263 Outflowing drainage direction\n",
"21 1203.742558 4.196966e-259 Elevation\n",
"17 1078.608288 8.174358e-233 Littoral sediment\n",
"13 978.472706 1.050650e-211 Freshwater\n",
"15 853.811730 2.457887e-185 Supralittoral sediment\n",
"3 816.914586 1.639367e-177 Improve grassland\n",
"16 416.369272 5.554940e-92 Littoral rock\n",
"7 360.657263 5.403022e-80 Fen\n",
"0 243.378276 1.130191e-54 Deciduous woodland\n",
"2 223.631247 2.134039e-50 Arable\n",
"19 168.960021 1.551633e-38 Urban\n",
"20 156.098247 9.703696e-36 Suburban\n",
"14 88.036607 6.821306e-21 Supralittoral rock\n",
"9 70.504247 4.773365e-17 Heather grassland\n",
"4 52.091677 5.410742e-13 Neutral grassland\n",
"12 28.131255 1.140877e-07 Saltwater\n",
"10 10.593482 1.136010e-03 Bog\n",
"6 3.881727 4.882264e-02 Acid grassland\n",
"8 1.726979 1.888063e-01 Heather\n",
"11 1.309928 2.524160e-01 Inland rock\n",
"1 1.193636 2.746053e-01 Coniferous woodland\n",
"5 0.275406 5.997316e-01 Calcareous grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Canada Goose 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 27980.651957 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 24 | \n",
" 22192.853532 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 25 | \n",
" 21798.073867 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 20557.269520 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 22 | \n",
" 10467.973712 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 3 | \n",
" 9373.992389 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 20 | \n",
" 6200.682674 | \n",
" 0.000000e+00 | \n",
" Suburban | \n",
"
\n",
" \n",
" 0 | \n",
" 4606.437967 | \n",
" 0.000000e+00 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 2 | \n",
" 4435.557422 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 19 | \n",
" 2407.892997 | \n",
" 0.000000e+00 | \n",
" Urban | \n",
"
\n",
" \n",
" 13 | \n",
" 1994.218535 | \n",
" 0.000000e+00 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 4 | \n",
" 591.947491 | \n",
" 1.305021e-129 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 389.095029 | \n",
" 4.077898e-86 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 7 | \n",
" 240.538301 | \n",
" 4.654537e-54 | \n",
" Fen | \n",
"
\n",
" \n",
" 17 | \n",
" 162.207343 | \n",
" 4.555336e-37 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 5 | \n",
" 56.217105 | \n",
" 6.651725e-14 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 15 | \n",
" 54.988572 | \n",
" 1.241339e-13 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 49.209521 | \n",
" 2.344481e-12 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 1 | \n",
" 18.689323 | \n",
" 1.542908e-05 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 10 | \n",
" 16.182904 | \n",
" 5.763851e-05 | \n",
" Bog | \n",
"
\n",
" \n",
" 11 | \n",
" 13.004010 | \n",
" 3.112817e-04 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 9 | \n",
" 10.057049 | \n",
" 1.519046e-03 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 3.194359 | \n",
" 7.390188e-02 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 14 | \n",
" 1.831655 | \n",
" 1.759414e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 8 | \n",
" 1.564030 | \n",
" 2.110850e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 6 | \n",
" 1.341571 | \n",
" 2.467655e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 27980.651957 0.000000e+00 Surface type\n",
"24 22192.853532 0.000000e+00 Outflowing drainage direction\n",
"25 21798.073867 0.000000e+00 Inflowing drainage direction\n",
"21 20557.269520 0.000000e+00 Elevation\n",
"22 10467.973712 0.000000e+00 Cumulative catchment area\n",
"3 9373.992389 0.000000e+00 Improve grassland\n",
"20 6200.682674 0.000000e+00 Suburban\n",
"0 4606.437967 0.000000e+00 Deciduous woodland\n",
"2 4435.557422 0.000000e+00 Arable\n",
"19 2407.892997 0.000000e+00 Urban\n",
"13 1994.218535 0.000000e+00 Freshwater\n",
"4 591.947491 1.305021e-129 Neutral grassland\n",
"18 389.095029 4.077898e-86 Saltmarsh\n",
"7 240.538301 4.654537e-54 Fen\n",
"17 162.207343 4.555336e-37 Littoral sediment\n",
"5 56.217105 6.651725e-14 Calcareous grassland\n",
"15 54.988572 1.241339e-13 Supralittoral sediment\n",
"12 49.209521 2.344481e-12 Saltwater\n",
"1 18.689323 1.542908e-05 Coniferous woodland\n",
"10 16.182904 5.763851e-05 Bog\n",
"11 13.004010 3.112817e-04 Inland rock\n",
"9 10.057049 1.519046e-03 Heather grassland\n",
"16 3.194359 7.390188e-02 Littoral rock\n",
"14 1.831655 1.759414e-01 Supralittoral rock\n",
"8 1.564030 2.110850e-01 Heather\n",
"6 1.341571 2.467655e-01 Acid grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Egyptian Goose 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 22 | \n",
" 4398.345684 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 13 | \n",
" 3391.728526 | \n",
" 0.000000e+00 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 24 | \n",
" 2769.983626 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 19 | \n",
" 2688.563744 | \n",
" 0.000000e+00 | \n",
" Urban | \n",
"
\n",
" \n",
" 23 | \n",
" 2448.189595 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 1867.181758 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 20 | \n",
" 1608.119655 | \n",
" 0.000000e+00 | \n",
" Suburban | \n",
"
\n",
" \n",
" 21 | \n",
" 1508.446202 | \n",
" 1.037538e-322 | \n",
" Elevation | \n",
"
\n",
" \n",
" 3 | \n",
" 1160.254219 | \n",
" 5.600729e-250 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 0 | \n",
" 1025.549798 | \n",
" 1.228685e-221 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 7 | \n",
" 631.476180 | \n",
" 4.722469e-138 | \n",
" Fen | \n",
"
\n",
" \n",
" 2 | \n",
" 600.148490 | \n",
" 2.308798e-131 | \n",
" Arable | \n",
"
\n",
" \n",
" 18 | \n",
" 214.961650 | \n",
" 1.613752e-48 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 4 | \n",
" 66.795470 | \n",
" 3.118157e-16 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 6 | \n",
" 24.532078 | \n",
" 7.344270e-07 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 9 | \n",
" 16.103881 | \n",
" 6.009295e-05 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 10.942250 | \n",
" 9.409617e-04 | \n",
" Bog | \n",
"
\n",
" \n",
" 8 | \n",
" 6.460287 | \n",
" 1.103570e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 15 | \n",
" 6.121062 | \n",
" 1.336303e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 17 | \n",
" 4.658208 | \n",
" 3.091261e-02 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 5 | \n",
" 3.654048 | \n",
" 5.594175e-02 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 3.305391 | \n",
" 6.906195e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 16 | \n",
" 3.051750 | \n",
" 8.065946e-02 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 12 | \n",
" 0.870474 | \n",
" 3.508309e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 14 | \n",
" 0.756741 | \n",
" 3.843565e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 1 | \n",
" 0.003547 | \n",
" 9.525091e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"22 4398.345684 0.000000e+00 Cumulative catchment area\n",
"13 3391.728526 0.000000e+00 Freshwater\n",
"24 2769.983626 0.000000e+00 Outflowing drainage direction\n",
"19 2688.563744 0.000000e+00 Urban\n",
"23 2448.189595 0.000000e+00 Surface type\n",
"25 1867.181758 0.000000e+00 Inflowing drainage direction\n",
"20 1608.119655 0.000000e+00 Suburban\n",
"21 1508.446202 1.037538e-322 Elevation\n",
"3 1160.254219 5.600729e-250 Improve grassland\n",
"0 1025.549798 1.228685e-221 Deciduous woodland\n",
"7 631.476180 4.722469e-138 Fen\n",
"2 600.148490 2.308798e-131 Arable\n",
"18 214.961650 1.613752e-48 Saltmarsh\n",
"4 66.795470 3.118157e-16 Neutral grassland\n",
"6 24.532078 7.344270e-07 Acid grassland\n",
"9 16.103881 6.009295e-05 Heather grassland\n",
"10 10.942250 9.409617e-04 Bog\n",
"8 6.460287 1.103570e-02 Heather\n",
"15 6.121062 1.336303e-02 Supralittoral sediment\n",
"17 4.658208 3.091261e-02 Littoral sediment\n",
"5 3.654048 5.594175e-02 Calcareous grassland\n",
"11 3.305391 6.906195e-02 Inland rock\n",
"16 3.051750 8.065946e-02 Littoral rock\n",
"12 0.870474 3.508309e-01 Saltwater\n",
"14 0.756741 3.843565e-01 Supralittoral rock\n",
"1 0.003547 9.525091e-01 Coniferous woodland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gadwall 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 24 | \n",
" 5605.884628 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 5421.221412 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 23 | \n",
" 5337.742415 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 4250.868883 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 13 | \n",
" 3657.950458 | \n",
" 0.000000e+00 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 21 | \n",
" 3513.520144 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 2 | \n",
" 2555.774940 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 3 | \n",
" 2162.540101 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 20 | \n",
" 1871.462238 | \n",
" 0.000000e+00 | \n",
" Suburban | \n",
"
\n",
" \n",
" 0 | \n",
" 1487.487019 | \n",
" 2.357158e-318 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 19 | \n",
" 1271.177886 | \n",
" 3.134320e-273 | \n",
" Urban | \n",
"
\n",
" \n",
" 18 | \n",
" 947.217815 | \n",
" 4.200123e-205 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 7 | \n",
" 892.320809 | \n",
" 1.714432e-193 | \n",
" Fen | \n",
"
\n",
" \n",
" 4 | \n",
" 739.334890 | \n",
" 4.953129e-161 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 160.826029 | \n",
" 9.095729e-37 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 15 | \n",
" 130.604141 | \n",
" 3.443944e-30 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 6 | \n",
" 45.799690 | \n",
" 1.331664e-11 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 32.280187 | \n",
" 1.345866e-08 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 9 | \n",
" 29.120347 | \n",
" 6.848560e-08 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 21.703699 | \n",
" 3.194143e-06 | \n",
" Bog | \n",
"
\n",
" \n",
" 8 | \n",
" 17.560026 | \n",
" 2.791009e-05 | \n",
" Heather | \n",
"
\n",
" \n",
" 11 | \n",
" 7.808204 | \n",
" 5.203950e-03 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 1 | \n",
" 7.188161 | \n",
" 7.342254e-03 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 14 | \n",
" 1.781952 | \n",
" 1.819190e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 5 | \n",
" 0.735834 | \n",
" 3.910048e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.097151 | \n",
" 7.552781e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"24 5605.884628 0.000000e+00 Outflowing drainage direction\n",
"22 5421.221412 0.000000e+00 Cumulative catchment area\n",
"23 5337.742415 0.000000e+00 Surface type\n",
"25 4250.868883 0.000000e+00 Inflowing drainage direction\n",
"13 3657.950458 0.000000e+00 Freshwater\n",
"21 3513.520144 0.000000e+00 Elevation\n",
"2 2555.774940 0.000000e+00 Arable\n",
"3 2162.540101 0.000000e+00 Improve grassland\n",
"20 1871.462238 0.000000e+00 Suburban\n",
"0 1487.487019 2.357158e-318 Deciduous woodland\n",
"19 1271.177886 3.134320e-273 Urban\n",
"18 947.217815 4.200123e-205 Saltmarsh\n",
"7 892.320809 1.714432e-193 Fen\n",
"4 739.334890 4.953129e-161 Neutral grassland\n",
"17 160.826029 9.095729e-37 Littoral sediment\n",
"15 130.604141 3.443944e-30 Supralittoral sediment\n",
"6 45.799690 1.331664e-11 Acid grassland\n",
"12 32.280187 1.345866e-08 Saltwater\n",
"9 29.120347 6.848560e-08 Heather grassland\n",
"10 21.703699 3.194143e-06 Bog\n",
"8 17.560026 2.791009e-05 Heather\n",
"11 7.808204 5.203950e-03 Inland rock\n",
"1 7.188161 7.342254e-03 Coniferous woodland\n",
"14 1.781952 1.819190e-01 Supralittoral rock\n",
"5 0.735834 3.910048e-01 Calcareous grassland\n",
"16 0.097151 7.552781e-01 Littoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Goshawk 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 1228.008833 | \n",
" 3.437230e-264 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 1131.658994 | \n",
" 5.687958e-244 | \n",
" Elevation | \n",
"
\n",
" \n",
" 24 | \n",
" 1068.037277 | \n",
" 1.373575e-230 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 1044.933301 | \n",
" 1.009602e-225 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 25 | \n",
" 919.889067 | \n",
" 2.517246e-199 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 809.818171 | \n",
" 5.254241e-176 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 3 | \n",
" 684.780108 | \n",
" 2.032079e-149 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 397.809147 | \n",
" 5.441281e-88 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 6 | \n",
" 362.459808 | \n",
" 2.209967e-80 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 87.757391 | \n",
" 7.852555e-21 | \n",
" Arable | \n",
"
\n",
" \n",
" 20 | \n",
" 79.803707 | \n",
" 4.343909e-19 | \n",
" Suburban | \n",
"
\n",
" \n",
" 8 | \n",
" 45.558282 | \n",
" 1.506066e-11 | \n",
" Heather | \n",
"
\n",
" \n",
" 5 | \n",
" 16.053837 | \n",
" 6.170139e-05 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 15.723043 | \n",
" 7.347960e-05 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 18 | \n",
" 8.693071 | \n",
" 3.196452e-03 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 7 | \n",
" 4.213295 | \n",
" 4.011621e-02 | \n",
" Fen | \n",
"
\n",
" \n",
" 10 | \n",
" 3.293395 | \n",
" 6.956812e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 14 | \n",
" 1.492644 | \n",
" 2.218154e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 19 | \n",
" 1.235707 | \n",
" 2.663082e-01 | \n",
" Urban | \n",
"
\n",
" \n",
" 9 | \n",
" 0.653081 | \n",
" 4.190191e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 0.416397 | \n",
" 5.187449e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 12 | \n",
" 0.222689 | \n",
" 6.370020e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 15 | \n",
" 0.046972 | \n",
" 8.284207e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 4 | \n",
" 0.041436 | \n",
" 8.386999e-01 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 0.032689 | \n",
" 8.565239e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 16 | \n",
" 0.002739 | \n",
" 9.582594e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 1228.008833 3.437230e-264 Surface type\n",
"21 1131.658994 5.687958e-244 Elevation\n",
"24 1068.037277 1.373575e-230 Outflowing drainage direction\n",
"22 1044.933301 1.009602e-225 Cumulative catchment area\n",
"25 919.889067 2.517246e-199 Inflowing drainage direction\n",
"0 809.818171 5.254241e-176 Deciduous woodland\n",
"3 684.780108 2.032079e-149 Improve grassland\n",
"1 397.809147 5.441281e-88 Coniferous woodland\n",
"6 362.459808 2.209967e-80 Acid grassland\n",
"2 87.757391 7.852555e-21 Arable\n",
"20 79.803707 4.343909e-19 Suburban\n",
"8 45.558282 1.506066e-11 Heather\n",
"5 16.053837 6.170139e-05 Calcareous grassland\n",
"13 15.723043 7.347960e-05 Freshwater\n",
"18 8.693071 3.196452e-03 Saltmarsh\n",
"7 4.213295 4.011621e-02 Fen\n",
"10 3.293395 6.956812e-02 Bog\n",
"14 1.492644 2.218154e-01 Supralittoral rock\n",
"19 1.235707 2.663082e-01 Urban\n",
"9 0.653081 4.190191e-01 Heather grassland\n",
"11 0.416397 5.187449e-01 Inland rock\n",
"12 0.222689 6.370020e-01 Saltwater\n",
"15 0.046972 8.284207e-01 Supralittoral sediment\n",
"4 0.041436 8.386999e-01 Neutral grassland\n",
"17 0.032689 8.565239e-01 Littoral sediment\n",
"16 0.002739 9.582594e-01 Littoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Grey Partridge 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 2 | \n",
" 8141.700589 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 23 | \n",
" 5901.470556 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 24 | \n",
" 4800.409421 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 4601.906150 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 25 | \n",
" 4463.973740 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 4389.262340 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 3 | \n",
" 2126.495399 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 0 | \n",
" 901.238763 | \n",
" 2.221379e-195 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 518.009891 | \n",
" 8.599298e-114 | \n",
" Suburban | \n",
"
\n",
" \n",
" 5 | \n",
" 327.045266 | \n",
" 9.488789e-73 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 319.849011 | \n",
" 3.384407e-71 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 19 | \n",
" 98.781469 | \n",
" 3.039441e-23 | \n",
" Urban | \n",
"
\n",
" \n",
" 15 | \n",
" 42.304272 | \n",
" 7.923464e-11 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 18 | \n",
" 42.065170 | \n",
" 8.952540e-11 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 13 | \n",
" 27.868120 | \n",
" 1.306903e-07 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 18.302932 | \n",
" 1.889456e-05 | \n",
" Fen | \n",
"
\n",
" \n",
" 17 | \n",
" 6.233018 | \n",
" 1.254381e-02 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 1 | \n",
" 5.215300 | \n",
" 2.239529e-02 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 11 | \n",
" 4.740881 | \n",
" 2.946103e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 14 | \n",
" 4.021946 | \n",
" 4.491999e-02 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 8 | \n",
" 3.136113 | \n",
" 7.658531e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 6 | \n",
" 2.392910 | \n",
" 1.218961e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 0.249330 | \n",
" 6.175506e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 10 | \n",
" 0.120851 | \n",
" 7.281160e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 9 | \n",
" 0.012848 | \n",
" 9.097560e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.000036 | \n",
" 9.952257e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"2 8141.700589 0.000000e+00 Arable\n",
"23 5901.470556 0.000000e+00 Surface type\n",
"24 4800.409421 0.000000e+00 Outflowing drainage direction\n",
"22 4601.906150 0.000000e+00 Cumulative catchment area\n",
"25 4463.973740 0.000000e+00 Inflowing drainage direction\n",
"21 4389.262340 0.000000e+00 Elevation\n",
"3 2126.495399 0.000000e+00 Improve grassland\n",
"0 901.238763 2.221379e-195 Deciduous woodland\n",
"20 518.009891 8.599298e-114 Suburban\n",
"5 327.045266 9.488789e-73 Calcareous grassland\n",
"4 319.849011 3.384407e-71 Neutral grassland\n",
"19 98.781469 3.039441e-23 Urban\n",
"15 42.304272 7.923464e-11 Supralittoral sediment\n",
"18 42.065170 8.952540e-11 Saltmarsh\n",
"13 27.868120 1.306903e-07 Freshwater\n",
"7 18.302932 1.889456e-05 Fen\n",
"17 6.233018 1.254381e-02 Littoral sediment\n",
"1 5.215300 2.239529e-02 Coniferous woodland\n",
"11 4.740881 2.946103e-02 Inland rock\n",
"14 4.021946 4.491999e-02 Supralittoral rock\n",
"8 3.136113 7.658531e-02 Heather\n",
"6 2.392910 1.218961e-01 Acid grassland\n",
"12 0.249330 6.175506e-01 Saltwater\n",
"10 0.120851 7.281160e-01 Bog\n",
"9 0.012848 9.097560e-01 Heather grassland\n",
"16 0.000036 9.952257e-01 Littoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Indian Peafowl 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 826.341713 | \n",
" 1.639780e-179 | \n",
" Surface type | \n",
"
\n",
" \n",
" 22 | \n",
" 773.116357 | \n",
" 3.264405e-168 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 24 | \n",
" 694.651908 | \n",
" 1.603430e-151 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 2 | \n",
" 636.396656 | \n",
" 4.208646e-139 | \n",
" Arable | \n",
"
\n",
" \n",
" 25 | \n",
" 618.098698 | \n",
" 3.386540e-135 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 581.270648 | \n",
" 2.497700e-127 | \n",
" Elevation | \n",
"
\n",
" \n",
" 3 | \n",
" 579.289817 | \n",
" 6.621914e-127 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 0 | \n",
" 557.985251 | \n",
" 2.382356e-122 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 341.361921 | \n",
" 7.768283e-76 | \n",
" Suburban | \n",
"
\n",
" \n",
" 4 | \n",
" 31.037453 | \n",
" 2.550632e-08 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 19 | \n",
" 28.479423 | \n",
" 9.532196e-08 | \n",
" Urban | \n",
"
\n",
" \n",
" 5 | \n",
" 19.591241 | \n",
" 9.621430e-06 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 11.127497 | \n",
" 8.515085e-04 | \n",
" Fen | \n",
"
\n",
" \n",
" 13 | \n",
" 9.872829 | \n",
" 1.678853e-03 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 6 | \n",
" 4.975747 | \n",
" 2.571178e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 3.521124 | \n",
" 6.060014e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 1 | \n",
" 2.674323 | \n",
" 1.019882e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 9 | \n",
" 2.267492 | \n",
" 1.321231e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 1.470891 | \n",
" 2.252138e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 11 | \n",
" 0.730498 | \n",
" 3.927281e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 12 | \n",
" 0.717725 | \n",
" 3.968973e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 15 | \n",
" 0.509339 | \n",
" 4.754303e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 18 | \n",
" 0.335080 | \n",
" 5.626872e-01 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 14 | \n",
" 0.132251 | \n",
" 7.161121e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 17 | \n",
" 0.099303 | \n",
" 7.526692e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 16 | \n",
" 0.034266 | \n",
" 8.531431e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 826.341713 1.639780e-179 Surface type\n",
"22 773.116357 3.264405e-168 Cumulative catchment area\n",
"24 694.651908 1.603430e-151 Outflowing drainage direction\n",
"2 636.396656 4.208646e-139 Arable\n",
"25 618.098698 3.386540e-135 Inflowing drainage direction\n",
"21 581.270648 2.497700e-127 Elevation\n",
"3 579.289817 6.621914e-127 Improve grassland\n",
"0 557.985251 2.382356e-122 Deciduous woodland\n",
"20 341.361921 7.768283e-76 Suburban\n",
"4 31.037453 2.550632e-08 Neutral grassland\n",
"19 28.479423 9.532196e-08 Urban\n",
"5 19.591241 9.621430e-06 Calcareous grassland\n",
"7 11.127497 8.515085e-04 Fen\n",
"13 9.872829 1.678853e-03 Freshwater\n",
"6 4.975747 2.571178e-02 Acid grassland\n",
"10 3.521124 6.060014e-02 Bog\n",
"1 2.674323 1.019882e-01 Coniferous woodland\n",
"9 2.267492 1.321231e-01 Heather grassland\n",
"8 1.470891 2.252138e-01 Heather\n",
"11 0.730498 3.927281e-01 Inland rock\n",
"12 0.717725 3.968973e-01 Saltwater\n",
"15 0.509339 4.754303e-01 Supralittoral sediment\n",
"18 0.335080 5.626872e-01 Saltmarsh\n",
"14 0.132251 7.161121e-01 Supralittoral rock\n",
"17 0.099303 7.526692e-01 Littoral sediment\n",
"16 0.034266 8.531431e-01 Littoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Little Owl 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 9941.994917 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 2 | \n",
" 9462.794504 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 8442.661824 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 7788.899641 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 25 | \n",
" 7508.970331 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 6742.553493 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 3 | \n",
" 4944.473615 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 20 | \n",
" 2250.993774 | \n",
" 0.000000e+00 | \n",
" Suburban | \n",
"
\n",
" \n",
" 0 | \n",
" 1224.086080 | \n",
" 2.281664e-263 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 4 | \n",
" 630.020519 | \n",
" 9.656906e-138 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 439.830706 | \n",
" 5.052213e-97 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 19 | \n",
" 344.014425 | \n",
" 2.082536e-76 | \n",
" Urban | \n",
"
\n",
" \n",
" 13 | \n",
" 191.220766 | \n",
" 2.273330e-43 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 143.222650 | \n",
" 6.146287e-33 | \n",
" Fen | \n",
"
\n",
" \n",
" 18 | \n",
" 59.796551 | \n",
" 1.081619e-14 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 6 | \n",
" 42.200831 | \n",
" 8.353273e-11 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 34.080188 | \n",
" 5.338007e-09 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 10 | \n",
" 30.463089 | \n",
" 3.428286e-08 | \n",
" Bog | \n",
"
\n",
" \n",
" 8 | \n",
" 26.647155 | \n",
" 2.456208e-07 | \n",
" Heather | \n",
"
\n",
" \n",
" 9 | \n",
" 19.056362 | \n",
" 1.272986e-05 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 15 | \n",
" 16.754547 | \n",
" 4.264108e-05 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 16 | \n",
" 7.372175 | \n",
" 6.627513e-03 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 7.137556 | \n",
" 7.552295e-03 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 14 | \n",
" 5.890295 | \n",
" 1.522985e-02 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 12 | \n",
" 0.157614 | \n",
" 6.913651e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 17 | \n",
" 0.095097 | \n",
" 7.577967e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 9941.994917 0.000000e+00 Surface type\n",
"2 9462.794504 0.000000e+00 Arable\n",
"24 8442.661824 0.000000e+00 Outflowing drainage direction\n",
"22 7788.899641 0.000000e+00 Cumulative catchment area\n",
"25 7508.970331 0.000000e+00 Inflowing drainage direction\n",
"21 6742.553493 0.000000e+00 Elevation\n",
"3 4944.473615 0.000000e+00 Improve grassland\n",
"20 2250.993774 0.000000e+00 Suburban\n",
"0 1224.086080 2.281664e-263 Deciduous woodland\n",
"4 630.020519 9.656906e-138 Neutral grassland\n",
"5 439.830706 5.052213e-97 Calcareous grassland\n",
"19 344.014425 2.082536e-76 Urban\n",
"13 191.220766 2.273330e-43 Freshwater\n",
"7 143.222650 6.146287e-33 Fen\n",
"18 59.796551 1.081619e-14 Saltmarsh\n",
"6 42.200831 8.353273e-11 Acid grassland\n",
"1 34.080188 5.338007e-09 Coniferous woodland\n",
"10 30.463089 3.428286e-08 Bog\n",
"8 26.647155 2.456208e-07 Heather\n",
"9 19.056362 1.272986e-05 Heather grassland\n",
"15 16.754547 4.264108e-05 Supralittoral sediment\n",
"16 7.372175 6.627513e-03 Littoral rock\n",
"11 7.137556 7.552295e-03 Inland rock\n",
"14 5.890295 1.522985e-02 Supralittoral rock\n",
"12 0.157614 6.913651e-01 Saltwater\n",
"17 0.095097 7.577967e-01 Littoral sediment"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mandarin Duck 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 22 | \n",
" 3559.780952 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 0 | \n",
" 3525.975295 | \n",
" 0.000000e+00 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 24 | \n",
" 2973.634105 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 23 | \n",
" 2900.268149 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 3 | \n",
" 2556.207049 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 25 | \n",
" 2139.256963 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 2040.599063 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 20 | \n",
" 1659.981195 | \n",
" 0.000000e+00 | \n",
" Suburban | \n",
"
\n",
" \n",
" 13 | \n",
" 792.705495 | \n",
" 2.254877e-172 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 19 | \n",
" 434.160164 | \n",
" 8.347169e-96 | \n",
" Urban | \n",
"
\n",
" \n",
" 2 | \n",
" 322.317750 | \n",
" 9.929157e-72 | \n",
" Arable | \n",
"
\n",
" \n",
" 4 | \n",
" 289.027410 | \n",
" 1.523840e-64 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 86.986582 | \n",
" 1.158292e-20 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 43.617236 | \n",
" 4.053481e-11 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 7 | \n",
" 30.454378 | \n",
" 3.443701e-08 | \n",
" Fen | \n",
"
\n",
" \n",
" 9 | \n",
" 12.680495 | \n",
" 3.700080e-04 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 11.170154 | \n",
" 8.321583e-04 | \n",
" Bog | \n",
"
\n",
" \n",
" 6 | \n",
" 4.774378 | \n",
" 2.889326e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 3.468317 | \n",
" 6.256379e-02 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 14 | \n",
" 3.191997 | \n",
" 7.400873e-02 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 17 | \n",
" 3.080693 | \n",
" 7.923601e-02 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 2.603302 | \n",
" 1.066509e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 11 | \n",
" 2.290784 | \n",
" 1.301538e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 15 | \n",
" 1.408976 | \n",
" 2.352351e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 8 | \n",
" 0.023329 | \n",
" 8.786052e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 18 | \n",
" 0.004613 | \n",
" 9.458479e-01 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"22 3559.780952 0.000000e+00 Cumulative catchment area\n",
"0 3525.975295 0.000000e+00 Deciduous woodland\n",
"24 2973.634105 0.000000e+00 Outflowing drainage direction\n",
"23 2900.268149 0.000000e+00 Surface type\n",
"3 2556.207049 0.000000e+00 Improve grassland\n",
"25 2139.256963 0.000000e+00 Inflowing drainage direction\n",
"21 2040.599063 0.000000e+00 Elevation\n",
"20 1659.981195 0.000000e+00 Suburban\n",
"13 792.705495 2.254877e-172 Freshwater\n",
"19 434.160164 8.347169e-96 Urban\n",
"2 322.317750 9.929157e-72 Arable\n",
"4 289.027410 1.523840e-64 Neutral grassland\n",
"5 86.986582 1.158292e-20 Calcareous grassland\n",
"1 43.617236 4.053481e-11 Coniferous woodland\n",
"7 30.454378 3.443701e-08 Fen\n",
"9 12.680495 3.700080e-04 Heather grassland\n",
"10 11.170154 8.321583e-04 Bog\n",
"6 4.774378 2.889326e-02 Acid grassland\n",
"16 3.468317 6.256379e-02 Littoral rock\n",
"14 3.191997 7.400873e-02 Supralittoral rock\n",
"17 3.080693 7.923601e-02 Littoral sediment\n",
"12 2.603302 1.066509e-01 Saltwater\n",
"11 2.290784 1.301538e-01 Inland rock\n",
"15 1.408976 2.352351e-01 Supralittoral sediment\n",
"8 0.023329 8.786052e-01 Heather\n",
"18 0.004613 9.458479e-01 Saltmarsh"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mute Swan 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 41778.683149 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 37707.864005 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 32149.803935 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 24 | \n",
" 24629.730532 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 7714.991172 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 3 | \n",
" 6922.429433 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 20 | \n",
" 5556.769597 | \n",
" 0.000000e+00 | \n",
" Suburban | \n",
"
\n",
" \n",
" 2 | \n",
" 4548.309043 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 0 | \n",
" 3188.833827 | \n",
" 0.000000e+00 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 19 | \n",
" 2126.916337 | \n",
" 0.000000e+00 | \n",
" Urban | \n",
"
\n",
" \n",
" 13 | \n",
" 1261.094423 | \n",
" 4.042871e-271 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 4 | \n",
" 710.989883 | \n",
" 5.323266e-155 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 350.947774 | \n",
" 6.674534e-78 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 6 | \n",
" 274.300533 | \n",
" 2.317521e-61 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 258.697255 | \n",
" 5.478710e-58 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 7 | \n",
" 204.439981 | \n",
" 3.082649e-46 | \n",
" Fen | \n",
"
\n",
" \n",
" 15 | \n",
" 138.876035 | \n",
" 5.432921e-32 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 10 | \n",
" 122.310053 | \n",
" 2.214177e-28 | \n",
" Bog | \n",
"
\n",
" \n",
" 12 | \n",
" 113.202400 | \n",
" 2.149655e-26 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 8 | \n",
" 103.816162 | \n",
" 2.411588e-24 | \n",
" Heather | \n",
"
\n",
" \n",
" 9 | \n",
" 88.379538 | \n",
" 5.738193e-21 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 66.697722 | \n",
" 3.276343e-16 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 49.312998 | \n",
" 2.224191e-12 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 1 | \n",
" 44.669892 | \n",
" 2.369145e-11 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 14 | \n",
" 29.331059 | \n",
" 6.143449e-08 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 5 | \n",
" 8.698519 | \n",
" 3.186914e-03 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 41778.683149 0.000000e+00 Surface type\n",
"25 37707.864005 0.000000e+00 Inflowing drainage direction\n",
"21 32149.803935 0.000000e+00 Elevation\n",
"24 24629.730532 0.000000e+00 Outflowing drainage direction\n",
"22 7714.991172 0.000000e+00 Cumulative catchment area\n",
"3 6922.429433 0.000000e+00 Improve grassland\n",
"20 5556.769597 0.000000e+00 Suburban\n",
"2 4548.309043 0.000000e+00 Arable\n",
"0 3188.833827 0.000000e+00 Deciduous woodland\n",
"19 2126.916337 0.000000e+00 Urban\n",
"13 1261.094423 4.042871e-271 Freshwater\n",
"4 710.989883 5.323266e-155 Neutral grassland\n",
"17 350.947774 6.674534e-78 Littoral sediment\n",
"6 274.300533 2.317521e-61 Acid grassland\n",
"18 258.697255 5.478710e-58 Saltmarsh\n",
"7 204.439981 3.082649e-46 Fen\n",
"15 138.876035 5.432921e-32 Supralittoral sediment\n",
"10 122.310053 2.214177e-28 Bog\n",
"12 113.202400 2.149655e-26 Saltwater\n",
"8 103.816162 2.411588e-24 Heather\n",
"9 88.379538 5.738193e-21 Heather grassland\n",
"16 66.697722 3.276343e-16 Littoral rock\n",
"11 49.312998 2.224191e-12 Inland rock\n",
"1 44.669892 2.369145e-11 Coniferous woodland\n",
"14 29.331059 6.143449e-08 Supralittoral rock\n",
"5 8.698519 3.186914e-03 Calcareous grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pheasant 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 14828.439300 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 24 | \n",
" 12411.664397 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 11511.436305 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 25 | \n",
" 11025.748971 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 9363.861895 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 3 | \n",
" 6889.758402 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 5020.115469 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 0 | \n",
" 3497.652887 | \n",
" 0.000000e+00 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 1872.691498 | \n",
" 0.000000e+00 | \n",
" Suburban | \n",
"
\n",
" \n",
" 5 | \n",
" 415.858475 | \n",
" 7.152889e-92 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 355.069398 | \n",
" 8.637276e-79 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 235.243263 | \n",
" 6.519726e-53 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 19 | \n",
" 219.109454 | \n",
" 2.036749e-49 | \n",
" Urban | \n",
"
\n",
" \n",
" 6 | \n",
" 141.740399 | \n",
" 1.292165e-32 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 137.784819 | \n",
" 9.390379e-32 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 8 | \n",
" 88.397878 | \n",
" 5.685377e-21 | \n",
" Heather | \n",
"
\n",
" \n",
" 7 | \n",
" 57.673169 | \n",
" 3.176391e-14 | \n",
" Fen | \n",
"
\n",
" \n",
" 10 | \n",
" 33.154847 | \n",
" 8.585587e-09 | \n",
" Bog | \n",
"
\n",
" \n",
" 18 | \n",
" 21.413945 | \n",
" 3.714720e-06 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 15 | \n",
" 13.123056 | \n",
" 2.921201e-04 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 11 | \n",
" 5.451389 | \n",
" 1.955872e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 9 | \n",
" 4.362221 | \n",
" 3.675199e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 2.751696 | \n",
" 9.716078e-02 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 12 | \n",
" 0.202376 | \n",
" 6.528125e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 17 | \n",
" 0.146886 | \n",
" 7.015312e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 14 | \n",
" 0.077339 | \n",
" 7.809384e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 14828.439300 0.000000e+00 Surface type\n",
"24 12411.664397 0.000000e+00 Outflowing drainage direction\n",
"21 11511.436305 0.000000e+00 Elevation\n",
"25 11025.748971 0.000000e+00 Inflowing drainage direction\n",
"22 9363.861895 0.000000e+00 Cumulative catchment area\n",
"3 6889.758402 0.000000e+00 Improve grassland\n",
"2 5020.115469 0.000000e+00 Arable\n",
"0 3497.652887 0.000000e+00 Deciduous woodland\n",
"20 1872.691498 0.000000e+00 Suburban\n",
"5 415.858475 7.152889e-92 Calcareous grassland\n",
"4 355.069398 8.637276e-79 Neutral grassland\n",
"1 235.243263 6.519726e-53 Coniferous woodland\n",
"19 219.109454 2.036749e-49 Urban\n",
"6 141.740399 1.292165e-32 Acid grassland\n",
"13 137.784819 9.390379e-32 Freshwater\n",
"8 88.397878 5.685377e-21 Heather\n",
"7 57.673169 3.176391e-14 Fen\n",
"10 33.154847 8.585587e-09 Bog\n",
"18 21.413945 3.714720e-06 Saltmarsh\n",
"15 13.123056 2.921201e-04 Supralittoral sediment\n",
"11 5.451389 1.955872e-02 Inland rock\n",
"9 4.362221 3.675199e-02 Heather grassland\n",
"16 2.751696 9.716078e-02 Littoral rock\n",
"12 0.202376 6.528125e-01 Saltwater\n",
"17 0.146886 7.015312e-01 Littoral sediment\n",
"14 0.077339 7.809384e-01 Supralittoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pink-footed Goose 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 5823.246006 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 23 | \n",
" 5796.329675 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 4750.062797 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 24 | \n",
" 4416.411546 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 4111.240745 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 2 | \n",
" 4027.385455 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 17 | \n",
" 1680.756257 | \n",
" 0.000000e+00 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 3 | \n",
" 1578.759585 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 1503.642898 | \n",
" 1.032597e-321 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 20 | \n",
" 1109.115857 | \n",
" 3.118895e-239 | \n",
" Suburban | \n",
"
\n",
" \n",
" 0 | \n",
" 1064.014160 | \n",
" 9.660098e-230 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 15 | \n",
" 852.335728 | \n",
" 5.051033e-185 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 19 | \n",
" 449.450750 | \n",
" 4.341152e-99 | \n",
" Urban | \n",
"
\n",
" \n",
" 13 | \n",
" 441.183451 | \n",
" 2.587866e-97 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 16 | \n",
" 329.374467 | \n",
" 2.984579e-73 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 7 | \n",
" 117.207897 | \n",
" 2.872142e-27 | \n",
" Fen | \n",
"
\n",
" \n",
" 12 | \n",
" 55.275652 | \n",
" 1.072913e-13 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 4 | \n",
" 50.484241 | \n",
" 1.225518e-12 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 7.481350 | \n",
" 6.237451e-03 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 6 | \n",
" 3.024752 | \n",
" 8.201214e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 2.001253 | \n",
" 1.571786e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 8 | \n",
" 1.379174 | \n",
" 2.402504e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 11 | \n",
" 1.198463 | \n",
" 2.736371e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 10 | \n",
" 0.051515 | \n",
" 8.204487e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 5 | \n",
" 0.022436 | \n",
" 8.809347e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 9 | \n",
" 0.002302 | \n",
" 9.617297e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 5823.246006 0.000000e+00 Inflowing drainage direction\n",
"23 5796.329675 0.000000e+00 Surface type\n",
"21 4750.062797 0.000000e+00 Elevation\n",
"24 4416.411546 0.000000e+00 Outflowing drainage direction\n",
"22 4111.240745 0.000000e+00 Cumulative catchment area\n",
"2 4027.385455 0.000000e+00 Arable\n",
"17 1680.756257 0.000000e+00 Littoral sediment\n",
"3 1578.759585 0.000000e+00 Improve grassland\n",
"18 1503.642898 1.032597e-321 Saltmarsh\n",
"20 1109.115857 3.118895e-239 Suburban\n",
"0 1064.014160 9.660098e-230 Deciduous woodland\n",
"15 852.335728 5.051033e-185 Supralittoral sediment\n",
"19 449.450750 4.341152e-99 Urban\n",
"13 441.183451 2.587866e-97 Freshwater\n",
"16 329.374467 2.984579e-73 Littoral rock\n",
"7 117.207897 2.872142e-27 Fen\n",
"12 55.275652 1.072913e-13 Saltwater\n",
"4 50.484241 1.225518e-12 Neutral grassland\n",
"1 7.481350 6.237451e-03 Coniferous woodland\n",
"6 3.024752 8.201214e-02 Acid grassland\n",
"14 2.001253 1.571786e-01 Supralittoral rock\n",
"8 1.379174 2.402504e-01 Heather\n",
"11 1.198463 2.736371e-01 Inland rock\n",
"10 0.051515 8.204487e-01 Bog\n",
"5 0.022436 8.809347e-01 Calcareous grassland\n",
"9 0.002302 9.617297e-01 Heather grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pintail 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 1325.168183 | \n",
" 1.608067e-284 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 23 | \n",
" 1169.840995 | \n",
" 5.439990e-252 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 987.248175 | \n",
" 1.475675e-213 | \n",
" Elevation | \n",
"
\n",
" \n",
" 24 | \n",
" 832.260391 | \n",
" 9.109264e-181 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 18 | \n",
" 829.398253 | \n",
" 3.685447e-180 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 22 | \n",
" 760.526243 | \n",
" 1.546155e-165 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 2 | \n",
" 723.168873 | \n",
" 1.361610e-157 | \n",
" Arable | \n",
"
\n",
" \n",
" 17 | \n",
" 700.432781 | \n",
" 9.417029e-153 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 3 | \n",
" 435.362823 | \n",
" 4.604501e-96 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 20 | \n",
" 333.610377 | \n",
" 3.643021e-74 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 306.416036 | \n",
" 2.680625e-68 | \n",
" Urban | \n",
"
\n",
" \n",
" 0 | \n",
" 244.336169 | \n",
" 7.011810e-55 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 4 | \n",
" 241.540306 | \n",
" 2.824742e-54 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 156.617233 | \n",
" 7.482770e-36 | \n",
" Fen | \n",
"
\n",
" \n",
" 15 | \n",
" 129.030277 | \n",
" 7.586888e-30 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 78.133376 | \n",
" 1.009712e-18 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 13 | \n",
" 49.612911 | \n",
" 1.909316e-12 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 6 | \n",
" 4.766818 | \n",
" 2.902040e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 1.605596 | \n",
" 2.051210e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 11 | \n",
" 1.411725 | \n",
" 2.347787e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 9 | \n",
" 1.135354 | \n",
" 2.866439e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 0.735527 | \n",
" 3.911038e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 14 | \n",
" 0.389845 | \n",
" 5.323851e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 5 | \n",
" 0.173820 | \n",
" 6.767413e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.049150 | \n",
" 8.245503e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 0.034271 | \n",
" 8.531325e-01 | \n",
" Bog | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 1325.168183 1.608067e-284 Inflowing drainage direction\n",
"23 1169.840995 5.439990e-252 Surface type\n",
"21 987.248175 1.475675e-213 Elevation\n",
"24 832.260391 9.109264e-181 Outflowing drainage direction\n",
"18 829.398253 3.685447e-180 Saltmarsh\n",
"22 760.526243 1.546155e-165 Cumulative catchment area\n",
"2 723.168873 1.361610e-157 Arable\n",
"17 700.432781 9.417029e-153 Littoral sediment\n",
"3 435.362823 4.604501e-96 Improve grassland\n",
"20 333.610377 3.643021e-74 Suburban\n",
"19 306.416036 2.680625e-68 Urban\n",
"0 244.336169 7.011810e-55 Deciduous woodland\n",
"4 241.540306 2.824742e-54 Neutral grassland\n",
"7 156.617233 7.482770e-36 Fen\n",
"15 129.030277 7.586888e-30 Supralittoral sediment\n",
"12 78.133376 1.009712e-18 Saltwater\n",
"13 49.612911 1.909316e-12 Freshwater\n",
"6 4.766818 2.902040e-02 Acid grassland\n",
"8 1.605596 2.051210e-01 Heather\n",
"11 1.411725 2.347787e-01 Inland rock\n",
"9 1.135354 2.866439e-01 Heather grassland\n",
"1 0.735527 3.911038e-01 Coniferous woodland\n",
"14 0.389845 5.323851e-01 Supralittoral rock\n",
"5 0.173820 6.767413e-01 Calcareous grassland\n",
"16 0.049150 8.245503e-01 Littoral rock\n",
"10 0.034271 8.531325e-01 Bog"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pochard 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 1842.761284 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 2 | \n",
" 1555.536108 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 25 | \n",
" 1549.051565 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 24 | \n",
" 1485.853766 | \n",
" 5.152527e-318 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 1392.732967 | \n",
" 1.268634e-298 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 21 | \n",
" 1309.187405 | \n",
" 3.516732e-281 | \n",
" Elevation | \n",
"
\n",
" \n",
" 20 | \n",
" 894.234195 | \n",
" 6.746925e-194 | \n",
" Suburban | \n",
"
\n",
" \n",
" 3 | \n",
" 745.160492 | \n",
" 2.857352e-162 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 19 | \n",
" 743.681811 | \n",
" 5.893993e-162 | \n",
" Urban | \n",
"
\n",
" \n",
" 0 | \n",
" 574.470893 | \n",
" 7.099727e-126 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 13 | \n",
" 271.809180 | \n",
" 8.008227e-61 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 4 | \n",
" 149.345332 | \n",
" 2.857674e-34 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 131.344663 | \n",
" 2.375107e-30 | \n",
" Fen | \n",
"
\n",
" \n",
" 18 | \n",
" 99.865736 | \n",
" 1.760901e-23 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 15 | \n",
" 46.675600 | \n",
" 8.521422e-12 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 17 | \n",
" 38.959990 | \n",
" 4.378224e-10 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 13.290046 | \n",
" 2.672276e-04 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 6 | \n",
" 12.015067 | \n",
" 5.283914e-04 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 10.402339 | \n",
" 1.259780e-03 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 10.105514 | \n",
" 1.479624e-03 | \n",
" Bog | \n",
"
\n",
" \n",
" 9 | \n",
" 4.772190 | \n",
" 2.893001e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 4.024274 | \n",
" 4.485804e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 11 | \n",
" 2.159090 | \n",
" 1.417381e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 14 | \n",
" 0.851691 | \n",
" 3.560812e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 1 | \n",
" 0.632046 | \n",
" 4.266115e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.240235 | \n",
" 6.240394e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 1842.761284 0.000000e+00 Surface type\n",
"2 1555.536108 0.000000e+00 Arable\n",
"25 1549.051565 0.000000e+00 Inflowing drainage direction\n",
"24 1485.853766 5.152527e-318 Outflowing drainage direction\n",
"22 1392.732967 1.268634e-298 Cumulative catchment area\n",
"21 1309.187405 3.516732e-281 Elevation\n",
"20 894.234195 6.746925e-194 Suburban\n",
"3 745.160492 2.857352e-162 Improve grassland\n",
"19 743.681811 5.893993e-162 Urban\n",
"0 574.470893 7.099727e-126 Deciduous woodland\n",
"13 271.809180 8.008227e-61 Freshwater\n",
"4 149.345332 2.857674e-34 Neutral grassland\n",
"7 131.344663 2.375107e-30 Fen\n",
"18 99.865736 1.760901e-23 Saltmarsh\n",
"15 46.675600 8.521422e-12 Supralittoral sediment\n",
"17 38.959990 4.378224e-10 Littoral sediment\n",
"12 13.290046 2.672276e-04 Saltwater\n",
"6 12.015067 5.283914e-04 Acid grassland\n",
"5 10.402339 1.259780e-03 Calcareous grassland\n",
"10 10.105514 1.479624e-03 Bog\n",
"9 4.772190 2.893001e-02 Heather grassland\n",
"8 4.024274 4.485804e-02 Heather\n",
"11 2.159090 1.417381e-01 Inland rock\n",
"14 0.851691 3.560812e-01 Supralittoral rock\n",
"1 0.632046 4.266115e-01 Coniferous woodland\n",
"16 0.240235 6.240394e-01 Littoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Red-legged Partridge 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 2 | \n",
" 9262.561980 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 23 | \n",
" 8310.347324 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 24 | \n",
" 6580.468060 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 25 | \n",
" 6132.393216 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 6122.856668 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 22 | \n",
" 6094.072173 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 3 | \n",
" 3761.382336 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 0 | \n",
" 1821.322033 | \n",
" 0.000000e+00 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 591.420483 | \n",
" 1.691353e-129 | \n",
" Suburban | \n",
"
\n",
" \n",
" 5 | \n",
" 325.757650 | \n",
" 1.798558e-72 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 108.694533 | \n",
" 2.073050e-25 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 19 | \n",
" 58.130510 | \n",
" 2.518487e-14 | \n",
" Urban | \n",
"
\n",
" \n",
" 7 | \n",
" 54.477132 | \n",
" 1.609616e-13 | \n",
" Fen | \n",
"
\n",
" \n",
" 13 | \n",
" 38.514509 | \n",
" 5.499196e-10 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 18 | \n",
" 19.620936 | \n",
" 9.473139e-06 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 9 | \n",
" 7.224620 | \n",
" 7.194636e-03 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 7.125487 | \n",
" 7.603285e-03 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 15 | \n",
" 4.532290 | \n",
" 3.326844e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 8 | \n",
" 4.459810 | \n",
" 3.470883e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 16 | \n",
" 3.979559 | \n",
" 4.606380e-02 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 3.505345 | \n",
" 6.117991e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 1 | \n",
" 2.115325 | \n",
" 1.458406e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 14 | \n",
" 0.747430 | \n",
" 3.872974e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 6 | \n",
" 0.289120 | \n",
" 5.907888e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 0.153603 | \n",
" 6.951180e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 0.139898 | \n",
" 7.083844e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"2 9262.561980 0.000000e+00 Arable\n",
"23 8310.347324 0.000000e+00 Surface type\n",
"24 6580.468060 0.000000e+00 Outflowing drainage direction\n",
"25 6132.393216 0.000000e+00 Inflowing drainage direction\n",
"21 6122.856668 0.000000e+00 Elevation\n",
"22 6094.072173 0.000000e+00 Cumulative catchment area\n",
"3 3761.382336 0.000000e+00 Improve grassland\n",
"0 1821.322033 0.000000e+00 Deciduous woodland\n",
"20 591.420483 1.691353e-129 Suburban\n",
"5 325.757650 1.798558e-72 Calcareous grassland\n",
"4 108.694533 2.073050e-25 Neutral grassland\n",
"19 58.130510 2.518487e-14 Urban\n",
"7 54.477132 1.609616e-13 Fen\n",
"13 38.514509 5.499196e-10 Freshwater\n",
"18 19.620936 9.473139e-06 Saltmarsh\n",
"9 7.224620 7.194636e-03 Heather grassland\n",
"11 7.125487 7.603285e-03 Inland rock\n",
"15 4.532290 3.326844e-02 Supralittoral sediment\n",
"8 4.459810 3.470883e-02 Heather\n",
"16 3.979559 4.606380e-02 Littoral rock\n",
"10 3.505345 6.117991e-02 Bog\n",
"1 2.115325 1.458406e-01 Coniferous woodland\n",
"14 0.747430 3.872974e-01 Supralittoral rock\n",
"6 0.289120 5.907888e-01 Acid grassland\n",
"17 0.153603 6.951180e-01 Littoral sediment\n",
"12 0.139898 7.083844e-01 Saltwater"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ring-necked Parakeet 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 20 | \n",
" 5174.029480 | \n",
" 0.000000e+00 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 4816.293327 | \n",
" 0.000000e+00 | \n",
" Urban | \n",
"
\n",
" \n",
" 22 | \n",
" 2110.055997 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 23 | \n",
" 1451.182004 | \n",
" 8.429407e-311 | \n",
" Surface type | \n",
"
\n",
" \n",
" 24 | \n",
" 1239.102083 | \n",
" 1.629495e-266 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 25 | \n",
" 1101.552188 | \n",
" 1.215523e-237 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 934.465809 | \n",
" 2.082605e-202 | \n",
" Elevation | \n",
"
\n",
" \n",
" 0 | \n",
" 644.695315 | \n",
" 7.138206e-141 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 3 | \n",
" 590.530935 | \n",
" 2.620156e-129 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 266.908247 | \n",
" 9.184502e-60 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 2 | \n",
" 33.737881 | \n",
" 6.363711e-09 | \n",
" Arable | \n",
"
\n",
" \n",
" 6 | \n",
" 16.142590 | \n",
" 5.887779e-05 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 9 | \n",
" 8.350427 | \n",
" 3.858472e-03 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 6.304742 | \n",
" 1.204628e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 4 | \n",
" 6.018766 | \n",
" 1.415966e-02 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 5.354666 | \n",
" 2.067299e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 1 | \n",
" 4.630696 | \n",
" 3.141203e-02 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 16 | \n",
" 2.075782 | \n",
" 1.496627e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 2.028360 | \n",
" 1.543966e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 14 | \n",
" 1.773163 | \n",
" 1.830003e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 17 | \n",
" 1.343003 | \n",
" 2.465134e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 18 | \n",
" 1.007935 | \n",
" 3.154055e-01 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 12 | \n",
" 0.767993 | \n",
" 3.808449e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 15 | \n",
" 0.170880 | \n",
" 6.793333e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 7 | \n",
" 0.122766 | \n",
" 7.260555e-01 | \n",
" Fen | \n",
"
\n",
" \n",
" 5 | \n",
" 0.061965 | \n",
" 8.034183e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"20 5174.029480 0.000000e+00 Suburban\n",
"19 4816.293327 0.000000e+00 Urban\n",
"22 2110.055997 0.000000e+00 Cumulative catchment area\n",
"23 1451.182004 8.429407e-311 Surface type\n",
"24 1239.102083 1.629495e-266 Outflowing drainage direction\n",
"25 1101.552188 1.215523e-237 Inflowing drainage direction\n",
"21 934.465809 2.082605e-202 Elevation\n",
"0 644.695315 7.138206e-141 Deciduous woodland\n",
"3 590.530935 2.620156e-129 Improve grassland\n",
"13 266.908247 9.184502e-60 Freshwater\n",
"2 33.737881 6.363711e-09 Arable\n",
"6 16.142590 5.887779e-05 Acid grassland\n",
"9 8.350427 3.858472e-03 Heather grassland\n",
"10 6.304742 1.204628e-02 Bog\n",
"4 6.018766 1.415966e-02 Neutral grassland\n",
"8 5.354666 2.067299e-02 Heather\n",
"1 4.630696 3.141203e-02 Coniferous woodland\n",
"16 2.075782 1.496627e-01 Littoral rock\n",
"11 2.028360 1.543966e-01 Inland rock\n",
"14 1.773163 1.830003e-01 Supralittoral rock\n",
"17 1.343003 2.465134e-01 Littoral sediment\n",
"18 1.007935 3.154055e-01 Saltmarsh\n",
"12 0.767993 3.808449e-01 Saltwater\n",
"15 0.170880 6.793333e-01 Supralittoral sediment\n",
"7 0.122766 7.260555e-01 Fen\n",
"5 0.061965 8.034183e-01 Calcareous grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rock Dove 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 9715.208896 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 24 | \n",
" 7716.649425 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 25 | \n",
" 7489.623513 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 7209.182719 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 22 | \n",
" 6950.626400 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 3 | \n",
" 4736.971375 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 20 | \n",
" 4361.914241 | \n",
" 0.000000e+00 | \n",
" Suburban | \n",
"
\n",
" \n",
" 2 | \n",
" 3272.566853 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 0 | \n",
" 1947.276915 | \n",
" 0.000000e+00 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 19 | \n",
" 1698.722674 | \n",
" 0.000000e+00 | \n",
" Urban | \n",
"
\n",
" \n",
" 4 | \n",
" 327.460980 | \n",
" 7.718845e-73 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 172.810554 | \n",
" 2.260169e-39 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 158.476505 | \n",
" 2.949316e-36 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 16 | \n",
" 63.399064 | \n",
" 1.741628e-15 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 14 | \n",
" 38.512231 | \n",
" 5.505612e-10 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 15 | \n",
" 35.360040 | \n",
" 2.767982e-09 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 7 | \n",
" 32.305738 | \n",
" 1.328301e-08 | \n",
" Fen | \n",
"
\n",
" \n",
" 18 | \n",
" 15.733289 | \n",
" 7.308286e-05 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 17 | \n",
" 13.808123 | \n",
" 2.027922e-04 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 11 | \n",
" 5.939593 | \n",
" 1.480967e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 8 | \n",
" 1.467724 | \n",
" 2.257138e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 6 | \n",
" 1.183074 | \n",
" 2.767391e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 1.068542 | \n",
" 3.012825e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 9 | \n",
" 0.520829 | \n",
" 4.704932e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 0.491905 | \n",
" 4.830835e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 1 | \n",
" 0.363769 | \n",
" 5.464245e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 9715.208896 0.000000e+00 Surface type\n",
"24 7716.649425 0.000000e+00 Outflowing drainage direction\n",
"25 7489.623513 0.000000e+00 Inflowing drainage direction\n",
"21 7209.182719 0.000000e+00 Elevation\n",
"22 6950.626400 0.000000e+00 Cumulative catchment area\n",
"3 4736.971375 0.000000e+00 Improve grassland\n",
"20 4361.914241 0.000000e+00 Suburban\n",
"2 3272.566853 0.000000e+00 Arable\n",
"0 1947.276915 0.000000e+00 Deciduous woodland\n",
"19 1698.722674 0.000000e+00 Urban\n",
"4 327.460980 7.718845e-73 Neutral grassland\n",
"5 172.810554 2.260169e-39 Calcareous grassland\n",
"13 158.476505 2.949316e-36 Freshwater\n",
"16 63.399064 1.741628e-15 Littoral rock\n",
"14 38.512231 5.505612e-10 Supralittoral rock\n",
"15 35.360040 2.767982e-09 Supralittoral sediment\n",
"7 32.305738 1.328301e-08 Fen\n",
"18 15.733289 7.308286e-05 Saltmarsh\n",
"17 13.808123 2.027922e-04 Littoral sediment\n",
"11 5.939593 1.480967e-02 Inland rock\n",
"8 1.467724 2.257138e-01 Heather\n",
"6 1.183074 2.767391e-01 Acid grassland\n",
"10 1.068542 3.012825e-01 Bog\n",
"9 0.520829 4.704932e-01 Heather grassland\n",
"12 0.491905 4.830835e-01 Saltwater\n",
"1 0.363769 5.464245e-01 Coniferous woodland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ruddy Duck 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 13 | \n",
" 2084.023887 | \n",
" 0.000000e+00 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 24 | \n",
" 574.800456 | \n",
" 6.036397e-126 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 439.953763 | \n",
" 4.753911e-97 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 23 | \n",
" 331.644948 | \n",
" 9.666367e-74 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 252.505585 | \n",
" 1.196889e-56 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 19 | \n",
" 209.791045 | \n",
" 2.131385e-47 | \n",
" Urban | \n",
"
\n",
" \n",
" 21 | \n",
" 206.348108 | \n",
" 1.188914e-46 | \n",
" Elevation | \n",
"
\n",
" \n",
" 0 | \n",
" 197.545829 | \n",
" 9.644094e-45 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 4 | \n",
" 178.469812 | \n",
" 1.333079e-40 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 3 | \n",
" 159.658114 | \n",
" 1.632226e-36 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 20 | \n",
" 117.615266 | \n",
" 2.340567e-27 | \n",
" Suburban | \n",
"
\n",
" \n",
" 7 | \n",
" 105.045117 | \n",
" 1.299505e-24 | \n",
" Fen | \n",
"
\n",
" \n",
" 2 | \n",
" 54.679745 | \n",
" 1.452179e-13 | \n",
" Arable | \n",
"
\n",
" \n",
" 18 | \n",
" 36.700240 | \n",
" 1.392471e-09 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 15 | \n",
" 18.578174 | \n",
" 1.635478e-05 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 17.716380 | \n",
" 2.570854e-05 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 6 | \n",
" 3.935350 | \n",
" 4.728954e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 2.178205 | \n",
" 1.399871e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 8 | \n",
" 1.916130 | \n",
" 1.662933e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 10 | \n",
" 1.383460 | \n",
" 2.395211e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 9 | \n",
" 1.221097 | \n",
" 2.691535e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 1.008807 | \n",
" 3.151962e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 14 | \n",
" 0.445443 | \n",
" 5.045116e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 16 | \n",
" 0.433081 | \n",
" 5.104857e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 0.247335 | \n",
" 6.189611e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 5 | \n",
" 0.072280 | \n",
" 7.880478e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"13 2084.023887 0.000000e+00 Freshwater\n",
"24 574.800456 6.036397e-126 Outflowing drainage direction\n",
"22 439.953763 4.753911e-97 Cumulative catchment area\n",
"23 331.644948 9.666367e-74 Surface type\n",
"25 252.505585 1.196889e-56 Inflowing drainage direction\n",
"19 209.791045 2.131385e-47 Urban\n",
"21 206.348108 1.188914e-46 Elevation\n",
"0 197.545829 9.644094e-45 Deciduous woodland\n",
"4 178.469812 1.333079e-40 Neutral grassland\n",
"3 159.658114 1.632226e-36 Improve grassland\n",
"20 117.615266 2.340567e-27 Suburban\n",
"7 105.045117 1.299505e-24 Fen\n",
"2 54.679745 1.452179e-13 Arable\n",
"18 36.700240 1.392471e-09 Saltmarsh\n",
"15 18.578174 1.635478e-05 Supralittoral sediment\n",
"12 17.716380 2.570854e-05 Saltwater\n",
"6 3.935350 4.728954e-02 Acid grassland\n",
"17 2.178205 1.399871e-01 Littoral sediment\n",
"8 1.916130 1.662933e-01 Heather\n",
"10 1.383460 2.395211e-01 Bog\n",
"9 1.221097 2.691535e-01 Heather grassland\n",
"1 1.008807 3.151962e-01 Coniferous woodland\n",
"14 0.445443 5.045116e-01 Supralittoral rock\n",
"16 0.433081 5.104857e-01 Littoral rock\n",
"11 0.247335 6.189611e-01 Inland rock\n",
"5 0.072280 7.880478e-01 Calcareous grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Whooper Swan 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 1676.560528 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 23 | \n",
" 1555.884294 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 1411.884325 | \n",
" 1.291051e-302 | \n",
" Elevation | \n",
"
\n",
" \n",
" 24 | \n",
" 1295.050837 | \n",
" 3.175931e-278 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 1252.169594 | \n",
" 2.987125e-269 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 3 | \n",
" 560.870223 | \n",
" 5.752589e-123 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 518.099739 | \n",
" 8.226528e-114 | \n",
" Arable | \n",
"
\n",
" \n",
" 13 | \n",
" 302.457075 | \n",
" 1.918026e-67 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 17 | \n",
" 294.097064 | \n",
" 1.224555e-65 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 0 | \n",
" 236.168141 | \n",
" 4.111276e-53 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 18 | \n",
" 210.131628 | \n",
" 1.798147e-47 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 7 | \n",
" 171.006773 | \n",
" 5.572412e-39 | \n",
" Fen | \n",
"
\n",
" \n",
" 20 | \n",
" 166.933497 | \n",
" 4.277570e-38 | \n",
" Suburban | \n",
"
\n",
" \n",
" 4 | \n",
" 152.889945 | \n",
" 4.839547e-35 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 19 | \n",
" 129.204755 | \n",
" 6.950815e-30 | \n",
" Urban | \n",
"
\n",
" \n",
" 9 | \n",
" 88.659782 | \n",
" 4.982099e-21 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 15 | \n",
" 87.366558 | \n",
" 9.563148e-21 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 14 | \n",
" 65.810060 | \n",
" 5.135459e-16 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 16 | \n",
" 62.367071 | \n",
" 2.938167e-15 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 36.089602 | \n",
" 1.904150e-09 | \n",
" Bog | \n",
"
\n",
" \n",
" 1 | \n",
" 25.502277 | \n",
" 4.442055e-07 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 8 | \n",
" 13.925116 | \n",
" 1.905575e-04 | \n",
" Heather | \n",
"
\n",
" \n",
" 12 | \n",
" 7.753771 | \n",
" 5.363096e-03 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 6 | \n",
" 7.525727 | \n",
" 6.085674e-03 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 0.360808 | \n",
" 5.480621e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 5 | \n",
" 0.028754 | \n",
" 8.653489e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 1676.560528 0.000000e+00 Inflowing drainage direction\n",
"23 1555.884294 0.000000e+00 Surface type\n",
"21 1411.884325 1.291051e-302 Elevation\n",
"24 1295.050837 3.175931e-278 Outflowing drainage direction\n",
"22 1252.169594 2.987125e-269 Cumulative catchment area\n",
"3 560.870223 5.752589e-123 Improve grassland\n",
"2 518.099739 8.226528e-114 Arable\n",
"13 302.457075 1.918026e-67 Freshwater\n",
"17 294.097064 1.224555e-65 Littoral sediment\n",
"0 236.168141 4.111276e-53 Deciduous woodland\n",
"18 210.131628 1.798147e-47 Saltmarsh\n",
"7 171.006773 5.572412e-39 Fen\n",
"20 166.933497 4.277570e-38 Suburban\n",
"4 152.889945 4.839547e-35 Neutral grassland\n",
"19 129.204755 6.950815e-30 Urban\n",
"9 88.659782 4.982099e-21 Heather grassland\n",
"15 87.366558 9.563148e-21 Supralittoral sediment\n",
"14 65.810060 5.135459e-16 Supralittoral rock\n",
"16 62.367071 2.938167e-15 Littoral rock\n",
"10 36.089602 1.904150e-09 Bog\n",
"1 25.502277 4.442055e-07 Coniferous woodland\n",
"8 13.925116 1.905575e-04 Heather\n",
"12 7.753771 5.363096e-03 Saltwater\n",
"6 7.525727 6.085674e-03 Acid grassland\n",
"11 0.360808 5.480621e-01 Inland rock\n",
"5 0.028754 8.653489e-01 Calcareous grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Wigeon 1km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 4543.858943 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 23 | \n",
" 4385.352401 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 3772.569210 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 24 | \n",
" 3296.213107 | \n",
" 0.000000e+00 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 22 | \n",
" 3018.447019 | \n",
" 0.000000e+00 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 3 | \n",
" 1984.684092 | \n",
" 0.000000e+00 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 1640.404091 | \n",
" 0.000000e+00 | \n",
" Arable | \n",
"
\n",
" \n",
" 0 | \n",
" 1016.533733 | \n",
" 9.783489e-220 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 871.988879 | \n",
" 3.462062e-189 | \n",
" Suburban | \n",
"
\n",
" \n",
" 17 | \n",
" 839.439277 | \n",
" 2.736586e-182 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 13 | \n",
" 570.717851 | \n",
" 4.505394e-125 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 18 | \n",
" 551.354132 | \n",
" 6.247919e-121 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 19 | \n",
" 535.113644 | \n",
" 1.869402e-117 | \n",
" Urban | \n",
"
\n",
" \n",
" 15 | \n",
" 329.558717 | \n",
" 2.723634e-73 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 16 | \n",
" 261.381261 | \n",
" 1.439437e-58 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 7 | \n",
" 176.243055 | \n",
" 4.059697e-40 | \n",
" Fen | \n",
"
\n",
" \n",
" 4 | \n",
" 150.239640 | \n",
" 1.825651e-34 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 104.357556 | \n",
" 1.836557e-24 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 14 | \n",
" 37.244870 | \n",
" 1.053444e-09 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 8 | \n",
" 14.097058 | \n",
" 1.739122e-04 | \n",
" Heather | \n",
"
\n",
" \n",
" 1 | \n",
" 12.680417 | \n",
" 3.700235e-04 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 9 | \n",
" 9.281786 | \n",
" 2.316259e-03 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 7.220527 | \n",
" 7.211058e-03 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 1.418478 | \n",
" 2.336626e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 6 | \n",
" 0.976582 | \n",
" 3.230512e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 0.096023 | \n",
" 7.566574e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 4543.858943 0.000000e+00 Inflowing drainage direction\n",
"23 4385.352401 0.000000e+00 Surface type\n",
"21 3772.569210 0.000000e+00 Elevation\n",
"24 3296.213107 0.000000e+00 Outflowing drainage direction\n",
"22 3018.447019 0.000000e+00 Cumulative catchment area\n",
"3 1984.684092 0.000000e+00 Improve grassland\n",
"2 1640.404091 0.000000e+00 Arable\n",
"0 1016.533733 9.783489e-220 Deciduous woodland\n",
"20 871.988879 3.462062e-189 Suburban\n",
"17 839.439277 2.736586e-182 Littoral sediment\n",
"13 570.717851 4.505394e-125 Freshwater\n",
"18 551.354132 6.247919e-121 Saltmarsh\n",
"19 535.113644 1.869402e-117 Urban\n",
"15 329.558717 2.723634e-73 Supralittoral sediment\n",
"16 261.381261 1.439437e-58 Littoral rock\n",
"7 176.243055 4.059697e-40 Fen\n",
"4 150.239640 1.825651e-34 Neutral grassland\n",
"12 104.357556 1.836557e-24 Saltwater\n",
"14 37.244870 1.053444e-09 Supralittoral rock\n",
"8 14.097058 1.739122e-04 Heather\n",
"1 12.680417 3.700235e-04 Coniferous woodland\n",
"9 9.281786 2.316259e-03 Heather grassland\n",
"5 7.220527 7.211058e-03 Calcareous grassland\n",
"10 1.418478 2.336626e-01 Bog\n",
"6 0.976582 3.230512e-01 Acid grassland\n",
"11 0.096023 7.566574e-01 Inland rock"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for dict in df_dicts:\n",
" print(dict['name'])\n",
" display(dict['kbest']['Dataframe'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.13 ('env': venv)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "f025c48a9b67ab76bdc0400dfa0f9ba99120976b4a6ec6a63d1c946516165c91"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}