{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import rioxarray\n", "import json, os\n", "\n", "from sklearn.feature_selection import SelectKBest\n", "from sklearn.feature_selection import chi2, f_classif, mutual_info_classif\n", "from sklearn.metrics import f1_score, classification_report\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.model_selection import train_test_split\n", "\n", "from sklearn.linear_model import LogisticRegression, SGDClassifier\n", "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier, StackingClassifier\n", "\n", "from imblearn.over_sampling import RandomOverSampler, SMOTE" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "seed = 42\n", "verbose = False\n", "details = False" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
712500.0267500.000000099000...1.798783e+011.979030e+011.630712e+013.329318e+008.434404e+002.052438e+017.809389e+001.718280e+018.873806e+000
912500.0617500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
952500.07500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
202500.0322500.0020000067005...1.277848e+003.201799e-029.166379e-01-3.400000e+383.987500e-01-3.400000e+384.136672e+002.444737e+002.649246e+010
1237500.0447500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "712500.0 267500.0 0 0 0 \n", "912500.0 617500.0 0 0 0 \n", "952500.0 7500.0 0 0 0 \n", "202500.0 322500.0 0 20 0 \n", "1237500.0 447500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "712500.0 267500.0 0 0 \n", "912500.0 617500.0 0 0 \n", "952500.0 7500.0 0 0 \n", "202500.0 322500.0 0 0 \n", "1237500.0 447500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "712500.0 267500.0 0 99 0 0 \n", "912500.0 617500.0 0 0 0 0 \n", "952500.0 7500.0 0 0 0 0 \n", "202500.0 322500.0 0 67 0 0 \n", "1237500.0 447500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "712500.0 267500.0 0 ... 1.798783e+01 1.979030e+01 \n", "912500.0 617500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "952500.0 7500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "202500.0 322500.0 5 ... 1.277848e+00 3.201799e-02 \n", "1237500.0 447500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "712500.0 267500.0 1.630712e+01 3.329318e+00 8.434404e+00 \n", "912500.0 617500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "952500.0 7500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "202500.0 322500.0 9.166379e-01 -3.400000e+38 3.987500e-01 \n", "1237500.0 447500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "712500.0 267500.0 2.052438e+01 7.809389e+00 \n", "912500.0 617500.0 -3.400000e+38 -3.400000e+38 \n", "952500.0 7500.0 -3.400000e+38 -3.400000e+38 \n", "202500.0 322500.0 -3.400000e+38 4.136672e+00 \n", "1237500.0 447500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "712500.0 267500.0 1.718280e+01 8.873806e+00 0 \n", "912500.0 617500.0 -3.400000e+38 -3.400000e+38 0 \n", "952500.0 7500.0 -3.400000e+38 -3.400000e+38 0 \n", "202500.0 322500.0 2.444737e+00 2.649246e+01 0 \n", "1237500.0 447500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
982500.0692500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
482500.077500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
57500.0677500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
627500.0662500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
602500.0657500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "982500.0 692500.0 0 0 0 \n", "482500.0 77500.0 0 0 0 \n", "57500.0 677500.0 0 0 0 \n", "627500.0 662500.0 0 0 0 \n", "602500.0 657500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "982500.0 692500.0 0 0 0 \n", "482500.0 77500.0 0 0 0 \n", "57500.0 677500.0 0 0 0 \n", "627500.0 662500.0 0 0 0 \n", "602500.0 657500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "982500.0 692500.0 0 0 0 0 ... \n", "482500.0 77500.0 0 0 0 0 ... \n", "57500.0 677500.0 0 0 0 0 ... \n", "627500.0 662500.0 0 0 0 0 ... \n", "602500.0 657500.0 0 0 0 0 ... \n", "\n", " Glyphosate_5km Mancozeb_5km Mecoprop-P_5km \\\n", "y x \n", "982500.0 692500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "482500.0 77500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "57500.0 677500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "627500.0 662500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "602500.0 657500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "982500.0 692500.0 -3.400000e+38 -3.400000e+38 \n", "482500.0 77500.0 -3.400000e+38 -3.400000e+38 \n", "57500.0 677500.0 -3.400000e+38 -3.400000e+38 \n", "627500.0 662500.0 -3.400000e+38 -3.400000e+38 \n", "602500.0 657500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "982500.0 692500.0 -3.400000e+38 -3.400000e+38 \n", "482500.0 77500.0 -3.400000e+38 -3.400000e+38 \n", "57500.0 677500.0 -3.400000e+38 -3.400000e+38 \n", "627500.0 662500.0 -3.400000e+38 -3.400000e+38 \n", "602500.0 657500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "982500.0 692500.0 -3.400000e+38 -3.400000e+38 0 \n", "482500.0 77500.0 -3.400000e+38 -3.400000e+38 0 \n", "57500.0 677500.0 -3.400000e+38 -3.400000e+38 0 \n", "627500.0 662500.0 -3.400000e+38 -3.400000e+38 0 \n", "602500.0 657500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
132500.0607500.000990000100...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
367500.0177500.00000000000...5.604231e-011.088421e-014.968090e-012.101036e+003.069444e-011.085213e+001.441999e+005.178424e-01-3.400000e+380
677500.0107500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
937500.0577500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
847500.0127500.0000210000011...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "132500.0 607500.0 0 0 99 \n", "367500.0 177500.0 0 0 0 \n", "677500.0 107500.0 0 0 0 \n", "937500.0 577500.0 0 0 0 \n", "847500.0 127500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "132500.0 607500.0 0 0 0 \n", "367500.0 177500.0 0 0 0 \n", "677500.0 107500.0 0 0 0 \n", "937500.0 577500.0 0 0 0 \n", "847500.0 127500.0 21 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "132500.0 607500.0 0 1 0 0 ... \n", "367500.0 177500.0 0 0 0 0 ... \n", "677500.0 107500.0 0 0 0 0 ... \n", "937500.0 577500.0 0 0 0 0 ... \n", "847500.0 127500.0 0 0 0 11 ... \n", "\n", " Glyphosate_5km Mancozeb_5km Mecoprop-P_5km \\\n", "y x \n", "132500.0 607500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "367500.0 177500.0 5.604231e-01 1.088421e-01 4.968090e-01 \n", "677500.0 107500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "937500.0 577500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "847500.0 127500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "132500.0 607500.0 -3.400000e+38 -3.400000e+38 \n", "367500.0 177500.0 2.101036e+00 3.069444e-01 \n", "677500.0 107500.0 -3.400000e+38 -3.400000e+38 \n", "937500.0 577500.0 -3.400000e+38 -3.400000e+38 \n", "847500.0 127500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "132500.0 607500.0 -3.400000e+38 -3.400000e+38 \n", "367500.0 177500.0 1.085213e+00 1.441999e+00 \n", "677500.0 107500.0 -3.400000e+38 -3.400000e+38 \n", "937500.0 577500.0 -3.400000e+38 -3.400000e+38 \n", "847500.0 127500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "132500.0 607500.0 -3.400000e+38 -3.400000e+38 0 \n", "367500.0 177500.0 5.178424e-01 -3.400000e+38 0 \n", "677500.0 107500.0 -3.400000e+38 -3.400000e+38 0 \n", "937500.0 577500.0 -3.400000e+38 -3.400000e+38 0 \n", "847500.0 127500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
437500.0172500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
897500.0432500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
942500.0267500.003200000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1162500.0327500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
852500.07500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "437500.0 172500.0 0 0 0 \n", "897500.0 432500.0 0 0 0 \n", "942500.0 267500.0 0 32 0 \n", "1162500.0 327500.0 0 0 0 \n", "852500.0 7500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "437500.0 172500.0 0 0 \n", "897500.0 432500.0 0 0 \n", "942500.0 267500.0 0 0 \n", "1162500.0 327500.0 0 0 \n", "852500.0 7500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "437500.0 172500.0 0 0 0 0 \n", "897500.0 432500.0 0 0 0 0 \n", "942500.0 267500.0 0 0 0 0 \n", "1162500.0 327500.0 0 0 0 0 \n", "852500.0 7500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "437500.0 172500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "897500.0 432500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "942500.0 267500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1162500.0 327500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "852500.0 7500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "437500.0 172500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "897500.0 432500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "942500.0 267500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1162500.0 327500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "852500.0 7500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "437500.0 172500.0 -3.400000e+38 -3.400000e+38 \n", "897500.0 432500.0 -3.400000e+38 -3.400000e+38 \n", "942500.0 267500.0 -3.400000e+38 -3.400000e+38 \n", "1162500.0 327500.0 -3.400000e+38 -3.400000e+38 \n", "852500.0 7500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "437500.0 172500.0 -3.400000e+38 -3.400000e+38 0 \n", "897500.0 432500.0 -3.400000e+38 -3.400000e+38 0 \n", "942500.0 267500.0 -3.400000e+38 -3.400000e+38 0 \n", "1162500.0 327500.0 -3.400000e+38 -3.400000e+38 0 \n", "852500.0 7500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
847500.0617500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
32500.0452500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
852500.052500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
432500.0647500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
587500.0602500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "847500.0 617500.0 0 0 0 \n", "32500.0 452500.0 0 0 0 \n", "852500.0 52500.0 0 0 0 \n", "432500.0 647500.0 0 0 0 \n", "587500.0 602500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "847500.0 617500.0 0 0 0 \n", "32500.0 452500.0 0 0 0 \n", "852500.0 52500.0 0 0 0 \n", "432500.0 647500.0 0 0 0 \n", "587500.0 602500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "847500.0 617500.0 0 0 0 0 ... \n", "32500.0 452500.0 0 0 0 0 ... \n", "852500.0 52500.0 0 0 0 0 ... \n", "432500.0 647500.0 0 0 0 0 ... \n", "587500.0 602500.0 0 0 0 0 ... \n", "\n", " Glyphosate_5km Mancozeb_5km Mecoprop-P_5km \\\n", "y x \n", "847500.0 617500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "32500.0 452500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "852500.0 52500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "432500.0 647500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "587500.0 602500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "847500.0 617500.0 -3.400000e+38 -3.400000e+38 \n", "32500.0 452500.0 -3.400000e+38 -3.400000e+38 \n", "852500.0 52500.0 -3.400000e+38 -3.400000e+38 \n", "432500.0 647500.0 -3.400000e+38 -3.400000e+38 \n", "587500.0 602500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "847500.0 617500.0 -3.400000e+38 -3.400000e+38 \n", "32500.0 452500.0 -3.400000e+38 -3.400000e+38 \n", "852500.0 52500.0 -3.400000e+38 -3.400000e+38 \n", "432500.0 647500.0 -3.400000e+38 -3.400000e+38 \n", "587500.0 602500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "847500.0 617500.0 -3.400000e+38 -3.400000e+38 0 \n", "32500.0 452500.0 -3.400000e+38 -3.400000e+38 0 \n", "852500.0 52500.0 -3.400000e+38 -3.400000e+38 0 \n", "432500.0 647500.0 -3.400000e+38 -3.400000e+38 0 \n", "587500.0 602500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
1192500.062500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
667500.0492500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
337500.037500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1142500.0162500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
297500.0232500.00000000000...4.729528e-031.255404e-034.127780e-03-3.400000e+382.866850e-03-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1192500.0 62500.0 0 0 0 \n", "667500.0 492500.0 0 0 0 \n", "337500.0 37500.0 0 0 0 \n", "1142500.0 162500.0 0 0 0 \n", "297500.0 232500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1192500.0 62500.0 0 0 \n", "667500.0 492500.0 0 0 \n", "337500.0 37500.0 0 0 \n", "1142500.0 162500.0 0 0 \n", "297500.0 232500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1192500.0 62500.0 0 0 0 0 \n", "667500.0 492500.0 0 0 0 0 \n", "337500.0 37500.0 0 0 0 0 \n", "1142500.0 162500.0 0 0 0 0 \n", "297500.0 232500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "1192500.0 62500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "667500.0 492500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "337500.0 37500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1142500.0 162500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "297500.0 232500.0 0 ... 4.729528e-03 1.255404e-03 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "1192500.0 62500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "667500.0 492500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "337500.0 37500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1142500.0 162500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "297500.0 232500.0 4.127780e-03 -3.400000e+38 2.866850e-03 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "1192500.0 62500.0 -3.400000e+38 -3.400000e+38 \n", "667500.0 492500.0 -3.400000e+38 -3.400000e+38 \n", "337500.0 37500.0 -3.400000e+38 -3.400000e+38 \n", "1142500.0 162500.0 -3.400000e+38 -3.400000e+38 \n", "297500.0 232500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "1192500.0 62500.0 -3.400000e+38 -3.400000e+38 0 \n", "667500.0 492500.0 -3.400000e+38 -3.400000e+38 0 \n", "337500.0 37500.0 -3.400000e+38 -3.400000e+38 0 \n", "1142500.0 162500.0 -3.400000e+38 -3.400000e+38 0 \n", "297500.0 232500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
307500.042500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
622500.097500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1212500.0462500.000095400001...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
962500.0102500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
702500.0617500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "307500.0 42500.0 0 0 0 \n", "622500.0 97500.0 0 0 0 \n", "1212500.0 462500.0 0 0 0 \n", "962500.0 102500.0 0 0 0 \n", "702500.0 617500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "307500.0 42500.0 0 0 \n", "622500.0 97500.0 0 0 \n", "1212500.0 462500.0 95 4 \n", "962500.0 102500.0 0 0 \n", "702500.0 617500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "307500.0 42500.0 0 0 0 0 \n", "622500.0 97500.0 0 0 0 0 \n", "1212500.0 462500.0 0 0 0 0 \n", "962500.0 102500.0 0 0 0 0 \n", "702500.0 617500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "307500.0 42500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "622500.0 97500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1212500.0 462500.0 1 ... -3.400000e+38 -3.400000e+38 \n", "962500.0 102500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "702500.0 617500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "307500.0 42500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "622500.0 97500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1212500.0 462500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "962500.0 102500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "702500.0 617500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "307500.0 42500.0 -3.400000e+38 -3.400000e+38 \n", "622500.0 97500.0 -3.400000e+38 -3.400000e+38 \n", "1212500.0 462500.0 -3.400000e+38 -3.400000e+38 \n", "962500.0 102500.0 -3.400000e+38 -3.400000e+38 \n", "702500.0 617500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "307500.0 42500.0 -3.400000e+38 -3.400000e+38 0 \n", "622500.0 97500.0 -3.400000e+38 -3.400000e+38 0 \n", "1212500.0 462500.0 -3.400000e+38 -3.400000e+38 0 \n", "962500.0 102500.0 -3.400000e+38 -3.400000e+38 0 \n", "702500.0 617500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
157500.0317500.00000000000...1.039940e+009.736983e-014.649050e-011.416382e+015.824835e-017.660726e+001.317793e+014.763658e-012.666079e+000
102500.0497500.0006020000000...2.453516e-012.766496e-029.993535e-02-3.400000e+388.190275e-02-3.400000e+38-3.400000e+38-3.400000e+381.525854e+000
982500.0657500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
277500.0357500.01802456000000...3.466839e-018.026547e-022.348484e-016.775991e+001.820343e-013.088803e+001.260376e+019.621822e+003.166261e-010
837500.0442500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "157500.0 317500.0 0 0 0 \n", "102500.0 497500.0 0 0 60 \n", "982500.0 657500.0 0 0 0 \n", "277500.0 357500.0 18 0 24 \n", "837500.0 442500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "157500.0 317500.0 0 0 0 \n", "102500.0 497500.0 20 0 0 \n", "982500.0 657500.0 0 0 0 \n", "277500.0 357500.0 56 0 0 \n", "837500.0 442500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "157500.0 317500.0 0 0 0 0 ... \n", "102500.0 497500.0 0 0 0 0 ... \n", "982500.0 657500.0 0 0 0 0 ... \n", "277500.0 357500.0 0 0 0 0 ... \n", "837500.0 442500.0 0 0 0 0 ... \n", "\n", " Glyphosate_5km Mancozeb_5km Mecoprop-P_5km \\\n", "y x \n", "157500.0 317500.0 1.039940e+00 9.736983e-01 4.649050e-01 \n", "102500.0 497500.0 2.453516e-01 2.766496e-02 9.993535e-02 \n", "982500.0 657500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "277500.0 357500.0 3.466839e-01 8.026547e-02 2.348484e-01 \n", "837500.0 442500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "157500.0 317500.0 1.416382e+01 5.824835e-01 \n", "102500.0 497500.0 -3.400000e+38 8.190275e-02 \n", "982500.0 657500.0 -3.400000e+38 -3.400000e+38 \n", "277500.0 357500.0 6.775991e+00 1.820343e-01 \n", "837500.0 442500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "157500.0 317500.0 7.660726e+00 1.317793e+01 \n", "102500.0 497500.0 -3.400000e+38 -3.400000e+38 \n", "982500.0 657500.0 -3.400000e+38 -3.400000e+38 \n", "277500.0 357500.0 3.088803e+00 1.260376e+01 \n", "837500.0 442500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "157500.0 317500.0 4.763658e-01 2.666079e+00 0 \n", "102500.0 497500.0 -3.400000e+38 1.525854e+00 0 \n", "982500.0 657500.0 -3.400000e+38 -3.400000e+38 0 \n", "277500.0 357500.0 9.621822e+00 3.166261e-01 0 \n", "837500.0 442500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
382500.0287500.00000000000...2.014876e+011.258746e+018.709696e+001.525128e+001.512782e+018.309065e-011.292195e+001.240951e-01-3.400000e+380
872500.0532500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
207500.0277500.0124000075000...1.179403e+015.411642e+003.950109e+00-3.400000e+381.388328e+01-3.400000e+38-3.400000e+38-3.400000e+381.120048e+000
492500.0552500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1227500.0597500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "382500.0 287500.0 0 0 0 \n", "872500.0 532500.0 0 0 0 \n", "207500.0 277500.0 1 24 0 \n", "492500.0 552500.0 0 0 0 \n", "1227500.0 597500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "382500.0 287500.0 0 0 \n", "872500.0 532500.0 0 0 \n", "207500.0 277500.0 0 0 \n", "492500.0 552500.0 0 0 \n", "1227500.0 597500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "382500.0 287500.0 0 0 0 0 \n", "872500.0 532500.0 0 0 0 0 \n", "207500.0 277500.0 0 75 0 0 \n", "492500.0 552500.0 0 0 0 0 \n", "1227500.0 597500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "382500.0 287500.0 0 ... 2.014876e+01 1.258746e+01 \n", "872500.0 532500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "207500.0 277500.0 0 ... 1.179403e+01 5.411642e+00 \n", "492500.0 552500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1227500.0 597500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "382500.0 287500.0 8.709696e+00 1.525128e+00 1.512782e+01 \n", "872500.0 532500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "207500.0 277500.0 3.950109e+00 -3.400000e+38 1.388328e+01 \n", "492500.0 552500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1227500.0 597500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "382500.0 287500.0 8.309065e-01 1.292195e+00 \n", "872500.0 532500.0 -3.400000e+38 -3.400000e+38 \n", "207500.0 277500.0 -3.400000e+38 -3.400000e+38 \n", "492500.0 552500.0 -3.400000e+38 -3.400000e+38 \n", "1227500.0 597500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "382500.0 287500.0 1.240951e-01 -3.400000e+38 0 \n", "872500.0 532500.0 -3.400000e+38 -3.400000e+38 0 \n", "207500.0 277500.0 -3.400000e+38 1.120048e+00 0 \n", "492500.0 552500.0 -3.400000e+38 -3.400000e+38 0 \n", "1227500.0 597500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
572500.0297500.0001439000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+381
517500.0322500.000030092050...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1012500.0412500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
997500.0172500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1037500.0432500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "572500.0 297500.0 0 0 14 \n", "517500.0 322500.0 0 0 0 \n", "1012500.0 412500.0 0 0 0 \n", "997500.0 172500.0 0 0 0 \n", "1037500.0 432500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "572500.0 297500.0 39 0 \n", "517500.0 322500.0 3 0 \n", "1012500.0 412500.0 0 0 \n", "997500.0 172500.0 0 0 \n", "1037500.0 432500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "572500.0 297500.0 0 0 0 0 \n", "517500.0 322500.0 0 92 0 5 \n", "1012500.0 412500.0 0 0 0 0 \n", "997500.0 172500.0 0 0 0 0 \n", "1037500.0 432500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "572500.0 297500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "517500.0 322500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1012500.0 412500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "997500.0 172500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1037500.0 432500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "572500.0 297500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "517500.0 322500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1012500.0 412500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "997500.0 172500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1037500.0 432500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "572500.0 297500.0 -3.400000e+38 -3.400000e+38 \n", "517500.0 322500.0 -3.400000e+38 -3.400000e+38 \n", "1012500.0 412500.0 -3.400000e+38 -3.400000e+38 \n", "997500.0 172500.0 -3.400000e+38 -3.400000e+38 \n", "1037500.0 432500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "572500.0 297500.0 -3.400000e+38 -3.400000e+38 1 \n", "517500.0 322500.0 -3.400000e+38 -3.400000e+38 0 \n", "1012500.0 412500.0 -3.400000e+38 -3.400000e+38 0 \n", "997500.0 172500.0 -3.400000e+38 -3.400000e+38 0 \n", "1037500.0 432500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
572500.0497500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
492500.057500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+381
922500.0567500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
47500.0697500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1127500.0387500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "572500.0 497500.0 0 0 0 \n", "492500.0 57500.0 0 0 0 \n", "922500.0 567500.0 0 0 0 \n", "47500.0 697500.0 0 0 0 \n", "1127500.0 387500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "572500.0 497500.0 0 0 \n", "492500.0 57500.0 0 0 \n", "922500.0 567500.0 0 0 \n", "47500.0 697500.0 0 0 \n", "1127500.0 387500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "572500.0 497500.0 0 0 0 0 \n", "492500.0 57500.0 0 0 0 0 \n", "922500.0 567500.0 0 0 0 0 \n", "47500.0 697500.0 0 0 0 0 \n", "1127500.0 387500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "572500.0 497500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "492500.0 57500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "922500.0 567500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "47500.0 697500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1127500.0 387500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "572500.0 497500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "492500.0 57500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "922500.0 567500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "47500.0 697500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1127500.0 387500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "572500.0 497500.0 -3.400000e+38 -3.400000e+38 \n", "492500.0 57500.0 -3.400000e+38 -3.400000e+38 \n", "922500.0 567500.0 -3.400000e+38 -3.400000e+38 \n", "47500.0 697500.0 -3.400000e+38 -3.400000e+38 \n", "1127500.0 387500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "572500.0 497500.0 -3.400000e+38 -3.400000e+38 0 \n", "492500.0 57500.0 -3.400000e+38 -3.400000e+38 1 \n", "922500.0 567500.0 -3.400000e+38 -3.400000e+38 0 \n", "47500.0 697500.0 -3.400000e+38 -3.400000e+38 0 \n", "1127500.0 387500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
1042500.0317500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1137500.027500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
412500.0372500.0160018700000...4.812847e-013.832059e-011.223652e-019.612413e+006.272641e-011.787285e+013.912202e+018.795641e+008.603662e+001
327500.0302500.006000087070...1.069695e+012.152610e+013.006510e+006.767461e-011.180971e+013.648056e-011.054585e+006.870680e-016.149307e-010
297500.0187500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1042500.0 317500.0 0 0 0 \n", "1137500.0 27500.0 0 0 0 \n", "412500.0 372500.0 16 0 0 \n", "327500.0 302500.0 0 6 0 \n", "297500.0 187500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1042500.0 317500.0 0 0 \n", "1137500.0 27500.0 0 0 \n", "412500.0 372500.0 18 7 \n", "327500.0 302500.0 0 0 \n", "297500.0 187500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1042500.0 317500.0 0 0 0 0 \n", "1137500.0 27500.0 0 0 0 0 \n", "412500.0 372500.0 0 0 0 0 \n", "327500.0 302500.0 0 87 0 7 \n", "297500.0 187500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "1042500.0 317500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1137500.0 27500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "412500.0 372500.0 0 ... 4.812847e-01 3.832059e-01 \n", "327500.0 302500.0 0 ... 1.069695e+01 2.152610e+01 \n", "297500.0 187500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "1042500.0 317500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1137500.0 27500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "412500.0 372500.0 1.223652e-01 9.612413e+00 6.272641e-01 \n", "327500.0 302500.0 3.006510e+00 6.767461e-01 1.180971e+01 \n", "297500.0 187500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "1042500.0 317500.0 -3.400000e+38 -3.400000e+38 \n", "1137500.0 27500.0 -3.400000e+38 -3.400000e+38 \n", "412500.0 372500.0 1.787285e+01 3.912202e+01 \n", "327500.0 302500.0 3.648056e-01 1.054585e+00 \n", "297500.0 187500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "1042500.0 317500.0 -3.400000e+38 -3.400000e+38 0 \n", "1137500.0 27500.0 -3.400000e+38 -3.400000e+38 0 \n", "412500.0 372500.0 8.795641e+00 8.603662e+00 1 \n", "327500.0 302500.0 6.870680e-01 6.149307e-01 0 \n", "297500.0 187500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
682500.0607500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
382500.0507500.0210781000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
92500.0322500.0143083000000...3.587797e+014.035234e+006.205773e+00-3.400000e+381.283332e+01-3.400000e+382.534976e+001.620783e+006.527980e+000
687500.0352500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
832500.0602500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "682500.0 607500.0 0 0 0 \n", "382500.0 507500.0 21 0 78 \n", "92500.0 322500.0 14 3 0 \n", "687500.0 352500.0 0 0 0 \n", "832500.0 602500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "682500.0 607500.0 0 0 0 \n", "382500.0 507500.0 1 0 0 \n", "92500.0 322500.0 83 0 0 \n", "687500.0 352500.0 0 0 0 \n", "832500.0 602500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "682500.0 607500.0 0 0 0 0 ... \n", "382500.0 507500.0 0 0 0 0 ... \n", "92500.0 322500.0 0 0 0 0 ... \n", "687500.0 352500.0 0 0 0 0 ... \n", "832500.0 602500.0 0 0 0 0 ... \n", "\n", " Glyphosate_5km Mancozeb_5km Mecoprop-P_5km \\\n", "y x \n", "682500.0 607500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "382500.0 507500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "92500.0 322500.0 3.587797e+01 4.035234e+00 6.205773e+00 \n", "687500.0 352500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "832500.0 602500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "682500.0 607500.0 -3.400000e+38 -3.400000e+38 \n", "382500.0 507500.0 -3.400000e+38 -3.400000e+38 \n", "92500.0 322500.0 -3.400000e+38 1.283332e+01 \n", "687500.0 352500.0 -3.400000e+38 -3.400000e+38 \n", "832500.0 602500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "682500.0 607500.0 -3.400000e+38 -3.400000e+38 \n", "382500.0 507500.0 -3.400000e+38 -3.400000e+38 \n", "92500.0 322500.0 -3.400000e+38 2.534976e+00 \n", "687500.0 352500.0 -3.400000e+38 -3.400000e+38 \n", "832500.0 602500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "682500.0 607500.0 -3.400000e+38 -3.400000e+38 0 \n", "382500.0 507500.0 -3.400000e+38 -3.400000e+38 0 \n", "92500.0 322500.0 1.620783e+00 6.527980e+00 0 \n", "687500.0 352500.0 -3.400000e+38 -3.400000e+38 0 \n", "832500.0 602500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
187500.0352500.00000000000...1.477417e+012.679824e-011.659697e+00-3.400000e+388.258803e+00-3.400000e+381.503984e+018.817699e+001.427644e+010
802500.077500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
297500.0202500.00000000000...2.849020e-016.871427e-022.899346e-01-3.400000e+381.796557e-01-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
887500.0627500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
347500.0322500.015502100310230...1.635319e-014.662686e-021.295188e-01-3.400000e+387.957139e-02-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "187500.0 352500.0 0 0 0 \n", "802500.0 77500.0 0 0 0 \n", "297500.0 202500.0 0 0 0 \n", "887500.0 627500.0 0 0 0 \n", "347500.0 322500.0 15 5 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "187500.0 352500.0 0 0 0 \n", "802500.0 77500.0 0 0 0 \n", "297500.0 202500.0 0 0 0 \n", "887500.0 627500.0 0 0 0 \n", "347500.0 322500.0 21 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "187500.0 352500.0 0 0 0 0 ... \n", "802500.0 77500.0 0 0 0 0 ... \n", "297500.0 202500.0 0 0 0 0 ... \n", "887500.0 627500.0 0 0 0 0 ... \n", "347500.0 322500.0 31 0 23 0 ... \n", "\n", " Glyphosate_5km Mancozeb_5km Mecoprop-P_5km \\\n", "y x \n", "187500.0 352500.0 1.477417e+01 2.679824e-01 1.659697e+00 \n", "802500.0 77500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "297500.0 202500.0 2.849020e-01 6.871427e-02 2.899346e-01 \n", "887500.0 627500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "347500.0 322500.0 1.635319e-01 4.662686e-02 1.295188e-01 \n", "\n", " Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "187500.0 352500.0 -3.400000e+38 8.258803e+00 \n", "802500.0 77500.0 -3.400000e+38 -3.400000e+38 \n", "297500.0 202500.0 -3.400000e+38 1.796557e-01 \n", "887500.0 627500.0 -3.400000e+38 -3.400000e+38 \n", "347500.0 322500.0 -3.400000e+38 7.957139e-02 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "187500.0 352500.0 -3.400000e+38 1.503984e+01 \n", "802500.0 77500.0 -3.400000e+38 -3.400000e+38 \n", "297500.0 202500.0 -3.400000e+38 -3.400000e+38 \n", "887500.0 627500.0 -3.400000e+38 -3.400000e+38 \n", "347500.0 322500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "187500.0 352500.0 8.817699e+00 1.427644e+01 0 \n", "802500.0 77500.0 -3.400000e+38 -3.400000e+38 0 \n", "297500.0 202500.0 -3.400000e+38 -3.400000e+38 0 \n", "887500.0 627500.0 -3.400000e+38 -3.400000e+38 0 \n", "347500.0 322500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
172500.0362500.014000000000...3.912434e+013.640354e+005.398479e+00-3.400000e+381.433207e+01-3.400000e+382.191259e+011.031152e+011.028668e+000
542500.0552500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1202500.072500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
182500.0567500.0005318000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
777500.0162500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "172500.0 362500.0 14 0 0 \n", "542500.0 552500.0 0 0 0 \n", "1202500.0 72500.0 0 0 0 \n", "182500.0 567500.0 0 0 53 \n", "777500.0 162500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "172500.0 362500.0 0 0 \n", "542500.0 552500.0 0 0 \n", "1202500.0 72500.0 0 0 \n", "182500.0 567500.0 18 0 \n", "777500.0 162500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "172500.0 362500.0 0 0 0 0 \n", "542500.0 552500.0 0 0 0 0 \n", "1202500.0 72500.0 0 0 0 0 \n", "182500.0 567500.0 0 0 0 0 \n", "777500.0 162500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "172500.0 362500.0 0 ... 3.912434e+01 3.640354e+00 \n", "542500.0 552500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1202500.0 72500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "182500.0 567500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "777500.0 162500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "172500.0 362500.0 5.398479e+00 -3.400000e+38 1.433207e+01 \n", "542500.0 552500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1202500.0 72500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "182500.0 567500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "777500.0 162500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "172500.0 362500.0 -3.400000e+38 2.191259e+01 \n", "542500.0 552500.0 -3.400000e+38 -3.400000e+38 \n", "1202500.0 72500.0 -3.400000e+38 -3.400000e+38 \n", "182500.0 567500.0 -3.400000e+38 -3.400000e+38 \n", "777500.0 162500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "172500.0 362500.0 1.031152e+01 1.028668e+00 0 \n", "542500.0 552500.0 -3.400000e+38 -3.400000e+38 0 \n", "1202500.0 72500.0 -3.400000e+38 -3.400000e+38 0 \n", "182500.0 567500.0 -3.400000e+38 -3.400000e+38 0 \n", "777500.0 162500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
402500.0597500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
407500.0222500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
47500.0337500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1167500.0492500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
292500.0562500.0001000000000...2.675856e+018.376548e+003.281430e+00-3.400000e+381.165780e+01-3.400000e+384.417632e+003.699409e+005.309461e+000
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "402500.0 597500.0 0 0 0 \n", "407500.0 222500.0 0 0 0 \n", "47500.0 337500.0 0 0 0 \n", "1167500.0 492500.0 0 0 0 \n", "292500.0 562500.0 0 0 100 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "402500.0 597500.0 0 0 \n", "407500.0 222500.0 0 0 \n", "47500.0 337500.0 0 0 \n", "1167500.0 492500.0 0 0 \n", "292500.0 562500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "402500.0 597500.0 0 0 0 0 \n", "407500.0 222500.0 0 0 0 0 \n", "47500.0 337500.0 0 0 0 0 \n", "1167500.0 492500.0 0 0 0 0 \n", "292500.0 562500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "402500.0 597500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "407500.0 222500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "47500.0 337500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1167500.0 492500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "292500.0 562500.0 0 ... 2.675856e+01 8.376548e+00 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "402500.0 597500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "407500.0 222500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "47500.0 337500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1167500.0 492500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "292500.0 562500.0 3.281430e+00 -3.400000e+38 1.165780e+01 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "402500.0 597500.0 -3.400000e+38 -3.400000e+38 \n", "407500.0 222500.0 -3.400000e+38 -3.400000e+38 \n", "47500.0 337500.0 -3.400000e+38 -3.400000e+38 \n", "1167500.0 492500.0 -3.400000e+38 -3.400000e+38 \n", "292500.0 562500.0 -3.400000e+38 4.417632e+00 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "402500.0 597500.0 -3.400000e+38 -3.400000e+38 0 \n", "407500.0 222500.0 -3.400000e+38 -3.400000e+38 0 \n", "47500.0 337500.0 -3.400000e+38 -3.400000e+38 0 \n", "1167500.0 492500.0 -3.400000e+38 -3.400000e+38 0 \n", "292500.0 562500.0 3.699409e+00 5.309461e+00 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
1097500.0367500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
472500.0367500.060389000000...1.437559e+013.220966e+002.944471e+001.022916e+001.498519e+016.039355e-011.314591e+002.093061e-011.596312e+010
782500.0547500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
842500.0327500.01187590010000...1.968980e+001.555213e-012.060352e+003.130774e+009.114452e-011.572151e+005.525377e-013.950021e+001.179231e+010
1062500.0202500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1097500.0 367500.0 0 0 0 \n", "472500.0 367500.0 6 0 3 \n", "782500.0 547500.0 0 0 0 \n", "842500.0 327500.0 11 8 7 \n", "1062500.0 202500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1097500.0 367500.0 0 0 \n", "472500.0 367500.0 89 0 \n", "782500.0 547500.0 0 0 \n", "842500.0 327500.0 59 0 \n", "1062500.0 202500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1097500.0 367500.0 0 0 0 0 \n", "472500.0 367500.0 0 0 0 0 \n", "782500.0 547500.0 0 0 0 0 \n", "842500.0 327500.0 0 10 0 0 \n", "1062500.0 202500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "1097500.0 367500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "472500.0 367500.0 0 ... 1.437559e+01 3.220966e+00 \n", "782500.0 547500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "842500.0 327500.0 0 ... 1.968980e+00 1.555213e-01 \n", "1062500.0 202500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "1097500.0 367500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "472500.0 367500.0 2.944471e+00 1.022916e+00 1.498519e+01 \n", "782500.0 547500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "842500.0 327500.0 2.060352e+00 3.130774e+00 9.114452e-01 \n", "1062500.0 202500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "1097500.0 367500.0 -3.400000e+38 -3.400000e+38 \n", "472500.0 367500.0 6.039355e-01 1.314591e+00 \n", "782500.0 547500.0 -3.400000e+38 -3.400000e+38 \n", "842500.0 327500.0 1.572151e+00 5.525377e-01 \n", "1062500.0 202500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "1097500.0 367500.0 -3.400000e+38 -3.400000e+38 0 \n", "472500.0 367500.0 2.093061e-01 1.596312e+01 0 \n", "782500.0 547500.0 -3.400000e+38 -3.400000e+38 0 \n", "842500.0 327500.0 3.950021e+00 1.179231e+01 0 \n", "1062500.0 202500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
272500.0142500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
457500.0532500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
792500.0272500.0000000001000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1057500.012500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1257500.0562500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "272500.0 142500.0 0 0 0 \n", "457500.0 532500.0 0 0 0 \n", "792500.0 272500.0 0 0 0 \n", "1057500.0 12500.0 0 0 0 \n", "1257500.0 562500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "272500.0 142500.0 0 0 \n", "457500.0 532500.0 0 0 \n", "792500.0 272500.0 0 0 \n", "1057500.0 12500.0 0 0 \n", "1257500.0 562500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "272500.0 142500.0 0 0 0 0 \n", "457500.0 532500.0 0 0 0 0 \n", "792500.0 272500.0 0 0 0 100 \n", "1057500.0 12500.0 0 0 0 0 \n", "1257500.0 562500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "272500.0 142500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "457500.0 532500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "792500.0 272500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1057500.0 12500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1257500.0 562500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "272500.0 142500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "457500.0 532500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "792500.0 272500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1057500.0 12500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1257500.0 562500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "272500.0 142500.0 -3.400000e+38 -3.400000e+38 \n", "457500.0 532500.0 -3.400000e+38 -3.400000e+38 \n", "792500.0 272500.0 -3.400000e+38 -3.400000e+38 \n", "1057500.0 12500.0 -3.400000e+38 -3.400000e+38 \n", "1257500.0 562500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "272500.0 142500.0 -3.400000e+38 -3.400000e+38 0 \n", "457500.0 532500.0 -3.400000e+38 -3.400000e+38 0 \n", "792500.0 272500.0 -3.400000e+38 -3.400000e+38 0 \n", "1057500.0 12500.0 -3.400000e+38 -3.400000e+38 0 \n", "1257500.0 562500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
182500.0112500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
922500.0497500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1252500.0647500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1202500.062500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1127500.087500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "182500.0 112500.0 0 0 0 \n", "922500.0 497500.0 0 0 0 \n", "1252500.0 647500.0 0 0 0 \n", "1202500.0 62500.0 0 0 0 \n", "1127500.0 87500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "182500.0 112500.0 0 0 \n", "922500.0 497500.0 0 0 \n", "1252500.0 647500.0 0 0 \n", "1202500.0 62500.0 0 0 \n", "1127500.0 87500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "182500.0 112500.0 0 0 0 0 \n", "922500.0 497500.0 0 0 0 0 \n", "1252500.0 647500.0 0 0 0 0 \n", "1202500.0 62500.0 0 0 0 0 \n", "1127500.0 87500.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_5km Mancozeb_5km \\\n", "y x ... \n", "182500.0 112500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "922500.0 497500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1252500.0 647500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1202500.0 62500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1127500.0 87500.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_5km Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "182500.0 112500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "922500.0 497500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1252500.0 647500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1202500.0 62500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1127500.0 87500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "182500.0 112500.0 -3.400000e+38 -3.400000e+38 \n", "922500.0 497500.0 -3.400000e+38 -3.400000e+38 \n", "1252500.0 647500.0 -3.400000e+38 -3.400000e+38 \n", "1202500.0 62500.0 -3.400000e+38 -3.400000e+38 \n", "1127500.0 87500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "182500.0 112500.0 -3.400000e+38 -3.400000e+38 0 \n", "922500.0 497500.0 -3.400000e+38 -3.400000e+38 0 \n", "1252500.0 647500.0 -3.400000e+38 -3.400000e+38 0 \n", "1202500.0 62500.0 -3.400000e+38 -3.400000e+38 0 \n", "1127500.0 87500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_5kmMancozeb_5kmMecoprop-P_5kmMetamitron_5kmPendimethalin_5kmPropamocarbHydrochloride_5kmProsulfocarb_5kmSulphur_5kmTri-allate_5kmOccurrence
yx
617500.022500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
632500.0132500.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
72500.0282500.0405830000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
207500.0222500.017008000034...4.860930e-031.019901e-036.186086e-03-3.400000e+382.953693e-03-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
602500.0397500.0402669000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "617500.0 22500.0 0 0 0 \n", "632500.0 132500.0 0 0 0 \n", "72500.0 282500.0 4 0 58 \n", "207500.0 222500.0 17 0 0 \n", "602500.0 397500.0 4 0 26 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "617500.0 22500.0 0 0 0 \n", "632500.0 132500.0 0 0 0 \n", "72500.0 282500.0 30 0 0 \n", "207500.0 222500.0 8 0 0 \n", "602500.0 397500.0 69 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "617500.0 22500.0 0 0 0 0 ... \n", "632500.0 132500.0 0 0 0 0 ... \n", "72500.0 282500.0 0 0 0 0 ... \n", "207500.0 222500.0 0 0 3 4 ... \n", "602500.0 397500.0 0 0 0 0 ... \n", "\n", " Glyphosate_5km Mancozeb_5km Mecoprop-P_5km \\\n", "y x \n", "617500.0 22500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "632500.0 132500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "72500.0 282500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "207500.0 222500.0 4.860930e-03 1.019901e-03 6.186086e-03 \n", "602500.0 397500.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Metamitron_5km Pendimethalin_5km \\\n", "y x \n", "617500.0 22500.0 -3.400000e+38 -3.400000e+38 \n", "632500.0 132500.0 -3.400000e+38 -3.400000e+38 \n", "72500.0 282500.0 -3.400000e+38 -3.400000e+38 \n", "207500.0 222500.0 -3.400000e+38 2.953693e-03 \n", "602500.0 397500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_5km Prosulfocarb_5km \\\n", "y x \n", "617500.0 22500.0 -3.400000e+38 -3.400000e+38 \n", "632500.0 132500.0 -3.400000e+38 -3.400000e+38 \n", "72500.0 282500.0 -3.400000e+38 -3.400000e+38 \n", "207500.0 222500.0 -3.400000e+38 -3.400000e+38 \n", "602500.0 397500.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_5km Tri-allate_5km Occurrence \n", "y x \n", "617500.0 22500.0 -3.400000e+38 -3.400000e+38 0 \n", "632500.0 132500.0 -3.400000e+38 -3.400000e+38 0 \n", "72500.0 282500.0 -3.400000e+38 -3.400000e+38 0 \n", "207500.0 222500.0 -3.400000e+38 -3.400000e+38 0 \n", "602500.0 397500.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "INVASIVE_BIRDS_PATH = 'Datasets/Machine Learning/5km Rasters/Birds'\n", "# Use this if using coordinates as separate columns\n", "# df_5km = pd.read_csv('Datasets/Machine Learning/Dataframes/5km_All_Birds_DF.csv')\n", "\n", "# Use this if using coordinates as indices\n", "df_5km = pd.read_csv('Datasets/Machine Learning/Dataframes/5km_All_Birds_DF.csv', index_col=[0,1])\n", "\n", "total_birds = (df_5km['Occurrence']==1).sum()\n", "df_dicts = []\n", "\n", "for file in os.listdir(INVASIVE_BIRDS_PATH):\n", " filename = os.fsdecode(file)\n", " if not filename.endswith('.tif') or filename.endswith('All_Invasive_Birds_5km.tif') :\n", " continue\n", "\n", "\n", "\n", " bird_name = filename[:-4].replace('_', ' ')\n", "\n", " bird_dataset = rioxarray.open_rasterio(f'{INVASIVE_BIRDS_PATH}/{file}')\n", " bird_dataset.name = 'data'\n", " bird_df = bird_dataset.squeeze().drop(\"spatial_ref\").drop(\"band\").to_dataframe()\n", "\n", " # Check if index matches\n", " if not df_5km.index.equals(bird_df.index):\n", " print('Warning: Index does not match')\n", " continue\n", "\n", " bird_df['Occurrence'] = [0 if x == -1 else 1 for x in bird_df['data']]\n", " bird_df = df_5km.drop(columns='Occurrence').join(bird_df.drop(columns='data'))\n", " \n", " bird_dict = {'name' : bird_name, 'dataframe' : bird_df }\n", " df_dicts.append(bird_dict)\n", " display(bird_df.sample(5))\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
957500.0177500.00000000000...0000-9999-9999-1-12550
717500.092500.00000000000...0000-9999-9999-1-12550
357500.0197500.00000000000...0000-9999-9999-1-12550
757500.027500.00000000000...0000-9999-9999-1-12550
792500.07500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "957500.0 177500.0 0 0 0 \n", "717500.0 92500.0 0 0 0 \n", "357500.0 197500.0 0 0 0 \n", "757500.0 27500.0 0 0 0 \n", "792500.0 7500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "957500.0 177500.0 0 0 0 \n", "717500.0 92500.0 0 0 0 \n", "357500.0 197500.0 0 0 0 \n", "757500.0 27500.0 0 0 0 \n", "792500.0 7500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "957500.0 177500.0 0 0 0 0 ... \n", "717500.0 92500.0 0 0 0 0 ... \n", "357500.0 197500.0 0 0 0 0 ... \n", "757500.0 27500.0 0 0 0 0 ... \n", "792500.0 7500.0 0 0 0 0 ... \n", "\n", " Littoral sediment Saltmarsh Urban Suburban Elevation \\\n", "y x \n", "957500.0 177500.0 0 0 0 0 -9999 \n", "717500.0 92500.0 0 0 0 0 -9999 \n", "357500.0 197500.0 0 0 0 0 -9999 \n", "757500.0 27500.0 0 0 0 0 -9999 \n", "792500.0 7500.0 0 0 0 0 -9999 \n", "\n", " Cumulative catchment area Surface type \\\n", "y x \n", "957500.0 177500.0 -9999 -1 \n", "717500.0 92500.0 -9999 -1 \n", "357500.0 197500.0 -9999 -1 \n", "757500.0 27500.0 -9999 -1 \n", "792500.0 7500.0 -9999 -1 \n", "\n", " Outflowing drainage direction \\\n", "y x \n", "957500.0 177500.0 -1 \n", "717500.0 92500.0 -1 \n", "357500.0 197500.0 -1 \n", "757500.0 27500.0 -1 \n", "792500.0 7500.0 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "957500.0 177500.0 255 0 \n", "717500.0 92500.0 255 0 \n", "357500.0 197500.0 255 0 \n", "757500.0 27500.0 255 0 \n", "792500.0 7500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
1082500.0462500.00000000000...0000-9999-9999-1-12550
942500.0192500.00000000000...0000-9999-9999-1-12550
547500.0292500.00000000000...0000-9999-9999-1-12550
1237500.0172500.00000000000...0000-9999-9999-1-12550
107500.0687500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1082500.0 462500.0 0 0 0 \n", "942500.0 192500.0 0 0 0 \n", "547500.0 292500.0 0 0 0 \n", "1237500.0 172500.0 0 0 0 \n", "107500.0 687500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1082500.0 462500.0 0 0 \n", "942500.0 192500.0 0 0 \n", "547500.0 292500.0 0 0 \n", "1237500.0 172500.0 0 0 \n", "107500.0 687500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1082500.0 462500.0 0 0 0 0 \n", "942500.0 192500.0 0 0 0 0 \n", "547500.0 292500.0 0 0 0 0 \n", "1237500.0 172500.0 0 0 0 0 \n", "107500.0 687500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "1082500.0 462500.0 0 ... 0 0 \n", "942500.0 192500.0 0 ... 0 0 \n", "547500.0 292500.0 0 ... 0 0 \n", "1237500.0 172500.0 0 ... 0 0 \n", "107500.0 687500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "1082500.0 462500.0 0 0 -9999 -9999 \n", "942500.0 192500.0 0 0 -9999 -9999 \n", "547500.0 292500.0 0 0 -9999 -9999 \n", "1237500.0 172500.0 0 0 -9999 -9999 \n", "107500.0 687500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "1082500.0 462500.0 -1 -1 \n", "942500.0 192500.0 -1 -1 \n", "547500.0 292500.0 -1 -1 \n", "1237500.0 172500.0 -1 -1 \n", "107500.0 687500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "1082500.0 462500.0 255 0 \n", "942500.0 192500.0 255 0 \n", "547500.0 292500.0 255 0 \n", "1237500.0 172500.0 255 0 \n", "107500.0 687500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
262500.0592500.068784000000...0005696212860
292500.0567500.0103263000300...000152003234161
167500.0562500.0307710130000...0005101922610
67500.0277500.0675333000000...00021070102680
152500.0552500.0480024000000...000281988102870
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "262500.0 592500.0 6 8 78 \n", "292500.0 567500.0 1 0 32 \n", "167500.0 562500.0 3 0 77 \n", "67500.0 277500.0 6 7 53 \n", "152500.0 552500.0 48 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "262500.0 592500.0 4 0 0 \n", "292500.0 567500.0 63 0 0 \n", "167500.0 562500.0 1 0 13 \n", "67500.0 277500.0 33 0 0 \n", "152500.0 552500.0 24 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "262500.0 592500.0 0 0 0 0 ... \n", "292500.0 567500.0 0 3 0 0 ... \n", "167500.0 562500.0 0 0 0 0 ... \n", "67500.0 277500.0 0 0 0 0 ... \n", "152500.0 552500.0 0 0 0 0 ... \n", "\n", " Littoral sediment Saltmarsh Urban Suburban Elevation \\\n", "y x \n", "262500.0 592500.0 0 0 0 5 696 \n", "292500.0 567500.0 0 0 0 1 5 \n", "167500.0 562500.0 0 0 0 5 1019 \n", "67500.0 277500.0 0 0 0 2 1070 \n", "152500.0 552500.0 0 0 0 28 1988 \n", "\n", " Cumulative catchment area Surface type \\\n", "y x \n", "262500.0 592500.0 21 2 \n", "292500.0 567500.0 2003 2 \n", "167500.0 562500.0 2 2 \n", "67500.0 277500.0 10 2 \n", "152500.0 552500.0 10 2 \n", "\n", " Outflowing drainage direction \\\n", "y x \n", "262500.0 592500.0 8 \n", "292500.0 567500.0 34 \n", "167500.0 562500.0 6 \n", "67500.0 277500.0 6 \n", "152500.0 552500.0 8 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "262500.0 592500.0 6 0 \n", "292500.0 567500.0 16 1 \n", "167500.0 562500.0 1 0 \n", "67500.0 277500.0 8 0 \n", "152500.0 552500.0 7 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
512500.042500.00000000000...0000-9999-9999-1-12550
1022500.0217500.00000000000...0000-9999-9999-1-12550
737500.0322500.01507113000000...00027383521200
1217500.0622500.00000000000...0000-9999-9999-1-12550
1277500.0497500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "512500.0 42500.0 0 0 0 \n", "1022500.0 217500.0 0 0 0 \n", "737500.0 322500.0 15 0 71 \n", "1217500.0 622500.0 0 0 0 \n", "1277500.0 497500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "512500.0 42500.0 0 0 \n", "1022500.0 217500.0 0 0 \n", "737500.0 322500.0 13 0 \n", "1217500.0 622500.0 0 0 \n", "1277500.0 497500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "512500.0 42500.0 0 0 0 0 \n", "1022500.0 217500.0 0 0 0 0 \n", "737500.0 322500.0 0 0 0 0 \n", "1217500.0 622500.0 0 0 0 0 \n", "1277500.0 497500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "512500.0 42500.0 0 ... 0 0 \n", "1022500.0 217500.0 0 ... 0 0 \n", "737500.0 322500.0 0 ... 0 0 \n", "1217500.0 622500.0 0 ... 0 0 \n", "1277500.0 497500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "512500.0 42500.0 0 0 -9999 -9999 \n", "1022500.0 217500.0 0 0 -9999 -9999 \n", "737500.0 322500.0 0 2 738 35 \n", "1217500.0 622500.0 0 0 -9999 -9999 \n", "1277500.0 497500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "512500.0 42500.0 -1 -1 \n", "1022500.0 217500.0 -1 -1 \n", "737500.0 322500.0 2 1 \n", "1217500.0 622500.0 -1 -1 \n", "1277500.0 497500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "512500.0 42500.0 255 0 \n", "1022500.0 217500.0 255 0 \n", "737500.0 322500.0 20 0 \n", "1217500.0 622500.0 255 0 \n", "1277500.0 497500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
772500.0437500.00000000000...0000-9999-9999-1-12550
597500.0127500.00000000000...0000-9999-9999-1-12550
1182500.0637500.00000000000...0000-9999-9999-1-12550
497500.0587500.00000000000...0000-9999-9999-1-12550
207500.042500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "772500.0 437500.0 0 0 0 \n", "597500.0 127500.0 0 0 0 \n", "1182500.0 637500.0 0 0 0 \n", "497500.0 587500.0 0 0 0 \n", "207500.0 42500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "772500.0 437500.0 0 0 \n", "597500.0 127500.0 0 0 \n", "1182500.0 637500.0 0 0 \n", "497500.0 587500.0 0 0 \n", "207500.0 42500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "772500.0 437500.0 0 0 0 0 \n", "597500.0 127500.0 0 0 0 0 \n", "1182500.0 637500.0 0 0 0 0 \n", "497500.0 587500.0 0 0 0 0 \n", "207500.0 42500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "772500.0 437500.0 0 ... 0 0 \n", "597500.0 127500.0 0 ... 0 0 \n", "1182500.0 637500.0 0 ... 0 0 \n", "497500.0 587500.0 0 ... 0 0 \n", "207500.0 42500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "772500.0 437500.0 0 0 -9999 -9999 \n", "597500.0 127500.0 0 0 -9999 -9999 \n", "1182500.0 637500.0 0 0 -9999 -9999 \n", "497500.0 587500.0 0 0 -9999 -9999 \n", "207500.0 42500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "772500.0 437500.0 -1 -1 \n", "597500.0 127500.0 -1 -1 \n", "1182500.0 637500.0 -1 -1 \n", "497500.0 587500.0 -1 -1 \n", "207500.0 42500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "772500.0 437500.0 255 0 \n", "597500.0 127500.0 255 0 \n", "1182500.0 637500.0 255 0 \n", "497500.0 587500.0 255 0 \n", "207500.0 42500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
577500.0342500.0133085000000...000088312200
137500.0682500.00000000000...0000-9999-9999-1-12550
422500.0667500.00000000000...0000-9999-9999-1-12550
152500.0362500.0003268000000...00001786252820
1287500.022500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "577500.0 342500.0 13 3 0 \n", "137500.0 682500.0 0 0 0 \n", "422500.0 667500.0 0 0 0 \n", "152500.0 362500.0 0 0 32 \n", "1287500.0 22500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "577500.0 342500.0 85 0 \n", "137500.0 682500.0 0 0 \n", "422500.0 667500.0 0 0 \n", "152500.0 362500.0 68 0 \n", "1287500.0 22500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "577500.0 342500.0 0 0 0 0 \n", "137500.0 682500.0 0 0 0 0 \n", "422500.0 667500.0 0 0 0 0 \n", "152500.0 362500.0 0 0 0 0 \n", "1287500.0 22500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "577500.0 342500.0 0 ... 0 0 \n", "137500.0 682500.0 0 ... 0 0 \n", "422500.0 667500.0 0 ... 0 0 \n", "152500.0 362500.0 0 ... 0 0 \n", "1287500.0 22500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "577500.0 342500.0 0 0 883 1 \n", "137500.0 682500.0 0 0 -9999 -9999 \n", "422500.0 667500.0 0 0 -9999 -9999 \n", "152500.0 362500.0 0 0 1786 25 \n", "1287500.0 22500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "577500.0 342500.0 2 2 \n", "137500.0 682500.0 -1 -1 \n", "422500.0 667500.0 -1 -1 \n", "152500.0 362500.0 2 8 \n", "1287500.0 22500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "577500.0 342500.0 0 0 \n", "137500.0 682500.0 255 0 \n", "422500.0 667500.0 255 0 \n", "152500.0 362500.0 2 0 \n", "1287500.0 22500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
1217500.0357500.00000000000...0000-9999-9999-1-12550
982500.0157500.00000000000...0000-9999-9999-1-12550
917500.0227500.000000099000...00004460423320
712500.07500.00000000000...0000-9999-9999-1-12550
607500.0607500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1217500.0 357500.0 0 0 0 \n", "982500.0 157500.0 0 0 0 \n", "917500.0 227500.0 0 0 0 \n", "712500.0 7500.0 0 0 0 \n", "607500.0 607500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1217500.0 357500.0 0 0 \n", "982500.0 157500.0 0 0 \n", "917500.0 227500.0 0 0 \n", "712500.0 7500.0 0 0 \n", "607500.0 607500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1217500.0 357500.0 0 0 0 0 \n", "982500.0 157500.0 0 0 0 0 \n", "917500.0 227500.0 0 99 0 0 \n", "712500.0 7500.0 0 0 0 0 \n", "607500.0 607500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "1217500.0 357500.0 0 ... 0 0 \n", "982500.0 157500.0 0 ... 0 0 \n", "917500.0 227500.0 0 ... 0 0 \n", "712500.0 7500.0 0 ... 0 0 \n", "607500.0 607500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "1217500.0 357500.0 0 0 -9999 -9999 \n", "982500.0 157500.0 0 0 -9999 -9999 \n", "917500.0 227500.0 0 0 4460 4 \n", "712500.0 7500.0 0 0 -9999 -9999 \n", "607500.0 607500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "1217500.0 357500.0 -1 -1 \n", "982500.0 157500.0 -1 -1 \n", "917500.0 227500.0 2 3 \n", "712500.0 7500.0 -1 -1 \n", "607500.0 607500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "1217500.0 357500.0 255 0 \n", "982500.0 157500.0 255 0 \n", "917500.0 227500.0 32 0 \n", "712500.0 7500.0 255 0 \n", "607500.0 607500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
1092500.02500.00000000000...0000-9999-9999-1-12550
17500.0422500.00000000000...0000-9999-9999-1-12550
1242500.0497500.00000000000...0000-9999-9999-1-12550
272500.0387500.01061181600000...001261112600
1217500.0427500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1092500.0 2500.0 0 0 0 \n", "17500.0 422500.0 0 0 0 \n", "1242500.0 497500.0 0 0 0 \n", "272500.0 387500.0 1 0 61 \n", "1217500.0 427500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1092500.0 2500.0 0 0 \n", "17500.0 422500.0 0 0 \n", "1242500.0 497500.0 0 0 \n", "272500.0 387500.0 18 16 \n", "1217500.0 427500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1092500.0 2500.0 0 0 0 0 \n", "17500.0 422500.0 0 0 0 0 \n", "1242500.0 497500.0 0 0 0 0 \n", "272500.0 387500.0 0 0 0 0 \n", "1217500.0 427500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "1092500.0 2500.0 0 ... 0 0 \n", "17500.0 422500.0 0 ... 0 0 \n", "1242500.0 497500.0 0 ... 0 0 \n", "272500.0 387500.0 0 ... 0 0 \n", "1217500.0 427500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "1092500.0 2500.0 0 0 -9999 -9999 \n", "17500.0 422500.0 0 0 -9999 -9999 \n", "1242500.0 497500.0 0 0 -9999 -9999 \n", "272500.0 387500.0 1 2 611 1 \n", "1217500.0 427500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "1092500.0 2500.0 -1 -1 \n", "17500.0 422500.0 -1 -1 \n", "1242500.0 497500.0 -1 -1 \n", "272500.0 387500.0 2 6 \n", "1217500.0 427500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "1092500.0 2500.0 255 0 \n", "17500.0 422500.0 255 0 \n", "1242500.0 497500.0 255 0 \n", "272500.0 387500.0 0 0 \n", "1217500.0 427500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
797500.0542500.00000000000...0000-9999-9999-1-12550
557500.0237500.050188000000...00023009241480
967500.0222500.00000000000...0000-1000-99990-200
972500.0512500.00000000000...0000-9999-9999-1-12550
592500.0677500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "797500.0 542500.0 0 0 0 \n", "557500.0 237500.0 5 0 1 \n", "967500.0 222500.0 0 0 0 \n", "972500.0 512500.0 0 0 0 \n", "592500.0 677500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "797500.0 542500.0 0 0 0 \n", "557500.0 237500.0 88 0 0 \n", "967500.0 222500.0 0 0 0 \n", "972500.0 512500.0 0 0 0 \n", "592500.0 677500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "797500.0 542500.0 0 0 0 0 ... \n", "557500.0 237500.0 0 0 0 0 ... \n", "967500.0 222500.0 0 0 0 0 ... \n", "972500.0 512500.0 0 0 0 0 ... \n", "592500.0 677500.0 0 0 0 0 ... \n", "\n", " Littoral sediment Saltmarsh Urban Suburban Elevation \\\n", "y x \n", "797500.0 542500.0 0 0 0 0 -9999 \n", "557500.0 237500.0 0 0 0 2 300 \n", "967500.0 222500.0 0 0 0 0 -1000 \n", "972500.0 512500.0 0 0 0 0 -9999 \n", "592500.0 677500.0 0 0 0 0 -9999 \n", "\n", " Cumulative catchment area Surface type \\\n", "y x \n", "797500.0 542500.0 -9999 -1 \n", "557500.0 237500.0 9 2 \n", "967500.0 222500.0 -9999 0 \n", "972500.0 512500.0 -9999 -1 \n", "592500.0 677500.0 -9999 -1 \n", "\n", " Outflowing drainage direction \\\n", "y x \n", "797500.0 542500.0 -1 \n", "557500.0 237500.0 4 \n", "967500.0 222500.0 -2 \n", "972500.0 512500.0 -1 \n", "592500.0 677500.0 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "797500.0 542500.0 255 0 \n", "557500.0 237500.0 148 0 \n", "967500.0 222500.0 0 0 \n", "972500.0 512500.0 255 0 \n", "592500.0 677500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
902500.0487500.00000000000...0000-9999-9999-1-12550
457500.0292500.00000000000...0000-9999-9999-1-12550
747500.0697500.00000000000...0000-9999-9999-1-12550
762500.0282500.0048000010390...0000326812800
962500.0552500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "902500.0 487500.0 0 0 0 \n", "457500.0 292500.0 0 0 0 \n", "747500.0 697500.0 0 0 0 \n", "762500.0 282500.0 0 48 0 \n", "962500.0 552500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "902500.0 487500.0 0 0 0 \n", "457500.0 292500.0 0 0 0 \n", "747500.0 697500.0 0 0 0 \n", "762500.0 282500.0 0 0 0 \n", "962500.0 552500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "902500.0 487500.0 0 0 0 0 ... \n", "457500.0 292500.0 0 0 0 0 ... \n", "747500.0 697500.0 0 0 0 0 ... \n", "762500.0 282500.0 1 0 39 0 ... \n", "962500.0 552500.0 0 0 0 0 ... \n", "\n", " Littoral sediment Saltmarsh Urban Suburban Elevation \\\n", "y x \n", "902500.0 487500.0 0 0 0 0 -9999 \n", "457500.0 292500.0 0 0 0 0 -9999 \n", "747500.0 697500.0 0 0 0 0 -9999 \n", "762500.0 282500.0 0 0 0 0 3268 \n", "962500.0 552500.0 0 0 0 0 -9999 \n", "\n", " Cumulative catchment area Surface type \\\n", "y x \n", "902500.0 487500.0 -9999 -1 \n", "457500.0 292500.0 -9999 -1 \n", "747500.0 697500.0 -9999 -1 \n", "762500.0 282500.0 1 2 \n", "962500.0 552500.0 -9999 -1 \n", "\n", " Outflowing drainage direction \\\n", "y x \n", "902500.0 487500.0 -1 \n", "457500.0 292500.0 -1 \n", "747500.0 697500.0 -1 \n", "762500.0 282500.0 8 \n", "962500.0 552500.0 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "902500.0 487500.0 255 0 \n", "457500.0 292500.0 255 0 \n", "747500.0 697500.0 255 0 \n", "762500.0 282500.0 0 0 \n", "962500.0 552500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
52500.0397500.00000000000...0000-9999-9999-1-12550
1102500.0497500.00000000000...0000-9999-9999-1-12550
1202500.0202500.00000000000...0000-9999-9999-1-12550
1122500.0297500.00000000000...0000-9999-9999-1-12550
857500.0282500.00000000000...1138003512800
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "52500.0 397500.0 0 0 0 \n", "1102500.0 497500.0 0 0 0 \n", "1202500.0 202500.0 0 0 0 \n", "1122500.0 297500.0 0 0 0 \n", "857500.0 282500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "52500.0 397500.0 0 0 \n", "1102500.0 497500.0 0 0 \n", "1202500.0 202500.0 0 0 \n", "1122500.0 297500.0 0 0 \n", "857500.0 282500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "52500.0 397500.0 0 0 0 0 \n", "1102500.0 497500.0 0 0 0 0 \n", "1202500.0 202500.0 0 0 0 0 \n", "1122500.0 297500.0 0 0 0 0 \n", "857500.0 282500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "52500.0 397500.0 0 ... 0 0 \n", "1102500.0 497500.0 0 ... 0 0 \n", "1202500.0 202500.0 0 ... 0 0 \n", "1122500.0 297500.0 0 ... 0 0 \n", "857500.0 282500.0 0 ... 11 38 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "52500.0 397500.0 0 0 -9999 -9999 \n", "1102500.0 497500.0 0 0 -9999 -9999 \n", "1202500.0 202500.0 0 0 -9999 -9999 \n", "1122500.0 297500.0 0 0 -9999 -9999 \n", "857500.0 282500.0 0 0 35 1 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "52500.0 397500.0 -1 -1 \n", "1102500.0 497500.0 -1 -1 \n", "1202500.0 202500.0 -1 -1 \n", "1122500.0 297500.0 -1 -1 \n", "857500.0 282500.0 2 8 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "52500.0 397500.0 255 0 \n", "1102500.0 497500.0 255 0 \n", "1202500.0 202500.0 255 0 \n", "1122500.0 297500.0 255 0 \n", "857500.0 282500.0 0 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
617500.0587500.00000000000...0000-9999-9999-1-12550
1002500.0567500.00000000000...0000-9999-9999-1-12550
1137500.0697500.00000000000...0000-9999-9999-1-12550
1147500.0262500.00000000000...0000-9999-9999-1-12550
1177500.0667500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "617500.0 587500.0 0 0 0 \n", "1002500.0 567500.0 0 0 0 \n", "1137500.0 697500.0 0 0 0 \n", "1147500.0 262500.0 0 0 0 \n", "1177500.0 667500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "617500.0 587500.0 0 0 \n", "1002500.0 567500.0 0 0 \n", "1137500.0 697500.0 0 0 \n", "1147500.0 262500.0 0 0 \n", "1177500.0 667500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "617500.0 587500.0 0 0 0 0 \n", "1002500.0 567500.0 0 0 0 0 \n", "1137500.0 697500.0 0 0 0 0 \n", "1147500.0 262500.0 0 0 0 0 \n", "1177500.0 667500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "617500.0 587500.0 0 ... 0 0 \n", "1002500.0 567500.0 0 ... 0 0 \n", "1137500.0 697500.0 0 ... 0 0 \n", "1147500.0 262500.0 0 ... 0 0 \n", "1177500.0 667500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "617500.0 587500.0 0 0 -9999 -9999 \n", "1002500.0 567500.0 0 0 -9999 -9999 \n", "1137500.0 697500.0 0 0 -9999 -9999 \n", "1147500.0 262500.0 0 0 -9999 -9999 \n", "1177500.0 667500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "617500.0 587500.0 -1 -1 \n", "1002500.0 567500.0 -1 -1 \n", "1137500.0 697500.0 -1 -1 \n", "1147500.0 262500.0 -1 -1 \n", "1177500.0 667500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "617500.0 587500.0 255 0 \n", "1002500.0 567500.0 255 0 \n", "1137500.0 697500.0 255 0 \n", "1147500.0 262500.0 255 0 \n", "1177500.0 667500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
1107500.097500.00000000000...0000-9999-9999-1-12550
1042500.0502500.00000000000...0000-9999-9999-1-12550
777500.0627500.00000000000...0000-9999-9999-1-12550
1012500.0457500.00000000000...0000-9999-9999-1-12550
522500.0502500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1107500.0 97500.0 0 0 0 \n", "1042500.0 502500.0 0 0 0 \n", "777500.0 627500.0 0 0 0 \n", "1012500.0 457500.0 0 0 0 \n", "522500.0 502500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1107500.0 97500.0 0 0 \n", "1042500.0 502500.0 0 0 \n", "777500.0 627500.0 0 0 \n", "1012500.0 457500.0 0 0 \n", "522500.0 502500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1107500.0 97500.0 0 0 0 0 \n", "1042500.0 502500.0 0 0 0 0 \n", "777500.0 627500.0 0 0 0 0 \n", "1012500.0 457500.0 0 0 0 0 \n", "522500.0 502500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "1107500.0 97500.0 0 ... 0 0 \n", "1042500.0 502500.0 0 ... 0 0 \n", "777500.0 627500.0 0 ... 0 0 \n", "1012500.0 457500.0 0 ... 0 0 \n", "522500.0 502500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "1107500.0 97500.0 0 0 -9999 -9999 \n", "1042500.0 502500.0 0 0 -9999 -9999 \n", "777500.0 627500.0 0 0 -9999 -9999 \n", "1012500.0 457500.0 0 0 -9999 -9999 \n", "522500.0 502500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "1107500.0 97500.0 -1 -1 \n", "1042500.0 502500.0 -1 -1 \n", "777500.0 627500.0 -1 -1 \n", "1012500.0 457500.0 -1 -1 \n", "522500.0 502500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "1107500.0 97500.0 255 0 \n", "1042500.0 502500.0 255 0 \n", "777500.0 627500.0 255 0 \n", "1012500.0 457500.0 255 0 \n", "522500.0 502500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
797500.0252500.0000000001000...0000489135211280
422500.0127500.00000000000...0000-9999-9999-1-12550
52500.0382500.00000000000...0000-9999-9999-1-12550
152500.0142500.00000000000...0000-9999-9999-1-12550
982500.0647500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "797500.0 252500.0 0 0 0 \n", "422500.0 127500.0 0 0 0 \n", "52500.0 382500.0 0 0 0 \n", "152500.0 142500.0 0 0 0 \n", "982500.0 647500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "797500.0 252500.0 0 0 0 \n", "422500.0 127500.0 0 0 0 \n", "52500.0 382500.0 0 0 0 \n", "152500.0 142500.0 0 0 0 \n", "982500.0 647500.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "797500.0 252500.0 0 0 100 0 ... \n", "422500.0 127500.0 0 0 0 0 ... \n", "52500.0 382500.0 0 0 0 0 ... \n", "152500.0 142500.0 0 0 0 0 ... \n", "982500.0 647500.0 0 0 0 0 ... \n", "\n", " Littoral sediment Saltmarsh Urban Suburban Elevation \\\n", "y x \n", "797500.0 252500.0 0 0 0 0 4891 \n", "422500.0 127500.0 0 0 0 0 -9999 \n", "52500.0 382500.0 0 0 0 0 -9999 \n", "152500.0 142500.0 0 0 0 0 -9999 \n", "982500.0 647500.0 0 0 0 0 -9999 \n", "\n", " Cumulative catchment area Surface type \\\n", "y x \n", "797500.0 252500.0 35 2 \n", "422500.0 127500.0 -9999 -1 \n", "52500.0 382500.0 -9999 -1 \n", "152500.0 142500.0 -9999 -1 \n", "982500.0 647500.0 -9999 -1 \n", "\n", " Outflowing drainage direction \\\n", "y x \n", "797500.0 252500.0 1 \n", "422500.0 127500.0 -1 \n", "52500.0 382500.0 -1 \n", "152500.0 142500.0 -1 \n", "982500.0 647500.0 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "797500.0 252500.0 128 0 \n", "422500.0 127500.0 255 0 \n", "52500.0 382500.0 255 0 \n", "152500.0 142500.0 255 0 \n", "982500.0 647500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
1037500.0652500.00000000000...0000-9999-9999-1-12550
1117500.0522500.00000000000...0000-9999-9999-1-12550
722500.062500.00000000000...0000-9999-9999-1-12550
582500.0442500.00000000000...0000-9999-9999-1-12550
877500.032500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1037500.0 652500.0 0 0 0 \n", "1117500.0 522500.0 0 0 0 \n", "722500.0 62500.0 0 0 0 \n", "582500.0 442500.0 0 0 0 \n", "877500.0 32500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1037500.0 652500.0 0 0 \n", "1117500.0 522500.0 0 0 \n", "722500.0 62500.0 0 0 \n", "582500.0 442500.0 0 0 \n", "877500.0 32500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1037500.0 652500.0 0 0 0 0 \n", "1117500.0 522500.0 0 0 0 0 \n", "722500.0 62500.0 0 0 0 0 \n", "582500.0 442500.0 0 0 0 0 \n", "877500.0 32500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "1037500.0 652500.0 0 ... 0 0 \n", "1117500.0 522500.0 0 ... 0 0 \n", "722500.0 62500.0 0 ... 0 0 \n", "582500.0 442500.0 0 ... 0 0 \n", "877500.0 32500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "1037500.0 652500.0 0 0 -9999 -9999 \n", "1117500.0 522500.0 0 0 -9999 -9999 \n", "722500.0 62500.0 0 0 -9999 -9999 \n", "582500.0 442500.0 0 0 -9999 -9999 \n", "877500.0 32500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "1037500.0 652500.0 -1 -1 \n", "1117500.0 522500.0 -1 -1 \n", "722500.0 62500.0 -1 -1 \n", "582500.0 442500.0 -1 -1 \n", "877500.0 32500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "1037500.0 652500.0 255 0 \n", "1117500.0 522500.0 255 0 \n", "722500.0 62500.0 255 0 \n", "582500.0 442500.0 255 0 \n", "877500.0 32500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
302500.0297500.003000097000...00003764182720
912500.0297500.0180010000810...00002301321640
1152500.0472500.00000000000...0000-9999-9999-1-12550
1042500.0172500.00000000000...0000-9999-9999-1-12550
802500.0532500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "302500.0 297500.0 0 3 0 \n", "912500.0 297500.0 18 0 0 \n", "1152500.0 472500.0 0 0 0 \n", "1042500.0 172500.0 0 0 0 \n", "802500.0 532500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "302500.0 297500.0 0 0 \n", "912500.0 297500.0 1 0 \n", "1152500.0 472500.0 0 0 \n", "1042500.0 172500.0 0 0 \n", "802500.0 532500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "302500.0 297500.0 0 97 0 0 \n", "912500.0 297500.0 0 0 0 81 \n", "1152500.0 472500.0 0 0 0 0 \n", "1042500.0 172500.0 0 0 0 0 \n", "802500.0 532500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "302500.0 297500.0 0 ... 0 0 \n", "912500.0 297500.0 0 ... 0 0 \n", "1152500.0 472500.0 0 ... 0 0 \n", "1042500.0 172500.0 0 ... 0 0 \n", "802500.0 532500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "302500.0 297500.0 0 0 3764 18 \n", "912500.0 297500.0 0 0 2301 3 \n", "1152500.0 472500.0 0 0 -9999 -9999 \n", "1042500.0 172500.0 0 0 -9999 -9999 \n", "802500.0 532500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "302500.0 297500.0 2 7 \n", "912500.0 297500.0 2 1 \n", "1152500.0 472500.0 -1 -1 \n", "1042500.0 172500.0 -1 -1 \n", "802500.0 532500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "302500.0 297500.0 2 0 \n", "912500.0 297500.0 64 0 \n", "1152500.0 472500.0 255 0 \n", "1042500.0 172500.0 255 0 \n", "802500.0 532500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
1122500.0637500.00000000000...0000-9999-9999-1-12550
267500.0242500.00000000000...0000-1000-99990-200
172500.0202500.00000000000...0000-9999-9999-1-12550
802500.0322500.000000080920...00004998423320
512500.0522500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1122500.0 637500.0 0 0 0 \n", "267500.0 242500.0 0 0 0 \n", "172500.0 202500.0 0 0 0 \n", "802500.0 322500.0 0 0 0 \n", "512500.0 522500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1122500.0 637500.0 0 0 \n", "267500.0 242500.0 0 0 \n", "172500.0 202500.0 0 0 \n", "802500.0 322500.0 0 0 \n", "512500.0 522500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1122500.0 637500.0 0 0 0 0 \n", "267500.0 242500.0 0 0 0 0 \n", "172500.0 202500.0 0 0 0 0 \n", "802500.0 322500.0 0 8 0 92 \n", "512500.0 522500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "1122500.0 637500.0 0 ... 0 0 \n", "267500.0 242500.0 0 ... 0 0 \n", "172500.0 202500.0 0 ... 0 0 \n", "802500.0 322500.0 0 ... 0 0 \n", "512500.0 522500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "1122500.0 637500.0 0 0 -9999 -9999 \n", "267500.0 242500.0 0 0 -1000 -9999 \n", "172500.0 202500.0 0 0 -9999 -9999 \n", "802500.0 322500.0 0 0 4998 4 \n", "512500.0 522500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "1122500.0 637500.0 -1 -1 \n", "267500.0 242500.0 0 -2 \n", "172500.0 202500.0 -1 -1 \n", "802500.0 322500.0 2 3 \n", "512500.0 522500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "1122500.0 637500.0 255 0 \n", "267500.0 242500.0 0 0 \n", "172500.0 202500.0 255 0 \n", "802500.0 322500.0 32 0 \n", "512500.0 522500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
502500.0397500.00000000000...00005413823400
1062500.0372500.00000000000...0000-9999-9999-1-12550
1232500.082500.00000000000...0000-9999-9999-1-12550
2500.0342500.00000000000...0000-9999-9999-1-12550
1287500.07500.00000000000...0000-9999-9999-1-12550
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "502500.0 397500.0 0 0 0 \n", "1062500.0 372500.0 0 0 0 \n", "1232500.0 82500.0 0 0 0 \n", "2500.0 342500.0 0 0 0 \n", "1287500.0 7500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "502500.0 397500.0 0 0 \n", "1062500.0 372500.0 0 0 \n", "1232500.0 82500.0 0 0 \n", "2500.0 342500.0 0 0 \n", "1287500.0 7500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "502500.0 397500.0 0 0 0 0 \n", "1062500.0 372500.0 0 0 0 0 \n", "1232500.0 82500.0 0 0 0 0 \n", "2500.0 342500.0 0 0 0 0 \n", "1287500.0 7500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "502500.0 397500.0 0 ... 0 0 \n", "1062500.0 372500.0 0 ... 0 0 \n", "1232500.0 82500.0 0 ... 0 0 \n", "2500.0 342500.0 0 ... 0 0 \n", "1287500.0 7500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "502500.0 397500.0 0 0 5413 8 \n", "1062500.0 372500.0 0 0 -9999 -9999 \n", "1232500.0 82500.0 0 0 -9999 -9999 \n", "2500.0 342500.0 0 0 -9999 -9999 \n", "1287500.0 7500.0 0 0 -9999 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "502500.0 397500.0 2 3 \n", "1062500.0 372500.0 -1 -1 \n", "1232500.0 82500.0 -1 -1 \n", "2500.0 342500.0 -1 -1 \n", "1287500.0 7500.0 -1 -1 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "502500.0 397500.0 40 0 \n", "1062500.0 372500.0 255 0 \n", "1232500.0 82500.0 255 0 \n", "2500.0 342500.0 255 0 \n", "1287500.0 7500.0 255 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
102500.0257500.03011060000000...000098220229150
1232500.0332500.00000000000...0000-9999-9999-1-12550
1182500.037500.00000000000...0000-9999-9999-1-12550
557500.052500.00000000000...0000-9999-9999-1-12550
187500.0212500.00000000000...0000-1000-99990-200
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "102500.0 257500.0 30 11 0 \n", "1232500.0 332500.0 0 0 0 \n", "1182500.0 37500.0 0 0 0 \n", "557500.0 52500.0 0 0 0 \n", "187500.0 212500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "102500.0 257500.0 60 0 \n", "1232500.0 332500.0 0 0 \n", "1182500.0 37500.0 0 0 \n", "557500.0 52500.0 0 0 \n", "187500.0 212500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "102500.0 257500.0 0 0 0 0 \n", "1232500.0 332500.0 0 0 0 0 \n", "1182500.0 37500.0 0 0 0 0 \n", "557500.0 52500.0 0 0 0 0 \n", "187500.0 212500.0 0 0 0 0 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "102500.0 257500.0 0 ... 0 0 \n", "1232500.0 332500.0 0 ... 0 0 \n", "1182500.0 37500.0 0 ... 0 0 \n", "557500.0 52500.0 0 ... 0 0 \n", "187500.0 212500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "102500.0 257500.0 0 0 982 202 \n", "1232500.0 332500.0 0 0 -9999 -9999 \n", "1182500.0 37500.0 0 0 -9999 -9999 \n", "557500.0 52500.0 0 0 -9999 -9999 \n", "187500.0 212500.0 0 0 -1000 -9999 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "102500.0 257500.0 2 9 \n", "1232500.0 332500.0 -1 -1 \n", "1182500.0 37500.0 -1 -1 \n", "557500.0 52500.0 -1 -1 \n", "187500.0 212500.0 0 -2 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "102500.0 257500.0 15 0 \n", "1232500.0 332500.0 255 0 \n", "1182500.0 37500.0 255 0 \n", "557500.0 52500.0 255 0 \n", "187500.0 212500.0 0 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Littoral sedimentSaltmarshUrbanSuburbanElevationCumulative catchment areaSurface typeOutflowing drainage directionInflowing drainage directionOccurrence
yx
1147500.0547500.00000000000...0000-9999-9999-1-12550
1027500.0172500.00000000000...0000-9999-9999-1-12550
1247500.0612500.00000000000...0000-9999-9999-1-12550
62500.0372500.00000000000...0000-1000-99990-200
752500.0272500.0000000001000...0000618242740
\n", "

5 rows × 27 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1147500.0 547500.0 0 0 0 \n", "1027500.0 172500.0 0 0 0 \n", "1247500.0 612500.0 0 0 0 \n", "62500.0 372500.0 0 0 0 \n", "752500.0 272500.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1147500.0 547500.0 0 0 \n", "1027500.0 172500.0 0 0 \n", "1247500.0 612500.0 0 0 \n", "62500.0 372500.0 0 0 \n", "752500.0 272500.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1147500.0 547500.0 0 0 0 0 \n", "1027500.0 172500.0 0 0 0 0 \n", "1247500.0 612500.0 0 0 0 0 \n", "62500.0 372500.0 0 0 0 0 \n", "752500.0 272500.0 0 0 0 100 \n", "\n", " Heather grassland ... Littoral sediment Saltmarsh \\\n", "y x ... \n", "1147500.0 547500.0 0 ... 0 0 \n", "1027500.0 172500.0 0 ... 0 0 \n", "1247500.0 612500.0 0 ... 0 0 \n", "62500.0 372500.0 0 ... 0 0 \n", "752500.0 272500.0 0 ... 0 0 \n", "\n", " Urban Suburban Elevation Cumulative catchment area \\\n", "y x \n", "1147500.0 547500.0 0 0 -9999 -9999 \n", "1027500.0 172500.0 0 0 -9999 -9999 \n", "1247500.0 612500.0 0 0 -9999 -9999 \n", "62500.0 372500.0 0 0 -1000 -9999 \n", "752500.0 272500.0 0 0 6182 4 \n", "\n", " Surface type Outflowing drainage direction \\\n", "y x \n", "1147500.0 547500.0 -1 -1 \n", "1027500.0 172500.0 -1 -1 \n", "1247500.0 612500.0 -1 -1 \n", "62500.0 372500.0 0 -2 \n", "752500.0 272500.0 2 7 \n", "\n", " Inflowing drainage direction Occurrence \n", "y x \n", "1147500.0 547500.0 255 0 \n", "1027500.0 172500.0 255 0 \n", "1247500.0 612500.0 255 0 \n", "62500.0 372500.0 0 0 \n", "752500.0 272500.0 4 0 \n", "\n", "[5 rows x 27 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Drop Fertiliser and Pesticide\n", "for dict in df_dicts:\n", " cur_df = dict[\"dataframe\"]\n", " dict[\"dataframe\"].drop(cur_df.iloc[:, 26:-1], inplace=True, axis=1)\n", " display(cur_df.sample(5))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 5km data before drop: \n", " Occurrence\n", "0 35813\n", "1 587\n", "dtype: int64 \n", "\n", "Barnacle Goose 5km data after drop: \n", " Occurrence\n", "0 7378\n", "1 587\n", "dtype: int64 \n", "\n", "Canada Goose 5km data before drop: \n", " Occurrence\n", "0 32095\n", "1 4305\n", "dtype: int64 \n", "\n", "Canada Goose 5km data after drop: \n", " Occurrence\n", "1 4305\n", "0 3660\n", "dtype: int64 \n", "\n", "Egyptian Goose 5km data before drop: \n", " Occurrence\n", "0 35915\n", "1 485\n", "dtype: int64 \n", "\n", "Egyptian Goose 5km data after drop: \n", " Occurrence\n", "0 7480\n", "1 485\n", "dtype: int64 \n", "\n", "Gadwall 5km data before drop: \n", " Occurrence\n", "0 35001\n", "1 1399\n", "dtype: int64 \n", "\n", "Gadwall 5km data after drop: \n", " Occurrence\n", "0 6566\n", "1 1399\n", "dtype: int64 \n", "\n", "Goshawk 5km data before drop: \n", " Occurrence\n", "0 35954\n", "1 446\n", "dtype: int64 \n", "\n", "Goshawk 5km data after drop: \n", " Occurrence\n", "0 7519\n", "1 446\n", "dtype: int64 \n", "\n", "Grey Partridge 5km data before drop: \n", " Occurrence\n", "0 34771\n", "1 1629\n", "dtype: int64 \n", "\n", "Grey Partridge 5km data after drop: \n", " Occurrence\n", "0 6336\n", "1 1629\n", "dtype: int64 \n", "\n", "Indian Peafowl 5km data before drop: \n", " Occurrence\n", "0 36116\n", "1 284\n", "dtype: int64 \n", "\n", "Indian Peafowl 5km data after drop: \n", " Occurrence\n", "0 7681\n", "1 284\n", "dtype: int64 \n", "\n", "Little Owl 5km data before drop: \n", " Occurrence\n", "0 34242\n", "1 2158\n", "dtype: int64 \n", "\n", "Little Owl 5km data after drop: \n", " Occurrence\n", "0 5807\n", "1 2158\n", "dtype: int64 \n", "\n", "Mandarin Duck 5km data before drop: \n", " Occurrence\n", "0 35686\n", "1 714\n", "dtype: int64 \n", "\n", "Mandarin Duck 5km data after drop: \n", " Occurrence\n", "0 7251\n", "1 714\n", "dtype: int64 \n", "\n", "Mute Swan 5km data before drop: \n", " Occurrence\n", "0 31133\n", "1 5267\n", "dtype: int64 \n", "\n", "Mute Swan 5km data after drop: \n", " Occurrence\n", "1 5267\n", "0 2698\n", "dtype: int64 \n", "\n", "Pheasant 5km data before drop: \n", " Occurrence\n", "0 32552\n", "1 3848\n", "dtype: int64 \n", "\n", "Pheasant 5km data after drop: \n", " Occurrence\n", "0 4117\n", "1 3848\n", "dtype: int64 \n", "\n", "Pink-footed Goose 5km data before drop: \n", " Occurrence\n", "0 35087\n", "1 1313\n", "dtype: int64 \n", "\n", "Pink-footed Goose 5km data after drop: \n", " Occurrence\n", "0 6652\n", "1 1313\n", "dtype: int64 \n", "\n", "Pintail 5km data before drop: \n", " Occurrence\n", "0 35751\n", "1 649\n", "dtype: int64 \n", "\n", "Pintail 5km data after drop: \n", " Occurrence\n", "0 7316\n", "1 649\n", "dtype: int64 \n", "\n", "Pochard 5km data before drop: \n", " Occurrence\n", "0 35458\n", "1 942\n", "dtype: int64 \n", "\n", "Pochard 5km data after drop: \n", " Occurrence\n", "0 7023\n", "1 942\n", "dtype: int64 \n", "\n", "Red-legged Partridge 5km data before drop: \n", " Occurrence\n", "0 34250\n", "1 2150\n", "dtype: int64 \n", "\n", "Red-legged Partridge 5km data after drop: \n", " Occurrence\n", "0 5815\n", "1 2150\n", "dtype: int64 \n", "\n", "Ring-necked Parakeet 5km data before drop: \n", " Occurrence\n", "0 36194\n", "1 206\n", "dtype: int64 \n", "\n", "Ring-necked Parakeet 5km data after drop: \n", " Occurrence\n", "0 7759\n", "1 206\n", "dtype: int64 \n", "\n", "Rock Dove 5km data before drop: \n", " Occurrence\n", "0 33570\n", "1 2830\n", "dtype: int64 \n", "\n", "Rock Dove 5km data after drop: \n", " Occurrence\n", "0 5135\n", "1 2830\n", "dtype: int64 \n", "\n", "Ruddy Duck 5km data before drop: \n", " Occurrence\n", "0 36291\n", "1 109\n", "dtype: int64 \n", "\n", "Ruddy Duck 5km data after drop: \n", " Occurrence\n", "0 7856\n", "1 109\n", "dtype: int64 \n", "\n", "Whooper Swan 5km data before drop: \n", " Occurrence\n", "0 35558\n", "1 842\n", "dtype: int64 \n", "\n", "Whooper Swan 5km data after drop: \n", " Occurrence\n", "0 7123\n", "1 842\n", "dtype: int64 \n", "\n", "Wigeon 5km data before drop: \n", " Occurrence\n", "0 34543\n", "1 1857\n", "dtype: int64 \n", "\n", "Wigeon 5km data after drop: \n", " Occurrence\n", "0 6108\n", "1 1857\n", "dtype: int64 \n", "\n" ] } ], "source": [ "# Data Cleaning\n", "np.random.seed(seed=seed)\n", "\n", "for dict in df_dicts:\n", " cur_df = dict[\"dataframe\"]\n", " cur_df_name = dict[\"name\"]\n", "\n", " print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n", " \n", " no_occurences = cur_df[cur_df['Occurrence']==0].index \n", " sample_size = sum(cur_df['Occurrence']==0) - total_birds + sum(cur_df['Occurrence']==1)\n", " random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n", " dict[\"dataframe\"] = cur_df.drop(random_indices)\n", " \n", " print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')\n", "\n", "\n", "# for dict in df_dicts:\n", "# cur_df = dict[\"dataframe\"]\n", "# cur_df_name = dict[\"name\"]\n", "\n", "# print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n", " \n", "# no_occurences = cur_df[cur_df['Occurrence']==0].index\n", "# sample_size = sum(cur_df['Occurrence']==0) - sum(cur_df['Occurrence']==1)\n", "# random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n", "# dict[\"dataframe\"] = cur_df.drop(random_indices)\n", " \n", "# print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# Standardisation\n", "def standardise(X):\n", " scaler = StandardScaler()\n", " X_scaled = scaler.fit_transform(X)\n", "\n", " # Add headers back\n", " X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)\n", "\n", " # Revert 'Surface type' back to non-standardised column as it is a categorical feature\n", " X_scaled_df['Surface type'] = X['Surface type'].values\n", " return X_scaled_df" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# Feature Selection\n", "\n", "# Check if any columns have NaN in them\n", "# nan_columns = []\n", "# for column in X_scaled_df:\n", "# if X_scaled_df[column].isnull().values.any():\n", "# nan_columns.append(column)\n", "# print(nan_columns if len(nan_columns)!= 0 else 'None')\n", "\n", "\n", "# Using ANOVA F-Score as a feature selection method\n", "def feature_select(X, y):\n", " k_nums = [5, 10, 15, 20]\n", " kbest_dict = {}\n", " for num in k_nums:\n", " # Needs to be 1d array, y.values.ravel() converts y into a 1d array\n", " best_X = SelectKBest(f_classif, k=num).fit(X, y.values.ravel())\n", " # kbest_dict[str(num)] = best_X.get_feature_names_out().tolist()\n", " kbest_dict[str(num)] = best_X\n", " # kbest_dict['40'] = list(X.columns)\n", "\n", " best_X = SelectKBest(f_classif, k='all').fit(X, y.values.ravel())\n", "\n", " feat_scores = pd.DataFrame()\n", " feat_scores[\"F Score\"] = best_X.scores_\n", " feat_scores[\"P Value\"] = best_X.pvalues_\n", " feat_scores[\"Attribute\"] = X.columns\n", " kbest_dict['Dataframe'] = feat_scores.sort_values([\"F Score\", \"P Value\"], ascending=[False, False])\n", "\n", "\n", " if details:\n", " print(f'K-Best Features Dataframe: \\n{kbest_dict[\"Dataframe\"]} \\n')\n", " # print(json.dumps(kbest_dict, indent=4))\n", " return kbest_dict" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# Resample (upsample) minority data\n", "# for dict in df_dicts:\n", "# if sum(dict['dataframe']['Occurence']==1) > sum(dict['dataframe']['Occurence']==0):\n", "# continue\n", "\n", "# from sklearn.utils import resample\n", "\n", "# def upsample(X, y):\n", "# X_1 = X[y['Occurrence'] == 1] # Getting positive occurrences (minority)\n", "# X_0 = X[y['Occurrence'] == 0] # Getting negative occurrences (majority)\n", " \n", "# X_1_upsampled = resample(X_1 ,random_state=seed,n_samples=total_birds/2,replace=True)\n", "\n", "\n", "# print(f'Resampling: \\n {y.value_counts()} \\n')\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "def oversample(X_train, y_train):\n", " over = RandomOverSampler(sampling_strategy='minority', random_state=seed)\n", " smote = SMOTE(random_state=seed, sampling_strategy='minority')\n", " X_smote, y_smote = smote.fit_resample(X_train, y_train)\n", " \n", " if details:\n", " print(f'Resampled Value Counts: \\n {y_smote.value_counts()} \\n')\n", "\n", " return X_smote, y_smote" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NameOccurrence CountPercentage
9Mute Swan 5km52670.661268
1Canada Goose 5km43050.540490
10Pheasant 5km38480.483114
16Rock Dove 5km28300.355304
7Little Owl 5km21580.270935
14Red-legged Partridge 5km21500.269931
19Wigeon 5km18570.233145
5Grey Partridge 5km16290.204520
3Gadwall 5km13990.175643
11Pink-footed Goose 5km13130.164846
13Pochard 5km9420.118267
18Whooper Swan 5km8420.105712
8Mandarin Duck 5km7140.089642
12Pintail 5km6490.081481
0Barnacle Goose 5km5870.073697
2Egyptian Goose 5km4850.060891
4Goshawk 5km4460.055995
6Indian Peafowl 5km2840.035656
15Ring-necked Parakeet 5km2060.025863
17Ruddy Duck 5km1090.013685
\n", "
" ], "text/plain": [ " Name Occurrence Count Percentage\n", "9 Mute Swan 5km 5267 0.661268\n", "1 Canada Goose 5km 4305 0.540490\n", "10 Pheasant 5km 3848 0.483114\n", "16 Rock Dove 5km 2830 0.355304\n", "7 Little Owl 5km 2158 0.270935\n", "14 Red-legged Partridge 5km 2150 0.269931\n", "19 Wigeon 5km 1857 0.233145\n", "5 Grey Partridge 5km 1629 0.204520\n", "3 Gadwall 5km 1399 0.175643\n", "11 Pink-footed Goose 5km 1313 0.164846\n", "13 Pochard 5km 942 0.118267\n", "18 Whooper Swan 5km 842 0.105712\n", "8 Mandarin Duck 5km 714 0.089642\n", "12 Pintail 5km 649 0.081481\n", "0 Barnacle Goose 5km 587 0.073697\n", "2 Egyptian Goose 5km 485 0.060891\n", "4 Goshawk 5km 446 0.055995\n", "6 Indian Peafowl 5km 284 0.035656\n", "15 Ring-necked Parakeet 5km 206 0.025863\n", "17 Ruddy Duck 5km 109 0.013685" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "All_bird_occurrences = pd.DataFrame([(dict['name'],sum(dict['dataframe']['Occurrence'] == 1)) for dict in df_dicts], columns=['Name', 'Occurrence Count'])\n", "All_bird_occurrences['Percentage'] = All_bird_occurrences['Occurrence Count']/total_birds\n", "\n", "All_bird_occurrences.sort_values('Occurrence Count', ascending=False)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Training with Barnacle Goose 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.934793683138054,\n", " \"recall\": 0.995119305856833,\n", " \"f1-score\": 0.9640136590491201,\n", " \"support\": 1844\n", " },\n", " \"1\": {\n", " \"precision\": 0.6896551724137931,\n", " \"recall\": 0.13513513513513514,\n", " \"f1-score\": 0.22598870056497178,\n", " \"support\": 148\n", " },\n", " \"accuracy\": 0.9312248995983936,\n", " \"macro avg\": {\n", " \"precision\": 0.8122244277759236,\n", " \"recall\": 0.5651272204959841,\n", " \"f1-score\": 0.5950011798070459,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9165805809356491,\n", " \"recall\": 0.9312248995983936,\n", " \"f1-score\": 0.9091804794027075,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Barnacle Goose 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9457964601769911,\n", " \"recall\": 0.9273318872017353,\n", " \"f1-score\": 0.936473165388828,\n", " \"support\": 1844\n", " },\n", " \"1\": {\n", " \"precision\": 0.2717391304347826,\n", " \"recall\": 0.33783783783783783,\n", " \"f1-score\": 0.3012048192771084,\n", " \"support\": 148\n", " },\n", " \"accuracy\": 0.8835341365461847,\n", " \"macro avg\": {\n", " \"precision\": 0.6087677953058869,\n", " \"recall\": 0.6325848625197865,\n", " \"f1-score\": 0.6188389923329682,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8957158955174294,\n", " \"recall\": 0.8835341365461847,\n", " \"f1-score\": 0.8892745131676761,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Canada Goose 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Canada Goose 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9504830917874396,\n", " \"recall\": 0.8582333696837514,\n", " \"f1-score\": 0.9020057306590258,\n", " \"support\": 917\n", " },\n", " \"1\": {\n", " \"precision\": 0.8883161512027491,\n", " \"recall\": 0.9618604651162791,\n", " \"f1-score\": 0.923626619026351,\n", " \"support\": 1075\n", " },\n", " \"accuracy\": 0.9141566265060241,\n", " \"macro avg\": {\n", " \"precision\": 0.9193996214950944,\n", " \"recall\": 0.9100469174000152,\n", " \"f1-score\": 0.9128161748426884,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.916934165518091,\n", " \"recall\": 0.9141566265060241,\n", " \"f1-score\": 0.9136736297528384,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Canada Goose 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9319492502883506,\n", " \"recall\": 0.88113413304253,\n", " \"f1-score\": 0.905829596412556,\n", " \"support\": 917\n", " },\n", " \"1\": {\n", " \"precision\": 0.9031111111111111,\n", " \"recall\": 0.9451162790697675,\n", " \"f1-score\": 0.9236363636363636,\n", " \"support\": 1075\n", " },\n", " \"accuracy\": 0.9156626506024096,\n", " \"macro avg\": {\n", " \"precision\": 0.9175301806997309,\n", " \"recall\": 0.9131252060561488,\n", " \"f1-score\": 0.9147329800244598,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9163864994773404,\n", " \"recall\": 0.9156626506024096,\n", " \"f1-score\": 0.9154391720980948,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Egyptian Goose 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Egyptian Goose 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9474768280123584,\n", " \"recall\": 0.9881847475832438,\n", " \"f1-score\": 0.9674027339642481,\n", " \"support\": 1862\n", " },\n", " \"1\": {\n", " \"precision\": 0.56,\n", " \"recall\": 0.2153846153846154,\n", " \"f1-score\": 0.3111111111111111,\n", " \"support\": 130\n", " },\n", " \"accuracy\": 0.9377510040160643,\n", " \"macro avg\": {\n", " \"precision\": 0.7537384140061792,\n", " \"recall\": 0.6017846814839296,\n", " \"f1-score\": 0.6392569225376796,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9221896856219937,\n", " \"recall\": 0.9377510040160643,\n", " \"f1-score\": 0.924572457372427,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Egyptian Goose 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9553571428571429,\n", " \"recall\": 0.976906552094522,\n", " \"f1-score\": 0.9660116834838025,\n", " \"support\": 1862\n", " },\n", " \"1\": {\n", " \"precision\": 0.5113636363636364,\n", " \"recall\": 0.34615384615384615,\n", " \"f1-score\": 0.41284403669724773,\n", " \"support\": 130\n", " },\n", " \"accuracy\": 0.9357429718875502,\n", " \"macro avg\": {\n", " \"precision\": 0.7333603896103896,\n", " \"recall\": 0.6615301991241841,\n", " \"f1-score\": 0.6894278600905251,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9263816630156991,\n", " \"recall\": 0.9357429718875502,\n", " \"f1-score\": 0.9299113852497402,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Gadwall 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Gadwall 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9283965728274174,\n", " \"recall\": 0.9266951740989615,\n", " \"f1-score\": 0.9275450932436564,\n", " \"support\": 1637\n", " },\n", " \"1\": {\n", " \"precision\": 0.664804469273743,\n", " \"recall\": 0.6704225352112676,\n", " \"f1-score\": 0.667601683029453,\n", " \"support\": 355\n", " },\n", " \"accuracy\": 0.8810240963855421,\n", " \"macro avg\": {\n", " \"precision\": 0.7966005210505802,\n", " \"recall\": 0.7985588546551146,\n", " \"f1-score\": 0.7975733881365548,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.881421072445111,\n", " \"recall\": 0.8810240963855421,\n", " \"f1-score\": 0.8812198369052818,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Gadwall 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.905727923627685,\n", " \"recall\": 0.9273060476481368,\n", " \"f1-score\": 0.9163899788711137,\n", " \"support\": 1637\n", " },\n", " \"1\": {\n", " \"precision\": 0.6234177215189873,\n", " \"recall\": 0.5549295774647888,\n", " \"f1-score\": 0.587183308494784,\n", " \"support\": 355\n", " },\n", " \"accuracy\": 0.8609437751004017,\n", " \"macro avg\": {\n", " \"precision\": 0.7645728225733361,\n", " \"recall\": 0.7411178125564628,\n", " \"f1-score\": 0.7517866436829488,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8554166175289963,\n", " \"recall\": 0.8609437751004017,\n", " \"f1-score\": 0.8577211194415972,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Goshawk 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Goshawk 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9532994923857868,\n", " \"recall\": 0.9910290237467019,\n", " \"f1-score\": 0.9717981888745149,\n", " \"support\": 1895\n", " },\n", " \"1\": {\n", " \"precision\": 0.22727272727272727,\n", " \"recall\": 0.05154639175257732,\n", " \"f1-score\": 0.08403361344537814,\n", " \"support\": 97\n", " },\n", " \"accuracy\": 0.945281124497992,\n", " \"macro avg\": {\n", " \"precision\": 0.590286109829257,\n", " \"recall\": 0.5212877077496396,\n", " \"f1-score\": 0.5279159011599465,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9179457794259641,\n", " \"recall\": 0.945281124497992,\n", " \"f1-score\": 0.92856868896657,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Goshawk 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9608967674661105,\n", " \"recall\": 0.9725593667546174,\n", " \"f1-score\": 0.966692892735379,\n", " \"support\": 1895\n", " },\n", " \"1\": {\n", " \"precision\": 0.2972972972972973,\n", " \"recall\": 0.2268041237113402,\n", " \"f1-score\": 0.2573099415204678,\n", " \"support\": 97\n", " },\n", " \"accuracy\": 0.9362449799196787,\n", " \"macro avg\": {\n", " \"precision\": 0.6290970323817039,\n", " \"recall\": 0.5996817452329788,\n", " \"f1-score\": 0.6120014171279233,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9285829378444365,\n", " \"recall\": 0.9362449799196787,\n", " \"f1-score\": 0.9321496466169821,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Grey Partridge 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Grey Partridge 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9430628272251309,\n", " \"recall\": 0.902316844082655,\n", " \"f1-score\": 0.92224,\n", " \"support\": 1597\n", " },\n", " \"1\": {\n", " \"precision\": 0.6637931034482759,\n", " \"recall\": 0.779746835443038,\n", " \"f1-score\": 0.7171129220023283,\n", " \"support\": 395\n", " },\n", " \"accuracy\": 0.8780120481927711,\n", " \"macro avg\": {\n", " \"precision\": 0.8034279653367034,\n", " \"recall\": 0.8410318397628465,\n", " \"f1-score\": 0.8196764610011642,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8876855476609453,\n", " \"recall\": 0.8780120481927711,\n", " \"f1-score\": 0.881564700899056,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Grey Partridge 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8988278840222085,\n", " \"recall\": 0.9123356293049468,\n", " \"f1-score\": 0.9055313859540087,\n", " \"support\": 1597\n", " },\n", " \"1\": {\n", " \"precision\": 0.6226415094339622,\n", " \"recall\": 0.5848101265822785,\n", " \"f1-score\": 0.6031331592689295,\n", " \"support\": 395\n", " },\n", " \"accuracy\": 0.8473895582329317,\n", " \"macro avg\": {\n", " \"precision\": 0.7607346967280854,\n", " \"recall\": 0.7485728779436127,\n", " \"f1-score\": 0.7543322726114692,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8440620115511456,\n", " \"recall\": 0.8473895582329317,\n", " \"f1-score\": 0.8455678821685638,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Indian Peafowl 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Indian Peafowl 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9617321248741189,\n", " \"recall\": 0.9968684759916493,\n", " \"f1-score\": 0.9789851358277807,\n", " \"support\": 1916\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 76\n", " },\n", " \"accuracy\": 0.9588353413654619,\n", " \"macro avg\": {\n", " \"precision\": 0.4808660624370594,\n", " \"recall\": 0.49843423799582465,\n", " \"f1-score\": 0.48949256791389034,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9250395337644637,\n", " \"recall\": 0.9588353413654619,\n", " \"f1-score\": 0.941634297312263,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Indian Peafowl 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9655172413793104,\n", " \"recall\": 0.9791231732776617,\n", " \"f1-score\": 0.9722726094843224,\n", " \"support\": 1916\n", " },\n", " \"1\": {\n", " \"precision\": 0.1836734693877551,\n", " \"recall\": 0.11842105263157894,\n", " \"f1-score\": 0.144,\n", " \"support\": 76\n", " },\n", " \"accuracy\": 0.946285140562249,\n", " \"macro avg\": {\n", " \"precision\": 0.5745953553835328,\n", " \"recall\": 0.5487721129546204,\n", " \"f1-score\": 0.5581363047421611,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9356878605201948,\n", " \"recall\": 0.946285140562249,\n", " \"f1-score\": 0.9406718472750811,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Little Owl 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Little Owl 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9757174392935982,\n", " \"recall\": 0.8941335131490222,\n", " \"f1-score\": 0.9331456720619283,\n", " \"support\": 1483\n", " },\n", " \"1\": {\n", " \"precision\": 0.7519747235387045,\n", " \"recall\": 0.9351669941060904,\n", " \"f1-score\": 0.8336252189141856,\n", " \"support\": 509\n", " },\n", " \"accuracy\": 0.9046184738955824,\n", " \"macro avg\": {\n", " \"precision\": 0.8638460814161514,\n", " \"recall\": 0.9146502536275563,\n", " \"f1-score\": 0.883385445488057,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9185462333100436,\n", " \"recall\": 0.9046184738955824,\n", " \"f1-score\": 0.9077159980397391,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Little Owl 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9462897526501767,\n", " \"recall\": 0.9028995279838166,\n", " \"f1-score\": 0.9240855762594893,\n", " \"support\": 1483\n", " },\n", " \"1\": {\n", " \"precision\": 0.7504332755632582,\n", " \"recall\": 0.8506876227897839,\n", " \"f1-score\": 0.7974217311233885,\n", " \"support\": 509\n", " },\n", " \"accuracy\": 0.8895582329317269,\n", " \"macro avg\": {\n", " \"precision\": 0.8483615141067175,\n", " \"recall\": 0.8767935753868003,\n", " \"f1-score\": 0.8607536536914389,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8962440966073847,\n", " \"recall\": 0.8895582329317269,\n", " \"f1-score\": 0.8917201660314393,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Mandarin Duck 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Mandarin Duck 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9205194805194805,\n", " \"recall\": 0.9800884955752213,\n", " \"f1-score\": 0.9493704795070987,\n", " \"support\": 1808\n", " },\n", " \"1\": {\n", " \"precision\": 0.4626865671641791,\n", " \"recall\": 0.16847826086956522,\n", " \"f1-score\": 0.24701195219123506,\n", " \"support\": 184\n", " },\n", " \"accuracy\": 0.9051204819277109,\n", " \"macro avg\": {\n", " \"precision\": 0.6916030238418298,\n", " \"recall\": 0.5742833782223933,\n", " \"f1-score\": 0.5981912158491669,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8782296933420832,\n", " \"recall\": 0.9051204819277109,\n", " \"f1-score\": 0.8844939890321394,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Mandarin Duck 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9320282762370854,\n", " \"recall\": 0.9480088495575221,\n", " \"f1-score\": 0.9399506443652318,\n", " \"support\": 1808\n", " },\n", " \"1\": {\n", " \"precision\": 0.38562091503267976,\n", " \"recall\": 0.32065217391304346,\n", " \"f1-score\": 0.3501483679525223,\n", " \"support\": 184\n", " },\n", " \"accuracy\": 0.8900602409638554,\n", " \"macro avg\": {\n", " \"precision\": 0.6588245956348826,\n", " \"recall\": 0.6343305117352828,\n", " \"f1-score\": 0.645049506158877,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8815569135555539,\n", " \"recall\": 0.8900602409638554,\n", " \"f1-score\": 0.8854709160218891,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Mute Swan 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Mute Swan 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9235668789808917,\n", " \"recall\": 0.8357348703170029,\n", " \"f1-score\": 0.8774583963691377,\n", " \"support\": 694\n", " },\n", " \"1\": {\n", " \"precision\": 0.9164222873900293,\n", " \"recall\": 0.963020030816641,\n", " \"f1-score\": 0.9391435011269722,\n", " \"support\": 1298\n", " },\n", " \"accuracy\": 0.9186746987951807,\n", " \"macro avg\": {\n", " \"precision\": 0.9199945831854606,\n", " \"recall\": 0.899377450566822,\n", " \"f1-score\": 0.9083009487480549,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9189114171912635,\n", " \"recall\": 0.9186746987951807,\n", " \"f1-score\": 0.9176528069994937,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Mute Swan 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8382749326145552,\n", " \"recall\": 0.8962536023054755,\n", " \"f1-score\": 0.8662952646239555,\n", " \"support\": 694\n", " },\n", " \"1\": {\n", " \"precision\": 0.9424,\n", " \"recall\": 0.9075500770416025,\n", " \"f1-score\": 0.9246467817896389,\n", " \"support\": 1298\n", " },\n", " \"accuracy\": 0.9036144578313253,\n", " \"macro avg\": {\n", " \"precision\": 0.8903374663072776,\n", " \"recall\": 0.901901839673539,\n", " \"f1-score\": 0.8954710232067972,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9061234955996493,\n", " \"recall\": 0.9036144578313253,\n", " \"f1-score\": 0.9043174881586227,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Pheasant 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pheasant 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.931321540062435,\n", " \"recall\": 0.8655705996131529,\n", " \"f1-score\": 0.8972431077694236,\n", " \"support\": 1034\n", " },\n", " \"1\": {\n", " \"precision\": 0.8651794374393792,\n", " \"recall\": 0.9311064718162839,\n", " \"f1-score\": 0.8969331322272499,\n", " \"support\": 958\n", " },\n", " \"accuracy\": 0.8970883534136547,\n", " \"macro avg\": {\n", " \"precision\": 0.8982504887509071,\n", " \"recall\": 0.8983385357147184,\n", " \"f1-score\": 0.8970881199983367,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8995122356884955,\n", " \"recall\": 0.8970883534136547,\n", " \"f1-score\": 0.8970940331863902,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Pheasant 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9376321353065539,\n", " \"recall\": 0.8578336557059961,\n", " \"f1-score\": 0.895959595959596,\n", " \"support\": 1034\n", " },\n", " \"1\": {\n", " \"precision\": 0.8594646271510517,\n", " \"recall\": 0.9384133611691023,\n", " \"f1-score\": 0.8972055888223555,\n", " \"support\": 958\n", " },\n", " \"accuracy\": 0.8965863453815262,\n", " \"macro avg\": {\n", " \"precision\": 0.8985483812288028,\n", " \"recall\": 0.8981235084375492,\n", " \"f1-score\": 0.8965825923909757,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.900039528472733,\n", " \"recall\": 0.8965863453815262,\n", " \"f1-score\": 0.8965588234508226,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Pink-footed Goose 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pink-footed Goose 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9038018433179723,\n", " \"recall\": 0.9378362223550508,\n", " \"f1-score\": 0.9205045467879144,\n", " \"support\": 1673\n", " },\n", " \"1\": {\n", " \"precision\": 0.59375,\n", " \"recall\": 0.47648902821316613,\n", " \"f1-score\": 0.528695652173913,\n", " \"support\": 319\n", " },\n", " \"accuracy\": 0.8639558232931727,\n", " \"macro avg\": {\n", " \"precision\": 0.7487759216589862,\n", " \"recall\": 0.7071626252841084,\n", " \"f1-score\": 0.7246000994809136,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8541499668026946,\n", " \"recall\": 0.8639558232931727,\n", " \"f1-score\": 0.8577600501102707,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Pink-footed Goose 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9159925326695706,\n", " \"recall\": 0.8798565451285116,\n", " \"f1-score\": 0.8975609756097561,\n", " \"support\": 1673\n", " },\n", " \"1\": {\n", " \"precision\": 0.4779220779220779,\n", " \"recall\": 0.5768025078369906,\n", " \"f1-score\": 0.5227272727272727,\n", " \"support\": 319\n", " },\n", " \"accuracy\": 0.8313253012048193,\n", " \"macro avg\": {\n", " \"precision\": 0.6969573052958242,\n", " \"recall\": 0.7283295264827512,\n", " \"f1-score\": 0.7101441241685145,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8458396837416337,\n", " \"recall\": 0.8313253012048193,\n", " \"f1-score\": 0.8375348956802822,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Pintail 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pintail 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.937856033143449,\n", " \"recall\": 0.9831704668838219,\n", " \"f1-score\": 0.9599787967134905,\n", " \"support\": 1842\n", " },\n", " \"1\": {\n", " \"precision\": 0.4918032786885246,\n", " \"recall\": 0.2,\n", " \"f1-score\": 0.2843601895734597,\n", " \"support\": 150\n", " },\n", " \"accuracy\": 0.9241967871485943,\n", " \"macro avg\": {\n", " \"precision\": 0.7148296559159868,\n", " \"recall\": 0.5915852334419109,\n", " \"f1-score\": 0.6221694931434751,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.904267723320036,\n", " \"recall\": 0.9241967871485943,\n", " \"f1-score\": 0.9091039015975243,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Pintail 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.945693911135491,\n", " \"recall\": 0.9359391965255157,\n", " \"f1-score\": 0.9407912687585266,\n", " \"support\": 1842\n", " },\n", " \"1\": {\n", " \"precision\": 0.30177514792899407,\n", " \"recall\": 0.34,\n", " \"f1-score\": 0.31974921630094044,\n", " \"support\": 150\n", " },\n", " \"accuracy\": 0.8910642570281124,\n", " \"macro avg\": {\n", " \"precision\": 0.6237345295322425,\n", " \"recall\": 0.6379695982627579,\n", " \"f1-score\": 0.6302702425297335,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8972060524603029,\n", " \"recall\": 0.8910642570281124,\n", " \"f1-score\": 0.8940260539650337,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Pochard 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pochard 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9050188882892607,\n", " \"recall\": 0.9555555555555556,\n", " \"f1-score\": 0.9296008869179603,\n", " \"support\": 1755\n", " },\n", " \"1\": {\n", " \"precision\": 0.43884892086330934,\n", " \"recall\": 0.25738396624472576,\n", " \"f1-score\": 0.32446808510638303,\n", " \"support\": 237\n", " },\n", " \"accuracy\": 0.8724899598393574,\n", " \"macro avg\": {\n", " \"precision\": 0.671933904576285,\n", " \"recall\": 0.6064697609001407,\n", " \"f1-score\": 0.6270344860121717,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8495558951768358,\n", " \"recall\": 0.8724899598393574,\n", " \"f1-score\": 0.8576046650156792,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Pochard 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9162946428571429,\n", " \"recall\": 0.9356125356125357,\n", " \"f1-score\": 0.9258528333803214,\n", " \"support\": 1755\n", " },\n", " \"1\": {\n", " \"precision\": 0.435,\n", " \"recall\": 0.3670886075949367,\n", " \"f1-score\": 0.39816933638443935,\n", " \"support\": 237\n", " },\n", " \"accuracy\": 0.8679718875502008,\n", " \"macro avg\": {\n", " \"precision\": 0.6756473214285714,\n", " \"recall\": 0.6513505716037362,\n", " \"f1-score\": 0.6620110848823804,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8590321778184166,\n", " \"recall\": 0.8679718875502008,\n", " \"f1-score\": 0.8630712125027993,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Red-legged Partridge 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Red-legged Partridge 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9553314121037464,\n", " \"recall\": 0.8953409858203917,\n", " \"f1-score\": 0.9243638898570932,\n", " \"support\": 1481\n", " },\n", " \"1\": {\n", " \"precision\": 0.7433774834437086,\n", " \"recall\": 0.8786692759295499,\n", " \"f1-score\": 0.8053811659192824,\n", " \"support\": 511\n", " },\n", " \"accuracy\": 0.8910642570281124,\n", " \"macro avg\": {\n", " \"precision\": 0.8493544477737275,\n", " \"recall\": 0.8870051308749708,\n", " \"f1-score\": 0.8648725278881878,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.900959696468566,\n", " \"recall\": 0.8910642570281124,\n", " \"f1-score\": 0.8938417151923235,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Red-legged Partridge 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9372355430183357,\n", " \"recall\": 0.8973666441593517,\n", " \"f1-score\": 0.9168678854777509,\n", " \"support\": 1481\n", " },\n", " \"1\": {\n", " \"precision\": 0.735191637630662,\n", " \"recall\": 0.8258317025440313,\n", " \"f1-score\": 0.7778801843317972,\n", " \"support\": 511\n", " },\n", " \"accuracy\": 0.8790160642570282,\n", " \"macro avg\": {\n", " \"precision\": 0.8362135903244988,\n", " \"recall\": 0.8615991733516914,\n", " \"f1-score\": 0.847374034904774,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8854060070479034,\n", " \"recall\": 0.8790160642570282,\n", " \"f1-score\": 0.8812139119408119,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Ring-necked Parakeet 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Ring-necked Parakeet 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9845599588265569,\n", " \"recall\": 0.9886304909560724,\n", " \"f1-score\": 0.9865910263022177,\n", " \"support\": 1935\n", " },\n", " \"1\": {\n", " \"precision\": 0.5510204081632653,\n", " \"recall\": 0.47368421052631576,\n", " \"f1-score\": 0.5094339622641509,\n", " \"support\": 57\n", " },\n", " \"accuracy\": 0.9738955823293173,\n", " \"macro avg\": {\n", " \"precision\": 0.767790183494911,\n", " \"recall\": 0.731157350741194,\n", " \"f1-score\": 0.7480124942831843,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9721544596358903,\n", " \"recall\": 0.9738955823293173,\n", " \"f1-score\": 0.9729374356143815,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Ring-necked Parakeet 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9816044966785897,\n", " \"recall\": 0.992764857881137,\n", " \"f1-score\": 0.9871531346351491,\n", " \"support\": 1935\n", " },\n", " \"1\": {\n", " \"precision\": 0.6,\n", " \"recall\": 0.3684210526315789,\n", " \"f1-score\": 0.4565217391304348,\n", " \"support\": 57\n", " },\n", " \"accuracy\": 0.9748995983935743,\n", " \"macro avg\": {\n", " \"precision\": 0.7908022483392949,\n", " \"recall\": 0.680592955256358,\n", " \"f1-score\": 0.721837436882792,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9706850909001362,\n", " \"recall\": 0.9748995983935743,\n", " \"f1-score\": 0.9719694049445021,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Rock Dove 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Rock Dove 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9191176470588235,\n", " \"recall\": 0.8581235697940504,\n", " \"f1-score\": 0.8875739644970413,\n", " \"support\": 1311\n", " },\n", " \"1\": {\n", " \"precision\": 0.7578125,\n", " \"recall\": 0.8546255506607929,\n", " \"f1-score\": 0.8033126293995859,\n", " \"support\": 681\n", " },\n", " \"accuracy\": 0.8569277108433735,\n", " \"macro avg\": {\n", " \"precision\": 0.8384650735294117,\n", " \"recall\": 0.8563745602274216,\n", " \"f1-score\": 0.8454432969483137,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8639726645552799,\n", " \"recall\": 0.8569277108433735,\n", " \"f1-score\": 0.8587677550586039,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Rock Dove 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9181669394435352,\n", " \"recall\": 0.8558352402745996,\n", " \"f1-score\": 0.8859060402684564,\n", " \"support\": 1311\n", " },\n", " \"1\": {\n", " \"precision\": 0.7545454545454545,\n", " \"recall\": 0.8531571218795888,\n", " \"f1-score\": 0.800827015851137,\n", " \"support\": 681\n", " },\n", " \"accuracy\": 0.8549196787148594,\n", " \"macro avg\": {\n", " \"precision\": 0.8363561969944948,\n", " \"recall\": 0.8544961810770941,\n", " \"f1-score\": 0.8433665280597967,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8622300763834986,\n", " \"recall\": 0.8549196787148594,\n", " \"f1-score\": 0.8568202894510897,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Ruddy Duck 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Ruddy Duck 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9834254143646409,\n", " \"recall\": 0.9994895354772844,\n", " \"f1-score\": 0.9913924050632913,\n", " \"support\": 1959\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 33\n", " },\n", " \"accuracy\": 0.9829317269076305,\n", " \"macro avg\": {\n", " \"precision\": 0.49171270718232046,\n", " \"recall\": 0.4997447677386422,\n", " \"f1-score\": 0.49569620253164565,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.967133728283299,\n", " \"recall\": 0.9829317269076305,\n", " \"f1-score\": 0.9749687357023031,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Ruddy Duck 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9833501513622603,\n", " \"recall\": 0.9948953547728433,\n", " \"f1-score\": 0.989089063689419,\n", " \"support\": 1959\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 33\n", " },\n", " \"accuracy\": 0.9784136546184738,\n", " \"macro avg\": {\n", " \"precision\": 0.49167507568113017,\n", " \"recall\": 0.49744767738642165,\n", " \"f1-score\": 0.4945445318447095,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9670597121077651,\n", " \"recall\": 0.9784136546184738,\n", " \"f1-score\": 0.9727035520921545,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Whooper Swan 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Whooper Swan 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8978658536585366,\n", " \"recall\": 0.9904708520179372,\n", " \"f1-score\": 0.9418976545842217,\n", " \"support\": 1784\n", " },\n", " \"1\": {\n", " \"precision\": 0.2916666666666667,\n", " \"recall\": 0.03365384615384615,\n", " \"f1-score\": 0.06034482758620689,\n", " \"support\": 208\n", " },\n", " \"accuracy\": 0.8905622489959839,\n", " \"macro avg\": {\n", " \"precision\": 0.5947662601626016,\n", " \"recall\": 0.5120623490858917,\n", " \"f1-score\": 0.5011212410852143,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8345679465830803,\n", " \"recall\": 0.8905622489959839,\n", " \"f1-score\": 0.8498479618053124,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Whooper Swan 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9171332586786114,\n", " \"recall\": 0.9181614349775785,\n", " \"f1-score\": 0.9176470588235294,\n", " \"support\": 1784\n", " },\n", " \"1\": {\n", " \"precision\": 0.2912621359223301,\n", " \"recall\": 0.28846153846153844,\n", " \"f1-score\": 0.28985507246376807,\n", " \"support\": 208\n", " },\n", " \"accuracy\": 0.8524096385542169,\n", " \"macro avg\": {\n", " \"precision\": 0.6041976973004708,\n", " \"recall\": 0.6033114867195585,\n", " \"f1-score\": 0.6037510656436487,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.851781253892815,\n", " \"recall\": 0.8524096385542169,\n", " \"f1-score\": 0.8520944819345583,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Training with Wigeon 5km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Wigeon 5km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8922470433639947,\n", " \"recall\": 0.8846905537459283,\n", " \"f1-score\": 0.8884527314360484,\n", " \"support\": 1535\n", " },\n", " \"1\": {\n", " \"precision\": 0.6234042553191489,\n", " \"recall\": 0.6411378555798687,\n", " \"f1-score\": 0.6321467098166127,\n", " \"support\": 457\n", " },\n", " \"accuracy\": 0.8288152610441767,\n", " \"macro avg\": {\n", " \"precision\": 0.7578256493415718,\n", " \"recall\": 0.7629142046628985,\n", " \"f1-score\": 0.7602997206263306,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.830569757150895,\n", " \"recall\": 0.8288152610441767,\n", " \"f1-score\": 0.8296516009741597,\n", " \"support\": 1992\n", " }\n", "} \n", "\n", "Wigeon 5km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8767213114754099,\n", " \"recall\": 0.8710097719869707,\n", " \"f1-score\": 0.8738562091503269,\n", " \"support\": 1535\n", " },\n", " \"1\": {\n", " \"precision\": 0.576017130620985,\n", " \"recall\": 0.5886214442013129,\n", " \"f1-score\": 0.5822510822510824,\n", " \"support\": 457\n", " },\n", " \"accuracy\": 0.8062248995983936,\n", " \"macro avg\": {\n", " \"precision\": 0.7263692210481975,\n", " \"recall\": 0.7298156080941418,\n", " \"f1-score\": 0.7280536457007046,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.807734458739229,\n", " \"recall\": 0.8062248995983936,\n", " \"f1-score\": 0.8069568401779601,\n", " \"support\": 1992\n", " }\n", "} \n", "\n" ] } ], "source": [ "# Add model pipeline\n", "estimators = [\n", " ('lr', LogisticRegression(max_iter=10000, solver='saga', random_state=seed, penalty='l2', verbose=verbose)),\n", " ('knn', KNeighborsClassifier(n_neighbors=5, weights='distance')),\n", " ('sgd', SGDClassifier( max_iter=10000, loss='modified_huber', random_state=seed, penalty='l2', verbose=verbose)),\n", " ('rf', RandomForestClassifier(n_estimators=20,max_features=None, random_state=seed, verbose=verbose))\n", "]\n", "\n", "\n", "for dict in df_dicts:\n", " print(f'Training with {dict[\"name\"]} cells... \\n')\n", " # Use this if using coordinates as separate columns\n", " # coords, X, y = data['dataframe'].iloc[:, :2], data['dataframe'].iloc[:, 2:-1], data['dataframe'].iloc[:, [-1]]\n", " # data['coords'] = coords\n", " \n", " # Use this if using coordinates as indices\n", " X, y = dict['dataframe'].iloc[:, 0:-1], dict['dataframe'].iloc[:, [-1]], \n", "\n", " dict['X'] = standardise(X)\n", " dict['y'] = y\n", " dict['kbest'] = feature_select(dict['X'], dict['y'])\n", "\n", " # dict['X'] = dict['kbest']['10'].transform(dict['X'])\n", "\n", " X_train, X_test, y_train, y_test = train_test_split(dict['X'], dict['y'], random_state=seed)\n", " dict['X_train'], dict['X_test'], dict['y_train'], dict['y_test'] = X_train, X_test, y_train, y_test # for debugging purposes\n", "\n", " dict['X_smote'], dict['y_smote'] = oversample(X_train, y_train)\n", "\n", " stack_clf = StackingClassifier(\n", " estimators=estimators, \n", " final_estimator=GradientBoostingClassifier(n_estimators=20, learning_rate=0.5, max_features=None, max_depth=2, random_state=seed)\n", " )\n", "\n", " # Classifier without SMOTE\n", " stack_clf.fit(dict['X_train'], dict['y_train'])\n", " y_pred = stack_clf.predict(X_test)\n", " \n", " dict['predictions'] = y_pred\n", " dict['report'] = classification_report(y_test, y_pred, output_dict=True)\n", " \n", "\n", " # Classifier with SMOTE\n", " stack_clf.fit(dict['X_smote'], dict['y_smote'])\n", " y_pred_smote = stack_clf.predict(X_test)\n", " \n", " dict['predictions_smote'] = y_pred_smote\n", " dict['report_smote'] = classification_report(y_test, y_pred_smote, output_dict=True)\n", " \n", " print(f'{dict[\"name\"]} Classification Report: \\n {json.dumps(dict[\"report\"], indent=4)} \\n')\n", " print(f'{dict[\"name\"]} SMOTE Classification Report: \\n {json.dumps(dict[\"report_smote\"], indent=4)} \\n')\n", "\n" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.934793683138054,\n", " \"recall\": 0.995119305856833,\n", " \"f1-score\": 0.9640136590491201,\n", " \"support\": 1844\n", " },\n", " \"1\": {\n", " \"precision\": 0.6896551724137931,\n", " \"recall\": 0.13513513513513514,\n", " \"f1-score\": 0.22598870056497178,\n", " \"support\": 148\n", " },\n", " \"accuracy\": 0.9312248995983936,\n", " \"macro avg\": {\n", " \"precision\": 0.8122244277759236,\n", " \"recall\": 0.5651272204959841,\n", " \"f1-score\": 0.5950011798070459,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9165805809356491,\n", " \"recall\": 0.9312248995983936,\n", " \"f1-score\": 0.9091804794027075,\n", " \"support\": 1992\n", " }\n", "}\n", "Canada Goose 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9504830917874396,\n", " \"recall\": 0.8582333696837514,\n", " \"f1-score\": 0.9020057306590258,\n", " \"support\": 917\n", " },\n", " \"1\": {\n", " \"precision\": 0.8883161512027491,\n", " \"recall\": 0.9618604651162791,\n", " \"f1-score\": 0.923626619026351,\n", " \"support\": 1075\n", " },\n", " \"accuracy\": 0.9141566265060241,\n", " \"macro avg\": {\n", " \"precision\": 0.9193996214950944,\n", " \"recall\": 0.9100469174000152,\n", " \"f1-score\": 0.9128161748426884,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.916934165518091,\n", " \"recall\": 0.9141566265060241,\n", " \"f1-score\": 0.9136736297528384,\n", " \"support\": 1992\n", " }\n", "}\n", "Egyptian Goose 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9474768280123584,\n", " \"recall\": 0.9881847475832438,\n", " \"f1-score\": 0.9674027339642481,\n", " \"support\": 1862\n", " },\n", " \"1\": {\n", " \"precision\": 0.56,\n", " \"recall\": 0.2153846153846154,\n", " \"f1-score\": 0.3111111111111111,\n", " \"support\": 130\n", " },\n", " \"accuracy\": 0.9377510040160643,\n", " \"macro avg\": {\n", " \"precision\": 0.7537384140061792,\n", " \"recall\": 0.6017846814839296,\n", " \"f1-score\": 0.6392569225376796,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9221896856219937,\n", " \"recall\": 0.9377510040160643,\n", " \"f1-score\": 0.924572457372427,\n", " \"support\": 1992\n", " }\n", "}\n", "Gadwall 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9283965728274174,\n", " \"recall\": 0.9266951740989615,\n", " \"f1-score\": 0.9275450932436564,\n", " \"support\": 1637\n", " },\n", " \"1\": {\n", " \"precision\": 0.664804469273743,\n", " \"recall\": 0.6704225352112676,\n", " \"f1-score\": 0.667601683029453,\n", " \"support\": 355\n", " },\n", " \"accuracy\": 0.8810240963855421,\n", " \"macro avg\": {\n", " \"precision\": 0.7966005210505802,\n", " \"recall\": 0.7985588546551146,\n", " \"f1-score\": 0.7975733881365548,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.881421072445111,\n", " \"recall\": 0.8810240963855421,\n", " \"f1-score\": 0.8812198369052818,\n", " \"support\": 1992\n", " }\n", "}\n", "Goshawk 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9532994923857868,\n", " \"recall\": 0.9910290237467019,\n", " \"f1-score\": 0.9717981888745149,\n", " \"support\": 1895\n", " },\n", " \"1\": {\n", " \"precision\": 0.22727272727272727,\n", " \"recall\": 0.05154639175257732,\n", " \"f1-score\": 0.08403361344537814,\n", " \"support\": 97\n", " },\n", " \"accuracy\": 0.945281124497992,\n", " \"macro avg\": {\n", " \"precision\": 0.590286109829257,\n", " \"recall\": 0.5212877077496396,\n", " \"f1-score\": 0.5279159011599465,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9179457794259641,\n", " \"recall\": 0.945281124497992,\n", " \"f1-score\": 0.92856868896657,\n", " \"support\": 1992\n", " }\n", "}\n", "Grey Partridge 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9430628272251309,\n", " \"recall\": 0.902316844082655,\n", " \"f1-score\": 0.92224,\n", " \"support\": 1597\n", " },\n", " \"1\": {\n", " \"precision\": 0.6637931034482759,\n", " \"recall\": 0.779746835443038,\n", " \"f1-score\": 0.7171129220023283,\n", " \"support\": 395\n", " },\n", " \"accuracy\": 0.8780120481927711,\n", " \"macro avg\": {\n", " \"precision\": 0.8034279653367034,\n", " \"recall\": 0.8410318397628465,\n", " \"f1-score\": 0.8196764610011642,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8876855476609453,\n", " \"recall\": 0.8780120481927711,\n", " \"f1-score\": 0.881564700899056,\n", " \"support\": 1992\n", " }\n", "}\n", "Indian Peafowl 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9617321248741189,\n", " \"recall\": 0.9968684759916493,\n", " \"f1-score\": 0.9789851358277807,\n", " \"support\": 1916\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 76\n", " },\n", " \"accuracy\": 0.9588353413654619,\n", " \"macro avg\": {\n", " \"precision\": 0.4808660624370594,\n", " \"recall\": 0.49843423799582465,\n", " \"f1-score\": 0.48949256791389034,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9250395337644637,\n", " \"recall\": 0.9588353413654619,\n", " \"f1-score\": 0.941634297312263,\n", " \"support\": 1992\n", " }\n", "}\n", "Little Owl 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9757174392935982,\n", " \"recall\": 0.8941335131490222,\n", " \"f1-score\": 0.9331456720619283,\n", " \"support\": 1483\n", " },\n", " \"1\": {\n", " \"precision\": 0.7519747235387045,\n", " \"recall\": 0.9351669941060904,\n", " \"f1-score\": 0.8336252189141856,\n", " \"support\": 509\n", " },\n", " \"accuracy\": 0.9046184738955824,\n", " \"macro avg\": {\n", " \"precision\": 0.8638460814161514,\n", " \"recall\": 0.9146502536275563,\n", " \"f1-score\": 0.883385445488057,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9185462333100436,\n", " \"recall\": 0.9046184738955824,\n", " \"f1-score\": 0.9077159980397391,\n", " \"support\": 1992\n", " }\n", "}\n", "Mandarin Duck 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9205194805194805,\n", " \"recall\": 0.9800884955752213,\n", " \"f1-score\": 0.9493704795070987,\n", " \"support\": 1808\n", " },\n", " \"1\": {\n", " \"precision\": 0.4626865671641791,\n", " \"recall\": 0.16847826086956522,\n", " \"f1-score\": 0.24701195219123506,\n", " \"support\": 184\n", " },\n", " \"accuracy\": 0.9051204819277109,\n", " \"macro avg\": {\n", " \"precision\": 0.6916030238418298,\n", " \"recall\": 0.5742833782223933,\n", " \"f1-score\": 0.5981912158491669,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8782296933420832,\n", " \"recall\": 0.9051204819277109,\n", " \"f1-score\": 0.8844939890321394,\n", " \"support\": 1992\n", " }\n", "}\n", "Mute Swan 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9235668789808917,\n", " \"recall\": 0.8357348703170029,\n", " \"f1-score\": 0.8774583963691377,\n", " \"support\": 694\n", " },\n", " \"1\": {\n", " \"precision\": 0.9164222873900293,\n", " \"recall\": 0.963020030816641,\n", " \"f1-score\": 0.9391435011269722,\n", " \"support\": 1298\n", " },\n", " \"accuracy\": 0.9186746987951807,\n", " \"macro avg\": {\n", " \"precision\": 0.9199945831854606,\n", " \"recall\": 0.899377450566822,\n", " \"f1-score\": 0.9083009487480549,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9189114171912635,\n", " \"recall\": 0.9186746987951807,\n", " \"f1-score\": 0.9176528069994937,\n", " \"support\": 1992\n", " }\n", "}\n", "Pheasant 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.931321540062435,\n", " \"recall\": 0.8655705996131529,\n", " \"f1-score\": 0.8972431077694236,\n", " \"support\": 1034\n", " },\n", " \"1\": {\n", " \"precision\": 0.8651794374393792,\n", " \"recall\": 0.9311064718162839,\n", " \"f1-score\": 0.8969331322272499,\n", " \"support\": 958\n", " },\n", " \"accuracy\": 0.8970883534136547,\n", " \"macro avg\": {\n", " \"precision\": 0.8982504887509071,\n", " \"recall\": 0.8983385357147184,\n", " \"f1-score\": 0.8970881199983367,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8995122356884955,\n", " \"recall\": 0.8970883534136547,\n", " \"f1-score\": 0.8970940331863902,\n", " \"support\": 1992\n", " }\n", "}\n", "Pink-footed Goose 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9038018433179723,\n", " \"recall\": 0.9378362223550508,\n", " \"f1-score\": 0.9205045467879144,\n", " \"support\": 1673\n", " },\n", " \"1\": {\n", " \"precision\": 0.59375,\n", " \"recall\": 0.47648902821316613,\n", " \"f1-score\": 0.528695652173913,\n", " \"support\": 319\n", " },\n", " \"accuracy\": 0.8639558232931727,\n", " \"macro avg\": {\n", " \"precision\": 0.7487759216589862,\n", " \"recall\": 0.7071626252841084,\n", " \"f1-score\": 0.7246000994809136,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8541499668026946,\n", " \"recall\": 0.8639558232931727,\n", " \"f1-score\": 0.8577600501102707,\n", " \"support\": 1992\n", " }\n", "}\n", "Pintail 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.937856033143449,\n", " \"recall\": 0.9831704668838219,\n", " \"f1-score\": 0.9599787967134905,\n", " \"support\": 1842\n", " },\n", " \"1\": {\n", " \"precision\": 0.4918032786885246,\n", " \"recall\": 0.2,\n", " \"f1-score\": 0.2843601895734597,\n", " \"support\": 150\n", " },\n", " \"accuracy\": 0.9241967871485943,\n", " \"macro avg\": {\n", " \"precision\": 0.7148296559159868,\n", " \"recall\": 0.5915852334419109,\n", " \"f1-score\": 0.6221694931434751,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.904267723320036,\n", " \"recall\": 0.9241967871485943,\n", " \"f1-score\": 0.9091039015975243,\n", " \"support\": 1992\n", " }\n", "}\n", "Pochard 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9050188882892607,\n", " \"recall\": 0.9555555555555556,\n", " \"f1-score\": 0.9296008869179603,\n", " \"support\": 1755\n", " },\n", " \"1\": {\n", " \"precision\": 0.43884892086330934,\n", " \"recall\": 0.25738396624472576,\n", " \"f1-score\": 0.32446808510638303,\n", " \"support\": 237\n", " },\n", " \"accuracy\": 0.8724899598393574,\n", " \"macro avg\": {\n", " \"precision\": 0.671933904576285,\n", " \"recall\": 0.6064697609001407,\n", " \"f1-score\": 0.6270344860121717,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8495558951768358,\n", " \"recall\": 0.8724899598393574,\n", " \"f1-score\": 0.8576046650156792,\n", " \"support\": 1992\n", " }\n", "}\n", "Red-legged Partridge 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9553314121037464,\n", " \"recall\": 0.8953409858203917,\n", " \"f1-score\": 0.9243638898570932,\n", " \"support\": 1481\n", " },\n", " \"1\": {\n", " \"precision\": 0.7433774834437086,\n", " \"recall\": 0.8786692759295499,\n", " \"f1-score\": 0.8053811659192824,\n", " \"support\": 511\n", " },\n", " \"accuracy\": 0.8910642570281124,\n", " \"macro avg\": {\n", " \"precision\": 0.8493544477737275,\n", " \"recall\": 0.8870051308749708,\n", " \"f1-score\": 0.8648725278881878,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.900959696468566,\n", " \"recall\": 0.8910642570281124,\n", " \"f1-score\": 0.8938417151923235,\n", " \"support\": 1992\n", " }\n", "}\n", "Ring-necked Parakeet 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9845599588265569,\n", " \"recall\": 0.9886304909560724,\n", " \"f1-score\": 0.9865910263022177,\n", " \"support\": 1935\n", " },\n", " \"1\": {\n", " \"precision\": 0.5510204081632653,\n", " \"recall\": 0.47368421052631576,\n", " \"f1-score\": 0.5094339622641509,\n", " \"support\": 57\n", " },\n", " \"accuracy\": 0.9738955823293173,\n", " \"macro avg\": {\n", " \"precision\": 0.767790183494911,\n", " \"recall\": 0.731157350741194,\n", " \"f1-score\": 0.7480124942831843,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9721544596358903,\n", " \"recall\": 0.9738955823293173,\n", " \"f1-score\": 0.9729374356143815,\n", " \"support\": 1992\n", " }\n", "}\n", "Rock Dove 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9191176470588235,\n", " \"recall\": 0.8581235697940504,\n", " \"f1-score\": 0.8875739644970413,\n", " \"support\": 1311\n", " },\n", " \"1\": {\n", " \"precision\": 0.7578125,\n", " \"recall\": 0.8546255506607929,\n", " \"f1-score\": 0.8033126293995859,\n", " \"support\": 681\n", " },\n", " \"accuracy\": 0.8569277108433735,\n", " \"macro avg\": {\n", " \"precision\": 0.8384650735294117,\n", " \"recall\": 0.8563745602274216,\n", " \"f1-score\": 0.8454432969483137,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8639726645552799,\n", " \"recall\": 0.8569277108433735,\n", " \"f1-score\": 0.8587677550586039,\n", " \"support\": 1992\n", " }\n", "}\n", "Ruddy Duck 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9834254143646409,\n", " \"recall\": 0.9994895354772844,\n", " \"f1-score\": 0.9913924050632913,\n", " \"support\": 1959\n", " },\n", " \"1\": {\n", " \"precision\": 0.0,\n", " \"recall\": 0.0,\n", " \"f1-score\": 0.0,\n", " \"support\": 33\n", " },\n", " \"accuracy\": 0.9829317269076305,\n", " \"macro avg\": {\n", " \"precision\": 0.49171270718232046,\n", " \"recall\": 0.4997447677386422,\n", " \"f1-score\": 0.49569620253164565,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.967133728283299,\n", " \"recall\": 0.9829317269076305,\n", " \"f1-score\": 0.9749687357023031,\n", " \"support\": 1992\n", " }\n", "}\n", "Whooper Swan 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.8978658536585366,\n", " \"recall\": 0.9904708520179372,\n", " \"f1-score\": 0.9418976545842217,\n", " \"support\": 1784\n", " },\n", " \"1\": {\n", " \"precision\": 0.2916666666666667,\n", " \"recall\": 0.03365384615384615,\n", " \"f1-score\": 0.06034482758620689,\n", " \"support\": 208\n", " },\n", " \"accuracy\": 0.8905622489959839,\n", " \"macro avg\": {\n", " \"precision\": 0.5947662601626016,\n", " \"recall\": 0.5120623490858917,\n", " \"f1-score\": 0.5011212410852143,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8345679465830803,\n", " \"recall\": 0.8905622489959839,\n", " \"f1-score\": 0.8498479618053124,\n", " \"support\": 1992\n", " }\n", "}\n", "Wigeon 5km \n", " {\n", " \"0\": {\n", " \"precision\": 0.8922470433639947,\n", " \"recall\": 0.8846905537459283,\n", " \"f1-score\": 0.8884527314360484,\n", " \"support\": 1535\n", " },\n", " \"1\": {\n", " \"precision\": 0.6234042553191489,\n", " \"recall\": 0.6411378555798687,\n", " \"f1-score\": 0.6321467098166127,\n", " \"support\": 457\n", " },\n", " \"accuracy\": 0.8288152610441767,\n", " \"macro avg\": {\n", " \"precision\": 0.7578256493415718,\n", " \"recall\": 0.7629142046628985,\n", " \"f1-score\": 0.7602997206263306,\n", " \"support\": 1992\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.830569757150895,\n", " \"recall\": 0.8288152610441767,\n", " \"f1-score\": 0.8296516009741597,\n", " \"support\": 1992\n", " }\n", "}\n" ] } ], "source": [ "for dict in df_dicts:\n", " print(dict['name'], '\\n', json.dumps(dict['report'], indent=4))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5EAAAPHCAYAAACxBc1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADwl0lEQVR4nOzdeXgO9/7/8dct+yIJsSQ0EkQIFbVVURItjX05bbWopYsuitJS1c1OVZWuutmqKLVXVa1R+x6UCKJKS6tVEqFCks/vDz/zdTcJo1SkeT6u631d5jOfmXnfN+ecvM5nZuIwxhgBAAAAAGBDgdxuAAAAAACQdxAiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAtrnmdgNAXpOZmamjR4+qYMGCcjgcud0OAAAAcN2MMTp9+rRKlCihAgWuvNZIiASu0dGjRxUSEpLbbQAAAAA33JEjR3TbbbddcQ4hErhGBQsWlHTxP2B+fn653A0AAABw/VJSUhQSEmL9rHslhEjgGl26hdXPz48QCQAAgP8UO49r8WIdAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAba653QCQZ/n753YHAAAAuNUZk9sd3HCsRCLPcjgcmjdvXm63AQAAAOQrhMh/QZcuXeRwOPT0009n2ffss8/K4XCoS5cu13TOGxWYzp49q/79+6ts2bLy9PRU0aJFFR0drfnz51/3uW+kgQMHyuFwOFWFChVyuy0AAAAg3+N21n9JSEiIvvzyS40ZM0ZeXl6SpHPnzmnatGkqVapUrvX19NNPa+PGjXrvvfdUsWJFnThxQuvWrdOJEydyraecVKpUScuWLbO2XV355woAAADkNlYi/yXVqlVTSEiI5syZY43NmTNHpUqVUtWqVZ3mhoWFaezYsU5jd9xxhwYOHGjtl6Q2bdrI4XBY25I0f/58VatWTZ6enipTpowGDRqk9PT0HPtasGCBXn75ZTVt2lRhYWGqXr26evTooccee0yS9P777+v222+35s+bN08Oh0MfffSRNdawYUO9+uqrkqSkpCS1atVKxYsXl6+vr2rWrOkU/C71P3z4cD322GMqWLCgSpUqpU8++eTKX6AuhsagoCCrihQpcsX5AwYMUHBwsHbu3Gldd+jQoerUqZN8fX0VGhqqBQsW6Pfff1erVq3k6+urqKgobdmy5aq9AAAAALiIEPkveuyxxzRx4kRre8KECXr00Uev+TybN2+WJE2cOFHHjh2ztlevXq1OnTrpueee0549e/Txxx9r0qRJGjZsWI7nCgoK0qJFi3T69Ols90dHR2vPnj36/fffJUmrVq1SkSJFFBcXJ0m6cOGC1q9fr5iYGElSamqqmjZtquXLl2v79u1q3LixWrRoocOHDzudd/To0apRo4a2b9+ubt266ZlnnlFiYuIVP/f+/ftVokQJlSlTRh06dMhyzkuMMerRo4c+//xzrV69WlFRUda+MWPGqG7dutq+fbuaNWumjh07qlOnTnrkkUe0bds2lS1bVp06dZK5wgPPaWlpSklJcSoAAAAg3zK44Tp37mxatWpljh8/bjw8PMyhQ4fMoUOHjKenp/n9999Nq1atTOfOna35oaGhZsyYMU7nqFKlihkwYIC1LcnMnTvXac69995rhg8f7jQ2ZcoUExwcnGNvq1atMrfddptxc3MzNWrUML169TJr1qyx9mdmZprAwEDz1VdfGWOMueOOO8yIESNMUFCQMcaYNWvWGDc3N3PmzJkcr1GpUiXz3nvvOX2+Rx55xOkaxYoVM+PGjcvxHIsWLTIzZ840O3bsMIsXLza1a9c2pUqVMikpKU7fyVdffWXat29vIiMjzc8//+x0jr9f99ixY0aSee2116yx9evXG0nm2LFjOfYyYMAAIylLJV981xZFURRFURRF5Vx5RHJyspFkkpOTrzqXlch/UdGiRdWsWTNNmjRJEydOVLNmza56S+a12LFjhwYPHixfX1+runbtqmPHjuns2bPZHlO/fn0dPHhQy5cv1wMPPKDdu3erXr16GjJkiKSLL/CpX7++4uLidOrUKe3Zs0fdunVTWlqa9u7dq1WrVqlmzZry9vaWdHElsk+fPoqMjFRAQIB8fX2VkJCQZdXw8tVBh8OhoKAgHT9+PMfP1qRJEz344IOKiopSbGysFi1apFOnTmnmzJlO83r37q2NGzfq+++/V8mSJbOc5/LrFi9eXJJUuXLlLGNX6qV///5KTk626siRIznOBQAAAP7reFPJv+yxxx5T9+7dJUkffPBBtnMKFCggY4zT2IULF6567tTUVA0aNEj/+9//suzz9PTM8Tg3NzfVq1dP9erVU79+/TR06FANHjxY/fr1k7u7u2JiYvTJJ59o9erVqlq1qvz8/KxguWrVKkVHR1vn6tOnj5YuXaq33npL4eHh8vLy0gMPPKDz589nueblHA6HMjMzr/oZLwkICFBERIQOHDjgNN6oUSNNnz5d3333nTp06JDtZ738mjmNXakXDw8PeXh42O4VAAAA+C8jRP7LGjdurPPnz8vhcCg2NjbbOUWLFtWxY8es7ZSUFP34449Oc9zc3JSRkeE0Vq1aNSUmJio8PPy6eqxYsaLS09N17tw5ubu7Kzo6Wr169dJXX31lPfsYExOjZcuWae3atXrhhResY9euXasuXbqoTZs2ki4G20OHDl1XP9lJTU1VUlKSOnbs6DTesmVLtWjRQu3bt5eLi4sefvjhG35tAAAAAP+HEPkvc3FxUUJCgvXn7Nxzzz2aNGmSWrRooYCAAL3++utZ5oaFhWn58uWqW7euPDw8VKhQIb3++utq3ry5SpUqpQceeEAFChTQjh079MMPP2jo0KHZXismJkbt2rVTjRo1FBgYqD179ujll19WgwYN5OfnJ+niLaCFChXStGnTtHDhQuu4Pn36yOFwqG7dutb5ypUrpzlz5qhFixZyOBx67bXXrmmFMSd9+vRRixYtFBoaqqNHj2rAgAFycXFRu3btssxt06aNpkyZoo4dO8rV1VUPPPDAdV8fAAAAQPYIkTfBpXCWk/79++vHH39U8+bN5e/vryFDhmRZiRw9erSef/55ffrppypZsqQOHTqk2NhYLVy4UIMHD9bIkSPl5uamChUq6IknnsjxWrGxsZo8ebJefvllnT17ViVKlFDz5s31+uuvW3McDofq1aunb775Rnfffbeki8HSz89P5cuXl4+PjzX37bff1mOPPaY6deqoSJEi6tev3w15e+nPP/+sdu3a6cSJEypatKjuvvtubdiwQUWLFs12/gMPPKDMzEx17NhRBQoUyPYW3xvNX8mSrvx3CwAAgHzOYW/a355uu6U5zN8fxgNwRSkpKfL395cIkQAAALhBcjuVXfoZNzk5+aqLYLydFQAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYJtrbjcA5Fkv+Uueud0EAAB5kxlgcrsFAP8QK5EAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbXHO7ASCvSu6fLD8/v9xuAwAAALipWIkEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANjmmtsNIHsOh0Nz585V69atc7uVW1aXLl106tQpzZs3L3ca8PfPnesCAAAgbzAmtzv4V+Tblchff/1VPXr0UJkyZeTh4aGQkBC1aNFCy5cvz+3WbqiVK1eqefPmKlq0qDw9PVW2bFk99NBD+v7773O7tSs6dOiQHA5HltqwYUNutwYAAADka/lyJfLQoUOqW7euAgICNGrUKFWuXFkXLlzQd999p2effVZ79+7N7RZviA8//FDdu3dXx44dNWPGDJUtW1bJyclauXKlevfura1bt+Z2i1e1bNkyVapUydoODAzMxW4AAAAA5MuVyG7dusnhcGjTpk26//77FRERoUqVKun55593Wul6++23VblyZfn4+CgkJETdunVTamqqtX/SpEkKCAjQd999p8jISPn6+qpx48Y6duyYNWfz5s1q1KiRihQpIn9/f0VHR2vbtm1O/ezfv1/169eXp6enKlasqKVLl2bpuV+/foqIiJC3t7fKlCmj1157TRcuXMjxMx4+fFi9evVSr169NHnyZN1zzz0KDQ1VVFSUnnvuOW3ZssVp/uzZs1WpUiV5eHgoLCxMo0ePdtp/8uRJderUSYUKFZK3t7eaNGmi/fv3W/t/+ukntWjRQoUKFZKPj48qVaqkRYsWWft/+OEHNWnSRL6+vipevLg6duyoP/74I8f+LwkMDFRQUJBVbm5uOc7dvHmzihYtqpEjR0qSBg4cqDvuuEMTJkxQqVKl5Ovrq27duikjI0NvvvmmgoKCVKxYMQ0bNuyqfQAAAAC4KN+FyD///FOLFy/Ws88+Kx8fnyz7AwICrD8XKFBA7777rnbv3q3JkydrxYoVevHFF53mnz17Vm+99ZamTJmi77//XocPH1afPn2s/adPn1bnzp21Zs0abdiwQeXKlVPTpk11+vRpSVJmZqb+97//yd3dXRs3btRHH32kfv36ZemrYMGCmjRpkvbs2aN33nlHn376qcaMGZPj55w9e7YuXLiQpd9LHA6H9eetW7eqbdu2evjhh7Vr1y4NHDhQr732miZNmmTN6dKli7Zs2aIFCxZo/fr1MsaoadOmVpB99tlnlZaWpu+//167du3SyJEj5evrK0k6deqU7rnnHlWtWlVbtmzR4sWL9dtvv6lt27Y59n9Jy5YtVaxYMd19991asGBBjvNWrFihRo0aadiwYU7fX1JSkr799lstXrxY06dP1/jx49WsWTP9/PPPWrVqlUaOHKlXX31VGzduzPHcaWlpSklJcSoAAAAg3zL5zMaNG40kM2fOnGs+9quvvjKBgYHW9sSJE40kc+DAAWvsgw8+MMWLF8/xHBkZGaZgwYLm66+/NsYY89133xlXV1fzyy+/WHO+/fZbI8nMnTs3x/OMGjXKVK9ePcf9Tz/9tPHz83MamzVrlvHx8bFq586dxhhj2rdvbxo1auQ0t2/fvqZixYrGGGP27dtnJJm1a9da+//44w/j5eVlZs6caYwxpnLlymbgwIHZ9jJkyBBz3333OY0dOXLESDKJiYnZHvP777+b0aNHmw0bNphNmzaZfv36GYfDYebPn2/N6dy5s2nVqpWZM2eO8fX1NV9++aXTOQYMGGC8vb1NSkqKNRYbG2vCwsJMRkaGNVa+fHkzYsSIbPu4dB5JWSr54qPSFEVRFEVRFJV95SHJyclGkklOTr7q3Hz3TKQxxvbcZcuWacSIEdq7d69SUlKUnp6uc+fO6ezZs/L29pYkeXt7q2zZstYxwcHBOn78uLX922+/6dVXX1VcXJyOHz+ujIwMnT17VocPH5YkJSQkKCQkRCVKlLCOqV27dpZeZsyYoXfffVdJSUlKTU1Venq6/Pz8rtj/5auNkhQbG6v4+Hj98ssviomJUUZGhtVDq1atnObWrVtXY8eOVUZGhhISEuTq6qpatWpZ+wMDA1W+fHklJCRIknr27KlnnnlGS5YsUcOGDXX//fcrKipKkrRjxw6tXLnSWpm8XFJSkiIiIrKMFylSRM8//7y1XbNmTR09elSjRo1Sy5YtrfGNGzdq4cKFmjVrVrZvsg0LC1PBggWt7eLFi8vFxUUFChRwGrv87+zv+vfv79RLSkqKQkJCcpwPAAAA/Jflu9tZy5UrJ4fDcdWX5xw6dEjNmzdXVFSUZs+era1bt+qDDz6QJJ0/f96a9/dn9BwOh1NQ7dy5s+Lj4/XOO+9o3bp1io+PV2BgoNM5rmb9+vXq0KGDmjZtqoULF2r79u165ZVXrniOcuXKKTk5Wb/++qs15uvrq/DwcIWGhtq+tl1PPPGEDh48qI4dO2rXrl2qUaOG3nvvPUlSamqqWrRoofj4eKe69CyoXbVq1dKBAwecxsqWLasKFSpowoQJ2T4jmt3fT3ZjmZmZOV7Xw8NDfn5+TgUAAADkV/kuRBYuXFixsbH64IMPdObMmSz7T506Jenic4KZmZkaPXq07rrrLkVEROjo0aPXfL21a9eqZ8+eatq0qfXimstfKBMZGakjR444vYzn77/GYt26dQoNDdUrr7yiGjVqqFy5cvrpp5+ueN0HHnhAbm5u1ktmriQyMlJr167N0ndERIRcXFwUGRmp9PR0p+cGT5w4ocTERFWsWNEaCwkJ0dNPP605c+bohRde0KeffipJqlatmnbv3q2wsDCFh4c7VXbPpeYkPj5ewcHBTmNFihTRihUrdODAAbVt2/aKLxsCAAAAcP3yXYiUpA8++EAZGRm68847NXv2bO3fv18JCQl69913rVtJw8PDdeHCBb333ns6ePCgpkyZoo8++uiar1WuXDlNmTJFCQkJ2rhxozp06CAvLy9rf8OGDRUREaHOnTtrx44dWr16tV555ZUs5zh8+LC+/PJLJSUl6d1339XcuXOveN1SpUpp9OjReuedd9S5c2etXLlShw4d0rZt2/Tuu+9KklxcXCRJL7zwgpYvX64hQ4Zo3759mjx5st5//33rBUHlypVTq1at1LVrV61Zs0Y7duzQI488opIlS1q3wfbq1UvfffedfvzxR23btk0rV65UZGSkpIsv3fnzzz/Vrl07bd68WUlJSfruu+/06KOPWrfU/t3kyZM1ffp07d27V3v37tXw4cM1YcIE9ejRI8vcYsWKacWKFdq7d6/atWun9PR0O381AAAAAP6Jf/0JzVvU0aNHzbPPPmtCQ0ONu7u7KVmypGnZsqVZuXKlNeftt982wcHBxsvLy8TGxprPP//cSDInT540xlx8sY6/v7/TeefOnWsu/1q3bdtmatSoYTw9PU25cuXMV199ZUJDQ82YMWOsOYmJiebuu+827u7uJiIiwixevNhIzi/W6du3rwkMDDS+vr7moYceMmPGjMly7ewsXbrUNGnSxBQuXNi4urqa4sWLm9atW5vFixc7zZs1a5apWLGicXNzM6VKlTKjRo1y2v/nn3+ajh07Gn9/f+v72Ldvn7W/e/fupmzZssbDw8MULVrUdOzY0fzxxx/W/n379pk2bdqYgIAA4+XlZSpUqGB69eplMjMzs+170qRJJjIy0nh7exs/Pz9z5513mq+++sppzqUX61xy9OhRExERYdq2bWvS09PNgAEDTJUqVa54jDHGREdHm+eee+4q3+T/ufTQsZSc689qUxRFURRFUbdu5SXX8mIdhzHG5GqKBfKYlJQU+fv7S0qWxPORAAAAyF5eSlqXfsZNTk6+6jtA8uXtrAAAAACAf4YQCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALDNNbcbAPKsl/wlz9xuAgBwM5gBJrdbAIBbBiuRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbXHO7ASCvSu6fLD8/v9xuAwAAALipWIkEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADY5prbDQB5lr9/bncAAACAG82Y3O7glsdKZB4xadIkBQQE5HYbtxS+EwAAAODmI0TeIrp06SKHwyGHwyF3d3eFh4dr8ODBSk9Pz+3WbjiHw6F58+ZddV5YWJj1nVyqN954499vEAAAAECOuJ31FtK4cWNNnDhRaWlpWrRokZ599lm5ubmpf//+ud1arhk8eLC6du1qbRcsWDAXuwEAAADASuQtxMPDQ0FBQQoNDdUzzzyjhg0basGCBU5zvvvuO0VGRsrX11eNGzfWsWPHnPZ/9tlnioyMlKenpypUqKAPP/zQaX+/fv0UEREhb29vlSlTRq+99pouXLhg7d+xY4caNGigggULys/PT9WrV9eWLVskSSdOnFC7du1UsmRJeXt7q3Llypo+fbrT+WNiYtSzZ0+9+OKLKly4sIKCgjRw4EBrf1hYmCSpTZs2cjgc1nZOChYsqKCgIKt8fHxynPv777+rRo0aatOmjdLS0hQXFyeHw6HvvvtOVatWlZeXl+655x4dP35c3377rSIjI+Xn56f27dvr7NmzV+wDAAAAwEWEyFuYl5eXzp8/b22fPXtWb731lqZMmaLvv/9ehw8fVp8+faz9U6dO1euvv65hw4YpISFBw4cP12uvvabJkydbcwoWLKhJkyZpz549euedd/Tpp59qzJgx1v4OHTrotttu0+bNm7V161a99NJLcnNzkySdO3dO1atX1zfffKMffvhBTz75pDp27KhNmzY59T158mT5+Pho48aNevPNNzV48GAtXbpUkrR582ZJ0sSJE3Xs2DFrOydvvPGGAgMDVbVqVY0aNSrH23uPHDmievXq6fbbb9esWbPk4eFh7Rs4cKDef/99rVu3TkeOHFHbtm01duxYTZs2Td98842WLFmi9957L8ce0tLSlJKS4lQAAABAvmVwS+jcubNp1aqVMcaYzMxMs3TpUuPh4WH69OljjDFm4sSJRpI5cOCAdcwHH3xgihcvbm2XLVvWTJs2zem8Q4YMMbVr187xuqNGjTLVq1e3tgsWLGgmTZpku+9mzZqZF154wdqOjo42d999t9OcmjVrmn79+lnbkszcuXOveu7Ro0eblStXmh07dphx48aZgIAA07t3b2v/xIkTjb+/v9m7d68JCQkxPXv2NJmZmdb+lStXGklm2bJl1tiIESOMJJOUlGSNPfXUUyY2NjbHPgYMGGAkZanki+/uoiiKoiiKov5LlU8lJycbSSY5Ofmqc3km8haycOFC+fr66sKFC8rMzFT79u2dbgX19vZW2bJlre3g4GAdP35cknTmzBklJSXp8ccfd3qGMD09Xf6X/SqKGTNm6N1331VSUpJSU1OVnp4uPz8/a//zzz+vJ554QlOmTFHDhg314IMPWtfMyMjQ8OHDNXPmTP3yyy86f/680tLS5O3t7fQ5oqKinLYv7/NaPP/8807ndHd311NPPaURI0ZYK41//fWX6tWrp/bt22vs2LHZnufyfooXL27dynv52N9XUy/Xv39/p15SUlIUEhJyzZ8HAAAA+C/gdtZbSIMGDRQfH6/9+/frr7/+sm4LveTSbaWXOBwOGWMkSampqZKkTz/9VPHx8Vb98MMP2rBhgyRp/fr16tChg5o2baqFCxdq+/bteuWVV5xumR04cKB2796tZs2aacWKFapYsaLmzp0rSRo1apTeeecd9evXTytXrlR8fLxiY2Odjs+pz8zMzOv+fmrVqqX09HQdOnTIGvPw8FDDhg21cOFC/fLLL9ked3k/Dofjmvvz8PCQn5+fUwEAAAD5FSuRtxAfHx+Fh4f/o2OLFy+uEiVK6ODBg+rQoUO2c9atW6fQ0FC98sor1thPP/2UZV5ERIQiIiLUu3dvtWvXThMnTlSbNm20du1atWrVSo888ogkKTMzU/v27VPFihWvqVc3NzdlZGRc0zGSFB8frwIFCqhYsWLWWIECBTRlyhS1b99eDRo0UFxcnEqUKHHN5wYAAABgDyHyP2TQoEHq2bOn/P391bhxY6WlpWnLli06efKknn/+eZUrV06HDx/Wl19+qZo1a+qbb76xVhmli7eG9u3bVw888IBKly6tn3/+WZs3b9b9998vSSpXrpxmzZqldevWqVChQnr77bf122+/XXOIDAsL0/Lly1W3bl15eHioUKFCWeasX79eGzdutN4Uu379evXu3VuPPPJIlvkuLi6aOnWq2rVrp3vuuUdxcXEKCgr6B98gAAAAgKshRP6HPPHEE/L29taoUaPUt29f+fj4qHLlyurVq5ckqWXLlurdu7e6d++utLQ0NWvWTK+99pr13KWLi4tOnDihTp066bffflORIkX0v//9T4MGDZIkvfrqqzp48KBiY2Pl7e2tJ598Uq1bt1ZycvI19Tl69Gg9//zz+vTTT1WyZEmn21Mv8fDw0JdffqmBAwcqLS1NpUuXVu/evZ2eTbycq6urpk+froceesgKkv82fyVL4tZWAACA/xKT2w3kAQ5z6aE6ALakpKT8/5cVESIBAAD+a/JrOrr0M25ycvJV3wHCi3UAAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ueZ2A0Ce9ZK/5JnbTQBA3mcGmNxuAQBwDViJBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2Oaa2w0AeVVy/2T5+fnldhsAAADATcVKJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANtfcbgA3RpcuXXTq1CnNmzcvt1u5qRwOh+bOnavWrVvf/Iv7+9/8awIAANxoxuR2B8hjWIm8Cbp06SKHwyGHwyE3NzeVLl1aL774os6dO5erfV3qyeFwyMfHR+XKlVOXLl20devWXO3rkoEDBzr16HA4VKFChdxuCwAAAMjXCJE3SePGjXXs2DEdPHhQY8aM0ccff6wBAwbkdluaOHGijh07pt27d+uDDz5QamqqatWqpc8//zy3W5MkVapUSceOHbNqzZo1ud0SAAAAkK8RIm8SDw8PBQUFKSQkRK1bt1bDhg21dOlSa39aWpp69uypYsWKydPTU3fffbc2b97sdI7du3erefPm8vPzU8GCBVWvXj0lJSVle73NmzeraNGiGjly5BX7CggIUFBQkMLCwnTfffdp1qxZ6tChg7p3766TJ09a82bPnq1KlSrJw8NDYWFhGj16tLXv5ZdfVq1atbKcu0qVKho8eLC1/dlnnykyMlKenp6qUKGCPvzwwyt/aZJcXV0VFBRkVZEiRa44f8CAAQoODtbOnTslSWFhYRo6dKg6deokX19fhYaGasGCBfr999/VqlUr+fr6KioqSlu2bLlqLwAAAAAIkbnihx9+0Lp16+Tu7m6Nvfjii5o9e7YmT56sbdu2KTw8XLGxsfrzzz8lSb/88ovq168vDw8PrVixQlu3btVjjz2m9PT0LOdfsWKFGjVqpGHDhqlfv37X3F/v3r11+vRpK+Ru3bpVbdu21cMPP6xdu3Zp4MCBeu211zRp0iRJUocOHbRp0yanQLt7927t3LlT7du3lyRNnTpVr7/+uoYNG6aEhAQNHz5cr732miZPnnzFXvbv368SJUqoTJky6tChgw4fPpztPGOMevTooc8//1yrV69WVFSUtW/MmDGqW7eutm/frmbNmqljx47q1KmTHnnkEW3btk1ly5ZVp06dZHJ4HiAtLU0pKSlOBQAAAORbBv+6zp07GxcXF+Pj42M8PDyMJFOgQAEza9YsY4wxqampxs3NzUydOtU65vz586ZEiRLmzTffNMYY079/f1O6dGlz/vz5HK/RqlUrM2fOHOPr62u+/PLLq/YlycydOzfL+F9//WUkmZEjRxpjjGnfvr1p1KiR05y+ffuaihUrWttVqlQxgwcPtrb79+9vatWqZW2XLVvWTJs2zekcQ4YMMbVr186xv0WLFpmZM2eaHTt2mMWLF5vatWubUqVKmZSUFKfP8NVXX5n27dubyMhI8/PPPzudIzQ01DzyyCPW9rFjx4wk89prr1lj69evN5LMsWPHsu1jwIABRlKWSr74GDpFURRFUVTeLsAYk5ycbCSZ5OTkq85lJfImadCggeLj47Vx40Z17txZjz76qO6//35JUlJSki5cuKC6deta893c3HTnnXcqISFBkhQfH6969erJzc0tx2ts3LhRDz74oKZMmaKHHnroH/dqjJF08cU7kpSQkODUmyTVrVtX+/fvV0ZGhqSLq5HTpk2zjp8+fbo6dOggSTpz5oySkpL0+OOPy9fX16qhQ4fmeDuuJDVp0kQPPvigoqKiFBsbq0WLFunUqVOaOXOm07zevXtr48aN+v7771WyZMks57l8VbJ48eKSpMqVK2cZO378eLZ99O/fX8nJyVYdOXIkx54BAACA/zpC5E3i4+Oj8PBwValSRRMmTNDGjRs1fvx428d7eXlddU7ZsmVVoUIFTZgwQRcuXPjHvV4KrqVLl7Z9TLt27ZSYmKht27Zp3bp1OnLkiBVkU1NTJUmffvqp4uPjrfrhhx+0YcMG29cICAhQRESEDhw44DTeqFEj/fLLL/ruu++yPe7y4H0pGGc3lpmZme3xHh4e8vPzcyoAAAAgvyJE5oICBQro5Zdf1quvvqq//vpLZcuWlbu7u9auXWvNuXDhgjZv3qyKFStKuriatnr16iuGwyJFimjFihU6cOCA2rZt+4+D5NixY+Xn56eGDRtKkiIjI516k6S1a9cqIiJCLi4ukqTbbrtN0dHRmjp1qqZOnapGjRqpWLFiki6u9JUoUUIHDx5UeHi4U11LUE1NTVVSUpKCg4Odxlu2bKlp06bpiSee0JdffvmPPjMAAAAAewiRueTBBx+Ui4uLPvjgA/n4+OiZZ55R3759tXjxYu3Zs0ddu3bV2bNn9fjjj0uSunfvrpSUFD388MPasmWL9u/frylTpigxMdHpvMWKFdOKFSu0d+9etWvXLtsX71zu1KlT+vXXX/XTTz9p6dKleuCBBzRt2jSNGzdOAQEBkqQXXnhBy5cv15AhQ7Rv3z5NnjxZ77//vvr06eN0rg4dOujLL7/UV199Zd3KesmgQYM0YsQIvfvuu9q3b5927dqliRMn6u23386xtz59+mjVqlU6dOiQ1q1bpzZt2sjFxUXt2rXLMrdNmzaaMmWKHn30Uc2aNeuKnxkAAADAdfjXn9CE9dKbvxsxYoQpWrSoSU1NNX/99Zfp0aOHKVKkiPHw8DB169Y1mzZtcpq/Y8cOc9999xlvb29TsGBBU69ePZOUlJTtNY4ePWoiIiJM27ZtTXp6erZ9Sf/3khhPT09TtmxZ07lzZ7N169Ysc2fNmmUqVqxo3NzcTKlSpcyoUaOyzDl58qTx8PAw3t7e5vTp01n2T5061dxxxx3G3d3dFCpUyNSvX9/MmTMnx+/toYceMsHBwcbd3d2ULFnSPPTQQ+bAgQNZPsPlLweaMWOG8fT0NLNnzzbGXHyxzpgxY654zI8//mgkme3bt+fYy+Wsh45z+yF4iqIoiqKoG1GAubYX6ziMMSb3IiyQ96SkpMjf319SsiSejwQAAP8NpIL87dLPuMnJyVd9Bwi3swIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGxzze0GgDzrJX/JM7ebAPBvMgNMbrcAAMAth5VIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBtrrndAJBXJfdPlp+fX263AQAAANxUrEQCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbCNEAgAAAABsc83tBoA8y98/tzsAAAD454zJ7Q6QR7ESmQc4HA7Nmzfvmo87dOiQHA6H4uPjb3hP1+tG9HYrfz4AAADgv4oQeQvo0qWLWrduneP+Y8eOqUmTJpJyDk5XO8f1yMjI0JgxY1S5cmV5enqqUKFCatKkidauXfuvXO+SLl26yOFwOFXjxo3/1WsCAAAAuDJCZB4QFBQkDw+PXLm2MUYPP/ywBg8erOeee04JCQmKi4tTSEiIYmJi/tEK6bVo3Lixjh07ZtX06dP/1esBAAAAuDJCZB5w+e2spUuXliRVrVpVDodDMTExGjhwoCZPnqz58+dbK3ZxcXHZnuuHH35QkyZN5Ovrq+LFi6tjx476448/crz2zJkzNWvWLH3++ed64oknVLp0aVWpUkWffPKJWrZsqSeeeEJnzpxRcnKyXFxctGXLFklSZmamChcurLvuuss61xdffKGQkJBr+uweHh4KCgqyqlChQjnOzcjI0GOPPaYKFSro8OHDki5+dx9//LGaN28ub29vRUZGav369Tpw4IBiYmLk4+OjOnXqKCkp6Zr6AgAAAPIrQmQes2nTJknSsmXLdOzYMc2ZM0d9+vRR27ZtnVbt6tSpk+XYU6dO6Z577lHVqlW1ZcsWLV68WL/99pvatm2b4/WmTZumiIgItWjRIsu+F154QSdOnNDSpUvl7++vO+64wwqvu3btksPh0Pbt25WamipJWrVqlaKjo6/p88bFxalYsWIqX768nnnmGZ04cSLbeWlpaXrwwQcVHx+v1atXq1SpUta+IUOGqFOnToqPj1eFChXUvn17PfXUU+rfv7+2bNkiY4y6d++eYw9paWlKSUlxKgAAACC/IkTmMUWLFpUkBQYGKigoSIULF5avr6+8vLycVu3c3d2zHPv++++ratWqGj58uCpUqKCqVatqwoQJWrlypfbt25ft9fbt26fIyMhs910av3RsTEyMFSLj4uLUqFEjRUZGas2aNdbYtYTIxo0b6/PPP9fy5cs1cuRIrVq1Sk2aNFFGRobTvNTUVDVr1ky///67Vq5caX1Hlzz66KNq27atIiIi1K9fPx06dEgdOnRQbGysIiMj9dxzz+W4citJI0aMkL+/v1XXupoKAAAA/JfwKz7ykR07dmjlypXy9fXNsi8pKUkRERHZHmdsvv45Ojpa48ePV0ZGhlatWqX77rtPQUFBiouLU1RUlHULqV0PP/yw9efKlSsrKipKZcuWVVxcnO69915rX7t27XTbbbdpxYoV8vLyynKeqKgo68/Fixe3znf52Llz55SSkiI/P78sx/fv31/PP/+8tZ2SkkKQBAAAQL7FSmQ+kpqaqhYtWig+Pt6p9u/fr/r162d7TEREhBISErLdd2n8UvisX7++Tp8+rW3btun7779XTEyMtTq5atUqlShRQuXKlfvH/ZcpU0ZFihTRgQMHnMabNm2qnTt3av369dke5+bmZv3Z4XDkOJaZmZnt8R4eHvLz83MqAAAAIL8iROYxl25T/fstne7u7lnG/q5atWravXu3wsLCFB4e7lQ+Pj7ZHvPwww9r//79+vrrr7PsGz16tAIDA9WoUSNJUkBAgKKiovT+++/Lzc1NFSpUUP369bV9+3YtXLjwmp+H/Luff/5ZJ06cUHBwsNP4M888ozfeeEMtW7bUqlWrrusaAAAAAK6MEHmLSE5OzrJCeOTIkSzzihUrJi8vL+ulOMnJyZKksLAw7dy5U4mJifrjjz904cKFLMc+++yz+vPPP9WuXTtt3rxZSUlJ+u677/Too4/mGEAffvhhtWnTRp07d9b48eN16NAh7dy5U0899ZQWLFigzz77zCmAxsTEaOrUqVZgLFy4sCIjIzVjxoxrCpGpqanq27evNmzYoEOHDmn58uVq1aqVwsPDFRsbm2V+jx49NHToUDVv3tx6BhMAAADAjcczkbeIuLg4Va1a1Wns8ccf12effeY05urqqnfffVeDBw/W66+/rnr16ikuLk5du3ZVXFycatSoodTUVK1cuVJhYWFOx5YoUUJr165Vv379dN999yktLU2hoaFq3LixChTI/v9PcDgcmjlzpsaOHasxY8aoW7du8vT0VO3atRUXF6e6des6zY+OjtbYsWOdnn2MiYnRjh07rul5SBcXF+3cuVOTJ0/WqVOnVKJECd13330aMmRIjr8zs1evXsrMzFTTpk21ePHibN9QeyP5K1kSt7YCAIA8yvHvX8LmqzWQxziM3bemAJB08cU6/v7+EiESAADgikgaeceln3GTk5Ov+g4QbmcFAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADY5prbDQB51kv+kmduNwHcXGaAye0WAABALmMlEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYJtrbjcA5FXJ/ZPl5+eX220AAAAANxUrkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA227JEBkXFyeHw6FTp07lOGfgwIG64447blpP1yssLExjx47N7TauyM73PmnSJAUEBNy0nq7E4XBo3rx5udeAv7/kcFAURVEUReVuATfZdYXILl26yOFwyOFwyM3NTaVLl9aLL76oc+fO3aj+8o2BAwda36Wrq6vCwsLUu3dvpaamXvd57YbtOnXq6NixY/L397+ua94Il38fl6pChQq53RYAAACQ77le7wkaN26siRMn6sKFC9q6das6d+4sh8OhkSNH3oj+8pVKlSpp2bJlSk9P19q1a/XYY4/p7Nmz+vjjj6/5XMYYZWRk2J5/4cIFubu7Kygo6Jqv9W+59H1c4up63f9cAQAAAFyn676d1cPDQ0FBQQoJCVHr1q3VsGFDLV261NqfmZmpESNGqHTp0vLy8lKVKlU0a9Ysp3MsWrRIERER8vLyUoMGDXTo0KF/1Mtnn32myMhIeXp6qkKFCvrwww+d9q9bt0533HGHPD09VaNGDc2bN08Oh0Px8fHWnAULFqhcuXLy9PRUgwYNNHnyZP39Fs81a9aoXr168vLyUkhIiHr27KkzZ85Y+48fP64WLVrIy8tLpUuX1tSpU2317+rqqqCgIN1222166KGH1KFDBy1YsECSNGXKFNWoUUMFCxZUUFCQ2rdvr+PHj1vHXroV9dtvv1X16tXl4eGhL774QoMGDdKOHTus1bxJkyZJkhwOh8aNG6eWLVvKx8dHw4YNy/Z21kmTJqlUqVLy9vZWmzZtdOLEiSx9Dx06VMWKFVPBggX1xBNP6KWXXsqy+nm1v5srfR+XqkiRIlecP2DAAAUHB2vnzp2SLt5CPHToUHXq1Em+vr4KDQ3VggUL9Pvvv6tVq1by9fVVVFSUtmzZctVeAAAAAPx/5jp07tzZtGrVytretWuXCQoKMrVq1bLGhg4daipUqGAWL15skpKSzMSJE42Hh4eJi4szxhhz+PBh4+HhYZ5//nmzd+9e88UXX5jixYsbSebkyZM5XnvAgAGmSpUq1vYXX3xhgoODzezZs83BgwfN7NmzTeHChc2kSZOMMcYkJyebwoULm0ceecTs3r3bLFq0yERERBhJZvv27cYYYw4ePGjc3NxMnz59zN69e8306dNNyZIlnXo5cOCA8fHxMWPGjDH79u0za9euNVWrVjVdunSxemnSpImpUqWKWb9+vdmyZYupU6eO8fLyMmPGjLH9eYwxpmfPnqZw4cLGGGPGjx9vFi1aZJKSksz69etN7dq1TZMmTay5K1euNJJMVFSUWbJkiTlw4ID5+eefzQsvvGAqVapkjh07Zo4dO2bOnj1rjDFGkilWrJiZMGGCSUpKMj/99JN1jkufdcOGDaZAgQJm5MiRJjEx0bzzzjsmICDA+Pv7O33vnp6eZsKECSYxMdEMGjTI+Pn5XdPfTU7fh7e3twkODjalS5c27du3Nz/99JPTHElm7ty5JjMz03Tv3t2EhYWZ/fv3W/tDQ0NN4cKFzUcffWT27dtnnnnmGePn52caN25sZs6caRITE03r1q1NZGSkyczMzLGXc+fOmeTkZKuOHDliJJlkyRiKoiiKoqjcLuAGSE5ONpJMcnLyVede17+6zp07GxcXF+Pj42M8PDyMJFOgQAEza9YsY8zFH769vb3NunXrnI57/PHHTbt27YwxxvTv399UrFjRaX+/fv3MtYbIsmXLmmnTpjnNGTJkiKldu7Yxxphx48aZwMBA89dff1n7P/30U3N5iOzXr5+5/fbbnc7xyiuvOPXy+OOPmyeffNJpzurVq02BAgXMX3/9ZRITE40ks2nTJmt/QkKCkXRNIXLLli2mSJEi5oEHHsh2/ubNm40kc/r0aWPM/4XIefPmXfG8l0gyvXr1chr7e4hs166dadq0qdOchx56yClE1qpVyzz77LNOc+rWrXtNfzfZWbRokZk5c6bZsWOHWbx4saldu7YpVaqUSUlJcfoMX331lWnfvr2JjIw0P//8s9M5QkNDzSOPPGJtHzt2zEgyr732mjW2fv16I8kcO3Ysx14GDBhgJGUpQiRFURRFUbdEATfAtYTI637IrEGDBho3bpzOnDmjMWPGyNXVVffff78k6cCBAzp79qwaNWrkdMz58+dVtWpVSVJCQoJq1arltL927dpO276+vtafH3nkEX300UdO+8+cOaOkpCQ9/vjj6tq1qzWenp5uvSQmMTFRUVFR8vT0tPbfeeedTudJTExUzZo1ncb+PmfHjh3auXOn0y2qxhhlZmbqxx9/1L59++Tq6qrq1atb+ytUqGDrjaa7du2Sr6+vMjIydP78eTVr1kzvv/++JGnr1q0aOHCgduzYoZMnTyozM1OSdPjwYVWsWNE6R40aNa56HbtzExIS1KZNG6ex2rVra/HixdZ2YmKiunXr5jTnzjvv1IoVKyTZ+7vJTpMmTaw/R0VFqVatWgoNDdXMmTP1+OOPW/t69+4tDw8PbdiwIdvbXaOioqw/Fy9eXJJUuXLlLGPHjx/P8XnQ/v376/nnn7e2U1JSFBISkmPvAAAAwH/ZdYdIHx8fhYeHS5ImTJigKlWqaPz48Xr88cetN4t+8803KlmypNNxHh4etq9x+TOLfn5+WfZfus6nn36aJZC6uLjYvo4dqampeuqpp9SzZ88s+0qVKqV9+/b943OXL19eCxYskKurq0qUKCF3d3dJF4NYbGysYmNjNXXqVBUtWlSHDx9WbGyszp8/73QOHx8f29e7lrn/1I36uwkICFBERIQOHDjgNN6oUSNNnz5d3333nTp06JDlODc3N+vPjv//Cuzsxi6F8ux4eHhc079XAAAA4L/shr7uskCBAnr55Zf1/PPPq3379qpYsaI8PDx0+PBhRUdHZ3tMZGSk9fKYSzZs2OC0fSmk5qR48eIqUaKEDh48mG2QkC4GtC+++EJpaWlWINi8eXOWOYsWLXIa+/ucatWqac+ePTn2VKFCBaWnp2vr1q3WqmZiYuIVf/fiJe7u7tmed+/evTpx4oTeeOMNawXM7stg3N3dr+ktrZeLjIzUxo0bncb+/ndTvnx5bd68WZ06dbLGLv/O7Pzd2JGamqqkpCR17NjRabxly5Zq0aKF2rdvLxcXFz388MP/+BoAAAAAru663876dw8++KBcXFz0wQcfqGDBgurTp4969+6tyZMnKykpSdu2bdN7772nyZMnS5Kefvpp7d+/X3379lViYqKmTZtmvUH0WgwaNEgjRozQu+++q3379mnXrl2aOHGi3n77bUlS+/btlZmZqSeffFIJCQn67rvv9NZbb0n6v9Wop556Snv37lW/fv20b98+zZw50+ltppLUr18/rVu3Tt27d1d8fLz279+v+fPnq3v37pIuhqrGjRvrqaee0saNG7V161Y98cQT8vLy+sffaalSpeTu7q733ntPBw8e1IIFCzRkyBBbx4aFhenHH39UfHy8/vjjD6Wlpdm+bs+ePbV48WK99dZb2r9/v95//32nW1klqUePHho/frwmT56s/fv3a+jQodq5c6f1fUlX/7vJTp8+fbRq1SodOnRI69atU5s2beTi4qJ27dplmdumTRtNmTJFjz76aJY3/wIAAAC4wa7n4cu/v531khEjRpiiRYua1NRUk5mZacaOHWvKly9v3NzcTNGiRU1sbKxZtWqVNf/rr7824eHhxsPDw9SrV89MmDDBSNf2Yh1jjJk6daq54447jLu7uylUqJCpX7++mTNnjrV/7dq1Jioqyri7u5vq1aubadOmGUlm79691pz58+dbvcTExJhx48YZSU4v5Nm0aZNp1KiR8fX1NT4+PiYqKsoMGzbM2n/s2DHTrFkz4+HhYUqVKmU+//xzExoaes1vZ73ctGnTTFhYmPHw8DC1a9c2CxYsMNL/vRTo7y/FueTcuXPm/vvvNwEBAUaSmThxojHGGOnim00vl905xo8fb2677Tbj5eVlWrRoYd566y2nF+sYY8zgwYNNkSJFjK+vr3nsscdMz549zV133eU052p/N3/30EMPmeDgYOPu7m5KlixpHnroIXPgwAGnOX//DDNmzDCenp5m9uzZxhiT7Xf+92N+/PFHp+/RDuuh49x+iJ6iKIqiKEqy/TMMcCXX8mIdhzHG5Ep6vQVMnTpVjz76qJKTk3NcKRw2bJg++ugjHTly5CZ3l3c1atRIQUFBmjJlSm638q9ISUn5/y8FSpaU9RldAACAvCr/JgNc+hk3OTk52/fQXO6GPhN5q/v8889VpkwZlSxZUjt27FC/fv3Utm1bpwD54YcfqmbNmgoMDNTatWs1atQo61ZVZHX27Fl99NFHio2NlYuLi6ZPn65ly5Zp6dKlud0aAAAAgH9BvgqRv/76q15//XX9+uuvCg4O1oMPPqhhw4Y5zbn0XN+ff/6pUqVK6YUXXlD//v1zqeNbn8Ph0KJFizRs2DCdO3dO5cuX1+zZs9WwYcPcbg0AAADAvyBf384K/BPczgoAAP6rSAb517XcznrD384KAAAAAPjvIkQCAAAAAGwjRAIAAAAAbCNEAgAAAABsI0QCAAAAAGwjRAIAAAAAbMtXvycSuKFe8pc8c7sJ4OYyA3j3OwAA+R0rkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA21xzuwEgr0runyw/P7/cbgMAAAC4qViJBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2Oaa2w0AeZa/f253AAD4LzMmtzsAgGyxEpmPxMXFyeFw6NSpU7ndyg3RpUsXtW7dOrfbAAAAAPIVQmQe9NFHH6lgwYJKT0+3xlJTU+Xm5qaYmBinuZeCY1JSkurUqaNjx47JPw+soB06dEgOhyNLbdiwIbdbAwAAAPI1bmfNgxo0aKDU1FRt2bJFd911lyRp9erVCgoK0saNG3Xu3Dl5enpKklauXKlSpUqpbNmykqSgoKBc6/ufWLZsmSpVqmRtBwYG5mI3AAAAAFiJzIPKly+v4OBgxcXFWWNxcXFq1aqVSpcu7bRaFxcXpwYNGlh//vvtrJ9++qlCQkLk7e2tNm3a6O2331ZAQIDT9ebPn69q1arJ09NTZcqU0aBBg5xWQQ8fPqxWrVrJ19dXfn5+atu2rX777Tdr/8CBA3XHHXdoypQpCgsLk7+/vx5++GGdPn36qp81MDBQQUFBVrm5ueU4d/PmzSpatKhGjhzpdN0JEyaoVKlS8vX1Vbdu3ZSRkaE333xTQUFBKlasmIYNG3bVPgAAAABcRIjMoxo0aKCVK1da2ytXrlRMTIyio6Ot8b/++ksbN260QuTfrV27Vk8//bSee+45xcfHq1GjRlkC1erVq9WpUyc999xz2rNnjz7++GNNmjTJmpeZmalWrVrpzz//1KpVq7R06VIdPHhQDz30kNN5kpKSNG/ePC1cuFALFy7UqlWr9MYbb1z1c7Zs2VLFihXT3XffrQULFuQ4b8WKFVb//fr1c7rut99+q8WLF2v69OkaP368mjVrpp9//lmrVq3SyJEj9eqrr2rjxo05njstLU0pKSlOBQAAAORbBnnSp59+anx8fMyFCxdMSkqKcXV1NcePHzfTpk0z9evXN8YYs3z5ciPJ/PTTT8YYY1auXGkkmZMnTxpjjHnooYdMs2bNnM7boUMH4+/vb23fe++9Zvjw4U5zpkyZYoKDg40xxixZssS4uLiYw4cPW/t3795tJJlNmzYZY4wZMGCA8fb2NikpKdacvn37mlq1auX4+X7//XczevRos2HDBrNp0ybTr18/43A4zPz58605nTt3Nq1atTJz5swxvr6+5ssvv3Q6R3bXjY2NNWFhYSYjI8MaK1++vBkxYkSOvQwYMMBIylLJF9+bR1EURVH/TgHATZScnGwkmeTk5KvO5ZnIPComJkZnzpzR5s2bdfLkSUVERKho0aKKjo7Wo48+qnPnzikuLk5lypRRqVKlsj1HYmKi2rRp4zR25513auHChdb2jh07tHbtWqcVyoyMDJ07d05nz55VQkKCQkJCFBISYu2vWLGiAgIClJCQoJo1a0qSwsLCVLBgQWtOcHCwjh8/nuPnK1KkiJ5//nlru2bNmjp69KhGjRqlli1bWuMbN27UwoULNWvWrGzf1Pr36xYvXlwuLi4qUKCA09iVeunfv79TLykpKU6fFwAAAMhPCJF5VHh4uG677TatXLlSJ0+eVHR0tCSpRIkSCgkJ0bp167Ry5Urdc88913Wd1NRUDRo0SP/73/+y7Lv08h47/v4so8PhUGZm5jX1UqtWLS1dutRprGzZsgoMDNSECRPUrFmzLNfJ7rrX2ouHh4c8PDyuqVcAAADgv4pnIvOwBg0aKC4uTnFxcU6/2qN+/fr69ttvtWnTphyfh5QuvqBn8+bNTmN/365WrZoSExMVHh6epQoUKKDIyEgdOXJER44csY7Zs2ePTp06pYoVK96YD/r/xcfHKzg42GmsSJEiWrFihQ4cOKC2bdvqwoULN/SaAAAAAJyxEpmHNWjQQM8++6wuXLhgrURKUnR0tLp3767z589fMUT26NFD9evX19tvv60WLVpoxYoV+vbbb+VwOKw5r7/+upo3b65SpUrpgQceUIECBbRjxw798MMPGjp0qBo2bKjKlSurQ4cOGjt2rNLT09WtWzdFR0erRo0a//izTZ48We7u7qpataokac6cOZowYYI+++yzLHOLFSumFStWqEGDBmrXrp2+/PJLubryTxsAAAD4N7ASmYc1aNBAf/31l8LDw1W8eHFrPDo6WqdPn7Z+FUhO6tatq48++khvv/22qlSposWLF6t3795Ot6nGxsZq4cKFWrJkiWrWrKm77rpLY8aMUWhoqKSLt4LOnz9fhQoVUv369dWwYUOVKVNGM2bMuO7PN2TIEFWvXl21atXS/PnzNWPGDD366KPZzg0KCtKKFSu0a9cudejQQRkZGdd9/avxV7IcMhRFURT175RDt1QBwCUOY4zJ7SZw6+jatav27t2r1atX53Yrt6yUlBT5+/tLSpbkl9vtAABwU/ATI/Dfduln3OTkZPn5XflnXO75y+feeustNWrUSD4+Pvr22281efJkffjhh7ndFgAAAIBbFCEyn9u0aZPefPNNnT59WmXKlNG7776rJ554IrfbAgAAAHCLIkTmczNnzsztFgAAAADkIbxYBwAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBu/4gP4p17ylzxzuwngIjPA5HYLAAAgn2AlEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYJtrbjcA5FXJ/ZPl5+eX220AAAAANxUrkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA21xzuwEgz/L3z+0OAADInjG53QGA/zBWIuHE4XBo3rx5Oe4/dOiQHA6H4uPjb1pPOYmJiVGvXr1yuw0AAAAgX8m3IfLXX3/Vc889p/DwcHl6eqp48eKqW7euxo0bp7Nnz970fuLi4uRwOKwqXry47r//fh08ePCGnPfUqVO25h87dkxNmjS5rmveCH//Pi7Vr7/+mtutAQAAAPlavryd9eDBg6pbt64CAgI0fPhwVa5cWR4eHtq1a5c++eQTlSxZUi1btsz22AsXLsjNze1f6y0xMVEFCxbU/v379eSTT6pFixbauXOnXFxcrvlcFy5csD33/Pnzcnd3V1BQ0DVf59+UmJgoPz8/a7tYsWK52A0AAACAfLkS2a1bN7m6umrLli1q27atIiMjVaZMGbVq1UrffPONWrRoYc11OBwaN26cWrZsKR8fHw0bNkySNH/+fFWrVk2enp4qU6aMBg0apPT0dEnSY489pubNmztd88KFCypWrJjGjx9/xd6KFSum4OBg1a9fX6+//rr27NmjAwcOaPPmzWrUqJGKFCkif39/RUdHa9u2bU7H/r3Xrl27qkGDBpKkQoUKyeFwqEuXLpIu3gravXt39erVS0WKFFFsbKx1jstvZ920aZOqVq0qT09P1ahRQ9u3b8/S84IFC1SuXDl5enqqQYMGmjx5cpbVzzVr1qhevXry8vJSSEiIevbsqTNnzlzxu7j0fQQFBVlVoEDO/2S/+eYb+fv7a+rUqZKkLl26qHXr1ho+fLiKFy+ugIAADR48WOnp6erbt68KFy6s2267TRMnTrxiD2lpaUpJSXEqAAAAIN8y+cwff/xhHA6HGTFihK35kkyxYsXMhAkTTFJSkvnpp5/M999/b/z8/MykSZNMUlKSWbJkiQkLCzMDBw40xhizdu1a4+LiYo4ePWqdZ86cOcbHx8ecPn062+usXLnSSDInT550OkaS2blzp1m+fLmZMmWKSUhIMHv27DGPP/64KV68uElJScmx10OHDpnZs2cbSSYxMdEcO3bMnDp1yhhjTHR0tPH19TV9+/Y1e/fuNXv37rXOMXfuXGOMMadPnzZFixY17du3Nz/88IP5+uuvTZkyZYwks337dmOMMQcPHjRubm6mT58+Zu/evWb69OmmZMmSTp/lwIEDxsfHx4wZM8bs27fPrF271lStWtV06dIlx+/90vcRGhpqgoKCTMOGDc2aNWuc5kRHR5vnnnvOGGPM1KlTTcGCBc3XX39t7e/cubMpWLCgefbZZ83evXvN+PHjjSQTGxtrhg0bZvbt22eGDBli3NzczJEjR3LsZcCAAUZSlkq++NoCiqIoirr1CgCuUXJyspFkkpOTrzo33/23zIYNG4wkM2fOHKfxwMBA4+PjY3x8fMyLL75ojUsyvXr1cpp77733muHDhzuNTZkyxQQHB1vbFStWNCNHjrS2W7RoYSs0XQpeR48eNXXq1DElS5Y0aWlpWeZnZGRkCU3Z9ZpdODXmYgCrWrVqlvNeHiI//vhjExgYaP766y9r/7hx48zlIbJfv37m9ttvdzrHK6+84nTNxx9/3Dz55JNOc1avXm0KFCjgdO7L7d2713z00Udmy5YtZu3atebRRx81rq6uZuvWrU6f4bnnnjPvv/++8ff3N3FxcU7n6Ny5swkNDTUZGRnWWPny5U29evWs7fT0dOPj42OmT5+ebR/GGHPu3DmTnJxs1ZEjRwwhkqIoirqlCwCu0bWEyHz5TGR2Nm3apMzMTHXo0EFpaWlO+2rUqOG0vWPHDq1du9a6tVWSMjIydO7cOZ09e1be3t564okn9Mknn+jFF1/Ub7/9pm+//VYrVqy4ah+33XabjDE6e/asqlSpotmzZ8vd3V2//fabXn31VcXFxen48ePKyMjQ2bNndfjw4Sv2eiXVq1e/4v6EhARFRUXJ09PTGqtdu7bTnMTERNWsWdNp7M4773Ta3rFjh3bu3GndZipJxhhlZmbqxx9/VGRkZJZrly9fXuXLl7e269Spo6SkJI0ZM0ZTpkyxxmfNmqXjx49r7dq1WfqQpEqVKjndAlu8eHHdfvvt1raLi4sCAwN1/PjxHL8HDw8PeXh45LgfAAAAyE/yXYgMDw+Xw+FQYmKi03iZMmUkSV5eXlmO8fHxcdpOTU3VoEGD9L///S/L3EuBq1OnTnrppZe0fv16rVu3TqVLl1a9evWu2t/q1avl5+enYsWKqWDBgtZ4586ddeLECb3zzjsKDQ2Vh4eHateurfPnz1+x1yu5lrnXIzU1VU899ZR69uyZZV+pUqVsn+fOO+/UmjVrnMaqVq2qbdu2acKECapRo4YcDofT/r+/BMnhcGQ7lpmZabsPAAAAID/LdyEyMDBQjRo10vvvv68ePXr8oyBVrVo1JSYmKjw8/IrXad26tSZOnKj169fr0UcftXXu0qVLKyAgIMv42rVr9eGHH6pp06aSpCNHjuiPP/646vnc3d0lXVwpvVaRkZGaMmWKzp07Z4XjDRs2OM0pX768Fi1a5DS2efNmp+1q1appz549V/y+7IiPj1dwcLDTWNmyZTV69GjFxMTIxcVF77///nVdAwAAAMCV5cu3s3744YdKT09XjRo1NGPGDCUkJCgxMVFffPGF9u7de9Vfp/H666/r888/16BBg7R7924lJCToyy+/1Kuvvuo074knntDkyZOVkJCgzp07X1fP5cqV05QpU5SQkKCNGzeqQ4cO2a6a/l1oaKgcDocWLlyo33//Xampqbav2b59ezkcDnXt2lV79uzRokWL9NZbbznNeeqpp7R3717169dP+/bt08yZMzVp0iRJslYF+/Xrp3Xr1ql79+6Kj4/X/v37NX/+fHXv3j3Ha48dO1bz58/XgQMH9MMPP6hXr15asWKFnn322SxzIyIitHLlSs2ePVu9evWy/fkAAAAAXLt8GSLLli2r7du3q2HDhurfv7+qVKmiGjVq6L333lOfPn00ZMiQKx4fGxurhQsXasmSJapZs6buuusujRkzRqGhoU7zGjZsqODgYMXGxqpEiRLX1fP48eN18uRJVatWTR07dlTPnj1t/c7EkiVLatCgQXrppZdUvHjxKwa3v/P19dXXX3+tXbt2qWrVqnrllVc0cuRIpzmlS5fWrFmzNGfOHEVFRWncuHF65ZVXJMl6jjAqKkqrVq3Svn37VK9ePVWtWlWvv/76Fb+T8+fP64UXXlDlypUVHR2tHTt2aNmyZbr33nuznV++fHmtWLFC06dP1wsvvGD7M14PfyXLIUNRFEVRt145RF1nAciZwxhjcruJ/6rU1FSVLFlSEydOzPb5yf+qYcOG6aOPPtKRI0dyu5V/RUpKivz9/SUlS/LL7XYAAMC/gJ+Qkd9c+hk3OTlZfn5X/hk33z0TeTNkZmbqjz/+0OjRoxUQEKCWLVvmdkv/qg8//FA1a9ZUYGCg1q5dq1GjRl3TiicAAACAvIMQ+S84fPiwSpcurdtuu02TJk2Sq+t/+2vev3+/hg4dqj///FOlSpXSCy+8oP79++d2WwAAAAD+BdzOClwjbmcFAOC/j5+Qkd9cy+2s+fLFOgAAAACAf4YQCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACw7b/9uyeAf9NL/pJnbjeBvMgM4JV/AAAg72IlEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgm2tuNwDkVcn9k+Xn55fbbQAAAAA3FSuRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbXHO7AdwaJk2apF69eunUqVP/yvkHDhyoefPmKT4+XpLUpUsXnTp1SvPmzfvH57wR57gu/v65c10AQP5kTG53AACSWInMU3799Vc999xzCg8Pl6enp4oXL666detq3LhxOnv2bG63d0MdOnRIDocjS23YsCG3WwMAAADyNVYi84iDBw+qbt26CggI0PDhw1W5cmV5eHho165d+uSTT1SyZEm1bNkyt9u84ZYtW6ZKlSpZ24GBgbnYDQAAAABWIvOIbt26ydXVVVu2bFHbtm0VGRmpMmXKqFWrVvrmm2/UokULa+7bb7+typUry8fHRyEhIerWrZtSU1Odzjdp0iSVKlVK3t7eatOmjU6cOGHtS05OlouLi7Zs2SJJyszMVOHChXXXXXdZc7744guFhIRY2/369VNERIS8vb1VpkwZvfbaa7pw4cJ1f+7AwEAFBQVZ5ebmluPczZs3q2jRoho5cqSki7fQ3nHHHZowYYJKlSolX19fdevWTRkZGXrzzTcVFBSkYsWKadiwYdfdJwAAAJBfECLzgBMnTmjJkiV69tln5ePjk+0ch8Nh/blAgQJ69913tXv3bk2ePFkrVqzQiy++aO3fuHGjHn/8cXXv3l3x8fFq0KCBhg4dau339/fXHXfcobi4OEnSrl275HA4tH37diuMrlq1StHR0dYxBQsW1KRJk7Rnzx698847+vTTTzVmzJjr/uwtW7ZUsWLFdPfdd2vBggU5zluxYoUaNWqkYcOGqV+/ftZ4UlKSvv32Wy1evFjTp0/X+PHj1axZM/38889atWqVRo4cqVdffVUbN27M8dxpaWlKSUlxKgAAACC/IkTmAQcOHJAxRuXLl3caL1KkiHx9feXr6+sUnHr16qUGDRooLCxM99xzj4YOHaqZM2da+9955x01btxYL774oiIiItSzZ0/FxsY6nTsmJsYKkXFxcWrUqJEiIyO1Zs0aa+zyEPnqq6+qTp06CgsLU4sWLdSnTx+na14rX19fjR49Wl999ZW++eYb3X333WrdunW2QXLu3Llq1aqVPv74Yz355JNO+zIzMzVhwgRVrFhRLVq0UIMGDZSYmKixY8eqfPnyevTRR1W+fHmtXLkyx15GjBghf39/qy5fgQUAAADyG56JzMM2bdqkzMxMdejQQWlpadb4smXLNGLECO3du1cpKSlKT0/XuXPndPbsWXl7eyshIUFt2rRxOlft2rW1ePFiazs6Olrjx49XRkaGVq1apfvuu09BQUGKi4tTVFSUDhw4oJiYGGv+jBkz9O677yopKUmpqalKT0+Xn5/fP/5sRYoU0fPPP29t16xZU0ePHtWoUaOcnv3cuHGjFi5cqFmzZql169ZZzhMWFqaCBQta28WLF5eLi4sKFCjgNHb8+PEce+nfv79TLykpKQRJAAAA5FusROYB4eHhcjgcSkxMdBovU6aMwsPD5eXlZY0dOnRIzZs3V1RUlGbPnq2tW7fqgw8+kCSdP3/e9jXr16+v06dPa9u2bfr+++8VExNjrU6uWrVKJUqUULly5SRJ69evV4cOHdS0aVMtXLhQ27dv1yuvvHJN17OjVq1aOnDggNNY2bJlVaFCBU2YMCHbZzD//gylw+HIdiwzMzPH63p4eMjPz8+pAAAAgPyKEJkHBAYGqlGjRnr//fd15syZK87dunWrMjMzNXr0aN11112KiIjQ0aNHneZERkZmeQbw7786IyAgQFFRUXr//ffl5uamChUqqH79+tq+fbsWLlzodCvrunXrFBoaqldeeUU1atRQuXLl9NNPP13np84qPj5ewcHBTmNFihTRihUrdODAAbVt2/aGvMwHAAAAQM4IkXnEhx9+qPT0dNWoUUMzZsxQQkKCEhMT9cUXX2jv3r1ycXGRdHHV8sKFC3rvvfd08OBBTZkyRR999JHTuXr27KnFixfrrbfe0v79+/X+++873cp6SUxMjKZOnWoFxsKFCysyMlIzZsxwCpHlypXT4cOH9eWXXyopKUnvvvuu5s6de12fd/LkyZo+fbr27t2rvXv3avjw4ZowYYJ69OiRZW6xYsW0YsUK7d27V+3atVN6evp1XRsAAABAzgiReUTZsmW1fft2NWzYUP3791eVKlVUo0YNvffee+rTp4+GDBkiSapSpYrefvttjRw5UrfffrumTp2qESNGOJ3rrrvu0qeffqp33nlHVapU0ZIlS/Tqq69muWZ0dLQyMjKcnn2MiYnJMtayZUv17t1b3bt31x133KF169bptddeu+7PPGTIEFWvXl21atXS/PnzNWPGDD366KPZzg0KCtKKFSu0a9cudejQQRkZGdd9/avxV7IcMhRFURR1c8qh/3wByBscxhiT200AeUlKSor8/f0lJUvi+UgAAG4UfioFcs+ln3GTk5Ov+g4QViIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ueZ2A0Ce9ZK/5JnbTeBmMANMbrcAAABwy2AlEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYBshEgAAAABgGyESAAAAAGAbIRIAAAAAYJtrbjcA5FXJ/ZPl5+eX220AAAAANxUrkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA2wiRAAAAAADbCJEAAAAAANsIkQAAAAAA21xzuwEgz/L3z+0OAAD/hDG53QEA5Gl5biWyS5cuat269TUd43A4NG/evGs65tdff1WjRo3k4+OjgICAazr2Zvknn+u/JC4uTg6HQ6dOncrtVgAAAIB845YLkV26dJHD4ZDD4ZC7u7vCw8M1ePBgpaenS5LeeecdTZo06V/vY8yYMTp27Jji4+O1b9++G3bemx38fv31Vz333HMKDw+Xp6enihcvrrp162rcuHE6e/bsTevjn4iJibH+LVyqp59+OrfbAgAAAPK1W/J21saNG2vixIlKS0vTokWL9Oyzz8rNzU39+/eX/026hTApKUnVq1dXuXLlbsr1/g0HDx5U3bp1FRAQoOHDh6ty5cry8PDQrl279Mknn6hkyZJq2bJlbrd5RV27dtXgwYOtbW9v71zsBgAAAMAttxIpSR4eHgoKClJoaKieeeYZNWzYUAsWLJCU9XbWmJgY9ezZUy+++KIKFy6soKAgDRw48IrnHzBggIKDg7Vz585s94eFhWn27Nn6/PPP5XA41KVLF0nS4cOH1apVK/n6+srPz09t27bVb7/95nTsuHHjVLZsWbm7u6t8+fKaMmWK03klqU2bNnI4HNa2JM2fP1/VqlWTp6enypQpo0GDBlmrr5K0f/9+1a9fX56enqpYsaKWLl16lW9R6tatm1xdXbVlyxa1bdtWkZGRKlOmjFq1aqVvvvlGLVq0sOZe72czxmjgwIEqVaqUPDw8VKJECfXs2dPan5aWpj59+qhkyZLy8fFRrVq1FBcXd9XP4O3traCgIKv8/PxynHv27Fk1adJEdevW1alTp3To0CE5HA7NnDlT9erVk5eXl2rWrKl9+/Zp8+bNqlGjhnx9fdWkSRP9/vvvOZ43LS1NKSkpTgUAAADkW+YW07lzZ9OqVSunsZYtW5pq1apluz86Otr4+fmZgQMHmn379pnJkycbh8NhlixZYs2RZObOnWsyMzNN9+7dTVhYmNm/f3+OPRw/ftw0btzYtG3b1hw7dsycOnXKZGRkmDvuuMPcfffdZsuWLWbDhg2mevXqJjo62jpuzpw5xs3NzXzwwQcmMTHRjB492ri4uJgVK1ZY55VkJk6caI4dO2aOHz9ujDHm+++/N35+fmbSpEkmKSnJLFmyxISFhZmBAwcaY4zJyMgwt99+u7n33ntNfHy8WbVqlalatar1ubLzxx9/GIfDYUaMGHHV7/xGfLavvvrK+Pn5mUWLFpmffvrJbNy40XzyySfW8U888YSpU6eO+f77782BAwfMqFGjjIeHh9m3b1+OfUVHR5siRYqYwMBAU6lSJfPSSy+ZM2fOWPtXrlxpJJmTJ0+akydPmjp16pj77rvPmvPjjz8aSaZChQpm8eLFZs+ePeauu+4y1atXNzExMWbNmjVm27ZtJjw83Dz99NM59jFgwAAjKUslX3w1A0VRFJXXCgCQRXJyspFkkpOTrzr3lvtv0stDYmZmplm6dKnx8PAwffr0ybLfmItB4+6773Y6R82aNU2/fv2sbUnmq6++Mu3btzeRkZHm559/vmofrVq1Mp07d7a2lyxZYlxcXMzhw4etsd27dxtJZtOmTcYYY+rUqWO6du3qdJ4HH3zQNG3a1KmXvwe/e++91wwfPtxpbMqUKSY4ONgYY8x3331nXF1dzS+//GLt//bbb7M91yUbNmwwksycOXOcxgMDA42Pj4/x8fExL7744g37bKNHjzYRERHm/PnzWXr56aefjIuLi1P/lz53//79s+3fGGM+/vhjs3jxYrNz507zxRdfmJIlS5o2bdpY+y+FyISEBBMVFWXuv/9+k5aWZu2/FCI/++wza2z69OlGklm+fLk1NmLECFO+fPkc+zh37pxJTk626siRI4YQSVEUlYcLAJDFtYTIW/J21oULF8rX11eenp5q0qSJHnrooSveohoVFeW0HRwcrOPHjzuN9e7dWxs3btT333+vkiVLWuPDhw+Xr6+vVYcPH872GgkJCQoJCVFISIg1VrFiRQUEBCghIcGaU7duXafj6tata+3PyY4dOzR48GCnPrp27apjx47p7Nmz1rVLlChhHVO7du0rnjMnmzZtUnx8vCpVqqS0tLQb9tkefPBB/fXXXypTpoy6du2quXPnWrfj7tq1SxkZGYqIiHD6jKtWrVJSUlKOvT755JOKjY1V5cqV1aFDB33++eeaO3dulmMaNWqk8PBwzZgxQ+7u7lnOc/m/j+LFi0uSKleu7DT2938vl/Pw8JCfn59TAQAAAPnVLflinQYNGmjcuHFyd3dXiRIl5Op65Tbd3Nycth0OhzIzM53GGjVqpOnTp+u7775Thw4drPGnn35abdu2tbYvD2o3S2pqqgYNGqT//e9/WfZ5enr+o3OGh4fL4XAoMTHRabxMmTKSJC8vr3903pyEhIQoMTFRy5Yt09KlS9WtWzeNGjVKq1atUmpqqlxcXLR161a5uLg4Hefr62v7GrVq1ZIkHThwQGXLlrXGmzVrptmzZ2vPnj1O4fCSy/99OByObMf+/u8FAAAAQPZuyRDp4+Oj8PDwG3rOli1bqkWLFmrfvr1cXFz08MMPS5IKFy6swoULX/X4yMhIHTlyREeOHLFW7Pbs2aNTp06pYsWK1py1a9eqc+fO1nFr16619ksXw0tGRobTuatVq6bExMQcP/Olax87dkzBwcGSpA0bNlyx38DAQDVq1Ejvv/++evToIR8fn3/9s3l5ealFixZq0aKFnn32WVWoUEG7du1S1apVlZGRoePHj6tevXpX7PtK4uPjJcn6Di5544035Ovrq3vvvVdxcXFOPQEAAAC4sW7JEPlvadOmjaZMmaKOHTvK1dVVDzzwgO1jGzZsaN1WOXbsWKWnp6tbt26Kjo5WjRo1JEl9+/ZV27ZtVbVqVTVs2FBff/215syZo2XLllnnCQsL0/Lly1W3bl15eHioUKFCev3119W8eXOVKlVKDzzwgAoUKKAdO3bohx9+0NChQ9WwYUNFRESoc+fOGjVqlFJSUvTKK69ctecPP/xQdevWVY0aNTRw4EBFRUWpQIEC2rx5s/bu3avq1avfsM82adIkZWRkqFatWvL29tYXX3whLy8vhYaGKjAwUB06dFCnTp00evRoVa1aVb///ruWL1+uqKgoNWvWLEvvSUlJmjZtmpo2barAwEDt3LlTvXv3Vv369bPcvixJb731ljIyMnTPPfcoLi5OFSpUsP13CwAAAOAa3IRnNK9Jdm9nvdL+6Oho89xzzznN+ftLcSTnF9DMmDHDeHp6mtmzZ+d4nb+fw5iLL4hp2bKl8fHxMQULFjQPPvig+fXXX53mfPjhh6ZMmTLGzc3NREREmM8//9xp/4IFC0x4eLhxdXU1oaGh1vjixYtNnTp1jJeXl/Hz8zN33nmn09tNExMTzd13323c3d1NRESEWbx4cZbPlZ2jR4+a7t27m9KlSxs3Nzfj6+tr7rzzTjNq1CinN51e72ebO3euqVWrlvHz8zM+Pj7mrrvuMsuWLbP2nz9/3rz++usmLCzMuLm5meDgYNOmTRuzc+fObPs+fPiwqV+/vilcuLDx8PAw4eHhpm/fvk4P+l7+dtZLevToYYKDg01iYqL1Yp3t27df8ZiJEycaf3//K36Pl7v00LGUnOvvhqAoiqJuTAFAfnctL9ZxGGNMLmZYIM9JSUmRv7+/pGRJvGQHAP4L+GkIQH536Wfc5OTkq75I8pZ8OysAAAAA4NZEiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2EaIBAAAAADYRogEAAAAANhGiAQAAAAA2Oaa2w0AedZL/pJnbjeBG8EM4LeMAwAA2MVKJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANkIkAAAAAMA2QiQAAAAAwDZCJAAAAADANtfcbgDIq5L7J8vPzy+32wAAAABuKlYiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIhSYqJiVGvXr1u2vXCwsI0duzYXD/HdfH3lxwOiqKoG18AANzCCJF5RJcuXeRwOORwOOTu7q7w8HANHjxY6enpud3av2LSpEnW571Unp6eud0WAAAAkO+55nYDsK9x48aaOHGi0tLStGjRIj377LNyc3NT//79c7u1bGVkZMjhcKhAgX/2/1X4+fkpMTHR2nbw/84DAAAAuY6VyDzEw8NDQUFBCg0N1TPPPKOGDRtqwYIFkqSTJ0+qU6dOKlSokLy9vdWkSRPt37/f6fi1a9cqJiZG3t7eKlSokGJjY3Xy5Elrf2Zmpl588UUVLlxYQUFBGjhwoNPxb7/9tipXriwfHx+FhISoW7duSk1NtfZPmjRJAQEBWrBggSpWrCgPDw8dPnxYx48fV4sWLeTl5aXSpUtr6tSptj6vw+FQUFCQVcWLF7/i/M8++0wBAQFavny5pIu36Pbo0UO9evVSoUKFVLx4cX366ac6c+aMHn30URUsWFDh4eH69ttvbfUDAAAAgBCZp3l5een8+fOSLt7uumXLFi1YsEDr16+XMUZNmzbVhQsXJEnx8fG69957VbFiRa1fv15r1qxRixYtlJGRYZ1v8uTJ8vHx0caNG/Xmm29q8ODBWrp0qbW/QIECevfdd7V7925NnjxZK1as0IsvvujU09mzZzVy5Eh99tln2r17t4oVK6YuXbroyJEjWrlypWbNmqUPP/xQx48fv+rnS01NVWhoqEJCQtSqVSvt3r07x7lvvvmmXnrpJS1ZskT33nuv02cqUqSINm3apB49euiZZ57Rgw8+qDp16mjbtm2677771LFjR509ezbHc6elpSklJcWpAAAAgHzLIE/o3LmzadWqlTHGmMzMTLN06VLj4eFh+vTpY/bt22ckmbVr11rz//jjD+Pl5WVmzpxpjDGmXbt2pm7dujmePzo62tx9991OYzVr1jT9+vXL8ZivvvrKBAYGWtsTJ040kkx8fLw1lpiYaCSZTZs2WWMJCQlGkhkzZkyO5163bp2ZPHmy2b59u4mLizPNmzc3fn5+5siRI9ac0NBQM2bMGPPiiy+a4OBg88MPP1zxM6WnpxsfHx/TsWNHa+zYsWNGklm/fn2OvQwYMMBIylLJkjEURVH/RgEAcJMlJycbSSY5Ofmqc3kmMg9ZuHChfH19deHCBWVmZqp9+/YaOHCgli9fLldXV9WqVcuaGxgYqPLlyyshIUHSxZXIBx988Irnj4qKctoODg52WjFctmyZRowYob179yolJUXp6ek6d+6czp49K29vb0mSu7u703kSEhLk6uqq6tWrW2MVKlRQQEDAFXupXbu2ateubW3XqVNHkZGR+vjjjzVkyBBrfPTo0Tpz5oy2bNmiMmXKXPEzubi4KDAwUJUrV7bGLt0ie6WV0f79++v555+3tlNSUhQSEnLF/gEAAID/Km5nzUMaNGig+Ph47d+/X3/99Zd1+6kdXl5eV53j5ubmtO1wOJSZmSlJOnTokJo3b66oqCjNnj1bW7du1QcffCBJ1i21l67zb7wAx83NTVWrVtWBAwecxuvVq6eMjAzNnDkzx+Mu53A4nMYu9Xrpc2bHw8NDfn5+TgUAAADkV4TIPMTHx0fh4eEqVaqUXF3/bxE5MjJS6enp2rhxozV24sQJJSYmqmLFipIurshdeuHMP7F161ZlZmZq9OjRuuuuuxQREaGjR49e9bgKFSooPT1dW7dutcYSExN16tSpa7p+RkaGdu3apeDgYKfxO++8U99++62GDx+ut95665rOCQAAAODaESL/A8qVK6dWrVqpa9euWrNmjXbs2KFHHnlEJUuWVKtWrSRdvCVz8+bN6tatm3bu3Km9e/dq3Lhx+uOPP2xdIzw8XBcuXNB7772ngwcPasqUKfroo4+uelz58uXVuHFjPfXUU9q4caO2bt2qJ5544qoro4MHD9aSJUt08OBBbdu2TY888oh++uknPfHEE1nm1qlTR4sWLdKgQYM0duxYW58HAAAAwD9DiPyPmDhxoqpXr67mzZurdu3aMsZo0aJF1q2bERERWrJkiXbs2KE777xTtWvX1vz5851WNK+kSpUqevvttzVy5Ejdfvvtmjp1qkaMGGG7txIlSig6Olr/+9//9OSTT6pYsWJXPObkyZPq2rWrIiMj1bRpU6WkpGjdunXWyurf3X333frmm2/06quv6r333rPV1/XyV7IcMhRF3QJ1C7wK58YWAAC3MIcx/K8VcC1SUlLk7+8vKVkSz0cCtwL+lwwAgOtz6Wfc5OTkq74DhJVIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAbYRIAAAAAIBthEgAAAAAgG2ESAAAAACAba653QCQZ73kL3nmdhN5nxlgcrsFAAAAXANWIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALYRIgEAAAAAthEiAQAAAAC2ESIBAAAAALa55nYDQF6V3D9Zfn5+ud0GAAAAcFOxEgkAAAAAsI0QCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALCNEAkAAAAAsI0QCQAAAACwjRAJAAAAALCNEAkAAAAAsM01txsA8ix//9zuAMg7jMntDgAAwA3CSuRVOBwOzZs3L7fbQDYOHTokh8Oh+Pj43G4FAAAAyDfyRYj86KOPVLBgQaWnp1tjqampcnNzU0xMjNPcuLg4ORwOJSUl3eQub57ff/9dzzzzjEqVKiUPDw8FBQUpNjZWa9euze3WnHTp0kUOh8OpGjdunNttAQAAAPlavridtUGDBkpNTdWWLVt01113SZJWr16toKAgbdy4UefOnZOnp6ckaeXKlSpVqpTKli2bmy3fEOfPn5e7u3uW8fvvv1/nz5/X5MmTVaZMGf32229avny5Tpw4kQtdXlnjxo01ceJEa9vDwyMXuwEAAACQL1Yiy5cvr+DgYMXFxVljcXFxatWqlUqXLq0NGzY4jTdo0MDp+D/++ENt2rSRt7e3ypUrpwULFjjtX7Vqle688055eHgoODhYL730ktOqZ1pamnr27KlixYrJ09NTd999tzZv3ux0TYfDoW+++UZRUVHy9PTUXXfdpR9++MHpOmvWrFG9evXk5eWlkJAQ9ezZU2fOnLH2h4WFaciQIerUqZP8/Pz05JNPZvkuTp06pdWrV2vkyJFq0KCBQkNDdeedd6p///5q2bKlJKlPnz5q3ry5dczYsWPlcDi0ePFiayw8PFyfffaZJGnz5s1q1KiRihQpIn9/f0VHR2vbtm1O13U4HPrss8+u+D1m59JK6aUqVKhQjnMzMjL02GOPqUKFCjp8+LB13Y8//ljNmzeXt7e3IiMjtX79eh04cEAxMTHy8fFRnTp1rrjynJaWppSUFKcCAAAA8qt8ESKli6uRK1eutLZXrlypmJgYRUdHW+N//fWXNm7cmCVEDho0SG3bttXOnTvVtGlTdejQQX/++ack6ZdfflHTpk1Vs2ZN7dixQ+PGjdP48eM1dOhQ6/gXX3xRs2fP1uTJk7Vt2zaFh4crNjbWOsclffv21ejRo7V582YVLVpULVq00IULFyRJSUlJaty4se6//37t3LlTM2bM0Jo1a9S9e3enc7z11luqUqWKtm/frtdeey3L9+Dr6ytfX1/NmzdPaWlp2X5X0dHRWrNmjTIyMiRdDMlFihSxQvgvv/yipKQk61bg06dPq3PnzlqzZo02bNigcuXKqWnTpjp9+rTt7zEncXFxKlasmMqXL69nnnkmx9XStLQ0Pfjgg4qPj9fq1atVqlQpa9+lYB0fH68KFSqoffv2euqpp9S/f39t2bJFxpgs3+PlRowYIX9/f6tCQkKu2DMAAADwn2byiU8//dT4+PiYCxcumJSUFOPq6mqOHz9upk2bZurXr2+MMWb58uVGkvnpp5+s4ySZV1991dpOTU01ksy3335rjDHm5ZdfNuXLlzeZmZnWnA8++MD4+vqajIwMk5qaatzc3MzUqVOt/efPnzclSpQwb775pjHGmJUrVxpJ5ssvv7TmnDhxwnh5eZkZM2YYY4x5/PHHzZNPPun0mVavXm0KFChg/vrrL2OMMaGhoaZ169ZX/S5mzZplChUqZDw9PU2dOnVM//79zY4dO6z9J0+eNAUKFDCbN282mZmZpnDhwmbEiBGmVq1axhhjvvjiC1OyZMkcz5+RkWEKFixovv76a9vfY3amT59u5s+fb3bu3Gnmzp1rIiMjTc2aNU16eroxxpgff/zRSDKrV6829957r7n77rvNqVOnnM7x9+uuX7/eSDLjx493uo6np2eOfZw7d84kJydbdeTIESPJJF983yRFUXYKAADc0pKTk40kk5ycfNW5+WYlMiYmRmfOnNHmzZu1evVqRUREqGjRooqOjraei4yLi1OZMmWcVrEkKSoqyvqzj4+P/Pz8dPz4cUlSQkKCateuLYfDYc2pW7euUlNT9fPPPyspKUkXLlxQ3bp1rf1ubm668847lZCQ4HSd2rVrW38uXLiwypcvb83ZsWOHJk2aZK0k+vr6KjY2VpmZmfrxxx+t42rUqHHV7+L+++/X0aNHtWDBAjVu3FhxcXGqVq2aJk2aJEkKCAhQlSpVFBcXp127dsnd3V1PPvmktm/frtTUVK1atUrR0dHW+X777Td17dpV5cqVk7+/v/z8/JSammrdUmrne8zOww8/rJYtW6py5cpq3bq1Fi5cqM2bNzvdlixJ7dq105kzZ7RkyRL5Z/NrNy6/bvHixSVJlStXdho7d+5cjrepenh4yM/Pz6kAAACA/CrfhMjw8HDddtttWrlypVauXGmFoBIlSigkJETr1q3TypUrdc8992Q51s3NzWnb4XAoMzPzpvR9SWpqqp566inFx8dbtWPHDu3fv9/pJUA+Pj62zufp6alGjRrptdde07p169SlSxcNGDDA2h8TE6O4uDgrMBYuXFiRkZFas2ZNlhDZuXNnxcfH65133tG6desUHx+vwMBAnT9/3uma1/s9lilTRkWKFNGBAwecxps2baqdO3dq/fr12R53+XUvhf3sxm723ykAAACQF+WbECldfC4yLi5OcXFxTr/ao379+vr222+1adOmLM9DXs2lF7UYY6yxtWvXqmDBgrrttttUtmxZubu7O/36jAsXLmjz5s2qWLGi07kuf8HPyZMntW/fPkVGRkqSqlWrpj179ig8PDxLZfcG1mtVsWJFp5f0XHoucvny5dZ3FRMTo+nTp2vfvn1O39/atWvVs2dPNW3aVJUqVZKHh4f++OOP6+7p737++WedOHFCwcHBTuPPPPOM3njjDbVs2VKrVq264dcFAAAA8H/yXYhcs2aN4uPjnVbSoqOj9fHHH+v8+fPXHCK7deumI0eOqEePHtq7d6/mz5+vAQMG6Pnnn1eBAgXk4+OjZ555Rn379tXixYu1Z88ede3aVWfPntXjjz/udK7Bgwdr+fLl+uGHH9SlSxcVKVJErVu3liT169dP69atU/fu3RUfH6/9+/dr/vz5V3whTHZOnDihe+65R1988YV27typH3/8UV999ZXefPNNtWrVyppXv359nT59WgsXLnQKkVOnTlVwcLAiIiKsueXKldOUKVOUkJCgjRs3qkOHDvLy8rqmvv4uNTVVffv21YYNG3To0CEtX75crVq1sl5K9Hc9evTQ0KFD1bx5c61Zs+a6rg0AAAAgZ/ni90Re0qBBA/3111+qUKGC9WycdDFEnj592vpVINeiZMmSWrRokfr27asqVaqocOHCevzxx/Xqq69ac9544w1lZmaqY8eOOn36tGrUqKHvvvsuy6+reOONN/Tcc89p//79uuOOO/T1119bq4xRUVFatWqVXnnlFdWrV0/GGJUtW1YPPfTQNfXr6+urWrVqacyYMdbzmiEhIeratatefvlla16hQoVUuXJl/fbbb6pQoYKki8EyMzPTKYBL0vjx4/Xkk0+qWrVqCgkJ0fDhw9WnT59r6uvvXFxctHPnTk2ePFmnTp1SiRIldN9992nIkCE5/q7IXr16KTMzU02bNtXixYtVp06d6+rhavyVLOnWfj7ysgVyAAAA4IZwGMOPmbnt0u+mPHnypAICAnK7HVxFSkrK/3+BDyESAAAA/w2XfsZNTk6+6osk89XtrAAAAACA60OIBAAAAADYlq+eibxVxcTEiLuKAQAAAOQFrEQCAAAA+H/t3XlcTun/P/DXXeluve8UWohoE6IIQ1KRKXuMZehDdvOxr4NhFMYylpEZBqNRxsc6hhn7LkPGEsqWKJoMkrGUktbr94df5+vW4mTL8no+Htfj0bnOda7zPuc+5X67zrkOkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnG2VmJXtZENaBX1kGUTDGtbPcvgjjrMBEREdGHhiORREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSTaesAyB6X6VOSoVKpSrrMIiIiIiI3iqORBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkW9ReHg4TExMXrmfxMREKBQKREdHv3Jfb4tCocDvv//+Wvv08vLCqFGjXmufpaJWAwoFCwvLh1SIiIjohT6KJLJPnz5QKBT44osvCq0bOnQoFAoF+vTp8/YDe0nW1ta4ffs26tSp80r9KBQKqRgaGsLe3h59+vTB6dOnX1OkLy8iIkIjvoKSnJxc1qEREREREX3UPookEniaeK1fvx6ZmZlS3ZMnT7B27VpUrVq1DCMrnezsbGhra8PCwgI6Ojqv3F9YWBhu376NixcvYsmSJUhPT0fjxo3xyy+/vIZoX11cXBxu374tlUqVKpV1SEREREREH7WPJomsX78+rK2tsXnzZqlu8+bNqFq1KlxdXTXa7t69G82aNYOJiQnMzMzQrl07JCQkSOsLbifdvHkzvL29YWBggHr16uGvv/7S6Cc8PBxVq1aFgYEBOnXqhHv37mmsT0hIQMeOHWFubg4jIyM0bNgQ+/fv12hjY2ODGTNmoHfv3lCpVBg0aFCh21kLRu0OHDgANzc3GBgYoGnTpoiLi3vheTExMYGFhQVsbGzw6aefYtOmTQgICMCwYcPw4MEDAEBwcDBcXFw0tgsJCYGNjY1G3cqVK1G7dm0olUpYWlpi2LBhxe43KCgIlpaWOHfuXInxVapUCRYWFlLR0ir+kt2xYwfUajXWrFkD4OkItL+/P2bNmgVzc3OYmJhg+vTpyM3Nxfjx42FqaooqVaogLCysxBiIiIiIiOj/fDRJJAD069dPI2FYuXIl+vbtW6hdRkYGxowZg6ioKBw4cABaWlro1KkT8vPzNdpNnjwZ48aNQ3R0NBwcHNCjRw/k5uYCAE6cOIH+/ftj2LBhiI6Ohre3N7755huN7dPT09GmTRscOHAAZ8+ehZ+fH9q3b4+kpCSNdvPnz0e9evVw9uxZfP3118Ue3+TJk7FgwQJERUVBR0cH/fr1K/U5AoDRo0fj0aNH2Ldvn+xtli5diqFDh2LQoEE4f/48tm7dCjs7u0LthBAYPnw4fvnlFxw5cgR169YtsV8XFxdYWlqiVatWiIyMLLbd2rVr0aNHD6xZswYBAQFS/cGDB3Hr1i38+eef+O677xAUFIR27dqhfPnyOHHiBL744gsMHjwY//zzT7F9Z2VlIS0tTaMQEREREX20xEcgMDBQdOzYUaSkpAilUikSExNFYmKi0NPTE3fv3hUdO3YUgYGBxW5/9+5dAUCcP39eCCHE9evXBQARGhoqtbl48aIAIGJjY4UQQvTo0UO0adNGo5/u3bsLtVpdYqy1a9cWP/zwg7RcrVo14e/vr9GmYP9nz54VQghx6NAhAUDs379farNjxw4BQGRmZha7LwBiy5YtheozMzMFAPHtt98KIYQICgoS9erV02izcOFCUa1aNWnZyspKTJ48ucR9/frrr6Jnz57CyclJ/PPPP8W2FUKIy5cvi2XLlomoqCgRGRkp+vbtK3R0dMTp06elNp6enmLkyJFi8eLFQq1Wi4iICI0+AgMDRbVq1UReXp5U5+joKDw8PKTl3NxcYWhoKNatW1dsLEFBQQJAoZIKCMHCwvJhFSIioo9UamqqACBSU1Nf2PbVH6p7j1SsWBFt27ZFeHg4hBBo27YtKlSoUKjd1atXMXXqVJw4cQL//vuvNAKZlJSkMZnNs6NolpaWAICUlBTUrFkTsbGx6NSpk0a/TZo0we7du6Xl9PR0BAcHY8eOHbh9+zZyc3ORmZlZaCTSzc1N1vEVF09pn/kUQgB4OvGOHCkpKbh16xZatmxZYrvRo0dDqVTi+PHjRZ73Zzk6OsLR0VFabtq0KRISErBw4UKsXr1aqt+0aRNSUlIQGRmJhg0bFuqndu3aGrfAmpuba3yG2traMDMzQ0pKSrGxTJo0CWPGjJGW09LSYG1tXWL8REREREQfqo/qdlbg6S2t4eHhWLVqVbG3e7Zv3x7379/HihUrcOLECZw4cQLA00ltnlWuXDnp54KE6/lbXksybtw4bNmyBbNmzcKRI0cQHR0NZ2fnQvsxNDSU1d+rxlMgNjYWAFC9enUAgJaWlpRYFsjJyZF+1tfXl9Vvq1atcPPmTezZs6fUMQFAo0aNEB8fr1Hn6uqKihUrYuXKlYViBDTPCfD0vBRVV9J5UiqVUKlUGoWIiIiI6GP1UY1EAoCfnx+ys7OhUCjg6+tbaP29e/cQFxeHFStWwMPDAwBw9OjRUu/HyclJSj4LHD9+XGM5MjISffr0kUYs09PTkZiYWOp9vW4hISFQqVTw8fEB8HQENzk5GUIIKTl99h2VxsbGsLGxwYEDB+Dt7V1svx06dED79u3Rs2dPaGtr4/PPPy9VXNHR0dIIawFbW1ssWLAAXl5e0NbWxuLFi0vVJxERERERlc5Hl0Rqa2tLI23a2tqF1pcvXx5mZmb46aefYGlpiaSkJEycOLHU+xkxYgTc3d0xf/58dOzYEXv27NG4lRUA7O3tsXnzZrRv3x4KhQJff/31S40cvoqHDx8iOTkZWVlZuHLlCpYvX47ff/8dv/zyC0xMTAAAXl5euHv3LubOnYsuXbpg9+7d2LVrl8aIXHBwML744gtUqlQJrVu3xqNHjxAZGYnhw4dr7K9Tp05YvXo1evXqBR0dHXTp0qXIuEJCQlC9enXUrl0bT548QWhoKA4ePIi9e/cWauvg4IBDhw7By8sLOjo6CAkJeW3nh4iIiIiINH10t7MCKPGWRC0tLaxfvx6nT59GnTp1MHr0aMybN6/U+/jkk0+wYsUKLFq0CPXq1cPevXsxZcoUjTbfffcdypcvj6ZNm6J9+/bw9fVF/fr1X+qYXlbfvn1haWmJmjVr4r///S+MjIxw8uRJ9OzZU2rj5OSEH3/8EUuWLEG9evVw8uRJjBs3TqOfwMBAhISE4Mcff0Tt2rXRrl07XL16tch9dunSBatWrUKvXr00XrnyrOzsbIwdOxbOzs7w9PRETEwM9u/fX+xzl46Ojjh48CDWrVuHsWPHvuTZKB01UqGAYGF5b8o7MG3Nu1+IiIjohRSiqAfJiKhYaWlpUKvVAFIB8PlIen/wrz0REREVp+A7bmpq6gvnAPkoRyKJiIiIiIjo5TCJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLLplHUARO+tiWpAr6yDePtEkCjrEIiIiIioDHEkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsumUdQBE76vUSalQqVRlHQYRERER0VvFkUgiIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIikk2nrAMgem+p1WUdAdHHTYiyjoCIiOijxJHIj1ifPn3g7+//VvZlY2ODkJAQaVmhUOD3339/pT5fRx9ERERERFQ6TCI/YH369IFCoYBCoYCuri7s7Owwffp05ObmAgAWLVqE8PDwUvX5sonbqVOnMGjQINntg4ODpdgLSs2aNUu9XyIiIiIier14O+sHzs/PD2FhYcjKysLOnTsxdOhQlCtXDpMmTYL6Ld6OWbFixVJvU7t2bezfv19a1tHh5UpEREREVNY4EvmBUyqVsLCwQLVq1fDf//4XPj4+2Lp1K4DCt7N6eXlhxIgR+PLLL2FqagoLCwsEBwdL621sbAAAnTp1gkKhkJYTEhLQsWNHmJubw8jICA0bNtRI/gq2ffZ2Vjl0dHRgYWEhlQoVKpTYPigoCJaWljh37py0z2+++Qa9e/eGkZERqlWrhq1bt+Lu3bvo2LEjjIyMULduXURFRZUqLiIiIiKijxmTyI+Mvr4+srOzi12/atUqGBoa4sSJE5g7dy6mT5+Offv2AXh6SyoAhIWF4fbt29Jyeno62rRpgwMHDuDs2bPw8/ND+/btkZSU9EqxXr16FVZWVqhRowYCAgKK7U8IgeHDh+OXX37BkSNHULduXWndwoUL4e7ujrNnz6Jt27bo1asXevfujf/85z84c+YMbG1t0bt3b4gSJujIyspCWlqaRiEiIiIi+lgxifxICCGwf/9+7NmzBy1atCi2Xd26dREUFAR7e3v07t0bbm5uOHDgAID/uyXVxMQEFhYW0nK9evUwePBg1KlTB/b29pgxYwZsbW2lEc+X0bhxY4SHh2P37t1YunQprl+/Dg8PDzx69EijXW5uLv7zn//gwIEDOHr0KOzs7DTWt2nTBoMHD4a9vT2mTp2KtLQ0NGzYEF27doWDgwMmTJiA2NhY3Llzp9hYZs+eDbVaLRVra+uXPi4iIiIiovcdHzL7wG3fvh1GRkbIyclBfn4+evbsqXGL6vOeHcUDAEtLS6SkpJS4j/T0dAQHB2PHjh24ffs2cnNzkZmZ+Uojka1bt9aIqXHjxqhWrRo2btyI/v37S+tGjx4NpVKJ48ePF3m767PHY25uDgBwdnYuVJeSkgILC4siY5k0aRLGjBkjLaelpTGRJCIiIqKPFkciP3De3t6Ijo7G1atXkZmZKd2uWpxy5cppLCsUCuTn55e4j3HjxmHLli2YNWsWjhw5gujoaDg7O5d422xpmZiYwMHBAfHx8Rr1rVq1ws2bN7Fnz54it3v2eBQKRbF1JR2jUqmESqXSKEREREREHyuORH7gDA0NC93i+SrKlSuHvLw8jbrIyEj06dMHnTp1AvB0ZDIxMfG17bOgz4SEBPTq1UujvkOHDmjfvj169uwJbW1tfP755691v0REREREpIkjkVQqNjY2OHDgAJKTk/HgwQMAgL29PTZv3ozo6GjExMSgZ8+eLxy9fJFx48bh8OHDSExMxLFjx9CpUydoa2ujR48ehdp26tQJq1evRt++fbFp06ZX2i8REREREZWMI5FUKgsWLMCYMWOwYsUKVK5cGYmJifjuu+/Qr18/NG3aFBUqVMCECRNeeQbTf/75Bz169MC9e/dQsWJFNGvWDMePHy/2fZNdunRBfn4+evXqBS0tLXTu3PmV9i+HGqkAeGsrUVFKmPCYiIiI3nMKUdK7DYiokLS0NKjVaoBJJFGx+C8LERHR+6XgO25qauoL5wDh7axEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINp2yDoDovTVRDeiVdRBvjgji2+KJiIiIqDCORBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDadsg6A6H2VOikVKpWqrMMgIiIiInqrOBJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZdMo6ACqaQqHAli1b4O/vX9ahvLO8vLzg4uKCkJCQsglArS6b/RJ9iIQo6wiIiIhIpg9yJLJPnz5QKBRSMTMzg5+fH86dO1fWob11v/32G1q0aIHy5ctDX18fjo6O6NevH86ePVvWoZUoIiJC4zMsKMnJyWUdGhERERHRR+2DTCIBwM/PD7dv38bt27dx4MAB6OjooF27dq/UZ3Z29muK7u2YMGECunfvDhcXF2zduhVxcXFYu3YtatSogUmTJpV1eLLExcVJn+Pt27dRqVKlsg6JiIiIiOij9sEmkUqlEhYWFrCwsICLiwsmTpyIGzdu4O7du1KbCRMmwMHBAQYGBqhRowa+/vpr5OTkSOuDg4Ph4uKC0NBQVK9eHXp6egCe3moaGhqKTp06wcDAAPb29ti6dau0XV5eHvr374/q1atLo3+LFi0qFOPKlStRu3ZtKJVKWFpaYtiwYcUez40bN9CtWzeYmJjA1NQUHTt2RGJiYrHtjx8/jrlz5+K7777Dd999Bw8PD1StWhUNGjTAlClTsGvXLo32S5cuha2tLXR1deHo6IjVq1drrE9KSkLHjh1hZGQElUqFbt264c6dO9L6mJgYeHt7w9jYGCqVCg0aNEBUVJS0/ujRo/Dw8IC+vj6sra0xYsQIZGRkFBt/gUqVKkmfo4WFBbS0ir9kd+zYAbVajTVr1gB4OiLt7++PWbNmwdzcHCYmJpg+fTpyc3Mxfvx4mJqaokqVKggLC3thHERERERE9NQHm0Q+Kz09Hf/73/9gZ2cHMzMzqd7Y2Bjh4eG4dOkSFi1ahBUrVmDhwoUa28bHx+O3337D5s2bER0dLdVPmzYN3bp1w7lz59CmTRsEBATg/v37AID8/HxUqVIFv/76Ky5duoSpU6fiq6++wsaNG6Xtly5diqFDh2LQoEE4f/48tm7dCjs7uyLjz8nJga+vL4yNjXHkyBFERkbCyMgIfn5+xY6Orlu3DkZGRhgyZEiR6xUKhfTzli1bMHLkSIwdOxYXLlzA4MGD0bdvXxw6dEg6no4dO+L+/fs4fPgw9u3bh2vXrqF79+5SHwEBAahSpQpOnTqF06dPY+LEiShXrhwAICEhAX5+fvjss89w7tw5bNiwAUePHi0xaS7g4uICS0tLtGrVCpGRkcW2W7t2LXr06IE1a9YgICBAqj948CBu3bqFP//8E9999x2CgoLQrl07lC9fHidOnMAXX3yBwYMH459//im276ysLKSlpWkUIiIiIqKPlvgABQYGCm1tbWFoaCgMDQ0FAGFpaSlOnz5d4nbz5s0TDRo0kJaDgoJEuXLlREpKikY7AGLKlCnScnp6ugAgdu3aVWzfQ4cOFZ999pm0bGVlJSZPnlxsewBiy5YtQgghVq9eLRwdHUV+fr60PisrS+jr64s9e/YUub2fn5+oW7euRt2CBQukc2JoaCgePnwohBCiadOmYuDAgRptu3btKtq0aSOEEGLv3r1CW1tbJCUlSesvXrwoAIiTJ08KIYQwNjYW4eHhRcbSv39/MWjQII26I0eOCC0tLZGZmVnkNpcvXxbLli0TUVFRIjIyUvTt21fo6OhofIaenp5i5MiRYvHixUKtVouIiAiNPgIDA0W1atVEXl6eVOfo6Cg8PDyk5dzcXGFoaCjWrVtXZBxCPL0OABQqqU+nAmFhYXkdhYiIiMpUamqqACBSU1Nf2PaDHYn09vZGdHQ0oqOjcfLkSfj6+qJ169b4+++/pTYbNmyAu7s7LCwsYGRkhClTpiApKUmjn2rVqqFixYqF+q9bt670s6GhIVQqFVJSUqS6JUuWoEGDBqhYsSKMjIzw008/SX2npKTg1q1baNmypaxjiYmJQXx8PIyNjWFkZAQjIyOYmpriyZMnSEhIkH1O+vXrh+joaCxfvhwZGRkQQgAAYmNj4e7urtHW3d0dsbGx0npra2tYW1tL62vVqgUTExOpzZgxYzBgwAD4+Phgzpw5GnHFxMQgPDxcit3IyAi+vr7Iz8/H9evXi4zV0dERgwcPRoMGDdC0aVOsXLkSTZs2LTRSvGnTJowePRr79u2Dp6dnoX5q166tcQusubk5nJ2dpWVtbW2YmZlpfHbPmzRpElJTU6Vy48aNYtsSEREREX3oPtgk0tDQEHZ2drCzs0PDhg0RGhqKjIwMrFixAgDw119/ISAgAG3atMH27dtx9uxZTJ48udDtoYaGhkX2X3CrZgGFQoH8/HwAwPr16zFu3Dj0798fe/fuRXR0NPr27Sv1ra+vX6pjSU9PR4MGDaSkuKBcuXIFPXv2LHIbe3t7XLt2TeMZTxMTE9jZ2aFy5cql2r8cwcHBuHjxItq2bYuDBw+iVq1a2LJlixT/4MGDNWKPiYnB1atXYWtrK3sfjRo1Qnx8vEadq6srKlasiJUrV0pJ8bOK+pxK+uyKolQqoVKpNAoRERER0cfqg00in6dQKKClpYXMzEwAwLFjx1CtWjVMnjwZbm5usLe31xilfBWRkZFo2rQphgwZAldXV9jZ2WmMzBkbG8PGxgYHDhyQ1V/9+vVx9epVVKpUSUqMC4q6mHcV9ujRA+np6fjxxx9f2L+Tk1Oh5w0jIyNRq1Ytaf2NGzc0RuAuXbqEhw8fSm0AwMHBAaNHj8bevXvRuXNnacKa+vXr49KlS4Vit7Ozg66urqxzAADR0dGwtLTUqLO1tcWhQ4fwxx9/YPjw4bL7IiIiIiKil6NT1gG8KVlZWdI7BR88eIDFixcjPT0d7du3B/B0pC4pKQnr169Hw4YNsWPHDmnk7FXZ29vjl19+wZ49e1C9enWsXr0ap06dQvXq1aU2wcHB+OKLL1CpUiW0bt0ajx49QmRkZJGJUEBAAObNm4eOHTti+vTpqFKlCv7++29s3rwZX375JapUqVJomyZNmmDs2LEYO3Ys/v77b3Tu3BnW1ta4ffs2fv75ZympBoDx48ejW7ducHV1hY+PD7Zt24bNmzdj//79AAAfHx84OzsjICAAISEhyM3NxZAhQ+Dp6Qk3NzdkZmZi/Pjx6NKlC6pXr45//vkHp06dwmeffQbg6Sy4n3zyCYYNG4YBAwbA0NAQly5dwr59+7B48eIiz2FISAiqV6+O2rVr48mTJwgNDcXBgwexd+/eQm0dHBxw6NAheHl5QUdHByEhIaX+zIiIiIiISJ4PNoncvXu3NGplbGyMmjVr4tdff4WXlxcAoEOHDhg9ejSGDRuGrKwstG3bFl9//TWCg4Nfed+DBw/G2bNn0b17dygUCvTo0QNDhgzReK1GYGAgnjx5goULF2LcuHGoUKECunTpUmR/BgYG+PPPPzFhwgR07twZjx49QuXKldGyZcsSb62cP38+GjVqhKVLl2LlypV4/PgxzM3N0bx5c/z111/Stv7+/li0aBHmz5+PkSNHonr16ggLC5POlUKhkEb6mjdvDi0tLfj5+eGHH34A8PS5wnv37qF37964c+cOKlSogM6dO2PatGkAnj4/evjwYUyePBkeHh4QQsDW1lZjdtfnZWdnY+zYsbh58yYMDAxQt25d7N+/H97e3kW2d3R0xMGDB+Hl5QVtbW0sWLCg+A/oNVEjFQBvbaW3q4i7tomIiIjeKoUo6kEyIipWWlra/7+NmEkkvX38i01ERERvQsF33NTU1BfOAfLRPBNJREREREREr45JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpJNp6wDIHpvTVQDemUdxOshgkRZh0BERERE7wmORBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDadsg6A6H2VOikVKpWqrMMgIiIiInqrOBJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLLplHUARO8ttbqsIyAiAoQo6wiIiOgjw5HIMhAcHAwXF5eyDuO9Fx4eDhMTk7IOg4iIiIjoo/JBJpF9+vSBQqEoVPz8/N56LAqFAr///rtG3bhx43DgwIG3sv/4+Hj069cPVatWhVKpROXKldGyZUusWbMGubm5byWGl2VjY1PoM5wzZ05Zh0VERERE9FH7YG9n9fPzQ1hYmEadUqkso2g0GRkZwcjI6I3v5+TJk/Dx8UHt2rWxZMkS1KxZEwAQFRWFJUuWoE6dOqhXr94bj+NVTJ8+HQMHDpSWjY2NyzAaIiIiIiL6IEcigacJo4WFhUYpX768tP7y5cto1qwZ9PT0UKtWLezfv19j1LBFixYYNmyYRp93796Frq6uNIpoY2ODGTNmoEePHjA0NETlypWxZMkSqb2NjQ0AoFOnTlAoFNLy87eznjp1Cq1atUKFChWgVqvh6emJM2fOaOxboVAgNDQUnTp1goGBAezt7bF169Zij18IgT59+sDBwQGRkZFo37497O3tYW9vjx49euDo0aOoW7eu1P78+fNo0aIF9PX1YWZmhkGDBiE9PV1an5+fj+nTp6NKlSpQKpVwcXHB7t27pfXZ2dkYNmwYLC0toaenh2rVqmH27NnS+ocPH2LAgAGoWLEiVCoVWrRogZiYmGLjL2BsbKzxGRoaGhbb9u7du3Bzc0OnTp2QlZWFiIgIKBQK7NmzB66urtDX10eLFi2QkpKCXbt2wcnJCSqVCj179sTjx49fGAsREREREX3ASWRJ8vLy4O/vDwMDA5w4cQI//fQTJk+erNFmwIABWLt2LbKysqS6//3vf6hcuTJatGgh1c2bNw/16tXD2bNnMXHiRIwcORL79u0D8DQ5BICwsDDcvn1bWn7eo0ePEBgYiKNHj+L48eOwt7dHmzZt8OjRI41206ZNQ7du3XDu3Dm0adMGAQEBuH//fpF9RkdHIzY2FuPGjYOWVtEfs0KhAABkZGTA19cX5cuXx6lTp/Drr79i//79Gkn0okWLsGDBAsyfPx/nzp2Dr68vOnTogKtXrwIAvv/+e2zduhUbN25EXFwc1qxZIyXNANC1a1cpeTt9+jTq16+Pli1bFht/gTlz5sDMzAyurq6YN29esbfg3rhxAx4eHqhTpw42bdqkMeocHByMxYsX49ixY7hx4wa6deuGkJAQrF27Fjt27MDevXvxww8/FBtDVlYW0tLSNAoRERER0UdLfIACAwOFtra2MDQ01CgzZ84UQgixa9cuoaOjI27fvi1ts2/fPgFAbNmyRQghRGZmpihfvrzYsGGD1KZu3boiODhYWq5WrZrw8/PT2Hf37t1F69atpeVn+ywQFBQk6tWrV2z8eXl5wtjYWGzbtk2jnylTpkjL6enpAoDYtWtXkX2sX79eABBnzpyR6u7cuaNxPpYsWSKEEOKnn34S5cuXF+np6VLbHTt2CC0tLZGcnCyEEMLKyko6fwUaNmwohgwZIoQQYvjw4aJFixYiPz+/UCxHjhwRKpVKPHnyRKPe1tZWLF++vNjzsGDBAnHo0CERExMjli5dKkxMTMTo0aOl9WFhYUKtVovLly8La2trMWLECI39Hzp0SAAQ+/fvl+pmz54tAIiEhASpbvDgwcLX17fYOIKCggSAQiX16ZyILCwsLGVbiIiIXoPU1FQBQKSmpr6w7Qf7TKS3tzeWLl2qUWdqagoAiIuLg7W1NSwsLKR1jRo10mirp6eHXr16YeXKlejWrRvOnDmDCxcuFLqFtEmTJoWWQ0JCShXrnTt3MGXKFERERCAlJQV5eXl4/PgxkpKSNNo9e/upoaEhVCoVUlJSZO/HzMwM0dHRAAAvLy9kZ2cDAGJjY1GvXj2NW0Xd3d2Rn5+PuLg46Ovr49atW3B3d9foz93dXboltU+fPmjVqhUcHR3h5+eHdu3a4dNPPwUAxMTEID09HWZmZhrbZ2ZmIiEhodh4x4wZo3Hsurq6GDx4MGbPni2NNGZmZsLDwwM9e/Ys9rw/e97Mzc1hYGCAGjVqaNSdPHmy2DgmTZqkEUtaWhqsra2LbU9ERERE9CH7YJNIQ0ND2NnZvVIfAwYMgIuLC/755x+EhYWhRYsWqFat2muK8P8EBgbi3r17WLRoEapVqwalUokmTZpISV6BcuXKaSwrFArk5+cX2ae9vT2Apwmzq6srAEBbW1s6Jzo6r/ejr1+/Pq5fv45du3Zh//796NatG3x8fLBp0yakp6fD0tISERERhbYrzSs6GjdujNzcXCQmJsLR0RHA02dffXx8sH37dowfPx6VK1cutN2z502hUJTqPBbs412ZlImIiIiIqKx9lM9EOjo64saNG7hz545UV9Tzis7OznBzc8OKFSuwdu1a9OvXr1Cb48ePF1p2cnKSlsuVK4e8vLwS44mMjMSIESPQpk0b1K5dG0qlEv/++29pD0uDq6sratasifnz55eYIAGAk5MTYmJikJGRoRGTlpYWHB0doVKpYGVlhcjIyEJx16pVS1pWqVTo3r07VqxYgQ0bNuC3337D/fv3Ub9+fSQnJ0NHRwd2dnYapUKFCrKPKTo6GlpaWqhUqZJUp6WlhdWrV6NBgwbw9vbGrVu3ZPdHRERERESl98EmkVlZWUhOTtYoBYlZq1atYGtri8DAQJw7dw6RkZGYMmUKgP+bbKbAgAEDMGfOHAgh0KlTp0L7iYyMxNy5c3HlyhUsWbIEv/76K0aOHCmtt7GxwYEDB5CcnIwHDx4UGau9vT1Wr16N2NhYnDhxAgEBAdDX13+l41coFAgLC0NcXBzc3d2xdetWXL16FZcuXcKyZctw9+5daGtrAwACAgKgp6eHwMBAXLhwAYcOHcLw4cPRq1cvmJubAwDGjx+Pb7/9Fhs2bEBcXBwmTpyI6Oho6Vi/++47rFu3DpcvX8aVK1fw66+/wsLCAiYmJvDx8UGTJk3g7++PvXv3IjExEceOHcPkyZMRFRVVZPx//fUXQkJCEBMTg2vXrmHNmjUYPXo0/vOf/2jMsgs8HWFds2YN6tWrhxYtWiA5OfmVzh0REREREZXgzT+i+fYFBgYKoPBEKI6OjlKb2NhY4e7uLnR1dUXNmjXFtm3bBACxe/dujb4ePXokDAwMpAlknlWtWjUxbdo00bVrV2FgYCAsLCzEokWLNNps3bpV2NnZCR0dHVGtWjUhROGJdc6cOSPc3NyEnp6esLe3F7/++quoVq2aWLhwodQGKDxBj1qtFmFhYSWei7i4OBEYGCiqVKkidHR0hFqtFs2bNxfLly8XOTk5Urtz584Jb29voaenJ0xNTcXAgQPFo0ePpPV5eXkiODhYVK5cWZQrV07Uq1dPY1Kfn376Sbi4uAhDQ0OhUqlEy5YtNSb1SUtLE8OHDxdWVlaiXLlywtraWgQEBIikpKQi4z59+rRo3LixUKvVQk9PTzg5OYlZs2ZpTM5TMLFOgZycHNG5c2fh5OQk7ty5I02s8+DBg2K3EeLFEx09r+ChYyC1zOfTYGH5GAoRERG9eaWZWEchhBBllcC+SyIjI9GsWTPEx8fD1tZWqk9MTIStrS1OnTqF+vXra2xjY2ODUaNGYdSoUW85WipLaWlpUKvVAFIBqMo6HKIPHv+VIiIievMKvuOmpqZCpSr5O+4HO7HOi2zZsgVGRkawt7dHfHw8Ro4cCXd3dymBzMnJwb179zBlyhR88sknhRJIIiIiIiKij9FHm0Q+evQIEyZMQFJSEipUqAAfHx8sWLBAWh8ZGQlvb284ODhg06ZNZRgpERERERHRu4O3sxKVEm9nJXq7+K8UERHRm1ea21k/2NlZiYiIiIiI6PVjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQk20f7nkiiVzZRDeiVdRAvJoL4fgQiIiIien04EklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsumUdQBE76vUSalQqVRlHQYRERER0VvFkUgiIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJPIjFB4eDhMTk7e6zz59+sDf3/+19lkWx6FBrQYUChaWD6cQERERycAk8h2TnJyMkSNHws7ODnp6ejA3N4e7uzuWLl2Kx48fl3V4b5WNjQ0UCoVGmTNnTlmHRURERET0UdMp6wDo/1y7dg3u7u4wMTHBrFmz4OzsDKVSifPnz+Onn35C5cqV0aFDh7IO862aPn06Bg4cKC0bGxuXYTRERERERMSRyHfIkCFDoKOjg6ioKHTr1g1OTk6oUaMGOnbsiB07dqB9+/ZS26SkJHTs2BFGRkZQqVTo1q0b7ty5I62PiYmBt7c3jI2NoVKp0KBBA0RFRWnsb8+ePXBycoKRkRH8/Pxw+/Ztad2pU6fQqlUrVKhQAWq1Gp6enjhz5oy0fty4cWjXrp20HBISAoVCgd27d0t1dnZ2CA0NLfJYT506hYoVK+Lbb78t8ZwYGxvDwsJCKoaGhsW2vXv3Ltzc3NCpUydkZWUhIiICCoUCe/bsgaurK/T19dGiRQukpKRg165dcHJygkqlQs+ePT+6UV4iIiIiopfFJPIdce/ePezduxdDhw4tNlFS/P9nlvLz89GxY0fcv38fhw8fxr59+3Dt2jV0795dahsQEIAqVarg1KlTOH36NCZOnIhy5cpJ6x8/foz58+dj9erV+PPPP5GUlIRx48ZJ6x89eoTAwEAcPXoUx48fh729Pdq0aYNHjx4BADw9PXH06FHk5eUBAA4fPowKFSogIiICAHDz5k0kJCTAy8ur0HEcPHgQrVq1wsyZMzFhwoQSz8ucOXNgZmYGV1dXzJs3D7m5uUW2u3HjBjw8PFCnTh1s2rQJSqVSWhccHIzFixfj2LFjuHHjBrp164aQkBCsXbsWO3bswN69e/HDDz8UG0NWVhbS0tI0ChERERHRR0vQO+H48eMCgNi8ebNGvZmZmTA0NBSGhobiyy+/FEIIsXfvXqGtrS2SkpKkdhcvXhQAxMmTJ4UQQhgbG4vw8PAi9xUWFiYAiPj4eKluyZIlwtzcvNj48vLyhLGxsdi2bZsQQogHDx4ILS0tcerUKZGfny9MTU3F7NmzRePGjYUQQvzvf/8TlStXlrYPDAwUHTt2FJs3bxZGRkZi/fr1LzwnCxYsEIcOHRIxMTFi6dKlwsTERIwePVrjONRqtbh8+bKwtrYWI0aMEPn5+dL6Q4cOCQBi//79Ut3s2bMFAJGQkCDVDR48WPj6+hYbR1BQkABQqKQCQrCwfEiFiIiIPlqpqakCgEhNTX1hW45EvuNOnjyJ6Oho1K5dG1lZWQCA2NhYWFtbw9raWmpXq1YtmJiYIDY2FgAwZswYDBgwAD4+PpgzZw4SEhI0+jUwMICtra20bGlpiZSUFGn5zp07GDhwIOzt7aFWq6FSqZCeno6kpCQAgImJCerVq4eIiAicP38eurq6GDRoEM6ePYv09HQcPnwYnp6eGvs8ceIEunbtitWrV2uMmhZnzJgx8PLyQt26dfHFF19gwYIF+OGHH6TzAACZmZnw8PBA586dsWjRImm09ll169aVfjY3N4eBgQFq1KihUffssT9v0qRJSE1NlcqNGzdeGDsRERER0YeKSeQ7ws7ODgqFAnFxcRr1NWrUgJ2dHfT19UvVX3BwMC5evIi2bdvi4MGDqFWrFrZs2SKtf/bWVuDprbJCCGk5MDAQ0dHRWLRoEY4dO4bo6GiYmZkhOztbauPl5YWIiAgpYTQ1NYWTkxOOHj1aZBJpa2uLmjVrYuXKlcjJySnV8QBA48aNkZubi8TERKlOqVTCx8cH27dvx82bN4vc7tljVSgURR57fn5+sftVKpVQqVQahYiIiIjoY8Uk8h1hZmaGVq1aYfHixcjIyCixrZOTE27cuKExInbp0iU8fPgQtWrVkuocHBwwevRo7N27F507d0ZYWJjseCIjIzFixAi0adMGtWvXhlKpxL///qvRpuC5yAMHDkjPPnp5eWHdunW4cuVKoechK1SogIMHDyI+Ph7dunUrdSIZHR0NLS0tVKpUSarT0tLC6tWr0aBBA3h7e+PWrVul6pOIiIiIiEqHSeQ75Mcff0Rubi7c3NywYcMGxMbGIi4uDv/73/9w+fJlaGtrAwB8fHzg7OyMgIAAnDlzBidPnkTv3r3h6ekJNzc3ZGZmYtiwYYiIiMDff/+NyMhInDp1Ck5OTrJjsbe3x+rVqxEbG4sTJ04gICCg0Gho8+bN8ejRI2zfvl0jiVyzZg0sLS3h4OBQqN9KlSrh4MGDuHz5Mnr06FHsRDl//fUXQkJCEBMTg2vXrmHNmjUYPXo0/vOf/6B8+fIabbW1tbFmzRrUq1cPLVq0QHJysuzjJCIiIiKi0mES+Q6xtbXF2bNn4ePjg0mTJqFevXpwc3PDDz/8gHHjxmHGjBkAnt5++ccff6B8+fJo3rw5fHx8UKNGDWzYsAHA06Tq3r176N27NxwcHNCtWze0bt0a06ZNkx3Lzz//jAcPHqB+/fro1asXRowYoTECCADly5eHs7MzKlasiJo1awJ4mljm5+cXupX1WRYWFjh48CDOnz+PgIAAaYbXZymVSqxfvx6enp6oXbs2Zs6cidGjR+Onn34qsk8dHR2sW7cOtWvXll7j8aapkQoFxAdf3oHpXljeViEiIiKSQSEEvzkQlUZaWhrUajWAVAAf/vOR/AtBRERE9OEr+I6bmpr6wjlAOBJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLLplHUARO+tiWpAr6yDKEwEibIOgYiIiIg+YByJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbDplHQDR+yp1UipUKlVZh0FERERE9FZxJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJxiSSiIiIiIiIZNMp6wCI3ltqdVlHQM8SoqwjICIiIvoocCTyFSgUCvz+++8AgMTERCgUCkRHR5dpTK/LTz/9BGtra2hpaSEkJOS199+nTx/4+/uXeR9ERERERFQ6H2US+SaSD2tra9y+fRt16tR5rf0+Lzw8HAqFAgqFAlpaWqhSpQr69u2LlJSU17aPtLQ0DBs2DBMmTMDNmzcxaNCg19a3XAVJ+fPl+PHjbz0WIiIiIiL6P7yd9TXR1taGhYXFW9mXSqVCXFwc8vPzERMTg759++LWrVvYs2fPa+k/KSkJOTk5aNu2LSwtLV9Lny9r//79qF27trRsZmZWhtEQEREREdFHORL5PC8vL4wYMQJffvklTE1NYWFhgeDgYI02V69eRfPmzaGnp4datWph3759Guufv501Ly8P/fv3R/Xq1aGvrw9HR0csWrRIY5uCEdH58+fD0tISZmZmGDp0KHJyckqMV6FQwMLCAlZWVmjdujVGjBiB/fv3IzMzEwAQGhoKJycn6OnpoWbNmvjxxx81tp8wYQIcHBxgYGCAGjVq4Ouvv5b2GR4eDmdnZwBAjRo1oFAokJiYCABYunQpbG1toaurC0dHR6xevVrqc9y4cWjXrp20HBISAoVCgd27d0t1dnZ2CA0NLfHYnmdmZgYLCwuplCtXrti2p06dQsWKFfHtt98CAIKDg+Hi4oKVK1eiatWqMDIywpAhQ5CXl4e5c+fCwsIClSpVwsyZM0sVExERERHRx4wjkf/fqlWrMGbMGJw4cQJ//fUX+vTpA3d3d7Rq1Qr5+fno3LkzzM3NceLECaSmpmLUqFEl9pefn48qVarg119/hZmZGY4dO4ZBgwbB0tIS3bp1k9odOnQIlpaWOHToEOLj49G9e3e4uLhg4MCBsmPX19dHfn4+cnNzsWbNGkydOhWLFy+Gq6srzp49i4EDB8LQ0BCBgYEAAGNjY4SHh8PKygrnz5/HwIEDYWxsjC+//BLdu3eHtbU1fHx8cPLkSVhbW6NixYrYsmULRo4ciZCQEPj4+GD79u3o27cvqlSpAm9vb3h6eiI0NBR5eXnQ1tbG4cOHUaFCBURERMDPzw83b95EQkICvLy8SvW5dOjQAU+ePIGDgwO+/PJLdOjQoch2Bw8eROfOnTF37lyN228TEhKwa9cu7N69GwkJCejSpQuuXbsGBwcHHD58GMeOHUO/fv3g4+ODxo0bF9l3VlYWsrKypOW0tLRSHQMRERER0QdFfIQCAwNFx44dpWVPT0/RrFkzjTYNGzYUEyZMEEIIsWfPHqGjoyNu3rwprd+1a5cAILZs2SKEEOL69esCgDh79myx+x06dKj47LPPNOKoVq2ayM3Nleq6du0qunfvXmwfYWFhQq1WS8tXrlwRDg4Ows3NTQghhK2trVi7dq3GNjNmzBBNmjQpts958+aJBg0aSMtnz54VAMT169eluqZNm4qBAwdqbNe1a1fRpk0bIYQQDx48EFpaWuLUqVMiPz9fmJqaitmzZ4vGjRsLIYT43//+JypXrqxx7M9+Bs+7e/euWLBggTh+/Lg4efKkmDBhglAoFOKPP/4o1MfmzZuFkZGRWL9+vUYfQUFBwsDAQKSlpUl1vr6+wsbGRuTl5Ul1jo6OYvbs2cXGEhQUJAAUKqlP5wNleVcKEREREb201NTUp99xU1Nf2JYjkf9f3bp1NZYtLS2lyWpiY2NhbW0NKysraX2TJk1e2OeSJUuwcuVKJCUlITMzE9nZ2XBxcdFoU7t2bWhra2vs9/z58yX2m5qaCiMjI+Tn5+PJkydo1qwZQkNDkZGRgYSEBPTv319jJDM3NxfqZ15HsWHDBnz//fdISEhAeno6cnNzoVKpStxnbGxsoQl23N3dpVt0TUxMUK9ePUREREBXVxe6uroYNGgQgoKCkJ6ejsOHD8PT07PEfTyrQoUKGDNmjLTcsGFD3Lp1C/PmzdMYjTxx4gS2b9+OTZs2FTlZko2NDYyNjaVlc3NzaGtrQ0tLS6OupImJJk2apBFLWloarK2tZR8LEREREdGHhEnk//f8s3YKhQL5+fkv3d/69esxbtw4LFiwAE2aNIGxsTHmzZuHEydOvPJ+jY2NcebMGWhpacHS0hL6+voAgDt37gAAVqxYUejWzIJE9a+//kJAQACmTZsGX19fqNVqrF+/HgsWLHjpYy3g5eWFiIgIKJVKeHp6wtTUFE5OTjh69CgOHz6MsWPHvlL/jRs3LvQsqq2tLczMzLBy5Uq0bdu20Pks6vyW9pwrlUoolcpXip2IiIiI6EPBJFIGJycn3LhxA7dv35ZmK33RqyYiIyPRtGlTDBkyRKpLSEh4LfFoaWnBzs6uUL25uTmsrKxw7do1BAQEFLntsWPHUK1aNUyePFmq+/vvv1+4TycnJ0RGRkrPVQJPj7FWrVrSsqenJ1auXAkdHR34+fkBeJpYrlu3DleuXCn185DPi46OLjRbbIUKFbB582Z4eXmhW7du2LhxY4mT7xARERER0athEimDj48PHBwcEBgYiHnz5iEtLU0jCSuKvb09fvnlF+zZswfVq1fH6tWrcerUKVSvXv2Nxjpt2jSMGDECarUafn5+yMrKQlRUFB48eIAxY8bA3t4eSUlJWL9+PRo2bIgdO3Zgy5YtL+x3/Pjx6NatG1xdXeHj44Nt27Zh8+bN2L9/v9SmefPmePToEbZv3445c+YAeJpEdunSBZaWlnBwcJB9HKtWrYKuri5cXV0BAJs3b8bKlSuLnN21UqVKOHjwILy9vdGjRw+sX78eOjq8tImIiIiI3gS+4kMGLS0tbNmyBZmZmWjUqBEGDBjwwtdCDB48GJ07d0b37t3RuHFj3Lt3T2NU8k0ZMGAAQkNDERYWBmdnZ3h6eiI8PFxKXjt06IDRo0dj2LBhcHFxwbFjx/D111+/sF9/f38sWrQI8+fPR+3atbF8+XKEhYVpjC6WL18ezs7OqFixImrWrAngaWKZn59fquchC8yYMQMNGjRA48aN8ccff2DDhg3o27dvkW0tLCxw8OBBnD9/HgEBAcjLyyv1/kotlVPrvFOFiIiIiN4KhRD89kVUGmlpaVCr1UhNTX3hhERERERERO+D0nzH5UgkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcmmU9YBEL2v1LPVgN6b618EiTfXORERERHRS+JIJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJBuTSCIiIiIiIpKNSSQRERERERHJplPWARC9r1InpUKlUpV1GEREREREbxVHIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJREREREREsjGJJCIiIiIiItmYRBIREREREZFsTCKJiIiIiIhINiaRREREREREJNtrTyITExOhUCgQHR39ursuEzY2NggJCXmtfXp5eWHUqFGvtc/X5V2O7XnBwcFwcXEpuwDUakChYGFhYfl4CxERfZRKlUT26dMHCoUCCoUC5cqVQ/Xq1fHll1/iyZMnUhtra2vcvn0bderUee3BfizCw8Ol86ylpYUqVaqgb9++SElJKevQXllp/pOh4Bw8W9avX//mgyQiIiIiomLplHYDPz8/hIWFIScnB6dPn0ZgYCAUCgW+/fZbAIC2tjYsLCxee6AfG5VKhbi4OOTn5yMmJgZ9+/bFrVu3sGfPnpfqLycnB+XKlXvNUb55YWFh8PPzk5ZNTEzKLhgiIiIiIir97axKpRIWFhawtraGv78/fHx8sG/fPmn98yNNERERUCgUOHDgANzc3GBgYICmTZsiLi5Oo99vvvkGlSpVgrGxMQYMGICJEye+8FZFLy8vjBgxAl9++SVMTU1hYWGB4OBgjTYPHz7EgAEDULFiRahUKrRo0QIxMTEabbZt24aGDRtCT08PFSpUQKdOnYrdZ2hoKExMTHDgwAEAwIULF9C6dWsYGRnB3NwcvXr1wr///iu1z8jIQO/evWFkZARLS0ssWLCgxGMqoFAoYGFhASsrK7Ru3RojRozA/v37kZmZid27d6NZs2YwMTGBmZkZ2rVrh4SEBGnbgs9gw4YN8PT0hJ6eHtasWYN79+6hR48eqFy5MgwMDODs7Ix169aVGMeOHTugVquxZs0aAMCNGzfQrVs3mJiYwNTUFB07dkRiYmKhc+Tk5AQ9PT3UrFkTP/74o7SuevXqAABXV1coFAp4eXmVuH8TExNYWFhIRU9Pr9i2CQkJqFGjBoYNGwYhBMLDw2FiYoLt27fD0dERBgYG6NKlCx4/foxVq1bBxsYG5cuXx4gRI5CXl1diHERERERE9NQrPRN54cIFHDt2DLq6ui9sO3nyZCxYsABRUVHQ0dFBv379pHVr1qzBzJkz8e233+L06dOoWrUqli5dKiuGVatWwdDQECdOnMDcuXMxffp0jaS2a9euSElJwa5du3D69GnUr18fLVu2xP379wE8TZI6deqENm3a4OzZszhw4AAaNWpU5L7mzp2LiRMnYu/evWjZsiUePnyIFi1awNXVFVFRUdi9ezfu3LmDbt26SduMHz8ehw8fxh9//IG9e/ciIiICZ86ckXVsz9LX10d+fj5yc3ORkZGBMWPGICoqCgcOHICWlhY6deqE/Px8jW0mTpyIkSNHIjY2Fr6+vnjy5AkaNGiAHTt24MKFCxg0aBB69eqFkydPFrnPtWvXokePHlizZg0CAgKQk5MDX19fGBsb48iRI4iMjISRkRH8/PyQnZ0N4OlnOXXqVMycOROxsbGYNWsWvv76a6xatQoApH3t378ft2/fxubNm0s87qFDh6JChQpo1KgRVq5cCSFEke3OnTuHZs2aoWfPnli8eDEU//9ZncePH+P777/H+vXrsXv3bkRERKBTp07YuXMndu7cidWrV2P58uXYtGlTsTFkZWUhLS1NoxARERERfbREKQQGBgptbW1haGgolEqlACC0tLTEpk2bpDbXr18XAMTZs2eFEEIcOnRIABD79++X2uzYsUMAEJmZmUIIIRo3biyGDh2qsS93d3dRr169EuPx9PQUzZo106hr2LChmDBhghBCiCNHjgiVSiWePHmi0cbW1lYsX75cCCFEkyZNREBAQLH7qFatmli4cKH48ssvhaWlpbhw4YK0bsaMGeLTTz/VaH/jxg0BQMTFxYlHjx4JXV1dsXHjRmn9vXv3hL6+vhg5cmSx+wwLCxNqtVpavnLlinBwcBBubm5Ftr97964AIM6fPy+E+L/PICQkpNh9FGjbtq0YO3astOzp6SlGjhwpFi9eLNRqtYiIiJDWrV69Wjg6Oor8/HypLisrS+jr64s9e/YIIZ6e27Vr12rsY8aMGaJJkyYasRVcHyWZPn26OHr0qDhz5oyYM2eOUCqVYtGiRdL6oKAgUa9ePREZGSnKly8v5s+fr7F9WFiYACDi4+OlusGDBwsDAwPx6NEjqc7X11cMHjy42DiCgoIEgEIlFRCChYWF5WMuRET0wUhNTRUARGpq6gvblvqZSG9vbyxduhQZGRlYuHAhdHR08Nlnn71wu7p160o/W1paAgBSUlJQtWpVxMXFYciQIRrtGzVqhIMHDwIAjhw5gtatW0vrli9fjoCAgEL9FvRdMAFNTEwM0tPTYWZmptEmMzNTuv0zOjoaAwcOLDH2BQsWICMjA1FRUahRo4ZUHxMTg0OHDsHIyKjQNgkJCcjMzER2djYaN24s1ZuamsLR0bHE/QFAamoqjIyMkJ+fjydPnqBZs2YIDQ0FAFy9ehVTp07FiRMn8O+//0ojkElJSRoTGrm5uWn0mZeXh1mzZmHjxo24efMmsrOzkZWVBQMDA412mzZtQkpKCiIjI9GwYUON442Pj4exsbFG+ydPniAhIQEZGRlISEhA//79Nc5pbm4u1Gr1C4/5eV9//bX0s6urKzIyMjBv3jyMGDFCqk9KSkKrVq0wc+bMImeVNTAwgK2trbRsbm4OGxsbjc/M3Ny8xEmLJk2ahDFjxkjLaWlpsLa2LvXxEBERERF9CEqdRBoaGsLOzg4AsHLlStSrVw8///wz+vfvX+J2z07qUnCr4fO3XxbHzc1NYzZPc3PzIvst6Lug3/T0dFhaWiIiIqJQnwUTtOjr679w/x4eHtixYwc2btyIiRMnSvXp6elo3769NKnQsywtLREfH//CvotjbGyMM2fOQEtLC5aWlhpxtm/fHtWqVcOKFStgZWWF/Px81KlTR7qltIChoaHG8rx587Bo0SKEhITA2dkZhoaGGDVqVKHtXF1dcebMGaxcuRJubm7S55Weno4GDRpIz0c+q2LFikhPTwcArFixQiNxBp5OuPSqGjdujBkzZiArKwtKpVLar5WVFdatW4d+/fpBpVJpbFPU9VHSNVMUpVIp7Y+IiIiI6GNX6iTyWVpaWvjqq68wZswY9OzZU1ZCVhRHR0ecOnUKvXv3lupOnTol/ayvry8lrqVRv359JCcnQ0dHBzY2NkW2qVu3Lg4cOIC+ffsW20+jRo0wbNgw+Pn5QUdHB+PGjZP6/+2332BjYwMdncKn0tbWFuXKlcOJEydQtWpVAMCDBw9w5coVeHp6lhi7lpZWkcd87949xMXFYcWKFfDw8AAAHD16tMS+CkRGRqJjx474z3/+A+BpEn/lyhXUqlWrUNwLFiyAl5cXtLW1sXjxYul4N2zYgEqVKhVK1gBArVbDysoK165dk0aKn1fw/OzLTGQTHR2N8uXLayR0+vr62L59O9q0aQNfX1/s3bu30EgpERERERG9Pq80sQ7wdOIabW1tLFmy5KX7GD58OH7++WesWrUKV69exTfffINz585JI2Avy8fHB02aNIG/vz/27t2LxMREHDt2DJMnT0ZUVBQAICgoCOvWrUNQUBBiY2Nx/vz5IkcWmzZtip07d2LatGkICQkB8HTSl/v376NHjx44deoUEhISsGfPHvTt2xd5eXkwMjJC//79MX78eBw8eBAXLlxAnz59oKX18qe9fPnyMDMzw08//YT4+HgcPHhQ41bLktjb22Pfvn04duwYYmNjMXjwYNy5c6fItg4ODjh06BB+++036TbRgIAAVKhQAR07dsSRI0dw/fp1REREYMSIEfjnn38AANOmTcPs2bPx/fff48qVKzh//jzCwsLw3XffAQAqVaoEfX19aRKi1NTUIve/bds2hIaG4sKFC4iPj8fSpUsxa9YsDB8+vFBbQ0ND7NixAzo6OmjdurU0IkpERERERK/fKyeROjo6GDZsGObOnYuMjIyX6iMgIACTJk3CuHHjUL9+fVy/fh19+vQp8XUOcigUCuzcuRPNmzdH37594eDggM8//xx///23dEusl5cXfv31V2zduhUuLi5o0aJFsbOVNmvWDDt27MCUKVPwww8/wMrKCpGRkcjLy8Onn34KZ2dnjBo1CiYmJlKiOG/ePHh4eKB9+/bw8fFBs2bN0KBBg5c+Ji0tLaxfvx6nT59GnTp1MHr0aMybN0/WtlOmTEH9+vXh6+sLLy8vWFhYwN/fv9j2jo6OOHjwINatW4exY8fCwMAAf/75J6pWrYrOnTvDyckJ/fv3x5MnT6SRyQEDBiA0NBRhYWFwdnaGp6cnwsPDpVd76Ojo4Pvvv8fy5cthZWWFjh07FrnvcuXKYcmSJWjSpAlcXFywfPlyfPfddwgKCiqyvZGREXbt2gUhBNq2bfvS12JpqJEKBQQLCwvLx1sUeOcKERG9eQohhCjrIIrSqlUrWFhYYPXq1WUdCpGGtLS0/z9RUCqAwrf1EhFR2Xk3v9UQEb37Cr7jpqamFvno2rNe6ZnI1+Xx48dYtmwZfH19oa2tjXXr1mH//v0a73skIiIiIiKisvdOJJEFt53OnDkTT548gaOjI3777Tf4+PiUdWhERERERET0jHciidTX18f+/fvLOgwiIiIiIiJ6gVeeWIeIiIiIiIg+HkwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGR7J17xQfRemqgG9F6tCxEkXk8sRERERERvCUciiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkm05ZB0D0vkqdlAqVSlXWYRARERERvVUciSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESy6ZR1AEREREREcuTm5iI7O7uswyB6L+nq6kJH5/Wkf0wiiYiIiOidJoRAUlIS/v3337IOhei9VqFCBVStWhUKheKV+mES+Y5SKBTYsmUL/P39i1yfmJiI6tWr4+zZs3BxcXmrsb2M4OBg/P7774iOjn5tfUZERMDb2xsPHjyAiYnJa+uXiIiI3i0FCWTlypVhZGQELS0+kUVUGvn5+UhPT8fNmzcBANWqVXul/phEvoI+ffpg1apVAAAdHR1UqVIFXbt2xfTp06Gnp1fG0b1YcHAwpk2bBgDQ1taGiYkJatWqhc6dO+O///0vlEplmcbn5eWFw4cPa9QNHjwYy5YtK6OIiIiI6G3Lzc2VEkgLC4uyDofovWVkZAQAuHnzJipXrvxKt7YyiXxFfn5+CAsLQ05ODk6fPo3AwEAoFAp8++23ZR2aLLVr18b+/fuRn5+Pe/fuISIiAt988w1Wr16NiIgIGBsbl2l8AwcOxPTp06VlAwODMoyGiIiI3raCZyALvgAT0csr+D3Kzs5+pSSS9wK8IqVSCQsLC1hbW8Pf3x8+Pj7Yt2+ftN7GxgYhISEa27i4uCA4OFhavnr1Kpo3bw49PT3UqlVLY/sCJ0+ehKurK/T09ODm5oazZ89K64QQsLOzw/z58zW2iY6OhkKhQHx8fLHx6+jowMLCAlZWVnB2dsbw4cNx+PBhXLhwQSMRVigU+P333zW2NTExQXh4uLT8zz//oEePHjA1NYWhoSHc3Nxw4sSJIvebkJCAGjVqYNiwYRBCFBufgYEBLCwspKJSqYpt+/jxY7Ru3Rru7u54+PAhEhMToVAosHHjRnh4eEBfXx8NGzbElStXcOrUKbi5ucHIyAitW7fG3bt3i+2XiIiIyh5vYSV6da/r94i/ja/RhQsXcOzYMejq6sreJj8/H507d4auri5OnDiBZcuWYcKECRpt0tPT0a5dO9SqVQunT59GcHAwxo0bJ61XKBTo168fwsLCNLYLCwtD8+bNYWdnV6rjqFmzJlq3bo3NmzfL3iY9PR2enp64efMmtm7dipiYGHz55ZfIz88v1PbcuXNo1qwZevbsicWLF5f4YO+aNWtQoUIF1KlTB5MmTcLjx4+LbPfw4UO0atUK+fn52Ldvn8YzkkFBQZgyZQrOnDkDHR0d9OzZE19++SUWLVqEI0eOID4+HlOnTi02hqysLKSlpWkUIiIiIqKPFW9nfUXbt2+HkZERcnNzkZWVBS0tLSxevFj29vv378fly5exZ88eWFlZAQBmzZqF1q1bS23Wrl2L/Px8/Pzzz9DT00Pt2rXxzz//4L///a/Upk+fPpg6dSpOnjyJRo0aIScnB2vXri00OilXzZo1sXfvXtnt165di7t37+LUqVMwNTUFgCKT12PHjqFdu3aYPHkyxo4dW2KfPXv2RLVq1WBlZYVz585hwoQJiIuLK5TcJicno3v37rC3t8fatWsLJfHjxo2Dr68vAGDkyJHo0aMHDhw4AHd3dwBA//79NUZUnzd79mzp2VEiIiIioo8dk8hX5O3tjaVLlyIjIwMLFy6Ejo4OPvvsM9nbx8bGwtraWkogAaBJkyaF2tStW1djsp7n21hZWaFt27ZYuXIlGjVqhG3btiErKwtdu3Z9qeMSQpRq6t/o6Gi4urpKCWRRkpKS0KpVK8ycOROjRo16YZ+DBg2SfnZ2doalpSVatmyJhIQE2NraSutatWqFRo0aYcOGDdDW1i7UT926daWfzc3Npf6erUtJSSk2jkmTJmHMmDHSclpaGqytrV8YPxEREb1Zimmv9pqC0hJBxT+CQ/Qx4e2sr8jQ0BB2dnaoV68eVq5ciRMnTuDnn3+W1mtpaRV65i8nJ+eNxDJgwACsX78emZmZCAsLQ/fu3V96IprY2FhUr15dWlYoFCUeh76+/gv7rFixIho1aoR169a91C2hjRs3BoBCz3i2bdsWf/75Jy5dulTkduXKlZN+LkiMn68r6rbbAkqlEiqVSqMQERERyXHjxg3069cPVlZW0NXVRbVq1TBy5Ejcu3evrEN77ygUCqmo1Wq4u7vj4MGDZR3WC4WHh39wr6NjEvkaaWlp4auvvsKUKVOQmZkJ4GnidPv2balNWloarl+/Li07OTnhxo0bGm2OHz+u0a+TkxPOnTuHJ0+eFNsGANq0aQNDQ0MsXboUu3fvRr9+/V7qOC5fvozdu3drjKg+fxxXr17VeD6xbt26iI6Oxv3794vtV19fH9u3b4eenh58fX3x6NGjUsVV8I5JS0tLjfo5c+YgMDAQLVu2LDaRJCIiInrbrl27Bjc3N1y9ehXr1q1DfHw8li1bhgMHDqBJkyYlfm960wpmvX1WXl5eif+x/i4ICwvD7du3ERkZiQoVKqBdu3a4du3aS/VV1DkgeZhEvmZdu3aFtrY2lixZAgBo0aIFVq9ejSNHjuD8+fMIDAzUuOXSx8cHDg4OCAwMRExMDI4cOYLJkydr9NmzZ08oFAoMHDgQly5dws6dO4t81lFbWxt9+vTBpEmTYG9vX+iW16Lk5uYiOTkZt27dwvnz5/HDDz/A09MTLi4uGD9+vNSuRYsWWLx4Mc6ePYuoqCh88cUXGqN5PXr0gIWFBfz9/REZGYlr167ht99+w19//aWxP0NDQ+zYsQM6Ojpo3bo10tPTi4wrISEBM2bMwOnTp5GYmIitW7eid+/eaN68ucbtqQXmz5+PgIAAtGjRApcvX37hcRMRERG9aUOHDoWuri727t0LT09PVK1aFa1bt8b+/ftx8+ZNje98WVlZmDBhAqytraFUKmFnZ6dxd9vFixfRrl07qFQqGBsbw8PDAwkJCQCevlv7+UeF/P390adPH2nZxsYGM2bMQO/evaFSqTBo0CBphGzr1q2oVasWlEolkpKSkJWVhXHjxqFy5cowNDRE48aNERERIfVVsN2ePXvg5OQEIyMj+Pn5aQw4AMDKlStRu3ZtKJVKWFpaYtiwYdK6hw8fYsCAAahYsSJUKhVatGiBmJiYF55TExMTWFhYoE6dOli6dCkyMzOlNxtcuHABrVu3hpGREczNzdGrVy/8+++/0rZeXl4YNmwYRo0ahQoVKkhzZpR0bgEgNDQUTk5O0NPTQ82aNfHjjz9K6wreBrB582Z4e3vDwMAA9erVk74DR0REoG/fvkhNTZVGUQve0rB69Wq4ubnB2NgYFhYW6NmzZ6FHrLZu3Qp7e3vo6enB29sbq1atgkKhwMOHD6U2R48eld5EYG1tjREjRiAjI+OF5/JVMIl8zXR0dDBs2DDMnTsXGRkZmDRpEjw9PdGuXTu0bdsW/v7+Gs/zaWlpYcuWLcjMzESjRo0wYMAAzJw5U6NPIyMjbNu2DefPn4erqysmT55c7Hso+/fvj+zsbPTt21dWvBcvXoSlpSWqVq0KLy8vbNy4EZMmTcKRI0c03se0YMECWFtbw8PDAz179sS4ceM0bpUt+ANZqVIltGnTBs7OzpgzZ06RzygaGRlh165dEEKgbdu2RV7kurq62L9/Pz799FPUrFkTY8eOxWeffYZt27YVeywLFy5Et27d0KJFC1y5ckXW8RMRERG9Cffv38eePXswZMiQQo/9WFhYICAgABs2bJAeF+rduzfWrVuH77//HrGxsVi+fLnGy+GbN28OpVKJgwcP4vTp0+jXrx9yc3NLFdP8+fNRr149nD17Fl9//TWAp69I+/bbbxEaGoqLFy+iUqVKGDZsGP766y+sX78e586dQ9euXeHn54erV69KfT1+/Bjz58/H6tWr8eeffyIpKUnj7QFLly7F0KFDMWjQIJw/fx5bt27VmHSxa9euSElJwa5du3D69GnUr18fLVu2LNXobMF5zc7OxsOHD9GiRQu4uroiKioKu3fvxp07d9CtWzeNbVatWgVdXV1ERkZi2bJlLzy3a9aswdSpUzFz5kzExsZi1qxZ+Prrr7Fq1SqNfidPnoxx48YhOjoaDg4O6NGjB3Jzc9G0aVOEhIRApVLh9u3buH37tnSecnJyMGPGDMTExOD3339HYmKiRuJ//fp1dOnSBf7+/oiJicHgwYMLDTYlJCTAz88Pn332Gc6dO4cNGzbg6NGjGgn7GyHog/Lnn3+KcuXKieTk5LIO5YOVmpoqAIjU1NSyDoWIiOiDl5GRIaKiokRGRkahdQjGWy2lcfz4cQFAbNmypcj13333nQAg7ty5I+Li4gQAsW/fviLbTpo0SVSvXl1kZ2cXud7T01OMHDlSo65jx44iMDBQWq5WrZrw9/fXaBMWFiYAiOjoaKnu77//Ftra2uLmzZsabVu2bCkmTZqksV18fLy0fsmSJcLc3FxatrKyEpMnTy4y3iNHjgiVSiWePHmiUW9rayuWL19e5DZCCI3zmZGRIYYMGSK0tbVFTEyMmDFjhvj000812t+4cUMAEHFxcUKIp+fJ1dVVo82Lzq2tra1Yu3atRt2MGTNEkyZNhBBCXL9+XQAQoaGh0vqLFy8KACI2NlYI8fR8qdXqYo+rwKlTpwQA8ejRIyGEEBMmTBB16tTRaDN58mQBQDx48EAIIUT//v3FoEGDNNocOXJEaGlpiczMzEL7KOn3qTTfcTk76wciKysLd+/eRXBwMLp27SrNQkpEREREZUeIF8/oGh0dDW1tbXh6eha73sPDQ+NRopfh5uZWqE5XV1fjUaHz588jLy8PDg4OGu2ysrJgZmYmLRsYGGjcXWdpaSndipmSkoJbt26hZcuWRcYRExOD9PR0jf4AIDMzU+M20qL06NED2trayMzMRMWKFfHzzz+jbt26mDFjBg4dOqRxJ12BhIQE6XgaNGigsa6kc5uRkYGEhAT0798fAwcOlOpzc3OhVqs12j57Dgvm70hJSUHNmjWLPZaC97/HxMTgwYMH0vOoSUlJqFWrFuLi4tCwYUONbRo1aqSxHBMTg3PnzmHNmjVSnRAC+fn5uH79OpycnIrd/6tgEvmBWLduHfr37w8XFxf88ssvZR0OERER0UfNzs4OCoUCsbGx6NSpU6H1sbGxKF++PCpWrPjCWe5ftF7u2wAMDQ2L7PvZ17qlp6dDW1sbp0+fLvRY0rMJ2vNJ17Mz+b8o3vT0dFhaWmo8Z1ngRbOYLly4ED4+PlCr1ahYsaJGn+3bty/yka9nJ2V8/hyUFGvB3B0rVqyQ3hJQ4PlzU9TbAEqapCgjIwO+vr7w9fXFmjVrULFiRSQlJcHX17dUE/6kp6dj8ODBGDFiRKF1VatWld1PaTGJ/ED06dNH4x5qIiIiIio7ZmZmaNWqFX788UeMHj1aI1lJTk7GmjVr0Lt3bygUCjg7OyM/Px+HDx+Gj49Pob7q1q2LVatWIScnp8gRs+dn0c/Ly8OFCxfg7e1d6rhdXV2Rl5eHlJQUeHh4lHp7ADA2NoaNjQ0OHDhQZAz169dHcnIydHR0YGNjU6q+LSwsNJ6tfLbP3377DTY2NtDRkZ/ilHRuzc3NYWVlhWvXriEgIKBUcT5LV1cXeXl5GnWXL1/GvXv3MGfOHOn941FRURptHB0dsXPnTo26U6dOaSzXr18fly5dKvKcvEmcWIeIiIiI6A1YvHgxsrKy4Ovriz///BM3btzA7t270apVK1SuXFmaTNHGxgaBgYHo168ffv/9d1y/fh0RERHYuHEjAGDYsGFIS0vD559/jqioKFy9ehWrV69GXFwcgKez6O/YsQM7duzA5cuX8d///ldj9s7ScHBwQEBAAHr37o3Nmzfj+vXrOHnyJGbPno0dO3bI7ic4OBgLFizA999/j6tXr+LMmTP44YcfADx9O0GTJk3g7++PvXv3IjExEceOHcPkyZMLJVJyDR06FPfv30ePHj1w6tQpJCQkYM+ePejbt2+hBO5ZLzq306ZNw+zZs/H999/jypUrOH/+PMLCwvDdd9/Jjs3Gxgbp6ek4cOAA/v33Xzx+/BhVq1aFrq4ufvjhB1y7dg1bt27FjBkzNLYbPHgwLl++jAkTJuDKlSvYuHEjwsPDAfzfaOeECRNw7NgxDBs2DNHR0bh69Sr++OMPTqxD9K7hxDpERERvT0kTgbwPEhMTRWBgoDA3NxflypUT1tbWYvjw4eLff//VaJeZmSlGjx4tLC0tha6urrCzsxMrV66U1sfExIhPP/1UGBgYCGNjY+Hh4SESEhKEEEJkZ2eL//73v8LU1FRUqlRJzJ49u8iJdRYuXKixz+ImfMnOzhZTp04VNjY2oly5csLS0lJ06tRJnDt3rtjttmzZIp5PLZYtWyYcHR2lPoYPHy6tS0tLE8OHDxdWVlbSeQkICBBJSUnFnkuUMFGREEJcuXJFdOrUSZiYmAh9fX1Rs2ZNMWrUKJGfny+EKHoCIiFKPrdCCLFmzRrh4uIidHV1Rfny5UXz5s3F5s2bhRD/N7HO2bNnpfYPHjwQAMShQ4ekui+++EKYmZkJACIoKEgIIcTatWuFjY2NUCqVokmTJmLr1q2F+vrjjz+EnZ2dUCqVwsvLSyxdulQA0Jg05+TJk6JVq1bCyMhIGBoairp164qZM2cWeY5e18Q6CiFkPO1LRJK0tDSo1WqkpqZCpVKVdThEREQftMePHyM2NhZOTk4arxcj+hjNnDkTy5Ytw40bN15q+5J+n0rzHZfPRBIREREREb2DfvzxRzRs2BBmZmaIjIzEvHnz3vytqjIwiSQiIiIiInoHXb16Fd988w3u37+PqlWrYuzYsZg0aVJZh8UkkoiIiIiI6F20cOFCLFy4sKzDKIRJJNFLUs9WA3rFrxdBfNyYiIiIiD48fMUHERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWycnZWIiIiI3ksKxdvdn+DE60QAOBJJRERERPRG9OnTBwqFolCJj4/Hn3/+ifbt28PKygoKhQK///67rD5jYmLQoUMHVKpUCXp6erCxsUH37t2RkpLyZg+G6BlMIomIiIiI3hA/Pz/cvn1bo1SvXh0ZGRmoV68elixZIruvu3fvomXLljA1NcWePXsQGxuLsLAwWFlZISMj440dQ05Ozhvrm95PTCKJiIiIiN4QpVIJCwsLjaKtrY3WrVvjm2++QadOnWT3FRkZidTUVISGhsLV1RXVq1eHt7c3Fi5ciOrVq0vtLl68iHbt2kGlUsHY2BgeHh5ISEgAAOTn52P69OmoUqUKlEolXFxcsHv3bmnbxMREKBQKbNiwAZ6entDT08OaNWsAAKGhoXBycoKenh5q1qyJH3/88TWdJXrf8JlIopeUOikVKpWqrMMgIiKij4SFhQVyc3OxZcsWdOnSBYoiHgq9efMmmjdvDi8vLxw8eBAqlQqRkZHIzc0FACxatAgLFizA8uXL4erqipUrV6JDhw64ePEi7O3tpX4mTpyIBQsWwNXVVUokp06disWLF8PV1RVnz57FwIEDYWhoiMDAwLd2DujdwCSSiIiIiOgN2b59O4yMjKTl1q1b49dff32pvj755BN89dVX6NmzJ7744gs0atQILVq0QO/evWFubg4AWLJkCdRqNdavX49y5coBABwcHKQ+5s+fjwkTJuDzzz8HAHz77bc4dOgQQkJCNG6tHTVqFDp37iwtBwUFYcGCBVJd9erVcenSJSxfvpxJ5EeIt7MSEREREb0h3t7eiI6Olsr3338va7tZs2bByMhIKklJSQCAmTNnIjk5GcuWLUPt2rWxbNky1KxZE+fPnwcAREdHw8PDQ0ogn5WWloZbt27B3d1do97d3R2xsbEadW5ubtLPGRkZSEhIQP/+/TVi+uabb6TbZOnjwpFIIiIiIqI3xNDQEHZ2dqXe7osvvkC3bt2kZSsrK+lnMzMzdO3aFV27dsWsWbPg6uqK+fPnY9WqVdDX139tcRdIT08HAKxYsQKNGzfWaKetrf1a9kfvFyaRRERERETvGFNTU5iamr6wna6uLmxtbaXZWevWrYtVq1YhJyen0GikSqWClZUVIiMj4enpKdVHRkaiUaNGxe7D3NwcVlZWuHbtGgICAl7yiOhDwiSSiIiIiOgtS09PR3x8vLR8/fp1REdHw9TUFFWrVi1ym+3bt2P9+vX4/PPP4eDgACEEtm3bhp07dyIsLAwAMGzYMPzwww/4/PPPMWnSJKjVahw/fhyNGjWCo6Mjxo8fj6CgINja2sLFxQVhYWGIjo6WZmAtzrRp0zBixAio1Wr4+fkhKysLUVFRePDgAcaMGfP6Tgy9F5hEEhEREdF7SYiyjuDlRUVFwdvbW1ouSMQCAwMRHh5e5Da1atWCgYEBxo4dixs3bkCpVMLe3h6hoaHo1asXgKe3uh48eBDjx4+Hp6cntLW14eLiIj0HOWLECKSmpmLs2LFISUlBrVq1sHXrVo2ZWYsyYMAAGBgYYN68eRg/fjwMDQ3h7OyMUaNGvfrJoPeOQoj3+deP6O1LS0uDWq1Gaipf8UFERPSmPX78GLGxsXBycoKBgUFZh0P0Xivp96k033E5OysRERERERHJxiSSiIiIiIiIZGMSSURERERERLIxiSQiIiIiIiLZmEQSERERERGRbEwiiYiIiIiISDYmkURERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIjeTwrF2y30Uu7du4dKlSohMTGxrEN5acuWLUP79u3LOox3BpNIIiIiIqI3oE+fPlAoFIVKfHw8AODPP/9E+/btYWVlBYVCgd9//11WvzExMejQoQMqVaoEPT092NjYoHv37khJSXmDR/PyZs6ciY4dO8LGxkaq27JlCz755BOo1WoYGxujdu3aGDVq1BuPJTg4GC4uLqXerl+/fjhz5gyOHDny+oN6DzGJJCIiIiJ6Q/z8/HD79m2NUr16dQBARkYG6tWrhyVLlsju7+7du2jZsiVMTU2xZ88exMbGIiwsDFZWVsjIyHhTh4GcnJyX2u7x48f4+eef0b9/f6nuwIED6N69Oz777DOcPHkSp0+fxsyZM196H2+Drq4uevbsie+//76sQ3knMIkkIiIiInpDlEolLCwsNIq2tjYAoHXr1vjmm2/QqVMn2f1FRkYiNTUVoaGhcHV1RfXq1eHt7Y2FCxdKySkAXLx4Ee3atYNKpYKxsTE8PDyQkJAAAMjPz8f06dNRpUoVKJVKuLi4YPfu3dK2iYmJUCgU2LBhAzw9PaGnp4c1a9YAAEJDQ+Hk5AQ9PT3UrFkTP/74Y4nx7ty5E0qlEp988olUt23bNri7u2P8+PFwdHSEg4MD/P39NZLpghHDlStXomrVqjAyMsKQIUOQl5eHuXPnwsLCApUqVcLMmTM19peUlISOHTvCyMgIKpUK3bp1w507dwAA4eHhmDZtGmJiYqRR4fDwcADAw4cPMWDAAFSsWBEqlQotWrRATEyMRt/t27fH1q1bkZmZKffj+mAxiSQiIiIiek9YWFggNzcXW7ZsgRCiyDY3b95E8+bNoVQqcfDgQZw+fRr9+vVDbm4uAGDRokVYsGAB5s+fj3PnzsHX1xcdOnTA1atXNfqZOHEiRo4cidjYWPj6+mLNmjWYOnUqZs6cidjYWMyaNQtff/01Vq1aVWy8R44cQYMGDQodw8WLF3HhwoUSjzUhIQG7du3C7t27sW7dOvz8889o27Yt/vnnHxw+fBjffvstpkyZghMnTgB4mhx37NgR9+/fx+HDh7Fv3z5cu3YN3bt3BwB0794dY8eORe3ataVR4YJ1Xbt2RUpKCnbt2oXTp0+jfv36aNmyJe7fvy/F4+bmhtzcXGl/HzVBRKWSmpoqAIjU1NSyDoWIiOiDl5GRIaKiokRGRkbhlcDbLaUUGBgotLW1haGhoVS6dOlSZFsAYsuWLbL6/eqrr4SOjo4wNTUVfn5+Yu7cuSI5OVlaP2nSJFG9enWRnZ1d5PZWVlZi5syZGnUNGzYUQ4YMEUIIcf36dQFAhISEaLSxtbUVa9eu1aibMWOGaNKkSbGxduzYUfTr10+jLj09XbRp00YAENWqVRPdu3cXP//8s3jy5InUJigoSBgYGIi0tDSpztfXV9jY2Ii8vDypztHRUcyePVsIIcTevXuFtra2SEpKktZfvHhRABAnT56U+q1Xr55GPEeOHBEqlUpj/wXHu3z5co268uXLi/Dw8GKP911X0u9Tab7jciSSiIiIiOgN8fb2RnR0tFRK80zdrFmzYGRkJJWkpCQATyeqSU5OxrJly1C7dm0sW7YMNWvWxPnz5wEA0dHR8PDwQLly5Qr1mZaWhlu3bsHd3V2j3t3dHbGxsRp1bm5u0s8ZGRlISEhA//79NWL65ptvpNtki5KZmQk9PT2NOkNDQ+zYsQPx8fGYMmUKjIyMMHbsWDRq1AiPHz+W2tnY2MDY2FhaNjc3R61ataClpaVRVzChUGxsLKytrWFtbS2tr1WrFkxMTAod27NiYmKQnp4OMzMzjWO7fv16oWPT19fXiPFjpVPWARARERERfagMDQ1hZ2f3Utt+8cUX6Natm7RsZWUl/WxmZoauXbuia9eumDVrFlxdXTF//nysWrUK+vr6rxw38DT2Aunp6QCAFStWoHHjxhrtCp7xLEqFChXw4MGDItfZ2trC1tYWAwYMwOTJk+Hg4IANGzagb9++AFAoCVYoFEXW5efnyz+oIqSnp8PS0hIRERGF1pmYmGgs379/HxUrVnyl/X0ImEQSEREREb2DTE1NYWpq+sJ2urq6sLW1lWZnrVu3LlatWoWcnJxCSZdKpYKVlRUiIyPh6ekp1UdGRqJRo0bF7sPc3BxWVla4du0aAgICZB+Dq6sr/ve//72wnY2NDQwMDF5phlknJyfcuHEDN27ckEYjL126hIcPH6JWrVoAnp6rvLw8je3q16+P5ORk6OjoaLyG5HkJCQl48uQJXF1dXzrGDwWTSCIiIiKiMpCeni69MxIArl+/jujoaJiamqJq1apFbrN9+3asX78en3/+ORwcHCCEwLZt27Bz506EhYUBAIYNG4YffvgBn3/+OSZNmgS1Wo3jx4+jUaNGcHR0xPjx4xEUFARbW1u4uLggLCwM0dHR0gysxZk2bRpGjBgBtVoNPz8/ZGVlISoqCg8ePMCYMWOK3MbX1xeTJk3CgwcPUL58eQBPZ159/Pgx2rRpg2rVquHhw4f4/vvvkZOTg1atWr3MqQQA+Pj4wNnZGQEBAQgJCUFubi6GDBkCT09P6dZcGxsb6TxXqVIFxsbG8PHxQZMmTeDv74+5c+fCwcEBt27dwo4dO9CpUydp2yNHjqBGjRqwtbV96Rg/FHwmkoiIiIjeT297ap3XLCoqCq6urtLI1pgxY+Dq6oqpU6cWu02tWrVgYGCAsWPHwsXFBZ988gk2btyI0NBQ9OrVC8DTW10PHjyI9PR0eHp6okGDBlixYoU0KjlixAiMGTMGY8eOhbOzM3bv3o2tW7fC3t6+xHgHDBiA0NBQhIWFwdnZGZ6enggPD9d4tcjznJ2dUb9+fWzcuFGq8/T0xLVr19C7d2/UrFkTrVu3RnJyMvbu3QtHR0fZ5+95CoUCf/zxB8qXL4/mzZvDx8cHNWrUwIYNG6Q2n332Gfz8/ODt7Y2KFSti3bp1UCgU2LlzJ5o3b46+ffvCwcEBn3/+Of7++2+Ym5tL265btw4DBw586fg+JAoh3sBvBNEHLC0tDWq1GqmpqVCpVGUdDhER0Qft8ePHiI2NhZOTEwwMDMo6HHoJO3bswPjx43HhwgWNSXHeJxcvXkSLFi1w5coVqNXqsg7npZX0+1Sa77i8nZWIiIiIiN6Ytm3b4urVq7h586bGzKnvk9u3b+OXX355rxPI14lJJBERERERvVGjRo0q6xBeiY+PT1mH8E55P8eTiYiIiIiIqEwwiSQiIiIiIiLZmEQSERER0TvvVV8oT0T/93ukUCheqR8+E0lERERE7yw9PT1oaWnh+vXrqFy5MpRK5St/ASb62AghkJWVhZs3b0JLSwtKpfKV+mMSSURERETvLC0tLdSqVQuJiYm4fv16WYdD9F4zMjKCg4PDK79qhUkkEREREb3TlEolHBwckJOTg9zc3LIOh+i9pKOjg3Llyr2WkXwmkURERET0zlMoFNDV1YWurm5Zh0L00ePEOkRERERERCQbk0giIiIiIiKSjUkkERERERERycZnIolKSQgBAEhLSyvjSIiIiIiIXo+C77YF33VLwiSSqJTu3bsHALC2ti7jSIiIiIiIXq9Hjx5BrVaX2IZJJFEpmZqaAgCSkpJe+AtGBDz9nz1ra2vcuHEDKpWqrMOh9wSvGyotXjNUWrxm6FlCCDx69AhWVlYvbMskkqiUCl7Oqlar+QeXSkWlUvGaoVLjdUOlxWuGSovXDBWQO0DCiXWIiIiIiIhINiaRREREREREJBuTSKJSUiqVCAoKglKpLOtQ6D3Ba4ZeBq8bKi1eM1RavGboZSmEnDlciYiIiIiIiMCRSCIiIiIiIioFJpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcnGJJKIiIiIiIhkYxJJVIQlS5bAxsYGenp6aNy4MU6ePFli+19//RU1a9aEnp4enJ2dsXPnzrcUKb0rSnPNrFixAh4eHihfvjzKly8PHx+fF15j9OEp7d+ZAuvXr4dCoYC/v/+bDZDeSaW9bh4+fIihQ4fC0tISSqUSDg4O/DfqI1PaayYkJASOjo7Q19eHtbU1Ro8ejSdPnrylaOl9wSSS6DkbNmzAmDFjEBQUhDNnzqBevXrw9fVFSkpKke2PHTuGHj16oH///jh79iz8/f3h7++PCxcuvOXIqayU9pqJiIhAjx49cOjQIfz111+wtrbGp59+ips3b77lyKmslPaaKZCYmIhx48bBw8PjLUVK75LSXjfZ2dlo1aoVEhMTsWnTJsTFxWHFihWoXLnyW46cykppr5m1a9di4sSJCAoKQmxsLH7++Wds2LABX3311VuOnN55gog0NGrUSAwdOlRazsvLE1ZWVmL27NlFtu/WrZto27atRl3jxo3F4MGD32ic9O4o7TXzvNzcXGFsbCxWrVr1pkKkd8zLXDO5ubmiadOmIjQ0VAQGBoqOHTu+hUjpXVLa62bp0qWiRo0aIjs7+22FSO+Y0l4zQ4cOFS1atNCoGzNmjHB3d3+jcdL7hyORRM/Izs7G6dOn4ePjI9VpaWnBx8cHf/31V5Hb/PXXXxrtAcDX17fY9vRheZlr5nmPHz9GTk4OTE1N31SY9A552Wtm+vTpqFSpEvr37/82wqR3zMtcN1u3bkWTJk0wdOhQmJubo06dOpg1axby8vLeVthUhl7mmmnatClOnz4t3fJ67do17Ny5E23atHkrMdP7Q6esAyB6l/z777/Iy8uDubm5Rr25uTkuX75c5DbJyclFtk9OTn5jcdK742WumedNmDABVlZWhf4zgj5ML3PNHD16FD///DOio6PfQoT0LnqZ6+batWs4ePAgAgICsHPnTsTHx2PIkCHIyclBUFDQ2wibytDLXDM9e/bEv//+i2bNmkEIgdzcXHzxxRe8nZUK4UgkEVEZmjNnDtavX48tW7ZAT0+vrMOhd9CjR4/Qq1cvrFixAhUqVCjrcOg9kp+fj0qVKuGnn35CgwYN0L17d0yePBnLli0r69DoHRUREYFZs2bhxx9/xJkzZ7B582bs2LEDM2bMKOvQ6B3DkUiiZ1SoUAHa2tq4c+eORv2dO3dgYWFR5DYWFhalak8flpe5ZgrMnz8fc+bMwf79+1G3bt03GSa9Q0p7zSQkJCAxMRHt27eX6vLz8wEAOjo6iIuLg62t7ZsNmsrcy/ytsbS0RLly5aCtrS3VOTk5ITk5GdnZ2dDV1X2jMVPZeplr5uuvv0avXr0wYMAAAICzszMyMjIwaNAgTJ48GVpaHH+ip3glED1DV1cXDRo0wIEDB6S6/Px8HDhwAE2aNClymyZNmmi0B4B9+/YV254+LC9zzQDA3LlzMWPGDOzevRtubm5vI1R6R5T2mqlZsybOnz+P6OhoqXTo0AHe3t6Ijo6GtbX12wyfysjL/K1xd3dHfHy89J8OAHDlyhVYWloygfwIvMw18/jx40KJYsF/Qggh3lyw9P4p65l9iN4169evF0qlUoSHh4tLly6JQYMGCRMTE5GcnCyEEKJXr15i4sSJUvvIyEiho6Mj5s+fL2JjY0VQUJAoV66cOH/+fFkdAr1lpb1m5syZI3R1dcWmTZvE7du3pfLo0aOyOgR6y0p7zTyPs7N+nEp73SQlJQljY2MxbNgwERcXJ7Zv3y4qVaokvvnmm7I6BHrLSnvNBAUFCWNjY7Fu3Tpx7do1sXfvXmFrayu6detWVodA7yjezkr0nO7du+Pu3buYOnUqkpOT4eLigt27d0sPpiclJWn8L13Tpk2xdu1aTJkyBV999RXs7e3x+++/o06dOmV1CPSWlfaaWbp0KbKzs9GlSxeNfoKCghAcHPw2Q6cyUtprhggo/XVjbW2NPXv2YPTo0ahbty4qV66MkSNHYsKECWV1CPSWlfaamTJlChQKBaZMmYKbN2+iYsWKaN++PWbOnFlWh0DvKIUQHJsmIiIiIiIiefjfnERERERERCQbk0giIiIiIiKSjUkkERERERERycYkkoiIiIiIiGRjEklERERERESyMYkkIiIiIiIi2ZhEEhERERERkWxMIomIiIiIiEg2JpFEREREREQkG5NIIiIiIiIiko1JJBEREREREcn2/wAp02C9D4k64AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
LabelsPrecisionPrecision (Smote)RecallRecall (Smote)F1F1 (Smote)Occurrence CountPercentage
9Mute Swan 5km0.9164220.9424000.9630200.9075500.9391440.92464752670.661268
1Canada Goose 5km0.8883160.9031110.9618600.9451160.9236270.92363643050.540490
10Pheasant 5km0.8651790.8594650.9311060.9384130.8969330.89720638480.483114
16Rock Dove 5km0.7578120.7545450.8546260.8531570.8033130.80082728300.355304
7Little Owl 5km0.7519750.7504330.9351670.8506880.8336250.79742221580.270935
14Red-legged Partridge 5km0.7433770.7351920.8786690.8258320.8053810.77788021500.269931
19Wigeon 5km0.6234040.5760170.6411380.5886210.6321470.58225118570.233145
5Grey Partridge 5km0.6637930.6226420.7797470.5848100.7171130.60313316290.204520
3Gadwall 5km0.6648040.6234180.6704230.5549300.6676020.58718313990.175643
11Pink-footed Goose 5km0.5937500.4779220.4764890.5768030.5286960.52272713130.164846
13Pochard 5km0.4388490.4350000.2573840.3670890.3244680.3981699420.118267
18Whooper Swan 5km0.2916670.2912620.0336540.2884620.0603450.2898558420.105712
8Mandarin Duck 5km0.4626870.3856210.1684780.3206520.2470120.3501487140.089642
12Pintail 5km0.4918030.3017750.2000000.3400000.2843600.3197496490.081481
0Barnacle Goose 5km0.6896550.2717390.1351350.3378380.2259890.3012055870.073697
2Egyptian Goose 5km0.5600000.5113640.2153850.3461540.3111110.4128444850.060891
4Goshawk 5km0.2272730.2972970.0515460.2268040.0840340.2573104460.055995
6Indian Peafowl 5km0.0000000.1836730.0000000.1184210.0000000.1440002840.035656
15Ring-necked Parakeet 5km0.5510200.6000000.4736840.3684210.5094340.4565222060.025863
17Ruddy Duck 5km0.0000000.0000000.0000000.0000000.0000000.0000001090.013685
\n", "
" ], "text/plain": [ " Labels Precision Precision (Smote) Recall \\\n", "9 Mute Swan 5km 0.916422 0.942400 0.963020 \n", "1 Canada Goose 5km 0.888316 0.903111 0.961860 \n", "10 Pheasant 5km 0.865179 0.859465 0.931106 \n", "16 Rock Dove 5km 0.757812 0.754545 0.854626 \n", "7 Little Owl 5km 0.751975 0.750433 0.935167 \n", "14 Red-legged Partridge 5km 0.743377 0.735192 0.878669 \n", "19 Wigeon 5km 0.623404 0.576017 0.641138 \n", "5 Grey Partridge 5km 0.663793 0.622642 0.779747 \n", "3 Gadwall 5km 0.664804 0.623418 0.670423 \n", "11 Pink-footed Goose 5km 0.593750 0.477922 0.476489 \n", "13 Pochard 5km 0.438849 0.435000 0.257384 \n", "18 Whooper Swan 5km 0.291667 0.291262 0.033654 \n", "8 Mandarin Duck 5km 0.462687 0.385621 0.168478 \n", "12 Pintail 5km 0.491803 0.301775 0.200000 \n", "0 Barnacle Goose 5km 0.689655 0.271739 0.135135 \n", "2 Egyptian Goose 5km 0.560000 0.511364 0.215385 \n", "4 Goshawk 5km 0.227273 0.297297 0.051546 \n", "6 Indian Peafowl 5km 0.000000 0.183673 0.000000 \n", "15 Ring-necked Parakeet 5km 0.551020 0.600000 0.473684 \n", "17 Ruddy Duck 5km 0.000000 0.000000 0.000000 \n", "\n", " Recall (Smote) F1 F1 (Smote) Occurrence Count Percentage \n", "9 0.907550 0.939144 0.924647 5267 0.661268 \n", "1 0.945116 0.923627 0.923636 4305 0.540490 \n", "10 0.938413 0.896933 0.897206 3848 0.483114 \n", "16 0.853157 0.803313 0.800827 2830 0.355304 \n", "7 0.850688 0.833625 0.797422 2158 0.270935 \n", "14 0.825832 0.805381 0.777880 2150 0.269931 \n", "19 0.588621 0.632147 0.582251 1857 0.233145 \n", "5 0.584810 0.717113 0.603133 1629 0.204520 \n", "3 0.554930 0.667602 0.587183 1399 0.175643 \n", "11 0.576803 0.528696 0.522727 1313 0.164846 \n", "13 0.367089 0.324468 0.398169 942 0.118267 \n", "18 0.288462 0.060345 0.289855 842 0.105712 \n", "8 0.320652 0.247012 0.350148 714 0.089642 \n", "12 0.340000 0.284360 0.319749 649 0.081481 \n", "0 0.337838 0.225989 0.301205 587 0.073697 \n", "2 0.346154 0.311111 0.412844 485 0.060891 \n", "4 0.226804 0.084034 0.257310 446 0.055995 \n", "6 0.118421 0.000000 0.144000 284 0.035656 \n", "15 0.368421 0.509434 0.456522 206 0.025863 \n", "17 0.000000 0.000000 0.000000 109 0.013685 " ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Create graphs to show off data\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "plt.rcParams['figure.figsize'] = [9, 12]\n", "\n", "occurrence_count, occurrence_percentage = All_bird_occurrences['Occurrence Count'], All_bird_occurrences['Percentage']\n", "precision = []\n", "precision_smote = []\n", "recall = []\n", "recall_smote = []\n", "f1 = []\n", "f1_smote = []\n", "labels = []\n", "for dict in df_dicts:\n", " precision.append(dict['report']['1']['precision'])\n", " precision_smote.append(dict['report_smote']['1']['precision'])\n", " recall.append(dict['report']['1']['recall'])\n", " recall_smote.append(dict['report_smote']['1']['recall'])\n", " f1.append(dict['report']['1']['f1-score'])\n", " f1_smote.append(dict['report_smote']['1']['f1-score'])\n", " labels.append(dict['name'])\n", "\n", "\n", "\n", "scores = pd.DataFrame({'Labels' : labels, \n", " 'Precision': precision, 'Precision (Smote)': precision_smote, \n", " 'Recall': recall, 'Recall (Smote)': recall_smote, \n", " 'F1': f1, 'F1 (Smote)': f1_smote,\n", " 'Occurrence Count' : occurrence_count, 'Percentage' : occurrence_percentage} )\n", " \n", "scores.sort_values('Occurrence Count', inplace=True)\n", "\n", "n=20\n", "r = np.arange(n)\n", "height = 0.25\n", "\n", "plt.barh(r, 'Percentage', data=scores, label='Occurrence Percentage', height = height, color='g')\n", "plt.barh(r+height, 'F1', data=scores, label='F1-Score', height= height, color='b')\n", "plt.barh(r+height*2, 'F1 (Smote)', data=scores, label='F1-Score (Smote)', height = height, color='r')\n", "plt.legend(framealpha=1, frameon=True)\n", "plt.yticks(r+height*2, scores['Labels'])\n", "\n", "\n", "plt.show()\n", "\n", "\n", "scores.sort_values('Occurrence Count', ascending=False)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Stored 'df_dicts_5km_no_fp' (list)\n" ] } ], "source": [ "# Store dictionaries for later use\n", "df_dicts_5km_no_fp = df_dicts\n", "%store df_dicts_5km_no_fp" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
842500.0367500.000
22500.0197500.001
27500.000
247500.0252500.000
737500.062500.000
............
862500.0567500.000
152500.0232500.000
1252500.0592500.000
1002500.0322500.000
192500.0167500.000
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "842500.0 367500.0 0 0\n", "22500.0 197500.0 0 1\n", " 27500.0 0 0\n", "247500.0 252500.0 0 0\n", "737500.0 62500.0 0 0\n", "... ... ...\n", "862500.0 567500.0 0 0\n", "152500.0 232500.0 0 0\n", "1252500.0 592500.0 0 0\n", "1002500.0 322500.0 0 0\n", "192500.0 167500.0 0 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
572500.0282500.011
32500.0162500.011
37500.0667500.000
182500.0367500.011
477500.0332500.011
............
592500.0122500.000
132500.0482500.011
1207500.0432500.000
772500.0297500.000
152500.0387500.011
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "572500.0 282500.0 1 1\n", "32500.0 162500.0 1 1\n", "37500.0 667500.0 0 0\n", "182500.0 367500.0 1 1\n", "477500.0 332500.0 1 1\n", "... ... ...\n", "592500.0 122500.0 0 0\n", "132500.0 482500.0 1 1\n", "1207500.0 432500.0 0 0\n", "772500.0 297500.0 0 0\n", "152500.0 387500.0 1 1\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
827500.027500.000
22500.0392500.000
262500.000
212500.0317500.000
727500.0312500.000
............
847500.082500.000
142500.0512500.010
1252500.0512500.000
1002500.0337500.000
167500.017500.000
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "827500.0 27500.0 0 0\n", "22500.0 392500.0 0 0\n", " 262500.0 0 0\n", "212500.0 317500.0 0 0\n", "727500.0 312500.0 0 0\n", "... ... ...\n", "847500.0 82500.0 0 0\n", "142500.0 512500.0 1 0\n", "1252500.0 512500.0 0 0\n", "1002500.0 337500.0 0 0\n", "167500.0 17500.0 0 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
787500.087500.000
22500.02500.000
27500.0562500.000
217500.0457500.011
682500.0387500.000
............
812500.0382500.000
142500.0342500.010
1242500.0372500.000
972500.0182500.000
177500.0587500.011
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "787500.0 87500.0 0 0\n", "22500.0 2500.0 0 0\n", "27500.0 562500.0 0 0\n", "217500.0 457500.0 1 1\n", "682500.0 387500.0 0 0\n", "... ... ...\n", "812500.0 382500.0 0 0\n", "142500.0 342500.0 1 0\n", "1242500.0 372500.0 0 0\n", "972500.0 182500.0 0 0\n", "177500.0 587500.0 1 1\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
822500.0422500.000
22500.0647500.000
547500.000
232500.0392500.000
727500.0507500.000
............
837500.062500.000
142500.0447500.000
1247500.0517500.000
987500.0287500.000
182500.0672500.000
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "822500.0 422500.0 0 0\n", "22500.0 647500.0 0 0\n", " 547500.0 0 0\n", "232500.0 392500.0 0 0\n", "727500.0 507500.0 0 0\n", "... ... ...\n", "837500.0 62500.0 0 0\n", "142500.0 447500.0 0 0\n", "1247500.0 517500.0 0 0\n", "987500.0 287500.0 0 0\n", "182500.0 672500.0 0 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
767500.0547500.000
27500.0627500.000
507500.000
222500.0412500.000
662500.0517500.000
............
787500.0567500.000
147500.0522500.010
1242500.092500.000
957500.0387500.000
177500.0557500.010
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "767500.0 547500.0 0 0\n", "27500.0 627500.0 0 0\n", " 507500.0 0 0\n", "222500.0 412500.0 0 0\n", "662500.0 517500.0 0 0\n", "... ... ...\n", "787500.0 567500.0 0 0\n", "147500.0 522500.0 1 0\n", "1242500.0 92500.0 0 0\n", "957500.0 387500.0 0 0\n", "177500.0 557500.0 1 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
827500.087500.000
22500.047500.000
27500.0567500.000
227500.0152500.000
732500.0562500.000
............
852500.0692500.000
142500.0577500.001
1252500.0597500.000
997500.0562500.000
177500.0557500.000
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "827500.0 87500.0 0 0\n", "22500.0 47500.0 0 0\n", "27500.0 567500.0 0 0\n", "227500.0 152500.0 0 0\n", "732500.0 562500.0 0 0\n", "... ... ...\n", "852500.0 692500.0 0 0\n", "142500.0 577500.0 0 1\n", "1252500.0 597500.0 0 0\n", "997500.0 562500.0 0 0\n", "177500.0 557500.0 0 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
722500.0412500.000
27500.0267500.000
62500.000
197500.097500.000
602500.0512500.000
............
747500.0412500.000
137500.0152500.000
1242500.0692500.000
932500.0162500.000
162500.0537500.011
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "722500.0 412500.0 0 0\n", "27500.0 267500.0 0 0\n", " 62500.0 0 0\n", "197500.0 97500.0 0 0\n", "602500.0 512500.0 0 0\n", "... ... ...\n", "747500.0 412500.0 0 0\n", "137500.0 152500.0 0 0\n", "1242500.0 692500.0 0 0\n", "932500.0 162500.0 0 0\n", "162500.0 537500.0 1 1\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
822500.092500.000
22500.0217500.000
137500.000
212500.0292500.000
717500.0197500.000
............
842500.0372500.000
137500.0392500.010
1247500.087500.000
997500.0362500.000
172500.0532500.001
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "822500.0 92500.0 0 0\n", "22500.0 217500.0 0 0\n", " 137500.0 0 0\n", "212500.0 292500.0 0 0\n", "717500.0 197500.0 0 0\n", "... ... ...\n", "842500.0 372500.0 0 0\n", "137500.0 392500.0 1 0\n", "1247500.0 87500.0 0 0\n", "997500.0 362500.0 0 0\n", "172500.0 532500.0 0 1\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
582500.0287500.011
42500.0192500.001
72500.000
192500.0557500.011
487500.0317500.011
............
607500.0422500.011
137500.0302500.011
1192500.0637500.000
737500.0417500.000
162500.0482500.011
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "582500.0 287500.0 1 1\n", "42500.0 192500.0 0 1\n", " 72500.0 0 0\n", "192500.0 557500.0 1 1\n", "487500.0 317500.0 1 1\n", "... ... ...\n", "607500.0 422500.0 1 1\n", "137500.0 302500.0 1 1\n", "1192500.0 637500.0 0 0\n", "737500.0 417500.0 0 0\n", "162500.0 482500.0 1 1\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
642500.0327500.011
32500.0142500.001
37500.0577500.000
192500.0352500.011
537500.087500.010
............
662500.0347500.001
137500.0512500.011
1217500.0402500.000
837500.0182500.010
157500.0212500.000
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "642500.0 327500.0 1 1\n", "32500.0 142500.0 0 1\n", "37500.0 577500.0 0 0\n", "192500.0 352500.0 1 1\n", "537500.0 87500.0 1 0\n", "... ... ...\n", "662500.0 347500.0 0 1\n", "137500.0 512500.0 1 1\n", "1217500.0 402500.0 0 0\n", "837500.0 182500.0 1 0\n", "157500.0 212500.0 0 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
817500.0352500.011
22500.037500.000
27500.0642500.000
272500.0297500.001
722500.0327500.011
............
837500.0372500.011
162500.067500.000
1242500.0212500.000
972500.0452500.000
212500.0597500.011
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "817500.0 352500.0 1 1\n", "22500.0 37500.0 0 0\n", "27500.0 642500.0 0 0\n", "272500.0 297500.0 0 1\n", "722500.0 327500.0 1 1\n", "... ... ...\n", "837500.0 372500.0 1 1\n", "162500.0 67500.0 0 0\n", "1242500.0 212500.0 0 0\n", "972500.0 452500.0 0 0\n", "212500.0 597500.0 1 1\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
837500.0152500.001
22500.0367500.000
222500.000
237500.0217500.000
722500.0332500.010
............
857500.0267500.010
147500.0287500.010
1252500.0152500.000
1012500.092500.000
187500.0572500.001
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "837500.0 152500.0 0 1\n", "22500.0 367500.0 0 0\n", " 222500.0 0 0\n", "237500.0 217500.0 0 0\n", "722500.0 332500.0 1 0\n", "... ... ...\n", "857500.0 267500.0 1 0\n", "147500.0 287500.0 1 0\n", "1252500.0 152500.0 0 0\n", "1012500.0 92500.0 0 0\n", "187500.0 572500.0 0 1\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
807500.0247500.000
17500.027500.000
22500.0507500.000
222500.032500.000
707500.0677500.000
............
827500.0362500.000
142500.0302500.001
1242500.0242500.000
982500.0582500.000
177500.0462500.011
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "807500.0 247500.0 0 0\n", "17500.0 27500.0 0 0\n", "22500.0 507500.0 0 0\n", "222500.0 32500.0 0 0\n", "707500.0 677500.0 0 0\n", "... ... ...\n", "827500.0 362500.0 0 0\n", "142500.0 302500.0 0 1\n", "1242500.0 242500.0 0 0\n", "982500.0 582500.0 0 0\n", "177500.0 462500.0 1 1\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
747500.0162500.000
32500.0612500.000
482500.000
207500.0202500.000
627500.0272500.000
............
772500.0292500.001
142500.0532500.011
1242500.0452500.000
937500.0542500.000
167500.0307500.001
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "747500.0 162500.0 0 0\n", "32500.0 612500.0 0 0\n", " 482500.0 0 0\n", "207500.0 202500.0 0 0\n", "627500.0 272500.0 0 0\n", "... ... ...\n", "772500.0 292500.0 0 1\n", "142500.0 532500.0 1 1\n", "1242500.0 452500.0 0 0\n", "937500.0 542500.0 0 0\n", "167500.0 307500.0 0 1\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
857500.0647500.000
22500.0632500.000
562500.000
227500.0442500.000
752500.0517500.000
............
872500.0267500.000
147500.0322500.000
1252500.0547500.000
1017500.0362500.000
177500.037500.000
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "857500.0 647500.0 0 0\n", "22500.0 632500.0 0 0\n", " 562500.0 0 0\n", "227500.0 442500.0 0 0\n", "752500.0 517500.0 0 0\n", "... ... ...\n", "872500.0 267500.0 0 0\n", "147500.0 322500.0 0 0\n", "1252500.0 547500.0 0 0\n", "1017500.0 362500.0 0 0\n", "177500.0 37500.0 0 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
712500.0332500.011
27500.0437500.000
137500.001
197500.0447500.011
607500.0247500.000
............
732500.0332500.001
142500.0692500.000
1232500.0552500.000
902500.0302500.000
167500.0562500.011
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "712500.0 332500.0 1 1\n", "27500.0 437500.0 0 0\n", " 137500.0 0 1\n", "197500.0 447500.0 1 1\n", "607500.0 247500.0 0 0\n", "... ... ...\n", "732500.0 332500.0 0 1\n", "142500.0 692500.0 0 0\n", "1232500.0 552500.0 0 0\n", "902500.0 302500.0 0 0\n", "167500.0 562500.0 1 1\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
857500.0512500.000
22500.0587500.000
447500.000
237500.0512500.000
752500.077500.000
............
872500.0512500.000
142500.0167500.000
1252500.0422500.000
1007500.072500.000
182500.0142500.000
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "857500.0 512500.0 0 0\n", "22500.0 587500.0 0 0\n", " 447500.0 0 0\n", "237500.0 512500.0 0 0\n", "752500.0 77500.0 0 0\n", "... ... ...\n", "872500.0 512500.0 0 0\n", "142500.0 167500.0 0 0\n", "1252500.0 422500.0 0 0\n", "1007500.0 72500.0 0 0\n", "182500.0 142500.0 0 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
847500.0507500.000
27500.0597500.000
472500.000
267500.0387500.000
742500.0197500.000
............
862500.0607500.000
162500.0447500.000
1247500.087500.000
1002500.0462500.000
202500.0237500.001
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "847500.0 507500.0 0 0\n", "27500.0 597500.0 0 0\n", " 472500.0 0 0\n", "267500.0 387500.0 0 0\n", "742500.0 197500.0 0 0\n", "... ... ...\n", "862500.0 607500.0 0 0\n", "162500.0 447500.0 0 0\n", "1247500.0 87500.0 0 0\n", "1002500.0 462500.0 0 0\n", "202500.0 237500.0 0 1\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
787500.097500.000
27500.0167500.001
107500.000
232500.0602500.011
687500.072500.000
............
807500.0192500.011
147500.0602500.001
1237500.0332500.000
957500.0122500.000
182500.0582500.010
\n", "

1992 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "787500.0 97500.0 0 0\n", "27500.0 167500.0 0 1\n", " 107500.0 0 0\n", "232500.0 602500.0 1 1\n", "687500.0 72500.0 0 0\n", "... ... ...\n", "807500.0 192500.0 1 1\n", "147500.0 602500.0 0 1\n", "1237500.0 332500.0 0 0\n", "957500.0 122500.0 0 0\n", "182500.0 582500.0 1 0\n", "\n", "[1992 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Export predictions to CSV for QGIS\n", "RESULTS_PATH = 'Datasets/Machine Learning/Results/5km/'\n", "for dict in df_dicts:\n", " # Join with y_test datafram\n", " result_df = dict['y_test'] \n", " result_df['Predictions'] = dict['predictions_smote']\n", " display(result_df)\n", " result_df.to_csv(RESULTS_PATH + dict['name'] + '(without Fertiliser+Pesticides).csv')\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
251586.6606960.000000e+00Inflowing drainage direction
181440.9393791.143607e-308Saltmarsh
231417.8796287.271005e-304Surface type
221269.6114056.667737e-273Cumulative catchment area
241223.1980533.502336e-263Outflowing drainage direction
211203.7425584.196966e-259Elevation
171078.6082888.174358e-233Littoral sediment
13978.4727061.050650e-211Freshwater
15853.8117302.457887e-185Supralittoral sediment
3816.9145861.639367e-177Improve grassland
16416.3692725.554940e-92Littoral rock
7360.6572635.403022e-80Fen
0243.3782761.130191e-54Deciduous woodland
2223.6312472.134039e-50Arable
19168.9600211.551633e-38Urban
20156.0982479.703696e-36Suburban
1488.0366076.821306e-21Supralittoral rock
970.5042474.773365e-17Heather grassland
452.0916775.410742e-13Neutral grassland
1228.1312551.140877e-07Saltwater
1010.5934821.136010e-03Bog
63.8817274.882264e-02Acid grassland
81.7269791.888063e-01Heather
111.3099282.524160e-01Inland rock
11.1936362.746053e-01Coniferous woodland
50.2754065.997316e-01Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 1586.660696 0.000000e+00 Inflowing drainage direction\n", "18 1440.939379 1.143607e-308 Saltmarsh\n", "23 1417.879628 7.271005e-304 Surface type\n", "22 1269.611405 6.667737e-273 Cumulative catchment area\n", "24 1223.198053 3.502336e-263 Outflowing drainage direction\n", "21 1203.742558 4.196966e-259 Elevation\n", "17 1078.608288 8.174358e-233 Littoral sediment\n", "13 978.472706 1.050650e-211 Freshwater\n", "15 853.811730 2.457887e-185 Supralittoral sediment\n", "3 816.914586 1.639367e-177 Improve grassland\n", "16 416.369272 5.554940e-92 Littoral rock\n", "7 360.657263 5.403022e-80 Fen\n", "0 243.378276 1.130191e-54 Deciduous woodland\n", "2 223.631247 2.134039e-50 Arable\n", "19 168.960021 1.551633e-38 Urban\n", "20 156.098247 9.703696e-36 Suburban\n", "14 88.036607 6.821306e-21 Supralittoral rock\n", "9 70.504247 4.773365e-17 Heather grassland\n", "4 52.091677 5.410742e-13 Neutral grassland\n", "12 28.131255 1.140877e-07 Saltwater\n", "10 10.593482 1.136010e-03 Bog\n", "6 3.881727 4.882264e-02 Acid grassland\n", "8 1.726979 1.888063e-01 Heather\n", "11 1.309928 2.524160e-01 Inland rock\n", "1 1.193636 2.746053e-01 Coniferous woodland\n", "5 0.275406 5.997316e-01 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Canada Goose 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
2327980.6519570.000000e+00Surface type
2422192.8535320.000000e+00Outflowing drainage direction
2521798.0738670.000000e+00Inflowing drainage direction
2120557.2695200.000000e+00Elevation
2210467.9737120.000000e+00Cumulative catchment area
39373.9923890.000000e+00Improve grassland
206200.6826740.000000e+00Suburban
04606.4379670.000000e+00Deciduous woodland
24435.5574220.000000e+00Arable
192407.8929970.000000e+00Urban
131994.2185350.000000e+00Freshwater
4591.9474911.305021e-129Neutral grassland
18389.0950294.077898e-86Saltmarsh
7240.5383014.654537e-54Fen
17162.2073434.555336e-37Littoral sediment
556.2171056.651725e-14Calcareous grassland
1554.9885721.241339e-13Supralittoral sediment
1249.2095212.344481e-12Saltwater
118.6893231.542908e-05Coniferous woodland
1016.1829045.763851e-05Bog
1113.0040103.112817e-04Inland rock
910.0570491.519046e-03Heather grassland
163.1943597.390188e-02Littoral rock
141.8316551.759414e-01Supralittoral rock
81.5640302.110850e-01Heather
61.3415712.467655e-01Acid grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 27980.651957 0.000000e+00 Surface type\n", "24 22192.853532 0.000000e+00 Outflowing drainage direction\n", "25 21798.073867 0.000000e+00 Inflowing drainage direction\n", "21 20557.269520 0.000000e+00 Elevation\n", "22 10467.973712 0.000000e+00 Cumulative catchment area\n", "3 9373.992389 0.000000e+00 Improve grassland\n", "20 6200.682674 0.000000e+00 Suburban\n", "0 4606.437967 0.000000e+00 Deciduous woodland\n", "2 4435.557422 0.000000e+00 Arable\n", "19 2407.892997 0.000000e+00 Urban\n", "13 1994.218535 0.000000e+00 Freshwater\n", "4 591.947491 1.305021e-129 Neutral grassland\n", "18 389.095029 4.077898e-86 Saltmarsh\n", "7 240.538301 4.654537e-54 Fen\n", "17 162.207343 4.555336e-37 Littoral sediment\n", "5 56.217105 6.651725e-14 Calcareous grassland\n", "15 54.988572 1.241339e-13 Supralittoral sediment\n", "12 49.209521 2.344481e-12 Saltwater\n", "1 18.689323 1.542908e-05 Coniferous woodland\n", "10 16.182904 5.763851e-05 Bog\n", "11 13.004010 3.112817e-04 Inland rock\n", "9 10.057049 1.519046e-03 Heather grassland\n", "16 3.194359 7.390188e-02 Littoral rock\n", "14 1.831655 1.759414e-01 Supralittoral rock\n", "8 1.564030 2.110850e-01 Heather\n", "6 1.341571 2.467655e-01 Acid grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Egyptian Goose 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
224398.3456840.000000e+00Cumulative catchment area
133391.7285260.000000e+00Freshwater
242769.9836260.000000e+00Outflowing drainage direction
192688.5637440.000000e+00Urban
232448.1895950.000000e+00Surface type
251867.1817580.000000e+00Inflowing drainage direction
201608.1196550.000000e+00Suburban
211508.4462021.037538e-322Elevation
31160.2542195.600729e-250Improve grassland
01025.5497981.228685e-221Deciduous woodland
7631.4761804.722469e-138Fen
2600.1484902.308798e-131Arable
18214.9616501.613752e-48Saltmarsh
466.7954703.118157e-16Neutral grassland
624.5320787.344270e-07Acid grassland
916.1038816.009295e-05Heather grassland
1010.9422509.409617e-04Bog
86.4602871.103570e-02Heather
156.1210621.336303e-02Supralittoral sediment
174.6582083.091261e-02Littoral sediment
53.6540485.594175e-02Calcareous grassland
113.3053916.906195e-02Inland rock
163.0517508.065946e-02Littoral rock
120.8704743.508309e-01Saltwater
140.7567413.843565e-01Supralittoral rock
10.0035479.525091e-01Coniferous woodland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "22 4398.345684 0.000000e+00 Cumulative catchment area\n", "13 3391.728526 0.000000e+00 Freshwater\n", "24 2769.983626 0.000000e+00 Outflowing drainage direction\n", "19 2688.563744 0.000000e+00 Urban\n", "23 2448.189595 0.000000e+00 Surface type\n", "25 1867.181758 0.000000e+00 Inflowing drainage direction\n", "20 1608.119655 0.000000e+00 Suburban\n", "21 1508.446202 1.037538e-322 Elevation\n", "3 1160.254219 5.600729e-250 Improve grassland\n", "0 1025.549798 1.228685e-221 Deciduous woodland\n", "7 631.476180 4.722469e-138 Fen\n", "2 600.148490 2.308798e-131 Arable\n", "18 214.961650 1.613752e-48 Saltmarsh\n", "4 66.795470 3.118157e-16 Neutral grassland\n", "6 24.532078 7.344270e-07 Acid grassland\n", "9 16.103881 6.009295e-05 Heather grassland\n", "10 10.942250 9.409617e-04 Bog\n", "8 6.460287 1.103570e-02 Heather\n", "15 6.121062 1.336303e-02 Supralittoral sediment\n", "17 4.658208 3.091261e-02 Littoral sediment\n", "5 3.654048 5.594175e-02 Calcareous grassland\n", "11 3.305391 6.906195e-02 Inland rock\n", "16 3.051750 8.065946e-02 Littoral rock\n", "12 0.870474 3.508309e-01 Saltwater\n", "14 0.756741 3.843565e-01 Supralittoral rock\n", "1 0.003547 9.525091e-01 Coniferous woodland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Gadwall 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
245605.8846280.000000e+00Outflowing drainage direction
225421.2214120.000000e+00Cumulative catchment area
235337.7424150.000000e+00Surface type
254250.8688830.000000e+00Inflowing drainage direction
133657.9504580.000000e+00Freshwater
213513.5201440.000000e+00Elevation
22555.7749400.000000e+00Arable
32162.5401010.000000e+00Improve grassland
201871.4622380.000000e+00Suburban
01487.4870192.357158e-318Deciduous woodland
191271.1778863.134320e-273Urban
18947.2178154.200123e-205Saltmarsh
7892.3208091.714432e-193Fen
4739.3348904.953129e-161Neutral grassland
17160.8260299.095729e-37Littoral sediment
15130.6041413.443944e-30Supralittoral sediment
645.7996901.331664e-11Acid grassland
1232.2801871.345866e-08Saltwater
929.1203476.848560e-08Heather grassland
1021.7036993.194143e-06Bog
817.5600262.791009e-05Heather
117.8082045.203950e-03Inland rock
17.1881617.342254e-03Coniferous woodland
141.7819521.819190e-01Supralittoral rock
50.7358343.910048e-01Calcareous grassland
160.0971517.552781e-01Littoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "24 5605.884628 0.000000e+00 Outflowing drainage direction\n", "22 5421.221412 0.000000e+00 Cumulative catchment area\n", "23 5337.742415 0.000000e+00 Surface type\n", "25 4250.868883 0.000000e+00 Inflowing drainage direction\n", "13 3657.950458 0.000000e+00 Freshwater\n", "21 3513.520144 0.000000e+00 Elevation\n", "2 2555.774940 0.000000e+00 Arable\n", "3 2162.540101 0.000000e+00 Improve grassland\n", "20 1871.462238 0.000000e+00 Suburban\n", "0 1487.487019 2.357158e-318 Deciduous woodland\n", "19 1271.177886 3.134320e-273 Urban\n", "18 947.217815 4.200123e-205 Saltmarsh\n", "7 892.320809 1.714432e-193 Fen\n", "4 739.334890 4.953129e-161 Neutral grassland\n", "17 160.826029 9.095729e-37 Littoral sediment\n", "15 130.604141 3.443944e-30 Supralittoral sediment\n", "6 45.799690 1.331664e-11 Acid grassland\n", "12 32.280187 1.345866e-08 Saltwater\n", "9 29.120347 6.848560e-08 Heather grassland\n", "10 21.703699 3.194143e-06 Bog\n", "8 17.560026 2.791009e-05 Heather\n", "11 7.808204 5.203950e-03 Inland rock\n", "1 7.188161 7.342254e-03 Coniferous woodland\n", "14 1.781952 1.819190e-01 Supralittoral rock\n", "5 0.735834 3.910048e-01 Calcareous grassland\n", "16 0.097151 7.552781e-01 Littoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Goshawk 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
231228.0088333.437230e-264Surface type
211131.6589945.687958e-244Elevation
241068.0372771.373575e-230Outflowing drainage direction
221044.9333011.009602e-225Cumulative catchment area
25919.8890672.517246e-199Inflowing drainage direction
0809.8181715.254241e-176Deciduous woodland
3684.7801082.032079e-149Improve grassland
1397.8091475.441281e-88Coniferous woodland
6362.4598082.209967e-80Acid grassland
287.7573917.852555e-21Arable
2079.8037074.343909e-19Suburban
845.5582821.506066e-11Heather
516.0538376.170139e-05Calcareous grassland
1315.7230437.347960e-05Freshwater
188.6930713.196452e-03Saltmarsh
74.2132954.011621e-02Fen
103.2933956.956812e-02Bog
141.4926442.218154e-01Supralittoral rock
191.2357072.663082e-01Urban
90.6530814.190191e-01Heather grassland
110.4163975.187449e-01Inland rock
120.2226896.370020e-01Saltwater
150.0469728.284207e-01Supralittoral sediment
40.0414368.386999e-01Neutral grassland
170.0326898.565239e-01Littoral sediment
160.0027399.582594e-01Littoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 1228.008833 3.437230e-264 Surface type\n", "21 1131.658994 5.687958e-244 Elevation\n", "24 1068.037277 1.373575e-230 Outflowing drainage direction\n", "22 1044.933301 1.009602e-225 Cumulative catchment area\n", "25 919.889067 2.517246e-199 Inflowing drainage direction\n", "0 809.818171 5.254241e-176 Deciduous woodland\n", "3 684.780108 2.032079e-149 Improve grassland\n", "1 397.809147 5.441281e-88 Coniferous woodland\n", "6 362.459808 2.209967e-80 Acid grassland\n", "2 87.757391 7.852555e-21 Arable\n", "20 79.803707 4.343909e-19 Suburban\n", "8 45.558282 1.506066e-11 Heather\n", "5 16.053837 6.170139e-05 Calcareous grassland\n", "13 15.723043 7.347960e-05 Freshwater\n", "18 8.693071 3.196452e-03 Saltmarsh\n", "7 4.213295 4.011621e-02 Fen\n", "10 3.293395 6.956812e-02 Bog\n", "14 1.492644 2.218154e-01 Supralittoral rock\n", "19 1.235707 2.663082e-01 Urban\n", "9 0.653081 4.190191e-01 Heather grassland\n", "11 0.416397 5.187449e-01 Inland rock\n", "12 0.222689 6.370020e-01 Saltwater\n", "15 0.046972 8.284207e-01 Supralittoral sediment\n", "4 0.041436 8.386999e-01 Neutral grassland\n", "17 0.032689 8.565239e-01 Littoral sediment\n", "16 0.002739 9.582594e-01 Littoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Grey Partridge 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
28141.7005890.000000e+00Arable
235901.4705560.000000e+00Surface type
244800.4094210.000000e+00Outflowing drainage direction
224601.9061500.000000e+00Cumulative catchment area
254463.9737400.000000e+00Inflowing drainage direction
214389.2623400.000000e+00Elevation
32126.4953990.000000e+00Improve grassland
0901.2387632.221379e-195Deciduous woodland
20518.0098918.599298e-114Suburban
5327.0452669.488789e-73Calcareous grassland
4319.8490113.384407e-71Neutral grassland
1998.7814693.039441e-23Urban
1542.3042727.923464e-11Supralittoral sediment
1842.0651708.952540e-11Saltmarsh
1327.8681201.306903e-07Freshwater
718.3029321.889456e-05Fen
176.2330181.254381e-02Littoral sediment
15.2153002.239529e-02Coniferous woodland
114.7408812.946103e-02Inland rock
144.0219464.491999e-02Supralittoral rock
83.1361137.658531e-02Heather
62.3929101.218961e-01Acid grassland
120.2493306.175506e-01Saltwater
100.1208517.281160e-01Bog
90.0128489.097560e-01Heather grassland
160.0000369.952257e-01Littoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "2 8141.700589 0.000000e+00 Arable\n", "23 5901.470556 0.000000e+00 Surface type\n", "24 4800.409421 0.000000e+00 Outflowing drainage direction\n", "22 4601.906150 0.000000e+00 Cumulative catchment area\n", "25 4463.973740 0.000000e+00 Inflowing drainage direction\n", "21 4389.262340 0.000000e+00 Elevation\n", "3 2126.495399 0.000000e+00 Improve grassland\n", "0 901.238763 2.221379e-195 Deciduous woodland\n", "20 518.009891 8.599298e-114 Suburban\n", "5 327.045266 9.488789e-73 Calcareous grassland\n", "4 319.849011 3.384407e-71 Neutral grassland\n", "19 98.781469 3.039441e-23 Urban\n", "15 42.304272 7.923464e-11 Supralittoral sediment\n", "18 42.065170 8.952540e-11 Saltmarsh\n", "13 27.868120 1.306903e-07 Freshwater\n", "7 18.302932 1.889456e-05 Fen\n", "17 6.233018 1.254381e-02 Littoral sediment\n", "1 5.215300 2.239529e-02 Coniferous woodland\n", "11 4.740881 2.946103e-02 Inland rock\n", "14 4.021946 4.491999e-02 Supralittoral rock\n", "8 3.136113 7.658531e-02 Heather\n", "6 2.392910 1.218961e-01 Acid grassland\n", "12 0.249330 6.175506e-01 Saltwater\n", "10 0.120851 7.281160e-01 Bog\n", "9 0.012848 9.097560e-01 Heather grassland\n", "16 0.000036 9.952257e-01 Littoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Indian Peafowl 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
23826.3417131.639780e-179Surface type
22773.1163573.264405e-168Cumulative catchment area
24694.6519081.603430e-151Outflowing drainage direction
2636.3966564.208646e-139Arable
25618.0986983.386540e-135Inflowing drainage direction
21581.2706482.497700e-127Elevation
3579.2898176.621914e-127Improve grassland
0557.9852512.382356e-122Deciduous woodland
20341.3619217.768283e-76Suburban
431.0374532.550632e-08Neutral grassland
1928.4794239.532196e-08Urban
519.5912419.621430e-06Calcareous grassland
711.1274978.515085e-04Fen
139.8728291.678853e-03Freshwater
64.9757472.571178e-02Acid grassland
103.5211246.060014e-02Bog
12.6743231.019882e-01Coniferous woodland
92.2674921.321231e-01Heather grassland
81.4708912.252138e-01Heather
110.7304983.927281e-01Inland rock
120.7177253.968973e-01Saltwater
150.5093394.754303e-01Supralittoral sediment
180.3350805.626872e-01Saltmarsh
140.1322517.161121e-01Supralittoral rock
170.0993037.526692e-01Littoral sediment
160.0342668.531431e-01Littoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 826.341713 1.639780e-179 Surface type\n", "22 773.116357 3.264405e-168 Cumulative catchment area\n", "24 694.651908 1.603430e-151 Outflowing drainage direction\n", "2 636.396656 4.208646e-139 Arable\n", "25 618.098698 3.386540e-135 Inflowing drainage direction\n", "21 581.270648 2.497700e-127 Elevation\n", "3 579.289817 6.621914e-127 Improve grassland\n", "0 557.985251 2.382356e-122 Deciduous woodland\n", "20 341.361921 7.768283e-76 Suburban\n", "4 31.037453 2.550632e-08 Neutral grassland\n", "19 28.479423 9.532196e-08 Urban\n", "5 19.591241 9.621430e-06 Calcareous grassland\n", "7 11.127497 8.515085e-04 Fen\n", "13 9.872829 1.678853e-03 Freshwater\n", "6 4.975747 2.571178e-02 Acid grassland\n", "10 3.521124 6.060014e-02 Bog\n", "1 2.674323 1.019882e-01 Coniferous woodland\n", "9 2.267492 1.321231e-01 Heather grassland\n", "8 1.470891 2.252138e-01 Heather\n", "11 0.730498 3.927281e-01 Inland rock\n", "12 0.717725 3.968973e-01 Saltwater\n", "15 0.509339 4.754303e-01 Supralittoral sediment\n", "18 0.335080 5.626872e-01 Saltmarsh\n", "14 0.132251 7.161121e-01 Supralittoral rock\n", "17 0.099303 7.526692e-01 Littoral sediment\n", "16 0.034266 8.531431e-01 Littoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Little Owl 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
239941.9949170.000000e+00Surface type
29462.7945040.000000e+00Arable
248442.6618240.000000e+00Outflowing drainage direction
227788.8996410.000000e+00Cumulative catchment area
257508.9703310.000000e+00Inflowing drainage direction
216742.5534930.000000e+00Elevation
34944.4736150.000000e+00Improve grassland
202250.9937740.000000e+00Suburban
01224.0860802.281664e-263Deciduous woodland
4630.0205199.656906e-138Neutral grassland
5439.8307065.052213e-97Calcareous grassland
19344.0144252.082536e-76Urban
13191.2207662.273330e-43Freshwater
7143.2226506.146287e-33Fen
1859.7965511.081619e-14Saltmarsh
642.2008318.353273e-11Acid grassland
134.0801885.338007e-09Coniferous woodland
1030.4630893.428286e-08Bog
826.6471552.456208e-07Heather
919.0563621.272986e-05Heather grassland
1516.7545474.264108e-05Supralittoral sediment
167.3721756.627513e-03Littoral rock
117.1375567.552295e-03Inland rock
145.8902951.522985e-02Supralittoral rock
120.1576146.913651e-01Saltwater
170.0950977.577967e-01Littoral sediment
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 9941.994917 0.000000e+00 Surface type\n", "2 9462.794504 0.000000e+00 Arable\n", "24 8442.661824 0.000000e+00 Outflowing drainage direction\n", "22 7788.899641 0.000000e+00 Cumulative catchment area\n", "25 7508.970331 0.000000e+00 Inflowing drainage direction\n", "21 6742.553493 0.000000e+00 Elevation\n", "3 4944.473615 0.000000e+00 Improve grassland\n", "20 2250.993774 0.000000e+00 Suburban\n", "0 1224.086080 2.281664e-263 Deciduous woodland\n", "4 630.020519 9.656906e-138 Neutral grassland\n", "5 439.830706 5.052213e-97 Calcareous grassland\n", "19 344.014425 2.082536e-76 Urban\n", "13 191.220766 2.273330e-43 Freshwater\n", "7 143.222650 6.146287e-33 Fen\n", "18 59.796551 1.081619e-14 Saltmarsh\n", "6 42.200831 8.353273e-11 Acid grassland\n", "1 34.080188 5.338007e-09 Coniferous woodland\n", "10 30.463089 3.428286e-08 Bog\n", "8 26.647155 2.456208e-07 Heather\n", "9 19.056362 1.272986e-05 Heather grassland\n", "15 16.754547 4.264108e-05 Supralittoral sediment\n", "16 7.372175 6.627513e-03 Littoral rock\n", "11 7.137556 7.552295e-03 Inland rock\n", "14 5.890295 1.522985e-02 Supralittoral rock\n", "12 0.157614 6.913651e-01 Saltwater\n", "17 0.095097 7.577967e-01 Littoral sediment" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Mandarin Duck 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
223559.7809520.000000e+00Cumulative catchment area
03525.9752950.000000e+00Deciduous woodland
242973.6341050.000000e+00Outflowing drainage direction
232900.2681490.000000e+00Surface type
32556.2070490.000000e+00Improve grassland
252139.2569630.000000e+00Inflowing drainage direction
212040.5990630.000000e+00Elevation
201659.9811950.000000e+00Suburban
13792.7054952.254877e-172Freshwater
19434.1601648.347169e-96Urban
2322.3177509.929157e-72Arable
4289.0274101.523840e-64Neutral grassland
586.9865821.158292e-20Calcareous grassland
143.6172364.053481e-11Coniferous woodland
730.4543783.443701e-08Fen
912.6804953.700080e-04Heather grassland
1011.1701548.321583e-04Bog
64.7743782.889326e-02Acid grassland
163.4683176.256379e-02Littoral rock
143.1919977.400873e-02Supralittoral rock
173.0806937.923601e-02Littoral sediment
122.6033021.066509e-01Saltwater
112.2907841.301538e-01Inland rock
151.4089762.352351e-01Supralittoral sediment
80.0233298.786052e-01Heather
180.0046139.458479e-01Saltmarsh
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "22 3559.780952 0.000000e+00 Cumulative catchment area\n", "0 3525.975295 0.000000e+00 Deciduous woodland\n", "24 2973.634105 0.000000e+00 Outflowing drainage direction\n", "23 2900.268149 0.000000e+00 Surface type\n", "3 2556.207049 0.000000e+00 Improve grassland\n", "25 2139.256963 0.000000e+00 Inflowing drainage direction\n", "21 2040.599063 0.000000e+00 Elevation\n", "20 1659.981195 0.000000e+00 Suburban\n", "13 792.705495 2.254877e-172 Freshwater\n", "19 434.160164 8.347169e-96 Urban\n", "2 322.317750 9.929157e-72 Arable\n", "4 289.027410 1.523840e-64 Neutral grassland\n", "5 86.986582 1.158292e-20 Calcareous grassland\n", "1 43.617236 4.053481e-11 Coniferous woodland\n", "7 30.454378 3.443701e-08 Fen\n", "9 12.680495 3.700080e-04 Heather grassland\n", "10 11.170154 8.321583e-04 Bog\n", "6 4.774378 2.889326e-02 Acid grassland\n", "16 3.468317 6.256379e-02 Littoral rock\n", "14 3.191997 7.400873e-02 Supralittoral rock\n", "17 3.080693 7.923601e-02 Littoral sediment\n", "12 2.603302 1.066509e-01 Saltwater\n", "11 2.290784 1.301538e-01 Inland rock\n", "15 1.408976 2.352351e-01 Supralittoral sediment\n", "8 0.023329 8.786052e-01 Heather\n", "18 0.004613 9.458479e-01 Saltmarsh" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Mute Swan 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
2341778.6831490.000000e+00Surface type
2537707.8640050.000000e+00Inflowing drainage direction
2132149.8039350.000000e+00Elevation
2424629.7305320.000000e+00Outflowing drainage direction
227714.9911720.000000e+00Cumulative catchment area
36922.4294330.000000e+00Improve grassland
205556.7695970.000000e+00Suburban
24548.3090430.000000e+00Arable
03188.8338270.000000e+00Deciduous woodland
192126.9163370.000000e+00Urban
131261.0944234.042871e-271Freshwater
4710.9898835.323266e-155Neutral grassland
17350.9477746.674534e-78Littoral sediment
6274.3005332.317521e-61Acid grassland
18258.6972555.478710e-58Saltmarsh
7204.4399813.082649e-46Fen
15138.8760355.432921e-32Supralittoral sediment
10122.3100532.214177e-28Bog
12113.2024002.149655e-26Saltwater
8103.8161622.411588e-24Heather
988.3795385.738193e-21Heather grassland
1666.6977223.276343e-16Littoral rock
1149.3129982.224191e-12Inland rock
144.6698922.369145e-11Coniferous woodland
1429.3310596.143449e-08Supralittoral rock
58.6985193.186914e-03Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 41778.683149 0.000000e+00 Surface type\n", "25 37707.864005 0.000000e+00 Inflowing drainage direction\n", "21 32149.803935 0.000000e+00 Elevation\n", "24 24629.730532 0.000000e+00 Outflowing drainage direction\n", "22 7714.991172 0.000000e+00 Cumulative catchment area\n", "3 6922.429433 0.000000e+00 Improve grassland\n", "20 5556.769597 0.000000e+00 Suburban\n", "2 4548.309043 0.000000e+00 Arable\n", "0 3188.833827 0.000000e+00 Deciduous woodland\n", "19 2126.916337 0.000000e+00 Urban\n", "13 1261.094423 4.042871e-271 Freshwater\n", "4 710.989883 5.323266e-155 Neutral grassland\n", "17 350.947774 6.674534e-78 Littoral sediment\n", "6 274.300533 2.317521e-61 Acid grassland\n", "18 258.697255 5.478710e-58 Saltmarsh\n", "7 204.439981 3.082649e-46 Fen\n", "15 138.876035 5.432921e-32 Supralittoral sediment\n", "10 122.310053 2.214177e-28 Bog\n", "12 113.202400 2.149655e-26 Saltwater\n", "8 103.816162 2.411588e-24 Heather\n", "9 88.379538 5.738193e-21 Heather grassland\n", "16 66.697722 3.276343e-16 Littoral rock\n", "11 49.312998 2.224191e-12 Inland rock\n", "1 44.669892 2.369145e-11 Coniferous woodland\n", "14 29.331059 6.143449e-08 Supralittoral rock\n", "5 8.698519 3.186914e-03 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pheasant 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
2314828.4393000.000000e+00Surface type
2412411.6643970.000000e+00Outflowing drainage direction
2111511.4363050.000000e+00Elevation
2511025.7489710.000000e+00Inflowing drainage direction
229363.8618950.000000e+00Cumulative catchment area
36889.7584020.000000e+00Improve grassland
25020.1154690.000000e+00Arable
03497.6528870.000000e+00Deciduous woodland
201872.6914980.000000e+00Suburban
5415.8584757.152889e-92Calcareous grassland
4355.0693988.637276e-79Neutral grassland
1235.2432636.519726e-53Coniferous woodland
19219.1094542.036749e-49Urban
6141.7403991.292165e-32Acid grassland
13137.7848199.390379e-32Freshwater
888.3978785.685377e-21Heather
757.6731693.176391e-14Fen
1033.1548478.585587e-09Bog
1821.4139453.714720e-06Saltmarsh
1513.1230562.921201e-04Supralittoral sediment
115.4513891.955872e-02Inland rock
94.3622213.675199e-02Heather grassland
162.7516969.716078e-02Littoral rock
120.2023766.528125e-01Saltwater
170.1468867.015312e-01Littoral sediment
140.0773397.809384e-01Supralittoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 14828.439300 0.000000e+00 Surface type\n", "24 12411.664397 0.000000e+00 Outflowing drainage direction\n", "21 11511.436305 0.000000e+00 Elevation\n", "25 11025.748971 0.000000e+00 Inflowing drainage direction\n", "22 9363.861895 0.000000e+00 Cumulative catchment area\n", "3 6889.758402 0.000000e+00 Improve grassland\n", "2 5020.115469 0.000000e+00 Arable\n", "0 3497.652887 0.000000e+00 Deciduous woodland\n", "20 1872.691498 0.000000e+00 Suburban\n", "5 415.858475 7.152889e-92 Calcareous grassland\n", "4 355.069398 8.637276e-79 Neutral grassland\n", "1 235.243263 6.519726e-53 Coniferous woodland\n", "19 219.109454 2.036749e-49 Urban\n", "6 141.740399 1.292165e-32 Acid grassland\n", "13 137.784819 9.390379e-32 Freshwater\n", "8 88.397878 5.685377e-21 Heather\n", "7 57.673169 3.176391e-14 Fen\n", "10 33.154847 8.585587e-09 Bog\n", "18 21.413945 3.714720e-06 Saltmarsh\n", "15 13.123056 2.921201e-04 Supralittoral sediment\n", "11 5.451389 1.955872e-02 Inland rock\n", "9 4.362221 3.675199e-02 Heather grassland\n", "16 2.751696 9.716078e-02 Littoral rock\n", "12 0.202376 6.528125e-01 Saltwater\n", "17 0.146886 7.015312e-01 Littoral sediment\n", "14 0.077339 7.809384e-01 Supralittoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pink-footed Goose 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
255823.2460060.000000e+00Inflowing drainage direction
235796.3296750.000000e+00Surface type
214750.0627970.000000e+00Elevation
244416.4115460.000000e+00Outflowing drainage direction
224111.2407450.000000e+00Cumulative catchment area
24027.3854550.000000e+00Arable
171680.7562570.000000e+00Littoral sediment
31578.7595850.000000e+00Improve grassland
181503.6428981.032597e-321Saltmarsh
201109.1158573.118895e-239Suburban
01064.0141609.660098e-230Deciduous woodland
15852.3357285.051033e-185Supralittoral sediment
19449.4507504.341152e-99Urban
13441.1834512.587866e-97Freshwater
16329.3744672.984579e-73Littoral rock
7117.2078972.872142e-27Fen
1255.2756521.072913e-13Saltwater
450.4842411.225518e-12Neutral grassland
17.4813506.237451e-03Coniferous woodland
63.0247528.201214e-02Acid grassland
142.0012531.571786e-01Supralittoral rock
81.3791742.402504e-01Heather
111.1984632.736371e-01Inland rock
100.0515158.204487e-01Bog
50.0224368.809347e-01Calcareous grassland
90.0023029.617297e-01Heather grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 5823.246006 0.000000e+00 Inflowing drainage direction\n", "23 5796.329675 0.000000e+00 Surface type\n", "21 4750.062797 0.000000e+00 Elevation\n", "24 4416.411546 0.000000e+00 Outflowing drainage direction\n", "22 4111.240745 0.000000e+00 Cumulative catchment area\n", "2 4027.385455 0.000000e+00 Arable\n", "17 1680.756257 0.000000e+00 Littoral sediment\n", "3 1578.759585 0.000000e+00 Improve grassland\n", "18 1503.642898 1.032597e-321 Saltmarsh\n", "20 1109.115857 3.118895e-239 Suburban\n", "0 1064.014160 9.660098e-230 Deciduous woodland\n", "15 852.335728 5.051033e-185 Supralittoral sediment\n", "19 449.450750 4.341152e-99 Urban\n", "13 441.183451 2.587866e-97 Freshwater\n", "16 329.374467 2.984579e-73 Littoral rock\n", "7 117.207897 2.872142e-27 Fen\n", "12 55.275652 1.072913e-13 Saltwater\n", "4 50.484241 1.225518e-12 Neutral grassland\n", "1 7.481350 6.237451e-03 Coniferous woodland\n", "6 3.024752 8.201214e-02 Acid grassland\n", "14 2.001253 1.571786e-01 Supralittoral rock\n", "8 1.379174 2.402504e-01 Heather\n", "11 1.198463 2.736371e-01 Inland rock\n", "10 0.051515 8.204487e-01 Bog\n", "5 0.022436 8.809347e-01 Calcareous grassland\n", "9 0.002302 9.617297e-01 Heather grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pintail 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
251325.1681831.608067e-284Inflowing drainage direction
231169.8409955.439990e-252Surface type
21987.2481751.475675e-213Elevation
24832.2603919.109264e-181Outflowing drainage direction
18829.3982533.685447e-180Saltmarsh
22760.5262431.546155e-165Cumulative catchment area
2723.1688731.361610e-157Arable
17700.4327819.417029e-153Littoral sediment
3435.3628234.604501e-96Improve grassland
20333.6103773.643021e-74Suburban
19306.4160362.680625e-68Urban
0244.3361697.011810e-55Deciduous woodland
4241.5403062.824742e-54Neutral grassland
7156.6172337.482770e-36Fen
15129.0302777.586888e-30Supralittoral sediment
1278.1333761.009712e-18Saltwater
1349.6129111.909316e-12Freshwater
64.7668182.902040e-02Acid grassland
81.6055962.051210e-01Heather
111.4117252.347787e-01Inland rock
91.1353542.866439e-01Heather grassland
10.7355273.911038e-01Coniferous woodland
140.3898455.323851e-01Supralittoral rock
50.1738206.767413e-01Calcareous grassland
160.0491508.245503e-01Littoral rock
100.0342718.531325e-01Bog
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 1325.168183 1.608067e-284 Inflowing drainage direction\n", "23 1169.840995 5.439990e-252 Surface type\n", "21 987.248175 1.475675e-213 Elevation\n", "24 832.260391 9.109264e-181 Outflowing drainage direction\n", "18 829.398253 3.685447e-180 Saltmarsh\n", "22 760.526243 1.546155e-165 Cumulative catchment area\n", "2 723.168873 1.361610e-157 Arable\n", "17 700.432781 9.417029e-153 Littoral sediment\n", "3 435.362823 4.604501e-96 Improve grassland\n", "20 333.610377 3.643021e-74 Suburban\n", "19 306.416036 2.680625e-68 Urban\n", "0 244.336169 7.011810e-55 Deciduous woodland\n", "4 241.540306 2.824742e-54 Neutral grassland\n", "7 156.617233 7.482770e-36 Fen\n", "15 129.030277 7.586888e-30 Supralittoral sediment\n", "12 78.133376 1.009712e-18 Saltwater\n", "13 49.612911 1.909316e-12 Freshwater\n", "6 4.766818 2.902040e-02 Acid grassland\n", "8 1.605596 2.051210e-01 Heather\n", "11 1.411725 2.347787e-01 Inland rock\n", "9 1.135354 2.866439e-01 Heather grassland\n", "1 0.735527 3.911038e-01 Coniferous woodland\n", "14 0.389845 5.323851e-01 Supralittoral rock\n", "5 0.173820 6.767413e-01 Calcareous grassland\n", "16 0.049150 8.245503e-01 Littoral rock\n", "10 0.034271 8.531325e-01 Bog" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pochard 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
231842.7612840.000000e+00Surface type
21555.5361080.000000e+00Arable
251549.0515650.000000e+00Inflowing drainage direction
241485.8537665.152527e-318Outflowing drainage direction
221392.7329671.268634e-298Cumulative catchment area
211309.1874053.516732e-281Elevation
20894.2341956.746925e-194Suburban
3745.1604922.857352e-162Improve grassland
19743.6818115.893993e-162Urban
0574.4708937.099727e-126Deciduous woodland
13271.8091808.008227e-61Freshwater
4149.3453322.857674e-34Neutral grassland
7131.3446632.375107e-30Fen
1899.8657361.760901e-23Saltmarsh
1546.6756008.521422e-12Supralittoral sediment
1738.9599904.378224e-10Littoral sediment
1213.2900462.672276e-04Saltwater
612.0150675.283914e-04Acid grassland
510.4023391.259780e-03Calcareous grassland
1010.1055141.479624e-03Bog
94.7721902.893001e-02Heather grassland
84.0242744.485804e-02Heather
112.1590901.417381e-01Inland rock
140.8516913.560812e-01Supralittoral rock
10.6320464.266115e-01Coniferous woodland
160.2402356.240394e-01Littoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 1842.761284 0.000000e+00 Surface type\n", "2 1555.536108 0.000000e+00 Arable\n", "25 1549.051565 0.000000e+00 Inflowing drainage direction\n", "24 1485.853766 5.152527e-318 Outflowing drainage direction\n", "22 1392.732967 1.268634e-298 Cumulative catchment area\n", "21 1309.187405 3.516732e-281 Elevation\n", "20 894.234195 6.746925e-194 Suburban\n", "3 745.160492 2.857352e-162 Improve grassland\n", "19 743.681811 5.893993e-162 Urban\n", "0 574.470893 7.099727e-126 Deciduous woodland\n", "13 271.809180 8.008227e-61 Freshwater\n", "4 149.345332 2.857674e-34 Neutral grassland\n", "7 131.344663 2.375107e-30 Fen\n", "18 99.865736 1.760901e-23 Saltmarsh\n", "15 46.675600 8.521422e-12 Supralittoral sediment\n", "17 38.959990 4.378224e-10 Littoral sediment\n", "12 13.290046 2.672276e-04 Saltwater\n", "6 12.015067 5.283914e-04 Acid grassland\n", "5 10.402339 1.259780e-03 Calcareous grassland\n", "10 10.105514 1.479624e-03 Bog\n", "9 4.772190 2.893001e-02 Heather grassland\n", "8 4.024274 4.485804e-02 Heather\n", "11 2.159090 1.417381e-01 Inland rock\n", "14 0.851691 3.560812e-01 Supralittoral rock\n", "1 0.632046 4.266115e-01 Coniferous woodland\n", "16 0.240235 6.240394e-01 Littoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Red-legged Partridge 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
29262.5619800.000000e+00Arable
238310.3473240.000000e+00Surface type
246580.4680600.000000e+00Outflowing drainage direction
256132.3932160.000000e+00Inflowing drainage direction
216122.8566680.000000e+00Elevation
226094.0721730.000000e+00Cumulative catchment area
33761.3823360.000000e+00Improve grassland
01821.3220330.000000e+00Deciduous woodland
20591.4204831.691353e-129Suburban
5325.7576501.798558e-72Calcareous grassland
4108.6945332.073050e-25Neutral grassland
1958.1305102.518487e-14Urban
754.4771321.609616e-13Fen
1338.5145095.499196e-10Freshwater
1819.6209369.473139e-06Saltmarsh
97.2246207.194636e-03Heather grassland
117.1254877.603285e-03Inland rock
154.5322903.326844e-02Supralittoral sediment
84.4598103.470883e-02Heather
163.9795594.606380e-02Littoral rock
103.5053456.117991e-02Bog
12.1153251.458406e-01Coniferous woodland
140.7474303.872974e-01Supralittoral rock
60.2891205.907888e-01Acid grassland
170.1536036.951180e-01Littoral sediment
120.1398987.083844e-01Saltwater
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "2 9262.561980 0.000000e+00 Arable\n", "23 8310.347324 0.000000e+00 Surface type\n", "24 6580.468060 0.000000e+00 Outflowing drainage direction\n", "25 6132.393216 0.000000e+00 Inflowing drainage direction\n", "21 6122.856668 0.000000e+00 Elevation\n", "22 6094.072173 0.000000e+00 Cumulative catchment area\n", "3 3761.382336 0.000000e+00 Improve grassland\n", "0 1821.322033 0.000000e+00 Deciduous woodland\n", "20 591.420483 1.691353e-129 Suburban\n", "5 325.757650 1.798558e-72 Calcareous grassland\n", "4 108.694533 2.073050e-25 Neutral grassland\n", "19 58.130510 2.518487e-14 Urban\n", "7 54.477132 1.609616e-13 Fen\n", "13 38.514509 5.499196e-10 Freshwater\n", "18 19.620936 9.473139e-06 Saltmarsh\n", "9 7.224620 7.194636e-03 Heather grassland\n", "11 7.125487 7.603285e-03 Inland rock\n", "15 4.532290 3.326844e-02 Supralittoral sediment\n", "8 4.459810 3.470883e-02 Heather\n", "16 3.979559 4.606380e-02 Littoral rock\n", "10 3.505345 6.117991e-02 Bog\n", "1 2.115325 1.458406e-01 Coniferous woodland\n", "14 0.747430 3.872974e-01 Supralittoral rock\n", "6 0.289120 5.907888e-01 Acid grassland\n", "17 0.153603 6.951180e-01 Littoral sediment\n", "12 0.139898 7.083844e-01 Saltwater" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Ring-necked Parakeet 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
205174.0294800.000000e+00Suburban
194816.2933270.000000e+00Urban
222110.0559970.000000e+00Cumulative catchment area
231451.1820048.429407e-311Surface type
241239.1020831.629495e-266Outflowing drainage direction
251101.5521881.215523e-237Inflowing drainage direction
21934.4658092.082605e-202Elevation
0644.6953157.138206e-141Deciduous woodland
3590.5309352.620156e-129Improve grassland
13266.9082479.184502e-60Freshwater
233.7378816.363711e-09Arable
616.1425905.887779e-05Acid grassland
98.3504273.858472e-03Heather grassland
106.3047421.204628e-02Bog
46.0187661.415966e-02Neutral grassland
85.3546662.067299e-02Heather
14.6306963.141203e-02Coniferous woodland
162.0757821.496627e-01Littoral rock
112.0283601.543966e-01Inland rock
141.7731631.830003e-01Supralittoral rock
171.3430032.465134e-01Littoral sediment
181.0079353.154055e-01Saltmarsh
120.7679933.808449e-01Saltwater
150.1708806.793333e-01Supralittoral sediment
70.1227667.260555e-01Fen
50.0619658.034183e-01Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "20 5174.029480 0.000000e+00 Suburban\n", "19 4816.293327 0.000000e+00 Urban\n", "22 2110.055997 0.000000e+00 Cumulative catchment area\n", "23 1451.182004 8.429407e-311 Surface type\n", "24 1239.102083 1.629495e-266 Outflowing drainage direction\n", "25 1101.552188 1.215523e-237 Inflowing drainage direction\n", "21 934.465809 2.082605e-202 Elevation\n", "0 644.695315 7.138206e-141 Deciduous woodland\n", "3 590.530935 2.620156e-129 Improve grassland\n", "13 266.908247 9.184502e-60 Freshwater\n", "2 33.737881 6.363711e-09 Arable\n", "6 16.142590 5.887779e-05 Acid grassland\n", "9 8.350427 3.858472e-03 Heather grassland\n", "10 6.304742 1.204628e-02 Bog\n", "4 6.018766 1.415966e-02 Neutral grassland\n", "8 5.354666 2.067299e-02 Heather\n", "1 4.630696 3.141203e-02 Coniferous woodland\n", "16 2.075782 1.496627e-01 Littoral rock\n", "11 2.028360 1.543966e-01 Inland rock\n", "14 1.773163 1.830003e-01 Supralittoral rock\n", "17 1.343003 2.465134e-01 Littoral sediment\n", "18 1.007935 3.154055e-01 Saltmarsh\n", "12 0.767993 3.808449e-01 Saltwater\n", "15 0.170880 6.793333e-01 Supralittoral sediment\n", "7 0.122766 7.260555e-01 Fen\n", "5 0.061965 8.034183e-01 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Rock Dove 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
239715.2088960.000000e+00Surface type
247716.6494250.000000e+00Outflowing drainage direction
257489.6235130.000000e+00Inflowing drainage direction
217209.1827190.000000e+00Elevation
226950.6264000.000000e+00Cumulative catchment area
34736.9713750.000000e+00Improve grassland
204361.9142410.000000e+00Suburban
23272.5668530.000000e+00Arable
01947.2769150.000000e+00Deciduous woodland
191698.7226740.000000e+00Urban
4327.4609807.718845e-73Neutral grassland
5172.8105542.260169e-39Calcareous grassland
13158.4765052.949316e-36Freshwater
1663.3990641.741628e-15Littoral rock
1438.5122315.505612e-10Supralittoral rock
1535.3600402.767982e-09Supralittoral sediment
732.3057381.328301e-08Fen
1815.7332897.308286e-05Saltmarsh
1713.8081232.027922e-04Littoral sediment
115.9395931.480967e-02Inland rock
81.4677242.257138e-01Heather
61.1830742.767391e-01Acid grassland
101.0685423.012825e-01Bog
90.5208294.704932e-01Heather grassland
120.4919054.830835e-01Saltwater
10.3637695.464245e-01Coniferous woodland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 9715.208896 0.000000e+00 Surface type\n", "24 7716.649425 0.000000e+00 Outflowing drainage direction\n", "25 7489.623513 0.000000e+00 Inflowing drainage direction\n", "21 7209.182719 0.000000e+00 Elevation\n", "22 6950.626400 0.000000e+00 Cumulative catchment area\n", "3 4736.971375 0.000000e+00 Improve grassland\n", "20 4361.914241 0.000000e+00 Suburban\n", "2 3272.566853 0.000000e+00 Arable\n", "0 1947.276915 0.000000e+00 Deciduous woodland\n", "19 1698.722674 0.000000e+00 Urban\n", "4 327.460980 7.718845e-73 Neutral grassland\n", "5 172.810554 2.260169e-39 Calcareous grassland\n", "13 158.476505 2.949316e-36 Freshwater\n", "16 63.399064 1.741628e-15 Littoral rock\n", "14 38.512231 5.505612e-10 Supralittoral rock\n", "15 35.360040 2.767982e-09 Supralittoral sediment\n", "7 32.305738 1.328301e-08 Fen\n", "18 15.733289 7.308286e-05 Saltmarsh\n", "17 13.808123 2.027922e-04 Littoral sediment\n", "11 5.939593 1.480967e-02 Inland rock\n", "8 1.467724 2.257138e-01 Heather\n", "6 1.183074 2.767391e-01 Acid grassland\n", "10 1.068542 3.012825e-01 Bog\n", "9 0.520829 4.704932e-01 Heather grassland\n", "12 0.491905 4.830835e-01 Saltwater\n", "1 0.363769 5.464245e-01 Coniferous woodland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Ruddy Duck 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
132084.0238870.000000e+00Freshwater
24574.8004566.036397e-126Outflowing drainage direction
22439.9537634.753911e-97Cumulative catchment area
23331.6449489.666367e-74Surface type
25252.5055851.196889e-56Inflowing drainage direction
19209.7910452.131385e-47Urban
21206.3481081.188914e-46Elevation
0197.5458299.644094e-45Deciduous woodland
4178.4698121.333079e-40Neutral grassland
3159.6581141.632226e-36Improve grassland
20117.6152662.340567e-27Suburban
7105.0451171.299505e-24Fen
254.6797451.452179e-13Arable
1836.7002401.392471e-09Saltmarsh
1518.5781741.635478e-05Supralittoral sediment
1217.7163802.570854e-05Saltwater
63.9353504.728954e-02Acid grassland
172.1782051.399871e-01Littoral sediment
81.9161301.662933e-01Heather
101.3834602.395211e-01Bog
91.2210972.691535e-01Heather grassland
11.0088073.151962e-01Coniferous woodland
140.4454435.045116e-01Supralittoral rock
160.4330815.104857e-01Littoral rock
110.2473356.189611e-01Inland rock
50.0722807.880478e-01Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "13 2084.023887 0.000000e+00 Freshwater\n", "24 574.800456 6.036397e-126 Outflowing drainage direction\n", "22 439.953763 4.753911e-97 Cumulative catchment area\n", "23 331.644948 9.666367e-74 Surface type\n", "25 252.505585 1.196889e-56 Inflowing drainage direction\n", "19 209.791045 2.131385e-47 Urban\n", "21 206.348108 1.188914e-46 Elevation\n", "0 197.545829 9.644094e-45 Deciduous woodland\n", "4 178.469812 1.333079e-40 Neutral grassland\n", "3 159.658114 1.632226e-36 Improve grassland\n", "20 117.615266 2.340567e-27 Suburban\n", "7 105.045117 1.299505e-24 Fen\n", "2 54.679745 1.452179e-13 Arable\n", "18 36.700240 1.392471e-09 Saltmarsh\n", "15 18.578174 1.635478e-05 Supralittoral sediment\n", "12 17.716380 2.570854e-05 Saltwater\n", "6 3.935350 4.728954e-02 Acid grassland\n", "17 2.178205 1.399871e-01 Littoral sediment\n", "8 1.916130 1.662933e-01 Heather\n", "10 1.383460 2.395211e-01 Bog\n", "9 1.221097 2.691535e-01 Heather grassland\n", "1 1.008807 3.151962e-01 Coniferous woodland\n", "14 0.445443 5.045116e-01 Supralittoral rock\n", "16 0.433081 5.104857e-01 Littoral rock\n", "11 0.247335 6.189611e-01 Inland rock\n", "5 0.072280 7.880478e-01 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Whooper Swan 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
251676.5605280.000000e+00Inflowing drainage direction
231555.8842940.000000e+00Surface type
211411.8843251.291051e-302Elevation
241295.0508373.175931e-278Outflowing drainage direction
221252.1695942.987125e-269Cumulative catchment area
3560.8702235.752589e-123Improve grassland
2518.0997398.226528e-114Arable
13302.4570751.918026e-67Freshwater
17294.0970641.224555e-65Littoral sediment
0236.1681414.111276e-53Deciduous woodland
18210.1316281.798147e-47Saltmarsh
7171.0067735.572412e-39Fen
20166.9334974.277570e-38Suburban
4152.8899454.839547e-35Neutral grassland
19129.2047556.950815e-30Urban
988.6597824.982099e-21Heather grassland
1587.3665589.563148e-21Supralittoral sediment
1465.8100605.135459e-16Supralittoral rock
1662.3670712.938167e-15Littoral rock
1036.0896021.904150e-09Bog
125.5022774.442055e-07Coniferous woodland
813.9251161.905575e-04Heather
127.7537715.363096e-03Saltwater
67.5257276.085674e-03Acid grassland
110.3608085.480621e-01Inland rock
50.0287548.653489e-01Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 1676.560528 0.000000e+00 Inflowing drainage direction\n", "23 1555.884294 0.000000e+00 Surface type\n", "21 1411.884325 1.291051e-302 Elevation\n", "24 1295.050837 3.175931e-278 Outflowing drainage direction\n", "22 1252.169594 2.987125e-269 Cumulative catchment area\n", "3 560.870223 5.752589e-123 Improve grassland\n", "2 518.099739 8.226528e-114 Arable\n", "13 302.457075 1.918026e-67 Freshwater\n", "17 294.097064 1.224555e-65 Littoral sediment\n", "0 236.168141 4.111276e-53 Deciduous woodland\n", "18 210.131628 1.798147e-47 Saltmarsh\n", "7 171.006773 5.572412e-39 Fen\n", "20 166.933497 4.277570e-38 Suburban\n", "4 152.889945 4.839547e-35 Neutral grassland\n", "19 129.204755 6.950815e-30 Urban\n", "9 88.659782 4.982099e-21 Heather grassland\n", "15 87.366558 9.563148e-21 Supralittoral sediment\n", "14 65.810060 5.135459e-16 Supralittoral rock\n", "16 62.367071 2.938167e-15 Littoral rock\n", "10 36.089602 1.904150e-09 Bog\n", "1 25.502277 4.442055e-07 Coniferous woodland\n", "8 13.925116 1.905575e-04 Heather\n", "12 7.753771 5.363096e-03 Saltwater\n", "6 7.525727 6.085674e-03 Acid grassland\n", "11 0.360808 5.480621e-01 Inland rock\n", "5 0.028754 8.653489e-01 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Wigeon 1km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
254543.8589430.000000e+00Inflowing drainage direction
234385.3524010.000000e+00Surface type
213772.5692100.000000e+00Elevation
243296.2131070.000000e+00Outflowing drainage direction
223018.4470190.000000e+00Cumulative catchment area
31984.6840920.000000e+00Improve grassland
21640.4040910.000000e+00Arable
01016.5337339.783489e-220Deciduous woodland
20871.9888793.462062e-189Suburban
17839.4392772.736586e-182Littoral sediment
13570.7178514.505394e-125Freshwater
18551.3541326.247919e-121Saltmarsh
19535.1136441.869402e-117Urban
15329.5587172.723634e-73Supralittoral sediment
16261.3812611.439437e-58Littoral rock
7176.2430554.059697e-40Fen
4150.2396401.825651e-34Neutral grassland
12104.3575561.836557e-24Saltwater
1437.2448701.053444e-09Supralittoral rock
814.0970581.739122e-04Heather
112.6804173.700235e-04Coniferous woodland
99.2817862.316259e-03Heather grassland
57.2205277.211058e-03Calcareous grassland
101.4184782.336626e-01Bog
60.9765823.230512e-01Acid grassland
110.0960237.566574e-01Inland rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 4543.858943 0.000000e+00 Inflowing drainage direction\n", "23 4385.352401 0.000000e+00 Surface type\n", "21 3772.569210 0.000000e+00 Elevation\n", "24 3296.213107 0.000000e+00 Outflowing drainage direction\n", "22 3018.447019 0.000000e+00 Cumulative catchment area\n", "3 1984.684092 0.000000e+00 Improve grassland\n", "2 1640.404091 0.000000e+00 Arable\n", "0 1016.533733 9.783489e-220 Deciduous woodland\n", "20 871.988879 3.462062e-189 Suburban\n", "17 839.439277 2.736586e-182 Littoral sediment\n", "13 570.717851 4.505394e-125 Freshwater\n", "18 551.354132 6.247919e-121 Saltmarsh\n", "19 535.113644 1.869402e-117 Urban\n", "15 329.558717 2.723634e-73 Supralittoral sediment\n", "16 261.381261 1.439437e-58 Littoral rock\n", "7 176.243055 4.059697e-40 Fen\n", "4 150.239640 1.825651e-34 Neutral grassland\n", "12 104.357556 1.836557e-24 Saltwater\n", "14 37.244870 1.053444e-09 Supralittoral rock\n", "8 14.097058 1.739122e-04 Heather\n", "1 12.680417 3.700235e-04 Coniferous woodland\n", "9 9.281786 2.316259e-03 Heather grassland\n", "5 7.220527 7.211058e-03 Calcareous grassland\n", "10 1.418478 2.336626e-01 Bog\n", "6 0.976582 3.230512e-01 Acid grassland\n", "11 0.096023 7.566574e-01 Inland rock" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for dict in df_dicts:\n", " print(dict['name'])\n", " display(dict['kbest']['Dataframe'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.9.13 ('env': venv)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "f025c48a9b67ab76bdc0400dfa0f9ba99120976b4a6ec6a63d1c946516165c91" } } }, "nbformat": 4, "nbformat_minor": 2 }