{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import rioxarray\n",
"import json, os\n",
"\n",
"from sklearn.feature_selection import SelectKBest\n",
"from sklearn.feature_selection import chi2, f_classif, mutual_info_classif\n",
"from sklearn.metrics import f1_score, classification_report\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"from sklearn.linear_model import LogisticRegression, SGDClassifier\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier, StackingClassifier\n",
"\n",
"from imblearn.over_sampling import RandomOverSampler, SMOTE"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"seed = 42\n",
"verbose = False\n",
"details = False"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 575000.0 | \n",
" 265000.0 | \n",
" 35 | \n",
" 0 | \n",
" 0 | \n",
" 48 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 5.884448e-01 | \n",
" 8.964723e-02 | \n",
" 4.568375e-01 | \n",
" -3.400000e+38 | \n",
" 2.649607e-01 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 165000.0 | \n",
" 675000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 565000.0 | \n",
" 585000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 205000.0 | \n",
" 495000.0 | \n",
" 25 | \n",
" 0 | \n",
" 18 | \n",
" 51 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 4.266700e+01 | \n",
" 1.013295e+00 | \n",
" 4.043981e+00 | \n",
" 8.174946e+00 | \n",
" 2.103851e+01 | \n",
" 7.245066e+00 | \n",
" 2.880613e+01 | \n",
" 6.192643e+00 | \n",
" 5.904085e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 215000.0 | \n",
" 615000.0 | \n",
" 0 | \n",
" 0 | \n",
" 29 | \n",
" 43 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"575000.0 265000.0 35 0 0 \n",
"165000.0 675000.0 0 0 0 \n",
"565000.0 585000.0 0 0 0 \n",
"205000.0 495000.0 25 0 18 \n",
"215000.0 615000.0 0 0 29 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"575000.0 265000.0 48 0 0 \n",
"165000.0 675000.0 0 0 0 \n",
"565000.0 585000.0 0 0 0 \n",
"205000.0 495000.0 51 0 0 \n",
"215000.0 615000.0 43 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"575000.0 265000.0 0 0 0 0 ... \n",
"165000.0 675000.0 0 0 0 0 ... \n",
"565000.0 585000.0 0 0 0 0 ... \n",
"205000.0 495000.0 0 0 0 0 ... \n",
"215000.0 615000.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n",
"y x \n",
"575000.0 265000.0 5.884448e-01 8.964723e-02 4.568375e-01 \n",
"165000.0 675000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"565000.0 585000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"205000.0 495000.0 4.266700e+01 1.013295e+00 4.043981e+00 \n",
"215000.0 615000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"575000.0 265000.0 -3.400000e+38 2.649607e-01 \n",
"165000.0 675000.0 -3.400000e+38 -3.400000e+38 \n",
"565000.0 585000.0 -3.400000e+38 -3.400000e+38 \n",
"205000.0 495000.0 8.174946e+00 2.103851e+01 \n",
"215000.0 615000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"575000.0 265000.0 -3.400000e+38 -3.400000e+38 \n",
"165000.0 675000.0 -3.400000e+38 -3.400000e+38 \n",
"565000.0 585000.0 -3.400000e+38 -3.400000e+38 \n",
"205000.0 495000.0 7.245066e+00 2.880613e+01 \n",
"215000.0 615000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"575000.0 265000.0 -3.400000e+38 -3.400000e+38 0 \n",
"165000.0 675000.0 -3.400000e+38 -3.400000e+38 0 \n",
"565000.0 585000.0 -3.400000e+38 -3.400000e+38 0 \n",
"205000.0 495000.0 6.192643e+00 5.904085e+00 0 \n",
"215000.0 615000.0 -3.400000e+38 -3.400000e+38 1 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1225000.0 | \n",
" 255000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 415000.0 | \n",
" 255000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 675000.0 | \n",
" 5000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 735000.0 | \n",
" 645000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 75000.0 | \n",
" 605000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1225000.0 255000.0 0 0 0 \n",
"415000.0 255000.0 0 0 0 \n",
"675000.0 5000.0 0 0 0 \n",
"735000.0 645000.0 0 0 0 \n",
"75000.0 605000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1225000.0 255000.0 0 0 \n",
"415000.0 255000.0 0 0 \n",
"675000.0 5000.0 0 0 \n",
"735000.0 645000.0 0 0 \n",
"75000.0 605000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1225000.0 255000.0 0 0 0 0 \n",
"415000.0 255000.0 0 0 0 0 \n",
"675000.0 5000.0 0 0 0 0 \n",
"735000.0 645000.0 0 0 0 0 \n",
"75000.0 605000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"1225000.0 255000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"415000.0 255000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"675000.0 5000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"735000.0 645000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"75000.0 605000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"1225000.0 255000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"415000.0 255000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"675000.0 5000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"735000.0 645000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"75000.0 605000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"1225000.0 255000.0 -3.400000e+38 -3.400000e+38 \n",
"415000.0 255000.0 -3.400000e+38 -3.400000e+38 \n",
"675000.0 5000.0 -3.400000e+38 -3.400000e+38 \n",
"735000.0 645000.0 -3.400000e+38 -3.400000e+38 \n",
"75000.0 605000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"1225000.0 255000.0 -3.400000e+38 -3.400000e+38 0 \n",
"415000.0 255000.0 -3.400000e+38 -3.400000e+38 0 \n",
"675000.0 5000.0 -3.400000e+38 -3.400000e+38 0 \n",
"735000.0 645000.0 -3.400000e+38 -3.400000e+38 0 \n",
"75000.0 605000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 245000.0 | \n",
" 545000.0 | \n",
" 2 | \n",
" 0 | \n",
" 94 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 4.217234e+01 | \n",
" 9.610185e-01 | \n",
" 5.741166e+00 | \n",
" 6.499705e+00 | \n",
" 1.524815e+01 | \n",
" 3.120004e+00 | \n",
" 9.537933e+00 | \n",
" 5.674277e+00 | \n",
" 7.547367e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 1005000.0 | \n",
" 115000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 95000.0 | \n",
" 35000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 465000.0 | \n",
" 105000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 955000.0 | \n",
" 425000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"245000.0 545000.0 2 0 94 \n",
"1005000.0 115000.0 0 0 0 \n",
"95000.0 35000.0 0 0 0 \n",
"465000.0 105000.0 0 0 0 \n",
"955000.0 425000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"245000.0 545000.0 0 0 \n",
"1005000.0 115000.0 0 0 \n",
"95000.0 35000.0 0 0 \n",
"465000.0 105000.0 0 0 \n",
"955000.0 425000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"245000.0 545000.0 0 0 0 0 \n",
"1005000.0 115000.0 0 0 0 0 \n",
"95000.0 35000.0 0 0 0 0 \n",
"465000.0 105000.0 0 0 0 0 \n",
"955000.0 425000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"245000.0 545000.0 0 ... 4.217234e+01 9.610185e-01 \n",
"1005000.0 115000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"95000.0 35000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"465000.0 105000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"955000.0 425000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"245000.0 545000.0 5.741166e+00 6.499705e+00 1.524815e+01 \n",
"1005000.0 115000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"95000.0 35000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"465000.0 105000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"955000.0 425000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"245000.0 545000.0 3.120004e+00 9.537933e+00 \n",
"1005000.0 115000.0 -3.400000e+38 -3.400000e+38 \n",
"95000.0 35000.0 -3.400000e+38 -3.400000e+38 \n",
"465000.0 105000.0 -3.400000e+38 -3.400000e+38 \n",
"955000.0 425000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"245000.0 545000.0 5.674277e+00 7.547367e+00 0 \n",
"1005000.0 115000.0 -3.400000e+38 -3.400000e+38 0 \n",
"95000.0 35000.0 -3.400000e+38 -3.400000e+38 0 \n",
"465000.0 105000.0 -3.400000e+38 -3.400000e+38 0 \n",
"955000.0 425000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1295000.0 | \n",
" 605000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1265000.0 | \n",
" 585000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 375000.0 | \n",
" 585000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 565000.0 | \n",
" 265000.0 | \n",
" 1 | \n",
" 99 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.145484e+00 | \n",
" 7.241306e-01 | \n",
" 1.775866e+00 | \n",
" -3.400000e+38 | \n",
" 9.125673e-01 | \n",
" -3.400000e+38 | \n",
" 6.824454e-01 | \n",
" 4.153696e-01 | \n",
" 1.131074e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 755000.0 | \n",
" 615000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1295000.0 605000.0 0 0 0 \n",
"1265000.0 585000.0 0 0 0 \n",
"375000.0 585000.0 0 0 0 \n",
"565000.0 265000.0 1 99 0 \n",
"755000.0 615000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1295000.0 605000.0 0 0 \n",
"1265000.0 585000.0 0 0 \n",
"375000.0 585000.0 0 0 \n",
"565000.0 265000.0 0 0 \n",
"755000.0 615000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1295000.0 605000.0 0 0 0 0 \n",
"1265000.0 585000.0 0 0 0 0 \n",
"375000.0 585000.0 0 0 0 0 \n",
"565000.0 265000.0 0 0 0 0 \n",
"755000.0 615000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"1295000.0 605000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1265000.0 585000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"375000.0 585000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"565000.0 265000.0 0 ... 2.145484e+00 7.241306e-01 \n",
"755000.0 615000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"1295000.0 605000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1265000.0 585000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"375000.0 585000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"565000.0 265000.0 1.775866e+00 -3.400000e+38 9.125673e-01 \n",
"755000.0 615000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"1295000.0 605000.0 -3.400000e+38 -3.400000e+38 \n",
"1265000.0 585000.0 -3.400000e+38 -3.400000e+38 \n",
"375000.0 585000.0 -3.400000e+38 -3.400000e+38 \n",
"565000.0 265000.0 -3.400000e+38 6.824454e-01 \n",
"755000.0 615000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"1295000.0 605000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1265000.0 585000.0 -3.400000e+38 -3.400000e+38 0 \n",
"375000.0 585000.0 -3.400000e+38 -3.400000e+38 0 \n",
"565000.0 265000.0 4.153696e-01 1.131074e+00 0 \n",
"755000.0 615000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 625000.0 | \n",
" 235000.0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 12 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" ... | \n",
" 7.353696e-01 | \n",
" 1.023786e-01 | \n",
" 3.167432e-01 | \n",
" -3.400000e+38 | \n",
" 2.355547e-01 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1175000.0 | \n",
" 535000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 475000.0 | \n",
" 55000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 525000.0 | \n",
" 625000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 865000.0 | \n",
" 345000.0 | \n",
" 31 | \n",
" 22 | \n",
" 31 | \n",
" 14 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"625000.0 235000.0 1 0 0 \n",
"1175000.0 535000.0 0 0 0 \n",
"475000.0 55000.0 0 0 0 \n",
"525000.0 625000.0 0 0 0 \n",
"865000.0 345000.0 31 22 31 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"625000.0 235000.0 12 0 \n",
"1175000.0 535000.0 0 0 \n",
"475000.0 55000.0 0 0 \n",
"525000.0 625000.0 0 0 \n",
"865000.0 345000.0 14 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"625000.0 235000.0 0 0 0 0 \n",
"1175000.0 535000.0 0 0 0 0 \n",
"475000.0 55000.0 0 0 0 0 \n",
"525000.0 625000.0 0 0 0 0 \n",
"865000.0 345000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"625000.0 235000.0 3 ... 7.353696e-01 1.023786e-01 \n",
"1175000.0 535000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"475000.0 55000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"525000.0 625000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"865000.0 345000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"625000.0 235000.0 3.167432e-01 -3.400000e+38 2.355547e-01 \n",
"1175000.0 535000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"475000.0 55000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"525000.0 625000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"865000.0 345000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"625000.0 235000.0 -3.400000e+38 -3.400000e+38 \n",
"1175000.0 535000.0 -3.400000e+38 -3.400000e+38 \n",
"475000.0 55000.0 -3.400000e+38 -3.400000e+38 \n",
"525000.0 625000.0 -3.400000e+38 -3.400000e+38 \n",
"865000.0 345000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"625000.0 235000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1175000.0 535000.0 -3.400000e+38 -3.400000e+38 0 \n",
"475000.0 55000.0 -3.400000e+38 -3.400000e+38 0 \n",
"525000.0 625000.0 -3.400000e+38 -3.400000e+38 0 \n",
"865000.0 345000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 225000.0 | \n",
" 115000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 5.173159e-01 | \n",
" 9.168798e-01 | \n",
" 1.176593e-01 | \n",
" 0 | \n",
"
\n",
" \n",
" 1025000.0 | \n",
" 55000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 125000.0 | \n",
" 205000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.609200e+00 | \n",
" 9.198602e-02 | \n",
" 6.563689e-01 | \n",
" -3.400000e+38 | \n",
" 1.621378e+00 | \n",
" 7.263544e-01 | \n",
" 2.354775e+00 | \n",
" 3.642301e-01 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 305000.0 | \n",
" 565000.0 | \n",
" 3 | \n",
" 0 | \n",
" 91 | \n",
" 6 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.678290e-01 | \n",
" 1.253086e-02 | \n",
" 3.974655e-02 | \n",
" 2.524318e+01 | \n",
" 3.438350e-01 | \n",
" 7.384946e+00 | \n",
" 1.150152e+01 | \n",
" 1.020674e+01 | \n",
" 1.920763e+01 | \n",
" 1 | \n",
"
\n",
" \n",
" 1235000.0 | \n",
" 195000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"225000.0 115000.0 0 0 0 \n",
"1025000.0 55000.0 0 0 0 \n",
"125000.0 205000.0 0 0 0 \n",
"305000.0 565000.0 3 0 91 \n",
"1235000.0 195000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"225000.0 115000.0 0 0 \n",
"1025000.0 55000.0 0 0 \n",
"125000.0 205000.0 0 0 \n",
"305000.0 565000.0 6 0 \n",
"1235000.0 195000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"225000.0 115000.0 0 0 0 0 \n",
"1025000.0 55000.0 0 0 0 0 \n",
"125000.0 205000.0 0 0 0 0 \n",
"305000.0 565000.0 0 0 0 0 \n",
"1235000.0 195000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"225000.0 115000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1025000.0 55000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"125000.0 205000.0 0 ... 1.609200e+00 9.198602e-02 \n",
"305000.0 565000.0 0 ... 2.678290e-01 1.253086e-02 \n",
"1235000.0 195000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"225000.0 115000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1025000.0 55000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"125000.0 205000.0 6.563689e-01 -3.400000e+38 1.621378e+00 \n",
"305000.0 565000.0 3.974655e-02 2.524318e+01 3.438350e-01 \n",
"1235000.0 195000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"225000.0 115000.0 -3.400000e+38 5.173159e-01 \n",
"1025000.0 55000.0 -3.400000e+38 -3.400000e+38 \n",
"125000.0 205000.0 7.263544e-01 2.354775e+00 \n",
"305000.0 565000.0 7.384946e+00 1.150152e+01 \n",
"1235000.0 195000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"225000.0 115000.0 9.168798e-01 1.176593e-01 0 \n",
"1025000.0 55000.0 -3.400000e+38 -3.400000e+38 0 \n",
"125000.0 205000.0 3.642301e-01 -3.400000e+38 0 \n",
"305000.0 565000.0 1.020674e+01 1.920763e+01 1 \n",
"1235000.0 195000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 965000.0 | \n",
" 185000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 985000.0 | \n",
" 245000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 445000.0 | \n",
" 365000.0 | \n",
" 23 | \n",
" 0 | \n",
" 0 | \n",
" 76 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 4.631731e-01 | \n",
" 7.870384e-02 | \n",
" 3.457133e-01 | \n",
" 1.601849e+01 | \n",
" 2.843519e-01 | \n",
" 9.581071e+00 | \n",
" 1.675296e+01 | \n",
" 1.672057e+00 | \n",
" 4.541681e-01 | \n",
" 0 | \n",
"
\n",
" \n",
" 655000.0 | \n",
" 675000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1135000.0 | \n",
" 75000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"965000.0 185000.0 0 0 0 \n",
"985000.0 245000.0 0 0 0 \n",
"445000.0 365000.0 23 0 0 \n",
"655000.0 675000.0 0 0 0 \n",
"1135000.0 75000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"965000.0 185000.0 0 0 \n",
"985000.0 245000.0 0 0 \n",
"445000.0 365000.0 76 0 \n",
"655000.0 675000.0 0 0 \n",
"1135000.0 75000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"965000.0 185000.0 0 0 0 0 \n",
"985000.0 245000.0 0 0 0 0 \n",
"445000.0 365000.0 0 0 0 0 \n",
"655000.0 675000.0 0 0 0 0 \n",
"1135000.0 75000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"965000.0 185000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"985000.0 245000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"445000.0 365000.0 0 ... 4.631731e-01 7.870384e-02 \n",
"655000.0 675000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1135000.0 75000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"965000.0 185000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"985000.0 245000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"445000.0 365000.0 3.457133e-01 1.601849e+01 2.843519e-01 \n",
"655000.0 675000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1135000.0 75000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"965000.0 185000.0 -3.400000e+38 -3.400000e+38 \n",
"985000.0 245000.0 -3.400000e+38 -3.400000e+38 \n",
"445000.0 365000.0 9.581071e+00 1.675296e+01 \n",
"655000.0 675000.0 -3.400000e+38 -3.400000e+38 \n",
"1135000.0 75000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"965000.0 185000.0 -3.400000e+38 -3.400000e+38 0 \n",
"985000.0 245000.0 -3.400000e+38 -3.400000e+38 0 \n",
"445000.0 365000.0 1.672057e+00 4.541681e-01 0 \n",
"655000.0 675000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1135000.0 75000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 535000.0 | \n",
" 245000.0 | \n",
" 5 | \n",
" 0 | \n",
" 0 | \n",
" 65 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 3.529527e-01 | \n",
" -3.400000e+38 | \n",
" 1.662563e-01 | \n",
" 6.416388e+00 | \n",
" 1.433365e+00 | \n",
" 4.209006e-01 | \n",
" 0 | \n",
"
\n",
" \n",
" 1035000.0 | \n",
" 505000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 735000.0 | \n",
" 505000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 865000.0 | \n",
" 185000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 6 | \n",
" 0 | \n",
" 0 | \n",
" 60 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 515000.0 | \n",
" 595000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"535000.0 245000.0 5 0 0 \n",
"1035000.0 505000.0 0 0 0 \n",
"735000.0 505000.0 0 0 0 \n",
"865000.0 185000.0 0 0 0 \n",
"515000.0 595000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"535000.0 245000.0 65 0 \n",
"1035000.0 505000.0 0 0 \n",
"735000.0 505000.0 0 0 \n",
"865000.0 185000.0 0 0 \n",
"515000.0 595000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"535000.0 245000.0 0 0 0 0 \n",
"1035000.0 505000.0 0 0 0 0 \n",
"735000.0 505000.0 0 0 0 0 \n",
"865000.0 185000.0 0 6 0 0 \n",
"515000.0 595000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"535000.0 245000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1035000.0 505000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"735000.0 505000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"865000.0 185000.0 60 ... -3.400000e+38 -3.400000e+38 \n",
"515000.0 595000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"535000.0 245000.0 -3.400000e+38 3.529527e-01 -3.400000e+38 \n",
"1035000.0 505000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"735000.0 505000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"865000.0 185000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"515000.0 595000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"535000.0 245000.0 1.662563e-01 6.416388e+00 \n",
"1035000.0 505000.0 -3.400000e+38 -3.400000e+38 \n",
"735000.0 505000.0 -3.400000e+38 -3.400000e+38 \n",
"865000.0 185000.0 -3.400000e+38 -3.400000e+38 \n",
"515000.0 595000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"535000.0 245000.0 1.433365e+00 4.209006e-01 0 \n",
"1035000.0 505000.0 -3.400000e+38 -3.400000e+38 0 \n",
"735000.0 505000.0 -3.400000e+38 -3.400000e+38 0 \n",
"865000.0 185000.0 -3.400000e+38 -3.400000e+38 0 \n",
"515000.0 595000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 45000.0 | \n",
" 255000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 645000.0 | \n",
" 385000.0 | \n",
" 5 | \n",
" 0 | \n",
" 95 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 255000.0 | \n",
" 315000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 50 | \n",
" 0 | \n",
" 50 | \n",
" 0 | \n",
" ... | \n",
" 1.257356e+01 | \n",
" 1.745215e+01 | \n",
" 3.667922e+00 | \n",
" 3.258508e+00 | \n",
" 1.286882e+01 | \n",
" 1.388559e+00 | \n",
" 7.408013e+00 | \n",
" 4.606191e+00 | \n",
" 7.226281e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 895000.0 | \n",
" 215000.0 | \n",
" 0 | \n",
" 53 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 46 | \n",
" ... | \n",
" 2.407615e-01 | \n",
" 5.050598e-02 | \n",
" 2.042672e-01 | \n",
" -3.400000e+38 | \n",
" 1.190478e-01 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 7.148689e-01 | \n",
" 0 | \n",
"
\n",
" \n",
" 685000.0 | \n",
" 85000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"45000.0 255000.0 0 0 0 \n",
"645000.0 385000.0 5 0 95 \n",
"255000.0 315000.0 0 0 0 \n",
"895000.0 215000.0 0 53 0 \n",
"685000.0 85000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"45000.0 255000.0 0 0 0 \n",
"645000.0 385000.0 0 0 0 \n",
"255000.0 315000.0 0 0 0 \n",
"895000.0 215000.0 1 0 0 \n",
"685000.0 85000.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"45000.0 255000.0 0 0 0 0 ... \n",
"645000.0 385000.0 0 0 0 0 ... \n",
"255000.0 315000.0 50 0 50 0 ... \n",
"895000.0 215000.0 0 0 0 46 ... \n",
"685000.0 85000.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n",
"y x \n",
"45000.0 255000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"645000.0 385000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"255000.0 315000.0 1.257356e+01 1.745215e+01 3.667922e+00 \n",
"895000.0 215000.0 2.407615e-01 5.050598e-02 2.042672e-01 \n",
"685000.0 85000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"45000.0 255000.0 -3.400000e+38 -3.400000e+38 \n",
"645000.0 385000.0 -3.400000e+38 -3.400000e+38 \n",
"255000.0 315000.0 3.258508e+00 1.286882e+01 \n",
"895000.0 215000.0 -3.400000e+38 1.190478e-01 \n",
"685000.0 85000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"45000.0 255000.0 -3.400000e+38 -3.400000e+38 \n",
"645000.0 385000.0 -3.400000e+38 -3.400000e+38 \n",
"255000.0 315000.0 1.388559e+00 7.408013e+00 \n",
"895000.0 215000.0 -3.400000e+38 -3.400000e+38 \n",
"685000.0 85000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"45000.0 255000.0 -3.400000e+38 -3.400000e+38 0 \n",
"645000.0 385000.0 -3.400000e+38 -3.400000e+38 0 \n",
"255000.0 315000.0 4.606191e+00 7.226281e+00 0 \n",
"895000.0 215000.0 -3.400000e+38 7.148689e-01 0 \n",
"685000.0 85000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1195000.0 | \n",
" 675000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 575000.0 | \n",
" 395000.0 | \n",
" 8 | \n",
" 0 | \n",
" 30 | \n",
" 62 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 1 | \n",
"
\n",
" \n",
" 1105000.0 | \n",
" 235000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 95000.0 | \n",
" 215000.0 | \n",
" 12 | \n",
" 0 | \n",
" 0 | \n",
" 81 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" ... | \n",
" 2.167307e+01 | \n",
" 3.189414e+00 | \n",
" 8.516208e+00 | \n",
" 5.882689e+00 | \n",
" 1.956731e+01 | \n",
" 2.772233e+00 | \n",
" 4.508040e+00 | \n",
" 1.390220e+00 | \n",
" 2.684446e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 1015000.0 | \n",
" 315000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1195000.0 675000.0 0 0 0 \n",
"575000.0 395000.0 8 0 30 \n",
"1105000.0 235000.0 0 0 0 \n",
"95000.0 215000.0 12 0 0 \n",
"1015000.0 315000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1195000.0 675000.0 0 0 \n",
"575000.0 395000.0 62 0 \n",
"1105000.0 235000.0 0 0 \n",
"95000.0 215000.0 81 0 \n",
"1015000.0 315000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1195000.0 675000.0 0 0 0 0 \n",
"575000.0 395000.0 0 0 0 0 \n",
"1105000.0 235000.0 0 0 0 0 \n",
"95000.0 215000.0 0 0 0 1 \n",
"1015000.0 315000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"1195000.0 675000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"575000.0 395000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1105000.0 235000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"95000.0 215000.0 0 ... 2.167307e+01 3.189414e+00 \n",
"1015000.0 315000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"1195000.0 675000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"575000.0 395000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1105000.0 235000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"95000.0 215000.0 8.516208e+00 5.882689e+00 1.956731e+01 \n",
"1015000.0 315000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"1195000.0 675000.0 -3.400000e+38 -3.400000e+38 \n",
"575000.0 395000.0 -3.400000e+38 -3.400000e+38 \n",
"1105000.0 235000.0 -3.400000e+38 -3.400000e+38 \n",
"95000.0 215000.0 2.772233e+00 4.508040e+00 \n",
"1015000.0 315000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"1195000.0 675000.0 -3.400000e+38 -3.400000e+38 0 \n",
"575000.0 395000.0 -3.400000e+38 -3.400000e+38 1 \n",
"1105000.0 235000.0 -3.400000e+38 -3.400000e+38 0 \n",
"95000.0 215000.0 1.390220e+00 2.684446e+00 0 \n",
"1015000.0 315000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 755000.0 | \n",
" 685000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 905000.0 | \n",
" 495000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1105000.0 | \n",
" 235000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 385000.0 | \n",
" 685000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 5000.0 | \n",
" 165000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"755000.0 685000.0 0 0 0 \n",
"905000.0 495000.0 0 0 0 \n",
"1105000.0 235000.0 0 0 0 \n",
"385000.0 685000.0 0 0 0 \n",
"5000.0 165000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"755000.0 685000.0 0 0 \n",
"905000.0 495000.0 0 0 \n",
"1105000.0 235000.0 0 0 \n",
"385000.0 685000.0 0 0 \n",
"5000.0 165000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"755000.0 685000.0 0 0 0 0 \n",
"905000.0 495000.0 0 0 0 0 \n",
"1105000.0 235000.0 0 0 0 0 \n",
"385000.0 685000.0 0 0 0 0 \n",
"5000.0 165000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"755000.0 685000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"905000.0 495000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1105000.0 235000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"385000.0 685000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"5000.0 165000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"755000.0 685000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"905000.0 495000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1105000.0 235000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"385000.0 685000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"5000.0 165000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"755000.0 685000.0 -3.400000e+38 -3.400000e+38 \n",
"905000.0 495000.0 -3.400000e+38 -3.400000e+38 \n",
"1105000.0 235000.0 -3.400000e+38 -3.400000e+38 \n",
"385000.0 685000.0 -3.400000e+38 -3.400000e+38 \n",
"5000.0 165000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"755000.0 685000.0 -3.400000e+38 -3.400000e+38 0 \n",
"905000.0 495000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1105000.0 235000.0 -3.400000e+38 -3.400000e+38 0 \n",
"385000.0 685000.0 -3.400000e+38 -3.400000e+38 0 \n",
"5000.0 165000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 285000.0 | \n",
" 405000.0 | \n",
" 13 | \n",
" 1 | \n",
" 0 | \n",
" 34 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 6.431214e+00 | \n",
" 4.209268e+00 | \n",
" 1.545463e+00 | \n",
" 3.713440e+00 | \n",
" 3.148177e+00 | \n",
" 1.903132e+00 | \n",
" 8.756983e+00 | \n",
" 3.922683e+00 | \n",
" 1.446734e+01 | \n",
" 0 | \n",
"
\n",
" \n",
" 915000.0 | \n",
" 535000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 625000.0 | \n",
" 115000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 875000.0 | \n",
" 255000.0 | \n",
" 0 | \n",
" 84 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 16 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 395000.0 | \n",
" 55000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"285000.0 405000.0 13 1 0 \n",
"915000.0 535000.0 0 0 0 \n",
"625000.0 115000.0 0 0 0 \n",
"875000.0 255000.0 0 84 0 \n",
"395000.0 55000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"285000.0 405000.0 34 0 0 \n",
"915000.0 535000.0 0 0 0 \n",
"625000.0 115000.0 0 0 0 \n",
"875000.0 255000.0 0 0 0 \n",
"395000.0 55000.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"285000.0 405000.0 0 0 0 0 ... \n",
"915000.0 535000.0 0 0 0 0 ... \n",
"625000.0 115000.0 0 0 0 0 ... \n",
"875000.0 255000.0 0 0 16 0 ... \n",
"395000.0 55000.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n",
"y x \n",
"285000.0 405000.0 6.431214e+00 4.209268e+00 1.545463e+00 \n",
"915000.0 535000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"625000.0 115000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"875000.0 255000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"395000.0 55000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"285000.0 405000.0 3.713440e+00 3.148177e+00 \n",
"915000.0 535000.0 -3.400000e+38 -3.400000e+38 \n",
"625000.0 115000.0 -3.400000e+38 -3.400000e+38 \n",
"875000.0 255000.0 -3.400000e+38 -3.400000e+38 \n",
"395000.0 55000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"285000.0 405000.0 1.903132e+00 8.756983e+00 \n",
"915000.0 535000.0 -3.400000e+38 -3.400000e+38 \n",
"625000.0 115000.0 -3.400000e+38 -3.400000e+38 \n",
"875000.0 255000.0 -3.400000e+38 -3.400000e+38 \n",
"395000.0 55000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"285000.0 405000.0 3.922683e+00 1.446734e+01 0 \n",
"915000.0 535000.0 -3.400000e+38 -3.400000e+38 0 \n",
"625000.0 115000.0 -3.400000e+38 -3.400000e+38 0 \n",
"875000.0 255000.0 -3.400000e+38 -3.400000e+38 0 \n",
"395000.0 55000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 125000.0 | \n",
" 185000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 7.565978e-02 | \n",
" 1.161498e-02 | \n",
" 7.403410e-02 | \n",
" 3.515963e-01 | \n",
" 3.825245e-02 | \n",
" 1.723952e-01 | \n",
" 9.092541e-01 | \n",
" 4.400560e-01 | \n",
" 5.402140e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 295000.0 | \n",
" 335000.0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 22 | \n",
" 0 | \n",
" 0 | \n",
" 77 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.195074e-01 | \n",
" 3.630256e-02 | \n",
" 8.424385e-02 | \n",
" 1.091831e+01 | \n",
" 6.491575e-02 | \n",
" 5.122150e+00 | \n",
" 3.444990e+00 | \n",
" 1.705324e+00 | \n",
" 3.650620e-02 | \n",
" 1 | \n",
"
\n",
" \n",
" 825000.0 | \n",
" 665000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1255000.0 | \n",
" 675000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1295000.0 | \n",
" 525000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"125000.0 185000.0 0 0 0 \n",
"295000.0 335000.0 0 1 0 \n",
"825000.0 665000.0 0 0 0 \n",
"1255000.0 675000.0 0 0 0 \n",
"1295000.0 525000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"125000.0 185000.0 0 0 \n",
"295000.0 335000.0 22 0 \n",
"825000.0 665000.0 0 0 \n",
"1255000.0 675000.0 0 0 \n",
"1295000.0 525000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"125000.0 185000.0 0 0 0 0 \n",
"295000.0 335000.0 0 77 0 0 \n",
"825000.0 665000.0 0 0 0 0 \n",
"1255000.0 675000.0 0 0 0 0 \n",
"1295000.0 525000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"125000.0 185000.0 0 ... 7.565978e-02 1.161498e-02 \n",
"295000.0 335000.0 0 ... 1.195074e-01 3.630256e-02 \n",
"825000.0 665000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1255000.0 675000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1295000.0 525000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"125000.0 185000.0 7.403410e-02 3.515963e-01 3.825245e-02 \n",
"295000.0 335000.0 8.424385e-02 1.091831e+01 6.491575e-02 \n",
"825000.0 665000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1255000.0 675000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1295000.0 525000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"125000.0 185000.0 1.723952e-01 9.092541e-01 \n",
"295000.0 335000.0 5.122150e+00 3.444990e+00 \n",
"825000.0 665000.0 -3.400000e+38 -3.400000e+38 \n",
"1255000.0 675000.0 -3.400000e+38 -3.400000e+38 \n",
"1295000.0 525000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"125000.0 185000.0 4.400560e-01 5.402140e+00 0 \n",
"295000.0 335000.0 1.705324e+00 3.650620e-02 1 \n",
"825000.0 665000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1255000.0 675000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1295000.0 525000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 835000.0 | \n",
" 455000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 235000.0 | \n",
" 385000.0 | \n",
" 19 | \n",
" 0 | \n",
" 27 | \n",
" 52 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 1.023687e+01 | \n",
" -3.400000e+38 | \n",
" 5.169505e+00 | \n",
" 1.434829e+01 | \n",
" 1.600325e+01 | \n",
" 4.872670e+01 | \n",
" 1 | \n",
"
\n",
" \n",
" 675000.0 | \n",
" 175000.0 | \n",
" 54 | \n",
" 26 | \n",
" 0 | \n",
" 11 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 10 | \n",
" ... | \n",
" 7.383942e-01 | \n",
" 9.565423e-02 | \n",
" 3.361677e-01 | \n",
" -3.400000e+38 | \n",
" 2.041181e-01 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 485000.0 | \n",
" 675000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 705000.0 | \n",
" 155000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 5.860391e-03 | \n",
" 8.092645e-04 | \n",
" 2.910430e-03 | \n",
" -3.400000e+38 | \n",
" 1.602377e-03 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"835000.0 455000.0 0 0 0 \n",
"235000.0 385000.0 19 0 27 \n",
"675000.0 175000.0 54 26 0 \n",
"485000.0 675000.0 0 0 0 \n",
"705000.0 155000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"835000.0 455000.0 0 0 0 \n",
"235000.0 385000.0 52 0 0 \n",
"675000.0 175000.0 11 0 0 \n",
"485000.0 675000.0 0 0 0 \n",
"705000.0 155000.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"835000.0 455000.0 0 0 0 0 ... \n",
"235000.0 385000.0 0 0 0 0 ... \n",
"675000.0 175000.0 0 0 0 10 ... \n",
"485000.0 675000.0 0 0 0 0 ... \n",
"705000.0 155000.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n",
"y x \n",
"835000.0 455000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"235000.0 385000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"675000.0 175000.0 7.383942e-01 9.565423e-02 3.361677e-01 \n",
"485000.0 675000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"705000.0 155000.0 5.860391e-03 8.092645e-04 2.910430e-03 \n",
"\n",
" Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"835000.0 455000.0 -3.400000e+38 -3.400000e+38 \n",
"235000.0 385000.0 1.023687e+01 -3.400000e+38 \n",
"675000.0 175000.0 -3.400000e+38 2.041181e-01 \n",
"485000.0 675000.0 -3.400000e+38 -3.400000e+38 \n",
"705000.0 155000.0 -3.400000e+38 1.602377e-03 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"835000.0 455000.0 -3.400000e+38 -3.400000e+38 \n",
"235000.0 385000.0 5.169505e+00 1.434829e+01 \n",
"675000.0 175000.0 -3.400000e+38 -3.400000e+38 \n",
"485000.0 675000.0 -3.400000e+38 -3.400000e+38 \n",
"705000.0 155000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"835000.0 455000.0 -3.400000e+38 -3.400000e+38 0 \n",
"235000.0 385000.0 1.600325e+01 4.872670e+01 1 \n",
"675000.0 175000.0 -3.400000e+38 -3.400000e+38 0 \n",
"485000.0 675000.0 -3.400000e+38 -3.400000e+38 0 \n",
"705000.0 155000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 535000.0 | \n",
" 515000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 745000.0 | \n",
" 135000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 255000.0 | \n",
" 75000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 675000.0 | \n",
" 465000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 955000.0 | \n",
" 455000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"535000.0 515000.0 0 0 0 \n",
"745000.0 135000.0 0 0 0 \n",
"255000.0 75000.0 0 0 0 \n",
"675000.0 465000.0 0 0 0 \n",
"955000.0 455000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"535000.0 515000.0 0 0 0 \n",
"745000.0 135000.0 0 0 0 \n",
"255000.0 75000.0 0 0 0 \n",
"675000.0 465000.0 0 0 0 \n",
"955000.0 455000.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"535000.0 515000.0 0 0 0 0 ... \n",
"745000.0 135000.0 0 0 0 0 ... \n",
"255000.0 75000.0 0 0 0 0 ... \n",
"675000.0 465000.0 0 0 0 0 ... \n",
"955000.0 455000.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n",
"y x \n",
"535000.0 515000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"745000.0 135000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"255000.0 75000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"675000.0 465000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"955000.0 455000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"535000.0 515000.0 -3.400000e+38 -3.400000e+38 \n",
"745000.0 135000.0 -3.400000e+38 -3.400000e+38 \n",
"255000.0 75000.0 -3.400000e+38 -3.400000e+38 \n",
"675000.0 465000.0 -3.400000e+38 -3.400000e+38 \n",
"955000.0 455000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"535000.0 515000.0 -3.400000e+38 -3.400000e+38 \n",
"745000.0 135000.0 -3.400000e+38 -3.400000e+38 \n",
"255000.0 75000.0 -3.400000e+38 -3.400000e+38 \n",
"675000.0 465000.0 -3.400000e+38 -3.400000e+38 \n",
"955000.0 455000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"535000.0 515000.0 -3.400000e+38 -3.400000e+38 0 \n",
"745000.0 135000.0 -3.400000e+38 -3.400000e+38 0 \n",
"255000.0 75000.0 -3.400000e+38 -3.400000e+38 0 \n",
"675000.0 465000.0 -3.400000e+38 -3.400000e+38 0 \n",
"955000.0 455000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 205000.0 | \n",
" 225000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 6.204496e-02 | \n",
" 1.285449e-02 | \n",
" 7.773425e-02 | \n",
" -3.400000e+38 | \n",
" 3.705793e-02 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1175000.0 | \n",
" 485000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 975000.0 | \n",
" 485000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 395000.0 | \n",
" 135000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 675000.0 | \n",
" 585000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"205000.0 225000.0 0 0 0 \n",
"1175000.0 485000.0 0 0 0 \n",
"975000.0 485000.0 0 0 0 \n",
"395000.0 135000.0 0 0 0 \n",
"675000.0 585000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"205000.0 225000.0 0 0 \n",
"1175000.0 485000.0 0 0 \n",
"975000.0 485000.0 0 0 \n",
"395000.0 135000.0 0 0 \n",
"675000.0 585000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"205000.0 225000.0 0 0 0 0 \n",
"1175000.0 485000.0 0 0 0 0 \n",
"975000.0 485000.0 0 0 0 0 \n",
"395000.0 135000.0 0 0 0 0 \n",
"675000.0 585000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"205000.0 225000.0 0 ... 6.204496e-02 1.285449e-02 \n",
"1175000.0 485000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"975000.0 485000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"395000.0 135000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"675000.0 585000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"205000.0 225000.0 7.773425e-02 -3.400000e+38 3.705793e-02 \n",
"1175000.0 485000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"975000.0 485000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"395000.0 135000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"675000.0 585000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"205000.0 225000.0 -3.400000e+38 -3.400000e+38 \n",
"1175000.0 485000.0 -3.400000e+38 -3.400000e+38 \n",
"975000.0 485000.0 -3.400000e+38 -3.400000e+38 \n",
"395000.0 135000.0 -3.400000e+38 -3.400000e+38 \n",
"675000.0 585000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"205000.0 225000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1175000.0 485000.0 -3.400000e+38 -3.400000e+38 0 \n",
"975000.0 485000.0 -3.400000e+38 -3.400000e+38 0 \n",
"395000.0 135000.0 -3.400000e+38 -3.400000e+38 0 \n",
"675000.0 585000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 995000.0 | \n",
" 335000.0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 44 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 11 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 245000.0 | \n",
" 375000.0 | \n",
" 9 | \n",
" 0 | \n",
" 9 | \n",
" 73 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.643640e+01 | \n",
" 8.107372e+00 | \n",
" 3.085294e+00 | \n",
" 2.327609e+00 | \n",
" 9.291373e+00 | \n",
" 1.105644e+00 | \n",
" 1.160969e+01 | \n",
" 1.165004e+01 | \n",
" 7.668460e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 665000.0 | \n",
" 65000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 445000.0 | \n",
" 665000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1035000.0 | \n",
" 395000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"995000.0 335000.0 1 0 0 \n",
"245000.0 375000.0 9 0 9 \n",
"665000.0 65000.0 0 0 0 \n",
"445000.0 665000.0 0 0 0 \n",
"1035000.0 395000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"995000.0 335000.0 44 0 \n",
"245000.0 375000.0 73 0 \n",
"665000.0 65000.0 0 0 \n",
"445000.0 665000.0 0 0 \n",
"1035000.0 395000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"995000.0 335000.0 0 0 0 11 \n",
"245000.0 375000.0 0 0 0 0 \n",
"665000.0 65000.0 0 0 0 0 \n",
"445000.0 665000.0 0 0 0 0 \n",
"1035000.0 395000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"995000.0 335000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"245000.0 375000.0 0 ... 1.643640e+01 8.107372e+00 \n",
"665000.0 65000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"445000.0 665000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1035000.0 395000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"995000.0 335000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"245000.0 375000.0 3.085294e+00 2.327609e+00 9.291373e+00 \n",
"665000.0 65000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"445000.0 665000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1035000.0 395000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"995000.0 335000.0 -3.400000e+38 -3.400000e+38 \n",
"245000.0 375000.0 1.105644e+00 1.160969e+01 \n",
"665000.0 65000.0 -3.400000e+38 -3.400000e+38 \n",
"445000.0 665000.0 -3.400000e+38 -3.400000e+38 \n",
"1035000.0 395000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"995000.0 335000.0 -3.400000e+38 -3.400000e+38 0 \n",
"245000.0 375000.0 1.165004e+01 7.668460e+00 0 \n",
"665000.0 65000.0 -3.400000e+38 -3.400000e+38 0 \n",
"445000.0 665000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1035000.0 395000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 45000.0 | \n",
" 335000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 915000.0 | \n",
" 455000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 165000.0 | \n",
" 445000.0 | \n",
" 0 | \n",
" 1 | \n",
" 5 | \n",
" 16 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.218001e-01 | \n",
" 1.971986e-02 | \n",
" 5.645154e-02 | \n",
" 3.506572e+00 | \n",
" 6.399115e-02 | \n",
" 2.509018e+00 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 315000.0 | \n",
" 385000.0 | \n",
" 3 | \n",
" 0 | \n",
" 46 | \n",
" 51 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.312304e+01 | \n",
" 3.184140e+00 | \n",
" 6.972710e+00 | \n",
" 2.546534e-01 | \n",
" 1.847880e+01 | \n",
" 1.246151e-01 | \n",
" 5.667286e+00 | \n",
" 2.214241e+00 | \n",
" 1.490210e+01 | \n",
" 1 | \n",
"
\n",
" \n",
" 305000.0 | \n",
" 35000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"45000.0 335000.0 0 0 0 \n",
"915000.0 455000.0 0 0 0 \n",
"165000.0 445000.0 0 1 5 \n",
"315000.0 385000.0 3 0 46 \n",
"305000.0 35000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"45000.0 335000.0 0 0 0 \n",
"915000.0 455000.0 0 0 0 \n",
"165000.0 445000.0 16 0 0 \n",
"315000.0 385000.0 51 0 0 \n",
"305000.0 35000.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"45000.0 335000.0 0 0 0 0 ... \n",
"915000.0 455000.0 0 0 0 0 ... \n",
"165000.0 445000.0 0 0 0 0 ... \n",
"315000.0 385000.0 0 0 0 0 ... \n",
"305000.0 35000.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n",
"y x \n",
"45000.0 335000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"915000.0 455000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"165000.0 445000.0 2.218001e-01 1.971986e-02 5.645154e-02 \n",
"315000.0 385000.0 2.312304e+01 3.184140e+00 6.972710e+00 \n",
"305000.0 35000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"45000.0 335000.0 -3.400000e+38 -3.400000e+38 \n",
"915000.0 455000.0 -3.400000e+38 -3.400000e+38 \n",
"165000.0 445000.0 3.506572e+00 6.399115e-02 \n",
"315000.0 385000.0 2.546534e-01 1.847880e+01 \n",
"305000.0 35000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"45000.0 335000.0 -3.400000e+38 -3.400000e+38 \n",
"915000.0 455000.0 -3.400000e+38 -3.400000e+38 \n",
"165000.0 445000.0 2.509018e+00 -3.400000e+38 \n",
"315000.0 385000.0 1.246151e-01 5.667286e+00 \n",
"305000.0 35000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"45000.0 335000.0 -3.400000e+38 -3.400000e+38 0 \n",
"915000.0 455000.0 -3.400000e+38 -3.400000e+38 0 \n",
"165000.0 445000.0 -3.400000e+38 -3.400000e+38 0 \n",
"315000.0 385000.0 2.214241e+00 1.490210e+01 1 \n",
"305000.0 35000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1125000.0 | \n",
" 525000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 285000.0 | \n",
" 415000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 9 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.699923e+01 | \n",
" 7.159234e-01 | \n",
" 2.832157e+00 | \n",
" -3.400000e+38 | \n",
" 1.705337e+01 | \n",
" -3.400000e+38 | \n",
" 1.344955e+01 | \n",
" 8.048236e+00 | \n",
" 2.779240e+01 | \n",
" 0 | \n",
"
\n",
" \n",
" 1085000.0 | \n",
" 305000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 515000.0 | \n",
" 255000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 7.289742e-02 | \n",
" 1.422214e-02 | \n",
" 8.243214e-02 | \n",
" -3.400000e+38 | \n",
" 4.177649e-02 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 545000.0 | \n",
" 65000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1125000.0 525000.0 0 0 0 \n",
"285000.0 415000.0 0 0 0 \n",
"1085000.0 305000.0 0 0 0 \n",
"515000.0 255000.0 0 0 0 \n",
"545000.0 65000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1125000.0 525000.0 0 0 \n",
"285000.0 415000.0 9 0 \n",
"1085000.0 305000.0 0 0 \n",
"515000.0 255000.0 0 0 \n",
"545000.0 65000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1125000.0 525000.0 0 0 0 0 \n",
"285000.0 415000.0 0 0 0 0 \n",
"1085000.0 305000.0 0 0 0 0 \n",
"515000.0 255000.0 0 0 0 0 \n",
"545000.0 65000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"1125000.0 525000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"285000.0 415000.0 0 ... 2.699923e+01 7.159234e-01 \n",
"1085000.0 305000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"515000.0 255000.0 0 ... 7.289742e-02 1.422214e-02 \n",
"545000.0 65000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"1125000.0 525000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"285000.0 415000.0 2.832157e+00 -3.400000e+38 1.705337e+01 \n",
"1085000.0 305000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"515000.0 255000.0 8.243214e-02 -3.400000e+38 4.177649e-02 \n",
"545000.0 65000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"1125000.0 525000.0 -3.400000e+38 -3.400000e+38 \n",
"285000.0 415000.0 -3.400000e+38 1.344955e+01 \n",
"1085000.0 305000.0 -3.400000e+38 -3.400000e+38 \n",
"515000.0 255000.0 -3.400000e+38 -3.400000e+38 \n",
"545000.0 65000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"1125000.0 525000.0 -3.400000e+38 -3.400000e+38 0 \n",
"285000.0 415000.0 8.048236e+00 2.779240e+01 0 \n",
"1085000.0 305000.0 -3.400000e+38 -3.400000e+38 0 \n",
"515000.0 255000.0 -3.400000e+38 -3.400000e+38 0 \n",
"545000.0 65000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 905000.0 | \n",
" 235000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" ... | \n",
" 2.596413e-01 | \n",
" 4.824913e-02 | \n",
" 2.193868e-01 | \n",
" -3.400000e+38 | \n",
" 1.357381e-01 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 405000.0 | \n",
" 665000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 425000.0 | \n",
" 605000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 625000.0 | \n",
" 145000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 7.894525e-04 | \n",
" 8.156863e-05 | \n",
" 2.452916e-04 | \n",
" -3.400000e+38 | \n",
" 2.156298e-04 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 765000.0 | \n",
" 575000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"905000.0 235000.0 0 0 0 \n",
"405000.0 665000.0 0 0 0 \n",
"425000.0 605000.0 0 0 0 \n",
"625000.0 145000.0 0 0 0 \n",
"765000.0 575000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"905000.0 235000.0 0 0 0 \n",
"405000.0 665000.0 0 0 0 \n",
"425000.0 605000.0 0 0 0 \n",
"625000.0 145000.0 0 0 0 \n",
"765000.0 575000.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"905000.0 235000.0 0 0 0 1 ... \n",
"405000.0 665000.0 0 0 0 0 ... \n",
"425000.0 605000.0 0 0 0 0 ... \n",
"625000.0 145000.0 0 0 0 0 ... \n",
"765000.0 575000.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n",
"y x \n",
"905000.0 235000.0 2.596413e-01 4.824913e-02 2.193868e-01 \n",
"405000.0 665000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"425000.0 605000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"625000.0 145000.0 7.894525e-04 8.156863e-05 2.452916e-04 \n",
"765000.0 575000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"905000.0 235000.0 -3.400000e+38 1.357381e-01 \n",
"405000.0 665000.0 -3.400000e+38 -3.400000e+38 \n",
"425000.0 605000.0 -3.400000e+38 -3.400000e+38 \n",
"625000.0 145000.0 -3.400000e+38 2.156298e-04 \n",
"765000.0 575000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"905000.0 235000.0 -3.400000e+38 -3.400000e+38 \n",
"405000.0 665000.0 -3.400000e+38 -3.400000e+38 \n",
"425000.0 605000.0 -3.400000e+38 -3.400000e+38 \n",
"625000.0 145000.0 -3.400000e+38 -3.400000e+38 \n",
"765000.0 575000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"905000.0 235000.0 -3.400000e+38 -3.400000e+38 0 \n",
"405000.0 665000.0 -3.400000e+38 -3.400000e+38 0 \n",
"425000.0 605000.0 -3.400000e+38 -3.400000e+38 0 \n",
"625000.0 145000.0 -3.400000e+38 -3.400000e+38 0 \n",
"765000.0 575000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"INVASIVE_BIRDS_PATH = 'Datasets/Machine Learning/10km Rasters/Birds'\n",
"# Use this if using coordinates as separate columns\n",
"# df_10km = pd.read_csv('Datasets/Machine Learning/Dataframes/10km_All_Birds_DF.csv')\n",
"\n",
"# Use this if using coordinates as indices\n",
"df_10km = pd.read_csv('Datasets/Machine Learning/Dataframes/10km_All_Birds_DF.csv', index_col=[0,1])\n",
"\n",
"total_birds = (df_10km['Occurrence']==1).sum()\n",
"df_dicts = []\n",
"\n",
"for file in os.listdir(INVASIVE_BIRDS_PATH):\n",
" filename = os.fsdecode(file)\n",
" if not filename.endswith('.tif') or filename.endswith('All_Invasive_Birds_10km.tif') :\n",
" continue\n",
"\n",
"\n",
"\n",
" bird_name = filename[:-4].replace('_', ' ')\n",
"\n",
" bird_dataset = rioxarray.open_rasterio(f'{INVASIVE_BIRDS_PATH}/{file}')\n",
" bird_dataset.name = 'data'\n",
" bird_df = bird_dataset.squeeze().drop(\"spatial_ref\").drop(\"band\").to_dataframe()\n",
"\n",
" # Check if index matches\n",
" if not df_10km.index.equals(bird_df.index):\n",
" print('Warning: Index does not match')\n",
" continue\n",
"\n",
" bird_df['Occurrence'] = [0 if x == -1 else 1 for x in bird_df['data']]\n",
" bird_df = df_10km.drop(columns='Occurrence').join(bird_df.drop(columns='data'))\n",
" \n",
" bird_dict = {'name' : bird_name, 'dataframe' : bird_df }\n",
" df_dicts.append(bird_dict)\n",
" display(bird_df.sample(5))\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 10km data before drop: \n",
" Occurrence\n",
"0 8634\n",
"1 466\n",
"dtype: int64 \n",
"\n",
"Barnacle Goose 10km data after drop: \n",
" Occurrence\n",
"0 2206\n",
"1 466\n",
"dtype: int64 \n",
"\n",
"Canada Goose 10km data before drop: \n",
" Occurrence\n",
"0 7311\n",
"1 1789\n",
"dtype: int64 \n",
"\n",
"Canada Goose 10km data after drop: \n",
" Occurrence\n",
"1 1789\n",
"0 883\n",
"dtype: int64 \n",
"\n",
"Egyptian Goose 10km data before drop: \n",
" Occurrence\n",
"0 8800\n",
"1 300\n",
"dtype: int64 \n",
"\n",
"Egyptian Goose 10km data after drop: \n",
" Occurrence\n",
"0 2372\n",
"1 300\n",
"dtype: int64 \n",
"\n",
"Gadwall 10km data before drop: \n",
" Occurrence\n",
"0 8270\n",
"1 830\n",
"dtype: int64 \n",
"\n",
"Gadwall 10km data after drop: \n",
" Occurrence\n",
"0 1842\n",
"1 830\n",
"dtype: int64 \n",
"\n",
"Goshawk 10km data before drop: \n",
" Occurrence\n",
"0 8654\n",
"1 446\n",
"dtype: int64 \n",
"\n",
"Goshawk 10km data after drop: \n",
" Occurrence\n",
"0 2226\n",
"1 446\n",
"dtype: int64 \n",
"\n",
"Grey Partridge 10km data before drop: \n",
" Occurrence\n",
"0 8098\n",
"1 1002\n",
"dtype: int64 \n",
"\n",
"Grey Partridge 10km data after drop: \n",
" Occurrence\n",
"0 1670\n",
"1 1002\n",
"dtype: int64 \n",
"\n",
"Indian Peafowl 10km data before drop: \n",
" Occurrence\n",
"0 8853\n",
"1 247\n",
"dtype: int64 \n",
"\n",
"Indian Peafowl 10km data after drop: \n",
" Occurrence\n",
"0 2425\n",
"1 247\n",
"dtype: int64 \n",
"\n",
"Little Owl 10km data before drop: \n",
" Occurrence\n",
"0 8023\n",
"1 1077\n",
"dtype: int64 \n",
"\n",
"Little Owl 10km data after drop: \n",
" Occurrence\n",
"0 1595\n",
"1 1077\n",
"dtype: int64 \n",
"\n",
"Mandarin Duck 10km data before drop: \n",
" Occurrence\n",
"0 8622\n",
"1 478\n",
"dtype: int64 \n",
"\n",
"Mandarin Duck 10km data after drop: \n",
" Occurrence\n",
"0 2194\n",
"1 478\n",
"dtype: int64 \n",
"\n",
"Mute Swan 10km data before drop: \n",
" Occurrence\n",
"0 7093\n",
"1 2007\n",
"dtype: int64 \n",
"\n",
"Mute Swan 10km data after drop: \n",
" Occurrence\n",
"1 2007\n",
"0 665\n",
"dtype: int64 \n",
"\n",
"Pheasant 10km data before drop: \n",
" Occurrence\n",
"0 7182\n",
"1 1918\n",
"dtype: int64 \n",
"\n",
"Pheasant 10km data after drop: \n",
" Occurrence\n",
"1 1918\n",
"0 754\n",
"dtype: int64 \n",
"\n",
"Pink-footed Goose 10km data before drop: \n",
" Occurrence\n",
"0 8370\n",
"1 730\n",
"dtype: int64 \n",
"\n",
"Pink-footed Goose 10km data after drop: \n",
" Occurrence\n",
"0 1942\n",
"1 730\n",
"dtype: int64 \n",
"\n",
"Pintail 10km data before drop: \n",
" Occurrence\n",
"0 8587\n",
"1 513\n",
"dtype: int64 \n",
"\n",
"Pintail 10km data after drop: \n",
" Occurrence\n",
"0 2159\n",
"1 513\n",
"dtype: int64 \n",
"\n",
"Pochard 10km data before drop: \n",
" Occurrence\n",
"0 8362\n",
"1 738\n",
"dtype: int64 \n",
"\n",
"Pochard 10km data after drop: \n",
" Occurrence\n",
"0 1934\n",
"1 738\n",
"dtype: int64 \n",
"\n",
"Red-legged Partridge 10km data before drop: \n",
" Occurrence\n",
"0 7892\n",
"1 1208\n",
"dtype: int64 \n",
"\n",
"Red-legged Partridge 10km data after drop: \n",
" Occurrence\n",
"0 1464\n",
"1 1208\n",
"dtype: int64 \n",
"\n",
"Ring-necked Parakeet 10km data before drop: \n",
" Occurrence\n",
"0 9004\n",
"1 96\n",
"dtype: int64 \n",
"\n",
"Ring-necked Parakeet 10km data after drop: \n",
" Occurrence\n",
"0 2576\n",
"1 96\n",
"dtype: int64 \n",
"\n",
"Rock Dove 10km data before drop: \n",
" Occurrence\n",
"0 7480\n",
"1 1620\n",
"dtype: int64 \n",
"\n",
"Rock Dove 10km data after drop: \n",
" Occurrence\n",
"1 1620\n",
"0 1052\n",
"dtype: int64 \n",
"\n",
"Ruddy Duck 10km data before drop: \n",
" Occurrence\n",
"0 9003\n",
"1 97\n",
"dtype: int64 \n",
"\n",
"Ruddy Duck 10km data after drop: \n",
" Occurrence\n",
"0 2575\n",
"1 97\n",
"dtype: int64 \n",
"\n",
"Whooper Swan 10km data before drop: \n",
" Occurrence\n",
"0 8441\n",
"1 659\n",
"dtype: int64 \n",
"\n",
"Whooper Swan 10km data after drop: \n",
" Occurrence\n",
"0 2013\n",
"1 659\n",
"dtype: int64 \n",
"\n",
"Wigeon 10km data before drop: \n",
" Occurrence\n",
"0 7833\n",
"1 1267\n",
"dtype: int64 \n",
"\n",
"Wigeon 10km data after drop: \n",
" Occurrence\n",
"0 1405\n",
"1 1267\n",
"dtype: int64 \n",
"\n"
]
}
],
"source": [
"# Data Cleaning\n",
"np.random.seed(seed=seed)\n",
"\n",
"for dict in df_dicts:\n",
" cur_df = dict[\"dataframe\"]\n",
" cur_df_name = dict[\"name\"]\n",
"\n",
" print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n",
" \n",
" no_occurences = cur_df[cur_df['Occurrence']==0].index \n",
" sample_size = sum(cur_df['Occurrence']==0) - total_birds + sum(cur_df['Occurrence']==1)\n",
" random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n",
" dict[\"dataframe\"] = cur_df.drop(random_indices)\n",
" \n",
" print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')\n",
"\n",
"\n",
"# for dict in df_dicts:\n",
"# cur_df = dict[\"dataframe\"]\n",
"# cur_df_name = dict[\"name\"]\n",
"\n",
"# print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n",
" \n",
"# no_occurences = cur_df[cur_df['Occurrence']==0].index\n",
"# sample_size = sum(cur_df['Occurrence']==0) - sum(cur_df['Occurrence']==1)\n",
"# random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n",
"# dict[\"dataframe\"] = cur_df.drop(random_indices)\n",
" \n",
"# print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# Standardisation\n",
"def standardise(X):\n",
" scaler = StandardScaler()\n",
" X_scaled = scaler.fit_transform(X)\n",
"\n",
" # Add headers back\n",
" X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)\n",
"\n",
" # Revert 'Surface type' back to non-standardised column as it is a categorical feature\n",
" X_scaled_df['Surface type'] = X['Surface type'].values\n",
" return X_scaled_df"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# Feature Selection\n",
"\n",
"# Check if any columns have NaN in them\n",
"# nan_columns = []\n",
"# for column in X_scaled_df:\n",
"# if X_scaled_df[column].isnull().values.any():\n",
"# nan_columns.append(column)\n",
"# print(nan_columns if len(nan_columns)!= 0 else 'None')\n",
"\n",
"\n",
"# Using ANOVA F-Score as a feature selection method\n",
"def feature_select(X, y):\n",
" k_nums = [10, 15, 20, 25, 30, 35]\n",
" kbest_dict = {}\n",
" for num in k_nums:\n",
" # Needs to be 1d array, y.values.ravel() converts y into a 1d array\n",
" best_X = SelectKBest(f_classif, k=num).fit(X, y.values.ravel())\n",
" # kbest_dict[str(num)] = best_X.get_feature_names_out().tolist()\n",
" kbest_dict[str(num)] = best_X\n",
" # kbest_dict['40'] = list(X.columns)\n",
"\n",
" best_X = SelectKBest(f_classif, k='all').fit(X, y.values.ravel())\n",
"\n",
" feat_scores = pd.DataFrame()\n",
" feat_scores[\"F Score\"] = best_X.scores_\n",
" feat_scores[\"P Value\"] = best_X.pvalues_\n",
" feat_scores[\"Attribute\"] = X.columns\n",
" kbest_dict['Dataframe'] = feat_scores.sort_values([\"F Score\", \"P Value\"], ascending=[False, False])\n",
"\n",
"\n",
" if details:\n",
" print(f'K-Best Features Dataframe: \\n{kbest_dict[\"Dataframe\"]} \\n')\n",
" # print(json.dumps(kbest_dict, indent=4))\n",
" return kbest_dict"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Resample (upsample) minority data\n",
"# for dict in df_dicts:\n",
"# if sum(dict['dataframe']['Occurence']==1) > sum(dict['dataframe']['Occurence']==0):\n",
"# continue\n",
"\n",
"# from sklearn.utils import resample\n",
"\n",
"# def upsample(X, y):\n",
"# X_1 = X[y['Occurrence'] == 1] # Getting positive occurrences (minority)\n",
"# X_0 = X[y['Occurrence'] == 0] # Getting negative occurrences (majority)\n",
" \n",
"# X_1_upsampled = resample(X_1 ,random_state=seed,n_samples=total_birds/2,replace=True)\n",
"\n",
"\n",
"# print(f'Resampling: \\n {y.value_counts()} \\n')\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"def oversample(X_train, y_train):\n",
" over = RandomOverSampler(sampling_strategy='minority', random_state=seed)\n",
" smote = SMOTE(random_state=seed, sampling_strategy='minority')\n",
" X_smote, y_smote = smote.fit_resample(X_train, y_train)\n",
" \n",
" if details:\n",
" print(f'Resampled Value Counts: \\n {y_smote.value_counts()} \\n')\n",
"\n",
" return X_smote, y_smote"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Name | \n",
" Occurrence Count | \n",
" Percentage | \n",
"
\n",
" \n",
" \n",
" \n",
" 9 | \n",
" Mute Swan 10km | \n",
" 2007 | \n",
" 0.751123 | \n",
"
\n",
" \n",
" 10 | \n",
" Pheasant 10km | \n",
" 1918 | \n",
" 0.717814 | \n",
"
\n",
" \n",
" 1 | \n",
" Canada Goose 10km | \n",
" 1789 | \n",
" 0.669536 | \n",
"
\n",
" \n",
" 16 | \n",
" Rock Dove 10km | \n",
" 1620 | \n",
" 0.606287 | \n",
"
\n",
" \n",
" 19 | \n",
" Wigeon 10km | \n",
" 1267 | \n",
" 0.474177 | \n",
"
\n",
" \n",
" 14 | \n",
" Red-legged Partridge 10km | \n",
" 1208 | \n",
" 0.452096 | \n",
"
\n",
" \n",
" 7 | \n",
" Little Owl 10km | \n",
" 1077 | \n",
" 0.403069 | \n",
"
\n",
" \n",
" 5 | \n",
" Grey Partridge 10km | \n",
" 1002 | \n",
" 0.375000 | \n",
"
\n",
" \n",
" 3 | \n",
" Gadwall 10km | \n",
" 830 | \n",
" 0.310629 | \n",
"
\n",
" \n",
" 13 | \n",
" Pochard 10km | \n",
" 738 | \n",
" 0.276198 | \n",
"
\n",
" \n",
" 11 | \n",
" Pink-footed Goose 10km | \n",
" 730 | \n",
" 0.273204 | \n",
"
\n",
" \n",
" 18 | \n",
" Whooper Swan 10km | \n",
" 659 | \n",
" 0.246632 | \n",
"
\n",
" \n",
" 12 | \n",
" Pintail 10km | \n",
" 513 | \n",
" 0.191991 | \n",
"
\n",
" \n",
" 8 | \n",
" Mandarin Duck 10km | \n",
" 478 | \n",
" 0.178892 | \n",
"
\n",
" \n",
" 0 | \n",
" Barnacle Goose 10km | \n",
" 466 | \n",
" 0.174401 | \n",
"
\n",
" \n",
" 4 | \n",
" Goshawk 10km | \n",
" 446 | \n",
" 0.166916 | \n",
"
\n",
" \n",
" 2 | \n",
" Egyptian Goose 10km | \n",
" 300 | \n",
" 0.112275 | \n",
"
\n",
" \n",
" 6 | \n",
" Indian Peafowl 10km | \n",
" 247 | \n",
" 0.092440 | \n",
"
\n",
" \n",
" 17 | \n",
" Ruddy Duck 10km | \n",
" 97 | \n",
" 0.036302 | \n",
"
\n",
" \n",
" 15 | \n",
" Ring-necked Parakeet 10km | \n",
" 96 | \n",
" 0.035928 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Name Occurrence Count Percentage\n",
"9 Mute Swan 10km 2007 0.751123\n",
"10 Pheasant 10km 1918 0.717814\n",
"1 Canada Goose 10km 1789 0.669536\n",
"16 Rock Dove 10km 1620 0.606287\n",
"19 Wigeon 10km 1267 0.474177\n",
"14 Red-legged Partridge 10km 1208 0.452096\n",
"7 Little Owl 10km 1077 0.403069\n",
"5 Grey Partridge 10km 1002 0.375000\n",
"3 Gadwall 10km 830 0.310629\n",
"13 Pochard 10km 738 0.276198\n",
"11 Pink-footed Goose 10km 730 0.273204\n",
"18 Whooper Swan 10km 659 0.246632\n",
"12 Pintail 10km 513 0.191991\n",
"8 Mandarin Duck 10km 478 0.178892\n",
"0 Barnacle Goose 10km 466 0.174401\n",
"4 Goshawk 10km 446 0.166916\n",
"2 Egyptian Goose 10km 300 0.112275\n",
"6 Indian Peafowl 10km 247 0.092440\n",
"17 Ruddy Duck 10km 97 0.036302\n",
"15 Ring-necked Parakeet 10km 96 0.035928"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"All_bird_occurrences = pd.DataFrame([(dict['name'],sum(dict['dataframe']['Occurrence'] == 1)) for dict in df_dicts], columns=['Name', 'Occurrence Count'])\n",
"All_bird_occurrences['Percentage'] = All_bird_occurrences['Occurrence Count']/total_birds\n",
"\n",
"All_bird_occurrences.sort_values('Occurrence Count', ascending=False)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training with Barnacle Goose 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8983364140480592,\n",
" \"recall\": 0.8741007194244604,\n",
" \"f1-score\": 0.8860528714676389,\n",
" \"support\": 556\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.44881889763779526,\n",
" \"recall\": 0.5089285714285714,\n",
" \"f1-score\": 0.47698744769874474,\n",
" \"support\": 112\n",
" },\n",
" \"accuracy\": 0.812874251497006,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6735776558429272,\n",
" \"recall\": 0.691514645426516,\n",
" \"f1-score\": 0.6815201595831918,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8229682077038233,\n",
" \"recall\": 0.812874251497006,\n",
" \"f1-score\": 0.8174670519135727,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Barnacle Goose 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9015151515151515,\n",
" \"recall\": 0.8561151079136691,\n",
" \"f1-score\": 0.8782287822878229,\n",
" \"support\": 556\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.42857142857142855,\n",
" \"recall\": 0.5357142857142857,\n",
" \"f1-score\": 0.47619047619047616,\n",
" \"support\": 112\n",
" },\n",
" \"accuracy\": 0.8023952095808383,\n",
" \"macro avg\": {\n",
" \"precision\": 0.66504329004329,\n",
" \"recall\": 0.6959146968139773,\n",
" \"f1-score\": 0.6772096292391495,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8222191979677009,\n",
" \"recall\": 0.8023952095808383,\n",
" \"f1-score\": 0.8108211621038367,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Canada Goose 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Canada Goose 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9219512195121952,\n",
" \"recall\": 0.8957345971563981,\n",
" \"f1-score\": 0.9086538461538463,\n",
" \"support\": 211\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9524838012958964,\n",
" \"recall\": 0.9649890590809628,\n",
" \"f1-score\": 0.9586956521739131,\n",
" \"support\": 457\n",
" },\n",
" \"accuracy\": 0.9431137724550899,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9372175104040458,\n",
" \"recall\": 0.9303618281186805,\n",
" \"f1-score\": 0.9336747491638797,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9428395277085297,\n",
" \"recall\": 0.9431137724550899,\n",
" \"f1-score\": 0.9428890338052992,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Canada Goose 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9056603773584906,\n",
" \"recall\": 0.909952606635071,\n",
" \"f1-score\": 0.9078014184397164,\n",
" \"support\": 211\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9583333333333334,\n",
" \"recall\": 0.9562363238512035,\n",
" \"f1-score\": 0.9572836801752466,\n",
" \"support\": 457\n",
" },\n",
" \"accuracy\": 0.9416167664670658,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9319968553459119,\n",
" \"recall\": 0.9330944652431372,\n",
" \"f1-score\": 0.9325425493074815,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9416956181975672,\n",
" \"recall\": 0.9416167664670658,\n",
" \"f1-score\": 0.9416538040881255,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Egyptian Goose 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Egyptian Goose 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9588336192109777,\n",
" \"recall\": 0.9442567567567568,\n",
" \"f1-score\": 0.9514893617021277,\n",
" \"support\": 592\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.611764705882353,\n",
" \"recall\": 0.6842105263157895,\n",
" \"f1-score\": 0.6459627329192548,\n",
" \"support\": 76\n",
" },\n",
" \"accuracy\": 0.9146706586826348,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7852991625466653,\n",
" \"recall\": 0.8142336415362732,\n",
" \"f1-score\": 0.7987260473106912,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9193467368562239,\n",
" \"recall\": 0.9146706586826348,\n",
" \"f1-score\": 0.9167288470501842,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Egyptian Goose 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9518900343642611,\n",
" \"recall\": 0.9358108108108109,\n",
" \"f1-score\": 0.9437819420783646,\n",
" \"support\": 592\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5581395348837209,\n",
" \"recall\": 0.631578947368421,\n",
" \"f1-score\": 0.5925925925925927,\n",
" \"support\": 76\n",
" },\n",
" \"accuracy\": 0.9011976047904192,\n",
" \"macro avg\": {\n",
" \"precision\": 0.755014784623991,\n",
" \"recall\": 0.7836948790896159,\n",
" \"f1-score\": 0.7681872673354786,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9070920733455171,\n",
" \"recall\": 0.9011976047904192,\n",
" \"f1-score\": 0.9038262675859714,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Gadwall 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gadwall 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9010989010989011,\n",
" \"recall\": 0.8951965065502183,\n",
" \"f1-score\": 0.8981380065717415,\n",
" \"support\": 458\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7746478873239436,\n",
" \"recall\": 0.7857142857142857,\n",
" \"f1-score\": 0.7801418439716311,\n",
" \"support\": 210\n",
" },\n",
" \"accuracy\": 0.8607784431137725,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8378733942114224,\n",
" \"recall\": 0.8404553961322521,\n",
" \"f1-score\": 0.8391399252716862,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8613463368882108,\n",
" \"recall\": 0.8607784431137725,\n",
" \"f1-score\": 0.8610434045567368,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Gadwall 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9191685912240185,\n",
" \"recall\": 0.868995633187773,\n",
" \"f1-score\": 0.89337822671156,\n",
" \"support\": 458\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7446808510638298,\n",
" \"recall\": 0.8333333333333334,\n",
" \"f1-score\": 0.7865168539325842,\n",
" \"support\": 210\n",
" },\n",
" \"accuracy\": 0.8577844311377245,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8319247211439241,\n",
" \"recall\": 0.8511644832605532,\n",
" \"f1-score\": 0.8399475403220721,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8643146609341388,\n",
" \"recall\": 0.8577844311377245,\n",
" \"f1-score\": 0.8597840825744567,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Goshawk 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Goshawk 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9375,\n",
" \"recall\": 0.9026548672566371,\n",
" \"f1-score\": 0.9197475202885482,\n",
" \"support\": 565\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5564516129032258,\n",
" \"recall\": 0.6699029126213593,\n",
" \"f1-score\": 0.6079295154185023,\n",
" \"support\": 103\n",
" },\n",
" \"accuracy\": 0.8667664670658682,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7469758064516129,\n",
" \"recall\": 0.7862788899389982,\n",
" \"f1-score\": 0.7638385178535252,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8787455331272938,\n",
" \"recall\": 0.8667664670658682,\n",
" \"f1-score\": 0.8716677979807418,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Goshawk 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9243243243243243,\n",
" \"recall\": 0.9079646017699115,\n",
" \"f1-score\": 0.9160714285714285,\n",
" \"support\": 565\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5398230088495575,\n",
" \"recall\": 0.5922330097087378,\n",
" \"f1-score\": 0.5648148148148148,\n",
" \"support\": 103\n",
" },\n",
" \"accuracy\": 0.8592814371257484,\n",
" \"macro avg\": {\n",
" \"precision\": 0.732073666586941,\n",
" \"recall\": 0.7500988057393246,\n",
" \"f1-score\": 0.7404431216931217,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8650374448424366,\n",
" \"recall\": 0.8592814371257484,\n",
" \"f1-score\": 0.8619106033963817,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Grey Partridge 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Grey Partridge 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.945,\n",
" \"recall\": 0.8936170212765957,\n",
" \"f1-score\": 0.9185905224787363,\n",
" \"support\": 423\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.832089552238806,\n",
" \"recall\": 0.9102040816326531,\n",
" \"f1-score\": 0.8693957115009747,\n",
" \"support\": 245\n",
" },\n",
" \"accuracy\": 0.8997005988023952,\n",
" \"macro avg\": {\n",
" \"precision\": 0.888544776119403,\n",
" \"recall\": 0.9019105514546244,\n",
" \"f1-score\": 0.8939931169898555,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9035882339798016,\n",
" \"recall\": 0.8997005988023952,\n",
" \"f1-score\": 0.9005475154584496,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Grey Partridge 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.949874686716792,\n",
" \"recall\": 0.8959810874704491,\n",
" \"f1-score\": 0.9221411192214111,\n",
" \"support\": 423\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8364312267657993,\n",
" \"recall\": 0.9183673469387755,\n",
" \"f1-score\": 0.8754863813229572,\n",
" \"support\": 245\n",
" },\n",
" \"accuracy\": 0.9041916167664671,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8931529567412957,\n",
" \"recall\": 0.9071742172046123,\n",
" \"f1-score\": 0.8988137502721841,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9082674296988381,\n",
" \"recall\": 0.9041916167664671,\n",
" \"f1-score\": 0.9050297258305111,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Indian Peafowl 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Indian Peafowl 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9234449760765551,\n",
" \"recall\": 0.9682274247491639,\n",
" \"f1-score\": 0.9453061224489796,\n",
" \"support\": 598\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5365853658536586,\n",
" \"recall\": 0.3142857142857143,\n",
" \"f1-score\": 0.39639639639639646,\n",
" \"support\": 70\n",
" },\n",
" \"accuracy\": 0.8997005988023952,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7300151709651068,\n",
" \"recall\": 0.641256569517439,\n",
" \"f1-score\": 0.6708512594226881,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8829057953645749,\n",
" \"recall\": 0.8997005988023952,\n",
" \"f1-score\": 0.8877856421740082,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Indian Peafowl 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9244372990353698,\n",
" \"recall\": 0.9615384615384616,\n",
" \"f1-score\": 0.9426229508196722,\n",
" \"support\": 598\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5,\n",
" \"recall\": 0.32857142857142857,\n",
" \"f1-score\": 0.39655172413793105,\n",
" \"support\": 70\n",
" },\n",
" \"accuracy\": 0.8952095808383234,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7122186495176849,\n",
" \"recall\": 0.6450549450549451,\n",
" \"f1-score\": 0.6695873374788016,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8799603365616034,\n",
" \"recall\": 0.8952095808383234,\n",
" \"f1-score\": 0.8853999180835616,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Little Owl 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Little Owl 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.946949602122016,\n",
" \"recall\": 0.9037974683544304,\n",
" \"f1-score\": 0.9248704663212435,\n",
" \"support\": 395\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8694158075601375,\n",
" \"recall\": 0.9267399267399268,\n",
" \"f1-score\": 0.8971631205673759,\n",
" \"support\": 273\n",
" },\n",
" \"accuracy\": 0.9131736526946108,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9081827048410767,\n",
" \"recall\": 0.9152686975471787,\n",
" \"f1-score\": 0.9110167934443096,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9152628866798111,\n",
" \"recall\": 0.9131736526946108,\n",
" \"f1-score\": 0.913546955257163,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Little Owl 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9554973821989529,\n",
" \"recall\": 0.9240506329113924,\n",
" \"f1-score\": 0.9395109395109396,\n",
" \"support\": 395\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8951048951048951,\n",
" \"recall\": 0.9377289377289377,\n",
" \"f1-score\": 0.9159212880143113,\n",
" \"support\": 273\n",
" },\n",
" \"accuracy\": 0.9296407185628742,\n",
" \"macro avg\": {\n",
" \"precision\": 0.925301138651924,\n",
" \"recall\": 0.9308897853201651,\n",
" \"f1-score\": 0.9277161137626254,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9308160214554233,\n",
" \"recall\": 0.9296407185628742,\n",
" \"f1-score\": 0.9298702585849223,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Mandarin Duck 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mandarin Duck 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.949438202247191,\n",
" \"recall\": 0.9354243542435424,\n",
" \"f1-score\": 0.9423791821561337,\n",
" \"support\": 542\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7388059701492538,\n",
" \"recall\": 0.7857142857142857,\n",
" \"f1-score\": 0.7615384615384615,\n",
" \"support\": 126\n",
" },\n",
" \"accuracy\": 0.907185628742515,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8441220861982224,\n",
" \"recall\": 0.8605693199789141,\n",
" \"f1-score\": 0.8519588218472975,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9097081704442866,\n",
" \"recall\": 0.907185628742515,\n",
" \"f1-score\": 0.9082685073090877,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Mandarin Duck 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9287020109689214,\n",
" \"recall\": 0.9372693726937269,\n",
" \"f1-score\": 0.9329660238751146,\n",
" \"support\": 542\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.71900826446281,\n",
" \"recall\": 0.6904761904761905,\n",
" \"f1-score\": 0.7044534412955465,\n",
" \"support\": 126\n",
" },\n",
" \"accuracy\": 0.8907185628742516,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8238551377158656,\n",
" \"recall\": 0.8138727815849587,\n",
" \"f1-score\": 0.8187097325853305,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8891489989033974,\n",
" \"recall\": 0.8907185628742516,\n",
" \"f1-score\": 0.8898633511131003,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Mute Swan 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mute Swan 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8372093023255814,\n",
" \"recall\": 0.8571428571428571,\n",
" \"f1-score\": 0.8470588235294119,\n",
" \"support\": 168\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9516129032258065,\n",
" \"recall\": 0.944,\n",
" \"f1-score\": 0.9477911646586344,\n",
" \"support\": 500\n",
" },\n",
" \"accuracy\": 0.9221556886227545,\n",
" \"macro avg\": {\n",
" \"precision\": 0.894411102775694,\n",
" \"recall\": 0.9005714285714286,\n",
" \"f1-score\": 0.8974249940940231,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.922840740125151,\n",
" \"recall\": 0.9221556886227545,\n",
" \"f1-score\": 0.9224572824584706,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Mute Swan 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.7912087912087912,\n",
" \"recall\": 0.8571428571428571,\n",
" \"f1-score\": 0.8228571428571427,\n",
" \"support\": 168\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9506172839506173,\n",
" \"recall\": 0.924,\n",
" \"f1-score\": 0.9371196754563895,\n",
" \"support\": 500\n",
" },\n",
" \"accuracy\": 0.907185628742515,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8709130375797043,\n",
" \"recall\": 0.8905714285714286,\n",
" \"f1-score\": 0.8799884091567661,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9105265252969844,\n",
" \"recall\": 0.907185628742515,\n",
" \"f1-score\": 0.9083829906110699,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Pheasant 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pheasant 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.826530612244898,\n",
" \"recall\": 0.8663101604278075,\n",
" \"f1-score\": 0.8459530026109661,\n",
" \"support\": 187\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9470338983050848,\n",
" \"recall\": 0.9293139293139293,\n",
" \"f1-score\": 0.938090241343127,\n",
" \"support\": 481\n",
" },\n",
" \"accuracy\": 0.9116766467065869,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8867822552749913,\n",
" \"recall\": 0.8978120448708684,\n",
" \"f1-score\": 0.8920216219770465,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9133001939738649,\n",
" \"recall\": 0.9116766467065869,\n",
" \"f1-score\": 0.912297331698046,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Pheasant 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.783410138248848,\n",
" \"recall\": 0.9090909090909091,\n",
" \"f1-score\": 0.8415841584158417,\n",
" \"support\": 187\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9623059866962306,\n",
" \"recall\": 0.9022869022869023,\n",
" \"f1-score\": 0.9313304721030042,\n",
" \"support\": 481\n",
" },\n",
" \"accuracy\": 0.9041916167664671,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8728580624725393,\n",
" \"recall\": 0.9056889056889057,\n",
" \"f1-score\": 0.886457315259423,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9122258614572177,\n",
" \"recall\": 0.9041916167664671,\n",
" \"f1-score\": 0.9062068783013584,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Pink-footed Goose 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pink-footed Goose 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8768267223382046,\n",
" \"recall\": 0.8786610878661087,\n",
" \"f1-score\": 0.8777429467084639,\n",
" \"support\": 478\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6931216931216931,\n",
" \"recall\": 0.6894736842105263,\n",
" \"f1-score\": 0.6912928759894459,\n",
" \"support\": 190\n",
" },\n",
" \"accuracy\": 0.8248502994011976,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7849742077299489,\n",
" \"recall\": 0.7840673860383176,\n",
" \"f1-score\": 0.7845179113489549,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8245752918724304,\n",
" \"recall\": 0.8248502994011976,\n",
" \"f1-score\": 0.8247107409650306,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Pink-footed Goose 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8805970149253731,\n",
" \"recall\": 0.8640167364016736,\n",
" \"f1-score\": 0.8722280887011616,\n",
" \"support\": 478\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6733668341708543,\n",
" \"recall\": 0.7052631578947368,\n",
" \"f1-score\": 0.6889460154241646,\n",
" \"support\": 190\n",
" },\n",
" \"accuracy\": 0.8188622754491018,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7769819245481138,\n",
" \"recall\": 0.7846399471482053,\n",
" \"f1-score\": 0.7805870520626631,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8216542988425011,\n",
" \"recall\": 0.8188622754491018,\n",
" \"f1-score\": 0.820096960074471,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Pintail 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pintail 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8618881118881119,\n",
" \"recall\": 0.9354838709677419,\n",
" \"f1-score\": 0.8971792538671519,\n",
" \"support\": 527\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6458333333333334,\n",
" \"recall\": 0.4397163120567376,\n",
" \"f1-score\": 0.5232067510548524,\n",
" \"support\": 141\n",
" },\n",
" \"accuracy\": 0.8308383233532934,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7538607226107226,\n",
" \"recall\": 0.6876000915122398,\n",
" \"f1-score\": 0.7101930024610021,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8162837349775971,\n",
" \"recall\": 0.8308383233532934,\n",
" \"f1-score\": 0.8182419441418013,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Pintail 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9124513618677043,\n",
" \"recall\": 0.889943074003795,\n",
" \"f1-score\": 0.9010566762728146,\n",
" \"support\": 527\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6233766233766234,\n",
" \"recall\": 0.6808510638297872,\n",
" \"f1-score\": 0.6508474576271187,\n",
" \"support\": 141\n",
" },\n",
" \"accuracy\": 0.8458083832335329,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7679139926221639,\n",
" \"recall\": 0.7853970689167911,\n",
" \"f1-score\": 0.7759520669499667,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8514340892221318,\n",
" \"recall\": 0.8458083832335329,\n",
" \"f1-score\": 0.848243053774247,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Pochard 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pochard 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9142259414225942,\n",
" \"recall\": 0.9066390041493776,\n",
" \"f1-score\": 0.9104166666666668,\n",
" \"support\": 482\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7631578947368421,\n",
" \"recall\": 0.7795698924731183,\n",
" \"f1-score\": 0.7712765957446808,\n",
" \"support\": 186\n",
" },\n",
" \"accuracy\": 0.8712574850299402,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8386919180797181,\n",
" \"recall\": 0.843104448311248,\n",
" \"f1-score\": 0.8408466312056737,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8721620841118908,\n",
" \"recall\": 0.8712574850299402,\n",
" \"f1-score\": 0.8716740720686287,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Pochard 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9287305122494433,\n",
" \"recall\": 0.8651452282157677,\n",
" \"f1-score\": 0.895810955961332,\n",
" \"support\": 482\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7031963470319634,\n",
" \"recall\": 0.8279569892473119,\n",
" \"f1-score\": 0.7604938271604939,\n",
" \"support\": 186\n",
" },\n",
" \"accuracy\": 0.8547904191616766,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8159634296407033,\n",
" \"recall\": 0.8465511087315398,\n",
" \"f1-score\": 0.8281523915609129,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8659320770242169,\n",
" \"recall\": 0.8547904191616766,\n",
" \"f1-score\": 0.8581328332712783,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Red-legged Partridge 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Red-legged Partridge 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9152046783625731,\n",
" \"recall\": 0.884180790960452,\n",
" \"f1-score\": 0.8994252873563219,\n",
" \"support\": 354\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8742331288343558,\n",
" \"recall\": 0.9076433121019108,\n",
" \"f1-score\": 0.890625,\n",
" \"support\": 314\n",
" },\n",
" \"accuracy\": 0.8952095808383234,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8947189035984644,\n",
" \"recall\": 0.8959120515311814,\n",
" \"f1-score\": 0.8950251436781609,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8959455966981116,\n",
" \"recall\": 0.8952095808383234,\n",
" \"f1-score\": 0.8952886253355358,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Red-legged Partridge 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9201183431952663,\n",
" \"recall\": 0.8785310734463276,\n",
" \"f1-score\": 0.8988439306358381,\n",
" \"support\": 354\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8696969696969697,\n",
" \"recall\": 0.9140127388535032,\n",
" \"f1-score\": 0.8913043478260869,\n",
" \"support\": 314\n",
" },\n",
" \"accuracy\": 0.8952095808383234,\n",
" \"macro avg\": {\n",
" \"precision\": 0.894907656446118,\n",
" \"recall\": 0.8962719061499154,\n",
" \"f1-score\": 0.8950741392309625,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8964172784071448,\n",
" \"recall\": 0.8952095808383234,\n",
" \"f1-score\": 0.8952998752432306,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Ring-necked Parakeet 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ring-necked Parakeet 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9654135338345865,\n",
" \"recall\": 0.9968944099378882,\n",
" \"f1-score\": 0.9809014514896868,\n",
" \"support\": 644\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.3333333333333333,\n",
" \"recall\": 0.041666666666666664,\n",
" \"f1-score\": 0.07407407407407407,\n",
" \"support\": 24\n",
" },\n",
" \"accuracy\": 0.9625748502994012,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6493734335839599,\n",
" \"recall\": 0.5192805383022775,\n",
" \"f1-score\": 0.5274877627818804,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9427040655531044,\n",
" \"recall\": 0.9625748502994012,\n",
" \"f1-score\": 0.9483208271514014,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Ring-necked Parakeet 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9667170953101362,\n",
" \"recall\": 0.9922360248447205,\n",
" \"f1-score\": 0.9793103448275863,\n",
" \"support\": 644\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.2857142857142857,\n",
" \"recall\": 0.08333333333333333,\n",
" \"f1-score\": 0.12903225806451613,\n",
" \"support\": 24\n",
" },\n",
" \"accuracy\": 0.9595808383233533,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6262156905122109,\n",
" \"recall\": 0.5377846790890269,\n",
" \"f1-score\": 0.5541713014460512,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9422499284983094,\n",
" \"recall\": 0.9595808383233533,\n",
" \"f1-score\": 0.9487614315307096,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Rock Dove 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rock Dove 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8938775510204081,\n",
" \"recall\": 0.8358778625954199,\n",
" \"f1-score\": 0.863905325443787,\n",
" \"support\": 262\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8983451536643026,\n",
" \"recall\": 0.9359605911330049,\n",
" \"f1-score\": 0.916767189384801,\n",
" \"support\": 406\n",
" },\n",
" \"accuracy\": 0.8967065868263473,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8961113523423554,\n",
" \"recall\": 0.8859192268642124,\n",
" \"f1-score\": 0.8903362574142939,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.896592890351877,\n",
" \"recall\": 0.8967065868263473,\n",
" \"f1-score\": 0.896033943348056,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Rock Dove 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8308823529411765,\n",
" \"recall\": 0.8625954198473282,\n",
" \"f1-score\": 0.8464419475655431,\n",
" \"support\": 262\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9090909090909091,\n",
" \"recall\": 0.8866995073891626,\n",
" \"f1-score\": 0.8977556109725687,\n",
" \"support\": 406\n",
" },\n",
" \"accuracy\": 0.8772455089820359,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8699866310160428,\n",
" \"recall\": 0.8746474636182454,\n",
" \"f1-score\": 0.872098779269056,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8784162957507444,\n",
" \"recall\": 0.8772455089820359,\n",
" \"f1-score\": 0.8776295932889748,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Ruddy Duck 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ruddy Duck 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9846625766871165,\n",
" \"recall\": 0.9801526717557252,\n",
" \"f1-score\": 0.9824024483550114,\n",
" \"support\": 655\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.1875,\n",
" \"recall\": 0.23076923076923078,\n",
" \"f1-score\": 0.20689655172413793,\n",
" \"support\": 13\n",
" },\n",
" \"accuracy\": 0.9655688622754491,\n",
" \"macro avg\": {\n",
" \"precision\": 0.5860812883435582,\n",
" \"recall\": 0.605460951262478,\n",
" \"f1-score\": 0.5946495000395747,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9691489337276368,\n",
" \"recall\": 0.9655688622754491,\n",
" \"f1-score\": 0.9673102677319556,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Ruddy Duck 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9846390168970814,\n",
" \"recall\": 0.9786259541984733,\n",
" \"f1-score\": 0.9816232771822359,\n",
" \"support\": 655\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.17647058823529413,\n",
" \"recall\": 0.23076923076923078,\n",
" \"f1-score\": 0.20000000000000004,\n",
" \"support\": 13\n",
" },\n",
" \"accuracy\": 0.9640718562874252,\n",
" \"macro avg\": {\n",
" \"precision\": 0.5805548025661877,\n",
" \"recall\": 0.604697592483852,\n",
" \"f1-score\": 0.590811638591118,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9689111881955795,\n",
" \"recall\": 0.9640718562874252,\n",
" \"f1-score\": 0.9664120457400666,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Whooper Swan 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Whooper Swan 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8390804597701149,\n",
" \"recall\": 0.8938775510204081,\n",
" \"f1-score\": 0.8656126482213438,\n",
" \"support\": 490\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6438356164383562,\n",
" \"recall\": 0.5280898876404494,\n",
" \"f1-score\": 0.5802469135802469,\n",
" \"support\": 178\n",
" },\n",
" \"accuracy\": 0.7964071856287425,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7414580381042355,\n",
" \"recall\": 0.7109837193304287,\n",
" \"f1-score\": 0.7229297809007953,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.7870541392415925,\n",
" \"recall\": 0.7964071856287425,\n",
" \"f1-score\": 0.7895720782121891,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Whooper Swan 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.848605577689243,\n",
" \"recall\": 0.8693877551020408,\n",
" \"f1-score\": 0.8588709677419356,\n",
" \"support\": 490\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6144578313253012,\n",
" \"recall\": 0.5730337078651685,\n",
" \"f1-score\": 0.5930232558139534,\n",
" \"support\": 178\n",
" },\n",
" \"accuracy\": 0.7904191616766467,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7315317045072721,\n",
" \"recall\": 0.7212107314836047,\n",
" \"f1-score\": 0.7259471117779446,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.7862129147359771,\n",
" \"recall\": 0.7904191616766467,\n",
" \"f1-score\": 0.7880313079766947,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Wigeon 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Wigeon 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.956953642384106,\n",
" \"recall\": 0.7789757412398922,\n",
" \"f1-score\": 0.8588410104011887,\n",
" \"support\": 371\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7759562841530054,\n",
" \"recall\": 0.9562289562289562,\n",
" \"f1-score\": 0.8567119155354449,\n",
" \"support\": 297\n",
" },\n",
" \"accuracy\": 0.8577844311377245,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8664549632685556,\n",
" \"recall\": 0.8676023487344242,\n",
" \"f1-score\": 0.8577764629683168,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8764802660448293,\n",
" \"recall\": 0.8577844311377245,\n",
" \"f1-score\": 0.857894391875551,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Wigeon 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9503311258278145,\n",
" \"recall\": 0.7735849056603774,\n",
" \"f1-score\": 0.8528974739970282,\n",
" \"support\": 371\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7704918032786885,\n",
" \"recall\": 0.9494949494949495,\n",
" \"f1-score\": 0.8506787330316742,\n",
" \"support\": 297\n",
" },\n",
" \"accuracy\": 0.8517964071856288,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8604114645532515,\n",
" \"recall\": 0.8615399275776634,\n",
" \"f1-score\": 0.8517881035143512,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8703726246345653,\n",
" \"recall\": 0.8517964071856288,\n",
" \"f1-score\": 0.8519109978492585,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n"
]
}
],
"source": [
"# Add model pipeline\n",
"estimators = [\n",
" ('lr', LogisticRegression(max_iter=10000, solver='saga', random_state=seed, penalty='l2', verbose=verbose)),\n",
" ('knn', KNeighborsClassifier(n_neighbors=5, weights='distance')),\n",
" ('sgd', SGDClassifier( max_iter=10000, loss='modified_huber', random_state=seed, penalty='l2', verbose=verbose)),\n",
" ('rf', RandomForestClassifier(n_estimators=20,max_features=None, random_state=seed, verbose=verbose))\n",
"]\n",
"\n",
"\n",
"for dict in df_dicts:\n",
" print(f'Training with {dict[\"name\"]} cells... \\n')\n",
" # Use this if using coordinates as separate columns\n",
" # coords, X, y = data['dataframe'].iloc[:, :2], data['dataframe'].iloc[:, 2:-1], data['dataframe'].iloc[:, [-1]]\n",
" # data['coords'] = coords\n",
" \n",
" # Use this if using coordinates as indices\n",
" X, y = dict['dataframe'].iloc[:, 0:-1], dict['dataframe'].iloc[:, [-1]], \n",
"\n",
" dict['X'] = standardise(X)\n",
" dict['y'] = y\n",
" dict['kbest'] = feature_select(dict['X'], dict['y'])\n",
"\n",
" # dict['X'] = dict['kbest']['10'].transform(dict['X'])\n",
"\n",
" X_train, X_test, y_train, y_test = train_test_split(dict['X'], dict['y'], random_state=seed)\n",
" dict['X_train'], dict['X_test'], dict['y_train'], dict['y_test'] = X_train, X_test, y_train, y_test # for debugging purposes\n",
"\n",
" dict['X_smote'], dict['y_smote'] = oversample(X_train, y_train)\n",
"\n",
" stack_clf = StackingClassifier(\n",
" estimators=estimators, \n",
" final_estimator=GradientBoostingClassifier(n_estimators=20, learning_rate=0.5, max_features=None, max_depth=2, random_state=seed)\n",
" )\n",
"\n",
" # Classifier without SMOTE\n",
" stack_clf.fit(dict['X_train'], dict['y_train'])\n",
" y_pred = stack_clf.predict(X_test)\n",
" \n",
" dict['predictions'] = y_pred\n",
" dict['report'] = classification_report(y_test, y_pred, output_dict=True)\n",
" \n",
"\n",
" # Classifier with SMOTE\n",
" stack_clf.fit(dict['X_smote'], dict['y_smote'])\n",
" y_pred_smote = stack_clf.predict(X_test)\n",
" \n",
" dict['predictions_smote'] = y_pred_smote\n",
" dict['report_smote'] = classification_report(y_test, y_pred_smote, output_dict=True)\n",
" \n",
" print(f'{dict[\"name\"]} Classification Report: \\n {json.dumps(dict[\"report\"], indent=4)} \\n')\n",
" print(f'{dict[\"name\"]} SMOTE Classification Report: \\n {json.dumps(dict[\"report_smote\"], indent=4)} \\n')\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8983364140480592,\n",
" \"recall\": 0.8741007194244604,\n",
" \"f1-score\": 0.8860528714676389,\n",
" \"support\": 556\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.44881889763779526,\n",
" \"recall\": 0.5089285714285714,\n",
" \"f1-score\": 0.47698744769874474,\n",
" \"support\": 112\n",
" },\n",
" \"accuracy\": 0.812874251497006,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6735776558429272,\n",
" \"recall\": 0.691514645426516,\n",
" \"f1-score\": 0.6815201595831918,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8229682077038233,\n",
" \"recall\": 0.812874251497006,\n",
" \"f1-score\": 0.8174670519135727,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Canada Goose 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9219512195121952,\n",
" \"recall\": 0.8957345971563981,\n",
" \"f1-score\": 0.9086538461538463,\n",
" \"support\": 211\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9524838012958964,\n",
" \"recall\": 0.9649890590809628,\n",
" \"f1-score\": 0.9586956521739131,\n",
" \"support\": 457\n",
" },\n",
" \"accuracy\": 0.9431137724550899,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9372175104040458,\n",
" \"recall\": 0.9303618281186805,\n",
" \"f1-score\": 0.9336747491638797,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9428395277085297,\n",
" \"recall\": 0.9431137724550899,\n",
" \"f1-score\": 0.9428890338052992,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Egyptian Goose 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9588336192109777,\n",
" \"recall\": 0.9442567567567568,\n",
" \"f1-score\": 0.9514893617021277,\n",
" \"support\": 592\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.611764705882353,\n",
" \"recall\": 0.6842105263157895,\n",
" \"f1-score\": 0.6459627329192548,\n",
" \"support\": 76\n",
" },\n",
" \"accuracy\": 0.9146706586826348,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7852991625466653,\n",
" \"recall\": 0.8142336415362732,\n",
" \"f1-score\": 0.7987260473106912,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9193467368562239,\n",
" \"recall\": 0.9146706586826348,\n",
" \"f1-score\": 0.9167288470501842,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Gadwall 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9010989010989011,\n",
" \"recall\": 0.8951965065502183,\n",
" \"f1-score\": 0.8981380065717415,\n",
" \"support\": 458\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7746478873239436,\n",
" \"recall\": 0.7857142857142857,\n",
" \"f1-score\": 0.7801418439716311,\n",
" \"support\": 210\n",
" },\n",
" \"accuracy\": 0.8607784431137725,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8378733942114224,\n",
" \"recall\": 0.8404553961322521,\n",
" \"f1-score\": 0.8391399252716862,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8613463368882108,\n",
" \"recall\": 0.8607784431137725,\n",
" \"f1-score\": 0.8610434045567368,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Goshawk 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9375,\n",
" \"recall\": 0.9026548672566371,\n",
" \"f1-score\": 0.9197475202885482,\n",
" \"support\": 565\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5564516129032258,\n",
" \"recall\": 0.6699029126213593,\n",
" \"f1-score\": 0.6079295154185023,\n",
" \"support\": 103\n",
" },\n",
" \"accuracy\": 0.8667664670658682,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7469758064516129,\n",
" \"recall\": 0.7862788899389982,\n",
" \"f1-score\": 0.7638385178535252,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8787455331272938,\n",
" \"recall\": 0.8667664670658682,\n",
" \"f1-score\": 0.8716677979807418,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Grey Partridge 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.945,\n",
" \"recall\": 0.8936170212765957,\n",
" \"f1-score\": 0.9185905224787363,\n",
" \"support\": 423\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.832089552238806,\n",
" \"recall\": 0.9102040816326531,\n",
" \"f1-score\": 0.8693957115009747,\n",
" \"support\": 245\n",
" },\n",
" \"accuracy\": 0.8997005988023952,\n",
" \"macro avg\": {\n",
" \"precision\": 0.888544776119403,\n",
" \"recall\": 0.9019105514546244,\n",
" \"f1-score\": 0.8939931169898555,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9035882339798016,\n",
" \"recall\": 0.8997005988023952,\n",
" \"f1-score\": 0.9005475154584496,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Indian Peafowl 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9234449760765551,\n",
" \"recall\": 0.9682274247491639,\n",
" \"f1-score\": 0.9453061224489796,\n",
" \"support\": 598\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5365853658536586,\n",
" \"recall\": 0.3142857142857143,\n",
" \"f1-score\": 0.39639639639639646,\n",
" \"support\": 70\n",
" },\n",
" \"accuracy\": 0.8997005988023952,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7300151709651068,\n",
" \"recall\": 0.641256569517439,\n",
" \"f1-score\": 0.6708512594226881,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8829057953645749,\n",
" \"recall\": 0.8997005988023952,\n",
" \"f1-score\": 0.8877856421740082,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Little Owl 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.946949602122016,\n",
" \"recall\": 0.9037974683544304,\n",
" \"f1-score\": 0.9248704663212435,\n",
" \"support\": 395\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8694158075601375,\n",
" \"recall\": 0.9267399267399268,\n",
" \"f1-score\": 0.8971631205673759,\n",
" \"support\": 273\n",
" },\n",
" \"accuracy\": 0.9131736526946108,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9081827048410767,\n",
" \"recall\": 0.9152686975471787,\n",
" \"f1-score\": 0.9110167934443096,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9152628866798111,\n",
" \"recall\": 0.9131736526946108,\n",
" \"f1-score\": 0.913546955257163,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Mandarin Duck 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.949438202247191,\n",
" \"recall\": 0.9354243542435424,\n",
" \"f1-score\": 0.9423791821561337,\n",
" \"support\": 542\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7388059701492538,\n",
" \"recall\": 0.7857142857142857,\n",
" \"f1-score\": 0.7615384615384615,\n",
" \"support\": 126\n",
" },\n",
" \"accuracy\": 0.907185628742515,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8441220861982224,\n",
" \"recall\": 0.8605693199789141,\n",
" \"f1-score\": 0.8519588218472975,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9097081704442866,\n",
" \"recall\": 0.907185628742515,\n",
" \"f1-score\": 0.9082685073090877,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Mute Swan 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8372093023255814,\n",
" \"recall\": 0.8571428571428571,\n",
" \"f1-score\": 0.8470588235294119,\n",
" \"support\": 168\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9516129032258065,\n",
" \"recall\": 0.944,\n",
" \"f1-score\": 0.9477911646586344,\n",
" \"support\": 500\n",
" },\n",
" \"accuracy\": 0.9221556886227545,\n",
" \"macro avg\": {\n",
" \"precision\": 0.894411102775694,\n",
" \"recall\": 0.9005714285714286,\n",
" \"f1-score\": 0.8974249940940231,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.922840740125151,\n",
" \"recall\": 0.9221556886227545,\n",
" \"f1-score\": 0.9224572824584706,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Pheasant 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.826530612244898,\n",
" \"recall\": 0.8663101604278075,\n",
" \"f1-score\": 0.8459530026109661,\n",
" \"support\": 187\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9470338983050848,\n",
" \"recall\": 0.9293139293139293,\n",
" \"f1-score\": 0.938090241343127,\n",
" \"support\": 481\n",
" },\n",
" \"accuracy\": 0.9116766467065869,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8867822552749913,\n",
" \"recall\": 0.8978120448708684,\n",
" \"f1-score\": 0.8920216219770465,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9133001939738649,\n",
" \"recall\": 0.9116766467065869,\n",
" \"f1-score\": 0.912297331698046,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Pink-footed Goose 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8768267223382046,\n",
" \"recall\": 0.8786610878661087,\n",
" \"f1-score\": 0.8777429467084639,\n",
" \"support\": 478\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6931216931216931,\n",
" \"recall\": 0.6894736842105263,\n",
" \"f1-score\": 0.6912928759894459,\n",
" \"support\": 190\n",
" },\n",
" \"accuracy\": 0.8248502994011976,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7849742077299489,\n",
" \"recall\": 0.7840673860383176,\n",
" \"f1-score\": 0.7845179113489549,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8245752918724304,\n",
" \"recall\": 0.8248502994011976,\n",
" \"f1-score\": 0.8247107409650306,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Pintail 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8618881118881119,\n",
" \"recall\": 0.9354838709677419,\n",
" \"f1-score\": 0.8971792538671519,\n",
" \"support\": 527\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6458333333333334,\n",
" \"recall\": 0.4397163120567376,\n",
" \"f1-score\": 0.5232067510548524,\n",
" \"support\": 141\n",
" },\n",
" \"accuracy\": 0.8308383233532934,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7538607226107226,\n",
" \"recall\": 0.6876000915122398,\n",
" \"f1-score\": 0.7101930024610021,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8162837349775971,\n",
" \"recall\": 0.8308383233532934,\n",
" \"f1-score\": 0.8182419441418013,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Pochard 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9142259414225942,\n",
" \"recall\": 0.9066390041493776,\n",
" \"f1-score\": 0.9104166666666668,\n",
" \"support\": 482\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7631578947368421,\n",
" \"recall\": 0.7795698924731183,\n",
" \"f1-score\": 0.7712765957446808,\n",
" \"support\": 186\n",
" },\n",
" \"accuracy\": 0.8712574850299402,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8386919180797181,\n",
" \"recall\": 0.843104448311248,\n",
" \"f1-score\": 0.8408466312056737,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8721620841118908,\n",
" \"recall\": 0.8712574850299402,\n",
" \"f1-score\": 0.8716740720686287,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Red-legged Partridge 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9152046783625731,\n",
" \"recall\": 0.884180790960452,\n",
" \"f1-score\": 0.8994252873563219,\n",
" \"support\": 354\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8742331288343558,\n",
" \"recall\": 0.9076433121019108,\n",
" \"f1-score\": 0.890625,\n",
" \"support\": 314\n",
" },\n",
" \"accuracy\": 0.8952095808383234,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8947189035984644,\n",
" \"recall\": 0.8959120515311814,\n",
" \"f1-score\": 0.8950251436781609,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8959455966981116,\n",
" \"recall\": 0.8952095808383234,\n",
" \"f1-score\": 0.8952886253355358,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Ring-necked Parakeet 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9654135338345865,\n",
" \"recall\": 0.9968944099378882,\n",
" \"f1-score\": 0.9809014514896868,\n",
" \"support\": 644\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.3333333333333333,\n",
" \"recall\": 0.041666666666666664,\n",
" \"f1-score\": 0.07407407407407407,\n",
" \"support\": 24\n",
" },\n",
" \"accuracy\": 0.9625748502994012,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6493734335839599,\n",
" \"recall\": 0.5192805383022775,\n",
" \"f1-score\": 0.5274877627818804,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9427040655531044,\n",
" \"recall\": 0.9625748502994012,\n",
" \"f1-score\": 0.9483208271514014,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Rock Dove 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8938775510204081,\n",
" \"recall\": 0.8358778625954199,\n",
" \"f1-score\": 0.863905325443787,\n",
" \"support\": 262\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8983451536643026,\n",
" \"recall\": 0.9359605911330049,\n",
" \"f1-score\": 0.916767189384801,\n",
" \"support\": 406\n",
" },\n",
" \"accuracy\": 0.8967065868263473,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8961113523423554,\n",
" \"recall\": 0.8859192268642124,\n",
" \"f1-score\": 0.8903362574142939,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.896592890351877,\n",
" \"recall\": 0.8967065868263473,\n",
" \"f1-score\": 0.896033943348056,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Ruddy Duck 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9846625766871165,\n",
" \"recall\": 0.9801526717557252,\n",
" \"f1-score\": 0.9824024483550114,\n",
" \"support\": 655\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.1875,\n",
" \"recall\": 0.23076923076923078,\n",
" \"f1-score\": 0.20689655172413793,\n",
" \"support\": 13\n",
" },\n",
" \"accuracy\": 0.9655688622754491,\n",
" \"macro avg\": {\n",
" \"precision\": 0.5860812883435582,\n",
" \"recall\": 0.605460951262478,\n",
" \"f1-score\": 0.5946495000395747,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9691489337276368,\n",
" \"recall\": 0.9655688622754491,\n",
" \"f1-score\": 0.9673102677319556,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Whooper Swan 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8390804597701149,\n",
" \"recall\": 0.8938775510204081,\n",
" \"f1-score\": 0.8656126482213438,\n",
" \"support\": 490\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6438356164383562,\n",
" \"recall\": 0.5280898876404494,\n",
" \"f1-score\": 0.5802469135802469,\n",
" \"support\": 178\n",
" },\n",
" \"accuracy\": 0.7964071856287425,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7414580381042355,\n",
" \"recall\": 0.7109837193304287,\n",
" \"f1-score\": 0.7229297809007953,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.7870541392415925,\n",
" \"recall\": 0.7964071856287425,\n",
" \"f1-score\": 0.7895720782121891,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Wigeon 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.956953642384106,\n",
" \"recall\": 0.7789757412398922,\n",
" \"f1-score\": 0.8588410104011887,\n",
" \"support\": 371\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7759562841530054,\n",
" \"recall\": 0.9562289562289562,\n",
" \"f1-score\": 0.8567119155354449,\n",
" \"support\": 297\n",
" },\n",
" \"accuracy\": 0.8577844311377245,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8664549632685556,\n",
" \"recall\": 0.8676023487344242,\n",
" \"f1-score\": 0.8577764629683168,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8764802660448293,\n",
" \"recall\": 0.8577844311377245,\n",
" \"f1-score\": 0.857894391875551,\n",
" \"support\": 668\n",
" }\n",
"}\n"
]
}
],
"source": [
"for dict in df_dicts:\n",
" print(dict['name'], '\\n', json.dumps(dict['report'], indent=4))"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6AAAAPHCAYAAAA2NCRTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD5aUlEQVR4nOzdeXRN5/7H8c8hyckkCSmJeYohek2l1JhouTEWHbRo0UF1MLaGplVTDbeDUkW12ooqHQ1VVKskakhjqKgSQVBuBa1yIsZInt8ffvZ1JFE17Bjer7W+a2U/+9nP/u4TXSuf7nP2cRhjjAAAAAAAuMby5XUDAAAAAIBbAwEUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbOGR1w0AN5usrCzt27dPBQoUkMPhyOt2AAAAgKvCGKOjR4+qWLFiypfv8u5lEkCBq2zfvn0qWbJkXrcBAAAAXBN79+5ViRIlLutYAihwlRUoUEDS2f8wAwIC8rgbAAAA4OpIS0tTyZIlrb93LwcBFLjKzr3tNiAggAAKAACAm86VfMyMhxABAAAAAGxBAAUAAAAA2IIACgAAAACwBQEUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC2IIACAAAAAGxBAAUAAAAA2IIACgAAAACwBQEUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFgRQAAAAAIAtCKAAAAAAAFt45HUDwE0rMDCvOwAAAMD1xpi87iBPcQcUN63du3fL4XAoMTExr1sBAAAAIALoNdGtWzc5HA49/fTT2fY999xzcjgc6tat2z9a0+FwaN68eVfc2/HjxxUdHa3y5cvL29tbhQsXVkREhL7++usrXvtq+vHHH9WmTRsVK1Ys12s3xmjIkCEqWrSofHx81LRpU23fvt3+ZgEAAABcEgLoNVKyZEl99tlnOnHihDV28uRJzZo1S6VKlcqzvp5++mnNmTNH77zzjrZu3arFixfrgQce0KFDh/Ksp5wcO3ZM1atX16RJk3Kd8/rrr2vChAmaMmWKEhIS5Ofnp6ioKJ08edLGTgEAAABcKgLoNXLHHXeoZMmSmjNnjjU2Z84clSpVSjVr1nSbW6ZMGY0fP95trEaNGho2bJi1X5Lat28vh8NhbUvS119/rTvuuEPe3t4qV66chg8frjNnzuTa1/z58/XSSy+pZcuWKlOmjGrVqqVevXrp8ccflyRNnDhR//rXv6z58+bNk8Ph0JQpU6yxpk2bavDgwZKklJQUtW3bViEhIfL399edd96pH374Idv1jR49Wo8//rgKFCigUqVK6f3337/o69eiRQuNHDlS7du3z3G/MUbjx4/X4MGD1bZtW1WrVk0ff/yx9u3bl+ud4szMTD3++OOqXLmy9uzZI+nsneX33ntPrVu3lq+vr8LDwxUfH68dO3YoMjJSfn5+ql+/vlJSUi7aLwAAAIC/RwC9hh5//HFNmzbN2v7oo4/02GOP/eN11q5dK0maNm2aUlNTre0VK1aoS5cu6tOnj7Zs2aL33ntPMTExGjVqVK5rhYaGatGiRTp69GiO+yMiIrRlyxb98ccfkqTly5frtttuU1xcnCQpIyND8fHxioyMlCSlp6erZcuWWrp0qTZs2KDmzZurTZs2VsA7Z+zYsapdu7Y2bNigZ599Vs8884ySk5P/8Wtxzq5du7R//341bdrUGgsMDFTdunUVHx+fbf6pU6f04IMPKjExUStWrHC7C/3qq6+qS5cuSkxMVOXKldWpUyf16NFD0dHRWrdunYwx6tmzZ669nDp1SmlpaW4FAAAAIAcGV13Xrl1N27ZtzcGDB43T6TS7d+82u3fvNt7e3uaPP/4wbdu2NV27drXmly5d2owbN85tjerVq5uhQ4da25LM3Llz3ebcc889ZvTo0W5jM2bMMEWLFs21t+XLl5sSJUoYT09PU7t2bdO3b1+zcuVKa39WVpYJDg42X375pTHGmBo1apgxY8aY0NBQY4wxK1euNJ6enubYsWO5nuP2228377zzjtv1PfLII27nKFKkiHn33XdzXeN8OV37qlWrjCSzb98+t/EHH3zQdOjQwRhjzK5du4wks2LFCnPPPfeYhg0bmiNHjmRbe/DgwdZ2fHy8kWQ+/PBDa+zTTz813t7eufY3dOhQIylbuc4+44yiKIqiKIqi/lc3MJfLZSQZl8t12WtwB/QaKly4sFq1aqWYmBhNmzZNrVq10m233XbV1t+4caNGjBghf39/q7p3767U1FQdP348x2MaN26snTt3aunSpXrggQe0efNmNWrUSK+++qqks29Jbdy4seLi4nTkyBFt2bJFzz77rE6dOqWtW7dq+fLluvPOO+Xr6yvp7B3Q/v37Kzw8XEFBQfL391dSUlK2O6DVqlWzfnY4HAoNDdXBgwev2mtxMR07dtSxY8f0/fffKzCHr0Y5v7eQkBBJUtWqVd3GTp48meudzejoaLlcLqv27t17la8AAAAAuDnwPaDX2OOPP269fTO3B+rky5dPxhi3sYyMjL9dOz09XcOHD9d9992XbZ+3t3eux3l6eqpRo0Zq1KiRBg0apJEjR2rEiBEaNGiQvLy8FBkZqffff18rVqxQzZo1FRAQYIXS5cuXKyIiwlqrf//+WrJkid58802FhYXJx8dHDzzwgE6fPp3tnOdzOBzKysr622vMTWhoqCTpwIEDKlq0qDV+4MAB1ahRw21uy5Yt9cknnyg+Pl533313jq/H+X3lNpZbv06nU06n8/IuBAAAALiFcAf0GmvevLlOnz6tjIwMRUVF5TincOHCSk1NtbbT0tK0a9cutzmenp7KzMx0G7vjjjuUnJyssLCwbJUv36X/aqtUqaIzZ85YT4899znQL7/80vqsZ2RkpH744QetWrXKGpOkVatWqVu3bmrfvr2qVq2q0NBQ7d69+5LPfbnKli2r0NBQLV261BpLS0tTQkKC6tWr5zb3mWee0X/+8x/de++9Wr58+TXvDQAAAEDOuAN6jeXPn19JSUnWzzm5++67FRMTozZt2igoKEhDhgzJNrdMmTJaunSpGjRoIKfTqYIFC2rIkCFq3bq1SpUqpQceeED58uXTxo0b9euvv2rkyJE5nisyMlIdO3ZU7dq1FRwcrC1btuill15SkyZNFBAQIOnsW1ILFiyoWbNmacGCBdZx/fv3l8PhUIMGDaz1KlSooDlz5qhNmzZyOBx65ZVXrujO5jnp6enasWOHtb1r1y4lJiaqUKFCKlWqlBwOh/r27auRI0eqQoUKKlu2rF555RUVK1ZM7dq1y7Zer169lJmZqdatW+vbb79Vw4YNr7hHAAAAAP8MAdQG54JdbqKjo7Vr1y61bt1agYGBevXVV7PdAR07dqyef/55TZ06VcWLF9fu3bsVFRWlBQsWaMSIEXrttdfk6empypUr68knn8z1XFFRUZo+fbpeeuklHT9+XMWKFVPr1q01ZMgQa47D4VCjRo20cOFCK6hVq1ZNAQEBqlSpkvz8/Ky5b731lh5//HHVr19ft912mwYNGnRVngK7bt06NWnSxNp+/vnnJUldu3ZVTEyMJGngwIE6duyYnnrqKR05ckQNGzbU4sWLc337cd++fZWVlaWWLVtq8eLFql+//hX3eTGBckm6+O8eAAAAtxhH7rsu+FTeTclhLvzwIYArkpaW9v8POyKAAgAA4NJd78ns3N+5Lpfrb2+y5YbPgAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtiCAAgAAAABs4ZHXDQA3rRcDJe+8bgIAAFxPzFCT1y0AeYo7oAAAAAAAWxBAAQAAAAC2IIACAAAAAGxBAAUAAAAA2IIACgAAAACwBQEUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbeOR1A8DNyhXtUkBAQF63AQAAAFw3uAMKAAAAALAFARQAAAAAYAsCKAAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgC4+8bgCXJiYmRn379tWRI0fyupUbyrBhwzRv3jwlJibaf/LAQPvPCQAAgOuLMXndwXWFO6DXiW7dusnhcMjhcMjLy0thYWEaMWKEzpw5k9etXXUOh0Pz5s3723mjRo1S/fr15evrq6CgoBzn7NmzR61atZKvr6+KFCmiAQMG3JSvGQAAAHAz4A7odaR58+aaNm2aTp06pUWLFum5556Tp6enoqOj87q1PHH69Gk9+OCDqlevnj788MNs+zMzM9WqVSuFhoZq9erVSk1NVZcuXeTp6anRo0fnQccAAAAALoY7oNcRp9Op0NBQlS5dWs8884yaNm2q+fPnu8357rvvFB4eLn9/fzVv3lypqalu+z/44AOFh4fL29tblStX1uTJk932Dxo0SBUrVpSvr6/KlSunV155RRkZGdb+jRs3qkmTJipQoIACAgJUq1YtrVu3TpJ06NAhdezYUcWLF5evr6+qVq2qTz/91G39yMhI9e7dWwMHDlShQoUUGhqqYcOGWfvLlCkjSWrfvr0cDoe1nZPhw4erX79+qlq1ao77v//+e23ZskWffPKJatSooRYtWujVV1/VpEmTdPr06RyPSUlJUbly5dSzZ08ZYxQTE6OgoCAtWLBAlSpVkq+vrx544AEdP35c06dPV5kyZVSwYEH17t1bmZmZufYKAAAA4O8RQK9jPj4+bkHq+PHjevPNNzVjxgz9+OOP2rNnj/r372/tnzlzpoYMGaJRo0YpKSlJo0eP1iuvvKLp06dbcwoUKKCYmBht2bJFb7/9tqZOnapx48ZZ+zt37qwSJUpo7dq1Wr9+vV588UV5enpKkk6ePKlatWpp4cKF+vXXX/XUU0/p0Ucf1Zo1a9z6nj59uvz8/JSQkKDXX39dI0aM0JIlSyRJa9eulSRNmzZNqamp1vbliI+PV9WqVRUSEmKNRUVFKS0tTZs3b842/5dfflHDhg3VqVMnTZw4UQ6Hw3pdJ0yYoM8++0yLFy9WXFyc2rdvr0WLFmnRokWaMWOG3nvvPX311Vc59nHq1CmlpaW5FQAAAIAcGFwXunbtatq2bWuMMSYrK8ssWbLEOJ1O079/f2OMMdOmTTOSzI4dO6xjJk2aZEJCQqzt8uXLm1mzZrmt++qrr5p69erlet433njD1KpVy9ouUKCAiYmJueS+W7VqZV544QVrOyIiwjRs2NBtzp133mkGDRpkbUsyc+fOveRzTJs2zQQGBmYb7969u/n3v//tNnbs2DEjySxatMgYY8zQoUNN9erVzapVq0zBggXNm2++mW3tC1/XHj16GF9fX3P06FFrLCoqyvTo0SPH/oYOHWokZSvX2Y+cUxRFURRFUbdy3URcLpeRZFwu12WvwWdAryMLFiyQv7+/MjIylJWVpU6dOrm9fdXX11fly5e3tosWLaqDBw9Kko4dO6aUlBQ98cQT6t69uzXnzJkzCjzvaayff/65JkyYoJSUFKWnp+vMmTMKCAiw9j///PN68sknNWPGDDVt2lQPPvigdc7MzEyNHj1aX3zxhX7//XedPn1ap06dkq+vr9t1VKtWzW37/D7zwp49e9SsWTONGjVKffv2zbb/wtc1JCREZcqUkb+/v9tYbtcQHR2t559/3tpOS0tTyZIlr94FAAAAADcJ3oJ7HWnSpIkSExO1fft2nThxwnor6znn3gp7jsPhkDFGkpSeni5Jmjp1qhITE6369ddf9dNPP0k6+5bVzp07q2XLllqwYIE2bNigl19+2e1tvsOGDdPmzZvVqlUrLVu2TFWqVNHcuXMlSW+88YbefvttDRo0SLGxsUpMTFRUVFS2z1vm1GdWVtZVepX+JzQ0VAcOHHAbO7cdGhpqjRUuXFh16tTRp59+muPbY3Pq959cg9PpVEBAgFsBAAAAyI4Aeh3x8/NTWFiYSpUqJQ+Pf3ZzOiQkRMWKFdPOnTsVFhbmVmXLlpUkrV69WqVLl9bLL7+s2rVrq0KFCvrtt9+yrVWxYkX169dP33//ve677z5NmzZNkrRq1Sq1bdtWjzzyiKpXr65y5cpp27Zt//g6PT09r8oDferVq6dNmza53ZlcsmSJAgICVKVKFWvMx8dHCxYskLe3t6KionT06NErPjcAAACAf44AehMZPny4xowZowkTJmjbtm3atGmTpk2bprfeekuSVKFCBe3Zs0efffaZUlJSNGHCBOvupiSdOHFCPXv2VFxcnH777TetWrVKa9euVXh4uHX8kiVLtHr1aiUlJalHjx7Z7kBeijJlymjp0qXav3+/Dh8+nOu8PXv2KDExUXv27FFmZqZ1V/fc3d5///vfqlKlih599FFt3LhR3333nQYPHqznnntOTqfTbS0/Pz8tXLhQHh4eatGihbUGAAAAAPvwGdCbyJNPPilfX1+98cYbGjBggPz8/FS1alXrc4/33nuv+vXrp549e+rUqVNq1aqVXnnlFetzpvnz59ehQ4fUpUsXHThwQLfddpvuu+8+DR8+XJI0ePBg7dy5U1FRUfL19dVTTz2ldu3ayeVy/aM+x44dq+eff15Tp05V8eLFtXv37hznDRkyxO0JvjVr1pQkxcbGKjIyUvnz59eCBQv0zDPPqF69evLz81PXrl01YsSIHNfz9/fXt99+q6ioKLVq1UqLFi36R33/U4FySeLtuAAAALc0h/vm/3+C7pblMOZWfwmAqystLe3/H/xEAAUAAIC7Gzl9nfs71+VyXfZzT3gLLgAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWHnndAHDTejFQ8s7rJgAAwD9lhpq8bgG4aXEHFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC2IIACAAAAAGxBAAUAAAAA2IIACgAAAACwBQEUAAAAAGALAigAAAAAwBYeed0AcLNyRbsUEBCQ120AAAAA1w3ugAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtiCAAgAAAABs4ZHXDQA3rcDAvO4AAAAANwtj8rqDq4I7oNcph8OhefPm5XUbN7zIyEj17ds3r9sAAAAAoFs4gO7fv1+9evVSuXLl5HQ6VbJkSbVp00ZLly7N69auqtjYWLVu3VqFCxeWt7e3ypcvr4ceekg//vhjXrd2USdPnlS3bt1UtWpVeXh4qF27djnOi4uL0x133CGn06mwsDDFxMTY2icAAACAS3dLBtDdu3erVq1aWrZsmd544w1t2rRJixcvVpMmTfTcc8/ldXtXzeTJk3XPPfcoODhYn3/+uZKTkzV37lzVr19f/fr1y+v2LiozM1M+Pj7q3bu3mjZtmuOcXbt2qVWrVmrSpIkSExPVt29fPfnkk/ruu+9s7hYAAADAJTG3oBYtWpjixYub9PT0bPsOHz5s/Tx27Fjzr3/9y/j6+poSJUqYZ555xhw9etTaP23aNBMYGGgWL15sKleubPz8/ExUVJTZt2+fNWfNmjWmadOmJjg42AQEBJjGjRub9evXu51z27ZtplGjRsbpdJrw8HDz/fffG0lm7ty51pyBAweaChUqGB8fH1O2bFkzePBgc/r06Vyv8bfffjOenp6mX79+Oe7Pyspy2/7qq69MlSpVjJeXlyldurR588033fb/9ddf5tFHHzVBQUHGx8fHNG/e3Gzbts3av3v3btO6dWsTFBRkfH19TZUqVczChQut/Zs2bTLNmzc3fn5+pkiRIuaRRx4xf/zxR679n69r166mbdu22cYHDhxobr/9drexhx56yERFRVnbERERpk+fPtb2ggULTEBAgPnkk0/c1h41apQpUqSICQwMNMOHDzcZGRmmf//+pmDBgqZ48eLmo48+uqRejTHG5XIZScZ19p36FEVRFEVRFHXldR2w/s51uS57jVvuDuhff/2lxYsX67nnnpOfn1+2/UFBQdbP+fLl04QJE7R582ZNnz5dy5Yt08CBA93mHz9+XG+++aZmzJihH3/8UXv27FH//v2t/UePHlXXrl21cuVK/fTTT6pQoYJatmypo0ePSpKysrJ03333ycvLSwkJCZoyZYoGDRqUra8CBQooJiZGW7Zs0dtvv62pU6dq3LhxuV7n7NmzlZGRka3fcxwOh/Xz+vXr1aFDBz388MPatGmThg0bpldeecXt7azdunXTunXrNH/+fMXHx8sYo5YtWyojI0OS9Nxzz+nUqVP68ccftWnTJr322mvy9/eXJB05ckR33323atasqXXr1mnx4sU6cOCAOnTokGv/lyI+Pj7b3dGoqCjFx8fnOH/WrFnq2LGjZs6cqc6dO1vjy5Yt0759+/Tjjz/qrbfe0tChQ9W6dWsVLFhQCQkJevrpp9WjRw/997//zXHdU6dOKS0tza0AAAAA5ODq5eEbQ0JCgpFk5syZ84+P/fLLL01wcLC1PW3aNCPJ7NixwxqbNGmSCQkJyXWNzMxMU6BAAfPNN98YY4z57rvvjIeHh/n999+tOd9++62R3O+AXuiNN94wtWrVynX/008/bQICAtzGvvrqK+Pn52fVL7/8YowxplOnTqZZs2ZucwcMGGCqVKlijDl7h1aSWbVqlbX/zz//ND4+PuaLL74wxhhTtWpVM2zYsBx7efXVV82///1vt7G9e/caSSY5OTnXazgntzugFSpUMKNHj3YbW7hwoZFkjh8/boz53x3QiRMnmsDAQBMXF5dt7dKlS5vMzExrrFKlSqZRo0bW9pkzZ4yfn5/59NNPc+xv6NChRlK24g4oRVEURVEUddXqOsAd0MtgjLnkuT/88IPuueceFS9eXAUKFNCjjz6qQ4cO6fjx49YcX19flS9f3touWrSoDh48aG0fOHBA3bt3V4UKFRQYGKiAgAClp6drz549kqSkpCSVLFlSxYoVs46pV69etl4+//xzNWjQQKGhofL399fgwYOtNXJz/l1O6ezdwcTERC1cuFDHjh1TZmam1UODBg3c5jZo0EDbt29XZmamkpKS5OHhobp161r7g4ODValSJSUlJUmSevfurZEjR6pBgwYaOnSofvnlF2vuxo0bFRsbK39/f6sqV64sSUpJSbnoNVwNX331lfr166clS5YoIiIi2/7bb79d+fL97z+FkJAQVa1a1drOnz+/goOD3X6v54uOjpbL5bJq7969V/8iAAAAgJvALRdAK1SoIIfDoa1bt1503u7du9W6dWtVq1ZNs2fP1vr16zVp0iRJ0unTp615np6ebsc5HA63kNu1a1clJibq7bff1urVq5WYmKjg4GC3Nf5OfHy8OnfurJYtW2rBggXasGGDXn755YuuUaFCBblcLu3fv98a8/f3V1hYmEqXLn3J575UTz75pHbu3KlHH31UmzZtUu3atfXOO+9IktLT09WmTRslJia61fbt29W4cePLPmdoaKgOHDjgNnbgwAEFBATIx8fHGqtZs6YKFy6sjz76KMf/AZHT7zCnsaysrBz7cDqdCggIcCsAAAAA2d1yAbRQoUKKiorSpEmTdOzYsWz7jxw5Iuns5yKzsrI0duxY3XXXXapYsaL27dv3j8+3atUq9e7dWy1bttTtt98up9OpP//809ofHh6uvXv3KjU11Rr76aef3NZYvXq1SpcurZdfflm1a9dWhQoV9Ntvv130vA888IA8PT312muv/W2P4eHhWrVqVba+K1asqPz58ys8PFxnzpxRQkKCtf/QoUNKTk5WlSpVrLGSJUvq6aef1pw5c/TCCy9o6tSpkqQ77rhDmzdvVpkyZRQWFuZWOX0O91LVq1cv29fmLFmyJNsd5PLlyys2NlZff/21evXqddnnAwAAAHBlbrkAKkmTJk1SZmam6tSpo9mzZ2v79u1KSkrShAkTrPASFhamjIwMvfPOO9q5c6dmzJihKVOm/ONzVahQQTNmzFBSUpISEhLUuXNnt7tzTZs2VcWKFdW1a1dt3LhRK1as0Msvv5xtjT179uizzz5TSkqKJkyYoLlz5170vKVKldLYsWP19ttvq2vXroqNjdXu3bv1888/a8KECZLOvrVUkl544QUtXbpUr776qrZt26bp06dr4sSJ1sOUKlSooLZt26p79+5auXKlNm7cqEceeUTFixdX27ZtJUl9+/bVd999p127dunnn39WbGyswsPDJZ19QNFff/2ljh07au3atUpJSdF3332nxx57zHobcE62bNmixMRE/fXXX3K5XNad03Oefvpp7dy5UwMHDtTWrVs1efJkffHFFzl+xUzFihUVGxur2bNnq2/fvhd97QAAAABcI1frA6k3mn379pnnnnvOlC5d2nh5eZnixYube++918TGxlpz3nrrLVO0aFHj4+NjoqKizMcff2wkWV/Vcu5rWM43d+5cc/7L+vPPP5vatWsbb29vU6FCBfPll1+a0qVLm3HjxllzkpOTTcOGDY2Xl5epWLGiWbx4sZHcH0I0YMAAExwcbPz9/c1DDz1kxo0bl+3cOVmyZIlp0aKFKVSokPHw8DAhISGmXbt2ZvHixW7zzn0Ni6enpylVqpR544033Paf+xqWwMBA6/U4/2tYevbsacqXL2+cTqcpXLiwefTRR82ff/5p7d+2bZtp37699TUulStXNn379s32dTDnK126tJGyP9znfLGxsaZGjRrGy8vLlCtXzkybNs1t/4Vfw7JlyxZTpEgR8/zzzxtjcn7A0YXHnOvl/N/ZxZz7cLbkyvPPqlMURVEURVE3T+W1q/EQIocxxuRV+AVuRmlpaQoMDJTkksTnQQEAAHB15HVyO/d3rsvluuznntySb8EFAAAAANiPAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC2IIACAAAAAGxBAAUAAAAA2MIjrxsAblovBkreed0EAAA3DjPU5HULAK4x7oACAAAAAGxBAAUAAAAA2IIACgAAAACwBQEUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbOGR1w0ANytXtEsBAQF53QYAAABw3eAOKAAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWBFAAAAAAgC088roBXB3dunXTkSNHNG/evLxu5bqye/dulS1bVhs2bFCNGjXsPXlgoL3nAwAAwOUxJq87uGVwB9QG3bp1k8PhkMPhkKenp8qWLauBAwfq5MmTedrXuZ4cDof8/PxUoUIFdevWTevXr8/Tvs758ccf1aZNGxUrVkwOhyPHcG2M0ZAhQ1S0aFH5+PioadOm2r59u/3NAgAAAPhbBFCbNG/eXKmpqdq5c6fGjRun9957T0OHDs3rtjRt2jSlpqZq8+bNmjRpktLT01W3bl19/PHHed2ajh07purVq2vSpEm5znn99dc1YcIETZkyRQkJCfLz81NUVFSeh3sAAAAA2RFAbeJ0OhUaGqqSJUuqXbt2atq0qZYsWWLtP3XqlHr37q0iRYrI29tbDRs21Nq1a93W2Lx5s1q3bq2AgAAVKFBAjRo1UkpKSo7nW7t2rQoXLqzXXnvton0FBQUpNDRUZcqU0b///W999dVX6ty5s3r27KnDhw9b82bPnq3bb79dTqdTZcqU0dixY619L730kurWrZtt7erVq2vEiBHW9gcffKDw8HB5e3urcuXKmjx58kV7a9GihUaOHKn27dvnuN8Yo/Hjx2vw4MFq27atqlWrpo8//lj79u3L9a3ImZmZevzxx1W5cmXt2bNH0tk7we+9955at24tX19fhYeHKz4+Xjt27FBkZKT8/PxUv379XF9rAAAAAJeGAJoHfv31V61evVpeXl7W2MCBAzV79mxNnz5dP//8s8LCwhQVFaW//vpLkvT777+rcePGcjqdWrZsmdavX6/HH39cZ86cybb+smXL1KxZM40aNUqDBg36x/3169dPR48etQLy+vXr1aFDBz388MPatGmThg0bpldeeUUxMTGSpM6dO2vNmjVuAW3z5s365Zdf1KlTJ0nSzJkzNWTIEI0aNUpJSUkaPXq0XnnlFU2fPv0f93fOrl27tH//fjVt2tQaCwwMVN26dRUfH59t/qlTp/Tggw8qMTFRK1asUKlSpax9r776qrp06aLExERVrlxZnTp1Uo8ePRQdHa1169bJGKOePXvm2MepU6eUlpbmVgAAAAByYHDNde3a1eTPn9/4+fkZp9NpJJl8+fKZr776yhhjTHp6uvH09DQzZ860jjl9+rQpVqyYef31140xxkRHR5uyZcua06dP53qOtm3bmjlz5hh/f3/z2Wef/W1fkszcuXOzjZ84ccJIMq+99poxxphOnTqZZs2auc0ZMGCAqVKlirVdvXp1M2LECGs7Ojra1K1b19ouX768mTVrltsar776qqlXr97f9plbr6tWrTKSzL59+9zGH3zwQdOhQwdjjDG7du0yksyKFSvMPffcYxo2bGiOHDmSbe3Bgwdb2/Hx8UaS+fDDD62xTz/91Hh7e+fY29ChQ42kbOU6+3F2iqIoiqIo6novXBKXy2UkGZfLddlrcAfUJk2aNFFiYqISEhLUtWtXPfbYY7r//vslSSkpKcrIyFCDBg2s+Z6enqpTp46SkpIkSYmJiWrUqJE8PT1zPUdCQoIefPBBzZgxQw899NBl92qMkXT2ramSlJSU5NabJDVo0EDbt29XZmampLN3QWfNmmUd/+mnn6pz586Szn6WMyUlRU888YT8/f2tGjlypG1va+3YsaOOHTum77//XoE5PJ22WrVq1s8hISGSpKpVq7qNnTx5Mse7m9HR0XK5XFbt3bv3GlwBAAAAcOMjgNrEz89PYWFhql69uj766CMlJCToww8/vOTjfXx8/nZO+fLlVblyZX300UfKyMi47F7Phd6yZcte8jEdO3ZUcnKyfv75Z61evVp79+61QnB6erokaerUqUpMTLTq119/1U8//XTZfYaGhkqSDhw44DZ+4MABa985LVu21C+//JLjW3MluQX7c8E7p7GsrKxsxzqdTgUEBLgVAAAAgOwIoHkgX758eumllzR48GCdOHFC5cuXl5eXl1atWmXNycjI0Nq1a1WlShVJZ+/QrVix4qLB8rbbbtOyZcu0Y8cOdejQ4bJD6Pjx4xUQEGB9tjI8PNytN0latWqVKlasqPz580uSSpQooYiICM2cOVMzZ85Us2bNVKRIEUln7x4WK1ZMO3fuVFhYmFv9k5B7obJlyyo0NFRLly61xtLS0pSQkKB69eq5zX3mmWf0n//8R/fee6+WL19+2ecEAAAAcPkIoHnkwQcfVP78+TVp0iT5+fnpmWee0YABA7R48WJt2bJF3bt31/Hjx/XEE09Iknr27Km0tDQ9/PDDWrdunbZv364ZM2YoOTnZbd0iRYpo2bJl2rp1qzp27JjjQ4rOd+TIEe3fv1+//fablixZogceeECzZs3Su+++q6CgIEnSCy+8oKVLl+rVV1/Vtm3bNH36dE2cOFH9+/d3W6tz58767LPP9OWXX1pvvz1n+PDhGjNmjCZMmKBt27Zp06ZNmjZtmt56661ce0tPT7fulkpnHzqUmJjo9vTavn37auTIkZo/f742bdqkLl26qFixYmrXrl229Xr16qWRI0eqdevWWrly5UVfFwAAAADXwFX7RCpyde4BQRcaM2aMKVy4sElPTzcnTpwwvXr1MrfddptxOp2mQYMGZs2aNW7zN27caP79738bX19fU6BAAdOoUSOTkpKS4zn27dtnKlasaDp06GDOnDmTY1/S/x6Y4+3tbcqXL2+6du1q1q9fn23uV199ZapUqWI8PT1NqVKlzBtvvJFtzuHDh43T6TS+vr7m6NGj2fbPnDnT1KhRw3h5eZmCBQuaxo0bmzlz5uT6usXGxrr1eK66du1qzcnKyjKvvPKKCQkJMU6n09xzzz0mOTnZ2n/uIUQbNmywxsaOHWsKFChgVq1aZb0O5z/gKKdjzvVy+PDhXPs9x/pwdl5/mJ6iKIqiKIq6tMIluRoPIXIYY0xeBF/gZpWWlvb/DzpySeLzoAAAADejWzFFnfs71+VyXfZzT3gLLgAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWHnndAHDTejFQ8s7rJgAAtzoz1OR1CwBg4Q4oAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC2IIACAAAAAGxBAAUAAAAA2IIACgAAAACwBQEUAAAAAGALAigAAAAAwBYEUAAAAACALTzyugHgZuWKdikgICCv2wAAAACuG9wBBQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANjCI68bAG5agYF53QEAAMD1z5i87gA24g7oLSQuLk4Oh0NHjhzJ61ZsExkZqb59++Z1GwAAAABEAL0hTZkyRQUKFNCZM2essfT0dHl6eioyMtJt7rnQmZKSovr16ys1NVWBN8CduZMnT6pbt26qWrWqPDw81K5duxznxcXF6Y477pDT6VRYWJhiYmJs7RMAAADApSOA3oCaNGmi9PR0rVu3zhpbsWKFQkNDlZCQoJMnT1rjsbGxKlWqlMqXLy8vLy+FhobK4XDkRdv/SGZmpnx8fNS7d281bdo0xzm7du1Sq1at1KRJEyUmJqpv37568skn9d1339ncLQAAAIBLQQC9AVWqVElFixZVXFycNRYXF6e2bduqbNmy+umnn9zGmzRpYv184Vtwp06dqpIlS8rX11ft27fXW2+9paCgILfzff3117rjjjvk7e2tcuXKafjw4W53X/fs2aO2bdvK399fAQEB6tChgw4cOGDtHzZsmGrUqKEZM2aoTJkyCgwM1MMPP6yjR4/meo1+fn5699131b17d4WGhuY4Z8qUKSpbtqzGjh2r8PBw9ezZUw888IDGjRuX67oLFy5UYGCgZs6cKUnq1q2b2rVrp9GjRyskJERBQUEaMWKEzpw5owEDBqhQoUIqUaKEpk2bluuaAAAAAC4NAfQG1aRJE8XGxlrbsbGxioyMVEREhDV+4sQJJSQkWAH0QqtWrdLTTz+tPn36KDExUc2aNdOoUaPc5qxYsUJdunRRnz59tGXLFr333nuKiYmx5mVlZalt27b666+/tHz5ci1ZskQ7d+7UQw895LZOSkqK5s2bpwULFmjBggVavny5/vOf/1zRaxAfH5/t7mhUVJTi4+NznD9r1ix17NhRM2fOVOfOna3xZcuWad++ffrxxx/11ltvaejQoWrdurUKFiyohIQEPf300+rRo4f++9//5rjuqVOnlJaW5lYAAAAAcmBwQ5o6darx8/MzGRkZJi0tzXh4eJiDBw+aWbNmmcaNGxtjjFm6dKmRZH777TdjjDGxsbFGkjl8+LAxxpiHHnrItGrVym3dzp07m8DAQGv7nnvuMaNHj3abM2PGDFO0aFFjjDHff/+9yZ8/v9mzZ4+1f/PmzUaSWbNmjTHGmKFDhxpfX1+TlpZmzRkwYICpW7fuJV1r165dTdu2bbONV6hQIVtvCxcuNJLM8ePHjTHGREREmD59+piJEyeawMBAExcXl23t0qVLm8zMTGusUqVKplGjRtb2mTNnjJ+fn/n0009z7G/o0KFGUrZynX2mG0VRFEVRFHWxwg3D5XIZScblcl32GtwBvUFFRkbq2LFjWrt2rVasWKGKFSuqcOHCioiIsD4HGhcXp3LlyqlUqVI5rpGcnKw6deq4jV24vXHjRo0YMUL+/v5Wde/eXampqTp+/LiSkpJUsmRJlSxZ0jqmSpUqCgoKUlJSkjVWpkwZFShQwNouWrSoDh48eDVeir/11VdfqV+/flqyZIkiIiKy7b/99tuVL9///lMICQlR1apVre38+fMrODg4136jo6Plcrms2rt379W/CAAAAOAmwPeA3qDCwsJUokQJxcbG6vDhw1awKlasmEqWLKnVq1crNjZWd9999xWdJz09XcOHD9d9992XbZ+3t/clr+Pp6em27XA4lJWVdUW9hYaGun3WVJIOHDiggIAA+fj4WGM1a9bUzz//rI8++ki1a9fO9hCmnHr7J/06nU45nc4ruRQAAADglkAAvYE1adJEcXFxOnz4sAYMGGCNN27cWN9++63WrFmjZ555JtfjK1WqpLVr17qNXbh9xx13KDk5WWFhYTmuER4err1792rv3r3WXdAtW7boyJEjqlKlyuVe2iWpV6+eFi1a5Da2ZMkS1atXz22sfPnyGjt2rCIjI5U/f35NnDjxmvYFAAAAIGcE0BtYkyZN9NxzzykjI8PtraURERHq2bOnTp8+nesDiCSpV69eaty4sd566y21adNGy5Yt07fffut2h3DIkCFq3bq1SpUqpQceeED58uXTxo0b9euvv2rkyJFq2rSpqlatqs6dO2v8+PE6c+aMnn32WUVERKh27dpXdH1btmzR6dOn9ddff+no0aNKTEyUJNWoUUOS9PTTT2vixIkaOHCgHn/8cS1btkxffPGFFi5cmG2tihUrWg9q8vDw0Pjx46+oNwAAAAD/HAH0BtakSROdOHFClStXVkhIiDUeERGho0ePWl/XkpsGDRpoypQpGj58uAYPHqyoqCj169fP7Q5hVFSUFixYoBEjRui1116Tp6enKleurCeffFLS2bemfv3111aYzZcvn5o3b6533nnniq+vZcuW+u2336ztmjVrSpKMMZKksmXLauHCherXr5/efvttlShRQh988IGioqJyXK9SpUpatmyZdSd07NixV9zjxQTKJSngmp4DAADghnfBV9T//596uEk5jOFXjP/p3r27tm7dqhUrVuR1KzestLQ0BQYGSgRQAACAf4x0cv0693euy+VSQMDl/Z3LHdBb3JtvvqlmzZrJz89P3377raZPn67JkyfndVsAAAAAbkIE0FvcmjVr9Prrr+vo0aMqV66cJkyYYL29FgAAAACuJgLoLe6LL77I6xYAAAAA3CLy5XUDAAAAAIBbAwEUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALbga1iAa+XFQMk7r5sAgOuPGWryugUAQB7hDigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFh553QBws3JFuxQQEJDXbQAAAADXDe6AAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC2IIACAAAAAGxBAAUAAAAA2OK6DKBxcXFyOBw6cuRIrnOGDRumGjVq2NbTlSpTpozGjx+f121c1KW87jExMQoKCrKtpyuxe/duORwOJSYm5k0DgYGSw0FRFEVRFEVdT4U8dUUBtFu3bnI4HHI4HPL09FTZsmU1cOBAnTx58mr1d8sYNmyY9Vp6eHioTJky6tevn9LT06943UsN6vXr11dqaqoCAwOv6JxXw48//qg2bdqoWLFicjgcmjdvXrY5xhgNGTJERYsWlY+Pj5o2bart27fb3ywAAACAS3LFd0CbN2+u1NRU7dy5U+PGjdN7772noUOHXo3ebjm33367UlNTtXv3br322mt6//339cILL1zWWsYYnTlz5pLnZ2RkyMvLS6GhoXJcB/9n6NixY6pevbomTZqU65zXX39dEyZM0JQpU5SQkCA/Pz9FRUXxP0AAAACA69QVB1Cn06nQ0FCVLFlS7dq1U9OmTbVkyRJrf1ZWlsaMGaOyZcvKx8dH1atX11dffeW2xqJFi1SxYkX5+PioSZMm2r1792X18sEHHyg8PFze3t6qXLmyJk+e7LZ/9erVqlGjhry9vVW7dm3NmzdPF75Fc/78+apQoYK8vb3VpEkTTZ8+XRe+LXXlypVq1KiRfHx8VLJkSfXu3VvHjh2z9h88eFBt2rSRj4+PypYtq5kzZ15S/x4eHgoNDVWJEiX00EMPqXPnzpo/f74kacaMGapdu7YKFCig0NBQderUSQcPHrSOPff22W+//Va1atWS0+nUJ598ouHDh2vjxo3W3dWYmBhJksPh0Lvvvqt7771Xfn5+GjVqVI5vwY2JiVGpUqXk6+ur9u3b69ChQ9n6HjlypIoUKaICBQroySef1Isvvpjtruvf/W4u1KJFC40cOVLt27fPcb8xRuPHj9fgwYPVtm1bVatWTR9//LH27duX491SScrMzNTjjz+uypUra8+ePdbr8N5776l169by9fVVeHi44uPjtWPHDkVGRsrPz0/169dXSkrKRfsFAAAAcAnMFejatatp27attb1p0yYTGhpq6tata42NHDnSVK5c2SxevNikpKSYadOmGafTaeLi4owxxuzZs8c4nU7z/PPPm61bt5pPPvnEhISEGEnm8OHDuZ576NChpnr16tb2J598YooWLWpmz55tdu7caWbPnm0KFSpkYmJijDHGuFwuU6hQIfPII4+YzZs3m0WLFpmKFSsaSWbDhg3GGGN27txpPD09Tf/+/c3WrVvNp59+aooXL+7Wy44dO4yfn58ZN26c2bZtm1m1apWpWbOm6datm9VLixYtTPXq1U18fLxZt26dqV+/vvHx8THjxo275OsxxpjevXubQoUKGWOM+fDDD82iRYtMSkqKiY+PN/Xq1TMtWrSw5sbGxhpJplq1aub77783O3bsMP/973/NCy+8YG6//XaTmppqUlNTzfHjx40xxkgyRYoUMR999JFJSUkxv/32m7XGuWv96aefTL58+cxrr71mkpOTzdtvv22CgoJMYGCg2+vu7e1tPvroI5OcnGyGDx9uAgIC/tHv5u9IMnPnznUbS0lJcfvdndO4cWPTu3dvY4wxu3btsuacPHnStG/f3tSsWdMcPHjQbe3ixYubzz//3CQnJ5t27dqZMmXKmLvvvtssXrzYbNmyxdx1112mefPmufZ38uRJ43K5rNq7d6+RZFySMRRFURRFUdT1VbhsLpfLSDIul+uy17ii30DXrl1N/vz5jZ+fn3E6nUaSyZcvn/nqq6+MMWf/MPf19TWrV692O+6JJ54wHTt2NMYYEx0dbapUqeK2f9CgQeafBtDy5cubWbNmuc159dVXTb169Ywxxrz77rsmODjYnDhxwto/depUc36IGTRokPnXv/7ltsbLL7/s1ssTTzxhnnrqKbc5K1asMPny5TMnTpwwycnJRpJZs2aNtT8pKclI+kcBdN26dea2224zDzzwQI7z165daySZo0ePGmP+F0DnzZt30XXPkWT69u3rNnZhAO3YsaNp2bKl25yHHnrILYDWrVvXPPfcc25zGjRo8I9+N38npwC6atUqI8ns27fPbfzBBx80HTp0MMb8L4CuWLHC3HPPPaZhw4bmyJEj2dYePHiwtR0fH28kmQ8//NAa+/TTT423t3eu/Q0dOtRIylYEUIqiKIqiqOuwcNmuRgC94rfgNmnSRImJiUpISFDXrl312GOP6f7775ck7dixQ8ePH1ezZs3k7+9v1ccff2y9pTEpKUl169Z1W7NevXpu2+cf+/TTT2fr4dixY0pJSdETTzzhNnfkyJHWeZKTk1WtWjV5e3tbx9WpU8dtneTkZN15551uYxfO2bhxo2JiYtzOExUVpaysLO3atUtJSUny8PBQrVq1rGMqV658SU+O3bRpk/z9/eXj46M6deqoXr16mjhxoiRp/fr1atOmjUqVKqUCBQooIiJCkqy3kp5Tu3btvz3Ppc69lN9NcnJyttfo/O1L+d1cax07dtSxY8f0/fff5/iApWrVqlk/h4SESJKqVq3qNnby5EmlpaXluH50dLRcLpdVe/fuvcpXAAAAANwcPK50AT8/P4WFhUmSPvroI1WvXl0ffvihnnjiCesJrgsXLlTx4sXdjnM6nZd8jvM/oxkQEJBt/7nzTJ06NVtgyp8//yWf51Kkp6erR48e6t27d7Z9pUqV0rZt2y577UqVKmn+/Pny8PBQsWLF5OXlJelsiIuKilJUVJRmzpypwoULa8+ePYqKitLp06fd1vDz87vk8/2TuZfrWv1uQkNDJUkHDhxQ0aJFrfEDBw5k+/xpy5Yt9cknnyg+Pl533313trU8PT2tn889gCmnsaysrBx7cTqd/+jfMwAAAHCruuIAer58+fLppZde0vPPP69OnTqpSpUqcjqd2rNnj3XH7kLh4eHWg3bO+emnn9y2zwXc3ISEhKhYsWLauXOnOnfunOOcSpUq6ZNPPtGpU6essLB27dpscxYtWuQ2duGcO+64Q1u2bMm1p8qVK+vMmTNav369dTc1OTn5ot+teY6Xl1eO627dulWHDh3Sf/7zH5UsWVKStG7dur9d79yamZmZlzT3QuHh4UpISHAbu/B3U6lSJa1du1ZdunSxxs5/zS7ld3M5ypYtq9DQUC1dutQKnGlpaUpISNAzzzzjNveZZ57Rv/71L917771auHBhrv8WAQAAAFxbV/wW3As9+OCDyp8/vyZNmqQCBQqof//+6tevn6ZPn66UlBT9/PPPeueddzR9+nRJ0tNPP63t27drwIABSk5O1qxZs6wntf4Tw4cP15gxYzRhwgRt27ZNmzZt0rRp0/TWW29Jkjp16qSsrCw99dRTSkpK0nfffac333xT0v/ucPXo0UNbt27VoEGDtG3bNn3xxRduT42VpEGDBmn16tXq2bOnEhMTtX37dn399dfq2bOnpLOBrHnz5urRo4cSEhK0fv16Pfnkk/Lx8bns17RUqVLy8vLSO++8o507d2r+/Pl69dVXL+nYMmXKaNeuXUpMTNSff/6pU6dOXfJ5e/furcWLF+vNN9/U9u3bNXHiRC1evNhtTq9evfThhx9q+vTp2r59u0aOHKlffvnF7atc/u53k5P09HQlJiZad7/PXcP5T6/t27evRo4cqfnz52vTpk3q0qWLihUrpnbt2mVbr1evXho5cqRat26tlStXXvJrAAAAAOAqupIPoV74FNxzxowZYwoXLmzS09NNVlaWGT9+vKlUqZLx9PQ0hQsXNlFRUWb58uXW/G+++caEhYUZp9NpGjVqZD766CMj/bOHEBljzMyZM02NGjWMl5eXKViwoGncuLGZM2eOtX/VqlWmWrVqxsvLy9SqVcvMmjXLSDJbt2615nz99ddWL5GRkebdd981ktweXrRmzRrTrFkz4+/vb/z8/Ey1atXMqFGjrP2pqammVatWxul0mlKlSpmPP/7YlC5d+h8/Bfd8s2bNMmXKlDFOp9PUq1fPzJ8/30j/e4DShQ8QOufkyZPm/vvvN0FBQUaSmTZtmjHGGCn7g31yWuPDDz80JUqUMD4+PqZNmzbmzTffdHsIkTHGjBgxwtx2223G39/fPP7446Z3797mrrvucpvzd7+bC53r5cLq2rWrNScrK8u88sorJiQkxDidTnPPPfeY5ORka//5T8E9Z+zYsaZAgQJm1apVOb4OOR2T22ubG+vD2Xn9AXuKoiiKoigqe+GyXY2HEDmMMcbmzHvdmDlzph577DG5XK5c71COGjVKU6ZM4cEy/0CzZs0UGhqqGTNm5HUreSItLe3/H3bkkpT9M8sAAADIO7du+rly5/7OdblcOT6b51Jc1c+AXu8+/vhjlStXTsWLF9fGjRs1aNAgdejQwS18Tp48WXfeeaeCg4O1atUqvfHGG9bba5Hd8ePHNWXKFEVFRSl//vz69NNP9cMPP2jJkiV53RoAAACA68wtFUD379+vIUOGaP/+/SpatKgefPBBjRo1ym3Ouc8x/vXXXypVqpReeOEFRUdH51HH1z+Hw6FFixZp1KhROnnypCpVqqTZs2eradOmed0aAAAAgOvMLf0WXOBa4C24AAAA1y/Sz+W7Gm/BvepPwQUAAAAAICcEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADY4pb6HlDAVi8GSt553QQAXBtmKN9jAAD457gDCgAAAACwBQEUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAuPvG4AuFm5ol0KCAjI6zYAAACA6wZ3QAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC28MjrBoCbVmBgXncAAACAa8GYvO7ghsUd0BuAw+HQvHnz/vFxu3fvlsPhUGJi4lXv6UrZ1VtcXJwcDoeOHDlyTc8DAAAA4O8RQK8D3bp1U7t27XLdn5qaqhYtWkjKPbj93RpXIjMzU+PGjVPVqlXl7e2tggULqkWLFlq1atU1Od85c+bM0b///W8FBwfnGlZPnjyp5557TsHBwfL399f999+vAwcOXNO+AAAAAFweAugNIDQ0VE6nM0/ObYzRww8/rBEjRqhPnz5KSkpSXFycSpYsqcjIyMu6M3upjh07poYNG+q1117LdU6/fv30zTff6Msvv9Ty5cu1b98+3XfffdesJwAAAABXwCDPde3a1bRt2zbX/ZLM3LlzrZ/Pr4iICDN06NBs47GxsWbXrl1GktmwYYO11qZNm0zz5s2Nn5+fKVKkiHnkkUfMH3/8keu5P/vsMyPJzJ8/P9u+++67zwQHB5v09HRz5MgRky9fPrN27VpjjDGZmZmmYMGCpm7dutb8GTNmmBIlShhjTI695Sa3uUeOHDGenp7myy+/tMaSkpKMJBMfH2+MMSY2NtZIMocPHzbGGHPs2DHTvHlzU79+fXP48GFr7c8//9w0bNjQeHt7m9q1a5vk5GSzZs0aU6tWLePn52eaN29uDh48+Le9GmOMy+Uykozr7KcDKIqiKIqiqJutblHW37ku12WvwR3QG8yaNWskST/88INSU1M1Z84c9e/fXx06dFDz5s2Vmpqq1NRU1a9fP9uxR44c0d13362aNWtq3bp1Wrx4sQ4cOKAOHTrker5Zs2apYsWKatOmTbZ9L7zwgg4dOqQlS5YoMDBQNWrUUFxcnCRp06ZNcjgc2rBhg9LT0yVJy5cvV0RExFV4Fc5av369MjIy1LRpU2uscuXKKlWqlOLj47PNP3LkiJo1a6asrCwtWbJEQUFB1r6hQ4dq8ODB+vnnn+Xh4aFOnTpp4MCBevvtt7VixQrt2LFDQ4YMybGPU6dOKS0tza0AAAAAZEcAvcEULlxYkhQcHKzQ0FAVKlRI/v7+8vHxkdPpVGhoqEJDQ+Xl5ZXt2IkTJ6pmzZoaPXq0KleurJo1a+qjjz5SbGystm3bluP5tm3bpvDw8Bz3nRs/d2xkZKQVQOPi4tSsWTOFh4dr5cqV1tjVDKD79++Xl5eXW5CUpJCQEO3fvz/b3IiICBUtWlTffPONfH193fb3799fUVFRCg8PV58+fbR+/Xq98soratCggWrWrKknnnhCsbGxOfYxZswYBQYGWlWyZMmrdo0AAADAzYQAegvZuHGjYmNj5e/vb1XlypUlSSkpKbkeZ4y5pPUjIiK0cuVKZWZmavny5YqMjLRC6b59+7Rjxw5FRkZejUv5x5o1a6awsDB9/vnnOYbzatWqWT+HhIRIkqpWreo2dvDgwRzXjo6Olsvlsmrv3r1XuXsAAADg5sD3gN5C0tPT1aZNmxwf6lO0aNEcj6lYsaKSkpJy3HduvGLFipKkxo0b6+jRo/r555/1448/avTo0QoNDdV//vMfVa9eXcWKFVOFChWu0tWcfTjT6dOndeTIEbe7oAcOHFBoaKjb3FatWmn27NnasmWLW7A8x9PT0/rZ4XDkOJaVlZVjH06nM88eEgUAAADcSLgDeoM5d/cuMzMz2/iFYxe64447tHnzZpUpU0ZhYWFu5efnl+MxDz/8sLZv365vvvkm276xY8cqODhYzZo1kyQFBQWpWrVqmjhxojw9PVW5cmU1btxYGzZs0IIFC67q228lqVatWvL09NTSpUutseTkZO3Zs0f16tVzm/uf//xHXbt21T333KMtW7Zc1T4AAAAAXBoC6HXC5XIpMTHRrXJ6K2eRIkXk4+NjPUDI5XJJksqUKaNffvlFycnJ+vPPP5WRkZHt2Oeee05//fWXOnbsqLVr1yolJUXfffedHnvssVzD68MPP6z27dura9eu+vDDD7V792798ssv6tGjh+bPn68PPvjALbxGRkZq5syZVtgsVKiQwsPD9fnnn//jAPrXX38pMTHRCozJyclKTEy0Pt8ZGBioJ554Qs8//7xiY2O1fv16PfbYY6pXr57uuuuubOu9+eab6ty5s+6++25t3br1H/UCAAAA4Cq4eg/lxeXq2rWrkZStnnjiCWOMMdL/vobFGGOmTp1qSpYsafLly2ciIiKMMcYcPHjQNGvWzPj7+xsp969h2bZtm2nfvr0JCgoyPj4+pnLlyqZv374mKysr1/4yMjLMG2+8YW6//Xbj5eVlAgICTFRUlFm5cmW2uXPnzjWSzLvvvmuN9enTx0gyW7dutcYu5WtYpk2bluPrMnToUGvOiRMnzLPPPmsKFixofH19Tfv27U1qaqq1/8KvYTHGmF69epmiRYua5OTkHPvI6Zhp06aZwMDAXHs937nHU0uuPH9COEVRFEVRFHXxwqW7Gl/D4jDGGFsTL3CTS0tLU2BgoCSXpIC8bgcAAAAXQRq6dOf+znW5XAoIuLy/c3kLLgAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWHnndAHDTejFQ8s7rJgDcbMxQk9ctAABw2bgDCgAAAACwBQEUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALCFR143ANysXNEuBQQE5HUbAAAAwHWDO6AAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC28MjrBoCbVmBgXncAAABwazAmrzvAJeIOKNw4HA7Nmzcv1/27d++Ww+FQYmKibT1diTJlymj8+PF53QYAAAAA3cIBdP/+/erTp4/CwsLk7e2tkJAQNWjQQO+++66OHz9uez9xcXFyOBxWhYSE6P7779fOnTuvyrpHjhy5pPmpqalq0aLFFZ3zakhNTVWnTp1UsWJF5cuXT3379s1x3pdffqnKlSvL29tbVatW1aJFi+xtFAAAAMAluyUD6M6dO1WzZk19//33Gj16tDZs2KD4+HgNHDhQCxYs0A8//JDrsRkZGde0t+TkZO3bt09ffvmlNm/erDZt2igzM/Oy1vonvZ4+fVqSFBoaKqfTeVnnu5pOnTqlwoULa/DgwapevXqOc1avXq2OHTvqiSee0IYNG9SuXTu1a9dOv/76q83dAgAAALgk5hYUFRVlSpQoYdLT03Pcn5WVZf0syUyePNm0adPG+Pr6mqFDhxpjjJk3b56pWbOmcTqdpmzZsmbYsGEmIyPDGGPMY489Zlq1auW25unTp03hwoXNBx98kOM5Y2NjjSRz+PBha2zmzJlGktm6datZs2aNadq0qQkODjYBAQGmcePGZv369W5rXNhr165djSS36tq1qzHGmIiICPPcc8+ZPn36mODgYBMZGWmtMXfuXGvNhIQEU6NGDeN0Ok2tWrXMnDlzjCSzYcMGa87XX39twsLCjNPpNJGRkSYmJibbtaxYscI0bNjQeHt7mxIlSphevXrl+vpfKCIiwvTp0yfbeIcOHbK9znXr1jU9evSwtkuXLm3GjRtnbU+dOtUEBgaaH374wVq7Z8+epk+fPiYoKMgUKVLEvP/++yY9Pd1069bN+Pv7m/Lly5tFixbl2t/JkyeNy+Wyau/evUaScZ39NAJFURRFURR1rQu2cLlcRpJxuVyXvcYt99v6888/jcPhMGPGjLmk+ZJMkSJFzEcffWRSUlLMb7/9Zn788UcTEBBgYmJiTEpKivn+++9NmTJlzLBhw4wxxqxatcrkz5/f7Nu3z1pnzpw5xs/Pzxw9ejTH8+QUQM+FvV9++cUsXbrUzJgxwyQlJZktW7aYJ554woSEhJi0tLRce929e7eZPXu2kWSSk5NNamqqOXLkiDHmbPDy9/c3AwYMMFu3bjVbt2611jgXQI8ePWoKFy5sOnXqZH799VfzzTffmHLlypnzA+jOnTuNp6en6d+/v9m6dav59NNPTfHixd2uZceOHcbPz8+MGzfObNu2zaxatcrUrFnTdOvW7ZJ+B7kF0JIlS7qFS2OMGTJkiKlWrZq1fX4Afe2110xwcLBJSEhwW7tAgQLm1VdfNdu2bTOvvvqqyZ8/v2nRooV5//33zbZt28wzzzxjgoODzbFjx3Lsb+jQoebCoE8ApSiKoiiKsrFgCwLoZfjpp5+MJDNnzhy38eDgYOPn52f8/PzMwIEDrXFJpm/fvm5z77nnHjN69Gi3sRkzZpiiRYta21WqVDGvvfaatd2mTZuLBq4LA+i+fftM/fr1TfHixc2pU6eyzc/MzDQFChQw33zzzUV7zSnYGnM2eNWsWTPbuucH0Pfee88EBwebEydOWPvfffddc34AHTRokPnXv/7ltsbLL7/sds4nnnjCPPXUU25zVqxYYfLly+e2dm5yC6Cenp5m1qxZbmOTJk0yRYoUsbbPBdCBAweaokWLml9//TXb2g0bNrS2z5w5Y/z8/Myjjz5qjaWmphpJJj4+Psf+uANKURRFURSVxwVbXI0Aytew/L81a9YoKytLnTt31qlTp9z21a5d221748aNWrVqlUaNGmWNZWZm6uTJkzp+/Lh8fX315JNP6v3339fAgQN14MABffvtt1q2bNnf9lGiRAkZY3T8+HFVr15ds2fPlpeXlw4cOKDBgwcrLi5OBw8eVGZmpo4fP649e/ZctNeLqVWr1kX3JyUlqVq1avL29rbG6tWr5zYnOTlZd955p9tYnTp13LY3btyoX375RTNnzrTGjDHKysrSrl27FB4efsk9X46xY8fq2LFjWrduncqVK5dtf7Vq1ayf8+fPr+DgYFWtWtUaCwkJkSQdPHgwx/WdTud18blZAAAA4Hp3ywXQsLAwORwOJScnu42fCyY+Pj7ZjvHz83PbTk9P1/Dhw3Xfffdlm3surHXp0kUvvvii4uPjtXr1apUtW1aNGjX62/5WrFihgIAAFSlSRAUKFLDGu3btqkOHDuntt99W6dKl5XQ6Va9ePevhQbn1ejH/ZO6VSE9PV48ePdS7d+9s+0qVKnXZ64aGhurAgQNuYwcOHFBoaKjbWKNGjbRw4UJ98cUXevHFF7Ot4+np6bbtcDjcxhwOhyQpKyvrsnsFAAAAcAsG0ODgYDVr1kwTJ05Ur169LiuE3XHHHUpOTlZYWNhFz9OuXTtNmzZN8fHxeuyxxy5p7bJlyyooKCjb+KpVqzR58mS1bNlSkrR37179+eeff7uel5eXJF3Wk3TDw8M1Y8YMnTx50grWP/30k9ucSpUqZfvqk7Vr17pt33HHHdqyZctFX6/LUa9ePS1dutTtK1qWLFmS7S5tnTp11LNnTzVv3lweHh7q37//Ve0DAAAAwKW5Jb+GZfLkyTpz5oxq166tzz//XElJSUpOTtYnn3yirVu3Kn/+/Bc9fsiQIfr44481fPhwbd68WUlJSfrss880ePBgt3lPPvmkpk+frqSkJHXt2vWKeq5QoYJmzJihpKQkJSQkqHPnzjnerb1Q6dKl5XA4tGDBAv3xxx9KT0+/5HN26tRJDodD3bt315YtW7Ro0SK9+eabbnN69OihrVu3atCgQdq2bZu++OILxcTESPrfncNBgwZp9erV6tmzpxITE7V9+3Z9/fXX6tmz50XPn5iYqMTERKWnp+uPP/5QYmKitmzZYu3v06ePFi9erLFjx2rr1q0aNmyY1q1bl+O69evX16JFizR8+HCNHz/+kl8DAAAAAFfRVftE6g1m3759pmfPnqZs2bLG09PT+Pv7mzp16pg33njD7WmnkvvXkpyzePFiU79+fePj42MCAgJMnTp1zPvvv+82Jysry5QuXdq0bNnyb/vJ7WFB5/z888+mdu3axtvb21SoUMF8+eWX2b5iJLdeR4wYYUJDQ43D4XD7GpacHuxz4Rrx8fGmevXqxsvLy9SoUcN6qu7Fvobl3IOKzn/A0Jo1a0yzZs2Mv7+/8fPzM9WqVTOjRo266GsiZX+ybOnSpd3mfPHFF6ZixYrGy8vL3H777WbhwoVu+y98jZYvX278/PzMhAkTcn0dLjwmp9flYs59OFty5fnn8SmKoiiKom7GQt64Gg8hchhjTF4E31tBenq6ihcvrmnTpuX4edGb1ahRozRlyhTt3bs3r1vJE2lpaQoMDJTkkhSQ1+0AAADcdEgweePc37kul0sBAZf3d+4t9xlQO2RlZenPP//U2LFjFRQUpHvvvTevW7qmJk+erDvvvFPBwcFatWqV3njjjb99ey0AAACAWw8B9BrYs2ePypYtqxIlSigmJkYeHjf3y7x9+3aNHDlSf/31l0qVKqUXXnhB0dHRed0WAAAAgOsMb8EFrjLeggsAAHBtkWDyxtV4C+4t+RRcAAAAAID9CKAAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANji5v5+ECAvvRgoeed1EwDymhnKoxoBADiHO6AAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC28MjrBoCblSvapYCAgLxuAwAAALhucAcUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFh553QCuDzExMerbt6+OHDlyTdYfNmyY5s2bp8TERElSt27ddOTIEc2bN++anO+cyMhI1ahRQ+PHj7+m58lRYKD95wQAALc2Y/K6A+CiuAN6A9m/f7/69OmjsLAweXt7KyQkRA0aNNC7776r48eP53V7V9XJkyfVrVs3Va1aVR4eHmrXrl2O8+Li4nTHHXfI6XQqLCxMMTExtvYJAAAA4NJxB/QGsXPnTjVo0EBBQUEaPXq0qlatKqfTqU2bNun9999X8eLFde+99+Z1m1dNZmamfHx81Lt3b82ePTvHObt27VKrVq309NNPa+bMmVq6dKmefPJJFS1aVFFRUTZ3DAAAAODvcAf0BvHss8/Kw8ND69atU4cOHRQeHq5y5cqpbdu2Wrhwodq0aWPNfeutt1S1alX5+fmpZMmSevbZZ5Wenu62XkxMjEqVKiVfX1+1b99ehw4dsva5XC7lz59f69atkyRlZWWpUKFCuuuuu6w5n3zyiUqWLGltDxo0SBUrVpSvr6/KlSunV155RRkZGZd9vX5+fnr33XfVvXt3hYaG5jhnypQpKlu2rMaOHavw8HD17NlTDzzwgMaNG5frugsXLlRgYKBmzpwp6exbgdu1a6fRo0crJCREQUFBGjFihM6cOaMBAwaoUKFCKlGihKZNm3bZ1wIAAADgLALoDeDQoUP6/vvv9dxzz8nPzy/HOQ6Hw/o5X758mjBhgjZv3qzp06dr2bJlGjhwoLU/ISFBTzzxhHr27KnExEQ1adJEI0eOtPYHBgaqRo0aiouLkyRt2rRJDodDGzZssILs8uXLFRERYR1ToEABxcTEaMuWLXr77bc1derUiwbBqyE+Pl5NmzZ1G4uKilJ8fHyO82fNmqWOHTtq5syZ6ty5szW+bNky7du3Tz/++KPeeustDR06VK1bt1bBggWVkJCgp59+Wj169NB///vfHNc9deqU0tLS3AoAAABAdgTQG8COHTtkjFGlSpXcxm+77Tb5+/vL399fgwYNssb79u2rJk2aqEyZMrr77rs1cuRIffHFF9b+t99+W82bN9fAgQNVsWJF9e7dO9tbViMjI60AGhcXp2bNmik8PFwrV660xs4PoIMHD1b9+vVVpkwZtWnTRv3793c757Wwf/9+hYSEuI2FhIQoLS1NJ06ccBufNGmSnn32WX3zzTdq3bq1275ChQppwoQJqlSpkh5//HFVqlRJx48f10svvaQKFSooOjpaXl5e1rVfaMyYMQoMDLTq/DvDAAAAAP6HAHoDW7NmjRITE3X77bfr1KlT1vgPP/yge+65R8WLF1eBAgX06KOP6tChQ9aDipKSklS3bl23terVq+e2HRERoZUrVyozM1PLly9XZGSkFUr37dunHTt2KDIy0pr/+eefq0GDBgoNDZW/v78GDx6sPXv2XLuL/we++uor9evXT0uWLHELzefcfvvtypfvf/8phISEqGrVqtZ2/vz5FRwcrIMHD+a4fnR0tFwul1V79+69+hcBAAAA3AQIoDeAsLAwORwOJScnu42XK1dOYWFh8vHxscZ2796t1q1bq1q1apo9e7bWr1+vSZMmSZJOnz59yeds3Lixjh49qp9//lk//vijWwBdvny5ihUrpgoVKkg6+1bYzp07q2XLllqwYIE2bNigl19++R+d73KEhobqwIEDbmMHDhxQQECA22tSs2ZNFS5cWB999JFMDo8m9/T0dNt2OBw5jmVlZeXYh9PpVEBAgFsBAAAAyI4AegMIDg5Ws2bNNHHiRB07duyic9evX6+srCyNHTtWd911lypWrKh9+/a5zQkPD1dCQoLb2E8//eS2HRQUpGrVqmnixIny9PRU5cqV1bhxY23YsEELFixwu5O4evVqlS5dWi+//LJq166tChUq6LfffrvCq/579erV09KlS93GlixZku1ubvny5RUbG6uvv/5avXr1uuZ9AQAAAMgZAfQGMXnyZJ05c0a1a9fW559/rqSkJCUnJ+uTTz7R1q1blT9/fkln75ZmZGTonXfe0c6dOzVjxgxNmTLFba3evXtr8eLFevPNN7V9+3ZNnDhRixcvznbOyMhIzZw50wqbhQoVUnh4uD7//HO3AFqhQgXt2bNHn332mVJSUjRhwgTNnTv3iq95y5YtSkxM1F9//SWXy6XExEQlJiZa+59++mnt3LlTAwcO1NatWzV58mR98cUX6tevX7a1KlasqNjYWM2ePVt9+/a94t4AAAAA/HN8D+gNonz58tqwYYNGjx6t6Oho/fe//5XT6VSVKlXUv39/Pfvss5Kk6tWr66233tJrr72m6OhoNW7cWGPGjFGXLl2ste666y5NnTpVQ4cO1ZAhQ9S0aVMNHjxYr776qts5IyIiNH78eLfPekZGRmrjxo1uY/fee6/69eunnj176tSpU2rVqpVeeeUVDRs27IquuWXLlm53UmvWrClJ1ttoy5Ytq4ULF6pfv356++23VaJECX3wwQe5fgdopUqVtGzZMkVGRip//vwaO3bsFfX3dwLlksTbcQEAwLWTw6eLgOuaw+T0oTgAly0tLU2BgYESARQAAFxj/CUPO537O9flcl32c094Cy4AAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFh553QBw03oxUPLO6yaAm48ZavK6BQAAcJm4AwoAAAAAsAUBFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC2IIACAAAAAGxBAAUAAAAA2IIACgAAAACwhUdeNwDcrFzRLgUEBOR1GwAAAMB1gzugAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtvDI6waAm1ZgYF53AAAAbhTG5HUHgC24AwpJUmRkpPr27Wvb+cqUKaPx48df8/M4HA7Nmzfvmp8HAAAAwN8jgN4gunXrJofDIYfDIS8vL4WFhWnEiBE6c+ZMXrd2TWzevFn333+/ypQpI4fDkWtYnTRpksqUKSNvb2/VrVtXa9assbdRAAAAAJeMAHoDad68uVJTU7V9+3a98MILGjZsmN544428bitXmZmZysrKuqxjjx8/rnLlyuk///mPQkNDc5zz+eef6/nnn9fQoUP1888/q3r16oqKitLBgwevpG0AAAAA1wgB9AbidDoVGhqq0qVL65lnnlHTpk01f/58SdLhw4fVpUsXFSxYUL6+vmrRooW2b9/udvyqVasUGRkpX19fFSxYUFFRUTp8+LC1PysrSwMHDlShQoUUGhqqYcOGuR3/1ltvqWrVqvLz81PJkiX17LPPKj093dofExOjoKAgzZ8/X1WqVJHT6dSePXt08OBBtWnTRj4+Pipbtqxmzpz5t9d655136o033tDDDz8sp9OZ45y33npL3bt312OPPaYqVapoypQp8vX11UcffZTrukOHDlXRokX1yy+/SDr7VuCRI0eqS5cu8vf3V+nSpTV//nz98ccfatu2rfz9/VWtWjWtW7cu1zVPnTqltLQ0twIAAACQHQH0Bubj46PTp09LOvsW3XXr1mn+/PmKj4+XMUYtW7ZURkaGJCkxMVH33HOPqlSpovj4eK1cuVJt2rRRZmamtd706dPl5+enhIQEvf766xoxYoSWLFli7c+XL58mTJigzZs3a/r06Vq2bJkGDhzo1tPx48f12muv6YMPPtDmzZtVpEgRdevWTXv37lVsbKy++uorTZ48+YrvUp4+fVrr169X06ZN3fpr2rSp4uPjs803xqhXr176+OOPtWLFClWrVs3aN27cODVo0EAbNmxQq1at9Oijj6pLly565JFH9PPPP6t8+fLq0qWLTC4PBxgzZowCAwOtKlmy5BVdGwAAAHDTMrghdO3a1bRt29YYY0xWVpZZsmSJcTqdpn///mbbtm1Gklm1apU1/88//zQ+Pj7miy++MMYY07FjR9OgQYNc14+IiDANGzZ0G7vzzjvNoEGDcj3myy+/NMHBwdb2tGnTjCSTmJhojSUnJxtJZs2aNdZYUlKSkWTGjRt3SddeunTpbHN///13I8msXr3abXzAgAGmTp061rYk8+WXX5pOnTqZ8PBw89///jfb2o888oi1nZqaaiSZV155xRqLj483kkxqamqO/Z08edK4XC6r9u7dayQZ19nn2VEURVEURf19ATcAl8tlJBmXy3XZa/A1LDeQBQsWyN/fXxkZGcrKylKnTp00bNgwLV26VB4eHqpbt641Nzg4WJUqVVJSUpKks3dAH3zwwYuuf/5dQUkqWrSo253KH374QWPGjNHWrVuVlpamM2fO6OTJkzp+/Lh8fX0lSV5eXm7rJCUlycPDQ7Vq1bLGKleurKCgoMt+Hf6pfv36yel06qefftJtt92Wbf/5/YaEhEiSqlatmm3s4MGDOX4e1el05vo2YQAAAAD/w1twbyBNmjRRYmKitm/frhMnTlhvmb0UPj4+fzvH09PTbdvhcFgPEdq9e7dat26tatWqafbs2Vq/fr0mTZokSdbbgM+dx+FwXOolXbbbbrtN+fPn14EDB9zGDxw4kC0kNmvWTL///ru+++67HNc6/7rP9Z7T2OU+UAkAAADAWQTQG4ifn5/CwsJUqlQpeXj87+Z1eHi4zpw5o4SEBGvs0KFDSk5OVpUqVSSdvcu3dOnSyz73+vXrlZWVpbFjx+quu+5SxYoVtW/fvr89rnLlyjpz5ozWr19vjSUnJ+vIkSOX3Yt09k5rrVq13K4pKytLS5cuVb169dzm3nvvvZo1a5aefPJJffbZZ1d0XgAAAACXjwB6E6hQoYLatm2r7t27a+XKldq4caMeeeQRFS9eXG3btpUkRUdHa+3atXr22Wf1yy+/aOvWrXr33Xf1559/XtI5wsLClJGRoXfeeUc7d+7UjBkzNGXKlL89rlKlSmrevLl69OihhIQErV+/Xk8++eTf3pE9ffq0EhMTlZiYqNOnT+v3339XYmKiduzYYc15/vnnNXXqVE2fPl1JSUl65plndOzYMT322GPZ1mvfvr1mzJihxx57TF999dUlXTMAAACAq4vPgN4kpk2bpj59+qh169Y6ffq0GjdurEWLFllvJa1YsaK+//57vfTSS6pTp458fHxUt25ddezY8ZLWr169ut566y299tprio6OVuPGjTVmzBh16dLlknp78sknFRERoZCQEI0cOVKvvPLKRY/Zt2+fatasaW2/+eabevPNNxUREaG4uDhJ0kMPPaQ//vhDQ4YM0f79+1WjRg0tXrzY+szmhR544AFlZWXp0UcfVb58+XTfffdd0rVfrkC5JAVc03MAAICbxN98gskYe9oArjWHMfxzBq6mtLQ0BQYGSgRQAABwlfAXO64H5/7OdblcCgi4vL9zeQsuAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC2IIACAAAAAGxBAAUAAAAA2IIACgAAAACwBQEUAAAAAGALj7xuALhpvRgoeed1E4D9zFC+LR0AAOSMO6AAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC28MjrBoCblSvapYCAgLxuAwAAALhucAcUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFjdcAO3WrZvatWv3j45xOByaN2/ePzpm//79atasmfz8/BQUFPSPjrXL5VzXrSYmJibvfn+BgZLDQVEURVHUtS4AN4zrLoB269ZNDodDDodDXl5eCgsL04gRI3TmzBlJ0ttvv62YmJhr3se4ceOUmpqqxMREbdu27aqta3do3L9/v/r06aOwsDB5e3srJCREDRo00Lvvvqvjx4/b1sfleP/99xUZGamAgAA5HA4dOXIk25y//vpLnTt3VkBAgIKCgvTEE08oPT3d/mYBAAAA/C2PvG4gJ82bN9e0adN06tQpLVq0SM8995w8PT0VHR2twMBAW3pISUlRrVq1VKFCBVvOdy3s3LlTDRo0UFBQkEaPHq2qVavK6XRq06ZNev/991W8eHHde++9ed1mro4fP67mzZurefPmio6OznFO586dlZqaqiVLligjI0OPPfaYnnrqKc2aNcvmbgEAAAD8LXOd6dq1q2nbtq3bWLNmzcxdd92V4/6IiAjTq1cvM2DAAFOwYEETEhJihg4d6na8JDN37lxre8iQISY0NNRs3Lgxxx5Kly5tJFnVtWtXY4wxv/32m7n33nuNn5+fKVCggHnwwQfN/v373Y6dPHmyKVeunPH09DQVK1Y0H3/8ca7rli5d2to3b948U7NmTeN0Ok3ZsmXNsGHDTEZGhrV/27ZtplGjRsbpdJrw8HDz/fffZ7uuC0VFRZkSJUqY9PT0HPdnZWVZP1/ptWVlZZmhQ4eakiVLGi8vL1O0aFHTq1cva//JkyfNCy+8YIoVK2Z8fX1NnTp1TGxsbK69ny82NtZIMocPH3Yb37Jli5Fk1q5da419++23xuFwmN9//90YY8y0adNMYGCgtf/gwYOmVq1apl27dubkyZPW2osXLzY1atQw3t7epkmTJubAgQNm0aJFpnLlyqZAgQKmY8eO5tixY5fUr8vlMpKMSzKGoiiKoqhrXwBsYf2d63Jd9hrX3Vtwc+Lj46PTp0/nun/69Ony8/NTQkKCXn/9dY0YMUJLlizJNs8Yo169eunjjz/WihUrVK1atRzXW7t2rZo3b64OHTooNTVVb7/9trKystS2bVv99ddfWr58uZYsWaKdO3fqoYceso6bO3eu+vTpoxdeeEG//vqrevTooccee0yxsbHWupI0bdo0paamWtsrVqxQly5d1KdPH23ZskXvvfeeYmJiNGrUKElSVlaW7rvvPnl5eSkhIUFTpkzRoEGDLvqaHTp0SN9//72ee+45+fn55TjH8f+fmbga1zZ79myNGzdO7733nrZv36558+apatWq1vE9e/ZUfHy8PvvsM/3yyy968MEH1bx5c23fvv2i13Ex8fHxCgoKUu3ata2xpk2bKl++fEpISMg2f+/evWrUqJH+9a9/6auvvpLT6bT2DRs2TBMnTtTq1au1d+9edejQQePHj9esWbO0cOFCff/993rnnXdy7OPUqVNKS0tzKwAAAAA5uHp5+Oo4/w5nVlaWWbJkiXE6naZ///7Z9htz9g5ow4YN3da48847zaBBg6xtSebLL780nTp1MuHh4ea///3v3/bRtm1b686nMcZ8//33Jn/+/GbPnj3W2ObNm40ks2bNGmOMMfXr1zfdu3d3W+fBBx80LVu2dOvlwruW99xzjxk9erTb2IwZM0zRokWNMcZ89913xsPDw7qrZ8zZO305rXXOTz/9ZCSZOXPmuI0HBwcbPz8/4+fnZwYOHHjVrm3s2LGmYsWK5vTp09l6+e2330z+/Pnd+j933dHR0Tn2f77c7oCOGjXKVKxYMdv8woULm8mTJxtj/ncHdOvWraZkyZKmd+/ebnd+z639ww8/WGNjxowxkkxKSoo11qNHDxMVFZVjf0OHDjWSshV3QCmKoijKpgJgi5v2DuiCBQvk7+8vb29vtWjRQg899JCGDRuW6/wL72QWLVpUBw8edBvr16+fEhIS9OOPP6p48eLW+OjRo+Xv72/Vnj17cjxHUlKSSpYsqZIlS1pjVapUUVBQkJKSkqw5DRo0cDuuQYMG1v7cbNy4USNGjHDro3v37kpNTdXx48etcxcrVsw6pl69ehddMzdr1qxRYmKibr/9dp06deqqXduDDz6oEydOqFy5curevbvmzp1rPThq06ZNyszMVMWKFd2ucfny5UpJSbms6/gnTpw4oUaNGum+++7T22+/bd35Pd/5/4ZCQkLk6+urcuXKuY1d+G/qnOjoaLlcLqv27t179S8CAAAAuAlclw8hatKkid599115eXmpWLFi8vC4eJuenp5u2w6HQ1lZWW5jzZo106effqrvvvtOnTt3tsaffvppdejQwdo+P+TZJT09XcOHD9d9992XbZ+3t/dlrRkWFiaHw6Hk5GS38XOhysfH57LWzU3JkiWVnJysH374QUuWLNGzzz6rN954Q8uXL1d6erry58+v9evXK3/+/G7H+fv7X/Y5Q0NDs4XCM2fO6K+//lJoaKg15nQ61bRpUy1YsEADBgxw+x8Q55z/b8jhcFzSv6nz1z//7bwAAAAAcnZd3gH18/NTWFiYSpUq9bfh81Lde++9mjVrlp588kl99tln1nihQoUUFhZmVW7nCw8P1969e93ubm3ZskVHjhxRlSpVrDmrVq1yO27VqlXWfuls0MnMzHSbc8cddyg5Odmtj3OVL18+69ypqanWMT/99NNFrzc4OFjNmjXTxIkTdezYsYvOvVrX5uPjozZt2mjChAmKi4tTfHy8Nm3apJo1ayozM1MHDx7Mdn3nB8V/ql69ejpy5IjWr19vjS1btkxZWVmqW7euNZYvXz7NmDFDtWrVUpMmTbRv377LPicAAACAy3dd3gG9Vtq3b68ZM2bo0UcflYeHhx544IFLPrZp06aqWrWqOnfurPHjx+vMmTN69tlnFRERYT0EZ8CAAerQoYNq1qyppk2b6ptvvtGcOXP0ww8/WOuUKVNGS5cuVYMGDeR0OlWwYEENGTJErVu3VqlSpfTAAw8oX7582rhxo3799VeNHDlSTZs2VcWKFdW1a1e98cYbSktL08svv/y3PU+ePFkNGjRQ7dq1NWzYMFWrVk358uXT2rVrtXXrVtWqVeuqXVtMTIwyMzNVt25d+fr66pNPPpGPj49Kly6t4OBgde7cWV26dNHYsWNVs2ZN/fHHH1q6dKmqVaumVq1a5dj//v37tX//fu3YsUPS2bfyFihQQKVKlVKhQoUUHh6u5s2bq3v37poyZYoyMjLUs2dPPfzww9nuZOfPn18zZ85Ux44ddffddysuLu6Kwi8AAACAy3AVP5N6VeT0NSwX2x8REWH69OnjNufCBwhJ7g/r+fzzz423t7eZPXt2rue5cA1jrvyrSowxZv78+SYsLMx4eHi4fQ3L4sWLTf369Y2Pj48JCAgwderUMe+//761Pzk52TRs2NB4eXmZihUrmsWLF2e7rpzs27fP9OzZ05QtW9Z4enoaf39/U6dOHfPGG2+4fa3IlV7b3LlzTd26dU1AQIDx8/Mzd911l9uDfU6fPm2GDBliypQpYzw9PU3RokVN+/btzS+//JJr77k93GfatGnWnEOHDpmOHTsaf39/ExAQYB577DFz9OhRa/+FX8OSkZFh7rvvPhMeHm4OHDiQ4wOOLjzmXC/Vq1e/6Gt9zrkPZ0uuPH8mA0VRFEXdKgXg2rsaDyFyGGNMXoVf4GaUlpamwMBASS5JAXndDgAAtwT+ogWuvXN/57pcLgUEXN7fudflZ0ABAAAAADcfAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAuPvG4AuGm9GCh553UTgH3MUJPXLQAAgOscd0ABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtvDI6waAm5Ur2qWAgIC8bgMAAAC4bnAHFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC2IIACAAAAAGxBAAUAAAAA2IIACgAAAACwBQEUAAAAAGALAigAAAAAwBYeed0AcNMKDMzrDgAANzNj8roDAPjHuAP6NxwOh+bNm5fXbeAyxcXFyeFw6MiRI3ndCgAAAHDLuyUC6JQpU1SgQAGdOXPGGktPT5enp6ciIyPd5p4LLCkpKTZ3aZ8//vhDzzzzjEqVKiWn06nQ0FBFRUVp1apVed2amzlz5ujf//63goOD5XA4lJiYmG3OyZMn9dxzzyk4OFj+/v66//77deDAAfubBQAAAPC3bokA2qRJE6Wnp2vdunXW2IoVKxQaGqqEhASdPHnSGo+NjVWpUqVUvnz5vGj1qjp9+nSO4/fff782bNig6dOna9u2bZo/f74iIyN16NAhmzu8uGPHjqlhw4Z67bXXcp3Tr18/ffPNN/ryyy+1fPly7du3T/fdd5+NXQIAAAC4VLdEAK1UqZKKFi2quLg4aywuLk5t27ZV2bJl9dNPP7mNN2nSxO34P//8U+3bt5evr68qVKig+fPnu+1fvny56tSpI6fTqaJFi+rFF190u9t66tQp9e7dW0WKFJG3t7caNmyotWvXup3T4XBo4cKFqlatmry9vXXXXXfp119/dTvPypUr1ahRI/n4+KhkyZLq3bu3jh07Zu0vU6aMXn31VXXp0kUBAQF66qmnsr0WR44c0YoVK/Taa6+pSZMmKl26tOrUqaPo6Gjde++9kqT+/furdevW1jHjx4+Xw+HQ4sWLrbGwsDB98MEHkqS1a9eqWbNmuu222xQYGKiIiAj9/PPPbud1OBz64IMPLvo6XujRRx/VkCFD1LRp0xz3u1wuffjhh3rrrbd09913q1atWpo2bZpWr17t9js93/Hjx9WiRQs1aNBAR44c0e7du+VwOPTFF19Yr+2dd96pbdu2ae3atapdu7b8/f3VokUL/fHHHzmueerUKaWlpbkVAAAAgOxuiQAqnb0LGhsba23HxsYqMjJSERER1viJEyeUkJCQLYAOHz5cHTp00C+//KKWLVuqc+fO+uuvvyRJv//+u1q2bKk777xTGzdu1LvvvqsPP/xQI0eOtI4fOHCgZs+erenTp+vnn39WWFiYoqKirDXOGTBggMaOHau1a9eqcOHCatOmjTIyMiRJKSkpat68ue6//3798ssv+vzzz7Vy5Ur17NnTbY0333xT1atX14YNG/TKK69kex38/f3l7++vefPm6dSpUzm+VhEREVq5cqUyMzMlnQ3Yt912mxXgf//9d6WkpFhvXz569Ki6du2qlStX6qefflKFChXUsmVLHT169JJfx8uxfv16ZWRkuAXUypUrq1SpUoqPj882/8iRI2rWrJmysrK0ZMkSBQUFWfuGDh2qwYMH6+eff5aHh4c6deqkgQMH6u2339aKFSu0Y8cODRkyJMc+xowZo8DAQKtKlix52dcEAAAA3NTMLWLq1KnGz8/PZGRkmLS0NOPh4WEOHjxoZs2aZRo3bmyMMWbp0qVGkvntt9+s4ySZwYMHW9vp6elGkvn222+NMca89NJLplKlSiYrK8uaM2nSJOPv728yMzNNenq68fT0NDNnzrT2nz592hQrVsy8/vrrxhhjYmNjjSTz2WefWXMOHTpkfHx8zOeff26MMeaJJ54wTz31lNs1rVixwuTLl8+cOHHCGGNM6dKlTbt27f72tfjqq69MwYIFjbe3t6lfv76Jjo42GzdutPYfPnzY5MuXz6xdu9ZkZWWZQoUKmTFjxpi6desaY4z55JNPTPHixXNdPzMz0xQoUMB88803l/w6XsyuXbuMJLNhwwa38ZkzZxovL69s8++8804zcOBAY8z/XtukpCRTrVo1c//995tTp05lW/uDDz6wxj799FMjySxdutQaGzNmjKlUqVKO/Z08edK4XC6r9u7dayQZ19nnE1IURVHUtSkAsJnL5TKSjMvluuw1bpk7oJGRkTp27JjWrl2rFStWqGLFiipcuLAiIiKsz4HGxcWpXLlyKlWqlNux1apVs3728/NTQECADh48KElKSkpSvXr15HA4rDkNGjRQenq6/vvf/yolJUUZGRlq0KCBtd/T01N16tRRUlKS23nq1atn/VyoUCFVqlTJmrNx40bFxMRYdzD9/f0VFRWlrKws7dq1yzqudu3af/ta3H///dq3b5/mz5+v5s2bKy4uTnfccYdiYmIkSUFBQapevbri4uK0adMmeXl56amnntKGDRuUnp6u5cuXKyIiwlrvwIED6t69uypUqKDAwEAFBAQoPT1de/bsueTX8Vpr1qyZwsLC9Pnnn8vLyyvb/vN7CwkJkSRVrVrVbSy3Xp1OpwICAtwKAAAAQHa3zPeAhoWFqUSJEoqNjdXhw4etAFWsWDGVLFlSq1evVmxsrO6+++5sx3p6erptOxwOZWVl2dL3Oenp6erRo4d69+6dbd/5gdnPz++S1vP29lazZs3U7P/Yu++wKK72b+DfpS11FxFlQRGUJigCihpsoGLAFjGxRHkVrEkUS+xGIxqjMUZjicaGgvGxJlEfY68YRWNlrcSCEowBNRYQROp5//DHPG4ABcRdg9/PdZ3rcs6cOXPP7IB7c2bOtGuHzz//HAMHDkRkZCTCw8MBPEvYY2NjIZfL4e/vDysrK7i7u+Po0aM4fPgwRo8eLfUVFhaG+/fvY8GCBXBwcIBcLoefn1+RSZAq+jyqVCrk5OTg0aNHGrfT3rlzByqVSqNtx44d8fPPP+Py5csaiWVxsRX+MeGfddr+zImIiIiIKpu3ZgQUePYcaGxsLGJjYzVev9KqVSvs2rULJ0+eLPL858u4u7vj+PHjEEJIdXFxcbCwsEDNmjXh5OQEIyMjjVec5Obm4tSpU/Dw8NDo6/mJcx4+fIirV6/C3d0dANCwYUNcvnwZzs7ORUpxI3pl5eHhoTGhUeFzoAcOHJDOVUBAANavX4+rV69qnL+4uDgMHz4cHTp0QL169SCXy/H333+/ckwv06hRIxgaGuLAgQNS3ZUrV5CcnKwxmgwAs2bNQlhYGNq2bYvLly+/9tiIiIiIiKiot2YEFHiWgA4dOhS5ubkat5D6+/sjIiICOTk5ZU5AhwwZgvnz52PYsGGIiIjAlStXEBkZiVGjRkFPTw9mZmb45JNPMHbsWFhZWaFWrVqYPXs2njx5ggEDBmj09cUXX6Bq1aqwsbHBpEmTYG1tjZCQEADA+PHj8c477yAiIgIDBw6EmZkZLl++jH379mHRokWljvf+/fvo3r07+vfvjwYNGsDCwgKnT5/G7Nmz0aVLF6ldq1at8PjxY2zfvh2zZs0C8CwB7datG2xtbeHq6iq1dXFxwZo1a+Dr64v09HSMHTsWJiYmZTqPxXnw4AGSk5Px119/AXiWXALPRj5VKhWUSiUGDBiAUaNGwcrKCgqFAsOGDYOfnx/eeeedIv3NmTMH+fn5aNOmDWJjY1G3bt1XjpGIiIiIiErvrUtAs7KyULduXek5P+BZAvr48WPpdS1lUaNGDezcuRNjx46Fl5cXrKysMGDAAEyePFlqM2vWLBQUFKBPnz54/PgxfH19sWfPHlSpUkWjr1mzZmHEiBG4du0avL298csvv0ijmw0aNMDhw4cxadIktGzZEkIIODk5oWfPnmWK19zcHE2bNsW8efOk51Pt7e0xaNAgfPbZZ1K7KlWqwNPTE3fu3JEStVatWqGgoEAjeQeAlStXYvDgwWjYsCHs7e0xc+ZMjBkzpkxxFWfbtm3o16+ftPzhhx8CeDZj7dSpUwEA8+bNg56eHj744ANkZ2cjKCgI33//fYl9zps3TyMJrYjR45IokQaAz4MSEVH5PHdzFRFRpSETgr/edK3w3aMPHz7UeJaR/p3S09OhVCoBJqBERPQK+A2NiN40hd9z09LSyj3x5lv1DCgRERERERHpDhNQIiIiIiIi0oq36hnQN1VAQAB4JzQREREREVV2HAElIiIiIiIirWACSkRERERERFrBBJSIiIiIiIi0ggkoERERERERaQUTUCIiIiIiItIKzoJL9LpMUALGug6C6MVEJGfgJiIiIu3hCCgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0goDXQdAVFmlTUyDQqHQdRhERERERG8MjoASERERERGRVjABJSIiIiIiIq1gAkpERERERERawQSUiIiIiIiItIIJKBEREREREWkFE1AiIiIiIiLSCiagREREREREpBVMQImIiIiIiEgrmIASERERERGRVjABJSIiIiIiIq0w0HUApDvh4eF49OgRtm7d+tr35ejoiJEjR2LkyJEAAJlMhi1btiAkJOS17TMpKQm1a9dGfHw8vL29X9t+SqRUan+fREREbwohdB0BEb2BOAJaiYWHh0Mmk0Emk8HIyAjOzs744osvkJeXBwBYsGABYmJiytSnTCYrV8J66tQpDB48uNTtf/31V3Tu3Bl2dnYl7lMIgSlTpsDW1hYmJiYIDAzEtWvXyhwbERERERFpBxPQSi44OBgpKSm4du0aRo8ejalTp+Kbb74BACiVSlhaWmoljmrVqsHU1LTU7TMzM+Hl5YXFixeX2Gb27NlYuHAhli5dihMnTsDMzAxBQUF4+vRpRYRMREREREQVjAloJSeXy6FSqeDg4IBPPvkEgYGB2LZtG4BnI6TP3wIbEBCA4cOHY9y4cbCysoJKpcLUqVOl9Y6OjgCArl27QiaTScuJiYno0qULbGxsYG5ujsaNG2P//v0acTg6OmL+/Pmljrt9+/b48ssv0bVr12LXCyEwf/58TJ48GV26dEGDBg3www8/4K+//ipxhDY/Px/9+/dH3bp1kZycDODZiO6yZcvQqVMnmJqawt3dHcePH8f169cREBAAMzMzNGvWDImJiaWOnYiIiIiIiscE9C1jYmKCnJycEtevXr0aZmZmOHHiBGbPno0vvvgC+/btA/DsNloAiI6ORkpKirSckZGBDh064MCBA4iPj0dwcDA6d+4sJXmvw82bN5GamorAwECpTqlUomnTpjh+/HiR9tnZ2ejevTvUajWOHDmCWrVqSeumT5+Ovn37Qq1Wo27duujduzc++ugjTJw4EadPn4YQAhERESXGkp2djfT0dI1CRERERERFMQF9SwghsH//fuzZswdt2rQpsV2DBg0QGRkJFxcX9O3bF76+vjhw4ACAZ7fRAoClpSVUKpW07OXlhY8++gj169eHi4sLpk+fDicnJ2mk9XVITU0FANjY2GjU29jYSOsKZWRkoGPHjrh37x4OHTokxV2oX79+6NGjB1xdXTF+/HgkJSUhNDQUQUFBcHd3x4gRIxAbG1tiLF999RWUSqVU7O3tK+YgiYiIiIgqGSagldz27dthbm4OY2NjtG/fHj179tS4rfafGjRooLFsa2uLu3fvvnAfGRkZGDNmDNzd3WFpaQlzc3MkJCS81hHQsujVqxcyMzOxd+9eKIuZmfb5Yy5MaD09PTXqnj59WuLI5sSJE5GWliaVW7duVfAREBERERFVDkxAK7nWrVtDrVbj2rVryMrKkm6xLYmhoaHGskwmQ0FBwQv3MWbMGGzZsgUzZ87EkSNHoFar4enp+cJbfV+VSqUCANy5c0ej/s6dO9K6Qh06dMD58+eLvTUX0DxmmUxWYl1J50Eul0OhUGgUIiIiIiIqigloJWdmZgZnZ2fUqlULBgav/tpXQ0ND5Ofna9TFxcUhPDwcXbt2haenJ1QqFZKSkl55Xy9Su3ZtqFQq6fZgAEhPT8eJEyfg5+en0faTTz7BrFmz8N577+Hw4cOvNS4iIiIiIirZq2ck9FZxdHTEgQMH0Lx5c8jlclSpUgUuLi7YvHkzOnfuDJlMhs8///ylo6Yvk5GRgevXr0vLN2/ehFqthpWVFWrVqgWZTIaRI0fiyy+/hIuLC2rXro3PP/8cdnZ2GjP7Fho2bBjy8/PRqVMn7Nq1Cy1atHil+IiIiIiIqOyYgFKZzJ07F6NGjcKKFStQo0YNJCUl4dtvv0X//v3RrFkzWFtbY/z48a88E+zp06fRunVraXnUqFEAgLCwMMTExAAAxo0bh8zMTAwePBiPHj1CixYtsHv3bhgbGxfb58iRI1FQUIAOHTpg9+7daNas2SvF+DJKpAHg7bhERG8qIXQdARHR20cmBH/9ElWk9PT0/5vsiAkoEdGbjN+AiIjKpvB7blpaWrnnPeEzoERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVBroOgKjSmqAEjHUdBL1JRKTQdQhEREREOsURUCIiIiIiItIKJqBERERERESkFUxAiYiIiIiISCuYgBIREREREZFWMAElIiIiIiIirWACSkRERERERFrBBJSIiIiIiIi0ggkoERERERERaQUTUCIiIiIiItIKJqBERERERESkFQa6DoCoskqbmAaFQqHrMIiIiIiI3hgcASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtMNB1AESVllKp6wiIiIjon4TQdQREbzWOgGpRTEwMLC0tX7mfpKQkyGQyqNXqV+5LW2QyGbZu3ar1/To6OmL+/Pla3y8RERERERX1ViSg4eHhkMlk+Pjjj4usGzp0KGQyGcLDw7UfWDnZ29sjJSUF9evXf6V+ZDKZVMzMzODi4oLw8HCcOXOmgiItv5SUFPTu3Ruurq7Q09PDyJEji233448/om7dujA2Noanpyd27typ3UCJiIiIiKjU3ooEFHiWtG3YsAFZWVlS3dOnT7Fu3TrUqlVLh5GVTU5ODvT19aFSqWBg8Op3UEdHRyMlJQWXLl3C4sWLkZGRgaZNm+KHH36ogGjLLzs7G9WqVcPkyZPh5eVVbJtjx46hV69eGDBgAOLj4xESEoKQkBBcvHhRy9ESEREREVFpvDUJaMOGDWFvb4/NmzdLdZs3b0atWrXg4+Oj0Xb37t1o0aIFLC0tUbVqVXTq1AmJiYnS+sJbYDdv3ozWrVvD1NQUXl5eOH78uEY/MTExqFWrFkxNTdG1a1fcv39fY31iYiK6dOkCGxsbmJubo3Hjxti/f79GG0dHR0yfPh19+/aFQqHA4MGDi9yCGxsbC5lMhgMHDsDX1xempqZo1qwZrly58tLzYmlpCZVKBUdHR7z77rv46aefEBoaioiICDx8+BAAMHXqVHh7e2tsN3/+fDg6OmrUrVq1CvXq1YNcLoetrS0iIiJK3G9kZCRsbW1x/vz5Ytc7OjpiwYIF6Nu3L5QlPEu5YMECBAcHY+zYsXB3d8f06dPRsGFDLFq0qMT9RkVFwdLSEgcOHAAABAQEYNiwYRg5ciSqVKkCGxsbrFixApmZmejXrx8sLCzg7OyMXbt2ldgnERERERGVzluTgAJA//79ER0dLS2vWrUK/fr1K9IuMzMTo0aNwunTp3HgwAHo6emha9euKCgo0Gg3adIkjBkzBmq1Gq6urujVqxfy8vIAACdOnMCAAQMQEREBtVqN1q1b48svv9TYPiMjAx06dMCBAwcQHx+P4OBgdO7cGcnJyRrt5syZAy8vL8THx+Pzzz8v8fgmTZqEuXPn4vTp0zAwMED//v3LfI4A4NNPP8Xjx4+xb9++Um+zZMkSDB06FIMHD8aFCxewbds2ODs7F2knhMCwYcPwww8/4MiRI2jQoEG5YgSA48ePIzAwUKMuKCioyB8CCs2ePRsTJkzA3r170bZtW6l+9erVsLa2xsmTJzFs2DB88skn6N69O5o1a4azZ8/i3XffRZ8+ffDkyZNi+83OzkZ6erpGISIiIiKiYoi3QFhYmOjSpYu4e/eukMvlIikpSSQlJQljY2Nx79490aVLFxEWFlbi9vfu3RMAxIULF4QQQty8eVMAEFFRUVKbS5cuCQAiISFBCCFEr169RIcOHTT66dmzp1AqlS+MtV69euK7776Tlh0cHERISIhGm8L9x8fHCyGEOHTokAAg9u/fL7XZsWOHACCysrJK3BcAsWXLliL1WVlZAoD4+uuvhRBCREZGCi8vL4028+bNEw4ODtKynZ2dmDRp0gv39eOPP4revXsLd3d38eeff5bY9p/8/f3FiBEjitQbGhqKdevWadQtXrxYVK9eXVp2cHAQ8+bNE+PGjRO2trbi4sWLRfpu0aKFtJyXlyfMzMxEnz59pLqUlBQBQBw/frzY+CIjIwWAIiXt2Tx7LCwsLCwsLG9SIaJyS0tLEwBEWlpauft4q0ZAq1Wrho4dOyImJgbR0dHo2LEjrK2ti7S7du0aevXqhTp16kChUEi3mv5zZPL50TtbW1sAwN27dwEACQkJaNq0qUZ7Pz8/jeWMjAyMGTMG7u7usLS0hLm5ORISEorsx9fXt1TH96J4ykIIAeDZJEWlcffuXfz1118ao4rF+fTTT3HixAn8+uuvqFGjRpnjKq+5c+dixYoVOHr0KOrVq1dk/fPnTV9fH1WrVoWnp6dUZ2NjA6Dkczlx4kSkpaVJ5datWxV8BERERERElcNblYACz27DjYmJwerVq0u8RbVz58548OABVqxYgRMnTuDEiRMAnk0A9DxDQ0Pp34XJ2j9v032RMWPGYMuWLZg5cyaOHDkCtVoNT0/PIvsxMzMrVX+vGk+hhIQEAEDt2rUBAHp6elJSWig3N1f6t4mJSan6bdeuHW7fvo09e/aUOabiqFQq3LlzR6Puzp07UKlUGnUtW7ZEfn4+Nm3aVGw/z5834Nm5K8u5lMvlUCgUGoWIiIiIiIp66xLQ4OBg5OTkIDc3F0FBQUXW379/H1euXMHkyZPRtm1buLu7S5PxlIW7u7uUuBb67bffNJbj4uIQHh6Orl27wtPTEyqVCklJSWXeV0WbP38+FAqF9HxltWrVkJqaqpGEPv8OUgsLCzg6OkoT+5Tkvffew7p16zBw4EBs2LDhleP08/Mrss99+/YVGWlu0qQJdu3ahZkzZ2LOnDmvvF8iIiIiIiqfV3+Px7+Mvr6+NMKnr69fZH2VKlVQtWpVLF++HLa2tkhOTsaECRPKvJ/hw4ejefPmmDNnDrp06YI9e/Zg9+7dGm1cXFywefNmdO7cGTKZDJ9//nm5RixfxaNHj5Camors7GxcvXoVy5Ytw9atW/HDDz/A0tISwLOZYu/du4fZs2ejW7du2L17N3bt2qUx0jd16lR8/PHHqF69Otq3b4/Hjx8jLi4Ow4YN09hf165dsWbNGvTp0wcGBgbo1q1bibEVJrkZGRm4d+8e1Go1jIyM4OHhAQAYMWIE/P39MXfuXHTs2BEbNmzA6dOnsXz58iJ9NWvWDDt37kT79u1hYGBQ4ntFiYiIiIjo9XnrElAAL7xFUk9PDxs2bMDw4cNRv359uLm5YeHChQgICCjTPt555x2sWLECkZGRmDJlCgIDAzF58mRMnz5davPtt9+if//+aNasGaytrTF+/Hitz6BaOAuwsbExatSogRYtWuDkyZNo2LCh1Mbd3R3ff/89Zs6cienTp+ODDz7AmDFjNBK9sLAwPH36FPPmzcOYMWNgbW1dYnLZrVs3FBQUoE+fPtDT08P7779fbLvnX49z5swZrFu3Dg4ODtIocbNmzbBu3TpMnjwZn332GVxcXLB161bUr1+/2P5atGiBHTt2oEOHDtDX1y+SHFc0JdIA8HZcIiKiN0rpprjQiX888URUKcnEPx/uI6JXkp6e/n/vLmUCSkRERKXHb+X0piv8npuWllbueU/eumdAiYiIiIiISDeYgBIREREREZFWMAElIiIiIiIirWACSkRERERERFrBBJSIiIiIiIi0ggkoERERERERaQUTUCIiIiIiItIKJqBERERERESkFQa6DoCo0pqgBIx1HQRpg4jkm8OJiIiISoMjoERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVTECJiIiIiIhIKwx0HQBRZZU2MQ0KhULXYRARERERvTE4AkpERERERERawQSUiIiIiIiItIIJKBEREREREWkFE1AiIiIiIiLSCiagREREREREpBVMQImIiIiIiEgrmIASERERERGRVjABJSIiIiIiIq1gAkpERERERERawQSUiIiIiIiItMJA1wFQ8WQyGbZs2YKQkBBdh/Kv5ujoiJEjR2LkyJHa37lSqf19EhH9Wwih6wiIiEgHKuUIaHh4OGQymVSqVq2K4OBgnD9/Xtehad3PP/+MNm3aoEqVKjAxMYGbmxv69++P+Ph4XYf2QikpKejduzdcXV2hp6dXYgL5448/om7dujA2Noanpyd27typ3UCJiIiIiKjUKmUCCgDBwcFISUlBSkoKDhw4AAMDA3Tq1OmV+szJyamg6LRj/Pjx6NmzJ7y9vbFt2zZcuXIF69atQ506dTBx4kRdh/dC2dnZqFatGiZPngwvL69i2xw7dgy9evXCgAEDEB8fj5CQEISEhODixYtajpaIiIiIiEqj0iagcrkcKpUKKpUK3t7emDBhAm7duoV79+5JbcaPHw9XV1eYmpqiTp06+Pzzz5Gbmyutnzp1Kry9vREVFYXatWvD2NgYwLPbY6OiotC1a1eYmprCxcUF27Ztk7bLz8/HgAEDULt2bWnUccGCBUViXLVqFerVqwe5XA5bW1tERESUeDy3bt1Cjx49YGlpCSsrK3Tp0gVJSUkltv/tt98we/ZsfPvtt/j222/RsmVL1KpVC40aNcLkyZOxa9cujfZLliyBk5MTjIyM4ObmhjVr1misT05ORpcuXWBubg6FQoEePXrgzp070vpz586hdevWsLCwgEKhQKNGjXD69Glp/dGjR9GyZUuYmJjA3t4ew4cPR2ZmZonxOzo6YsGCBejbty+UJdzKumDBAgQHB2Ps2LFwd3fH9OnT0bBhQyxatKjEfqOiomBpaYkDBw4AAAICAjBs2DCMHDkSVapUgY2NDVasWIHMzEz069cPFhYWcHZ2LnK+iIiIiIio7CptAvq8jIwM/Oc//4GzszOqVq0q1VtYWCAmJgaXL1/GggULsGLFCsybN09j2+vXr+Pnn3/G5s2boVarpfpp06ahR48eOH/+PDp06IDQ0FA8ePAAAFBQUICaNWvixx9/xOXLlzFlyhR89tln2LRpk7T9kiVLMHToUAwePBgXLlzAtm3b4OzsXGz8ubm5CAoKgoWFBY4cOYK4uDiYm5sjODi4xFHZ9evXw9zcHEOGDCl2vUwmk/69ZcsWjBgxAqNHj8bFixfx0UcfoV+/fjh06JB0PF26dMGDBw9w+PBh7Nu3Dzdu3EDPnj2lPkJDQ1GzZk2cOnUKZ86cwYQJE2BoaAgASExMRHBwMD744AOcP38eGzduxNGjR1+YcJfG8ePHERgYqFEXFBSE48ePF9t+9uzZmDBhAvbu3Yu2bdtK9atXr4a1tTVOnjyJYcOG4ZNPPkH37t3RrFkznD17Fu+++y769OmDJ0+eFNtvdnY20tPTNQoRERERERVDVEJhYWFCX19fmJmZCTMzMwFA2NraijNnzrxwu2+++UY0atRIWo6MjBSGhobi7t27Gu0AiMmTJ0vLGRkZAoDYtWtXiX0PHTpUfPDBB9KynZ2dmDRpUontAYgtW7YIIYRYs2aNcHNzEwUFBdL67OxsYWJiIvbs2VPs9sHBwaJBgwYadXPnzpXOiZmZmXj06JEQQohmzZqJQYMGabTt3r276NChgxBCiL179wp9fX2RnJwsrb906ZIAIE6ePCmEEMLCwkLExMQUG8uAAQPE4MGDNeqOHDki9PT0RFZWVonnoJC/v78YMWJEkXpDQ0Oxbt06jbrFixeL6tWrS8sODg5i3rx5Yty4ccLW1lZcvHixSN8tWrSQlvPy8oSZmZno06ePVJeSkiIAiOPHjxcbX2RkpABQpKQ9m2KDhYWFhaW4QkRE/zppaWkCgEhLSyt3H5V2BLR169ZQq9VQq9U4efIkgoKC0L59e/zxxx9Sm40bN6J58+ZQqVQwNzfH5MmTkZycrNGPg4MDqlWrVqT/Bg0aSP82MzODQqHA3bt3pbrFixejUaNGqFatGszNzbF8+XKp77t37+Kvv/7SGIV7kXPnzuH69euwsLCAubk5zM3NYWVlhadPnyIxMbHU56R///5Qq9VYtmwZMjMzIYQAACQkJKB58+YabZs3b46EhARpvb29Pezt7aX1Hh4esLS0lNqMGjUKAwcORGBgIGbNmqUR17lz5xATEyPFbm5ujqCgIBQUFODmzZuljr+85s6dixUrVuDo0aOoV69ekfXPf5b6+vqoWrUqPD09pTobGxsA0Ph8nzdx4kSkpaVJ5datWxV8BERERERElUOlTUDNzMzg7OwMZ2dnNG7cGFFRUcjMzMSKFSsAPLt9MzQ0FB06dMD27dsRHx+PSZMmFbml1czMrNj+C28vLSSTyVBQUAAA2LBhA8aMGYMBAwZg7969UKvV6Nevn9S3iYlJmY4lIyMDjRo1khLqwnL16lX07t272G1cXFxw48YNjWdaLS0t4ezsjBo1apRp/6UxdepUXLp0CR07dsTBgwfh4eGBLVu2SPF/9NFHGrGfO3cO165dg5OTU7n3qVKpNJ5DBYA7d+5ApVJp1LVs2RL5+fkat0A/r7jP8vm6wtuVCz/ff5LL5VAoFBqFiIiIiIiKqrQJ6D/JZDLo6ekhKysLwLMZVB0cHDBp0iT4+vrCxcVFY3T0VcTFxaFZs2YYMmQIfHx84OzsrDEiaGFhAUdHR2kinJdp2LAhrl27hurVq0tJdWEpaYKeXr16ISMjA99///1L+3d3d0dcXFyRY/Dw8JDW37p1S2Nk7/Lly3j06JHUBgBcXV3x6aefYu/evXj//fcRHR0txX/58uUisTs7O8PIyKhU56A4fn5+Rc7hvn374Ofnp1HXpEkT7Nq1CzNnzsScOXPKvT8iIiIiIno1BroO4HXJzs5GamoqAODhw4dYtGgRMjIy0LlzZwDPRgiTk5OxYcMGNG7cGDt27JBG7F6Vi4sLfvjhB+zZswe1a9fGmjVrcOrUKdSuXVtqM3XqVHz88ceoXr062rdvj8ePHyMuLg7Dhg0r0l9oaCi++eYbdOnSBV988QVq1qyJP/74A5s3b8a4ceNQs2bNItv4+flh9OjRGD16NP744w+8//77sLe3R0pKClauXCkl5AAwduxY9OjRAz4+PggMDMQvv/yCzZs3Y//+/QCAwMBAeHp6IjQ0FPPnz0deXh6GDBkCf39/+Pr6IisrC2PHjkW3bt1Qu3Zt/Pnnnzh16hQ++OADAM9mG37nnXcQERGBgQMHwszMDJcvX8a+ffteOGNt4aRPGRkZuHfvHtRqNYyMjKSkd8SIEfD398fcuXPRsWNHbNiwAadPn8by5cuL9NWsWTPs3LkT7du3h4GBQYnvFSUiIiIioteo4h5JfXOEhYUJ4H+TwVhYWIjGjRuLn376SaPd2LFjRdWqVYW5ubno2bOnmDdvnlAqldL6yMhI4eXlVaR/4H8TBBVSKpUiOjpaCCHE06dPRXh4uFAqlcLS0lJ88sknYsKECUX6Wrp0qXBzcxOGhobC1tZWDBs2rMR9pKSkiL59+wpra2shl8tFnTp1xKBBg176APDGjRtFQECAUCqVwtDQUNSsWVP07t1b/Pbbbxrtvv/+e1GnTh1haGgoXF1dxQ8//KCx/o8//hDvvfeeMDMzExYWFqJ79+4iNTVVCPFsQqQPP/xQ2NvbCyMjI2FnZyciIiI0Jhg6efKkaNeunTA3NxdmZmaiQYMGYsaMGS+M/fnPsLA4ODhotNm0aZNwdXUVRkZGol69emLHjh0a6wsnISp0+PBhYWZmJhYuXCiEKH6Co39uUxjLPz/zkhQ+nA2k6XyODxYWFpY3uRAR0b9LRUxCJBNCCJ1kvkSVVHp6+v/dGp0GgM+DEhGVhN9AiIj+XQq/56alpZV73pO35hlQIiIiIiIi0i0moERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0goDXQdAVGlNUALGug6CXhcRKXQdAhEREdG/DkdAiYiIiIiISCuYgBIREREREZFWMAElIiIiIiIirWACSkRERERERFrBBJSIiIiIiIi0ggkoERERERERaQUTUCIiIiIiItIKJqBERERERESkFUxAiYiIiIiISCuYgBIREREREZFWGOg6AKLKKm1iGhQKha7DICIiIiJ6Y3AElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLTCQNcBEFVaSqWuIyAiojeNELqOgIhIpzgC+haKiYmBpaWlVvcZHh6OkJAQre4TAKZOnQpvb2+t75eIiIiIiIpiAvqGSU1NxYgRI+Ds7AxjY2PY2NigefPmWLJkCZ48eaLr8LRqxowZaNasGUxNTUtMmJOTk9GxY0eYmpqievXqGDt2LPLy8rQbKBERERERlQpvwX2D3LhxA82bN4elpSVmzpwJT09PyOVyXLhwAcuXL0eNGjXw3nvv6TpMrcnJyUH37t3h5+eHlStXFlmfn5+Pjh07QqVS4dixY0hJSUHfvn1haGiImTNn6iBiIiIiIiJ6EY6AvkGGDBkCAwMDnD59Gj169IC7uzvq1KmDLl26YMeOHejcubPUNjk5GV26dIG5uTkUCgV69OiBO3fuSOvPnTuH1q1bw8LCAgqFAo0aNcLp06c19rdnzx64u7vD3NwcwcHBSElJkdadOnUK7dq1g7W1NZRKJfz9/XH27Flp/ZgxY9CpUydpef78+ZDJZNi9e7dU5+zsjKioqGKP9dSpU6hWrRq+/vrrEs/HtGnT8Omnn8LT07PY9Xv37sXly5fxn//8B97e3mjfvj2mT5+OxYsXIycnp9htEhMTUadOHUREREAIId2OvH37dri5ucHU1BTdunXDkydPsHr1ajg6OqJKlSoYPnw48vPzS4yViIiIiIhejgnoG+L+/fvYu3cvhg4dCjMzs2LbyGQyAEBBQQG6dOmCBw8e4PDhw9i3bx9u3LiBnj17Sm1DQ0NRs2ZNnDp1CmfOnMGECRNgaGgorX/y5AnmzJmDNWvW4Ndff0VycjLGjBkjrX/8+DHCwsJw9OhR/Pbbb3BxcUGHDh3w+PFjAIC/vz+OHj0qJWWHDx+GtbU1YmNjAQC3b99GYmIiAgICihzHwYMH0a5dO8yYMQPjx48v9zk7fvw4PD09YWNjI9UFBQUhPT0dly5dKtL+/PnzaNGiBXr37o1FixZJ5/PJkydYuHAhNmzYgN27dyM2NhZdu3bFzp07sXPnTqxZswbLli3DTz/9VGwc2dnZSE9P1yhERERERFQUb8F9Q1y/fh1CCLi5uWnUW1tb4+nTpwCAoUOH4uuvv8aBAwdw4cIF3Lx5E/b29gCAH374AfXq1cOpU6fQuHFjJCcnY+zYsahbty4AwMXFRaPf3NxcLF26FE5OTgCAiIgIfPHFF9L6Nm3aaLRfvnw5LC0tcfjwYXTq1AktW7bE48ePER8fj0aNGuHXX3/F2LFjsXXrVgBAbGwsatSoAWdnZ41+tmzZgr59+yIqKkojYS6P1NRUjeQTgLScmpqqUX/s2DF06tQJkyZNwujRozXW5ebmYsmSJdK56NatG9asWYM7d+7A3NwcHh4eaN26NQ4dOlRszF999RWmTZv2SsdCRERERPQ24AjoG+7kyZNQq9WoV68esrOzAQAJCQmwt7eXkk8A8PDwgKWlJRISEgAAo0aNwsCBAxEYGIhZs2YhMTFRo19TU1Mp4QIAW1tb3L17V1q+c+cOBg0aBBcXFyiVSigUCmRkZCA5ORkAYGlpCS8vL8TGxuLChQswMjLC4MGDER8fj4yMDBw+fBj+/v4a+zxx4gS6d++ONWvWvHLyWRbJyclo164dpkyZUiT5BIqeCxsbGzg6OsLc3Fyj7vnz87yJEyciLS1NKrdu3ar4gyAiIiIiqgSYgL4hnJ2dIZPJcOXKFY36OnXqwNnZGSYmJmXqb+rUqbh06RI6duyIgwcPwsPDA1u2bJHWP387LvDs9l7x3LvJwsLCoFarsWDBAhw7dgxqtRpVq1bVeLYyICAAsbGxUrJpZWUFd3d3HD16tNgE1MnJCXXr1sWqVauQm5tbpuMpjkql0njuFYC0rFKppLpq1aqhSZMmWL9+fbG3xxZ3LoqrKygoKDYOuVwOhUKhUYiIiIiIqCgmoG+IqlWrol27dli0aBEyMzNf2Nbd3R23bt3SGGm7fPkyHj16BA8PD6nO1dUVn376Kfbu3Yv3338f0dHRpY4nLi4Ow4cPR4cOHVCvXj3I5XL8/fffGm0KnwM9cOCA9KxnQEAA1q9fj6tXrxZ5/tPa2hoHDx7E9evX0aNHj1dOQv38/HDhwgWNkcl9+/ZBoVBonAcTExNs374dxsbGCAoKkp5jJSIiIiIi7WIC+gb5/vvvkZeXB19fX2zcuBEJCQm4cuUK/vOf/+D333+Hvr4+ACAwMBCenp4IDQ3F2bNncfLkSfTt2xf+/v7w9fVFVlYWIiIiEBsbiz/++ANxcXE4deoU3N3dSx2Li4sL1qxZg4SEBJw4cQKhoaFFRmFbtWqFx48fY/v27RoJ6Nq1a2FrawtXV9ci/VavXh0HDx7E77//jl69er3wnZ3JyclQq9VITk5Gfn4+1Go11Go1MjIyAADvvvsuPDw80KdPH5w7dw579uzB5MmTMXToUMjlco2+zMzMsGPHDhgYGKB9+/ZSH0REREREpD2chOgN4uTkhPj4eMycORMTJ07En3/+CblcDg8PD4wZMwZDhgwB8Ox20P/+978YNmwYWrVqBT09PQQHB+O7774DAOjr6+P+/fvo27cv7ty5A2tra7z//vtlmihn5cqVGDx4MBo2bAh7e3vMnDlTY5ZcAKhSpQo8PT1x584dabKjVq1aoaCgoMjtt89TqVQ4ePAgAgICEBoainXr1knJ9fOmTJmC1atXS8s+Pj4AgEOHDiEgIAD6+vrYvn07PvnkE/j5+cHMzAxhYWEakyk9z9zcHLt27UJQUBA6duyInTt3lvp8lIcSaQB4Oy4RET1HppvdPveUDRGRTsmE4K8kooqUnp4OpVIJMAElIqI3BL/tEVFFKPyem5aWVu55T3gLLhEREREREWkFE1AiIiIiIiLSCiagREREREREpBVMQImIiIiIiEgrmIASERERERGRVjABJSIiIiIiIq1gAkpERERERERawQSUiIiIiIiItIIJKBEREREREWmFga4DIKq0JigBY10HQRVBRApdh0BERERUKXAElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLTCQNcBEFVWaRPToFAodB0GEREREdEbgyOgREREREREpBVMQImIiIiIiEgrmIASERERERGRVjABJSIiIiIiIq1gAkpERERERERawQSUiIiIiIiItIIJKBEREREREWkFE1AiIiIiIiLSCiagREREREREpBVMQImIiIiIiEgrDHQdwNto6tSp2Lp1K9Rqta5DqfR0eq6VSu3vk4iI3h5C6DoCIqIyq5QjoOHh4ZDJZEVKcHCw1mORyWTYunWrRt2YMWNw4MABrez/+vXr6N+/P2rVqgW5XI4aNWqgbdu2WLt2LfLy8rQSQ3nNmDEDzZo1g6mpKSwtLYttk5ycjI4dO8LU1BTVq1fH2LFj3/jjIiIiIiJ6W1XaEdDg4GBER0dr1Mnlch1Fo8nc3Bzm5uavfT8nT55EYGAg6tWrh8WLF6Nu3boAgNOnT2Px4sWoX78+vLy8Xnsc5ZWTk4Pu3bvDz88PK1euLLI+Pz8fHTt2hEqlwrFjx5CSkoK+ffvC0NAQM2fO1EHERERERET0IpVyBBR4lmyqVCqNUqVKFWn977//jhYtWsDY2BgeHh7Yv3+/xmhlmzZtEBERodHnvXv3YGRkJI1eOjo6Yvr06ejVqxfMzMxQo0YNLF68WGrv6OgIAOjatStkMpm0PHXqVHh7e0vtTp06hXbt2sHa2hpKpRL+/v44e/asxr5lMhmioqLQtWtXmJqawsXFBdu2bSvx+IUQCA8Ph6urK+Li4tC5c2e4uLjAxcUFvXr1wtGjR9GgQQOp/YULF9CmTRuYmJigatWqGDx4MDIyMqT1BQUF+OKLL1CzZk3I5XJ4e3tj9+7d0vqcnBxERETA1tYWxsbGcHBwwFdffSWtf/ToEQYOHIhq1apBoVCgTZs2OHfuXInxA8C0adPw6aefwtPTs9j1e/fuxeXLl/Gf//wH3t7eaN++PaZPn47FixcjJyen2G0SExNRp04dREREQAiBmJgYWFpaYvv27XBzc4OpqSm6deuGJ0+eYPXq1XB0dESVKlUwfPhw5OfnvzBeIiIiIiJ6sUqbgL5Ifn4+QkJCYGpqihMnTmD58uWYNGmSRpuBAwdi3bp1yM7Olur+85//oEaNGmjTpo1U980338DLywvx8fGYMGECRowYgX379gF4llgCQHR0NFJSUqTlf3r8+DHCwsJw9OhR/Pbbb3BxcUGHDh3w+PFjjXbTpk1Djx49cP78eXTo0AGhoaF48OBBsX2q1WokJCRgzJgx0NMr/mOWyWQAgMzMTAQFBaFKlSo4deoUfvzxR+zfv18jAV+wYAHmzp2LOXPm4Pz58wgKCsJ7772Ha9euAQAWLlyIbdu2YdOmTbhy5QrWrl0rJdwA0L17d9y9exe7du3CmTNn0LBhQ7Rt27bE+Evj+PHj8PT0hI2NjVQXFBSE9PR0XLp0qUj78+fPo0WLFujduzcWLVokHf+TJ0+wcOFCbNiwAbt370ZsbCy6du2KnTt3YufOnVizZg2WLVuGn376qdg4srOzkZ6erlGIiIiIiKgYohIKCwsT+vr6wszMTKPMmDFDCCHErl27hIGBgUhJSZG22bdvnwAgtmzZIoQQIisrS1SpUkVs3LhRatOgQQMxdepUadnBwUEEBwdr7Ltnz56iffv20vLzfRaKjIwUXl5eJcafn58vLCwsxC+//KLRz+TJk6XljIwMAUDs2rWr2D42bNggAIizZ89KdXfu3NE4H4sXLxZCCLF8+XJRpUoVkZGRIbXdsWOH0NPTE6mpqUIIIezs7KTzV6hx48ZiyJAhQgghhg0bJtq0aSMKCgqKxHLkyBGhUCjE06dPNeqdnJzEsmXLSjwPhaKjo4VSqSxSP2jQIPHuu+9q1GVmZgoAYufOnUKI/53ruLg4UaVKFTFnzpwifQMQ169fl+o++ugjYWpqKh4/fizVBQUFiY8++qjY+CIjIwWAIiXt2fQQLCwsLCwsr6cQEWlZWlqaACDS0tLK3UelHQFt3bo11Gq1Rvn4448BAFeuXIG9vT1UKpXUvkmTJhrbGxsbo0+fPli1ahUA4OzZs7h48SLCw8M12vn5+RVZTkhIKFOsd+7cwaBBg+Di4gKlUgmFQoGMjAwkJydrtHv+llkzMzMoFArcvXu31PupWrWqdC4sLS2l21QTEhLg5eUFMzMzqW3z5s1RUFCAK1euID09HX/99ReaN2+u0V/z5s2lYw0PD4darYabmxuGDx+OvXv3Su3OnTuHjIwMVK1aVXr+1dzcHDdv3kRiYmLpT1Q5JScno127dpgyZQpGjx5dZL2pqSmcnJykZRsbGzg6Omo8p2tjY1PiuZ44cSLS0tKkcuvWrYo/CCIiIiKiSqDSTkJkZmYGZ2fnV+pj4MCB8Pb2xp9//ono6Gi0adMGDg4OFRTh/4SFheH+/ftYsGABHBwcIJfL4efnV+Q5RkNDQ41lmUyGgoKCYvt0cXEB8CzZ9vHxAQDo6+tL58TAoGI/+oYNG+LmzZvYtWsX9u/fjx49eiAwMBA//fQTMjIyYGtri9jY2CLblTS7bWmoVCqcPHlSo+7OnTvSukLVqlWDnZ0d1q9fj/79+0OhUGhsU9x5Lcu5lsvlb8wEV0REREREb7JKOwL6Im5ubrh165aUrAAo9vlMT09P+Pr6YsWKFVi3bh369+9fpM1vv/1WZNnd3V1aNjQ0fOnkNXFxcRg+fDg6dOiAevXqQS6X4++//y7rYWnw8fFB3bp1MWfOnBITp0Lu7u44d+4cMjMzNWLS09ODm5sbFAoF7OzsEBcXVyRuDw8PaVmhUKBnz55YsWIFNm7ciJ9//hkPHjxAw4YNkZqaCgMDAzg7O2sUa2vrch+jn58fLly4oDEyuW/fPigUCo24TExMsH37dhgbGyMoKKjIs7VERERERKQdlTYBzc7ORmpqqkYpTOratWsHJycnhIWF4fz584iLi8PkyZMB/G9inkIDBw7ErFmzIIRA165di+wnLi4Os2fPxtWrV7F48WL8+OOPGDFihLTe0dERBw4cQGpqKh4+fFhsrC4uLlizZg0SEhJw4sQJhIaGwsTE5JWOXyaTITo6GleuXEHz5s2xbds2XLt2DZcvX8bSpUtx79496OvrAwBCQ0NhbGyMsLAwXLx4EYcOHcKwYcPQp08faYKfsWPH4uuvv8bGjRtx5coVTJgwAWq1WjrWb7/9FuvXr8fvv/+Oq1ev4scff4RKpYKlpSUCAwPh5+eHkJAQ7N27F0lJSTh27BgmTZqE06dPl3gMycnJUKvVSE5ORn5+vnT7cOHsvO+++y48PDzQp08fnDt3Dnv27MHkyZMxdOjQIiOSZmZm2LFjBwwMDNC+fXuNGX6JiIiIiEhLKu6R1DdHWFiYAIpOCuPm5ia1SUhIEM2bNxdGRkaibt264pdffhEAxO7duzX6evz4sTA1NZUm23meg4ODmDZtmujevbswNTUVKpVKLFiwQKPNtm3bhLOzszAwMBAODg5CiKKTEJ09e1b4+voKY2Nj4eLiIn788Ufh4OAg5s2bJ7UBik5mpFQqRXR09AvPxZUrV0RYWJioWbOmMDAwEEqlUrRq1UosW7ZM5ObmSu3Onz8vWrduLYyNjYWVlZUYNGiQxiQ8+fn5YurUqaJGjRrC0NBQeHl5aUyAtHz5cuHt7S3MzMyEQqEQbdu21ZgAKT09XQwbNkzY2dkJQ0NDYW9vL0JDQ0VycnKJsZf0OR46dEhqk5SUJNq3by9MTEyEtbW1GD16tMZx/fNcP378WDRr1ky0atVKZGRkFDvBUXGTRIWFhYkuXbq88FwXKnw4G0jT+fwULCwsLCws2ixEVLlVxCREMiGE0EXi+6aJi4tDixYtcP36dY0JaZKSkuDk5IRTp06hYcOGGts4Ojpi5MiRGDlypJajpTdZeno6lEolgDQAipc1JyIiqjT4rZKociv8npuWllZkXpXSqrSTEL3Mli1bYG5uDhcXF1y/fh0jRoxA8+bNpeQzNzcX9+/fx+TJk/HOO+8UST6JiIiIiIiobN7aBPTx48cYP348kpOTYW1tjcDAQMydO1daHxcXh9atW8PV1RU//fSTDiMlIiIiIiKqHHgLLlEF4y24RET0tuK3SqLKrSJuwa20s+ASERERERHRm4UJKBEREREREWkFE1AiIiIiIiLSCiagREREREREpBVMQImIiIiIiEgrmIASERERERGRVry17wEleu0mKAFjXQfx7yIiOX8/ERERUWXGEVAiIiIiIiLSCiagREREREREpBVMQImIiIiIiEgrmIASERERERGRVjABJSIiIiIiIq1gAkpERERERERawQSUiIiIiIiItIIJKBEREREREWkFE1AiIiIiIiLSCiagREREREREpBUGug6AqLJKm5gGhUKh6zCIiIiIiN4YHAElIiIiIiIirWACSkRERERERFrBBJSIiIiIiIi0ggkoERERERERaQUTUCIiIiIiItIKJqBERERERESkFUxAiYiIiIiISCuYgBIREREREZFWMAElIiIiIiIirTDQdQBElZZSqesIiOjfTghdR0BERFShOAL6CmQyGbZu3QoASEpKgkwmg1qt1mlMFWX58uWwt7eHnp4e5s+fX+H9h4eHIyQkpML7/aeAgACMHDnyte+HiIiIiIhe7q1MQF9H8mNvb4+UlBTUr1+/Qvv9p5iYGMhkMshkMujp6aFmzZro168f7t69W2H7SE9PR0REBMaPH4/bt29j8ODBFdZ3aT19+hTh4eHw9PSEgYFBiZ9XbGwsGjZsCLlcDmdnZ8TExGg1TiIiIiIiKr23MgF9HfT19aFSqWBg8PrvalYoFEhJScGff/6JFStWYNeuXejTp0+F9Z+cnIzc3Fx07NgRtra2MDU1rbC+Sys/Px8mJiYYPnw4AgMDi21z8+ZNdOzYEa1bt4ZarcbIkSMxcOBA7NmzR8vREhERERFRaTABxbPbNIcPH45x48bBysoKKpUKU6dO1Whz7do1tGrVCsbGxvDw8MC+ffs01v/zFtz8/HwMGDAAtWvXhomJCdzc3LBgwQKNbQpHYufMmQNbW1tUrVoVQ4cORW5u7gvjlclkUKlUsLOzQ/v27TF8+HDs378fWVlZAICoqCi4u7vD2NgYdevWxffff6+x/fjx4+Hq6gpTU1PUqVMHn3/+ubTPmJgYeHp6AgDq1KkDmUyGpKQkAMCSJUvg5OQEIyMjuLm5Yc2aNVKfY8aMQadOnaTl+fPnQyaTYffu3VKds7MzoqKiXnhshczMzLBkyRIMGjQIKpWq2DZLly5F7dq1MXfuXLi7uyMiIgLdunXDvHnzSux3x44dUCqVWLt2LYD/fQYzZ86EjY0NLC0t8cUXXyAvLw9jx46FlZUVatasiejo6FLFTUREREREJeMkRP9n9erVGDVqFE6cOIHjx48jPDwczZs3R7t27VBQUID3338fNjY2OHHiBNLS0l76XGFBQQFq1qyJH3/8EVWrVsWxY8cwePBg2NraokePHlK7Q4cOwdbWFocOHcL169fRs2dPeHt7Y9CgQaWO3cTEBAUFBcjLy8PatWsxZcoULFq0CD4+PoiPj8egQYNgZmaGsLAwAICFhQViYmJgZ2eHCxcuYNCgQbCwsMC4cePQs2dP2NvbIzAwECdPnoS9vT2qVauGLVu2YMSIEZg/fz4CAwOxfft29OvXDzVr1kTr1q3h7++PqKgo5OfnQ19fH4cPH4a1tTViY2MRHByM27dvIzExEQEBAeX5eIp1/PjxIqOjQUFBJX4269atw8cff4x169ZpJMsHDx5EzZo18euvvyIuLg4DBgzAsWPH0KpVK5w4cQIbN27ERx99hHbt2qFmzZpF+s3OzkZ2dra0nJ6eXjEHSERERERU2Yi3UFhYmOjSpYu07O/vL1q0aKHRpnHjxmL8+PFCCCH27NkjDAwMxO3bt6X1u3btEgDEli1bhBBC3Lx5UwAQ8fHxJe536NCh4oMPPtCIw8HBQeTl5Ul13bt3Fz179iyxj+joaKFUKqXlq1evCldXV+Hr6yuEEMLJyUmsW7dOY5vp06cLPz+/Evv85ptvRKNGjaTl+Ph4AUDcvHlTqmvWrJkYNGiQxnbdu3cXHTp0EEII8fDhQ6GnpydOnTolCgoKhJWVlfjqq69E06ZNhRBC/Oc//xE1atTQOPbnP4MXKamti4uLmDlzpkbdjh07BADx5MkTIcSzz3bEiBFi0aJFQqlUitjY2CJ9Ozg4iPz8fKnOzc1NtGzZUlrOy8sTZmZmYv369cXGFxkZKQAUKWnP5q9kYWFhKX8hIiJ6g6SlpQkAIi0trdx9cAT0/zRo0EBj2dbWVprYJyEhAfb29rCzs5PW+/n5vbTPxYsXY9WqVUhOTkZWVhZycnLg7e2t0aZevXrQ19fX2O+FCxde2G9aWhrMzc1RUFCAp0+fokWLFoiKikJmZiYSExMxYMAAjRHUvLw8KJ97JcjGjRuxcOFCJCYmIiMjA3l5eVAoFC/cZ0JCQpHJiJo3by7dVmxpaQkvLy/ExsbCyMgIRkZGGDx4MCIjI5GRkYHDhw/D39//hft4XX766SfcvXsXcXFxaNy4cZH19erVg57e/+5Gt7Gx0ZhMSl9fH1WrVi1xoqeJEydi1KhR0nJ6ejrs7e0r8AiIiIiIiCoHJqD/x9DQUGNZJpOhoKCg3P1t2LABY8aMwdy5c+Hn5wcLCwt88803OHHixCvv18LCAmfPnoWenh5sbW1hYmICALhz5w4AYMWKFWjatKnGNoVJ7vHjxxEaGopp06YhKCgISqUSGzZswNy5c8t9rIUCAgIQGxsLuVwOf39/WFlZwd3dHUePHsXhw4cxevToV97H81QqlXTMhe7cuQOFQiGdEwDw8fHB2bNnsWrVKvj6+kImk2lsU9xnUJbPRS6XQy6Xv8qhEBERERG9FZiAloK7uztu3bqFlJQU2NraAgB+++23F24TFxeHZs2aYciQIVJdYmJihcSjp6cHZ2fnIvU2Njaws7PDjRs3EBoaWuy2x44dg4ODAyZNmiTV/fHHHy/dp7u7O+Li4qTnSIFnx+jh4SEt+/v7Y9WqVTAwMEBwcDCAZ0np+vXrcfXq1Qp9/hN4Ngq9c+dOjbp9+/YVGZ12cnLC3LlzERAQAH19fSxatKhC4yAiIiIiotJhAloKgYGBcHV1RVhYGL755hukp6drJHDFcXFxwQ8//IA9e/agdu3aWLNmDU6dOoXatWu/1linTZuG4cOHQ6lUIjg4GNnZ2Th9+jQePnyIUaNGwcXFBcnJydiwYQMaN26MHTt2YMuWLS/td+zYsejRowd8fHwQGBiIX375BZs3b8b+/fulNq1atcLjx4+xfft2zJo1C8CzBLRbt26wtbWFq6trmY7l8uXLyMnJwYMHD/D48WNphuHC25g//vhjLFq0COPGjUP//v1x8OBBbNq0CTt27CjSl6urKw4dOoSAgAAYGBhg/vz5ZYqFiIiIiIheHRPQUtDT08OWLVswYMAANGnSBI6Ojli4cKE0ylecjz76CPHx8ejZsydkMhl69eqFIUOGYNeuXa811oEDB8LU1BTffPMNxo4dCzMzM3h6ekozw7733nv49NNPERERgezsbHTs2BGff/55kdfO/FNISAgWLFiAOXPmYMSIEahduzaio6M1RjWrVKkCT09P3LlzB3Xr1gXwLCktKCgo1/OfHTp00Bid9fHxAQAIIQAAtWvXxo4dO/Dpp59iwYIFqFmzJqKiohAUFFRsf25ubjh48KA0EloRtx2/iBJpAF78bC0R0YsIXQdARERUwWSi8Ns8EVWI9PT0/5v0iQkoEb0a/g9NRERvksLvuWlpaS+dxLQkei9vQkRERERERPTqmIASERERERGRVjABJSIiIiIiIq1gAkpERERERERawQSUiIiIiIiItIIJKBEREREREWkFE1AiIiIiIiLSCiagREREREREpBVMQImIiIiIiEgrDHQdAFGlNUEJGOs6CN0RkULXIRARERHRG4YjoERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVBroOgKiySpuYBoVCoeswiIiIiIjeGBwBJSIiIiIiIq1gAkpERERERERawQSUiIiIiIiItIIJKBEREREREWkFE1AiIiIiIiLSCiagREREREREpBVMQImIiIiIiEgrmIASERERERGRVjABJSIiIiIiIq1gAkpERERERERawQT0DSWTybB169YS1yclJUEmk0GtVmstplcxdepUeHt7a32/MTExsLS01Pp+AQBKJSCTsbC8uBARERG9RZiAvoLw8HDIZDLIZDIYGhqidu3aGDduHJ4+farr0Epl6tSpUvwGBgawtrZGq1atMH/+fGRnZ+s6PCxfvhwBAQFQKBSQyWR49OhRkTYPHjxAaGgoFAoFLC0tMWDAAGRkZGg/WCIiIiIieikmoK8oODgYKSkpuHHjBubNm4dly5YhMjJS12GVWr169ZCSkoLk5GQcOnQI3bt3x1dffYVmzZrh8ePHOo3tyZMnCA4OxmeffVZim9DQUFy6dAn79u3D9u3b8euvv2Lw4MFajJKIiIiIiEqLCegrksvlUKlUsLe3R0hICAIDA7Fv3z5pvaOjI+bPn6+xjbe3N6ZOnSotX7t2Da1atYKxsTE8PDw0ti908uRJ+Pj4wNjYGL6+voiPj5fWCSHg7OyMOXPmaGyjVqshk8lw/fr1EuM3MDCASqWCnZ0dPD09MWzYMBw+fBgXL17E119/LbUr7pZgS0tLxMTESMt//vknevXqBSsrK5iZmcHX1xcnTpwodr+JiYmoU6cOIiIiIIQots3IkSMxYcIEvPPOO8WuT0hIwO7duxEVFYWmTZuiRYsW+O6777Bhwwb89ddfxW5z7949+Pr6omvXrsjOzkZsbCxkMhn27NkDHx8fmJiYoE2bNrh79y527doFd3d3KBQK9O7dG0+ePCnxPBIRERER0csxAa1AFy9exLFjx2BkZFTqbQoKCvD+++/DyMgIJ06cwNKlSzF+/HiNNhkZGejUqRM8PDxw5swZTJ06FWPGjJHWy2Qy9O/fH9HR0RrbRUdHo1WrVnB2di7TcdStWxft27fH5s2bS71NRkYG/P39cfv2bWzbtg3nzp3DuHHjUFBQUKTt+fPn0aJFC/Tu3RuLFi2CrJzPwR0/fhyWlpbw9fWV6gIDA6Gnp1ds4nvr1i20bNkS9evXx08//QS5XC6tmzp1KhYtWoRjx47h1q1b6NGjB+bPn49169Zhx44d2Lt3L7777rti48jOzkZ6erpGISIiIiKiogx0HcC/3fbt22Fubo68vDxkZ2dDT08PixYtKvX2+/fvx++//449e/bAzs4OADBz5ky0b99earNu3ToUFBRg5cqVMDY2Rr169fDnn3/ik08+kdqEh4djypQpOHnyJJo0aYLc3FysW7euyKhoadWtWxd79+4tdft169bh3r17OHXqFKysrACg2MT32LFj6NSpEyZNmoTRo0eXK7ZCqampqF69ukadgYEBrKyskJqaqlF/5coVtGvXDl27dsX8+fOLJL1ffvklmjdvDgAYMGAAJk6cKI3SAkC3bt1w6NChIn8cAICvvvoK06ZNe6VjISIiIiJ6G3AE9BW1bt0aarUaJ06cQFhYGPr164cPPvig1NsnJCTA3t5eSj4BwM/Pr0ibBg0awNjYuMQ2dnZ26NixI1atWgUA+OWXX5CdnY3u3buX57AghCjTyKRarYaPj4+UfBYnOTkZ7dq1w5QpU145+SyLrKwstGzZEu+//z4WLFhQ7HE1aNBA+reNjQ1MTU2l5LOw7u7du8X2P3HiRKSlpUnl1q1bFX8QRERERESVABPQV2RmZgZnZ2d4eXlh1apVOHHiBFauXCmt19PTK/KMY25u7muJZeDAgdiwYQOysrIQHR2Nnj17wtTUtFx9JSQkoHbt2tKyTCZ74XGYmJi8tM9q1aqhSZMmWL9+fYXcpqpSqYokhXl5eXjw4AFUKpVUJ5fLERgYiO3bt+P27dvF9mVoaCj9u3BW4+fJZLJibycu7F+hUGgUIiIiIiIqigloBdLT08Nnn32GyZMnIysrC8CzpCslJUVqk56ejps3b0rL7u7uuHXrlkab3377TaNfd3d3nD9/XuP1Lv9sAwAdOnSAmZkZlixZgt27d6N///7lOo7ff/8du3fv1hjJ/edxXLt2TWNSngYNGkCtVuPBgwcl9mtiYoLt27fD2NgYQUFBrzzLrp+fHx49eoQzZ85IdQcPHkRBQQGaNm0q1enp6WHNmjVo1KgRWrduXeIERURERERE9HoxAa1g3bt3h76+PhYvXgwAaNOmDdasWYMjR47gwoULCAsLg76+vtQ+MDAQrq6uCAsLw7lz53DkyBFMmjRJo8/evXtDJpNh0KBBuHz5Mnbu3Fnss536+voIDw/HxIkT4eLiUuQ23eLk5eUhNTUVf/31Fy5cuIDvvvsO/v7+8Pb2xtixY6V2bdq0waJFixAfH4/Tp0/j448/1hgl7NWrF1QqFUJCQhAXF4cbN27g559/xvHjxzX2Z2Zmhh07dsDAwADt27d/4Ts7U1NToVarpVl8L1y4oJHkuru7Izg4GIMGDcLJkycRFxeHiIgIfPjhhxq3NBeem7Vr18LLywtt2rQp8owoERERERG9fkxAK5iBgQEiIiIwe/ZsZGZmYuLEifD390enTp3QsWNHhISEwMnJSWqvp6eHLVu2ICsrC02aNMHAgQMxY8YMjT7Nzc3xyy+/4MKFC/Dx8cGkSZM0XpHyvAEDBiAnJwf9+vUrVbyXLl2Cra0tatWqhYCAAGzatAkTJ07EkSNHYG5uLrWbO3cu7O3t0bJlS/Tu3RtjxozRuL3XyMgIe/fuRfXq1dGhQwd4enpi1qxZGsn288eza9cuCCHQsWNHZGZmFhvb0qVL4ePjg0GDBgEAWrVqBR8fH2zbtk1qs3btWtStWxdt27ZFhw4d0KJFCyxfvrzY/gwMDLB+/XrUq1dPetXK66REGmQQLCwvLjIUKURERESVlUyU9BJG+lc6cuQI2rZti1u3bsHGxkbX4byV0tPToVQqAaQB4POgVHb8rUxERERvosLvuWlpaeWe94SvYakksrOzce/ePUydOhXdu3dn8klERERERG8c3oJbSaxfvx4ODg549OgRZs+eretwiIiIiIiIiuAtuEQVjLfg0qvib2UiIiJ6E1XELbgcASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVBroOgKjSmqAEjF/vLkQk39dBRERERP8eHAElIiIiIiIirWACSkRERERERFrBBJSIiIiIiIi0ggkoERERERERaQUTUCIiIiIiItIKJqBERERERESkFUxAiYiIiIiISCuYgBIREREREZFWMAElIiIiIiIirWACSkRERERERFphoOsAiCqrtIlpUCgUug6DiIiIiOiNwRFQIiIiIiIi0gomoERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFphYGuAyAiIiIiqih5eXnIycnRdRhE/0pGRkYwMHi9KSITUKLXRanUdQSVnxC6joCIiN4QQggkJyfj77//1nUoRP9q1tbWqFWrFmQy2Wvpv8IT0KSkJNSuXRvx8fHw9vau6O61ztHRESNHjsTIkSMrrM+AgAB4e3tj/vz5FdZnRXmTYyuP8PBwPHr0CFu3btV1KERERPQaFSafNWrUgLm5OfT0+KQZUVkUFBQgIyMDt2/fBgA4ODi8lv2UKQENDw/H6tWrn21oYICaNWuie/fu+OKLL2BsbAwAsLe3R0pKCqytrSs+2rdETEwM+vXrBwCQyWSws7NDu3bt8PXXX6N69eo6ju7VlOUPFMOHD0dcXBwuXrwId3d3qNXqIm3Onz+PoUOH4tSpU6hWrRqGDRuGcePGvZ7giYiI6I2Ul5cnJZ8qlUrX4RD9a5mbmwMAbt++jRo1aryW23HL3GNwcDCio6ORm5uLM2fOICwsDDKZDF9//TUAQF9fnz/4FUChUODKlSsoKCjAuXPn0K9fP/z111/Ys2dPufrLzc2FoaFhBUf5+vXv3x8nTpzA+fPni6xLT0/Hu+++i8DAQCxduhQXLlxA//79YWlpicGDB+sgWiIiItKFwmc+C788E1H5Ff4c5eTkvJYEtMz3JsjlcqhUKtjb2yMkJASBgYHYt2+ftD4pKQkymUwarYqNjYVMJsOBAwfg6+sLU1NTNGvWDFeuXNHo98svv0T16tVhYWGBgQMHYsKECS8dIQsICMDw4cMxbtw4WFlZQaVSYerUqRptHj16hIEDB6JatWpQKBRo06YNzp07p9Hml19+QePGjWFsbAxra2t07dq1xH1GRUXB0tISBw4cAABcvHgR7du3h7m5OWxsbNCnTx+NZw8yMzPRt29fmJubw9bWFnPnzn3hMRWSyWRQqVSws7ND+/btMXz4cOzfvx9ZWVnYvXs3WrRoAUtLS1StWhWdOnVCYmKitG3hZ7Bx40b4+/vD2NgYa9euxf3799GrVy/UqFEDpqam8PT0xPr1618Yx44dO6BUKrF27VoAwK1bt9CjRw9YWlrCysoKXbp0QVJSUpFz5O7uDmNjY9StWxfff/+9tK527doAAB8fH8hkMgQEBJS474ULF2Lo0KGoU6dOsevXrl2LnJwcrFq1CvXq1cOHH36I4cOH49tvvy2xz8KR0sI/mEydOhXe3t5YtWoVatWqBXNzcwwZMgT5+fmYPXs2VCoVqlevjhkzZrzwPBEREZHu8bZbolf3un+OXqn3ixcv4tixYzAyMnpp20mTJmHu3Lk4ffo0DAwM0L9/f2nd2rVrMWPGDHz99dc4c+YMatWqhSVLlpQqhtWrV8PMzAwnTpzA7Nmz8cUXX2gkxN27d8fdu3exa9cunDlzBg0bNkTbtm3x4MEDAM8SrK5du6JDhw6Ij4/HgQMH0KRJk2L3NXv2bEyYMAF79+5F27Zt8ejRI7Rp0wY+Pj44ffo0du/ejTt37qBHjx7SNmPHjsXhw4fx3//+F3v37kVsbCzOnj1bqmN7nomJCQoKCpCXl4fMzEyMGjUKp0+fxoEDB6Cnp4euXbuioKBAY5sJEyZgxIgRSEhIQFBQEJ4+fYpGjRphx44duHjxIgYPHow+ffrg5MmTxe5z3bp16NWrF9auXYvQ0FDk5uYiKCgIFhYWOHLkCOLi4mBubo7g4GDpL49r167FlClTMGPGDCQkJGDmzJn4/PPPpVu3C/e1f/9+pKSkYPPmzWU+F4WOHz+OVq1aaVx/QUFBuHLlCh4+fFik/cGDB9GuXTvMmDED48ePl+oTExOxa9cu7N69G+vXr8fKlSvRsWNH/Pnnnzh8+DC+/vprTJ48GSdOnCg2juzsbKSnp2sUIiIiIiIqhiiDsLAwoa+vL8zMzIRcLhcAhJ6envjpp5+kNjdv3hQARHx8vBBCiEOHDgkAYv/+/VKbHTt2CAAiKytLCCFE06ZNxdChQzX21bx5c+Hl5fXCePz9/UWLFi006ho3bizGjx8vhBDiyJEjQqFQiKdPn2q0cXJyEsuWLRNCCOHn5ydCQ0NL3IeDg4OYN2+eGDdunLC1tRUXL16U1k2fPl28++67Gu1v3bolAIgrV66Ix48fCyMjI7Fp0yZp/f3794WJiYkYMWJEifuMjo4WSqVSWr569apwdXUVvr6+xba/d++eACAuXLgghPjfZzB//vwS91GoY8eOYvTo0dKyv7+/GDFihFi0aJFQKpUiNjZWWrdmzRrh5uYmCgoKpLrs7GxhYmIi9uzZI4R4dm7XrVunsY/p06cLPz8/jdgKr4/SiIyMLPZaaNeunRg8eLBG3aVLlwQAcfnyZSHEs2u2S5cuYvPmzcLc3Fxs2LChSN+mpqYiPT1dqgsKChKOjo4iPz9fqnNzcxNfffVVifEBKFLSns3RyvI6CxERkRAiMzNTnD59WmRmZuo6FKJ/vRf9PKWlpT37npuWVu7+y3xTb+vWrbFkyRJkZmZi3rx5MDAwwAcffPDS7Ro0aCD929bWFgBw9+5d1KpVC1euXMGQIUM02jdp0gQHDx4EABw5cgTt27eX1i1btgyhoaFF+i3s++7duwCAc+fOISMjA1WrVtVok5WVJd2yqlarMWjQoBfGPnfuXGRmZuL06dMat4OeO3cOhw4dKvZ5g8TERGRlZSEnJwdNmzaV6q2srODm5vbC/QFAWloazM3NUVBQgKdPn6JFixaIiooCAFy7dg1TpkzBiRMn8Pfff0sjn8nJyahfv77Uh6+vr0af+fn5mDlzJjZt2oTbt28jJycH2dnZMDU11Wj3008/4e7du4iLi0Pjxo01jvf69euwsLDQaP/06VMkJiYiMzMTiYmJGDBggMY5zcvLg1KHryQ5ceIEtm/fjp9++gkhISFF1js6Omock42NDfT19TVuP7CxsZGuq3+aOHEiRo0aJS2np6fD3t6+4g6AiIiIyk027fW8SqI4IpKvByN6mTInoGZmZnB2dgYArFq1Cl5eXli5ciUGDBjwwu2enwCn8J0y/7xltCS+vr4aM6Da2NgU229h34X9ZmRkwNbWFrGxsUX6tLS0BPDs1taXadmyJXbs2IFNmzZhwoQJUn1GRgY6d+4sPU/4PFtbW1y/fv2lfZfEwsICZ8+ehZ6eHmxtbTXi7Ny5MxwcHLBixQrY2dmhoKAA9evXL/LSZTMzM43lb775BgsWLMD8+fPh6ekJMzMzjBw5ssh2Pj4+OHv2LFatWgVfX1/p88rIyECjRo2k50GfV61aNWRkZAAAVqxYoZF0A88mp6poKpUKd+7c0agrXH5+IiwnJydUrVoVq1atQseOHYtcM8VdQy+6rv5JLpdDLpeX+ziIiIjo7Xbr1i1ERkZi9+7d+Pvvv2Fra4uQkBBMmTKlyEAKvdjz765UKBSoX78+pk+fjjZt2ugwqpeLiYnByJEj8ejRI12H8tq90jOgenp6+OyzzzB58mRkZWWVux83NzecOnVKo+75ZRMTEzg7O0vlnyNwJWnYsCFSU1NhYGCgsb2zs7P0mpgGDRpIEwqVpEmTJti1axdmzpyJOXPmaPR/6dIlODo6FunfzMwMTk5OMDQ01Hh28OHDh7h69epLY9fT04OzszPq1KmjkXzev38fV65cweTJk9G2bVu4u7sX+7xjceLi4tClSxf8v//3/+Dl5YU6deoUG4uTkxMOHTqE//73vxg2bJjG8V67dg3Vq1cvcrxKpRI2Njaws7PDjRs3iqwvnHyo8HnN/Pz8UsX8In5+fvj111+Rm5sr1e3btw9ubm6oUqWKVGdtbY2DBw/i+vXr6NGjh0Z7IiIiIl26ceMGfH19ce3aNaxfvx7Xr1/H0qVLceDAAfj5+UnzlujCPwcpgGff4Uo7iKQr0dHRSElJQVxcHKytrdGpUyfcuHGjXH0Vdw7o1bzyFEfdu3eHvr4+Fi9eXO4+hg0bhpUrV2L16tW4du0avvzyS5w/f17jLxjlERgYCD8/P4SEhGDv3r1ISkrCsWPHMGnSJJw+fRoAEBkZifXr1yMyMhIJCQm4cOFCsSOazZo1w86dOzFt2jTMnz8fADB06FA8ePAAvXr1wqlTp5CYmIg9e/agX79+yM/Ph7m5OQYMGICxY8fi4MGDuHjxIsLDw19pZqkqVaqgatWqWL58Oa5fv46DBw9q3P75Ii4uLti3bx+OHTuGhIQEfPTRR0VGEAu5urri0KFD+PnnnzFy5EgAQGhoKKytrdGlSxccOXIEN2/eRGxsLIYPH44///wTADBt2jR89dVXWLhwIa5evYoLFy4gOjpampm2evXqMDExkSZsSktLKzHe69evQ61WIzU1FVlZWVCr1VCr1dIvgt69e8PIyAgDBgzApUuXsHHjRixYsKDY81G9enUcPHgQv//+O3r16oW8vLxSnTMiIiKi12no0KEwMjLC3r174e/vj1q1aqF9+/bYv38/bt++jUmTJklts7OzMX78eNjb20Mul8PZ2RkrV66U1l+6dAmdOnWCQqGAhYUFWrZsKT12FhAQIH2nKxQSEoLw8HBp2dHREdOnT0ffvn2hUCgwePBgxMTEwNLSEtu2bYOHhwfkcjmSk5ORnZ2NMWPGoEaNGjAzM0PTpk017jos3G7Pnj1wd3eXJq5MSUnRiKHwbQZyuRy2traIiIiQ1pXmbRbFsbS0hEqlQv369bFkyRJkZWVJk5S+7A0WAQEBiIiIwMiRI2FtbY2goKCXnlvgxW+BKHxDxebNm9G6dWuYmprCy8sLx48fB/DsrSH9+vVDWloaZDIZZDKZ9GaPNWvWwNfXFxYWFlCpVOjdu3eRx8K2bdsGFxcXGBsbo3Xr1li9ejVkMpnGaOrRo0fRsmVLmJiYwN7eHsOHD0dmZuZLz+Xr8MoJqIGBASIiIjB79uxyH0RoaCgmTpyIMWPGoGHDhrh58ybCw8NhbGz8SrHJZDLs3LkTrVq1Qr9+/eDq6ooPP/wQf/zxh3Qbb0BAAH788Uds27YN3t7eaNOmTYmzwrZo0QI7duzA5MmT8d1338HOzg5xcXHIz8/Hu+++C09PT4wcORKWlpZSkvnNN9+gZcuW6Ny5MwIDA9GiRQs0atSo3Mekp6eHDRs24MyZM6hfvz4+/fRTfPPNN6XadvLkyWjYsCGCgoIQEBAAlUpV7DORhdzc3HDw4EGsX78eo0ePhqmpKX799VfUqlUL77//Ptzd3TFgwAA8ffoUCoUCADBw4EBERUUhOjoanp6e8Pf3R0xMjDQCamBggIULF2LZsmWws7NDly5dStz/wIED4ePjg2XLluHq1avw8fGBj48P/vrrLwCAUqnE3r17cfPmTTRq1AijR4/GlClTSnwHqEqlwsGDB3HhwgWEhoZWyCjsiyiRBhlEpShvwHRDxRciIqJ/sQcPHmDPnj0YMmRIkcfCVCoVQkNDsXHjRoj/+z+vb9++WL9+PRYuXIiEhAQsW7ZMmovk9u3baNWqFeRyOQ4ePIgzZ86gf//+Zf6j+5w5c+Dl5YX4+Hh8/vnnAIAnT57g66+/RlRUFC5duoTq1asjIiICx48fx4YNG3D+/Hl0794dwcHBuHbtmtTXkydPMGfOHKxZswa//vorkpOTMWbMGGn9kiVLMHToUAwePBgXLlzAtm3bpEf9gJe/zaI0Cs9rTk5Oqd5gATx7y4aRkRHi4uKwdOnSl57bl70FotCkSZMwZswYqNVquLq6SoMizZo1w/z586FQKJCSkoKUlBTpPOXm5mL69Ok4d+4ctm7diqSkJI0/Gty8eRPdunVDSEgIzp07h48++kjjjxbAs7lpgoOD8cEHH+D8+fPYuHEjjh49qpHsa9UrTJD0WgUGBor/9//+n67DICqzwtnBgLQ3IEPjZLNERFT5vWjWTkyF1kpZ/fbbbwKA2LJlS7Hrv/32WwFA3LlzR1y5ckUAEPv27Su27cSJE0Xt2rVFTk5OsesL33TwvC5duoiwsDBp2cHBQYSEhGi0iY6OFgCEWq2W6v744w+hr68vbt++rdG2bdu2YuLEiRrbXb9+XVq/ePFiYWNjIy3b2dmJSZMmFRtvad5mUZznz2dmZqYYMmSI0NfXF+fOnXvpGyyEeHaefHx8NNq87NyW9i0QUVFR0vrCNzckJCQIIYq+BaMkp06dEgDE48ePhRBCjB8/XtSvX1+jzaRJkwQA8fDhQyGEEAMGDCjy5ogjR44IPT096a0kz3vjZsF9HZ48eYKlS5ciKCgI+vr6WL9+Pfbv36/xPk8iIiIiospIlOKuHrVaDX19ffj7+5e4vmXLlkUmUiyrf75FAXg2h8fzb564cOEC8vPz4erqqtEuOztbY9IkU1NTODk5ScvPv63i7t27+Ouvv9C2bdti4yjN2yxK0qtXL+jr6yMrKwvVqlXDypUr0aBBA0yfPv2Fb7AoPJ5/3q34onNblrdAlPRWkLp165Z4LGfOnMHUqVNx7tw5PHz4UOPtFx4eHrhy5YrGWyuAZ/PXPO/cuXM4f/68xkSiQggUFBTg5s2bcHd3L3H/r8MbkYAW3io7Y8YMPH36FG5ubvj5558RGBio69CIiIiIiF4LZ2dnyGQyJCQkoGvXrkXWJyQkoEqVKqhWrdpL39zwsvV6enpFEt3iJmb851sUCvt+fm6WjIwM6Ovr48yZM0XedPB8clfcWwUKY3hZvKV5m0VJ5s2bh8DAQCiVSlSrVk2jzxe9waLQP8/Bi2Ity1sgyvpWkMzMTAQFBSEoKAhr165FtWrVkJycjKCgoDJNjpSRkYGPPvoIw4cPL7KuVq1ape6norwRCaiJiQn279+v6zCIiIiIiLSmatWqaNeuHb7//nt8+umnGolOamoq1q5di759+0Imk8HT0xMFBQU4fPhwsYM0DRo0wOrVq5Gbm1vsSF21atU0JgDKz8/HxYsX0bp16zLH7ePjg/z8fNy9exctW7Ys8/bAs1cOOjo64sCBA8XG8PzbLBwdHcvUt0ql0niW9Pk+f/75Zzg6OsLAoPRp0IvO7fNvgQgNDS1TnM8zMjIqMj/J77//jvv372PWrFnSO+YLJ1It5Obmhp07d2rU/fPtIg0bNsTly5eLPSe68MqTEBERERERUfksWrQI2dnZCAoKwq+//opbt25h9+7daNeuHWrUqIEZM2YAeDZDbVhYGPr374+tW7dKbyPYtGkTACAiIgLp6en48MMPcfr0aVy7dg1r1qzBlStXAABt2rTBjh07sGPHDvz+++/45JNPyv3OSVdXV4SGhqJv377YvHkzbt68iZMnT+Krr77Cjh07St3P1KlTMXfuXCxcuBDXrl3D2bNn8d133wEo3dssyuplb7AoycvO7cveAlEajo6OyMjIwIEDB/D333/jyZMnqFWrFoyMjPDdd9/hxo0b2LZtG6ZPn66x3UcffYTff/8d48ePx9WrV7Fp0ybExMQA+N8o6/jx43Hs2DFERERArVbj2rVr+O9//8tJiIgqC05CREREpF0vmjTl3yApKUmEhYUJGxsbYWhoKOzt7cWwYcPE33//rdEuKytLfPrpp8LW1lYYGRkJZ2dnsWrVKmn9uXPnxLvvvitMTU2FhYWFaNmypUhMTBRCCJGTkyM++eQTYWVlJapXry6++uqrYichmjdvnsY+S5ocJycnR0yZMkU4OjoKQ0NDYWtrK7p27SrOnz9f4nZbtmwR/0w/li5dKtzc3KQ+hg0bJq1LT08Xw4YNE3Z2dtJ5CQ0NFcnJySWeS7xgUichhLh69aro2rWrsLS0FCYmJqJu3bpi5MiRoqCgQAhR/GRNQrz43AohxNq1a4W3t7cwMjISVapUEa1atRKbN28WQvxvEqL4+Hip/cOHDwUAcejQIanu448/FlWrVhUARGRkpBBCiHXr1glHR0chl8uFn5+f2LZtW5G+/vvf/wpnZ2chl8tFQECAWLJkiQCgMcHQyZMnRbt27YS5ubkwMzMTDRo0EDNmzCj2HL3uSYhkQvBdBkQVKT09/f8eOk8DoNB1OBWCvyWIiOhN9uTJEyQkJMDd3R2mpqa6DodIp2bMmIGlS5fi1q1b5dr+RT9Phd9z09LSpNcwltUb8QwoERERERERld3333+Pxo0bo2rVqoiLi8M333yju9trS4EJKBERERER0b/UtWvX8OWXX+LBgweoVasWRo8ejYkTJ+o6rBIxASUiIiIiIvqXmjdvHubNm6frMEqNCSjR6zJBCRi/vu5FJB/MJCIiIqJ/F76GhYiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVTECJiIiIiIhIKzgLLhERERFVWjKZ9vYlOEE90UtxBJSIiIiISEfCw8Mhk8mKlOvXr+PXX39F586dYWdnB5lMhq1bt5aqz3PnzuG9995D9erVYWxsDEdHR/Ts2RN37959vQdDVApMQImIiIiIdCg4OBgpKSkapXbt2sjMzISXlxcWL15c6r7u3buHtm3bwsrKCnv27EFCQgKio6NhZ2eHzMzM13YMubm5r61vqlyYgBIRERER6ZBcLodKpdIo+vr6aN++Pb788kt07dq11H3FxcUhLS0NUVFR8PHxQe3atdG6dWvMmzcPtWvXltpdunQJnTp1gkKhgIWFBVq2bInExEQAQEFBAb744gvUrFkTcrkc3t7e2L17t7RtUlISZDIZNm7cCH9/fxgbG2Pt2rUAgKioKLi7u8PY2Bh169bF999/X0FniSoLPgNK9JqkTUyDQqHQdRhERET0FlGpVMjLy8OWLVvQrVs3yIp5CPb27dto1aoVAgICcPDgQSgUCsTFxSEvLw8AsGDBAsydOxfLli2Dj48PVq1ahffeew+XLl2Ci4uL1M+ECRMwd+5c+Pj4SEnolClTsGjRIvj4+CA+Ph6DBg2CmZkZwsLCtHYO6M3GBJSIiIiISIe2b98Oc3Nzabl9+/b48ccfy9XXO++8g88++wy9e/fGxx9/jCZNmqBNmzbo27cvbGxsAACLFy+GUqnEhg0bYGhoCABwdXWV+pgzZw7Gjx+PDz/8EADw9ddf49ChQ5g/f77G7cAjR47E+++/Ly1HRkZi7ty5Ul3t2rVx+fJlLFu2jAkoSXgLLhERERGRDrVu3RpqtVoqCxcuLNV2M2fOhLm5uVSSk5MBADNmzEBqaiqWLl2KevXqYenSpahbty4uXLgAAFCr1WjZsqWUfD4vPT0df/31F5o3b65R37x5cyQkJGjU+fr6Sv/OzMxEYmIiBgwYoBHTl19+Kd3aSwRwBJSIiIiISKfMzMzg7Oxc5u0+/vhj9OjRQ1q2s7OT/l21alV0794d3bt3x8yZM+Hj44M5c+Zg9erVMDExqbC4C2VkZAAAVqxYgaZNm2q009fXr5D9UeXABJSIiIiI6F/IysoKVlZWL21nZGQEJycnaRbcBg0aYPXq1cjNzS0yCqpQKGBnZ4e4uDj4+/tL9XFxcWjSpEmJ+7CxsYGdnR1u3LiB0NDQch4RvQ2YgBIRERERvYEyMjJw/fp1afnmzZtQq9WwsrJCrVq1it1m+/bt2LBhAz788EO4urpCCIFffvkFO3fuRHR0NAAgIiIC3333HT788ENMnDgRSqUSv/32G5o0aQI3NzeMHTsWkZGRcHJygre3N6Kjo6FWq6WZbksybdo0DB8+HEqlEsHBwcjOzsbp06fx8OFDjBo1quJODP2rMQElIiIiokpLCF1HUH6nT59G69atpeXCJC4sLAwxMTHFbuPh4QFTU1OMHj0at27dglwuh4uLC6KiotCnTx8Az27PPXjwIMaOHQt/f3/o6+vD29tbeu5z+PDhSEtLw+jRo3H37l14eHhg27ZtGjPgFmfgwIEwNTXFN998g7Fjx8LMzAyenp4YOXLkq58MqjRkQvybfyyJ3jzp6elQKpVIS+NrWIiIiLThyZMnSEhIgLu7O0xNTXUdDtG/2ot+niriey5nwSUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtYAJKRERERJWXTKa9QuV2//59VK9eHUlJSboOpdyWLl2Kzp076zqMNx4TUCIiIiIiHQkPD4dMJitSrl+/DgD49ddf0blzZ9jZ2UEmk2Hr1q2l6vfcuXN47733UL16dRgbG8PR0RE9e/bE3bt3X+PRlN+MGTPQpUsXODo6SnVbtmzBO++8A6VSCQsLC9SrVw8jR4587bFMnToV3t7eZd6uf//+OHv2LI4cOVLxQVUiTECJiIiIiHQoODgYKSkpGqV27doAgMzMTHh5eWHx4sWl7u/evXto27YtrKyssGfPHiQkJCA6Ohp2dnbIzMx8XYeB3Nzccm335MkTrFy5EgMGDJDqDhw4gJ49e+KDDz7AyZMncebMGcyYMaPc+9AGIyMj9O7dGwsXLtR1KG80JqBERERERDokl8uhUqk0ir6+PgCgffv2+PLLL9G1a9dS9xcXF4e0tDRERUXBx8cHtWvXRuvWrTFv3jwpsQWAS5cuoVOnTlAoFLCwsEDLli2RmJgIACgoKMAXX3yBmjVrQi6Xw9vbG7t375a2TUpKgkwmw8aNG+Hv7w9jY2OsXbsWABAVFQV3d3cYGxujbt26+P77718Y786dOyGXy/HOO+9Idb/88guaN2+OsWPHws3NDa6urggJCdFIxAtHKletWoVatWrB3NwcQ4YMQX5+PmbPng2VSoXq1atjxowZGvtLTk5Gly5dYG5uDoVCgR49euDOnTsAgJiYGEybNg3nzp2TRqNjYmIAAI8ePcLAgQNRrVo1KBQKtGnTBufOndPou3Pnzti2bRuysrJK+3G9dZiAEhERERFVIiqVCnl5ediyZQuEEMW2uX37Nlq1agW5XI6DBw/izJkz6N+/P/Ly8gAACxYswNy5czFnzhycP38eQUFBeO+993Dt2jWNfiZMmIARI0YgISEBQUFBWLt2LaZMmYIZM2YgISEBM2fOxOeff47Vq1eXGO+RI0fQqFGjIsdw6dIlXLx48YXHmpiYiF27dmH37t1Yv349Vq5ciY4dO+LPP//E4cOH8fXXX2Py5Mk4ceIEgGeJdZcuXfDgwQMcPnwY+/btw40bN9CzZ08AQM+ePTF69GjUq1dPGo0uXNe9e3fcvXsXu3btwpkzZ9CwYUO0bdsWDx48kOLx9fVFXl6etD8qhiCiCpWWliYAiLS0NF2HQkRE9FbIzMwUp0+fFpmZmUVXAtor5RAWFib09fWFmZmZVLp161ZsWwBiy5Ytper3s88+EwYGBsLKykoEBweL2bNni9TUVGn9xIkTRe3atUVOTk6x29vZ2YkZM2Zo1DVu3FgMGTJECCHEzZs3BQAxf/58jTZOTk5i3bp1GnXTp08Xfn5+JcbapUsX0b9/f426jIwM0aFDBwFAODg4iJ49e4qVK1eKp0+fSm0iIyOFqampSE9Pl+qCgoKEo6OjyM/Pl+rc3NzEV199JYQQYu/evUJfX18kJydL6y9duiQAiJMnT0r9enl5acRz5MgRoVAoNPZfeLzLli3TqKtSpYqIiYkp8XjfdC/6eaqI77kcASUiIiIi0qHWrVtDrVZLpSzPEM6cORPm5uZSSU5OBvBsUp/U1FQsXboU9erVw9KlS1G3bl1cuHABAKBWq9GyZUsYGhoW6TM9PR1//fUXmjdvrlHfvHlzJCQkaNT5+vpK/87MzERiYiIGDBigEdOXX34p3dpbnKysLBgbG2vUmZmZYceOHbh+/TomT54Mc3NzjB49Gk2aNMGTJ0+kdo6OjrCwsJCWbWxs4OHhAT09PY26wsmXEhISYG9vD3t7e2m9h4cHLC0tixzb886dO4eMjAxUrVpV49hu3rxZ5NhMTEw0YiRNBroOgIiIiIjobWZmZgZnZ+dybfvxxx+jR48e0rKdnZ3076pVq6J79+7o3r07Zs6cCR8fH8yZMwerV6+GiYnJK8cNPIu9UEZGBgBgxYoVaNq0qUa7wmdai2NtbY2HDx8Wu87JyQlOTk4YOHAgJk2aBFdXV2zcuBH9+vUDgCIJtEwmK7auoKCg9AdVjIyMDNja2iI2NrbIOktLS43lBw8eoFq1aq+0v8qMCSgRERER0b+UlZUVrKysXtrOyMgITk5O0iy4DRo0wOrVq5Gbm1skYVMoFLCzs0NcXBz8/f2l+ri4ODRp0qTEfdjY2MDOzg43btxAaGhoqY/Bx8cH//nPf17aztHREaampq80k6+7uztu3bqFW7duSaOgly9fxqNHj+Dh4QHg2bnKz8/X2K5hw4ZITU2FgYGBxqti/ikxMRFPnz6Fj49PuWOs7JiAEhERERG9oTIyMqR3ggLAzZs3oVarYWVlhVq1ahW7zfbt27FhwwZ8+OGHcHV1hRACv/zyC3bu3Ino6GgAQEREBL777jt8+OGHmDhxIpRKJX777Tc0adIEbm5uGDt2LCIjI+Hk5ARvb29ER0dDrVZLM92WZNq0aRg+fDiUSiWCg4ORnZ2N06dP4+HDhxg1alSx2wQFBWHixIl4+PAhqlSpAuDZDLdPnjxBhw4d4ODggEePHmHhwoXIzc1Fu3btynMqAQCBgYHw9PREaGgo5s+fj7y8PAwZMgT+/v7S7cSOjo7Sea5ZsyYsLCwQGBgIPz8/hISEYPbs2XB1dcVff/2FHTt2oGvXrtK2R44cQZ06deDk5FTuGCs7PgNKRERERJWXNqcheg1Onz4NHx8faURt1KhR8PHxwZQpU0rcxsPDA6amphg9ejS8vb3xzjvvYNOmTYiKikKfPn0APLs99+DBg8jIyIC/vz8aNWqEFStWSKOhw4cPx6hRozB69Gh4enpi9+7d2LZtG1xcXF4Y78CBAxEVFYXo6Gh4enrC398fMTExGq9/+SdPT080bNgQmzZtkur8/f1x48YN9O3bF3Xr1kX79u2RmpqKvXv3ws3NrdTn759kMhn++9//okqVKmjVqhUCAwNRp04dbNy4UWrzwQcfIDg4GK1bt0a1atWwfv16yGQy7Ny5E61atUK/fv3g6uqKDz/8EH/88QdsbGykbdevX49BgwaVO763gUyI1/TTQvSWSk9Ph1KpRFpaGhQKha7DISIiqvSePHmChIQEuLu7w9TUVNfhUDns2LEDY8eOxcWLFzUmEPo3uXTpEtq0aYOrV69CqVTqOpxye9HPU0V8z+UtuEREREREpFMdO3bEtWvXcPv2bY0Zav9NUlJS8MMPP/yrk09tYAJKREREREQ6N3LkSF2H8EoCAwN1HcK/wr9zfJuIiIiIiIj+dZiAEhERERERkVYwASUiIiKiSqGgoEDXIRD96xX+HMlkstfSP58BJSIiIqJ/NWNjY+jp6eHmzZuoUaMG5HL5a/vyTFRZCSGQnZ2N27dvQ09PD3K5/LXshwkoEREREf2r6enpwcPDA0lJSbh586auwyH6VzM3N4erq+trex0OE1AiIiIi+teTy+VwdXVFbm4u8vLydB0O0b+SgYEBDA0NX+sdBExAiYiIiKhSkMlkMDIygpGRka5DIaIScBIiIiIiIiIi0gomoERERERERKQVTECJiIiIiIhIK/gMKFEFE0IAANLT03UcCRERERFRxSn8flv4fbc8mIASVbD79+8DAOzt7XUcCRERERFRxXv8+DGUSmW5tmUCSlTBrKysAADJycnl/sGkt0N6ejrs7e1x69YtKBQKXYdDbzBeK1QavE6otHitUGkUd50IIfD48WPY2dmVu18moEQVrPClvUqlkr/UqVQUCgWvFSoVXitUGrxOqLR4rVBp/PM6edUBFk5CRERERERERFrBBJSIiIiIiIi0ggkoUQWTy+WIjIyEXC7XdSj0huO1QqXFa4VKg9cJlRavFSqN13WdyMSrzKFLREREREREVEocASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoETlsHjxYjg6OsLY2BhNmzbFyZMnX9j+xx9/RN26dWFsbAxPT0/s3LlTS5GSrpXlWlmxYgVatmyJKlWqoEqVKggMDHzptUWVR1l/rxTasGEDZDIZQkJCXm+A9EYo63Xy6NEjDB06FLa2tpDL5XB1deX/QW+Jsl4r8+fPh5ubG0xMTGBvb49PP/0UT58+1VK0pAu//vorOnfuDDs7O8hkMmzduvWl28TGxqJhw4aQy+VwdnZGTExMmffLBJSojDZu3IhRo0YhMjISZ8+ehZeXF4KCgnD37t1i2x87dgy9evXCgAEDEB8fj5CQEISEhODixYtajpy0razXSmxsLHr16oVDhw7h+PHjsLe3x7vvvovbt29rOXLStrJeK4WSkpIwZswYtGzZUkuRki6V9TrJyclBu3btkJSUhJ9++glXrlzBihUrUKNGDS1HTtpW1mtl3bp1mDBhAiIjI5GQkICVK1di48aN+Oyzz7QcOWlTZmYmvLy8sHjx4lK1v3nzJjp27IjWrVtDrVZj5MiRGDhwIPbs2VO2HQsiKpMmTZqIoUOHSsv5+fnCzs5OfPXVV8W279Gjh+jYsaNGXdOmTcVHH330WuMk3SvrtfJPeXl5wsLCQqxevfp1hUhviPJcK3l5eaJZs2YiKipKhIWFiS5dumghUtKlsl4nS5YsEXXq1BE5OTnaCpHeEGW9VoYOHSratGmjUTdq1CjRvHnz1xonvTkAiC1btrywzbhx40S9evU06nr27CmCgoLKtC+OgBKVQU5ODs6cOYPAwECpTk9PD4GBgTh+/Hix2xw/flyjPQAEBQWV2J4qh/JcK//05MkT5ObmwsrK6nWFSW+A8l4rX3zxBapXr44BAwZoI0zSsfJcJ9u2bYOfnx+GDh0KGxsb1K9fHzNnzkR+fr62wiYdKM+10qxZM5w5c0a6TffGjRvYuXMnOnTooJWY6d+hor7TGlRkUESV3d9//438/HzY2Nho1NvY2OD3338vdpvU1NRi26empr62OEn3ynOt/NP48eNhZ2dX5Jc9VS7luVaOHj2KlStXQq1WayFCehOU5zq5ceMGDh48iNDQUOzcuRPXr1/HkCFDkJubi8jISG2ETTpQnmuld+/e+Pvvv9GiRQsIIZCXl4ePP/6Yt+CShpK+06anpyMrKwsmJial6ocjoEREb6BZs2Zhw4YN2LJlC4yNjXUdDr1BHj9+jD59+mDFihWwtrbWdTj0BisoKED16tWxfPlyNGrUCD179sSkSZOwdOlSXYdGb5jY2FjMnDkT33//Pc6ePYvNmzdjx44dmD59uq5Do0qII6BEZWBtbQ19fX3cuXNHo/7OnTtQqVTFbqNSqcrUniqH8lwrhebMmYNZs2Zh//79aNCgwesMk94AZb1WEhMTkZSUhM6dO0t1BQUFAAADAwNcuXIFTk5Orzdo0rry/E6xtbWFoaEh9PX1pTp3d3ekpqYiJycHRkZGrzVm0o3yXCuff/45+vTpg4EDBwIAPD09kZmZicGDB2PSpEnQ0+OYFZX8nVahUJR69BPgCChRmRgZGaFRo0Y4cOCAVFdQUIADBw7Az8+v2G38/Pw02gPAvn37SmxPlUN5rhUAmD17NqZPn47du3fD19dXG6GSjpX1Wqlbty4uXLgAtVotlffee0+aldDe3l6b4ZOWlOd3SvPmzXH9+nXpDxQAcPXqVdja2jL5rMTKc608efKkSJJZ+IeLZ/PTEFXgd9qyzY9ERBs2bBByuVzExMSIy5cvi8GDBwtLS0uRmpoqhBCiT58+YsKECVL7uLg4YWBgIObMmSMSEhJEZGSkMDQ0FBcuXNDVIZCWlPVamTVrljAyMhI//fSTSElJkcrjx491dQikJWW9Vv6Js+C+Hcp6nSQnJwsLCwsREREhrly5IrZv3y6qV68uvvzyS10dAmlJWa+VyMhIYWFhIdavXy9u3Lgh9u7dK5ycnESPHj10dQikBY8fPxbx8fEiPj5eABDffvutiI+PF3/88YcQQogJEyaIPn36SO1v3LghTE1NxdixY0VCQoJYvHix0NfXF7t37y7TfpmAEpXDd999J2rVqiWMjIxEkyZNxG+//Sat8/f3F2FhYRrtN236/+3bMYqDYBCAUbcxuUQQFNKkSWeZo9h7idjkHPbbW9t5HQ8QYbZaWMg2Fjsp9j2wFKcY5P8QP+N8PkdZlnG5XGKapuSJeZc9u1JVVRRF8XLd7/f8wUm3973ykwD9P/buybIs0bZtHA6HqOs6Ho9HbNuWPDXvsGdXns9nDMMQTdPE8XiM0+kUfd/Huq75g5Nmnudfzx3fu9F1Xdxut5d7rtdrlGUZdV3HOI67n/sR4bs6AAAAf88/oAAAAKQQoAAAAKQQoAAAAKQQoAAAAKQQoAAAAKQQoAAAAKQQoAAAAKQQoAAAAKQQoAAAAKQQoAAAAKQQoAAAAKT4ApEg2/mKCMggAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Labels | \n",
" Precision | \n",
" Precision (Smote) | \n",
" Recall | \n",
" Recall (Smote) | \n",
" F1 | \n",
" F1 (Smote) | \n",
" Occurrence Count | \n",
" Percentage | \n",
"
\n",
" \n",
" \n",
" \n",
" 9 | \n",
" Mute Swan 10km | \n",
" 0.951613 | \n",
" 0.950617 | \n",
" 0.944000 | \n",
" 0.924000 | \n",
" 0.947791 | \n",
" 0.937120 | \n",
" 2007 | \n",
" 0.751123 | \n",
"
\n",
" \n",
" 10 | \n",
" Pheasant 10km | \n",
" 0.947034 | \n",
" 0.962306 | \n",
" 0.929314 | \n",
" 0.902287 | \n",
" 0.938090 | \n",
" 0.931330 | \n",
" 1918 | \n",
" 0.717814 | \n",
"
\n",
" \n",
" 1 | \n",
" Canada Goose 10km | \n",
" 0.952484 | \n",
" 0.958333 | \n",
" 0.964989 | \n",
" 0.956236 | \n",
" 0.958696 | \n",
" 0.957284 | \n",
" 1789 | \n",
" 0.669536 | \n",
"
\n",
" \n",
" 16 | \n",
" Rock Dove 10km | \n",
" 0.898345 | \n",
" 0.909091 | \n",
" 0.935961 | \n",
" 0.886700 | \n",
" 0.916767 | \n",
" 0.897756 | \n",
" 1620 | \n",
" 0.606287 | \n",
"
\n",
" \n",
" 19 | \n",
" Wigeon 10km | \n",
" 0.775956 | \n",
" 0.770492 | \n",
" 0.956229 | \n",
" 0.949495 | \n",
" 0.856712 | \n",
" 0.850679 | \n",
" 1267 | \n",
" 0.474177 | \n",
"
\n",
" \n",
" 14 | \n",
" Red-legged Partridge 10km | \n",
" 0.874233 | \n",
" 0.869697 | \n",
" 0.907643 | \n",
" 0.914013 | \n",
" 0.890625 | \n",
" 0.891304 | \n",
" 1208 | \n",
" 0.452096 | \n",
"
\n",
" \n",
" 7 | \n",
" Little Owl 10km | \n",
" 0.869416 | \n",
" 0.895105 | \n",
" 0.926740 | \n",
" 0.937729 | \n",
" 0.897163 | \n",
" 0.915921 | \n",
" 1077 | \n",
" 0.403069 | \n",
"
\n",
" \n",
" 5 | \n",
" Grey Partridge 10km | \n",
" 0.832090 | \n",
" 0.836431 | \n",
" 0.910204 | \n",
" 0.918367 | \n",
" 0.869396 | \n",
" 0.875486 | \n",
" 1002 | \n",
" 0.375000 | \n",
"
\n",
" \n",
" 3 | \n",
" Gadwall 10km | \n",
" 0.774648 | \n",
" 0.744681 | \n",
" 0.785714 | \n",
" 0.833333 | \n",
" 0.780142 | \n",
" 0.786517 | \n",
" 830 | \n",
" 0.310629 | \n",
"
\n",
" \n",
" 13 | \n",
" Pochard 10km | \n",
" 0.763158 | \n",
" 0.703196 | \n",
" 0.779570 | \n",
" 0.827957 | \n",
" 0.771277 | \n",
" 0.760494 | \n",
" 738 | \n",
" 0.276198 | \n",
"
\n",
" \n",
" 11 | \n",
" Pink-footed Goose 10km | \n",
" 0.693122 | \n",
" 0.673367 | \n",
" 0.689474 | \n",
" 0.705263 | \n",
" 0.691293 | \n",
" 0.688946 | \n",
" 730 | \n",
" 0.273204 | \n",
"
\n",
" \n",
" 18 | \n",
" Whooper Swan 10km | \n",
" 0.643836 | \n",
" 0.614458 | \n",
" 0.528090 | \n",
" 0.573034 | \n",
" 0.580247 | \n",
" 0.593023 | \n",
" 659 | \n",
" 0.246632 | \n",
"
\n",
" \n",
" 12 | \n",
" Pintail 10km | \n",
" 0.645833 | \n",
" 0.623377 | \n",
" 0.439716 | \n",
" 0.680851 | \n",
" 0.523207 | \n",
" 0.650847 | \n",
" 513 | \n",
" 0.191991 | \n",
"
\n",
" \n",
" 8 | \n",
" Mandarin Duck 10km | \n",
" 0.738806 | \n",
" 0.719008 | \n",
" 0.785714 | \n",
" 0.690476 | \n",
" 0.761538 | \n",
" 0.704453 | \n",
" 478 | \n",
" 0.178892 | \n",
"
\n",
" \n",
" 0 | \n",
" Barnacle Goose 10km | \n",
" 0.448819 | \n",
" 0.428571 | \n",
" 0.508929 | \n",
" 0.535714 | \n",
" 0.476987 | \n",
" 0.476190 | \n",
" 466 | \n",
" 0.174401 | \n",
"
\n",
" \n",
" 4 | \n",
" Goshawk 10km | \n",
" 0.556452 | \n",
" 0.539823 | \n",
" 0.669903 | \n",
" 0.592233 | \n",
" 0.607930 | \n",
" 0.564815 | \n",
" 446 | \n",
" 0.166916 | \n",
"
\n",
" \n",
" 2 | \n",
" Egyptian Goose 10km | \n",
" 0.611765 | \n",
" 0.558140 | \n",
" 0.684211 | \n",
" 0.631579 | \n",
" 0.645963 | \n",
" 0.592593 | \n",
" 300 | \n",
" 0.112275 | \n",
"
\n",
" \n",
" 6 | \n",
" Indian Peafowl 10km | \n",
" 0.536585 | \n",
" 0.500000 | \n",
" 0.314286 | \n",
" 0.328571 | \n",
" 0.396396 | \n",
" 0.396552 | \n",
" 247 | \n",
" 0.092440 | \n",
"
\n",
" \n",
" 17 | \n",
" Ruddy Duck 10km | \n",
" 0.187500 | \n",
" 0.176471 | \n",
" 0.230769 | \n",
" 0.230769 | \n",
" 0.206897 | \n",
" 0.200000 | \n",
" 97 | \n",
" 0.036302 | \n",
"
\n",
" \n",
" 15 | \n",
" Ring-necked Parakeet 10km | \n",
" 0.333333 | \n",
" 0.285714 | \n",
" 0.041667 | \n",
" 0.083333 | \n",
" 0.074074 | \n",
" 0.129032 | \n",
" 96 | \n",
" 0.035928 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Labels Precision Precision (Smote) Recall \\\n",
"9 Mute Swan 10km 0.951613 0.950617 0.944000 \n",
"10 Pheasant 10km 0.947034 0.962306 0.929314 \n",
"1 Canada Goose 10km 0.952484 0.958333 0.964989 \n",
"16 Rock Dove 10km 0.898345 0.909091 0.935961 \n",
"19 Wigeon 10km 0.775956 0.770492 0.956229 \n",
"14 Red-legged Partridge 10km 0.874233 0.869697 0.907643 \n",
"7 Little Owl 10km 0.869416 0.895105 0.926740 \n",
"5 Grey Partridge 10km 0.832090 0.836431 0.910204 \n",
"3 Gadwall 10km 0.774648 0.744681 0.785714 \n",
"13 Pochard 10km 0.763158 0.703196 0.779570 \n",
"11 Pink-footed Goose 10km 0.693122 0.673367 0.689474 \n",
"18 Whooper Swan 10km 0.643836 0.614458 0.528090 \n",
"12 Pintail 10km 0.645833 0.623377 0.439716 \n",
"8 Mandarin Duck 10km 0.738806 0.719008 0.785714 \n",
"0 Barnacle Goose 10km 0.448819 0.428571 0.508929 \n",
"4 Goshawk 10km 0.556452 0.539823 0.669903 \n",
"2 Egyptian Goose 10km 0.611765 0.558140 0.684211 \n",
"6 Indian Peafowl 10km 0.536585 0.500000 0.314286 \n",
"17 Ruddy Duck 10km 0.187500 0.176471 0.230769 \n",
"15 Ring-necked Parakeet 10km 0.333333 0.285714 0.041667 \n",
"\n",
" Recall (Smote) F1 F1 (Smote) Occurrence Count Percentage \n",
"9 0.924000 0.947791 0.937120 2007 0.751123 \n",
"10 0.902287 0.938090 0.931330 1918 0.717814 \n",
"1 0.956236 0.958696 0.957284 1789 0.669536 \n",
"16 0.886700 0.916767 0.897756 1620 0.606287 \n",
"19 0.949495 0.856712 0.850679 1267 0.474177 \n",
"14 0.914013 0.890625 0.891304 1208 0.452096 \n",
"7 0.937729 0.897163 0.915921 1077 0.403069 \n",
"5 0.918367 0.869396 0.875486 1002 0.375000 \n",
"3 0.833333 0.780142 0.786517 830 0.310629 \n",
"13 0.827957 0.771277 0.760494 738 0.276198 \n",
"11 0.705263 0.691293 0.688946 730 0.273204 \n",
"18 0.573034 0.580247 0.593023 659 0.246632 \n",
"12 0.680851 0.523207 0.650847 513 0.191991 \n",
"8 0.690476 0.761538 0.704453 478 0.178892 \n",
"0 0.535714 0.476987 0.476190 466 0.174401 \n",
"4 0.592233 0.607930 0.564815 446 0.166916 \n",
"2 0.631579 0.645963 0.592593 300 0.112275 \n",
"6 0.328571 0.396396 0.396552 247 0.092440 \n",
"17 0.230769 0.206897 0.200000 97 0.036302 \n",
"15 0.083333 0.074074 0.129032 96 0.035928 "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create graphs to show off data\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"plt.rcParams['figure.figsize'] = [9, 12]\n",
"\n",
"occurrence_count, occurrence_percentage = All_bird_occurrences['Occurrence Count'], All_bird_occurrences['Percentage']\n",
"precision = []\n",
"precision_smote = []\n",
"recall = []\n",
"recall_smote = []\n",
"f1 = []\n",
"f1_smote = []\n",
"labels = []\n",
"for dict in df_dicts:\n",
" precision.append(dict['report']['1']['precision'])\n",
" precision_smote.append(dict['report_smote']['1']['precision'])\n",
" recall.append(dict['report']['1']['recall'])\n",
" recall_smote.append(dict['report_smote']['1']['recall'])\n",
" f1.append(dict['report']['1']['f1-score'])\n",
" f1_smote.append(dict['report_smote']['1']['f1-score'])\n",
" labels.append(dict['name'])\n",
"\n",
"\n",
"\n",
"scores = pd.DataFrame({'Labels' : labels, \n",
" 'Precision': precision, 'Precision (Smote)': precision_smote, \n",
" 'Recall': recall, 'Recall (Smote)': recall_smote, \n",
" 'F1': f1, 'F1 (Smote)': f1_smote,\n",
" 'Occurrence Count' : occurrence_count, 'Percentage' : occurrence_percentage} )\n",
" \n",
"scores.sort_values('Occurrence Count', inplace=True)\n",
"\n",
"n=20\n",
"r = np.arange(n)\n",
"height = 0.25\n",
"\n",
"plt.barh(r, 'Percentage', data=scores, label='Occurrence Percentage', height = height, color='g')\n",
"plt.barh(r+height, 'F1', data=scores, label='F1-Score', height= height, color='b')\n",
"plt.barh(r+height*2, 'F1 (Smote)', data=scores, label='F1-Score (Smote)', height = height, color='r')\n",
"plt.legend(framealpha=1, frameon=True)\n",
"plt.yticks(r+height*2, scores['Labels'])\n",
"\n",
"\n",
"plt.show()\n",
"\n",
"\n",
"scores.sort_values('Occurrence Count', ascending=False)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Stored 'df_dicts_10km' (list)\n"
]
}
],
"source": [
"# Store dictionaries for later use\n",
"df_dicts_10km = df_dicts\n",
"%store df_dicts_10km"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 255000.0 | \n",
" 235000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 685000.0 | \n",
" 325000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 575000.0 | \n",
" 435000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 555000.0 | \n",
" 545000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 675000.0 | \n",
" 245000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 55000.0 | \n",
" 155000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 945000.0 | \n",
" 215000.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 465000.0 | \n",
" 635000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 365000.0 | \n",
" 45000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 515000.0 | \n",
" 205000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"255000.0 235000.0 0 1\n",
"685000.0 325000.0 0 1\n",
"575000.0 435000.0 0 0\n",
"555000.0 545000.0 0 0\n",
"675000.0 245000.0 0 1\n",
"... ... ...\n",
"55000.0 155000.0 0 0\n",
"945000.0 215000.0 1 0\n",
"465000.0 635000.0 0 0\n",
"365000.0 45000.0 0 0\n",
"515000.0 205000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 195000.0 | \n",
" 175000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 445000.0 | \n",
" 45000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 365000.0 | \n",
" 545000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 345000.0 | \n",
" 405000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 435000.0 | \n",
" 105000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 65000.0 | \n",
" 265000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 705000.0 | \n",
" 205000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 295000.0 | \n",
" 435000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 255000.0 | \n",
" 605000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 325000.0 | \n",
" 415000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"195000.0 175000.0 0 0\n",
"445000.0 45000.0 0 0\n",
"365000.0 545000.0 1 1\n",
"345000.0 405000.0 1 1\n",
"435000.0 105000.0 0 0\n",
"... ... ...\n",
"65000.0 265000.0 1 1\n",
"705000.0 205000.0 1 1\n",
"295000.0 435000.0 1 1\n",
"255000.0 605000.0 1 1\n",
"325000.0 415000.0 1 1\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 235000.0 | \n",
" 605000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 645000.0 | \n",
" 695000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 515000.0 | \n",
" 105000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 485000.0 | \n",
" 95000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 625000.0 | \n",
" 325000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 35000.0 | \n",
" 25000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 955000.0 | \n",
" 595000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 395000.0 | \n",
" 455000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 325000.0 | \n",
" 655000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 445000.0 | \n",
" 45000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"235000.0 605000.0 1 1\n",
"645000.0 695000.0 0 0\n",
"515000.0 105000.0 0 0\n",
"485000.0 95000.0 0 0\n",
"625000.0 325000.0 0 0\n",
"... ... ...\n",
"35000.0 25000.0 0 0\n",
"955000.0 595000.0 0 0\n",
"395000.0 455000.0 1 1\n",
"325000.0 655000.0 0 0\n",
"445000.0 45000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 215000.0 | \n",
" 665000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 545000.0 | \n",
" 45000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 445000.0 | \n",
" 465000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 425000.0 | \n",
" 475000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 535000.0 | \n",
" 195000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 45000.0 | \n",
" 275000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 875000.0 | \n",
" 535000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 355000.0 | \n",
" 625000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 295000.0 | \n",
" 575000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 395000.0 | \n",
" 465000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"215000.0 665000.0 0 0\n",
"545000.0 45000.0 0 0\n",
"445000.0 465000.0 1 1\n",
"425000.0 475000.0 1 1\n",
"535000.0 195000.0 0 0\n",
"... ... ...\n",
"45000.0 275000.0 1 1\n",
"875000.0 535000.0 0 0\n",
"355000.0 625000.0 0 0\n",
"295000.0 575000.0 1 1\n",
"395000.0 465000.0 1 1\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 255000.0 | \n",
" 525000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 665000.0 | \n",
" 345000.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 565000.0 | \n",
" 365000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 545000.0 | \n",
" 405000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 655000.0 | \n",
" 555000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 45000.0 | \n",
" 125000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 935000.0 | \n",
" 675000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 445000.0 | \n",
" 145000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 355000.0 | \n",
" 175000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 505000.0 | \n",
" 205000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"255000.0 525000.0 0 0\n",
"665000.0 345000.0 1 0\n",
"565000.0 365000.0 1 1\n",
"545000.0 405000.0 0 0\n",
"655000.0 555000.0 0 0\n",
"... ... ...\n",
"45000.0 125000.0 0 0\n",
"935000.0 675000.0 0 0\n",
"445000.0 145000.0 0 0\n",
"355000.0 175000.0 0 0\n",
"505000.0 205000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 225000.0 | \n",
" 625000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 545000.0 | \n",
" 115000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 435000.0 | \n",
" 395000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 415000.0 | \n",
" 385000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 535000.0 | \n",
" 365000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 55000.0 | \n",
" 615000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 845000.0 | \n",
" 45000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 355000.0 | \n",
" 495000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 295000.0 | \n",
" 445000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 395000.0 | \n",
" 515000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"225000.0 625000.0 1 1\n",
"545000.0 115000.0 0 0\n",
"435000.0 395000.0 1 1\n",
"415000.0 385000.0 1 1\n",
"535000.0 365000.0 1 1\n",
"... ... ...\n",
"55000.0 615000.0 0 0\n",
"845000.0 45000.0 0 0\n",
"355000.0 495000.0 1 1\n",
"295000.0 445000.0 0 1\n",
"395000.0 515000.0 1 1\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 255000.0 | \n",
" 235000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 675000.0 | \n",
" 45000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 555000.0 | \n",
" 585000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 525000.0 | \n",
" 175000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 665000.0 | \n",
" 365000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 45000.0 | \n",
" 175000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 965000.0 | \n",
" 525000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 435000.0 | \n",
" 545000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 355000.0 | \n",
" 655000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 495000.0 | \n",
" 525000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"255000.0 235000.0 0 0\n",
"675000.0 45000.0 0 0\n",
"555000.0 585000.0 0 0\n",
"525000.0 175000.0 0 0\n",
"665000.0 365000.0 0 0\n",
"... ... ...\n",
"45000.0 175000.0 0 1\n",
"965000.0 525000.0 0 0\n",
"435000.0 545000.0 0 0\n",
"355000.0 655000.0 0 0\n",
"495000.0 525000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 205000.0 | \n",
" 495000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 475000.0 | \n",
" 475000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 385000.0 | \n",
" 365000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 375000.0 | \n",
" 495000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 465000.0 | \n",
" 345000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 55000.0 | \n",
" 485000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 835000.0 | \n",
" 435000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 315000.0 | \n",
" 365000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 265000.0 | \n",
" 95000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 345000.0 | \n",
" 5000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"205000.0 495000.0 1 1\n",
"475000.0 475000.0 1 1\n",
"385000.0 365000.0 1 1\n",
"375000.0 495000.0 1 1\n",
"465000.0 345000.0 1 1\n",
"... ... ...\n",
"55000.0 485000.0 0 0\n",
"835000.0 435000.0 0 0\n",
"315000.0 365000.0 1 1\n",
"265000.0 95000.0 0 0\n",
"345000.0 5000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 225000.0 | \n",
" 365000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 625000.0 | \n",
" 145000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 505000.0 | \n",
" 185000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 485000.0 | \n",
" 645000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 615000.0 | \n",
" 225000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 45000.0 | \n",
" 75000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 945000.0 | \n",
" 685000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 375000.0 | \n",
" 25000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 315000.0 | \n",
" 445000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 435000.0 | \n",
" 25000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"225000.0 365000.0 1 1\n",
"625000.0 145000.0 0 0\n",
"505000.0 185000.0 0 0\n",
"485000.0 645000.0 0 0\n",
"615000.0 225000.0 0 0\n",
"... ... ...\n",
"45000.0 75000.0 0 0\n",
"945000.0 685000.0 0 0\n",
"375000.0 25000.0 0 0\n",
"315000.0 445000.0 1 1\n",
"435000.0 25000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 205000.0 | \n",
" 315000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 465000.0 | \n",
" 445000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 375000.0 | \n",
" 415000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 355000.0 | \n",
" 245000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 445000.0 | \n",
" 245000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 75000.0 | \n",
" 355000.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 685000.0 | \n",
" 315000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 305000.0 | \n",
" 395000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 265000.0 | \n",
" 575000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 335000.0 | \n",
" 285000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"205000.0 315000.0 1 1\n",
"465000.0 445000.0 1 1\n",
"375000.0 415000.0 1 1\n",
"355000.0 245000.0 1 1\n",
"445000.0 245000.0 0 0\n",
"... ... ...\n",
"75000.0 355000.0 1 0\n",
"685000.0 315000.0 1 1\n",
"305000.0 395000.0 1 1\n",
"265000.0 575000.0 1 1\n",
"335000.0 285000.0 1 1\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 205000.0 | \n",
" 615000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 465000.0 | \n",
" 465000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 365000.0 | \n",
" 325000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 355000.0 | \n",
" 545000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 455000.0 | \n",
" 495000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 65000.0 | \n",
" 215000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 685000.0 | \n",
" 315000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 295000.0 | \n",
" 265000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 255000.0 | \n",
" 425000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 335000.0 | \n",
" 605000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"205000.0 615000.0 0 0\n",
"465000.0 465000.0 1 1\n",
"365000.0 325000.0 1 1\n",
"355000.0 545000.0 1 1\n",
"455000.0 495000.0 1 1\n",
"... ... ...\n",
"65000.0 215000.0 1 1\n",
"685000.0 315000.0 1 1\n",
"295000.0 265000.0 1 1\n",
"255000.0 425000.0 1 1\n",
"335000.0 605000.0 1 1\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 305000.0 | \n",
" 635000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 675000.0 | \n",
" 335000.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 565000.0 | \n",
" 255000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 545000.0 | \n",
" 115000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 665000.0 | \n",
" 355000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 45000.0 | \n",
" 195000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 925000.0 | \n",
" 435000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 455000.0 | \n",
" 385000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 385000.0 | \n",
" 335000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 515000.0 | \n",
" 295000.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"305000.0 635000.0 1 1\n",
"675000.0 335000.0 1 0\n",
"565000.0 255000.0 1 1\n",
"545000.0 115000.0 0 0\n",
"665000.0 355000.0 1 1\n",
"... ... ...\n",
"45000.0 195000.0 0 1\n",
"925000.0 435000.0 0 0\n",
"455000.0 385000.0 1 1\n",
"385000.0 335000.0 0 1\n",
"515000.0 295000.0 1 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 235000.0 | \n",
" 405000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 625000.0 | \n",
" 135000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 515000.0 | \n",
" 375000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 485000.0 | \n",
" 265000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 615000.0 | \n",
" 295000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 45000.0 | \n",
" 375000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 915000.0 | \n",
" 235000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 405000.0 | \n",
" 445000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 325000.0 | \n",
" 545000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 455000.0 | \n",
" 335000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"235000.0 405000.0 0 1\n",
"625000.0 135000.0 0 0\n",
"515000.0 375000.0 0 0\n",
"485000.0 265000.0 0 0\n",
"615000.0 295000.0 0 0\n",
"... ... ...\n",
"45000.0 375000.0 0 0\n",
"915000.0 235000.0 0 0\n",
"405000.0 445000.0 1 1\n",
"325000.0 545000.0 1 1\n",
"455000.0 335000.0 0 1\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 225000.0 | \n",
" 55000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 595000.0 | \n",
" 685000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 475000.0 | \n",
" 265000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 455000.0 | \n",
" 575000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 575000.0 | \n",
" 265000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 45000.0 | \n",
" 285000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 915000.0 | \n",
" 345000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 365000.0 | \n",
" 235000.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 305000.0 | \n",
" 405000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 415000.0 | \n",
" 105000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"225000.0 55000.0 0 0\n",
"595000.0 685000.0 0 0\n",
"475000.0 265000.0 0 0\n",
"455000.0 575000.0 0 0\n",
"575000.0 265000.0 0 0\n",
"... ... ...\n",
"45000.0 285000.0 1 1\n",
"915000.0 345000.0 0 0\n",
"365000.0 235000.0 1 0\n",
"305000.0 405000.0 1 1\n",
"415000.0 105000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 215000.0 | \n",
" 605000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 495000.0 | \n",
" 415000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 405000.0 | \n",
" 675000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 385000.0 | \n",
" 535000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 485000.0 | \n",
" 405000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 55000.0 | \n",
" 75000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 795000.0 | \n",
" 265000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 325000.0 | \n",
" 575000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 275000.0 | \n",
" 545000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 355000.0 | \n",
" 125000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"215000.0 605000.0 0 1\n",
"495000.0 415000.0 1 1\n",
"405000.0 675000.0 0 0\n",
"385000.0 535000.0 1 1\n",
"485000.0 405000.0 1 1\n",
"... ... ...\n",
"55000.0 75000.0 0 0\n",
"795000.0 265000.0 1 1\n",
"325000.0 575000.0 1 1\n",
"275000.0 545000.0 1 1\n",
"355000.0 125000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 245000.0 | \n",
" 15000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 695000.0 | \n",
" 155000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 575000.0 | \n",
" 545000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 545000.0 | \n",
" 25000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 685000.0 | \n",
" 255000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 45000.0 | \n",
" 445000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 975000.0 | \n",
" 335000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 455000.0 | \n",
" 395000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 365000.0 | \n",
" 265000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 515000.0 | \n",
" 485000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"245000.0 15000.0 0 0\n",
"695000.0 155000.0 0 0\n",
"575000.0 545000.0 0 0\n",
"545000.0 25000.0 0 0\n",
"685000.0 255000.0 0 0\n",
"... ... ...\n",
"45000.0 445000.0 0 0\n",
"975000.0 335000.0 0 0\n",
"455000.0 395000.0 0 0\n",
"365000.0 265000.0 0 0\n",
"515000.0 485000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 205000.0 | \n",
" 375000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 495000.0 | \n",
" 445000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 395000.0 | \n",
" 505000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 375000.0 | \n",
" 345000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 485000.0 | \n",
" 425000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 65000.0 | \n",
" 155000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 755000.0 | \n",
" 125000.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 315000.0 | \n",
" 355000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 265000.0 | \n",
" 435000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 355000.0 | \n",
" 465000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"205000.0 375000.0 1 1\n",
"495000.0 445000.0 1 1\n",
"395000.0 505000.0 1 1\n",
"375000.0 345000.0 1 1\n",
"485000.0 425000.0 1 1\n",
"... ... ...\n",
"65000.0 155000.0 0 0\n",
"755000.0 125000.0 1 0\n",
"315000.0 355000.0 1 1\n",
"265000.0 435000.0 1 1\n",
"355000.0 465000.0 1 1\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 275000.0 | \n",
" 495000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 695000.0 | \n",
" 325000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 575000.0 | \n",
" 375000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 555000.0 | \n",
" 515000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 685000.0 | \n",
" 275000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 35000.0 | \n",
" 175000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 975000.0 | \n",
" 255000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 455000.0 | \n",
" 545000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 375000.0 | \n",
" 305000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 515000.0 | \n",
" 445000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"275000.0 495000.0 0 1\n",
"695000.0 325000.0 0 0\n",
"575000.0 375000.0 0 0\n",
"555000.0 515000.0 0 0\n",
"685000.0 275000.0 0 0\n",
"... ... ...\n",
"35000.0 175000.0 0 0\n",
"975000.0 255000.0 0 0\n",
"455000.0 545000.0 0 0\n",
"375000.0 305000.0 0 0\n",
"515000.0 445000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 295000.0 | \n",
" 275000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 685000.0 | \n",
" 55000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 585000.0 | \n",
" 105000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 565000.0 | \n",
" 205000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 675000.0 | \n",
" 155000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 65000.0 | \n",
" 245000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 945000.0 | \n",
" 245000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 495000.0 | \n",
" 575000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 395000.0 | \n",
" 75000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 535000.0 | \n",
" 95000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"295000.0 275000.0 0 1\n",
"685000.0 55000.0 0 0\n",
"585000.0 105000.0 0 0\n",
"565000.0 205000.0 1 1\n",
"675000.0 155000.0 0 0\n",
"... ... ...\n",
"65000.0 245000.0 0 1\n",
"945000.0 245000.0 0 1\n",
"495000.0 575000.0 0 0\n",
"395000.0 75000.0 0 0\n",
"535000.0 95000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 235000.0 | \n",
" 135000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 575000.0 | \n",
" 395000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 475000.0 | \n",
" 335000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 455000.0 | \n",
" 535000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 565000.0 | \n",
" 385000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 65000.0 | \n",
" 345000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 845000.0 | \n",
" 255000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 375000.0 | \n",
" 585000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 315000.0 | \n",
" 405000.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 415000.0 | \n",
" 145000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"235000.0 135000.0 0 0\n",
"575000.0 395000.0 1 1\n",
"475000.0 335000.0 1 1\n",
"455000.0 535000.0 0 0\n",
"565000.0 385000.0 1 1\n",
"... ... ...\n",
"65000.0 345000.0 0 0\n",
"845000.0 255000.0 1 1\n",
"375000.0 585000.0 0 0\n",
"315000.0 405000.0 1 0\n",
"415000.0 145000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Export predictions to CSV for QGIS\n",
"RESULTS_PATH = 'Datasets/Machine Learning/Results/10km/'\n",
"for dict in df_dicts:\n",
" # Join with y_test datafram\n",
" result_df = dict['y_test'] \n",
" result_df['Predictions'] = dict['predictions_smote']\n",
" display(result_df)\n",
" result_df.to_csv(RESULTS_PATH + dict['name'] + '.csv')\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 1009.098268 | \n",
" 3.952755e-188 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 822.960158 | \n",
" 5.383451e-158 | \n",
" Elevation | \n",
"
\n",
" \n",
" 23 | \n",
" 773.642924 | \n",
" 9.675580e-150 | \n",
" Surface type | \n",
"
\n",
" \n",
" 26 | \n",
" 387.030728 | \n",
" 1.424303e-80 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 387.030728 | \n",
" 1.424303e-80 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 387.030728 | \n",
" 1.424303e-80 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 3 | \n",
" 286.074265 | \n",
" 4.806316e-61 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 268.765539 | \n",
" 1.255395e-57 | \n",
" Arable | \n",
"
\n",
" \n",
" 22 | \n",
" 235.656713 | \n",
" 4.939605e-51 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 24 | \n",
" 199.364053 | \n",
" 1.033356e-43 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 36 | \n",
" 196.189782 | \n",
" 4.562554e-43 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 196.189782 | \n",
" 4.562554e-43 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 29 | \n",
" 188.369003 | \n",
" 1.784581e-41 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 188.369003 | \n",
" 1.784581e-41 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 31 | \n",
" 188.369003 | \n",
" 1.784581e-41 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 188.369003 | \n",
" 1.784581e-41 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 188.369003 | \n",
" 1.784581e-41 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 0 | \n",
" 161.344102 | \n",
" 6.172420e-36 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 38 | \n",
" 146.572064 | \n",
" 6.962136e-33 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 33 | \n",
" 128.415593 | \n",
" 4.161077e-29 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 35 | \n",
" 113.875404 | \n",
" 4.614046e-26 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 20 | \n",
" 92.362595 | \n",
" 1.602427e-21 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 79.830321 | \n",
" 7.431887e-19 | \n",
" Urban | \n",
"
\n",
" \n",
" 17 | \n",
" 65.850294 | \n",
" 7.342235e-16 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 18 | \n",
" 54.991282 | \n",
" 1.617037e-13 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 15 | \n",
" 47.707380 | \n",
" 6.162071e-12 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 9 | \n",
" 35.077761 | \n",
" 3.574253e-09 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 32.408605 | \n",
" 1.385572e-08 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 16 | \n",
" 27.999637 | \n",
" 1.311868e-07 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 7 | \n",
" 26.715444 | \n",
" 2.531488e-07 | \n",
" Fen | \n",
"
\n",
" \n",
" 13 | \n",
" 10.814489 | \n",
" 1.020153e-03 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 4 | \n",
" 9.406941 | \n",
" 2.183328e-03 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 7.853502 | \n",
" 5.108829e-03 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 5 | \n",
" 5.092810 | \n",
" 2.410577e-02 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 4.030409 | \n",
" 4.478769e-02 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 10 | \n",
" 1.305533 | \n",
" 2.533074e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 6 | \n",
" 0.503498 | \n",
" 4.780290e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 0.304783 | \n",
" 5.809453e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 8 | \n",
" 0.030913 | \n",
" 8.604477e-01 | \n",
" Heather | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 1009.098268 3.952755e-188 Inflowing drainage direction\n",
"21 822.960158 5.383451e-158 Elevation\n",
"23 773.642924 9.675580e-150 Surface type\n",
"26 387.030728 1.424303e-80 Fertiliser K\n",
"27 387.030728 1.424303e-80 Fertiliser N\n",
"28 387.030728 1.424303e-80 Fertiliser P\n",
"3 286.074265 4.806316e-61 Improve grassland\n",
"2 268.765539 1.255395e-57 Arable\n",
"22 235.656713 4.939605e-51 Cumulative catchment area\n",
"24 199.364053 1.033356e-43 Outflowing drainage direction\n",
"36 196.189782 4.562554e-43 Prosulfocarb_10km\n",
"37 196.189782 4.562554e-43 Sulphur_10km\n",
"29 188.369003 1.784581e-41 Chlorothalonil_10km\n",
"30 188.369003 1.784581e-41 Glyphosate_10km\n",
"31 188.369003 1.784581e-41 Mancozeb_10km\n",
"32 188.369003 1.784581e-41 Mecoprop-P_10km\n",
"34 188.369003 1.784581e-41 Pendimethalin_10km\n",
"0 161.344102 6.172420e-36 Deciduous woodland\n",
"38 146.572064 6.962136e-33 Tri-allate_10km\n",
"33 128.415593 4.161077e-29 Metamitron_10km\n",
"35 113.875404 4.614046e-26 PropamocarbHydrochloride_10km\n",
"20 92.362595 1.602427e-21 Suburban\n",
"19 79.830321 7.431887e-19 Urban\n",
"17 65.850294 7.342235e-16 Littoral sediment\n",
"18 54.991282 1.617037e-13 Saltmarsh\n",
"15 47.707380 6.162071e-12 Supralittoral sediment\n",
"9 35.077761 3.574253e-09 Heather grassland\n",
"14 32.408605 1.385572e-08 Supralittoral rock\n",
"16 27.999637 1.311868e-07 Littoral rock\n",
"7 26.715444 2.531488e-07 Fen\n",
"13 10.814489 1.020153e-03 Freshwater\n",
"4 9.406941 2.183328e-03 Neutral grassland\n",
"1 7.853502 5.108829e-03 Coniferous woodland\n",
"5 5.092810 2.410577e-02 Calcareous grassland\n",
"12 4.030409 4.478769e-02 Saltwater\n",
"10 1.305533 2.533074e-01 Bog\n",
"6 0.503498 4.780290e-01 Acid grassland\n",
"11 0.304783 5.809453e-01 Inland rock\n",
"8 0.030913 8.604477e-01 Heather"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Canada Goose 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 21 | \n",
" 7343.666630 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 23 | \n",
" 5748.855110 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 5520.138505 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 26 | \n",
" 1431.849351 | \n",
" 3.030462e-251 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 1431.849351 | \n",
" 3.030462e-251 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 1431.849351 | \n",
" 3.030462e-251 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 29 | \n",
" 1114.539477 | \n",
" 1.580665e-204 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 1114.539477 | \n",
" 1.580665e-204 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 1114.539477 | \n",
" 1.580665e-204 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 31 | \n",
" 1111.648247 | \n",
" 4.388703e-204 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 1111.648247 | \n",
" 4.388703e-204 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 36 | \n",
" 741.741367 | \n",
" 2.448280e-144 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 741.741367 | \n",
" 2.448280e-144 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 38 | \n",
" 736.051579 | \n",
" 2.279725e-143 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 3 | \n",
" 732.084357 | \n",
" 1.082679e-142 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 572.662758 | \n",
" 7.999142e-115 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 560.712879 | \n",
" 1.115248e-112 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 35 | \n",
" 551.243743 | \n",
" 5.652544e-111 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 33 | \n",
" 537.822289 | \n",
" 1.504558e-108 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 0 | \n",
" 324.290358 | \n",
" 1.622397e-68 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 180.176262 | \n",
" 8.407061e-40 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 50.311028 | \n",
" 1.673556e-12 | \n",
" Urban | \n",
"
\n",
" \n",
" 1 | \n",
" 32.107127 | \n",
" 1.615132e-08 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 22 | \n",
" 28.330681 | \n",
" 1.107605e-07 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 6 | \n",
" 24.550281 | \n",
" 7.691838e-07 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 21.588824 | \n",
" 3.542001e-06 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 19.731579 | \n",
" 9.274335e-06 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 11.901638 | \n",
" 5.695458e-04 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 13 | \n",
" 11.468525 | \n",
" 7.180931e-04 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 17 | \n",
" 10.225843 | \n",
" 1.401059e-03 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 8 | \n",
" 8.771196 | \n",
" 3.087237e-03 | \n",
" Heather | \n",
"
\n",
" \n",
" 7 | \n",
" 7.234798 | \n",
" 7.194880e-03 | \n",
" Fen | \n",
"
\n",
" \n",
" 12 | \n",
" 5.603089 | \n",
" 1.799978e-02 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 15 | \n",
" 3.319150 | \n",
" 6.858907e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 9 | \n",
" 1.498448 | \n",
" 2.210184e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 1.364810 | \n",
" 2.428099e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 1.087899 | \n",
" 2.970316e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 11 | \n",
" 0.651580 | \n",
" 4.196203e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 16 | \n",
" 0.149181 | \n",
" 6.993498e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"21 7343.666630 0.000000e+00 Elevation\n",
"23 5748.855110 0.000000e+00 Surface type\n",
"25 5520.138505 0.000000e+00 Inflowing drainage direction\n",
"26 1431.849351 3.030462e-251 Fertiliser K\n",
"27 1431.849351 3.030462e-251 Fertiliser N\n",
"28 1431.849351 3.030462e-251 Fertiliser P\n",
"29 1114.539477 1.580665e-204 Chlorothalonil_10km\n",
"30 1114.539477 1.580665e-204 Glyphosate_10km\n",
"34 1114.539477 1.580665e-204 Pendimethalin_10km\n",
"31 1111.648247 4.388703e-204 Mancozeb_10km\n",
"32 1111.648247 4.388703e-204 Mecoprop-P_10km\n",
"36 741.741367 2.448280e-144 Prosulfocarb_10km\n",
"37 741.741367 2.448280e-144 Sulphur_10km\n",
"38 736.051579 2.279725e-143 Tri-allate_10km\n",
"3 732.084357 1.082679e-142 Improve grassland\n",
"2 572.662758 7.999142e-115 Arable\n",
"24 560.712879 1.115248e-112 Outflowing drainage direction\n",
"35 551.243743 5.652544e-111 PropamocarbHydrochloride_10km\n",
"33 537.822289 1.504558e-108 Metamitron_10km\n",
"0 324.290358 1.622397e-68 Deciduous woodland\n",
"20 180.176262 8.407061e-40 Suburban\n",
"19 50.311028 1.673556e-12 Urban\n",
"1 32.107127 1.615132e-08 Coniferous woodland\n",
"22 28.330681 1.107605e-07 Cumulative catchment area\n",
"6 24.550281 7.691838e-07 Acid grassland\n",
"4 21.588824 3.542001e-06 Neutral grassland\n",
"5 19.731579 9.274335e-06 Calcareous grassland\n",
"18 11.901638 5.695458e-04 Saltmarsh\n",
"13 11.468525 7.180931e-04 Freshwater\n",
"17 10.225843 1.401059e-03 Littoral sediment\n",
"8 8.771196 3.087237e-03 Heather\n",
"7 7.234798 7.194880e-03 Fen\n",
"12 5.603089 1.799978e-02 Saltwater\n",
"15 3.319150 6.858907e-02 Supralittoral sediment\n",
"9 1.498448 2.210184e-01 Heather grassland\n",
"14 1.364810 2.428099e-01 Supralittoral rock\n",
"10 1.087899 2.970316e-01 Bog\n",
"11 0.651580 4.196203e-01 Inland rock\n",
"16 0.149181 6.993498e-01 Littoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Egyptian Goose 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 1863.935757 | \n",
" 2.395294e-309 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 1863.935757 | \n",
" 2.395294e-309 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 1863.935757 | \n",
" 2.395294e-309 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 23 | \n",
" 827.599456 | \n",
" 9.132354e-159 | \n",
" Surface type | \n",
"
\n",
" \n",
" 2 | \n",
" 641.921266 | \n",
" 4.265779e-127 | \n",
" Arable | \n",
"
\n",
" \n",
" 25 | \n",
" 641.772899 | \n",
" 4.529104e-127 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 589.698428 | \n",
" 7.242005e-118 | \n",
" Elevation | \n",
"
\n",
" \n",
" 36 | \n",
" 469.691429 | \n",
" 4.453426e-96 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 469.691429 | \n",
" 4.453426e-96 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 33 | \n",
" 463.483676 | \n",
" 6.289484e-95 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 38 | \n",
" 440.139552 | \n",
" 1.392058e-90 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 29 | \n",
" 434.469069 | \n",
" 1.599940e-89 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 434.469069 | \n",
" 1.599940e-89 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 434.469069 | \n",
" 1.599940e-89 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 20 | \n",
" 432.216501 | \n",
" 4.225777e-89 | \n",
" Suburban | \n",
"
\n",
" \n",
" 31 | \n",
" 428.297036 | \n",
" 2.293958e-88 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 428.297036 | \n",
" 2.293958e-88 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 35 | \n",
" 425.375213 | \n",
" 8.107329e-88 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 24 | \n",
" 314.637554 | \n",
" 1.224799e-66 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 3 | \n",
" 305.393057 | \n",
" 7.805663e-65 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 0 | \n",
" 279.121118 | \n",
" 1.127077e-59 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 19 | \n",
" 163.844471 | \n",
" 1.886102e-36 | \n",
" Urban | \n",
"
\n",
" \n",
" 22 | \n",
" 37.622328 | \n",
" 9.858221e-10 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 18 | \n",
" 33.079310 | \n",
" 9.853602e-09 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 4 | \n",
" 30.003073 | \n",
" 4.715957e-08 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 11.229728 | \n",
" 8.161764e-04 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 6 | \n",
" 10.043311 | \n",
" 1.546316e-03 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 9 | \n",
" 5.307928 | \n",
" 2.130504e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 5.193269 | \n",
" 2.275315e-02 | \n",
" Fen | \n",
"
\n",
" \n",
" 5 | \n",
" 4.900666 | \n",
" 2.693057e-02 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 3.648895 | \n",
" 5.621345e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 8 | \n",
" 3.501216 | \n",
" 6.143306e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 1 | \n",
" 2.434389 | \n",
" 1.188187e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 16 | \n",
" 1.371591 | \n",
" 2.416432e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 12 | \n",
" 1.094713 | \n",
" 2.955240e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 14 | \n",
" 0.977077 | \n",
" 3.230110e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 0.938625 | \n",
" 3.327196e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 17 | \n",
" 0.283602 | \n",
" 5.943946e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 15 | \n",
" 0.136474 | \n",
" 7.118410e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 1863.935757 2.395294e-309 Fertiliser K\n",
"27 1863.935757 2.395294e-309 Fertiliser N\n",
"28 1863.935757 2.395294e-309 Fertiliser P\n",
"23 827.599456 9.132354e-159 Surface type\n",
"2 641.921266 4.265779e-127 Arable\n",
"25 641.772899 4.529104e-127 Inflowing drainage direction\n",
"21 589.698428 7.242005e-118 Elevation\n",
"36 469.691429 4.453426e-96 Prosulfocarb_10km\n",
"37 469.691429 4.453426e-96 Sulphur_10km\n",
"33 463.483676 6.289484e-95 Metamitron_10km\n",
"38 440.139552 1.392058e-90 Tri-allate_10km\n",
"29 434.469069 1.599940e-89 Chlorothalonil_10km\n",
"30 434.469069 1.599940e-89 Glyphosate_10km\n",
"34 434.469069 1.599940e-89 Pendimethalin_10km\n",
"20 432.216501 4.225777e-89 Suburban\n",
"31 428.297036 2.293958e-88 Mancozeb_10km\n",
"32 428.297036 2.293958e-88 Mecoprop-P_10km\n",
"35 425.375213 8.107329e-88 PropamocarbHydrochloride_10km\n",
"24 314.637554 1.224799e-66 Outflowing drainage direction\n",
"3 305.393057 7.805663e-65 Improve grassland\n",
"0 279.121118 1.127077e-59 Deciduous woodland\n",
"19 163.844471 1.886102e-36 Urban\n",
"22 37.622328 9.858221e-10 Cumulative catchment area\n",
"18 33.079310 9.853602e-09 Saltmarsh\n",
"4 30.003073 4.715957e-08 Neutral grassland\n",
"13 11.229728 8.161764e-04 Freshwater\n",
"6 10.043311 1.546316e-03 Acid grassland\n",
"9 5.307928 2.130504e-02 Heather grassland\n",
"7 5.193269 2.275315e-02 Fen\n",
"5 4.900666 2.693057e-02 Calcareous grassland\n",
"10 3.648895 5.621345e-02 Bog\n",
"8 3.501216 6.143306e-02 Heather\n",
"1 2.434389 1.188187e-01 Coniferous woodland\n",
"16 1.371591 2.416432e-01 Littoral rock\n",
"12 1.094713 2.955240e-01 Saltwater\n",
"14 0.977077 3.230110e-01 Supralittoral rock\n",
"11 0.938625 3.327196e-01 Inland rock\n",
"17 0.283602 5.943946e-01 Littoral sediment\n",
"15 0.136474 7.118410e-01 Supralittoral sediment"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gadwall 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 1903.437525 | \n",
" 2.224486e-314 | \n",
" Surface type | \n",
"
\n",
" \n",
" 26 | \n",
" 1849.754051 | \n",
" 1.572831e-307 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 1849.754051 | \n",
" 1.572831e-307 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 1849.754051 | \n",
" 1.572831e-307 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 25 | \n",
" 1645.682577 | \n",
" 9.981393e-281 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 1515.568547 | \n",
" 5.744852e-263 | \n",
" Elevation | \n",
"
\n",
" \n",
" 2 | \n",
" 949.689658 | \n",
" 1.109256e-178 | \n",
" Arable | \n",
"
\n",
" \n",
" 3 | \n",
" 594.080640 | \n",
" 1.201251e-118 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 31 | \n",
" 579.128295 | \n",
" 5.574029e-116 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 579.128295 | \n",
" 5.574029e-116 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 29 | \n",
" 576.789734 | \n",
" 1.459949e-115 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 576.789734 | \n",
" 1.459949e-115 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 576.789734 | \n",
" 1.459949e-115 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 38 | \n",
" 548.515527 | \n",
" 1.755440e-110 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 33 | \n",
" 492.292460 | \n",
" 3.030236e-100 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 36 | \n",
" 490.394846 | \n",
" 6.763937e-100 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 490.394846 | \n",
" 6.763937e-100 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 35 | \n",
" 486.646167 | \n",
" 3.309139e-99 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 24 | \n",
" 466.821680 | \n",
" 1.513555e-95 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 20 | \n",
" 367.505198 | \n",
" 7.557822e-77 | \n",
" Suburban | \n",
"
\n",
" \n",
" 0 | \n",
" 344.808292 | \n",
" 1.734076e-72 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 19 | \n",
" 127.613146 | \n",
" 6.120135e-29 | \n",
" Urban | \n",
"
\n",
" \n",
" 4 | \n",
" 42.409704 | \n",
" 8.812937e-11 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 38.573928 | \n",
" 6.094998e-10 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 22 | \n",
" 29.514784 | \n",
" 6.049909e-08 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 7 | \n",
" 22.969658 | \n",
" 1.735944e-06 | \n",
" Fen | \n",
"
\n",
" \n",
" 17 | \n",
" 17.396323 | \n",
" 3.130899e-05 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 13 | \n",
" 13.556296 | \n",
" 2.361016e-04 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 12 | \n",
" 13.254536 | \n",
" 2.770855e-04 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 8 | \n",
" 10.567615 | \n",
" 1.165165e-03 | \n",
" Heather | \n",
"
\n",
" \n",
" 6 | \n",
" 10.284403 | \n",
" 1.357450e-03 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 9.050744 | \n",
" 2.650406e-03 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 8.110622 | \n",
" 4.434319e-03 | \n",
" Bog | \n",
"
\n",
" \n",
" 15 | \n",
" 6.085671 | \n",
" 1.369060e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 9 | \n",
" 4.201548 | \n",
" 4.048459e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 0.766321 | \n",
" 3.814364e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 1 | \n",
" 0.296763 | \n",
" 5.859643e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.285778 | \n",
" 5.929833e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 14 | \n",
" 0.088228 | \n",
" 7.664655e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 1903.437525 2.224486e-314 Surface type\n",
"26 1849.754051 1.572831e-307 Fertiliser K\n",
"27 1849.754051 1.572831e-307 Fertiliser N\n",
"28 1849.754051 1.572831e-307 Fertiliser P\n",
"25 1645.682577 9.981393e-281 Inflowing drainage direction\n",
"21 1515.568547 5.744852e-263 Elevation\n",
"2 949.689658 1.109256e-178 Arable\n",
"3 594.080640 1.201251e-118 Improve grassland\n",
"31 579.128295 5.574029e-116 Mancozeb_10km\n",
"32 579.128295 5.574029e-116 Mecoprop-P_10km\n",
"29 576.789734 1.459949e-115 Chlorothalonil_10km\n",
"30 576.789734 1.459949e-115 Glyphosate_10km\n",
"34 576.789734 1.459949e-115 Pendimethalin_10km\n",
"38 548.515527 1.755440e-110 Tri-allate_10km\n",
"33 492.292460 3.030236e-100 Metamitron_10km\n",
"36 490.394846 6.763937e-100 Prosulfocarb_10km\n",
"37 490.394846 6.763937e-100 Sulphur_10km\n",
"35 486.646167 3.309139e-99 PropamocarbHydrochloride_10km\n",
"24 466.821680 1.513555e-95 Outflowing drainage direction\n",
"20 367.505198 7.557822e-77 Suburban\n",
"0 344.808292 1.734076e-72 Deciduous woodland\n",
"19 127.613146 6.120135e-29 Urban\n",
"4 42.409704 8.812937e-11 Neutral grassland\n",
"18 38.573928 6.094998e-10 Saltmarsh\n",
"22 29.514784 6.049909e-08 Cumulative catchment area\n",
"7 22.969658 1.735944e-06 Fen\n",
"17 17.396323 3.130899e-05 Littoral sediment\n",
"13 13.556296 2.361016e-04 Freshwater\n",
"12 13.254536 2.770855e-04 Saltwater\n",
"8 10.567615 1.165165e-03 Heather\n",
"6 10.284403 1.357450e-03 Acid grassland\n",
"5 9.050744 2.650406e-03 Calcareous grassland\n",
"10 8.110622 4.434319e-03 Bog\n",
"15 6.085671 1.369060e-02 Supralittoral sediment\n",
"9 4.201548 4.048459e-02 Heather grassland\n",
"11 0.766321 3.814364e-01 Inland rock\n",
"1 0.296763 5.859643e-01 Coniferous woodland\n",
"16 0.285778 5.929833e-01 Littoral rock\n",
"14 0.088228 7.664655e-01 Supralittoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Goshawk 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 1516.675979 | \n",
" 4.034569e-263 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 1440.341773 | \n",
" 1.912231e-252 | \n",
" Elevation | \n",
"
\n",
" \n",
" 25 | \n",
" 1051.448282 | \n",
" 9.009989e-195 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 31 | \n",
" 721.884503 | \n",
" 5.994541e-141 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 721.884503 | \n",
" 5.994541e-141 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 29 | \n",
" 719.541000 | \n",
" 1.510181e-140 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 719.541000 | \n",
" 1.510181e-140 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 719.541000 | \n",
" 1.510181e-140 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 3 | \n",
" 615.251091 | \n",
" 2.114437e-122 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 38 | \n",
" 574.147816 | \n",
" 4.336277e-115 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 36 | \n",
" 513.236262 | \n",
" 4.432676e-104 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 513.236262 | \n",
" 4.432676e-104 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 24 | \n",
" 480.598054 | \n",
" 4.304565e-98 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 412.738950 | \n",
" 1.932868e-85 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 35 | \n",
" 375.496624 | \n",
" 2.243687e-78 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 33 | \n",
" 362.348467 | \n",
" 7.348625e-76 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 1 | \n",
" 257.265143 | \n",
" 2.402678e-55 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 6 | \n",
" 240.765684 | \n",
" 4.687337e-52 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 26 | \n",
" 196.967146 | \n",
" 3.170955e-43 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 196.967146 | \n",
" 3.170955e-43 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 196.967146 | \n",
" 3.170955e-43 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 2 | \n",
" 93.612918 | \n",
" 8.702609e-22 | \n",
" Arable | \n",
"
\n",
" \n",
" 20 | \n",
" 47.786916 | \n",
" 5.921305e-12 | \n",
" Suburban | \n",
"
\n",
" \n",
" 8 | \n",
" 41.501374 | \n",
" 1.392317e-10 | \n",
" Heather | \n",
"
\n",
" \n",
" 5 | \n",
" 19.665672 | \n",
" 9.597340e-06 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 13.908913 | \n",
" 1.958784e-04 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 22 | \n",
" 8.905596 | \n",
" 2.868761e-03 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 10 | \n",
" 2.891045 | \n",
" 8.918962e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 18 | \n",
" 2.474858 | \n",
" 1.157984e-01 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 19 | \n",
" 1.866841 | \n",
" 1.719524e-01 | \n",
" Urban | \n",
"
\n",
" \n",
" 9 | \n",
" 1.799764 | \n",
" 1.798551e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 1.525152 | \n",
" 2.169502e-01 | \n",
" Fen | \n",
"
\n",
" \n",
" 17 | \n",
" 1.414285 | \n",
" 2.344522e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 14 | \n",
" 0.880416 | \n",
" 3.481726e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 4 | \n",
" 0.595848 | \n",
" 4.402348e-01 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.430001 | \n",
" 5.120451e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 15 | \n",
" 0.143413 | \n",
" 7.049410e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 11 | \n",
" 0.042886 | \n",
" 8.359561e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 12 | \n",
" 0.035680 | \n",
" 8.501928e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 1516.675979 4.034569e-263 Surface type\n",
"21 1440.341773 1.912231e-252 Elevation\n",
"25 1051.448282 9.009989e-195 Inflowing drainage direction\n",
"31 721.884503 5.994541e-141 Mancozeb_10km\n",
"32 721.884503 5.994541e-141 Mecoprop-P_10km\n",
"29 719.541000 1.510181e-140 Chlorothalonil_10km\n",
"30 719.541000 1.510181e-140 Glyphosate_10km\n",
"34 719.541000 1.510181e-140 Pendimethalin_10km\n",
"3 615.251091 2.114437e-122 Improve grassland\n",
"38 574.147816 4.336277e-115 Tri-allate_10km\n",
"36 513.236262 4.432676e-104 Prosulfocarb_10km\n",
"37 513.236262 4.432676e-104 Sulphur_10km\n",
"24 480.598054 4.304565e-98 Outflowing drainage direction\n",
"0 412.738950 1.932868e-85 Deciduous woodland\n",
"35 375.496624 2.243687e-78 PropamocarbHydrochloride_10km\n",
"33 362.348467 7.348625e-76 Metamitron_10km\n",
"1 257.265143 2.402678e-55 Coniferous woodland\n",
"6 240.765684 4.687337e-52 Acid grassland\n",
"26 196.967146 3.170955e-43 Fertiliser K\n",
"27 196.967146 3.170955e-43 Fertiliser N\n",
"28 196.967146 3.170955e-43 Fertiliser P\n",
"2 93.612918 8.702609e-22 Arable\n",
"20 47.786916 5.921305e-12 Suburban\n",
"8 41.501374 1.392317e-10 Heather\n",
"5 19.665672 9.597340e-06 Calcareous grassland\n",
"13 13.908913 1.958784e-04 Freshwater\n",
"22 8.905596 2.868761e-03 Cumulative catchment area\n",
"10 2.891045 8.918962e-02 Bog\n",
"18 2.474858 1.157984e-01 Saltmarsh\n",
"19 1.866841 1.719524e-01 Urban\n",
"9 1.799764 1.798551e-01 Heather grassland\n",
"7 1.525152 2.169502e-01 Fen\n",
"17 1.414285 2.344522e-01 Littoral sediment\n",
"14 0.880416 3.481726e-01 Supralittoral rock\n",
"4 0.595848 4.402348e-01 Neutral grassland\n",
"16 0.430001 5.120451e-01 Littoral rock\n",
"15 0.143413 7.049410e-01 Supralittoral sediment\n",
"11 0.042886 8.359561e-01 Inland rock\n",
"12 0.035680 8.501928e-01 Saltwater"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Grey Partridge 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 3400.634758 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 26 | \n",
" 3012.624235 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 3012.624235 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 3012.624235 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 21 | \n",
" 2971.831794 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 25 | \n",
" 2704.779889 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 2 | \n",
" 1571.720673 | \n",
" 1.066172e-270 | \n",
" Arable | \n",
"
\n",
" \n",
" 29 | \n",
" 781.528925 | \n",
" 4.547596e-151 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 781.528925 | \n",
" 4.547596e-151 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 781.528925 | \n",
" 4.547596e-151 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 31 | \n",
" 777.761278 | \n",
" 1.958039e-150 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 777.761278 | \n",
" 1.958039e-150 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 3 | \n",
" 772.281638 | \n",
" 1.641378e-149 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 36 | \n",
" 726.649481 | \n",
" 9.177369e-142 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 726.649481 | \n",
" 9.177369e-142 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 38 | \n",
" 698.039823 | \n",
" 7.476889e-137 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 33 | \n",
" 616.616839 | \n",
" 1.212906e-122 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 35 | \n",
" 615.647956 | \n",
" 1.799064e-122 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 24 | \n",
" 584.987101 | \n",
" 5.010287e-117 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 327.534974 | \n",
" 3.804785e-69 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 298.002024 | \n",
" 2.183527e-63 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 77.634624 | \n",
" 2.187610e-18 | \n",
" Urban | \n",
"
\n",
" \n",
" 4 | \n",
" 44.253781 | \n",
" 3.486330e-11 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 33.060397 | \n",
" 9.948735e-09 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 24.530191 | \n",
" 7.771715e-07 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 22 | \n",
" 13.459902 | \n",
" 2.484816e-04 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 13 | \n",
" 12.699635 | \n",
" 3.721351e-04 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 11.344633 | \n",
" 7.673946e-04 | \n",
" Fen | \n",
"
\n",
" \n",
" 17 | \n",
" 9.944567 | \n",
" 1.631166e-03 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 11 | \n",
" 3.961874 | \n",
" 4.664365e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 15 | \n",
" 3.643353 | \n",
" 5.640058e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 10 | \n",
" 2.993600 | \n",
" 8.370969e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 6 | \n",
" 2.048774 | \n",
" 1.524459e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 1.786211 | \n",
" 1.815023e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 9 | \n",
" 1.212361 | \n",
" 2.709643e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.784977 | \n",
" 3.757031e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 8 | \n",
" 0.422222 | \n",
" 5.158862e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 12 | \n",
" 0.219961 | \n",
" 6.391078e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 1 | \n",
" 0.189243 | \n",
" 6.635828e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 3400.634758 0.000000e+00 Surface type\n",
"26 3012.624235 0.000000e+00 Fertiliser K\n",
"27 3012.624235 0.000000e+00 Fertiliser N\n",
"28 3012.624235 0.000000e+00 Fertiliser P\n",
"21 2971.831794 0.000000e+00 Elevation\n",
"25 2704.779889 0.000000e+00 Inflowing drainage direction\n",
"2 1571.720673 1.066172e-270 Arable\n",
"29 781.528925 4.547596e-151 Chlorothalonil_10km\n",
"30 781.528925 4.547596e-151 Glyphosate_10km\n",
"34 781.528925 4.547596e-151 Pendimethalin_10km\n",
"31 777.761278 1.958039e-150 Mancozeb_10km\n",
"32 777.761278 1.958039e-150 Mecoprop-P_10km\n",
"3 772.281638 1.641378e-149 Improve grassland\n",
"36 726.649481 9.177369e-142 Prosulfocarb_10km\n",
"37 726.649481 9.177369e-142 Sulphur_10km\n",
"38 698.039823 7.476889e-137 Tri-allate_10km\n",
"33 616.616839 1.212906e-122 Metamitron_10km\n",
"35 615.647956 1.799064e-122 PropamocarbHydrochloride_10km\n",
"24 584.987101 5.010287e-117 Outflowing drainage direction\n",
"0 327.534974 3.804785e-69 Deciduous woodland\n",
"20 298.002024 2.183527e-63 Suburban\n",
"19 77.634624 2.187610e-18 Urban\n",
"4 44.253781 3.486330e-11 Neutral grassland\n",
"5 33.060397 9.948735e-09 Calcareous grassland\n",
"18 24.530191 7.771715e-07 Saltmarsh\n",
"22 13.459902 2.484816e-04 Cumulative catchment area\n",
"13 12.699635 3.721351e-04 Freshwater\n",
"7 11.344633 7.673946e-04 Fen\n",
"17 9.944567 1.631166e-03 Littoral sediment\n",
"11 3.961874 4.664365e-02 Inland rock\n",
"15 3.643353 5.640058e-02 Supralittoral sediment\n",
"10 2.993600 8.370969e-02 Bog\n",
"6 2.048774 1.524459e-01 Acid grassland\n",
"14 1.786211 1.815023e-01 Supralittoral rock\n",
"9 1.212361 2.709643e-01 Heather grassland\n",
"16 0.784977 3.757031e-01 Littoral rock\n",
"8 0.422222 5.158862e-01 Heather\n",
"12 0.219961 6.391078e-01 Saltwater\n",
"1 0.189243 6.635828e-01 Coniferous woodland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Indian Peafowl 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 1144.800740 | \n",
" 3.777807e-209 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 1144.800740 | \n",
" 3.777807e-209 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 1144.800740 | \n",
" 3.777807e-209 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 23 | \n",
" 754.797758 | \n",
" 1.483797e-146 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 562.392260 | \n",
" 5.565883e-113 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 554.303821 | \n",
" 1.587591e-111 | \n",
" Elevation | \n",
"
\n",
" \n",
" 2 | \n",
" 494.199893 | \n",
" 1.352579e-100 | \n",
" Arable | \n",
"
\n",
" \n",
" 36 | \n",
" 397.595728 | \n",
" 1.406939e-82 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 397.595728 | \n",
" 1.406939e-82 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 0 | \n",
" 362.537756 | \n",
" 6.759522e-76 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 29 | \n",
" 359.272836 | \n",
" 2.858800e-75 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 359.272836 | \n",
" 2.858800e-75 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 31 | \n",
" 359.272836 | \n",
" 2.858800e-75 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 359.272836 | \n",
" 2.858800e-75 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 359.272836 | \n",
" 2.858800e-75 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 3 | \n",
" 355.699518 | \n",
" 1.388033e-74 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 38 | \n",
" 349.877991 | \n",
" 1.828680e-73 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 33 | \n",
" 301.537542 | \n",
" 4.432405e-64 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 20 | \n",
" 296.541227 | \n",
" 4.222218e-63 | \n",
" Suburban | \n",
"
\n",
" \n",
" 35 | \n",
" 290.544642 | \n",
" 6.348500e-62 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 24 | \n",
" 246.800525 | \n",
" 2.918994e-53 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 19 | \n",
" 35.737943 | \n",
" 2.558060e-09 | \n",
" Urban | \n",
"
\n",
" \n",
" 22 | \n",
" 30.997451 | \n",
" 2.841086e-08 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 5 | \n",
" 28.689072 | \n",
" 9.222468e-08 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 11.928487 | \n",
" 5.614321e-04 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 8.214172 | \n",
" 4.188976e-03 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 13 | \n",
" 5.512478 | \n",
" 1.895389e-02 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 3.709709 | \n",
" 5.420288e-02 | \n",
" Fen | \n",
"
\n",
" \n",
" 18 | \n",
" 3.099160 | \n",
" 7.844719e-02 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 16 | \n",
" 2.110375 | \n",
" 1.464209e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 1.749114 | \n",
" 1.861015e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 14 | \n",
" 1.030285 | \n",
" 3.101837e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 0.433261 | \n",
" 5.104501e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 6 | \n",
" 0.349987 | \n",
" 5.541705e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 15 | \n",
" 0.275544 | \n",
" 5.996806e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 0.131766 | \n",
" 7.166368e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 9 | \n",
" 0.107604 | \n",
" 7.429141e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 0.025027 | \n",
" 8.743110e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 8 | \n",
" 0.007901 | \n",
" 9.291788e-01 | \n",
" Heather | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 1144.800740 3.777807e-209 Fertiliser K\n",
"27 1144.800740 3.777807e-209 Fertiliser N\n",
"28 1144.800740 3.777807e-209 Fertiliser P\n",
"23 754.797758 1.483797e-146 Surface type\n",
"25 562.392260 5.565883e-113 Inflowing drainage direction\n",
"21 554.303821 1.587591e-111 Elevation\n",
"2 494.199893 1.352579e-100 Arable\n",
"36 397.595728 1.406939e-82 Prosulfocarb_10km\n",
"37 397.595728 1.406939e-82 Sulphur_10km\n",
"0 362.537756 6.759522e-76 Deciduous woodland\n",
"29 359.272836 2.858800e-75 Chlorothalonil_10km\n",
"30 359.272836 2.858800e-75 Glyphosate_10km\n",
"31 359.272836 2.858800e-75 Mancozeb_10km\n",
"32 359.272836 2.858800e-75 Mecoprop-P_10km\n",
"34 359.272836 2.858800e-75 Pendimethalin_10km\n",
"3 355.699518 1.388033e-74 Improve grassland\n",
"38 349.877991 1.828680e-73 Tri-allate_10km\n",
"33 301.537542 4.432405e-64 Metamitron_10km\n",
"20 296.541227 4.222218e-63 Suburban\n",
"35 290.544642 6.348500e-62 PropamocarbHydrochloride_10km\n",
"24 246.800525 2.918994e-53 Outflowing drainage direction\n",
"19 35.737943 2.558060e-09 Urban\n",
"22 30.997451 2.841086e-08 Cumulative catchment area\n",
"5 28.689072 9.222468e-08 Calcareous grassland\n",
"4 11.928487 5.614321e-04 Neutral grassland\n",
"1 8.214172 4.188976e-03 Coniferous woodland\n",
"13 5.512478 1.895389e-02 Freshwater\n",
"7 3.709709 5.420288e-02 Fen\n",
"18 3.099160 7.844719e-02 Saltmarsh\n",
"16 2.110375 1.464209e-01 Littoral rock\n",
"10 1.749114 1.861015e-01 Bog\n",
"14 1.030285 3.101837e-01 Supralittoral rock\n",
"11 0.433261 5.104501e-01 Inland rock\n",
"6 0.349987 5.541705e-01 Acid grassland\n",
"15 0.275544 5.996806e-01 Supralittoral sediment\n",
"12 0.131766 7.166368e-01 Saltwater\n",
"9 0.107604 7.429141e-01 Heather grassland\n",
"17 0.025027 8.743110e-01 Littoral sediment\n",
"8 0.007901 9.291788e-01 Heather"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Little Owl 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 5828.921155 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 5828.921155 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 5828.921155 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 23 | \n",
" 3559.278760 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 3136.796514 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 25 | \n",
" 3021.897153 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 2 | \n",
" 1533.729395 | \n",
" 1.767848e-265 | \n",
" Arable | \n",
"
\n",
" \n",
" 29 | \n",
" 1264.339002 | \n",
" 4.715367e-227 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 1264.339002 | \n",
" 4.715367e-227 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 31 | \n",
" 1264.339002 | \n",
" 4.715367e-227 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 1264.339002 | \n",
" 4.715367e-227 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 1264.339002 | \n",
" 4.715367e-227 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 38 | \n",
" 1105.071811 | \n",
" 4.491465e-203 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 36 | \n",
" 1072.156171 | \n",
" 5.425738e-198 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 1072.156171 | \n",
" 5.425738e-198 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 33 | \n",
" 874.989492 | \n",
" 1.407758e-166 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 35 | \n",
" 850.464782 | \n",
" 1.507077e-162 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 3 | \n",
" 805.594552 | \n",
" 4.209572e-155 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 24 | \n",
" 578.181222 | \n",
" 8.231576e-116 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 413.099124 | \n",
" 1.653117e-85 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 334.433765 | \n",
" 1.751859e-70 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 78.360343 | \n",
" 1.530878e-18 | \n",
" Urban | \n",
"
\n",
" \n",
" 4 | \n",
" 48.334893 | \n",
" 4.499781e-12 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 40.548857 | \n",
" 2.250039e-10 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 22 | \n",
" 32.640589 | \n",
" 1.231441e-08 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 18 | \n",
" 21.008830 | \n",
" 4.781964e-06 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 7 | \n",
" 8.572271 | \n",
" 3.442080e-03 | \n",
" Fen | \n",
"
\n",
" \n",
" 11 | \n",
" 4.147986 | \n",
" 4.178254e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 8 | \n",
" 3.747195 | \n",
" 5.300166e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 16 | \n",
" 3.077734 | \n",
" 7.948576e-02 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 17 | \n",
" 2.992167 | \n",
" 8.378370e-02 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 15 | \n",
" 2.808580 | \n",
" 9.387843e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 9 | \n",
" 2.785733 | \n",
" 9.522440e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 1.798244 | \n",
" 1.800390e-01 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 1 | \n",
" 0.897553 | \n",
" 3.435244e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 12 | \n",
" 0.723618 | \n",
" 3.950360e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 6 | \n",
" 0.238446 | \n",
" 6.253705e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 0.090069 | \n",
" 7.641124e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 0.003703 | \n",
" 9.514821e-01 | \n",
" Bog | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 5828.921155 0.000000e+00 Fertiliser K\n",
"27 5828.921155 0.000000e+00 Fertiliser N\n",
"28 5828.921155 0.000000e+00 Fertiliser P\n",
"23 3559.278760 0.000000e+00 Surface type\n",
"21 3136.796514 0.000000e+00 Elevation\n",
"25 3021.897153 0.000000e+00 Inflowing drainage direction\n",
"2 1533.729395 1.767848e-265 Arable\n",
"29 1264.339002 4.715367e-227 Chlorothalonil_10km\n",
"30 1264.339002 4.715367e-227 Glyphosate_10km\n",
"31 1264.339002 4.715367e-227 Mancozeb_10km\n",
"32 1264.339002 4.715367e-227 Mecoprop-P_10km\n",
"34 1264.339002 4.715367e-227 Pendimethalin_10km\n",
"38 1105.071811 4.491465e-203 Tri-allate_10km\n",
"36 1072.156171 5.425738e-198 Prosulfocarb_10km\n",
"37 1072.156171 5.425738e-198 Sulphur_10km\n",
"33 874.989492 1.407758e-166 Metamitron_10km\n",
"35 850.464782 1.507077e-162 PropamocarbHydrochloride_10km\n",
"3 805.594552 4.209572e-155 Improve grassland\n",
"24 578.181222 8.231576e-116 Outflowing drainage direction\n",
"0 413.099124 1.653117e-85 Deciduous woodland\n",
"20 334.433765 1.751859e-70 Suburban\n",
"19 78.360343 1.530878e-18 Urban\n",
"4 48.334893 4.499781e-12 Neutral grassland\n",
"5 40.548857 2.250039e-10 Calcareous grassland\n",
"22 32.640589 1.231441e-08 Cumulative catchment area\n",
"18 21.008830 4.781964e-06 Saltmarsh\n",
"7 8.572271 3.442080e-03 Fen\n",
"11 4.147986 4.178254e-02 Inland rock\n",
"8 3.747195 5.300166e-02 Heather\n",
"16 3.077734 7.948576e-02 Littoral rock\n",
"17 2.992167 8.378370e-02 Littoral sediment\n",
"15 2.808580 9.387843e-02 Supralittoral sediment\n",
"9 2.785733 9.522440e-02 Heather grassland\n",
"13 1.798244 1.800390e-01 Freshwater\n",
"1 0.897553 3.435244e-01 Coniferous woodland\n",
"12 0.723618 3.950360e-01 Saltwater\n",
"6 0.238446 6.253705e-01 Acid grassland\n",
"14 0.090069 7.641124e-01 Supralittoral rock\n",
"10 0.003703 9.514821e-01 Bog"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mandarin Duck 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 2376.682544 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 2376.682544 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 2376.682544 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 23 | \n",
" 1570.251863 | \n",
" 1.693384e-270 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 1262.402052 | \n",
" 9.104361e-227 | \n",
" Elevation | \n",
"
\n",
" \n",
" 29 | \n",
" 1175.076676 | \n",
" 9.773437e-214 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 1175.076676 | \n",
" 9.773437e-214 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 31 | \n",
" 1175.076676 | \n",
" 9.773437e-214 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 1175.076676 | \n",
" 9.773437e-214 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 1175.076676 | \n",
" 9.773437e-214 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 25 | \n",
" 1125.652741 | \n",
" 3.142630e-206 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 36 | \n",
" 1111.543858 | \n",
" 4.553603e-204 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 1111.543858 | \n",
" 4.553603e-204 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 38 | \n",
" 1034.256684 | \n",
" 4.383922e-192 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 33 | \n",
" 842.817101 | \n",
" 2.757285e-161 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 35 | \n",
" 838.584038 | \n",
" 1.381625e-160 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 3 | \n",
" 719.444452 | \n",
" 1.568797e-140 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 0 | \n",
" 542.531902 | \n",
" 2.114696e-109 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 2 | \n",
" 465.257609 | \n",
" 2.949695e-95 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 449.870098 | \n",
" 2.130590e-92 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 20 | \n",
" 407.303250 | \n",
" 2.050692e-84 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 128.616823 | \n",
" 3.777432e-29 | \n",
" Urban | \n",
"
\n",
" \n",
" 5 | \n",
" 42.361723 | \n",
" 9.028347e-11 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 37.814586 | \n",
" 8.945254e-10 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 22 | \n",
" 35.248440 | \n",
" 3.278061e-09 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 13 | \n",
" 25.421537 | \n",
" 4.915887e-07 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 1 | \n",
" 24.882851 | \n",
" 6.483057e-07 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 7 | \n",
" 8.949163 | \n",
" 2.801367e-03 | \n",
" Fen | \n",
"
\n",
" \n",
" 18 | \n",
" 8.116605 | \n",
" 4.419752e-03 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 10 | \n",
" 5.180315 | \n",
" 2.292305e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 6 | \n",
" 4.543835 | \n",
" 3.312856e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 2.696160 | \n",
" 1.007080e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 12 | \n",
" 1.941605 | \n",
" 1.636104e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 14 | \n",
" 1.695076 | \n",
" 1.930455e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 15 | \n",
" 0.982589 | \n",
" 3.216502e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 17 | \n",
" 0.912160 | \n",
" 3.396284e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 9 | \n",
" 0.529182 | \n",
" 4.670147e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 0.054095 | \n",
" 8.161030e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 11 | \n",
" 0.000975 | \n",
" 9.750981e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 2376.682544 0.000000e+00 Fertiliser K\n",
"27 2376.682544 0.000000e+00 Fertiliser N\n",
"28 2376.682544 0.000000e+00 Fertiliser P\n",
"23 1570.251863 1.693384e-270 Surface type\n",
"21 1262.402052 9.104361e-227 Elevation\n",
"29 1175.076676 9.773437e-214 Chlorothalonil_10km\n",
"30 1175.076676 9.773437e-214 Glyphosate_10km\n",
"31 1175.076676 9.773437e-214 Mancozeb_10km\n",
"32 1175.076676 9.773437e-214 Mecoprop-P_10km\n",
"34 1175.076676 9.773437e-214 Pendimethalin_10km\n",
"25 1125.652741 3.142630e-206 Inflowing drainage direction\n",
"36 1111.543858 4.553603e-204 Prosulfocarb_10km\n",
"37 1111.543858 4.553603e-204 Sulphur_10km\n",
"38 1034.256684 4.383922e-192 Tri-allate_10km\n",
"33 842.817101 2.757285e-161 Metamitron_10km\n",
"35 838.584038 1.381625e-160 PropamocarbHydrochloride_10km\n",
"3 719.444452 1.568797e-140 Improve grassland\n",
"0 542.531902 2.114696e-109 Deciduous woodland\n",
"2 465.257609 2.949695e-95 Arable\n",
"24 449.870098 2.130590e-92 Outflowing drainage direction\n",
"20 407.303250 2.050692e-84 Suburban\n",
"19 128.616823 3.777432e-29 Urban\n",
"5 42.361723 9.028347e-11 Calcareous grassland\n",
"4 37.814586 8.945254e-10 Neutral grassland\n",
"22 35.248440 3.278061e-09 Cumulative catchment area\n",
"13 25.421537 4.915887e-07 Freshwater\n",
"1 24.882851 6.483057e-07 Coniferous woodland\n",
"7 8.949163 2.801367e-03 Fen\n",
"18 8.116605 4.419752e-03 Saltmarsh\n",
"10 5.180315 2.292305e-02 Bog\n",
"6 4.543835 3.312856e-02 Acid grassland\n",
"16 2.696160 1.007080e-01 Littoral rock\n",
"12 1.941605 1.636104e-01 Saltwater\n",
"14 1.695076 1.930455e-01 Supralittoral rock\n",
"15 0.982589 3.216502e-01 Supralittoral sediment\n",
"17 0.912160 3.396284e-01 Littoral sediment\n",
"9 0.529182 4.670147e-01 Heather grassland\n",
"8 0.054095 8.161030e-01 Heather\n",
"11 0.000975 9.750981e-01 Inland rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mute Swan 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 21 | \n",
" 4285.029849 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 25 | \n",
" 3424.622932 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 23 | \n",
" 2829.482084 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 26 | \n",
" 720.676937 | \n",
" 9.649173e-141 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 720.676937 | \n",
" 9.649173e-141 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 720.676937 | \n",
" 9.649173e-141 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 29 | \n",
" 564.357910 | \n",
" 2.468576e-113 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 564.357910 | \n",
" 2.468576e-113 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 564.357910 | \n",
" 2.468576e-113 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 31 | \n",
" 563.022203 | \n",
" 4.288984e-113 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 563.022203 | \n",
" 4.288984e-113 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 3 | \n",
" 446.956456 | \n",
" 7.437265e-92 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 36 | \n",
" 385.502047 | \n",
" 2.781917e-80 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 385.502047 | \n",
" 2.781917e-80 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 38 | \n",
" 381.848250 | \n",
" 1.379960e-79 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 2 | \n",
" 380.563329 | \n",
" 2.424716e-79 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 322.537009 | \n",
" 3.554675e-68 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 35 | \n",
" 309.160900 | \n",
" 1.433190e-65 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 33 | \n",
" 304.993428 | \n",
" 9.344151e-65 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 0 | \n",
" 220.990258 | \n",
" 4.368413e-48 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 128.128309 | \n",
" 4.777336e-29 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 36.403502 | \n",
" 1.826230e-09 | \n",
" Urban | \n",
"
\n",
" \n",
" 1 | \n",
" 27.029498 | \n",
" 2.155301e-07 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 22 | \n",
" 19.473657 | \n",
" 1.060429e-05 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 6 | \n",
" 17.927381 | \n",
" 2.372524e-05 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 11.878184 | \n",
" 5.767304e-04 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 11.624678 | \n",
" 6.604854e-04 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 18 | \n",
" 9.096155 | \n",
" 2.585619e-03 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 13 | \n",
" 8.262555 | \n",
" 4.079125e-03 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 5 | \n",
" 7.944114 | \n",
" 4.859938e-03 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 7.085884 | \n",
" 7.815924e-03 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 10 | \n",
" 7.004938 | \n",
" 8.176260e-03 | \n",
" Bog | \n",
"
\n",
" \n",
" 8 | \n",
" 5.793136 | \n",
" 1.615635e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 15 | \n",
" 5.064779 | \n",
" 2.449789e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 7 | \n",
" 4.574230 | \n",
" 3.254681e-02 | \n",
" Fen | \n",
"
\n",
" \n",
" 16 | \n",
" 4.521071 | \n",
" 3.357137e-02 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 9 | \n",
" 3.430012 | \n",
" 6.413195e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 1.735838 | \n",
" 1.877801e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 0.082067 | \n",
" 7.745383e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"21 4285.029849 0.000000e+00 Elevation\n",
"25 3424.622932 0.000000e+00 Inflowing drainage direction\n",
"23 2829.482084 0.000000e+00 Surface type\n",
"26 720.676937 9.649173e-141 Fertiliser K\n",
"27 720.676937 9.649173e-141 Fertiliser N\n",
"28 720.676937 9.649173e-141 Fertiliser P\n",
"29 564.357910 2.468576e-113 Chlorothalonil_10km\n",
"30 564.357910 2.468576e-113 Glyphosate_10km\n",
"34 564.357910 2.468576e-113 Pendimethalin_10km\n",
"31 563.022203 4.288984e-113 Mancozeb_10km\n",
"32 563.022203 4.288984e-113 Mecoprop-P_10km\n",
"3 446.956456 7.437265e-92 Improve grassland\n",
"36 385.502047 2.781917e-80 Prosulfocarb_10km\n",
"37 385.502047 2.781917e-80 Sulphur_10km\n",
"38 381.848250 1.379960e-79 Tri-allate_10km\n",
"2 380.563329 2.424716e-79 Arable\n",
"24 322.537009 3.554675e-68 Outflowing drainage direction\n",
"35 309.160900 1.433190e-65 PropamocarbHydrochloride_10km\n",
"33 304.993428 9.344151e-65 Metamitron_10km\n",
"0 220.990258 4.368413e-48 Deciduous woodland\n",
"20 128.128309 4.777336e-29 Suburban\n",
"19 36.403502 1.826230e-09 Urban\n",
"1 27.029498 2.155301e-07 Coniferous woodland\n",
"22 19.473657 1.060429e-05 Cumulative catchment area\n",
"6 17.927381 2.372524e-05 Acid grassland\n",
"4 11.878184 5.767304e-04 Neutral grassland\n",
"17 11.624678 6.604854e-04 Littoral sediment\n",
"18 9.096155 2.585619e-03 Saltmarsh\n",
"13 8.262555 4.079125e-03 Freshwater\n",
"5 7.944114 4.859938e-03 Calcareous grassland\n",
"12 7.085884 7.815924e-03 Saltwater\n",
"10 7.004938 8.176260e-03 Bog\n",
"8 5.793136 1.615635e-02 Heather\n",
"15 5.064779 2.449789e-02 Supralittoral sediment\n",
"7 4.574230 3.254681e-02 Fen\n",
"16 4.521071 3.357137e-02 Littoral rock\n",
"9 3.430012 6.413195e-02 Heather grassland\n",
"14 1.735838 1.877801e-01 Supralittoral rock\n",
"11 0.082067 7.745383e-01 Inland rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pheasant 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 21 | \n",
" 3918.088889 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 23 | \n",
" 3761.808452 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 3082.737272 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 26 | \n",
" 990.797875 | \n",
" 3.096770e-185 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 990.797875 | \n",
" 3.096770e-185 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 990.797875 | \n",
" 3.096770e-185 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 29 | \n",
" 754.564125 | \n",
" 1.625473e-146 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 754.564125 | \n",
" 1.625473e-146 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 754.564125 | \n",
" 1.625473e-146 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 31 | \n",
" 752.724864 | \n",
" 3.333225e-146 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 752.724864 | \n",
" 3.333225e-146 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 3 | \n",
" 588.096290 | \n",
" 1.397570e-117 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 38 | \n",
" 527.728254 | \n",
" 1.018826e-106 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 36 | \n",
" 525.279971 | \n",
" 2.837985e-106 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 525.279971 | \n",
" 2.837985e-106 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 24 | \n",
" 489.630631 | \n",
" 9.347569e-100 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 2 | \n",
" 456.120338 | \n",
" 1.464185e-93 | \n",
" Arable | \n",
"
\n",
" \n",
" 35 | \n",
" 395.599590 | \n",
" 3.362167e-82 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 33 | \n",
" 393.254409 | \n",
" 9.363558e-82 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 0 | \n",
" 242.808633 | \n",
" 1.830101e-52 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 133.391825 | \n",
" 3.814028e-30 | \n",
" Suburban | \n",
"
\n",
" \n",
" 1 | \n",
" 35.297078 | \n",
" 3.198252e-09 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 19 | \n",
" 31.560526 | \n",
" 2.132963e-08 | \n",
" Urban | \n",
"
\n",
" \n",
" 6 | \n",
" 29.348583 | \n",
" 6.585463e-08 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 22 | \n",
" 23.940059 | \n",
" 1.052892e-06 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 4 | \n",
" 16.710172 | \n",
" 4.483242e-05 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 15.309706 | \n",
" 9.352465e-05 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 13.331895 | \n",
" 2.659400e-04 | \n",
" Heather | \n",
"
\n",
" \n",
" 18 | \n",
" 7.343273 | \n",
" 6.774440e-03 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 9 | \n",
" 6.407960 | \n",
" 1.141792e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 5.214079 | \n",
" 2.248293e-02 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 11 | \n",
" 4.454565 | \n",
" 3.490084e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 7 | \n",
" 4.143647 | \n",
" 4.188959e-02 | \n",
" Fen | \n",
"
\n",
" \n",
" 10 | \n",
" 2.258077 | \n",
" 1.330373e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 14 | \n",
" 1.621027 | \n",
" 2.030596e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 16 | \n",
" 1.122800 | \n",
" 2.894122e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 13 | \n",
" 0.946162 | \n",
" 3.307864e-01 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 15 | \n",
" 0.687315 | \n",
" 4.071534e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 0.235982 | \n",
" 6.271634e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"21 3918.088889 0.000000e+00 Elevation\n",
"23 3761.808452 0.000000e+00 Surface type\n",
"25 3082.737272 0.000000e+00 Inflowing drainage direction\n",
"26 990.797875 3.096770e-185 Fertiliser K\n",
"27 990.797875 3.096770e-185 Fertiliser N\n",
"28 990.797875 3.096770e-185 Fertiliser P\n",
"29 754.564125 1.625473e-146 Chlorothalonil_10km\n",
"30 754.564125 1.625473e-146 Glyphosate_10km\n",
"34 754.564125 1.625473e-146 Pendimethalin_10km\n",
"31 752.724864 3.333225e-146 Mancozeb_10km\n",
"32 752.724864 3.333225e-146 Mecoprop-P_10km\n",
"3 588.096290 1.397570e-117 Improve grassland\n",
"38 527.728254 1.018826e-106 Tri-allate_10km\n",
"36 525.279971 2.837985e-106 Prosulfocarb_10km\n",
"37 525.279971 2.837985e-106 Sulphur_10km\n",
"24 489.630631 9.347569e-100 Outflowing drainage direction\n",
"2 456.120338 1.464185e-93 Arable\n",
"35 395.599590 3.362167e-82 PropamocarbHydrochloride_10km\n",
"33 393.254409 9.363558e-82 Metamitron_10km\n",
"0 242.808633 1.830101e-52 Deciduous woodland\n",
"20 133.391825 3.814028e-30 Suburban\n",
"1 35.297078 3.198252e-09 Coniferous woodland\n",
"19 31.560526 2.132963e-08 Urban\n",
"6 29.348583 6.585463e-08 Acid grassland\n",
"22 23.940059 1.052892e-06 Cumulative catchment area\n",
"4 16.710172 4.483242e-05 Neutral grassland\n",
"5 15.309706 9.352465e-05 Calcareous grassland\n",
"8 13.331895 2.659400e-04 Heather\n",
"18 7.343273 6.774440e-03 Saltmarsh\n",
"9 6.407960 1.141792e-02 Heather grassland\n",
"17 5.214079 2.248293e-02 Littoral sediment\n",
"11 4.454565 3.490084e-02 Inland rock\n",
"7 4.143647 4.188959e-02 Fen\n",
"10 2.258077 1.330373e-01 Bog\n",
"14 1.621027 2.030596e-01 Supralittoral rock\n",
"16 1.122800 2.894122e-01 Littoral rock\n",
"13 0.946162 3.307864e-01 Freshwater\n",
"15 0.687315 4.071534e-01 Supralittoral sediment\n",
"12 0.235982 6.271634e-01 Saltwater"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pink-footed Goose 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 1682.218122 | \n",
" 1.284141e-285 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 1663.088957 | \n",
" 4.613765e-283 | \n",
" Elevation | \n",
"
\n",
" \n",
" 23 | \n",
" 1582.046768 | \n",
" 4.142091e-272 | \n",
" Surface type | \n",
"
\n",
" \n",
" 2 | \n",
" 563.718068 | \n",
" 3.216301e-113 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 397.048799 | \n",
" 1.786134e-82 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 3 | \n",
" 354.864185 | \n",
" 2.008795e-74 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 26 | \n",
" 298.859626 | \n",
" 1.482852e-63 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 298.859626 | \n",
" 1.482852e-63 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 298.859626 | \n",
" 1.482852e-63 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 31 | \n",
" 220.954337 | \n",
" 4.441810e-48 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 220.954337 | \n",
" 4.441810e-48 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 29 | \n",
" 219.797957 | \n",
" 7.595595e-48 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 219.797957 | \n",
" 7.595595e-48 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 219.797957 | \n",
" 7.595595e-48 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 36 | \n",
" 168.562296 | \n",
" 2.020251e-37 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 168.562296 | \n",
" 2.020251e-37 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 0 | \n",
" 166.093714 | \n",
" 6.498543e-37 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 38 | \n",
" 154.320781 | \n",
" 1.735544e-34 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 35 | \n",
" 91.642076 | \n",
" 2.278422e-21 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 20 | \n",
" 89.444154 | \n",
" 6.671769e-21 | \n",
" Suburban | \n",
"
\n",
" \n",
" 33 | \n",
" 84.711792 | \n",
" 6.769856e-20 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 17 | \n",
" 61.599086 | \n",
" 6.041977e-15 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 18 | \n",
" 47.686527 | \n",
" 6.226801e-12 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 4 | \n",
" 42.574103 | \n",
" 8.113151e-11 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 19 | \n",
" 28.459930 | \n",
" 1.036802e-07 | \n",
" Urban | \n",
"
\n",
" \n",
" 13 | \n",
" 22.349456 | \n",
" 2.390759e-06 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 1 | \n",
" 21.292642 | \n",
" 4.128544e-06 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 6 | \n",
" 20.624488 | \n",
" 5.835555e-06 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 19.433700 | \n",
" 1.082683e-05 | \n",
" Fen | \n",
"
\n",
" \n",
" 15 | \n",
" 19.232874 | \n",
" 1.201842e-05 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 8 | \n",
" 18.744420 | \n",
" 1.549662e-05 | \n",
" Heather | \n",
"
\n",
" \n",
" 10 | \n",
" 12.768206 | \n",
" 3.588010e-04 | \n",
" Bog | \n",
"
\n",
" \n",
" 12 | \n",
" 10.405852 | \n",
" 1.271339e-03 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 9 | \n",
" 10.323252 | \n",
" 1.329281e-03 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 22 | \n",
" 7.309235 | \n",
" 6.903595e-03 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 16 | \n",
" 7.060852 | \n",
" 7.925588e-03 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 14 | \n",
" 5.804120 | \n",
" 1.605596e-02 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 5 | \n",
" 4.561093 | \n",
" 3.279693e-02 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 0.003258 | \n",
" 9.544873e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 1682.218122 1.284141e-285 Inflowing drainage direction\n",
"21 1663.088957 4.613765e-283 Elevation\n",
"23 1582.046768 4.142091e-272 Surface type\n",
"2 563.718068 3.216301e-113 Arable\n",
"24 397.048799 1.786134e-82 Outflowing drainage direction\n",
"3 354.864185 2.008795e-74 Improve grassland\n",
"26 298.859626 1.482852e-63 Fertiliser K\n",
"27 298.859626 1.482852e-63 Fertiliser N\n",
"28 298.859626 1.482852e-63 Fertiliser P\n",
"31 220.954337 4.441810e-48 Mancozeb_10km\n",
"32 220.954337 4.441810e-48 Mecoprop-P_10km\n",
"29 219.797957 7.595595e-48 Chlorothalonil_10km\n",
"30 219.797957 7.595595e-48 Glyphosate_10km\n",
"34 219.797957 7.595595e-48 Pendimethalin_10km\n",
"36 168.562296 2.020251e-37 Prosulfocarb_10km\n",
"37 168.562296 2.020251e-37 Sulphur_10km\n",
"0 166.093714 6.498543e-37 Deciduous woodland\n",
"38 154.320781 1.735544e-34 Tri-allate_10km\n",
"35 91.642076 2.278422e-21 PropamocarbHydrochloride_10km\n",
"20 89.444154 6.671769e-21 Suburban\n",
"33 84.711792 6.769856e-20 Metamitron_10km\n",
"17 61.599086 6.041977e-15 Littoral sediment\n",
"18 47.686527 6.226801e-12 Saltmarsh\n",
"4 42.574103 8.113151e-11 Neutral grassland\n",
"19 28.459930 1.036802e-07 Urban\n",
"13 22.349456 2.390759e-06 Freshwater\n",
"1 21.292642 4.128544e-06 Coniferous woodland\n",
"6 20.624488 5.835555e-06 Acid grassland\n",
"7 19.433700 1.082683e-05 Fen\n",
"15 19.232874 1.201842e-05 Supralittoral sediment\n",
"8 18.744420 1.549662e-05 Heather\n",
"10 12.768206 3.588010e-04 Bog\n",
"12 10.405852 1.271339e-03 Saltwater\n",
"9 10.323252 1.329281e-03 Heather grassland\n",
"22 7.309235 6.903595e-03 Cumulative catchment area\n",
"16 7.060852 7.925588e-03 Littoral rock\n",
"14 5.804120 1.605596e-02 Supralittoral rock\n",
"5 4.561093 3.279693e-02 Calcareous grassland\n",
"11 0.003258 9.544873e-01 Inland rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pintail 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 1063.762969 | \n",
" 1.090230e-196 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 23 | \n",
" 858.206427 | \n",
" 7.999859e-164 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 827.358145 | \n",
" 1.001460e-158 | \n",
" Elevation | \n",
"
\n",
" \n",
" 26 | \n",
" 737.488462 | \n",
" 1.297224e-143 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 737.488462 | \n",
" 1.297224e-143 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 737.488462 | \n",
" 1.297224e-143 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 2 | \n",
" 467.480402 | \n",
" 1.142876e-95 | \n",
" Arable | \n",
"
\n",
" \n",
" 29 | \n",
" 335.651708 | \n",
" 1.018161e-70 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 335.651708 | \n",
" 1.018161e-70 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 31 | \n",
" 335.651708 | \n",
" 1.018161e-70 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 335.651708 | \n",
" 1.018161e-70 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 335.651708 | \n",
" 1.018161e-70 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 3 | \n",
" 323.738474 | \n",
" 2.076614e-68 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 38 | \n",
" 255.396926 | \n",
" 5.652887e-55 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 24 | \n",
" 253.487931 | \n",
" 1.355850e-54 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 36 | \n",
" 224.661389 | \n",
" 7.966749e-49 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 223.400734 | \n",
" 1.428744e-48 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 33 | \n",
" 220.602457 | \n",
" 5.229386e-48 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 35 | \n",
" 219.507404 | \n",
" 8.692034e-48 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 20 | \n",
" 181.209514 | \n",
" 5.168309e-40 | \n",
" Suburban | \n",
"
\n",
" \n",
" 0 | \n",
" 144.311367 | \n",
" 2.048534e-32 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 17 | \n",
" 112.352423 | \n",
" 9.640675e-26 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 18 | \n",
" 92.811561 | \n",
" 1.286938e-21 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 19 | \n",
" 72.835214 | \n",
" 2.326583e-17 | \n",
" Urban | \n",
"
\n",
" \n",
" 4 | \n",
" 56.173412 | \n",
" 8.971952e-14 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 43.439880 | \n",
" 5.248672e-11 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 7 | \n",
" 29.234581 | \n",
" 6.980062e-08 | \n",
" Fen | \n",
"
\n",
" \n",
" 15 | \n",
" 28.134624 | \n",
" 1.224372e-07 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 13 | \n",
" 15.136192 | \n",
" 1.024709e-04 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 22 | \n",
" 4.288320 | \n",
" 3.847095e-02 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 10 | \n",
" 1.232586 | \n",
" 2.670047e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 8 | \n",
" 1.131802 | \n",
" 2.874875e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 9 | \n",
" 1.024465 | \n",
" 3.115539e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.743897 | \n",
" 3.884928e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 6 | \n",
" 0.298707 | \n",
" 5.847395e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 0.226972 | \n",
" 6.338170e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 14 | \n",
" 0.212749 | \n",
" 6.446585e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 5 | \n",
" 0.105490 | \n",
" 7.453641e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 0.061888 | \n",
" 8.035558e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 1063.762969 1.090230e-196 Inflowing drainage direction\n",
"23 858.206427 7.999859e-164 Surface type\n",
"21 827.358145 1.001460e-158 Elevation\n",
"26 737.488462 1.297224e-143 Fertiliser K\n",
"27 737.488462 1.297224e-143 Fertiliser N\n",
"28 737.488462 1.297224e-143 Fertiliser P\n",
"2 467.480402 1.142876e-95 Arable\n",
"29 335.651708 1.018161e-70 Chlorothalonil_10km\n",
"30 335.651708 1.018161e-70 Glyphosate_10km\n",
"31 335.651708 1.018161e-70 Mancozeb_10km\n",
"32 335.651708 1.018161e-70 Mecoprop-P_10km\n",
"34 335.651708 1.018161e-70 Pendimethalin_10km\n",
"3 323.738474 2.076614e-68 Improve grassland\n",
"38 255.396926 5.652887e-55 Tri-allate_10km\n",
"24 253.487931 1.355850e-54 Outflowing drainage direction\n",
"36 224.661389 7.966749e-49 Prosulfocarb_10km\n",
"37 223.400734 1.428744e-48 Sulphur_10km\n",
"33 220.602457 5.229386e-48 Metamitron_10km\n",
"35 219.507404 8.692034e-48 PropamocarbHydrochloride_10km\n",
"20 181.209514 5.168309e-40 Suburban\n",
"0 144.311367 2.048534e-32 Deciduous woodland\n",
"17 112.352423 9.640675e-26 Littoral sediment\n",
"18 92.811561 1.286938e-21 Saltmarsh\n",
"19 72.835214 2.326583e-17 Urban\n",
"4 56.173412 8.971952e-14 Neutral grassland\n",
"12 43.439880 5.248672e-11 Saltwater\n",
"7 29.234581 6.980062e-08 Fen\n",
"15 28.134624 1.224372e-07 Supralittoral sediment\n",
"13 15.136192 1.024709e-04 Freshwater\n",
"22 4.288320 3.847095e-02 Cumulative catchment area\n",
"10 1.232586 2.670047e-01 Bog\n",
"8 1.131802 2.874875e-01 Heather\n",
"9 1.024465 3.115539e-01 Heather grassland\n",
"16 0.743897 3.884928e-01 Littoral rock\n",
"6 0.298707 5.847395e-01 Acid grassland\n",
"11 0.226972 6.338170e-01 Inland rock\n",
"14 0.212749 6.446585e-01 Supralittoral rock\n",
"5 0.105490 7.453641e-01 Calcareous grassland\n",
"1 0.061888 8.035558e-01 Coniferous woodland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pochard 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 2050.388140 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 2050.388140 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 2050.388140 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 23 | \n",
" 1829.302778 | \n",
" 6.722059e-305 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 1683.265511 | \n",
" 9.311467e-286 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 1558.054709 | \n",
" 7.942916e-269 | \n",
" Elevation | \n",
"
\n",
" \n",
" 2 | \n",
" 787.153513 | \n",
" 5.158704e-152 | \n",
" Arable | \n",
"
\n",
" \n",
" 29 | \n",
" 646.314832 | \n",
" 7.247431e-128 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 646.314832 | \n",
" 7.247431e-128 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 31 | \n",
" 646.314832 | \n",
" 7.247431e-128 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 646.314832 | \n",
" 7.247431e-128 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 646.314832 | \n",
" 7.247431e-128 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 38 | \n",
" 570.988315 | \n",
" 1.595989e-114 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 3 | \n",
" 562.763291 | \n",
" 4.773860e-113 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 33 | \n",
" 540.405062 | \n",
" 5.127710e-109 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 36 | \n",
" 539.841810 | \n",
" 6.483961e-109 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 537.165552 | \n",
" 1.978517e-108 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 24 | \n",
" 530.095858 | \n",
" 3.785982e-107 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 35 | \n",
" 522.663739 | \n",
" 8.488321e-106 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 20 | \n",
" 412.911486 | \n",
" 1.793393e-85 | \n",
" Suburban | \n",
"
\n",
" \n",
" 0 | \n",
" 317.068854 | \n",
" 4.116031e-67 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 19 | \n",
" 152.812725 | \n",
" 3.557010e-34 | \n",
" Urban | \n",
"
\n",
" \n",
" 4 | \n",
" 50.072834 | \n",
" 1.885312e-12 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 31.644878 | \n",
" 2.043336e-08 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 22 | \n",
" 27.531121 | \n",
" 1.667173e-07 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 13 | \n",
" 25.794352 | \n",
" 4.059689e-07 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 23.028471 | \n",
" 1.684083e-06 | \n",
" Fen | \n",
"
\n",
" \n",
" 17 | \n",
" 16.547624 | \n",
" 4.881792e-05 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 15.922847 | \n",
" 6.775311e-05 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 16 | \n",
" 8.692650 | \n",
" 3.222677e-03 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 8.001764 | \n",
" 4.708055e-03 | \n",
" Bog | \n",
"
\n",
" \n",
" 1 | \n",
" 6.821431 | \n",
" 9.057488e-03 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 15 | \n",
" 5.737654 | \n",
" 1.667345e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 14 | \n",
" 2.180887 | \n",
" 1.398519e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 6 | \n",
" 2.110568 | \n",
" 1.464025e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 1.764399 | \n",
" 1.841902e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 0.765235 | \n",
" 3.817738e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 8 | \n",
" 0.208957 | \n",
" 6.476236e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 9 | \n",
" 0.133778 | \n",
" 7.145760e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 2050.388140 0.000000e+00 Fertiliser K\n",
"27 2050.388140 0.000000e+00 Fertiliser N\n",
"28 2050.388140 0.000000e+00 Fertiliser P\n",
"23 1829.302778 6.722059e-305 Surface type\n",
"25 1683.265511 9.311467e-286 Inflowing drainage direction\n",
"21 1558.054709 7.942916e-269 Elevation\n",
"2 787.153513 5.158704e-152 Arable\n",
"29 646.314832 7.247431e-128 Chlorothalonil_10km\n",
"30 646.314832 7.247431e-128 Glyphosate_10km\n",
"31 646.314832 7.247431e-128 Mancozeb_10km\n",
"32 646.314832 7.247431e-128 Mecoprop-P_10km\n",
"34 646.314832 7.247431e-128 Pendimethalin_10km\n",
"38 570.988315 1.595989e-114 Tri-allate_10km\n",
"3 562.763291 4.773860e-113 Improve grassland\n",
"33 540.405062 5.127710e-109 Metamitron_10km\n",
"36 539.841810 6.483961e-109 Prosulfocarb_10km\n",
"37 537.165552 1.978517e-108 Sulphur_10km\n",
"24 530.095858 3.785982e-107 Outflowing drainage direction\n",
"35 522.663739 8.488321e-106 PropamocarbHydrochloride_10km\n",
"20 412.911486 1.793393e-85 Suburban\n",
"0 317.068854 4.116031e-67 Deciduous woodland\n",
"19 152.812725 3.557010e-34 Urban\n",
"4 50.072834 1.885312e-12 Neutral grassland\n",
"18 31.644878 2.043336e-08 Saltmarsh\n",
"22 27.531121 1.667173e-07 Cumulative catchment area\n",
"13 25.794352 4.059689e-07 Freshwater\n",
"7 23.028471 1.684083e-06 Fen\n",
"17 16.547624 4.881792e-05 Littoral sediment\n",
"12 15.922847 6.775311e-05 Saltwater\n",
"16 8.692650 3.222677e-03 Littoral rock\n",
"10 8.001764 4.708055e-03 Bog\n",
"1 6.821431 9.057488e-03 Coniferous woodland\n",
"15 5.737654 1.667345e-02 Supralittoral sediment\n",
"14 2.180887 1.398519e-01 Supralittoral rock\n",
"6 2.110568 1.464025e-01 Acid grassland\n",
"5 1.764399 1.841902e-01 Calcareous grassland\n",
"11 0.765235 3.817738e-01 Inland rock\n",
"8 0.208957 6.476236e-01 Heather\n",
"9 0.133778 7.145760e-01 Heather grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Red-legged Partridge 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 4665.558943 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 3938.262278 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 26 | \n",
" 3622.944260 | \n",
" 0.000000e+00 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 3622.944260 | \n",
" 0.000000e+00 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 3622.944260 | \n",
" 0.000000e+00 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 25 | \n",
" 3326.396445 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 2 | \n",
" 1357.041556 | \n",
" 1.447426e-240 | \n",
" Arable | \n",
"
\n",
" \n",
" 29 | \n",
" 1120.672617 | \n",
" 1.816264e-205 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 1120.672617 | \n",
" 1.816264e-205 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 1120.672617 | \n",
" 1.816264e-205 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 31 | \n",
" 1116.380676 | \n",
" 8.252559e-205 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 1116.380676 | \n",
" 8.252559e-205 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 36 | \n",
" 881.088110 | \n",
" 1.415221e-167 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 881.088110 | \n",
" 1.415221e-167 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 3 | \n",
" 877.316210 | \n",
" 5.857134e-167 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 38 | \n",
" 872.220376 | \n",
" 4.000470e-166 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 24 | \n",
" 800.790440 | \n",
" 2.674164e-154 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 33 | \n",
" 704.555301 | \n",
" 5.644440e-138 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 35 | \n",
" 695.277852 | \n",
" 2.238974e-136 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 0 | \n",
" 333.873027 | \n",
" 2.249262e-70 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 215.130108 | \n",
" 6.638999e-47 | \n",
" Suburban | \n",
"
\n",
" \n",
" 5 | \n",
" 41.288957 | \n",
" 1.549560e-10 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 22 | \n",
" 35.695864 | \n",
" 2.613167e-09 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 4 | \n",
" 34.346891 | \n",
" 5.177697e-09 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 19 | \n",
" 31.037194 | \n",
" 2.784158e-08 | \n",
" Urban | \n",
"
\n",
" \n",
" 1 | \n",
" 17.036564 | \n",
" 3.779031e-05 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 8 | \n",
" 15.320668 | \n",
" 9.298663e-05 | \n",
" Heather | \n",
"
\n",
" \n",
" 7 | \n",
" 14.692745 | \n",
" 1.294536e-04 | \n",
" Fen | \n",
"
\n",
" \n",
" 18 | \n",
" 12.966514 | \n",
" 3.228901e-04 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 13 | \n",
" 6.630734 | \n",
" 1.007677e-02 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 10 | \n",
" 5.922399 | \n",
" 1.501478e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 12 | \n",
" 4.265842 | \n",
" 3.898227e-02 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 11 | \n",
" 3.963782 | \n",
" 4.659090e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 6 | \n",
" 3.159555 | \n",
" 7.559756e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 2.079135 | \n",
" 1.494420e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 16 | \n",
" 0.751981 | \n",
" 3.859278e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 14 | \n",
" 0.685745 | \n",
" 4.076894e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 9 | \n",
" 0.684070 | \n",
" 4.082628e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 15 | \n",
" 0.068934 | \n",
" 7.929161e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 4665.558943 0.000000e+00 Surface type\n",
"21 3938.262278 0.000000e+00 Elevation\n",
"26 3622.944260 0.000000e+00 Fertiliser K\n",
"27 3622.944260 0.000000e+00 Fertiliser N\n",
"28 3622.944260 0.000000e+00 Fertiliser P\n",
"25 3326.396445 0.000000e+00 Inflowing drainage direction\n",
"2 1357.041556 1.447426e-240 Arable\n",
"29 1120.672617 1.816264e-205 Chlorothalonil_10km\n",
"30 1120.672617 1.816264e-205 Glyphosate_10km\n",
"34 1120.672617 1.816264e-205 Pendimethalin_10km\n",
"31 1116.380676 8.252559e-205 Mancozeb_10km\n",
"32 1116.380676 8.252559e-205 Mecoprop-P_10km\n",
"36 881.088110 1.415221e-167 Prosulfocarb_10km\n",
"37 881.088110 1.415221e-167 Sulphur_10km\n",
"3 877.316210 5.857134e-167 Improve grassland\n",
"38 872.220376 4.000470e-166 Tri-allate_10km\n",
"24 800.790440 2.674164e-154 Outflowing drainage direction\n",
"33 704.555301 5.644440e-138 Metamitron_10km\n",
"35 695.277852 2.238974e-136 PropamocarbHydrochloride_10km\n",
"0 333.873027 2.249262e-70 Deciduous woodland\n",
"20 215.130108 6.638999e-47 Suburban\n",
"5 41.288957 1.549560e-10 Calcareous grassland\n",
"22 35.695864 2.613167e-09 Cumulative catchment area\n",
"4 34.346891 5.177697e-09 Neutral grassland\n",
"19 31.037194 2.784158e-08 Urban\n",
"1 17.036564 3.779031e-05 Coniferous woodland\n",
"8 15.320668 9.298663e-05 Heather\n",
"7 14.692745 1.294536e-04 Fen\n",
"18 12.966514 3.228901e-04 Saltmarsh\n",
"13 6.630734 1.007677e-02 Freshwater\n",
"10 5.922399 1.501478e-02 Bog\n",
"12 4.265842 3.898227e-02 Saltwater\n",
"11 3.963782 4.659090e-02 Inland rock\n",
"6 3.159555 7.559756e-02 Acid grassland\n",
"17 2.079135 1.494420e-01 Littoral sediment\n",
"16 0.751981 3.859278e-01 Littoral rock\n",
"14 0.685745 4.076894e-01 Supralittoral rock\n",
"9 0.684070 4.082628e-01 Heather grassland\n",
"15 0.068934 7.929161e-01 Supralittoral sediment"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ring-necked Parakeet 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 20 | \n",
" 423.338015 | \n",
" 1.956491e-87 | \n",
" Suburban | \n",
"
\n",
" \n",
" 26 | \n",
" 403.889203 | \n",
" 9.058641e-84 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 403.889203 | \n",
" 9.058641e-84 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 403.889203 | \n",
" 9.058641e-84 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 23 | \n",
" 263.539369 | \n",
" 1.363343e-56 | \n",
" Surface type | \n",
"
\n",
" \n",
" 19 | \n",
" 223.881090 | \n",
" 1.143620e-48 | \n",
" Urban | \n",
"
\n",
" \n",
" 25 | \n",
" 198.446382 | \n",
" 1.587181e-43 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 191.636187 | \n",
" 3.852663e-42 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 21 | \n",
" 178.348178 | \n",
" 1.989223e-39 | \n",
" Elevation | \n",
"
\n",
" \n",
" 24 | \n",
" 150.535710 | \n",
" 1.051957e-33 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 3 | \n",
" 139.678605 | \n",
" 1.876150e-31 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 36 | \n",
" 138.613261 | \n",
" 3.123937e-31 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 138.613261 | \n",
" 3.123937e-31 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 38 | \n",
" 124.989699 | \n",
" 2.162435e-28 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 31 | \n",
" 115.763452 | \n",
" 1.851985e-26 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 115.763452 | \n",
" 1.851985e-26 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 29 | \n",
" 115.408999 | \n",
" 2.198059e-26 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 115.408999 | \n",
" 2.198059e-26 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 115.408999 | \n",
" 2.198059e-26 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 35 | \n",
" 84.964310 | \n",
" 5.981668e-20 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 33 | \n",
" 81.556521 | \n",
" 3.183136e-19 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 22 | \n",
" 54.149221 | \n",
" 2.460819e-13 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 2 | \n",
" 43.990900 | \n",
" 3.978728e-11 | \n",
" Arable | \n",
"
\n",
" \n",
" 7 | \n",
" 15.485837 | \n",
" 8.524703e-05 | \n",
" Fen | \n",
"
\n",
" \n",
" 12 | \n",
" 9.050661 | \n",
" 2.650526e-03 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 4 | \n",
" 4.728565 | \n",
" 2.975315e-02 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 3.543688 | \n",
" 5.988106e-02 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 6 | \n",
" 3.422349 | \n",
" 6.442985e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 9 | \n",
" 1.669694 | \n",
" 1.964114e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 1.383683 | \n",
" 2.395797e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 8 | \n",
" 0.916534 | \n",
" 3.384733e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 13 | \n",
" 0.632534 | \n",
" 4.264981e-01 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 11 | \n",
" 0.426454 | \n",
" 5.137902e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 17 | \n",
" 0.367288 | \n",
" 5.445378e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 14 | \n",
" 0.326919 | \n",
" 5.675272e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 16 | \n",
" 0.301721 | \n",
" 5.828517e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 18 | \n",
" 0.181267 | \n",
" 6.703211e-01 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 5 | \n",
" 0.060003 | \n",
" 8.065096e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 15 | \n",
" 0.056731 | \n",
" 8.117571e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"20 423.338015 1.956491e-87 Suburban\n",
"26 403.889203 9.058641e-84 Fertiliser K\n",
"27 403.889203 9.058641e-84 Fertiliser N\n",
"28 403.889203 9.058641e-84 Fertiliser P\n",
"23 263.539369 1.363343e-56 Surface type\n",
"19 223.881090 1.143620e-48 Urban\n",
"25 198.446382 1.587181e-43 Inflowing drainage direction\n",
"0 191.636187 3.852663e-42 Deciduous woodland\n",
"21 178.348178 1.989223e-39 Elevation\n",
"24 150.535710 1.051957e-33 Outflowing drainage direction\n",
"3 139.678605 1.876150e-31 Improve grassland\n",
"36 138.613261 3.123937e-31 Prosulfocarb_10km\n",
"37 138.613261 3.123937e-31 Sulphur_10km\n",
"38 124.989699 2.162435e-28 Tri-allate_10km\n",
"31 115.763452 1.851985e-26 Mancozeb_10km\n",
"32 115.763452 1.851985e-26 Mecoprop-P_10km\n",
"29 115.408999 2.198059e-26 Chlorothalonil_10km\n",
"30 115.408999 2.198059e-26 Glyphosate_10km\n",
"34 115.408999 2.198059e-26 Pendimethalin_10km\n",
"35 84.964310 5.981668e-20 PropamocarbHydrochloride_10km\n",
"33 81.556521 3.183136e-19 Metamitron_10km\n",
"22 54.149221 2.460819e-13 Cumulative catchment area\n",
"2 43.990900 3.978728e-11 Arable\n",
"7 15.485837 8.524703e-05 Fen\n",
"12 9.050661 2.650526e-03 Saltwater\n",
"4 4.728565 2.975315e-02 Neutral grassland\n",
"1 3.543688 5.988106e-02 Coniferous woodland\n",
"6 3.422349 6.442985e-02 Acid grassland\n",
"9 1.669694 1.964114e-01 Heather grassland\n",
"10 1.383683 2.395797e-01 Bog\n",
"8 0.916534 3.384733e-01 Heather\n",
"13 0.632534 4.264981e-01 Freshwater\n",
"11 0.426454 5.137902e-01 Inland rock\n",
"17 0.367288 5.445378e-01 Littoral sediment\n",
"14 0.326919 5.675272e-01 Supralittoral rock\n",
"16 0.301721 5.828517e-01 Littoral rock\n",
"18 0.181267 6.703211e-01 Saltmarsh\n",
"5 0.060003 8.065096e-01 Calcareous grassland\n",
"15 0.056731 8.117571e-01 Supralittoral sediment"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rock Dove 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 21 | \n",
" 3705.998132 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 23 | \n",
" 3523.491473 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 3167.612036 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 26 | \n",
" 1224.817561 | \n",
" 3.401946e-221 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 1224.817561 | \n",
" 3.401946e-221 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 1224.817561 | \n",
" 3.401946e-221 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 29 | \n",
" 661.138165 | \n",
" 1.864195e-130 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 661.138165 | \n",
" 1.864195e-130 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 661.138165 | \n",
" 1.864195e-130 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 31 | \n",
" 659.116253 | \n",
" 4.197999e-130 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 659.116253 | \n",
" 4.197999e-130 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 3 | \n",
" 657.131199 | \n",
" 9.319155e-130 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 574.453772 | \n",
" 3.822481e-115 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 551.770288 | \n",
" 4.542649e-111 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 36 | \n",
" 511.929896 | \n",
" 7.675625e-104 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 511.929896 | \n",
" 7.675625e-104 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 38 | \n",
" 494.012796 | \n",
" 1.463912e-100 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 33 | \n",
" 423.397530 | \n",
" 1.906764e-87 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 35 | \n",
" 410.403601 | \n",
" 5.329040e-85 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 0 | \n",
" 327.864746 | \n",
" 3.283643e-69 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 215.806810 | \n",
" 4.847374e-47 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 63.875294 | \n",
" 1.953389e-15 | \n",
" Urban | \n",
"
\n",
" \n",
" 22 | \n",
" 26.401491 | \n",
" 2.973417e-07 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 4 | \n",
" 25.443583 | \n",
" 4.860554e-07 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 16.105638 | \n",
" 6.155325e-05 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 5 | \n",
" 12.987362 | \n",
" 3.193321e-04 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 12.549173 | \n",
" 4.031728e-04 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 18 | \n",
" 9.818544 | \n",
" 1.746353e-03 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 6 | \n",
" 9.049166 | \n",
" 2.652688e-03 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 8.408340 | \n",
" 3.765535e-03 | \n",
" Fen | \n",
"
\n",
" \n",
" 9 | \n",
" 7.278622 | \n",
" 7.021903e-03 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 6.951936 | \n",
" 8.421371e-03 | \n",
" Bog | \n",
"
\n",
" \n",
" 17 | \n",
" 6.807778 | \n",
" 9.126817e-03 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 16 | \n",
" 6.410824 | \n",
" 1.139956e-02 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 15 | \n",
" 6.211470 | \n",
" 1.275272e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 14 | \n",
" 3.769668 | \n",
" 5.229508e-02 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 12 | \n",
" 2.376299 | \n",
" 1.233076e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 8 | \n",
" 1.048863 | \n",
" 3.058619e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 11 | \n",
" 0.076750 | \n",
" 7.817728e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"21 3705.998132 0.000000e+00 Elevation\n",
"23 3523.491473 0.000000e+00 Surface type\n",
"25 3167.612036 0.000000e+00 Inflowing drainage direction\n",
"26 1224.817561 3.401946e-221 Fertiliser K\n",
"27 1224.817561 3.401946e-221 Fertiliser N\n",
"28 1224.817561 3.401946e-221 Fertiliser P\n",
"29 661.138165 1.864195e-130 Chlorothalonil_10km\n",
"30 661.138165 1.864195e-130 Glyphosate_10km\n",
"34 661.138165 1.864195e-130 Pendimethalin_10km\n",
"31 659.116253 4.197999e-130 Mancozeb_10km\n",
"32 659.116253 4.197999e-130 Mecoprop-P_10km\n",
"3 657.131199 9.319155e-130 Improve grassland\n",
"2 574.453772 3.822481e-115 Arable\n",
"24 551.770288 4.542649e-111 Outflowing drainage direction\n",
"36 511.929896 7.675625e-104 Prosulfocarb_10km\n",
"37 511.929896 7.675625e-104 Sulphur_10km\n",
"38 494.012796 1.463912e-100 Tri-allate_10km\n",
"33 423.397530 1.906764e-87 Metamitron_10km\n",
"35 410.403601 5.329040e-85 PropamocarbHydrochloride_10km\n",
"0 327.864746 3.283643e-69 Deciduous woodland\n",
"20 215.806810 4.847374e-47 Suburban\n",
"19 63.875294 1.953389e-15 Urban\n",
"22 26.401491 2.973417e-07 Cumulative catchment area\n",
"4 25.443583 4.860554e-07 Neutral grassland\n",
"1 16.105638 6.155325e-05 Coniferous woodland\n",
"5 12.987362 3.193321e-04 Calcareous grassland\n",
"13 12.549173 4.031728e-04 Freshwater\n",
"18 9.818544 1.746353e-03 Saltmarsh\n",
"6 9.049166 2.652688e-03 Acid grassland\n",
"7 8.408340 3.765535e-03 Fen\n",
"9 7.278622 7.021903e-03 Heather grassland\n",
"10 6.951936 8.421371e-03 Bog\n",
"17 6.807778 9.126817e-03 Littoral sediment\n",
"16 6.410824 1.139956e-02 Littoral rock\n",
"15 6.211470 1.275272e-02 Supralittoral sediment\n",
"14 3.769668 5.229508e-02 Supralittoral rock\n",
"12 2.376299 1.233076e-01 Saltwater\n",
"8 1.048863 3.058619e-01 Heather\n",
"11 0.076750 7.817728e-01 Inland rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ruddy Duck 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 26 | \n",
" 394.369237 | \n",
" 5.753642e-82 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 394.369237 | \n",
" 5.753642e-82 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 394.369237 | \n",
" 5.753642e-82 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 20 | \n",
" 222.092265 | \n",
" 2.620429e-48 | \n",
" Suburban | \n",
"
\n",
" \n",
" 23 | \n",
" 201.385984 | \n",
" 4.016297e-44 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 172.842486 | \n",
" 2.671584e-38 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 2 | \n",
" 165.229518 | \n",
" 9.785071e-37 | \n",
" Arable | \n",
"
\n",
" \n",
" 21 | \n",
" 161.746426 | \n",
" 5.100030e-36 | \n",
" Elevation | \n",
"
\n",
" \n",
" 19 | \n",
" 132.834071 | \n",
" 4.984261e-30 | \n",
" Urban | \n",
"
\n",
" \n",
" 29 | \n",
" 128.609266 | \n",
" 3.791177e-29 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 128.609266 | \n",
" 3.791177e-29 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 31 | \n",
" 128.609266 | \n",
" 3.791177e-29 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 128.609266 | \n",
" 3.791177e-29 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 128.609266 | \n",
" 3.791177e-29 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 38 | \n",
" 113.209410 | \n",
" 6.367982e-26 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 36 | \n",
" 100.242727 | \n",
" 3.438663e-23 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 100.242727 | \n",
" 3.438663e-23 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 33 | \n",
" 96.047352 | \n",
" 2.653861e-22 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 35 | \n",
" 88.028256 | \n",
" 1.333796e-20 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 24 | \n",
" 85.793209 | \n",
" 3.984836e-20 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 4 | \n",
" 71.341242 | \n",
" 4.862584e-17 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 3 | \n",
" 66.548473 | \n",
" 5.196588e-16 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 0 | \n",
" 51.792935 | \n",
" 7.978585e-13 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 22 | \n",
" 42.712031 | \n",
" 7.569164e-11 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 12 | \n",
" 10.652417 | \n",
" 1.113138e-03 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 17 | \n",
" 6.738880 | \n",
" 9.485083e-03 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 13 | \n",
" 3.537197 | \n",
" 6.011553e-02 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 18 | \n",
" 1.864963 | \n",
" 1.721681e-01 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 9 | \n",
" 1.561720 | \n",
" 2.115231e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 1.540714 | \n",
" 2.146205e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 10 | \n",
" 1.471490 | \n",
" 2.252181e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 6 | \n",
" 1.412058 | \n",
" 2.348207e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 0.686957 | \n",
" 4.072755e-01 | \n",
" Fen | \n",
"
\n",
" \n",
" 11 | \n",
" 0.581560 | \n",
" 4.457690e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 14 | \n",
" 0.540364 | \n",
" 4.623466e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 16 | \n",
" 0.278701 | \n",
" 5.975977e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 15 | \n",
" 0.059568 | \n",
" 8.071982e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 1 | \n",
" 0.055293 | \n",
" 8.141138e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 5 | \n",
" 0.054017 | \n",
" 8.162336e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"26 394.369237 5.753642e-82 Fertiliser K\n",
"27 394.369237 5.753642e-82 Fertiliser N\n",
"28 394.369237 5.753642e-82 Fertiliser P\n",
"20 222.092265 2.620429e-48 Suburban\n",
"23 201.385984 4.016297e-44 Surface type\n",
"25 172.842486 2.671584e-38 Inflowing drainage direction\n",
"2 165.229518 9.785071e-37 Arable\n",
"21 161.746426 5.100030e-36 Elevation\n",
"19 132.834071 4.984261e-30 Urban\n",
"29 128.609266 3.791177e-29 Chlorothalonil_10km\n",
"30 128.609266 3.791177e-29 Glyphosate_10km\n",
"31 128.609266 3.791177e-29 Mancozeb_10km\n",
"32 128.609266 3.791177e-29 Mecoprop-P_10km\n",
"34 128.609266 3.791177e-29 Pendimethalin_10km\n",
"38 113.209410 6.367982e-26 Tri-allate_10km\n",
"36 100.242727 3.438663e-23 Prosulfocarb_10km\n",
"37 100.242727 3.438663e-23 Sulphur_10km\n",
"33 96.047352 2.653861e-22 Metamitron_10km\n",
"35 88.028256 1.333796e-20 PropamocarbHydrochloride_10km\n",
"24 85.793209 3.984836e-20 Outflowing drainage direction\n",
"4 71.341242 4.862584e-17 Neutral grassland\n",
"3 66.548473 5.196588e-16 Improve grassland\n",
"0 51.792935 7.978585e-13 Deciduous woodland\n",
"22 42.712031 7.569164e-11 Cumulative catchment area\n",
"12 10.652417 1.113138e-03 Saltwater\n",
"17 6.738880 9.485083e-03 Littoral sediment\n",
"13 3.537197 6.011553e-02 Freshwater\n",
"18 1.864963 1.721681e-01 Saltmarsh\n",
"9 1.561720 2.115231e-01 Heather grassland\n",
"8 1.540714 2.146205e-01 Heather\n",
"10 1.471490 2.252181e-01 Bog\n",
"6 1.412058 2.348207e-01 Acid grassland\n",
"7 0.686957 4.072755e-01 Fen\n",
"11 0.581560 4.457690e-01 Inland rock\n",
"14 0.540364 4.623466e-01 Supralittoral rock\n",
"16 0.278701 5.975977e-01 Littoral rock\n",
"15 0.059568 8.071982e-01 Supralittoral sediment\n",
"1 0.055293 8.141138e-01 Coniferous woodland\n",
"5 0.054017 8.162336e-01 Calcareous grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Whooper Swan 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 1078.343958 | \n",
" 5.965819e-199 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 1035.304027 | \n",
" 3.004691e-192 | \n",
" Elevation | \n",
"
\n",
" \n",
" 23 | \n",
" 961.388454 | \n",
" 1.486786e-180 | \n",
" Surface type | \n",
"
\n",
" \n",
" 3 | \n",
" 318.424551 | \n",
" 2.241705e-67 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 24 | \n",
" 265.819805 | \n",
" 4.812689e-57 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 2 | \n",
" 203.103471 | \n",
" 1.800704e-44 | \n",
" Arable | \n",
"
\n",
" \n",
" 31 | \n",
" 163.930255 | \n",
" 1.810961e-36 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 163.930255 | \n",
" 1.810961e-36 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 29 | \n",
" 163.022772 | \n",
" 2.784317e-36 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 163.022772 | \n",
" 2.784317e-36 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 163.022772 | \n",
" 2.784317e-36 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 0 | \n",
" 158.129913 | \n",
" 2.838432e-35 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 26 | \n",
" 131.504877 | \n",
" 9.433368e-30 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 131.504877 | \n",
" 9.433368e-30 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 131.504877 | \n",
" 9.433368e-30 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 38 | \n",
" 89.947700 | \n",
" 5.215517e-21 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 36 | \n",
" 74.870047 | \n",
" 8.532626e-18 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 74.870047 | \n",
" 8.532626e-18 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 20 | \n",
" 66.652066 | \n",
" 4.936860e-16 | \n",
" Suburban | \n",
"
\n",
" \n",
" 35 | \n",
" 63.408944 | \n",
" 2.461532e-15 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 33 | \n",
" 62.509655 | \n",
" 3.845242e-15 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 9 | \n",
" 55.135835 | \n",
" 1.504615e-13 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 48.778897 | \n",
" 3.602661e-12 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 16 | \n",
" 38.969209 | \n",
" 4.992149e-10 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 7 | \n",
" 27.589008 | \n",
" 1.618513e-07 | \n",
" Fen | \n",
"
\n",
" \n",
" 1 | \n",
" 23.078754 | \n",
" 1.640978e-06 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 14 | \n",
" 21.307649 | \n",
" 4.096605e-06 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 19 | \n",
" 20.965698 | \n",
" 4.889980e-06 | \n",
" Urban | \n",
"
\n",
" \n",
" 18 | \n",
" 20.823870 | \n",
" 5.262746e-06 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 15 | \n",
" 19.643447 | \n",
" 9.708795e-06 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 22 | \n",
" 19.278206 | \n",
" 1.173841e-05 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 6 | \n",
" 15.340362 | \n",
" 9.202786e-05 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 15.220989 | \n",
" 9.799603e-05 | \n",
" Bog | \n",
"
\n",
" \n",
" 13 | \n",
" 13.947603 | \n",
" 1.919085e-04 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 8 | \n",
" 12.718829 | \n",
" 3.683531e-04 | \n",
" Heather | \n",
"
\n",
" \n",
" 4 | \n",
" 12.465741 | \n",
" 4.214970e-04 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 1.357531 | \n",
" 2.440699e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 12 | \n",
" 0.941124 | \n",
" 3.320768e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 5 | \n",
" 0.003208 | \n",
" 9.548383e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 1078.343958 5.965819e-199 Inflowing drainage direction\n",
"21 1035.304027 3.004691e-192 Elevation\n",
"23 961.388454 1.486786e-180 Surface type\n",
"3 318.424551 2.241705e-67 Improve grassland\n",
"24 265.819805 4.812689e-57 Outflowing drainage direction\n",
"2 203.103471 1.800704e-44 Arable\n",
"31 163.930255 1.810961e-36 Mancozeb_10km\n",
"32 163.930255 1.810961e-36 Mecoprop-P_10km\n",
"29 163.022772 2.784317e-36 Chlorothalonil_10km\n",
"30 163.022772 2.784317e-36 Glyphosate_10km\n",
"34 163.022772 2.784317e-36 Pendimethalin_10km\n",
"0 158.129913 2.838432e-35 Deciduous woodland\n",
"26 131.504877 9.433368e-30 Fertiliser K\n",
"27 131.504877 9.433368e-30 Fertiliser N\n",
"28 131.504877 9.433368e-30 Fertiliser P\n",
"38 89.947700 5.215517e-21 Tri-allate_10km\n",
"36 74.870047 8.532626e-18 Prosulfocarb_10km\n",
"37 74.870047 8.532626e-18 Sulphur_10km\n",
"20 66.652066 4.936860e-16 Suburban\n",
"35 63.408944 2.461532e-15 PropamocarbHydrochloride_10km\n",
"33 62.509655 3.845242e-15 Metamitron_10km\n",
"9 55.135835 1.504615e-13 Heather grassland\n",
"17 48.778897 3.602661e-12 Littoral sediment\n",
"16 38.969209 4.992149e-10 Littoral rock\n",
"7 27.589008 1.618513e-07 Fen\n",
"1 23.078754 1.640978e-06 Coniferous woodland\n",
"14 21.307649 4.096605e-06 Supralittoral rock\n",
"19 20.965698 4.889980e-06 Urban\n",
"18 20.823870 5.262746e-06 Saltmarsh\n",
"15 19.643447 9.708795e-06 Supralittoral sediment\n",
"22 19.278206 1.173841e-05 Cumulative catchment area\n",
"6 15.340362 9.202786e-05 Acid grassland\n",
"10 15.220989 9.799603e-05 Bog\n",
"13 13.947603 1.919085e-04 Freshwater\n",
"8 12.718829 3.683531e-04 Heather\n",
"4 12.465741 4.214970e-04 Neutral grassland\n",
"11 1.357531 2.440699e-01 Inland rock\n",
"12 0.941124 3.320768e-01 Saltwater\n",
"5 0.003208 9.548383e-01 Calcareous grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Wigeon 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 2620.080822 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 2480.090800 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 23 | \n",
" 2181.122669 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 26 | \n",
" 741.087843 | \n",
" 3.162856e-144 | \n",
" Fertiliser K | \n",
"
\n",
" \n",
" 27 | \n",
" 741.087843 | \n",
" 3.162856e-144 | \n",
" Fertiliser N | \n",
"
\n",
" \n",
" 28 | \n",
" 741.087843 | \n",
" 3.162856e-144 | \n",
" Fertiliser P | \n",
"
\n",
" \n",
" 3 | \n",
" 510.895940 | \n",
" 1.185521e-103 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 465.092494 | \n",
" 3.165023e-95 | \n",
" Arable | \n",
"
\n",
" \n",
" 29 | \n",
" 453.697709 | \n",
" 4.131083e-93 | \n",
" Chlorothalonil_10km | \n",
"
\n",
" \n",
" 30 | \n",
" 453.697709 | \n",
" 4.131083e-93 | \n",
" Glyphosate_10km | \n",
"
\n",
" \n",
" 31 | \n",
" 453.697709 | \n",
" 4.131083e-93 | \n",
" Mancozeb_10km | \n",
"
\n",
" \n",
" 32 | \n",
" 453.697709 | \n",
" 4.131083e-93 | \n",
" Mecoprop-P_10km | \n",
"
\n",
" \n",
" 34 | \n",
" 453.697709 | \n",
" 4.131083e-93 | \n",
" Pendimethalin_10km | \n",
"
\n",
" \n",
" 24 | \n",
" 411.757352 | \n",
" 2.959990e-85 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 38 | \n",
" 340.962220 | \n",
" 9.579211e-72 | \n",
" Tri-allate_10km | \n",
"
\n",
" \n",
" 36 | \n",
" 337.576522 | \n",
" 4.320640e-71 | \n",
" Prosulfocarb_10km | \n",
"
\n",
" \n",
" 37 | \n",
" 337.576522 | \n",
" 4.320640e-71 | \n",
" Sulphur_10km | \n",
"
\n",
" \n",
" 33 | \n",
" 267.589534 | \n",
" 2.146332e-57 | \n",
" Metamitron_10km | \n",
"
\n",
" \n",
" 35 | \n",
" 259.434733 | \n",
" 8.902052e-56 | \n",
" PropamocarbHydrochloride_10km | \n",
"
\n",
" \n",
" 0 | \n",
" 204.705588 | \n",
" 8.524358e-45 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 193.263684 | \n",
" 1.796472e-42 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 77.447594 | \n",
" 2.398464e-18 | \n",
" Urban | \n",
"
\n",
" \n",
" 17 | \n",
" 31.117309 | \n",
" 2.672853e-08 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 4 | \n",
" 30.396261 | \n",
" 3.859326e-08 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 28.206138 | \n",
" 1.180414e-07 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 22 | \n",
" 24.248589 | \n",
" 8.983058e-07 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 12 | \n",
" 21.876736 | \n",
" 3.052102e-06 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 13 | \n",
" 20.162283 | \n",
" 7.416147e-06 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 17.487899 | \n",
" 2.984583e-05 | \n",
" Fen | \n",
"
\n",
" \n",
" 8 | \n",
" 16.260356 | \n",
" 5.675365e-05 | \n",
" Heather | \n",
"
\n",
" \n",
" 1 | \n",
" 15.823912 | \n",
" 7.136713e-05 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 9 | \n",
" 14.044356 | \n",
" 1.823323e-04 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 15 | \n",
" 12.813446 | \n",
" 3.502691e-04 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 5 | \n",
" 8.336977 | \n",
" 3.915851e-03 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 8.098755 | \n",
" 4.463355e-03 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 6 | \n",
" 4.360418 | \n",
" 3.687781e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 0.656884 | \n",
" 4.177344e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 0.171550 | \n",
" 6.787714e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 11 | \n",
" 0.002713 | \n",
" 9.584656e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 2620.080822 0.000000e+00 Inflowing drainage direction\n",
"21 2480.090800 0.000000e+00 Elevation\n",
"23 2181.122669 0.000000e+00 Surface type\n",
"26 741.087843 3.162856e-144 Fertiliser K\n",
"27 741.087843 3.162856e-144 Fertiliser N\n",
"28 741.087843 3.162856e-144 Fertiliser P\n",
"3 510.895940 1.185521e-103 Improve grassland\n",
"2 465.092494 3.165023e-95 Arable\n",
"29 453.697709 4.131083e-93 Chlorothalonil_10km\n",
"30 453.697709 4.131083e-93 Glyphosate_10km\n",
"31 453.697709 4.131083e-93 Mancozeb_10km\n",
"32 453.697709 4.131083e-93 Mecoprop-P_10km\n",
"34 453.697709 4.131083e-93 Pendimethalin_10km\n",
"24 411.757352 2.959990e-85 Outflowing drainage direction\n",
"38 340.962220 9.579211e-72 Tri-allate_10km\n",
"36 337.576522 4.320640e-71 Prosulfocarb_10km\n",
"37 337.576522 4.320640e-71 Sulphur_10km\n",
"33 267.589534 2.146332e-57 Metamitron_10km\n",
"35 259.434733 8.902052e-56 PropamocarbHydrochloride_10km\n",
"0 204.705588 8.524358e-45 Deciduous woodland\n",
"20 193.263684 1.796472e-42 Suburban\n",
"19 77.447594 2.398464e-18 Urban\n",
"17 31.117309 2.672853e-08 Littoral sediment\n",
"4 30.396261 3.859326e-08 Neutral grassland\n",
"18 28.206138 1.180414e-07 Saltmarsh\n",
"22 24.248589 8.983058e-07 Cumulative catchment area\n",
"12 21.876736 3.052102e-06 Saltwater\n",
"13 20.162283 7.416147e-06 Freshwater\n",
"7 17.487899 2.984583e-05 Fen\n",
"8 16.260356 5.675365e-05 Heather\n",
"1 15.823912 7.136713e-05 Coniferous woodland\n",
"9 14.044356 1.823323e-04 Heather grassland\n",
"15 12.813446 3.502691e-04 Supralittoral sediment\n",
"5 8.336977 3.915851e-03 Calcareous grassland\n",
"16 8.098755 4.463355e-03 Littoral rock\n",
"6 4.360418 3.687781e-02 Acid grassland\n",
"14 0.656884 4.177344e-01 Supralittoral rock\n",
"10 0.171550 6.787714e-01 Bog\n",
"11 0.002713 9.584656e-01 Inland rock"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for dict in df_dicts:\n",
" print(dict['name'])\n",
" display(dict['kbest']['Dataframe'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.13 ('env': venv)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "f025c48a9b67ab76bdc0400dfa0f9ba99120976b4a6ec6a63d1c946516165c91"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}