{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import rioxarray\n", "import json, os\n", "\n", "from sklearn.feature_selection import SelectKBest\n", "from sklearn.feature_selection import chi2, f_classif, mutual_info_classif\n", "from sklearn.metrics import f1_score, classification_report\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.model_selection import train_test_split\n", "\n", "from sklearn.linear_model import LogisticRegression, SGDClassifier\n", "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier, StackingClassifier\n", "\n", "from imblearn.over_sampling import RandomOverSampler, SMOTE" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "seed = 42\n", "verbose = False\n", "details = False" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
575000.0265000.0350048000000...5.884448e-018.964723e-024.568375e-01-3.400000e+382.649607e-01-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
165000.0675000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
565000.0585000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
205000.0495000.02501851000000...4.266700e+011.013295e+004.043981e+008.174946e+002.103851e+017.245066e+002.880613e+016.192643e+005.904085e+000
215000.0615000.0002943000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+381
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "575000.0 265000.0 35 0 0 \n", "165000.0 675000.0 0 0 0 \n", "565000.0 585000.0 0 0 0 \n", "205000.0 495000.0 25 0 18 \n", "215000.0 615000.0 0 0 29 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "575000.0 265000.0 48 0 0 \n", "165000.0 675000.0 0 0 0 \n", "565000.0 585000.0 0 0 0 \n", "205000.0 495000.0 51 0 0 \n", "215000.0 615000.0 43 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "575000.0 265000.0 0 0 0 0 ... \n", "165000.0 675000.0 0 0 0 0 ... \n", "565000.0 585000.0 0 0 0 0 ... \n", "205000.0 495000.0 0 0 0 0 ... \n", "215000.0 615000.0 0 0 0 0 ... \n", "\n", " Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n", "y x \n", "575000.0 265000.0 5.884448e-01 8.964723e-02 4.568375e-01 \n", "165000.0 675000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "565000.0 585000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "205000.0 495000.0 4.266700e+01 1.013295e+00 4.043981e+00 \n", "215000.0 615000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "575000.0 265000.0 -3.400000e+38 2.649607e-01 \n", "165000.0 675000.0 -3.400000e+38 -3.400000e+38 \n", "565000.0 585000.0 -3.400000e+38 -3.400000e+38 \n", "205000.0 495000.0 8.174946e+00 2.103851e+01 \n", "215000.0 615000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "575000.0 265000.0 -3.400000e+38 -3.400000e+38 \n", "165000.0 675000.0 -3.400000e+38 -3.400000e+38 \n", "565000.0 585000.0 -3.400000e+38 -3.400000e+38 \n", "205000.0 495000.0 7.245066e+00 2.880613e+01 \n", "215000.0 615000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "575000.0 265000.0 -3.400000e+38 -3.400000e+38 0 \n", "165000.0 675000.0 -3.400000e+38 -3.400000e+38 0 \n", "565000.0 585000.0 -3.400000e+38 -3.400000e+38 0 \n", "205000.0 495000.0 6.192643e+00 5.904085e+00 0 \n", "215000.0 615000.0 -3.400000e+38 -3.400000e+38 1 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
1225000.0255000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
415000.0255000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
675000.05000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
735000.0645000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
75000.0605000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1225000.0 255000.0 0 0 0 \n", "415000.0 255000.0 0 0 0 \n", "675000.0 5000.0 0 0 0 \n", "735000.0 645000.0 0 0 0 \n", "75000.0 605000.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1225000.0 255000.0 0 0 \n", "415000.0 255000.0 0 0 \n", "675000.0 5000.0 0 0 \n", "735000.0 645000.0 0 0 \n", "75000.0 605000.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1225000.0 255000.0 0 0 0 0 \n", "415000.0 255000.0 0 0 0 0 \n", "675000.0 5000.0 0 0 0 0 \n", "735000.0 645000.0 0 0 0 0 \n", "75000.0 605000.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n", "y x ... \n", "1225000.0 255000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "415000.0 255000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "675000.0 5000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "735000.0 645000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "75000.0 605000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "1225000.0 255000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "415000.0 255000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "675000.0 5000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "735000.0 645000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "75000.0 605000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "1225000.0 255000.0 -3.400000e+38 -3.400000e+38 \n", "415000.0 255000.0 -3.400000e+38 -3.400000e+38 \n", "675000.0 5000.0 -3.400000e+38 -3.400000e+38 \n", "735000.0 645000.0 -3.400000e+38 -3.400000e+38 \n", "75000.0 605000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "1225000.0 255000.0 -3.400000e+38 -3.400000e+38 0 \n", "415000.0 255000.0 -3.400000e+38 -3.400000e+38 0 \n", "675000.0 5000.0 -3.400000e+38 -3.400000e+38 0 \n", "735000.0 645000.0 -3.400000e+38 -3.400000e+38 0 \n", "75000.0 605000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
245000.0545000.020940000000...4.217234e+019.610185e-015.741166e+006.499705e+001.524815e+013.120004e+009.537933e+005.674277e+007.547367e+000
1005000.0115000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
95000.035000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
465000.0105000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
955000.0425000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "245000.0 545000.0 2 0 94 \n", "1005000.0 115000.0 0 0 0 \n", "95000.0 35000.0 0 0 0 \n", "465000.0 105000.0 0 0 0 \n", "955000.0 425000.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "245000.0 545000.0 0 0 \n", "1005000.0 115000.0 0 0 \n", "95000.0 35000.0 0 0 \n", "465000.0 105000.0 0 0 \n", "955000.0 425000.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "245000.0 545000.0 0 0 0 0 \n", "1005000.0 115000.0 0 0 0 0 \n", "95000.0 35000.0 0 0 0 0 \n", "465000.0 105000.0 0 0 0 0 \n", "955000.0 425000.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n", "y x ... \n", "245000.0 545000.0 0 ... 4.217234e+01 9.610185e-01 \n", "1005000.0 115000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "95000.0 35000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "465000.0 105000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "955000.0 425000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "245000.0 545000.0 5.741166e+00 6.499705e+00 1.524815e+01 \n", "1005000.0 115000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "95000.0 35000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "465000.0 105000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "955000.0 425000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "245000.0 545000.0 3.120004e+00 9.537933e+00 \n", "1005000.0 115000.0 -3.400000e+38 -3.400000e+38 \n", "95000.0 35000.0 -3.400000e+38 -3.400000e+38 \n", "465000.0 105000.0 -3.400000e+38 -3.400000e+38 \n", "955000.0 425000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "245000.0 545000.0 5.674277e+00 7.547367e+00 0 \n", "1005000.0 115000.0 -3.400000e+38 -3.400000e+38 0 \n", "95000.0 35000.0 -3.400000e+38 -3.400000e+38 0 \n", "465000.0 105000.0 -3.400000e+38 -3.400000e+38 0 \n", "955000.0 425000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
1295000.0605000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1265000.0585000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
375000.0585000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
565000.0265000.019900000000...2.145484e+007.241306e-011.775866e+00-3.400000e+389.125673e-01-3.400000e+386.824454e-014.153696e-011.131074e+000
755000.0615000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1295000.0 605000.0 0 0 0 \n", "1265000.0 585000.0 0 0 0 \n", "375000.0 585000.0 0 0 0 \n", "565000.0 265000.0 1 99 0 \n", "755000.0 615000.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1295000.0 605000.0 0 0 \n", "1265000.0 585000.0 0 0 \n", "375000.0 585000.0 0 0 \n", "565000.0 265000.0 0 0 \n", "755000.0 615000.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1295000.0 605000.0 0 0 0 0 \n", "1265000.0 585000.0 0 0 0 0 \n", "375000.0 585000.0 0 0 0 0 \n", "565000.0 265000.0 0 0 0 0 \n", "755000.0 615000.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n", "y x ... \n", "1295000.0 605000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1265000.0 585000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "375000.0 585000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "565000.0 265000.0 0 ... 2.145484e+00 7.241306e-01 \n", "755000.0 615000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "1295000.0 605000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1265000.0 585000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "375000.0 585000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "565000.0 265000.0 1.775866e+00 -3.400000e+38 9.125673e-01 \n", "755000.0 615000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "1295000.0 605000.0 -3.400000e+38 -3.400000e+38 \n", "1265000.0 585000.0 -3.400000e+38 -3.400000e+38 \n", "375000.0 585000.0 -3.400000e+38 -3.400000e+38 \n", "565000.0 265000.0 -3.400000e+38 6.824454e-01 \n", "755000.0 615000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "1295000.0 605000.0 -3.400000e+38 -3.400000e+38 0 \n", "1265000.0 585000.0 -3.400000e+38 -3.400000e+38 0 \n", "375000.0 585000.0 -3.400000e+38 -3.400000e+38 0 \n", "565000.0 265000.0 4.153696e-01 1.131074e+00 0 \n", "755000.0 615000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
625000.0235000.010012000003...7.353696e-011.023786e-013.167432e-01-3.400000e+382.355547e-01-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1175000.0535000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
475000.055000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
525000.0625000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
865000.0345000.031223114000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "625000.0 235000.0 1 0 0 \n", "1175000.0 535000.0 0 0 0 \n", "475000.0 55000.0 0 0 0 \n", "525000.0 625000.0 0 0 0 \n", "865000.0 345000.0 31 22 31 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "625000.0 235000.0 12 0 \n", "1175000.0 535000.0 0 0 \n", "475000.0 55000.0 0 0 \n", "525000.0 625000.0 0 0 \n", "865000.0 345000.0 14 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "625000.0 235000.0 0 0 0 0 \n", "1175000.0 535000.0 0 0 0 0 \n", "475000.0 55000.0 0 0 0 0 \n", "525000.0 625000.0 0 0 0 0 \n", "865000.0 345000.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n", "y x ... \n", "625000.0 235000.0 3 ... 7.353696e-01 1.023786e-01 \n", "1175000.0 535000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "475000.0 55000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "525000.0 625000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "865000.0 345000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "625000.0 235000.0 3.167432e-01 -3.400000e+38 2.355547e-01 \n", "1175000.0 535000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "475000.0 55000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "525000.0 625000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "865000.0 345000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "625000.0 235000.0 -3.400000e+38 -3.400000e+38 \n", "1175000.0 535000.0 -3.400000e+38 -3.400000e+38 \n", "475000.0 55000.0 -3.400000e+38 -3.400000e+38 \n", "525000.0 625000.0 -3.400000e+38 -3.400000e+38 \n", "865000.0 345000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "625000.0 235000.0 -3.400000e+38 -3.400000e+38 0 \n", "1175000.0 535000.0 -3.400000e+38 -3.400000e+38 0 \n", "475000.0 55000.0 -3.400000e+38 -3.400000e+38 0 \n", "525000.0 625000.0 -3.400000e+38 -3.400000e+38 0 \n", "865000.0 345000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
225000.0115000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+385.173159e-019.168798e-011.176593e-010
1025000.055000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
125000.0205000.00000000000...1.609200e+009.198602e-026.563689e-01-3.400000e+381.621378e+007.263544e-012.354775e+003.642301e-01-3.400000e+380
305000.0565000.030916000000...2.678290e-011.253086e-023.974655e-022.524318e+013.438350e-017.384946e+001.150152e+011.020674e+011.920763e+011
1235000.0195000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "225000.0 115000.0 0 0 0 \n", "1025000.0 55000.0 0 0 0 \n", "125000.0 205000.0 0 0 0 \n", "305000.0 565000.0 3 0 91 \n", "1235000.0 195000.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "225000.0 115000.0 0 0 \n", "1025000.0 55000.0 0 0 \n", "125000.0 205000.0 0 0 \n", "305000.0 565000.0 6 0 \n", "1235000.0 195000.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "225000.0 115000.0 0 0 0 0 \n", "1025000.0 55000.0 0 0 0 0 \n", "125000.0 205000.0 0 0 0 0 \n", "305000.0 565000.0 0 0 0 0 \n", "1235000.0 195000.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n", "y x ... \n", "225000.0 115000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1025000.0 55000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "125000.0 205000.0 0 ... 1.609200e+00 9.198602e-02 \n", "305000.0 565000.0 0 ... 2.678290e-01 1.253086e-02 \n", "1235000.0 195000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "225000.0 115000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1025000.0 55000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "125000.0 205000.0 6.563689e-01 -3.400000e+38 1.621378e+00 \n", "305000.0 565000.0 3.974655e-02 2.524318e+01 3.438350e-01 \n", "1235000.0 195000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "225000.0 115000.0 -3.400000e+38 5.173159e-01 \n", "1025000.0 55000.0 -3.400000e+38 -3.400000e+38 \n", "125000.0 205000.0 7.263544e-01 2.354775e+00 \n", "305000.0 565000.0 7.384946e+00 1.150152e+01 \n", "1235000.0 195000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "225000.0 115000.0 9.168798e-01 1.176593e-01 0 \n", "1025000.0 55000.0 -3.400000e+38 -3.400000e+38 0 \n", "125000.0 205000.0 3.642301e-01 -3.400000e+38 0 \n", "305000.0 565000.0 1.020674e+01 1.920763e+01 1 \n", "1235000.0 195000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
965000.0185000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
985000.0245000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
445000.0365000.0230076000000...4.631731e-017.870384e-023.457133e-011.601849e+012.843519e-019.581071e+001.675296e+011.672057e+004.541681e-010
655000.0675000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1135000.075000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "965000.0 185000.0 0 0 0 \n", "985000.0 245000.0 0 0 0 \n", "445000.0 365000.0 23 0 0 \n", "655000.0 675000.0 0 0 0 \n", "1135000.0 75000.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "965000.0 185000.0 0 0 \n", "985000.0 245000.0 0 0 \n", "445000.0 365000.0 76 0 \n", "655000.0 675000.0 0 0 \n", "1135000.0 75000.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "965000.0 185000.0 0 0 0 0 \n", "985000.0 245000.0 0 0 0 0 \n", "445000.0 365000.0 0 0 0 0 \n", "655000.0 675000.0 0 0 0 0 \n", "1135000.0 75000.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n", "y x ... \n", "965000.0 185000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "985000.0 245000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "445000.0 365000.0 0 ... 4.631731e-01 7.870384e-02 \n", "655000.0 675000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1135000.0 75000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "965000.0 185000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "985000.0 245000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "445000.0 365000.0 3.457133e-01 1.601849e+01 2.843519e-01 \n", "655000.0 675000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1135000.0 75000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "965000.0 185000.0 -3.400000e+38 -3.400000e+38 \n", "985000.0 245000.0 -3.400000e+38 -3.400000e+38 \n", "445000.0 365000.0 9.581071e+00 1.675296e+01 \n", "655000.0 675000.0 -3.400000e+38 -3.400000e+38 \n", "1135000.0 75000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "965000.0 185000.0 -3.400000e+38 -3.400000e+38 0 \n", "985000.0 245000.0 -3.400000e+38 -3.400000e+38 0 \n", "445000.0 365000.0 1.672057e+00 4.541681e-01 0 \n", "655000.0 675000.0 -3.400000e+38 -3.400000e+38 0 \n", "1135000.0 75000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
535000.0245000.050065000000...-3.400000e+38-3.400000e+38-3.400000e+383.529527e-01-3.400000e+381.662563e-016.416388e+001.433365e+004.209006e-010
1035000.0505000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
735000.0505000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
865000.0185000.000000060060...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
515000.0595000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "535000.0 245000.0 5 0 0 \n", "1035000.0 505000.0 0 0 0 \n", "735000.0 505000.0 0 0 0 \n", "865000.0 185000.0 0 0 0 \n", "515000.0 595000.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "535000.0 245000.0 65 0 \n", "1035000.0 505000.0 0 0 \n", "735000.0 505000.0 0 0 \n", "865000.0 185000.0 0 0 \n", "515000.0 595000.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "535000.0 245000.0 0 0 0 0 \n", "1035000.0 505000.0 0 0 0 0 \n", "735000.0 505000.0 0 0 0 0 \n", "865000.0 185000.0 0 6 0 0 \n", "515000.0 595000.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n", "y x ... \n", "535000.0 245000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1035000.0 505000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "735000.0 505000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "865000.0 185000.0 60 ... -3.400000e+38 -3.400000e+38 \n", "515000.0 595000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "535000.0 245000.0 -3.400000e+38 3.529527e-01 -3.400000e+38 \n", "1035000.0 505000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "735000.0 505000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "865000.0 185000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "515000.0 595000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "535000.0 245000.0 1.662563e-01 6.416388e+00 \n", "1035000.0 505000.0 -3.400000e+38 -3.400000e+38 \n", "735000.0 505000.0 -3.400000e+38 -3.400000e+38 \n", "865000.0 185000.0 -3.400000e+38 -3.400000e+38 \n", "515000.0 595000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "535000.0 245000.0 1.433365e+00 4.209006e-01 0 \n", "1035000.0 505000.0 -3.400000e+38 -3.400000e+38 0 \n", "735000.0 505000.0 -3.400000e+38 -3.400000e+38 0 \n", "865000.0 185000.0 -3.400000e+38 -3.400000e+38 0 \n", "515000.0 595000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
45000.0255000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
645000.0385000.050950000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
255000.0315000.0000000500500...1.257356e+011.745215e+013.667922e+003.258508e+001.286882e+011.388559e+007.408013e+004.606191e+007.226281e+000
895000.0215000.0053010000046...2.407615e-015.050598e-022.042672e-01-3.400000e+381.190478e-01-3.400000e+38-3.400000e+38-3.400000e+387.148689e-010
685000.085000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "45000.0 255000.0 0 0 0 \n", "645000.0 385000.0 5 0 95 \n", "255000.0 315000.0 0 0 0 \n", "895000.0 215000.0 0 53 0 \n", "685000.0 85000.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "45000.0 255000.0 0 0 0 \n", "645000.0 385000.0 0 0 0 \n", "255000.0 315000.0 0 0 0 \n", "895000.0 215000.0 1 0 0 \n", "685000.0 85000.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "45000.0 255000.0 0 0 0 0 ... \n", "645000.0 385000.0 0 0 0 0 ... \n", "255000.0 315000.0 50 0 50 0 ... \n", "895000.0 215000.0 0 0 0 46 ... \n", "685000.0 85000.0 0 0 0 0 ... \n", "\n", " Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n", "y x \n", "45000.0 255000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "645000.0 385000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "255000.0 315000.0 1.257356e+01 1.745215e+01 3.667922e+00 \n", "895000.0 215000.0 2.407615e-01 5.050598e-02 2.042672e-01 \n", "685000.0 85000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "45000.0 255000.0 -3.400000e+38 -3.400000e+38 \n", "645000.0 385000.0 -3.400000e+38 -3.400000e+38 \n", "255000.0 315000.0 3.258508e+00 1.286882e+01 \n", "895000.0 215000.0 -3.400000e+38 1.190478e-01 \n", "685000.0 85000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "45000.0 255000.0 -3.400000e+38 -3.400000e+38 \n", "645000.0 385000.0 -3.400000e+38 -3.400000e+38 \n", "255000.0 315000.0 1.388559e+00 7.408013e+00 \n", "895000.0 215000.0 -3.400000e+38 -3.400000e+38 \n", "685000.0 85000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "45000.0 255000.0 -3.400000e+38 -3.400000e+38 0 \n", "645000.0 385000.0 -3.400000e+38 -3.400000e+38 0 \n", "255000.0 315000.0 4.606191e+00 7.226281e+00 0 \n", "895000.0 215000.0 -3.400000e+38 7.148689e-01 0 \n", "685000.0 85000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
1195000.0675000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
575000.0395000.0803062000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+381
1105000.0235000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
95000.0215000.0120081000010...2.167307e+013.189414e+008.516208e+005.882689e+001.956731e+012.772233e+004.508040e+001.390220e+002.684446e+000
1015000.0315000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1195000.0 675000.0 0 0 0 \n", "575000.0 395000.0 8 0 30 \n", "1105000.0 235000.0 0 0 0 \n", "95000.0 215000.0 12 0 0 \n", "1015000.0 315000.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1195000.0 675000.0 0 0 \n", "575000.0 395000.0 62 0 \n", "1105000.0 235000.0 0 0 \n", "95000.0 215000.0 81 0 \n", "1015000.0 315000.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1195000.0 675000.0 0 0 0 0 \n", "575000.0 395000.0 0 0 0 0 \n", "1105000.0 235000.0 0 0 0 0 \n", "95000.0 215000.0 0 0 0 1 \n", "1015000.0 315000.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n", "y x ... \n", "1195000.0 675000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "575000.0 395000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1105000.0 235000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "95000.0 215000.0 0 ... 2.167307e+01 3.189414e+00 \n", "1015000.0 315000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "1195000.0 675000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "575000.0 395000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1105000.0 235000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "95000.0 215000.0 8.516208e+00 5.882689e+00 1.956731e+01 \n", "1015000.0 315000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "1195000.0 675000.0 -3.400000e+38 -3.400000e+38 \n", "575000.0 395000.0 -3.400000e+38 -3.400000e+38 \n", "1105000.0 235000.0 -3.400000e+38 -3.400000e+38 \n", "95000.0 215000.0 2.772233e+00 4.508040e+00 \n", "1015000.0 315000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "1195000.0 675000.0 -3.400000e+38 -3.400000e+38 0 \n", "575000.0 395000.0 -3.400000e+38 -3.400000e+38 1 \n", "1105000.0 235000.0 -3.400000e+38 -3.400000e+38 0 \n", "95000.0 215000.0 1.390220e+00 2.684446e+00 0 \n", "1015000.0 315000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
755000.0685000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
905000.0495000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1105000.0235000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
385000.0685000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
5000.0165000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "755000.0 685000.0 0 0 0 \n", "905000.0 495000.0 0 0 0 \n", "1105000.0 235000.0 0 0 0 \n", "385000.0 685000.0 0 0 0 \n", "5000.0 165000.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "755000.0 685000.0 0 0 \n", "905000.0 495000.0 0 0 \n", "1105000.0 235000.0 0 0 \n", "385000.0 685000.0 0 0 \n", "5000.0 165000.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "755000.0 685000.0 0 0 0 0 \n", "905000.0 495000.0 0 0 0 0 \n", "1105000.0 235000.0 0 0 0 0 \n", "385000.0 685000.0 0 0 0 0 \n", "5000.0 165000.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n", "y x ... \n", "755000.0 685000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "905000.0 495000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1105000.0 235000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "385000.0 685000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "5000.0 165000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "755000.0 685000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "905000.0 495000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1105000.0 235000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "385000.0 685000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "5000.0 165000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "755000.0 685000.0 -3.400000e+38 -3.400000e+38 \n", "905000.0 495000.0 -3.400000e+38 -3.400000e+38 \n", "1105000.0 235000.0 -3.400000e+38 -3.400000e+38 \n", "385000.0 685000.0 -3.400000e+38 -3.400000e+38 \n", "5000.0 165000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "755000.0 685000.0 -3.400000e+38 -3.400000e+38 0 \n", "905000.0 495000.0 -3.400000e+38 -3.400000e+38 0 \n", "1105000.0 235000.0 -3.400000e+38 -3.400000e+38 0 \n", "385000.0 685000.0 -3.400000e+38 -3.400000e+38 0 \n", "5000.0 165000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
285000.0405000.0131034000000...6.431214e+004.209268e+001.545463e+003.713440e+003.148177e+001.903132e+008.756983e+003.922683e+001.446734e+010
915000.0535000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
625000.0115000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
875000.0255000.0084000000160...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
395000.055000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "285000.0 405000.0 13 1 0 \n", "915000.0 535000.0 0 0 0 \n", "625000.0 115000.0 0 0 0 \n", "875000.0 255000.0 0 84 0 \n", "395000.0 55000.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "285000.0 405000.0 34 0 0 \n", "915000.0 535000.0 0 0 0 \n", "625000.0 115000.0 0 0 0 \n", "875000.0 255000.0 0 0 0 \n", "395000.0 55000.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "285000.0 405000.0 0 0 0 0 ... \n", "915000.0 535000.0 0 0 0 0 ... \n", "625000.0 115000.0 0 0 0 0 ... \n", "875000.0 255000.0 0 0 16 0 ... \n", "395000.0 55000.0 0 0 0 0 ... \n", "\n", " Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n", "y x \n", "285000.0 405000.0 6.431214e+00 4.209268e+00 1.545463e+00 \n", "915000.0 535000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "625000.0 115000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "875000.0 255000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "395000.0 55000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "285000.0 405000.0 3.713440e+00 3.148177e+00 \n", "915000.0 535000.0 -3.400000e+38 -3.400000e+38 \n", "625000.0 115000.0 -3.400000e+38 -3.400000e+38 \n", "875000.0 255000.0 -3.400000e+38 -3.400000e+38 \n", "395000.0 55000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "285000.0 405000.0 1.903132e+00 8.756983e+00 \n", "915000.0 535000.0 -3.400000e+38 -3.400000e+38 \n", "625000.0 115000.0 -3.400000e+38 -3.400000e+38 \n", "875000.0 255000.0 -3.400000e+38 -3.400000e+38 \n", "395000.0 55000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "285000.0 405000.0 3.922683e+00 1.446734e+01 0 \n", "915000.0 535000.0 -3.400000e+38 -3.400000e+38 0 \n", "625000.0 115000.0 -3.400000e+38 -3.400000e+38 0 \n", "875000.0 255000.0 -3.400000e+38 -3.400000e+38 0 \n", "395000.0 55000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
125000.0185000.00000000000...7.565978e-021.161498e-027.403410e-023.515963e-013.825245e-021.723952e-019.092541e-014.400560e-015.402140e+000
295000.0335000.0010220077000...1.195074e-013.630256e-028.424385e-021.091831e+016.491575e-025.122150e+003.444990e+001.705324e+003.650620e-021
825000.0665000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1255000.0675000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1295000.0525000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "125000.0 185000.0 0 0 0 \n", "295000.0 335000.0 0 1 0 \n", "825000.0 665000.0 0 0 0 \n", "1255000.0 675000.0 0 0 0 \n", "1295000.0 525000.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "125000.0 185000.0 0 0 \n", "295000.0 335000.0 22 0 \n", "825000.0 665000.0 0 0 \n", "1255000.0 675000.0 0 0 \n", "1295000.0 525000.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "125000.0 185000.0 0 0 0 0 \n", "295000.0 335000.0 0 77 0 0 \n", "825000.0 665000.0 0 0 0 0 \n", "1255000.0 675000.0 0 0 0 0 \n", "1295000.0 525000.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n", "y x ... \n", "125000.0 185000.0 0 ... 7.565978e-02 1.161498e-02 \n", "295000.0 335000.0 0 ... 1.195074e-01 3.630256e-02 \n", "825000.0 665000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1255000.0 675000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1295000.0 525000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "125000.0 185000.0 7.403410e-02 3.515963e-01 3.825245e-02 \n", "295000.0 335000.0 8.424385e-02 1.091831e+01 6.491575e-02 \n", "825000.0 665000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1255000.0 675000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1295000.0 525000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "125000.0 185000.0 1.723952e-01 9.092541e-01 \n", "295000.0 335000.0 5.122150e+00 3.444990e+00 \n", "825000.0 665000.0 -3.400000e+38 -3.400000e+38 \n", "1255000.0 675000.0 -3.400000e+38 -3.400000e+38 \n", "1295000.0 525000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "125000.0 185000.0 4.400560e-01 5.402140e+00 0 \n", "295000.0 335000.0 1.705324e+00 3.650620e-02 1 \n", "825000.0 665000.0 -3.400000e+38 -3.400000e+38 0 \n", "1255000.0 675000.0 -3.400000e+38 -3.400000e+38 0 \n", "1295000.0 525000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
835000.0455000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
235000.0385000.01902752000000...-3.400000e+38-3.400000e+38-3.400000e+381.023687e+01-3.400000e+385.169505e+001.434829e+011.600325e+014.872670e+011
675000.0175000.054260110000010...7.383942e-019.565423e-023.361677e-01-3.400000e+382.041181e-01-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
485000.0675000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
705000.0155000.00000000000...5.860391e-038.092645e-042.910430e-03-3.400000e+381.602377e-03-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "835000.0 455000.0 0 0 0 \n", "235000.0 385000.0 19 0 27 \n", "675000.0 175000.0 54 26 0 \n", "485000.0 675000.0 0 0 0 \n", "705000.0 155000.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "835000.0 455000.0 0 0 0 \n", "235000.0 385000.0 52 0 0 \n", "675000.0 175000.0 11 0 0 \n", "485000.0 675000.0 0 0 0 \n", "705000.0 155000.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "835000.0 455000.0 0 0 0 0 ... \n", "235000.0 385000.0 0 0 0 0 ... \n", "675000.0 175000.0 0 0 0 10 ... \n", "485000.0 675000.0 0 0 0 0 ... \n", "705000.0 155000.0 0 0 0 0 ... \n", "\n", " Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n", "y x \n", "835000.0 455000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "235000.0 385000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "675000.0 175000.0 7.383942e-01 9.565423e-02 3.361677e-01 \n", "485000.0 675000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "705000.0 155000.0 5.860391e-03 8.092645e-04 2.910430e-03 \n", "\n", " Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "835000.0 455000.0 -3.400000e+38 -3.400000e+38 \n", "235000.0 385000.0 1.023687e+01 -3.400000e+38 \n", "675000.0 175000.0 -3.400000e+38 2.041181e-01 \n", "485000.0 675000.0 -3.400000e+38 -3.400000e+38 \n", "705000.0 155000.0 -3.400000e+38 1.602377e-03 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "835000.0 455000.0 -3.400000e+38 -3.400000e+38 \n", "235000.0 385000.0 5.169505e+00 1.434829e+01 \n", "675000.0 175000.0 -3.400000e+38 -3.400000e+38 \n", "485000.0 675000.0 -3.400000e+38 -3.400000e+38 \n", "705000.0 155000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "835000.0 455000.0 -3.400000e+38 -3.400000e+38 0 \n", "235000.0 385000.0 1.600325e+01 4.872670e+01 1 \n", "675000.0 175000.0 -3.400000e+38 -3.400000e+38 0 \n", "485000.0 675000.0 -3.400000e+38 -3.400000e+38 0 \n", "705000.0 155000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
535000.0515000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
745000.0135000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
255000.075000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
675000.0465000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
955000.0455000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "535000.0 515000.0 0 0 0 \n", "745000.0 135000.0 0 0 0 \n", "255000.0 75000.0 0 0 0 \n", "675000.0 465000.0 0 0 0 \n", "955000.0 455000.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "535000.0 515000.0 0 0 0 \n", "745000.0 135000.0 0 0 0 \n", "255000.0 75000.0 0 0 0 \n", "675000.0 465000.0 0 0 0 \n", "955000.0 455000.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "535000.0 515000.0 0 0 0 0 ... \n", "745000.0 135000.0 0 0 0 0 ... \n", "255000.0 75000.0 0 0 0 0 ... \n", "675000.0 465000.0 0 0 0 0 ... \n", "955000.0 455000.0 0 0 0 0 ... \n", "\n", " Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n", "y x \n", "535000.0 515000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "745000.0 135000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "255000.0 75000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "675000.0 465000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "955000.0 455000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "535000.0 515000.0 -3.400000e+38 -3.400000e+38 \n", "745000.0 135000.0 -3.400000e+38 -3.400000e+38 \n", "255000.0 75000.0 -3.400000e+38 -3.400000e+38 \n", "675000.0 465000.0 -3.400000e+38 -3.400000e+38 \n", "955000.0 455000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "535000.0 515000.0 -3.400000e+38 -3.400000e+38 \n", "745000.0 135000.0 -3.400000e+38 -3.400000e+38 \n", "255000.0 75000.0 -3.400000e+38 -3.400000e+38 \n", "675000.0 465000.0 -3.400000e+38 -3.400000e+38 \n", "955000.0 455000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "535000.0 515000.0 -3.400000e+38 -3.400000e+38 0 \n", "745000.0 135000.0 -3.400000e+38 -3.400000e+38 0 \n", "255000.0 75000.0 -3.400000e+38 -3.400000e+38 0 \n", "675000.0 465000.0 -3.400000e+38 -3.400000e+38 0 \n", "955000.0 455000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
205000.0225000.00000000000...6.204496e-021.285449e-027.773425e-02-3.400000e+383.705793e-02-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1175000.0485000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
975000.0485000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
395000.0135000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
675000.0585000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "205000.0 225000.0 0 0 0 \n", "1175000.0 485000.0 0 0 0 \n", "975000.0 485000.0 0 0 0 \n", "395000.0 135000.0 0 0 0 \n", "675000.0 585000.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "205000.0 225000.0 0 0 \n", "1175000.0 485000.0 0 0 \n", "975000.0 485000.0 0 0 \n", "395000.0 135000.0 0 0 \n", "675000.0 585000.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "205000.0 225000.0 0 0 0 0 \n", "1175000.0 485000.0 0 0 0 0 \n", "975000.0 485000.0 0 0 0 0 \n", "395000.0 135000.0 0 0 0 0 \n", "675000.0 585000.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n", "y x ... \n", "205000.0 225000.0 0 ... 6.204496e-02 1.285449e-02 \n", "1175000.0 485000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "975000.0 485000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "395000.0 135000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "675000.0 585000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "205000.0 225000.0 7.773425e-02 -3.400000e+38 3.705793e-02 \n", "1175000.0 485000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "975000.0 485000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "395000.0 135000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "675000.0 585000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "205000.0 225000.0 -3.400000e+38 -3.400000e+38 \n", "1175000.0 485000.0 -3.400000e+38 -3.400000e+38 \n", "975000.0 485000.0 -3.400000e+38 -3.400000e+38 \n", "395000.0 135000.0 -3.400000e+38 -3.400000e+38 \n", "675000.0 585000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "205000.0 225000.0 -3.400000e+38 -3.400000e+38 0 \n", "1175000.0 485000.0 -3.400000e+38 -3.400000e+38 0 \n", "975000.0 485000.0 -3.400000e+38 -3.400000e+38 0 \n", "395000.0 135000.0 -3.400000e+38 -3.400000e+38 0 \n", "675000.0 585000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
995000.0335000.0100440000110...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
245000.0375000.090973000000...1.643640e+018.107372e+003.085294e+002.327609e+009.291373e+001.105644e+001.160969e+011.165004e+017.668460e+000
665000.065000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
445000.0665000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
1035000.0395000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "995000.0 335000.0 1 0 0 \n", "245000.0 375000.0 9 0 9 \n", "665000.0 65000.0 0 0 0 \n", "445000.0 665000.0 0 0 0 \n", "1035000.0 395000.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "995000.0 335000.0 44 0 \n", "245000.0 375000.0 73 0 \n", "665000.0 65000.0 0 0 \n", "445000.0 665000.0 0 0 \n", "1035000.0 395000.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "995000.0 335000.0 0 0 0 11 \n", "245000.0 375000.0 0 0 0 0 \n", "665000.0 65000.0 0 0 0 0 \n", "445000.0 665000.0 0 0 0 0 \n", "1035000.0 395000.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n", "y x ... \n", "995000.0 335000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "245000.0 375000.0 0 ... 1.643640e+01 8.107372e+00 \n", "665000.0 65000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "445000.0 665000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "1035000.0 395000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "995000.0 335000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "245000.0 375000.0 3.085294e+00 2.327609e+00 9.291373e+00 \n", "665000.0 65000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "445000.0 665000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "1035000.0 395000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "995000.0 335000.0 -3.400000e+38 -3.400000e+38 \n", "245000.0 375000.0 1.105644e+00 1.160969e+01 \n", "665000.0 65000.0 -3.400000e+38 -3.400000e+38 \n", "445000.0 665000.0 -3.400000e+38 -3.400000e+38 \n", "1035000.0 395000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "995000.0 335000.0 -3.400000e+38 -3.400000e+38 0 \n", "245000.0 375000.0 1.165004e+01 7.668460e+00 0 \n", "665000.0 65000.0 -3.400000e+38 -3.400000e+38 0 \n", "445000.0 665000.0 -3.400000e+38 -3.400000e+38 0 \n", "1035000.0 395000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
45000.0335000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
915000.0455000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
165000.0445000.001516000000...2.218001e-011.971986e-025.645154e-023.506572e+006.399115e-022.509018e+00-3.400000e+38-3.400000e+38-3.400000e+380
315000.0385000.0304651000000...2.312304e+013.184140e+006.972710e+002.546534e-011.847880e+011.246151e-015.667286e+002.214241e+001.490210e+011
305000.035000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "45000.0 335000.0 0 0 0 \n", "915000.0 455000.0 0 0 0 \n", "165000.0 445000.0 0 1 5 \n", "315000.0 385000.0 3 0 46 \n", "305000.0 35000.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "45000.0 335000.0 0 0 0 \n", "915000.0 455000.0 0 0 0 \n", "165000.0 445000.0 16 0 0 \n", "315000.0 385000.0 51 0 0 \n", "305000.0 35000.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "45000.0 335000.0 0 0 0 0 ... \n", "915000.0 455000.0 0 0 0 0 ... \n", "165000.0 445000.0 0 0 0 0 ... \n", "315000.0 385000.0 0 0 0 0 ... \n", "305000.0 35000.0 0 0 0 0 ... \n", "\n", " Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n", "y x \n", "45000.0 335000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "915000.0 455000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "165000.0 445000.0 2.218001e-01 1.971986e-02 5.645154e-02 \n", "315000.0 385000.0 2.312304e+01 3.184140e+00 6.972710e+00 \n", "305000.0 35000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "45000.0 335000.0 -3.400000e+38 -3.400000e+38 \n", "915000.0 455000.0 -3.400000e+38 -3.400000e+38 \n", "165000.0 445000.0 3.506572e+00 6.399115e-02 \n", "315000.0 385000.0 2.546534e-01 1.847880e+01 \n", "305000.0 35000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "45000.0 335000.0 -3.400000e+38 -3.400000e+38 \n", "915000.0 455000.0 -3.400000e+38 -3.400000e+38 \n", "165000.0 445000.0 2.509018e+00 -3.400000e+38 \n", "315000.0 385000.0 1.246151e-01 5.667286e+00 \n", "305000.0 35000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "45000.0 335000.0 -3.400000e+38 -3.400000e+38 0 \n", "915000.0 455000.0 -3.400000e+38 -3.400000e+38 0 \n", "165000.0 445000.0 -3.400000e+38 -3.400000e+38 0 \n", "315000.0 385000.0 2.214241e+00 1.490210e+01 1 \n", "305000.0 35000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
1125000.0525000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
285000.0415000.00009000000...2.699923e+017.159234e-012.832157e+00-3.400000e+381.705337e+01-3.400000e+381.344955e+018.048236e+002.779240e+010
1085000.0305000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
515000.0255000.00000000000...7.289742e-021.422214e-028.243214e-02-3.400000e+384.177649e-02-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
545000.065000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "1125000.0 525000.0 0 0 0 \n", "285000.0 415000.0 0 0 0 \n", "1085000.0 305000.0 0 0 0 \n", "515000.0 255000.0 0 0 0 \n", "545000.0 65000.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland \\\n", "y x \n", "1125000.0 525000.0 0 0 \n", "285000.0 415000.0 9 0 \n", "1085000.0 305000.0 0 0 \n", "515000.0 255000.0 0 0 \n", "545000.0 65000.0 0 0 \n", "\n", " Calcareous grassland Acid grassland Fen Heather \\\n", "y x \n", "1125000.0 525000.0 0 0 0 0 \n", "285000.0 415000.0 0 0 0 0 \n", "1085000.0 305000.0 0 0 0 0 \n", "515000.0 255000.0 0 0 0 0 \n", "545000.0 65000.0 0 0 0 0 \n", "\n", " Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n", "y x ... \n", "1125000.0 525000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "285000.0 415000.0 0 ... 2.699923e+01 7.159234e-01 \n", "1085000.0 305000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "515000.0 255000.0 0 ... 7.289742e-02 1.422214e-02 \n", "545000.0 65000.0 0 ... -3.400000e+38 -3.400000e+38 \n", "\n", " Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "1125000.0 525000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "285000.0 415000.0 2.832157e+00 -3.400000e+38 1.705337e+01 \n", "1085000.0 305000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "515000.0 255000.0 8.243214e-02 -3.400000e+38 4.177649e-02 \n", "545000.0 65000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "1125000.0 525000.0 -3.400000e+38 -3.400000e+38 \n", "285000.0 415000.0 -3.400000e+38 1.344955e+01 \n", "1085000.0 305000.0 -3.400000e+38 -3.400000e+38 \n", "515000.0 255000.0 -3.400000e+38 -3.400000e+38 \n", "545000.0 65000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "1125000.0 525000.0 -3.400000e+38 -3.400000e+38 0 \n", "285000.0 415000.0 8.048236e+00 2.779240e+01 0 \n", "1085000.0 305000.0 -3.400000e+38 -3.400000e+38 0 \n", "515000.0 255000.0 -3.400000e+38 -3.400000e+38 0 \n", "545000.0 65000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Deciduous woodlandConiferous woodlandArableImprove grasslandNeutral grasslandCalcareous grasslandAcid grasslandFenHeatherHeather grassland...Glyphosate_10kmMancozeb_10kmMecoprop-P_10kmMetamitron_10kmPendimethalin_10kmPropamocarbHydrochloride_10kmProsulfocarb_10kmSulphur_10kmTri-allate_10kmOccurrence
yx
905000.0235000.00000000001...2.596413e-014.824913e-022.193868e-01-3.400000e+381.357381e-01-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
405000.0665000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
425000.0605000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
625000.0145000.00000000000...7.894525e-048.156863e-052.452916e-04-3.400000e+382.156298e-04-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
765000.0575000.00000000000...-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+38-3.400000e+380
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " Deciduous woodland Coniferous woodland Arable \\\n", "y x \n", "905000.0 235000.0 0 0 0 \n", "405000.0 665000.0 0 0 0 \n", "425000.0 605000.0 0 0 0 \n", "625000.0 145000.0 0 0 0 \n", "765000.0 575000.0 0 0 0 \n", "\n", " Improve grassland Neutral grassland Calcareous grassland \\\n", "y x \n", "905000.0 235000.0 0 0 0 \n", "405000.0 665000.0 0 0 0 \n", "425000.0 605000.0 0 0 0 \n", "625000.0 145000.0 0 0 0 \n", "765000.0 575000.0 0 0 0 \n", "\n", " Acid grassland Fen Heather Heather grassland ... \\\n", "y x ... \n", "905000.0 235000.0 0 0 0 1 ... \n", "405000.0 665000.0 0 0 0 0 ... \n", "425000.0 605000.0 0 0 0 0 ... \n", "625000.0 145000.0 0 0 0 0 ... \n", "765000.0 575000.0 0 0 0 0 ... \n", "\n", " Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n", "y x \n", "905000.0 235000.0 2.596413e-01 4.824913e-02 2.193868e-01 \n", "405000.0 665000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "425000.0 605000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "625000.0 145000.0 7.894525e-04 8.156863e-05 2.452916e-04 \n", "765000.0 575000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n", "\n", " Metamitron_10km Pendimethalin_10km \\\n", "y x \n", "905000.0 235000.0 -3.400000e+38 1.357381e-01 \n", "405000.0 665000.0 -3.400000e+38 -3.400000e+38 \n", "425000.0 605000.0 -3.400000e+38 -3.400000e+38 \n", "625000.0 145000.0 -3.400000e+38 2.156298e-04 \n", "765000.0 575000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n", "y x \n", "905000.0 235000.0 -3.400000e+38 -3.400000e+38 \n", "405000.0 665000.0 -3.400000e+38 -3.400000e+38 \n", "425000.0 605000.0 -3.400000e+38 -3.400000e+38 \n", "625000.0 145000.0 -3.400000e+38 -3.400000e+38 \n", "765000.0 575000.0 -3.400000e+38 -3.400000e+38 \n", "\n", " Sulphur_10km Tri-allate_10km Occurrence \n", "y x \n", "905000.0 235000.0 -3.400000e+38 -3.400000e+38 0 \n", "405000.0 665000.0 -3.400000e+38 -3.400000e+38 0 \n", "425000.0 605000.0 -3.400000e+38 -3.400000e+38 0 \n", "625000.0 145000.0 -3.400000e+38 -3.400000e+38 0 \n", "765000.0 575000.0 -3.400000e+38 -3.400000e+38 0 \n", "\n", "[5 rows x 40 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "INVASIVE_BIRDS_PATH = 'Datasets/Machine Learning/10km Rasters/Birds'\n", "# Use this if using coordinates as separate columns\n", "# df_10km = pd.read_csv('Datasets/Machine Learning/Dataframes/10km_All_Birds_DF.csv')\n", "\n", "# Use this if using coordinates as indices\n", "df_10km = pd.read_csv('Datasets/Machine Learning/Dataframes/10km_All_Birds_DF.csv', index_col=[0,1])\n", "\n", "total_birds = (df_10km['Occurrence']==1).sum()\n", "df_dicts = []\n", "\n", "for file in os.listdir(INVASIVE_BIRDS_PATH):\n", " filename = os.fsdecode(file)\n", " if not filename.endswith('.tif') or filename.endswith('All_Invasive_Birds_10km.tif') :\n", " continue\n", "\n", "\n", "\n", " bird_name = filename[:-4].replace('_', ' ')\n", "\n", " bird_dataset = rioxarray.open_rasterio(f'{INVASIVE_BIRDS_PATH}/{file}')\n", " bird_dataset.name = 'data'\n", " bird_df = bird_dataset.squeeze().drop(\"spatial_ref\").drop(\"band\").to_dataframe()\n", "\n", " # Check if index matches\n", " if not df_10km.index.equals(bird_df.index):\n", " print('Warning: Index does not match')\n", " continue\n", "\n", " bird_df['Occurrence'] = [0 if x == -1 else 1 for x in bird_df['data']]\n", " bird_df = df_10km.drop(columns='Occurrence').join(bird_df.drop(columns='data'))\n", " \n", " bird_dict = {'name' : bird_name, 'dataframe' : bird_df }\n", " df_dicts.append(bird_dict)\n", " display(bird_df.sample(5))\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 10km data before drop: \n", " Occurrence\n", "0 8634\n", "1 466\n", "dtype: int64 \n", "\n", "Barnacle Goose 10km data after drop: \n", " Occurrence\n", "0 2206\n", "1 466\n", "dtype: int64 \n", "\n", "Canada Goose 10km data before drop: \n", " Occurrence\n", "0 7311\n", "1 1789\n", "dtype: int64 \n", "\n", "Canada Goose 10km data after drop: \n", " Occurrence\n", "1 1789\n", "0 883\n", "dtype: int64 \n", "\n", "Egyptian Goose 10km data before drop: \n", " Occurrence\n", "0 8800\n", "1 300\n", "dtype: int64 \n", "\n", "Egyptian Goose 10km data after drop: \n", " Occurrence\n", "0 2372\n", "1 300\n", "dtype: int64 \n", "\n", "Gadwall 10km data before drop: \n", " Occurrence\n", "0 8270\n", "1 830\n", "dtype: int64 \n", "\n", "Gadwall 10km data after drop: \n", " Occurrence\n", "0 1842\n", "1 830\n", "dtype: int64 \n", "\n", "Goshawk 10km data before drop: \n", " Occurrence\n", "0 8654\n", "1 446\n", "dtype: int64 \n", "\n", "Goshawk 10km data after drop: \n", " Occurrence\n", "0 2226\n", "1 446\n", "dtype: int64 \n", "\n", "Grey Partridge 10km data before drop: \n", " Occurrence\n", "0 8098\n", "1 1002\n", "dtype: int64 \n", "\n", "Grey Partridge 10km data after drop: \n", " Occurrence\n", "0 1670\n", "1 1002\n", "dtype: int64 \n", "\n", "Indian Peafowl 10km data before drop: \n", " Occurrence\n", "0 8853\n", "1 247\n", "dtype: int64 \n", "\n", "Indian Peafowl 10km data after drop: \n", " Occurrence\n", "0 2425\n", "1 247\n", "dtype: int64 \n", "\n", "Little Owl 10km data before drop: \n", " Occurrence\n", "0 8023\n", "1 1077\n", "dtype: int64 \n", "\n", "Little Owl 10km data after drop: \n", " Occurrence\n", "0 1595\n", "1 1077\n", "dtype: int64 \n", "\n", "Mandarin Duck 10km data before drop: \n", " Occurrence\n", "0 8622\n", "1 478\n", "dtype: int64 \n", "\n", "Mandarin Duck 10km data after drop: \n", " Occurrence\n", "0 2194\n", "1 478\n", "dtype: int64 \n", "\n", "Mute Swan 10km data before drop: \n", " Occurrence\n", "0 7093\n", "1 2007\n", "dtype: int64 \n", "\n", "Mute Swan 10km data after drop: \n", " Occurrence\n", "1 2007\n", "0 665\n", "dtype: int64 \n", "\n", "Pheasant 10km data before drop: \n", " Occurrence\n", "0 7182\n", "1 1918\n", "dtype: int64 \n", "\n", "Pheasant 10km data after drop: \n", " Occurrence\n", "1 1918\n", "0 754\n", "dtype: int64 \n", "\n", "Pink-footed Goose 10km data before drop: \n", " Occurrence\n", "0 8370\n", "1 730\n", "dtype: int64 \n", "\n", "Pink-footed Goose 10km data after drop: \n", " Occurrence\n", "0 1942\n", "1 730\n", "dtype: int64 \n", "\n", "Pintail 10km data before drop: \n", " Occurrence\n", "0 8587\n", "1 513\n", "dtype: int64 \n", "\n", "Pintail 10km data after drop: \n", " Occurrence\n", "0 2159\n", "1 513\n", "dtype: int64 \n", "\n", "Pochard 10km data before drop: \n", " Occurrence\n", "0 8362\n", "1 738\n", "dtype: int64 \n", "\n", "Pochard 10km data after drop: \n", " Occurrence\n", "0 1934\n", "1 738\n", "dtype: int64 \n", "\n", "Red-legged Partridge 10km data before drop: \n", " Occurrence\n", "0 7892\n", "1 1208\n", "dtype: int64 \n", "\n", "Red-legged Partridge 10km data after drop: \n", " Occurrence\n", "0 1464\n", "1 1208\n", "dtype: int64 \n", "\n", "Ring-necked Parakeet 10km data before drop: \n", " Occurrence\n", "0 9004\n", "1 96\n", "dtype: int64 \n", "\n", "Ring-necked Parakeet 10km data after drop: \n", " Occurrence\n", "0 2576\n", "1 96\n", "dtype: int64 \n", "\n", "Rock Dove 10km data before drop: \n", " Occurrence\n", "0 7480\n", "1 1620\n", "dtype: int64 \n", "\n", "Rock Dove 10km data after drop: \n", " Occurrence\n", "1 1620\n", "0 1052\n", "dtype: int64 \n", "\n", "Ruddy Duck 10km data before drop: \n", " Occurrence\n", "0 9003\n", "1 97\n", "dtype: int64 \n", "\n", "Ruddy Duck 10km data after drop: \n", " Occurrence\n", "0 2575\n", "1 97\n", "dtype: int64 \n", "\n", "Whooper Swan 10km data before drop: \n", " Occurrence\n", "0 8441\n", "1 659\n", "dtype: int64 \n", "\n", "Whooper Swan 10km data after drop: \n", " Occurrence\n", "0 2013\n", "1 659\n", "dtype: int64 \n", "\n", "Wigeon 10km data before drop: \n", " Occurrence\n", "0 7833\n", "1 1267\n", "dtype: int64 \n", "\n", "Wigeon 10km data after drop: \n", " Occurrence\n", "0 1405\n", "1 1267\n", "dtype: int64 \n", "\n" ] } ], "source": [ "# Data Cleaning\n", "np.random.seed(seed=seed)\n", "\n", "for dict in df_dicts:\n", " cur_df = dict[\"dataframe\"]\n", " cur_df_name = dict[\"name\"]\n", "\n", " print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n", " \n", " no_occurences = cur_df[cur_df['Occurrence']==0].index \n", " sample_size = sum(cur_df['Occurrence']==0) - total_birds + sum(cur_df['Occurrence']==1)\n", " random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n", " dict[\"dataframe\"] = cur_df.drop(random_indices)\n", " \n", " print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')\n", "\n", "\n", "# for dict in df_dicts:\n", "# cur_df = dict[\"dataframe\"]\n", "# cur_df_name = dict[\"name\"]\n", "\n", "# print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n", " \n", "# no_occurences = cur_df[cur_df['Occurrence']==0].index\n", "# sample_size = sum(cur_df['Occurrence']==0) - sum(cur_df['Occurrence']==1)\n", "# random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n", "# dict[\"dataframe\"] = cur_df.drop(random_indices)\n", " \n", "# print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# Standardisation\n", "def standardise(X):\n", " scaler = StandardScaler()\n", " X_scaled = scaler.fit_transform(X)\n", "\n", " # Add headers back\n", " X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)\n", "\n", " # Revert 'Surface type' back to non-standardised column as it is a categorical feature\n", " X_scaled_df['Surface type'] = X['Surface type'].values\n", " return X_scaled_df" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# Feature Selection\n", "\n", "# Check if any columns have NaN in them\n", "# nan_columns = []\n", "# for column in X_scaled_df:\n", "# if X_scaled_df[column].isnull().values.any():\n", "# nan_columns.append(column)\n", "# print(nan_columns if len(nan_columns)!= 0 else 'None')\n", "\n", "\n", "# Using ANOVA F-Score as a feature selection method\n", "def feature_select(X, y):\n", " k_nums = [10, 15, 20, 25, 30, 35]\n", " kbest_dict = {}\n", " for num in k_nums:\n", " # Needs to be 1d array, y.values.ravel() converts y into a 1d array\n", " best_X = SelectKBest(f_classif, k=num).fit(X, y.values.ravel())\n", " # kbest_dict[str(num)] = best_X.get_feature_names_out().tolist()\n", " kbest_dict[str(num)] = best_X\n", " # kbest_dict['40'] = list(X.columns)\n", "\n", " best_X = SelectKBest(f_classif, k='all').fit(X, y.values.ravel())\n", "\n", " feat_scores = pd.DataFrame()\n", " feat_scores[\"F Score\"] = best_X.scores_\n", " feat_scores[\"P Value\"] = best_X.pvalues_\n", " feat_scores[\"Attribute\"] = X.columns\n", " kbest_dict['Dataframe'] = feat_scores.sort_values([\"F Score\", \"P Value\"], ascending=[False, False])\n", "\n", "\n", " if details:\n", " print(f'K-Best Features Dataframe: \\n{kbest_dict[\"Dataframe\"]} \\n')\n", " # print(json.dumps(kbest_dict, indent=4))\n", " return kbest_dict" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# Resample (upsample) minority data\n", "# for dict in df_dicts:\n", "# if sum(dict['dataframe']['Occurence']==1) > sum(dict['dataframe']['Occurence']==0):\n", "# continue\n", "\n", "# from sklearn.utils import resample\n", "\n", "# def upsample(X, y):\n", "# X_1 = X[y['Occurrence'] == 1] # Getting positive occurrences (minority)\n", "# X_0 = X[y['Occurrence'] == 0] # Getting negative occurrences (majority)\n", " \n", "# X_1_upsampled = resample(X_1 ,random_state=seed,n_samples=total_birds/2,replace=True)\n", "\n", "\n", "# print(f'Resampling: \\n {y.value_counts()} \\n')\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "def oversample(X_train, y_train):\n", " over = RandomOverSampler(sampling_strategy='minority', random_state=seed)\n", " smote = SMOTE(random_state=seed, sampling_strategy='minority')\n", " X_smote, y_smote = smote.fit_resample(X_train, y_train)\n", " \n", " if details:\n", " print(f'Resampled Value Counts: \\n {y_smote.value_counts()} \\n')\n", "\n", " return X_smote, y_smote" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NameOccurrence CountPercentage
9Mute Swan 10km20070.751123
10Pheasant 10km19180.717814
1Canada Goose 10km17890.669536
16Rock Dove 10km16200.606287
19Wigeon 10km12670.474177
14Red-legged Partridge 10km12080.452096
7Little Owl 10km10770.403069
5Grey Partridge 10km10020.375000
3Gadwall 10km8300.310629
13Pochard 10km7380.276198
11Pink-footed Goose 10km7300.273204
18Whooper Swan 10km6590.246632
12Pintail 10km5130.191991
8Mandarin Duck 10km4780.178892
0Barnacle Goose 10km4660.174401
4Goshawk 10km4460.166916
2Egyptian Goose 10km3000.112275
6Indian Peafowl 10km2470.092440
17Ruddy Duck 10km970.036302
15Ring-necked Parakeet 10km960.035928
\n", "
" ], "text/plain": [ " Name Occurrence Count Percentage\n", "9 Mute Swan 10km 2007 0.751123\n", "10 Pheasant 10km 1918 0.717814\n", "1 Canada Goose 10km 1789 0.669536\n", "16 Rock Dove 10km 1620 0.606287\n", "19 Wigeon 10km 1267 0.474177\n", "14 Red-legged Partridge 10km 1208 0.452096\n", "7 Little Owl 10km 1077 0.403069\n", "5 Grey Partridge 10km 1002 0.375000\n", "3 Gadwall 10km 830 0.310629\n", "13 Pochard 10km 738 0.276198\n", "11 Pink-footed Goose 10km 730 0.273204\n", "18 Whooper Swan 10km 659 0.246632\n", "12 Pintail 10km 513 0.191991\n", "8 Mandarin Duck 10km 478 0.178892\n", "0 Barnacle Goose 10km 466 0.174401\n", "4 Goshawk 10km 446 0.166916\n", "2 Egyptian Goose 10km 300 0.112275\n", "6 Indian Peafowl 10km 247 0.092440\n", "17 Ruddy Duck 10km 97 0.036302\n", "15 Ring-necked Parakeet 10km 96 0.035928" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "All_bird_occurrences = pd.DataFrame([(dict['name'],sum(dict['dataframe']['Occurrence'] == 1)) for dict in df_dicts], columns=['Name', 'Occurrence Count'])\n", "All_bird_occurrences['Percentage'] = All_bird_occurrences['Occurrence Count']/total_birds\n", "\n", "All_bird_occurrences.sort_values('Occurrence Count', ascending=False)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Training with Barnacle Goose 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8983364140480592,\n", " \"recall\": 0.8741007194244604,\n", " \"f1-score\": 0.8860528714676389,\n", " \"support\": 556\n", " },\n", " \"1\": {\n", " \"precision\": 0.44881889763779526,\n", " \"recall\": 0.5089285714285714,\n", " \"f1-score\": 0.47698744769874474,\n", " \"support\": 112\n", " },\n", " \"accuracy\": 0.812874251497006,\n", " \"macro avg\": {\n", " \"precision\": 0.6735776558429272,\n", " \"recall\": 0.691514645426516,\n", " \"f1-score\": 0.6815201595831918,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8229682077038233,\n", " \"recall\": 0.812874251497006,\n", " \"f1-score\": 0.8174670519135727,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Barnacle Goose 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9015151515151515,\n", " \"recall\": 0.8561151079136691,\n", " \"f1-score\": 0.8782287822878229,\n", " \"support\": 556\n", " },\n", " \"1\": {\n", " \"precision\": 0.42857142857142855,\n", " \"recall\": 0.5357142857142857,\n", " \"f1-score\": 0.47619047619047616,\n", " \"support\": 112\n", " },\n", " \"accuracy\": 0.8023952095808383,\n", " \"macro avg\": {\n", " \"precision\": 0.66504329004329,\n", " \"recall\": 0.6959146968139773,\n", " \"f1-score\": 0.6772096292391495,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8222191979677009,\n", " \"recall\": 0.8023952095808383,\n", " \"f1-score\": 0.8108211621038367,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Canada Goose 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Canada Goose 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9219512195121952,\n", " \"recall\": 0.8957345971563981,\n", " \"f1-score\": 0.9086538461538463,\n", " \"support\": 211\n", " },\n", " \"1\": {\n", " \"precision\": 0.9524838012958964,\n", " \"recall\": 0.9649890590809628,\n", " \"f1-score\": 0.9586956521739131,\n", " \"support\": 457\n", " },\n", " \"accuracy\": 0.9431137724550899,\n", " \"macro avg\": {\n", " \"precision\": 0.9372175104040458,\n", " \"recall\": 0.9303618281186805,\n", " \"f1-score\": 0.9336747491638797,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9428395277085297,\n", " \"recall\": 0.9431137724550899,\n", " \"f1-score\": 0.9428890338052992,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Canada Goose 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9056603773584906,\n", " \"recall\": 0.909952606635071,\n", " \"f1-score\": 0.9078014184397164,\n", " \"support\": 211\n", " },\n", " \"1\": {\n", " \"precision\": 0.9583333333333334,\n", " \"recall\": 0.9562363238512035,\n", " \"f1-score\": 0.9572836801752466,\n", " \"support\": 457\n", " },\n", " \"accuracy\": 0.9416167664670658,\n", " \"macro avg\": {\n", " \"precision\": 0.9319968553459119,\n", " \"recall\": 0.9330944652431372,\n", " \"f1-score\": 0.9325425493074815,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9416956181975672,\n", " \"recall\": 0.9416167664670658,\n", " \"f1-score\": 0.9416538040881255,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Egyptian Goose 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Egyptian Goose 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9588336192109777,\n", " \"recall\": 0.9442567567567568,\n", " \"f1-score\": 0.9514893617021277,\n", " \"support\": 592\n", " },\n", " \"1\": {\n", " \"precision\": 0.611764705882353,\n", " \"recall\": 0.6842105263157895,\n", " \"f1-score\": 0.6459627329192548,\n", " \"support\": 76\n", " },\n", " \"accuracy\": 0.9146706586826348,\n", " \"macro avg\": {\n", " \"precision\": 0.7852991625466653,\n", " \"recall\": 0.8142336415362732,\n", " \"f1-score\": 0.7987260473106912,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9193467368562239,\n", " \"recall\": 0.9146706586826348,\n", " \"f1-score\": 0.9167288470501842,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Egyptian Goose 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9518900343642611,\n", " \"recall\": 0.9358108108108109,\n", " \"f1-score\": 0.9437819420783646,\n", " \"support\": 592\n", " },\n", " \"1\": {\n", " \"precision\": 0.5581395348837209,\n", " \"recall\": 0.631578947368421,\n", " \"f1-score\": 0.5925925925925927,\n", " \"support\": 76\n", " },\n", " \"accuracy\": 0.9011976047904192,\n", " \"macro avg\": {\n", " \"precision\": 0.755014784623991,\n", " \"recall\": 0.7836948790896159,\n", " \"f1-score\": 0.7681872673354786,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9070920733455171,\n", " \"recall\": 0.9011976047904192,\n", " \"f1-score\": 0.9038262675859714,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Gadwall 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Gadwall 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9010989010989011,\n", " \"recall\": 0.8951965065502183,\n", " \"f1-score\": 0.8981380065717415,\n", " \"support\": 458\n", " },\n", " \"1\": {\n", " \"precision\": 0.7746478873239436,\n", " \"recall\": 0.7857142857142857,\n", " \"f1-score\": 0.7801418439716311,\n", " \"support\": 210\n", " },\n", " \"accuracy\": 0.8607784431137725,\n", " \"macro avg\": {\n", " \"precision\": 0.8378733942114224,\n", " \"recall\": 0.8404553961322521,\n", " \"f1-score\": 0.8391399252716862,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8613463368882108,\n", " \"recall\": 0.8607784431137725,\n", " \"f1-score\": 0.8610434045567368,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Gadwall 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9191685912240185,\n", " \"recall\": 0.868995633187773,\n", " \"f1-score\": 0.89337822671156,\n", " \"support\": 458\n", " },\n", " \"1\": {\n", " \"precision\": 0.7446808510638298,\n", " \"recall\": 0.8333333333333334,\n", " \"f1-score\": 0.7865168539325842,\n", " \"support\": 210\n", " },\n", " \"accuracy\": 0.8577844311377245,\n", " \"macro avg\": {\n", " \"precision\": 0.8319247211439241,\n", " \"recall\": 0.8511644832605532,\n", " \"f1-score\": 0.8399475403220721,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8643146609341388,\n", " \"recall\": 0.8577844311377245,\n", " \"f1-score\": 0.8597840825744567,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Goshawk 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Goshawk 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9375,\n", " \"recall\": 0.9026548672566371,\n", " \"f1-score\": 0.9197475202885482,\n", " \"support\": 565\n", " },\n", " \"1\": {\n", " \"precision\": 0.5564516129032258,\n", " \"recall\": 0.6699029126213593,\n", " \"f1-score\": 0.6079295154185023,\n", " \"support\": 103\n", " },\n", " \"accuracy\": 0.8667664670658682,\n", " \"macro avg\": {\n", " \"precision\": 0.7469758064516129,\n", " \"recall\": 0.7862788899389982,\n", " \"f1-score\": 0.7638385178535252,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8787455331272938,\n", " \"recall\": 0.8667664670658682,\n", " \"f1-score\": 0.8716677979807418,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Goshawk 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9243243243243243,\n", " \"recall\": 0.9079646017699115,\n", " \"f1-score\": 0.9160714285714285,\n", " \"support\": 565\n", " },\n", " \"1\": {\n", " \"precision\": 0.5398230088495575,\n", " \"recall\": 0.5922330097087378,\n", " \"f1-score\": 0.5648148148148148,\n", " \"support\": 103\n", " },\n", " \"accuracy\": 0.8592814371257484,\n", " \"macro avg\": {\n", " \"precision\": 0.732073666586941,\n", " \"recall\": 0.7500988057393246,\n", " \"f1-score\": 0.7404431216931217,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8650374448424366,\n", " \"recall\": 0.8592814371257484,\n", " \"f1-score\": 0.8619106033963817,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Grey Partridge 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Grey Partridge 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.945,\n", " \"recall\": 0.8936170212765957,\n", " \"f1-score\": 0.9185905224787363,\n", " \"support\": 423\n", " },\n", " \"1\": {\n", " \"precision\": 0.832089552238806,\n", " \"recall\": 0.9102040816326531,\n", " \"f1-score\": 0.8693957115009747,\n", " \"support\": 245\n", " },\n", " \"accuracy\": 0.8997005988023952,\n", " \"macro avg\": {\n", " \"precision\": 0.888544776119403,\n", " \"recall\": 0.9019105514546244,\n", " \"f1-score\": 0.8939931169898555,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9035882339798016,\n", " \"recall\": 0.8997005988023952,\n", " \"f1-score\": 0.9005475154584496,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Grey Partridge 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.949874686716792,\n", " \"recall\": 0.8959810874704491,\n", " \"f1-score\": 0.9221411192214111,\n", " \"support\": 423\n", " },\n", " \"1\": {\n", " \"precision\": 0.8364312267657993,\n", " \"recall\": 0.9183673469387755,\n", " \"f1-score\": 0.8754863813229572,\n", " \"support\": 245\n", " },\n", " \"accuracy\": 0.9041916167664671,\n", " \"macro avg\": {\n", " \"precision\": 0.8931529567412957,\n", " \"recall\": 0.9071742172046123,\n", " \"f1-score\": 0.8988137502721841,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9082674296988381,\n", " \"recall\": 0.9041916167664671,\n", " \"f1-score\": 0.9050297258305111,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Indian Peafowl 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Indian Peafowl 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9234449760765551,\n", " \"recall\": 0.9682274247491639,\n", " \"f1-score\": 0.9453061224489796,\n", " \"support\": 598\n", " },\n", " \"1\": {\n", " \"precision\": 0.5365853658536586,\n", " \"recall\": 0.3142857142857143,\n", " \"f1-score\": 0.39639639639639646,\n", " \"support\": 70\n", " },\n", " \"accuracy\": 0.8997005988023952,\n", " \"macro avg\": {\n", " \"precision\": 0.7300151709651068,\n", " \"recall\": 0.641256569517439,\n", " \"f1-score\": 0.6708512594226881,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8829057953645749,\n", " \"recall\": 0.8997005988023952,\n", " \"f1-score\": 0.8877856421740082,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Indian Peafowl 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9244372990353698,\n", " \"recall\": 0.9615384615384616,\n", " \"f1-score\": 0.9426229508196722,\n", " \"support\": 598\n", " },\n", " \"1\": {\n", " \"precision\": 0.5,\n", " \"recall\": 0.32857142857142857,\n", " \"f1-score\": 0.39655172413793105,\n", " \"support\": 70\n", " },\n", " \"accuracy\": 0.8952095808383234,\n", " \"macro avg\": {\n", " \"precision\": 0.7122186495176849,\n", " \"recall\": 0.6450549450549451,\n", " \"f1-score\": 0.6695873374788016,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8799603365616034,\n", " \"recall\": 0.8952095808383234,\n", " \"f1-score\": 0.8853999180835616,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Little Owl 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Little Owl 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.946949602122016,\n", " \"recall\": 0.9037974683544304,\n", " \"f1-score\": 0.9248704663212435,\n", " \"support\": 395\n", " },\n", " \"1\": {\n", " \"precision\": 0.8694158075601375,\n", " \"recall\": 0.9267399267399268,\n", " \"f1-score\": 0.8971631205673759,\n", " \"support\": 273\n", " },\n", " \"accuracy\": 0.9131736526946108,\n", " \"macro avg\": {\n", " \"precision\": 0.9081827048410767,\n", " \"recall\": 0.9152686975471787,\n", " \"f1-score\": 0.9110167934443096,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9152628866798111,\n", " \"recall\": 0.9131736526946108,\n", " \"f1-score\": 0.913546955257163,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Little Owl 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9554973821989529,\n", " \"recall\": 0.9240506329113924,\n", " \"f1-score\": 0.9395109395109396,\n", " \"support\": 395\n", " },\n", " \"1\": {\n", " \"precision\": 0.8951048951048951,\n", " \"recall\": 0.9377289377289377,\n", " \"f1-score\": 0.9159212880143113,\n", " \"support\": 273\n", " },\n", " \"accuracy\": 0.9296407185628742,\n", " \"macro avg\": {\n", " \"precision\": 0.925301138651924,\n", " \"recall\": 0.9308897853201651,\n", " \"f1-score\": 0.9277161137626254,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9308160214554233,\n", " \"recall\": 0.9296407185628742,\n", " \"f1-score\": 0.9298702585849223,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Mandarin Duck 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Mandarin Duck 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.949438202247191,\n", " \"recall\": 0.9354243542435424,\n", " \"f1-score\": 0.9423791821561337,\n", " \"support\": 542\n", " },\n", " \"1\": {\n", " \"precision\": 0.7388059701492538,\n", " \"recall\": 0.7857142857142857,\n", " \"f1-score\": 0.7615384615384615,\n", " \"support\": 126\n", " },\n", " \"accuracy\": 0.907185628742515,\n", " \"macro avg\": {\n", " \"precision\": 0.8441220861982224,\n", " \"recall\": 0.8605693199789141,\n", " \"f1-score\": 0.8519588218472975,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9097081704442866,\n", " \"recall\": 0.907185628742515,\n", " \"f1-score\": 0.9082685073090877,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Mandarin Duck 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9287020109689214,\n", " \"recall\": 0.9372693726937269,\n", " \"f1-score\": 0.9329660238751146,\n", " \"support\": 542\n", " },\n", " \"1\": {\n", " \"precision\": 0.71900826446281,\n", " \"recall\": 0.6904761904761905,\n", " \"f1-score\": 0.7044534412955465,\n", " \"support\": 126\n", " },\n", " \"accuracy\": 0.8907185628742516,\n", " \"macro avg\": {\n", " \"precision\": 0.8238551377158656,\n", " \"recall\": 0.8138727815849587,\n", " \"f1-score\": 0.8187097325853305,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8891489989033974,\n", " \"recall\": 0.8907185628742516,\n", " \"f1-score\": 0.8898633511131003,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Mute Swan 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Mute Swan 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8372093023255814,\n", " \"recall\": 0.8571428571428571,\n", " \"f1-score\": 0.8470588235294119,\n", " \"support\": 168\n", " },\n", " \"1\": {\n", " \"precision\": 0.9516129032258065,\n", " \"recall\": 0.944,\n", " \"f1-score\": 0.9477911646586344,\n", " \"support\": 500\n", " },\n", " \"accuracy\": 0.9221556886227545,\n", " \"macro avg\": {\n", " \"precision\": 0.894411102775694,\n", " \"recall\": 0.9005714285714286,\n", " \"f1-score\": 0.8974249940940231,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.922840740125151,\n", " \"recall\": 0.9221556886227545,\n", " \"f1-score\": 0.9224572824584706,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Mute Swan 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.7912087912087912,\n", " \"recall\": 0.8571428571428571,\n", " \"f1-score\": 0.8228571428571427,\n", " \"support\": 168\n", " },\n", " \"1\": {\n", " \"precision\": 0.9506172839506173,\n", " \"recall\": 0.924,\n", " \"f1-score\": 0.9371196754563895,\n", " \"support\": 500\n", " },\n", " \"accuracy\": 0.907185628742515,\n", " \"macro avg\": {\n", " \"precision\": 0.8709130375797043,\n", " \"recall\": 0.8905714285714286,\n", " \"f1-score\": 0.8799884091567661,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9105265252969844,\n", " \"recall\": 0.907185628742515,\n", " \"f1-score\": 0.9083829906110699,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Pheasant 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pheasant 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.826530612244898,\n", " \"recall\": 0.8663101604278075,\n", " \"f1-score\": 0.8459530026109661,\n", " \"support\": 187\n", " },\n", " \"1\": {\n", " \"precision\": 0.9470338983050848,\n", " \"recall\": 0.9293139293139293,\n", " \"f1-score\": 0.938090241343127,\n", " \"support\": 481\n", " },\n", " \"accuracy\": 0.9116766467065869,\n", " \"macro avg\": {\n", " \"precision\": 0.8867822552749913,\n", " \"recall\": 0.8978120448708684,\n", " \"f1-score\": 0.8920216219770465,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9133001939738649,\n", " \"recall\": 0.9116766467065869,\n", " \"f1-score\": 0.912297331698046,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Pheasant 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.783410138248848,\n", " \"recall\": 0.9090909090909091,\n", " \"f1-score\": 0.8415841584158417,\n", " \"support\": 187\n", " },\n", " \"1\": {\n", " \"precision\": 0.9623059866962306,\n", " \"recall\": 0.9022869022869023,\n", " \"f1-score\": 0.9313304721030042,\n", " \"support\": 481\n", " },\n", " \"accuracy\": 0.9041916167664671,\n", " \"macro avg\": {\n", " \"precision\": 0.8728580624725393,\n", " \"recall\": 0.9056889056889057,\n", " \"f1-score\": 0.886457315259423,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9122258614572177,\n", " \"recall\": 0.9041916167664671,\n", " \"f1-score\": 0.9062068783013584,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Pink-footed Goose 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pink-footed Goose 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8768267223382046,\n", " \"recall\": 0.8786610878661087,\n", " \"f1-score\": 0.8777429467084639,\n", " \"support\": 478\n", " },\n", " \"1\": {\n", " \"precision\": 0.6931216931216931,\n", " \"recall\": 0.6894736842105263,\n", " \"f1-score\": 0.6912928759894459,\n", " \"support\": 190\n", " },\n", " \"accuracy\": 0.8248502994011976,\n", " \"macro avg\": {\n", " \"precision\": 0.7849742077299489,\n", " \"recall\": 0.7840673860383176,\n", " \"f1-score\": 0.7845179113489549,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8245752918724304,\n", " \"recall\": 0.8248502994011976,\n", " \"f1-score\": 0.8247107409650306,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Pink-footed Goose 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8805970149253731,\n", " \"recall\": 0.8640167364016736,\n", " \"f1-score\": 0.8722280887011616,\n", " \"support\": 478\n", " },\n", " \"1\": {\n", " \"precision\": 0.6733668341708543,\n", " \"recall\": 0.7052631578947368,\n", " \"f1-score\": 0.6889460154241646,\n", " \"support\": 190\n", " },\n", " \"accuracy\": 0.8188622754491018,\n", " \"macro avg\": {\n", " \"precision\": 0.7769819245481138,\n", " \"recall\": 0.7846399471482053,\n", " \"f1-score\": 0.7805870520626631,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8216542988425011,\n", " \"recall\": 0.8188622754491018,\n", " \"f1-score\": 0.820096960074471,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Pintail 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pintail 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8618881118881119,\n", " \"recall\": 0.9354838709677419,\n", " \"f1-score\": 0.8971792538671519,\n", " \"support\": 527\n", " },\n", " \"1\": {\n", " \"precision\": 0.6458333333333334,\n", " \"recall\": 0.4397163120567376,\n", " \"f1-score\": 0.5232067510548524,\n", " \"support\": 141\n", " },\n", " \"accuracy\": 0.8308383233532934,\n", " \"macro avg\": {\n", " \"precision\": 0.7538607226107226,\n", " \"recall\": 0.6876000915122398,\n", " \"f1-score\": 0.7101930024610021,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8162837349775971,\n", " \"recall\": 0.8308383233532934,\n", " \"f1-score\": 0.8182419441418013,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Pintail 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9124513618677043,\n", " \"recall\": 0.889943074003795,\n", " \"f1-score\": 0.9010566762728146,\n", " \"support\": 527\n", " },\n", " \"1\": {\n", " \"precision\": 0.6233766233766234,\n", " \"recall\": 0.6808510638297872,\n", " \"f1-score\": 0.6508474576271187,\n", " \"support\": 141\n", " },\n", " \"accuracy\": 0.8458083832335329,\n", " \"macro avg\": {\n", " \"precision\": 0.7679139926221639,\n", " \"recall\": 0.7853970689167911,\n", " \"f1-score\": 0.7759520669499667,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8514340892221318,\n", " \"recall\": 0.8458083832335329,\n", " \"f1-score\": 0.848243053774247,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Pochard 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Pochard 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9142259414225942,\n", " \"recall\": 0.9066390041493776,\n", " \"f1-score\": 0.9104166666666668,\n", " \"support\": 482\n", " },\n", " \"1\": {\n", " \"precision\": 0.7631578947368421,\n", " \"recall\": 0.7795698924731183,\n", " \"f1-score\": 0.7712765957446808,\n", " \"support\": 186\n", " },\n", " \"accuracy\": 0.8712574850299402,\n", " \"macro avg\": {\n", " \"precision\": 0.8386919180797181,\n", " \"recall\": 0.843104448311248,\n", " \"f1-score\": 0.8408466312056737,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8721620841118908,\n", " \"recall\": 0.8712574850299402,\n", " \"f1-score\": 0.8716740720686287,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Pochard 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9287305122494433,\n", " \"recall\": 0.8651452282157677,\n", " \"f1-score\": 0.895810955961332,\n", " \"support\": 482\n", " },\n", " \"1\": {\n", " \"precision\": 0.7031963470319634,\n", " \"recall\": 0.8279569892473119,\n", " \"f1-score\": 0.7604938271604939,\n", " \"support\": 186\n", " },\n", " \"accuracy\": 0.8547904191616766,\n", " \"macro avg\": {\n", " \"precision\": 0.8159634296407033,\n", " \"recall\": 0.8465511087315398,\n", " \"f1-score\": 0.8281523915609129,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8659320770242169,\n", " \"recall\": 0.8547904191616766,\n", " \"f1-score\": 0.8581328332712783,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Red-legged Partridge 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Red-legged Partridge 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9152046783625731,\n", " \"recall\": 0.884180790960452,\n", " \"f1-score\": 0.8994252873563219,\n", " \"support\": 354\n", " },\n", " \"1\": {\n", " \"precision\": 0.8742331288343558,\n", " \"recall\": 0.9076433121019108,\n", " \"f1-score\": 0.890625,\n", " \"support\": 314\n", " },\n", " \"accuracy\": 0.8952095808383234,\n", " \"macro avg\": {\n", " \"precision\": 0.8947189035984644,\n", " \"recall\": 0.8959120515311814,\n", " \"f1-score\": 0.8950251436781609,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8959455966981116,\n", " \"recall\": 0.8952095808383234,\n", " \"f1-score\": 0.8952886253355358,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Red-legged Partridge 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9201183431952663,\n", " \"recall\": 0.8785310734463276,\n", " \"f1-score\": 0.8988439306358381,\n", " \"support\": 354\n", " },\n", " \"1\": {\n", " \"precision\": 0.8696969696969697,\n", " \"recall\": 0.9140127388535032,\n", " \"f1-score\": 0.8913043478260869,\n", " \"support\": 314\n", " },\n", " \"accuracy\": 0.8952095808383234,\n", " \"macro avg\": {\n", " \"precision\": 0.894907656446118,\n", " \"recall\": 0.8962719061499154,\n", " \"f1-score\": 0.8950741392309625,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8964172784071448,\n", " \"recall\": 0.8952095808383234,\n", " \"f1-score\": 0.8952998752432306,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Ring-necked Parakeet 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Ring-necked Parakeet 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9654135338345865,\n", " \"recall\": 0.9968944099378882,\n", " \"f1-score\": 0.9809014514896868,\n", " \"support\": 644\n", " },\n", " \"1\": {\n", " \"precision\": 0.3333333333333333,\n", " \"recall\": 0.041666666666666664,\n", " \"f1-score\": 0.07407407407407407,\n", " \"support\": 24\n", " },\n", " \"accuracy\": 0.9625748502994012,\n", " \"macro avg\": {\n", " \"precision\": 0.6493734335839599,\n", " \"recall\": 0.5192805383022775,\n", " \"f1-score\": 0.5274877627818804,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9427040655531044,\n", " \"recall\": 0.9625748502994012,\n", " \"f1-score\": 0.9483208271514014,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Ring-necked Parakeet 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9667170953101362,\n", " \"recall\": 0.9922360248447205,\n", " \"f1-score\": 0.9793103448275863,\n", " \"support\": 644\n", " },\n", " \"1\": {\n", " \"precision\": 0.2857142857142857,\n", " \"recall\": 0.08333333333333333,\n", " \"f1-score\": 0.12903225806451613,\n", " \"support\": 24\n", " },\n", " \"accuracy\": 0.9595808383233533,\n", " \"macro avg\": {\n", " \"precision\": 0.6262156905122109,\n", " \"recall\": 0.5377846790890269,\n", " \"f1-score\": 0.5541713014460512,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9422499284983094,\n", " \"recall\": 0.9595808383233533,\n", " \"f1-score\": 0.9487614315307096,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Rock Dove 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Rock Dove 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8938775510204081,\n", " \"recall\": 0.8358778625954199,\n", " \"f1-score\": 0.863905325443787,\n", " \"support\": 262\n", " },\n", " \"1\": {\n", " \"precision\": 0.8983451536643026,\n", " \"recall\": 0.9359605911330049,\n", " \"f1-score\": 0.916767189384801,\n", " \"support\": 406\n", " },\n", " \"accuracy\": 0.8967065868263473,\n", " \"macro avg\": {\n", " \"precision\": 0.8961113523423554,\n", " \"recall\": 0.8859192268642124,\n", " \"f1-score\": 0.8903362574142939,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.896592890351877,\n", " \"recall\": 0.8967065868263473,\n", " \"f1-score\": 0.896033943348056,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Rock Dove 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8308823529411765,\n", " \"recall\": 0.8625954198473282,\n", " \"f1-score\": 0.8464419475655431,\n", " \"support\": 262\n", " },\n", " \"1\": {\n", " \"precision\": 0.9090909090909091,\n", " \"recall\": 0.8866995073891626,\n", " \"f1-score\": 0.8977556109725687,\n", " \"support\": 406\n", " },\n", " \"accuracy\": 0.8772455089820359,\n", " \"macro avg\": {\n", " \"precision\": 0.8699866310160428,\n", " \"recall\": 0.8746474636182454,\n", " \"f1-score\": 0.872098779269056,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8784162957507444,\n", " \"recall\": 0.8772455089820359,\n", " \"f1-score\": 0.8776295932889748,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Ruddy Duck 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Ruddy Duck 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9846625766871165,\n", " \"recall\": 0.9801526717557252,\n", " \"f1-score\": 0.9824024483550114,\n", " \"support\": 655\n", " },\n", " \"1\": {\n", " \"precision\": 0.1875,\n", " \"recall\": 0.23076923076923078,\n", " \"f1-score\": 0.20689655172413793,\n", " \"support\": 13\n", " },\n", " \"accuracy\": 0.9655688622754491,\n", " \"macro avg\": {\n", " \"precision\": 0.5860812883435582,\n", " \"recall\": 0.605460951262478,\n", " \"f1-score\": 0.5946495000395747,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9691489337276368,\n", " \"recall\": 0.9655688622754491,\n", " \"f1-score\": 0.9673102677319556,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Ruddy Duck 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9846390168970814,\n", " \"recall\": 0.9786259541984733,\n", " \"f1-score\": 0.9816232771822359,\n", " \"support\": 655\n", " },\n", " \"1\": {\n", " \"precision\": 0.17647058823529413,\n", " \"recall\": 0.23076923076923078,\n", " \"f1-score\": 0.20000000000000004,\n", " \"support\": 13\n", " },\n", " \"accuracy\": 0.9640718562874252,\n", " \"macro avg\": {\n", " \"precision\": 0.5805548025661877,\n", " \"recall\": 0.604697592483852,\n", " \"f1-score\": 0.590811638591118,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9689111881955795,\n", " \"recall\": 0.9640718562874252,\n", " \"f1-score\": 0.9664120457400666,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Whooper Swan 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Whooper Swan 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.8390804597701149,\n", " \"recall\": 0.8938775510204081,\n", " \"f1-score\": 0.8656126482213438,\n", " \"support\": 490\n", " },\n", " \"1\": {\n", " \"precision\": 0.6438356164383562,\n", " \"recall\": 0.5280898876404494,\n", " \"f1-score\": 0.5802469135802469,\n", " \"support\": 178\n", " },\n", " \"accuracy\": 0.7964071856287425,\n", " \"macro avg\": {\n", " \"precision\": 0.7414580381042355,\n", " \"recall\": 0.7109837193304287,\n", " \"f1-score\": 0.7229297809007953,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.7870541392415925,\n", " \"recall\": 0.7964071856287425,\n", " \"f1-score\": 0.7895720782121891,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Whooper Swan 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.848605577689243,\n", " \"recall\": 0.8693877551020408,\n", " \"f1-score\": 0.8588709677419356,\n", " \"support\": 490\n", " },\n", " \"1\": {\n", " \"precision\": 0.6144578313253012,\n", " \"recall\": 0.5730337078651685,\n", " \"f1-score\": 0.5930232558139534,\n", " \"support\": 178\n", " },\n", " \"accuracy\": 0.7904191616766467,\n", " \"macro avg\": {\n", " \"precision\": 0.7315317045072721,\n", " \"recall\": 0.7212107314836047,\n", " \"f1-score\": 0.7259471117779446,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.7862129147359771,\n", " \"recall\": 0.7904191616766467,\n", " \"f1-score\": 0.7880313079766947,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Training with Wigeon 10km cells... \n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n", "c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", " y = column_or_1d(y, warn=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Wigeon 10km Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.956953642384106,\n", " \"recall\": 0.7789757412398922,\n", " \"f1-score\": 0.8588410104011887,\n", " \"support\": 371\n", " },\n", " \"1\": {\n", " \"precision\": 0.7759562841530054,\n", " \"recall\": 0.9562289562289562,\n", " \"f1-score\": 0.8567119155354449,\n", " \"support\": 297\n", " },\n", " \"accuracy\": 0.8577844311377245,\n", " \"macro avg\": {\n", " \"precision\": 0.8664549632685556,\n", " \"recall\": 0.8676023487344242,\n", " \"f1-score\": 0.8577764629683168,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8764802660448293,\n", " \"recall\": 0.8577844311377245,\n", " \"f1-score\": 0.857894391875551,\n", " \"support\": 668\n", " }\n", "} \n", "\n", "Wigeon 10km SMOTE Classification Report: \n", " {\n", " \"0\": {\n", " \"precision\": 0.9503311258278145,\n", " \"recall\": 0.7735849056603774,\n", " \"f1-score\": 0.8528974739970282,\n", " \"support\": 371\n", " },\n", " \"1\": {\n", " \"precision\": 0.7704918032786885,\n", " \"recall\": 0.9494949494949495,\n", " \"f1-score\": 0.8506787330316742,\n", " \"support\": 297\n", " },\n", " \"accuracy\": 0.8517964071856288,\n", " \"macro avg\": {\n", " \"precision\": 0.8604114645532515,\n", " \"recall\": 0.8615399275776634,\n", " \"f1-score\": 0.8517881035143512,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8703726246345653,\n", " \"recall\": 0.8517964071856288,\n", " \"f1-score\": 0.8519109978492585,\n", " \"support\": 668\n", " }\n", "} \n", "\n" ] } ], "source": [ "# Add model pipeline\n", "estimators = [\n", " ('lr', LogisticRegression(max_iter=10000, solver='saga', random_state=seed, penalty='l2', verbose=verbose)),\n", " ('knn', KNeighborsClassifier(n_neighbors=5, weights='distance')),\n", " ('sgd', SGDClassifier( max_iter=10000, loss='modified_huber', random_state=seed, penalty='l2', verbose=verbose)),\n", " ('rf', RandomForestClassifier(n_estimators=20,max_features=None, random_state=seed, verbose=verbose))\n", "]\n", "\n", "\n", "for dict in df_dicts:\n", " print(f'Training with {dict[\"name\"]} cells... \\n')\n", " # Use this if using coordinates as separate columns\n", " # coords, X, y = data['dataframe'].iloc[:, :2], data['dataframe'].iloc[:, 2:-1], data['dataframe'].iloc[:, [-1]]\n", " # data['coords'] = coords\n", " \n", " # Use this if using coordinates as indices\n", " X, y = dict['dataframe'].iloc[:, 0:-1], dict['dataframe'].iloc[:, [-1]], \n", "\n", " dict['X'] = standardise(X)\n", " dict['y'] = y\n", " dict['kbest'] = feature_select(dict['X'], dict['y'])\n", "\n", " # dict['X'] = dict['kbest']['10'].transform(dict['X'])\n", "\n", " X_train, X_test, y_train, y_test = train_test_split(dict['X'], dict['y'], random_state=seed)\n", " dict['X_train'], dict['X_test'], dict['y_train'], dict['y_test'] = X_train, X_test, y_train, y_test # for debugging purposes\n", "\n", " dict['X_smote'], dict['y_smote'] = oversample(X_train, y_train)\n", "\n", " stack_clf = StackingClassifier(\n", " estimators=estimators, \n", " final_estimator=GradientBoostingClassifier(n_estimators=20, learning_rate=0.5, max_features=None, max_depth=2, random_state=seed)\n", " )\n", "\n", " # Classifier without SMOTE\n", " stack_clf.fit(dict['X_train'], dict['y_train'])\n", " y_pred = stack_clf.predict(X_test)\n", " \n", " dict['predictions'] = y_pred\n", " dict['report'] = classification_report(y_test, y_pred, output_dict=True)\n", " \n", "\n", " # Classifier with SMOTE\n", " stack_clf.fit(dict['X_smote'], dict['y_smote'])\n", " y_pred_smote = stack_clf.predict(X_test)\n", " \n", " dict['predictions_smote'] = y_pred_smote\n", " dict['report_smote'] = classification_report(y_test, y_pred_smote, output_dict=True)\n", " \n", " print(f'{dict[\"name\"]} Classification Report: \\n {json.dumps(dict[\"report\"], indent=4)} \\n')\n", " print(f'{dict[\"name\"]} SMOTE Classification Report: \\n {json.dumps(dict[\"report_smote\"], indent=4)} \\n')\n", "\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.8983364140480592,\n", " \"recall\": 0.8741007194244604,\n", " \"f1-score\": 0.8860528714676389,\n", " \"support\": 556\n", " },\n", " \"1\": {\n", " \"precision\": 0.44881889763779526,\n", " \"recall\": 0.5089285714285714,\n", " \"f1-score\": 0.47698744769874474,\n", " \"support\": 112\n", " },\n", " \"accuracy\": 0.812874251497006,\n", " \"macro avg\": {\n", " \"precision\": 0.6735776558429272,\n", " \"recall\": 0.691514645426516,\n", " \"f1-score\": 0.6815201595831918,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8229682077038233,\n", " \"recall\": 0.812874251497006,\n", " \"f1-score\": 0.8174670519135727,\n", " \"support\": 668\n", " }\n", "}\n", "Canada Goose 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9219512195121952,\n", " \"recall\": 0.8957345971563981,\n", " \"f1-score\": 0.9086538461538463,\n", " \"support\": 211\n", " },\n", " \"1\": {\n", " \"precision\": 0.9524838012958964,\n", " \"recall\": 0.9649890590809628,\n", " \"f1-score\": 0.9586956521739131,\n", " \"support\": 457\n", " },\n", " \"accuracy\": 0.9431137724550899,\n", " \"macro avg\": {\n", " \"precision\": 0.9372175104040458,\n", " \"recall\": 0.9303618281186805,\n", " \"f1-score\": 0.9336747491638797,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9428395277085297,\n", " \"recall\": 0.9431137724550899,\n", " \"f1-score\": 0.9428890338052992,\n", " \"support\": 668\n", " }\n", "}\n", "Egyptian Goose 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9588336192109777,\n", " \"recall\": 0.9442567567567568,\n", " \"f1-score\": 0.9514893617021277,\n", " \"support\": 592\n", " },\n", " \"1\": {\n", " \"precision\": 0.611764705882353,\n", " \"recall\": 0.6842105263157895,\n", " \"f1-score\": 0.6459627329192548,\n", " \"support\": 76\n", " },\n", " \"accuracy\": 0.9146706586826348,\n", " \"macro avg\": {\n", " \"precision\": 0.7852991625466653,\n", " \"recall\": 0.8142336415362732,\n", " \"f1-score\": 0.7987260473106912,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9193467368562239,\n", " \"recall\": 0.9146706586826348,\n", " \"f1-score\": 0.9167288470501842,\n", " \"support\": 668\n", " }\n", "}\n", "Gadwall 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9010989010989011,\n", " \"recall\": 0.8951965065502183,\n", " \"f1-score\": 0.8981380065717415,\n", " \"support\": 458\n", " },\n", " \"1\": {\n", " \"precision\": 0.7746478873239436,\n", " \"recall\": 0.7857142857142857,\n", " \"f1-score\": 0.7801418439716311,\n", " \"support\": 210\n", " },\n", " \"accuracy\": 0.8607784431137725,\n", " \"macro avg\": {\n", " \"precision\": 0.8378733942114224,\n", " \"recall\": 0.8404553961322521,\n", " \"f1-score\": 0.8391399252716862,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8613463368882108,\n", " \"recall\": 0.8607784431137725,\n", " \"f1-score\": 0.8610434045567368,\n", " \"support\": 668\n", " }\n", "}\n", "Goshawk 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9375,\n", " \"recall\": 0.9026548672566371,\n", " \"f1-score\": 0.9197475202885482,\n", " \"support\": 565\n", " },\n", " \"1\": {\n", " \"precision\": 0.5564516129032258,\n", " \"recall\": 0.6699029126213593,\n", " \"f1-score\": 0.6079295154185023,\n", " \"support\": 103\n", " },\n", " \"accuracy\": 0.8667664670658682,\n", " \"macro avg\": {\n", " \"precision\": 0.7469758064516129,\n", " \"recall\": 0.7862788899389982,\n", " \"f1-score\": 0.7638385178535252,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8787455331272938,\n", " \"recall\": 0.8667664670658682,\n", " \"f1-score\": 0.8716677979807418,\n", " \"support\": 668\n", " }\n", "}\n", "Grey Partridge 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.945,\n", " \"recall\": 0.8936170212765957,\n", " \"f1-score\": 0.9185905224787363,\n", " \"support\": 423\n", " },\n", " \"1\": {\n", " \"precision\": 0.832089552238806,\n", " \"recall\": 0.9102040816326531,\n", " \"f1-score\": 0.8693957115009747,\n", " \"support\": 245\n", " },\n", " \"accuracy\": 0.8997005988023952,\n", " \"macro avg\": {\n", " \"precision\": 0.888544776119403,\n", " \"recall\": 0.9019105514546244,\n", " \"f1-score\": 0.8939931169898555,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9035882339798016,\n", " \"recall\": 0.8997005988023952,\n", " \"f1-score\": 0.9005475154584496,\n", " \"support\": 668\n", " }\n", "}\n", "Indian Peafowl 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9234449760765551,\n", " \"recall\": 0.9682274247491639,\n", " \"f1-score\": 0.9453061224489796,\n", " \"support\": 598\n", " },\n", " \"1\": {\n", " \"precision\": 0.5365853658536586,\n", " \"recall\": 0.3142857142857143,\n", " \"f1-score\": 0.39639639639639646,\n", " \"support\": 70\n", " },\n", " \"accuracy\": 0.8997005988023952,\n", " \"macro avg\": {\n", " \"precision\": 0.7300151709651068,\n", " \"recall\": 0.641256569517439,\n", " \"f1-score\": 0.6708512594226881,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8829057953645749,\n", " \"recall\": 0.8997005988023952,\n", " \"f1-score\": 0.8877856421740082,\n", " \"support\": 668\n", " }\n", "}\n", "Little Owl 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.946949602122016,\n", " \"recall\": 0.9037974683544304,\n", " \"f1-score\": 0.9248704663212435,\n", " \"support\": 395\n", " },\n", " \"1\": {\n", " \"precision\": 0.8694158075601375,\n", " \"recall\": 0.9267399267399268,\n", " \"f1-score\": 0.8971631205673759,\n", " \"support\": 273\n", " },\n", " \"accuracy\": 0.9131736526946108,\n", " \"macro avg\": {\n", " \"precision\": 0.9081827048410767,\n", " \"recall\": 0.9152686975471787,\n", " \"f1-score\": 0.9110167934443096,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9152628866798111,\n", " \"recall\": 0.9131736526946108,\n", " \"f1-score\": 0.913546955257163,\n", " \"support\": 668\n", " }\n", "}\n", "Mandarin Duck 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.949438202247191,\n", " \"recall\": 0.9354243542435424,\n", " \"f1-score\": 0.9423791821561337,\n", " \"support\": 542\n", " },\n", " \"1\": {\n", " \"precision\": 0.7388059701492538,\n", " \"recall\": 0.7857142857142857,\n", " \"f1-score\": 0.7615384615384615,\n", " \"support\": 126\n", " },\n", " \"accuracy\": 0.907185628742515,\n", " \"macro avg\": {\n", " \"precision\": 0.8441220861982224,\n", " \"recall\": 0.8605693199789141,\n", " \"f1-score\": 0.8519588218472975,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9097081704442866,\n", " \"recall\": 0.907185628742515,\n", " \"f1-score\": 0.9082685073090877,\n", " \"support\": 668\n", " }\n", "}\n", "Mute Swan 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.8372093023255814,\n", " \"recall\": 0.8571428571428571,\n", " \"f1-score\": 0.8470588235294119,\n", " \"support\": 168\n", " },\n", " \"1\": {\n", " \"precision\": 0.9516129032258065,\n", " \"recall\": 0.944,\n", " \"f1-score\": 0.9477911646586344,\n", " \"support\": 500\n", " },\n", " \"accuracy\": 0.9221556886227545,\n", " \"macro avg\": {\n", " \"precision\": 0.894411102775694,\n", " \"recall\": 0.9005714285714286,\n", " \"f1-score\": 0.8974249940940231,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.922840740125151,\n", " \"recall\": 0.9221556886227545,\n", " \"f1-score\": 0.9224572824584706,\n", " \"support\": 668\n", " }\n", "}\n", "Pheasant 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.826530612244898,\n", " \"recall\": 0.8663101604278075,\n", " \"f1-score\": 0.8459530026109661,\n", " \"support\": 187\n", " },\n", " \"1\": {\n", " \"precision\": 0.9470338983050848,\n", " \"recall\": 0.9293139293139293,\n", " \"f1-score\": 0.938090241343127,\n", " \"support\": 481\n", " },\n", " \"accuracy\": 0.9116766467065869,\n", " \"macro avg\": {\n", " \"precision\": 0.8867822552749913,\n", " \"recall\": 0.8978120448708684,\n", " \"f1-score\": 0.8920216219770465,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9133001939738649,\n", " \"recall\": 0.9116766467065869,\n", " \"f1-score\": 0.912297331698046,\n", " \"support\": 668\n", " }\n", "}\n", "Pink-footed Goose 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.8768267223382046,\n", " \"recall\": 0.8786610878661087,\n", " \"f1-score\": 0.8777429467084639,\n", " \"support\": 478\n", " },\n", " \"1\": {\n", " \"precision\": 0.6931216931216931,\n", " \"recall\": 0.6894736842105263,\n", " \"f1-score\": 0.6912928759894459,\n", " \"support\": 190\n", " },\n", " \"accuracy\": 0.8248502994011976,\n", " \"macro avg\": {\n", " \"precision\": 0.7849742077299489,\n", " \"recall\": 0.7840673860383176,\n", " \"f1-score\": 0.7845179113489549,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8245752918724304,\n", " \"recall\": 0.8248502994011976,\n", " \"f1-score\": 0.8247107409650306,\n", " \"support\": 668\n", " }\n", "}\n", "Pintail 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.8618881118881119,\n", " \"recall\": 0.9354838709677419,\n", " \"f1-score\": 0.8971792538671519,\n", " \"support\": 527\n", " },\n", " \"1\": {\n", " \"precision\": 0.6458333333333334,\n", " \"recall\": 0.4397163120567376,\n", " \"f1-score\": 0.5232067510548524,\n", " \"support\": 141\n", " },\n", " \"accuracy\": 0.8308383233532934,\n", " \"macro avg\": {\n", " \"precision\": 0.7538607226107226,\n", " \"recall\": 0.6876000915122398,\n", " \"f1-score\": 0.7101930024610021,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8162837349775971,\n", " \"recall\": 0.8308383233532934,\n", " \"f1-score\": 0.8182419441418013,\n", " \"support\": 668\n", " }\n", "}\n", "Pochard 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9142259414225942,\n", " \"recall\": 0.9066390041493776,\n", " \"f1-score\": 0.9104166666666668,\n", " \"support\": 482\n", " },\n", " \"1\": {\n", " \"precision\": 0.7631578947368421,\n", " \"recall\": 0.7795698924731183,\n", " \"f1-score\": 0.7712765957446808,\n", " \"support\": 186\n", " },\n", " \"accuracy\": 0.8712574850299402,\n", " \"macro avg\": {\n", " \"precision\": 0.8386919180797181,\n", " \"recall\": 0.843104448311248,\n", " \"f1-score\": 0.8408466312056737,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8721620841118908,\n", " \"recall\": 0.8712574850299402,\n", " \"f1-score\": 0.8716740720686287,\n", " \"support\": 668\n", " }\n", "}\n", "Red-legged Partridge 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9152046783625731,\n", " \"recall\": 0.884180790960452,\n", " \"f1-score\": 0.8994252873563219,\n", " \"support\": 354\n", " },\n", " \"1\": {\n", " \"precision\": 0.8742331288343558,\n", " \"recall\": 0.9076433121019108,\n", " \"f1-score\": 0.890625,\n", " \"support\": 314\n", " },\n", " \"accuracy\": 0.8952095808383234,\n", " \"macro avg\": {\n", " \"precision\": 0.8947189035984644,\n", " \"recall\": 0.8959120515311814,\n", " \"f1-score\": 0.8950251436781609,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8959455966981116,\n", " \"recall\": 0.8952095808383234,\n", " \"f1-score\": 0.8952886253355358,\n", " \"support\": 668\n", " }\n", "}\n", "Ring-necked Parakeet 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9654135338345865,\n", " \"recall\": 0.9968944099378882,\n", " \"f1-score\": 0.9809014514896868,\n", " \"support\": 644\n", " },\n", " \"1\": {\n", " \"precision\": 0.3333333333333333,\n", " \"recall\": 0.041666666666666664,\n", " \"f1-score\": 0.07407407407407407,\n", " \"support\": 24\n", " },\n", " \"accuracy\": 0.9625748502994012,\n", " \"macro avg\": {\n", " \"precision\": 0.6493734335839599,\n", " \"recall\": 0.5192805383022775,\n", " \"f1-score\": 0.5274877627818804,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9427040655531044,\n", " \"recall\": 0.9625748502994012,\n", " \"f1-score\": 0.9483208271514014,\n", " \"support\": 668\n", " }\n", "}\n", "Rock Dove 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.8938775510204081,\n", " \"recall\": 0.8358778625954199,\n", " \"f1-score\": 0.863905325443787,\n", " \"support\": 262\n", " },\n", " \"1\": {\n", " \"precision\": 0.8983451536643026,\n", " \"recall\": 0.9359605911330049,\n", " \"f1-score\": 0.916767189384801,\n", " \"support\": 406\n", " },\n", " \"accuracy\": 0.8967065868263473,\n", " \"macro avg\": {\n", " \"precision\": 0.8961113523423554,\n", " \"recall\": 0.8859192268642124,\n", " \"f1-score\": 0.8903362574142939,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.896592890351877,\n", " \"recall\": 0.8967065868263473,\n", " \"f1-score\": 0.896033943348056,\n", " \"support\": 668\n", " }\n", "}\n", "Ruddy Duck 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.9846625766871165,\n", " \"recall\": 0.9801526717557252,\n", " \"f1-score\": 0.9824024483550114,\n", " \"support\": 655\n", " },\n", " \"1\": {\n", " \"precision\": 0.1875,\n", " \"recall\": 0.23076923076923078,\n", " \"f1-score\": 0.20689655172413793,\n", " \"support\": 13\n", " },\n", " \"accuracy\": 0.9655688622754491,\n", " \"macro avg\": {\n", " \"precision\": 0.5860812883435582,\n", " \"recall\": 0.605460951262478,\n", " \"f1-score\": 0.5946495000395747,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.9691489337276368,\n", " \"recall\": 0.9655688622754491,\n", " \"f1-score\": 0.9673102677319556,\n", " \"support\": 668\n", " }\n", "}\n", "Whooper Swan 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.8390804597701149,\n", " \"recall\": 0.8938775510204081,\n", " \"f1-score\": 0.8656126482213438,\n", " \"support\": 490\n", " },\n", " \"1\": {\n", " \"precision\": 0.6438356164383562,\n", " \"recall\": 0.5280898876404494,\n", " \"f1-score\": 0.5802469135802469,\n", " \"support\": 178\n", " },\n", " \"accuracy\": 0.7964071856287425,\n", " \"macro avg\": {\n", " \"precision\": 0.7414580381042355,\n", " \"recall\": 0.7109837193304287,\n", " \"f1-score\": 0.7229297809007953,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.7870541392415925,\n", " \"recall\": 0.7964071856287425,\n", " \"f1-score\": 0.7895720782121891,\n", " \"support\": 668\n", " }\n", "}\n", "Wigeon 10km \n", " {\n", " \"0\": {\n", " \"precision\": 0.956953642384106,\n", " \"recall\": 0.7789757412398922,\n", " \"f1-score\": 0.8588410104011887,\n", " \"support\": 371\n", " },\n", " \"1\": {\n", " \"precision\": 0.7759562841530054,\n", " \"recall\": 0.9562289562289562,\n", " \"f1-score\": 0.8567119155354449,\n", " \"support\": 297\n", " },\n", " \"accuracy\": 0.8577844311377245,\n", " \"macro avg\": {\n", " \"precision\": 0.8664549632685556,\n", " \"recall\": 0.8676023487344242,\n", " \"f1-score\": 0.8577764629683168,\n", " \"support\": 668\n", " },\n", " \"weighted avg\": {\n", " \"precision\": 0.8764802660448293,\n", " \"recall\": 0.8577844311377245,\n", " \"f1-score\": 0.857894391875551,\n", " \"support\": 668\n", " }\n", "}\n" ] } ], "source": [ "for dict in df_dicts:\n", " print(dict['name'], '\\n', json.dumps(dict['report'], indent=4))" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6AAAAPHCAYAAAA2NCRTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD5aUlEQVR4nOzdeXRN5/7H8c8hyckkCSmJeYohek2l1JhouTEWHbRo0UF1MLaGplVTDbeDUkW12ooqHQ1VVKskakhjqKgSQVBuBa1yIsZInt8ffvZ1JFE17Bjer7W+a2U/+9nP/u4TXSuf7nP2cRhjjAAAAAAAuMby5XUDAAAAAIBbAwEUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbOGR1w0AN5usrCzt27dPBQoUkMPhyOt2AAAAgKvCGKOjR4+qWLFiypfv8u5lEkCBq2zfvn0qWbJkXrcBAAAAXBN79+5ViRIlLutYAihwlRUoUEDS2f8wAwIC8rgbAAAA4OpIS0tTyZIlrb93LwcBFLjKzr3tNiAggAAKAACAm86VfMyMhxABAAAAAGxBAAUAAAAA2IIACgAAAACwBQEUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC2IIACAAAAAGxBAAUAAAAA2IIACgAAAACwBQEUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFgRQAAAAAIAtCKAAAAAAAFt45HUDwE0rMDCvOwAAAMD1xpi87iBPcQcUN63du3fL4XAoMTExr1sBAAAAIALoNdGtWzc5HA49/fTT2fY999xzcjgc6tat2z9a0+FwaN68eVfc2/HjxxUdHa3y5cvL29tbhQsXVkREhL7++usrXvtq+vHHH9WmTRsVK1Ys12s3xmjIkCEqWrSofHx81LRpU23fvt3+ZgEAAABcEgLoNVKyZEl99tlnOnHihDV28uRJzZo1S6VKlcqzvp5++mnNmTNH77zzjrZu3arFixfrgQce0KFDh/Ksp5wcO3ZM1atX16RJk3Kd8/rrr2vChAmaMmWKEhIS5Ofnp6ioKJ08edLGTgEAAABcKgLoNXLHHXeoZMmSmjNnjjU2Z84clSpVSjVr1nSbW6ZMGY0fP95trEaNGho2bJi1X5Lat28vh8NhbUvS119/rTvuuEPe3t4qV66chg8frjNnzuTa1/z58/XSSy+pZcuWKlOmjGrVqqVevXrp8ccflyRNnDhR//rXv6z58+bNk8Ph0JQpU6yxpk2bavDgwZKklJQUtW3bViEhIfL399edd96pH374Idv1jR49Wo8//rgKFCigUqVK6f3337/o69eiRQuNHDlS7du3z3G/MUbjx4/X4MGD1bZtW1WrVk0ff/yx9u3bl+ud4szMTD3++OOqXLmy9uzZI+nsneX33ntPrVu3lq+vr8LDwxUfH68dO3YoMjJSfn5+ql+/vlJSUi7aLwAAAIC/RwC9hh5//HFNmzbN2v7oo4/02GOP/eN11q5dK0maNm2aUlNTre0VK1aoS5cu6tOnj7Zs2aL33ntPMTExGjVqVK5rhYaGatGiRTp69GiO+yMiIrRlyxb98ccfkqTly5frtttuU1xcnCQpIyND8fHxioyMlCSlp6erZcuWWrp0qTZs2KDmzZurTZs2VsA7Z+zYsapdu7Y2bNigZ599Vs8884ySk5P/8Wtxzq5du7R//341bdrUGgsMDFTdunUVHx+fbf6pU6f04IMPKjExUStWrHC7C/3qq6+qS5cuSkxMVOXKldWpUyf16NFD0dHRWrdunYwx6tmzZ669nDp1SmlpaW4FAAAAIAcGV13Xrl1N27ZtzcGDB43T6TS7d+82u3fvNt7e3uaPP/4wbdu2NV27drXmly5d2owbN85tjerVq5uhQ4da25LM3Llz3ebcc889ZvTo0W5jM2bMMEWLFs21t+XLl5sSJUoYT09PU7t2bdO3b1+zcuVKa39WVpYJDg42X375pTHGmBo1apgxY8aY0NBQY4wxK1euNJ6enubYsWO5nuP2228377zzjtv1PfLII27nKFKkiHn33XdzXeN8OV37qlWrjCSzb98+t/EHH3zQdOjQwRhjzK5du4wks2LFCnPPPfeYhg0bmiNHjmRbe/DgwdZ2fHy8kWQ+/PBDa+zTTz813t7eufY3dOhQIylbuc4+44yiKIqiKIqi/lc3MJfLZSQZl8t12WtwB/QaKly4sFq1aqWYmBhNmzZNrVq10m233XbV1t+4caNGjBghf39/q7p3767U1FQdP348x2MaN26snTt3aunSpXrggQe0efNmNWrUSK+++qqks29Jbdy4seLi4nTkyBFt2bJFzz77rE6dOqWtW7dq+fLluvPOO+Xr6yvp7B3Q/v37Kzw8XEFBQfL391dSUlK2O6DVqlWzfnY4HAoNDdXBgwev2mtxMR07dtSxY8f0/fffKzCHr0Y5v7eQkBBJUtWqVd3GTp48meudzejoaLlcLqv27t17la8AAAAAuDnwPaDX2OOPP269fTO3B+rky5dPxhi3sYyMjL9dOz09XcOHD9d9992XbZ+3t3eux3l6eqpRo0Zq1KiRBg0apJEjR2rEiBEaNGiQvLy8FBkZqffff18rVqxQzZo1FRAQYIXS5cuXKyIiwlqrf//+WrJkid58802FhYXJx8dHDzzwgE6fPp3tnOdzOBzKysr622vMTWhoqCTpwIEDKlq0qDV+4MAB1ahRw21uy5Yt9cknnyg+Pl533313jq/H+X3lNpZbv06nU06n8/IuBAAAALiFcAf0GmvevLlOnz6tjIwMRUVF5TincOHCSk1NtbbT0tK0a9cutzmenp7KzMx0G7vjjjuUnJyssLCwbJUv36X/aqtUqaIzZ85YT4899znQL7/80vqsZ2RkpH744QetWrXKGpOkVatWqVu3bmrfvr2qVq2q0NBQ7d69+5LPfbnKli2r0NBQLV261BpLS0tTQkKC6tWr5zb3mWee0X/+8x/de++9Wr58+TXvDQAAAEDOuAN6jeXPn19JSUnWzzm5++67FRMTozZt2igoKEhDhgzJNrdMmTJaunSpGjRoIKfTqYIFC2rIkCFq3bq1SpUqpQceeED58uXTxo0b9euvv2rkyJE5nisyMlIdO3ZU7dq1FRwcrC1btuill15SkyZNFBAQIOnsW1ILFiyoWbNmacGCBdZx/fv3l8PhUIMGDaz1KlSooDlz5qhNmzZyOBx65ZVXrujO5jnp6enasWOHtb1r1y4lJiaqUKFCKlWqlBwOh/r27auRI0eqQoUKKlu2rF555RUVK1ZM7dq1y7Zer169lJmZqdatW+vbb79Vw4YNr7hHAAAAAP8MAdQG54JdbqKjo7Vr1y61bt1agYGBevXVV7PdAR07dqyef/55TZ06VcWLF9fu3bsVFRWlBQsWaMSIEXrttdfk6empypUr68knn8z1XFFRUZo+fbpeeuklHT9+XMWKFVPr1q01ZMgQa47D4VCjRo20cOFCK6hVq1ZNAQEBqlSpkvz8/Ky5b731lh5//HHVr19ft912mwYNGnRVngK7bt06NWnSxNp+/vnnJUldu3ZVTEyMJGngwIE6duyYnnrqKR05ckQNGzbU4sWLc337cd++fZWVlaWWLVtq8eLFql+//hX3eTGBckm6+O8eAAAAtxhH7rsu+FTeTclhLvzwIYArkpaW9v8POyKAAgAA4NJd78ns3N+5Lpfrb2+y5YbPgAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtiCAAgAAAABs4ZHXDQA3rRcDJe+8bgIAAFxPzFCT1y0AeYo7oAAAAAAAWxBAAQAAAAC2IIACAAAAAGxBAAUAAAAA2IIACgAAAACwBQEUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbeOR1A8DNyhXtUkBAQF63AQAAAFw3uAMKAAAAALAFARQAAAAAYAsCKAAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgC4+8bgCXJiYmRn379tWRI0fyupUbyrBhwzRv3jwlJibaf/LAQPvPCQAAgOuLMXndwXWFO6DXiW7dusnhcMjhcMjLy0thYWEaMWKEzpw5k9etXXUOh0Pz5s3723mjRo1S/fr15evrq6CgoBzn7NmzR61atZKvr6+KFCmiAQMG3JSvGQAAAHAz4A7odaR58+aaNm2aTp06pUWLFum5556Tp6enoqOj87q1PHH69Gk9+OCDqlevnj788MNs+zMzM9WqVSuFhoZq9erVSk1NVZcuXeTp6anRo0fnQccAAAAALoY7oNcRp9Op0NBQlS5dWs8884yaNm2q+fPnu8357rvvFB4eLn9/fzVv3lypqalu+z/44AOFh4fL29tblStX1uTJk932Dxo0SBUrVpSvr6/KlSunV155RRkZGdb+jRs3qkmTJipQoIACAgJUq1YtrVu3TpJ06NAhdezYUcWLF5evr6+qVq2qTz/91G39yMhI9e7dWwMHDlShQoUUGhqqYcOGWfvLlCkjSWrfvr0cDoe1nZPhw4erX79+qlq1ao77v//+e23ZskWffPKJatSooRYtWujVV1/VpEmTdPr06RyPSUlJUbly5dSzZ08ZYxQTE6OgoCAtWLBAlSpVkq+vrx544AEdP35c06dPV5kyZVSwYEH17t1bmZmZufYKAAAA4O8RQK9jPj4+bkHq+PHjevPNNzVjxgz9+OOP2rNnj/r372/tnzlzpoYMGaJRo0YpKSlJo0eP1iuvvKLp06dbcwoUKKCYmBht2bJFb7/9tqZOnapx48ZZ+zt37qwSJUpo7dq1Wr9+vV588UV5enpKkk6ePKlatWpp4cKF+vXXX/XUU0/p0Ucf1Zo1a9z6nj59uvz8/JSQkKDXX39dI0aM0JIlSyRJa9eulSRNmzZNqamp1vbliI+PV9WqVRUSEmKNRUVFKS0tTZs3b842/5dfflHDhg3VqVMnTZw4UQ6Hw3pdJ0yYoM8++0yLFy9WXFyc2rdvr0WLFmnRokWaMWOG3nvvPX311Vc59nHq1CmlpaW5FQAAAIAcGFwXunbtatq2bWuMMSYrK8ssWbLEOJ1O079/f2OMMdOmTTOSzI4dO6xjJk2aZEJCQqzt8uXLm1mzZrmt++qrr5p69erlet433njD1KpVy9ouUKCAiYmJueS+W7VqZV544QVrOyIiwjRs2NBtzp133mkGDRpkbUsyc+fOveRzTJs2zQQGBmYb7969u/n3v//tNnbs2DEjySxatMgYY8zQoUNN9erVzapVq0zBggXNm2++mW3tC1/XHj16GF9fX3P06FFrLCoqyvTo0SPH/oYOHWokZSvX2Y+cUxRFURRFUbdy3URcLpeRZFwu12WvwWdAryMLFiyQv7+/MjIylJWVpU6dOrm9fdXX11fly5e3tosWLaqDBw9Kko4dO6aUlBQ98cQT6t69uzXnzJkzCjzvaayff/65JkyYoJSUFKWnp+vMmTMKCAiw9j///PN68sknNWPGDDVt2lQPPvigdc7MzEyNHj1aX3zxhX7//XedPn1ap06dkq+vr9t1VKtWzW37/D7zwp49e9SsWTONGjVKffv2zbb/wtc1JCREZcqUkb+/v9tYbtcQHR2t559/3tpOS0tTyZIlr94FAAAAADcJ3oJ7HWnSpIkSExO1fft2nThxwnor6znn3gp7jsPhkDFGkpSeni5Jmjp1qhITE6369ddf9dNPP0k6+5bVzp07q2XLllqwYIE2bNigl19+2e1tvsOGDdPmzZvVqlUrLVu2TFWqVNHcuXMlSW+88YbefvttDRo0SLGxsUpMTFRUVFS2z1vm1GdWVtZVepX+JzQ0VAcOHHAbO7cdGhpqjRUuXFh16tTRp59+muPbY3Pq959cg9PpVEBAgFsBAAAAyI4Aeh3x8/NTWFiYSpUqJQ+Pf3ZzOiQkRMWKFdPOnTsVFhbmVmXLlpUkrV69WqVLl9bLL7+s2rVrq0KFCvrtt9+yrVWxYkX169dP33//ve677z5NmzZNkrRq1Sq1bdtWjzzyiKpXr65y5cpp27Zt//g6PT09r8oDferVq6dNmza53ZlcsmSJAgICVKVKFWvMx8dHCxYskLe3t6KionT06NErPjcAAACAf44AehMZPny4xowZowkTJmjbtm3atGmTpk2bprfeekuSVKFCBe3Zs0efffaZUlJSNGHCBOvupiSdOHFCPXv2VFxcnH777TetWrVKa9euVXh4uHX8kiVLtHr1aiUlJalHjx7Z7kBeijJlymjp0qXav3+/Dh8+nOu8PXv2KDExUXv27FFmZqZ1V/fc3d5///vfqlKlih599FFt3LhR3333nQYPHqznnntOTqfTbS0/Pz8tXLhQHh4eatGihbUGAAAAAPvwGdCbyJNPPilfX1+98cYbGjBggPz8/FS1alXrc4/33nuv+vXrp549e+rUqVNq1aqVXnnlFetzpvnz59ehQ4fUpUsXHThwQLfddpvuu+8+DR8+XJI0ePBg7dy5U1FRUfL19dVTTz2ldu3ayeVy/aM+x44dq+eff15Tp05V8eLFtXv37hznDRkyxO0JvjVr1pQkxcbGKjIyUvnz59eCBQv0zDPPqF69evLz81PXrl01YsSIHNfz9/fXt99+q6ioKLVq1UqLFi36R33/U4FySeLtuAAAALc0h/vm/3+C7pblMOZWfwmAqystLe3/H/xEAAUAAIC7Gzl9nfs71+VyXfZzT3gLLgAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWHnndAHDTejFQ8s7rJgAAwD9lhpq8bgG4aXEHFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC2IIACAAAAAGxBAAUAAAAA2IIACgAAAACwBQEUAAAAAGALAigAAAAAwBYeed0AcLNyRbsUEBCQ120AAAAA1w3ugAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtiCAAgAAAABs4ZHXDQA3rcDAvO4AAAAANwtj8rqDq4I7oNcph8OhefPm5XUbN7zIyEj17ds3r9sAAAAAoFs4gO7fv1+9evVSuXLl5HQ6VbJkSbVp00ZLly7N69auqtjYWLVu3VqFCxeWt7e3ypcvr4ceekg//vhjXrd2USdPnlS3bt1UtWpVeXh4qF27djnOi4uL0x133CGn06mwsDDFxMTY2icAAACAS3dLBtDdu3erVq1aWrZsmd544w1t2rRJixcvVpMmTfTcc8/ldXtXzeTJk3XPPfcoODhYn3/+uZKTkzV37lzVr19f/fr1y+v2LiozM1M+Pj7q3bu3mjZtmuOcXbt2qVWrVmrSpIkSExPVt29fPfnkk/ruu+9s7hYAAADAJTG3oBYtWpjixYub9PT0bPsOHz5s/Tx27Fjzr3/9y/j6+poSJUqYZ555xhw9etTaP23aNBMYGGgWL15sKleubPz8/ExUVJTZt2+fNWfNmjWmadOmJjg42AQEBJjGjRub9evXu51z27ZtplGjRsbpdJrw8HDz/fffG0lm7ty51pyBAweaChUqGB8fH1O2bFkzePBgc/r06Vyv8bfffjOenp6mX79+Oe7Pyspy2/7qq69MlSpVjJeXlyldurR588033fb/9ddf5tFHHzVBQUHGx8fHNG/e3Gzbts3av3v3btO6dWsTFBRkfH19TZUqVczChQut/Zs2bTLNmzc3fn5+pkiRIuaRRx4xf/zxR679n69r166mbdu22cYHDhxobr/9drexhx56yERFRVnbERERpk+fPtb2ggULTEBAgPnkk0/c1h41apQpUqSICQwMNMOHDzcZGRmmf//+pmDBgqZ48eLmo48+uqRejTHG5XIZScZ19p36FEVRFEVRFHXldR2w/s51uS57jVvuDuhff/2lxYsX67nnnpOfn1+2/UFBQdbP+fLl04QJE7R582ZNnz5dy5Yt08CBA93mHz9+XG+++aZmzJihH3/8UXv27FH//v2t/UePHlXXrl21cuVK/fTTT6pQoYJatmypo0ePSpKysrJ03333ycvLSwkJCZoyZYoGDRqUra8CBQooJiZGW7Zs0dtvv62pU6dq3LhxuV7n7NmzlZGRka3fcxwOh/Xz+vXr1aFDBz388MPatGmThg0bpldeecXt7azdunXTunXrNH/+fMXHx8sYo5YtWyojI0OS9Nxzz+nUqVP68ccftWnTJr322mvy9/eXJB05ckR33323atasqXXr1mnx4sU6cOCAOnTokGv/lyI+Pj7b3dGoqCjFx8fnOH/WrFnq2LGjZs6cqc6dO1vjy5Yt0759+/Tjjz/qrbfe0tChQ9W6dWsVLFhQCQkJevrpp9WjRw/997//zXHdU6dOKS0tza0AAAAA5ODq5eEbQ0JCgpFk5syZ84+P/fLLL01wcLC1PW3aNCPJ7NixwxqbNGmSCQkJyXWNzMxMU6BAAfPNN98YY4z57rvvjIeHh/n999+tOd9++62R3O+AXuiNN94wtWrVynX/008/bQICAtzGvvrqK+Pn52fVL7/8YowxplOnTqZZs2ZucwcMGGCqVKlijDl7h1aSWbVqlbX/zz//ND4+PuaLL74wxhhTtWpVM2zYsBx7efXVV82///1vt7G9e/caSSY5OTnXazgntzugFSpUMKNHj3YbW7hwoZFkjh8/boz53x3QiRMnmsDAQBMXF5dt7dKlS5vMzExrrFKlSqZRo0bW9pkzZ4yfn5/59NNPc+xv6NChRlK24g4oRVEURVEUddXqOsAd0MtgjLnkuT/88IPuueceFS9eXAUKFNCjjz6qQ4cO6fjx49YcX19flS9f3touWrSoDh48aG0fOHBA3bt3V4UKFRQYGKiAgAClp6drz549kqSkpCSVLFlSxYoVs46pV69etl4+//xzNWjQQKGhofL399fgwYOtNXJz/l1O6ezdwcTERC1cuFDHjh1TZmam1UODBg3c5jZo0EDbt29XZmamkpKS5OHhobp161r7g4ODValSJSUlJUmSevfurZEjR6pBgwYaOnSofvnlF2vuxo0bFRsbK39/f6sqV64sSUpJSbnoNVwNX331lfr166clS5YoIiIi2/7bb79d+fL97z+FkJAQVa1a1drOnz+/goOD3X6v54uOjpbL5bJq7969V/8iAAAAgJvALRdAK1SoIIfDoa1bt1503u7du9W6dWtVq1ZNs2fP1vr16zVp0iRJ0unTp615np6ebsc5HA63kNu1a1clJibq7bff1urVq5WYmKjg4GC3Nf5OfHy8OnfurJYtW2rBggXasGGDXn755YuuUaFCBblcLu3fv98a8/f3V1hYmEqXLn3J575UTz75pHbu3KlHH31UmzZtUu3atfXOO+9IktLT09WmTRslJia61fbt29W4cePLPmdoaKgOHDjgNnbgwAEFBATIx8fHGqtZs6YKFy6sjz76KMf/AZHT7zCnsaysrBz7cDqdCggIcCsAAAAA2d1yAbRQoUKKiorSpEmTdOzYsWz7jxw5Iuns5yKzsrI0duxY3XXXXapYsaL27dv3j8+3atUq9e7dWy1bttTtt98up9OpP//809ofHh6uvXv3KjU11Rr76aef3NZYvXq1SpcurZdfflm1a9dWhQoV9Ntvv130vA888IA8PT312muv/W2P4eHhWrVqVba+K1asqPz58ys8PFxnzpxRQkKCtf/QoUNKTk5WlSpVrLGSJUvq6aef1pw5c/TCCy9o6tSpkqQ77rhDmzdvVpkyZRQWFuZWOX0O91LVq1cv29fmLFmyJNsd5PLlyys2NlZff/21evXqddnnAwAAAHBlbrkAKkmTJk1SZmam6tSpo9mzZ2v79u1KSkrShAkTrPASFhamjIwMvfPOO9q5c6dmzJihKVOm/ONzVahQQTNmzFBSUpISEhLUuXNnt7tzTZs2VcWKFdW1a1dt3LhRK1as0Msvv5xtjT179uizzz5TSkqKJkyYoLlz5170vKVKldLYsWP19ttvq2vXroqNjdXu3bv1888/a8KECZLOvrVUkl544QUtXbpUr776qrZt26bp06dr4sSJ1sOUKlSooLZt26p79+5auXKlNm7cqEceeUTFixdX27ZtJUl9+/bVd999p127dunnn39WbGyswsPDJZ19QNFff/2ljh07au3atUpJSdF3332nxx57zHobcE62bNmixMRE/fXXX3K5XNad03Oefvpp7dy5UwMHDtTWrVs1efJkffHFFzl+xUzFihUVGxur2bNnq2/fvhd97QAAAABcI1frA6k3mn379pnnnnvOlC5d2nh5eZnixYube++918TGxlpz3nrrLVO0aFHj4+NjoqKizMcff2wkWV/Vcu5rWM43d+5cc/7L+vPPP5vatWsbb29vU6FCBfPll1+a0qVLm3HjxllzkpOTTcOGDY2Xl5epWLGiWbx4sZHcH0I0YMAAExwcbPz9/c1DDz1kxo0bl+3cOVmyZIlp0aKFKVSokPHw8DAhISGmXbt2ZvHixW7zzn0Ni6enpylVqpR544033Paf+xqWwMBA6/U4/2tYevbsacqXL2+cTqcpXLiwefTRR82ff/5p7d+2bZtp37699TUulStXNn379s32dTDnK126tJGyP9znfLGxsaZGjRrGy8vLlCtXzkybNs1t/4Vfw7JlyxZTpEgR8/zzzxtjcn7A0YXHnOvl/N/ZxZz7cLbkyvPPqlMURVEURVE3T+W1q/EQIocxxuRV+AVuRmlpaQoMDJTkksTnQQEAAHB15HVyO/d3rsvluuznntySb8EFAAAAANiPAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC2IIACAAAAAGxBAAUAAAAA2MIjrxsAblovBkreed0EAAA3DjPU5HULAK4x7oACAAAAAGxBAAUAAAAA2IIACgAAAACwBQEUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbOGR1w0ANytXtEsBAQF53QYAAABw3eAOKAAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWBFAAAAAAgC088roBXB3dunXTkSNHNG/evLxu5bqye/dulS1bVhs2bFCNGjXsPXlgoL3nAwAAwOUxJq87uGVwB9QG3bp1k8PhkMPhkKenp8qWLauBAwfq5MmTedrXuZ4cDof8/PxUoUIFdevWTevXr8/Tvs758ccf1aZNGxUrVkwOhyPHcG2M0ZAhQ1S0aFH5+PioadOm2r59u/3NAgAAAPhbBFCbNG/eXKmpqdq5c6fGjRun9957T0OHDs3rtjRt2jSlpqZq8+bNmjRpktLT01W3bl19/PHHed2ajh07purVq2vSpEm5znn99dc1YcIETZkyRQkJCfLz81NUVFSeh3sAAAAA2RFAbeJ0OhUaGqqSJUuqXbt2atq0qZYsWWLtP3XqlHr37q0iRYrI29tbDRs21Nq1a93W2Lx5s1q3bq2AgAAVKFBAjRo1UkpKSo7nW7t2rQoXLqzXXnvton0FBQUpNDRUZcqU0b///W999dVX6ty5s3r27KnDhw9b82bPnq3bb79dTqdTZcqU0dixY619L730kurWrZtt7erVq2vEiBHW9gcffKDw8HB5e3urcuXKmjx58kV7a9GihUaOHKn27dvnuN8Yo/Hjx2vw4MFq27atqlWrpo8//lj79u3L9a3ImZmZevzxx1W5cmXt2bNH0tk7we+9955at24tX19fhYeHKz4+Xjt27FBkZKT8/PxUv379XF9rAAAAAJeGAJoHfv31V61evVpeXl7W2MCBAzV79mxNnz5dP//8s8LCwhQVFaW//vpLkvT777+rcePGcjqdWrZsmdavX6/HH39cZ86cybb+smXL1KxZM40aNUqDBg36x/3169dPR48etQLy+vXr1aFDBz388MPatGmThg0bpldeeUUxMTGSpM6dO2vNmjVuAW3z5s365Zdf1KlTJ0nSzJkzNWTIEI0aNUpJSUkaPXq0XnnlFU2fPv0f93fOrl27tH//fjVt2tQaCwwMVN26dRUfH59t/qlTp/Tggw8qMTFRK1asUKlSpax9r776qrp06aLExERVrlxZnTp1Uo8ePRQdHa1169bJGKOePXvm2MepU6eUlpbmVgAAAAByYHDNde3a1eTPn9/4+fkZp9NpJJl8+fKZr776yhhjTHp6uvH09DQzZ860jjl9+rQpVqyYef31140xxkRHR5uyZcua06dP53qOtm3bmjlz5hh/f3/z2Wef/W1fkszcuXOzjZ84ccJIMq+99poxxphOnTqZZs2auc0ZMGCAqVKlirVdvXp1M2LECGs7Ojra1K1b19ouX768mTVrltsar776qqlXr97f9plbr6tWrTKSzL59+9zGH3zwQdOhQwdjjDG7du0yksyKFSvMPffcYxo2bGiOHDmSbe3Bgwdb2/Hx8UaS+fDDD62xTz/91Hh7e+fY29ChQ42kbOU6+3F2iqIoiqIo6novXBKXy2UkGZfLddlrcAfUJk2aNFFiYqISEhLUtWtXPfbYY7r//vslSSkpKcrIyFCDBg2s+Z6enqpTp46SkpIkSYmJiWrUqJE8PT1zPUdCQoIefPBBzZgxQw899NBl92qMkXT2ramSlJSU5NabJDVo0EDbt29XZmampLN3QWfNmmUd/+mnn6pz586Szn6WMyUlRU888YT8/f2tGjlypG1va+3YsaOOHTum77//XoE5PJ22WrVq1s8hISGSpKpVq7qNnTx5Mse7m9HR0XK5XFbt3bv3GlwBAAAAcOMjgNrEz89PYWFhql69uj766CMlJCToww8/vOTjfXx8/nZO+fLlVblyZX300UfKyMi47F7Phd6yZcte8jEdO3ZUcnKyfv75Z61evVp79+61QnB6erokaerUqUpMTLTq119/1U8//XTZfYaGhkqSDhw44DZ+4MABa985LVu21C+//JLjW3MluQX7c8E7p7GsrKxsxzqdTgUEBLgVAAAAgOwIoHkgX758eumllzR48GCdOHFC5cuXl5eXl1atWmXNycjI0Nq1a1WlShVJZ+/QrVix4qLB8rbbbtOyZcu0Y8cOdejQ4bJD6Pjx4xUQEGB9tjI8PNytN0latWqVKlasqPz580uSSpQooYiICM2cOVMzZ85Us2bNVKRIEUln7x4WK1ZMO3fuVFhYmFv9k5B7obJlyyo0NFRLly61xtLS0pSQkKB69eq5zX3mmWf0n//8R/fee6+WL19+2ecEAAAAcPkIoHnkwQcfVP78+TVp0iT5+fnpmWee0YABA7R48WJt2bJF3bt31/Hjx/XEE09Iknr27Km0tDQ9/PDDWrdunbZv364ZM2YoOTnZbd0iRYpo2bJl2rp1qzp27JjjQ4rOd+TIEe3fv1+//fablixZogceeECzZs3Su+++q6CgIEnSCy+8oKVLl+rVV1/Vtm3bNH36dE2cOFH9+/d3W6tz58767LPP9OWXX1pvvz1n+PDhGjNmjCZMmKBt27Zp06ZNmjZtmt56661ce0tPT7fulkpnHzqUmJjo9vTavn37auTIkZo/f742bdqkLl26qFixYmrXrl229Xr16qWRI0eqdevWWrly5UVfFwAAAADXwFX7RCpyde4BQRcaM2aMKVy4sElPTzcnTpwwvXr1MrfddptxOp2mQYMGZs2aNW7zN27caP79738bX19fU6BAAdOoUSOTkpKS4zn27dtnKlasaDp06GDOnDmTY1/S/x6Y4+3tbcqXL2+6du1q1q9fn23uV199ZapUqWI8PT1NqVKlzBtvvJFtzuHDh43T6TS+vr7m6NGj2fbPnDnT1KhRw3h5eZmCBQuaxo0bmzlz5uT6usXGxrr1eK66du1qzcnKyjKvvPKKCQkJMU6n09xzzz0mOTnZ2n/uIUQbNmywxsaOHWsKFChgVq1aZb0O5z/gKKdjzvVy+PDhXPs9x/pwdl5/mJ6iKIqiKIq6tMIluRoPIXIYY0xeBF/gZpWWlvb/DzpySeLzoAAAADejWzFFnfs71+VyXfZzT3gLLgAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWHnndAHDTejFQ8s7rJgAAtzoz1OR1CwBg4Q4oAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC2IIACAAAAAGxBAAUAAAAA2IIACgAAAACwBQEUAAAAAGALAigAAAAAwBYEUAAAAACALTzyugHgZuWKdikgICCv2wAAAACuG9wBBQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANjCI68bAG5agYF53QEAAMD1z5i87gA24g7oLSQuLk4Oh0NHjhzJ61ZsExkZqb59++Z1GwAAAABEAL0hTZkyRQUKFNCZM2essfT0dHl6eioyMtJt7rnQmZKSovr16ys1NVWBN8CduZMnT6pbt26qWrWqPDw81K5duxznxcXF6Y477pDT6VRYWJhiYmJs7RMAAADApSOA3oCaNGmi9PR0rVu3zhpbsWKFQkNDlZCQoJMnT1rjsbGxKlWqlMqXLy8vLy+FhobK4XDkRdv/SGZmpnx8fNS7d281bdo0xzm7du1Sq1at1KRJEyUmJqpv37568skn9d1339ncLQAAAIBLQQC9AVWqVElFixZVXFycNRYXF6e2bduqbNmy+umnn9zGmzRpYv184Vtwp06dqpIlS8rX11ft27fXW2+9paCgILfzff3117rjjjvk7e2tcuXKafjw4W53X/fs2aO2bdvK399fAQEB6tChgw4cOGDtHzZsmGrUqKEZM2aoTJkyCgwM1MMPP6yjR4/meo1+fn5699131b17d4WGhuY4Z8qUKSpbtqzGjh2r8PBw9ezZUw888IDGjRuX67oLFy5UYGCgZs6cKUnq1q2b2rVrp9GjRyskJERBQUEaMWKEzpw5owEDBqhQoUIqUaKEpk2bluuaAAAAAC4NAfQG1aRJE8XGxlrbsbGxioyMVEREhDV+4sQJJSQkWAH0QqtWrdLTTz+tPn36KDExUc2aNdOoUaPc5qxYsUJdunRRnz59tGXLFr333nuKiYmx5mVlZalt27b666+/tHz5ci1ZskQ7d+7UQw895LZOSkqK5s2bpwULFmjBggVavny5/vOf/1zRaxAfH5/t7mhUVJTi4+NznD9r1ix17NhRM2fOVOfOna3xZcuWad++ffrxxx/11ltvaejQoWrdurUKFiyohIQEPf300+rRo4f++9//5rjuqVOnlJaW5lYAAAAAcmBwQ5o6darx8/MzGRkZJi0tzXh4eJiDBw+aWbNmmcaNGxtjjFm6dKmRZH777TdjjDGxsbFGkjl8+LAxxpiHHnrItGrVym3dzp07m8DAQGv7nnvuMaNHj3abM2PGDFO0aFFjjDHff/+9yZ8/v9mzZ4+1f/PmzUaSWbNmjTHGmKFDhxpfX1+TlpZmzRkwYICpW7fuJV1r165dTdu2bbONV6hQIVtvCxcuNJLM8ePHjTHGREREmD59+piJEyeawMBAExcXl23t0qVLm8zMTGusUqVKplGjRtb2mTNnjJ+fn/n0009z7G/o0KFGUrZynX2mG0VRFEVRFHWxwg3D5XIZScblcl32GtwBvUFFRkbq2LFjWrt2rVasWKGKFSuqcOHCioiIsD4HGhcXp3LlyqlUqVI5rpGcnKw6deq4jV24vXHjRo0YMUL+/v5Wde/eXampqTp+/LiSkpJUsmRJlSxZ0jqmSpUqCgoKUlJSkjVWpkwZFShQwNouWrSoDh48eDVeir/11VdfqV+/flqyZIkiIiKy7b/99tuVL9///lMICQlR1apVre38+fMrODg4136jo6Plcrms2rt379W/CAAAAOAmwPeA3qDCwsJUokQJxcbG6vDhw1awKlasmEqWLKnVq1crNjZWd9999xWdJz09XcOHD9d9992XbZ+3t/clr+Pp6em27XA4lJWVdUW9hYaGun3WVJIOHDiggIAA+fj4WGM1a9bUzz//rI8++ki1a9fO9hCmnHr7J/06nU45nc4ruRQAAADglkAAvYE1adJEcXFxOnz4sAYMGGCNN27cWN9++63WrFmjZ555JtfjK1WqpLVr17qNXbh9xx13KDk5WWFhYTmuER4err1792rv3r3WXdAtW7boyJEjqlKlyuVe2iWpV6+eFi1a5Da2ZMkS1atXz22sfPnyGjt2rCIjI5U/f35NnDjxmvYFAAAAIGcE0BtYkyZN9NxzzykjI8PtraURERHq2bOnTp8+nesDiCSpV69eaty4sd566y21adNGy5Yt07fffut2h3DIkCFq3bq1SpUqpQceeED58uXTxo0b9euvv2rkyJFq2rSpqlatqs6dO2v8+PE6c+aMnn32WUVERKh27dpXdH1btmzR6dOn9ddff+no0aNKTEyUJNWoUUOS9PTTT2vixIkaOHCgHn/8cS1btkxffPGFFi5cmG2tihUrWg9q8vDw0Pjx46+oNwAAAAD/HAH0BtakSROdOHFClStXVkhIiDUeERGho0ePWl/XkpsGDRpoypQpGj58uAYPHqyoqCj169fP7Q5hVFSUFixYoBEjRui1116Tp6enKleurCeffFLS2bemfv3111aYzZcvn5o3b6533nnniq+vZcuW+u2336ztmjVrSpKMMZKksmXLauHCherXr5/efvttlShRQh988IGioqJyXK9SpUpatmyZdSd07NixV9zjxQTKJSngmp4DAADghnfBV9T//596uEk5jOFXjP/p3r27tm7dqhUrVuR1KzestLQ0BQYGSgRQAACAf4x0cv0693euy+VSQMDl/Z3LHdBb3JtvvqlmzZrJz89P3377raZPn67JkyfndVsAAAAAbkIE0FvcmjVr9Prrr+vo0aMqV66cJkyYYL29FgAAAACuJgLoLe6LL77I6xYAAAAA3CLy5XUDAAAAAIBbAwEUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALbga1iAa+XFQMk7r5sAgOuPGWryugUAQB7hDigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFh553QBws3JFuxQQEJDXbQAAAADXDe6AAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC2IIACAAAAAGxBAAUAAAAA2OK6DKBxcXFyOBw6cuRIrnOGDRumGjVq2NbTlSpTpozGjx+f121c1KW87jExMQoKCrKtpyuxe/duORwOJSYm5k0DgYGSw0FRFEVRFEVdT4U8dUUBtFu3bnI4HHI4HPL09FTZsmU1cOBAnTx58mr1d8sYNmyY9Vp6eHioTJky6tevn9LT06943UsN6vXr11dqaqoCAwOv6JxXw48//qg2bdqoWLFicjgcmjdvXrY5xhgNGTJERYsWlY+Pj5o2bart27fb3ywAAACAS3LFd0CbN2+u1NRU7dy5U+PGjdN7772noUOHXo3ebjm33367UlNTtXv3br322mt6//339cILL1zWWsYYnTlz5pLnZ2RkyMvLS6GhoXJcB/9n6NixY6pevbomTZqU65zXX39dEyZM0JQpU5SQkCA/Pz9FRUXxP0AAAACA69QVB1Cn06nQ0FCVLFlS7dq1U9OmTbVkyRJrf1ZWlsaMGaOyZcvKx8dH1atX11dffeW2xqJFi1SxYkX5+PioSZMm2r1792X18sEHHyg8PFze3t6qXLmyJk+e7LZ/9erVqlGjhry9vVW7dm3NmzdPF75Fc/78+apQoYK8vb3VpEkTTZ8+XRe+LXXlypVq1KiRfHx8VLJkSfXu3VvHjh2z9h88eFBt2rSRj4+PypYtq5kzZ15S/x4eHgoNDVWJEiX00EMPqXPnzpo/f74kacaMGapdu7YKFCig0NBQderUSQcPHrSOPff22W+//Va1atWS0+nUJ598ouHDh2vjxo3W3dWYmBhJksPh0Lvvvqt7771Xfn5+GjVqVI5vwY2JiVGpUqXk6+ur9u3b69ChQ9n6HjlypIoUKaICBQroySef1Isvvpjtruvf/W4u1KJFC40cOVLt27fPcb8xRuPHj9fgwYPVtm1bVatWTR9//LH27duX491SScrMzNTjjz+uypUra8+ePdbr8N5776l169by9fVVeHi44uPjtWPHDkVGRsrPz0/169dXSkrKRfsFAAAAcAnMFejatatp27attb1p0yYTGhpq6tata42NHDnSVK5c2SxevNikpKSYadOmGafTaeLi4owxxuzZs8c4nU7z/PPPm61bt5pPPvnEhISEGEnm8OHDuZ576NChpnr16tb2J598YooWLWpmz55tdu7caWbPnm0KFSpkYmJijDHGuFwuU6hQIfPII4+YzZs3m0WLFpmKFSsaSWbDhg3GGGN27txpPD09Tf/+/c3WrVvNp59+aooXL+7Wy44dO4yfn58ZN26c2bZtm1m1apWpWbOm6datm9VLixYtTPXq1U18fLxZt26dqV+/vvHx8THjxo275OsxxpjevXubQoUKGWOM+fDDD82iRYtMSkqKiY+PN/Xq1TMtWrSw5sbGxhpJplq1aub77783O3bsMP/973/NCy+8YG6//XaTmppqUlNTzfHjx40xxkgyRYoUMR999JFJSUkxv/32m7XGuWv96aefTL58+cxrr71mkpOTzdtvv22CgoJMYGCg2+vu7e1tPvroI5OcnGyGDx9uAgIC/tHv5u9IMnPnznUbS0lJcfvdndO4cWPTu3dvY4wxu3btsuacPHnStG/f3tSsWdMcPHjQbe3ixYubzz//3CQnJ5t27dqZMmXKmLvvvtssXrzYbNmyxdx1112mefPmufZ38uRJ43K5rNq7d6+RZFySMRRFURRFUdT1VbhsLpfLSDIul+uy17ii30DXrl1N/vz5jZ+fn3E6nUaSyZcvn/nqq6+MMWf/MPf19TWrV692O+6JJ54wHTt2NMYYEx0dbapUqeK2f9CgQeafBtDy5cubWbNmuc159dVXTb169Ywxxrz77rsmODjYnDhxwto/depUc36IGTRokPnXv/7ltsbLL7/s1ssTTzxhnnrqKbc5K1asMPny5TMnTpwwycnJRpJZs2aNtT8pKclI+kcBdN26dea2224zDzzwQI7z165daySZo0ePGmP+F0DnzZt30XXPkWT69u3rNnZhAO3YsaNp2bKl25yHHnrILYDWrVvXPPfcc25zGjRo8I9+N38npwC6atUqI8ns27fPbfzBBx80HTp0MMb8L4CuWLHC3HPPPaZhw4bmyJEj2dYePHiwtR0fH28kmQ8//NAa+/TTT423t3eu/Q0dOtRIylYEUIqiKIqiqOuwcNmuRgC94rfgNmnSRImJiUpISFDXrl312GOP6f7775ck7dixQ8ePH1ezZs3k7+9v1ccff2y9pTEpKUl169Z1W7NevXpu2+cf+/TTT2fr4dixY0pJSdETTzzhNnfkyJHWeZKTk1WtWjV5e3tbx9WpU8dtneTkZN15551uYxfO2bhxo2JiYtzOExUVpaysLO3atUtJSUny8PBQrVq1rGMqV658SU+O3bRpk/z9/eXj46M6deqoXr16mjhxoiRp/fr1atOmjUqVKqUCBQooIiJCkqy3kp5Tu3btvz3Ppc69lN9NcnJyttfo/O1L+d1cax07dtSxY8f0/fff5/iApWrVqlk/h4SESJKqVq3qNnby5EmlpaXluH50dLRcLpdVe/fuvcpXAAAAANwcPK50AT8/P4WFhUmSPvroI1WvXl0ffvihnnjiCesJrgsXLlTx4sXdjnM6nZd8jvM/oxkQEJBt/7nzTJ06NVtgyp8//yWf51Kkp6erR48e6t27d7Z9pUqV0rZt2y577UqVKmn+/Pny8PBQsWLF5OXlJelsiIuKilJUVJRmzpypwoULa8+ePYqKitLp06fd1vDz87vk8/2TuZfrWv1uQkNDJUkHDhxQ0aJFrfEDBw5k+/xpy5Yt9cknnyg+Pl533313trU8PT2tn889gCmnsaysrBx7cTqd/+jfMwAAAHCruuIAer58+fLppZde0vPPP69OnTqpSpUqcjqd2rNnj3XH7kLh4eHWg3bO+emnn9y2zwXc3ISEhKhYsWLauXOnOnfunOOcSpUq6ZNPPtGpU6essLB27dpscxYtWuQ2duGcO+64Q1u2bMm1p8qVK+vMmTNav369dTc1OTn5ot+teY6Xl1eO627dulWHDh3Sf/7zH5UsWVKStG7dur9d79yamZmZlzT3QuHh4UpISHAbu/B3U6lSJa1du1ZdunSxxs5/zS7ld3M5ypYtq9DQUC1dutQKnGlpaUpISNAzzzzjNveZZ57Rv/71L917771auHBhrv8WAQAAAFxbV/wW3As9+OCDyp8/vyZNmqQCBQqof//+6tevn6ZPn66UlBT9/PPPeueddzR9+nRJ0tNPP63t27drwIABSk5O1qxZs6wntf4Tw4cP15gxYzRhwgRt27ZNmzZt0rRp0/TWW29Jkjp16qSsrCw99dRTSkpK0nfffac333xT0v/ucPXo0UNbt27VoEGDtG3bNn3xxRduT42VpEGDBmn16tXq2bOnEhMTtX37dn399dfq2bOnpLOBrHnz5urRo4cSEhK0fv16Pfnkk/Lx8bns17RUqVLy8vLSO++8o507d2r+/Pl69dVXL+nYMmXKaNeuXUpMTNSff/6pU6dOXfJ5e/furcWLF+vNN9/U9u3bNXHiRC1evNhtTq9evfThhx9q+vTp2r59u0aOHKlffvnF7atc/u53k5P09HQlJiZad7/PXcP5T6/t27evRo4cqfnz52vTpk3q0qWLihUrpnbt2mVbr1evXho5cqRat26tlStXXvJrAAAAAOAqupIPoV74FNxzxowZYwoXLmzS09NNVlaWGT9+vKlUqZLx9PQ0hQsXNlFRUWb58uXW/G+++caEhYUZp9NpGjVqZD766CMj/bOHEBljzMyZM02NGjWMl5eXKViwoGncuLGZM2eOtX/VqlWmWrVqxsvLy9SqVcvMmjXLSDJbt2615nz99ddWL5GRkebdd981ktweXrRmzRrTrFkz4+/vb/z8/Ey1atXMqFGjrP2pqammVatWxul0mlKlSpmPP/7YlC5d+h8/Bfd8s2bNMmXKlDFOp9PUq1fPzJ8/30j/e4DShQ8QOufkyZPm/vvvN0FBQUaSmTZtmjHGGCn7g31yWuPDDz80JUqUMD4+PqZNmzbmzTffdHsIkTHGjBgxwtx2223G39/fPP7446Z3797mrrvucpvzd7+bC53r5cLq2rWrNScrK8u88sorJiQkxDidTnPPPfeY5ORka//5T8E9Z+zYsaZAgQJm1apVOb4OOR2T22ubG+vD2Xn9AXuKoiiKoigqe+GyXY2HEDmMMcbmzHvdmDlzph577DG5XK5c71COGjVKU6ZM4cEy/0CzZs0UGhqqGTNm5HUreSItLe3/H3bkkpT9M8sAAADIO7du+rly5/7OdblcOT6b51Jc1c+AXu8+/vhjlStXTsWLF9fGjRs1aNAgdejQwS18Tp48WXfeeaeCg4O1atUqvfHGG9bba5Hd8ePHNWXKFEVFRSl//vz69NNP9cMPP2jJkiV53RoAAACA68wtFUD379+vIUOGaP/+/SpatKgefPBBjRo1ym3Ouc8x/vXXXypVqpReeOEFRUdH51HH1z+Hw6FFixZp1KhROnnypCpVqqTZs2eradOmed0aAAAAgOvMLf0WXOBa4C24AAAA1y/Sz+W7Gm/BvepPwQUAAAAAICcEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADY4pb6HlDAVi8GSt553QQAXBtmKN9jAAD457gDCgAAAACwBQEUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAuPvG4AuFm5ol0KCAjI6zYAAACA6wZ3QAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC28MjrBoCbVmBgXncAAACAa8GYvO7ghsUd0BuAw+HQvHnz/vFxu3fvlsPhUGJi4lXv6UrZ1VtcXJwcDoeOHDlyTc8DAAAA4O8RQK8D3bp1U7t27XLdn5qaqhYtWkjKPbj93RpXIjMzU+PGjVPVqlXl7e2tggULqkWLFlq1atU1Od85c+bM0b///W8FBwfnGlZPnjyp5557TsHBwfL399f999+vAwcOXNO+AAAAAFweAugNIDQ0VE6nM0/ObYzRww8/rBEjRqhPnz5KSkpSXFycSpYsqcjIyMu6M3upjh07poYNG+q1117LdU6/fv30zTff6Msvv9Ty5cu1b98+3XfffdesJwAAAABXwCDPde3a1bRt2zbX/ZLM3LlzrZ/Pr4iICDN06NBs47GxsWbXrl1GktmwYYO11qZNm0zz5s2Nn5+fKVKkiHnkkUfMH3/8keu5P/vsMyPJzJ8/P9u+++67zwQHB5v09HRz5MgRky9fPrN27VpjjDGZmZmmYMGCpm7dutb8GTNmmBIlShhjTI695Sa3uUeOHDGenp7myy+/tMaSkpKMJBMfH2+MMSY2NtZIMocPHzbGGHPs2DHTvHlzU79+fXP48GFr7c8//9w0bNjQeHt7m9q1a5vk5GSzZs0aU6tWLePn52eaN29uDh48+Le9GmOMy+Uykozr7KcDKIqiKIqiqJutblHW37ku12WvwR3QG8yaNWskST/88INSU1M1Z84c9e/fXx06dFDz5s2Vmpqq1NRU1a9fP9uxR44c0d13362aNWtq3bp1Wrx4sQ4cOKAOHTrker5Zs2apYsWKatOmTbZ9L7zwgg4dOqQlS5YoMDBQNWrUUFxcnCRp06ZNcjgc2rBhg9LT0yVJy5cvV0RExFV4Fc5av369MjIy1LRpU2uscuXKKlWqlOLj47PNP3LkiJo1a6asrCwtWbJEQUFB1r6hQ4dq8ODB+vnnn+Xh4aFOnTpp4MCBevvtt7VixQrt2LFDQ4YMybGPU6dOKS0tza0AAAAAZEcAvcEULlxYkhQcHKzQ0FAVKlRI/v7+8vHxkdPpVGhoqEJDQ+Xl5ZXt2IkTJ6pmzZoaPXq0KleurJo1a+qjjz5SbGystm3bluP5tm3bpvDw8Bz3nRs/d2xkZKQVQOPi4tSsWTOFh4dr5cqV1tjVDKD79++Xl5eXW5CUpJCQEO3fvz/b3IiICBUtWlTffPONfH193fb3799fUVFRCg8PV58+fbR+/Xq98soratCggWrWrKknnnhCsbGxOfYxZswYBQYGWlWyZMmrdo0AAADAzYQAegvZuHGjYmNj5e/vb1XlypUlSSkpKbkeZ4y5pPUjIiK0cuVKZWZmavny5YqMjLRC6b59+7Rjxw5FRkZejUv5x5o1a6awsDB9/vnnOYbzatWqWT+HhIRIkqpWreo2dvDgwRzXjo6Olsvlsmrv3r1XuXsAAADg5sD3gN5C0tPT1aZNmxwf6lO0aNEcj6lYsaKSkpJy3HduvGLFipKkxo0b6+jRo/r555/1448/avTo0QoNDdV//vMfVa9eXcWKFVOFChWu0tWcfTjT6dOndeTIEbe7oAcOHFBoaKjb3FatWmn27NnasmWLW7A8x9PT0/rZ4XDkOJaVlZVjH06nM88eEgUAAADcSLgDeoM5d/cuMzMz2/iFYxe64447tHnzZpUpU0ZhYWFu5efnl+MxDz/8sLZv365vvvkm276xY8cqODhYzZo1kyQFBQWpWrVqmjhxojw9PVW5cmU1btxYGzZs0IIFC67q228lqVatWvL09NTSpUutseTkZO3Zs0f16tVzm/uf//xHXbt21T333KMtW7Zc1T4AAAAAXBoC6HXC5XIpMTHRrXJ6K2eRIkXk4+NjPUDI5XJJksqUKaNffvlFycnJ+vPPP5WRkZHt2Oeee05//fWXOnbsqLVr1yolJUXfffedHnvssVzD68MPP6z27dura9eu+vDDD7V792798ssv6tGjh+bPn68PPvjALbxGRkZq5syZVtgsVKiQwsPD9fnnn//jAPrXX38pMTHRCozJyclKTEy0Pt8ZGBioJ554Qs8//7xiY2O1fv16PfbYY6pXr57uuuuubOu9+eab6ty5s+6++25t3br1H/UCAAAA4Cq4eg/lxeXq2rWrkZStnnjiCWOMMdL/vobFGGOmTp1qSpYsafLly2ciIiKMMcYcPHjQNGvWzPj7+xsp969h2bZtm2nfvr0JCgoyPj4+pnLlyqZv374mKysr1/4yMjLMG2+8YW6//Xbj5eVlAgICTFRUlFm5cmW2uXPnzjWSzLvvvmuN9enTx0gyW7dutcYu5WtYpk2bluPrMnToUGvOiRMnzLPPPmsKFixofH19Tfv27U1qaqq1/8KvYTHGmF69epmiRYua5OTkHPvI6Zhp06aZwMDAXHs937nHU0uuPH9COEVRFEVRFHXxwqW7Gl/D4jDGGFsTL3CTS0tLU2BgoCSXpIC8bgcAAAAXQRq6dOf+znW5XAoIuLy/c3kLLgAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWHnndAHDTejFQ8s7rJgDcbMxQk9ctAABw2bgDCgAAAACwBQEUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALCFR143ANysXNEuBQQE5HUbAAAAwHWDO6AAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC28MjrBoCbVmBgXncAAABwazAmrzvAJeIOKNw4HA7Nmzcv1/27d++Ww+FQYmKibT1diTJlymj8+PF53QYAAAAA3cIBdP/+/erTp4/CwsLk7e2tkJAQNWjQQO+++66OHz9uez9xcXFyOBxWhYSE6P7779fOnTuvyrpHjhy5pPmpqalq0aLFFZ3zakhNTVWnTp1UsWJF5cuXT3379s1x3pdffqnKlSvL29tbVatW1aJFi+xtFAAAAMAluyUD6M6dO1WzZk19//33Gj16tDZs2KD4+HgNHDhQCxYs0A8//JDrsRkZGde0t+TkZO3bt09ffvmlNm/erDZt2igzM/Oy1vonvZ4+fVqSFBoaKqfTeVnnu5pOnTqlwoULa/DgwapevXqOc1avXq2OHTvqiSee0IYNG9SuXTu1a9dOv/76q83dAgAAALgk5hYUFRVlSpQoYdLT03Pcn5WVZf0syUyePNm0adPG+Pr6mqFDhxpjjJk3b56pWbOmcTqdpmzZsmbYsGEmIyPDGGPMY489Zlq1auW25unTp03hwoXNBx98kOM5Y2NjjSRz+PBha2zmzJlGktm6datZs2aNadq0qQkODjYBAQGmcePGZv369W5rXNhr165djSS36tq1qzHGmIiICPPcc8+ZPn36mODgYBMZGWmtMXfuXGvNhIQEU6NGDeN0Ok2tWrXMnDlzjCSzYcMGa87XX39twsLCjNPpNJGRkSYmJibbtaxYscI0bNjQeHt7mxIlSphevXrl+vpfKCIiwvTp0yfbeIcOHbK9znXr1jU9evSwtkuXLm3GjRtnbU+dOtUEBgaaH374wVq7Z8+epk+fPiYoKMgUKVLEvP/++yY9Pd1069bN+Pv7m/Lly5tFixbl2t/JkyeNy+Wyau/evUaScZ39NAJFURRFURR1rQu2cLlcRpJxuVyXvcYt99v6888/jcPhMGPGjLmk+ZJMkSJFzEcffWRSUlLMb7/9Zn788UcTEBBgYmJiTEpKivn+++9NmTJlzLBhw4wxxqxatcrkz5/f7Nu3z1pnzpw5xs/Pzxw9ejTH8+QUQM+FvV9++cUsXbrUzJgxwyQlJZktW7aYJ554woSEhJi0tLRce929e7eZPXu2kWSSk5NNamqqOXLkiDHmbPDy9/c3AwYMMFu3bjVbt2611jgXQI8ePWoKFy5sOnXqZH799VfzzTffmHLlypnzA+jOnTuNp6en6d+/v9m6dav59NNPTfHixd2uZceOHcbPz8+MGzfObNu2zaxatcrUrFnTdOvW7ZJ+B7kF0JIlS7qFS2OMGTJkiKlWrZq1fX4Afe2110xwcLBJSEhwW7tAgQLm1VdfNdu2bTOvvvqqyZ8/v2nRooV5//33zbZt28wzzzxjgoODzbFjx3Lsb+jQoebCoE8ApSiKoiiKsrFgCwLoZfjpp5+MJDNnzhy38eDgYOPn52f8/PzMwIEDrXFJpm/fvm5z77nnHjN69Gi3sRkzZpiiRYta21WqVDGvvfaatd2mTZuLBq4LA+i+fftM/fr1TfHixc2pU6eyzc/MzDQFChQw33zzzUV7zSnYGnM2eNWsWTPbuucH0Pfee88EBwebEydOWPvfffddc34AHTRokPnXv/7ltsbLL7/sds4nnnjCPPXUU25zVqxYYfLly+e2dm5yC6Cenp5m1qxZbmOTJk0yRYoUsbbPBdCBAweaokWLml9//TXb2g0bNrS2z5w5Y/z8/Myjjz5qjaWmphpJJj4+Psf+uANKURRFURSVxwVbXI0Aytew/L81a9YoKytLnTt31qlTp9z21a5d221748aNWrVqlUaNGmWNZWZm6uTJkzp+/Lh8fX315JNP6v3339fAgQN14MABffvtt1q2bNnf9lGiRAkZY3T8+HFVr15ds2fPlpeXlw4cOKDBgwcrLi5OBw8eVGZmpo4fP649e/ZctNeLqVWr1kX3JyUlqVq1avL29rbG6tWr5zYnOTlZd955p9tYnTp13LY3btyoX375RTNnzrTGjDHKysrSrl27FB4efsk9X46xY8fq2LFjWrduncqVK5dtf7Vq1ayf8+fPr+DgYFWtWtUaCwkJkSQdPHgwx/WdTud18blZAAAA4Hp3ywXQsLAwORwOJScnu42fCyY+Pj7ZjvHz83PbTk9P1/Dhw3Xfffdlm3surHXp0kUvvvii4uPjtXr1apUtW1aNGjX62/5WrFihgIAAFSlSRAUKFLDGu3btqkOHDuntt99W6dKl5XQ6Va9ePevhQbn1ejH/ZO6VSE9PV48ePdS7d+9s+0qVKnXZ64aGhurAgQNuYwcOHFBoaKjbWKNGjbRw4UJ98cUXevHFF7Ot4+np6bbtcDjcxhwOhyQpKyvrsnsFAAAAcAsG0ODgYDVr1kwTJ05Ur169LiuE3XHHHUpOTlZYWNhFz9OuXTtNmzZN8fHxeuyxxy5p7bJlyyooKCjb+KpVqzR58mS1bNlSkrR37179+eeff7uel5eXJF3Wk3TDw8M1Y8YMnTx50grWP/30k9ucSpUqZfvqk7Vr17pt33HHHdqyZctFX6/LUa9ePS1dutTtK1qWLFmS7S5tnTp11LNnTzVv3lweHh7q37//Ve0DAAAAwKW5Jb+GZfLkyTpz5oxq166tzz//XElJSUpOTtYnn3yirVu3Kn/+/Bc9fsiQIfr44481fPhwbd68WUlJSfrss880ePBgt3lPPvmkpk+frqSkJHXt2vWKeq5QoYJmzJihpKQkJSQkqHPnzjnerb1Q6dKl5XA4tGDBAv3xxx9KT0+/5HN26tRJDodD3bt315YtW7Ro0SK9+eabbnN69OihrVu3atCgQdq2bZu++OILxcTESPrfncNBgwZp9erV6tmzpxITE7V9+3Z9/fXX6tmz50XPn5iYqMTERKWnp+uPP/5QYmKitmzZYu3v06ePFi9erLFjx2rr1q0aNmyY1q1bl+O69evX16JFizR8+HCNHz/+kl8DAAAAAFfRVftE6g1m3759pmfPnqZs2bLG09PT+Pv7mzp16pg33njD7WmnkvvXkpyzePFiU79+fePj42MCAgJMnTp1zPvvv+82Jysry5QuXdq0bNnyb/vJ7WFB5/z888+mdu3axtvb21SoUMF8+eWX2b5iJLdeR4wYYUJDQ43D4XD7GpacHuxz4Rrx8fGmevXqxsvLy9SoUcN6qu7Fvobl3IOKzn/A0Jo1a0yzZs2Mv7+/8fPzM9WqVTOjRo266GsiZX+ybOnSpd3mfPHFF6ZixYrGy8vL3H777WbhwoVu+y98jZYvX278/PzMhAkTcn0dLjwmp9flYs59OFty5fnn8SmKoiiKom7GQt64Gg8hchhjTF4E31tBenq6ihcvrmnTpuX4edGb1ahRozRlyhTt3bs3r1vJE2lpaQoMDJTkkhSQ1+0AAADcdEgweePc37kul0sBAZf3d+4t9xlQO2RlZenPP//U2LFjFRQUpHvvvTevW7qmJk+erDvvvFPBwcFatWqV3njjjb99ey0AAACAWw8B9BrYs2ePypYtqxIlSigmJkYeHjf3y7x9+3aNHDlSf/31l0qVKqUXXnhB0dHRed0WAAAAgOsMb8EFrjLeggsAAHBtkWDyxtV4C+4t+RRcAAAAAID9CKAAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANji5v5+ECAvvRgoeed1EwDymhnKoxoBADiHO6AAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC28MjrBoCblSvapYCAgLxuAwAAALhucAcUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFh553QCuDzExMerbt6+OHDlyTdYfNmyY5s2bp8TERElSt27ddOTIEc2bN++anO+cyMhI1ahRQ+PHj7+m58lRYKD95wQAALc2Y/K6A+CiuAN6A9m/f7/69OmjsLAweXt7KyQkRA0aNNC7776r48eP53V7V9XJkyfVrVs3Va1aVR4eHmrXrl2O8+Li4nTHHXfI6XQqLCxMMTExtvYJAAAA4NJxB/QGsXPnTjVo0EBBQUEaPXq0qlatKqfTqU2bNun9999X8eLFde+99+Z1m1dNZmamfHx81Lt3b82ePTvHObt27VKrVq309NNPa+bMmVq6dKmefPJJFS1aVFFRUTZ3DAAAAODvcAf0BvHss8/Kw8ND69atU4cOHRQeHq5y5cqpbdu2Wrhwodq0aWPNfeutt1S1alX5+fmpZMmSevbZZ5Wenu62XkxMjEqVKiVfX1+1b99ehw4dsva5XC7lz59f69atkyRlZWWpUKFCuuuuu6w5n3zyiUqWLGltDxo0SBUrVpSvr6/KlSunV155RRkZGZd9vX5+fnr33XfVvXt3hYaG5jhnypQpKlu2rMaOHavw8HD17NlTDzzwgMaNG5frugsXLlRgYKBmzpwp6exbgdu1a6fRo0crJCREQUFBGjFihM6cOaMBAwaoUKFCKlGihKZNm3bZ1wIAAADgLALoDeDQoUP6/vvv9dxzz8nPzy/HOQ6Hw/o5X758mjBhgjZv3qzp06dr2bJlGjhwoLU/ISFBTzzxhHr27KnExEQ1adJEI0eOtPYHBgaqRo0aiouLkyRt2rRJDodDGzZssILs8uXLFRERYR1ToEABxcTEaMuWLXr77bc1derUiwbBqyE+Pl5NmzZ1G4uKilJ8fHyO82fNmqWOHTtq5syZ6ty5szW+bNky7du3Tz/++KPeeustDR06VK1bt1bBggWVkJCgp59+Wj169NB///vfHNc9deqU0tLS3AoAAABAdgTQG8COHTtkjFGlSpXcxm+77Tb5+/vL399fgwYNssb79u2rJk2aqEyZMrr77rs1cuRIffHFF9b+t99+W82bN9fAgQNVsWJF9e7dO9tbViMjI60AGhcXp2bNmik8PFwrV660xs4PoIMHD1b9+vVVpkwZtWnTRv3793c757Wwf/9+hYSEuI2FhIQoLS1NJ06ccBufNGmSnn32WX3zzTdq3bq1275ChQppwoQJqlSpkh5//HFVqlRJx48f10svvaQKFSooOjpaXl5e1rVfaMyYMQoMDLTq/DvDAAAAAP6HAHoDW7NmjRITE3X77bfr1KlT1vgPP/yge+65R8WLF1eBAgX06KOP6tChQ9aDipKSklS3bl23terVq+e2HRERoZUrVyozM1PLly9XZGSkFUr37dunHTt2KDIy0pr/+eefq0GDBgoNDZW/v78GDx6sPXv2XLuL/we++uor9evXT0uWLHELzefcfvvtypfvf/8phISEqGrVqtZ2/vz5FRwcrIMHD+a4fnR0tFwul1V79+69+hcBAAAA3AQIoDeAsLAwORwOJScnu42XK1dOYWFh8vHxscZ2796t1q1bq1q1apo9e7bWr1+vSZMmSZJOnz59yeds3Lixjh49qp9//lk//vijWwBdvny5ihUrpgoVKkg6+1bYzp07q2XLllqwYIE2bNigl19++R+d73KEhobqwIEDbmMHDhxQQECA22tSs2ZNFS5cWB999JFMDo8m9/T0dNt2OBw5jmVlZeXYh9PpVEBAgFsBAAAAyI4AegMIDg5Ws2bNNHHiRB07duyic9evX6+srCyNHTtWd911lypWrKh9+/a5zQkPD1dCQoLb2E8//eS2HRQUpGrVqmnixIny9PRU5cqV1bhxY23YsEELFixwu5O4evVqlS5dWi+//LJq166tChUq6LfffrvCq/579erV09KlS93GlixZku1ubvny5RUbG6uvv/5avXr1uuZ9AQAAAMgZAfQGMXnyZJ05c0a1a9fW559/rqSkJCUnJ+uTTz7R1q1blT9/fkln75ZmZGTonXfe0c6dOzVjxgxNmTLFba3evXtr8eLFevPNN7V9+3ZNnDhRixcvznbOyMhIzZw50wqbhQoVUnh4uD7//HO3AFqhQgXt2bNHn332mVJSUjRhwgTNnTv3iq95y5YtSkxM1F9//SWXy6XExEQlJiZa+59++mnt3LlTAwcO1NatWzV58mR98cUX6tevX7a1KlasqNjYWM2ePVt9+/a94t4AAAAA/HN8D+gNonz58tqwYYNGjx6t6Oho/fe//5XT6VSVKlXUv39/Pfvss5Kk6tWr66233tJrr72m6OhoNW7cWGPGjFGXLl2ste666y5NnTpVQ4cO1ZAhQ9S0aVMNHjxYr776qts5IyIiNH78eLfPekZGRmrjxo1uY/fee6/69eunnj176tSpU2rVqpVeeeUVDRs27IquuWXLlm53UmvWrClJ1ttoy5Ytq4ULF6pfv356++23VaJECX3wwQe5fgdopUqVtGzZMkVGRip//vwaO3bsFfX3dwLlksTbcQEAwLWTw6eLgOuaw+T0oTgAly0tLU2BgYESARQAAFxj/CUPO537O9flcl32c094Cy4AAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFh553QBw03oxUPLO6yaAm48ZavK6BQAAcJm4AwoAAAAAsAUBFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC2IIACAAAAAGxBAAUAAAAA2IIACgAAAACwhUdeNwDcrFzRLgUEBOR1GwAAAMB1gzugAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtvDI6waAm1ZgYF53AAAAbhTG5HUHgC24AwpJUmRkpPr27Wvb+cqUKaPx48df8/M4HA7Nmzfvmp8HAAAAwN8jgN4gunXrJofDIYfDIS8vL4WFhWnEiBE6c+ZMXrd2TWzevFn333+/ypQpI4fDkWtYnTRpksqUKSNvb2/VrVtXa9assbdRAAAAAJeMAHoDad68uVJTU7V9+3a98MILGjZsmN544428bitXmZmZysrKuqxjjx8/rnLlyuk///mPQkNDc5zz+eef6/nnn9fQoUP1888/q3r16oqKitLBgwevpG0AAAAA1wgB9AbidDoVGhqq0qVL65lnnlHTpk01f/58SdLhw4fVpUsXFSxYUL6+vmrRooW2b9/udvyqVasUGRkpX19fFSxYUFFRUTp8+LC1PysrSwMHDlShQoUUGhqqYcOGuR3/1ltvqWrVqvLz81PJkiX17LPPKj093dofExOjoKAgzZ8/X1WqVJHT6dSePXt08OBBtWnTRj4+Pipbtqxmzpz5t9d655136o033tDDDz8sp9OZ45y33npL3bt312OPPaYqVapoypQp8vX11UcffZTrukOHDlXRokX1yy+/SDr7VuCRI0eqS5cu8vf3V+nSpTV//nz98ccfatu2rfz9/VWtWjWtW7cu1zVPnTqltLQ0twIAAACQHQH0Bubj46PTp09LOvsW3XXr1mn+/PmKj4+XMUYtW7ZURkaGJCkxMVH33HOPqlSpovj4eK1cuVJt2rRRZmamtd706dPl5+enhIQEvf766xoxYoSWLFli7c+XL58mTJigzZs3a/r06Vq2bJkGDhzo1tPx48f12muv6YMPPtDmzZtVpEgRdevWTXv37lVsbKy++uorTZ48+YrvUp4+fVrr169X06ZN3fpr2rSp4uPjs803xqhXr176+OOPtWLFClWrVs3aN27cODVo0EAbNmxQq1at9Oijj6pLly565JFH9PPPP6t8+fLq0qWLTC4PBxgzZowCAwOtKlmy5BVdGwAAAHDTMrghdO3a1bRt29YYY0xWVpZZsmSJcTqdpn///mbbtm1Gklm1apU1/88//zQ+Pj7miy++MMYY07FjR9OgQYNc14+IiDANGzZ0G7vzzjvNoEGDcj3myy+/NMHBwdb2tGnTjCSTmJhojSUnJxtJZs2aNdZYUlKSkWTGjRt3SddeunTpbHN///13I8msXr3abXzAgAGmTp061rYk8+WXX5pOnTqZ8PBw89///jfb2o888oi1nZqaaiSZV155xRqLj483kkxqamqO/Z08edK4XC6r9u7dayQZ19nn2VEURVEURf19ATcAl8tlJBmXy3XZa/A1LDeQBQsWyN/fXxkZGcrKylKnTp00bNgwLV26VB4eHqpbt641Nzg4WJUqVVJSUpKks3dAH3zwwYuuf/5dQUkqWrSo253KH374QWPGjNHWrVuVlpamM2fO6OTJkzp+/Lh8fX0lSV5eXm7rJCUlycPDQ7Vq1bLGKleurKCgoMt+Hf6pfv36yel06qefftJtt92Wbf/5/YaEhEiSqlatmm3s4MGDOX4e1el05vo2YQAAAAD/w1twbyBNmjRRYmKitm/frhMnTlhvmb0UPj4+fzvH09PTbdvhcFgPEdq9e7dat26tatWqafbs2Vq/fr0mTZokSdbbgM+dx+FwXOolXbbbbrtN+fPn14EDB9zGDxw4kC0kNmvWTL///ru+++67HNc6/7rP9Z7T2OU+UAkAAADAWQTQG4ifn5/CwsJUqlQpeXj87+Z1eHi4zpw5o4SEBGvs0KFDSk5OVpUqVSSdvcu3dOnSyz73+vXrlZWVpbFjx+quu+5SxYoVtW/fvr89rnLlyjpz5ozWr19vjSUnJ+vIkSOX3Yt09k5rrVq13K4pKytLS5cuVb169dzm3nvvvZo1a5aefPJJffbZZ1d0XgAAAACXjwB6E6hQoYLatm2r7t27a+XKldq4caMeeeQRFS9eXG3btpUkRUdHa+3atXr22Wf1yy+/aOvWrXr33Xf1559/XtI5wsLClJGRoXfeeUc7d+7UjBkzNGXKlL89rlKlSmrevLl69OihhIQErV+/Xk8++eTf3pE9ffq0EhMTlZiYqNOnT+v3339XYmKiduzYYc15/vnnNXXqVE2fPl1JSUl65plndOzYMT322GPZ1mvfvr1mzJihxx57TF999dUlXTMAAACAq4vPgN4kpk2bpj59+qh169Y6ffq0GjdurEWLFllvJa1YsaK+//57vfTSS6pTp458fHxUt25ddezY8ZLWr169ut566y299tprio6OVuPGjTVmzBh16dLlknp78sknFRERoZCQEI0cOVKvvPLKRY/Zt2+fatasaW2/+eabevPNNxUREaG4uDhJ0kMPPaQ//vhDQ4YM0f79+1WjRg0tXrzY+szmhR544AFlZWXp0UcfVb58+XTfffdd0rVfrkC5JAVc03MAAICbxN98gskYe9oArjWHMfxzBq6mtLQ0BQYGSgRQAABwlfAXO64H5/7OdblcCgi4vL9zeQsuAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC2IIACAAAAAGxBAAUAAAAA2IIACgAAAACwBQEUAAAAAGALj7xuALhpvRgoeed1E4D9zFC+LR0AAOSMO6AAAAAAAFsQQAEAAAAAtiCAAgAAAABsQQAFAAAAANiCAAoAAAAAsAUBFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC28MjrBoCblSvapYCAgLxuAwAAALhucAcUAAAAAGALAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFjdcAO3WrZvatWv3j45xOByaN2/ePzpm//79atasmfz8/BQUFPSPjrXL5VzXrSYmJibvfn+BgZLDQVEURVHUtS4AN4zrLoB269ZNDodDDodDXl5eCgsL04gRI3TmzBlJ0ttvv62YmJhr3se4ceOUmpqqxMREbdu27aqta3do3L9/v/r06aOwsDB5e3srJCREDRo00Lvvvqvjx4/b1sfleP/99xUZGamAgAA5HA4dOXIk25y//vpLnTt3VkBAgIKCgvTEE08oPT3d/mYBAAAA/C2PvG4gJ82bN9e0adN06tQpLVq0SM8995w8PT0VHR2twMBAW3pISUlRrVq1VKFCBVvOdy3s3LlTDRo0UFBQkEaPHq2qVavK6XRq06ZNev/991W8eHHde++9ed1mro4fP67mzZurefPmio6OznFO586dlZqaqiVLligjI0OPPfaYnnrqKc2aNcvmbgEAAAD8LXOd6dq1q2nbtq3bWLNmzcxdd92V4/6IiAjTq1cvM2DAAFOwYEETEhJihg4d6na8JDN37lxre8iQISY0NNRs3Lgxxx5Kly5tJFnVtWtXY4wxv/32m7n33nuNn5+fKVCggHnwwQfN/v373Y6dPHmyKVeunPH09DQVK1Y0H3/8ca7rli5d2to3b948U7NmTeN0Ok3ZsmXNsGHDTEZGhrV/27ZtplGjRsbpdJrw8HDz/fffZ7uuC0VFRZkSJUqY9PT0HPdnZWVZP1/ptWVlZZmhQ4eakiVLGi8vL1O0aFHTq1cva//JkyfNCy+8YIoVK2Z8fX1NnTp1TGxsbK69ny82NtZIMocPH3Yb37Jli5Fk1q5da419++23xuFwmN9//90YY8y0adNMYGCgtf/gwYOmVq1apl27dubkyZPW2osXLzY1atQw3t7epkmTJubAgQNm0aJFpnLlyqZAgQKmY8eO5tixY5fUr8vlMpKMSzKGoiiKoqhrXwBsYf2d63Jd9hrX3Vtwc+Lj46PTp0/nun/69Ony8/NTQkKCXn/9dY0YMUJLlizJNs8Yo169eunjjz/WihUrVK1atRzXW7t2rZo3b64OHTooNTVVb7/9trKystS2bVv99ddfWr58uZYsWaKdO3fqoYceso6bO3eu+vTpoxdeeEG//vqrevTooccee0yxsbHWupI0bdo0paamWtsrVqxQly5d1KdPH23ZskXvvfeeYmJiNGrUKElSVlaW7rvvPnl5eSkhIUFTpkzRoEGDLvqaHTp0SN9//72ee+45+fn55TjH8f+fmbga1zZ79myNGzdO7733nrZv36558+apatWq1vE9e/ZUfHy8PvvsM/3yyy968MEH1bx5c23fvv2i13Ex8fHxCgoKUu3ata2xpk2bKl++fEpISMg2f+/evWrUqJH+9a9/6auvvpLT6bT2DRs2TBMnTtTq1au1d+9edejQQePHj9esWbO0cOFCff/993rnnXdy7OPUqVNKS0tzKwAAAAA5uHp5+Oo4/w5nVlaWWbJkiXE6naZ///7Z9htz9g5ow4YN3da48847zaBBg6xtSebLL780nTp1MuHh4ea///3v3/bRtm1b686nMcZ8//33Jn/+/GbPnj3W2ObNm40ks2bNGmOMMfXr1zfdu3d3W+fBBx80LVu2dOvlwruW99xzjxk9erTb2IwZM0zRokWNMcZ89913xsPDw7qrZ8zZO305rXXOTz/9ZCSZOXPmuI0HBwcbPz8/4+fnZwYOHHjVrm3s2LGmYsWK5vTp09l6+e2330z+/Pnd+j933dHR0Tn2f77c7oCOGjXKVKxYMdv8woULm8mTJxtj/ncHdOvWraZkyZKmd+/ebnd+z639ww8/WGNjxowxkkxKSoo11qNHDxMVFZVjf0OHDjWSshV3QCmKoijKpgJgi5v2DuiCBQvk7+8vb29vtWjRQg899JCGDRuW6/wL72QWLVpUBw8edBvr16+fEhIS9OOPP6p48eLW+OjRo+Xv72/Vnj17cjxHUlKSSpYsqZIlS1pjVapUUVBQkJKSkqw5DRo0cDuuQYMG1v7cbNy4USNGjHDro3v37kpNTdXx48etcxcrVsw6pl69ehddMzdr1qxRYmKibr/9dp06deqqXduDDz6oEydOqFy5curevbvmzp1rPThq06ZNyszMVMWKFd2ucfny5UpJSbms6/gnTpw4oUaNGum+++7T22+/bd35Pd/5/4ZCQkLk6+urcuXKuY1d+G/qnOjoaLlcLqv27t179S8CAAAAuAlclw8hatKkid599115eXmpWLFi8vC4eJuenp5u2w6HQ1lZWW5jzZo106effqrvvvtOnTt3tsaffvppdejQwdo+P+TZJT09XcOHD9d9992XbZ+3t/dlrRkWFiaHw6Hk5GS38XOhysfH57LWzU3JkiWVnJysH374QUuWLNGzzz6rN954Q8uXL1d6erry58+v9evXK3/+/G7H+fv7X/Y5Q0NDs4XCM2fO6K+//lJoaKg15nQ61bRpUy1YsEADBgxw+x8Q55z/b8jhcFzSv6nz1z//7bwAAAAAcnZd3gH18/NTWFiYSpUq9bfh81Lde++9mjVrlp588kl99tln1nihQoUUFhZmVW7nCw8P1969e93ubm3ZskVHjhxRlSpVrDmrVq1yO27VqlXWfuls0MnMzHSbc8cddyg5Odmtj3OVL18+69ypqanWMT/99NNFrzc4OFjNmjXTxIkTdezYsYvOvVrX5uPjozZt2mjChAmKi4tTfHy8Nm3apJo1ayozM1MHDx7Mdn3nB8V/ql69ejpy5IjWr19vjS1btkxZWVmqW7euNZYvXz7NmDFDtWrVUpMmTbRv377LPicAAACAy3dd3gG9Vtq3b68ZM2bo0UcflYeHhx544IFLPrZp06aqWrWqOnfurPHjx+vMmTN69tlnFRERYT0EZ8CAAerQoYNq1qyppk2b6ptvvtGcOXP0ww8/WOuUKVNGS5cuVYMGDeR0OlWwYEENGTJErVu3VqlSpfTAAw8oX7582rhxo3799VeNHDlSTZs2VcWKFdW1a1e98cYbSktL08svv/y3PU+ePFkNGjRQ7dq1NWzYMFWrVk358uXT2rVrtXXrVtWqVeuqXVtMTIwyMzNVt25d+fr66pNPPpGPj49Kly6t4OBgde7cWV26dNHYsWNVs2ZN/fHHH1q6dKmqVaumVq1a5dj//v37tX//fu3YsUPS2bfyFihQQKVKlVKhQoUUHh6u5s2bq3v37poyZYoyMjLUs2dPPfzww9nuZOfPn18zZ85Ux44ddffddysuLu6Kwi8AAACAy3AVP5N6VeT0NSwX2x8REWH69OnjNufCBwhJ7g/r+fzzz423t7eZPXt2rue5cA1jrvyrSowxZv78+SYsLMx4eHi4fQ3L4sWLTf369Y2Pj48JCAgwderUMe+//761Pzk52TRs2NB4eXmZihUrmsWLF2e7rpzs27fP9OzZ05QtW9Z4enoaf39/U6dOHfPGG2+4fa3IlV7b3LlzTd26dU1AQIDx8/Mzd911l9uDfU6fPm2GDBliypQpYzw9PU3RokVN+/btzS+//JJr77k93GfatGnWnEOHDpmOHTsaf39/ExAQYB577DFz9OhRa/+FX8OSkZFh7rvvPhMeHm4OHDiQ4wOOLjzmXC/Vq1e/6Gt9zrkPZ0uuPH8mA0VRFEXdKgXg2rsaDyFyGGNMXoVf4GaUlpamwMBASS5JAXndDgAAtwT+ogWuvXN/57pcLgUEXN7fudflZ0ABAAAAADcfAigAAAAAwBYEUAAAAACALQigAAAAAABbEEABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAuPvG4AuGm9GCh553UTgH3MUJPXLQAAgOscd0ABAAAAALYggAIAAAAAbEEABQAAAADYggAKAAAAALAFARQAAAAAYAsCKAAAAADAFgRQAAAAAIAtCKAAAAAAAFsQQAEAAAAAtvDI6waAm5Ur2qWAgIC8bgMAAAC4bnAHFAAAAABgCwIoAAAAAMAWBFAAAAAAgC0IoAAAAAAAWxBAAQAAAAC2IIACAAAAAGxBAAUAAAAA2IIACgAAAACwBQEUAAAAAGALAigAAAAAwBYeed0AcNMKDMzrDgAANzNj8roDAPjHuAP6NxwOh+bNm5fXbeAyxcXFyeFw6MiRI3ndCgAAAHDLuyUC6JQpU1SgQAGdOXPGGktPT5enp6ciIyPd5p4LLCkpKTZ3aZ8//vhDzzzzjEqVKiWn06nQ0FBFRUVp1apVed2amzlz5ujf//63goOD5XA4lJiYmG3OyZMn9dxzzyk4OFj+/v66//77deDAAfubBQAAAPC3bokA2qRJE6Wnp2vdunXW2IoVKxQaGqqEhASdPHnSGo+NjVWpUqVUvnz5vGj1qjp9+nSO4/fff782bNig6dOna9u2bZo/f74iIyN16NAhmzu8uGPHjqlhw4Z67bXXcp3Tr18/ffPNN/ryyy+1fPly7du3T/fdd5+NXQIAAAC4VLdEAK1UqZKKFi2quLg4aywuLk5t27ZV2bJl9dNPP7mNN2nSxO34P//8U+3bt5evr68qVKig+fPnu+1fvny56tSpI6fTqaJFi+rFF190u9t66tQp9e7dW0WKFJG3t7caNmyotWvXup3T4XBo4cKFqlatmry9vXXXXXfp119/dTvPypUr1ahRI/n4+KhkyZLq3bu3jh07Zu0vU6aMXn31VXXp0kUBAQF66qmnsr0WR44c0YoVK/Taa6+pSZMmKl26tOrUqaPo6Gjde++9kqT+/furdevW1jHjx4+Xw+HQ4sWLrbGwsDB98MEHkqS1a9eqWbNmuu222xQYGKiIiAj9/PPPbud1OBz64IMPLvo6XujRRx/VkCFD1LRp0xz3u1wuffjhh3rrrbd09913q1atWpo2bZpWr17t9js93/Hjx9WiRQs1aNBAR44c0e7du+VwOPTFF19Yr+2dd96pbdu2ae3atapdu7b8/f3VokUL/fHHHzmueerUKaWlpbkVAAAAgOxuiQAqnb0LGhsba23HxsYqMjJSERER1viJEyeUkJCQLYAOHz5cHTp00C+//KKWLVuqc+fO+uuvvyRJv//+u1q2bKk777xTGzdu1LvvvqsPP/xQI0eOtI4fOHCgZs+erenTp+vnn39WWFiYoqKirDXOGTBggMaOHau1a9eqcOHCatOmjTIyMiRJKSkpat68ue6//3798ssv+vzzz7Vy5Ur17NnTbY0333xT1atX14YNG/TKK69kex38/f3l7++vefPm6dSpUzm+VhEREVq5cqUyMzMlnQ3Yt912mxXgf//9d6WkpFhvXz569Ki6du2qlStX6qefflKFChXUsmVLHT169JJfx8uxfv16ZWRkuAXUypUrq1SpUoqPj882/8iRI2rWrJmysrK0ZMkSBQUFWfuGDh2qwYMH6+eff5aHh4c6deqkgQMH6u2339aKFSu0Y8cODRkyJMc+xowZo8DAQKtKlix52dcEAAAA3NTMLWLq1KnGz8/PZGRkmLS0NOPh4WEOHjxoZs2aZRo3bmyMMWbp0qVGkvntt9+s4ySZwYMHW9vp6elGkvn222+NMca89NJLplKlSiYrK8uaM2nSJOPv728yMzNNenq68fT0NDNnzrT2nz592hQrVsy8/vrrxhhjYmNjjSTz2WefWXMOHTpkfHx8zOeff26MMeaJJ54wTz31lNs1rVixwuTLl8+cOHHCGGNM6dKlTbt27f72tfjqq69MwYIFjbe3t6lfv76Jjo42GzdutPYfPnzY5MuXz6xdu9ZkZWWZQoUKmTFjxpi6desaY4z55JNPTPHixXNdPzMz0xQoUMB88803l/w6XsyuXbuMJLNhwwa38ZkzZxovL69s8++8804zcOBAY8z/XtukpCRTrVo1c//995tTp05lW/uDDz6wxj799FMjySxdutQaGzNmjKlUqVKO/Z08edK4XC6r9u7dayQZ19nnE1IURVHUtSkAsJnL5TKSjMvluuw1bpk7oJGRkTp27JjWrl2rFStWqGLFiipcuLAiIiKsz4HGxcWpXLlyKlWqlNux1apVs3728/NTQECADh48KElKSkpSvXr15HA4rDkNGjRQenq6/vvf/yolJUUZGRlq0KCBtd/T01N16tRRUlKS23nq1atn/VyoUCFVqlTJmrNx40bFxMRYdzD9/f0VFRWlrKws7dq1yzqudu3af/ta3H///dq3b5/mz5+v5s2bKy4uTnfccYdiYmIkSUFBQapevbri4uK0adMmeXl56amnntKGDRuUnp6u5cuXKyIiwlrvwIED6t69uypUqKDAwEAFBAQoPT1de/bsueTX8Vpr1qyZwsLC9Pnnn8vLyyvb/vN7CwkJkSRVrVrVbSy3Xp1OpwICAtwKAAAAQHa3zPeAhoWFqUSJEoqNjdXhw4etAFWsWDGVLFlSq1evVmxsrO6+++5sx3p6erptOxwOZWVl2dL3Oenp6erRo4d69+6dbd/5gdnPz++S1vP29lazZs3U7P/Yu++wKK72b+DfpS11FxFlQRGUJigCihpsoGLAFjGxRHkVrEkUS+xGIxqjMUZjicaGgvGxJlEfY68YRWNlrcSCEowBNRYQROp5//DHPG4ABcRdg9/PdZ3rcs6cOXPP7IB7c2bOtGuHzz//HAMHDkRkZCTCw8MBPEvYY2NjIZfL4e/vDysrK7i7u+Po0aM4fPgwRo8eLfUVFhaG+/fvY8GCBXBwcIBcLoefn1+RSZAq+jyqVCrk5OTg0aNHGrfT3rlzByqVSqNtx44d8fPPP+Py5csaiWVxsRX+MeGfddr+zImIiIiIKpu3ZgQUePYcaGxsLGJjYzVev9KqVSvs2rULJ0+eLPL858u4u7vj+PHjEEJIdXFxcbCwsEDNmjXh5OQEIyMjjVec5Obm4tSpU/Dw8NDo6/mJcx4+fIirV6/C3d0dANCwYUNcvnwZzs7ORUpxI3pl5eHhoTGhUeFzoAcOHJDOVUBAANavX4+rV69qnL+4uDgMHz4cHTp0QL169SCXy/H333+/ckwv06hRIxgaGuLAgQNS3ZUrV5CcnKwxmgwAs2bNQlhYGNq2bYvLly+/9tiIiIiIiKiot2YEFHiWgA4dOhS5ubkat5D6+/sjIiICOTk5ZU5AhwwZgvnz52PYsGGIiIjAlStXEBkZiVGjRkFPTw9mZmb45JNPMHbsWFhZWaFWrVqYPXs2njx5ggEDBmj09cUXX6Bq1aqwsbHBpEmTYG1tjZCQEADA+PHj8c477yAiIgIDBw6EmZkZLl++jH379mHRokWljvf+/fvo3r07+vfvjwYNGsDCwgKnT5/G7Nmz0aVLF6ldq1at8PjxY2zfvh2zZs0C8CwB7datG2xtbeHq6iq1dXFxwZo1a+Dr64v09HSMHTsWJiYmZTqPxXnw4AGSk5Px119/AXiWXALPRj5VKhWUSiUGDBiAUaNGwcrKCgqFAsOGDYOfnx/eeeedIv3NmTMH+fn5aNOmDWJjY1G3bt1XjpGIiIiIiErvrUtAs7KyULduXek5P+BZAvr48WPpdS1lUaNGDezcuRNjx46Fl5cXrKysMGDAAEyePFlqM2vWLBQUFKBPnz54/PgxfH19sWfPHlSpUkWjr1mzZmHEiBG4du0avL298csvv0ijmw0aNMDhw4cxadIktGzZEkIIODk5oWfPnmWK19zcHE2bNsW8efOk51Pt7e0xaNAgfPbZZ1K7KlWqwNPTE3fu3JEStVatWqGgoEAjeQeAlStXYvDgwWjYsCHs7e0xc+ZMjBkzpkxxFWfbtm3o16+ftPzhhx8CeDZj7dSpUwEA8+bNg56eHj744ANkZ2cjKCgI33//fYl9zps3TyMJrYjR45IokQaAz4MSEVH5PHdzFRFRpSETgr/edK3w3aMPHz7UeJaR/p3S09OhVCoBJqBERPQK+A2NiN40hd9z09LSyj3x5lv1DCgRERERERHpDhNQIiIiIiIi0oq36hnQN1VAQAB4JzQREREREVV2HAElIiIiIiIirWACSkRERERERFrBBJSIiIiIiIi0ggkoERERERERaQUTUCIiIiIiItIKzoJL9LpMUALGug6C6MVEJGfgJiIiIu3hCCgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0goDXQdAVFmlTUyDQqHQdRhERERERG8MjoASERERERGRVjABJSIiIiIiIq1gAkpERERERERawQSUiIiIiIiItIIJKBEREREREWkFE1AiIiIiIiLSCiagREREREREpBVMQImIiIiIiEgrmIASERERERGRVjABJSIiIiIiIq0w0HUApDvh4eF49OgRtm7d+tr35ejoiJEjR2LkyJEAAJlMhi1btiAkJOS17TMpKQm1a9dGfHw8vL29X9t+SqRUan+fREREbwohdB0BEb2BOAJaiYWHh0Mmk0Emk8HIyAjOzs744osvkJeXBwBYsGABYmJiytSnTCYrV8J66tQpDB48uNTtf/31V3Tu3Bl2dnYl7lMIgSlTpsDW1hYmJiYIDAzEtWvXyhwbERERERFpBxPQSi44OBgpKSm4du0aRo8ejalTp+Kbb74BACiVSlhaWmoljmrVqsHU1LTU7TMzM+Hl5YXFixeX2Gb27NlYuHAhli5dihMnTsDMzAxBQUF4+vRpRYRMREREREQVjAloJSeXy6FSqeDg4IBPPvkEgYGB2LZtG4BnI6TP3wIbEBCA4cOHY9y4cbCysoJKpcLUqVOl9Y6OjgCArl27QiaTScuJiYno0qULbGxsYG5ujsaNG2P//v0acTg6OmL+/Pmljrt9+/b48ssv0bVr12LXCyEwf/58TJ48GV26dEGDBg3www8/4K+//ipxhDY/Px/9+/dH3bp1kZycDODZiO6yZcvQqVMnmJqawt3dHcePH8f169cREBAAMzMzNGvWDImJiaWOnYiIiIiIiscE9C1jYmKCnJycEtevXr0aZmZmOHHiBGbPno0vvvgC+/btA/DsNloAiI6ORkpKirSckZGBDh064MCBA4iPj0dwcDA6d+4sJXmvw82bN5GamorAwECpTqlUomnTpjh+/HiR9tnZ2ejevTvUajWOHDmCWrVqSeumT5+Ovn37Qq1Wo27duujduzc++ugjTJw4EadPn4YQAhERESXGkp2djfT0dI1CRERERERFMQF9SwghsH//fuzZswdt2rQpsV2DBg0QGRkJFxcX9O3bF76+vjhw4ACAZ7fRAoClpSVUKpW07OXlhY8++gj169eHi4sLpk+fDicnJ2mk9XVITU0FANjY2GjU29jYSOsKZWRkoGPHjrh37x4OHTokxV2oX79+6NGjB1xdXTF+/HgkJSUhNDQUQUFBcHd3x4gRIxAbG1tiLF999RWUSqVU7O3tK+YgiYiIiIgqGSagldz27dthbm4OY2NjtG/fHj179tS4rfafGjRooLFsa2uLu3fvvnAfGRkZGDNmDNzd3WFpaQlzc3MkJCS81hHQsujVqxcyMzOxd+9eKIuZmfb5Yy5MaD09PTXqnj59WuLI5sSJE5GWliaVW7duVfAREBERERFVDkxAK7nWrVtDrVbj2rVryMrKkm6xLYmhoaHGskwmQ0FBwQv3MWbMGGzZsgUzZ87EkSNHoFar4enp+cJbfV+VSqUCANy5c0ej/s6dO9K6Qh06dMD58+eLvTUX0DxmmUxWYl1J50Eul0OhUGgUIiIiIiIqigloJWdmZgZnZ2fUqlULBgav/tpXQ0ND5Ofna9TFxcUhPDwcXbt2haenJ1QqFZKSkl55Xy9Su3ZtqFQq6fZgAEhPT8eJEyfg5+en0faTTz7BrFmz8N577+Hw4cOvNS4iIiIiIirZq2ck9FZxdHTEgQMH0Lx5c8jlclSpUgUuLi7YvHkzOnfuDJlMhs8///ylo6Yvk5GRgevXr0vLN2/ehFqthpWVFWrVqgWZTIaRI0fiyy+/hIuLC2rXro3PP/8cdnZ2GjP7Fho2bBjy8/PRqVMn7Nq1Cy1atHil+IiIiIiIqOyYgFKZzJ07F6NGjcKKFStQo0YNJCUl4dtvv0X//v3RrFkzWFtbY/z48a88E+zp06fRunVraXnUqFEAgLCwMMTExAAAxo0bh8zMTAwePBiPHj1CixYtsHv3bhgbGxfb58iRI1FQUIAOHTpg9+7daNas2SvF+DJKpAHg7bhERG8qIXQdARHR20cmBH/9ElWk9PT0/5vsiAkoEdGbjN+AiIjKpvB7blpaWrnnPeEzoERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVBroOgKjSmqAEjHUdBL1JRKTQdQhEREREOsURUCIiIiIiItIKJqBERERERESkFUxAiYiIiIiISCuYgBIREREREZFWMAElIiIiIiIirWACSkRERERERFrBBJSIiIiIiIi0ggkoERERERERaQUTUCIiIiIiItIKJqBERERERESkFQa6DoCoskqbmAaFQqHrMIiIiIiI3hgcASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtMNB1AESVllKp6wiIiIjon4TQdQREbzWOgGpRTEwMLC0tX7mfpKQkyGQyqNXqV+5LW2QyGbZu3ar1/To6OmL+/Pla3y8RERERERX1ViSg4eHhkMlk+Pjjj4usGzp0KGQyGcLDw7UfWDnZ29sjJSUF9evXf6V+ZDKZVMzMzODi4oLw8HCcOXOmgiItv5SUFPTu3Ruurq7Q09PDyJEji233448/om7dujA2Noanpyd27typ3UCJiIiIiKjU3ooEFHiWtG3YsAFZWVlS3dOnT7Fu3TrUqlVLh5GVTU5ODvT19aFSqWBg8Op3UEdHRyMlJQWXLl3C4sWLkZGRgaZNm+KHH36ogGjLLzs7G9WqVcPkyZPh5eVVbJtjx46hV69eGDBgAOLj4xESEoKQkBBcvHhRy9ESEREREVFpvDUJaMOGDWFvb4/NmzdLdZs3b0atWrXg4+Oj0Xb37t1o0aIFLC0tUbVqVXTq1AmJiYnS+sJbYDdv3ozWrVvD1NQUXl5eOH78uEY/MTExqFWrFkxNTdG1a1fcv39fY31iYiK6dOkCGxsbmJubo3Hjxti/f79GG0dHR0yfPh19+/aFQqHA4MGDi9yCGxsbC5lMhgMHDsDX1xempqZo1qwZrly58tLzYmlpCZVKBUdHR7z77rv46aefEBoaioiICDx8+BAAMHXqVHh7e2tsN3/+fDg6OmrUrVq1CvXq1YNcLoetrS0iIiJK3G9kZCRsbW1x/vz5Ytc7OjpiwYIF6Nu3L5QlPEu5YMECBAcHY+zYsXB3d8f06dPRsGFDLFq0qMT9RkVFwdLSEgcOHAAABAQEYNiwYRg5ciSqVKkCGxsbrFixApmZmejXrx8sLCzg7OyMXbt2ldgnERERERGVzluTgAJA//79ER0dLS2vWrUK/fr1K9IuMzMTo0aNwunTp3HgwAHo6emha9euKCgo0Gg3adIkjBkzBmq1Gq6urujVqxfy8vIAACdOnMCAAQMQEREBtVqN1q1b48svv9TYPiMjAx06dMCBAwcQHx+P4OBgdO7cGcnJyRrt5syZAy8vL8THx+Pzzz8v8fgmTZqEuXPn4vTp0zAwMED//v3LfI4A4NNPP8Xjx4+xb9++Um+zZMkSDB06FIMHD8aFCxewbds2ODs7F2knhMCwYcPwww8/4MiRI2jQoEG5YgSA48ePIzAwUKMuKCioyB8CCs2ePRsTJkzA3r170bZtW6l+9erVsLa2xsmTJzFs2DB88skn6N69O5o1a4azZ8/i3XffRZ8+ffDkyZNi+83OzkZ6erpGISIiIiKiYoi3QFhYmOjSpYu4e/eukMvlIikpSSQlJQljY2Nx79490aVLFxEWFlbi9vfu3RMAxIULF4QQQty8eVMAEFFRUVKbS5cuCQAiISFBCCFEr169RIcOHTT66dmzp1AqlS+MtV69euK7776Tlh0cHERISIhGm8L9x8fHCyGEOHTokAAg9u/fL7XZsWOHACCysrJK3BcAsWXLliL1WVlZAoD4+uuvhRBCREZGCi8vL4028+bNEw4ODtKynZ2dmDRp0gv39eOPP4revXsLd3d38eeff5bY9p/8/f3FiBEjitQbGhqKdevWadQtXrxYVK9eXVp2cHAQ8+bNE+PGjRO2trbi4sWLRfpu0aKFtJyXlyfMzMxEnz59pLqUlBQBQBw/frzY+CIjIwWAIiXt2Tx7LCwsLCwsLG9SIaJyS0tLEwBEWlpauft4q0ZAq1Wrho4dOyImJgbR0dHo2LEjrK2ti7S7du0aevXqhTp16kChUEi3mv5zZPL50TtbW1sAwN27dwEACQkJaNq0qUZ7Pz8/jeWMjAyMGTMG7u7usLS0hLm5ORISEorsx9fXt1TH96J4ykIIAeDZJEWlcffuXfz1118ao4rF+fTTT3HixAn8+uuvqFGjRpnjKq+5c+dixYoVOHr0KOrVq1dk/fPnTV9fH1WrVoWnp6dUZ2NjA6Dkczlx4kSkpaVJ5datWxV8BERERERElcNblYACz27DjYmJwerVq0u8RbVz58548OABVqxYgRMnTuDEiRMAnk0A9DxDQ0Pp34XJ2j9v032RMWPGYMuWLZg5cyaOHDkCtVoNT0/PIvsxMzMrVX+vGk+hhIQEAEDt2rUBAHp6elJSWig3N1f6t4mJSan6bdeuHW7fvo09e/aUOabiqFQq3LlzR6Puzp07UKlUGnUtW7ZEfn4+Nm3aVGw/z5834Nm5K8u5lMvlUCgUGoWIiIiIiIp66xLQ4OBg5OTkIDc3F0FBQUXW379/H1euXMHkyZPRtm1buLu7S5PxlIW7u7uUuBb67bffNJbj4uIQHh6Orl27wtPTEyqVCklJSWXeV0WbP38+FAqF9HxltWrVkJqaqpGEPv8OUgsLCzg6OkoT+5Tkvffew7p16zBw4EBs2LDhleP08/Mrss99+/YVGWlu0qQJdu3ahZkzZ2LOnDmvvF8iIiIiIiqfV3+Px7+Mvr6+NMKnr69fZH2VKlVQtWpVLF++HLa2tkhOTsaECRPKvJ/hw4ejefPmmDNnDrp06YI9e/Zg9+7dGm1cXFywefNmdO7cGTKZDJ9//nm5RixfxaNHj5Camors7GxcvXoVy5Ytw9atW/HDDz/A0tISwLOZYu/du4fZs2ejW7du2L17N3bt2qUx0jd16lR8/PHHqF69Otq3b4/Hjx8jLi4Ow4YN09hf165dsWbNGvTp0wcGBgbo1q1bibEVJrkZGRm4d+8e1Go1jIyM4OHhAQAYMWIE/P39MXfuXHTs2BEbNmzA6dOnsXz58iJ9NWvWDDt37kT79u1hYGBQ4ntFiYiIiIjo9XnrElAAL7xFUk9PDxs2bMDw4cNRv359uLm5YeHChQgICCjTPt555x2sWLECkZGRmDJlCgIDAzF58mRMnz5davPtt9+if//+aNasGaytrTF+/Hitz6BaOAuwsbExatSogRYtWuDkyZNo2LCh1Mbd3R3ff/89Zs6cienTp+ODDz7AmDFjNBK9sLAwPH36FPPmzcOYMWNgbW1dYnLZrVs3FBQUoE+fPtDT08P7779fbLvnX49z5swZrFu3Dg4ODtIocbNmzbBu3TpMnjwZn332GVxcXLB161bUr1+/2P5atGiBHTt2oEOHDtDX1y+SHFc0JdIA8HZcIiKiN0rpprjQiX888URUKcnEPx/uI6JXkp6e/n/vLmUCSkRERKXHb+X0piv8npuWllbueU/eumdAiYiIiIiISDeYgBIREREREZFWMAElIiIiIiIirWACSkRERERERFrBBJSIiIiIiIi0ggkoERERERERaQUTUCIiIiIiItIKJqBERERERESkFQa6DoCo0pqgBIx1HQRpg4jkm8OJiIiISoMjoERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVTECJiIiIiIhIKwx0HQBRZZU2MQ0KhULXYRARERERvTE4AkpERERERERawQSUiIiIiIiItIIJKBEREREREWkFE1AiIiIiIiLSCiagREREREREpBVMQImIiIiIiEgrmIASERERERGRVjABJSIiIiIiIq1gAkpERERERERawQSUiIiIiIiItMJA1wFQ8WQyGbZs2YKQkBBdh/Kv5ujoiJEjR2LkyJHa37lSqf19EhH9Wwih6wiIiEgHKuUIaHh4OGQymVSqVq2K4OBgnD9/Xtehad3PP/+MNm3aoEqVKjAxMYGbmxv69++P+Ph4XYf2QikpKejduzdcXV2hp6dXYgL5448/om7dujA2Noanpyd27typ3UCJiIiIiKjUKmUCCgDBwcFISUlBSkoKDhw4AAMDA3Tq1OmV+szJyamg6LRj/Pjx6NmzJ7y9vbFt2zZcuXIF69atQ506dTBx4kRdh/dC2dnZqFatGiZPngwvL69i2xw7dgy9evXCgAEDEB8fj5CQEISEhODixYtajpaIiIiIiEqj0iagcrkcKpUKKpUK3t7emDBhAm7duoV79+5JbcaPHw9XV1eYmpqiTp06+Pzzz5Gbmyutnzp1Kry9vREVFYXatWvD2NgYwLPbY6OiotC1a1eYmprCxcUF27Ztk7bLz8/HgAEDULt2bWnUccGCBUViXLVqFerVqwe5XA5bW1tERESUeDy3bt1Cjx49YGlpCSsrK3Tp0gVJSUkltv/tt98we/ZsfPvtt/j222/RsmVL1KpVC40aNcLkyZOxa9cujfZLliyBk5MTjIyM4ObmhjVr1misT05ORpcuXWBubg6FQoEePXrgzp070vpz586hdevWsLCwgEKhQKNGjXD69Glp/dGjR9GyZUuYmJjA3t4ew4cPR2ZmZonxOzo6YsGCBejbty+UJdzKumDBAgQHB2Ps2LFwd3fH9OnT0bBhQyxatKjEfqOiomBpaYkDBw4AAAICAjBs2DCMHDkSVapUgY2NDVasWIHMzEz069cPFhYWcHZ2LnK+iIiIiIio7CptAvq8jIwM/Oc//4GzszOqVq0q1VtYWCAmJgaXL1/GggULsGLFCsybN09j2+vXr+Pnn3/G5s2boVarpfpp06ahR48eOH/+PDp06IDQ0FA8ePAAAFBQUICaNWvixx9/xOXLlzFlyhR89tln2LRpk7T9kiVLMHToUAwePBgXLlzAtm3b4OzsXGz8ubm5CAoKgoWFBY4cOYK4uDiYm5sjODi4xFHZ9evXw9zcHEOGDCl2vUwmk/69ZcsWjBgxAqNHj8bFixfx0UcfoV+/fjh06JB0PF26dMGDBw9w+PBh7Nu3Dzdu3EDPnj2lPkJDQ1GzZk2cOnUKZ86cwYQJE2BoaAgASExMRHBwMD744AOcP38eGzduxNGjR1+YcJfG8ePHERgYqFEXFBSE48ePF9t+9uzZmDBhAvbu3Yu2bdtK9atXr4a1tTVOnjyJYcOG4ZNPPkH37t3RrFkznD17Fu+++y769OmDJ0+eFNtvdnY20tPTNQoRERERERVDVEJhYWFCX19fmJmZCTMzMwFA2NraijNnzrxwu2+++UY0atRIWo6MjBSGhobi7t27Gu0AiMmTJ0vLGRkZAoDYtWtXiX0PHTpUfPDBB9KynZ2dmDRpUontAYgtW7YIIYRYs2aNcHNzEwUFBdL67OxsYWJiIvbs2VPs9sHBwaJBgwYadXPnzpXOiZmZmXj06JEQQohmzZqJQYMGabTt3r276NChgxBCiL179wp9fX2RnJwsrb906ZIAIE6ePCmEEMLCwkLExMQUG8uAAQPE4MGDNeqOHDki9PT0RFZWVonnoJC/v78YMWJEkXpDQ0Oxbt06jbrFixeL6tWrS8sODg5i3rx5Yty4ccLW1lZcvHixSN8tWrSQlvPy8oSZmZno06ePVJeSkiIAiOPHjxcbX2RkpABQpKQ9m2KDhYWFhaW4QkRE/zppaWkCgEhLSyt3H5V2BLR169ZQq9VQq9U4efIkgoKC0L59e/zxxx9Sm40bN6J58+ZQqVQwNzfH5MmTkZycrNGPg4MDqlWrVqT/Bg0aSP82MzODQqHA3bt3pbrFixejUaNGqFatGszNzbF8+XKp77t37+Kvv/7SGIV7kXPnzuH69euwsLCAubk5zM3NYWVlhadPnyIxMbHU56R///5Qq9VYtmwZMjMzIYQAACQkJKB58+YabZs3b46EhARpvb29Pezt7aX1Hh4esLS0lNqMGjUKAwcORGBgIGbNmqUR17lz5xATEyPFbm5ujqCgIBQUFODmzZuljr+85s6dixUrVuDo0aOoV69ekfXPf5b6+vqoWrUqPD09pTobGxsA0Ph8nzdx4kSkpaVJ5datWxV8BERERERElUOlTUDNzMzg7OwMZ2dnNG7cGFFRUcjMzMSKFSsAPLt9MzQ0FB06dMD27dsRHx+PSZMmFbml1czMrNj+C28vLSSTyVBQUAAA2LBhA8aMGYMBAwZg7969UKvV6Nevn9S3iYlJmY4lIyMDjRo1khLqwnL16lX07t272G1cXFxw48YNjWdaLS0t4ezsjBo1apRp/6UxdepUXLp0CR07dsTBgwfh4eGBLVu2SPF/9NFHGrGfO3cO165dg5OTU7n3qVKpNJ5DBYA7d+5ApVJp1LVs2RL5+fkat0A/r7jP8vm6wtuVCz/ff5LL5VAoFBqFiIiIiIiKqrQJ6D/JZDLo6ekhKysLwLMZVB0cHDBp0iT4+vrCxcVFY3T0VcTFxaFZs2YYMmQIfHx84OzsrDEiaGFhAUdHR2kinJdp2LAhrl27hurVq0tJdWEpaYKeXr16ISMjA99///1L+3d3d0dcXFyRY/Dw8JDW37p1S2Nk7/Lly3j06JHUBgBcXV3x6aefYu/evXj//fcRHR0txX/58uUisTs7O8PIyKhU56A4fn5+Rc7hvn374Ofnp1HXpEkT7Nq1CzNnzsScOXPKvT8iIiIiIno1BroO4HXJzs5GamoqAODhw4dYtGgRMjIy0LlzZwDPRgiTk5OxYcMGNG7cGDt27JBG7F6Vi4sLfvjhB+zZswe1a9fGmjVrcOrUKdSuXVtqM3XqVHz88ceoXr062rdvj8ePHyMuLg7Dhg0r0l9oaCi++eYbdOnSBV988QVq1qyJP/74A5s3b8a4ceNQs2bNItv4+flh9OjRGD16NP744w+8//77sLe3R0pKClauXCkl5AAwduxY9OjRAz4+PggMDMQvv/yCzZs3Y//+/QCAwMBAeHp6IjQ0FPPnz0deXh6GDBkCf39/+Pr6IisrC2PHjkW3bt1Qu3Zt/Pnnnzh16hQ++OADAM9mG37nnXcQERGBgQMHwszMDJcvX8a+ffteOGNt4aRPGRkZuHfvHtRqNYyMjKSkd8SIEfD398fcuXPRsWNHbNiwAadPn8by5cuL9NWsWTPs3LkT7du3h4GBQYnvFSUiIiIioteo4h5JfXOEhYUJ4H+TwVhYWIjGjRuLn376SaPd2LFjRdWqVYW5ubno2bOnmDdvnlAqldL6yMhI4eXlVaR/4H8TBBVSKpUiOjpaCCHE06dPRXh4uFAqlcLS0lJ88sknYsKECUX6Wrp0qXBzcxOGhobC1tZWDBs2rMR9pKSkiL59+wpra2shl8tFnTp1xKBBg176APDGjRtFQECAUCqVwtDQUNSsWVP07t1b/Pbbbxrtvv/+e1GnTh1haGgoXF1dxQ8//KCx/o8//hDvvfeeMDMzExYWFqJ79+4iNTVVCPFsQqQPP/xQ2NvbCyMjI2FnZyciIiI0Jhg6efKkaNeunTA3NxdmZmaiQYMGYsaMGS+M/fnPsLA4ODhotNm0aZNwdXUVRkZGol69emLHjh0a6wsnISp0+PBhYWZmJhYuXCiEKH6Co39uUxjLPz/zkhQ+nA2k6XyODxYWFpY3uRAR0b9LRUxCJBNCCJ1kvkSVVHp6+v/dGp0GgM+DEhGVhN9AiIj+XQq/56alpZV73pO35hlQIiIiIiIi0i0moERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0goDXQdAVGlNUALGug6CXhcRKXQdAhEREdG/DkdAiYiIiIiISCuYgBIREREREZFWMAElIiIiIiIirWACSkRERERERFrBBJSIiIiIiIi0ggkoERERERERaQUTUCIiIiIiItIKJqBERERERESkFUxAiYiIiIiISCuYgBIREREREZFWGOg6AKLKKm1iGhQKha7DICIiIiJ6Y3AElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLTCQNcBEFVaSqWuIyAiojeNELqOgIhIpzgC+haKiYmBpaWlVvcZHh6OkJAQre4TAKZOnQpvb2+t75eIiIiIiIpiAvqGSU1NxYgRI+Ds7AxjY2PY2NigefPmWLJkCZ48eaLr8LRqxowZaNasGUxNTUtMmJOTk9GxY0eYmpqievXqGDt2LPLy8rQbKBERERERlQpvwX2D3LhxA82bN4elpSVmzpwJT09PyOVyXLhwAcuXL0eNGjXw3nvv6TpMrcnJyUH37t3h5+eHlStXFlmfn5+Pjh07QqVS4dixY0hJSUHfvn1haGiImTNn6iBiIiIiIiJ6EY6AvkGGDBkCAwMDnD59Gj169IC7uzvq1KmDLl26YMeOHejcubPUNjk5GV26dIG5uTkUCgV69OiBO3fuSOvPnTuH1q1bw8LCAgqFAo0aNcLp06c19rdnzx64u7vD3NwcwcHBSElJkdadOnUK7dq1g7W1NZRKJfz9/XH27Flp/ZgxY9CpUydpef78+ZDJZNi9e7dU5+zsjKioqGKP9dSpU6hWrRq+/vrrEs/HtGnT8Omnn8LT07PY9Xv37sXly5fxn//8B97e3mjfvj2mT5+OxYsXIycnp9htEhMTUadOHUREREAIId2OvH37dri5ucHU1BTdunXDkydPsHr1ajg6OqJKlSoYPnw48vPzS4yViIiIiIhejgnoG+L+/fvYu3cvhg4dCjMzs2LbyGQyAEBBQQG6dOmCBw8e4PDhw9i3bx9u3LiBnj17Sm1DQ0NRs2ZNnDp1CmfOnMGECRNgaGgorX/y5AnmzJmDNWvW4Ndff0VycjLGjBkjrX/8+DHCwsJw9OhR/Pbbb3BxcUGHDh3w+PFjAIC/vz+OHj0qJWWHDx+GtbU1YmNjAQC3b99GYmIiAgICihzHwYMH0a5dO8yYMQPjx48v9zk7fvw4PD09YWNjI9UFBQUhPT0dly5dKtL+/PnzaNGiBXr37o1FixZJ5/PJkydYuHAhNmzYgN27dyM2NhZdu3bFzp07sXPnTqxZswbLli3DTz/9VGwc2dnZSE9P1yhERERERFQUb8F9Q1y/fh1CCLi5uWnUW1tb4+nTpwCAoUOH4uuvv8aBAwdw4cIF3Lx5E/b29gCAH374AfXq1cOpU6fQuHFjJCcnY+zYsahbty4AwMXFRaPf3NxcLF26FE5OTgCAiIgIfPHFF9L6Nm3aaLRfvnw5LC0tcfjwYXTq1AktW7bE48ePER8fj0aNGuHXX3/F2LFjsXXrVgBAbGwsatSoAWdnZ41+tmzZgr59+yIqKkojYS6P1NRUjeQTgLScmpqqUX/s2DF06tQJkyZNwujRozXW5ebmYsmSJdK56NatG9asWYM7d+7A3NwcHh4eaN26NQ4dOlRszF999RWmTZv2SsdCRERERPQ24AjoG+7kyZNQq9WoV68esrOzAQAJCQmwt7eXkk8A8PDwgKWlJRISEgAAo0aNwsCBAxEYGIhZs2YhMTFRo19TU1Mp4QIAW1tb3L17V1q+c+cOBg0aBBcXFyiVSigUCmRkZCA5ORkAYGlpCS8vL8TGxuLChQswMjLC4MGDER8fj4yMDBw+fBj+/v4a+zxx4gS6d++ONWvWvHLyWRbJyclo164dpkyZUiT5BIqeCxsbGzg6OsLc3Fyj7vnz87yJEyciLS1NKrdu3ar4gyAiIiIiqgSYgL4hnJ2dIZPJcOXKFY36OnXqwNnZGSYmJmXqb+rUqbh06RI6duyIgwcPwsPDA1u2bJHWP387LvDs9l7x3LvJwsLCoFarsWDBAhw7dgxqtRpVq1bVeLYyICAAsbGxUrJpZWUFd3d3HD16tNgE1MnJCXXr1sWqVauQm5tbpuMpjkql0njuFYC0rFKppLpq1aqhSZMmWL9+fbG3xxZ3LoqrKygoKDYOuVwOhUKhUYiIiIiIqCgmoG+IqlWrol27dli0aBEyMzNf2Nbd3R23bt3SGGm7fPkyHj16BA8PD6nO1dUVn376Kfbu3Yv3338f0dHRpY4nLi4Ow4cPR4cOHVCvXj3I5XL8/fffGm0KnwM9cOCA9KxnQEAA1q9fj6tXrxZ5/tPa2hoHDx7E9evX0aNHj1dOQv38/HDhwgWNkcl9+/ZBoVBonAcTExNs374dxsbGCAoKkp5jJSIiIiIi7WIC+gb5/vvvkZeXB19fX2zcuBEJCQm4cuUK/vOf/+D333+Hvr4+ACAwMBCenp4IDQ3F2bNncfLkSfTt2xf+/v7w9fVFVlYWIiIiEBsbiz/++ANxcXE4deoU3N3dSx2Li4sL1qxZg4SEBJw4cQKhoaFFRmFbtWqFx48fY/v27RoJ6Nq1a2FrawtXV9ci/VavXh0HDx7E77//jl69er3wnZ3JyclQq9VITk5Gfn4+1Go11Go1MjIyAADvvvsuPDw80KdPH5w7dw579uzB5MmTMXToUMjlco2+zMzMsGPHDhgYGKB9+/ZSH0REREREpD2chOgN4uTkhPj4eMycORMTJ07En3/+CblcDg8PD4wZMwZDhgwB8Ox20P/+978YNmwYWrVqBT09PQQHB+O7774DAOjr6+P+/fvo27cv7ty5A2tra7z//vtlmihn5cqVGDx4MBo2bAh7e3vMnDlTY5ZcAKhSpQo8PT1x584dabKjVq1aoaCgoMjtt89TqVQ4ePAgAgICEBoainXr1knJ9fOmTJmC1atXS8s+Pj4AgEOHDiEgIAD6+vrYvn07PvnkE/j5+cHMzAxhYWEakyk9z9zcHLt27UJQUBA6duyInTt3lvp8lIcSaQB4Oy4RET1HppvdPveUDRGRTsmE4K8kooqUnp4OpVIJMAElIqI3BL/tEVFFKPyem5aWVu55T3gLLhEREREREWkFE1AiIiIiIiLSCiagREREREREpBVMQImIiIiIiEgrmIASERERERGRVjABJSIiIiIiIq1gAkpERERERERawQSUiIiIiIiItIIJKBEREREREWmFga4DIKq0JigBY10HQRVBRApdh0BERERUKXAElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLTCQNcBEFVWaRPToFAodB0GEREREdEbgyOgREREREREpBVMQImIiIiIiEgrmIASERERERGRVjABJSIiIiIiIq1gAkpERERERERawQSUiIiIiIiItIIJKBEREREREWkFE1AiIiIiIiLSCiagREREREREpBVMQImIiIiIiEgrDHQdwNto6tSp2Lp1K9Rqta5DqfR0eq6VSu3vk4iI3h5C6DoCIqIyq5QjoOHh4ZDJZEVKcHCw1mORyWTYunWrRt2YMWNw4MABrez/+vXr6N+/P2rVqgW5XI4aNWqgbdu2WLt2LfLy8rQSQ3nNmDEDzZo1g6mpKSwtLYttk5ycjI4dO8LU1BTVq1fH2LFj3/jjIiIiIiJ6W1XaEdDg4GBER0dr1Mnlch1Fo8nc3Bzm5uavfT8nT55EYGAg6tWrh8WLF6Nu3boAgNOnT2Px4sWoX78+vLy8Xnsc5ZWTk4Pu3bvDz88PK1euLLI+Pz8fHTt2hEqlwrFjx5CSkoK+ffvC0NAQM2fO1EHERERERET0IpVyBBR4lmyqVCqNUqVKFWn977//jhYtWsDY2BgeHh7Yv3+/xmhlmzZtEBERodHnvXv3YGRkJI1eOjo6Yvr06ejVqxfMzMxQo0YNLF68WGrv6OgIAOjatStkMpm0PHXqVHh7e0vtTp06hXbt2sHa2hpKpRL+/v44e/asxr5lMhmioqLQtWtXmJqawsXFBdu2bSvx+IUQCA8Ph6urK+Li4tC5c2e4uLjAxcUFvXr1wtGjR9GgQQOp/YULF9CmTRuYmJigatWqGDx4MDIyMqT1BQUF+OKLL1CzZk3I5XJ4e3tj9+7d0vqcnBxERETA1tYWxsbGcHBwwFdffSWtf/ToEQYOHIhq1apBoVCgTZs2OHfuXInxA8C0adPw6aefwtPTs9j1e/fuxeXLl/Gf//wH3t7eaN++PaZPn47FixcjJyen2G0SExNRp04dREREQAiBmJgYWFpaYvv27XBzc4OpqSm6deuGJ0+eYPXq1XB0dESVKlUwfPhw5OfnvzBeIiIiIiJ6sUqbgL5Ifn4+QkJCYGpqihMnTmD58uWYNGmSRpuBAwdi3bp1yM7Olur+85//oEaNGmjTpo1U980338DLywvx8fGYMGECRowYgX379gF4llgCQHR0NFJSUqTlf3r8+DHCwsJw9OhR/Pbbb3BxcUGHDh3w+PFjjXbTpk1Djx49cP78eXTo0AGhoaF48OBBsX2q1WokJCRgzJgx0NMr/mOWyWQAgMzMTAQFBaFKlSo4deoUfvzxR+zfv18jAV+wYAHmzp2LOXPm4Pz58wgKCsJ7772Ha9euAQAWLlyIbdu2YdOmTbhy5QrWrl0rJdwA0L17d9y9exe7du3CmTNn0LBhQ7Rt27bE+Evj+PHj8PT0hI2NjVQXFBSE9PR0XLp0qUj78+fPo0WLFujduzcWLVokHf+TJ0+wcOFCbNiwAbt370ZsbCy6du2KnTt3YufOnVizZg2WLVuGn376qdg4srOzkZ6erlGIiIiIiKgYohIKCwsT+vr6wszMTKPMmDFDCCHErl27hIGBgUhJSZG22bdvnwAgtmzZIoQQIisrS1SpUkVs3LhRatOgQQMxdepUadnBwUEEBwdr7Ltnz56iffv20vLzfRaKjIwUXl5eJcafn58vLCwsxC+//KLRz+TJk6XljIwMAUDs2rWr2D42bNggAIizZ89KdXfu3NE4H4sXLxZCCLF8+XJRpUoVkZGRIbXdsWOH0NPTE6mpqUIIIezs7KTzV6hx48ZiyJAhQgghhg0bJtq0aSMKCgqKxHLkyBGhUCjE06dPNeqdnJzEsmXLSjwPhaKjo4VSqSxSP2jQIPHuu+9q1GVmZgoAYufOnUKI/53ruLg4UaVKFTFnzpwifQMQ169fl+o++ugjYWpqKh4/fizVBQUFiY8++qjY+CIjIwWAIiXt2fQQLCwsLCwsr6cQEWlZWlqaACDS0tLK3UelHQFt3bo11Gq1Rvn4448BAFeuXIG9vT1UKpXUvkmTJhrbGxsbo0+fPli1ahUA4OzZs7h48SLCw8M12vn5+RVZTkhIKFOsd+7cwaBBg+Di4gKlUgmFQoGMjAwkJydrtHv+llkzMzMoFArcvXu31PupWrWqdC4sLS2l21QTEhLg5eUFMzMzqW3z5s1RUFCAK1euID09HX/99ReaN2+u0V/z5s2lYw0PD4darYabmxuGDx+OvXv3Su3OnTuHjIwMVK1aVXr+1dzcHDdv3kRiYmLpT1Q5JScno127dpgyZQpGjx5dZL2pqSmcnJykZRsbGzg6Omo8p2tjY1PiuZ44cSLS0tKkcuvWrYo/CCIiIiKiSqDSTkJkZmYGZ2fnV+pj4MCB8Pb2xp9//ono6Gi0adMGDg4OFRTh/4SFheH+/ftYsGABHBwcIJfL4efnV+Q5RkNDQ41lmUyGgoKCYvt0cXEB8CzZ9vHxAQDo6+tL58TAoGI/+oYNG+LmzZvYtWsX9u/fjx49eiAwMBA//fQTMjIyYGtri9jY2CLblTS7bWmoVCqcPHlSo+7OnTvSukLVqlWDnZ0d1q9fj/79+0OhUGhsU9x5Lcu5lsvlb8wEV0REREREb7JKOwL6Im5ubrh165aUrAAo9vlMT09P+Pr6YsWKFVi3bh369+9fpM1vv/1WZNnd3V1aNjQ0fOnkNXFxcRg+fDg6dOiAevXqQS6X4++//y7rYWnw8fFB3bp1MWfOnBITp0Lu7u44d+4cMjMzNWLS09ODm5sbFAoF7OzsEBcXVyRuDw8PaVmhUKBnz55YsWIFNm7ciJ9//hkPHjxAw4YNkZqaCgMDAzg7O2sUa2vrch+jn58fLly4oDEyuW/fPigUCo24TExMsH37dhgbGyMoKKjIs7VERERERKQdlTYBzc7ORmpqqkYpTOratWsHJycnhIWF4fz584iLi8PkyZMB/G9inkIDBw7ErFmzIIRA165di+wnLi4Os2fPxtWrV7F48WL8+OOPGDFihLTe0dERBw4cQGpqKh4+fFhsrC4uLlizZg0SEhJw4sQJhIaGwsTE5JWOXyaTITo6GleuXEHz5s2xbds2XLt2DZcvX8bSpUtx79496OvrAwBCQ0NhbGyMsLAwXLx4EYcOHcKwYcPQp08faYKfsWPH4uuvv8bGjRtx5coVTJgwAWq1WjrWb7/9FuvXr8fvv/+Oq1ev4scff4RKpYKlpSUCAwPh5+eHkJAQ7N27F0lJSTh27BgmTZqE06dPl3gMycnJUKvVSE5ORn5+vnT7cOHsvO+++y48PDzQp08fnDt3Dnv27MHkyZMxdOjQIiOSZmZm2LFjBwwMDNC+fXuNGX6JiIiIiEhLKu6R1DdHWFiYAIpOCuPm5ia1SUhIEM2bNxdGRkaibt264pdffhEAxO7duzX6evz4sTA1NZUm23meg4ODmDZtmujevbswNTUVKpVKLFiwQKPNtm3bhLOzszAwMBAODg5CiKKTEJ09e1b4+voKY2Nj4eLiIn788Ufh4OAg5s2bJ7UBik5mpFQqRXR09AvPxZUrV0RYWJioWbOmMDAwEEqlUrRq1UosW7ZM5ObmSu3Onz8vWrduLYyNjYWVlZUYNGiQxiQ8+fn5YurUqaJGjRrC0NBQeHl5aUyAtHz5cuHt7S3MzMyEQqEQbdu21ZgAKT09XQwbNkzY2dkJQ0NDYW9vL0JDQ0VycnKJsZf0OR46dEhqk5SUJNq3by9MTEyEtbW1GD16tMZx/fNcP378WDRr1ky0atVKZGRkFDvBUXGTRIWFhYkuXbq88FwXKnw4G0jT+fwULCwsLCws2ixEVLlVxCREMiGE0EXi+6aJi4tDixYtcP36dY0JaZKSkuDk5IRTp06hYcOGGts4Ojpi5MiRGDlypJajpTdZeno6lEolgDQAipc1JyIiqjT4rZKociv8npuWllZkXpXSqrSTEL3Mli1bYG5uDhcXF1y/fh0jRoxA8+bNpeQzNzcX9+/fx+TJk/HOO+8UST6JiIiIiIiobN7aBPTx48cYP348kpOTYW1tjcDAQMydO1daHxcXh9atW8PV1RU//fSTDiMlIiIiIiKqHHgLLlEF4y24RET0tuK3SqLKrSJuwa20s+ASERERERHRm4UJKBEREREREWkFE1AiIiIiIiLSCiagREREREREpBVMQImIiIiIiEgrmIASERERERGRVry17wEleu0mKAFjXQfx7yIiOX8/ERERUWXGEVAiIiIiIiLSCiagREREREREpBVMQImIiIiIiEgrmIASERERERGRVjABJSIiIiIiIq1gAkpERERERERawQSUiIiIiIiItIIJKBEREREREWkFE1AiIiIiIiLSCiagREREREREpBUGug6AqLJKm5gGhUKh6zCIiIiIiN4YHAElIiIiIiIirWACSkRERERERFrBBJSIiIiIiIi0ggkoERERERERaQUTUCIiIiIiItIKJqBERERERESkFUxAiYiIiIiISCuYgBIREREREZFWMAElIiIiIiIirTDQdQBElZZSqesIiOjfTghdR0BERFShOAL6CmQyGbZu3QoASEpKgkwmg1qt1mlMFWX58uWwt7eHnp4e5s+fX+H9h4eHIyQkpML7/aeAgACMHDnyte+HiIiIiIhe7q1MQF9H8mNvb4+UlBTUr1+/Qvv9p5iYGMhkMshkMujp6aFmzZro168f7t69W2H7SE9PR0REBMaPH4/bt29j8ODBFdZ3aT19+hTh4eHw9PSEgYFBiZ9XbGwsGjZsCLlcDmdnZ8TExGg1TiIiIiIiKr23MgF9HfT19aFSqWBg8PrvalYoFEhJScGff/6JFStWYNeuXejTp0+F9Z+cnIzc3Fx07NgRtra2MDU1rbC+Sys/Px8mJiYYPnw4AgMDi21z8+ZNdOzYEa1bt4ZarcbIkSMxcOBA7NmzR8vREhERERFRaTABxbPbNIcPH45x48bBysoKKpUKU6dO1Whz7do1tGrVCsbGxvDw8MC+ffs01v/zFtz8/HwMGDAAtWvXhomJCdzc3LBgwQKNbQpHYufMmQNbW1tUrVoVQ4cORW5u7gvjlclkUKlUsLOzQ/v27TF8+HDs378fWVlZAICoqCi4u7vD2NgYdevWxffff6+x/fjx4+Hq6gpTU1PUqVMHn3/+ubTPmJgYeHp6AgDq1KkDmUyGpKQkAMCSJUvg5OQEIyMjuLm5Yc2aNVKfY8aMQadOnaTl+fPnQyaTYffu3VKds7MzoqKiXnhshczMzLBkyRIMGjQIKpWq2DZLly5F7dq1MXfuXLi7uyMiIgLdunXDvHnzSux3x44dUCqVWLt2LYD/fQYzZ86EjY0NLC0t8cUXXyAvLw9jx46FlZUVatasiejo6FLFTUREREREJeMkRP9n9erVGDVqFE6cOIHjx48jPDwczZs3R7t27VBQUID3338fNjY2OHHiBNLS0l76XGFBQQFq1qyJH3/8EVWrVsWxY8cwePBg2NraokePHlK7Q4cOwdbWFocOHcL169fRs2dPeHt7Y9CgQaWO3cTEBAUFBcjLy8PatWsxZcoULFq0CD4+PoiPj8egQYNgZmaGsLAwAICFhQViYmJgZ2eHCxcuYNCgQbCwsMC4cePQs2dP2NvbIzAwECdPnoS9vT2qVauGLVu2YMSIEZg/fz4CAwOxfft29OvXDzVr1kTr1q3h7++PqKgo5OfnQ19fH4cPH4a1tTViY2MRHByM27dvIzExEQEBAeX5eIp1/PjxIqOjQUFBJX4269atw8cff4x169ZpJMsHDx5EzZo18euvvyIuLg4DBgzAsWPH0KpVK5w4cQIbN27ERx99hHbt2qFmzZpF+s3OzkZ2dra0nJ6eXjEHSERERERU2Yi3UFhYmOjSpYu07O/vL1q0aKHRpnHjxmL8+PFCCCH27NkjDAwMxO3bt6X1u3btEgDEli1bhBBC3Lx5UwAQ8fHxJe536NCh4oMPPtCIw8HBQeTl5Ul13bt3Fz179iyxj+joaKFUKqXlq1evCldXV+Hr6yuEEMLJyUmsW7dOY5vp06cLPz+/Evv85ptvRKNGjaTl+Ph4AUDcvHlTqmvWrJkYNGiQxnbdu3cXHTp0EEII8fDhQ6GnpydOnTolCgoKhJWVlfjqq69E06ZNhRBC/Oc//xE1atTQOPbnP4MXKamti4uLmDlzpkbdjh07BADx5MkTIcSzz3bEiBFi0aJFQqlUitjY2CJ9Ozg4iPz8fKnOzc1NtGzZUlrOy8sTZmZmYv369cXGFxkZKQAUKWnP5q9kYWFhKX8hIiJ6g6SlpQkAIi0trdx9cAT0/zRo0EBj2dbWVprYJyEhAfb29rCzs5PW+/n5vbTPxYsXY9WqVUhOTkZWVhZycnLg7e2t0aZevXrQ19fX2O+FCxde2G9aWhrMzc1RUFCAp0+fokWLFoiKikJmZiYSExMxYMAAjRHUvLw8KJ97JcjGjRuxcOFCJCYmIiMjA3l5eVAoFC/cZ0JCQpHJiJo3by7dVmxpaQkvLy/ExsbCyMgIRkZGGDx4MCIjI5GRkYHDhw/D39//hft4XX766SfcvXsXcXFxaNy4cZH19erVg57e/+5Gt7Gx0ZhMSl9fH1WrVi1xoqeJEydi1KhR0nJ6ejrs7e0r8AiIiIiIiCoHJqD/x9DQUGNZJpOhoKCg3P1t2LABY8aMwdy5c+Hn5wcLCwt88803OHHixCvv18LCAmfPnoWenh5sbW1hYmICALhz5w4AYMWKFWjatKnGNoVJ7vHjxxEaGopp06YhKCgISqUSGzZswNy5c8t9rIUCAgIQGxsLuVwOf39/WFlZwd3dHUePHsXhw4cxevToV97H81QqlXTMhe7cuQOFQiGdEwDw8fHB2bNnsWrVKvj6+kImk2lsU9xnUJbPRS6XQy6Xv8qhEBERERG9FZiAloK7uztu3bqFlJQU2NraAgB+++23F24TFxeHZs2aYciQIVJdYmJihcSjp6cHZ2fnIvU2Njaws7PDjRs3EBoaWuy2x44dg4ODAyZNmiTV/fHHHy/dp7u7O+Li4qTnSIFnx+jh4SEt+/v7Y9WqVTAwMEBwcDCAZ0np+vXrcfXq1Qp9/hN4Ngq9c+dOjbp9+/YVGZ12cnLC3LlzERAQAH19fSxatKhC4yAiIiIiotJhAloKgYGBcHV1RVhYGL755hukp6drJHDFcXFxwQ8//IA9e/agdu3aWLNmDU6dOoXatWu/1linTZuG4cOHQ6lUIjg4GNnZ2Th9+jQePnyIUaNGwcXFBcnJydiwYQMaN26MHTt2YMuWLS/td+zYsejRowd8fHwQGBiIX375BZs3b8b+/fulNq1atcLjx4+xfft2zJo1C8CzBLRbt26wtbWFq6trmY7l8uXLyMnJwYMHD/D48WNphuHC25g//vhjLFq0COPGjUP//v1x8OBBbNq0CTt27CjSl6urKw4dOoSAgAAYGBhg/vz5ZYqFiIiIiIheHRPQUtDT08OWLVswYMAANGnSBI6Ojli4cKE0ylecjz76CPHx8ejZsydkMhl69eqFIUOGYNeuXa811oEDB8LU1BTffPMNxo4dCzMzM3h6ekozw7733nv49NNPERERgezsbHTs2BGff/55kdfO/FNISAgWLFiAOXPmYMSIEahduzaio6M1RjWrVKkCT09P3LlzB3Xr1gXwLCktKCgo1/OfHTp00Bid9fHxAQAIIQAAtWvXxo4dO/Dpp59iwYIFqFmzJqKiohAUFFRsf25ubjh48KA0EloRtx2/iBJpAF78bC0R0YsIXQdARERUwWSi8Ns8EVWI9PT0/5v0iQkoEb0a/g9NRERvksLvuWlpaS+dxLQkei9vQkRERERERPTqmIASERERERGRVjABJSIiIiIiIq1gAkpERERERERawQSUiIiIiIiItIIJKBEREREREWkFE1AiIiIiIiLSCiagREREREREpBVMQImIiIiIiEgrDHQdAFGlNUEJGOs6CN0RkULXIRARERHRG4YjoERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVBroOgKiySpuYBoVCoeswiIiIiIjeGBwBJSIiIiIiIq1gAkpERERERERawQSUiIiIiIiItIIJKBEREREREWkFE1AiIiIiIiLSCiagREREREREpBVMQImIiIiIiEgrmIASERERERGRVjABJSIiIiIiIq1gAkpERERERERawQT0DSWTybB169YS1yclJUEmk0GtVmstplcxdepUeHt7a32/MTExsLS01Pp+AQBKJSCTsbC8uBARERG9RZiAvoLw8HDIZDLIZDIYGhqidu3aGDduHJ4+farr0Epl6tSpUvwGBgawtrZGq1atMH/+fGRnZ+s6PCxfvhwBAQFQKBSQyWR49OhRkTYPHjxAaGgoFAoFLC0tMWDAAGRkZGg/WCIiIiIieikmoK8oODgYKSkpuHHjBubNm4dly5YhMjJS12GVWr169ZCSkoLk5GQcOnQI3bt3x1dffYVmzZrh8ePHOo3tyZMnCA4OxmeffVZim9DQUFy6dAn79u3D9u3b8euvv2Lw4MFajJKIiIiIiEqLCegrksvlUKlUsLe3R0hICAIDA7Fv3z5pvaOjI+bPn6+xjbe3N6ZOnSotX7t2Da1atYKxsTE8PDw0ti908uRJ+Pj4wNjYGL6+voiPj5fWCSHg7OyMOXPmaGyjVqshk8lw/fr1EuM3MDCASqWCnZ0dPD09MWzYMBw+fBgXL17E119/LbUr7pZgS0tLxMTESMt//vknevXqBSsrK5iZmcHX1xcnTpwodr+JiYmoU6cOIiIiIIQots3IkSMxYcIEvPPOO8WuT0hIwO7duxEVFYWmTZuiRYsW+O6777Bhwwb89ddfxW5z7949+Pr6omvXrsjOzkZsbCxkMhn27NkDHx8fmJiYoE2bNrh79y527doFd3d3KBQK9O7dG0+ePCnxPBIRERER0csxAa1AFy9exLFjx2BkZFTqbQoKCvD+++/DyMgIJ06cwNKlSzF+/HiNNhkZGejUqRM8PDxw5swZTJ06FWPGjJHWy2Qy9O/fH9HR0RrbRUdHo1WrVnB2di7TcdStWxft27fH5s2bS71NRkYG/P39cfv2bWzbtg3nzp3DuHHjUFBQUKTt+fPn0aJFC/Tu3RuLFi2CrJzPwR0/fhyWlpbw9fWV6gIDA6Gnp1ds4nvr1i20bNkS9evXx08//QS5XC6tmzp1KhYtWoRjx47h1q1b6NGjB+bPn49169Zhx44d2Lt3L7777rti48jOzkZ6erpGISIiIiKiogx0HcC/3fbt22Fubo68vDxkZ2dDT08PixYtKvX2+/fvx++//449e/bAzs4OADBz5ky0b99earNu3ToUFBRg5cqVMDY2Rr169fDnn3/ik08+kdqEh4djypQpOHnyJJo0aYLc3FysW7euyKhoadWtWxd79+4tdft169bh3r17OHXqFKysrACg2MT32LFj6NSpEyZNmoTRo0eXK7ZCqampqF69ukadgYEBrKyskJqaqlF/5coVtGvXDl27dsX8+fOLJL1ffvklmjdvDgAYMGAAJk6cKI3SAkC3bt1w6NChIn8cAICvvvoK06ZNe6VjISIiIiJ6G3AE9BW1bt0aarUaJ06cQFhYGPr164cPPvig1NsnJCTA3t5eSj4BwM/Pr0ibBg0awNjYuMQ2dnZ26NixI1atWgUA+OWXX5CdnY3u3buX57AghCjTyKRarYaPj4+UfBYnOTkZ7dq1w5QpU145+SyLrKwstGzZEu+//z4WLFhQ7HE1aNBA+reNjQ1MTU2l5LOw7u7du8X2P3HiRKSlpUnl1q1bFX8QRERERESVABPQV2RmZgZnZ2d4eXlh1apVOHHiBFauXCmt19PTK/KMY25u7muJZeDAgdiwYQOysrIQHR2Nnj17wtTUtFx9JSQkoHbt2tKyTCZ74XGYmJi8tM9q1aqhSZMmWL9+fYXcpqpSqYokhXl5eXjw4AFUKpVUJ5fLERgYiO3bt+P27dvF9mVoaCj9u3BW4+fJZLJibycu7F+hUGgUIiIiIiIqigloBdLT08Nnn32GyZMnIysrC8CzpCslJUVqk56ejps3b0rL7u7uuHXrlkab3377TaNfd3d3nD9/XuP1Lv9sAwAdOnSAmZkZlixZgt27d6N///7lOo7ff/8du3fv1hjJ/edxXLt2TWNSngYNGkCtVuPBgwcl9mtiYoLt27fD2NgYQUFBrzzLrp+fHx49eoQzZ85IdQcPHkRBQQGaNm0q1enp6WHNmjVo1KgRWrduXeIERURERERE9HoxAa1g3bt3h76+PhYvXgwAaNOmDdasWYMjR47gwoULCAsLg76+vtQ+MDAQrq6uCAsLw7lz53DkyBFMmjRJo8/evXtDJpNh0KBBuHz5Mnbu3Fnss536+voIDw/HxIkT4eLiUuQ23eLk5eUhNTUVf/31Fy5cuIDvvvsO/v7+8Pb2xtixY6V2bdq0waJFixAfH4/Tp0/j448/1hgl7NWrF1QqFUJCQhAXF4cbN27g559/xvHjxzX2Z2Zmhh07dsDAwADt27d/4Ts7U1NToVarpVl8L1y4oJHkuru7Izg4GIMGDcLJkycRFxeHiIgIfPjhhxq3NBeem7Vr18LLywtt2rQp8owoERERERG9fkxAK5iBgQEiIiIwe/ZsZGZmYuLEifD390enTp3QsWNHhISEwMnJSWqvp6eHLVu2ICsrC02aNMHAgQMxY8YMjT7Nzc3xyy+/4MKFC/Dx8cGkSZM0XpHyvAEDBiAnJwf9+vUrVbyXLl2Cra0tatWqhYCAAGzatAkTJ07EkSNHYG5uLrWbO3cu7O3t0bJlS/Tu3RtjxozRuL3XyMgIe/fuRfXq1dGhQwd4enpi1qxZGsn288eza9cuCCHQsWNHZGZmFhvb0qVL4ePjg0GDBgEAWrVqBR8fH2zbtk1qs3btWtStWxdt27ZFhw4d0KJFCyxfvrzY/gwMDLB+/XrUq1dPetXK66REGmQQLCwvLjIUKURERESVlUyU9BJG+lc6cuQI2rZti1u3bsHGxkbX4byV0tPToVQqAaQB4POgVHb8rUxERERvosLvuWlpaeWe94SvYakksrOzce/ePUydOhXdu3dn8klERERERG8c3oJbSaxfvx4ODg549OgRZs+eretwiIiIiIiIiuAtuEQVjLfg0qvib2UiIiJ6E1XELbgcASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVBroOgKjSmqAEjF/vLkQk39dBRERERP8eHAElIiIiIiIirWACSkRERERERFrBBJSIiIiIiIi0ggkoERERERERaQUTUCIiIiIiItIKJqBERERERESkFUxAiYiIiIiISCuYgBIREREREZFWMAElIiIiIiIirWACSkRERERERFphoOsAiCqrtIlpUCgUug6DiIiIiOiNwRFQIiIiIiIi0gomoERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFphYGuAyAiIiIiqih5eXnIycnRdRhE/0pGRkYwMHi9KSITUKLXRanUdQSVnxC6joCIiN4QQggkJyfj77//1nUoRP9q1tbWqFWrFmQy2Wvpv8IT0KSkJNSuXRvx8fHw9vau6O61ztHRESNHjsTIkSMrrM+AgAB4e3tj/vz5FdZnRXmTYyuP8PBwPHr0CFu3btV1KERERPQaFSafNWrUgLm5OfT0+KQZUVkUFBQgIyMDt2/fBgA4ODi8lv2UKQENDw/H6tWrn21oYICaNWuie/fu+OKLL2BsbAwAsLe3R0pKCqytrSs+2rdETEwM+vXrBwCQyWSws7NDu3bt8PXXX6N69eo6ju7VlOUPFMOHD0dcXBwuXrwId3d3qNXqIm3Onz+PoUOH4tSpU6hWrRqGDRuGcePGvZ7giYiI6I2Ul5cnJZ8qlUrX4RD9a5mbmwMAbt++jRo1aryW23HL3GNwcDCio6ORm5uLM2fOICwsDDKZDF9//TUAQF9fnz/4FUChUODKlSsoKCjAuXPn0K9fP/z111/Ys2dPufrLzc2FoaFhBUf5+vXv3x8nTpzA+fPni6xLT0/Hu+++i8DAQCxduhQXLlxA//79YWlpicGDB+sgWiIiItKFwmc+C788E1H5Ff4c5eTkvJYEtMz3JsjlcqhUKtjb2yMkJASBgYHYt2+ftD4pKQkymUwarYqNjYVMJsOBAwfg6+sLU1NTNGvWDFeuXNHo98svv0T16tVhYWGBgQMHYsKECS8dIQsICMDw4cMxbtw4WFlZQaVSYerUqRptHj16hIEDB6JatWpQKBRo06YNzp07p9Hml19+QePGjWFsbAxra2t07dq1xH1GRUXB0tISBw4cAABcvHgR7du3h7m5OWxsbNCnTx+NZw8yMzPRt29fmJubw9bWFnPnzn3hMRWSyWRQqVSws7ND+/btMXz4cOzfvx9ZWVnYvXs3WrRoAUtLS1StWhWdOnVCYmKitG3hZ7Bx40b4+/vD2NgYa9euxf3799GrVy/UqFEDpqam8PT0xPr1618Yx44dO6BUKrF27VoAwK1bt9CjRw9YWlrCysoKXbp0QVJSUpFz5O7uDmNjY9StWxfff/+9tK527doAAB8fH8hkMgQEBJS474ULF2Lo0KGoU6dOsevXrl2LnJwcrFq1CvXq1cOHH36I4cOH49tvvy2xz8KR0sI/mEydOhXe3t5YtWoVatWqBXNzcwwZMgT5+fmYPXs2VCoVqlevjhkzZrzwPBEREZHu8bZbolf3un+OXqn3ixcv4tixYzAyMnpp20mTJmHu3Lk4ffo0DAwM0L9/f2nd2rVrMWPGDHz99dc4c+YMatWqhSVLlpQqhtWrV8PMzAwnTpzA7Nmz8cUXX2gkxN27d8fdu3exa9cunDlzBg0bNkTbtm3x4MEDAM8SrK5du6JDhw6Ij4/HgQMH0KRJk2L3NXv2bEyYMAF79+5F27Zt8ejRI7Rp0wY+Pj44ffo0du/ejTt37qBHjx7SNmPHjsXhw4fx3//+F3v37kVsbCzOnj1bqmN7nomJCQoKCpCXl4fMzEyMGjUKp0+fxoEDB6Cnp4euXbuioKBAY5sJEyZgxIgRSEhIQFBQEJ4+fYpGjRphx44duHjxIgYPHow+ffrg5MmTxe5z3bp16NWrF9auXYvQ0FDk5uYiKCgIFhYWOHLkCOLi4mBubo7g4GDpL49r167FlClTMGPGDCQkJGDmzJn4/PPPpVu3C/e1f/9+pKSkYPPmzWU+F4WOHz+OVq1aaVx/QUFBuHLlCh4+fFik/cGDB9GuXTvMmDED48ePl+oTExOxa9cu7N69G+vXr8fKlSvRsWNH/Pnnnzh8+DC+/vprTJ48GSdOnCg2juzsbKSnp2sUIiIiIiIqhiiDsLAwoa+vL8zMzIRcLhcAhJ6envjpp5+kNjdv3hQARHx8vBBCiEOHDgkAYv/+/VKbHTt2CAAiKytLCCFE06ZNxdChQzX21bx5c+Hl5fXCePz9/UWLFi006ho3bizGjx8vhBDiyJEjQqFQiKdPn2q0cXJyEsuWLRNCCOHn5ydCQ0NL3IeDg4OYN2+eGDdunLC1tRUXL16U1k2fPl28++67Gu1v3bolAIgrV66Ix48fCyMjI7Fp0yZp/f3794WJiYkYMWJEifuMjo4WSqVSWr569apwdXUVvr6+xba/d++eACAuXLgghPjfZzB//vwS91GoY8eOYvTo0dKyv7+/GDFihFi0aJFQKpUiNjZWWrdmzRrh5uYmCgoKpLrs7GxhYmIi9uzZI4R4dm7XrVunsY/p06cLPz8/jdgKr4/SiIyMLPZaaNeunRg8eLBG3aVLlwQAcfnyZSHEs2u2S5cuYvPmzcLc3Fxs2LChSN+mpqYiPT1dqgsKChKOjo4iPz9fqnNzcxNfffVVifEBKFLSns3RyvI6CxERkRAiMzNTnD59WmRmZuo6FKJ/vRf9PKWlpT37npuWVu7+y3xTb+vWrbFkyRJkZmZi3rx5MDAwwAcffPDS7Ro0aCD929bWFgBw9+5d1KpVC1euXMGQIUM02jdp0gQHDx4EABw5cgTt27eX1i1btgyhoaFF+i3s++7duwCAc+fOISMjA1WrVtVok5WVJd2yqlarMWjQoBfGPnfuXGRmZuL06dMat4OeO3cOhw4dKvZ5g8TERGRlZSEnJwdNmzaV6q2srODm5vbC/QFAWloazM3NUVBQgKdPn6JFixaIiooCAFy7dg1TpkzBiRMn8Pfff0sjn8nJyahfv77Uh6+vr0af+fn5mDlzJjZt2oTbt28jJycH2dnZMDU11Wj3008/4e7du4iLi0Pjxo01jvf69euwsLDQaP/06VMkJiYiMzMTiYmJGDBggMY5zcvLg1KHryQ5ceIEtm/fjp9++gkhISFF1js6Omock42NDfT19TVuP7CxsZGuq3+aOHEiRo0aJS2np6fD3t6+4g6AiIiIyk027fW8SqI4IpKvByN6mTInoGZmZnB2dgYArFq1Cl5eXli5ciUGDBjwwu2enwCn8J0y/7xltCS+vr4aM6Da2NgU229h34X9ZmRkwNbWFrGxsUX6tLS0BPDs1taXadmyJXbs2IFNmzZhwoQJUn1GRgY6d+4sPU/4PFtbW1y/fv2lfZfEwsICZ8+ehZ6eHmxtbTXi7Ny5MxwcHLBixQrY2dmhoKAA9evXL/LSZTMzM43lb775BgsWLMD8+fPh6ekJMzMzjBw5ssh2Pj4+OHv2LFatWgVfX1/p88rIyECjRo2k50GfV61aNWRkZAAAVqxYoZF0A88mp6poKpUKd+7c0agrXH5+IiwnJydUrVoVq1atQseOHYtcM8VdQy+6rv5JLpdDLpeX+ziIiIjo7Xbr1i1ERkZi9+7d+Pvvv2Fra4uQkBBMmTKlyEAKvdjz765UKBSoX78+pk+fjjZt2ugwqpeLiYnByJEj8ejRI12H8tq90jOgenp6+OyzzzB58mRkZWWVux83NzecOnVKo+75ZRMTEzg7O0vlnyNwJWnYsCFSU1NhYGCgsb2zs7P0mpgGDRpIEwqVpEmTJti1axdmzpyJOXPmaPR/6dIlODo6FunfzMwMTk5OMDQ01Hh28OHDh7h69epLY9fT04OzszPq1KmjkXzev38fV65cweTJk9G2bVu4u7sX+7xjceLi4tClSxf8v//3/+Dl5YU6deoUG4uTkxMOHTqE//73vxg2bJjG8V67dg3Vq1cvcrxKpRI2Njaws7PDjRs3iqwvnHyo8HnN/Pz8UsX8In5+fvj111+Rm5sr1e3btw9ubm6oUqWKVGdtbY2DBw/i+vXr6NGjh0Z7IiIiIl26ceMGfH19ce3aNaxfvx7Xr1/H0qVLceDAAfj5+UnzlujCPwcpgGff4Uo7iKQr0dHRSElJQVxcHKytrdGpUyfcuHGjXH0Vdw7o1bzyFEfdu3eHvr4+Fi9eXO4+hg0bhpUrV2L16tW4du0avvzyS5w/f17jLxjlERgYCD8/P4SEhGDv3r1ISkrCsWPHMGnSJJw+fRoAEBkZifXr1yMyMhIJCQm4cOFCsSOazZo1w86dOzFt2jTMnz8fADB06FA8ePAAvXr1wqlTp5CYmIg9e/agX79+yM/Ph7m5OQYMGICxY8fi4MGDuHjxIsLDw19pZqkqVaqgatWqWL58Oa5fv46DBw9q3P75Ii4uLti3bx+OHTuGhIQEfPTRR0VGEAu5urri0KFD+PnnnzFy5EgAQGhoKKytrdGlSxccOXIEN2/eRGxsLIYPH44///wTADBt2jR89dVXWLhwIa5evYoLFy4gOjpampm2evXqMDExkSZsSktLKzHe69evQ61WIzU1FVlZWVCr1VCr1dIvgt69e8PIyAgDBgzApUuXsHHjRixYsKDY81G9enUcPHgQv//+O3r16oW8vLxSnTMiIiKi12no0KEwMjLC3r174e/vj1q1aqF9+/bYv38/bt++jUmTJklts7OzMX78eNjb20Mul8PZ2RkrV66U1l+6dAmdOnWCQqGAhYUFWrZsKT12FhAQIH2nKxQSEoLw8HBp2dHREdOnT0ffvn2hUCgwePBgxMTEwNLSEtu2bYOHhwfkcjmSk5ORnZ2NMWPGoEaNGjAzM0PTpk017jos3G7Pnj1wd3eXJq5MSUnRiKHwbQZyuRy2traIiIiQ1pXmbRbFsbS0hEqlQv369bFkyRJkZWVJk5S+7A0WAQEBiIiIwMiRI2FtbY2goKCXnlvgxW+BKHxDxebNm9G6dWuYmprCy8sLx48fB/DsrSH9+vVDWloaZDIZZDKZ9GaPNWvWwNfXFxYWFlCpVOjdu3eRx8K2bdsGFxcXGBsbo3Xr1li9ejVkMpnGaOrRo0fRsmVLmJiYwN7eHsOHD0dmZuZLz+Xr8MoJqIGBASIiIjB79uxyH0RoaCgmTpyIMWPGoGHDhrh58ybCw8NhbGz8SrHJZDLs3LkTrVq1Qr9+/eDq6ooPP/wQf/zxh3Qbb0BAAH788Uds27YN3t7eaNOmTYmzwrZo0QI7duzA5MmT8d1338HOzg5xcXHIz8/Hu+++C09PT4wcORKWlpZSkvnNN9+gZcuW6Ny5MwIDA9GiRQs0atSo3Mekp6eHDRs24MyZM6hfvz4+/fRTfPPNN6XadvLkyWjYsCGCgoIQEBAAlUpV7DORhdzc3HDw4EGsX78eo0ePhqmpKX799VfUqlUL77//Ptzd3TFgwAA8ffoUCoUCADBw4EBERUUhOjoanp6e8Pf3R0xMjDQCamBggIULF2LZsmWws7NDly5dStz/wIED4ePjg2XLluHq1avw8fGBj48P/vrrLwCAUqnE3r17cfPmTTRq1AijR4/GlClTSnwHqEqlwsGDB3HhwgWEhoZWyCjsiyiRBhlEpShvwHRDxRciIqJ/sQcPHmDPnj0YMmRIkcfCVCoVQkNDsXHjRoj/+z+vb9++WL9+PRYuXIiEhAQsW7ZMmovk9u3baNWqFeRyOQ4ePIgzZ86gf//+Zf6j+5w5c+Dl5YX4+Hh8/vnnAIAnT57g66+/RlRUFC5duoTq1asjIiICx48fx4YNG3D+/Hl0794dwcHBuHbtmtTXkydPMGfOHKxZswa//vorkpOTMWbMGGn9kiVLMHToUAwePBgXLlzAtm3bpEf9gJe/zaI0Cs9rTk5Oqd5gATx7y4aRkRHi4uKwdOnSl57bl70FotCkSZMwZswYqNVquLq6SoMizZo1w/z586FQKJCSkoKUlBTpPOXm5mL69Ok4d+4ctm7diqSkJI0/Gty8eRPdunVDSEgIzp07h48++kjjjxbAs7lpgoOD8cEHH+D8+fPYuHEjjh49qpHsa9UrTJD0WgUGBor/9//+n67DICqzwtnBgLQ3IEPjZLNERFT5vWjWTkyF1kpZ/fbbbwKA2LJlS7Hrv/32WwFA3LlzR1y5ckUAEPv27Su27cSJE0Xt2rVFTk5OsesL33TwvC5duoiwsDBp2cHBQYSEhGi0iY6OFgCEWq2W6v744w+hr68vbt++rdG2bdu2YuLEiRrbXb9+XVq/ePFiYWNjIy3b2dmJSZMmFRtvad5mUZznz2dmZqYYMmSI0NfXF+fOnXvpGyyEeHaefHx8NNq87NyW9i0QUVFR0vrCNzckJCQIIYq+BaMkp06dEgDE48ePhRBCjB8/XtSvX1+jzaRJkwQA8fDhQyGEEAMGDCjy5ogjR44IPT096a0kz3vjZsF9HZ48eYKlS5ciKCgI+vr6WL9+Pfbv36/xPk8iIiIiospIlOKuHrVaDX19ffj7+5e4vmXLlkUmUiyrf75FAXg2h8fzb564cOEC8vPz4erqqtEuOztbY9IkU1NTODk5ScvPv63i7t27+Ouvv9C2bdti4yjN2yxK0qtXL+jr6yMrKwvVqlXDypUr0aBBA0yfPv2Fb7AoPJ5/3q34onNblrdAlPRWkLp165Z4LGfOnMHUqVNx7tw5PHz4UOPtFx4eHrhy5YrGWyuAZ/PXPO/cuXM4f/68xkSiQggUFBTg5s2bcHd3L3H/r8MbkYAW3io7Y8YMPH36FG5ubvj5558RGBio69CIiIiIiF4LZ2dnyGQyJCQkoGvXrkXWJyQkoEqVKqhWrdpL39zwsvV6enpFEt3iJmb851sUCvt+fm6WjIwM6Ovr48yZM0XedPB8clfcWwUKY3hZvKV5m0VJ5s2bh8DAQCiVSlSrVk2jzxe9waLQP8/Bi2Ity1sgyvpWkMzMTAQFBSEoKAhr165FtWrVkJycjKCgoDJNjpSRkYGPPvoIw4cPL7KuVq1ape6norwRCaiJiQn279+v6zCIiIiIiLSmatWqaNeuHb7//nt8+umnGolOamoq1q5di759+0Imk8HT0xMFBQU4fPhwsYM0DRo0wOrVq5Gbm1vsSF21atU0JgDKz8/HxYsX0bp16zLH7ePjg/z8fNy9exctW7Ys8/bAs1cOOjo64sCBA8XG8PzbLBwdHcvUt0ql0niW9Pk+f/75Zzg6OsLAoPRp0IvO7fNvgQgNDS1TnM8zMjIqMj/J77//jvv372PWrFnSO+YLJ1It5Obmhp07d2rU/fPtIg0bNsTly5eLPSe68MqTEBERERERUfksWrQI2dnZCAoKwq+//opbt25h9+7daNeuHWrUqIEZM2YAeDZDbVhYGPr374+tW7dKbyPYtGkTACAiIgLp6en48MMPcfr0aVy7dg1r1qzBlStXAABt2rTBjh07sGPHDvz+++/45JNPyv3OSVdXV4SGhqJv377YvHkzbt68iZMnT+Krr77Cjh07St3P1KlTMXfuXCxcuBDXrl3D2bNn8d133wEo3dssyuplb7AoycvO7cveAlEajo6OyMjIwIEDB/D333/jyZMnqFWrFoyMjPDdd9/hxo0b2LZtG6ZPn66x3UcffYTff/8d48ePx9WrV7Fp0ybExMQA+N8o6/jx43Hs2DFERERArVbj2rVr+O9//8tJiIgqC05CREREpF0vmjTl3yApKUmEhYUJGxsbYWhoKOzt7cWwYcPE33//rdEuKytLfPrpp8LW1lYYGRkJZ2dnsWrVKmn9uXPnxLvvvitMTU2FhYWFaNmypUhMTBRCCJGTkyM++eQTYWVlJapXry6++uqrYichmjdvnsY+S5ocJycnR0yZMkU4OjoKQ0NDYWtrK7p27SrOnz9f4nZbtmwR/0w/li5dKtzc3KQ+hg0bJq1LT08Xw4YNE3Z2dtJ5CQ0NFcnJySWeS7xgUichhLh69aro2rWrsLS0FCYmJqJu3bpi5MiRoqCgQAhR/GRNQrz43AohxNq1a4W3t7cwMjISVapUEa1atRKbN28WQvxvEqL4+Hip/cOHDwUAcejQIanu448/FlWrVhUARGRkpBBCiHXr1glHR0chl8uFn5+f2LZtW5G+/vvf/wpnZ2chl8tFQECAWLJkiQCgMcHQyZMnRbt27YS5ubkwMzMTDRo0EDNmzCj2HL3uSYhkQvBdBkQVKT09/f8eOk8DoNB1OBWCvyWIiOhN9uTJEyQkJMDd3R2mpqa6DodIp2bMmIGlS5fi1q1b5dr+RT9Phd9z09LSpNcwltUb8QwoERERERERld3333+Pxo0bo2rVqoiLi8M333yju9trS4EJKBERERER0b/UtWvX8OWXX+LBgweoVasWRo8ejYkTJ+o6rBIxASUiIiIiIvqXmjdvHubNm6frMEqNCSjR6zJBCRi/vu5FJB/MJCIiIqJ/F76GhYiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVTECJiIiIiIhIKzgLLhERERFVWjKZ9vYlOEE90UtxBJSIiIiISEfCw8Mhk8mKlOvXr+PXX39F586dYWdnB5lMhq1bt5aqz3PnzuG9995D9erVYWxsDEdHR/Ts2RN37959vQdDVApMQImIiIiIdCg4OBgpKSkapXbt2sjMzISXlxcWL15c6r7u3buHtm3bwsrKCnv27EFCQgKio6NhZ2eHzMzM13YMubm5r61vqlyYgBIRERER6ZBcLodKpdIo+vr6aN++Pb788kt07dq11H3FxcUhLS0NUVFR8PHxQe3atdG6dWvMmzcPtWvXltpdunQJnTp1gkKhgIWFBVq2bInExEQAQEFBAb744gvUrFkTcrkc3t7e2L17t7RtUlISZDIZNm7cCH9/fxgbG2Pt2rUAgKioKLi7u8PY2Bh169bF999/X0FniSoLPgNK9JqkTUyDQqHQdRhERET0FlGpVMjLy8OWLVvQrVs3yIp5CPb27dto1aoVAgICcPDgQSgUCsTFxSEvLw8AsGDBAsydOxfLli2Dj48PVq1ahffeew+XLl2Ci4uL1M+ECRMwd+5c+Pj4SEnolClTsGjRIvj4+CA+Ph6DBg2CmZkZwsLCtHYO6M3GBJSIiIiISIe2b98Oc3Nzabl9+/b48ccfy9XXO++8g88++wy9e/fGxx9/jCZNmqBNmzbo27cvbGxsAACLFy+GUqnEhg0bYGhoCABwdXWV+pgzZw7Gjx+PDz/8EADw9ddf49ChQ5g/f77G7cAjR47E+++/Ly1HRkZi7ty5Ul3t2rVx+fJlLFu2jAkoSXgLLhERERGRDrVu3RpqtVoqCxcuLNV2M2fOhLm5uVSSk5MBADNmzEBqaiqWLl2KevXqYenSpahbty4uXLgAAFCr1WjZsqWUfD4vPT0df/31F5o3b65R37x5cyQkJGjU+fr6Sv/OzMxEYmIiBgwYoBHTl19+Kd3aSwRwBJSIiIiISKfMzMzg7Oxc5u0+/vhj9OjRQ1q2s7OT/l21alV0794d3bt3x8yZM+Hj44M5c+Zg9erVMDExqbC4C2VkZAAAVqxYgaZNm2q009fXr5D9UeXABJSIiIiI6F/IysoKVlZWL21nZGQEJycnaRbcBg0aYPXq1cjNzS0yCqpQKGBnZ4e4uDj4+/tL9XFxcWjSpEmJ+7CxsYGdnR1u3LiB0NDQch4RvQ2YgBIRERERvYEyMjJw/fp1afnmzZtQq9WwsrJCrVq1it1m+/bt2LBhAz788EO4urpCCIFffvkFO3fuRHR0NAAgIiIC3333HT788ENMnDgRSqUSv/32G5o0aQI3NzeMHTsWkZGRcHJygre3N6Kjo6FWq6WZbksybdo0DB8+HEqlEsHBwcjOzsbp06fx8OFDjBo1quJODP2rMQElIiIiokpLCF1HUH6nT59G69atpeXCJC4sLAwxMTHFbuPh4QFTU1OMHj0at27dglwuh4uLC6KiotCnTx8Az27PPXjwIMaOHQt/f3/o6+vD29tbeu5z+PDhSEtLw+jRo3H37l14eHhg27ZtGjPgFmfgwIEwNTXFN998g7Fjx8LMzAyenp4YOXLkq58MqjRkQvybfyyJ3jzp6elQKpVIS+NrWIiIiLThyZMnSEhIgLu7O0xNTXUdDtG/2ot+niriey5nwSUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoERERERERKQVTECJiIiIiIhIK5iAEhERERERkVYwASUiIiIiIiKtYAJKRERERJWXTKa9QuV2//59VK9eHUlJSboOpdyWLl2Kzp076zqMNx4TUCIiIiIiHQkPD4dMJitSrl+/DgD49ddf0blzZ9jZ2UEmk2Hr1q2l6vfcuXN47733UL16dRgbG8PR0RE9e/bE3bt3X+PRlN+MGTPQpUsXODo6SnVbtmzBO++8A6VSCQsLC9SrVw8jR4587bFMnToV3t7eZd6uf//+OHv2LI4cOVLxQVUiTECJiIiIiHQoODgYKSkpGqV27doAgMzMTHh5eWHx4sWl7u/evXto27YtrKyssGfPHiQkJCA6Ohp2dnbIzMx8XYeB3Nzccm335MkTrFy5EgMGDJDqDhw4gJ49e+KDDz7AyZMncebMGcyYMaPc+9AGIyMj9O7dGwsXLtR1KG80JqBERERERDokl8uhUqk0ir6+PgCgffv2+PLLL9G1a9dS9xcXF4e0tDRERUXBx8cHtWvXRuvWrTFv3jwpsQWAS5cuoVOnTlAoFLCwsEDLli2RmJgIACgoKMAXX3yBmjVrQi6Xw9vbG7t375a2TUpKgkwmw8aNG+Hv7w9jY2OsXbsWABAVFQV3d3cYGxujbt26+P77718Y786dOyGXy/HOO+9Idb/88guaN2+OsWPHws3NDa6urggJCdFIxAtHKletWoVatWrB3NwcQ4YMQX5+PmbPng2VSoXq1atjxowZGvtLTk5Gly5dYG5uDoVCgR49euDOnTsAgJiYGEybNg3nzp2TRqNjYmIAAI8ePcLAgQNRrVo1KBQKtGnTBufOndPou3Pnzti2bRuysrJK+3G9dZiAEhERERFVIiqVCnl5ediyZQuEEMW2uX37Nlq1agW5XI6DBw/izJkz6N+/P/Ly8gAACxYswNy5czFnzhycP38eQUFBeO+993Dt2jWNfiZMmIARI0YgISEBQUFBWLt2LaZMmYIZM2YgISEBM2fOxOeff47Vq1eXGO+RI0fQqFGjIsdw6dIlXLx48YXHmpiYiF27dmH37t1Yv349Vq5ciY4dO+LPP//E4cOH8fXXX2Py5Mk4ceIEgGeJdZcuXfDgwQMcPnwY+/btw40bN9CzZ08AQM+ePTF69GjUq1dPGo0uXNe9e3fcvXsXu3btwpkzZ9CwYUO0bdsWDx48kOLx9fVFXl6etD8qhiCiCpWWliYAiLS0NF2HQkRE9FbIzMwUp0+fFpmZmUVXAtor5RAWFib09fWFmZmZVLp161ZsWwBiy5Ytper3s88+EwYGBsLKykoEBweL2bNni9TUVGn9xIkTRe3atUVOTk6x29vZ2YkZM2Zo1DVu3FgMGTJECCHEzZs3BQAxf/58jTZOTk5i3bp1GnXTp08Xfn5+JcbapUsX0b9/f426jIwM0aFDBwFAODg4iJ49e4qVK1eKp0+fSm0iIyOFqampSE9Pl+qCgoKEo6OjyM/Pl+rc3NzEV199JYQQYu/evUJfX18kJydL6y9duiQAiJMnT0r9enl5acRz5MgRoVAoNPZfeLzLli3TqKtSpYqIiYkp8XjfdC/6eaqI77kcASUiIiIi0qHWrVtDrVZLpSzPEM6cORPm5uZSSU5OBvBsUp/U1FQsXboU9erVw9KlS1G3bl1cuHABAKBWq9GyZUsYGhoW6TM9PR1//fUXmjdvrlHfvHlzJCQkaNT5+vpK/87MzERiYiIGDBigEdOXX34p3dpbnKysLBgbG2vUmZmZYceOHbh+/TomT54Mc3NzjB49Gk2aNMGTJ0+kdo6OjrCwsJCWbWxs4OHhAT09PY26wsmXEhISYG9vD3t7e2m9h4cHLC0tixzb886dO4eMjAxUrVpV49hu3rxZ5NhMTEw0YiRNBroOgIiIiIjobWZmZgZnZ+dybfvxxx+jR48e0rKdnZ3076pVq6J79+7o3r07Zs6cCR8fH8yZMwerV6+GiYnJK8cNPIu9UEZGBgBgxYoVaNq0qUa7wmdai2NtbY2HDx8Wu87JyQlOTk4YOHAgJk2aBFdXV2zcuBH9+vUDgCIJtEwmK7auoKCg9AdVjIyMDNja2iI2NrbIOktLS43lBw8eoFq1aq+0v8qMCSgRERER0b+UlZUVrKysXtrOyMgITk5O0iy4DRo0wOrVq5Gbm1skYVMoFLCzs0NcXBz8/f2l+ri4ODRp0qTEfdjY2MDOzg43btxAaGhoqY/Bx8cH//nPf17aztHREaampq80k6+7uztu3bqFW7duSaOgly9fxqNHj+Dh4QHg2bnKz8/X2K5hw4ZITU2FgYGBxqti/ikxMRFPnz6Fj49PuWOs7JiAEhERERG9oTIyMqR3ggLAzZs3oVarYWVlhVq1ahW7zfbt27FhwwZ8+OGHcHV1hRACv/zyC3bu3Ino6GgAQEREBL777jt8+OGHmDhxIpRKJX777Tc0adIEbm5uGDt2LCIjI+Hk5ARvb29ER0dDrVZLM92WZNq0aRg+fDiUSiWCg4ORnZ2N06dP4+HDhxg1alSx2wQFBWHixIl4+PAhqlSpAuDZDLdPnjxBhw4d4ODggEePHmHhwoXIzc1Fu3btynMqAQCBgYHw9PREaGgo5s+fj7y8PAwZMgT+/v7S7cSOjo7Sea5ZsyYsLCwQGBgIPz8/hISEYPbs2XB1dcVff/2FHTt2oGvXrtK2R44cQZ06deDk5FTuGCs7PgNKRERERJWXNqcheg1Onz4NHx8faURt1KhR8PHxwZQpU0rcxsPDA6amphg9ejS8vb3xzjvvYNOmTYiKikKfPn0APLs99+DBg8jIyIC/vz8aNWqEFStWSKOhw4cPx6hRozB69Gh4enpi9+7d2LZtG1xcXF4Y78CBAxEVFYXo6Gh4enrC398fMTExGq9/+SdPT080bNgQmzZtkur8/f1x48YN9O3bF3Xr1kX79u2RmpqKvXv3ws3NrdTn759kMhn++9//okqVKmjVqhUCAwNRp04dbNy4UWrzwQcfIDg4GK1bt0a1atWwfv16yGQy7Ny5E61atUK/fv3g6uqKDz/8EH/88QdsbGykbdevX49BgwaVO763gUyI1/TTQvSWSk9Ph1KpRFpaGhQKha7DISIiqvSePHmChIQEuLu7w9TUVNfhUDns2LEDY8eOxcWLFzUmEPo3uXTpEtq0aYOrV69CqVTqOpxye9HPU0V8z+UtuEREREREpFMdO3bEtWvXcPv2bY0Zav9NUlJS8MMPP/yrk09tYAJKREREREQ6N3LkSF2H8EoCAwN1HcK/wr9zfJuIiIiIiIj+dZiAEhERERERkVYwASUiIiKiSqGgoEDXIRD96xX+HMlkstfSP58BJSIiIqJ/NWNjY+jp6eHmzZuoUaMG5HL5a/vyTFRZCSGQnZ2N27dvQ09PD3K5/LXshwkoEREREf2r6enpwcPDA0lJSbh586auwyH6VzM3N4erq+trex0OE1AiIiIi+teTy+VwdXVFbm4u8vLydB0O0b+SgYEBDA0NX+sdBExAiYiIiKhSkMlkMDIygpGRka5DIaIScBIiIiIiIiIi0gomoERERERERKQVTECJiIiIiIhIK/gMKFEFE0IAANLT03UcCRERERFRxSn8flv4fbc8mIASVbD79+8DAOzt7XUcCRERERFRxXv8+DGUSmW5tmUCSlTBrKysAADJycnl/sGkt0N6ejrs7e1x69YtKBQKXYdDbzBeK1QavE6otHitUGkUd50IIfD48WPY2dmVu18moEQVrPClvUqlkr/UqVQUCgWvFSoVXitUGrxOqLR4rVBp/PM6edUBFk5CRERERERERFrBBJSIiIiIiIi0ggkoUQWTy+WIjIyEXC7XdSj0huO1QqXFa4VKg9cJlRavFSqN13WdyMSrzKFLREREREREVEocASUiIiIiIiKtYAJKREREREREWsEElIiIiIiIiLSCCSgRERERERFpBRNQIiIiIiIi0gomoETlsHjxYjg6OsLY2BhNmzbFyZMnX9j+xx9/RN26dWFsbAxPT0/s3LlTS5GSrpXlWlmxYgVatmyJKlWqoEqVKggMDHzptUWVR1l/rxTasGEDZDIZQkJCXm+A9EYo63Xy6NEjDB06FLa2tpDL5XB1deX/QW+Jsl4r8+fPh5ubG0xMTGBvb49PP/0UT58+1VK0pAu//vorOnfuDDs7O8hkMmzduvWl28TGxqJhw4aQy+VwdnZGTExMmffLBJSojDZu3IhRo0YhMjISZ8+ehZeXF4KCgnD37t1i2x87dgy9evXCgAEDEB8fj5CQEISEhODixYtajpy0razXSmxsLHr16oVDhw7h+PHjsLe3x7vvvovbt29rOXLStrJeK4WSkpIwZswYtGzZUkuRki6V9TrJyclBu3btkJSUhJ9++glXrlzBihUrUKNGDS1HTtpW1mtl3bp1mDBhAiIjI5GQkICVK1di48aN+Oyzz7QcOWlTZmYmvLy8sHjx4lK1v3nzJjp27IjWrVtDrVZj5MiRGDhwIPbs2VO2HQsiKpMmTZqIoUOHSsv5+fnCzs5OfPXVV8W279Gjh+jYsaNGXdOmTcVHH330WuMk3SvrtfJPeXl5wsLCQqxevfp1hUhviPJcK3l5eaJZs2YiKipKhIWFiS5dumghUtKlsl4nS5YsEXXq1BE5OTnaCpHeEGW9VoYOHSratGmjUTdq1CjRvHnz1xonvTkAiC1btrywzbhx40S9evU06nr27CmCgoLKtC+OgBKVQU5ODs6cOYPAwECpTk9PD4GBgTh+/Hix2xw/flyjPQAEBQWV2J4qh/JcK//05MkT5ObmwsrK6nWFSW+A8l4rX3zxBapXr44BAwZoI0zSsfJcJ9u2bYOfnx+GDh0KGxsb1K9fHzNnzkR+fr62wiYdKM+10qxZM5w5c0a6TffGjRvYuXMnOnTooJWY6d+hor7TGlRkUESV3d9//438/HzY2Nho1NvY2OD3338vdpvU1NRi26empr62OEn3ynOt/NP48eNhZ2dX5Jc9VS7luVaOHj2KlStXQq1WayFCehOU5zq5ceMGDh48iNDQUOzcuRPXr1/HkCFDkJubi8jISG2ETTpQnmuld+/e+Pvvv9GiRQsIIZCXl4ePP/6Yt+CShpK+06anpyMrKwsmJial6ocjoEREb6BZs2Zhw4YN2LJlC4yNjXUdDr1BHj9+jD59+mDFihWwtrbWdTj0BisoKED16tWxfPlyNGrUCD179sSkSZOwdOlSXYdGb5jY2FjMnDkT33//Pc6ePYvNmzdjx44dmD59uq5Do0qII6BEZWBtbQ19fX3cuXNHo/7OnTtQqVTFbqNSqcrUniqH8lwrhebMmYNZs2Zh//79aNCgwesMk94AZb1WEhMTkZSUhM6dO0t1BQUFAAADAwNcuXIFTk5Orzdo0rry/E6xtbWFoaEh9PX1pTp3d3ekpqYiJycHRkZGrzVm0o3yXCuff/45+vTpg4EDBwIAPD09kZmZicGDB2PSpEnQ0+OYFZX8nVahUJR69BPgCChRmRgZGaFRo0Y4cOCAVFdQUIADBw7Az8+v2G38/Pw02gPAvn37SmxPlUN5rhUAmD17NqZPn47du3fD19dXG6GSjpX1Wqlbty4uXLgAtVotlffee0+aldDe3l6b4ZOWlOd3SvPmzXH9+nXpDxQAcPXqVdja2jL5rMTKc608efKkSJJZ+IeLZ/PTEFXgd9qyzY9ERBs2bBByuVzExMSIy5cvi8GDBwtLS0uRmpoqhBCiT58+YsKECVL7uLg4YWBgIObMmSMSEhJEZGSkMDQ0FBcuXNDVIZCWlPVamTVrljAyMhI//fSTSElJkcrjx491dQikJWW9Vv6Js+C+Hcp6nSQnJwsLCwsREREhrly5IrZv3y6qV68uvvzyS10dAmlJWa+VyMhIYWFhIdavXy9u3Lgh9u7dK5ycnESPHj10dQikBY8fPxbx8fEiPj5eABDffvutiI+PF3/88YcQQogJEyaIPn36SO1v3LghTE1NxdixY0VCQoJYvHix0NfXF7t37y7TfpmAEpXDd999J2rVqiWMjIxEkyZNxG+//Sat8/f3F2FhYRrtN236/+3bMYqDYBCAUbcxuUQQFNKkSWeZo9h7idjkHPbbW9t5HQ8QYbZaWMg2Fjsp9j2wFKcY5P8QP+N8PkdZlnG5XGKapuSJeZc9u1JVVRRF8XLd7/f8wUm3973ykwD9P/buybIs0bZtHA6HqOs6Ho9HbNuWPDXvsGdXns9nDMMQTdPE8XiM0+kUfd/Huq75g5Nmnudfzx3fu9F1Xdxut5d7rtdrlGUZdV3HOI67n/sR4bs6AAAAf88/oAAAAKQQoAAAAKQQoAAAAKQQoAAAAKQQoAAAAKQQoAAAAKQQoAAAAKQQoAAAAKQQoAAAAKQQoAAAAKQQoAAAAKT4ApEg2/mKCMggAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
LabelsPrecisionPrecision (Smote)RecallRecall (Smote)F1F1 (Smote)Occurrence CountPercentage
9Mute Swan 10km0.9516130.9506170.9440000.9240000.9477910.93712020070.751123
10Pheasant 10km0.9470340.9623060.9293140.9022870.9380900.93133019180.717814
1Canada Goose 10km0.9524840.9583330.9649890.9562360.9586960.95728417890.669536
16Rock Dove 10km0.8983450.9090910.9359610.8867000.9167670.89775616200.606287
19Wigeon 10km0.7759560.7704920.9562290.9494950.8567120.85067912670.474177
14Red-legged Partridge 10km0.8742330.8696970.9076430.9140130.8906250.89130412080.452096
7Little Owl 10km0.8694160.8951050.9267400.9377290.8971630.91592110770.403069
5Grey Partridge 10km0.8320900.8364310.9102040.9183670.8693960.87548610020.375000
3Gadwall 10km0.7746480.7446810.7857140.8333330.7801420.7865178300.310629
13Pochard 10km0.7631580.7031960.7795700.8279570.7712770.7604947380.276198
11Pink-footed Goose 10km0.6931220.6733670.6894740.7052630.6912930.6889467300.273204
18Whooper Swan 10km0.6438360.6144580.5280900.5730340.5802470.5930236590.246632
12Pintail 10km0.6458330.6233770.4397160.6808510.5232070.6508475130.191991
8Mandarin Duck 10km0.7388060.7190080.7857140.6904760.7615380.7044534780.178892
0Barnacle Goose 10km0.4488190.4285710.5089290.5357140.4769870.4761904660.174401
4Goshawk 10km0.5564520.5398230.6699030.5922330.6079300.5648154460.166916
2Egyptian Goose 10km0.6117650.5581400.6842110.6315790.6459630.5925933000.112275
6Indian Peafowl 10km0.5365850.5000000.3142860.3285710.3963960.3965522470.092440
17Ruddy Duck 10km0.1875000.1764710.2307690.2307690.2068970.200000970.036302
15Ring-necked Parakeet 10km0.3333330.2857140.0416670.0833330.0740740.129032960.035928
\n", "
" ], "text/plain": [ " Labels Precision Precision (Smote) Recall \\\n", "9 Mute Swan 10km 0.951613 0.950617 0.944000 \n", "10 Pheasant 10km 0.947034 0.962306 0.929314 \n", "1 Canada Goose 10km 0.952484 0.958333 0.964989 \n", "16 Rock Dove 10km 0.898345 0.909091 0.935961 \n", "19 Wigeon 10km 0.775956 0.770492 0.956229 \n", "14 Red-legged Partridge 10km 0.874233 0.869697 0.907643 \n", "7 Little Owl 10km 0.869416 0.895105 0.926740 \n", "5 Grey Partridge 10km 0.832090 0.836431 0.910204 \n", "3 Gadwall 10km 0.774648 0.744681 0.785714 \n", "13 Pochard 10km 0.763158 0.703196 0.779570 \n", "11 Pink-footed Goose 10km 0.693122 0.673367 0.689474 \n", "18 Whooper Swan 10km 0.643836 0.614458 0.528090 \n", "12 Pintail 10km 0.645833 0.623377 0.439716 \n", "8 Mandarin Duck 10km 0.738806 0.719008 0.785714 \n", "0 Barnacle Goose 10km 0.448819 0.428571 0.508929 \n", "4 Goshawk 10km 0.556452 0.539823 0.669903 \n", "2 Egyptian Goose 10km 0.611765 0.558140 0.684211 \n", "6 Indian Peafowl 10km 0.536585 0.500000 0.314286 \n", "17 Ruddy Duck 10km 0.187500 0.176471 0.230769 \n", "15 Ring-necked Parakeet 10km 0.333333 0.285714 0.041667 \n", "\n", " Recall (Smote) F1 F1 (Smote) Occurrence Count Percentage \n", "9 0.924000 0.947791 0.937120 2007 0.751123 \n", "10 0.902287 0.938090 0.931330 1918 0.717814 \n", "1 0.956236 0.958696 0.957284 1789 0.669536 \n", "16 0.886700 0.916767 0.897756 1620 0.606287 \n", "19 0.949495 0.856712 0.850679 1267 0.474177 \n", "14 0.914013 0.890625 0.891304 1208 0.452096 \n", "7 0.937729 0.897163 0.915921 1077 0.403069 \n", "5 0.918367 0.869396 0.875486 1002 0.375000 \n", "3 0.833333 0.780142 0.786517 830 0.310629 \n", "13 0.827957 0.771277 0.760494 738 0.276198 \n", "11 0.705263 0.691293 0.688946 730 0.273204 \n", "18 0.573034 0.580247 0.593023 659 0.246632 \n", "12 0.680851 0.523207 0.650847 513 0.191991 \n", "8 0.690476 0.761538 0.704453 478 0.178892 \n", "0 0.535714 0.476987 0.476190 466 0.174401 \n", "4 0.592233 0.607930 0.564815 446 0.166916 \n", "2 0.631579 0.645963 0.592593 300 0.112275 \n", "6 0.328571 0.396396 0.396552 247 0.092440 \n", "17 0.230769 0.206897 0.200000 97 0.036302 \n", "15 0.083333 0.074074 0.129032 96 0.035928 " ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Create graphs to show off data\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "plt.rcParams['figure.figsize'] = [9, 12]\n", "\n", "occurrence_count, occurrence_percentage = All_bird_occurrences['Occurrence Count'], All_bird_occurrences['Percentage']\n", "precision = []\n", "precision_smote = []\n", "recall = []\n", "recall_smote = []\n", "f1 = []\n", "f1_smote = []\n", "labels = []\n", "for dict in df_dicts:\n", " precision.append(dict['report']['1']['precision'])\n", " precision_smote.append(dict['report_smote']['1']['precision'])\n", " recall.append(dict['report']['1']['recall'])\n", " recall_smote.append(dict['report_smote']['1']['recall'])\n", " f1.append(dict['report']['1']['f1-score'])\n", " f1_smote.append(dict['report_smote']['1']['f1-score'])\n", " labels.append(dict['name'])\n", "\n", "\n", "\n", "scores = pd.DataFrame({'Labels' : labels, \n", " 'Precision': precision, 'Precision (Smote)': precision_smote, \n", " 'Recall': recall, 'Recall (Smote)': recall_smote, \n", " 'F1': f1, 'F1 (Smote)': f1_smote,\n", " 'Occurrence Count' : occurrence_count, 'Percentage' : occurrence_percentage} )\n", " \n", "scores.sort_values('Occurrence Count', inplace=True)\n", "\n", "n=20\n", "r = np.arange(n)\n", "height = 0.25\n", "\n", "plt.barh(r, 'Percentage', data=scores, label='Occurrence Percentage', height = height, color='g')\n", "plt.barh(r+height, 'F1', data=scores, label='F1-Score', height= height, color='b')\n", "plt.barh(r+height*2, 'F1 (Smote)', data=scores, label='F1-Score (Smote)', height = height, color='r')\n", "plt.legend(framealpha=1, frameon=True)\n", "plt.yticks(r+height*2, scores['Labels'])\n", "\n", "\n", "plt.show()\n", "\n", "\n", "scores.sort_values('Occurrence Count', ascending=False)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Stored 'df_dicts_10km' (list)\n" ] } ], "source": [ "# Store dictionaries for later use\n", "df_dicts_10km = df_dicts\n", "%store df_dicts_10km" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
255000.0235000.001
685000.0325000.001
575000.0435000.000
555000.0545000.000
675000.0245000.001
............
55000.0155000.000
945000.0215000.010
465000.0635000.000
365000.045000.000
515000.0205000.000
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "255000.0 235000.0 0 1\n", "685000.0 325000.0 0 1\n", "575000.0 435000.0 0 0\n", "555000.0 545000.0 0 0\n", "675000.0 245000.0 0 1\n", "... ... ...\n", "55000.0 155000.0 0 0\n", "945000.0 215000.0 1 0\n", "465000.0 635000.0 0 0\n", "365000.0 45000.0 0 0\n", "515000.0 205000.0 0 0\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
195000.0175000.000
445000.045000.000
365000.0545000.011
345000.0405000.011
435000.0105000.000
............
65000.0265000.011
705000.0205000.011
295000.0435000.011
255000.0605000.011
325000.0415000.011
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "195000.0 175000.0 0 0\n", "445000.0 45000.0 0 0\n", "365000.0 545000.0 1 1\n", "345000.0 405000.0 1 1\n", "435000.0 105000.0 0 0\n", "... ... ...\n", "65000.0 265000.0 1 1\n", "705000.0 205000.0 1 1\n", "295000.0 435000.0 1 1\n", "255000.0 605000.0 1 1\n", "325000.0 415000.0 1 1\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
235000.0605000.011
645000.0695000.000
515000.0105000.000
485000.095000.000
625000.0325000.000
............
35000.025000.000
955000.0595000.000
395000.0455000.011
325000.0655000.000
445000.045000.000
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "235000.0 605000.0 1 1\n", "645000.0 695000.0 0 0\n", "515000.0 105000.0 0 0\n", "485000.0 95000.0 0 0\n", "625000.0 325000.0 0 0\n", "... ... ...\n", "35000.0 25000.0 0 0\n", "955000.0 595000.0 0 0\n", "395000.0 455000.0 1 1\n", "325000.0 655000.0 0 0\n", "445000.0 45000.0 0 0\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
215000.0665000.000
545000.045000.000
445000.0465000.011
425000.0475000.011
535000.0195000.000
............
45000.0275000.011
875000.0535000.000
355000.0625000.000
295000.0575000.011
395000.0465000.011
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "215000.0 665000.0 0 0\n", "545000.0 45000.0 0 0\n", "445000.0 465000.0 1 1\n", "425000.0 475000.0 1 1\n", "535000.0 195000.0 0 0\n", "... ... ...\n", "45000.0 275000.0 1 1\n", "875000.0 535000.0 0 0\n", "355000.0 625000.0 0 0\n", "295000.0 575000.0 1 1\n", "395000.0 465000.0 1 1\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
255000.0525000.000
665000.0345000.010
565000.0365000.011
545000.0405000.000
655000.0555000.000
............
45000.0125000.000
935000.0675000.000
445000.0145000.000
355000.0175000.000
505000.0205000.000
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "255000.0 525000.0 0 0\n", "665000.0 345000.0 1 0\n", "565000.0 365000.0 1 1\n", "545000.0 405000.0 0 0\n", "655000.0 555000.0 0 0\n", "... ... ...\n", "45000.0 125000.0 0 0\n", "935000.0 675000.0 0 0\n", "445000.0 145000.0 0 0\n", "355000.0 175000.0 0 0\n", "505000.0 205000.0 0 0\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
225000.0625000.011
545000.0115000.000
435000.0395000.011
415000.0385000.011
535000.0365000.011
............
55000.0615000.000
845000.045000.000
355000.0495000.011
295000.0445000.001
395000.0515000.011
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "225000.0 625000.0 1 1\n", "545000.0 115000.0 0 0\n", "435000.0 395000.0 1 1\n", "415000.0 385000.0 1 1\n", "535000.0 365000.0 1 1\n", "... ... ...\n", "55000.0 615000.0 0 0\n", "845000.0 45000.0 0 0\n", "355000.0 495000.0 1 1\n", "295000.0 445000.0 0 1\n", "395000.0 515000.0 1 1\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
255000.0235000.000
675000.045000.000
555000.0585000.000
525000.0175000.000
665000.0365000.000
............
45000.0175000.001
965000.0525000.000
435000.0545000.000
355000.0655000.000
495000.0525000.000
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "255000.0 235000.0 0 0\n", "675000.0 45000.0 0 0\n", "555000.0 585000.0 0 0\n", "525000.0 175000.0 0 0\n", "665000.0 365000.0 0 0\n", "... ... ...\n", "45000.0 175000.0 0 1\n", "965000.0 525000.0 0 0\n", "435000.0 545000.0 0 0\n", "355000.0 655000.0 0 0\n", "495000.0 525000.0 0 0\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
205000.0495000.011
475000.0475000.011
385000.0365000.011
375000.0495000.011
465000.0345000.011
............
55000.0485000.000
835000.0435000.000
315000.0365000.011
265000.095000.000
345000.05000.000
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "205000.0 495000.0 1 1\n", "475000.0 475000.0 1 1\n", "385000.0 365000.0 1 1\n", "375000.0 495000.0 1 1\n", "465000.0 345000.0 1 1\n", "... ... ...\n", "55000.0 485000.0 0 0\n", "835000.0 435000.0 0 0\n", "315000.0 365000.0 1 1\n", "265000.0 95000.0 0 0\n", "345000.0 5000.0 0 0\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
225000.0365000.011
625000.0145000.000
505000.0185000.000
485000.0645000.000
615000.0225000.000
............
45000.075000.000
945000.0685000.000
375000.025000.000
315000.0445000.011
435000.025000.000
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "225000.0 365000.0 1 1\n", "625000.0 145000.0 0 0\n", "505000.0 185000.0 0 0\n", "485000.0 645000.0 0 0\n", "615000.0 225000.0 0 0\n", "... ... ...\n", "45000.0 75000.0 0 0\n", "945000.0 685000.0 0 0\n", "375000.0 25000.0 0 0\n", "315000.0 445000.0 1 1\n", "435000.0 25000.0 0 0\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
205000.0315000.011
465000.0445000.011
375000.0415000.011
355000.0245000.011
445000.0245000.000
............
75000.0355000.010
685000.0315000.011
305000.0395000.011
265000.0575000.011
335000.0285000.011
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "205000.0 315000.0 1 1\n", "465000.0 445000.0 1 1\n", "375000.0 415000.0 1 1\n", "355000.0 245000.0 1 1\n", "445000.0 245000.0 0 0\n", "... ... ...\n", "75000.0 355000.0 1 0\n", "685000.0 315000.0 1 1\n", "305000.0 395000.0 1 1\n", "265000.0 575000.0 1 1\n", "335000.0 285000.0 1 1\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
205000.0615000.000
465000.0465000.011
365000.0325000.011
355000.0545000.011
455000.0495000.011
............
65000.0215000.011
685000.0315000.011
295000.0265000.011
255000.0425000.011
335000.0605000.011
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "205000.0 615000.0 0 0\n", "465000.0 465000.0 1 1\n", "365000.0 325000.0 1 1\n", "355000.0 545000.0 1 1\n", "455000.0 495000.0 1 1\n", "... ... ...\n", "65000.0 215000.0 1 1\n", "685000.0 315000.0 1 1\n", "295000.0 265000.0 1 1\n", "255000.0 425000.0 1 1\n", "335000.0 605000.0 1 1\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
305000.0635000.011
675000.0335000.010
565000.0255000.011
545000.0115000.000
665000.0355000.011
............
45000.0195000.001
925000.0435000.000
455000.0385000.011
385000.0335000.001
515000.0295000.010
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "305000.0 635000.0 1 1\n", "675000.0 335000.0 1 0\n", "565000.0 255000.0 1 1\n", "545000.0 115000.0 0 0\n", "665000.0 355000.0 1 1\n", "... ... ...\n", "45000.0 195000.0 0 1\n", "925000.0 435000.0 0 0\n", "455000.0 385000.0 1 1\n", "385000.0 335000.0 0 1\n", "515000.0 295000.0 1 0\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
235000.0405000.001
625000.0135000.000
515000.0375000.000
485000.0265000.000
615000.0295000.000
............
45000.0375000.000
915000.0235000.000
405000.0445000.011
325000.0545000.011
455000.0335000.001
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "235000.0 405000.0 0 1\n", "625000.0 135000.0 0 0\n", "515000.0 375000.0 0 0\n", "485000.0 265000.0 0 0\n", "615000.0 295000.0 0 0\n", "... ... ...\n", "45000.0 375000.0 0 0\n", "915000.0 235000.0 0 0\n", "405000.0 445000.0 1 1\n", "325000.0 545000.0 1 1\n", "455000.0 335000.0 0 1\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
225000.055000.000
595000.0685000.000
475000.0265000.000
455000.0575000.000
575000.0265000.000
............
45000.0285000.011
915000.0345000.000
365000.0235000.010
305000.0405000.011
415000.0105000.000
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "225000.0 55000.0 0 0\n", "595000.0 685000.0 0 0\n", "475000.0 265000.0 0 0\n", "455000.0 575000.0 0 0\n", "575000.0 265000.0 0 0\n", "... ... ...\n", "45000.0 285000.0 1 1\n", "915000.0 345000.0 0 0\n", "365000.0 235000.0 1 0\n", "305000.0 405000.0 1 1\n", "415000.0 105000.0 0 0\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
215000.0605000.001
495000.0415000.011
405000.0675000.000
385000.0535000.011
485000.0405000.011
............
55000.075000.000
795000.0265000.011
325000.0575000.011
275000.0545000.011
355000.0125000.000
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "215000.0 605000.0 0 1\n", "495000.0 415000.0 1 1\n", "405000.0 675000.0 0 0\n", "385000.0 535000.0 1 1\n", "485000.0 405000.0 1 1\n", "... ... ...\n", "55000.0 75000.0 0 0\n", "795000.0 265000.0 1 1\n", "325000.0 575000.0 1 1\n", "275000.0 545000.0 1 1\n", "355000.0 125000.0 0 0\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
245000.015000.000
695000.0155000.000
575000.0545000.000
545000.025000.000
685000.0255000.000
............
45000.0445000.000
975000.0335000.000
455000.0395000.000
365000.0265000.000
515000.0485000.000
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "245000.0 15000.0 0 0\n", "695000.0 155000.0 0 0\n", "575000.0 545000.0 0 0\n", "545000.0 25000.0 0 0\n", "685000.0 255000.0 0 0\n", "... ... ...\n", "45000.0 445000.0 0 0\n", "975000.0 335000.0 0 0\n", "455000.0 395000.0 0 0\n", "365000.0 265000.0 0 0\n", "515000.0 485000.0 0 0\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
205000.0375000.011
495000.0445000.011
395000.0505000.011
375000.0345000.011
485000.0425000.011
............
65000.0155000.000
755000.0125000.010
315000.0355000.011
265000.0435000.011
355000.0465000.011
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "205000.0 375000.0 1 1\n", "495000.0 445000.0 1 1\n", "395000.0 505000.0 1 1\n", "375000.0 345000.0 1 1\n", "485000.0 425000.0 1 1\n", "... ... ...\n", "65000.0 155000.0 0 0\n", "755000.0 125000.0 1 0\n", "315000.0 355000.0 1 1\n", "265000.0 435000.0 1 1\n", "355000.0 465000.0 1 1\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
275000.0495000.001
695000.0325000.000
575000.0375000.000
555000.0515000.000
685000.0275000.000
............
35000.0175000.000
975000.0255000.000
455000.0545000.000
375000.0305000.000
515000.0445000.000
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "275000.0 495000.0 0 1\n", "695000.0 325000.0 0 0\n", "575000.0 375000.0 0 0\n", "555000.0 515000.0 0 0\n", "685000.0 275000.0 0 0\n", "... ... ...\n", "35000.0 175000.0 0 0\n", "975000.0 255000.0 0 0\n", "455000.0 545000.0 0 0\n", "375000.0 305000.0 0 0\n", "515000.0 445000.0 0 0\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
295000.0275000.001
685000.055000.000
585000.0105000.000
565000.0205000.011
675000.0155000.000
............
65000.0245000.001
945000.0245000.001
495000.0575000.000
395000.075000.000
535000.095000.000
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "295000.0 275000.0 0 1\n", "685000.0 55000.0 0 0\n", "585000.0 105000.0 0 0\n", "565000.0 205000.0 1 1\n", "675000.0 155000.0 0 0\n", "... ... ...\n", "65000.0 245000.0 0 1\n", "945000.0 245000.0 0 1\n", "495000.0 575000.0 0 0\n", "395000.0 75000.0 0 0\n", "535000.0 95000.0 0 0\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OccurrencePredictions
yx
235000.0135000.000
575000.0395000.011
475000.0335000.011
455000.0535000.000
565000.0385000.011
............
65000.0345000.000
845000.0255000.011
375000.0585000.000
315000.0405000.010
415000.0145000.000
\n", "

668 rows × 2 columns

\n", "
" ], "text/plain": [ " Occurrence Predictions\n", "y x \n", "235000.0 135000.0 0 0\n", "575000.0 395000.0 1 1\n", "475000.0 335000.0 1 1\n", "455000.0 535000.0 0 0\n", "565000.0 385000.0 1 1\n", "... ... ...\n", "65000.0 345000.0 0 0\n", "845000.0 255000.0 1 1\n", "375000.0 585000.0 0 0\n", "315000.0 405000.0 1 0\n", "415000.0 145000.0 0 0\n", "\n", "[668 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Export predictions to CSV for QGIS\n", "RESULTS_PATH = 'Datasets/Machine Learning/Results/10km/'\n", "for dict in df_dicts:\n", " # Join with y_test datafram\n", " result_df = dict['y_test'] \n", " result_df['Predictions'] = dict['predictions_smote']\n", " display(result_df)\n", " result_df.to_csv(RESULTS_PATH + dict['name'] + '.csv')\n", " " ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Barnacle Goose 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
251009.0982683.952755e-188Inflowing drainage direction
21822.9601585.383451e-158Elevation
23773.6429249.675580e-150Surface type
26387.0307281.424303e-80Fertiliser K
27387.0307281.424303e-80Fertiliser N
28387.0307281.424303e-80Fertiliser P
3286.0742654.806316e-61Improve grassland
2268.7655391.255395e-57Arable
22235.6567134.939605e-51Cumulative catchment area
24199.3640531.033356e-43Outflowing drainage direction
36196.1897824.562554e-43Prosulfocarb_10km
37196.1897824.562554e-43Sulphur_10km
29188.3690031.784581e-41Chlorothalonil_10km
30188.3690031.784581e-41Glyphosate_10km
31188.3690031.784581e-41Mancozeb_10km
32188.3690031.784581e-41Mecoprop-P_10km
34188.3690031.784581e-41Pendimethalin_10km
0161.3441026.172420e-36Deciduous woodland
38146.5720646.962136e-33Tri-allate_10km
33128.4155934.161077e-29Metamitron_10km
35113.8754044.614046e-26PropamocarbHydrochloride_10km
2092.3625951.602427e-21Suburban
1979.8303217.431887e-19Urban
1765.8502947.342235e-16Littoral sediment
1854.9912821.617037e-13Saltmarsh
1547.7073806.162071e-12Supralittoral sediment
935.0777613.574253e-09Heather grassland
1432.4086051.385572e-08Supralittoral rock
1627.9996371.311868e-07Littoral rock
726.7154442.531488e-07Fen
1310.8144891.020153e-03Freshwater
49.4069412.183328e-03Neutral grassland
17.8535025.108829e-03Coniferous woodland
55.0928102.410577e-02Calcareous grassland
124.0304094.478769e-02Saltwater
101.3055332.533074e-01Bog
60.5034984.780290e-01Acid grassland
110.3047835.809453e-01Inland rock
80.0309138.604477e-01Heather
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 1009.098268 3.952755e-188 Inflowing drainage direction\n", "21 822.960158 5.383451e-158 Elevation\n", "23 773.642924 9.675580e-150 Surface type\n", "26 387.030728 1.424303e-80 Fertiliser K\n", "27 387.030728 1.424303e-80 Fertiliser N\n", "28 387.030728 1.424303e-80 Fertiliser P\n", "3 286.074265 4.806316e-61 Improve grassland\n", "2 268.765539 1.255395e-57 Arable\n", "22 235.656713 4.939605e-51 Cumulative catchment area\n", "24 199.364053 1.033356e-43 Outflowing drainage direction\n", "36 196.189782 4.562554e-43 Prosulfocarb_10km\n", "37 196.189782 4.562554e-43 Sulphur_10km\n", "29 188.369003 1.784581e-41 Chlorothalonil_10km\n", "30 188.369003 1.784581e-41 Glyphosate_10km\n", "31 188.369003 1.784581e-41 Mancozeb_10km\n", "32 188.369003 1.784581e-41 Mecoprop-P_10km\n", "34 188.369003 1.784581e-41 Pendimethalin_10km\n", "0 161.344102 6.172420e-36 Deciduous woodland\n", "38 146.572064 6.962136e-33 Tri-allate_10km\n", "33 128.415593 4.161077e-29 Metamitron_10km\n", "35 113.875404 4.614046e-26 PropamocarbHydrochloride_10km\n", "20 92.362595 1.602427e-21 Suburban\n", "19 79.830321 7.431887e-19 Urban\n", "17 65.850294 7.342235e-16 Littoral sediment\n", "18 54.991282 1.617037e-13 Saltmarsh\n", "15 47.707380 6.162071e-12 Supralittoral sediment\n", "9 35.077761 3.574253e-09 Heather grassland\n", "14 32.408605 1.385572e-08 Supralittoral rock\n", "16 27.999637 1.311868e-07 Littoral rock\n", "7 26.715444 2.531488e-07 Fen\n", "13 10.814489 1.020153e-03 Freshwater\n", "4 9.406941 2.183328e-03 Neutral grassland\n", "1 7.853502 5.108829e-03 Coniferous woodland\n", "5 5.092810 2.410577e-02 Calcareous grassland\n", "12 4.030409 4.478769e-02 Saltwater\n", "10 1.305533 2.533074e-01 Bog\n", "6 0.503498 4.780290e-01 Acid grassland\n", "11 0.304783 5.809453e-01 Inland rock\n", "8 0.030913 8.604477e-01 Heather" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Canada Goose 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
217343.6666300.000000e+00Elevation
235748.8551100.000000e+00Surface type
255520.1385050.000000e+00Inflowing drainage direction
261431.8493513.030462e-251Fertiliser K
271431.8493513.030462e-251Fertiliser N
281431.8493513.030462e-251Fertiliser P
291114.5394771.580665e-204Chlorothalonil_10km
301114.5394771.580665e-204Glyphosate_10km
341114.5394771.580665e-204Pendimethalin_10km
311111.6482474.388703e-204Mancozeb_10km
321111.6482474.388703e-204Mecoprop-P_10km
36741.7413672.448280e-144Prosulfocarb_10km
37741.7413672.448280e-144Sulphur_10km
38736.0515792.279725e-143Tri-allate_10km
3732.0843571.082679e-142Improve grassland
2572.6627587.999142e-115Arable
24560.7128791.115248e-112Outflowing drainage direction
35551.2437435.652544e-111PropamocarbHydrochloride_10km
33537.8222891.504558e-108Metamitron_10km
0324.2903581.622397e-68Deciduous woodland
20180.1762628.407061e-40Suburban
1950.3110281.673556e-12Urban
132.1071271.615132e-08Coniferous woodland
2228.3306811.107605e-07Cumulative catchment area
624.5502817.691838e-07Acid grassland
421.5888243.542001e-06Neutral grassland
519.7315799.274335e-06Calcareous grassland
1811.9016385.695458e-04Saltmarsh
1311.4685257.180931e-04Freshwater
1710.2258431.401059e-03Littoral sediment
88.7711963.087237e-03Heather
77.2347987.194880e-03Fen
125.6030891.799978e-02Saltwater
153.3191506.858907e-02Supralittoral sediment
91.4984482.210184e-01Heather grassland
141.3648102.428099e-01Supralittoral rock
101.0878992.970316e-01Bog
110.6515804.196203e-01Inland rock
160.1491816.993498e-01Littoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "21 7343.666630 0.000000e+00 Elevation\n", "23 5748.855110 0.000000e+00 Surface type\n", "25 5520.138505 0.000000e+00 Inflowing drainage direction\n", "26 1431.849351 3.030462e-251 Fertiliser K\n", "27 1431.849351 3.030462e-251 Fertiliser N\n", "28 1431.849351 3.030462e-251 Fertiliser P\n", "29 1114.539477 1.580665e-204 Chlorothalonil_10km\n", "30 1114.539477 1.580665e-204 Glyphosate_10km\n", "34 1114.539477 1.580665e-204 Pendimethalin_10km\n", "31 1111.648247 4.388703e-204 Mancozeb_10km\n", "32 1111.648247 4.388703e-204 Mecoprop-P_10km\n", "36 741.741367 2.448280e-144 Prosulfocarb_10km\n", "37 741.741367 2.448280e-144 Sulphur_10km\n", "38 736.051579 2.279725e-143 Tri-allate_10km\n", "3 732.084357 1.082679e-142 Improve grassland\n", "2 572.662758 7.999142e-115 Arable\n", "24 560.712879 1.115248e-112 Outflowing drainage direction\n", "35 551.243743 5.652544e-111 PropamocarbHydrochloride_10km\n", "33 537.822289 1.504558e-108 Metamitron_10km\n", "0 324.290358 1.622397e-68 Deciduous woodland\n", "20 180.176262 8.407061e-40 Suburban\n", "19 50.311028 1.673556e-12 Urban\n", "1 32.107127 1.615132e-08 Coniferous woodland\n", "22 28.330681 1.107605e-07 Cumulative catchment area\n", "6 24.550281 7.691838e-07 Acid grassland\n", "4 21.588824 3.542001e-06 Neutral grassland\n", "5 19.731579 9.274335e-06 Calcareous grassland\n", "18 11.901638 5.695458e-04 Saltmarsh\n", "13 11.468525 7.180931e-04 Freshwater\n", "17 10.225843 1.401059e-03 Littoral sediment\n", "8 8.771196 3.087237e-03 Heather\n", "7 7.234798 7.194880e-03 Fen\n", "12 5.603089 1.799978e-02 Saltwater\n", "15 3.319150 6.858907e-02 Supralittoral sediment\n", "9 1.498448 2.210184e-01 Heather grassland\n", "14 1.364810 2.428099e-01 Supralittoral rock\n", "10 1.087899 2.970316e-01 Bog\n", "11 0.651580 4.196203e-01 Inland rock\n", "16 0.149181 6.993498e-01 Littoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Egyptian Goose 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
261863.9357572.395294e-309Fertiliser K
271863.9357572.395294e-309Fertiliser N
281863.9357572.395294e-309Fertiliser P
23827.5994569.132354e-159Surface type
2641.9212664.265779e-127Arable
25641.7728994.529104e-127Inflowing drainage direction
21589.6984287.242005e-118Elevation
36469.6914294.453426e-96Prosulfocarb_10km
37469.6914294.453426e-96Sulphur_10km
33463.4836766.289484e-95Metamitron_10km
38440.1395521.392058e-90Tri-allate_10km
29434.4690691.599940e-89Chlorothalonil_10km
30434.4690691.599940e-89Glyphosate_10km
34434.4690691.599940e-89Pendimethalin_10km
20432.2165014.225777e-89Suburban
31428.2970362.293958e-88Mancozeb_10km
32428.2970362.293958e-88Mecoprop-P_10km
35425.3752138.107329e-88PropamocarbHydrochloride_10km
24314.6375541.224799e-66Outflowing drainage direction
3305.3930577.805663e-65Improve grassland
0279.1211181.127077e-59Deciduous woodland
19163.8444711.886102e-36Urban
2237.6223289.858221e-10Cumulative catchment area
1833.0793109.853602e-09Saltmarsh
430.0030734.715957e-08Neutral grassland
1311.2297288.161764e-04Freshwater
610.0433111.546316e-03Acid grassland
95.3079282.130504e-02Heather grassland
75.1932692.275315e-02Fen
54.9006662.693057e-02Calcareous grassland
103.6488955.621345e-02Bog
83.5012166.143306e-02Heather
12.4343891.188187e-01Coniferous woodland
161.3715912.416432e-01Littoral rock
121.0947132.955240e-01Saltwater
140.9770773.230110e-01Supralittoral rock
110.9386253.327196e-01Inland rock
170.2836025.943946e-01Littoral sediment
150.1364747.118410e-01Supralittoral sediment
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 1863.935757 2.395294e-309 Fertiliser K\n", "27 1863.935757 2.395294e-309 Fertiliser N\n", "28 1863.935757 2.395294e-309 Fertiliser P\n", "23 827.599456 9.132354e-159 Surface type\n", "2 641.921266 4.265779e-127 Arable\n", "25 641.772899 4.529104e-127 Inflowing drainage direction\n", "21 589.698428 7.242005e-118 Elevation\n", "36 469.691429 4.453426e-96 Prosulfocarb_10km\n", "37 469.691429 4.453426e-96 Sulphur_10km\n", "33 463.483676 6.289484e-95 Metamitron_10km\n", "38 440.139552 1.392058e-90 Tri-allate_10km\n", "29 434.469069 1.599940e-89 Chlorothalonil_10km\n", "30 434.469069 1.599940e-89 Glyphosate_10km\n", "34 434.469069 1.599940e-89 Pendimethalin_10km\n", "20 432.216501 4.225777e-89 Suburban\n", "31 428.297036 2.293958e-88 Mancozeb_10km\n", "32 428.297036 2.293958e-88 Mecoprop-P_10km\n", "35 425.375213 8.107329e-88 PropamocarbHydrochloride_10km\n", "24 314.637554 1.224799e-66 Outflowing drainage direction\n", "3 305.393057 7.805663e-65 Improve grassland\n", "0 279.121118 1.127077e-59 Deciduous woodland\n", "19 163.844471 1.886102e-36 Urban\n", "22 37.622328 9.858221e-10 Cumulative catchment area\n", "18 33.079310 9.853602e-09 Saltmarsh\n", "4 30.003073 4.715957e-08 Neutral grassland\n", "13 11.229728 8.161764e-04 Freshwater\n", "6 10.043311 1.546316e-03 Acid grassland\n", "9 5.307928 2.130504e-02 Heather grassland\n", "7 5.193269 2.275315e-02 Fen\n", "5 4.900666 2.693057e-02 Calcareous grassland\n", "10 3.648895 5.621345e-02 Bog\n", "8 3.501216 6.143306e-02 Heather\n", "1 2.434389 1.188187e-01 Coniferous woodland\n", "16 1.371591 2.416432e-01 Littoral rock\n", "12 1.094713 2.955240e-01 Saltwater\n", "14 0.977077 3.230110e-01 Supralittoral rock\n", "11 0.938625 3.327196e-01 Inland rock\n", "17 0.283602 5.943946e-01 Littoral sediment\n", "15 0.136474 7.118410e-01 Supralittoral sediment" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Gadwall 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
231903.4375252.224486e-314Surface type
261849.7540511.572831e-307Fertiliser K
271849.7540511.572831e-307Fertiliser N
281849.7540511.572831e-307Fertiliser P
251645.6825779.981393e-281Inflowing drainage direction
211515.5685475.744852e-263Elevation
2949.6896581.109256e-178Arable
3594.0806401.201251e-118Improve grassland
31579.1282955.574029e-116Mancozeb_10km
32579.1282955.574029e-116Mecoprop-P_10km
29576.7897341.459949e-115Chlorothalonil_10km
30576.7897341.459949e-115Glyphosate_10km
34576.7897341.459949e-115Pendimethalin_10km
38548.5155271.755440e-110Tri-allate_10km
33492.2924603.030236e-100Metamitron_10km
36490.3948466.763937e-100Prosulfocarb_10km
37490.3948466.763937e-100Sulphur_10km
35486.6461673.309139e-99PropamocarbHydrochloride_10km
24466.8216801.513555e-95Outflowing drainage direction
20367.5051987.557822e-77Suburban
0344.8082921.734076e-72Deciduous woodland
19127.6131466.120135e-29Urban
442.4097048.812937e-11Neutral grassland
1838.5739286.094998e-10Saltmarsh
2229.5147846.049909e-08Cumulative catchment area
722.9696581.735944e-06Fen
1717.3963233.130899e-05Littoral sediment
1313.5562962.361016e-04Freshwater
1213.2545362.770855e-04Saltwater
810.5676151.165165e-03Heather
610.2844031.357450e-03Acid grassland
59.0507442.650406e-03Calcareous grassland
108.1106224.434319e-03Bog
156.0856711.369060e-02Supralittoral sediment
94.2015484.048459e-02Heather grassland
110.7663213.814364e-01Inland rock
10.2967635.859643e-01Coniferous woodland
160.2857785.929833e-01Littoral rock
140.0882287.664655e-01Supralittoral rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 1903.437525 2.224486e-314 Surface type\n", "26 1849.754051 1.572831e-307 Fertiliser K\n", "27 1849.754051 1.572831e-307 Fertiliser N\n", "28 1849.754051 1.572831e-307 Fertiliser P\n", "25 1645.682577 9.981393e-281 Inflowing drainage direction\n", "21 1515.568547 5.744852e-263 Elevation\n", "2 949.689658 1.109256e-178 Arable\n", "3 594.080640 1.201251e-118 Improve grassland\n", "31 579.128295 5.574029e-116 Mancozeb_10km\n", "32 579.128295 5.574029e-116 Mecoprop-P_10km\n", "29 576.789734 1.459949e-115 Chlorothalonil_10km\n", "30 576.789734 1.459949e-115 Glyphosate_10km\n", "34 576.789734 1.459949e-115 Pendimethalin_10km\n", "38 548.515527 1.755440e-110 Tri-allate_10km\n", "33 492.292460 3.030236e-100 Metamitron_10km\n", "36 490.394846 6.763937e-100 Prosulfocarb_10km\n", "37 490.394846 6.763937e-100 Sulphur_10km\n", "35 486.646167 3.309139e-99 PropamocarbHydrochloride_10km\n", "24 466.821680 1.513555e-95 Outflowing drainage direction\n", "20 367.505198 7.557822e-77 Suburban\n", "0 344.808292 1.734076e-72 Deciduous woodland\n", "19 127.613146 6.120135e-29 Urban\n", "4 42.409704 8.812937e-11 Neutral grassland\n", "18 38.573928 6.094998e-10 Saltmarsh\n", "22 29.514784 6.049909e-08 Cumulative catchment area\n", "7 22.969658 1.735944e-06 Fen\n", "17 17.396323 3.130899e-05 Littoral sediment\n", "13 13.556296 2.361016e-04 Freshwater\n", "12 13.254536 2.770855e-04 Saltwater\n", "8 10.567615 1.165165e-03 Heather\n", "6 10.284403 1.357450e-03 Acid grassland\n", "5 9.050744 2.650406e-03 Calcareous grassland\n", "10 8.110622 4.434319e-03 Bog\n", "15 6.085671 1.369060e-02 Supralittoral sediment\n", "9 4.201548 4.048459e-02 Heather grassland\n", "11 0.766321 3.814364e-01 Inland rock\n", "1 0.296763 5.859643e-01 Coniferous woodland\n", "16 0.285778 5.929833e-01 Littoral rock\n", "14 0.088228 7.664655e-01 Supralittoral rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Goshawk 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
231516.6759794.034569e-263Surface type
211440.3417731.912231e-252Elevation
251051.4482829.009989e-195Inflowing drainage direction
31721.8845035.994541e-141Mancozeb_10km
32721.8845035.994541e-141Mecoprop-P_10km
29719.5410001.510181e-140Chlorothalonil_10km
30719.5410001.510181e-140Glyphosate_10km
34719.5410001.510181e-140Pendimethalin_10km
3615.2510912.114437e-122Improve grassland
38574.1478164.336277e-115Tri-allate_10km
36513.2362624.432676e-104Prosulfocarb_10km
37513.2362624.432676e-104Sulphur_10km
24480.5980544.304565e-98Outflowing drainage direction
0412.7389501.932868e-85Deciduous woodland
35375.4966242.243687e-78PropamocarbHydrochloride_10km
33362.3484677.348625e-76Metamitron_10km
1257.2651432.402678e-55Coniferous woodland
6240.7656844.687337e-52Acid grassland
26196.9671463.170955e-43Fertiliser K
27196.9671463.170955e-43Fertiliser N
28196.9671463.170955e-43Fertiliser P
293.6129188.702609e-22Arable
2047.7869165.921305e-12Suburban
841.5013741.392317e-10Heather
519.6656729.597340e-06Calcareous grassland
1313.9089131.958784e-04Freshwater
228.9055962.868761e-03Cumulative catchment area
102.8910458.918962e-02Bog
182.4748581.157984e-01Saltmarsh
191.8668411.719524e-01Urban
91.7997641.798551e-01Heather grassland
71.5251522.169502e-01Fen
171.4142852.344522e-01Littoral sediment
140.8804163.481726e-01Supralittoral rock
40.5958484.402348e-01Neutral grassland
160.4300015.120451e-01Littoral rock
150.1434137.049410e-01Supralittoral sediment
110.0428868.359561e-01Inland rock
120.0356808.501928e-01Saltwater
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 1516.675979 4.034569e-263 Surface type\n", "21 1440.341773 1.912231e-252 Elevation\n", "25 1051.448282 9.009989e-195 Inflowing drainage direction\n", "31 721.884503 5.994541e-141 Mancozeb_10km\n", "32 721.884503 5.994541e-141 Mecoprop-P_10km\n", "29 719.541000 1.510181e-140 Chlorothalonil_10km\n", "30 719.541000 1.510181e-140 Glyphosate_10km\n", "34 719.541000 1.510181e-140 Pendimethalin_10km\n", "3 615.251091 2.114437e-122 Improve grassland\n", "38 574.147816 4.336277e-115 Tri-allate_10km\n", "36 513.236262 4.432676e-104 Prosulfocarb_10km\n", "37 513.236262 4.432676e-104 Sulphur_10km\n", "24 480.598054 4.304565e-98 Outflowing drainage direction\n", "0 412.738950 1.932868e-85 Deciduous woodland\n", "35 375.496624 2.243687e-78 PropamocarbHydrochloride_10km\n", "33 362.348467 7.348625e-76 Metamitron_10km\n", "1 257.265143 2.402678e-55 Coniferous woodland\n", "6 240.765684 4.687337e-52 Acid grassland\n", "26 196.967146 3.170955e-43 Fertiliser K\n", "27 196.967146 3.170955e-43 Fertiliser N\n", "28 196.967146 3.170955e-43 Fertiliser P\n", "2 93.612918 8.702609e-22 Arable\n", "20 47.786916 5.921305e-12 Suburban\n", "8 41.501374 1.392317e-10 Heather\n", "5 19.665672 9.597340e-06 Calcareous grassland\n", "13 13.908913 1.958784e-04 Freshwater\n", "22 8.905596 2.868761e-03 Cumulative catchment area\n", "10 2.891045 8.918962e-02 Bog\n", "18 2.474858 1.157984e-01 Saltmarsh\n", "19 1.866841 1.719524e-01 Urban\n", "9 1.799764 1.798551e-01 Heather grassland\n", "7 1.525152 2.169502e-01 Fen\n", "17 1.414285 2.344522e-01 Littoral sediment\n", "14 0.880416 3.481726e-01 Supralittoral rock\n", "4 0.595848 4.402348e-01 Neutral grassland\n", "16 0.430001 5.120451e-01 Littoral rock\n", "15 0.143413 7.049410e-01 Supralittoral sediment\n", "11 0.042886 8.359561e-01 Inland rock\n", "12 0.035680 8.501928e-01 Saltwater" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Grey Partridge 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
233400.6347580.000000e+00Surface type
263012.6242350.000000e+00Fertiliser K
273012.6242350.000000e+00Fertiliser N
283012.6242350.000000e+00Fertiliser P
212971.8317940.000000e+00Elevation
252704.7798890.000000e+00Inflowing drainage direction
21571.7206731.066172e-270Arable
29781.5289254.547596e-151Chlorothalonil_10km
30781.5289254.547596e-151Glyphosate_10km
34781.5289254.547596e-151Pendimethalin_10km
31777.7612781.958039e-150Mancozeb_10km
32777.7612781.958039e-150Mecoprop-P_10km
3772.2816381.641378e-149Improve grassland
36726.6494819.177369e-142Prosulfocarb_10km
37726.6494819.177369e-142Sulphur_10km
38698.0398237.476889e-137Tri-allate_10km
33616.6168391.212906e-122Metamitron_10km
35615.6479561.799064e-122PropamocarbHydrochloride_10km
24584.9871015.010287e-117Outflowing drainage direction
0327.5349743.804785e-69Deciduous woodland
20298.0020242.183527e-63Suburban
1977.6346242.187610e-18Urban
444.2537813.486330e-11Neutral grassland
533.0603979.948735e-09Calcareous grassland
1824.5301917.771715e-07Saltmarsh
2213.4599022.484816e-04Cumulative catchment area
1312.6996353.721351e-04Freshwater
711.3446337.673946e-04Fen
179.9445671.631166e-03Littoral sediment
113.9618744.664365e-02Inland rock
153.6433535.640058e-02Supralittoral sediment
102.9936008.370969e-02Bog
62.0487741.524459e-01Acid grassland
141.7862111.815023e-01Supralittoral rock
91.2123612.709643e-01Heather grassland
160.7849773.757031e-01Littoral rock
80.4222225.158862e-01Heather
120.2199616.391078e-01Saltwater
10.1892436.635828e-01Coniferous woodland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 3400.634758 0.000000e+00 Surface type\n", "26 3012.624235 0.000000e+00 Fertiliser K\n", "27 3012.624235 0.000000e+00 Fertiliser N\n", "28 3012.624235 0.000000e+00 Fertiliser P\n", "21 2971.831794 0.000000e+00 Elevation\n", "25 2704.779889 0.000000e+00 Inflowing drainage direction\n", "2 1571.720673 1.066172e-270 Arable\n", "29 781.528925 4.547596e-151 Chlorothalonil_10km\n", "30 781.528925 4.547596e-151 Glyphosate_10km\n", "34 781.528925 4.547596e-151 Pendimethalin_10km\n", "31 777.761278 1.958039e-150 Mancozeb_10km\n", "32 777.761278 1.958039e-150 Mecoprop-P_10km\n", "3 772.281638 1.641378e-149 Improve grassland\n", "36 726.649481 9.177369e-142 Prosulfocarb_10km\n", "37 726.649481 9.177369e-142 Sulphur_10km\n", "38 698.039823 7.476889e-137 Tri-allate_10km\n", "33 616.616839 1.212906e-122 Metamitron_10km\n", "35 615.647956 1.799064e-122 PropamocarbHydrochloride_10km\n", "24 584.987101 5.010287e-117 Outflowing drainage direction\n", "0 327.534974 3.804785e-69 Deciduous woodland\n", "20 298.002024 2.183527e-63 Suburban\n", "19 77.634624 2.187610e-18 Urban\n", "4 44.253781 3.486330e-11 Neutral grassland\n", "5 33.060397 9.948735e-09 Calcareous grassland\n", "18 24.530191 7.771715e-07 Saltmarsh\n", "22 13.459902 2.484816e-04 Cumulative catchment area\n", "13 12.699635 3.721351e-04 Freshwater\n", "7 11.344633 7.673946e-04 Fen\n", "17 9.944567 1.631166e-03 Littoral sediment\n", "11 3.961874 4.664365e-02 Inland rock\n", "15 3.643353 5.640058e-02 Supralittoral sediment\n", "10 2.993600 8.370969e-02 Bog\n", "6 2.048774 1.524459e-01 Acid grassland\n", "14 1.786211 1.815023e-01 Supralittoral rock\n", "9 1.212361 2.709643e-01 Heather grassland\n", "16 0.784977 3.757031e-01 Littoral rock\n", "8 0.422222 5.158862e-01 Heather\n", "12 0.219961 6.391078e-01 Saltwater\n", "1 0.189243 6.635828e-01 Coniferous woodland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Indian Peafowl 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
261144.8007403.777807e-209Fertiliser K
271144.8007403.777807e-209Fertiliser N
281144.8007403.777807e-209Fertiliser P
23754.7977581.483797e-146Surface type
25562.3922605.565883e-113Inflowing drainage direction
21554.3038211.587591e-111Elevation
2494.1998931.352579e-100Arable
36397.5957281.406939e-82Prosulfocarb_10km
37397.5957281.406939e-82Sulphur_10km
0362.5377566.759522e-76Deciduous woodland
29359.2728362.858800e-75Chlorothalonil_10km
30359.2728362.858800e-75Glyphosate_10km
31359.2728362.858800e-75Mancozeb_10km
32359.2728362.858800e-75Mecoprop-P_10km
34359.2728362.858800e-75Pendimethalin_10km
3355.6995181.388033e-74Improve grassland
38349.8779911.828680e-73Tri-allate_10km
33301.5375424.432405e-64Metamitron_10km
20296.5412274.222218e-63Suburban
35290.5446426.348500e-62PropamocarbHydrochloride_10km
24246.8005252.918994e-53Outflowing drainage direction
1935.7379432.558060e-09Urban
2230.9974512.841086e-08Cumulative catchment area
528.6890729.222468e-08Calcareous grassland
411.9284875.614321e-04Neutral grassland
18.2141724.188976e-03Coniferous woodland
135.5124781.895389e-02Freshwater
73.7097095.420288e-02Fen
183.0991607.844719e-02Saltmarsh
162.1103751.464209e-01Littoral rock
101.7491141.861015e-01Bog
141.0302853.101837e-01Supralittoral rock
110.4332615.104501e-01Inland rock
60.3499875.541705e-01Acid grassland
150.2755445.996806e-01Supralittoral sediment
120.1317667.166368e-01Saltwater
90.1076047.429141e-01Heather grassland
170.0250278.743110e-01Littoral sediment
80.0079019.291788e-01Heather
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 1144.800740 3.777807e-209 Fertiliser K\n", "27 1144.800740 3.777807e-209 Fertiliser N\n", "28 1144.800740 3.777807e-209 Fertiliser P\n", "23 754.797758 1.483797e-146 Surface type\n", "25 562.392260 5.565883e-113 Inflowing drainage direction\n", "21 554.303821 1.587591e-111 Elevation\n", "2 494.199893 1.352579e-100 Arable\n", "36 397.595728 1.406939e-82 Prosulfocarb_10km\n", "37 397.595728 1.406939e-82 Sulphur_10km\n", "0 362.537756 6.759522e-76 Deciduous woodland\n", "29 359.272836 2.858800e-75 Chlorothalonil_10km\n", "30 359.272836 2.858800e-75 Glyphosate_10km\n", "31 359.272836 2.858800e-75 Mancozeb_10km\n", "32 359.272836 2.858800e-75 Mecoprop-P_10km\n", "34 359.272836 2.858800e-75 Pendimethalin_10km\n", "3 355.699518 1.388033e-74 Improve grassland\n", "38 349.877991 1.828680e-73 Tri-allate_10km\n", "33 301.537542 4.432405e-64 Metamitron_10km\n", "20 296.541227 4.222218e-63 Suburban\n", "35 290.544642 6.348500e-62 PropamocarbHydrochloride_10km\n", "24 246.800525 2.918994e-53 Outflowing drainage direction\n", "19 35.737943 2.558060e-09 Urban\n", "22 30.997451 2.841086e-08 Cumulative catchment area\n", "5 28.689072 9.222468e-08 Calcareous grassland\n", "4 11.928487 5.614321e-04 Neutral grassland\n", "1 8.214172 4.188976e-03 Coniferous woodland\n", "13 5.512478 1.895389e-02 Freshwater\n", "7 3.709709 5.420288e-02 Fen\n", "18 3.099160 7.844719e-02 Saltmarsh\n", "16 2.110375 1.464209e-01 Littoral rock\n", "10 1.749114 1.861015e-01 Bog\n", "14 1.030285 3.101837e-01 Supralittoral rock\n", "11 0.433261 5.104501e-01 Inland rock\n", "6 0.349987 5.541705e-01 Acid grassland\n", "15 0.275544 5.996806e-01 Supralittoral sediment\n", "12 0.131766 7.166368e-01 Saltwater\n", "9 0.107604 7.429141e-01 Heather grassland\n", "17 0.025027 8.743110e-01 Littoral sediment\n", "8 0.007901 9.291788e-01 Heather" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Little Owl 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
265828.9211550.000000e+00Fertiliser K
275828.9211550.000000e+00Fertiliser N
285828.9211550.000000e+00Fertiliser P
233559.2787600.000000e+00Surface type
213136.7965140.000000e+00Elevation
253021.8971530.000000e+00Inflowing drainage direction
21533.7293951.767848e-265Arable
291264.3390024.715367e-227Chlorothalonil_10km
301264.3390024.715367e-227Glyphosate_10km
311264.3390024.715367e-227Mancozeb_10km
321264.3390024.715367e-227Mecoprop-P_10km
341264.3390024.715367e-227Pendimethalin_10km
381105.0718114.491465e-203Tri-allate_10km
361072.1561715.425738e-198Prosulfocarb_10km
371072.1561715.425738e-198Sulphur_10km
33874.9894921.407758e-166Metamitron_10km
35850.4647821.507077e-162PropamocarbHydrochloride_10km
3805.5945524.209572e-155Improve grassland
24578.1812228.231576e-116Outflowing drainage direction
0413.0991241.653117e-85Deciduous woodland
20334.4337651.751859e-70Suburban
1978.3603431.530878e-18Urban
448.3348934.499781e-12Neutral grassland
540.5488572.250039e-10Calcareous grassland
2232.6405891.231441e-08Cumulative catchment area
1821.0088304.781964e-06Saltmarsh
78.5722713.442080e-03Fen
114.1479864.178254e-02Inland rock
83.7471955.300166e-02Heather
163.0777347.948576e-02Littoral rock
172.9921678.378370e-02Littoral sediment
152.8085809.387843e-02Supralittoral sediment
92.7857339.522440e-02Heather grassland
131.7982441.800390e-01Freshwater
10.8975533.435244e-01Coniferous woodland
120.7236183.950360e-01Saltwater
60.2384466.253705e-01Acid grassland
140.0900697.641124e-01Supralittoral rock
100.0037039.514821e-01Bog
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 5828.921155 0.000000e+00 Fertiliser K\n", "27 5828.921155 0.000000e+00 Fertiliser N\n", "28 5828.921155 0.000000e+00 Fertiliser P\n", "23 3559.278760 0.000000e+00 Surface type\n", "21 3136.796514 0.000000e+00 Elevation\n", "25 3021.897153 0.000000e+00 Inflowing drainage direction\n", "2 1533.729395 1.767848e-265 Arable\n", "29 1264.339002 4.715367e-227 Chlorothalonil_10km\n", "30 1264.339002 4.715367e-227 Glyphosate_10km\n", "31 1264.339002 4.715367e-227 Mancozeb_10km\n", "32 1264.339002 4.715367e-227 Mecoprop-P_10km\n", "34 1264.339002 4.715367e-227 Pendimethalin_10km\n", "38 1105.071811 4.491465e-203 Tri-allate_10km\n", "36 1072.156171 5.425738e-198 Prosulfocarb_10km\n", "37 1072.156171 5.425738e-198 Sulphur_10km\n", "33 874.989492 1.407758e-166 Metamitron_10km\n", "35 850.464782 1.507077e-162 PropamocarbHydrochloride_10km\n", "3 805.594552 4.209572e-155 Improve grassland\n", "24 578.181222 8.231576e-116 Outflowing drainage direction\n", "0 413.099124 1.653117e-85 Deciduous woodland\n", "20 334.433765 1.751859e-70 Suburban\n", "19 78.360343 1.530878e-18 Urban\n", "4 48.334893 4.499781e-12 Neutral grassland\n", "5 40.548857 2.250039e-10 Calcareous grassland\n", "22 32.640589 1.231441e-08 Cumulative catchment area\n", "18 21.008830 4.781964e-06 Saltmarsh\n", "7 8.572271 3.442080e-03 Fen\n", "11 4.147986 4.178254e-02 Inland rock\n", "8 3.747195 5.300166e-02 Heather\n", "16 3.077734 7.948576e-02 Littoral rock\n", "17 2.992167 8.378370e-02 Littoral sediment\n", "15 2.808580 9.387843e-02 Supralittoral sediment\n", "9 2.785733 9.522440e-02 Heather grassland\n", "13 1.798244 1.800390e-01 Freshwater\n", "1 0.897553 3.435244e-01 Coniferous woodland\n", "12 0.723618 3.950360e-01 Saltwater\n", "6 0.238446 6.253705e-01 Acid grassland\n", "14 0.090069 7.641124e-01 Supralittoral rock\n", "10 0.003703 9.514821e-01 Bog" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Mandarin Duck 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
262376.6825440.000000e+00Fertiliser K
272376.6825440.000000e+00Fertiliser N
282376.6825440.000000e+00Fertiliser P
231570.2518631.693384e-270Surface type
211262.4020529.104361e-227Elevation
291175.0766769.773437e-214Chlorothalonil_10km
301175.0766769.773437e-214Glyphosate_10km
311175.0766769.773437e-214Mancozeb_10km
321175.0766769.773437e-214Mecoprop-P_10km
341175.0766769.773437e-214Pendimethalin_10km
251125.6527413.142630e-206Inflowing drainage direction
361111.5438584.553603e-204Prosulfocarb_10km
371111.5438584.553603e-204Sulphur_10km
381034.2566844.383922e-192Tri-allate_10km
33842.8171012.757285e-161Metamitron_10km
35838.5840381.381625e-160PropamocarbHydrochloride_10km
3719.4444521.568797e-140Improve grassland
0542.5319022.114696e-109Deciduous woodland
2465.2576092.949695e-95Arable
24449.8700982.130590e-92Outflowing drainage direction
20407.3032502.050692e-84Suburban
19128.6168233.777432e-29Urban
542.3617239.028347e-11Calcareous grassland
437.8145868.945254e-10Neutral grassland
2235.2484403.278061e-09Cumulative catchment area
1325.4215374.915887e-07Freshwater
124.8828516.483057e-07Coniferous woodland
78.9491632.801367e-03Fen
188.1166054.419752e-03Saltmarsh
105.1803152.292305e-02Bog
64.5438353.312856e-02Acid grassland
162.6961601.007080e-01Littoral rock
121.9416051.636104e-01Saltwater
141.6950761.930455e-01Supralittoral rock
150.9825893.216502e-01Supralittoral sediment
170.9121603.396284e-01Littoral sediment
90.5291824.670147e-01Heather grassland
80.0540958.161030e-01Heather
110.0009759.750981e-01Inland rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 2376.682544 0.000000e+00 Fertiliser K\n", "27 2376.682544 0.000000e+00 Fertiliser N\n", "28 2376.682544 0.000000e+00 Fertiliser P\n", "23 1570.251863 1.693384e-270 Surface type\n", "21 1262.402052 9.104361e-227 Elevation\n", "29 1175.076676 9.773437e-214 Chlorothalonil_10km\n", "30 1175.076676 9.773437e-214 Glyphosate_10km\n", "31 1175.076676 9.773437e-214 Mancozeb_10km\n", "32 1175.076676 9.773437e-214 Mecoprop-P_10km\n", "34 1175.076676 9.773437e-214 Pendimethalin_10km\n", "25 1125.652741 3.142630e-206 Inflowing drainage direction\n", "36 1111.543858 4.553603e-204 Prosulfocarb_10km\n", "37 1111.543858 4.553603e-204 Sulphur_10km\n", "38 1034.256684 4.383922e-192 Tri-allate_10km\n", "33 842.817101 2.757285e-161 Metamitron_10km\n", "35 838.584038 1.381625e-160 PropamocarbHydrochloride_10km\n", "3 719.444452 1.568797e-140 Improve grassland\n", "0 542.531902 2.114696e-109 Deciduous woodland\n", "2 465.257609 2.949695e-95 Arable\n", "24 449.870098 2.130590e-92 Outflowing drainage direction\n", "20 407.303250 2.050692e-84 Suburban\n", "19 128.616823 3.777432e-29 Urban\n", "5 42.361723 9.028347e-11 Calcareous grassland\n", "4 37.814586 8.945254e-10 Neutral grassland\n", "22 35.248440 3.278061e-09 Cumulative catchment area\n", "13 25.421537 4.915887e-07 Freshwater\n", "1 24.882851 6.483057e-07 Coniferous woodland\n", "7 8.949163 2.801367e-03 Fen\n", "18 8.116605 4.419752e-03 Saltmarsh\n", "10 5.180315 2.292305e-02 Bog\n", "6 4.543835 3.312856e-02 Acid grassland\n", "16 2.696160 1.007080e-01 Littoral rock\n", "12 1.941605 1.636104e-01 Saltwater\n", "14 1.695076 1.930455e-01 Supralittoral rock\n", "15 0.982589 3.216502e-01 Supralittoral sediment\n", "17 0.912160 3.396284e-01 Littoral sediment\n", "9 0.529182 4.670147e-01 Heather grassland\n", "8 0.054095 8.161030e-01 Heather\n", "11 0.000975 9.750981e-01 Inland rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Mute Swan 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
214285.0298490.000000e+00Elevation
253424.6229320.000000e+00Inflowing drainage direction
232829.4820840.000000e+00Surface type
26720.6769379.649173e-141Fertiliser K
27720.6769379.649173e-141Fertiliser N
28720.6769379.649173e-141Fertiliser P
29564.3579102.468576e-113Chlorothalonil_10km
30564.3579102.468576e-113Glyphosate_10km
34564.3579102.468576e-113Pendimethalin_10km
31563.0222034.288984e-113Mancozeb_10km
32563.0222034.288984e-113Mecoprop-P_10km
3446.9564567.437265e-92Improve grassland
36385.5020472.781917e-80Prosulfocarb_10km
37385.5020472.781917e-80Sulphur_10km
38381.8482501.379960e-79Tri-allate_10km
2380.5633292.424716e-79Arable
24322.5370093.554675e-68Outflowing drainage direction
35309.1609001.433190e-65PropamocarbHydrochloride_10km
33304.9934289.344151e-65Metamitron_10km
0220.9902584.368413e-48Deciduous woodland
20128.1283094.777336e-29Suburban
1936.4035021.826230e-09Urban
127.0294982.155301e-07Coniferous woodland
2219.4736571.060429e-05Cumulative catchment area
617.9273812.372524e-05Acid grassland
411.8781845.767304e-04Neutral grassland
1711.6246786.604854e-04Littoral sediment
189.0961552.585619e-03Saltmarsh
138.2625554.079125e-03Freshwater
57.9441144.859938e-03Calcareous grassland
127.0858847.815924e-03Saltwater
107.0049388.176260e-03Bog
85.7931361.615635e-02Heather
155.0647792.449789e-02Supralittoral sediment
74.5742303.254681e-02Fen
164.5210713.357137e-02Littoral rock
93.4300126.413195e-02Heather grassland
141.7358381.877801e-01Supralittoral rock
110.0820677.745383e-01Inland rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "21 4285.029849 0.000000e+00 Elevation\n", "25 3424.622932 0.000000e+00 Inflowing drainage direction\n", "23 2829.482084 0.000000e+00 Surface type\n", "26 720.676937 9.649173e-141 Fertiliser K\n", "27 720.676937 9.649173e-141 Fertiliser N\n", "28 720.676937 9.649173e-141 Fertiliser P\n", "29 564.357910 2.468576e-113 Chlorothalonil_10km\n", "30 564.357910 2.468576e-113 Glyphosate_10km\n", "34 564.357910 2.468576e-113 Pendimethalin_10km\n", "31 563.022203 4.288984e-113 Mancozeb_10km\n", "32 563.022203 4.288984e-113 Mecoprop-P_10km\n", "3 446.956456 7.437265e-92 Improve grassland\n", "36 385.502047 2.781917e-80 Prosulfocarb_10km\n", "37 385.502047 2.781917e-80 Sulphur_10km\n", "38 381.848250 1.379960e-79 Tri-allate_10km\n", "2 380.563329 2.424716e-79 Arable\n", "24 322.537009 3.554675e-68 Outflowing drainage direction\n", "35 309.160900 1.433190e-65 PropamocarbHydrochloride_10km\n", "33 304.993428 9.344151e-65 Metamitron_10km\n", "0 220.990258 4.368413e-48 Deciduous woodland\n", "20 128.128309 4.777336e-29 Suburban\n", "19 36.403502 1.826230e-09 Urban\n", "1 27.029498 2.155301e-07 Coniferous woodland\n", "22 19.473657 1.060429e-05 Cumulative catchment area\n", "6 17.927381 2.372524e-05 Acid grassland\n", "4 11.878184 5.767304e-04 Neutral grassland\n", "17 11.624678 6.604854e-04 Littoral sediment\n", "18 9.096155 2.585619e-03 Saltmarsh\n", "13 8.262555 4.079125e-03 Freshwater\n", "5 7.944114 4.859938e-03 Calcareous grassland\n", "12 7.085884 7.815924e-03 Saltwater\n", "10 7.004938 8.176260e-03 Bog\n", "8 5.793136 1.615635e-02 Heather\n", "15 5.064779 2.449789e-02 Supralittoral sediment\n", "7 4.574230 3.254681e-02 Fen\n", "16 4.521071 3.357137e-02 Littoral rock\n", "9 3.430012 6.413195e-02 Heather grassland\n", "14 1.735838 1.877801e-01 Supralittoral rock\n", "11 0.082067 7.745383e-01 Inland rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pheasant 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
213918.0888890.000000e+00Elevation
233761.8084520.000000e+00Surface type
253082.7372720.000000e+00Inflowing drainage direction
26990.7978753.096770e-185Fertiliser K
27990.7978753.096770e-185Fertiliser N
28990.7978753.096770e-185Fertiliser P
29754.5641251.625473e-146Chlorothalonil_10km
30754.5641251.625473e-146Glyphosate_10km
34754.5641251.625473e-146Pendimethalin_10km
31752.7248643.333225e-146Mancozeb_10km
32752.7248643.333225e-146Mecoprop-P_10km
3588.0962901.397570e-117Improve grassland
38527.7282541.018826e-106Tri-allate_10km
36525.2799712.837985e-106Prosulfocarb_10km
37525.2799712.837985e-106Sulphur_10km
24489.6306319.347569e-100Outflowing drainage direction
2456.1203381.464185e-93Arable
35395.5995903.362167e-82PropamocarbHydrochloride_10km
33393.2544099.363558e-82Metamitron_10km
0242.8086331.830101e-52Deciduous woodland
20133.3918253.814028e-30Suburban
135.2970783.198252e-09Coniferous woodland
1931.5605262.132963e-08Urban
629.3485836.585463e-08Acid grassland
2223.9400591.052892e-06Cumulative catchment area
416.7101724.483242e-05Neutral grassland
515.3097069.352465e-05Calcareous grassland
813.3318952.659400e-04Heather
187.3432736.774440e-03Saltmarsh
96.4079601.141792e-02Heather grassland
175.2140792.248293e-02Littoral sediment
114.4545653.490084e-02Inland rock
74.1436474.188959e-02Fen
102.2580771.330373e-01Bog
141.6210272.030596e-01Supralittoral rock
161.1228002.894122e-01Littoral rock
130.9461623.307864e-01Freshwater
150.6873154.071534e-01Supralittoral sediment
120.2359826.271634e-01Saltwater
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "21 3918.088889 0.000000e+00 Elevation\n", "23 3761.808452 0.000000e+00 Surface type\n", "25 3082.737272 0.000000e+00 Inflowing drainage direction\n", "26 990.797875 3.096770e-185 Fertiliser K\n", "27 990.797875 3.096770e-185 Fertiliser N\n", "28 990.797875 3.096770e-185 Fertiliser P\n", "29 754.564125 1.625473e-146 Chlorothalonil_10km\n", "30 754.564125 1.625473e-146 Glyphosate_10km\n", "34 754.564125 1.625473e-146 Pendimethalin_10km\n", "31 752.724864 3.333225e-146 Mancozeb_10km\n", "32 752.724864 3.333225e-146 Mecoprop-P_10km\n", "3 588.096290 1.397570e-117 Improve grassland\n", "38 527.728254 1.018826e-106 Tri-allate_10km\n", "36 525.279971 2.837985e-106 Prosulfocarb_10km\n", "37 525.279971 2.837985e-106 Sulphur_10km\n", "24 489.630631 9.347569e-100 Outflowing drainage direction\n", "2 456.120338 1.464185e-93 Arable\n", "35 395.599590 3.362167e-82 PropamocarbHydrochloride_10km\n", "33 393.254409 9.363558e-82 Metamitron_10km\n", "0 242.808633 1.830101e-52 Deciduous woodland\n", "20 133.391825 3.814028e-30 Suburban\n", "1 35.297078 3.198252e-09 Coniferous woodland\n", "19 31.560526 2.132963e-08 Urban\n", "6 29.348583 6.585463e-08 Acid grassland\n", "22 23.940059 1.052892e-06 Cumulative catchment area\n", "4 16.710172 4.483242e-05 Neutral grassland\n", "5 15.309706 9.352465e-05 Calcareous grassland\n", "8 13.331895 2.659400e-04 Heather\n", "18 7.343273 6.774440e-03 Saltmarsh\n", "9 6.407960 1.141792e-02 Heather grassland\n", "17 5.214079 2.248293e-02 Littoral sediment\n", "11 4.454565 3.490084e-02 Inland rock\n", "7 4.143647 4.188959e-02 Fen\n", "10 2.258077 1.330373e-01 Bog\n", "14 1.621027 2.030596e-01 Supralittoral rock\n", "16 1.122800 2.894122e-01 Littoral rock\n", "13 0.946162 3.307864e-01 Freshwater\n", "15 0.687315 4.071534e-01 Supralittoral sediment\n", "12 0.235982 6.271634e-01 Saltwater" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pink-footed Goose 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
251682.2181221.284141e-285Inflowing drainage direction
211663.0889574.613765e-283Elevation
231582.0467684.142091e-272Surface type
2563.7180683.216301e-113Arable
24397.0487991.786134e-82Outflowing drainage direction
3354.8641852.008795e-74Improve grassland
26298.8596261.482852e-63Fertiliser K
27298.8596261.482852e-63Fertiliser N
28298.8596261.482852e-63Fertiliser P
31220.9543374.441810e-48Mancozeb_10km
32220.9543374.441810e-48Mecoprop-P_10km
29219.7979577.595595e-48Chlorothalonil_10km
30219.7979577.595595e-48Glyphosate_10km
34219.7979577.595595e-48Pendimethalin_10km
36168.5622962.020251e-37Prosulfocarb_10km
37168.5622962.020251e-37Sulphur_10km
0166.0937146.498543e-37Deciduous woodland
38154.3207811.735544e-34Tri-allate_10km
3591.6420762.278422e-21PropamocarbHydrochloride_10km
2089.4441546.671769e-21Suburban
3384.7117926.769856e-20Metamitron_10km
1761.5990866.041977e-15Littoral sediment
1847.6865276.226801e-12Saltmarsh
442.5741038.113151e-11Neutral grassland
1928.4599301.036802e-07Urban
1322.3494562.390759e-06Freshwater
121.2926424.128544e-06Coniferous woodland
620.6244885.835555e-06Acid grassland
719.4337001.082683e-05Fen
1519.2328741.201842e-05Supralittoral sediment
818.7444201.549662e-05Heather
1012.7682063.588010e-04Bog
1210.4058521.271339e-03Saltwater
910.3232521.329281e-03Heather grassland
227.3092356.903595e-03Cumulative catchment area
167.0608527.925588e-03Littoral rock
145.8041201.605596e-02Supralittoral rock
54.5610933.279693e-02Calcareous grassland
110.0032589.544873e-01Inland rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 1682.218122 1.284141e-285 Inflowing drainage direction\n", "21 1663.088957 4.613765e-283 Elevation\n", "23 1582.046768 4.142091e-272 Surface type\n", "2 563.718068 3.216301e-113 Arable\n", "24 397.048799 1.786134e-82 Outflowing drainage direction\n", "3 354.864185 2.008795e-74 Improve grassland\n", "26 298.859626 1.482852e-63 Fertiliser K\n", "27 298.859626 1.482852e-63 Fertiliser N\n", "28 298.859626 1.482852e-63 Fertiliser P\n", "31 220.954337 4.441810e-48 Mancozeb_10km\n", "32 220.954337 4.441810e-48 Mecoprop-P_10km\n", "29 219.797957 7.595595e-48 Chlorothalonil_10km\n", "30 219.797957 7.595595e-48 Glyphosate_10km\n", "34 219.797957 7.595595e-48 Pendimethalin_10km\n", "36 168.562296 2.020251e-37 Prosulfocarb_10km\n", "37 168.562296 2.020251e-37 Sulphur_10km\n", "0 166.093714 6.498543e-37 Deciduous woodland\n", "38 154.320781 1.735544e-34 Tri-allate_10km\n", "35 91.642076 2.278422e-21 PropamocarbHydrochloride_10km\n", "20 89.444154 6.671769e-21 Suburban\n", "33 84.711792 6.769856e-20 Metamitron_10km\n", "17 61.599086 6.041977e-15 Littoral sediment\n", "18 47.686527 6.226801e-12 Saltmarsh\n", "4 42.574103 8.113151e-11 Neutral grassland\n", "19 28.459930 1.036802e-07 Urban\n", "13 22.349456 2.390759e-06 Freshwater\n", "1 21.292642 4.128544e-06 Coniferous woodland\n", "6 20.624488 5.835555e-06 Acid grassland\n", "7 19.433700 1.082683e-05 Fen\n", "15 19.232874 1.201842e-05 Supralittoral sediment\n", "8 18.744420 1.549662e-05 Heather\n", "10 12.768206 3.588010e-04 Bog\n", "12 10.405852 1.271339e-03 Saltwater\n", "9 10.323252 1.329281e-03 Heather grassland\n", "22 7.309235 6.903595e-03 Cumulative catchment area\n", "16 7.060852 7.925588e-03 Littoral rock\n", "14 5.804120 1.605596e-02 Supralittoral rock\n", "5 4.561093 3.279693e-02 Calcareous grassland\n", "11 0.003258 9.544873e-01 Inland rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pintail 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
251063.7629691.090230e-196Inflowing drainage direction
23858.2064277.999859e-164Surface type
21827.3581451.001460e-158Elevation
26737.4884621.297224e-143Fertiliser K
27737.4884621.297224e-143Fertiliser N
28737.4884621.297224e-143Fertiliser P
2467.4804021.142876e-95Arable
29335.6517081.018161e-70Chlorothalonil_10km
30335.6517081.018161e-70Glyphosate_10km
31335.6517081.018161e-70Mancozeb_10km
32335.6517081.018161e-70Mecoprop-P_10km
34335.6517081.018161e-70Pendimethalin_10km
3323.7384742.076614e-68Improve grassland
38255.3969265.652887e-55Tri-allate_10km
24253.4879311.355850e-54Outflowing drainage direction
36224.6613897.966749e-49Prosulfocarb_10km
37223.4007341.428744e-48Sulphur_10km
33220.6024575.229386e-48Metamitron_10km
35219.5074048.692034e-48PropamocarbHydrochloride_10km
20181.2095145.168309e-40Suburban
0144.3113672.048534e-32Deciduous woodland
17112.3524239.640675e-26Littoral sediment
1892.8115611.286938e-21Saltmarsh
1972.8352142.326583e-17Urban
456.1734128.971952e-14Neutral grassland
1243.4398805.248672e-11Saltwater
729.2345816.980062e-08Fen
1528.1346241.224372e-07Supralittoral sediment
1315.1361921.024709e-04Freshwater
224.2883203.847095e-02Cumulative catchment area
101.2325862.670047e-01Bog
81.1318022.874875e-01Heather
91.0244653.115539e-01Heather grassland
160.7438973.884928e-01Littoral rock
60.2987075.847395e-01Acid grassland
110.2269726.338170e-01Inland rock
140.2127496.446585e-01Supralittoral rock
50.1054907.453641e-01Calcareous grassland
10.0618888.035558e-01Coniferous woodland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 1063.762969 1.090230e-196 Inflowing drainage direction\n", "23 858.206427 7.999859e-164 Surface type\n", "21 827.358145 1.001460e-158 Elevation\n", "26 737.488462 1.297224e-143 Fertiliser K\n", "27 737.488462 1.297224e-143 Fertiliser N\n", "28 737.488462 1.297224e-143 Fertiliser P\n", "2 467.480402 1.142876e-95 Arable\n", "29 335.651708 1.018161e-70 Chlorothalonil_10km\n", "30 335.651708 1.018161e-70 Glyphosate_10km\n", "31 335.651708 1.018161e-70 Mancozeb_10km\n", "32 335.651708 1.018161e-70 Mecoprop-P_10km\n", "34 335.651708 1.018161e-70 Pendimethalin_10km\n", "3 323.738474 2.076614e-68 Improve grassland\n", "38 255.396926 5.652887e-55 Tri-allate_10km\n", "24 253.487931 1.355850e-54 Outflowing drainage direction\n", "36 224.661389 7.966749e-49 Prosulfocarb_10km\n", "37 223.400734 1.428744e-48 Sulphur_10km\n", "33 220.602457 5.229386e-48 Metamitron_10km\n", "35 219.507404 8.692034e-48 PropamocarbHydrochloride_10km\n", "20 181.209514 5.168309e-40 Suburban\n", "0 144.311367 2.048534e-32 Deciduous woodland\n", "17 112.352423 9.640675e-26 Littoral sediment\n", "18 92.811561 1.286938e-21 Saltmarsh\n", "19 72.835214 2.326583e-17 Urban\n", "4 56.173412 8.971952e-14 Neutral grassland\n", "12 43.439880 5.248672e-11 Saltwater\n", "7 29.234581 6.980062e-08 Fen\n", "15 28.134624 1.224372e-07 Supralittoral sediment\n", "13 15.136192 1.024709e-04 Freshwater\n", "22 4.288320 3.847095e-02 Cumulative catchment area\n", "10 1.232586 2.670047e-01 Bog\n", "8 1.131802 2.874875e-01 Heather\n", "9 1.024465 3.115539e-01 Heather grassland\n", "16 0.743897 3.884928e-01 Littoral rock\n", "6 0.298707 5.847395e-01 Acid grassland\n", "11 0.226972 6.338170e-01 Inland rock\n", "14 0.212749 6.446585e-01 Supralittoral rock\n", "5 0.105490 7.453641e-01 Calcareous grassland\n", "1 0.061888 8.035558e-01 Coniferous woodland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Pochard 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
262050.3881400.000000e+00Fertiliser K
272050.3881400.000000e+00Fertiliser N
282050.3881400.000000e+00Fertiliser P
231829.3027786.722059e-305Surface type
251683.2655119.311467e-286Inflowing drainage direction
211558.0547097.942916e-269Elevation
2787.1535135.158704e-152Arable
29646.3148327.247431e-128Chlorothalonil_10km
30646.3148327.247431e-128Glyphosate_10km
31646.3148327.247431e-128Mancozeb_10km
32646.3148327.247431e-128Mecoprop-P_10km
34646.3148327.247431e-128Pendimethalin_10km
38570.9883151.595989e-114Tri-allate_10km
3562.7632914.773860e-113Improve grassland
33540.4050625.127710e-109Metamitron_10km
36539.8418106.483961e-109Prosulfocarb_10km
37537.1655521.978517e-108Sulphur_10km
24530.0958583.785982e-107Outflowing drainage direction
35522.6637398.488321e-106PropamocarbHydrochloride_10km
20412.9114861.793393e-85Suburban
0317.0688544.116031e-67Deciduous woodland
19152.8127253.557010e-34Urban
450.0728341.885312e-12Neutral grassland
1831.6448782.043336e-08Saltmarsh
2227.5311211.667173e-07Cumulative catchment area
1325.7943524.059689e-07Freshwater
723.0284711.684083e-06Fen
1716.5476244.881792e-05Littoral sediment
1215.9228476.775311e-05Saltwater
168.6926503.222677e-03Littoral rock
108.0017644.708055e-03Bog
16.8214319.057488e-03Coniferous woodland
155.7376541.667345e-02Supralittoral sediment
142.1808871.398519e-01Supralittoral rock
62.1105681.464025e-01Acid grassland
51.7643991.841902e-01Calcareous grassland
110.7652353.817738e-01Inland rock
80.2089576.476236e-01Heather
90.1337787.145760e-01Heather grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 2050.388140 0.000000e+00 Fertiliser K\n", "27 2050.388140 0.000000e+00 Fertiliser N\n", "28 2050.388140 0.000000e+00 Fertiliser P\n", "23 1829.302778 6.722059e-305 Surface type\n", "25 1683.265511 9.311467e-286 Inflowing drainage direction\n", "21 1558.054709 7.942916e-269 Elevation\n", "2 787.153513 5.158704e-152 Arable\n", "29 646.314832 7.247431e-128 Chlorothalonil_10km\n", "30 646.314832 7.247431e-128 Glyphosate_10km\n", "31 646.314832 7.247431e-128 Mancozeb_10km\n", "32 646.314832 7.247431e-128 Mecoprop-P_10km\n", "34 646.314832 7.247431e-128 Pendimethalin_10km\n", "38 570.988315 1.595989e-114 Tri-allate_10km\n", "3 562.763291 4.773860e-113 Improve grassland\n", "33 540.405062 5.127710e-109 Metamitron_10km\n", "36 539.841810 6.483961e-109 Prosulfocarb_10km\n", "37 537.165552 1.978517e-108 Sulphur_10km\n", "24 530.095858 3.785982e-107 Outflowing drainage direction\n", "35 522.663739 8.488321e-106 PropamocarbHydrochloride_10km\n", "20 412.911486 1.793393e-85 Suburban\n", "0 317.068854 4.116031e-67 Deciduous woodland\n", "19 152.812725 3.557010e-34 Urban\n", "4 50.072834 1.885312e-12 Neutral grassland\n", "18 31.644878 2.043336e-08 Saltmarsh\n", "22 27.531121 1.667173e-07 Cumulative catchment area\n", "13 25.794352 4.059689e-07 Freshwater\n", "7 23.028471 1.684083e-06 Fen\n", "17 16.547624 4.881792e-05 Littoral sediment\n", "12 15.922847 6.775311e-05 Saltwater\n", "16 8.692650 3.222677e-03 Littoral rock\n", "10 8.001764 4.708055e-03 Bog\n", "1 6.821431 9.057488e-03 Coniferous woodland\n", "15 5.737654 1.667345e-02 Supralittoral sediment\n", "14 2.180887 1.398519e-01 Supralittoral rock\n", "6 2.110568 1.464025e-01 Acid grassland\n", "5 1.764399 1.841902e-01 Calcareous grassland\n", "11 0.765235 3.817738e-01 Inland rock\n", "8 0.208957 6.476236e-01 Heather\n", "9 0.133778 7.145760e-01 Heather grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Red-legged Partridge 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
234665.5589430.000000e+00Surface type
213938.2622780.000000e+00Elevation
263622.9442600.000000e+00Fertiliser K
273622.9442600.000000e+00Fertiliser N
283622.9442600.000000e+00Fertiliser P
253326.3964450.000000e+00Inflowing drainage direction
21357.0415561.447426e-240Arable
291120.6726171.816264e-205Chlorothalonil_10km
301120.6726171.816264e-205Glyphosate_10km
341120.6726171.816264e-205Pendimethalin_10km
311116.3806768.252559e-205Mancozeb_10km
321116.3806768.252559e-205Mecoprop-P_10km
36881.0881101.415221e-167Prosulfocarb_10km
37881.0881101.415221e-167Sulphur_10km
3877.3162105.857134e-167Improve grassland
38872.2203764.000470e-166Tri-allate_10km
24800.7904402.674164e-154Outflowing drainage direction
33704.5553015.644440e-138Metamitron_10km
35695.2778522.238974e-136PropamocarbHydrochloride_10km
0333.8730272.249262e-70Deciduous woodland
20215.1301086.638999e-47Suburban
541.2889571.549560e-10Calcareous grassland
2235.6958642.613167e-09Cumulative catchment area
434.3468915.177697e-09Neutral grassland
1931.0371942.784158e-08Urban
117.0365643.779031e-05Coniferous woodland
815.3206689.298663e-05Heather
714.6927451.294536e-04Fen
1812.9665143.228901e-04Saltmarsh
136.6307341.007677e-02Freshwater
105.9223991.501478e-02Bog
124.2658423.898227e-02Saltwater
113.9637824.659090e-02Inland rock
63.1595557.559756e-02Acid grassland
172.0791351.494420e-01Littoral sediment
160.7519813.859278e-01Littoral rock
140.6857454.076894e-01Supralittoral rock
90.6840704.082628e-01Heather grassland
150.0689347.929161e-01Supralittoral sediment
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "23 4665.558943 0.000000e+00 Surface type\n", "21 3938.262278 0.000000e+00 Elevation\n", "26 3622.944260 0.000000e+00 Fertiliser K\n", "27 3622.944260 0.000000e+00 Fertiliser N\n", "28 3622.944260 0.000000e+00 Fertiliser P\n", "25 3326.396445 0.000000e+00 Inflowing drainage direction\n", "2 1357.041556 1.447426e-240 Arable\n", "29 1120.672617 1.816264e-205 Chlorothalonil_10km\n", "30 1120.672617 1.816264e-205 Glyphosate_10km\n", "34 1120.672617 1.816264e-205 Pendimethalin_10km\n", "31 1116.380676 8.252559e-205 Mancozeb_10km\n", "32 1116.380676 8.252559e-205 Mecoprop-P_10km\n", "36 881.088110 1.415221e-167 Prosulfocarb_10km\n", "37 881.088110 1.415221e-167 Sulphur_10km\n", "3 877.316210 5.857134e-167 Improve grassland\n", "38 872.220376 4.000470e-166 Tri-allate_10km\n", "24 800.790440 2.674164e-154 Outflowing drainage direction\n", "33 704.555301 5.644440e-138 Metamitron_10km\n", "35 695.277852 2.238974e-136 PropamocarbHydrochloride_10km\n", "0 333.873027 2.249262e-70 Deciduous woodland\n", "20 215.130108 6.638999e-47 Suburban\n", "5 41.288957 1.549560e-10 Calcareous grassland\n", "22 35.695864 2.613167e-09 Cumulative catchment area\n", "4 34.346891 5.177697e-09 Neutral grassland\n", "19 31.037194 2.784158e-08 Urban\n", "1 17.036564 3.779031e-05 Coniferous woodland\n", "8 15.320668 9.298663e-05 Heather\n", "7 14.692745 1.294536e-04 Fen\n", "18 12.966514 3.228901e-04 Saltmarsh\n", "13 6.630734 1.007677e-02 Freshwater\n", "10 5.922399 1.501478e-02 Bog\n", "12 4.265842 3.898227e-02 Saltwater\n", "11 3.963782 4.659090e-02 Inland rock\n", "6 3.159555 7.559756e-02 Acid grassland\n", "17 2.079135 1.494420e-01 Littoral sediment\n", "16 0.751981 3.859278e-01 Littoral rock\n", "14 0.685745 4.076894e-01 Supralittoral rock\n", "9 0.684070 4.082628e-01 Heather grassland\n", "15 0.068934 7.929161e-01 Supralittoral sediment" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Ring-necked Parakeet 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
20423.3380151.956491e-87Suburban
26403.8892039.058641e-84Fertiliser K
27403.8892039.058641e-84Fertiliser N
28403.8892039.058641e-84Fertiliser P
23263.5393691.363343e-56Surface type
19223.8810901.143620e-48Urban
25198.4463821.587181e-43Inflowing drainage direction
0191.6361873.852663e-42Deciduous woodland
21178.3481781.989223e-39Elevation
24150.5357101.051957e-33Outflowing drainage direction
3139.6786051.876150e-31Improve grassland
36138.6132613.123937e-31Prosulfocarb_10km
37138.6132613.123937e-31Sulphur_10km
38124.9896992.162435e-28Tri-allate_10km
31115.7634521.851985e-26Mancozeb_10km
32115.7634521.851985e-26Mecoprop-P_10km
29115.4089992.198059e-26Chlorothalonil_10km
30115.4089992.198059e-26Glyphosate_10km
34115.4089992.198059e-26Pendimethalin_10km
3584.9643105.981668e-20PropamocarbHydrochloride_10km
3381.5565213.183136e-19Metamitron_10km
2254.1492212.460819e-13Cumulative catchment area
243.9909003.978728e-11Arable
715.4858378.524703e-05Fen
129.0506612.650526e-03Saltwater
44.7285652.975315e-02Neutral grassland
13.5436885.988106e-02Coniferous woodland
63.4223496.442985e-02Acid grassland
91.6696941.964114e-01Heather grassland
101.3836832.395797e-01Bog
80.9165343.384733e-01Heather
130.6325344.264981e-01Freshwater
110.4264545.137902e-01Inland rock
170.3672885.445378e-01Littoral sediment
140.3269195.675272e-01Supralittoral rock
160.3017215.828517e-01Littoral rock
180.1812676.703211e-01Saltmarsh
50.0600038.065096e-01Calcareous grassland
150.0567318.117571e-01Supralittoral sediment
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "20 423.338015 1.956491e-87 Suburban\n", "26 403.889203 9.058641e-84 Fertiliser K\n", "27 403.889203 9.058641e-84 Fertiliser N\n", "28 403.889203 9.058641e-84 Fertiliser P\n", "23 263.539369 1.363343e-56 Surface type\n", "19 223.881090 1.143620e-48 Urban\n", "25 198.446382 1.587181e-43 Inflowing drainage direction\n", "0 191.636187 3.852663e-42 Deciduous woodland\n", "21 178.348178 1.989223e-39 Elevation\n", "24 150.535710 1.051957e-33 Outflowing drainage direction\n", "3 139.678605 1.876150e-31 Improve grassland\n", "36 138.613261 3.123937e-31 Prosulfocarb_10km\n", "37 138.613261 3.123937e-31 Sulphur_10km\n", "38 124.989699 2.162435e-28 Tri-allate_10km\n", "31 115.763452 1.851985e-26 Mancozeb_10km\n", "32 115.763452 1.851985e-26 Mecoprop-P_10km\n", "29 115.408999 2.198059e-26 Chlorothalonil_10km\n", "30 115.408999 2.198059e-26 Glyphosate_10km\n", "34 115.408999 2.198059e-26 Pendimethalin_10km\n", "35 84.964310 5.981668e-20 PropamocarbHydrochloride_10km\n", "33 81.556521 3.183136e-19 Metamitron_10km\n", "22 54.149221 2.460819e-13 Cumulative catchment area\n", "2 43.990900 3.978728e-11 Arable\n", "7 15.485837 8.524703e-05 Fen\n", "12 9.050661 2.650526e-03 Saltwater\n", "4 4.728565 2.975315e-02 Neutral grassland\n", "1 3.543688 5.988106e-02 Coniferous woodland\n", "6 3.422349 6.442985e-02 Acid grassland\n", "9 1.669694 1.964114e-01 Heather grassland\n", "10 1.383683 2.395797e-01 Bog\n", "8 0.916534 3.384733e-01 Heather\n", "13 0.632534 4.264981e-01 Freshwater\n", "11 0.426454 5.137902e-01 Inland rock\n", "17 0.367288 5.445378e-01 Littoral sediment\n", "14 0.326919 5.675272e-01 Supralittoral rock\n", "16 0.301721 5.828517e-01 Littoral rock\n", "18 0.181267 6.703211e-01 Saltmarsh\n", "5 0.060003 8.065096e-01 Calcareous grassland\n", "15 0.056731 8.117571e-01 Supralittoral sediment" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Rock Dove 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
213705.9981320.000000e+00Elevation
233523.4914730.000000e+00Surface type
253167.6120360.000000e+00Inflowing drainage direction
261224.8175613.401946e-221Fertiliser K
271224.8175613.401946e-221Fertiliser N
281224.8175613.401946e-221Fertiliser P
29661.1381651.864195e-130Chlorothalonil_10km
30661.1381651.864195e-130Glyphosate_10km
34661.1381651.864195e-130Pendimethalin_10km
31659.1162534.197999e-130Mancozeb_10km
32659.1162534.197999e-130Mecoprop-P_10km
3657.1311999.319155e-130Improve grassland
2574.4537723.822481e-115Arable
24551.7702884.542649e-111Outflowing drainage direction
36511.9298967.675625e-104Prosulfocarb_10km
37511.9298967.675625e-104Sulphur_10km
38494.0127961.463912e-100Tri-allate_10km
33423.3975301.906764e-87Metamitron_10km
35410.4036015.329040e-85PropamocarbHydrochloride_10km
0327.8647463.283643e-69Deciduous woodland
20215.8068104.847374e-47Suburban
1963.8752941.953389e-15Urban
2226.4014912.973417e-07Cumulative catchment area
425.4435834.860554e-07Neutral grassland
116.1056386.155325e-05Coniferous woodland
512.9873623.193321e-04Calcareous grassland
1312.5491734.031728e-04Freshwater
189.8185441.746353e-03Saltmarsh
69.0491662.652688e-03Acid grassland
78.4083403.765535e-03Fen
97.2786227.021903e-03Heather grassland
106.9519368.421371e-03Bog
176.8077789.126817e-03Littoral sediment
166.4108241.139956e-02Littoral rock
156.2114701.275272e-02Supralittoral sediment
143.7696685.229508e-02Supralittoral rock
122.3762991.233076e-01Saltwater
81.0488633.058619e-01Heather
110.0767507.817728e-01Inland rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "21 3705.998132 0.000000e+00 Elevation\n", "23 3523.491473 0.000000e+00 Surface type\n", "25 3167.612036 0.000000e+00 Inflowing drainage direction\n", "26 1224.817561 3.401946e-221 Fertiliser K\n", "27 1224.817561 3.401946e-221 Fertiliser N\n", "28 1224.817561 3.401946e-221 Fertiliser P\n", "29 661.138165 1.864195e-130 Chlorothalonil_10km\n", "30 661.138165 1.864195e-130 Glyphosate_10km\n", "34 661.138165 1.864195e-130 Pendimethalin_10km\n", "31 659.116253 4.197999e-130 Mancozeb_10km\n", "32 659.116253 4.197999e-130 Mecoprop-P_10km\n", "3 657.131199 9.319155e-130 Improve grassland\n", "2 574.453772 3.822481e-115 Arable\n", "24 551.770288 4.542649e-111 Outflowing drainage direction\n", "36 511.929896 7.675625e-104 Prosulfocarb_10km\n", "37 511.929896 7.675625e-104 Sulphur_10km\n", "38 494.012796 1.463912e-100 Tri-allate_10km\n", "33 423.397530 1.906764e-87 Metamitron_10km\n", "35 410.403601 5.329040e-85 PropamocarbHydrochloride_10km\n", "0 327.864746 3.283643e-69 Deciduous woodland\n", "20 215.806810 4.847374e-47 Suburban\n", "19 63.875294 1.953389e-15 Urban\n", "22 26.401491 2.973417e-07 Cumulative catchment area\n", "4 25.443583 4.860554e-07 Neutral grassland\n", "1 16.105638 6.155325e-05 Coniferous woodland\n", "5 12.987362 3.193321e-04 Calcareous grassland\n", "13 12.549173 4.031728e-04 Freshwater\n", "18 9.818544 1.746353e-03 Saltmarsh\n", "6 9.049166 2.652688e-03 Acid grassland\n", "7 8.408340 3.765535e-03 Fen\n", "9 7.278622 7.021903e-03 Heather grassland\n", "10 6.951936 8.421371e-03 Bog\n", "17 6.807778 9.126817e-03 Littoral sediment\n", "16 6.410824 1.139956e-02 Littoral rock\n", "15 6.211470 1.275272e-02 Supralittoral sediment\n", "14 3.769668 5.229508e-02 Supralittoral rock\n", "12 2.376299 1.233076e-01 Saltwater\n", "8 1.048863 3.058619e-01 Heather\n", "11 0.076750 7.817728e-01 Inland rock" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Ruddy Duck 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
26394.3692375.753642e-82Fertiliser K
27394.3692375.753642e-82Fertiliser N
28394.3692375.753642e-82Fertiliser P
20222.0922652.620429e-48Suburban
23201.3859844.016297e-44Surface type
25172.8424862.671584e-38Inflowing drainage direction
2165.2295189.785071e-37Arable
21161.7464265.100030e-36Elevation
19132.8340714.984261e-30Urban
29128.6092663.791177e-29Chlorothalonil_10km
30128.6092663.791177e-29Glyphosate_10km
31128.6092663.791177e-29Mancozeb_10km
32128.6092663.791177e-29Mecoprop-P_10km
34128.6092663.791177e-29Pendimethalin_10km
38113.2094106.367982e-26Tri-allate_10km
36100.2427273.438663e-23Prosulfocarb_10km
37100.2427273.438663e-23Sulphur_10km
3396.0473522.653861e-22Metamitron_10km
3588.0282561.333796e-20PropamocarbHydrochloride_10km
2485.7932093.984836e-20Outflowing drainage direction
471.3412424.862584e-17Neutral grassland
366.5484735.196588e-16Improve grassland
051.7929357.978585e-13Deciduous woodland
2242.7120317.569164e-11Cumulative catchment area
1210.6524171.113138e-03Saltwater
176.7388809.485083e-03Littoral sediment
133.5371976.011553e-02Freshwater
181.8649631.721681e-01Saltmarsh
91.5617202.115231e-01Heather grassland
81.5407142.146205e-01Heather
101.4714902.252181e-01Bog
61.4120582.348207e-01Acid grassland
70.6869574.072755e-01Fen
110.5815604.457690e-01Inland rock
140.5403644.623466e-01Supralittoral rock
160.2787015.975977e-01Littoral rock
150.0595688.071982e-01Supralittoral sediment
10.0552938.141138e-01Coniferous woodland
50.0540178.162336e-01Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "26 394.369237 5.753642e-82 Fertiliser K\n", "27 394.369237 5.753642e-82 Fertiliser N\n", "28 394.369237 5.753642e-82 Fertiliser P\n", "20 222.092265 2.620429e-48 Suburban\n", "23 201.385984 4.016297e-44 Surface type\n", "25 172.842486 2.671584e-38 Inflowing drainage direction\n", "2 165.229518 9.785071e-37 Arable\n", "21 161.746426 5.100030e-36 Elevation\n", "19 132.834071 4.984261e-30 Urban\n", "29 128.609266 3.791177e-29 Chlorothalonil_10km\n", "30 128.609266 3.791177e-29 Glyphosate_10km\n", "31 128.609266 3.791177e-29 Mancozeb_10km\n", "32 128.609266 3.791177e-29 Mecoprop-P_10km\n", "34 128.609266 3.791177e-29 Pendimethalin_10km\n", "38 113.209410 6.367982e-26 Tri-allate_10km\n", "36 100.242727 3.438663e-23 Prosulfocarb_10km\n", "37 100.242727 3.438663e-23 Sulphur_10km\n", "33 96.047352 2.653861e-22 Metamitron_10km\n", "35 88.028256 1.333796e-20 PropamocarbHydrochloride_10km\n", "24 85.793209 3.984836e-20 Outflowing drainage direction\n", "4 71.341242 4.862584e-17 Neutral grassland\n", "3 66.548473 5.196588e-16 Improve grassland\n", "0 51.792935 7.978585e-13 Deciduous woodland\n", "22 42.712031 7.569164e-11 Cumulative catchment area\n", "12 10.652417 1.113138e-03 Saltwater\n", "17 6.738880 9.485083e-03 Littoral sediment\n", "13 3.537197 6.011553e-02 Freshwater\n", "18 1.864963 1.721681e-01 Saltmarsh\n", "9 1.561720 2.115231e-01 Heather grassland\n", "8 1.540714 2.146205e-01 Heather\n", "10 1.471490 2.252181e-01 Bog\n", "6 1.412058 2.348207e-01 Acid grassland\n", "7 0.686957 4.072755e-01 Fen\n", "11 0.581560 4.457690e-01 Inland rock\n", "14 0.540364 4.623466e-01 Supralittoral rock\n", "16 0.278701 5.975977e-01 Littoral rock\n", "15 0.059568 8.071982e-01 Supralittoral sediment\n", "1 0.055293 8.141138e-01 Coniferous woodland\n", "5 0.054017 8.162336e-01 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Whooper Swan 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
251078.3439585.965819e-199Inflowing drainage direction
211035.3040273.004691e-192Elevation
23961.3884541.486786e-180Surface type
3318.4245512.241705e-67Improve grassland
24265.8198054.812689e-57Outflowing drainage direction
2203.1034711.800704e-44Arable
31163.9302551.810961e-36Mancozeb_10km
32163.9302551.810961e-36Mecoprop-P_10km
29163.0227722.784317e-36Chlorothalonil_10km
30163.0227722.784317e-36Glyphosate_10km
34163.0227722.784317e-36Pendimethalin_10km
0158.1299132.838432e-35Deciduous woodland
26131.5048779.433368e-30Fertiliser K
27131.5048779.433368e-30Fertiliser N
28131.5048779.433368e-30Fertiliser P
3889.9477005.215517e-21Tri-allate_10km
3674.8700478.532626e-18Prosulfocarb_10km
3774.8700478.532626e-18Sulphur_10km
2066.6520664.936860e-16Suburban
3563.4089442.461532e-15PropamocarbHydrochloride_10km
3362.5096553.845242e-15Metamitron_10km
955.1358351.504615e-13Heather grassland
1748.7788973.602661e-12Littoral sediment
1638.9692094.992149e-10Littoral rock
727.5890081.618513e-07Fen
123.0787541.640978e-06Coniferous woodland
1421.3076494.096605e-06Supralittoral rock
1920.9656984.889980e-06Urban
1820.8238705.262746e-06Saltmarsh
1519.6434479.708795e-06Supralittoral sediment
2219.2782061.173841e-05Cumulative catchment area
615.3403629.202786e-05Acid grassland
1015.2209899.799603e-05Bog
1313.9476031.919085e-04Freshwater
812.7188293.683531e-04Heather
412.4657414.214970e-04Neutral grassland
111.3575312.440699e-01Inland rock
120.9411243.320768e-01Saltwater
50.0032089.548383e-01Calcareous grassland
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 1078.343958 5.965819e-199 Inflowing drainage direction\n", "21 1035.304027 3.004691e-192 Elevation\n", "23 961.388454 1.486786e-180 Surface type\n", "3 318.424551 2.241705e-67 Improve grassland\n", "24 265.819805 4.812689e-57 Outflowing drainage direction\n", "2 203.103471 1.800704e-44 Arable\n", "31 163.930255 1.810961e-36 Mancozeb_10km\n", "32 163.930255 1.810961e-36 Mecoprop-P_10km\n", "29 163.022772 2.784317e-36 Chlorothalonil_10km\n", "30 163.022772 2.784317e-36 Glyphosate_10km\n", "34 163.022772 2.784317e-36 Pendimethalin_10km\n", "0 158.129913 2.838432e-35 Deciduous woodland\n", "26 131.504877 9.433368e-30 Fertiliser K\n", "27 131.504877 9.433368e-30 Fertiliser N\n", "28 131.504877 9.433368e-30 Fertiliser P\n", "38 89.947700 5.215517e-21 Tri-allate_10km\n", "36 74.870047 8.532626e-18 Prosulfocarb_10km\n", "37 74.870047 8.532626e-18 Sulphur_10km\n", "20 66.652066 4.936860e-16 Suburban\n", "35 63.408944 2.461532e-15 PropamocarbHydrochloride_10km\n", "33 62.509655 3.845242e-15 Metamitron_10km\n", "9 55.135835 1.504615e-13 Heather grassland\n", "17 48.778897 3.602661e-12 Littoral sediment\n", "16 38.969209 4.992149e-10 Littoral rock\n", "7 27.589008 1.618513e-07 Fen\n", "1 23.078754 1.640978e-06 Coniferous woodland\n", "14 21.307649 4.096605e-06 Supralittoral rock\n", "19 20.965698 4.889980e-06 Urban\n", "18 20.823870 5.262746e-06 Saltmarsh\n", "15 19.643447 9.708795e-06 Supralittoral sediment\n", "22 19.278206 1.173841e-05 Cumulative catchment area\n", "6 15.340362 9.202786e-05 Acid grassland\n", "10 15.220989 9.799603e-05 Bog\n", "13 13.947603 1.919085e-04 Freshwater\n", "8 12.718829 3.683531e-04 Heather\n", "4 12.465741 4.214970e-04 Neutral grassland\n", "11 1.357531 2.440699e-01 Inland rock\n", "12 0.941124 3.320768e-01 Saltwater\n", "5 0.003208 9.548383e-01 Calcareous grassland" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Wigeon 10km\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
F ScoreP ValueAttribute
252620.0808220.000000e+00Inflowing drainage direction
212480.0908000.000000e+00Elevation
232181.1226690.000000e+00Surface type
26741.0878433.162856e-144Fertiliser K
27741.0878433.162856e-144Fertiliser N
28741.0878433.162856e-144Fertiliser P
3510.8959401.185521e-103Improve grassland
2465.0924943.165023e-95Arable
29453.6977094.131083e-93Chlorothalonil_10km
30453.6977094.131083e-93Glyphosate_10km
31453.6977094.131083e-93Mancozeb_10km
32453.6977094.131083e-93Mecoprop-P_10km
34453.6977094.131083e-93Pendimethalin_10km
24411.7573522.959990e-85Outflowing drainage direction
38340.9622209.579211e-72Tri-allate_10km
36337.5765224.320640e-71Prosulfocarb_10km
37337.5765224.320640e-71Sulphur_10km
33267.5895342.146332e-57Metamitron_10km
35259.4347338.902052e-56PropamocarbHydrochloride_10km
0204.7055888.524358e-45Deciduous woodland
20193.2636841.796472e-42Suburban
1977.4475942.398464e-18Urban
1731.1173092.672853e-08Littoral sediment
430.3962613.859326e-08Neutral grassland
1828.2061381.180414e-07Saltmarsh
2224.2485898.983058e-07Cumulative catchment area
1221.8767363.052102e-06Saltwater
1320.1622837.416147e-06Freshwater
717.4878992.984583e-05Fen
816.2603565.675365e-05Heather
115.8239127.136713e-05Coniferous woodland
914.0443561.823323e-04Heather grassland
1512.8134463.502691e-04Supralittoral sediment
58.3369773.915851e-03Calcareous grassland
168.0987554.463355e-03Littoral rock
64.3604183.687781e-02Acid grassland
140.6568844.177344e-01Supralittoral rock
100.1715506.787714e-01Bog
110.0027139.584656e-01Inland rock
\n", "
" ], "text/plain": [ " F Score P Value Attribute\n", "25 2620.080822 0.000000e+00 Inflowing drainage direction\n", "21 2480.090800 0.000000e+00 Elevation\n", "23 2181.122669 0.000000e+00 Surface type\n", "26 741.087843 3.162856e-144 Fertiliser K\n", "27 741.087843 3.162856e-144 Fertiliser N\n", "28 741.087843 3.162856e-144 Fertiliser P\n", "3 510.895940 1.185521e-103 Improve grassland\n", "2 465.092494 3.165023e-95 Arable\n", "29 453.697709 4.131083e-93 Chlorothalonil_10km\n", "30 453.697709 4.131083e-93 Glyphosate_10km\n", "31 453.697709 4.131083e-93 Mancozeb_10km\n", "32 453.697709 4.131083e-93 Mecoprop-P_10km\n", "34 453.697709 4.131083e-93 Pendimethalin_10km\n", "24 411.757352 2.959990e-85 Outflowing drainage direction\n", "38 340.962220 9.579211e-72 Tri-allate_10km\n", "36 337.576522 4.320640e-71 Prosulfocarb_10km\n", "37 337.576522 4.320640e-71 Sulphur_10km\n", "33 267.589534 2.146332e-57 Metamitron_10km\n", "35 259.434733 8.902052e-56 PropamocarbHydrochloride_10km\n", "0 204.705588 8.524358e-45 Deciduous woodland\n", "20 193.263684 1.796472e-42 Suburban\n", "19 77.447594 2.398464e-18 Urban\n", "17 31.117309 2.672853e-08 Littoral sediment\n", "4 30.396261 3.859326e-08 Neutral grassland\n", "18 28.206138 1.180414e-07 Saltmarsh\n", "22 24.248589 8.983058e-07 Cumulative catchment area\n", "12 21.876736 3.052102e-06 Saltwater\n", "13 20.162283 7.416147e-06 Freshwater\n", "7 17.487899 2.984583e-05 Fen\n", "8 16.260356 5.675365e-05 Heather\n", "1 15.823912 7.136713e-05 Coniferous woodland\n", "9 14.044356 1.823323e-04 Heather grassland\n", "15 12.813446 3.502691e-04 Supralittoral sediment\n", "5 8.336977 3.915851e-03 Calcareous grassland\n", "16 8.098755 4.463355e-03 Littoral rock\n", "6 4.360418 3.687781e-02 Acid grassland\n", "14 0.656884 4.177344e-01 Supralittoral rock\n", "10 0.171550 6.787714e-01 Bog\n", "11 0.002713 9.584656e-01 Inland rock" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for dict in df_dicts:\n", " print(dict['name'])\n", " display(dict['kbest']['Dataframe'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.9.13 ('env': venv)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "f025c48a9b67ab76bdc0400dfa0f9ba99120976b4a6ec6a63d1c946516165c91" } } }, "nbformat": 4, "nbformat_minor": 2 }