{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import rioxarray\n",
"import json, os\n",
"\n",
"from sklearn.feature_selection import SelectKBest\n",
"from sklearn.feature_selection import chi2, f_classif, mutual_info_classif\n",
"from sklearn.metrics import f1_score, classification_report\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"from sklearn.linear_model import LogisticRegression, SGDClassifier\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier, StackingClassifier\n",
"\n",
"from imblearn.over_sampling import RandomOverSampler, SMOTE"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"seed = 42\n",
"verbose = False\n",
"details = False"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 5000.0 | \n",
" 185000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 155000.0 | \n",
" 595000.0 | \n",
" 17 | \n",
" 0 | \n",
" 44 | \n",
" 18 | \n",
" 0 | \n",
" 21 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 345000.0 | \n",
" 515000.0 | \n",
" 2 | \n",
" 0 | \n",
" 94 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 615000.0 | \n",
" 345000.0 | \n",
" 11 | \n",
" 1 | \n",
" 1 | \n",
" 70 | \n",
" 0 | \n",
" 0 | \n",
" 16 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.397917e+01 | \n",
" 4.867601e+00 | \n",
" 6.460490e+00 | \n",
" 8.218880e+00 | \n",
" 1.587924e+01 | \n",
" 4.202494e+00 | \n",
" 3.598979e-01 | \n",
" 4.151691e-01 | \n",
" 1.232334e-04 | \n",
" 0 | \n",
"
\n",
" \n",
" 1265000.0 | \n",
" 295000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"5000.0 185000.0 0 0 0 \n",
"155000.0 595000.0 17 0 44 \n",
"345000.0 515000.0 2 0 94 \n",
"615000.0 345000.0 11 1 1 \n",
"1265000.0 295000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"5000.0 185000.0 0 0 \n",
"155000.0 595000.0 18 0 \n",
"345000.0 515000.0 3 0 \n",
"615000.0 345000.0 70 0 \n",
"1265000.0 295000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"5000.0 185000.0 0 0 0 0 \n",
"155000.0 595000.0 21 0 0 0 \n",
"345000.0 515000.0 0 0 0 0 \n",
"615000.0 345000.0 0 16 0 0 \n",
"1265000.0 295000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"5000.0 185000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"155000.0 595000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"345000.0 515000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"615000.0 345000.0 0 ... 2.397917e+01 4.867601e+00 \n",
"1265000.0 295000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"5000.0 185000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"155000.0 595000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"345000.0 515000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"615000.0 345000.0 6.460490e+00 8.218880e+00 1.587924e+01 \n",
"1265000.0 295000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"5000.0 185000.0 -3.400000e+38 -3.400000e+38 \n",
"155000.0 595000.0 -3.400000e+38 -3.400000e+38 \n",
"345000.0 515000.0 -3.400000e+38 -3.400000e+38 \n",
"615000.0 345000.0 4.202494e+00 3.598979e-01 \n",
"1265000.0 295000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"5000.0 185000.0 -3.400000e+38 -3.400000e+38 0 \n",
"155000.0 595000.0 -3.400000e+38 -3.400000e+38 0 \n",
"345000.0 515000.0 -3.400000e+38 -3.400000e+38 0 \n",
"615000.0 345000.0 4.151691e-01 1.232334e-04 0 \n",
"1265000.0 295000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 115000.0 | \n",
" 565000.0 | \n",
" 6 | \n",
" 0 | \n",
" 8 | \n",
" 75 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 1 | \n",
"
\n",
" \n",
" 965000.0 | \n",
" 225000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 100 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 135000.0 | \n",
" 335000.0 | \n",
" 0 | \n",
" 0 | \n",
" 36 | \n",
" 18 | \n",
" 14 | \n",
" 0 | \n",
" 0 | \n",
" 8 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 1.994784e+01 | \n",
" 2.263919e+00 | \n",
" 3.575538e+00 | \n",
" 1.609499e+01 | \n",
" 1.175125e+01 | \n",
" 8.727835e+00 | \n",
" 1.639951e+01 | \n",
" 3.861626e+00 | \n",
" 6.875669e-01 | \n",
" 1 | \n",
"
\n",
" \n",
" 1235000.0 | \n",
" 315000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1275000.0 | \n",
" 605000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"115000.0 565000.0 6 0 8 \n",
"965000.0 225000.0 0 0 0 \n",
"135000.0 335000.0 0 0 36 \n",
"1235000.0 315000.0 0 0 0 \n",
"1275000.0 605000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"115000.0 565000.0 75 0 \n",
"965000.0 225000.0 0 0 \n",
"135000.0 335000.0 18 14 \n",
"1235000.0 315000.0 0 0 \n",
"1275000.0 605000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"115000.0 565000.0 0 0 0 0 \n",
"965000.0 225000.0 0 0 0 0 \n",
"135000.0 335000.0 0 0 8 0 \n",
"1235000.0 315000.0 0 0 0 0 \n",
"1275000.0 605000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"115000.0 565000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"965000.0 225000.0 100 ... -3.400000e+38 -3.400000e+38 \n",
"135000.0 335000.0 0 ... 1.994784e+01 2.263919e+00 \n",
"1235000.0 315000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1275000.0 605000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"115000.0 565000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"965000.0 225000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"135000.0 335000.0 3.575538e+00 1.609499e+01 1.175125e+01 \n",
"1235000.0 315000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1275000.0 605000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"115000.0 565000.0 -3.400000e+38 -3.400000e+38 \n",
"965000.0 225000.0 -3.400000e+38 -3.400000e+38 \n",
"135000.0 335000.0 8.727835e+00 1.639951e+01 \n",
"1235000.0 315000.0 -3.400000e+38 -3.400000e+38 \n",
"1275000.0 605000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"115000.0 565000.0 -3.400000e+38 -3.400000e+38 1 \n",
"965000.0 225000.0 -3.400000e+38 -3.400000e+38 0 \n",
"135000.0 335000.0 3.861626e+00 6.875669e-01 1 \n",
"1235000.0 315000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1275000.0 605000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 575000.0 | \n",
" 545000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 855000.0 | \n",
" 655000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1195000.0 | \n",
" 45000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 295000.0 | \n",
" 525000.0 | \n",
" 0 | \n",
" 0 | \n",
" 97 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.816632e+01 | \n",
" 1.967386e+01 | \n",
" 4.224688e+00 | \n",
" 8.083311e+00 | \n",
" 2.176484e+01 | \n",
" 4.580381e+00 | \n",
" 9.110498e+00 | \n",
" 5.536621e+00 | \n",
" 5.320936e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 395000.0 | \n",
" 595000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"575000.0 545000.0 0 0 0 \n",
"855000.0 655000.0 0 0 0 \n",
"1195000.0 45000.0 0 0 0 \n",
"295000.0 525000.0 0 0 97 \n",
"395000.0 595000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"575000.0 545000.0 0 0 \n",
"855000.0 655000.0 0 0 \n",
"1195000.0 45000.0 0 0 \n",
"295000.0 525000.0 2 0 \n",
"395000.0 595000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"575000.0 545000.0 0 0 0 0 \n",
"855000.0 655000.0 0 0 0 0 \n",
"1195000.0 45000.0 0 0 0 0 \n",
"295000.0 525000.0 0 0 0 0 \n",
"395000.0 595000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"575000.0 545000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"855000.0 655000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1195000.0 45000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"295000.0 525000.0 0 ... 2.816632e+01 1.967386e+01 \n",
"395000.0 595000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"575000.0 545000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"855000.0 655000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1195000.0 45000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"295000.0 525000.0 4.224688e+00 8.083311e+00 2.176484e+01 \n",
"395000.0 595000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"575000.0 545000.0 -3.400000e+38 -3.400000e+38 \n",
"855000.0 655000.0 -3.400000e+38 -3.400000e+38 \n",
"1195000.0 45000.0 -3.400000e+38 -3.400000e+38 \n",
"295000.0 525000.0 4.580381e+00 9.110498e+00 \n",
"395000.0 595000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"575000.0 545000.0 -3.400000e+38 -3.400000e+38 0 \n",
"855000.0 655000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1195000.0 45000.0 -3.400000e+38 -3.400000e+38 0 \n",
"295000.0 525000.0 5.536621e+00 5.320936e+00 0 \n",
"395000.0 595000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 675000.0 | \n",
" 305000.0 | \n",
" 3 | \n",
" 0 | \n",
" 81 | \n",
" 15 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 1 | \n",
"
\n",
" \n",
" 1165000.0 | \n",
" 265000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1225000.0 | \n",
" 95000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 995000.0 | \n",
" 75000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 645000.0 | \n",
" 75000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"675000.0 305000.0 3 0 81 \n",
"1165000.0 265000.0 0 0 0 \n",
"1225000.0 95000.0 0 0 0 \n",
"995000.0 75000.0 0 0 0 \n",
"645000.0 75000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"675000.0 305000.0 15 0 \n",
"1165000.0 265000.0 0 0 \n",
"1225000.0 95000.0 0 0 \n",
"995000.0 75000.0 0 0 \n",
"645000.0 75000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"675000.0 305000.0 0 0 0 0 \n",
"1165000.0 265000.0 0 0 0 0 \n",
"1225000.0 95000.0 0 0 0 0 \n",
"995000.0 75000.0 0 0 0 0 \n",
"645000.0 75000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"675000.0 305000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1165000.0 265000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1225000.0 95000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"995000.0 75000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"645000.0 75000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"675000.0 305000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1165000.0 265000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1225000.0 95000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"995000.0 75000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"645000.0 75000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"675000.0 305000.0 -3.400000e+38 -3.400000e+38 \n",
"1165000.0 265000.0 -3.400000e+38 -3.400000e+38 \n",
"1225000.0 95000.0 -3.400000e+38 -3.400000e+38 \n",
"995000.0 75000.0 -3.400000e+38 -3.400000e+38 \n",
"645000.0 75000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"675000.0 305000.0 -3.400000e+38 -3.400000e+38 1 \n",
"1165000.0 265000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1225000.0 95000.0 -3.400000e+38 -3.400000e+38 0 \n",
"995000.0 75000.0 -3.400000e+38 -3.400000e+38 0 \n",
"645000.0 75000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 285000.0 | \n",
" 645000.0 | \n",
" 19 | \n",
" 0 | \n",
" 48 | \n",
" 30 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 855000.0 | \n",
" 185000.0 | \n",
" 16 | \n",
" 0 | \n",
" 0 | \n",
" 15 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 49 | \n",
" ... | \n",
" 1.514845e-02 | \n",
" 3.407478e-03 | \n",
" 1.233685e-02 | \n",
" -3.400000e+38 | \n",
" 6.557040e-03 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 1.351355e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 1085000.0 | \n",
" 265000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1195000.0 | \n",
" 315000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 105000.0 | \n",
" 685000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"285000.0 645000.0 19 0 48 \n",
"855000.0 185000.0 16 0 0 \n",
"1085000.0 265000.0 0 0 0 \n",
"1195000.0 315000.0 0 0 0 \n",
"105000.0 685000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"285000.0 645000.0 30 0 \n",
"855000.0 185000.0 15 0 \n",
"1085000.0 265000.0 0 0 \n",
"1195000.0 315000.0 0 0 \n",
"105000.0 685000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"285000.0 645000.0 0 0 0 0 \n",
"855000.0 185000.0 0 0 0 0 \n",
"1085000.0 265000.0 0 0 0 0 \n",
"1195000.0 315000.0 0 0 0 0 \n",
"105000.0 685000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"285000.0 645000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"855000.0 185000.0 49 ... 1.514845e-02 3.407478e-03 \n",
"1085000.0 265000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1195000.0 315000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"105000.0 685000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"285000.0 645000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"855000.0 185000.0 1.233685e-02 -3.400000e+38 6.557040e-03 \n",
"1085000.0 265000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1195000.0 315000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"105000.0 685000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"285000.0 645000.0 -3.400000e+38 -3.400000e+38 \n",
"855000.0 185000.0 -3.400000e+38 -3.400000e+38 \n",
"1085000.0 265000.0 -3.400000e+38 -3.400000e+38 \n",
"1195000.0 315000.0 -3.400000e+38 -3.400000e+38 \n",
"105000.0 685000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"285000.0 645000.0 -3.400000e+38 -3.400000e+38 0 \n",
"855000.0 185000.0 -3.400000e+38 1.351355e+00 0 \n",
"1085000.0 265000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1195000.0 315000.0 -3.400000e+38 -3.400000e+38 0 \n",
"105000.0 685000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 515000.0 | \n",
" 575000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 645000.0 | \n",
" 35000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 945000.0 | \n",
" 95000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 775000.0 | \n",
" 315000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 2 | \n",
" 1 | \n",
" 0 | \n",
" 8 | \n",
" 0 | \n",
" ... | \n",
" 5.956215e+00 | \n",
" 4.986659e+00 | \n",
" 6.333358e+00 | \n",
" -3.400000e+38 | \n",
" 3.149487e+00 | \n",
" 3.018634e+00 | \n",
" 4.687809e-01 | \n",
" 5.034044e+00 | \n",
" 7.943451e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 95000.0 | \n",
" 95000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"515000.0 575000.0 0 0 0 \n",
"645000.0 35000.0 0 0 0 \n",
"945000.0 95000.0 0 0 0 \n",
"775000.0 315000.0 0 0 0 \n",
"95000.0 95000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"515000.0 575000.0 0 0 0 \n",
"645000.0 35000.0 0 0 0 \n",
"945000.0 95000.0 0 0 0 \n",
"775000.0 315000.0 0 0 2 \n",
"95000.0 95000.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"515000.0 575000.0 0 0 0 0 ... \n",
"645000.0 35000.0 0 0 0 0 ... \n",
"945000.0 95000.0 0 0 0 0 ... \n",
"775000.0 315000.0 1 0 8 0 ... \n",
"95000.0 95000.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n",
"y x \n",
"515000.0 575000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"645000.0 35000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"945000.0 95000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"775000.0 315000.0 5.956215e+00 4.986659e+00 6.333358e+00 \n",
"95000.0 95000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"515000.0 575000.0 -3.400000e+38 -3.400000e+38 \n",
"645000.0 35000.0 -3.400000e+38 -3.400000e+38 \n",
"945000.0 95000.0 -3.400000e+38 -3.400000e+38 \n",
"775000.0 315000.0 -3.400000e+38 3.149487e+00 \n",
"95000.0 95000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"515000.0 575000.0 -3.400000e+38 -3.400000e+38 \n",
"645000.0 35000.0 -3.400000e+38 -3.400000e+38 \n",
"945000.0 95000.0 -3.400000e+38 -3.400000e+38 \n",
"775000.0 315000.0 3.018634e+00 4.687809e-01 \n",
"95000.0 95000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"515000.0 575000.0 -3.400000e+38 -3.400000e+38 0 \n",
"645000.0 35000.0 -3.400000e+38 -3.400000e+38 0 \n",
"945000.0 95000.0 -3.400000e+38 -3.400000e+38 0 \n",
"775000.0 315000.0 5.034044e+00 7.943451e+00 0 \n",
"95000.0 95000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 945000.0 | \n",
" 475000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1175000.0 | \n",
" 245000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 175000.0 | \n",
" 385000.0 | \n",
" 15 | \n",
" 0 | \n",
" 57 | \n",
" 23 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 4.448481e+01 | \n",
" 9.537368e-01 | \n",
" 6.209843e+00 | \n",
" 1.240064e+01 | \n",
" 1.836793e+01 | \n",
" 7.359963e+00 | \n",
" 2.734950e+01 | \n",
" 1.543392e+01 | \n",
" 9.452468e+00 | \n",
" 0 | \n",
"
\n",
" \n",
" 735000.0 | \n",
" 465000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 915000.0 | \n",
" 85000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"945000.0 475000.0 0 0 0 \n",
"1175000.0 245000.0 0 0 0 \n",
"175000.0 385000.0 15 0 57 \n",
"735000.0 465000.0 0 0 0 \n",
"915000.0 85000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"945000.0 475000.0 0 0 \n",
"1175000.0 245000.0 0 0 \n",
"175000.0 385000.0 23 0 \n",
"735000.0 465000.0 0 0 \n",
"915000.0 85000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"945000.0 475000.0 0 0 0 0 \n",
"1175000.0 245000.0 0 0 0 0 \n",
"175000.0 385000.0 0 0 0 0 \n",
"735000.0 465000.0 0 0 0 0 \n",
"915000.0 85000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"945000.0 475000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1175000.0 245000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"175000.0 385000.0 0 ... 4.448481e+01 9.537368e-01 \n",
"735000.0 465000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"915000.0 85000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"945000.0 475000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1175000.0 245000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"175000.0 385000.0 6.209843e+00 1.240064e+01 1.836793e+01 \n",
"735000.0 465000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"915000.0 85000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"945000.0 475000.0 -3.400000e+38 -3.400000e+38 \n",
"1175000.0 245000.0 -3.400000e+38 -3.400000e+38 \n",
"175000.0 385000.0 7.359963e+00 2.734950e+01 \n",
"735000.0 465000.0 -3.400000e+38 -3.400000e+38 \n",
"915000.0 85000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"945000.0 475000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1175000.0 245000.0 -3.400000e+38 -3.400000e+38 0 \n",
"175000.0 385000.0 1.543392e+01 9.452468e+00 0 \n",
"735000.0 465000.0 -3.400000e+38 -3.400000e+38 0 \n",
"915000.0 85000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 55000.0 | \n",
" 415000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1125000.0 | \n",
" 335000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 525000.0 | \n",
" 25000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 545000.0 | \n",
" 305000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1055000.0 | \n",
" 375000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 33 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"55000.0 415000.0 0 0 0 \n",
"1125000.0 335000.0 0 0 0 \n",
"525000.0 25000.0 0 0 0 \n",
"545000.0 305000.0 0 0 0 \n",
"1055000.0 375000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"55000.0 415000.0 0 0 \n",
"1125000.0 335000.0 0 0 \n",
"525000.0 25000.0 0 0 \n",
"545000.0 305000.0 0 0 \n",
"1055000.0 375000.0 33 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"55000.0 415000.0 0 0 0 0 \n",
"1125000.0 335000.0 0 0 0 0 \n",
"525000.0 25000.0 0 0 0 0 \n",
"545000.0 305000.0 0 0 0 0 \n",
"1055000.0 375000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"55000.0 415000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1125000.0 335000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"525000.0 25000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"545000.0 305000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1055000.0 375000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"55000.0 415000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1125000.0 335000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"525000.0 25000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"545000.0 305000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1055000.0 375000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"55000.0 415000.0 -3.400000e+38 -3.400000e+38 \n",
"1125000.0 335000.0 -3.400000e+38 -3.400000e+38 \n",
"525000.0 25000.0 -3.400000e+38 -3.400000e+38 \n",
"545000.0 305000.0 -3.400000e+38 -3.400000e+38 \n",
"1055000.0 375000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"55000.0 415000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1125000.0 335000.0 -3.400000e+38 -3.400000e+38 0 \n",
"525000.0 25000.0 -3.400000e+38 -3.400000e+38 0 \n",
"545000.0 305000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1055000.0 375000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1225000.0 | \n",
" 575000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 295000.0 | \n",
" 655000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 9 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 1 | \n",
"
\n",
" \n",
" 215000.0 | \n",
" 215000.0 | \n",
" 4 | \n",
" 0 | \n",
" 0 | \n",
" 85 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 2.098964e-02 | \n",
" 4.535805e-03 | \n",
" 2.770425e-02 | \n",
" -3.400000e+38 | \n",
" 1.327652e-02 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 575000.0 | \n",
" 455000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 625000.0 | \n",
" 515000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1225000.0 575000.0 0 0 0 \n",
"295000.0 655000.0 0 0 0 \n",
"215000.0 215000.0 4 0 0 \n",
"575000.0 455000.0 0 0 0 \n",
"625000.0 515000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1225000.0 575000.0 0 0 \n",
"295000.0 655000.0 9 0 \n",
"215000.0 215000.0 85 0 \n",
"575000.0 455000.0 0 0 \n",
"625000.0 515000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1225000.0 575000.0 0 0 0 0 \n",
"295000.0 655000.0 0 0 0 0 \n",
"215000.0 215000.0 0 0 0 0 \n",
"575000.0 455000.0 0 0 0 0 \n",
"625000.0 515000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"1225000.0 575000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"295000.0 655000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"215000.0 215000.0 0 ... 2.098964e-02 4.535805e-03 \n",
"575000.0 455000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"625000.0 515000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"1225000.0 575000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"295000.0 655000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"215000.0 215000.0 2.770425e-02 -3.400000e+38 1.327652e-02 \n",
"575000.0 455000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"625000.0 515000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"1225000.0 575000.0 -3.400000e+38 -3.400000e+38 \n",
"295000.0 655000.0 -3.400000e+38 -3.400000e+38 \n",
"215000.0 215000.0 -3.400000e+38 -3.400000e+38 \n",
"575000.0 455000.0 -3.400000e+38 -3.400000e+38 \n",
"625000.0 515000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"1225000.0 575000.0 -3.400000e+38 -3.400000e+38 0 \n",
"295000.0 655000.0 -3.400000e+38 -3.400000e+38 1 \n",
"215000.0 215000.0 -3.400000e+38 -3.400000e+38 0 \n",
"575000.0 455000.0 -3.400000e+38 -3.400000e+38 0 \n",
"625000.0 515000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 325000.0 | \n",
" 155000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 2.247949e-01 | \n",
" 0 | \n",
"
\n",
" \n",
" 435000.0 | \n",
" 195000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 775000.0 | \n",
" 445000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 535000.0 | \n",
" 495000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1295000.0 | \n",
" 215000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"325000.0 155000.0 0 0 0 \n",
"435000.0 195000.0 0 0 0 \n",
"775000.0 445000.0 0 0 0 \n",
"535000.0 495000.0 0 0 0 \n",
"1295000.0 215000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"325000.0 155000.0 0 0 \n",
"435000.0 195000.0 0 0 \n",
"775000.0 445000.0 0 0 \n",
"535000.0 495000.0 0 0 \n",
"1295000.0 215000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"325000.0 155000.0 0 0 0 0 \n",
"435000.0 195000.0 0 0 0 0 \n",
"775000.0 445000.0 0 0 0 0 \n",
"535000.0 495000.0 0 0 0 0 \n",
"1295000.0 215000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"325000.0 155000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"435000.0 195000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"775000.0 445000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"535000.0 495000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1295000.0 215000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"325000.0 155000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"435000.0 195000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"775000.0 445000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"535000.0 495000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1295000.0 215000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"325000.0 155000.0 -3.400000e+38 -3.400000e+38 \n",
"435000.0 195000.0 -3.400000e+38 -3.400000e+38 \n",
"775000.0 445000.0 -3.400000e+38 -3.400000e+38 \n",
"535000.0 495000.0 -3.400000e+38 -3.400000e+38 \n",
"1295000.0 215000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"325000.0 155000.0 -3.400000e+38 2.247949e-01 0 \n",
"435000.0 195000.0 -3.400000e+38 -3.400000e+38 0 \n",
"775000.0 445000.0 -3.400000e+38 -3.400000e+38 0 \n",
"535000.0 495000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1295000.0 215000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 865000.0 | \n",
" 205000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 7 | \n",
" ... | \n",
" 8.027495e+00 | \n",
" 8.000409e-01 | \n",
" 5.404873e+00 | \n",
" 5.992115e+00 | \n",
" 2.905461e+00 | \n",
" 3.234832e+00 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 545000.0 | \n",
" 5000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 725000.0 | \n",
" 615000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 735000.0 | \n",
" 685000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 415000.0 | \n",
" 675000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"865000.0 205000.0 0 0 0 \n",
"545000.0 5000.0 0 0 0 \n",
"725000.0 615000.0 0 0 0 \n",
"735000.0 685000.0 0 0 0 \n",
"415000.0 675000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"865000.0 205000.0 0 0 0 \n",
"545000.0 5000.0 0 0 0 \n",
"725000.0 615000.0 0 0 0 \n",
"735000.0 685000.0 0 0 0 \n",
"415000.0 675000.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"865000.0 205000.0 0 0 0 7 ... \n",
"545000.0 5000.0 0 0 0 0 ... \n",
"725000.0 615000.0 0 0 0 0 ... \n",
"735000.0 685000.0 0 0 0 0 ... \n",
"415000.0 675000.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n",
"y x \n",
"865000.0 205000.0 8.027495e+00 8.000409e-01 5.404873e+00 \n",
"545000.0 5000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"725000.0 615000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"735000.0 685000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"415000.0 675000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"865000.0 205000.0 5.992115e+00 2.905461e+00 \n",
"545000.0 5000.0 -3.400000e+38 -3.400000e+38 \n",
"725000.0 615000.0 -3.400000e+38 -3.400000e+38 \n",
"735000.0 685000.0 -3.400000e+38 -3.400000e+38 \n",
"415000.0 675000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"865000.0 205000.0 3.234832e+00 -3.400000e+38 \n",
"545000.0 5000.0 -3.400000e+38 -3.400000e+38 \n",
"725000.0 615000.0 -3.400000e+38 -3.400000e+38 \n",
"735000.0 685000.0 -3.400000e+38 -3.400000e+38 \n",
"415000.0 675000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"865000.0 205000.0 -3.400000e+38 -3.400000e+38 0 \n",
"545000.0 5000.0 -3.400000e+38 -3.400000e+38 0 \n",
"725000.0 615000.0 -3.400000e+38 -3.400000e+38 0 \n",
"735000.0 685000.0 -3.400000e+38 -3.400000e+38 0 \n",
"415000.0 675000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 845000.0 | \n",
" 345000.0 | \n",
" 2 | \n",
" 13 | \n",
" 5 | \n",
" 80 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 4.912306e+00 | \n",
" 1.034424e+01 | \n",
" 3.395481e+00 | \n",
" -3.400000e+38 | \n",
" 5.040710e+00 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 1 | \n",
"
\n",
" \n",
" 1265000.0 | \n",
" 625000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 25000.0 | \n",
" 335000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 395000.0 | \n",
" 65000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 805000.0 | \n",
" 625000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"845000.0 345000.0 2 13 5 \n",
"1265000.0 625000.0 0 0 0 \n",
"25000.0 335000.0 0 0 0 \n",
"395000.0 65000.0 0 0 0 \n",
"805000.0 625000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"845000.0 345000.0 80 0 \n",
"1265000.0 625000.0 0 0 \n",
"25000.0 335000.0 0 0 \n",
"395000.0 65000.0 0 0 \n",
"805000.0 625000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"845000.0 345000.0 0 0 0 0 \n",
"1265000.0 625000.0 0 0 0 0 \n",
"25000.0 335000.0 0 0 0 0 \n",
"395000.0 65000.0 0 0 0 0 \n",
"805000.0 625000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"845000.0 345000.0 0 ... 4.912306e+00 1.034424e+01 \n",
"1265000.0 625000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"25000.0 335000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"395000.0 65000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"805000.0 625000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"845000.0 345000.0 3.395481e+00 -3.400000e+38 5.040710e+00 \n",
"1265000.0 625000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"25000.0 335000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"395000.0 65000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"805000.0 625000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"845000.0 345000.0 -3.400000e+38 -3.400000e+38 \n",
"1265000.0 625000.0 -3.400000e+38 -3.400000e+38 \n",
"25000.0 335000.0 -3.400000e+38 -3.400000e+38 \n",
"395000.0 65000.0 -3.400000e+38 -3.400000e+38 \n",
"805000.0 625000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"845000.0 345000.0 -3.400000e+38 -3.400000e+38 1 \n",
"1265000.0 625000.0 -3.400000e+38 -3.400000e+38 0 \n",
"25000.0 335000.0 -3.400000e+38 -3.400000e+38 0 \n",
"395000.0 65000.0 -3.400000e+38 -3.400000e+38 0 \n",
"805000.0 625000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1225000.0 | \n",
" 525000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 735000.0 | \n",
" 545000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 715000.0 | \n",
" 545000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 475000.0 | \n",
" 75000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 955000.0 | \n",
" 155000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 5 | \n",
" 1 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1225000.0 525000.0 0 0 0 \n",
"735000.0 545000.0 0 0 0 \n",
"715000.0 545000.0 0 0 0 \n",
"475000.0 75000.0 0 0 0 \n",
"955000.0 155000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1225000.0 525000.0 0 0 \n",
"735000.0 545000.0 0 0 \n",
"715000.0 545000.0 0 0 \n",
"475000.0 75000.0 0 0 \n",
"955000.0 155000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1225000.0 525000.0 0 0 0 0 \n",
"735000.0 545000.0 0 0 0 0 \n",
"715000.0 545000.0 0 0 0 0 \n",
"475000.0 75000.0 0 0 0 0 \n",
"955000.0 155000.0 0 0 0 5 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"1225000.0 525000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"735000.0 545000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"715000.0 545000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"475000.0 75000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"955000.0 155000.0 1 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"1225000.0 525000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"735000.0 545000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"715000.0 545000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"475000.0 75000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"955000.0 155000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"1225000.0 525000.0 -3.400000e+38 -3.400000e+38 \n",
"735000.0 545000.0 -3.400000e+38 -3.400000e+38 \n",
"715000.0 545000.0 -3.400000e+38 -3.400000e+38 \n",
"475000.0 75000.0 -3.400000e+38 -3.400000e+38 \n",
"955000.0 155000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"1225000.0 525000.0 -3.400000e+38 -3.400000e+38 0 \n",
"735000.0 545000.0 -3.400000e+38 -3.400000e+38 0 \n",
"715000.0 545000.0 -3.400000e+38 -3.400000e+38 0 \n",
"475000.0 75000.0 -3.400000e+38 -3.400000e+38 0 \n",
"955000.0 155000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 665000.0 | \n",
" 345000.0 | \n",
" 22 | \n",
" 0 | \n",
" 52 | \n",
" 26 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 875000.0 | \n",
" 635000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 885000.0 | \n",
" 375000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 515000.0 | \n",
" 605000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 985000.0 | \n",
" 425000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"665000.0 345000.0 22 0 52 \n",
"875000.0 635000.0 0 0 0 \n",
"885000.0 375000.0 0 0 0 \n",
"515000.0 605000.0 0 0 0 \n",
"985000.0 425000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"665000.0 345000.0 26 0 0 \n",
"875000.0 635000.0 0 0 0 \n",
"885000.0 375000.0 0 0 0 \n",
"515000.0 605000.0 0 0 0 \n",
"985000.0 425000.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"665000.0 345000.0 0 0 0 0 ... \n",
"875000.0 635000.0 0 0 0 0 ... \n",
"885000.0 375000.0 0 0 0 0 ... \n",
"515000.0 605000.0 0 0 0 0 ... \n",
"985000.0 425000.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n",
"y x \n",
"665000.0 345000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"875000.0 635000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"885000.0 375000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"515000.0 605000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"985000.0 425000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"665000.0 345000.0 -3.400000e+38 -3.400000e+38 \n",
"875000.0 635000.0 -3.400000e+38 -3.400000e+38 \n",
"885000.0 375000.0 -3.400000e+38 -3.400000e+38 \n",
"515000.0 605000.0 -3.400000e+38 -3.400000e+38 \n",
"985000.0 425000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"665000.0 345000.0 -3.400000e+38 -3.400000e+38 \n",
"875000.0 635000.0 -3.400000e+38 -3.400000e+38 \n",
"885000.0 375000.0 -3.400000e+38 -3.400000e+38 \n",
"515000.0 605000.0 -3.400000e+38 -3.400000e+38 \n",
"985000.0 425000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"665000.0 345000.0 -3.400000e+38 -3.400000e+38 0 \n",
"875000.0 635000.0 -3.400000e+38 -3.400000e+38 0 \n",
"885000.0 375000.0 -3.400000e+38 -3.400000e+38 0 \n",
"515000.0 605000.0 -3.400000e+38 -3.400000e+38 0 \n",
"985000.0 425000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1095000.0 | \n",
" 185000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 985000.0 | \n",
" 345000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 98 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1085000.0 | \n",
" 365000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 325000.0 | \n",
" 645000.0 | \n",
" 2 | \n",
" 0 | \n",
" 19 | \n",
" 67 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 1 | \n",
"
\n",
" \n",
" 195000.0 | \n",
" 125000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 4.487841e-02 | \n",
" 3.156656e-02 | \n",
" 2.022360e+00 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1095000.0 185000.0 0 0 0 \n",
"985000.0 345000.0 0 0 0 \n",
"1085000.0 365000.0 0 0 0 \n",
"325000.0 645000.0 2 0 19 \n",
"195000.0 125000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1095000.0 185000.0 0 0 \n",
"985000.0 345000.0 98 0 \n",
"1085000.0 365000.0 0 0 \n",
"325000.0 645000.0 67 0 \n",
"195000.0 125000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1095000.0 185000.0 0 0 0 0 \n",
"985000.0 345000.0 0 0 0 0 \n",
"1085000.0 365000.0 0 0 0 0 \n",
"325000.0 645000.0 0 0 1 0 \n",
"195000.0 125000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"1095000.0 185000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"985000.0 345000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1085000.0 365000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"325000.0 645000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"195000.0 125000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"1095000.0 185000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"985000.0 345000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1085000.0 365000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"325000.0 645000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"195000.0 125000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"1095000.0 185000.0 -3.400000e+38 -3.400000e+38 \n",
"985000.0 345000.0 -3.400000e+38 -3.400000e+38 \n",
"1085000.0 365000.0 -3.400000e+38 -3.400000e+38 \n",
"325000.0 645000.0 -3.400000e+38 -3.400000e+38 \n",
"195000.0 125000.0 -3.400000e+38 4.487841e-02 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"1095000.0 185000.0 -3.400000e+38 -3.400000e+38 0 \n",
"985000.0 345000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1085000.0 365000.0 -3.400000e+38 -3.400000e+38 0 \n",
"325000.0 645000.0 -3.400000e+38 -3.400000e+38 1 \n",
"195000.0 125000.0 3.156656e-02 2.022360e+00 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1205000.0 | \n",
" 35000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 615000.0 | \n",
" 85000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 295000.0 | \n",
" 645000.0 | \n",
" 8 | \n",
" 0 | \n",
" 74 | \n",
" 10 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1095000.0 | \n",
" 675000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1125000.0 | \n",
" 375000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1205000.0 35000.0 0 0 0 \n",
"615000.0 85000.0 0 0 0 \n",
"295000.0 645000.0 8 0 74 \n",
"1095000.0 675000.0 0 0 0 \n",
"1125000.0 375000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1205000.0 35000.0 0 0 \n",
"615000.0 85000.0 0 0 \n",
"295000.0 645000.0 10 0 \n",
"1095000.0 675000.0 0 0 \n",
"1125000.0 375000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1205000.0 35000.0 0 0 0 0 \n",
"615000.0 85000.0 0 0 0 0 \n",
"295000.0 645000.0 0 0 0 0 \n",
"1095000.0 675000.0 0 0 0 0 \n",
"1125000.0 375000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"1205000.0 35000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"615000.0 85000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"295000.0 645000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1095000.0 675000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"1125000.0 375000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"1205000.0 35000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"615000.0 85000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"295000.0 645000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1095000.0 675000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1125000.0 375000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"1205000.0 35000.0 -3.400000e+38 -3.400000e+38 \n",
"615000.0 85000.0 -3.400000e+38 -3.400000e+38 \n",
"295000.0 645000.0 -3.400000e+38 -3.400000e+38 \n",
"1095000.0 675000.0 -3.400000e+38 -3.400000e+38 \n",
"1125000.0 375000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"1205000.0 35000.0 -3.400000e+38 -3.400000e+38 0 \n",
"615000.0 85000.0 -3.400000e+38 -3.400000e+38 0 \n",
"295000.0 645000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1095000.0 675000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1125000.0 375000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 685000.0 | \n",
" 165000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 1 | \n",
"
\n",
" \n",
" 705000.0 | \n",
" 325000.0 | \n",
" 6 | \n",
" 20 | \n",
" 0 | \n",
" 72 | \n",
" 0 | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 1 | \n",
"
\n",
" \n",
" 325000.0 | \n",
" 685000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 465000.0 | \n",
" 55000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 865000.0 | \n",
" 175000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"685000.0 165000.0 0 0 0 \n",
"705000.0 325000.0 6 20 0 \n",
"325000.0 685000.0 0 0 0 \n",
"465000.0 55000.0 0 0 0 \n",
"865000.0 175000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"685000.0 165000.0 0 0 0 \n",
"705000.0 325000.0 72 0 0 \n",
"325000.0 685000.0 0 0 0 \n",
"465000.0 55000.0 0 0 0 \n",
"865000.0 175000.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"685000.0 165000.0 0 0 0 0 ... \n",
"705000.0 325000.0 2 0 0 0 ... \n",
"325000.0 685000.0 0 0 0 0 ... \n",
"465000.0 55000.0 0 0 0 0 ... \n",
"865000.0 175000.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n",
"y x \n",
"685000.0 165000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"705000.0 325000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"325000.0 685000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"465000.0 55000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"865000.0 175000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"685000.0 165000.0 -3.400000e+38 -3.400000e+38 \n",
"705000.0 325000.0 -3.400000e+38 -3.400000e+38 \n",
"325000.0 685000.0 -3.400000e+38 -3.400000e+38 \n",
"465000.0 55000.0 -3.400000e+38 -3.400000e+38 \n",
"865000.0 175000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"685000.0 165000.0 -3.400000e+38 -3.400000e+38 \n",
"705000.0 325000.0 -3.400000e+38 -3.400000e+38 \n",
"325000.0 685000.0 -3.400000e+38 -3.400000e+38 \n",
"465000.0 55000.0 -3.400000e+38 -3.400000e+38 \n",
"865000.0 175000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"685000.0 165000.0 -3.400000e+38 -3.400000e+38 1 \n",
"705000.0 325000.0 -3.400000e+38 -3.400000e+38 1 \n",
"325000.0 685000.0 -3.400000e+38 -3.400000e+38 0 \n",
"465000.0 55000.0 -3.400000e+38 -3.400000e+38 0 \n",
"865000.0 175000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 845000.0 | \n",
" 685000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 545000.0 | \n",
" 425000.0 | \n",
" 5 | \n",
" 0 | \n",
" 72 | \n",
" 18 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 15000.0 | \n",
" 645000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 975000.0 | \n",
" 475000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 135000.0 | \n",
" 605000.0 | \n",
" 0 | \n",
" 0 | \n",
" 87 | \n",
" 11 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"845000.0 685000.0 0 0 0 \n",
"545000.0 425000.0 5 0 72 \n",
"15000.0 645000.0 0 0 0 \n",
"975000.0 475000.0 0 0 0 \n",
"135000.0 605000.0 0 0 87 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"845000.0 685000.0 0 0 0 \n",
"545000.0 425000.0 18 0 0 \n",
"15000.0 645000.0 0 0 0 \n",
"975000.0 475000.0 0 0 0 \n",
"135000.0 605000.0 11 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"845000.0 685000.0 0 0 0 0 ... \n",
"545000.0 425000.0 0 0 0 0 ... \n",
"15000.0 645000.0 0 0 0 0 ... \n",
"975000.0 475000.0 0 0 0 0 ... \n",
"135000.0 605000.0 0 2 0 0 ... \n",
"\n",
" Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n",
"y x \n",
"845000.0 685000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"545000.0 425000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"15000.0 645000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"975000.0 475000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"135000.0 605000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"845000.0 685000.0 -3.400000e+38 -3.400000e+38 \n",
"545000.0 425000.0 -3.400000e+38 -3.400000e+38 \n",
"15000.0 645000.0 -3.400000e+38 -3.400000e+38 \n",
"975000.0 475000.0 -3.400000e+38 -3.400000e+38 \n",
"135000.0 605000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"845000.0 685000.0 -3.400000e+38 -3.400000e+38 \n",
"545000.0 425000.0 -3.400000e+38 -3.400000e+38 \n",
"15000.0 645000.0 -3.400000e+38 -3.400000e+38 \n",
"975000.0 475000.0 -3.400000e+38 -3.400000e+38 \n",
"135000.0 605000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"845000.0 685000.0 -3.400000e+38 -3.400000e+38 0 \n",
"545000.0 425000.0 -3.400000e+38 -3.400000e+38 0 \n",
"15000.0 645000.0 -3.400000e+38 -3.400000e+38 0 \n",
"975000.0 475000.0 -3.400000e+38 -3.400000e+38 0 \n",
"135000.0 605000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 875000.0 | \n",
" 625000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 15000.0 | \n",
" 635000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 845000.0 | \n",
" 125000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 11 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 88 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 1055000.0 | \n",
" 195000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 525000.0 | \n",
" 565000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"875000.0 625000.0 0 0 0 \n",
"15000.0 635000.0 0 0 0 \n",
"845000.0 125000.0 0 0 0 \n",
"1055000.0 195000.0 0 0 0 \n",
"525000.0 565000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"875000.0 625000.0 0 0 \n",
"15000.0 635000.0 0 0 \n",
"845000.0 125000.0 11 0 \n",
"1055000.0 195000.0 0 0 \n",
"525000.0 565000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"875000.0 625000.0 0 0 0 0 \n",
"15000.0 635000.0 0 0 0 0 \n",
"845000.0 125000.0 0 0 0 0 \n",
"1055000.0 195000.0 0 0 0 0 \n",
"525000.0 565000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Glyphosate_10km Mancozeb_10km \\\n",
"y x ... \n",
"875000.0 625000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"15000.0 635000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"845000.0 125000.0 88 ... -3.400000e+38 -3.400000e+38 \n",
"1055000.0 195000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"525000.0 565000.0 0 ... -3.400000e+38 -3.400000e+38 \n",
"\n",
" Mecoprop-P_10km Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"875000.0 625000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"15000.0 635000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"845000.0 125000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"1055000.0 195000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"525000.0 565000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"875000.0 625000.0 -3.400000e+38 -3.400000e+38 \n",
"15000.0 635000.0 -3.400000e+38 -3.400000e+38 \n",
"845000.0 125000.0 -3.400000e+38 -3.400000e+38 \n",
"1055000.0 195000.0 -3.400000e+38 -3.400000e+38 \n",
"525000.0 565000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"875000.0 625000.0 -3.400000e+38 -3.400000e+38 0 \n",
"15000.0 635000.0 -3.400000e+38 -3.400000e+38 0 \n",
"845000.0 125000.0 -3.400000e+38 -3.400000e+38 0 \n",
"1055000.0 195000.0 -3.400000e+38 -3.400000e+38 0 \n",
"525000.0 565000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Glyphosate_10km | \n",
" Mancozeb_10km | \n",
" Mecoprop-P_10km | \n",
" Metamitron_10km | \n",
" Pendimethalin_10km | \n",
" PropamocarbHydrochloride_10km | \n",
" Prosulfocarb_10km | \n",
" Sulphur_10km | \n",
" Tri-allate_10km | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 75000.0 | \n",
" 375000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 1.790037e-01 | \n",
" -3.400000e+38 | \n",
" 9.841958e-02 | \n",
" 1.722172e+01 | \n",
" 3.735671e+00 | \n",
" 2.387910e+01 | \n",
" 1 | \n",
"
\n",
" \n",
" 15000.0 | \n",
" 155000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 985000.0 | \n",
" 15000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 335000.0 | \n",
" 585000.0 | \n",
" 3 | \n",
" 2 | \n",
" 86 | \n",
" 9 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
" 75000.0 | \n",
" 655000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" -3.400000e+38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 40 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"75000.0 375000.0 0 0 0 \n",
"15000.0 155000.0 0 0 0 \n",
"985000.0 15000.0 0 0 0 \n",
"335000.0 585000.0 3 2 86 \n",
"75000.0 655000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"75000.0 375000.0 0 0 0 \n",
"15000.0 155000.0 0 0 0 \n",
"985000.0 15000.0 0 0 0 \n",
"335000.0 585000.0 9 0 0 \n",
"75000.0 655000.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"75000.0 375000.0 0 0 0 0 ... \n",
"15000.0 155000.0 0 0 0 0 ... \n",
"985000.0 15000.0 0 0 0 0 ... \n",
"335000.0 585000.0 0 0 0 0 ... \n",
"75000.0 655000.0 0 0 0 0 ... \n",
"\n",
" Glyphosate_10km Mancozeb_10km Mecoprop-P_10km \\\n",
"y x \n",
"75000.0 375000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"15000.0 155000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"985000.0 15000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"335000.0 585000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"75000.0 655000.0 -3.400000e+38 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Metamitron_10km Pendimethalin_10km \\\n",
"y x \n",
"75000.0 375000.0 1.790037e-01 -3.400000e+38 \n",
"15000.0 155000.0 -3.400000e+38 -3.400000e+38 \n",
"985000.0 15000.0 -3.400000e+38 -3.400000e+38 \n",
"335000.0 585000.0 -3.400000e+38 -3.400000e+38 \n",
"75000.0 655000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" PropamocarbHydrochloride_10km Prosulfocarb_10km \\\n",
"y x \n",
"75000.0 375000.0 9.841958e-02 1.722172e+01 \n",
"15000.0 155000.0 -3.400000e+38 -3.400000e+38 \n",
"985000.0 15000.0 -3.400000e+38 -3.400000e+38 \n",
"335000.0 585000.0 -3.400000e+38 -3.400000e+38 \n",
"75000.0 655000.0 -3.400000e+38 -3.400000e+38 \n",
"\n",
" Sulphur_10km Tri-allate_10km Occurrence \n",
"y x \n",
"75000.0 375000.0 3.735671e+00 2.387910e+01 1 \n",
"15000.0 155000.0 -3.400000e+38 -3.400000e+38 0 \n",
"985000.0 15000.0 -3.400000e+38 -3.400000e+38 0 \n",
"335000.0 585000.0 -3.400000e+38 -3.400000e+38 0 \n",
"75000.0 655000.0 -3.400000e+38 -3.400000e+38 0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"INVASIVE_BIRDS_PATH = 'Datasets/Machine Learning/10km Rasters/Birds'\n",
"# Use this if using coordinates as separate columns\n",
"# df_10km = pd.read_csv('Datasets/Machine Learning/Dataframes/10km_All_Birds_DF.csv')\n",
"\n",
"# Use this if using coordinates as indices\n",
"df_10km = pd.read_csv('Datasets/Machine Learning/Dataframes/10km_All_Birds_DF.csv', index_col=[0,1])\n",
"\n",
"total_birds = (df_10km['Occurrence']==1).sum()\n",
"df_dicts = []\n",
"\n",
"for file in os.listdir(INVASIVE_BIRDS_PATH):\n",
" filename = os.fsdecode(file)\n",
" if not filename.endswith('.tif') or filename.endswith('All_Invasive_Birds_10km.tif') :\n",
" continue\n",
"\n",
"\n",
"\n",
" bird_name = filename[:-4].replace('_', ' ')\n",
"\n",
" bird_dataset = rioxarray.open_rasterio(f'{INVASIVE_BIRDS_PATH}/{file}')\n",
" bird_dataset.name = 'data'\n",
" bird_df = bird_dataset.squeeze().drop(\"spatial_ref\").drop(\"band\").to_dataframe()\n",
"\n",
" # Check if index matches\n",
" if not df_10km.index.equals(bird_df.index):\n",
" print('Warning: Index does not match')\n",
" continue\n",
"\n",
" bird_df['Occurrence'] = [0 if x == -1 else 1 for x in bird_df['data']]\n",
" bird_df = df_10km.drop(columns='Occurrence').join(bird_df.drop(columns='data'))\n",
" \n",
" bird_dict = {'name' : bird_name, 'dataframe' : bird_df }\n",
" df_dicts.append(bird_dict)\n",
" display(bird_df.sample(5))\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 515000.0 | \n",
" 605000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1075000.0 | \n",
" 55000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 665000.0 | \n",
" 295000.0 | \n",
" 14 | \n",
" 0 | \n",
" 0 | \n",
" 37 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 49 | \n",
" 1751 | \n",
" 4 | \n",
" 2 | \n",
" 8 | \n",
" 2 | \n",
" 0 | \n",
"
\n",
" \n",
" 1285000.0 | \n",
" 325000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 445000.0 | \n",
" 305000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"515000.0 605000.0 0 0 0 \n",
"1075000.0 55000.0 0 0 0 \n",
"665000.0 295000.0 14 0 0 \n",
"1285000.0 325000.0 0 0 0 \n",
"445000.0 305000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"515000.0 605000.0 0 0 \n",
"1075000.0 55000.0 0 0 \n",
"665000.0 295000.0 37 0 \n",
"1285000.0 325000.0 0 0 \n",
"445000.0 305000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"515000.0 605000.0 0 0 0 0 \n",
"1075000.0 55000.0 0 0 0 0 \n",
"665000.0 295000.0 0 0 0 0 \n",
"1285000.0 325000.0 0 0 0 0 \n",
"445000.0 305000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"515000.0 605000.0 0 ... 0 0 \n",
"1075000.0 55000.0 0 ... 0 0 \n",
"665000.0 295000.0 0 ... 0 0 \n",
"1285000.0 325000.0 0 ... 0 0 \n",
"445000.0 305000.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"515000.0 605000.0 0 0 -9999 -9999 \n",
"1075000.0 55000.0 0 0 -9999 -9999 \n",
"665000.0 295000.0 0 49 1751 4 \n",
"1285000.0 325000.0 0 0 -9999 -9999 \n",
"445000.0 305000.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"515000.0 605000.0 -1 -1 \n",
"1075000.0 55000.0 -1 -1 \n",
"665000.0 295000.0 2 8 \n",
"1285000.0 325000.0 -1 -1 \n",
"445000.0 305000.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"515000.0 605000.0 255 0 \n",
"1075000.0 55000.0 255 0 \n",
"665000.0 295000.0 2 0 \n",
"1285000.0 325000.0 255 0 \n",
"445000.0 305000.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 605000.0 | \n",
" 65000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1205000.0 | \n",
" 455000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -1000 | \n",
" -9999 | \n",
" 0 | \n",
" -2 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 145000.0 | \n",
" 55000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 275000.0 | \n",
" 435000.0 | \n",
" 0 | \n",
" 0 | \n",
" 5 | \n",
" 41 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 49 | \n",
" 5 | \n",
" 863 | \n",
" 1 | \n",
" 2 | \n",
" 4 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 195000.0 | \n",
" 425000.0 | \n",
" 21 | \n",
" 0 | \n",
" 54 | \n",
" 24 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 1016 | \n",
" 3 | \n",
" 2 | \n",
" 9 | \n",
" 3 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"605000.0 65000.0 0 0 0 \n",
"1205000.0 455000.0 0 0 0 \n",
"145000.0 55000.0 0 0 0 \n",
"275000.0 435000.0 0 0 5 \n",
"195000.0 425000.0 21 0 54 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"605000.0 65000.0 0 0 \n",
"1205000.0 455000.0 0 0 \n",
"145000.0 55000.0 0 0 \n",
"275000.0 435000.0 41 0 \n",
"195000.0 425000.0 24 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"605000.0 65000.0 0 0 0 0 \n",
"1205000.0 455000.0 0 0 0 3 \n",
"145000.0 55000.0 0 0 0 0 \n",
"275000.0 435000.0 0 0 0 0 \n",
"195000.0 425000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"605000.0 65000.0 0 ... 0 0 \n",
"1205000.0 455000.0 0 ... 0 0 \n",
"145000.0 55000.0 0 ... 0 0 \n",
"275000.0 435000.0 0 ... 0 0 \n",
"195000.0 425000.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"605000.0 65000.0 0 0 -9999 -9999 \n",
"1205000.0 455000.0 0 0 -1000 -9999 \n",
"145000.0 55000.0 0 0 -9999 -9999 \n",
"275000.0 435000.0 49 5 863 1 \n",
"195000.0 425000.0 0 1 1016 3 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"605000.0 65000.0 -1 -1 \n",
"1205000.0 455000.0 0 -2 \n",
"145000.0 55000.0 -1 -1 \n",
"275000.0 435000.0 2 4 \n",
"195000.0 425000.0 2 9 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"605000.0 65000.0 255 0 \n",
"1205000.0 455000.0 0 0 \n",
"145000.0 55000.0 255 0 \n",
"275000.0 435000.0 0 1 \n",
"195000.0 425000.0 3 1 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1015000.0 | \n",
" 385000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 175000.0 | \n",
" 95000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 345000.0 | \n",
" 595000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 6 | \n",
" 94 | \n",
" 0 | \n",
" 0 | \n",
" -1000 | \n",
" -9999 | \n",
" 0 | \n",
" -2 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 1275000.0 | \n",
" 605000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 575000.0 | \n",
" 645000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1015000.0 385000.0 0 0 0 \n",
"175000.0 95000.0 0 0 0 \n",
"345000.0 595000.0 0 0 0 \n",
"1275000.0 605000.0 0 0 0 \n",
"575000.0 645000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1015000.0 385000.0 0 0 \n",
"175000.0 95000.0 0 0 \n",
"345000.0 595000.0 0 0 \n",
"1275000.0 605000.0 0 0 \n",
"575000.0 645000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1015000.0 385000.0 0 0 0 0 \n",
"175000.0 95000.0 0 0 0 0 \n",
"345000.0 595000.0 0 0 0 0 \n",
"1275000.0 605000.0 0 0 0 0 \n",
"575000.0 645000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"1015000.0 385000.0 0 ... 0 0 \n",
"175000.0 95000.0 0 ... 0 0 \n",
"345000.0 595000.0 0 ... 6 94 \n",
"1275000.0 605000.0 0 ... 0 0 \n",
"575000.0 645000.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"1015000.0 385000.0 0 0 -9999 -9999 \n",
"175000.0 95000.0 0 0 -9999 -9999 \n",
"345000.0 595000.0 0 0 -1000 -9999 \n",
"1275000.0 605000.0 0 0 -9999 -9999 \n",
"575000.0 645000.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"1015000.0 385000.0 -1 -1 \n",
"175000.0 95000.0 -1 -1 \n",
"345000.0 595000.0 0 -2 \n",
"1275000.0 605000.0 -1 -1 \n",
"575000.0 645000.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"1015000.0 385000.0 255 0 \n",
"175000.0 95000.0 255 0 \n",
"345000.0 595000.0 0 1 \n",
"1275000.0 605000.0 255 0 \n",
"575000.0 645000.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 475000.0 | \n",
" 255000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 295000.0 | \n",
" 355000.0 | \n",
" 28 | \n",
" 2 | \n",
" 0 | \n",
" 70 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 1661 | \n",
" 3 | \n",
" 2 | \n",
" 8 | \n",
" 2 | \n",
" 0 | \n",
"
\n",
" \n",
" 915000.0 | \n",
" 185000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 65000.0 | \n",
" 455000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -1000 | \n",
" -9999 | \n",
" 0 | \n",
" -2 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 845000.0 | \n",
" 75000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 100 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 50 | \n",
" 1 | \n",
" 2 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"475000.0 255000.0 0 0 0 \n",
"295000.0 355000.0 28 2 0 \n",
"915000.0 185000.0 0 0 0 \n",
"65000.0 455000.0 0 0 0 \n",
"845000.0 75000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"475000.0 255000.0 0 0 0 \n",
"295000.0 355000.0 70 0 0 \n",
"915000.0 185000.0 0 0 0 \n",
"65000.0 455000.0 0 0 0 \n",
"845000.0 75000.0 100 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"475000.0 255000.0 0 0 0 0 ... \n",
"295000.0 355000.0 0 0 0 0 ... \n",
"915000.0 185000.0 0 0 0 0 ... \n",
"65000.0 455000.0 0 0 0 0 ... \n",
"845000.0 75000.0 0 0 0 0 ... \n",
"\n",
" Littoral sediment Saltmarsh Urban Suburban Elevation \\\n",
"y x \n",
"475000.0 255000.0 0 0 0 0 -9999 \n",
"295000.0 355000.0 0 0 0 1 1661 \n",
"915000.0 185000.0 0 0 0 0 -9999 \n",
"65000.0 455000.0 0 0 0 0 -1000 \n",
"845000.0 75000.0 0 0 0 0 50 \n",
"\n",
" Cumulative catchment area Surface type \\\n",
"y x \n",
"475000.0 255000.0 -9999 -1 \n",
"295000.0 355000.0 3 2 \n",
"915000.0 185000.0 -9999 -1 \n",
"65000.0 455000.0 -9999 0 \n",
"845000.0 75000.0 1 2 \n",
"\n",
" Outflowing drainage direction \\\n",
"y x \n",
"475000.0 255000.0 -1 \n",
"295000.0 355000.0 8 \n",
"915000.0 185000.0 -1 \n",
"65000.0 455000.0 -2 \n",
"845000.0 75000.0 1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"475000.0 255000.0 255 0 \n",
"295000.0 355000.0 2 0 \n",
"915000.0 185000.0 255 0 \n",
"65000.0 455000.0 0 0 \n",
"845000.0 75000.0 0 1 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1215000.0 | \n",
" 85000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 755000.0 | \n",
" 435000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 25000.0 | \n",
" 495000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1025000.0 | \n",
" 555000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1175000.0 | \n",
" 315000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1215000.0 85000.0 0 0 0 \n",
"755000.0 435000.0 0 0 0 \n",
"25000.0 495000.0 0 0 0 \n",
"1025000.0 555000.0 0 0 0 \n",
"1175000.0 315000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1215000.0 85000.0 0 0 \n",
"755000.0 435000.0 0 0 \n",
"25000.0 495000.0 0 0 \n",
"1025000.0 555000.0 0 0 \n",
"1175000.0 315000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1215000.0 85000.0 0 0 0 0 \n",
"755000.0 435000.0 0 0 0 0 \n",
"25000.0 495000.0 0 0 0 0 \n",
"1025000.0 555000.0 0 0 0 0 \n",
"1175000.0 315000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"1215000.0 85000.0 0 ... 0 0 \n",
"755000.0 435000.0 0 ... 0 0 \n",
"25000.0 495000.0 0 ... 0 0 \n",
"1025000.0 555000.0 0 ... 0 0 \n",
"1175000.0 315000.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"1215000.0 85000.0 0 0 -9999 -9999 \n",
"755000.0 435000.0 0 0 -9999 -9999 \n",
"25000.0 495000.0 0 0 -9999 -9999 \n",
"1025000.0 555000.0 0 0 -9999 -9999 \n",
"1175000.0 315000.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"1215000.0 85000.0 -1 -1 \n",
"755000.0 435000.0 -1 -1 \n",
"25000.0 495000.0 -1 -1 \n",
"1025000.0 555000.0 -1 -1 \n",
"1175000.0 315000.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"1215000.0 85000.0 255 0 \n",
"755000.0 435000.0 255 0 \n",
"25000.0 495000.0 255 0 \n",
"1025000.0 555000.0 255 0 \n",
"1175000.0 315000.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 735000.0 | \n",
" 305000.0 | \n",
" 1 | \n",
" 0 | \n",
" 84 | \n",
" 14 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 965 | \n",
" 9 | \n",
" 2 | \n",
" 7 | \n",
" 144 | \n",
" 1 | \n",
"
\n",
" \n",
" 505000.0 | \n",
" 185000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 915000.0 | \n",
" 685000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 295000.0 | \n",
" 225000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1035000.0 | \n",
" 515000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"735000.0 305000.0 1 0 84 \n",
"505000.0 185000.0 0 0 0 \n",
"915000.0 685000.0 0 0 0 \n",
"295000.0 225000.0 0 0 0 \n",
"1035000.0 515000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"735000.0 305000.0 14 0 \n",
"505000.0 185000.0 0 0 \n",
"915000.0 685000.0 0 0 \n",
"295000.0 225000.0 0 0 \n",
"1035000.0 515000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"735000.0 305000.0 0 0 0 0 \n",
"505000.0 185000.0 0 0 0 0 \n",
"915000.0 685000.0 0 0 0 0 \n",
"295000.0 225000.0 0 0 0 0 \n",
"1035000.0 515000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"735000.0 305000.0 0 ... 0 0 \n",
"505000.0 185000.0 0 ... 0 0 \n",
"915000.0 685000.0 0 ... 0 0 \n",
"295000.0 225000.0 0 ... 0 0 \n",
"1035000.0 515000.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"735000.0 305000.0 0 1 965 9 \n",
"505000.0 185000.0 0 0 -9999 -9999 \n",
"915000.0 685000.0 0 0 -9999 -9999 \n",
"295000.0 225000.0 0 0 -9999 -9999 \n",
"1035000.0 515000.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"735000.0 305000.0 2 7 \n",
"505000.0 185000.0 -1 -1 \n",
"915000.0 685000.0 -1 -1 \n",
"295000.0 225000.0 -1 -1 \n",
"1035000.0 515000.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"735000.0 305000.0 144 1 \n",
"505000.0 185000.0 255 0 \n",
"915000.0 685000.0 255 0 \n",
"295000.0 225000.0 255 0 \n",
"1035000.0 515000.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1095000.0 | \n",
" 515000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 715000.0 | \n",
" 345000.0 | \n",
" 4 | \n",
" 0 | \n",
" 94 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 2 | \n",
" 1129 | \n",
" 1 | \n",
" 2 | \n",
" 8 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1195000.0 | \n",
" 165000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 985000.0 | \n",
" 535000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 15000.0 | \n",
" 535000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1095000.0 515000.0 0 0 0 \n",
"715000.0 345000.0 4 0 94 \n",
"1195000.0 165000.0 0 0 0 \n",
"985000.0 535000.0 0 0 0 \n",
"15000.0 535000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1095000.0 515000.0 0 0 \n",
"715000.0 345000.0 1 0 \n",
"1195000.0 165000.0 0 0 \n",
"985000.0 535000.0 0 0 \n",
"15000.0 535000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1095000.0 515000.0 0 0 0 0 \n",
"715000.0 345000.0 0 0 0 0 \n",
"1195000.0 165000.0 0 0 0 0 \n",
"985000.0 535000.0 0 0 0 0 \n",
"15000.0 535000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"1095000.0 515000.0 0 ... 0 0 \n",
"715000.0 345000.0 0 ... 0 0 \n",
"1195000.0 165000.0 0 ... 0 0 \n",
"985000.0 535000.0 0 ... 0 0 \n",
"15000.0 535000.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"1095000.0 515000.0 0 0 -9999 -9999 \n",
"715000.0 345000.0 0 2 1129 1 \n",
"1195000.0 165000.0 0 0 -9999 -9999 \n",
"985000.0 535000.0 0 0 -9999 -9999 \n",
"15000.0 535000.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"1095000.0 515000.0 -1 -1 \n",
"715000.0 345000.0 2 8 \n",
"1195000.0 165000.0 -1 -1 \n",
"985000.0 535000.0 -1 -1 \n",
"15000.0 535000.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"1095000.0 515000.0 255 0 \n",
"715000.0 345000.0 0 0 \n",
"1195000.0 165000.0 255 0 \n",
"985000.0 535000.0 255 0 \n",
"15000.0 535000.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1135000.0 | \n",
" 555000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 375000.0 | \n",
" 315000.0 | \n",
" 1 | \n",
" 0 | \n",
" 3 | \n",
" 94 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 2 | \n",
" 1953 | \n",
" 5 | \n",
" 2 | \n",
" 2 | \n",
" 96 | \n",
" 0 | \n",
"
\n",
" \n",
" 725000.0 | \n",
" 5000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 645000.0 | \n",
" 635000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 535000.0 | \n",
" 55000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1135000.0 555000.0 0 0 0 \n",
"375000.0 315000.0 1 0 3 \n",
"725000.0 5000.0 0 0 0 \n",
"645000.0 635000.0 0 0 0 \n",
"535000.0 55000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1135000.0 555000.0 0 0 \n",
"375000.0 315000.0 94 0 \n",
"725000.0 5000.0 0 0 \n",
"645000.0 635000.0 0 0 \n",
"535000.0 55000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1135000.0 555000.0 0 0 0 0 \n",
"375000.0 315000.0 0 0 0 0 \n",
"725000.0 5000.0 0 0 0 0 \n",
"645000.0 635000.0 0 0 0 0 \n",
"535000.0 55000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"1135000.0 555000.0 0 ... 0 0 \n",
"375000.0 315000.0 0 ... 0 0 \n",
"725000.0 5000.0 0 ... 0 0 \n",
"645000.0 635000.0 0 ... 0 0 \n",
"535000.0 55000.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"1135000.0 555000.0 0 0 -9999 -9999 \n",
"375000.0 315000.0 0 2 1953 5 \n",
"725000.0 5000.0 0 0 -9999 -9999 \n",
"645000.0 635000.0 0 0 -9999 -9999 \n",
"535000.0 55000.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"1135000.0 555000.0 -1 -1 \n",
"375000.0 315000.0 2 2 \n",
"725000.0 5000.0 -1 -1 \n",
"645000.0 635000.0 -1 -1 \n",
"535000.0 55000.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"1135000.0 555000.0 255 0 \n",
"375000.0 315000.0 96 0 \n",
"725000.0 5000.0 255 0 \n",
"645000.0 635000.0 255 0 \n",
"535000.0 55000.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1245000.0 | \n",
" 605000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 255000.0 | \n",
" 225000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -1000 | \n",
" -9999 | \n",
" 0 | \n",
" -2 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 775000.0 | \n",
" 305000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 100 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 7928 | \n",
" 5 | \n",
" 2 | \n",
" 3 | \n",
" 8 | \n",
" 0 | \n",
"
\n",
" \n",
" 955000.0 | \n",
" 295000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 2036 | \n",
" 9 | \n",
" 2 | \n",
" 4 | \n",
" 16 | \n",
" 0 | \n",
"
\n",
" \n",
" 1185000.0 | \n",
" 95000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1245000.0 605000.0 0 0 0 \n",
"255000.0 225000.0 0 0 0 \n",
"775000.0 305000.0 0 0 0 \n",
"955000.0 295000.0 0 0 0 \n",
"1185000.0 95000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1245000.0 605000.0 0 0 \n",
"255000.0 225000.0 0 0 \n",
"775000.0 305000.0 0 0 \n",
"955000.0 295000.0 0 0 \n",
"1185000.0 95000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1245000.0 605000.0 0 0 0 0 \n",
"255000.0 225000.0 0 0 0 0 \n",
"775000.0 305000.0 0 0 0 100 \n",
"955000.0 295000.0 0 0 0 0 \n",
"1185000.0 95000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"1245000.0 605000.0 0 ... 0 0 \n",
"255000.0 225000.0 0 ... 0 0 \n",
"775000.0 305000.0 0 ... 0 0 \n",
"955000.0 295000.0 0 ... 0 0 \n",
"1185000.0 95000.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"1245000.0 605000.0 0 0 -9999 -9999 \n",
"255000.0 225000.0 0 0 -1000 -9999 \n",
"775000.0 305000.0 0 0 7928 5 \n",
"955000.0 295000.0 0 0 2036 9 \n",
"1185000.0 95000.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"1245000.0 605000.0 -1 -1 \n",
"255000.0 225000.0 0 -2 \n",
"775000.0 305000.0 2 3 \n",
"955000.0 295000.0 2 4 \n",
"1185000.0 95000.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"1245000.0 605000.0 255 0 \n",
"255000.0 225000.0 0 0 \n",
"775000.0 305000.0 8 0 \n",
"955000.0 295000.0 16 0 \n",
"1185000.0 95000.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 895000.0 | \n",
" 645000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 395000.0 | \n",
" 105000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 285000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 595000.0 | \n",
" 275000.0 | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 97 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 2657 | \n",
" 1 | \n",
" 2 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1025000.0 | \n",
" 125000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"895000.0 645000.0 0 0 0 \n",
"395000.0 105000.0 0 0 0 \n",
" 285000.0 0 0 0 \n",
"595000.0 275000.0 0 2 0 \n",
"1025000.0 125000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"895000.0 645000.0 0 0 \n",
"395000.0 105000.0 0 0 \n",
" 285000.0 0 0 \n",
"595000.0 275000.0 0 0 \n",
"1025000.0 125000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"895000.0 645000.0 0 0 0 0 \n",
"395000.0 105000.0 0 0 0 0 \n",
" 285000.0 0 0 0 0 \n",
"595000.0 275000.0 0 97 0 0 \n",
"1025000.0 125000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"895000.0 645000.0 0 ... 0 0 \n",
"395000.0 105000.0 0 ... 0 0 \n",
" 285000.0 0 ... 0 0 \n",
"595000.0 275000.0 0 ... 0 0 \n",
"1025000.0 125000.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"895000.0 645000.0 0 0 -9999 -9999 \n",
"395000.0 105000.0 0 0 -9999 -9999 \n",
" 285000.0 0 0 -9999 -9999 \n",
"595000.0 275000.0 0 0 2657 1 \n",
"1025000.0 125000.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"895000.0 645000.0 -1 -1 \n",
"395000.0 105000.0 -1 -1 \n",
" 285000.0 -1 -1 \n",
"595000.0 275000.0 2 2 \n",
"1025000.0 125000.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"895000.0 645000.0 255 0 \n",
"395000.0 105000.0 255 0 \n",
" 285000.0 255 0 \n",
"595000.0 275000.0 0 0 \n",
"1025000.0 125000.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 515000.0 | \n",
" 465000.0 | \n",
" 3 | \n",
" 3 | \n",
" 2 | \n",
" 31 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 59 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 1484 | \n",
" 585 | \n",
" 4 | \n",
" 38 | \n",
" 7 | \n",
" 1 | \n",
"
\n",
" \n",
" 205000.0 | \n",
" 445000.0 | \n",
" 6 | \n",
" 0 | \n",
" 37 | \n",
" 39 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 17 | \n",
" 715 | \n",
" 6 | \n",
" 2 | \n",
" 8 | \n",
" 4 | \n",
" 1 | \n",
"
\n",
" \n",
" 865000.0 | \n",
" 375000.0 | \n",
" 5 | \n",
" 0 | \n",
" 32 | \n",
" 7 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -1000 | \n",
" -9999 | \n",
" 0 | \n",
" -2 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 955000.0 | \n",
" 105000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 345000.0 | \n",
" 555000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -1000 | \n",
" -9999 | \n",
" 0 | \n",
" -2 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"515000.0 465000.0 3 3 2 \n",
"205000.0 445000.0 6 0 37 \n",
"865000.0 375000.0 5 0 32 \n",
"955000.0 105000.0 0 0 0 \n",
"345000.0 555000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"515000.0 465000.0 31 0 0 \n",
"205000.0 445000.0 39 0 0 \n",
"865000.0 375000.0 7 0 0 \n",
"955000.0 105000.0 0 0 0 \n",
"345000.0 555000.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"515000.0 465000.0 0 0 0 59 ... \n",
"205000.0 445000.0 0 0 0 0 ... \n",
"865000.0 375000.0 0 0 0 0 ... \n",
"955000.0 105000.0 0 0 0 0 ... \n",
"345000.0 555000.0 0 0 0 0 ... \n",
"\n",
" Littoral sediment Saltmarsh Urban Suburban Elevation \\\n",
"y x \n",
"515000.0 465000.0 0 0 0 3 1484 \n",
"205000.0 445000.0 0 0 0 17 715 \n",
"865000.0 375000.0 0 0 0 0 -1000 \n",
"955000.0 105000.0 0 0 0 0 -9999 \n",
"345000.0 555000.0 0 0 0 0 -1000 \n",
"\n",
" Cumulative catchment area Surface type \\\n",
"y x \n",
"515000.0 465000.0 585 4 \n",
"205000.0 445000.0 6 2 \n",
"865000.0 375000.0 -9999 0 \n",
"955000.0 105000.0 -9999 -1 \n",
"345000.0 555000.0 -9999 0 \n",
"\n",
" Outflowing drainage direction \\\n",
"y x \n",
"515000.0 465000.0 38 \n",
"205000.0 445000.0 8 \n",
"865000.0 375000.0 -2 \n",
"955000.0 105000.0 -1 \n",
"345000.0 555000.0 -2 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"515000.0 465000.0 7 1 \n",
"205000.0 445000.0 4 1 \n",
"865000.0 375000.0 0 0 \n",
"955000.0 105000.0 255 0 \n",
"345000.0 555000.0 0 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1055000.0 | \n",
" 495000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 665000.0 | \n",
" 545000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 515000.0 | \n",
" 575000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 745000.0 | \n",
" 135000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -1000 | \n",
" -9999 | \n",
" 0 | \n",
" -2 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 445000.0 | \n",
" 45000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1055000.0 495000.0 0 0 0 \n",
"665000.0 545000.0 0 0 0 \n",
"515000.0 575000.0 0 0 0 \n",
"745000.0 135000.0 0 0 0 \n",
"445000.0 45000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1055000.0 495000.0 0 0 \n",
"665000.0 545000.0 0 0 \n",
"515000.0 575000.0 0 0 \n",
"745000.0 135000.0 0 0 \n",
"445000.0 45000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1055000.0 495000.0 0 0 0 0 \n",
"665000.0 545000.0 0 0 0 0 \n",
"515000.0 575000.0 0 0 0 0 \n",
"745000.0 135000.0 0 0 0 0 \n",
"445000.0 45000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"1055000.0 495000.0 0 ... 0 0 \n",
"665000.0 545000.0 0 ... 0 0 \n",
"515000.0 575000.0 0 ... 0 0 \n",
"745000.0 135000.0 0 ... 0 0 \n",
"445000.0 45000.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"1055000.0 495000.0 0 0 -9999 -9999 \n",
"665000.0 545000.0 0 0 -9999 -9999 \n",
"515000.0 575000.0 0 0 -9999 -9999 \n",
"745000.0 135000.0 0 0 -1000 -9999 \n",
"445000.0 45000.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"1055000.0 495000.0 -1 -1 \n",
"665000.0 545000.0 -1 -1 \n",
"515000.0 575000.0 -1 -1 \n",
"745000.0 135000.0 0 -2 \n",
"445000.0 45000.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"1055000.0 495000.0 255 0 \n",
"665000.0 545000.0 255 0 \n",
"515000.0 575000.0 255 0 \n",
"745000.0 135000.0 0 0 \n",
"445000.0 45000.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 605000.0 | \n",
" 485000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 955000.0 | \n",
" 675000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 245000.0 | \n",
" 605000.0 | \n",
" 19 | \n",
" 0 | \n",
" 73 | \n",
" 7 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 2 | \n",
" 652 | \n",
" 2 | \n",
" 2 | \n",
" 7 | \n",
" 16 | \n",
" 0 | \n",
"
\n",
" \n",
" 795000.0 | \n",
" 25000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 375000.0 | \n",
" 135000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"605000.0 485000.0 0 0 0 \n",
"955000.0 675000.0 0 0 0 \n",
"245000.0 605000.0 19 0 73 \n",
"795000.0 25000.0 0 0 0 \n",
"375000.0 135000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland Calcareous grassland \\\n",
"y x \n",
"605000.0 485000.0 0 0 0 \n",
"955000.0 675000.0 0 0 0 \n",
"245000.0 605000.0 7 0 0 \n",
"795000.0 25000.0 0 0 0 \n",
"375000.0 135000.0 0 0 0 \n",
"\n",
" Acid grassland Fen Heather Heather grassland ... \\\n",
"y x ... \n",
"605000.0 485000.0 0 0 0 0 ... \n",
"955000.0 675000.0 0 0 0 0 ... \n",
"245000.0 605000.0 0 0 0 0 ... \n",
"795000.0 25000.0 0 0 0 0 ... \n",
"375000.0 135000.0 0 0 0 0 ... \n",
"\n",
" Littoral sediment Saltmarsh Urban Suburban Elevation \\\n",
"y x \n",
"605000.0 485000.0 0 0 0 0 -9999 \n",
"955000.0 675000.0 0 0 0 0 -9999 \n",
"245000.0 605000.0 0 0 0 2 652 \n",
"795000.0 25000.0 0 0 0 0 -9999 \n",
"375000.0 135000.0 0 0 0 0 -9999 \n",
"\n",
" Cumulative catchment area Surface type \\\n",
"y x \n",
"605000.0 485000.0 -9999 -1 \n",
"955000.0 675000.0 -9999 -1 \n",
"245000.0 605000.0 2 2 \n",
"795000.0 25000.0 -9999 -1 \n",
"375000.0 135000.0 -9999 -1 \n",
"\n",
" Outflowing drainage direction \\\n",
"y x \n",
"605000.0 485000.0 -1 \n",
"955000.0 675000.0 -1 \n",
"245000.0 605000.0 7 \n",
"795000.0 25000.0 -1 \n",
"375000.0 135000.0 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"605000.0 485000.0 255 0 \n",
"955000.0 675000.0 255 0 \n",
"245000.0 605000.0 16 0 \n",
"795000.0 25000.0 255 0 \n",
"375000.0 135000.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 135000.0 | \n",
" 405000.0 | \n",
" 36 | \n",
" 31 | \n",
" 33 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1554 | \n",
" 1 | \n",
" 2 | \n",
" 7 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 1055000.0 | \n",
" 415000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 35000.0 | \n",
" 475000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 45000.0 | \n",
" 5000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1285000.0 | \n",
" 595000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"135000.0 405000.0 36 31 33 \n",
"1055000.0 415000.0 0 0 0 \n",
"35000.0 475000.0 0 0 0 \n",
"45000.0 5000.0 0 0 0 \n",
"1285000.0 595000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"135000.0 405000.0 0 0 \n",
"1055000.0 415000.0 0 0 \n",
"35000.0 475000.0 0 0 \n",
"45000.0 5000.0 0 0 \n",
"1285000.0 595000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"135000.0 405000.0 0 0 0 0 \n",
"1055000.0 415000.0 0 0 0 0 \n",
"35000.0 475000.0 0 0 0 0 \n",
"45000.0 5000.0 0 0 0 0 \n",
"1285000.0 595000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"135000.0 405000.0 0 ... 0 0 \n",
"1055000.0 415000.0 0 ... 0 0 \n",
"35000.0 475000.0 0 ... 0 0 \n",
"45000.0 5000.0 0 ... 0 0 \n",
"1285000.0 595000.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"135000.0 405000.0 0 0 1554 1 \n",
"1055000.0 415000.0 0 0 -9999 -9999 \n",
"35000.0 475000.0 0 0 -9999 -9999 \n",
"45000.0 5000.0 0 0 -9999 -9999 \n",
"1285000.0 595000.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"135000.0 405000.0 2 7 \n",
"1055000.0 415000.0 -1 -1 \n",
"35000.0 475000.0 -1 -1 \n",
"45000.0 5000.0 -1 -1 \n",
"1285000.0 595000.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"135000.0 405000.0 0 1 \n",
"1055000.0 415000.0 255 0 \n",
"35000.0 475000.0 255 0 \n",
"45000.0 5000.0 255 0 \n",
"1285000.0 595000.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 245000.0 | \n",
" 315000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 100 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 3186 | \n",
" 4 | \n",
" 2 | \n",
" 7 | \n",
" 4 | \n",
" 0 | \n",
"
\n",
" \n",
" 285000.0 | \n",
" 675000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 165000.0 | \n",
" 265000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1065000.0 | \n",
" 595000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 845000.0 | \n",
" 115000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 16 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -1000 | \n",
" -9999 | \n",
" 0 | \n",
" -2 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"245000.0 315000.0 0 0 0 \n",
"285000.0 675000.0 0 0 0 \n",
"165000.0 265000.0 0 0 0 \n",
"1065000.0 595000.0 0 0 0 \n",
"845000.0 115000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"245000.0 315000.0 0 0 \n",
"285000.0 675000.0 0 0 \n",
"165000.0 265000.0 0 0 \n",
"1065000.0 595000.0 0 0 \n",
"845000.0 115000.0 16 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"245000.0 315000.0 0 100 0 0 \n",
"285000.0 675000.0 0 0 0 0 \n",
"165000.0 265000.0 0 0 0 0 \n",
"1065000.0 595000.0 0 0 0 0 \n",
"845000.0 115000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"245000.0 315000.0 0 ... 0 0 \n",
"285000.0 675000.0 0 ... 0 0 \n",
"165000.0 265000.0 0 ... 0 0 \n",
"1065000.0 595000.0 0 ... 0 0 \n",
"845000.0 115000.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"245000.0 315000.0 0 0 3186 4 \n",
"285000.0 675000.0 0 0 -9999 -9999 \n",
"165000.0 265000.0 0 0 -9999 -9999 \n",
"1065000.0 595000.0 0 0 -9999 -9999 \n",
"845000.0 115000.0 0 0 -1000 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"245000.0 315000.0 2 7 \n",
"285000.0 675000.0 -1 -1 \n",
"165000.0 265000.0 -1 -1 \n",
"1065000.0 595000.0 -1 -1 \n",
"845000.0 115000.0 0 -2 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"245000.0 315000.0 4 0 \n",
"285000.0 675000.0 255 0 \n",
"165000.0 265000.0 255 0 \n",
"1065000.0 595000.0 255 0 \n",
"845000.0 115000.0 0 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1065000.0 | \n",
" 495000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 535000.0 | \n",
" 345000.0 | \n",
" 10 | \n",
" 0 | \n",
" 31 | \n",
" 59 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1953 | \n",
" 5 | \n",
" 2 | \n",
" 6 | \n",
" 8 | \n",
" 0 | \n",
"
\n",
" \n",
" 955000.0 | \n",
" 485000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 395000.0 | \n",
" 595000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 695000.0 | \n",
" 445000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1065000.0 495000.0 0 0 0 \n",
"535000.0 345000.0 10 0 31 \n",
"955000.0 485000.0 0 0 0 \n",
"395000.0 595000.0 0 0 0 \n",
"695000.0 445000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1065000.0 495000.0 0 0 \n",
"535000.0 345000.0 59 0 \n",
"955000.0 485000.0 0 0 \n",
"395000.0 595000.0 0 0 \n",
"695000.0 445000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1065000.0 495000.0 0 0 0 0 \n",
"535000.0 345000.0 0 0 0 0 \n",
"955000.0 485000.0 0 0 0 0 \n",
"395000.0 595000.0 0 0 0 0 \n",
"695000.0 445000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"1065000.0 495000.0 0 ... 0 0 \n",
"535000.0 345000.0 0 ... 0 0 \n",
"955000.0 485000.0 0 ... 0 0 \n",
"395000.0 595000.0 0 ... 0 0 \n",
"695000.0 445000.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"1065000.0 495000.0 0 0 -9999 -9999 \n",
"535000.0 345000.0 0 0 1953 5 \n",
"955000.0 485000.0 0 0 -9999 -9999 \n",
"395000.0 595000.0 0 0 -9999 -9999 \n",
"695000.0 445000.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"1065000.0 495000.0 -1 -1 \n",
"535000.0 345000.0 2 6 \n",
"955000.0 485000.0 -1 -1 \n",
"395000.0 595000.0 -1 -1 \n",
"695000.0 445000.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"1065000.0 495000.0 255 0 \n",
"535000.0 345000.0 8 0 \n",
"955000.0 485000.0 255 0 \n",
"395000.0 595000.0 255 0 \n",
"695000.0 445000.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1085000.0 | \n",
" 635000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 685000.0 | \n",
" 195000.0 | \n",
" 0 | \n",
" 99 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1871 | \n",
" 149 | \n",
" 2 | \n",
" 2 | \n",
" 88 | \n",
" 0 | \n",
"
\n",
" \n",
" 505000.0 | \n",
" 435000.0 | \n",
" 0 | \n",
" 0 | \n",
" 66 | \n",
" 32 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 568 | \n",
" 3 | \n",
" 2 | \n",
" 9 | \n",
" 3 | \n",
" 1 | \n",
"
\n",
" \n",
" 625000.0 | \n",
" 275000.0 | \n",
" 0 | \n",
" 100 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 4436 | \n",
" 2 | \n",
" 2 | \n",
" 2 | \n",
" 32 | \n",
" 0 | \n",
"
\n",
" \n",
" 315000.0 | \n",
" 265000.0 | \n",
" 14 | \n",
" 0 | \n",
" 0 | \n",
" 19 | \n",
" 28 | \n",
" 0 | \n",
" 12 | \n",
" 0 | \n",
" 0 | \n",
" 17 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1621 | \n",
" 2 | \n",
" 2 | \n",
" 4 | \n",
" 128 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"1085000.0 635000.0 0 0 0 \n",
"685000.0 195000.0 0 99 0 \n",
"505000.0 435000.0 0 0 66 \n",
"625000.0 275000.0 0 100 0 \n",
"315000.0 265000.0 14 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"1085000.0 635000.0 0 0 \n",
"685000.0 195000.0 0 0 \n",
"505000.0 435000.0 32 0 \n",
"625000.0 275000.0 0 0 \n",
"315000.0 265000.0 19 28 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"1085000.0 635000.0 0 0 0 0 \n",
"685000.0 195000.0 0 0 0 0 \n",
"505000.0 435000.0 0 0 0 0 \n",
"625000.0 275000.0 0 0 0 0 \n",
"315000.0 265000.0 0 12 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"1085000.0 635000.0 0 ... 0 0 \n",
"685000.0 195000.0 1 ... 0 0 \n",
"505000.0 435000.0 0 ... 0 0 \n",
"625000.0 275000.0 0 ... 0 0 \n",
"315000.0 265000.0 17 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"1085000.0 635000.0 0 0 -9999 -9999 \n",
"685000.0 195000.0 0 0 1871 149 \n",
"505000.0 435000.0 0 1 568 3 \n",
"625000.0 275000.0 0 0 4436 2 \n",
"315000.0 265000.0 0 0 1621 2 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"1085000.0 635000.0 -1 -1 \n",
"685000.0 195000.0 2 2 \n",
"505000.0 435000.0 2 9 \n",
"625000.0 275000.0 2 2 \n",
"315000.0 265000.0 2 4 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"1085000.0 635000.0 255 0 \n",
"685000.0 195000.0 88 0 \n",
"505000.0 435000.0 3 1 \n",
"625000.0 275000.0 32 0 \n",
"315000.0 265000.0 128 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 295000.0 | \n",
" 45000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1155000.0 | \n",
" 185000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 255000.0 | \n",
" 205000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1175000.0 | \n",
" 605000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1275000.0 | \n",
" 195000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"295000.0 45000.0 0 0 0 \n",
"1155000.0 185000.0 0 0 0 \n",
"255000.0 205000.0 0 0 0 \n",
"1175000.0 605000.0 0 0 0 \n",
"1275000.0 195000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"295000.0 45000.0 0 0 \n",
"1155000.0 185000.0 0 0 \n",
"255000.0 205000.0 0 0 \n",
"1175000.0 605000.0 0 0 \n",
"1275000.0 195000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"295000.0 45000.0 0 0 0 0 \n",
"1155000.0 185000.0 0 0 0 0 \n",
"255000.0 205000.0 0 0 0 0 \n",
"1175000.0 605000.0 0 0 0 0 \n",
"1275000.0 195000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"295000.0 45000.0 0 ... 0 0 \n",
"1155000.0 185000.0 0 ... 0 0 \n",
"255000.0 205000.0 0 ... 0 0 \n",
"1175000.0 605000.0 0 ... 0 0 \n",
"1275000.0 195000.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"295000.0 45000.0 0 0 -9999 -9999 \n",
"1155000.0 185000.0 0 0 -9999 -9999 \n",
"255000.0 205000.0 0 0 -9999 -9999 \n",
"1175000.0 605000.0 0 0 -9999 -9999 \n",
"1275000.0 195000.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"295000.0 45000.0 -1 -1 \n",
"1155000.0 185000.0 -1 -1 \n",
"255000.0 205000.0 -1 -1 \n",
"1175000.0 605000.0 -1 -1 \n",
"1275000.0 195000.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"295000.0 45000.0 255 0 \n",
"1155000.0 185000.0 255 0 \n",
"255000.0 205000.0 255 0 \n",
"1175000.0 605000.0 255 0 \n",
"1275000.0 195000.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 335000.0 | \n",
" 25000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 1135000.0 | \n",
" 205000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 545000.0 | \n",
" 195000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 245000.0 | \n",
" 215000.0 | \n",
" 2 | \n",
" 0 | \n",
" 28 | \n",
" 69 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 1606 | \n",
" 1 | \n",
" 2 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 345000.0 | \n",
" 515000.0 | \n",
" 2 | \n",
" 0 | \n",
" 94 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 85 | \n",
" 3 | \n",
" 2 | \n",
" 8 | \n",
" 3 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"335000.0 25000.0 0 0 0 \n",
"1135000.0 205000.0 0 0 0 \n",
"545000.0 195000.0 0 0 0 \n",
"245000.0 215000.0 2 0 28 \n",
"345000.0 515000.0 2 0 94 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"335000.0 25000.0 0 0 \n",
"1135000.0 205000.0 0 0 \n",
"545000.0 195000.0 0 0 \n",
"245000.0 215000.0 69 0 \n",
"345000.0 515000.0 3 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"335000.0 25000.0 0 0 0 0 \n",
"1135000.0 205000.0 0 0 0 0 \n",
"545000.0 195000.0 0 0 0 0 \n",
"245000.0 215000.0 0 0 0 0 \n",
"345000.0 515000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"335000.0 25000.0 0 ... 0 0 \n",
"1135000.0 205000.0 0 ... 0 0 \n",
"545000.0 195000.0 0 ... 0 0 \n",
"245000.0 215000.0 0 ... 0 0 \n",
"345000.0 515000.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"335000.0 25000.0 0 0 -9999 -9999 \n",
"1135000.0 205000.0 0 0 -9999 -9999 \n",
"545000.0 195000.0 0 0 -9999 -9999 \n",
"245000.0 215000.0 0 1 1606 1 \n",
"345000.0 515000.0 0 1 85 3 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"335000.0 25000.0 -1 -1 \n",
"1135000.0 205000.0 -1 -1 \n",
"545000.0 195000.0 -1 -1 \n",
"245000.0 215000.0 2 2 \n",
"345000.0 515000.0 2 8 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"335000.0 25000.0 255 0 \n",
"1135000.0 205000.0 255 0 \n",
"545000.0 195000.0 255 0 \n",
"245000.0 215000.0 0 0 \n",
"345000.0 515000.0 3 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Deciduous woodland | \n",
" Coniferous woodland | \n",
" Arable | \n",
" Improve grassland | \n",
" Neutral grassland | \n",
" Calcareous grassland | \n",
" Acid grassland | \n",
" Fen | \n",
" Heather | \n",
" Heather grassland | \n",
" ... | \n",
" Littoral sediment | \n",
" Saltmarsh | \n",
" Urban | \n",
" Suburban | \n",
" Elevation | \n",
" Cumulative catchment area | \n",
" Surface type | \n",
" Outflowing drainage direction | \n",
" Inflowing drainage direction | \n",
" Occurrence | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 235000.0 | \n",
" 255000.0 | \n",
" 59 | \n",
" 25 | \n",
" 0 | \n",
" 16 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 2962 | \n",
" 2 | \n",
" 2 | \n",
" 6 | \n",
" 32 | \n",
" 0 | \n",
"
\n",
" \n",
" 465000.0 | \n",
" 115000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
" 895000.0 | \n",
" 175000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -1000 | \n",
" -9999 | \n",
" 0 | \n",
" -2 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 35000.0 | \n",
" 165000.0 | \n",
" 9 | \n",
" 0 | \n",
" 2 | \n",
" 74 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 6 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 1643 | \n",
" 1 | \n",
" 2 | \n",
" 4 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1115000.0 | \n",
" 235000.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" ... | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" -9999 | \n",
" -9999 | \n",
" -1 | \n",
" -1 | \n",
" 255 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 27 columns
\n",
"
"
],
"text/plain": [
" Deciduous woodland Coniferous woodland Arable \\\n",
"y x \n",
"235000.0 255000.0 59 25 0 \n",
"465000.0 115000.0 0 0 0 \n",
"895000.0 175000.0 0 0 0 \n",
"35000.0 165000.0 9 0 2 \n",
"1115000.0 235000.0 0 0 0 \n",
"\n",
" Improve grassland Neutral grassland \\\n",
"y x \n",
"235000.0 255000.0 16 0 \n",
"465000.0 115000.0 0 0 \n",
"895000.0 175000.0 0 0 \n",
"35000.0 165000.0 74 0 \n",
"1115000.0 235000.0 0 0 \n",
"\n",
" Calcareous grassland Acid grassland Fen Heather \\\n",
"y x \n",
"235000.0 255000.0 0 0 0 0 \n",
"465000.0 115000.0 0 0 0 0 \n",
"895000.0 175000.0 0 0 0 0 \n",
"35000.0 165000.0 0 0 0 6 \n",
"1115000.0 235000.0 0 0 0 0 \n",
"\n",
" Heather grassland ... Littoral sediment Saltmarsh \\\n",
"y x ... \n",
"235000.0 255000.0 0 ... 0 0 \n",
"465000.0 115000.0 0 ... 0 0 \n",
"895000.0 175000.0 0 ... 0 0 \n",
"35000.0 165000.0 0 ... 0 0 \n",
"1115000.0 235000.0 0 ... 0 0 \n",
"\n",
" Urban Suburban Elevation Cumulative catchment area \\\n",
"y x \n",
"235000.0 255000.0 0 0 2962 2 \n",
"465000.0 115000.0 0 0 -9999 -9999 \n",
"895000.0 175000.0 0 0 -1000 -9999 \n",
"35000.0 165000.0 0 1 1643 1 \n",
"1115000.0 235000.0 0 0 -9999 -9999 \n",
"\n",
" Surface type Outflowing drainage direction \\\n",
"y x \n",
"235000.0 255000.0 2 6 \n",
"465000.0 115000.0 -1 -1 \n",
"895000.0 175000.0 0 -2 \n",
"35000.0 165000.0 2 4 \n",
"1115000.0 235000.0 -1 -1 \n",
"\n",
" Inflowing drainage direction Occurrence \n",
"y x \n",
"235000.0 255000.0 32 0 \n",
"465000.0 115000.0 255 0 \n",
"895000.0 175000.0 0 0 \n",
"35000.0 165000.0 0 0 \n",
"1115000.0 235000.0 255 0 \n",
"\n",
"[5 rows x 27 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Drop Fertiliser and Pesticide\n",
"for dict in df_dicts:\n",
" cur_df = dict[\"dataframe\"]\n",
" dict[\"dataframe\"].drop(cur_df.iloc[:, 26:-1], inplace=True, axis=1)\n",
" display(cur_df.sample(5))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 10km data before drop: \n",
" Occurrence\n",
"0 8634\n",
"1 466\n",
"dtype: int64 \n",
"\n",
"Barnacle Goose 10km data after drop: \n",
" Occurrence\n",
"0 2206\n",
"1 466\n",
"dtype: int64 \n",
"\n",
"Canada Goose 10km data before drop: \n",
" Occurrence\n",
"0 7311\n",
"1 1789\n",
"dtype: int64 \n",
"\n",
"Canada Goose 10km data after drop: \n",
" Occurrence\n",
"1 1789\n",
"0 883\n",
"dtype: int64 \n",
"\n",
"Egyptian Goose 10km data before drop: \n",
" Occurrence\n",
"0 8800\n",
"1 300\n",
"dtype: int64 \n",
"\n",
"Egyptian Goose 10km data after drop: \n",
" Occurrence\n",
"0 2372\n",
"1 300\n",
"dtype: int64 \n",
"\n",
"Gadwall 10km data before drop: \n",
" Occurrence\n",
"0 8270\n",
"1 830\n",
"dtype: int64 \n",
"\n",
"Gadwall 10km data after drop: \n",
" Occurrence\n",
"0 1842\n",
"1 830\n",
"dtype: int64 \n",
"\n",
"Goshawk 10km data before drop: \n",
" Occurrence\n",
"0 8654\n",
"1 446\n",
"dtype: int64 \n",
"\n",
"Goshawk 10km data after drop: \n",
" Occurrence\n",
"0 2226\n",
"1 446\n",
"dtype: int64 \n",
"\n",
"Grey Partridge 10km data before drop: \n",
" Occurrence\n",
"0 8098\n",
"1 1002\n",
"dtype: int64 \n",
"\n",
"Grey Partridge 10km data after drop: \n",
" Occurrence\n",
"0 1670\n",
"1 1002\n",
"dtype: int64 \n",
"\n",
"Indian Peafowl 10km data before drop: \n",
" Occurrence\n",
"0 8853\n",
"1 247\n",
"dtype: int64 \n",
"\n",
"Indian Peafowl 10km data after drop: \n",
" Occurrence\n",
"0 2425\n",
"1 247\n",
"dtype: int64 \n",
"\n",
"Little Owl 10km data before drop: \n",
" Occurrence\n",
"0 8023\n",
"1 1077\n",
"dtype: int64 \n",
"\n",
"Little Owl 10km data after drop: \n",
" Occurrence\n",
"0 1595\n",
"1 1077\n",
"dtype: int64 \n",
"\n",
"Mandarin Duck 10km data before drop: \n",
" Occurrence\n",
"0 8622\n",
"1 478\n",
"dtype: int64 \n",
"\n",
"Mandarin Duck 10km data after drop: \n",
" Occurrence\n",
"0 2194\n",
"1 478\n",
"dtype: int64 \n",
"\n",
"Mute Swan 10km data before drop: \n",
" Occurrence\n",
"0 7093\n",
"1 2007\n",
"dtype: int64 \n",
"\n",
"Mute Swan 10km data after drop: \n",
" Occurrence\n",
"1 2007\n",
"0 665\n",
"dtype: int64 \n",
"\n",
"Pheasant 10km data before drop: \n",
" Occurrence\n",
"0 7182\n",
"1 1918\n",
"dtype: int64 \n",
"\n",
"Pheasant 10km data after drop: \n",
" Occurrence\n",
"1 1918\n",
"0 754\n",
"dtype: int64 \n",
"\n",
"Pink-footed Goose 10km data before drop: \n",
" Occurrence\n",
"0 8370\n",
"1 730\n",
"dtype: int64 \n",
"\n",
"Pink-footed Goose 10km data after drop: \n",
" Occurrence\n",
"0 1942\n",
"1 730\n",
"dtype: int64 \n",
"\n",
"Pintail 10km data before drop: \n",
" Occurrence\n",
"0 8587\n",
"1 513\n",
"dtype: int64 \n",
"\n",
"Pintail 10km data after drop: \n",
" Occurrence\n",
"0 2159\n",
"1 513\n",
"dtype: int64 \n",
"\n",
"Pochard 10km data before drop: \n",
" Occurrence\n",
"0 8362\n",
"1 738\n",
"dtype: int64 \n",
"\n",
"Pochard 10km data after drop: \n",
" Occurrence\n",
"0 1934\n",
"1 738\n",
"dtype: int64 \n",
"\n",
"Red-legged Partridge 10km data before drop: \n",
" Occurrence\n",
"0 7892\n",
"1 1208\n",
"dtype: int64 \n",
"\n",
"Red-legged Partridge 10km data after drop: \n",
" Occurrence\n",
"0 1464\n",
"1 1208\n",
"dtype: int64 \n",
"\n",
"Ring-necked Parakeet 10km data before drop: \n",
" Occurrence\n",
"0 9004\n",
"1 96\n",
"dtype: int64 \n",
"\n",
"Ring-necked Parakeet 10km data after drop: \n",
" Occurrence\n",
"0 2576\n",
"1 96\n",
"dtype: int64 \n",
"\n",
"Rock Dove 10km data before drop: \n",
" Occurrence\n",
"0 7480\n",
"1 1620\n",
"dtype: int64 \n",
"\n",
"Rock Dove 10km data after drop: \n",
" Occurrence\n",
"1 1620\n",
"0 1052\n",
"dtype: int64 \n",
"\n",
"Ruddy Duck 10km data before drop: \n",
" Occurrence\n",
"0 9003\n",
"1 97\n",
"dtype: int64 \n",
"\n",
"Ruddy Duck 10km data after drop: \n",
" Occurrence\n",
"0 2575\n",
"1 97\n",
"dtype: int64 \n",
"\n",
"Whooper Swan 10km data before drop: \n",
" Occurrence\n",
"0 8441\n",
"1 659\n",
"dtype: int64 \n",
"\n",
"Whooper Swan 10km data after drop: \n",
" Occurrence\n",
"0 2013\n",
"1 659\n",
"dtype: int64 \n",
"\n",
"Wigeon 10km data before drop: \n",
" Occurrence\n",
"0 7833\n",
"1 1267\n",
"dtype: int64 \n",
"\n",
"Wigeon 10km data after drop: \n",
" Occurrence\n",
"0 1405\n",
"1 1267\n",
"dtype: int64 \n",
"\n"
]
}
],
"source": [
"# Data Cleaning\n",
"np.random.seed(seed=seed)\n",
"\n",
"for dict in df_dicts:\n",
" cur_df = dict[\"dataframe\"]\n",
" cur_df_name = dict[\"name\"]\n",
"\n",
" print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n",
" \n",
" no_occurences = cur_df[cur_df['Occurrence']==0].index \n",
" sample_size = sum(cur_df['Occurrence']==0) - total_birds + sum(cur_df['Occurrence']==1)\n",
" random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n",
" dict[\"dataframe\"] = cur_df.drop(random_indices)\n",
" \n",
" print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')\n",
"\n",
"\n",
"# for dict in df_dicts:\n",
"# cur_df = dict[\"dataframe\"]\n",
"# cur_df_name = dict[\"name\"]\n",
"\n",
"# print(f'{cur_df_name} data before drop: \\n {cur_df.value_counts(\"Occurrence\")} \\n')\n",
" \n",
"# no_occurences = cur_df[cur_df['Occurrence']==0].index\n",
"# sample_size = sum(cur_df['Occurrence']==0) - sum(cur_df['Occurrence']==1)\n",
"# random_indices = np.random.choice(no_occurences, sample_size, replace=False)\n",
"# dict[\"dataframe\"] = cur_df.drop(random_indices)\n",
" \n",
"# print(f'{cur_df_name} data after drop: \\n {dict[\"dataframe\"].value_counts(\"Occurrence\")} \\n')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# Standardisation\n",
"def standardise(X):\n",
" scaler = StandardScaler()\n",
" X_scaled = scaler.fit_transform(X)\n",
"\n",
" # Add headers back\n",
" X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)\n",
"\n",
" # Revert 'Surface type' back to non-standardised column as it is a categorical feature\n",
" X_scaled_df['Surface type'] = X['Surface type'].values\n",
" return X_scaled_df"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Feature Selection\n",
"\n",
"# Check if any columns have NaN in them\n",
"# nan_columns = []\n",
"# for column in X_scaled_df:\n",
"# if X_scaled_df[column].isnull().values.any():\n",
"# nan_columns.append(column)\n",
"# print(nan_columns if len(nan_columns)!= 0 else 'None')\n",
"\n",
"\n",
"# Using ANOVA F-Score as a feature selection method\n",
"def feature_select(X, y):\n",
" k_nums = [5, 10, 15, 20]\n",
" kbest_dict = {}\n",
" for num in k_nums:\n",
" # Needs to be 1d array, y.values.ravel() converts y into a 1d array\n",
" best_X = SelectKBest(f_classif, k=num).fit(X, y.values.ravel())\n",
" # kbest_dict[str(num)] = best_X.get_feature_names_out().tolist()\n",
" kbest_dict[str(num)] = best_X\n",
" # kbest_dict['40'] = list(X.columns)\n",
"\n",
" best_X = SelectKBest(f_classif, k='all').fit(X, y.values.ravel())\n",
"\n",
" feat_scores = pd.DataFrame()\n",
" feat_scores[\"F Score\"] = best_X.scores_\n",
" feat_scores[\"P Value\"] = best_X.pvalues_\n",
" feat_scores[\"Attribute\"] = X.columns\n",
" kbest_dict['Dataframe'] = feat_scores.sort_values([\"F Score\", \"P Value\"], ascending=[False, False])\n",
"\n",
"\n",
" if details:\n",
" print(f'K-Best Features Dataframe: \\n{kbest_dict[\"Dataframe\"]} \\n')\n",
" # print(json.dumps(kbest_dict, indent=4))\n",
" return kbest_dict"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# Resample (upsample) minority data\n",
"# for dict in df_dicts:\n",
"# if sum(dict['dataframe']['Occurence']==1) > sum(dict['dataframe']['Occurence']==0):\n",
"# continue\n",
"\n",
"# from sklearn.utils import resample\n",
"\n",
"# def upsample(X, y):\n",
"# X_1 = X[y['Occurrence'] == 1] # Getting positive occurrences (minority)\n",
"# X_0 = X[y['Occurrence'] == 0] # Getting negative occurrences (majority)\n",
" \n",
"# X_1_upsampled = resample(X_1 ,random_state=seed,n_samples=total_birds/2,replace=True)\n",
"\n",
"\n",
"# print(f'Resampling: \\n {y.value_counts()} \\n')\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"def oversample(X_train, y_train):\n",
" over = RandomOverSampler(sampling_strategy='minority', random_state=seed)\n",
" smote = SMOTE(random_state=seed, sampling_strategy='minority')\n",
" X_smote, y_smote = smote.fit_resample(X_train, y_train)\n",
" \n",
" if details:\n",
" print(f'Resampled Value Counts: \\n {y_smote.value_counts()} \\n')\n",
"\n",
" return X_smote, y_smote"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Name | \n",
" Occurrence Count | \n",
" Percentage | \n",
"
\n",
" \n",
" \n",
" \n",
" 9 | \n",
" Mute Swan 10km | \n",
" 2007 | \n",
" 0.751123 | \n",
"
\n",
" \n",
" 10 | \n",
" Pheasant 10km | \n",
" 1918 | \n",
" 0.717814 | \n",
"
\n",
" \n",
" 1 | \n",
" Canada Goose 10km | \n",
" 1789 | \n",
" 0.669536 | \n",
"
\n",
" \n",
" 16 | \n",
" Rock Dove 10km | \n",
" 1620 | \n",
" 0.606287 | \n",
"
\n",
" \n",
" 19 | \n",
" Wigeon 10km | \n",
" 1267 | \n",
" 0.474177 | \n",
"
\n",
" \n",
" 14 | \n",
" Red-legged Partridge 10km | \n",
" 1208 | \n",
" 0.452096 | \n",
"
\n",
" \n",
" 7 | \n",
" Little Owl 10km | \n",
" 1077 | \n",
" 0.403069 | \n",
"
\n",
" \n",
" 5 | \n",
" Grey Partridge 10km | \n",
" 1002 | \n",
" 0.375000 | \n",
"
\n",
" \n",
" 3 | \n",
" Gadwall 10km | \n",
" 830 | \n",
" 0.310629 | \n",
"
\n",
" \n",
" 13 | \n",
" Pochard 10km | \n",
" 738 | \n",
" 0.276198 | \n",
"
\n",
" \n",
" 11 | \n",
" Pink-footed Goose 10km | \n",
" 730 | \n",
" 0.273204 | \n",
"
\n",
" \n",
" 18 | \n",
" Whooper Swan 10km | \n",
" 659 | \n",
" 0.246632 | \n",
"
\n",
" \n",
" 12 | \n",
" Pintail 10km | \n",
" 513 | \n",
" 0.191991 | \n",
"
\n",
" \n",
" 8 | \n",
" Mandarin Duck 10km | \n",
" 478 | \n",
" 0.178892 | \n",
"
\n",
" \n",
" 0 | \n",
" Barnacle Goose 10km | \n",
" 466 | \n",
" 0.174401 | \n",
"
\n",
" \n",
" 4 | \n",
" Goshawk 10km | \n",
" 446 | \n",
" 0.166916 | \n",
"
\n",
" \n",
" 2 | \n",
" Egyptian Goose 10km | \n",
" 300 | \n",
" 0.112275 | \n",
"
\n",
" \n",
" 6 | \n",
" Indian Peafowl 10km | \n",
" 247 | \n",
" 0.092440 | \n",
"
\n",
" \n",
" 17 | \n",
" Ruddy Duck 10km | \n",
" 97 | \n",
" 0.036302 | \n",
"
\n",
" \n",
" 15 | \n",
" Ring-necked Parakeet 10km | \n",
" 96 | \n",
" 0.035928 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Name Occurrence Count Percentage\n",
"9 Mute Swan 10km 2007 0.751123\n",
"10 Pheasant 10km 1918 0.717814\n",
"1 Canada Goose 10km 1789 0.669536\n",
"16 Rock Dove 10km 1620 0.606287\n",
"19 Wigeon 10km 1267 0.474177\n",
"14 Red-legged Partridge 10km 1208 0.452096\n",
"7 Little Owl 10km 1077 0.403069\n",
"5 Grey Partridge 10km 1002 0.375000\n",
"3 Gadwall 10km 830 0.310629\n",
"13 Pochard 10km 738 0.276198\n",
"11 Pink-footed Goose 10km 730 0.273204\n",
"18 Whooper Swan 10km 659 0.246632\n",
"12 Pintail 10km 513 0.191991\n",
"8 Mandarin Duck 10km 478 0.178892\n",
"0 Barnacle Goose 10km 466 0.174401\n",
"4 Goshawk 10km 446 0.166916\n",
"2 Egyptian Goose 10km 300 0.112275\n",
"6 Indian Peafowl 10km 247 0.092440\n",
"17 Ruddy Duck 10km 97 0.036302\n",
"15 Ring-necked Parakeet 10km 96 0.035928"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"All_bird_occurrences = pd.DataFrame([(dict['name'],sum(dict['dataframe']['Occurrence'] == 1)) for dict in df_dicts], columns=['Name', 'Occurrence Count'])\n",
"All_bird_occurrences['Percentage'] = All_bird_occurrences['Occurrence Count']/total_birds\n",
"\n",
"All_bird_occurrences.sort_values('Occurrence Count', ascending=False)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training with Barnacle Goose 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8850174216027874,\n",
" \"recall\": 0.9136690647482014,\n",
" \"f1-score\": 0.8991150442477875,\n",
" \"support\": 556\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.48936170212765956,\n",
" \"recall\": 0.4107142857142857,\n",
" \"f1-score\": 0.4466019417475728,\n",
" \"support\": 112\n",
" },\n",
" \"accuracy\": 0.8293413173652695,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6871895618652235,\n",
" \"recall\": 0.6621916752312436,\n",
" \"f1-score\": 0.6728584929976802,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8186799357027659,\n",
" \"recall\": 0.8293413173652695,\n",
" \"f1-score\": 0.8232445839483503,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Barnacle Goose 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8957169459962756,\n",
" \"recall\": 0.8651079136690647,\n",
" \"f1-score\": 0.8801463860933211,\n",
" \"support\": 556\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.42748091603053434,\n",
" \"recall\": 0.5,\n",
" \"f1-score\": 0.46090534979423864,\n",
" \"support\": 112\n",
" },\n",
" \"accuracy\": 0.8038922155688623,\n",
" \"macro avg\": {\n",
" \"precision\": 0.661598931013405,\n",
" \"recall\": 0.6825539568345323,\n",
" \"f1-score\": 0.6705258679437799,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8172103062415405,\n",
" \"recall\": 0.8038922155688623,\n",
" \"f1-score\": 0.8098544758156306,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Canada Goose 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Canada Goose 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9739583333333334,\n",
" \"recall\": 0.8862559241706162,\n",
" \"f1-score\": 0.9280397022332506,\n",
" \"support\": 211\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9495798319327731,\n",
" \"recall\": 0.9890590809628009,\n",
" \"f1-score\": 0.9689174705251876,\n",
" \"support\": 457\n",
" },\n",
" \"accuracy\": 0.9565868263473054,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9617690826330532,\n",
" \"recall\": 0.9376575025667085,\n",
" \"f1-score\": 0.9484785863792191,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9572802268362435,\n",
" \"recall\": 0.9565868263473054,\n",
" \"f1-score\": 0.9560054808401597,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Canada Goose 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9178743961352657,\n",
" \"recall\": 0.9004739336492891,\n",
" \"f1-score\": 0.9090909090909091,\n",
" \"support\": 211\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9544468546637744,\n",
" \"recall\": 0.962800875273523,\n",
" \"f1-score\": 0.9586056644880175,\n",
" \"support\": 457\n",
" },\n",
" \"accuracy\": 0.9431137724550899,\n",
" \"macro avg\": {\n",
" \"precision\": 0.93616062539952,\n",
" \"recall\": 0.931637404461406,\n",
" \"f1-score\": 0.9338482867894633,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9428947756974342,\n",
" \"recall\": 0.9431137724550899,\n",
" \"f1-score\": 0.9429655246844397,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Egyptian Goose 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Egyptian Goose 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9357495881383855,\n",
" \"recall\": 0.9594594594594594,\n",
" \"f1-score\": 0.9474562135112593,\n",
" \"support\": 592\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6065573770491803,\n",
" \"recall\": 0.4868421052631579,\n",
" \"f1-score\": 0.5401459854014599,\n",
" \"support\": 76\n",
" },\n",
" \"accuracy\": 0.905688622754491,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7711534825937829,\n",
" \"recall\": 0.7231507823613087,\n",
" \"f1-score\": 0.7438010994563595,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8982965820863202,\n",
" \"recall\": 0.905688622754491,\n",
" \"f1-score\": 0.9011155288760128,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Egyptian Goose 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9380234505862647,\n",
" \"recall\": 0.9459459459459459,\n",
" \"f1-score\": 0.9419680403700589,\n",
" \"support\": 592\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5492957746478874,\n",
" \"recall\": 0.5131578947368421,\n",
" \"f1-score\": 0.5306122448979592,\n",
" \"support\": 76\n",
" },\n",
" \"accuracy\": 0.8967065868263473,\n",
" \"macro avg\": {\n",
" \"precision\": 0.743659612617076,\n",
" \"recall\": 0.729551920341394,\n",
" \"f1-score\": 0.736290142634009,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8937969485333954,\n",
" \"recall\": 0.8967065868263473,\n",
" \"f1-score\": 0.8951670816037721,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Gadwall 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gadwall 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9131403118040089,\n",
" \"recall\": 0.8951965065502183,\n",
" \"f1-score\": 0.9040793825799339,\n",
" \"support\": 458\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7808219178082192,\n",
" \"recall\": 0.8142857142857143,\n",
" \"f1-score\": 0.7972027972027972,\n",
" \"support\": 210\n",
" },\n",
" \"accuracy\": 0.8697604790419161,\n",
" \"macro avg\": {\n",
" \"precision\": 0.846981114806114,\n",
" \"recall\": 0.8547411104179663,\n",
" \"f1-score\": 0.8506410898913656,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8715432118951528,\n",
" \"recall\": 0.8697604790419161,\n",
" \"f1-score\": 0.8704804560392173,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Gadwall 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.91725768321513,\n",
" \"recall\": 0.8471615720524017,\n",
" \"f1-score\": 0.8808172531214529,\n",
" \"support\": 458\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7142857142857143,\n",
" \"recall\": 0.8333333333333334,\n",
" \"f1-score\": 0.7692307692307692,\n",
" \"support\": 210\n",
" },\n",
" \"accuracy\": 0.842814371257485,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8157716987504222,\n",
" \"recall\": 0.8402474526928676,\n",
" \"f1-score\": 0.825024011176111,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8534491301085771,\n",
" \"recall\": 0.842814371257485,\n",
" \"f1-score\": 0.8457376698624055,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Goshawk 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Goshawk 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9281867145421903,\n",
" \"recall\": 0.9150442477876106,\n",
" \"f1-score\": 0.9215686274509804,\n",
" \"support\": 565\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5675675675675675,\n",
" \"recall\": 0.6116504854368932,\n",
" \"f1-score\": 0.5887850467289719,\n",
" \"support\": 103\n",
" },\n",
" \"accuracy\": 0.8682634730538922,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7478771410548789,\n",
" \"recall\": 0.7633473666122519,\n",
" \"f1-score\": 0.7551768370899762,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8725822652332291,\n",
" \"recall\": 0.8682634730538922,\n",
" \"f1-score\": 0.87025618910612,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Goshawk 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9074733096085409,\n",
" \"recall\": 0.9026548672566371,\n",
" \"f1-score\": 0.9050576752440107,\n",
" \"support\": 565\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4811320754716981,\n",
" \"recall\": 0.49514563106796117,\n",
" \"f1-score\": 0.4880382775119617,\n",
" \"support\": 103\n",
" },\n",
" \"accuracy\": 0.8398203592814372,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6943026925401194,\n",
" \"recall\": 0.6989002491622991,\n",
" \"f1-score\": 0.6965479763779863,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8417350654227703,\n",
" \"recall\": 0.8398203592814372,\n",
" \"f1-score\": 0.8407567800847275,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Grey Partridge 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Grey Partridge 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9417721518987342,\n",
" \"recall\": 0.8794326241134752,\n",
" \"f1-score\": 0.9095354523227385,\n",
" \"support\": 423\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8131868131868132,\n",
" \"recall\": 0.9061224489795918,\n",
" \"f1-score\": 0.8571428571428572,\n",
" \"support\": 245\n",
" },\n",
" \"accuracy\": 0.8892215568862275,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8774794825427736,\n",
" \"recall\": 0.8927775365465336,\n",
" \"f1-score\": 0.8833391547327978,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8946113615028949,\n",
" \"recall\": 0.8892215568862275,\n",
" \"f1-score\": 0.8903196052882012,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Grey Partridge 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9493670886075949,\n",
" \"recall\": 0.8865248226950354,\n",
" \"f1-score\": 0.9168704156479217,\n",
" \"support\": 423\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8241758241758241,\n",
" \"recall\": 0.9183673469387755,\n",
" \"f1-score\": 0.8687258687258687,\n",
" \"support\": 245\n",
" },\n",
" \"accuracy\": 0.8982035928143712,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8867714563917095,\n",
" \"recall\": 0.9024460848169055,\n",
" \"f1-score\": 0.8927981421868951,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9034511308444454,\n",
" \"recall\": 0.8982035928143712,\n",
" \"f1-score\": 0.8992126102648335,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Indian Peafowl 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Indian Peafowl 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9095163806552262,\n",
" \"recall\": 0.9749163879598662,\n",
" \"f1-score\": 0.941081517352704,\n",
" \"support\": 598\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4444444444444444,\n",
" \"recall\": 0.17142857142857143,\n",
" \"f1-score\": 0.2474226804123711,\n",
" \"support\": 70\n",
" },\n",
" \"accuracy\": 0.8907185628742516,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6769804125498353,\n",
" \"recall\": 0.5731724796942188,\n",
" \"f1-score\": 0.5942520988825375,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8607812975193658,\n",
" \"recall\": 0.8907185628742516,\n",
" \"f1-score\": 0.8683927170745255,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Indian Peafowl 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9257425742574258,\n",
" \"recall\": 0.9381270903010034,\n",
" \"f1-score\": 0.9318936877076412,\n",
" \"support\": 598\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4032258064516129,\n",
" \"recall\": 0.35714285714285715,\n",
" \"f1-score\": 0.3787878787878788,\n",
" \"support\": 70\n",
" },\n",
" \"accuracy\": 0.8772455089820359,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6644841903545193,\n",
" \"recall\": 0.6476349737219302,\n",
" \"f1-score\": 0.65534078324776,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8709878231400502,\n",
" \"recall\": 0.8772455089820359,\n",
" \"f1-score\": 0.8739334981501811,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Little Owl 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Little Owl 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9414893617021277,\n",
" \"recall\": 0.8962025316455696,\n",
" \"f1-score\": 0.9182879377431907,\n",
" \"support\": 395\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8595890410958904,\n",
" \"recall\": 0.9194139194139194,\n",
" \"f1-score\": 0.8884955752212389,\n",
" \"support\": 273\n",
" },\n",
" \"accuracy\": 0.905688622754491,\n",
" \"macro avg\": {\n",
" \"precision\": 0.900539201399009,\n",
" \"recall\": 0.9078082255297445,\n",
" \"f1-score\": 0.9033917564822148,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9080181228914949,\n",
" \"recall\": 0.905688622754491,\n",
" \"f1-score\": 0.906112316532872,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Little Owl 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9510869565217391,\n",
" \"recall\": 0.8860759493670886,\n",
" \"f1-score\": 0.9174311926605504,\n",
" \"support\": 395\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.85,\n",
" \"recall\": 0.9340659340659341,\n",
" \"f1-score\": 0.8900523560209425,\n",
" \"support\": 273\n",
" },\n",
" \"accuracy\": 0.905688622754491,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9005434782608696,\n",
" \"recall\": 0.9100709417165114,\n",
" \"f1-score\": 0.9037417743407464,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9097744727935433,\n",
" \"recall\": 0.905688622754491,\n",
" \"f1-score\": 0.9062419375668183,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Mandarin Duck 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mandarin Duck 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9386973180076629,\n",
" \"recall\": 0.9040590405904059,\n",
" \"f1-score\": 0.9210526315789475,\n",
" \"support\": 542\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6438356164383562,\n",
" \"recall\": 0.746031746031746,\n",
" \"f1-score\": 0.6911764705882354,\n",
" \"support\": 126\n",
" },\n",
" \"accuracy\": 0.874251497005988,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7912664672230095,\n",
" \"recall\": 0.825045393311076,\n",
" \"f1-score\": 0.8061145510835914,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8830796916637517,\n",
" \"recall\": 0.874251497005988,\n",
" \"f1-score\": 0.8776927569010586,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Mandarin Duck 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9019963702359347,\n",
" \"recall\": 0.9169741697416974,\n",
" \"f1-score\": 0.9094236047575481,\n",
" \"support\": 542\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6153846153846154,\n",
" \"recall\": 0.5714285714285714,\n",
" \"f1-score\": 0.5925925925925927,\n",
" \"support\": 126\n",
" },\n",
" \"accuracy\": 0.8517964071856288,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7586904928102751,\n",
" \"recall\": 0.7442013705851345,\n",
" \"f1-score\": 0.7510080986750705,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8479348715663745,\n",
" \"recall\": 0.8517964071856288,\n",
" \"f1-score\": 0.849662066534817,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Mute Swan 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mute Swan 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8452380952380952,\n",
" \"recall\": 0.8452380952380952,\n",
" \"f1-score\": 0.8452380952380952,\n",
" \"support\": 168\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.948,\n",
" \"recall\": 0.948,\n",
" \"f1-score\": 0.948,\n",
" \"support\": 500\n",
" },\n",
" \"accuracy\": 0.9221556886227545,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8966190476190476,\n",
" \"recall\": 0.8966190476190476,\n",
" \"f1-score\": 0.8966190476190476,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9221556886227545,\n",
" \"recall\": 0.9221556886227545,\n",
" \"f1-score\": 0.9221556886227545,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Mute Swan 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8275862068965517,\n",
" \"recall\": 0.8571428571428571,\n",
" \"f1-score\": 0.8421052631578947,\n",
" \"support\": 168\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.951417004048583,\n",
" \"recall\": 0.94,\n",
" \"f1-score\": 0.9456740442655935,\n",
" \"support\": 500\n",
" },\n",
" \"accuracy\": 0.9191616766467066,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8895016054725673,\n",
" \"recall\": 0.8985714285714286,\n",
" \"f1-score\": 0.8938896537117441,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9202739293157367,\n",
" \"recall\": 0.9191616766467066,\n",
" \"f1-score\": 0.9196268059031782,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Pheasant 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pheasant 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.825,\n",
" \"recall\": 0.8823529411764706,\n",
" \"f1-score\": 0.8527131782945736,\n",
" \"support\": 187\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9529914529914529,\n",
" \"recall\": 0.9272349272349273,\n",
" \"f1-score\": 0.9399367755532139,\n",
" \"support\": 481\n",
" },\n",
" \"accuracy\": 0.9146706586826348,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8889957264957264,\n",
" \"recall\": 0.904793934205699,\n",
" \"f1-score\": 0.8963249769238937,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9171615103127079,\n",
" \"recall\": 0.9146706586826348,\n",
" \"f1-score\": 0.9155193912906904,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Pheasant 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.7899543378995434,\n",
" \"recall\": 0.9251336898395722,\n",
" \"f1-score\": 0.852216748768473,\n",
" \"support\": 187\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9688195991091314,\n",
" \"recall\": 0.9043659043659044,\n",
" \"f1-score\": 0.9354838709677419,\n",
" \"support\": 481\n",
" },\n",
" \"accuracy\": 0.9101796407185628,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8793869685043374,\n",
" \"recall\": 0.9147497971027383,\n",
" \"f1-score\": 0.8938503098681074,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9187480364651299,\n",
" \"recall\": 0.9101796407185628,\n",
" \"f1-score\": 0.9121740628071681,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Pink-footed Goose 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pink-footed Goose 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.87527352297593,\n",
" \"recall\": 0.8368200836820083,\n",
" \"f1-score\": 0.855614973262032,\n",
" \"support\": 478\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6303317535545023,\n",
" \"recall\": 0.7,\n",
" \"f1-score\": 0.6633416458852868,\n",
" \"support\": 190\n",
" },\n",
" \"accuracy\": 0.7979041916167665,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7528026382652162,\n",
" \"recall\": 0.7684100418410041,\n",
" \"f1-score\": 0.7594783095736594,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8056044568231286,\n",
" \"recall\": 0.7979041916167665,\n",
" \"f1-score\": 0.8009264520021793,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Pink-footed Goose 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8937644341801386,\n",
" \"recall\": 0.8096234309623431,\n",
" \"f1-score\": 0.849615806805708,\n",
" \"support\": 478\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6127659574468085,\n",
" \"recall\": 0.7578947368421053,\n",
" \"f1-score\": 0.6776470588235294,\n",
" \"support\": 190\n",
" },\n",
" \"accuracy\": 0.7949101796407185,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7532651958134735,\n",
" \"recall\": 0.7837590839022242,\n",
" \"f1-score\": 0.7636314328146188,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8138397177440116,\n",
" \"recall\": 0.7949101796407185,\n",
" \"f1-score\": 0.8007025401640705,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Pintail 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pintail 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8866906474820144,\n",
" \"recall\": 0.9354838709677419,\n",
" \"f1-score\": 0.9104339796860572,\n",
" \"support\": 527\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6964285714285714,\n",
" \"recall\": 0.5531914893617021,\n",
" \"f1-score\": 0.6166007905138341,\n",
" \"support\": 141\n",
" },\n",
" \"accuracy\": 0.8547904191616766,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7915596094552929,\n",
" \"recall\": 0.744337680164722,\n",
" \"f1-score\": 0.7635173850999457,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8465305386144464,\n",
" \"recall\": 0.8547904191616766,\n",
" \"f1-score\": 0.8484123035284473,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Pintail 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9094488188976378,\n",
" \"recall\": 0.8766603415559773,\n",
" \"f1-score\": 0.8927536231884059,\n",
" \"support\": 527\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.59375,\n",
" \"recall\": 0.6737588652482269,\n",
" \"f1-score\": 0.6312292358803987,\n",
" \"support\": 141\n",
" },\n",
" \"accuracy\": 0.8338323353293413,\n",
" \"macro avg\": {\n",
" \"precision\": 0.751599409448819,\n",
" \"recall\": 0.7752096034021021,\n",
" \"f1-score\": 0.7619914295344024,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8428117927530766,\n",
" \"recall\": 0.8338323353293413,\n",
" \"f1-score\": 0.8375516192805781,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Pochard 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pochard 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9307359307359307,\n",
" \"recall\": 0.8921161825726142,\n",
" \"f1-score\": 0.9110169491525425,\n",
" \"support\": 482\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7475728155339806,\n",
" \"recall\": 0.8279569892473119,\n",
" \"f1-score\": 0.7857142857142857,\n",
" \"support\": 186\n",
" },\n",
" \"accuracy\": 0.874251497005988,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8391543731349557,\n",
" \"recall\": 0.860036585909963,\n",
" \"f1-score\": 0.8483656174334141,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8797354226108368,\n",
" \"recall\": 0.874251497005988,\n",
" \"f1-score\": 0.8761272853808123,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Pochard 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9054621848739496,\n",
" \"recall\": 0.8941908713692946,\n",
" \"f1-score\": 0.8997912317327766,\n",
" \"support\": 482\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.734375,\n",
" \"recall\": 0.7580645161290323,\n",
" \"f1-score\": 0.7460317460317459,\n",
" \"support\": 186\n",
" },\n",
" \"accuracy\": 0.8562874251497006,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8199185924369747,\n",
" \"recall\": 0.8261276937491635,\n",
" \"f1-score\": 0.8229114888822613,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8578241363910835,\n",
" \"recall\": 0.8562874251497006,\n",
" \"f1-score\": 0.8569779617621303,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Red-legged Partridge 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Red-legged Partridge 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9393939393939394,\n",
" \"recall\": 0.8757062146892656,\n",
" \"f1-score\": 0.9064327485380117,\n",
" \"support\": 354\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8698224852071006,\n",
" \"recall\": 0.9363057324840764,\n",
" \"f1-score\": 0.901840490797546,\n",
" \"support\": 314\n",
" },\n",
" \"accuracy\": 0.9041916167664671,\n",
" \"macro avg\": {\n",
" \"precision\": 0.90460821230052,\n",
" \"recall\": 0.906005973586671,\n",
" \"f1-score\": 0.9041366196677789,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9066911899707848,\n",
" \"recall\": 0.9041916167664671,\n",
" \"f1-score\": 0.9042741124144995,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Red-legged Partridge 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9296636085626911,\n",
" \"recall\": 0.8587570621468926,\n",
" \"f1-score\": 0.8928046989720998,\n",
" \"support\": 354\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8533724340175953,\n",
" \"recall\": 0.9267515923566879,\n",
" \"f1-score\": 0.8885496183206107,\n",
" \"support\": 314\n",
" },\n",
" \"accuracy\": 0.8907185628742516,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8915180212901432,\n",
" \"recall\": 0.8927543272517903,\n",
" \"f1-score\": 0.8906771586463553,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8938021881926909,\n",
" \"recall\": 0.8907185628742516,\n",
" \"f1-score\": 0.8908045562706515,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Ring-necked Parakeet 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ring-necked Parakeet 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9698340874811463,\n",
" \"recall\": 0.9984472049689441,\n",
" \"f1-score\": 0.9839326702371843,\n",
" \"support\": 644\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8,\n",
" \"recall\": 0.16666666666666666,\n",
" \"f1-score\": 0.27586206896551724,\n",
" \"support\": 24\n",
" },\n",
" \"accuracy\": 0.968562874251497,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8849170437405731,\n",
" \"recall\": 0.5825569358178054,\n",
" \"f1-score\": 0.6298973696013508,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9637322639788297,\n",
" \"recall\": 0.968562874251497,\n",
" \"f1-score\": 0.9584930079160466,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Ring-necked Parakeet 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9721362229102167,\n",
" \"recall\": 0.9751552795031055,\n",
" \"f1-score\": 0.9736434108527131,\n",
" \"support\": 644\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.2727272727272727,\n",
" \"recall\": 0.25,\n",
" \"f1-score\": 0.2608695652173913,\n",
" \"support\": 24\n",
" },\n",
" \"accuracy\": 0.9491017964071856,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6224317478187447,\n",
" \"recall\": 0.6125776397515528,\n",
" \"f1-score\": 0.6172564880350522,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9470077576341828,\n",
" \"recall\": 0.9491017964071856,\n",
" \"f1-score\": 0.9480347696921626,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Rock Dove 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rock Dove 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.888,\n",
" \"recall\": 0.8473282442748091,\n",
" \"f1-score\": 0.8671874999999999,\n",
" \"support\": 262\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9043062200956937,\n",
" \"recall\": 0.9310344827586207,\n",
" \"f1-score\": 0.9174757281553398,\n",
" \"support\": 406\n",
" },\n",
" \"accuracy\": 0.8982035928143712,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8961531100478468,\n",
" \"recall\": 0.889181363516715,\n",
" \"f1-score\": 0.8923316140776698,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8979106667048677,\n",
" \"recall\": 0.8982035928143712,\n",
" \"f1-score\": 0.8977519021423174,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Rock Dove 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8692307692307693,\n",
" \"recall\": 0.8625954198473282,\n",
" \"f1-score\": 0.8659003831417624,\n",
" \"support\": 262\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9117647058823529,\n",
" \"recall\": 0.916256157635468,\n",
" \"f1-score\": 0.9140049140049141,\n",
" \"support\": 406\n",
" },\n",
" \"accuracy\": 0.8952095808383234,\n",
" \"macro avg\": {\n",
" \"precision\": 0.890497737556561,\n",
" \"recall\": 0.8894257887413981,\n",
" \"f1-score\": 0.8899526485733382,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8950822337226001,\n",
" \"recall\": 0.8952095808383234,\n",
" \"f1-score\": 0.8951375680675702,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Ruddy Duck 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ruddy Duck 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9818181818181818,\n",
" \"recall\": 0.9893129770992366,\n",
" \"f1-score\": 0.985551330798479,\n",
" \"support\": 655\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.125,\n",
" \"recall\": 0.07692307692307693,\n",
" \"f1-score\": 0.09523809523809525,\n",
" \"support\": 13\n",
" },\n",
" \"accuracy\": 0.9715568862275449,\n",
" \"macro avg\": {\n",
" \"precision\": 0.553409090909091,\n",
" \"recall\": 0.5331180270111567,\n",
" \"f1-score\": 0.5403947130182871,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9651435764833969,\n",
" \"recall\": 0.9715568862275449,\n",
" \"f1-score\": 0.9682248756154176,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Ruddy Duck 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9818181818181818,\n",
" \"recall\": 0.9893129770992366,\n",
" \"f1-score\": 0.985551330798479,\n",
" \"support\": 655\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.125,\n",
" \"recall\": 0.07692307692307693,\n",
" \"f1-score\": 0.09523809523809525,\n",
" \"support\": 13\n",
" },\n",
" \"accuracy\": 0.9715568862275449,\n",
" \"macro avg\": {\n",
" \"precision\": 0.553409090909091,\n",
" \"recall\": 0.5331180270111567,\n",
" \"f1-score\": 0.5403947130182871,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9651435764833969,\n",
" \"recall\": 0.9715568862275449,\n",
" \"f1-score\": 0.9682248756154176,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Whooper Swan 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Whooper Swan 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8260869565217391,\n",
" \"recall\": 0.8918367346938776,\n",
" \"f1-score\": 0.857703631010795,\n",
" \"support\": 490\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6187050359712231,\n",
" \"recall\": 0.48314606741573035,\n",
" \"f1-score\": 0.5425867507886436,\n",
" \"support\": 178\n",
" },\n",
" \"accuracy\": 0.7829341317365269,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7223959962464811,\n",
" \"recall\": 0.687491401054804,\n",
" \"f1-score\": 0.7001451908997194,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.7708265046385178,\n",
" \"recall\": 0.7829341317365269,\n",
" \"f1-score\": 0.7737353605324373,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Whooper Swan 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8509316770186336,\n",
" \"recall\": 0.8387755102040816,\n",
" \"f1-score\": 0.8448098663926001,\n",
" \"support\": 490\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.572972972972973,\n",
" \"recall\": 0.5955056179775281,\n",
" \"f1-score\": 0.5840220385674931,\n",
" \"support\": 178\n",
" },\n",
" \"accuracy\": 0.7739520958083832,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7119523249958033,\n",
" \"recall\": 0.7171405640908048,\n",
" \"f1-score\": 0.7144159524800466,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.7768648367190414,\n",
" \"recall\": 0.7739520958083832,\n",
" \"f1-score\": 0.775318499097886,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Training with Wigeon 10km cells... \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n",
"c:\\Users\\Timmo\\Documents\\Workspaces\\Master's Dissertation\\env\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Wigeon 10km Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9477124183006536,\n",
" \"recall\": 0.7816711590296496,\n",
" \"f1-score\": 0.8567208271787297,\n",
" \"support\": 371\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7762430939226519,\n",
" \"recall\": 0.9461279461279462,\n",
" \"f1-score\": 0.8528072837632777,\n",
" \"support\": 297\n",
" },\n",
" \"accuracy\": 0.8547904191616766,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8619777561116527,\n",
" \"recall\": 0.8638995525787978,\n",
" \"f1-score\": 0.8547640554710036,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8714753085098355,\n",
" \"recall\": 0.8547904191616766,\n",
" \"f1-score\": 0.8549808235943147,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n",
"Wigeon 10km SMOTE Classification Report: \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9478827361563518,\n",
" \"recall\": 0.784366576819407,\n",
" \"f1-score\": 0.8584070796460177,\n",
" \"support\": 371\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.778393351800554,\n",
" \"recall\": 0.9461279461279462,\n",
" \"f1-score\": 0.8541033434650456,\n",
" \"support\": 297\n",
" },\n",
" \"accuracy\": 0.8562874251497006,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8631380439784528,\n",
" \"recall\": 0.8652472614736766,\n",
" \"f1-score\": 0.8562552115555316,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8725259290400764,\n",
" \"recall\": 0.8562874251497006,\n",
" \"f1-score\": 0.8564935921523819,\n",
" \"support\": 668\n",
" }\n",
"} \n",
"\n"
]
}
],
"source": [
"# Add model pipeline\n",
"estimators = [\n",
" ('lr', LogisticRegression(max_iter=10000, solver='saga', random_state=seed, penalty='l2', verbose=verbose)),\n",
" ('knn', KNeighborsClassifier(n_neighbors=5, weights='distance')),\n",
" ('sgd', SGDClassifier( max_iter=10000, loss='modified_huber', random_state=seed, penalty='l2', verbose=verbose)),\n",
" ('rf', RandomForestClassifier(n_estimators=20,max_features=None, random_state=seed, verbose=verbose))\n",
"]\n",
"\n",
"\n",
"for dict in df_dicts:\n",
" print(f'Training with {dict[\"name\"]} cells... \\n')\n",
" # Use this if using coordinates as separate columns\n",
" # coords, X, y = data['dataframe'].iloc[:, :2], data['dataframe'].iloc[:, 2:-1], data['dataframe'].iloc[:, [-1]]\n",
" # data['coords'] = coords\n",
" \n",
" # Use this if using coordinates as indices\n",
" X, y = dict['dataframe'].iloc[:, 0:-1], dict['dataframe'].iloc[:, [-1]], \n",
"\n",
" dict['X'] = standardise(X)\n",
" dict['y'] = y\n",
" dict['kbest'] = feature_select(dict['X'], dict['y'])\n",
"\n",
" # dict['X'] = dict['kbest']['10'].transform(dict['X'])\n",
"\n",
" X_train, X_test, y_train, y_test = train_test_split(dict['X'], dict['y'], random_state=seed)\n",
" dict['X_train'], dict['X_test'], dict['y_train'], dict['y_test'] = X_train, X_test, y_train, y_test # for debugging purposes\n",
"\n",
" dict['X_smote'], dict['y_smote'] = oversample(X_train, y_train)\n",
"\n",
" stack_clf = StackingClassifier(\n",
" estimators=estimators, \n",
" final_estimator=GradientBoostingClassifier(n_estimators=20, learning_rate=0.5, max_features=None, max_depth=2, random_state=seed)\n",
" )\n",
"\n",
" # Classifier without SMOTE\n",
" stack_clf.fit(dict['X_train'], dict['y_train'])\n",
" y_pred = stack_clf.predict(X_test)\n",
" \n",
" dict['predictions'] = y_pred\n",
" dict['report'] = classification_report(y_test, y_pred, output_dict=True)\n",
" \n",
"\n",
" # Classifier with SMOTE\n",
" stack_clf.fit(dict['X_smote'], dict['y_smote'])\n",
" y_pred_smote = stack_clf.predict(X_test)\n",
" \n",
" dict['predictions_smote'] = y_pred_smote\n",
" dict['report_smote'] = classification_report(y_test, y_pred_smote, output_dict=True)\n",
" \n",
" print(f'{dict[\"name\"]} Classification Report: \\n {json.dumps(dict[\"report\"], indent=4)} \\n')\n",
" print(f'{dict[\"name\"]} SMOTE Classification Report: \\n {json.dumps(dict[\"report_smote\"], indent=4)} \\n')\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8850174216027874,\n",
" \"recall\": 0.9136690647482014,\n",
" \"f1-score\": 0.8991150442477875,\n",
" \"support\": 556\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.48936170212765956,\n",
" \"recall\": 0.4107142857142857,\n",
" \"f1-score\": 0.4466019417475728,\n",
" \"support\": 112\n",
" },\n",
" \"accuracy\": 0.8293413173652695,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6871895618652235,\n",
" \"recall\": 0.6621916752312436,\n",
" \"f1-score\": 0.6728584929976802,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8186799357027659,\n",
" \"recall\": 0.8293413173652695,\n",
" \"f1-score\": 0.8232445839483503,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Canada Goose 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9739583333333334,\n",
" \"recall\": 0.8862559241706162,\n",
" \"f1-score\": 0.9280397022332506,\n",
" \"support\": 211\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9495798319327731,\n",
" \"recall\": 0.9890590809628009,\n",
" \"f1-score\": 0.9689174705251876,\n",
" \"support\": 457\n",
" },\n",
" \"accuracy\": 0.9565868263473054,\n",
" \"macro avg\": {\n",
" \"precision\": 0.9617690826330532,\n",
" \"recall\": 0.9376575025667085,\n",
" \"f1-score\": 0.9484785863792191,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9572802268362435,\n",
" \"recall\": 0.9565868263473054,\n",
" \"f1-score\": 0.9560054808401597,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Egyptian Goose 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9357495881383855,\n",
" \"recall\": 0.9594594594594594,\n",
" \"f1-score\": 0.9474562135112593,\n",
" \"support\": 592\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6065573770491803,\n",
" \"recall\": 0.4868421052631579,\n",
" \"f1-score\": 0.5401459854014599,\n",
" \"support\": 76\n",
" },\n",
" \"accuracy\": 0.905688622754491,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7711534825937829,\n",
" \"recall\": 0.7231507823613087,\n",
" \"f1-score\": 0.7438010994563595,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8982965820863202,\n",
" \"recall\": 0.905688622754491,\n",
" \"f1-score\": 0.9011155288760128,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Gadwall 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9131403118040089,\n",
" \"recall\": 0.8951965065502183,\n",
" \"f1-score\": 0.9040793825799339,\n",
" \"support\": 458\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7808219178082192,\n",
" \"recall\": 0.8142857142857143,\n",
" \"f1-score\": 0.7972027972027972,\n",
" \"support\": 210\n",
" },\n",
" \"accuracy\": 0.8697604790419161,\n",
" \"macro avg\": {\n",
" \"precision\": 0.846981114806114,\n",
" \"recall\": 0.8547411104179663,\n",
" \"f1-score\": 0.8506410898913656,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8715432118951528,\n",
" \"recall\": 0.8697604790419161,\n",
" \"f1-score\": 0.8704804560392173,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Goshawk 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9281867145421903,\n",
" \"recall\": 0.9150442477876106,\n",
" \"f1-score\": 0.9215686274509804,\n",
" \"support\": 565\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.5675675675675675,\n",
" \"recall\": 0.6116504854368932,\n",
" \"f1-score\": 0.5887850467289719,\n",
" \"support\": 103\n",
" },\n",
" \"accuracy\": 0.8682634730538922,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7478771410548789,\n",
" \"recall\": 0.7633473666122519,\n",
" \"f1-score\": 0.7551768370899762,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8725822652332291,\n",
" \"recall\": 0.8682634730538922,\n",
" \"f1-score\": 0.87025618910612,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Grey Partridge 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9417721518987342,\n",
" \"recall\": 0.8794326241134752,\n",
" \"f1-score\": 0.9095354523227385,\n",
" \"support\": 423\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8131868131868132,\n",
" \"recall\": 0.9061224489795918,\n",
" \"f1-score\": 0.8571428571428572,\n",
" \"support\": 245\n",
" },\n",
" \"accuracy\": 0.8892215568862275,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8774794825427736,\n",
" \"recall\": 0.8927775365465336,\n",
" \"f1-score\": 0.8833391547327978,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8946113615028949,\n",
" \"recall\": 0.8892215568862275,\n",
" \"f1-score\": 0.8903196052882012,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Indian Peafowl 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9095163806552262,\n",
" \"recall\": 0.9749163879598662,\n",
" \"f1-score\": 0.941081517352704,\n",
" \"support\": 598\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.4444444444444444,\n",
" \"recall\": 0.17142857142857143,\n",
" \"f1-score\": 0.2474226804123711,\n",
" \"support\": 70\n",
" },\n",
" \"accuracy\": 0.8907185628742516,\n",
" \"macro avg\": {\n",
" \"precision\": 0.6769804125498353,\n",
" \"recall\": 0.5731724796942188,\n",
" \"f1-score\": 0.5942520988825375,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8607812975193658,\n",
" \"recall\": 0.8907185628742516,\n",
" \"f1-score\": 0.8683927170745255,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Little Owl 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9414893617021277,\n",
" \"recall\": 0.8962025316455696,\n",
" \"f1-score\": 0.9182879377431907,\n",
" \"support\": 395\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8595890410958904,\n",
" \"recall\": 0.9194139194139194,\n",
" \"f1-score\": 0.8884955752212389,\n",
" \"support\": 273\n",
" },\n",
" \"accuracy\": 0.905688622754491,\n",
" \"macro avg\": {\n",
" \"precision\": 0.900539201399009,\n",
" \"recall\": 0.9078082255297445,\n",
" \"f1-score\": 0.9033917564822148,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9080181228914949,\n",
" \"recall\": 0.905688622754491,\n",
" \"f1-score\": 0.906112316532872,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Mandarin Duck 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9386973180076629,\n",
" \"recall\": 0.9040590405904059,\n",
" \"f1-score\": 0.9210526315789475,\n",
" \"support\": 542\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6438356164383562,\n",
" \"recall\": 0.746031746031746,\n",
" \"f1-score\": 0.6911764705882354,\n",
" \"support\": 126\n",
" },\n",
" \"accuracy\": 0.874251497005988,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7912664672230095,\n",
" \"recall\": 0.825045393311076,\n",
" \"f1-score\": 0.8061145510835914,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8830796916637517,\n",
" \"recall\": 0.874251497005988,\n",
" \"f1-score\": 0.8776927569010586,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Mute Swan 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8452380952380952,\n",
" \"recall\": 0.8452380952380952,\n",
" \"f1-score\": 0.8452380952380952,\n",
" \"support\": 168\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.948,\n",
" \"recall\": 0.948,\n",
" \"f1-score\": 0.948,\n",
" \"support\": 500\n",
" },\n",
" \"accuracy\": 0.9221556886227545,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8966190476190476,\n",
" \"recall\": 0.8966190476190476,\n",
" \"f1-score\": 0.8966190476190476,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9221556886227545,\n",
" \"recall\": 0.9221556886227545,\n",
" \"f1-score\": 0.9221556886227545,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Pheasant 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.825,\n",
" \"recall\": 0.8823529411764706,\n",
" \"f1-score\": 0.8527131782945736,\n",
" \"support\": 187\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9529914529914529,\n",
" \"recall\": 0.9272349272349273,\n",
" \"f1-score\": 0.9399367755532139,\n",
" \"support\": 481\n",
" },\n",
" \"accuracy\": 0.9146706586826348,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8889957264957264,\n",
" \"recall\": 0.904793934205699,\n",
" \"f1-score\": 0.8963249769238937,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9171615103127079,\n",
" \"recall\": 0.9146706586826348,\n",
" \"f1-score\": 0.9155193912906904,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Pink-footed Goose 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.87527352297593,\n",
" \"recall\": 0.8368200836820083,\n",
" \"f1-score\": 0.855614973262032,\n",
" \"support\": 478\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6303317535545023,\n",
" \"recall\": 0.7,\n",
" \"f1-score\": 0.6633416458852868,\n",
" \"support\": 190\n",
" },\n",
" \"accuracy\": 0.7979041916167665,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7528026382652162,\n",
" \"recall\": 0.7684100418410041,\n",
" \"f1-score\": 0.7594783095736594,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8056044568231286,\n",
" \"recall\": 0.7979041916167665,\n",
" \"f1-score\": 0.8009264520021793,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Pintail 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8866906474820144,\n",
" \"recall\": 0.9354838709677419,\n",
" \"f1-score\": 0.9104339796860572,\n",
" \"support\": 527\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6964285714285714,\n",
" \"recall\": 0.5531914893617021,\n",
" \"f1-score\": 0.6166007905138341,\n",
" \"support\": 141\n",
" },\n",
" \"accuracy\": 0.8547904191616766,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7915596094552929,\n",
" \"recall\": 0.744337680164722,\n",
" \"f1-score\": 0.7635173850999457,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8465305386144464,\n",
" \"recall\": 0.8547904191616766,\n",
" \"f1-score\": 0.8484123035284473,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Pochard 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9307359307359307,\n",
" \"recall\": 0.8921161825726142,\n",
" \"f1-score\": 0.9110169491525425,\n",
" \"support\": 482\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7475728155339806,\n",
" \"recall\": 0.8279569892473119,\n",
" \"f1-score\": 0.7857142857142857,\n",
" \"support\": 186\n",
" },\n",
" \"accuracy\": 0.874251497005988,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8391543731349557,\n",
" \"recall\": 0.860036585909963,\n",
" \"f1-score\": 0.8483656174334141,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8797354226108368,\n",
" \"recall\": 0.874251497005988,\n",
" \"f1-score\": 0.8761272853808123,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Red-legged Partridge 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9393939393939394,\n",
" \"recall\": 0.8757062146892656,\n",
" \"f1-score\": 0.9064327485380117,\n",
" \"support\": 354\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8698224852071006,\n",
" \"recall\": 0.9363057324840764,\n",
" \"f1-score\": 0.901840490797546,\n",
" \"support\": 314\n",
" },\n",
" \"accuracy\": 0.9041916167664671,\n",
" \"macro avg\": {\n",
" \"precision\": 0.90460821230052,\n",
" \"recall\": 0.906005973586671,\n",
" \"f1-score\": 0.9041366196677789,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9066911899707848,\n",
" \"recall\": 0.9041916167664671,\n",
" \"f1-score\": 0.9042741124144995,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Ring-necked Parakeet 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9698340874811463,\n",
" \"recall\": 0.9984472049689441,\n",
" \"f1-score\": 0.9839326702371843,\n",
" \"support\": 644\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.8,\n",
" \"recall\": 0.16666666666666666,\n",
" \"f1-score\": 0.27586206896551724,\n",
" \"support\": 24\n",
" },\n",
" \"accuracy\": 0.968562874251497,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8849170437405731,\n",
" \"recall\": 0.5825569358178054,\n",
" \"f1-score\": 0.6298973696013508,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9637322639788297,\n",
" \"recall\": 0.968562874251497,\n",
" \"f1-score\": 0.9584930079160466,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Rock Dove 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.888,\n",
" \"recall\": 0.8473282442748091,\n",
" \"f1-score\": 0.8671874999999999,\n",
" \"support\": 262\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.9043062200956937,\n",
" \"recall\": 0.9310344827586207,\n",
" \"f1-score\": 0.9174757281553398,\n",
" \"support\": 406\n",
" },\n",
" \"accuracy\": 0.8982035928143712,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8961531100478468,\n",
" \"recall\": 0.889181363516715,\n",
" \"f1-score\": 0.8923316140776698,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8979106667048677,\n",
" \"recall\": 0.8982035928143712,\n",
" \"f1-score\": 0.8977519021423174,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Ruddy Duck 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9818181818181818,\n",
" \"recall\": 0.9893129770992366,\n",
" \"f1-score\": 0.985551330798479,\n",
" \"support\": 655\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.125,\n",
" \"recall\": 0.07692307692307693,\n",
" \"f1-score\": 0.09523809523809525,\n",
" \"support\": 13\n",
" },\n",
" \"accuracy\": 0.9715568862275449,\n",
" \"macro avg\": {\n",
" \"precision\": 0.553409090909091,\n",
" \"recall\": 0.5331180270111567,\n",
" \"f1-score\": 0.5403947130182871,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.9651435764833969,\n",
" \"recall\": 0.9715568862275449,\n",
" \"f1-score\": 0.9682248756154176,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Whooper Swan 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.8260869565217391,\n",
" \"recall\": 0.8918367346938776,\n",
" \"f1-score\": 0.857703631010795,\n",
" \"support\": 490\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.6187050359712231,\n",
" \"recall\": 0.48314606741573035,\n",
" \"f1-score\": 0.5425867507886436,\n",
" \"support\": 178\n",
" },\n",
" \"accuracy\": 0.7829341317365269,\n",
" \"macro avg\": {\n",
" \"precision\": 0.7223959962464811,\n",
" \"recall\": 0.687491401054804,\n",
" \"f1-score\": 0.7001451908997194,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.7708265046385178,\n",
" \"recall\": 0.7829341317365269,\n",
" \"f1-score\": 0.7737353605324373,\n",
" \"support\": 668\n",
" }\n",
"}\n",
"Wigeon 10km \n",
" {\n",
" \"0\": {\n",
" \"precision\": 0.9477124183006536,\n",
" \"recall\": 0.7816711590296496,\n",
" \"f1-score\": 0.8567208271787297,\n",
" \"support\": 371\n",
" },\n",
" \"1\": {\n",
" \"precision\": 0.7762430939226519,\n",
" \"recall\": 0.9461279461279462,\n",
" \"f1-score\": 0.8528072837632777,\n",
" \"support\": 297\n",
" },\n",
" \"accuracy\": 0.8547904191616766,\n",
" \"macro avg\": {\n",
" \"precision\": 0.8619777561116527,\n",
" \"recall\": 0.8638995525787978,\n",
" \"f1-score\": 0.8547640554710036,\n",
" \"support\": 668\n",
" },\n",
" \"weighted avg\": {\n",
" \"precision\": 0.8714753085098355,\n",
" \"recall\": 0.8547904191616766,\n",
" \"f1-score\": 0.8549808235943147,\n",
" \"support\": 668\n",
" }\n",
"}\n"
]
}
],
"source": [
"for dict in df_dicts:\n",
" print(dict['name'], '\\n', json.dumps(dict['report'], indent=4))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA5kAAAPHCAYAAACi0o2hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD5NElEQVR4nOzdeXRN5/7H8c8hcyIJKYl5iiF6TaXUmGi5MRYdtGhFW6qDsTVUq6YabotqFdVRVOloqKJaJVFDGkNFlQiCcitolRMxRvL8/vDLvo4katjE8H6t9V0r+9nPfvZ3n+ha+XSfs4/DGGMEAAAAAIAN8uV1AwAAAACAWwchEwAAAABgG0ImAAAAAMA2hEwAAAAAgG0ImQAAAAAA2xAyAQAAAAC2IWQCAAAAAGzjltcNALeazMxM7d+/XwUKFJDD4cjrdgAAAABbGGN07NgxFStWTPny5X6/kpAJ2Gz//v0qWbJkXrcBAAAAXBP79u1TiRIlct1PyARsVqBAAUnn/uPz9/fP424AAAAAe6SmpqpkyZLW37u5IWQCNst6i6y/vz8hEwAAALecf/pIGA/+AQAAAADYhpAJAAAAALANIRMAAAAAYBtCJgAAAADANoRMAAAAAIBtCJkAAAAAANsQMgEAAAAAtiFkAgAAAABsQ8gEAAAAANiGkAkAAAAAsA0hEwAAAABgG0ImAAAAAMA2hEwAAAAAgG0ImQAAAAAA2xAyAQAAAAC2IWQCAAAAAGxDyAQAAAAA2IaQCQAAAACwDSETAAAAAGAbQiYAAAAAwDaETAAAAACAbQiZAAAAAADbEDIBAAAAALYhZAIAAAAAbEPIBAAAAADYhpAJAAAAALANIRMAAAAAYBtCJgAAAADANoRMAAAAAIBtCJkAAAAAANsQMgEAAAAAtiFkAgAAAABsQ8gEAAAAANiGkAkAAAAAsA0hEwAAAABgG0ImAAAAAMA2hEwAAAAAgG0ImQAAAAAA2xAyAQAAAAC2ccvrBoBbVkBAXncAAACAG4kxed3BdcGdTNyy9uzZI4fDoYSEhLxuBQAAALhtEDKvga5du8rhcOiZZ57Jtu/555+Xw+FQ165dL2tNh8Oh+fPnX3VvJ06c0ODBg1W+fHl5eXmpcOHCCg8P1zfffHPVa9vpp59+Ups2bVSsWLFcr90Yo6FDh6po0aLy9vZW06ZNtWPHjuvfLAAAAAALIfMaKVmypD7//HOdPHnSGjt16pRmz56tUqVK5VlfzzzzjObOnat33nlH27Zt05IlS/TQQw/p8OHDedZTTo4fP67q1atrypQpuc554403NGnSJE2bNk3x8fHy9fVVZGSkTp06dR07BQAAAHA+QuY1ctddd6lkyZKaO3euNTZ37lyVKlVKNWvWdJlbpkwZvfXWWy5jNWrU0PDhw639ktS+fXs5HA5rW5K++eYb3XXXXfLy8lK5cuU0YsQInT17Nte+FixYoJdfflktW7ZUmTJlVKtWLfXq1UtPPvmkJGny5Mn617/+Zc2fP3++HA6Hpk2bZo01bdpUQ4YMkSQlJyerbdu2Cg4Olp+fn+6++279+OOP2a5vzJgxevLJJ1WgQAGVKlVK77///kVfvxYtWmjUqFFq3759jvuNMXrrrbc0ZMgQtW3bVtWqVdMnn3yi/fv353rHNyMjQ08++aQqV66svXv3Sjp3h/i9995T69at5ePjo7CwMMXFxWnnzp2KiIiQr6+v6tevr+Tk5Iv2CwAAAOAcQuY19OSTT2r69OnW9scff6wnnnjistdZt26dJGn69OlKSUmxtleuXKkuXbqoT58+2rp1q9577z1FR0dr9OjRua4VEhKixYsX69ixYznuDw8P19atW/Xnn39KklasWKE77rhDsbGxkqT09HTFxcUpIiJCkpSWlqaWLVtq2bJl2rhxo5o3b642bdpYIS7LhAkTVLt2bW3cuFHPPfecnn32WSUlJV32a5Fl9+7dOnDggJo2bWqNBQQEqG7duoqLi8s2//Tp03r44YeVkJCglStXutxNfu2119SlSxclJCSocuXK6tSpk3r06KHBgwdr/fr1MsaoZ8+eufZy+vRppaamuhQAAABw2zKwXVRUlGnbtq05dOiQ8fT0NHv27DF79uwxXl5e5s8//zRt27Y1UVFR1vzSpUubiRMnuqxRvXp1M2zYMGtbkpk3b57LnPvuu8+MGTPGZWzmzJmmaNGiufa2YsUKU6JECePu7m5q165t+vbta1atWmXtz8zMNEFBQearr74yxhhTo0YNM3bsWBMSEmKMMWbVqlXG3d3dHD9+PNdz3Hnnneadd95xub7HHnvM5RxFihQx7777bq5rnC+na1+9erWRZPbv3+8y/vDDD5sOHToYY4zZvXu3kWRWrlxp7rvvPtOwYUNz9OjRbGsPGTLE2o6LizOSzEcffWSNffbZZ8bLyyvX/oYNG2YkZSvnueeHURRFURRFUdS5usk5nU4jyTidzovO407mNVS4cGG1atVK0dHRmj59ulq1aqU77rjDtvU3bdqkkSNHys/Pz6ru3bsrJSVFJ06cyPGYxo0ba9euXVq2bJkeeughbdmyRY0aNdJrr70m6dzbRxs3bqzY2FgdPXpUW7du1XPPPafTp09r27ZtWrFihe6++275+PhIOncns3///goLC1NgYKD8/PyUmJiY7U5mtWrVrJ8dDodCQkJ06NAh216Li+nYsaOOHz+uH374QQE5fK3I+b0FBwdLkqpWreoydurUqVzvUA4ePFhOp9Oqffv22XwFAAAAwM2D78m8xp588knrrZa5PcQmX758Msa4jKWnp//j2mlpaRoxYoQeeOCBbPu8vLxyPc7d3V2NGjVSo0aNNGjQII0aNUojR47UoEGD5OHhoYiICL3//vtauXKlatasKX9/fyt4rlixQuHh4dZa/fv319KlSzV+/HiFhobK29tbDz30kM6cOZPtnOdzOBzKzMz8x2vMTUhIiCTp4MGDKlq0qDV+8OBB1ahRw2Vuy5Yt9emnnyouLk733ntvjq/H+X3lNpZbv56envL09LyyCwEAAABuMdzJvMaaN2+uM2fOKD09XZGRkTnOKVy4sFJSUqzt1NRU7d6922WOu7u7MjIyXMbuuusuJSUlKTQ0NFvly3fpv9oqVaro7Nmz1lNZsz6X+dVXX1mfvYyIiNCPP/6o1atXW2OStHr1anXt2lXt27dX1apVFRISoj179lzyua9U2bJlFRISomXLllljqampio+PV7169VzmPvvss/rPf/6j+++/XytWrLjmvQEAAAC3M+5kXmP58+dXYmKi9XNO7r33XkVHR6tNmzYKDAzU0KFDs80tU6aMli1bpgYNGsjT01MFCxbU0KFD1bp1a5UqVUoPPfSQ8uXLp02bNum3337TqFGjcjxXRESEOnbsqNq1aysoKEhbt27Vyy+/rCZNmsjf31/SubePFixYULNnz9bChQut4/r37y+Hw6EGDRpY61WoUEFz585VmzZt5HA49Oqrr17VHcosaWlp2rlzp7W9e/duJSQkqFChQipVqpQcDof69u2rUaNGqUKFCipbtqxeffVVFStWTO3atcu2Xq9evZSRkaHWrVvru+++U8OGDa+6RwAAAADZETKvg6zwlpvBgwdr9+7dat26tQICAvTaa69lu5M5YcIEvfDCC/rggw9UvHhx7dmzR5GRkVq4cKFGjhyp119/Xe7u7qpcubK6deuW67kiIyM1Y8YMvfzyyzpx4oSKFSum1q1ba+jQodYch8OhRo0aadGiRVYYq1atmvz9/VWpUiX5+vpac9988009+eSTql+/vu644w4NGjTIlqerrl+/Xk2aNLG2X3jhBUlSVFSUoqOjJUkDBw7U8ePH9fTTT+vo0aNq2LChlixZkutbhfv27avMzEy1bNlSS5YsUf369a+6z4sJkFPSxX/3AAAAuI04zj0B6FbnMBd+GBDAVUlNTf3/BwwRMgEAAODqZk5fWX/nOp3Oi95I4zOZAAAAAADbEDIBAAAAALYhZAIAAAAAbEPIBAAAAADYhpAJAAAAALANIRMAAAAAYBtCJgAAAADANoRMAAAAAIBtCJkAAAAAANu45XUDwC3rpQDJK6+bAAAAecEMM3ndApBnuJMJAAAAALANIRMAAAAAYBtCJgAAAADANoRMAAAAAIBtCJkAAAAAANsQMgEAAAAAtiFkAgAAAABsQ8gEAAAAANiGkAkAAAAAsI1bXjcA3Kqcg53y9/fP6zYAAACA64o7mQAAAAAA2xAyAQAAAAC2IWQCAAAAAGxDyAQAAAAA2IaQCQAAAACwDSETAAAAAGAbQiYAAAAAwDaETAAAAACAbQiZAAAAAADbEDIBAAAAALZxy+sGcGmio6PVt29fHT16NK9buakMHz5c8+fPV0JCwvU/eUDA9T8nAAAA8pYxed1BnuNO5g2ia9eucjgccjgc8vDwUGhoqEaOHKmzZ8/mdWu2czgcmj9//j/OGz16tOrXry8fHx8FBgbmOGfv3r1q1aqVfHx8VKRIEQ0YMOCWfM0AAACAmwV3Mm8gzZs31/Tp03X69GktXrxYzz//vNzd3TV48OC8bi1PnDlzRg8//LDq1aunjz76KNv+jIwMtWrVSiEhIVqzZo1SUlLUpUsXubu7a8yYMXnQMQAAAADuZN5APD09FRISotKlS+vZZ59V06ZNtWDBApc533//vcLCwuTn56fmzZsrJSXFZf+HH36osLAweXl5qXLlypo6darL/kGDBqlixYry8fFRuXLl9Oqrryo9Pd3av2nTJjVp0kQFChSQv7+/atWqpfXr10uSDh8+rI4dO6p48eLy8fFR1apV9dlnn7msHxERod69e2vgwIEqVKiQQkJCNHz4cGt/mTJlJEnt27eXw+GwtnMyYsQI9evXT1WrVs1x/w8//KCtW7fq008/VY0aNdSiRQu99tprmjJlis6cOZPjMcnJySpXrpx69uwpY4yio6MVGBiohQsXqlKlSvLx8dFDDz2kEydOaMaMGSpTpowKFiyo3r17KyMjI9deAQAAAJxDyLyBeXt7u4SlEydOaPz48Zo5c6Z++ukn7d27V/3797f2z5o1S0OHDtXo0aOVmJioMWPG6NVXX9WMGTOsOQUKFFB0dLS2bt2qt99+Wx988IEmTpxo7e/cubNKlCihdevWacOGDXrppZfk7u4uSTp16pRq1aqlRYsW6bffftPTTz+txx9/XGvXrnXpe8aMGfL19VV8fLzeeOMNjRw5UkuXLpUkrVu3TpI0ffp0paSkWNtXIi4uTlWrVlVwcLA1FhkZqdTUVG3ZsiXb/F9//VUNGzZUp06dNHnyZDkcDut1nTRpkj7//HMtWbJEsbGxat++vRYvXqzFixdr5syZeu+99/T111/n2Mfp06eVmprqUgAAAMBty+CGEBUVZdq2bWuMMSYzM9MsXbrUeHp6mv79+xtjjJk+fbqRZHbu3GkdM2XKFBMcHGxtly9f3syePdtl3ddee83Uq1cv1/OOGzfO1KpVy9ouUKCAiY6OvuS+W7VqZV588UVrOzw83DRs2NBlzt13320GDRpkbUsy8+bNu+RzTJ8+3QQEBGQb7969u/n3v//tMnb8+HEjySxevNgYY8ywYcNM9erVzerVq03BggXN+PHjs6194evao0cP4+PjY44dO2aNRUZGmh49euTY37Bhw4ykbOU897FviqIoiqIo6naqW5jT6TSSjNPpvOg8PpN5A1m4cKH8/PyUnp6uzMxMderUyeWtpj4+Pipfvry1XbRoUR06dEiSdPz4cSUnJ+upp55S9+7drTlnz55VwHlPOf3iiy80adIkJScnKy0tTWfPnpW/v7+1/4UXXlC3bt00c+ZMNW3aVA8//LB1zoyMDI0ZM0Zffvml/vjjD505c0anT5+Wj4+Py3VUq1bNZfv8PvPC3r171axZM40ePVp9+/bNtv/C1zU4OFhlypSRn5+fy1hu1zB48GC98MIL1nZqaqpKlixp3wUAAAAANxHeLnsDadKkiRISErRjxw6dPHnSettplqy3rWZxOBwyxkiS0tLSJEkffPCBEhISrPrtt9/0888/Szr39tLOnTurZcuWWrhwoTZu3KhXXnnF5S25w4cP15YtW9SqVSstX75cVapU0bx58yRJ48aN09tvv61BgwYpJiZGCQkJioyMzPb5x5z6zMzMtOlV+p+QkBAdPHjQZSxrOyQkxBorXLiw6tSpo88++yzHt7Lm1O/lXIOnp6f8/f1dCgAAALhdETJvIL6+vgoNDVWpUqXk5nZ5N5mDg4NVrFgx7dq1S6GhoS5VtmxZSdKaNWtUunRpvfLKK6pdu7YqVKig33//PdtaFStWVL9+/fTDDz/ogQce0PTp0yVJq1evVtu2bfXYY4+pevXqKleunLZv337Z1+nu7m7LQ3Tq1aunzZs3u9xhXLp0qfz9/VWlShVrzNvbWwsXLpSXl5ciIyN17Nixqz43AAAAgJwRMm8hI0aM0NixYzVp0iRt375dmzdv1vTp0/Xmm29KkipUqKC9e/fq888/V3JysiZNmmTdpZSkkydPqmfPnoqNjdXvv/+u1atXa926dQoLC7OOX7p0qdasWaPExET16NEj253ES1GmTBktW7ZMBw4c0JEjR3Kdt3fvXiUkJGjv3r3KyMiw7s5m3bX997//rSpVqujxxx/Xpk2b9P3332vIkCF6/vnn5enp6bKWr6+vFi1aJDc3N7Vo0cJaAwAAAIC9+EzmLaRbt27y8fHRuHHjNGDAAPn6+qpq1arW5xDvv/9+9evXTz179tTp06fVqlUrvfrqq9bnPvPnz6/Dhw+rS5cuOnjwoO644w498MADGjFihCRpyJAh2rVrlyIjI+Xj46Onn35a7dq1k9PpvKw+J0yYoBdeeEEffPCBihcvrj179uQ4b+jQoS5Pxq1Zs6YkKSYmRhEREcqfP78WLlyoZ599VvXq1ZOvr6+ioqI0cuTIHNfz8/PTd999p8jISLVq1UqLFy++rL4vV4CcknjrLAAAwG3F8b8f//+TbbcdhzG366UD10Zqaur/P2yJkAkAAHA7u9WSVtbfuU6n86LPIeHtsgAAAAAA2xAyAQAAAAC2IWQCAAAAAGxDyAQAAAAA2IaQCQAAAACwDSETAAAAAGAbQiYAAAAAwDaETAAAAACAbQiZAAAAAADbuOV1A8At66UAySuvmwAAABdjhpm8bgG45XAnEwAAAABgG0ImAAAAAMA2hEwAAAAAgG0ImQAAAAAA2xAyAQAAAAC2IWQCAAAAAGxDyAQAAAAA2IaQCQAAAACwDSETAAAAAGAbQiYAAAAAwDZued0AcKtyDnbK398/r9sAAAAArivuZAIAAAAAbEPIBAAAAADYhpAJAAAAALANIRMAAAAAYBtCJgAAAADANoRMAAAAAIBtCJkAAAAAANsQMgEAAAAAtiFkAgAAAABs45bXDQC3rICAvO4AAAAANxtj8rqDq8adzBuUw+HQ/Pnz87qNm15ERIT69u2b120AAAAAt43bNmQeOHBAvXr1Urly5eTp6amSJUuqTZs2WrZsWV63ZquYmBi1bt1ahQsXlpeXl8qXL69HHnlEP/30U163dlGnTp1S165dVbVqVbm5ualdu3Y5zouNjdVdd90lT09PhYaGKjo6+rr2CQAAAMDVbRky9+zZo1q1amn58uUaN26cNm/erCVLlqhJkyZ6/vnn87o920ydOlX33XefgoKC9MUXXygpKUnz5s1T/fr11a9fv7xu76IyMjLk7e2t3r17q2nTpjnO2b17t1q1aqUmTZooISFBffv2Vbdu3fT9999f524BAAAAWMxtqEWLFqZ48eImLS0t274jR45YP0+YMMH861//Mj4+PqZEiRLm2WefNceOHbP2T58+3QQEBJglS5aYypUrG19fXxMZGWn2799vzVm7dq1p2rSpCQoKMv7+/qZx48Zmw4YNLufcvn27adSokfH09DRhYWHmhx9+MJLMvHnzrDkDBw40FSpUMN7e3qZs2bJmyJAh5syZM7le4++//27c3d1Nv379ctyfmZnpsv3111+bKlWqGA8PD1O6dGkzfvx4l/1///23efzxx01gYKDx9vY2zZs3N9u3b7f279mzx7Ru3doEBgYaHx8fU6VKFbNo0SJr/+bNm03z5s2Nr6+vKVKkiHnsscfMn3/+mWv/54uKijJt27bNNj5w4EBz5513uow98sgjJjIy0toODw83ffr0sbYXLlxo/P39zaeffuqy9ujRo02RIkVMQECAGTFihElPTzf9+/c3BQsWNMWLFzcff/zxJfVqjDFOp9NIMs5z76inKIqiKIqiqEuvG5j1d67TedF5t92dzL///ltLlizR888/L19f32z7AwMDrZ/z5cunSZMmacuWLZoxY4aWL1+ugQMHusw/ceKExo8fr5kzZ+qnn37S3r171b9/f2v/sWPHFBUVpVWrVunnn39WhQoV1LJlSx07dkySlJmZqQceeEAeHh6Kj4/XtGnTNGjQoGx9FShQQNHR0dq6davefvttffDBB5o4cWKu1zlnzhylp6dn6zeLw+Gwft6wYYM6dOigRx99VJs3b9bw4cP16quvurz1tGvXrlq/fr0WLFiguLg4GWPUsmVLpaenS5Kef/55nT59Wj/99JM2b96s119/XX5+fpKko0eP6t5771XNmjW1fv16LVmyRAcPHlSHDh1y7f9SxMXFZbvLGRkZqbi4uBznz549Wx07dtSsWbPUuXNna3z58uXav3+/fvrpJ7355psaNmyYWrdurYIFCyo+Pl7PPPOMevToof/+9785rnv69Gmlpqa6FAAAAHDbuj6Z98YRHx9vJJm5c+de9rFfffWVCQoKsranT59uJJmdO3daY1OmTDHBwcG5rpGRkWEKFChgvv32W2OMMd9//71xc3Mzf/zxhzXnu+++M5LrncwLjRs3ztSqVSvX/c8884zx9/d3Gfv666+Nr6+vVb/++qsxxphOnTqZZs2aucwdMGCAqVKlijHm3J1WSWb16tXW/r/++st4e3ubL7/80hhjTNWqVc3w4cNz7OW1114z//73v13G9u3bZySZpKSkXK8hS253MitUqGDGjBnjMrZo0SIjyZw4ccIY8787mZMnTzYBAQEmNjY229qlS5c2GRkZ1lilSpVMo0aNrO2zZ88aX19f89lnn+XY37Bhw4ykbMWdTIqiKIqiKOqy6wbGncxcGGMuee6PP/6o++67T8WLF1eBAgX0+OOP6/Dhwzpx4oQ1x8fHR+XLl7e2ixYtqkOHDlnbBw8eVPfu3VWhQgUFBATI399faWlp2rt3ryQpMTFRJUuWVLFixaxj6tWrl62XL774Qg0aNFBISIj8/Pw0ZMgQa43cnH+3Ujp3ly8hIUGLFi3S8ePHlZGRYfXQoEEDl7kNGjTQjh07lJGRocTERLm5ualu3brW/qCgIFWqVEmJiYmSpN69e2vUqFFq0KCBhg0bpl9//dWau2nTJsXExMjPz8+qypUrS5KSk5Mveg12+Prrr9WvXz8tXbpU4eHh2fbfeeedypfvf/8pBAcHq2rVqtZ2/vz5FRQU5PJ7Pd/gwYPldDqt2rdvn/0XAQAAANwkbruQWaFCBTkcDm3btu2i8/bs2aPWrVurWrVqmjNnjjZs2KApU6ZIks6cOWPNc3d3dznO4XC4BNmoqCglJCTo7bff1po1a5SQkKCgoCCXNf5JXFycOnfurJYtW2rhwoXauHGjXnnllYuuUaFCBTmdTh04cMAa8/PzU2hoqEqXLn3J575U3bp1065du/T4449r8+bNql27tt555x1JUlpamtq0aaOEhASX2rFjhxo3bnzF5wwJCdHBgwddxg4ePCh/f395e3tbYzVr1lThwoX18ccf5/g/GXL6HeY0lpmZmWMfnp6e8vf3dykAAADgdnXbhcxChQopMjJSU6ZM0fHjx7PtP3r0qKRzn1PMzMzUhAkTdM8996hixYrav3//ZZ9v9erV6t27t1q2bKk777xTnp6e+uuvv6z9YWFh2rdvn1JSUqyxn3/+2WWNNWvWqHTp0nrllVdUu3ZtVahQQb///vtFz/vQQw/J3d1dr7/++j/2GBYWptWrV2fru2LFisqfP7/CwsJ09uxZxcfHW/sPHz6spKQkValSxRorWbKknnnmGc2dO1cvvviiPvjgA0nSXXfdpS1btqhMmTIKDQ11qZw+F3up6tWrl+0rZ5YuXZrtTnD58uUVExOjb775Rr169bri8wEAAAD4Z7ddyJSkKVOmKCMjQ3Xq1NGcOXO0Y8cOJSYmatKkSVZACQ0NVXp6ut555x3t2rVLM2fO1LRp0y77XBUqVNDMmTOVmJio+Ph4de7c2eUuW9OmTVWxYkVFRUVp06ZNWrlypV555ZVsa+zdu1eff/65kpOTNWnSJM2bN++i5y1VqpQmTJigt99+W1FRUYqJidGePXv0yy+/aNKkSZLOvQ1Ukl588UUtW7ZMr732mrZv364ZM2Zo8uTJ1gOMKlSooLZt26p79+5atWqVNm3apMcee0zFixdX27ZtJUl9+/bV999/r927d+uXX35RTEyMwsLCJJ17KNDff/+tjh07at26dUpOTtb333+vJ554wnrLbk62bt2qhIQE/f3333I6ndYd0CzPPPOMdu3apYEDB2rbtm2aOnWqvvzyyxy/nqVixYqKiYnRnDlz1Ldv34u+dgAAAACuwvX4gOiNaP/+/eb55583pUuXNh4eHqZ48eLm/vvvNzExMdacN9980xQtWtR4e3ubyMhI88knnxhJ1tecZH2FyfnmzZtnzn9Zf/nlF1O7dm3j5eVlKlSoYL766itTunRpM3HiRGtOUlKSadiwofHw8DAVK1Y0S5YsMZLrg38GDBhggoKCjJ+fn3nkkUfMxIkTs507J0uXLjUtWrQwhQoVMm5ubiY4ONi0a9fOLFmyxGVe1leYuLu7m1KlSplx48a57M/6CpOAgADr9Tj/K0x69uxpypcvbzw9PU3hwoXN448/bv766y9r//bt20379u2tr0CpXLmy6du3b7avUjlf6dKljZT9gTrni4mJMTVq1DAeHh6mXLlyZvr06S77L/wKk61bt5oiRYqYF154wRiT80OFLjwmq5fzf2cXk/WBaMmZ558bpyiKoiiKom6dymuX+uAfhzHG5FXABW5FqampCggIkOSUxOczAQAAYI+8Tm5Zf+c6nc6LPofktny7LAAAAADg2iBkAgAAAABsQ8gEAAAAANiGkAkAAAAAsA0hEwAAAABgG0ImAAAAAMA2hEwAAAAAgG0ImQAAAAAA2xAyAQAAAAC2ccvrBoBb1ksBkldeNwEAwI3LDDN53QKAa4A7mQAAAAAA2xAyAQAAAAC2IWQCAAAAAGxDyAQAAAAA2IaQCQAAAACwDSETAAAAAGAbQiYAAAAAwDaETAAAAACAbQiZAAAAAADbuOV1A8CtyjnYKX9//7xuAwAAALiuuJMJAAAAALANIRMAAAAAYBtCJgAAAADANoRMAAAAAIBtCJkAAAAAANsQMgEAAAAAtiFkAgAAAABsQ8gEAAAAANiGkAkAAAAAsA0hEwAAAABgG7e8bgD26Nq1q44ePar58+fndSs3lD179qhs2bLauHGjatSocX1PHhBwfc8HAAAAexiT1x3c1LiTeR107dpVDodDDodD7u7uKlu2rAYOHKhTp07laV9ZPTkcDvn6+qpChQrq2rWrNmzYkKd9Zfnpp5/Upk0bFStWTA6HI8cAbYzR0KFDVbRoUXl7e6tp06basWPH9W8WAAAAgCRC5nXTvHlzpaSkaNeuXZo4caLee+89DRs2LK/b0vTp05WSkqItW7ZoypQpSktLU926dfXJJ5/kdWs6fvy4qlevrilTpuQ654033tCkSZM0bdo0xcfHy9fXV5GRkXke4AEAAIDbFSHzOvH09FRISIhKliypdu3aqWnTplq6dKm1//Tp0+rdu7eKFCkiLy8vNWzYUOvWrXNZY8uWLWrdurX8/f1VoEABNWrUSMnJyTmeb926dSpcuLBef/31i/YVGBiokJAQlSlTRv/+97/19ddfq3PnzurZs6eOHDlizZszZ47uvPNOeXp6qkyZMpowYYK17+WXX1bdunWzrV29enWNHDnS2v7www8VFhYmLy8vVa5cWVOnTr1oby1atNCoUaPUvn37HPcbY/TWW29pyJAhatu2rapVq6ZPPvlE+/fvz/VtwxkZGXryySdVuXJl7d27V9K5O7rvvfeeWrduLR8fH4WFhSkuLk47d+5URESEfH19Vb9+/VxfawAAAAD/Q8jMA7/99pvWrFkjDw8Pa2zgwIGaM2eOZsyYoV9++UWhoaGKjIzU33//LUn6448/1LhxY3l6emr58uXasGGDnnzySZ09ezbb+suXL1ezZs00evRoDRo06LL769evn44dO2aF4A0bNqhDhw569NFHtXnzZg0fPlyvvvqqoqOjJUmdO3fW2rVrXULYli1b9Ouvv6pTp06SpFmzZmno0KEaPXq0EhMTNWbMGL366quaMWPGZfeXZffu3Tpw4ICaNm1qjQUEBKhu3bqKi4vLNv/06dN6+OGHlZCQoJUrV6pUqVLWvtdee01dunRRQkKCKleurE6dOqlHjx4aPHiw1q9fL2OMevbsmWMfp0+fVmpqqksBAAAAty2Day4qKsrkz5/f+Pr6Gk9PTyPJ5MuXz3z99dfGGGPS0tKMu7u7mTVrlnXMmTNnTLFixcwbb7xhjDFm8ODBpmzZsubMmTO5nqNt27Zm7ty5xs/Pz3z++ef/2JckM2/evGzjJ0+eNJLM66+/bowxplOnTqZZs2YucwYMGGCqVKlibVevXt2MHDnS2h48eLCpW7eutV2+fHkze/ZslzVee+01U69evX/sM7deV69ebSSZ/fv3u4w//PDDpkOHDsYYY3bv3m0kmZUrV5r77rvPNGzY0Bw9ejTb2kOGDLG24+LijCTz0UcfWWOfffaZ8fLyyrG3YcOGGUnZynnuI+MURVEURVHUzVbIkdPpNJKM0+m86DzuZF4nTZo0UUJCguLj4xUVFaUnnnhCDz74oCQpOTlZ6enpatCggTXf3d1dderUUWJioiQpISFBjRo1kru7e67niI+P18MPP6yZM2fqkUceueJejTGSzr2NVJISExNdepOkBg0aaMeOHcrIyJB07m7m7NmzreM/++wzde7cWdK5z1YmJyfrqaeekp+fn1WjRo26bm9B7dixo44fP64ffvhBATk89bVatWrWz8HBwZKkqlWruoydOnUqx7uUgwcPltPptGrfvn3X4AoAAACAmwMh8zrx9fVVaGioqlevro8//ljx8fH66KOPLvl4b2/vf5xTvnx5Va5cWR9//LHS09OvuNesYFu2bNlLPqZjx45KSkrSL7/8ojVr1mjfvn1W0E1LS5MkffDBB0pISLDqt99+088//3zFfYaEhEiSDh486DJ+8OBBa1+Wli1b6tdff83xbbSSXMJ7VrjOaSwzMzPbsZ6envL393cpAAAA4HZFyMwD+fLl08svv6whQ4bo5MmTKl++vDw8PLR69WprTnp6utatW6cqVapIOnenbeXKlRcNj3fccYeWL1+unTt3qkOHDlccNN966y35+/tbn3UMCwtz6U2SVq9erYoVKyp//vySpBIlSig8PFyzZs3SrFmz1KxZMxUpUkTSubuAxYoV065duxQaGupSlxNkL1S2bFmFhIRo2bJl1lhqaqri4+NVr149l7nPPvus/vOf/+j+++/XihUrrvicAAAAAC6OkJlHHn74YeXPn19TpkyRr6+vnn32WQ0YMEBLlizR1q1b1b17d504cUJPPfWUJKlnz55KTU3Vo48+qvXr12vHjh2aOXOmkpKSXNYtUqSIli9frm3btqljx445PhjofEePHtWBAwf0+++/a+nSpXrooYc0e/ZsvfvuuwoMDJQkvfjii1q2bJlee+01bd++XTNmzNDkyZPVv39/l7U6d+6szz//XF999ZX1VtksI0aM0NixYzVp0iRt375dmzdv1vTp0/Xmm2/m2ltaWpp111M696CfhIQEl6fC9u3bV6NGjdKCBQu0efNmdenSRcWKFVO7du2yrderVy+NGjVKrVu31qpVqy76ugAAAAC4QtflE6K3uayH8lxo7NixpnDhwiYtLc2cPHnS9OrVy9xxxx3G09PTNGjQwKxdu9Zl/qZNm8y///1v4+PjYwoUKGAaNWpkkpOTczzH/v37TcWKFU2HDh3M2bNnc+xL+t9Dary8vEz58uVNVFSU2bBhQ7a5X3/9talSpYpxd3c3pUqVMuPGjcs258iRI8bT09P4+PiYY8eOZds/a9YsU6NGDePh4WEKFixoGjdubObOnZvr6xYTE+PSY1ZFRUVZczIzM82rr75qgoODjaenp7nvvvtMUlKStT/rwT8bN260xiZMmGAKFChgVq9ebb0O5z9UKKdjsno5cuRIrv1msT4QndcfWKcoiqIoiqKurJCjS33wj8MYY/Ii3AK3qtTU1P9/uJBTEp/PBAAAuFmRlFxl/Z3rdDov+hwS3i4LAAAAALANIRMAAAAAYBtCJgAAAADANoRMAAAAAIBtCJkAAAAAANsQMgEAAAAAtiFkAgAAAABsQ8gEAAAAANiGkAkAAAAAsI1bXjcA3LJeCpC88roJAMDtxAwzed0CAHAnEwAAAABgH0ImAAAAAMA2hEwAAAAAgG0ImQAAAAAA2xAyAQAAAAC2IWQCAAAAAGxDyAQAAAAA2IaQCQAAAACwDSETAAAAAGAbQiYAAAAAwDZued0AcKtyDnbK398/r9sAAAAArivuZAIAAAAAbEPIBAAAAADYhpAJAAAAALANIRMAAAAAYBtCJgAAAADANoRMAAAAAIBtCJkAAAAAANsQMgEAAAAAtiFkAgAAAABs45bXDQC3rICAvO4AAADgxmNMXneAa4w7mbeR2NhYORwOHT16NK9buW4iIiLUt2/fvG4DAAAAuG0QMm9C06ZNU4ECBXT27FlrLC0tTe7u7oqIiHCZmxUsk5OTVb9+faWkpCjgJrjDdurUKXXt2lVVq1aVm5ub2rVrl+O82NhY3XXXXfL09FRoaKiio6Ova58AAAAAXBEyb0JNmjRRWlqa1q9fb42tXLlSISEhio+P16lTp6zxmJgYlSpVSuXLl5eHh4dCQkLkcDjyou3LkpGRIW9vb/Xu3VtNmzbNcc7u3bvVqlUrNWnSRAkJCerbt6+6deum77///jp3CwAAACALIfMmVKlSJRUtWlSxsbHWWGxsrNq2bauyZcvq559/dhlv0qSJ9fOFb5f94IMPVLJkSfn4+Kh9+/Z68803FRgY6HK+b775RnfddZe8vLxUrlw5jRgxwuUu6t69e9W2bVv5+fnJ399fHTp00MGDB639w4cPV40aNTRz5kyVKVNGAQEBevTRR3Xs2LFcr9HX11fvvvuuunfvrpCQkBznTJs2TWXLltWECRMUFhamnj176qGHHtLEiRNzXXfRokUKCAjQrFmzJEldu3ZVu3btNGbMGAUHByswMFAjR47U2bNnNWDAABUqVEglSpTQ9OnTc10TAAAAwP8QMm9STZo0UUxMjLUdExOjiIgIhYeHW+MnT55UfHy8FTIvtHr1aj3zzDPq06ePEhIS1KxZM40ePdplzsqVK9WlSxf16dNHW7du1Xvvvafo6GhrXmZmptq2bau///5bK1as0NKlS7Vr1y498sgjLuskJydr/vz5WrhwoRYuXKgVK1boP//5z1W9BnFxcdnuckZGRiouLi7H+bNnz1bHjh01a9Ysde7c2Rpfvny59u/fr59++klvvvmmhg0bptatW6tgwYKKj4/XM888ox49eui///1vjuuePn1aqampLgUAAADctgxuSh988IHx9fU16enpJjU11bi5uZlDhw6Z2bNnm8aNGxtjjFm2bJmRZH7//XdjjDExMTFGkjly5IgxxphHHnnEtGrVymXdzp07m4CAAGv7vvvuM2PGjHGZM3PmTFO0aFFjjDE//PCDyZ8/v9m7d6+1f8uWLUaSWbt2rTHGmGHDhhkfHx+TmppqzRkwYICpW7fuJV1rVFSUadu2bbbxChUqZOtt0aJFRpI5ceKEMcaY8PBw06dPHzN58mQTEBBgYmNjs61dunRpk5GRYY1VqlTJNGrUyNo+e/as8fX1NZ999lmO/Q0bNsxIylbOc89OoyiKoiiKos4v3LScTqeRZJxO50XncSfzJhUREaHjx49r3bp1WrlypSpWrKjChQsrPDzc+lxmbGysypUrp1KlSuW4RlJSkurUqeMyduH2pk2bNHLkSPn5+VnVvXt3paSk6MSJE0pMTFTJkiVVsmRJ65gqVaooMDBQiYmJ1liZMmVUoEABa7to0aI6dOiQHS/FP/r666/Vr18/LV26VOHh4dn233nnncqX73//KQQHB6tq1arWdv78+RUUFJRrv4MHD5bT6bRq37599l8EAAAAcJPgezJvUqGhoSpRooRiYmJ05MgRKzwVK1ZMJUuW1Jo1axQTE6N77733qs6TlpamESNG6IEHHsi2z8vL65LXcXd3d9l2OBzKzMy8qt5CQkJcPvspSQcPHpS/v7+8vb2tsZo1a+qXX37Rxx9/rNq1a2d78FFOvV1Ov56envL09LyaSwEAAABuGYTMm1iTJk0UGxurI0eOaMCAAdZ448aN9d1332nt2rV69tlncz2+UqVKWrduncvYhdt33XWXkpKSFBoamuMaYWFh2rdvn/bt22fdzdy6dauOHj2qKlWqXOmlXZJ69epp8eLFLmNLly5VvXr1XMbKly+vCRMmKCIiQvnz59fkyZOvaV8AAADA7YyQeRNr0qSJnn/+eaWnp7u8DTQ8PFw9e/bUmTNncn3ojyT16tVLjRs31ptvvqk2bdpo+fLl+u6771zu9A0dOlStW7dWqVKl9NBDDylfvnzatGmTfvvtN40aNUpNmzZV1apV1blzZ7311ls6e/asnnvuOYWHh6t27dpXdX1bt27VmTNn9Pfff+vYsWNKSEiQJNWoUUOS9Mwzz2jy5MkaOHCgnnzySS1fvlxffvmlFi1alG2tihUrWg9HcnNz01tvvXVVvQEAAADIGSHzJtakSROdPHlSlStXVnBwsDUeHh6uY8eOWV91kpsGDRpo2rRpGjFihIYMGaLIyEj169fP5U5fZGSkFi5cqJEjR+r111+Xu7u7KleurG7dukk69zbSb775xgqs+fLlU/PmzfXOO+9c9fW1bNlSv//+u7Vds2ZNSZIxRpJUtmxZLVq0SP369dPbb7+tEiVK6MMPP1RkZGSO61WqVEnLly+37mhOmDDhqnu8mAA5Jflf03MAAADcTP7/zzjc4hzG8KvG/3Tv3l3btm3TypUr87qVm1ZqaqoCAgIkQiYAAIALksfNLevvXKfTKX//3P/O5U7mbW78+PFq1qyZfH199d1332nGjBmaOnVqXrcFAAAA4CZFyLzNrV27Vm+88YaOHTumcuXKadKkSdZbYQEAAADgchEyb3NffvllXrcAAAAA4BaS75+nAAAAAABwaQiZAAAAAADbEDIBAAAAALYhZAIAAAAAbEPIBAAAAADYhpAJAAAAALANX2ECXCsvBUheed0EANwYzDCT1y0AAK4T7mQCAAAAAGxDyAQAAAAA2IaQCQAAAACwDSETAAAAAGAbQiYAAAAAwDaETAAAAACAbQiZAAAAAADbEDIBAAAAALYhZAIAAAAAbOOW1w0AtyrnYKf8/f3zug0AAADguuJOJgAAAADANoRMAAAAAIBtCJkAAAAAANsQMgEAAAAAtiFkAgAAAABsQ8gEAAAAANiGkAkAAAAAsA0hEwAAAABgG0ImAAAAAMA2hEwAAAAAgG1uyJAZGxsrh8Oho0eP5jpn+PDhqlGjxnXr6WqVKVNGb731Vl63cVGX8rpHR0crMDDwuvV0Nfbs2SOHw6GEhIS8aSAgQHI4KIqiKIqiqOtZyHNXFTK7du0qh8Mhh8Mhd3d3lS1bVgMHDtSpU6fs6u+2MXz4cOu1dHNzU5kyZdSvXz+lpaVd9bqXGsbr16+vlJQUBQQEXNU57fDTTz+pTZs2KlasmBwOh+bPn59tjjFGQ4cOVdGiReXt7a2mTZtqx44d179ZAAAAAJarvpPZvHlzpaSkaNeuXZo4caLee+89DRs2zI7ebjt33nmnUlJStGfPHr3++ut6//339eKLL17RWsYYnT179pLnp6eny8PDQyEhIXLcAP8H6Pjx46pevbqmTJmS65w33nhDkyZN0rRp0xQfHy9fX19FRkbyPzkAAACAPHTVIdPT01MhISEqWbKk2rVrp6ZNm2rp0qXW/szMTI0dO1Zly5aVt7e3qlevrq+//tpljcWLF6tixYry9vZWkyZNtGfPnivq5cMPP1RYWJi8vLxUuXJlTZ061WX/mjVrVKNGDXl5eal27dqaP3++Lnw75YIFC1ShQgV5eXmpSZMmmjFjhi58C+mqVavUqFEjeXt7q2TJkurdu7eOHz9u7T906JDatGkjb29vlS1bVrNmzbqk/t3c3BQSEqISJUrokUceUefOnbVgwQJJ0syZM1W7dm0VKFBAISEh6tSpkw4dOmQdm/VW1++++061atWSp6enPv30U40YMUKbNm2y7pJGR0dLkhwOh959913df//98vX11ejRo3N8u2x0dLRKlSolHx8ftW/fXocPH87W96hRo1SkSBEVKFBA3bp100svvZTt7uk//W4u1KJFC40aNUrt27fPcb8xRm+99ZaGDBmitm3bqlq1avrkk0+0f//+HO96SlJGRoaefPJJVa5cWXv37rVeh/fee0+tW7eWj4+PwsLCFBcXp507dyoiIkK+vr6qX7++kpOTL9ovAAAAgP9nrkJUVJRp27attb1582YTEhJi6tata42NGjXKVK5c2SxZssQkJyeb6dOnG09PTxMbG2uMMWbv3r3G09PTvPDCC2bbtm3m008/NcHBwUaSOXLkSK7nHjZsmKlevbq1/emnn5qiRYuaOXPmmF27dpk5c+aYQoUKmejoaGOMMU6n0xQqVMg89thjZsuWLWbx4sWmYsWKRpLZuHGjMcaYXbt2GXd3d9O/f3+zbds289lnn5nixYu79LJz507j6+trJk6caLZv325Wr15tatasabp27Wr10qJFC1O9enUTFxdn1q9fb+rXr2+8vb3NxIkTL/l6jDGmd+/eplChQsYYYz766COzePFik5ycbOLi4ky9evVMixYtrLkxMTFGkqlWrZr54YcfzM6dO81///tf8+KLL5o777zTpKSkmJSUFHPixAljjDGSTJEiRczHH39skpOTze+//26tkXWtP//8s8mXL595/fXXTVJSknn77bdNYGCgCQgIcHndvby8zMcff2ySkpLMiBEjjL+//2X9bv6JJDNv3jyXseTkZJffXZbGjRub3r17G2OM2b17tzXn1KlTpn379qZmzZrm0KFDLmsXL17cfPHFFyYpKcm0a9fOlClTxtx7771myZIlZuvWreaee+4xzZs3z7W/U6dOGafTadW+ffuMJOOUjKEoiqIoiqKub+GacTqdRpJxOp0XnXdVv4WoqCiTP39+4+vrazw9PY0kky9fPvP1118bY8798e3j42PWrFnjctxTTz1lOnbsaIwxZvDgwaZKlSou+wcNGmQuN2SWL1/ezJ4922XOa6+9ZurVq2eMMebdd981QUFB5uTJk9b+Dz74wJwfVAYNGmT+9a9/uazxyiuvuPTy1FNPmaefftplzsqVK02+fPnMyZMnTVJSkpFk1q5da+1PTEw0ki4rZK5fv97ccccd5qGHHspx/rp164wkc+zYMWPM/0Lm/PnzL7puFkmmb9++LmMXhsyOHTuali1busx55JFHXEJm3bp1zfPPP+8yp0GDBpf1u/knOYXM1atXG0lm//79LuMPP/yw6dChgzHmfyFz5cqV5r777jMNGzY0R48ezbb2kCFDrO24uDgjyXz00UfW2GeffWa8vLxy7W/YsGFGUrYiZFIURVEUReVB4Zq51JB51W+XbdKkiRISEhQfH6+oqCg98cQTevDBByVJO3fu1IkTJ9SsWTP5+flZ9cknn1hvP0xMTFTdunVd1qxXr57L9vnHPvPMM9l6OH78uJKTk/XUU0+5zB01apR1nqSkJFWrVk1eXl7WcXXq1HFZJykpSXfffbfL2IVzNm3apOjoaJfzREZGKjMzU7t371ZiYqLc3NxUq1Yt65jKlStf0hNZN2/eLD8/P3l7e6tOnTqqV6+eJk+eLEnasGGD2rRpo1KlSqlAgQIKDw+XJOttn1lq1679j+e51LmX8rtJSkrK9hqdv30pv5trrWPHjjp+/Lh++OGHHB9qVK1aNevn4OBgSVLVqlVdxk6dOqXU1NQc1x88eLCcTqdV+/bts/kKAAAAgJuH29Uu4Ovrq9DQUEnSxx9/rOrVq+ujjz7SU089ZT0ZddGiRSpevLjLcZ6enpd8jvM/M+nv759tf9Z5Pvjgg2yhKH/+/Jd8nkuRlpamHj16qHfv3tn2lSpVStu3b7/itStVqqQFCxbIzc1NxYoVk4eHh6RzQS0yMlKRkZGaNWuWChcurL179yoyMlJnzpxxWcPX1/eSz3c5c6/UtfrdhISESJIOHjyookWLWuMHDx7M9nnQli1b6tNPP1VcXJzuvffebGu5u7tbP2c99CinsczMzBx78fT0vKx/zwAAAMCt7KpD5vny5cunl19+WS+88II6deqkKlWqyNPTU3v37rXuvF0oLCzMerhNlp9//tllOyvE5iY4OFjFihXTrl271Llz5xznVKpUSZ9++qlOnz5tBYJ169Zlm7N48WKXsQvn3HXXXdq6dWuuPVWuXFlnz57Vhg0brLuiSUlJF/3uySweHh45rrtt2zYdPnxY//nPf1SyZElJ0vr16/9xvaw1MzIyLmnuhcLCwhQfH+8yduHvplKlSlq3bp26dOlijZ3/ml3K7+ZKlC1bViEhIVq2bJkVKlNTUxUfH69nn33WZe6zzz6rf/3rX7r//vu1aNGiXP8tAgAAALh6V/122Qs9/PDDyp8/v6ZMmaICBQqof//+6tevn2bMmKHk5GT98ssveueddzRjxgxJ0jPPPKMdO3ZowIABSkpK0uzZs60noF6OESNGaOzYsZo0aZK2b9+uzZs3a/r06XrzzTclSZ06dVJmZqaefvppJSYm6vvvv9f48eMl/e9OVY8ePbRt2zYNGjRI27dv15dffunyNFZJGjRokNasWaOePXsqISFBO3bs0DfffKOePXtKOhe6mjdvrh49eig+Pl4bNmxQt27d5O3tfcWvaalSpeTh4aF33nlHu3bt0oIFC/Taa69d0rFlypTR7t27lZCQoL/++kunT5++5PP27t1bS5Ys0fjx47Vjxw5NnjxZS5YscZnTq1cvffTRR5oxY4Z27NihUaNG6ddff3X5GpR/+t3kJC0tTQkJCdZd7KxrOP+psH379tWoUaO0YMECbd68WV26dFGxYsXUrl27bOv16tVLo0aNUuvWrbVq1apLfg0AAAAAXKar+eDnhU+XzTJ27FhTuHBhk5aWZjIzM81bb71lKlWqZNzd3U3hwoVNZGSkWbFihTX/22+/NaGhocbT09M0atTIfPzxx0a6vAf/GGPMrFmzTI0aNYyHh4cpWLCgady4sZk7d661f/Xq1aZatWrGw8PD1KpVy8yePdtIMtu2bbPmfPPNN1YvERER5t133zWSXB4YtHbtWtOsWTPj5+dnfH19TbVq1czo0aOt/SkpKaZVq1bG09PTlCpVynzyySemdOnSl/102fPNnj3blClTxnh6epp69eqZBQsWGOl/Dy268KE9WU6dOmUefPBBExgYaCSZ6dOnG2OMkbI/TCenNT766CNTokQJ4+3tbdq0aWPGjx/v8uAfY4wZOXKkueOOO4yfn5958sknTe/evc0999zjMueffjcXyurlwoqKirLmZGZmmldffdUEBwcbT09Pc99995mkpCRr//lPl80yYcIEU6BAAbN69eocX4ecjsnttc2N9YHovP7QO0VRFEVR1O1YuGYu9cE/DmOMuc659oYxa9YsPfHEE3I6nbneaRw9erSmTZvGw1wuQ7NmzRQSEqKZM2fmdSt5IjU19f8fMOSUlP0zxAAAAMhbt28CujpZf+c6nc4cn5WTxdbPZN7oPvnkE5UrV07FixfXpk2bNGjQIHXo0MElYE6dOlV33323goKCtHr1ao0bN856KyyyO3HihKZNm6bIyEjlz59fn332mX788UctXbo0r1sDAAAAkAduq5B54MABDR06VAcOHFDRokX18MMPa/To0S5zsj5X+Pfff6tUqVJ68cUXNXjw4Dzq+MbncDi0ePFijR49WqdOnVKlSpU0Z84cNW3aNK9bAwAAAJAHbuu3ywLXAm+XBQAAuLGRgK7Mpb5d1vanywIAAAAAbl+ETAAAAACAbQiZAAAAAADbEDIBAAAAALYhZAIAAAAAbEPIBAAAAADY5rb6nkzgunopQPLK6yYAwB5mGM/7BwBcGu5kAgAAAABsQ8gEAAAAANiGkAkAAAAAsA0hEwAAAABgG0ImAAAAAMA2hEwAAAAAgG0ImQAAAAAA2xAyAQAAAAC2IWQCAAAAAGxDyAQAAAAA2MYtrxsAblXOwU75+/vndRsAAADAdcWdTAAAAACAbQiZAAAAAADbEDIBAAAAALYhZAIAAAAAbEPIBAAAAADYhpAJAAAAALANIRMAAAAAYBtCJgAAAADANoRMAAAAAIBt3PK6AeCWFRCQ1x0AAADcnozJ6w5ua9zJvAk4HA7Nnz//so/bs2ePHA6HEhISbO/pal2v3mJjY+VwOHT06NFreh4AAAAA5xAybwBdu3ZVu3btct2fkpKiFi1aSMo9nP3TGlcjIyNDEydOVNWqVeXl5aWCBQuqRYsWWr169TU5X5a5c+fq3//+t4KCgnINpKdOndLzzz+voKAg+fn56cEHH9TBgwevaV8AAAAAckfIvAmEhITI09MzT85tjNGjjz6qkSNHqk+fPkpMTFRsbKxKliypiIiIK7rDeqmOHz+uhg0b6vXXX891Tr9+/fTtt9/qq6++0ooVK7R//3498MAD16wnAAAAAP/AIM9FRUWZtm3b5rpfkpk3b5718/kVHh5uhg0blm08JibG7N6920gyGzdutNbavHmzad68ufH19TVFihQxjz32mPnzzz9zPffnn39uJJkFCxZk2/fAAw+YoKAgk5aWZo4ePWry5ctn1q1bZ4wxJiMjwxQsWNDUrVvXmj9z5kxTokQJY4zJsbfc5Db36NGjxt3d3Xz11VfWWGJiopFk4uLijDHGxMTEGEnmyJEjxhhjjh8/bpo3b27q169vjhw5Yq39xRdfmIYNGxovLy9Tu3Ztk5SUZNauXWtq1aplfH19TfPmzc2hQ4f+sVdjjHE6nUaScZ77NABFURRFURR1vQvXhPV3rtN50XncybzJrF27VpL0448/KiUlRXPnzlX//v3VoUMHNW/eXCkpKUpJSVH9+vWzHXv06FHde++9qlmzptavX68lS5bo4MGD6tChQ67nmz17tipWrKg2bdpk2/fiiy/q8OHDWrp0qQICAlSjRg3FxsZKkjZv3iyHw6GNGzcqLS1NkrRixQqFh4fb8Cqcs2HDBqWnp6tp06bWWOXKlVWqVCnFxcVlm3/06FE1a9ZMmZmZWrp0qQIDA619w4YN05AhQ/TLL7/Izc1NnTp10sCBA/X2229r5cqV2rlzp4YOHZpjH6dPn1ZqaqpLAQAAALcrQuZNpnDhwpKkoKAghYSEqFChQvLz85O3t7c8PT0VEhKikJAQeXh4ZDt28uTJqlmzpsaMGaPKlSurZs2a+vjjjxUTE6Pt27fneL7t27crLCwsx31Z41nHRkREWCEzNjZWzZo1U1hYmFatWmWN2RkyDxw4IA8PD5ewKEnBwcE6cOBAtrnh4eEqWrSovv32W/n4+Ljs79+/vyIjIxUWFqY+ffpow4YNevXVV9WgQQPVrFlTTz31lGJiYnLsY+zYsQoICLCqZMmStl0jAAAAcLMhZN5GNm3apJiYGPn5+VlVuXJlSVJycnKuxxljLmn98PBwrVq1ShkZGVqxYoUiIiKs4Ll//37t3LlTERERdlzKZWvWrJlCQ0P1xRdf5BjAq1WrZv0cHBwsSapatarL2KFDh3Jce/DgwXI6nVbt27fP5u4BAACAmwffk3kbSUtLU5s2bXJ8kE7RokVzPKZixYpKTEzMcV/WeMWKFSVJjRs31rFjx/TLL7/op59+0pgxYxQSEqL//Oc/ql69uooVK6YKFSrYdDXnHoh05swZHT161OVu5sGDBxUSEuIyt1WrVpozZ462bt3qEh6zuLu7Wz87HI4cxzIzM3Psw9PTM88ezAQAAADcaLiTeZPJuguXkZGRbfzCsQvddddd2rJli8qUKaPQ0FCX8vX1zfGYRx99VDt27NC3336bbd+ECRMUFBSkZs2aSZICAwNVrVo1TZ48We7u7qpcubIaN26sjRs3auHChba+VVaSatWqJXd3dy1btswaS0pK0t69e1WvXj2Xuf/5z38UFRWl++67T1u3brW1DwAAAAD/Q8i8QTidTiUkJLhUTm+7LFKkiLy9va2H9jidTklSmTJl9OuvvyopKUl//fWX0tPTsx37/PPP6++//1bHjh21bt06JScn6/vvv9cTTzyRa0B99NFH1b59e0VFRemjjz7Snj179Ouvv6pHjx5asGCBPvzwQ5eAGhERoVmzZlmBslChQgoLC9MXX3xx2SHz77//VkJCghUKk5KSlJCQYH3eMiAgQE899ZReeOEFxcTEaMOGDXriiSdUr1493XPPPdnWGz9+vDp37qx7771X27Ztu6xeAAAAAFyi6/OwW1xMVFSUkZStnnrqKWOMMdL/vsLEGGM++OADU7JkSZMvXz4THh5ujDHm0KFDplmzZsbPz89IuX+Fyfbt20379u1NYGCg8fb2NpUrVzZ9+/Y1mZmZufaXnp5uxo0bZ+68807j4eFh/P39TWRkpFm1alW2ufPmzTOSzLvvvmuN9enTx0gy27Zts8Yu5StMpk+fnuPrMmzYMGvOyZMnzXPPPWcKFixofHx8TPv27U1KSoq1/8KvMDHGmF69epmiRYuapKSkHPvI6Zjp06ebgICAXHs9X9ajnSVnnj+9m6IoiqIo6nYrXDuX+hUmDmOMua6pFrjFpaamKiAgQJJTkn9etwMAAHBbId1cO1l/5zqdTvn75/53Lm+XBQAAAADYhpAJAAAAALANIRMAAAAAYBtCJgAAAADANoRMAAAAAIBtCJkAAAAAANsQMgEAAAAAtiFkAgAAAABsQ8gEAAAAANjGLa8bAG5ZLwVIXnndBIBbgRlm8roFAAAuGXcyAQAAAAC2IWQCAAAAAGxDyAQAAAAA2IaQCQAAAACwDSETAAAAAGAbQiYAAAAAwDaETAAAAACAbQiZAAAAAADbEDIBAAAAALZxy+sGgFuVc7BT/v7+ed0GAAAAcF1xJxMAAAAAYBtCJgAAAADANoRMAAAAAIBtCJkAAAAAANsQMgEAAAAAtiFkAgAAAABsQ8gEAAAAANiGkAkAAAAAsA0hEwAAAABgG0ImAAAAAMA2bnndAHDLCgjI6w4AAABuXsbkdQe4QtzJhAuHw6H58+fnun/Pnj1yOBxKSEi4bj1djTJlyuitt97K6zYAAACA28ZtGzIPHDigPn36KDQ0VF5eXgoODlaDBg307rvv6sSJE9e9n9jYWDkcDquCg4P14IMPateuXbase/To0Uuan5KSohYtWlzVOe2QkpKiTp06qWLFisqXL5/69u2b47yvvvpKlStXlpeXl6pWrarFixdf30YBAAAAuLgtQ+auXbtUs2ZN/fDDDxozZow2btyouLg4DRw4UAsXLtSPP/6Y67Hp6enXtLekpCTt379fX331lbZs2aI2bdooIyPjita6nF7PnDkjSQoJCZGnp+cVnc9Op0+fVuHChTVkyBBVr149xzlr1qxRx44d9dRTT2njxo1q166d2rVrp99+++06dwsAAADAYm5DkZGRpkSJEiYtLS3H/ZmZmdbPkszUqVNNmzZtjI+Pjxk2bJgxxpj58+ebmjVrGk9PT1O2bFkzfPhwk56ebowx5oknnjCtWrVyWfPMmTOmcOHC5sMPP8zxnDExMUaSOXLkiDU2a9YsI8ls27bNrF271jRt2tQEBQUZf39/07hxY7NhwwaXNS7sNSoqykhyqaioKGOMMeHh4eb55583ffr0MUFBQSYiIsJaY968edaa8fHxpkaNGsbT09PUqlXLzJ0710gyGzdutOZ88803JjQ01Hh6epqIiAgTHR2d7VpWrlxpGjZsaLy8vEyJEiVMr169cn39LxQeHm769OmTbbxDhw7ZXue6deuaHj16WNulS5c2EydOtLY/+OADExAQYH788Udr7Z49e5o+ffqYwMBAU6RIEfP++++btLQ007VrV+Pn52fKly9vFi9enGt/p06dMk6n06p9+/YZScZ57pMEFEVRFEVR1JUUbjhOp9NIMk6n86Lzbrvf3l9//WUcDocZO3bsJc2XZIoUKWI+/vhjk5ycbH7//Xfz008/GX9/fxMdHW2Sk5PNDz/8YMqUKWOGDx9ujDFm9erVJn/+/Gb//v3WOnPnzjW+vr7m2LFjOZ4np5CZFeh+/fVXs2zZMjNz5kyTmJhotm7dap566ikTHBxsUlNTc+11z549Zs6cOUaSSUpKMikpKebo0aPGmHPhys/PzwwYMMBs27bNbNu2zVojK2QeO3bMFC5c2HTq1Mn89ttv5ttvvzXlypUz54fMXbt2GXd3d9O/f3+zbds289lnn5nixYu7XMvOnTuNr6+vmThxotm+fbtZvXq1qVmzpunatesl/Q5yC5klS5Z0CZDGGDN06FBTrVo1a/v8kPn666+boKAgEx8f77J2gQIFzGuvvWa2b99uXnvtNZM/f37TokUL8/7775vt27ebZ5991gQFBZnjx4/n2N+wYcPMhWGekElRFEVRFHWVhRsOITMXP//8s5Fk5s6d6zIeFBRkfH19ja+vrxk4cKA1Lsn07dvXZe59991nxowZ4zI2c+ZMU7RoUWu7SpUq5vXXX7e227Rpc9FQdWHI3L9/v6lfv74pXry4OX36dLb5GRkZpkCBAubbb7+9aK85hVdjzoWrmjVrZlv3/JD53nvvmaCgIHPy5Elr/7vvvmvOD5mDBg0y//rXv1zWeOWVV1zO+dRTT5mnn37aZc7KlStNvnz5XNbOTW4h093d3cyePdtlbMqUKaZIkSLWdlbIHDhwoClatKj57bffsq3dsGFDa/vs2bPG19fXPP7449ZYSkqKkWTi4uJy7I87mRRFURRFUdegcMO51JDJV5j8v7Vr1yozM1OdO3fW6dOnXfbVrl3bZXvTpk1avXq1Ro8ebY1lZGTo1KlTOnHihHx8fNStWze9//77GjhwoA4ePKjvvvtOy5cv/8c+SpQoIWOMTpw4oerVq2vOnDny8PDQwYMHNWTIEMXGxurQoUPKyMjQiRMntHfv3ov2ejG1atW66P7ExERVq1ZNXl5e1li9evVc5iQlJenuu+92GatTp47L9qZNm/Trr79q1qxZ1pgxRpmZmdq9e7fCwsIuuecrMWHCBB0/flzr169XuXLlsu2vVq2a9XP+/PkVFBSkqlWrWmPBwcGSpEOHDuW4vqen5w3xOVYAAADgRnDbhczQ0FA5HA4lJSW5jGeFD29v72zH+Pr6umynpaVpxIgReuCBB7LNzQpkXbp00UsvvaS4uDitWbNGZcuWVaNGjf6xv5UrV8rf319FihRRgQIFrPGoqCgdPnxYb7/9tkqXLi1PT0/Vq1fPemBPbr1ezOXMvRppaWnq0aOHevfunW1fqVKlrnjdkJAQHTx40GXs4MGDCgkJcRlr1KiRFi1apC+//FIvvfRStnXc3d1dth0Oh8uYw+GQJGVmZl5xrwAAAMDt4rYLmUFBQWrWrJkmT56sXr16XVHQuuuuu5SUlKTQ0NCLnqddu3aaPn264uLi9MQTT1zS2mXLllVgYGC28dWrV2vq1Klq2bKlJGnfvn3666+//nE9Dw8PSbqiJ9SGhYVp5syZOnXqlBWef/75Z5c5lSpVyva1IevWrXPZvuuuu7R169aLvl5Xol69elq2bJnL15ssXbo0293WOnXqqGfPnmrevLnc3NzUv39/W/sAAAAA8D+35VeYTJ06VWfPnlXt2rX1xRdfKDExUUlJSfr000+1bds25c+f/6LHDx06VJ988olGjBihLVu2KDExUZ9//rmGDBniMq9bt26aMWOGEhMTFRUVdVU9V6hQQTNnzlRiYqLi4+PVuXPnHO+6Xqh06dJyOBxauHCh/vzzT6WlpV3yOTt16iSHw6Hu3btr69atWrx4scaPH+8yp0ePHtq2bZsGDRqk7du368svv1R0dLSk/90BHDRokNasWaOePXsqISFBO3bs0DfffKOePXte9PwJCQlKSEhQWlqa/vzzTyUkJGjr1q3W/j59+mjJkiWaMGGCtm3bpuHDh2v9+vU5rlu/fn0tXrxYI0aM0FtvvXXJrwEAAACAy3RdPiF6A9q/f7/p2bOnKVu2rHF3dzd+fn6mTp06Zty4cS5PEZVcv9Ijy5IlS0z9+vWNt7e38ff3N3Xq1DHvv/++y5zMzExTunRp07Jly3/sJ7cH9GT55ZdfTO3atY2Xl5epUKGC+eqrr7J9PUduvY4cOdKEhIQYh8Ph8hUmOT1M58I14uLiTPXq1Y2Hh4epUaOG9bTai32FSdbDgc5/qM/atWtNs2bNjJ+fn/H19TXVqlUzo0ePvuhrImV/Ymvp0qVd5nz55ZemYsWKxsPDw9x5551m0aJFLvsvfI1WrFhhfH19zaRJk3J9HS48JqfX5WKyPhAtOfP88/IURVEURVE3auHmc6kP/nEYY0xehNvbQVpamooXL67p06fn+PnNW9Xo0aM1bdo07du3L69byROpqakKCAiQ5JTkn9ftAAAA3JBIITefrL9znU6n/P1z/zv3tvtM5vWQmZmpv/76SxMmTFBgYKDuv//+vG7pmpo6daruvvtuBQUFafXq1Ro3btw/vhUWAAAAwK2JkHkN7N27V2XLllWJEiUUHR0tN7db+2XesWOHRo0apb///lulSpXSiy++qMGDB+d1WwAAAADyAG+XBWzG22UBAAD+GSnk5nOpb5e9LZ8uCwAAAAC4NgiZAAAAAADbEDIBAAAAALYhZAIAAAAAbEPIBAAAAADY5tb+bg0gL70UIHnldRMA8ooZxmMTAQC3J+5kAgAAAABsQ8gEAAAAANiGkAkAAAAAsA0hEwAAAABgG0ImAAAAAMA2hEwAAAAAgG0ImQAAAAAA2xAyAQAAAAC2IWQCAAAAAGxDyAQAAAAA2MYtrxsAblXOwU75+/vndRsAAADAdcWdTAAAAACAbQiZAAAAAADbEDIBAAAAALYhZAIAAAAAbEPIBAAAAADYhpAJAAAAALANIRMAAAAAYBtCJgAAAADANoRMAAAAAIBtCJkAAAAAANu45XUDuDFER0erb9++Onr06DVZf/jw4Zo/f74SEhIkSV27dtXRo0c1f/78a3K+LBEREapRo4beeuuta3qeHAUEXP9zAgCAm5cxed0BYAvuZN5EDhw4oD59+ig0NFReXl4KDg5WgwYN9O677+rEiRN53Z6tTp06pa5du6pq1apyc3NTu3btcpwXGxuru+66S56engoNDVV0dPR17RMAAACAK+5k3iR27dqlBg0aKDAwUGPGjFHVqlXl6empzZs36/3331fx4sV1//3353WbtsnIyJC3t7d69+6tOXPm5Dhn9+7datWqlZ555hnNmjVLy5YtU7du3VS0aFFFRkZe544BAAAASNzJvGk899xzcnNz0/r169WhQweFhYWpXLlyatu2rRYtWqQ2bdpYc998801VrVpVvr6+KlmypJ577jmlpaW5rBcdHa1SpUrJx8dH7du31+HDh619TqdT+fPn1/r16yVJmZmZKlSokO655x5rzqeffqqSJUta24MGDVLFihXl4+OjcuXK6dVXX1V6evoVX6+vr6/effddde/eXSEhITnOmTZtmsqWLasJEyYoLCxMPXv21EMPPaSJEyfmuu6iRYsUEBCgWbNmSTr3tt127dppzJgxCg4OVmBgoEaOHKmzZ89qwIABKlSokEqUKKHp06df8bUAAAAAtxNC5k3g8OHD+uGHH/T888/L19c3xzkOh8P6OV++fJo0aZK2bNmiGTNmaPny5Ro4cKC1Pz4+Xk899ZR69uyphIQENWnSRKNGjbL2BwQEqEaNGoqNjZUkbd68WQ6HQxs3brTC6ooVKxQeHm4dU6BAAUVHR2vr1q16++239cEHH1w07NkhLi5OTZs2dRmLjIxUXFxcjvNnz56tjh07atasWercubM1vnz5cu3fv18//fST3nzzTQ0bNkytW7dWwYIFFR8fr2eeeUY9evTQf//73xzXPX36tFJTU10KAAAAuF0RMm8CO3fulDFGlSpVchm/44475OfnJz8/Pw0aNMga79u3r5o0aaIyZcro3nvv1ahRo/Tll19a+99++201b95cAwcOVMWKFdW7d+9sby+NiIiwQmZsbKyaNWumsLAwrVq1yho7P2QOGTJE9evXV5kyZdSmTRv179/f5ZzXwoEDBxQcHOwyFhwcrNTUVJ08edJlfMqUKXruuef07bffqnXr1i77ChUqpEmTJqlSpUp68sknValSJZ04cUIvv/yyKlSooMGDB8vDw8O69guNHTtWAQEBVp1/hxcAAAC43RAyb2Jr165VQkKC7rzzTp0+fdoa//HHH3XfffepePHiKlCggB5//HEdPnzYejhQYmKi6tat67JWvXr1XLbDw8O1atUqZWRkaMWKFYqIiLCC5/79+7Vz505FRERY87/44gs1aNBAISEh8vPz05AhQ7R3795rd/GX4euvv1a/fv20dOlSl2Cc5c4771S+fP/7TyE4OFhVq1a1tvPnz6+goCAdOnQox/UHDx4sp9Np1b59++y/CAAAAOAmQci8CYSGhsrhcCgpKcllvFy5cgoNDZW3t7c1tmfPHrVu3VrVqlXTnDlztGHDBk2ZMkWSdObMmUs+Z+PGjXXs2DH98ssv+umnn1xC5ooVK1SsWDFVqFBB0rm3rXbu3FktW7bUwoULtXHjRr3yyiuXdb4rERISooMHD7qMHTx4UP7+/i6vSc2aNVW4cGF9/PHHMjk8Gtzd3d1l2+Fw5DiWmZmZYx+enp7y9/d3KQAAAOB2Rci8CQQFBalZs2aaPHmyjh8/ftG5GzZsUGZmpiZMmKB77rlHFStW1P79+13mhIWFKT4+3mXs559/dtkODAxUtWrVNHnyZLm7u6ty5cpq3LixNm7cqIULF7rcEVyzZo1Kly6tV155RbVr11aFChX0+++/X+VV/7N69epp2bJlLmNLly7Ndle2fPnyiomJ0TfffKNevXpd874AAACA2xkh8yYxdepUnT17VrVr19YXX3yhxMREJSUl6dNPP9W2bduUP39+Sefueqanp+udd97Rrl27NHPmTE2bNs1lrd69e2vJkiUaP368duzYocmTJ2vJkiXZzhkREaFZs2ZZgbJQoUIKCwvTF1984RIyK1SooL179+rzzz9XcnKyJk2apHnz5l31NW/dulUJCQn6+++/5XQ6lZCQoISEBGv/M888o127dmngwIHatm2bpk6dqi+//FL9+vXLtlbFihUVExOjOXPmqG/fvlfdGwAAAIBcGNw09u/fb3r27GnKli1r3N3djZ+fn6lTp44ZN26cOX78uDXvzTffNEWLFjXe3t4mMjLSfPLJJ0aSOXLkiDXno48+MiVKlDDe3t6mTZs2Zvz48SYgIMDlfPPmzTOSzLvvvmuN9enTx0gy27Ztc5k7YMAAExQUZPz8/MwjjzxiJk6c6LLesGHDTPXq1a3tqKgo07Zt24teb+nSpY2kbHW+mJgYU6NGDePh4WHKlStnpk+f7rI/PDzc9OnTx9reunWrKVKkiHnhhRdy7ePCY7J6mThx4kX7zeJ0Ov+/V6eRDEVRFEVR1HUv4FrI+jvX6XRedJ7DGGPyKuACt6LU1FQFBARIckri85kAAOD64y98XAtZf+c6nc6LPoeEt8sCAAAAAGxDyAQAAAAA2IaQCQAAAACwDSETAAAAAGAbQiYAAAAAwDaETAAAAACAbQiZAAAAAADbEDIBAAAAALYhZAIAAAAAbOOW1w0At6yXAiSvvG4CuDWYYSavWwAAAJeIO5kAAAAAANsQMgEAAAAAtiFkAgAAAABsQ8gEAAAAANiGkAkAAAAAsA0hEwAAAABgG0ImAAAAAMA2hEwAAAAAgG0ImQAAAAAA27jldQPArco52Cl/f/+8bgMAAAC4rriTCQAAAACwDSETAAAAAGAbQiYAAAAAwDaETAAAAACAbQiZAAAAAADbEDIBAAAAALYhZAIAAAAAbEPIBAAAAADYhpAJAAAAALANIRMAAAAAYBu3vG4AuGUFBOR1BwAA4HoyJq87AG4I3MmEJCkiIkJ9+/a9bucrU6aM3nrrrWt+HofDofnz51/z8wAAAAA4h5B5k+jatascDoccDoc8PDwUGhqqkSNH6uzZs3nd2jWxZcsWPfjggypTpowcDkeugXTKlCkqU6aMvLy8VLduXa1du/b6NgoAAADABSHzJtK8eXOlpKRox44devHFFzV8+HCNGzcur9vKVUZGhjIzM6/o2BMnTqhcuXL6z3/+o5CQkBznfPHFF3rhhRc0bNgw/fLLL6pevboiIyN16NChq2kbAAAAwFUgZN5EPD09FRISotKlS+vZZ59V06ZNtWDBAknSkSNH1KVLFxUsWFA+Pj5q0aKFduzY4XL86tWrFRERIR8fHxUsWFCRkZE6cuSItT8zM1MDBw5UoUKFFBISouHDh7sc/+abb6pq1ary9fVVyZIl9dxzzyktLc3aHx0drcDAQC1YsEBVqlSRp6en9u7dq0OHDqlNmzby9vZW2bJlNWvWrH+81rvvvlvjxo3To48+Kk9PzxznvPnmm+revbueeOIJValSRdOmTZOPj48+/vjjXNcdNmyYihYtql9//VXSubftjho1Sl26dJGfn59Kly6tBQsW6M8//1Tbtm3l5+enatWqaf369bmuefr0aaWmproUAAAAcLsiZN7EvL29debMGUnn3k67fv16LViwQHFxcTLGqGXLlkpPT5ckJSQk6L777lOVKlUUFxenVatWqU2bNsrIyLDWmzFjhnx9fRUfH6833nhDI0eO1NKlS639+fLl06RJk7RlyxbNmDFDy5cv18CBA116OnHihF5//XV9+OGH2rJli4oUKaKuXbtq3759iomJ0ddff62pU6de9d3GM2fOaMOGDWratKlLf02bNlVcXFy2+cYY9erVS5988olWrlypatWqWfsmTpyoBg0aaOPGjWrVqpUef/xxdenSRY899ph++eUXlS9fXl26dJHJ5cP8Y8eOVUBAgFUlS5a8qmsDAAAAbmoGN4WoqCjTtm1bY4wxmZmZZunSpcbT09P079/fbN++3Ugyq1evtub/9ddfxtvb23z55ZfGGGM6duxoGjRokOv64eHhpmHDhi5jd999txk0aFCux3z11VcmKCjI2p4+fbqRZBISEqyxpKQkI8msXbvWGktMTDSSzMSJEy/p2kuXLp1t7h9//GEkmTVr1riMDxgwwNSpU8falmS++uor06lTJxMWFmb++9//Zlv7scces7ZTUlKMJPPqq69aY3FxcUaSSUlJybG/U6dOGafTadW+ffuMJOM894w5iqIoiqJulwJucU6n00gyTqfzovP4CpObyMKFC+Xn56f09HRlZmaqU6dOGj58uJYtWyY3NzfVrVvXmhsUFKRKlSopMTFR0rk7mQ8//PBF1z//7p4kFS1a1OWO448//qixY8dq27ZtSk1N1dmzZ3Xq1CmdOHFCPj4+kiQPDw+XdRITE+Xm5qZatWpZY5UrV1ZgYOAVvw6Xq1+/fvL09NTPP/+sO+64I9v+8/sNDg6WJFWtWjXb2KFDh3L8fKinp2eub+kFAAAAbje8XfYm0qRJEyUkJGjHjh06efKk9fbWS+Ht7f2Pc9zd3V22HQ6H9eCePXv2qHXr1qpWrZrmzJmjDRs2aMqUKZJkvWU36zwOh+NSL+mK3XHHHcqfP78OHjzoMn7w4MFsQbBZs2b6448/9P333+e41vnXndV7TmNX+hAjAAAA4HZCyLyJ+Pr6KjQ0VKVKlZKb2/9uQoeFhens2bOKj4+3xg4fPqykpCRVqVJF0rm7dcuWLbvic2/YsEGZmZmaMGGC7rnnHlWsWFH79+//x+MqV66ss2fPasOGDdZYUlKSjh49esW9SOfumNaqVcvlmjIzM7Vs2TLVq1fPZe7999+v2bNnq1u3bvr888+v6rwAAAAALo6QeQuoUKGC2rZtq+7du2vVqlXatGmTHnvsMRUvXlxt27aVJA0ePFjr1q3Tc889p19//VXbtm3Tu+++q7/++uuSzhEaGqr09HS988472rVrl2bOnKlp06b943GVKlVS8+bN1aNHD8XHx2vDhg3q1q3bP95ZPXPmjBISEpSQkKAzZ87ojz/+UEJCgnbu3GnNeeGFF/TBBx9oxowZSkxM1LPPPqvjx4/riSeeyLZe+/btNXPmTD3xxBP6+uuvL+maAQAAAFw+PpN5i5g+fbr69Omj1q1b68yZM2rcuLEWL15sve2zYsWK+uGHH/Tyyy+rTp068vb2Vt26ddWxY8dLWr969ep688039frrr2vw4MFq3Lixxo4dqy5dulxSb926dVN4eLiCg4M1atQovfrqqxc9Zv/+/apZs6a1PX78eI0fP17h4eGKjY2VJD3yyCP6888/NXToUB04cEA1atTQkiVLrM9QXuihhx5SZmamHn/8ceXLl08PPPDAJV37lQqQU5L/NT0HAAC4gVz7TwxZjLl+5wIul8MY/okCdkpNTVVAQIBEyAQAANcIf8EjL2T9net0OuXvn/vfubxdFgAAAABgG0ImAAAAAMA2hEwAAAAAgG0ImQAAAAAA2xAyAQAAAAC2IWQCAAAAAGxDyAQAAAAA2IaQCQAAAACwjVteNwDcsl4KkLzyugng+jHD+GZwAADAnUwAAAAAgI0ImQAAAAAA2xAyAQAAAAC2IWQCAAAAAGxDyAQAAAAA2IaQCQAAAACwDSETAAAAAGAbQiYAAAAAwDaETAAAAACAbQiZAAAAAADbuOV1A8CtyjnYKX9//7xuAwAAALiuuJMJAAAAALANIRMAAAAAYBtCJgAAAADANoRMAAAAAIBtCJkAAAAAANsQMgEAAAAAtiFkAgAAAABsQ8gEAAAAANiGkAkAAAAAsA0hEwAAAABgm5suZHbt2lXt2rW7rGMcDofmz59/WcccOHBAzZo1k6+vrwIDAy/r2OvlSq7rdhMdHZ13v7+AAMnhoCiKoijqcgrATe+GC5ldu3aVw+GQw+GQh4eHQkNDNXLkSJ09e1aS9Pbbbys6Ovqa9zFx4kSlpKQoISFB27dvt23d6x0MDxw4oD59+ig0NFReXl4KDg5WgwYN9O677+rEiRPXrY8r8f777ysiIkL+/v5yOBw6evRotjl///23OnfuLH9/fwUGBuqpp55SWlra9W8WAAAAgCTJLa8byEnz5s01ffp0nT59WosXL9bzzz8vd3d3DR48WAEBAdelh+TkZNWqVUsVKlS4Lue7Fnbt2qUGDRooMDBQY8aMUdWqVeXp6anNmzfr/fffV/HixXX//ffndZu5OnHihJo3b67mzZtr8ODBOc7p3LmzUlJStHTpUqWnp+uJJ57Q008/rdmzZ1/nbgEAAABIkswNJioqyrRt29ZlrFmzZuaee+7JcX94eLjp1auXGTBggClYsKAJDg42w4YNczlekpk3b561PXToUBMSEmI2bdqUYw+lS5c2kqyKiooyxhjz+++/m/vvv9/4+vqaAgUKmIcfftgcOHDA5dipU6eacuXKGXd3d1OxYkXzySef5Lpu6dKlrX3z5883NWvWNJ6enqZs2bJm+PDhJj093dq/fft206hRI+Pp6WnCwsLMDz/8kO26LhQZGWlKlChh0tLSctyfmZlp/Xy115aZmWmGDRtmSpYsaTw8PEzRokVNr169rP2nTp0yL774oilWrJjx8fExderUMTExMbn2fr6YmBgjyRw5csRlfOvWrUaSWbdunTX23XffGYfDYf744w9jjDHTp083AQEB1v5Dhw6ZWrVqmXbt2plTp05Zay9ZssTUqFHDeHl5mSZNmpiDBw+axYsXm8qVK5sCBQqYjh07muPHj19Sv06n00gyTskYiqIoiqIurwDcsKy/c53Oi8674d4umxNvb2+dOXMm1/0zZsyQr6+v4uPj9cYbb2jkyJFaunRptnnGGPXq1UuffPKJVq5cqWrVquW43rp169S8eXN16NBBKSkpevvtt5WZmam2bdvq77//1ooVK7R06VLt2rVLjzzyiHXcvHnz1KdPH7344ov67bff1KNHDz3xxBOKiYmx1pWk6dOnKyUlxdpeuXKlunTpoj59+mjr1q167733FB0drdGjR0uSMjMz9cADD8jDw0Px8fGaNm2aBg0adNHX7PDhw/rhhx/0/PPPy9fXN8c5jv//3IMd1zZnzhxNnDhR7733nnbs2KH58+eratWq1vE9e/ZUXFycPv/8c/366696+OGH1bx5c+3YseOi13ExcXFxCgwMVO3ata2xpk2bKl++fIqPj882f9++fWrUqJH+9a9/6euvv5anp6e1b/jw4Zo8ebLWrFmjffv2qUOHDnrrrbc0e/ZsLVq0SD/88IPeeeedHPs4ffq0UlNTXQoAAAC4bV2fzHvpzr9TmZmZaZYuXWo8PT1N//79s+035tydzIYNG7qscffdd5tBgwZZ25LMV199ZTp16mTCwsLMf//733/so23bttYdTGOM+eGHH0z+/PnN3r17rbEtW7YYSWbt2rXGGGPq169vunfv7rLOww8/bFq2bOnSy4V3H++77z4zZswYl7GZM2eaokWLGmOM+f77742bm5t1d86Yc3fsclory88//2wkmblz57qMBwUFGV9fX+Pr62sGDhxo27VNmDDBVKxY0Zw5cyZbL7///rvJnz+/S/9Z1z148OAc+z9fbncyR48ebSpWrJhtfuHChc3UqVONMf+7k7lt2zZTsmRJ07t3b5c7uFlr//jjj9bY2LFjjSSTnJxsjfXo0cNERkbm2N+wYcOMpGzFnUyKoiiKuoICcMO6qe9kLly4UH5+fvLy8lKLFi30yCOPaPjw4bnOv/COZNGiRXXo0CGXsX79+ik+Pl4//fSTihcvbo2PGTNGfn5+Vu3duzfHcyQmJqpkyZIqWbKkNValShUFBgYqMTHRmtOgQQOX4xo0aGDtz82mTZs0cuRIlz66d++ulJQUnThxwjp3sWLFrGPq1at30TVzs3btWiUkJOjOO+/U6dOnbbu2hx9+WCdPnlS5cuXUvXt3zZs3z3pY0+bNm5WRkaGKFSu6XOOKFSuUnJx8RddxOU6ePKlGjRrpgQce0Ntvv23dwT3f+f+GgoOD5ePjo3LlyrmMXfhvKsvgwYPldDqt2rdvn/0XAQAAANwkbsgH/zRp0kTvvvuuPDw8VKxYMbm5XbxNd3d3l22Hw6HMzEyXsWbNmumzzz7T999/r86dO1vjzzzzjDp06GBtnx/krpe0tDSNGDFCDzzwQLZ9Xl5eV7RmaGioHA6HkpKSXMazgpO3t/cVrZubkiVLKikpST/++KOWLl2q5557TuPGjdOKFSuUlpam/Pnza8OGDcqfP7/LcX5+fld8zpCQkGzB7+zZs/r7778VEhJijXl6eqpp06ZauHChBgwY4PI/GbKc/2/I4XBc0r+p89c//623AAAAwO3shryT6evrq9DQUJUqVeofA+aluv/++zV79mx169ZNn3/+uTVeqFAhhYaGWpXb+cLCwrRv3z6Xu1Rbt27V0aNHVaVKFWvO6tWrXY5bvXq1tV86F2YyMjJc5tx1111KSkpy6SOr8uXLZ507JSXFOubnn3++6PUGBQWpWbNmmjx5so4fP37RuXZdm7e3t9q0aaNJkyYpNjZWcXFx2rx5s2rWrKmMjAwdOnQo2/WdHwYvV7169XT06FFt2LDBGlu+fLkyMzNVt25dayxfvnyaOXOmatWqpSZNmmj//v1XfE4AAAAAF3dD3sm8Vtq3b6+ZM2fq8ccfl5ubmx566KFLPrZp06aqWrWqOnfurLfeektnz57Vc889p/DwcOvBMwMGDFCHDh1Us2ZNNW3aVN9++63mzp2rH3/80VqnTJkyWrZsmRo0aCBPT08VLFhQQ4cOVevWrVWqVCk99NBDypcvnzZt2qTffvtNo0aNUtOmTVWxYkVFRUVp3LhxSk1N1SuvvPKPPU+dOlUNGjRQ7dq1NXz4cFWrVk358uXTunXrtG3bNtWqVcu2a4uOjlZGRobq1q0rHx8fffrpp/L29lbp0qUVFBSkzp07q0uXLpowYYJq1qypP//8U8uWLVO1atXUqlWrHPs/cOCADhw4oJ07d0o697bbAgUKqFSpUipUqJDCwsLUvHlzde/eXdOmTVN6erp69uypRx99NNsd6fz582vWrFnq2LGj7r33XsXGxl5VwAUAAACQi+v0GdFLltNXmFxsf3h4uOnTp4/LnAsf2iO5PiDniy++MF5eXmbOnDm5nufCNYy5+q/5MMaYBQsWmNDQUOPm5ubyFSZLliwx9evXN97e3sbf39/UqVPHvP/++9b+pKQk07BhQ+Ph4WEqVqxolixZku26crJ//37Ts2dPU7ZsWePu7m78/PxMnTp1zLhx41y+kuNqr23evHmmbt26xt/f3/j6+pp77rnH5WE6Z86cMUOHDjVlypQx7u7upmjRoqZ9+/bm119/zbX33B6oM336dGvO4cOHTceOHY2fn5/x9/c3TzzxhDl27Ji1/8KvMElPTzcPPPCACQsLMwcPHszxoUIXHpPVS/Xq1S/6WmfJ+kC05MzzZydQFEVR1I1SAG5+l/rgH4cxxuRVwAVuRampqQoICJDklOSf1+0AAHBD4C9O4OaX9Xeu0+mUv3/uf+fekJ/JBAAAAADcnAiZAAAAAADbEDIBAAAAALYhZAIAAAAAbEPIBAAAAADYhpAJAAAAALANIRMAAAAAYBtCJgAAAADANoRMAAAAAIBt3PK6AeCW9VKA5JXXTQDXnhlm8roFAABwA+FOJgAAAADANoRMAAAAAIBtCJkAAAAAANsQMgEAAAAAtiFkAgAAAABsQ8gEAAAAANiGkAkAAAAAsA0hEwAAAABgG0ImAAAAAMA2bnndAHCrcg52yt/fP6/bAAAAAK4r7mQCAAAAAGxDyAQAAAAA2IaQCQAAAACwDSETAAAAAGAbQiYAAAAAwDaETAAAAACAbQiZAAAAAADbEDIBAAAAALYhZAIAAAAAbEPIBAAAAADYxi2vGwBuWQEBed0BAOBmZExedwAAV4U7mf/A4XBo/vz5ed0GrlBsbKwcDoeOHj2a160AAAAAt4XbImROmzZNBQoU0NmzZ62xtLQ0ubu7KyIiwmVuVihJTk6+zl1eP3/++aeeffZZlSpVSp6engoJCVFkZKRWr16d1625mDt3rv79738rKChIDodDCQkJ2eacOnVKzz//vIKCguTn56cHH3xQBw8evP7NAgAAAJB0m4TMJk2aKC0tTevXr7fGVq5cqZCQEMXHx+vUqVPWeExMjEqVKqXy5cvnRau2OnPmTI7jDz74oDZu3KgZM2Zo+/btWrBggSIiInT48OHr3OHFHT9+XA0bNtTrr7+e65x+/frp22+/1VdffaUVK1Zo//79euCBB65jlwAAAADOd1uEzEqVKqlo0aKKjY21xmJjY9W2bVuVLVtWP//8s8t4kyZNXI7/66+/1L59e/n4+KhChQpasGCBy/4VK1aoTp068vT0VNGiRfXSSy+53DU9ffq0evfurSJFisjLy0sNGzbUunXrXM7pcDi0aNEiVatWTV5eXrrnnnv022+/uZxn1apVatSokby9vVWyZEn17t1bx48ft/aXKVNGr732mrp06SJ/f389/fTT2V6Lo0ePauXKlXr99dfVpEkTlS5dWnXq1NHgwYN1//33S5L69++v1q1bW8e89dZbcjgcWrJkiTUWGhqqDz/8UJK0bt06NWvWTHfccYcCAgIUHh6uX375xeW8DodDH3744UVfxws9/vjjGjp0qJo2bZrjfqfTqY8++khvvvmm7r33XtWqVUvTp0/XmjVrXH6n5ztx4oRatGihBg0a6OjRo9qzZ48cDoe+/PJL67W9++67tX37dq1bt061a9eWn5+fWrRooT///DPHNU+fPq3U1FSXAgAAAG5Xt0XIlM7dzYyJibG2Y2JiFBERofDwcGv85MmTio+PzxYyR4wYoQ4dOujXX39Vy5Yt1blzZ/3999+SpD/++EMtW7bU3XffrU2bNundd9/VRx99pFGjRlnHDxw4UHPmzNGMGTP0yy+/KDQ0VJGRkdYaWQYMGKAJEyZo3bp1Kly4sNq0aaP09HRJUnJyspo3b64HH3xQv/76q7744gutWrVKPXv2dFlj/Pjxql69ujZu3KhXX3012+vg5+cnPz8/zZ8/X6dPn87xtQoPD9eqVauUkZEh6VyIvuOOO6yQ/scffyg5Odl6q/GxY8cUFRWlVatW6eeff1aFChXUsmVLHTt27JJfxyuxYcMGpaenu4TQypUrq1SpUoqLi8s2/+jRo2rWrJkyMzO1dOlSBQYGWvuGDRumIUOG6JdffpGbm5s6deqkgQMH6u2339bKlSu1c+dODR06NMc+xo4dq4CAAKtKlix5xdcEAAAA3PTMbeKDDz4wvr6+Jj093aSmpho3Nzdz6NAhM3v2bNO4cWNjjDHLli0zkszvv/9uHSfJDBkyxNpOS0szksx3331njDHm5ZdfNpUqVTKZmZnWnClTphg/Pz+TkZFh0tLSjLu7u5k1a5a1/8yZM6ZYsWLmjTfeMMYYExMTYySZzz//3Jpz+PBh4+3tbb744gtjjDFPPfWUefrpp12uaeXKlSZfvnzm5MmTxhhjSpcubdq1a/ePr8XXX39tChYsaLy8vEz9+vXN4MGDzaZNm6z9R44cMfny5TPr1q0zmZmZplChQmbs2LGmbt26xhhjPv30U1O8ePFc18/IyDAFChQw33777SW/jheze/duI8ls3LjRZXzWrFnGw8Mj2/y7777bDBw40Bjzv9c2MTHRVKtWzTz44IPm9OnT2db+8MMPrbHPPvvMSDLLli2zxsaOHWsqVaqUY3+nTp0yTqfTqn379hlJxnnu+YAURVEUdXkFADcop9NpJBmn03nRebfNncyIiAgdP35c69at08qVK1WxYkUVLlxY4eHh1ucyY2NjVa5cOZUqVcrl2GrVqlk/+/r6yt/fX4cOHZIkJSYmql69enI4HNacBg0aKC0tTf/973+VnJys9PR0NWjQwNrv7u6uOnXqKDEx0eU89erVs34uVKiQKlWqZM3ZtGmToqOjrTuRfn5+ioyMVGZmpnbv3m0dV7t27X98LR588EHt379fCxYsUPPmzRUbG6u77rpL0dHRkqTAwEBVr15dsbGx2rx5szw8PPT0009r48aNSktL04oVKxQeHm6td/DgQXXv3l0VKlRQQECA/P39lZaWpr17917y63itNWvWTKGhofriiy/k4eGRbf/5vQUHB0uSqlat6jKWW6+enp7y9/d3KQAAAOB2ddt8T2ZoaKhKlCihmJgYHTlyxApJxYoVU8mSJbVmzRrFxMTo3nvvzXasu7u7y7bD4VBmZuZ16TtLWlqaevTood69e2fbd34o9vX1vaT1vLy81KxZMzVr1kyvvvqquv0fe/cdFsXV/g38u7Sl7iKiLCiC0gRFQFGDDVQM2CImliivgjWJYoklajSiMRpjNJZobCgYH2sS9TFiLxhFY2WtxIISjAE1FhBE6nn/8Mc8bgAFXFnL93Nd57qcM2fO3DM74N6cmTMDByIyMhLh4eEAniTlcXFxkMvl8Pf3h5WVFdzd3XH48GEcPHgQo0ePlvoKCwvD3bt3MX/+fDg4OEAul8PPz6/YxEPaPo8qlQq5ubl48OCBxq2vt27dgkql0mjbsWNH/PLLL7h48aJG8lhSbEV/MPh3XWV/5kREREREr6O3ZiQTePJcZlxcHOLi4jReXdKqVSvs2LEDx48fL/Y85vO4u7vj6NGjEEJIdfHx8bCwsEDNmjXh5OQEIyMjjdeD5OXl4cSJE/Dw8NDo6+nJau7fv4/Lly/D3d0dANCwYUNcvHgRzs7OxUpJI3Pl5eHhoTGJUNFzmfv27ZPOVUBAANatW4fLly9rnL/4+HgMHz4cHTp0QL169SCXy/HPP/+8cEzP06hRIxgaGmLfvn1S3aVLl5CSkqIxKgwAM2fORFhYGNq2bYuLFy++9NiIiIiIiN5Wb81IJvAkyRw6dCjy8vI0bvf09/dHREQEcnNzy51kDhkyBPPmzcOwYcMQERGBS5cuITIyEqNGjYKenh7MzMzwySefYOzYsbCyskKtWrUwa9YsPHr0CAMGDNDo68svv0TVqlVhY2ODiRMnwtraGiEhIQCAcePG4Z133kFERAQGDhwIMzMzXLx4EXv27MHChQvLHO/du3fRvXt39O/fHw0aNICFhQVOnjyJWbNmoUuXLlK7Vq1a4eHDh9i2bRtmzpwJ4EmS2a1bN9ja2sLV1VVq6+LigtWrV8PX1xcZGRkYO3YsTExMynUeS3Lv3j2kpKTg77//BvAkgQSejGCqVCoolUoMGDAAo0aNgpWVFRQKBYYNGwY/Pz+88847xfqbPXs2CgoK0KZNG8TFxaFu3bovHCMREREREWl665LM7Oxs1K1bV3ruDniSZD58+FB61Ul51KhRA9u3b8fYsWPh5eUFKysrDBgwAJMmTZLazJw5E4WFhejTpw8ePnwIX19f7Nq1C1WqVNHoa+bMmRgxYgSuXLkCb29v/Prrr9IoZYMGDXDw4EFMnDgRLVu2hBACTk5O6NmzZ7niNTc3R9OmTTF37lzpeVF7e3sMGjQIn3/+udSuSpUq8PT0xK1bt6RkrFWrVigsLNRI0AFgxYoVGDx4MBo2bAh7e3vMmDEDY8aMKVdcJdm6dSv69esnLX/44YcAnswEO2XKFADA3Llzoaenhw8++AA5OTkICgrCDz/8UGqfc+fO1Ug0tTEKXBol0gHw+UwiotfZUzcqERFRGcmE4K9PXSt6N+f9+/c1ni2k11NGRgaUSiXAJJOI6LXHb0lERP9T9D03PT39mZNdvlXPZBIREREREdHLxSSTiIiIiIiItOateibzVRUQEADetUxERERERG8CjmQSERERERGR1jDJJCIiIiIiIq1hkklERERERERawySTiIiIiIiItIZJJhEREREREWkNZ5clelnGKwFjXQdBVDoRyVmtiYiISPs4kklERERERERawySTiIiIiIiItIZJJhEREREREWkNk0wiIiIiIiLSGiaZREREREREpDVMMomIiIiIiEhrmGQSERERERGR1jDJJCIiIiIiIq1hkklERERERERawySTiIiIiIiItMZA1wEQvanSJ6RDoVDoOgwiIiIiokrFkUwiIiIiIiLSGiaZREREREREpDVMMomIiIiIiEhrmGQSERERERGR1jDJJCIiIiIiIq1hkklERERERERawySTiIiIiIiItIZJJhEREREREWkNk0wiIiIiIiLSGiaZREREREREpDVMMt9i4eHhCAkJqZR9OTo6Yt68edKyTCbDli1bXuo+k5OTIZPJoFarX+p+SqVUAjIZCwsLCwvL61WIiF4Qk8w3WHh4OGQyGWQyGYyMjODs7Iwvv/wS+fn5AID58+cjJiamXH1WNDk8ceIEBg8eXOb2v/32Gzp37gw7O7tS9ymEwOTJk2FrawsTExMEBgbiypUr5Y6NiIiIiIi0h0nmGy44OBipqam4cuUKRo8ejSlTpuDbb78FACiVSlhaWlZKHNWqVYOpqWmZ22dlZcHLywuLFi0qtc2sWbOwYMECLFmyBMeOHYOZmRmCgoLw+PFjbYRMREREREQVwCTzDSeXy6FSqeDg4IBPPvkEgYGB2Lp1K4Dit8sGBARg+PDh+Oyzz2BlZQWVSoUpU6ZI6x0dHQEAXbt2hUwmk5aTkpLQpUsX2NjYwNzcHI0bN8bevXs14vj37bLP0759e3z11Vfo2rVrieuFEJg3bx4mTZqELl26oEGDBvjxxx/x999/lzrSWlBQgP79+6Nu3bpISUkB8GRkdunSpejUqRNMTU3h7u6Oo0eP4urVqwgICICZmRmaNWuGpKSkMsdORERERPQ2Y5L5ljExMUFubm6p61etWgUzMzMcO3YMs2bNwpdffok9e/YAeHLLKwBER0cjNTVVWs7MzESHDh2wb98+JCQkIDg4GJ07d5YSuZfh+vXrSEtLQ2BgoFSnVCrRtGlTHD16tFj7nJwcdO/eHWq1GocOHUKtWrWkddOmTUPfvn2hVqtRt25d9O7dGx999BEmTJiAkydPQgiBiIiIUmPJyclBRkaGRiEiIiIielsxyXxLCCGwd+9e7Nq1C23atCm1XYMGDRAZGQkXFxf07dsXvr6+2LdvH4Ant7wCgKWlJVQqlbTs5eWFjz76CPXr14eLiwumTZsGJycnacT0ZUhLSwMA2NjYaNTb2NhI64pkZmaiY8eOuHPnDg4cOCDFXaRfv37o0aMHXF1dMW7cOCQnJyM0NBRBQUFwd3fHiBEjEBcXV2osX3/9NZRKpVTs7e21c5BERERERK8hJplvuG3btsHc3BzGxsZo3749evbsqXEL7L81aNBAY9nW1ha3b99+5j4yMzMxZswYuLu7w9LSEubm5khMTHypI5nl0atXL2RlZWH37t1QKpXF1j99zEVJq6enp0bd48ePSx2hnDBhAtLT06Vy48YNLR8BEREREdHrg0nmG65169ZQq9W4cuUKsrOzpdthS2NoaKixLJPJUFhY+Mx9jBkzBps3b8aMGTNw6NAhqNVqeHp6PvO23BelUqkAALdu3dKov3XrlrSuSIcOHXD27NkSb6MFNI9Z9n9Tt5dUV9p5kMvlUCgUGoWIiIiI6G3FJPMNZ2ZmBmdnZ9SqVQsGBgYv3J+hoSEKCgo06uLj4xEeHo6uXbvC09MTKpUKycnJL7yvZ6lduzZUKpV0Ky8AZGRk4NixY/Dz89No+8knn2DmzJl47733cPDgwZcaFxERERHR2+7Fsw56qzg6OmLfvn1o3rw55HI5qlSpAhcXF2zatAmdO3eGTCbDF1988dzRz+fJzMzE1atXpeXr169DrVbDysoKtWrVgkwmw8iRI/HVV1/BxcUFtWvXxhdffAE7OzuNGXOLDBs2DAUFBejUqRN27NiBFi1avFB8RERERERUMiaZVC5z5szBqFGjsHz5ctSoUQPJycn47rvv0L9/fzRr1gzW1tYYN27cC8+wevLkSbRu3VpaHjVqFAAgLCwMMTExAIDPPvsMWVlZGDx4MB48eIAWLVpg586dMDY2LrHPkSNHorCwEB06dMDOnTvRrFmzF4rxeZRIB8BbZ4mI6NUghK4jIKK3hUwI/soh0qaMjIz/m2CISSYREb06+I2PiF5U0ffc9PT0Z85DwmcyiYiIiIiISGuYZBIREREREZHWMMkkIiIiIiIirWGSSURERERERFrDJJOIiIiIiIi0hkkmERERERERaQ2TTCIiIiIiItIaJplERERERESkNUwyiYiIiIiISGsMdB0A0RtrvBIw1nUQ9CoQkULXIRARERFVGo5kEhERERERkdYwySQiIiIiIiKtYZJJREREREREWsMkk4iIiIiIiLSGSSYRERERERFpDZNMIiIiIiIi0hommURERERERKQ1TDKJiIiIiIhIa5hkEhERERERkdYwySQiIiIiIiKtMdB1AERvqvQJ6VAoFLoOg4iIiIioUnEkk4iIiIiIiLSGSSYRERERERFpDZNMIiIiIiIi0hommURERERERKQ1TDKJiIiIiIhIa5hkEhERERERkdYwySQiIiIiIiKtYZJJREREREREWsMkk4iIiIiIiLTGQNcBEL2xlEpdR0BERG8SIXQdARFRmXAksxLFxMTA0tLyhftJTk6GTCaDWq1+4b4qi0wmw5YtWyp9v46Ojpg3b16l75eIiIiI6G31ViSZ4eHhkMlk+Pjjj4utGzp0KGQyGcLDwys/sAqyt7dHamoq6tev/0L9yGQyqZiZmcHFxQXh4eE4deqUliKtuNTUVPTu3Ruurq7Q09PDyJEjS2z3008/oW7dujA2Noanpye2b99euYESEREREZGGtyLJBJ4kZuvXr0d2drZU9/jxY6xduxa1atXSYWTlk5ubC319fahUKhgYvPjdztHR0UhNTcWFCxewaNEiZGZmomnTpvjxxx+1EG3F5eTkoFq1apg0aRK8vLxKbHPkyBH06tULAwYMQEJCAkJCQhASEoLz589XcrRERERERFTkrUkyGzZsCHt7e2zatEmq27RpE2rVqgUfHx+Ntjt37kSLFi1gaWmJqlWrolOnTkhKSpLWF92uumnTJrRu3Rqmpqbw8vLC0aNHNfqJiYlBrVq1YGpqiq5du+Lu3bsa65OSktClSxfY2NjA3NwcjRs3xt69ezXaODo6Ytq0aejbty8UCgUGDx5c7HbZuLg4yGQy7Nu3D76+vjA1NUWzZs1w6dKl554XS0tLqFQqODo64t1338XPP/+M0NBQRERE4P79+wCAKVOmwNvbW2O7efPmwdHRUaNu5cqVqFevHuRyOWxtbREREVHqfiMjI2Fra4uzZ8+WuN7R0RHz589H3759oSzl2cb58+cjODgYY8eOhbu7O6ZNm4aGDRti4cKFpe43KioKlpaW2LdvHwAgICAAw4YNw8iRI1GlShXY2Nhg+fLlyMrKQr9+/WBhYQFnZ2fs2LGj1D6JiIiIiOh/3pokEwD69++P6OhoaXnlypXo169fsXZZWVkYNWoUTp48iX379kFPTw9du3ZFYWGhRruJEydizJgxUKvVcHV1Ra9evZCfnw8AOHbsGAYMGICIiAio1Wq0bt0aX331lcb2mZmZ6NChA/bt24eEhAQEBwejc+fOSElJ0Wg3e/ZseHl5ISEhAV988UWpxzdx4kTMmTMHJ0+ehIGBAfr371/ucwQAn376KR4+fIg9e/aUeZvFixdj6NChGDx4MM6dO4etW7fC2dm5WDshBIYNG4Yff/wRhw4dQoMGDSoUIwAcPXoUgYGBGnVBQUHFkv0is2bNwvjx47F79260bdtWql+1ahWsra1x/PhxDBs2DJ988gm6d++OZs2a4fTp03j33XfRp08fPHr0qMR+c3JykJGRoVGIiIiIiN5a4i0QFhYmunTpIm7fvi3kcrlITk4WycnJwtjYWNy5c0d06dJFhIWFlbr9nTt3BABx7tw5IYQQ169fFwBEVFSU1ObChQsCgEhMTBRCCNGrVy/RoUMHjX569uwplErlM2OtV6+e+P7776VlBwcHERISotGmaP8JCQlCCCEOHDggAIi9e/dKbWJjYwUAkZ2dXeq+AIjNmzcXq8/OzhYAxDfffCOEECIyMlJ4eXlptJk7d65wcHCQlu3s7MTEiROfua+ffvpJ9O7dW7i7u4u//vqr1Lb/5u/vL0aMGFGs3tDQUKxdu1ajbtGiRaJ69erSsoODg5g7d6747LPPhK2trTh//nyxvlu0aCEt5+fnCzMzM9GnTx+pLjU1VQAQR48eLTG+yMhIAaBYSX8yDyALCwsLC4t2ChGRjqWnpwsAIj09/Znt3qqRzGrVqqFjx46IiYlBdHQ0OnbsCGtr62Ltrly5gl69eqFOnTpQKBTSbaH/HmF8ehTO1tYWAHD79m0AQGJiIpo2barR3s/PT2M5MzMTY8aMgbu7OywtLWFubo7ExMRi+/H19S3T8T0rnvIQQgB4MjFQWdy+fRt///23xuhgST799FMcO3YMv/32G2rUqFHuuCpqzpw5WL58OQ4fPox69eoVW//0edPX10fVqlXh6ekp1dnY2AAo/VxOmDAB6enpUrlx44aWj4CIiIiI6PXxViWZwJNbZmNiYrBq1apSbyft3Lkz7t27h+XLl+PYsWM4duwYgCeT7jzN0NBQ+ndRQvbvW2qfZcyYMdi8eTNmzJiBQ4cOQa1Ww9PTs9h+zMzMytTfi8ZTJDExEQBQu3ZtAICenp6UeBbJy8uT/m1iYlKmftu1a4ebN29i165d5Y6pJCqVCrdu3dKou3XrFlQqlUZdy5YtUVBQgI0bN5bYz9PnDXhy7spzLuVyORQKhUYhIiIiInpbvXVJZnBwMHJzc5GXl4egoKBi6+/evYtLly5h0qRJaNu2Ldzd3aUJcMrD3d1dSk6L/P777xrL8fHxCA8PR9euXeHp6QmVSoXk5ORy70vb5s2bB4VCIT3vWK1aNaSlpWkkmk+/o9PCwgKOjo7SZDqlee+997B27VoMHDgQ69evf+E4/fz8iu1zz549xUaMmzRpgh07dmDGjBmYPXv2C++XiIiIiIhK9+LvwHjN6OvrSyN1+vr6xdZXqVIFVatWxbJly2Bra4uUlBSMHz++3PsZPnw4mjdvjtmzZ6NLly7YtWsXdu7cqdHGxcUFmzZtQufOnSGTyfDFF19UaOTxRTx48ABpaWnIycnB5cuXsXTpUmzZsgU//vgjLC0tATyZgfXOnTuYNWsWunXrhp07d2LHjh0aI3ZTpkzBxx9/jOrVq6N9+/Z4+PAh4uPjMWzYMI39de3aFatXr0afPn1gYGCAbt26lRpbUSKbmZmJO3fuQK1Ww8jICB4eHgCAESNGwN/fH3PmzEHHjh2xfv16nDx5EsuWLSvWV7NmzbB9+3a0b98eBgYGpb53k4iIiIiIXsxbl2QCeObtjHp6eli/fj2GDx+O+vXrw83NDQsWLEBAQEC59vHOO+9g+fLliIyMxOTJkxEYGIhJkyZh2rRpUpvvvvsO/fv3R7NmzWBtbY1x48ZV+sykRbPrGhsbo0aNGmjRogWOHz+Ohg0bSm3c3d3xww8/YMaMGZg2bRo++OADjBkzRiOZCwsLw+PHjzF37lyMGTMG1tbWpSaQ3bp1Q2FhIfr06QM9PT28//77JbZ7+tUyp06dwtq1a+Hg4CCN9jZr1gxr167FpEmT8Pnnn8PFxQVbtmxB/fr1S+yvRYsWiI2NRYcOHaCvr18sAdY2JdIB8NZZIiLSkrJNlfBW+NdTPET0ipGJfz9sR0QvJCMj4//e7ckkk4iI6GXgt1ci3Sj6npuenv7sgbtKjImIiIiIiIjecEwyiYiIiIiISGuYZBIREREREZHWMMkkIiIiIiIirWGSSURERERERFrDJJOIiIiIiIi0hkkmERERERERaQ2TTCIiIiIiItIaA10HQPTGGq8EjHUdBL1sIpJvBCciIiJ6GkcyiYiIiIiISGuYZBIREREREZHWMMkkIiIiIiIirWGSSURERERERFrDJJOIiIiIiIi0hkkmERERERERaQ2TTCIiIiIiItIaJplERERERESkNUwyiYiIiIiISGuYZBIREREREZHWGOg6AKI3VfqEdCgUCl2HQURERERUqTiSSURERERERFrDJJOIiIiIiIi0hkkmERERERERaQ2TTCIiIiIiItIaJplERERERESkNUwyiYiIiIiISGuYZBIREREREZHWMMkkIiIiIiIirWGSSURERERERFrDJJOIiIiIiIi0xkDXAVDJZDIZNm/ejJCQEF2H8lpzdHTEyJEjMXLkyMrfuVJZ+fskIqpsQug6AiIiesW8kSOZ4eHhkMlkUqlatSqCg4Nx9uxZXYdW6X755Re0adMGVapUgYmJCdzc3NC/f38kJCToOrRnSk1NRe/eveHq6go9Pb1Sk8SffvoJdevWhbGxMTw9PbF9+/bKDZSIiIiIiDS8kUkmAAQHByM1NRWpqanYt28fDAwM0KlTpxfqMzc3V0vRVY5x48ahZ8+e8Pb2xtatW3Hp0iWsXbsWderUwYQJE3Qd3jPl5OSgWrVqmDRpEry8vEpsc+TIEfTq1QsDBgxAQkICQkJCEBISgvPnz1dytEREREREVOSNTTLlcjlUKhVUKhW8vb0xfvx43LhxA3fu3JHajBs3Dq6urjA1NUWdOnXwxRdfIC8vT1o/ZcoUeHt7IyoqCrVr14axsTGAJ7eyRkVFoWvXrjA1NYWLiwu2bt0qbVdQUIABAwagdu3a0ujh/Pnzi8W4cuVK1KtXD3K5HLa2toiIiCj1eG7cuIEePXrA0tISVlZW6NKlC5KTk0tt//vvv2PWrFn47rvv8N1336Fly5aoVasWGjVqhEmTJmHHjh0a7RcvXgwnJycYGRnBzc0Nq1ev1lifkpKCLl26wNzcHAqFAj169MCtW7ek9WfOnEHr1q1hYWEBhUKBRo0a4eTJk9L6w4cPo2XLljAxMYG9vT2GDx+OrKysUuN3dHTE/Pnz0bdvXyhLue10/vz5CA4OxtixY+Hu7o5p06ahYcOGWLhwYan9RkVFwdLSEvv27QMABAQEYNiwYRg5ciSqVKkCGxsbLF++HFlZWejXrx8sLCzg7Oxc7HwREREREVHJ3tgk82mZmZn4z3/+A2dnZ1StWlWqt7CwQExMDC5evIj58+dj+fLlmDt3rsa2V69exS+//IJNmzZBrVZL9VOnTkWPHj1w9uxZdOjQAaGhobh37x4AoLCwEDVr1sRPP/2EixcvYvLkyfj888+xceNGafvFixdj6NChGDx4MM6dO4etW7fC2dm5xPjz8vIQFBQECwsLHDp0CPHx8TA3N0dwcHCpo6vr1q2Dubk5hgwZUuJ6mUwm/Xvz5s0YMWIERo8ejfPnz+Ojjz5Cv379cODAAel4unTpgnv37uHgwYPYs2cPrl27hp49e0p9hIaGombNmjhx4gROnTqF8ePHw9DQEACQlJSE4OBgfPDBBzh79iw2bNiAw4cPPzOpLoujR48iMDBQoy4oKAhHjx4tsf2sWbMwfvx47N69G23btpXqV61aBWtraxw/fhzDhg3DJ598gu7du6NZs2Y4ffo03n33XfTp0wePHj0qsd+cnBxkZGRoFCIiIiKit5Z4A4WFhQl9fX1hZmYmzMzMBABha2srTp069cztvv32W9GoUSNpOTIyUhgaGorbt29rtAMgJk2aJC1nZmYKAGLHjh2l9j106FDxwQcfSMt2dnZi4sSJpbYHIDZv3iyEEGL16tXCzc1NFBYWSutzcnKEiYmJ2LVrV4nbBwcHiwYNGmjUzZkzRzonZmZm4sGDB0IIIZo1ayYGDRqk0bZ79+6iQ4cOQgghdu/eLfT19UVKSoq0/sKFCwKAOH78uBBCCAsLCxETE1NiLAMGDBCDBw/WqDt06JDQ09MT2dnZpZ6DIv7+/mLEiBHF6g0NDcXatWs16hYtWiSqV68uLTs4OIi5c+eKzz77TNja2orz588X67tFixbScn5+vjAzMxN9+vSR6lJTUwUAcfTo0RLji4yMFACKlfQn02GwsLCwvNmFiIjeGunp6QKASE9Pf2a7N3Yks3Xr1lCr1VCr1Th+/DiCgoLQvn17/Pnnn1KbDRs2oHnz5lCpVDA3N8ekSZOQkpKi0Y+DgwOqVatWrP8GDRpI/zYzM4NCocDt27elukWLFqFRo0aoVq0azM3NsWzZMqnv27dv4++//9YYTXuWM2fO4OrVq7CwsIC5uTnMzc1hZWWFx48fIykpqcznpH///lCr1Vi6dCmysrIghAAAJCYmonnz5hptmzdvjsTERGm9vb097O3tpfUeHh6wtLSU2owaNQoDBw5EYGAgZs6cqRHXmTNnEBMTI8Vubm6OoKAgFBYW4vr162WOv6LmzJmD5cuX4/Dhw6hXr16x9U9/lvr6+qhatSo8PT2lOhsbGwDQ+HyfNmHCBKSnp0vlxo0bWj4CIiIiIqLXxxubZJqZmcHZ2RnOzs5o3LgxoqKikJWVheXLlwN4cqtlaGgoOnTogG3btiEhIQETJ04sdvupmZlZif0X3QpaRCaTobCwEACwfv16jBkzBgMGDMDu3buhVqvRr18/qW8TE5NyHUtmZiYaNWokJc1F5fLly+jdu3eJ27i4uODatWsaz5haWlrC2dkZNWrUKNf+y2LKlCm4cOECOnbsiP3798PDwwObN2+W4v/oo480Yj9z5gyuXLkCJyenCu9TpVJpPBcKALdu3YJKpdKoa9myJQoKCjRuV35aSZ/l03VFtxYXfb7/JpfLoVAoNAoRERER0dvqjU0y/00mk0FPTw/Z2dkAnsxM6uDggIkTJ8LX1xcuLi4ao5wvIj4+Hs2aNcOQIUPg4+MDZ2dnjZE9CwsLODo6SpPPPE/Dhg1x5coVVK9eXUqci0ppk+L06tULmZmZ+OGHH57bv7u7O+Lj44sdg4eHh7T+xo0bGiN0Fy9exIMHD6Q2AODq6opPP/0Uu3fvxvvvv4/o6Ggp/osXLxaL3dnZGUZGRmU6ByXx8/Mrdg737NkDPz8/jbomTZpgx44dmDFjBmbPnl3h/RERERER0fMZ6DqAlyUnJwdpaWkAgPv372PhwoXIzMxE586dATwZ6UtJScH69evRuHFjxMbGSiNvL8rFxQU//vgjdu3ahdq1a2P16tU4ceIEateuLbWZMmUKPv74Y1SvXh3t27fHw4cPER8fj2HDhhXrLzQ0FN9++y26dOmCL7/8EjVr1sSff/6JTZs24bPPPkPNmjWLbePn54fRo0dj9OjR+PPPP/H+++/D3t4eqampWLFihZR0A8DYsWPRo0cP+Pj4IDAwEL/++is2bdqEvXv3AgACAwPh6emJ0NBQzJs3D/n5+RgyZAj8/f3h6+uL7OxsjB07Ft26dUPt2rXx119/4cSJE/jggw8APJnF95133kFERAQGDhwIMzMzXLx4EXv27HnmTLBFEy1lZmbizp07UKvVMDIykhLbESNGwN/fH3PmzEHHjh2xfv16nDx5EsuWLSvWV7NmzbB9+3a0b98eBgYGpb53k4iIiIiIXlDlPCJaucLCwgTwvwlYLCwsROPGjcXPP/+s0W7s2LGiatWqwtzcXPTs2VPMnTtXKJVKaX1kZKTw8vIq1j/wv0l5iiiVShEdHS2EEOLx48ciPDxcKJVKYWlpKT755BMxfvz4Yn0tWbJEuLm5CUNDQ2FrayuGDRtW6j5SU1NF3759hbW1tZDL5aJOnTpi0KBBz33odsOGDSIgIEAolUphaGgoatasKXr37i1+//13jXY//PCDqFOnjjA0NBSurq7ixx9/1Fj/559/ivfee0+YmZkJCwsL0b17d5GWliaEeDIJ0Ycffijs7e2FkZGRsLOzExERERqT+hw/fly0a9dOmJubCzMzM9GgQQMxffr0Z8b+9GdYVBwcHDTabNy4Ubi6ugojIyNRr149ERsbq7G+aOKfIgcPHhRmZmZiwYIFQoiSJxX69zZFsfz7My9N0QPRQLrO5+NgYWFheZFCRET0tLJO/CMTQgidZLdEb6iMjIz/u405HQCfzySi1xe/IRAR0dOKvuemp6c/cx6St+aZTCIiIiIiInr5mGQSERERERGR1jDJJCIiIiIiIq1hkklERERERERawySTiIiIiIiItIZJJhEREREREWkNk0wiIiIiIiLSGiaZREREREREpDVMMomIiIiIiEhrDHQdANEba7wSMNZ1EPQyiEih6xCIiIiIXlkcySQiIiIiIiKtYZJJREREREREWsMkk4iIiIiIiLSGSSYRERERERFpDZNMIiIiIiIi0hommURERERERKQ1TDKJiIiIiIhIa5hkEhERERERkdYwySQiIiIiIiKtYZJJREREREREWmOg6wCI3lTpE9KhUCh0HQYRERERUaXiSCYRERERERFpDZNMIiIiIiIi0hommURERERERKQ1TDKJiIiIiIhIa5hkEhERERERkdYwySQiIiIiIiKtYZJJREREREREWsMkk4iIiIiIiLSGSSYRERERERFpjYGuAyB6YymVuo6AiOj1IoSuIyAiIi3gSOZbKCYmBpaWlpW6z/DwcISEhFTqPgFgypQp8Pb2rvT9EhERERG9rZhkvmLS0tIwYsQIODs7w9jYGDY2NmjevDkWL16MR48e6Tq8SjV9+nQ0a9YMpqampSbFKSkp6NixI0xNTVG9enWMHTsW+fn5lRsoERERERFJeLvsK+TatWto3rw5LC0tMWPGDHh6ekIul+PcuXNYtmwZatSogffee0/XYVaa3NxcdO/eHX5+flixYkWx9QUFBejYsSNUKhWOHDmC1NRU9O3bF4aGhpgxY4YOIiYiIiIiIo5kvkKGDBkCAwMDnDx5Ej169IC7uzvq1KmDLl26IDY2Fp07d5bapqSkoEuXLjA3N4dCoUCPHj1w69Ytaf2ZM2fQunVrWFhYQKFQoFGjRjh58qTG/nbt2gV3d3eYm5sjODgYqamp0roTJ06gXbt2sLa2hlKphL+/P06fPi2tHzNmDDp16iQtz5s3DzKZDDt37pTqnJ2dERUVVeKxnjhxAtWqVcM333xT6vmYOnUqPv30U3h6epa4fvfu3bh48SL+85//wNvbG+3bt8e0adOwaNEi5ObmlrhNUlIS6tSpg4iICAghpFuHt23bBjc3N5iamqJbt2549OgRVq1aBUdHR1SpUgXDhw9HQUFBqbESEREREdETTDJfEXfv3sXu3bsxdOhQmJmZldhGJpMBAAoLC9GlSxfcu3cPBw8exJ49e3Dt2jX07NlTahsaGoqaNWvixIkTOHXqFMaPHw9DQ0Np/aNHjzB79mysXr0av/32G1JSUjBmzBhp/cOHDxEWFobDhw/j999/h4uLCzp06ICHDx8CAPz9/XH48GEp8Tp48CCsra0RFxcHALh58yaSkpIQEBBQ7Dj279+Pdu3aYfr06Rg3blyFz9nRo0fh6ekJGxsbqS4oKAgZGRm4cOFCsfZnz55FixYt0Lt3byxcuFA6n48ePcKCBQuwfv167Ny5E3FxcejatSu2b9+O7du3Y/Xq1Vi6dCl+/vnnEuPIyclBRkaGRiEiIiIielvxdtlXxNWrVyGEgJubm0a9tbU1Hj9+DAAYOnQovvnmG+zbtw/nzp3D9evXYW9vDwD48ccfUa9ePZw4cQKNGzdGSkoKxo4di7p16wIAXFxcNPrNy8vDkiVL4OTkBACIiIjAl19+Ka1v06aNRvtly5bB0tISBw8eRKdOndCyZUs8fPgQCQkJaNSoEX777TeMHTsWW7ZsAQDExcWhRo0acHZ21uhn8+bN6Nu3L6KiojSS4opIS0vTSDABSMtpaWka9UeOHEGnTp0wceJEjB49WmNdXl4eFi9eLJ2Lbt26YfXq1bh16xbMzc3h4eGB1q1b48CBAyXG/PXXX2Pq1KkvdCxERERERG8KjmS+4o4fPw61Wo169eohJycHAJCYmAh7e3spwQQADw8PWFpaIjExEQAwatQoDBw4EIGBgZg5cyaSkpI0+jU1NZWSKgCwtbXF7du3peVbt25h0KBBcHFxgVKphEKhQGZmJlJSUgAAlpaW8PLyQlxcHM6dOwcjIyMMHjwYCQkJyMzMxMGDB+Hv76+xz2PHjqF79+5YvXr1CyeY5ZGSkoJ27dph8uTJxRJMoPi5sLGxgaOjI8zNzTXqnj4/T5swYQLS09OlcuPGDe0fBBERERHRa4JJ5ivC2dkZMpkMly5d0qivU6cOnJ2dYWJiUq7+pkyZggsXLqBjx47Yv38/PDw8sHnzZmn907fOAk9uxRVPvZ8sLCwMarUa8+fPx5EjR6BWq1G1alWNZx0DAgIQFxcnJZRWVlZwd3fH4cOHS0wynZycULduXaxcuRJ5eXnlOp6SqFQqjedQAUjLKpVKqqtWrRqaNGmCdevWlXgra0nnoqS6wsLCEuOQy+VQKBQahYiIiIjobcUk8xVRtWpVtGvXDgsXLkRWVtYz27q7u+PGjRsaI2YXL17EgwcP4OHhIdW5urri008/xe7du/H+++8jOjq6zPHEx8dj+PDh6NChA+rVqwe5XI5//vlHo03Rc5n79u2Tnr0MCAjAunXrcPny5WLPY1pbW2P//v24evUqevTo8cKJpp+fH86dO6cxwrhnzx4oFAqN82BiYoJt27bB2NgYQUFB0nOlRERERESkfUwyXyE//PAD8vPz4evriw0bNiAxMRGXLl3Cf/7zH/zxxx/Q19cHAAQGBsLT0xOhoaE4ffo0jh8/jr59+8Lf3x++vr7Izs5GREQE4uLi8OeffyI+Ph4nTpyAu7t7mWNxcXHB6tWrkZiYiGPHjiE0NLTYaGqrVq3w8OFDbNu2TSPJXLNmDWxtbeHq6lqs3+rVq2P//v34448/0KtXr2e+0zIlJQVqtRopKSkoKCiAWq2GWq1GZmYmAODdd9+Fh4cH+vTpgzNnzmDXrl2YNGkShg4dCrlcrtGXmZkZYmNjYWBggPbt20t9EBERERGRdnHin1eIk5MTEhISMGPGDEyYMAF//fUX5HI5PDw8MGbMGAwZMgTAk1s3//vf/2LYsGFo1aoV9PT0EBwcjO+//x4AoK+vj7t376Jv3764desWrK2t8f7775drcpoVK1Zg8ODBaNiwIezt7TFjxgyN2WcBoEqVKvD09MStW7ekCYZatWqFwsLCYrfKPk2lUmH//v0ICAhAaGgo1q5dKyXQT5s8eTJWrVolLfv4+AAADhw4gICAAOjr62Pbtm345JNP4OfnBzMzM4SFhWlMYPQ0c3Nz7NixA0FBQejYsSO2b99e5vNREUqkA+Cts0REZSbTdQCvnqeeZCEiem3IhOCvLyJtysjIgFKpBJhkEhHRC+K3NCJ6lRR9z01PT3/mPCS8XZaIiIiIiIi0hkkmERERERERaQ2TTCIiIiIiItIaJplERERERESkNUwyiYiIiIiISGuYZBIREREREZHWMMkkIiIiIiIirWGSSURERERERFrDJJOIiIiIiIi0xkDXARC9scYrAWNdB0EvSkQKXYdARERE9FrhSCYRERERERFpDZNMIiIiIiIi0hommURERERERKQ1TDKJiIiIiIhIa5hkEhERERERkdYwySQiIiIiIiKtYZJJREREREREWsMkk4iIiIiIiLSGSSYRERERERFpjYGuAyB6U6VPSIdCodB1GERERERElYojmURERERERKQ1TDKJiIiIiIhIa5hkEhERERERkdYwySQiIiIiIiKtYZJJREREREREWsMkk4iIiIiIiLSGSSYRERERERFpDZNMIiIiIiIi0hommURERERERKQ1TDKJiIiIiIhIawx0HcDbaMqUKdiyZQvUarWuQ3nj6fRcK5WVv08iIiofIXQdARHRG+eNHMkMDw+HTCYrVoKDgys9FplMhi1btmjUjRkzBvv27auU/V+9ehX9+/dHrVq1IJfLUaNGDbRt2xZr1qxBfn5+pcRQUdOnT0ezZs1gamoKS0vLEtukpKSgY8eOMDU1RfXq1TF27NhX/riIiIiIiN5kb+xIZnBwMKKjozXq5HK5jqLRZG5uDnNz85e+n+PHjyMwMBD16tXDokWLULduXQDAyZMnsWjRItSvXx9eXl4vPY6Kys3NRffu3eHn54cVK1YUW19QUICOHTtCpVLhyJEjSE1NRd++fWFoaIgZM2boIGIiIiIiInojRzKBJwmlSqXSKFWqVJHW//HHH2jRogWMjY3h4eGBvXv3aow6tmnTBhERERp93rlzB0ZGRtIopKOjI6ZNm4ZevXrBzMwMNWrUwKJFi6T2jo6OAICuXbtCJpNJy1OmTIG3t7fU7sSJE2jXrh2sra2hVCrh7++P06dPa+xbJpMhKioKXbt2hampKVxcXLB169ZSj18IgfDwcLi6uiI+Ph6dO3eGi4sLXFxc0KtXLxw+fBgNGjSQ2p87dw5t2rSBiYkJqlatisGDByMzM1NaX1hYiC+//BI1a9aEXC6Ht7c3du7cKa3Pzc1FREQEbG1tYWxsDAcHB3z99dfS+gcPHmDgwIGoVq0aFAoF2rRpgzNnzpQaPwBMnToVn376KTw9PUtcv3v3bly8eBH/+c9/4O3tjfbt22PatGlYtGgRcnNzS9wmKSkJderUQUREBIQQiImJgaWlJbZt2wY3NzeYmpqiW7duePToEVatWgVHR0dUqVIFw4cPR0FBwTPjJSIiIiKiNzjJfJaCggKEhITA1NQUx44dw7JlyzBx4kSNNgMHDsTatWuRk5Mj1f3nP/9BjRo10KZNG6nu22+/hZeXFxISEjB+/HiMGDECe/bsAfAkeQSA6OhopKamSsv/9vDhQ4SFheHw4cP4/fff4eLigg4dOuDhw4ca7aZOnYoePXrg7Nmz6NChA0JDQ3Hv3r0S+1Sr1UhMTMSYMWOgp1fyxyyTyQAAWVlZCAoKQpUqVXDixAn89NNP2Lt3r0aSPX/+fMyZMwezZ8/G2bNnERQUhPfeew9XrlwBACxYsABbt27Fxo0bcenSJaxZs0ZKqgGge/fuuH37Nnbs2IFTp06hYcOGaNu2banxl8XRo0fh6ekJGxsbqS4oKAgZGRm4cOFCsfZnz55FixYt0Lt3byxcuFA6/kePHmHBggVYv349du7cibi4OHTt2hXbt2/H9u3bsXr1aixduhQ///xziXHk5OQgIyNDoxARERERvbXEGygsLEzo6+sLMzMzjTJ9+nQhhBA7duwQBgYGIjU1Vdpmz549AoDYvHmzEEKI7OxsUaVKFbFhwwapTYMGDcSUKVOkZQcHBxEcHKyx7549e4r27dtLy0/3WSQyMlJ4eXmVGn9BQYGwsLAQv/76q0Y/kyZNkpYzMzMFALFjx44S+1i/fr0AIE6fPi3V3bp1S+N8LFq0SAghxLJly0SVKlVEZmam1DY2Nlbo6emJtLQ0IYQQdnZ20vkr0rhxYzFkyBAhhBDDhg0Tbdq0EYWFhcViOXTokFAoFOLx48ca9U5OTmLp0qWlnoci0dHRQqlUFqsfNGiQePfddzXqsrKyBACxfft2IcT/znV8fLyoUqWKmD17drG+AYirV69KdR999JEwNTUVDx8+lOqCgoLERx99VGJ8kZGRAkCxkv5kOgkWFhYWlle5EBFRmaWnpwsAIj09/Znt3tiRzNatW0OtVmuUjz/+GABw6dIl2NvbQ6VSSe2bNGmisb2xsTH69OmDlStXAgBOnz6N8+fPIzw8XKOdn59fseXExMRyxXrr1i0MGjQILi4uUCqVUCgUyMzMREpKika7p29vNTMzg0KhwO3bt8u8n6pVq0rnwtLSUrqlNDExEV5eXjAzM5PaNm/eHIWFhbh06RIyMjLw999/o3nz5hr9NW/eXDrW8PBwqNVquLm5Yfjw4di9e7fU7syZM8jMzETVqlWl51HNzc1x/fp1JCUllf1EVVBKSgratWuHyZMnY/To0cXWm5qawsnJSVq2sbGBo6OjxnOzNjY2pZ7rCRMmID09XSo3btzQ/kEQEREREb0m3tiJf8zMzODs7PxCfQwcOBDe3t7466+/EB0djTZt2sDBwUFLEf5PWFgY7t69i/nz58PBwQFyuRx+fn7Fnis0NDTUWJbJZCgsLCyxTxcXFwBPEmofHx8AgL6+vnRODAy0+9E3bNgQ169fx44dO7B371706NEDgYGB+Pnnn5GZmQlbW1vExcUV2660WWPLQqVS4fjx4xp1t27dktYVqVatGuzs7LBu3Tr0798fCoVCY5uSzmt5zrVcLn9lJpUiIiIiItK1N3Yk81nc3Nxw48YNKSEBUOLzkp6envD19cXy5cuxdu1a9O/fv1ib33//vdiyu7u7tGxoaPjcCWPi4+MxfPhwdOjQAfXq1YNcLsc///xT3sPS4OPjg7p162L27NmlJkdF3N3dcebMGWRlZWnEpKenBzc3NygUCtjZ2SE+Pr5Y3B4eHtKyQqFAz549sXz5cmzYsAG//PIL7t27h4YNGyItLQ0GBgZwdnbWKNbW1hU+Rj8/P5w7d05jhHHPnj1QKBQacZmYmGDbtm0wNjZGUFBQsWddiYiIiIhIe97YJDMnJwdpaWkapShxa9euHZycnBAWFoazZ88iPj4ekyZNAvC/yXCKDBw4EDNnzoQQAl27di22n/j4eMyaNQuXL1/GokWL8NNPP2HEiBHSekdHR+zbtw9paWm4f/9+ibG6uLhg9erVSExMxLFjxxAaGgoTE5MXOn6ZTIbo6GhcunQJzZs3x9atW3HlyhVcvHgRS5YswZ07d6Cvrw8ACA0NhbGxMcLCwnD+/HkcOHAAw4YNQ58+faRJdcaOHYtvvvkGGzZswKVLlzB+/Hio1WrpWL/77jusW7cOf/zxBy5fvoyffvoJKpUKlpaWCAwMhJ+fH0JCQrB7924kJyfjyJEjmDhxIk6ePFnqMaSkpECtViMlJQUFBQXSrb5Fs96+++678PDwQJ8+fXDmzBns2rULkyZNwtChQ4uNLJqZmSE2NhYGBgZo3769xsy5RERERESkRZXziGjlCgsLE0DxiVjc3NykNomJiaJ58+bCyMhI1K1bV/z6668CgNi5c6dGXw8fPhSmpqbSBDdPc3BwEFOnThXdu3cXpqamQqVSifnz52u02bp1q3B2dhYGBgbCwcFBCFF84p/Tp08LX19fYWxsLFxcXMRPP/0kHBwcxNy5c6U2QPEJhJRKpYiOjn7mubh06ZIICwsTNWvWFAYGBkKpVIpWrVqJpUuXiry8PKnd2bNnRevWrYWxsbGwsrISgwYN0pj4pqCgQEyZMkXUqFFDGBoaCi8vL41Jh5YtWya8vb2FmZmZUCgUom3bthqTDmVkZIhhw4YJOzs7YWhoKOzt7UVoaKhISUkpNfbSPscDBw5IbZKTk0X79u2FiYmJsLa2FqNHj9Y4rn+f64cPH4pmzZqJVq1aiczMzBInFSppYqawsDDRpUuXZ57rIkUPRAPpOp/PgoWFhYWl4oWIiDSVdeIfmRBC6CK5fdXEx8ejRYsWuHr1qsYkMMnJyXBycsKJEyfQsGFDjW0cHR0xcuRIjBw5spKjpVdZRkYGlEolgHQAiuc1JyKiVxS/IRERaSr6npuenl5snpOnvbET/zzP5s2bYW5uDhcXF1y9ehUjRoxA8+bNpQQzLy8Pd+/exaRJk/DOO+8USzCJiIiIiIiouLc2yXz48CHGjRuHlJQUWFtbIzAwEHPmzJHWx8fHo3Xr1nB1dcXPP/+sw0iJiIiIiIheH7xdlkjLeLssEdGbgd+QiIg0lfV22Td2dlkiIiIiIiKqfEwyiYiIiIiISGuYZBIREREREZHWMMkkIiIiIiIirWGSSURERERERFrDJJOIiIiIiIi05q19TybRSzdeCRjrOojXh4jkuwKIiIiI3gQcySQiIiIiIiKtYZJJREREREREWsMkk4iIiIiIiLSGSSYRERERERFpDZNMIiIiIiIi0hommURERERERKQ1TDKJiIiIiIhIa5hkEhERERERkdYwySQiIiIiIiKtYZJJREREREREWmOg6wCI3lTpE9KhUCh0HQYRERERUaXiSCYRERERERFpDZNMIiIiIiIi0hommURERERERKQ1TDKJiIiIiIhIa5hkEhERERERkdYwySQiIiIiIiKtYZJJREREREREWsMkk4iIiIiIiLSGSSYRERERERFpjYGuAyB6YymVuo6AiF4FQug6AiIiokrFkcwXIJPJsGXLFgBAcnIyZDIZ1Gq1TmPSlmXLlsHe3h56enqYN2+e1vsPDw9HSEiI1vv9t4CAAIwcOfKl74eIiIiIiJ54K5PMl5Hg2NvbIzU1FfXr19dqv/8WExMDmUwGmUwGPT091KxZE/369cPt27e1to+MjAxERERg3LhxuHnzJgYPHqy1vsvq8ePHCA8Ph6enJwwMDEr9vOLi4tCwYUPI5XI4OzsjJiamUuMkIiIiIiJNb2WS+TLo6+tDpVLBwODl34GsUCiQmpqKv/76C8uXL8eOHTvQp08frfWfkpKCvLw8dOzYEba2tjA1NdVa32VVUFAAExMTDB8+HIGBgSW2uX79Ojp27IjWrVtDrVZj5MiRGDhwIHbt2lXJ0RIRERERUREmmXhyS+Xw4cPx2WefwcrKCiqVClOmTNFoc+XKFbRq1QrGxsbw8PDAnj17NNb/+3bZgoICDBgwALVr14aJiQnc3Nwwf/58jW2KRlRnz54NW1tbVK1aFUOHDkVeXt4z45XJZFCpVLCzs0P79u0xfPhw7N27F9nZ2QCAqKgouLu7w9jYGHXr1sUPP/ygsf24cePg6uoKU1NT1KlTB1988YW0z5iYGHh6egIA6tSpA5lMhuTkZADA4sWL4eTkBCMjI7i5uWH16tVSn2PGjEGnTp2k5Xnz5kEmk2Hnzp1SnbOzM6Kiop55bEXMzMywePFiDBo0CCqVqsQ2S5YsQe3atTFnzhy4u7sjIiIC3bp1w9y5c0vtNzY2FkqlEmvWrAHwv89gxowZsLGxgaWlJb788kvk5+dj7NixsLKyQs2aNREdHV2muImIiIiI3nac+Of/rFq1CqNGjcKxY8dw9OhRhIeHo3nz5mjXrh0KCwvx/vvvw8bGBseOHUN6evpzn/MrLCxEzZo18dNPP6Fq1ao4cuQIBg8eDFtbW/To0UNqd+DAAdja2uLAgQO4evUqevbsCW9vbwwaNKjMsZuYmKCwsBD5+flYs2YNJk+ejIULF8LHxwcJCQkYNGgQzMzMEBYWBgCwsLBATEwM7OzscO7cOQwaNAgWFhb47LPP0LNnT9jb2yMwMBDHjx+Hvb09qlWrhs2bN2PEiBGYN28eAgMDsW3bNvTr1w81a9ZE69at4e/vj6ioKBQUFEBfXx8HDx6EtbU14uLiEBwcjJs3byIpKQkBAQEV+XhKdPTo0WKjnEFBQaV+NmvXrsXHH3+MtWvXaiTE+/fvR82aNfHbb78hPj4eAwYMwJEjR9CqVSscO3YMGzZswEcffYR27dqhZs2axfrNyclBTk6OtJyRkaGdAyQiIiIieh2Jt1BYWJjo0qWLtOzv7y9atGih0aZx48Zi3LhxQgghdu3aJQwMDMTNmzel9Tt27BAAxObNm4UQQly/fl0AEAkJCaXud+jQoeKDDz7QiMPBwUHk5+dLdd27dxc9e/YstY/o6GihVCql5cuXLwtXV1fh6+srhBDCyclJrF27VmObadOmCT8/v1L7/Pbbb0WjRo2k5YSEBAFAXL9+Xapr1qyZGDRokMZ23bt3Fx06dBBCCHH//n2hp6cnTpw4IQoLC4WVlZX4+uuvRdOmTYUQQvznP/8RNWrU0Dj2pz+DZymtrYuLi5gxY4ZGXWxsrAAgHj16JIR48tmOGDFCLFy4UCiVShEXF1esbwcHB1FQUCDVubm5iZYtW0rL+fn5wszMTKxbt67E+CIjIwWAYiX9yZySLCwsb3shIiJ6Q6SnpwsAIj09/ZntOJL5fxo0aKCxbGtrK02mk5iYCHt7e9jZ2Unr/fz8ntvnokWLsHLlSqSkpCA7Oxu5ubnw9vbWaFOvXj3o6+tr7PfcuXPP7Dc9PR3m5uYoLCzE48eP0aJFC0RFRSErKwtJSUkYMGCAxkhofn4+lE+9TmPDhg1YsGABkpKSkJmZifz8fCgUimfuMzExsdgEQM2bN5duAba0tISXlxfi4uJgZGQEIyMjDB48GJGRkcjMzMTBgwfh7+//zH28LD///DNu376N+Ph4NG7cuNj6evXqQU/vf3eO29jYaEzgpK+vj6pVq5Y6udKECRMwatQoaTkjIwP29vZaPAIiIiIiotcHk8z/Y2hoqLEsk8lQWFhY4f7Wr1+PMWPGYM6cOfDz84OFhQW+/fZbHDt27IX3a2FhgdOnT0NPTw+2trYwMTEBANy6dQsAsHz5cjRt2lRjm6JE9ujRowgNDcXUqVMRFBQEpVKJ9evXY86cORU+1iIBAQGIi4uDXC6Hv78/rKys4O7ujsOHD+PgwYMYPXr0C+/jaSqVSjrmIrdu3YJCoZDOCQD4+Pjg9OnTWLlyJXx9fSGTyTS2KekzKM/nIpfLIZfLX+RQiIiIiIjeGEwyy8Dd3R03btxAamoqbG1tAQC///77M7eJj49Hs2bNMGTIEKkuKSlJK/Ho6enB2dm5WL2NjQ3s7Oxw7do1hIaGlrjtkSNH4ODggIkTJ0p1f/7553P36e7ujvj4eOm5TuDJMXp4eEjL/v7+WLlyJQwMDBAcHAzgSeK5bt06XL58WavPYwJPRpO3b9+uUbdnz55io8xOTk6YM2cOAgICoK+vj4ULF2o1DiIiIiIi+h8mmWUQGBgIV1dXhIWF4dtvv0VGRoZGklYSFxcX/Pjjj9i1axdq166N1atX48SJE6hdu/ZLjXXq1KkYPnw4lEolgoODkZOTg5MnT+L+/fsYNWoUXFxckJKSgvXr16Nx48aIjY3F5s2bn9vv2LFj0aNHD/j4+CAwMBC//vorNm3ahL1790ptWrVqhYcPH2Lbtm2YOXMmgCdJZrdu3WBrawtXV9dyHcvFixeRm5uLe/fu4eHDh9LMvUW3HH/88cdYuHAhPvvsM/Tv3x/79+/Hxo0bERsbW6wvV1dXHDhwAAEBATAwMMC8efPKFQsREREREZUNk8wy0NPTw+bNmzFgwAA0adIEjo6OWLBggTRaV5KPPvoICQkJ6NmzJ2QyGXr16oUhQ4Zgx44dLzXWgQMHwtTUFN9++y3Gjh0LMzMzeHp6SjOuvvfee/j0008RERGBnJwcdOzYEV988UWxV7b8W0hICObPn4/Zs2djxIgRqF27NqKjozVGJ6tUqQJPT0/cunULdevWBfAk8SwsLKzQ85gdOnTQGGX18fEBAAghAAC1a9dGbGwsPv30U8yfPx81a9ZEVFQUgoKCSuzPzc0N+/fvl0Y0tXGL8LMokQ7g2c+6EunS//0oEREREWmVTAh+zSDSpoyMjP+baIlJJr3a+NufiIiIyqPoe256evozJw7VK3UNERERERERUTkxySQiIiIiIiKtYZJJREREREREWsMkk4iIiIiIiLSGSSYRERERERFpDZNMIiIiIiIi0hommURERERERKQ1TDKJiIiIiIhIa5hkEhERERERkdYY6DoAojfWeCVgrOsgdENECl2HQEREREQ6wpFMIiIiIiIi0hommURERERERKQ1TDKJiIiIiIhIa5hkEhERERERkdYwySQiIiIiIiKtYZJJREREREREWsMkk4iIiIiIiLSGSSYRERERERFpDZNMIiIiIiIi0hoDXQdA9KZKn5AOhUKh6zCIiIiIiCoVRzKJiIiIiIhIa5hkEhERERERkdYwySQiIiIiIiKtYZJJREREREREWsMkk4iIiIiIiLSGSSYRERERERFpDZNMIiIiIiIi0hommURERERERKQ1TDKJiIiIiIhIa5hkEhERERERkdYwyXxFyWQybNmypdT1ycnJkMlkUKvVlRbTi5gyZQq8vb0rfb8xMTGwtLSs9P0CAJRKQCZ7uwsRERERvXWYZL6A8PBwyGQyyGQyGBoaonbt2vjss8/w+PFjXYdWJlOmTJHiNzAwgLW1NVq1aoV58+YhJydH1+Fh2bJlCAgIgEKhgEwmw4MHD4q1uXfvHkJDQ6FQKGBpaYkBAwYgMzOz8oMlIiIiIiIATDJfWHBwMFJTU3Ht2jXMnTsXS5cuRWRkpK7DKrN69eohNTUVKSkpOHDgALp3746vv/4azZo1w8OHD3Ua26NHjxAcHIzPP/+81DahoaG4cOEC9uzZg23btuG3337D4MGDKzFKIiIiIiJ6GpPMFySXy6FSqWBvb4+QkBAEBgZiz5490npHR0fMmzdPYxtvb29MmTJFWr5y5QpatWoFY2NjeHh4aGxf5Pjx4/Dx8YGxsTF8fX2RkJAgrRNCwNnZGbNnz9bYRq1WQyaT4erVq6XGb2BgAJVKBTs7O3h6emLYsGE4ePAgzp8/j2+++UZqV9Ltu5aWloiJiZGW//rrL/Tq1QtWVlYwMzODr68vjh07VuJ+k5KSUKdOHUREREAIUWKbkSNHYvz48XjnnXdKXJ+YmIidO3ciKioKTZs2RYsWLfD9999j/fr1+Pvvv0vc5s6dO/D19UXXrl2Rk5ODuLg4yGQy7Nq1Cz4+PjAxMUGbNm1w+/Zt7NixA+7u7lAoFOjduzcePXpU6nkkIiIiIqInmGRq0fnz53HkyBEYGRmVeZvCwkK8//77MDIywrFjx7BkyRKMGzdOo01mZiY6deoEDw8PnDp1ClOmTMGYMWOk9TKZDP3790d0dLTGdtHR0WjVqhWcnZ3LdRx169ZF+/btsWnTpjJvk5mZCX9/f9y8eRNbt27FmTNn8Nlnn6GwsLBY27Nnz6JFixbo3bs3Fi5cCFkFn907evQoLC0t4evrK9UFBgZCT0+vxOT2xo0baNmyJerXr4+ff/4ZcrlcWjdlyhQsXLgQR44cwY0bN9CjRw/MmzcPa9euRWxsLHbv3o3vv/++xDhycnKQkZGhUYiIiIiI3lYGug7gdbdt2zaYm5sjPz8fOTk50NPTw8KFC8u8/d69e/HHH39g165dsLOzAwDMmDED7du3l9qsXbsWhYWFWLFiBYyNjVGvXj389ddf+OSTT6Q24eHhmDx5Mo4fP44mTZogLy8Pa9euLTa6WVZ169bF7t27y9x+7dq1uHPnDk6cOAErKysAKDG5PXLkCDp16oSJEydi9OjRFYqtSFpaGqpXr65RZ2BgACsrK6SlpWnUX7p0Ce3atUPXrl0xb968YontV199hebNmwMABgwYgAkTJkijrQDQrVs3HDhwoNgfAADg66+/xtSpU1/oWIiIiIiI3hQcyXxBrVu3hlqtxrFjxxAWFoZ+/frhgw8+KPP2iYmJsLe3lxJMAPDz8yvWpkGDBjA2Ni61jZ2dHTp27IiVK1cCAH799Vfk5OSge/fuFTksCCHKNcKoVqvh4+MjJZglSUlJQbt27TB58uQXTjDLIzs7Gy1btsT777+P+fPnl3hcDRo0kP5tY2MDU1NTKcEsqrt9+3aJ/U+YMAHp6elSuXHjhvYPgoiIiIjoNcEk8wWZmZnB2dkZXl5eWLlyJY4dO4YVK1ZI6/X09Io9c5iXl/dSYhk4cCDWr1+P7OxsREdHo2fPnjA1Na1QX4mJiahdu7a0LJPJnnkcJiYmz+2zWrVqaNKkCdatW6eVW0pVKlWxxC8/Px/37t2DSqWS6uRyOQIDA7Ft2zbcvHmzxL4MDQ2lfxfNFvw0mUxW4q2/Rf0rFAqNQkRERET0tmKSqUV6enr4/PPPMWnSJGRnZwN4klilpqZKbTIyMnD9+nVp2d3dHTdu3NBo8/vvv2v06+7ujrNnz2q8GuXfbQCgQ4cOMDMzw+LFi7Fz507079+/Qsfxxx9/YOfOnRojsv8+jitXrmhMhNOgQQOo1Wrcu3ev1H5NTEywbds2GBsbIygo6IVnr/Xz88ODBw9w6tQpqW7//v0oLCxE06ZNpTo9PT2sXr0ajRo1QuvWrUudFIiIiIiIiF4ck0wt6969O/T19bFo0SIAQJs2bbB69WocOnQI586dQ1hYGPT19aX2gYGBcHV1RVhYGM6cOYNDhw5h4sSJGn327t0bMpkMgwYNwsWLF7F9+/YSn7XU19dHeHg4JkyYABcXl2K31JYkPz8faWlp+Pvvv3Hu3Dl8//338Pf3h7e3N8aOHSu1a9OmDRYuXIiEhAScPHkSH3/8scZoX69evaBSqRASEoL4+Hhcu3YNv/zyC44ePaqxPzMzM8TGxsLAwADt27d/5jst09LSoFarpdlxz507p5HIuru7Izg4GIMGDcLx48cRHx+PiIgIfPjhhxq3HxedmzVr1sDLywtt2rQp9swmERERERFpB5NMLTMwMEBERARmzZqFrKwsTJgwAf7+/ujUqRM6duyIkJAQODk5Se319PSwefNmZGdno0mTJhg4cCCmT5+u0ae5uTl+/fVXnDt3Dj4+Ppg4caLG60WeNmDAAOTm5qJfv35livfChQuwtbVFrVq1EBAQgI0bN2LChAk4dOgQzM3NpXZz5syBvb09WrZsid69e2PMmDEat+IaGRlh9+7dqF69Ojp06ABPT0/MnDlTI6F++nh27NgBIQQ6duyIrKysEmNbsmQJfHx8MGjQIABAq1at4OPjg61bt0pt1qxZg7p166Jt27bo0KEDWrRogWXLlpXYn4GBAdatW4d69epJryl5mZRIhwzirS5ERERE9PaRidJeUkivpUOHDqFt27a4ceMGbGxsdB3OWykjIwNKpRJAOoC3+/lM/nYhIiIienMUfc9NT09/5jwkfIXJGyInJwd37tzBlClT0L17dyaYRERERESkE7xd9g2xbt06ODg44MGDB5g1a5auwyEiIiIiorcUb5cl0jLeLvs//O1CRERE9OYo6+2yHMkkIiIiIiIirWGSSURERERERFrDJJOIiIiIiIi0hkkmERERERERaQ2TTCIiIiIiItIaJplERERERESkNQa6DoDojTVeCRi/vO5FJN8PQkRERESvHo5kEhERERERkdYwySQiIiIiIiKtYZJJREREREREWsMkk4iIiIiIiLSGSSYRERERERFpDZNMIiIiIiIi0hommURERERERKQ1TDKJiIiIiIhIa5hkEhERERERkdYwySQiIiIiIiKtMdB1AERvqvQJ6VAoFLoOg4iIiIioUnEkk4iIiIiIiLSGSSYRERERERFpDZNMIiIiIiIi0hommURERERERKQ1TDKJiIiIiIhIa5hkEhERERERkdYwySQiIiIiIiKtYZJJREREREREWmOg6wCIiIiIiLQlPz8fubm5ug6D6LVkZGQEA4MXTxGZZBK9LEqlriMgenFC6DoCIqIyEUIgJSUF//zzj65DIXqtWVtbo1atWpDJZBXuQ+tJZnJyMmrXro2EhAR4e3tru/tK5+joiJEjR2LkyJFa6zMgIADe3t6YN2+e1vrUllc5tooIDw/HgwcPsGXLFl2HQkRERC9RUYJZo0YNmJubQ0+PT4URlUdhYSEyMzNx8+ZNAICDg0OF+ypXkhkeHo5Vq1Y92dDAADVr1kT37t3x5ZdfwtjYGABgb2+P1NRUWFtbVziot11MTAz69esHAJDJZLCzs0O7du3wzTffoHr16jqO7sWU548Qw4cPR3x8PM6fPw93d3eo1epibc6ePYuhQ4fixIkTqFatGoYNG4bPPvvs5QRPREREr6T8/HwpwVSpVLoOh+i1ZW5uDgC4efMmatSoUeFbZ8u9VXBwMKKjo5GXl4dTp04hLCwMMpkM33zzDQBAX1+fP9xaoFAocOnSJRQWFuLMmTPo168f/v77b+zatatC/eXl5cHQ0FDLUb58/fv3x7Fjx3D27Nli6zIyMvDuu+8iMDAQS5Yswblz59C/f39YWlpi8ODBOoiWiIiIdKHoGcyiL8hEVHFFP0e5ubkVTjLLfR+BXC6HSqWCvb09QkJCEBgYiD179kjrk5OTIZPJpFGnuLg4yGQy7Nu3D76+vjA1NUWzZs1w6dIljX6/+uorVK9eHRYWFhg4cCDGjx//3JGugIAADB8+HJ999hmsrKygUqkwZcoUjTYPHjzAwIEDUa1aNSgUCrRp0wZnzpzRaPPrr7+icePGMDY2hrW1Nbp27VrqPqOiomBpaYl9+/YBAM6fP4/27dvD3NwcNjY26NOnj8azAFlZWejbty/Mzc1ha2uLOXPmPPOYishkMqhUKtjZ2aF9+/YYPnw49u7di+zsbOzcuRMtWrSApaUlqlatik6dOiEpKUnatugz2LBhA/z9/WFsbIw1a9bg7t276NWrF2rUqAFTU1N4enpi3bp1z4wjNjYWSqUSa9asAQDcuHEDPXr0gKWlJaysrNClSxckJycXO0fu7u4wNjZG3bp18cMPP0jrateuDQDw8fGBTCZDQEBAqftesGABhg4dijp16pS4fs2aNcjNzcXKlStRr149fPjhhxg+fDi+++67UvssGvEs+qPIlClT4O3tjZUrV6JWrVowNzfHkCFDUFBQgFmzZkGlUqF69eqYPn36M88TERER6R5vkSV6cdr4OXqhHs6fP48jR47AyMjouW0nTpyIOXPm4OTJkzAwMED//v2ldWvWrMH06dPxzTff4NSpU6hVqxYWL15cphhWrVoFMzMzHDt2DLNmzcKXX36pkfR2794dt2/fxo4dO3Dq1Ck0bNgQbdu2xb179wA8SaK6du2KDh06ICEhAfv27UOTJk1K3NesWbMwfvx47N69G23btsWDBw/Qpk0b+Pj44OTJk9i5cydu3bqFHj16SNuMHTsWBw8exH//+1/s3r0bcXFxOH36dJmO7WkmJiYoLCxEfn4+srKyMGrUKJw8eRL79u2Dnp4eunbtisLCQo1txo8fjxEjRiAxMRFBQUF4/PgxGjVqhNjYWJw/fx6DBw9Gnz59cPz48RL3uXbtWvTq1Qtr1qxBaGgo8vLyEBQUBAsLCxw6dAjx8fEwNzdHcHCw9BfENWvWYPLkyZg+fToSExMxY8YMfPHFF9Jt1kX72rt3L1JTU7Fp06Zyn4siR48eRatWrTSuv6CgIFy6dAn3798v1n7//v1o164dpk+fjnHjxkn1SUlJ2LFjB3bu3Il169ZhxYoV6NixI/766y8cPHgQ33zzDSZNmoRjx46VGEdOTg4yMjI0ChERERHRW0uUQ1hYmNDX1xdmZmZCLpcLAEJPT0/8/PPPUpvr168LACIhIUEIIcSBAwcEALF3716pTWxsrAAgsrOzhRBCNG3aVAwdOlRjX82bNxdeXl7PjMff31+0aNFCo65x48Zi3LhxQgghDh06JBQKhXj8+LFGGycnJ7F06VIhhBB+fn4iNDS01H04ODiIuXPnis8++0zY2tqK8+fPS+umTZsm3n33XY32N27cEADEpUuXxMOHD4WRkZHYuHGjtP7u3bvCxMREjBgxotR9RkdHC6VSKS1fvnxZuLq6Cl9f3xLb37lzRwAQ586dE0L87zOYN29eqfso0rFjRzF69Ghp2d/fX4wYMUIsXLhQKJVKERcXJ61bvXq1cHNzE4WFhVJdTk6OMDExEbt27RJCPDm3a9eu1djHtGnThJ+fn0ZsRddHWURGRpZ4LbRr104MHjxYo+7ChQsCgLh48aIQ4sk126VLF7Fp0yZhbm4u1q9fX6xvU1NTkZGRIdUFBQUJR0dHUVBQINW5ubmJr7/+utT4ABQr6U/m5WRheb0LEdFrICsrS5w8eVJkZWXpOhSi196zfp7S09MFAJGenv7MPsp9k23r1q2xePFiZGVlYe7cuTAwMMAHH3zw3O0aNGgg/dvW1hYAcPv2bdSqVQuXLl3CkCFDNNo3adIE+/fvBwAcOnQI7du3l9YtXboUoaGhxfot6vv27dsAgDNnziAzMxNVq1bVaJOdnS3dXqpWqzFo0KBnxj5nzhxkZWXh5MmTGrdunjlzBgcOHCjx/v+kpCRkZ2cjNzcXTZs2leqtrKzg5ub2zP0BQHp6OszNzVFYWIjHjx+jRYsWiIqKAgBcuXIFkydPxrFjx/DPP/9II5gpKSmoX7++1Ievr69GnwUFBZgxYwY2btyImzdvIjc3Fzk5OTA1NdVo9/PPP+P27duIj49H48aNNY736tWrsLCw0Gj/+PFjJCUlISsrC0lJSRgwYIDGOc3Pz4dSh6/zOHbsGLZt24aff/4ZISEhxdY7OjpqHJONjQ309fU1bhWwsbGRrqt/mzBhAkaNGiUtZ2RkwN7eXnsHQERERBUmm1rx1zCUl4gUlbYvoldZuZNMMzMzODs7AwBWrlwJLy8vrFixAgMGDHjmdk9POlP0zpV/395ZGl9fX42ZRW1sbErst6jvon4zMzNha2uLuLi4Yn1aWloCeHIb6vO0bNkSsbGx2LhxI8aPHy/VZ2ZmonPnztLzfU+ztbXF1atXn9t3aSwsLHD69Gno6enB1tZWI87OnTvDwcEBy5cvh52dHQoLC1G/fv1iLx42MzPTWP72228xf/58zJs3D56enjAzM8PIkSOLbefj44PTp09j5cqV8PX1lT6vzMxMNGrUSHo+82nVqlVDZmYmAGD58uUaiTXwZEIobVOpVLh165ZGXdHy05NPOTk5oWrVqli5ciU6duxY7Jop6Rp61nX1b3K5HHK5vMLHQURERG+3GzduIDIyEjt37sQ///wDW1tbhISEYPLkycUGS+jZnn63o0KhQP369TFt2jS0adNGh1E9X0xMDEaOHIkHDx7oOhSteKFnMvX09PD5559j0qRJyM7OrnA/bm5uOHHihEbd08smJiZwdnaWyr9H0krTsGFDpKWlwcDAQGN7Z2dn6RUrDRo0kCbxKU2TJk2wY8cOzJgxA7Nnz9bo/8KFC3B0dCzWv5mZGZycnGBoaKjxLN/9+/dx+fLl58aup6cHZ2dn1KlTRyPBvHv3Li5duoRJkyahbdu2cHd3L/H5w5LEx8ejS5cu+H//7//By8sLderUKTEWJycnHDhwAP/9738xbNgwjeO9cuUKqlevXux4lUolbGxsYGdnh2vXrhVbXzThT9HzkwUFBWWK+Vn8/Pzw22+/IS8vT6rbs2cP3NzcUKVKFanO2toa+/fvx9WrV9GjRw+N9kRERES6dO3aNfj6+uLKlStYt24drl69iiVLlmDfvn3w8/OT5hHRhX8PRABPvsOVdaBIV6Kjo5Gamor4+HhYW1ujU6dOuHbtWoX6Kukc0PO98NRB3bt3h76+PhYtWlThPoYNG4YVK1Zg1apVuHLlCr766iucPXtW4y8RFREYGAg/Pz+EhIRg9+7dSE5OxpEjRzBx4kScPHkSABAZGYl169YhMjISiYmJOHfuXIkjk82aNcP27dsxdepUzJs3DwAwdOhQ3Lt3D7169cKJEyeQlJSEXbt2oV+/figoKIC5uTkGDBiAsWPHYv/+/Th//jzCw8NfaMamKlWqoGrVqli2bBmuXr2K/fv3a9yq+SwuLi7Ys2cPjhw5gsTERHz00UfFRgKLuLq64sCBA/jll18wcuRIAEBoaCisra3RpUsXHDp0CNevX0dcXByGDx+Ov/76CwAwdepUfP3111iwYAEuX76Mc+fOITo6WprxtXr16jAxMZEmSUpPTy813qtXr0KtViMtLQ3Z2dlQq9VQq9XSD3vv3r1hZGSEAQMG4MKFC9iwYQPmz59f4vmoXr069u/fjz/++AO9evVCfn5+mc4ZERER0cs0dOhQGBkZYffu3fD390etWrXQvn177N27Fzdv3sTEiROltjk5ORg3bhzs7e0hl8vh7OyMFStWSOsvXLiATp06QaFQwMLCAi1btpQeEQsICJC+0xUJCQlBeHi4tOzo6Ihp06ahb9++UCgUGDx4MGJiYmBpaYmtW7fCw8MDcrkcKSkpyMnJwZgxY1CjRg2YmZmhadOmGncPFm23a9cuuLu7S5NFpqamasRQ9JYAuVwOW1tbRERESOvK8paIklhaWkKlUqF+/fpYvHgxsrOzpYlBn/dmiICAAERERGDkyJGwtrZGUFDQc88t8Oy3KxS9+WHTpk1o3bo1TE1N4eXlhaNHjwJ48jaOfv36IT09HTKZDDKZTHpjxurVq+Hr6wsLCwuoVCr07t272CNcW7duhYuLC4yNjdG6dWusWrUKMplMY1T08OHDaNmyJUxMTGBvb4/hw4cjKyvrueeyol44yTQwMEBERARmzZpV4UBDQ0MxYcIEjBkzBg0bNsT169cRHh4OY2PjF4pNJpNh+/btaNWqFfr16wdXV1d8+OGH+PPPP6VbbgMCAvDTTz9h69at8Pb2Rps2bUqdbbVFixaIjY3FpEmT8P3338POzg7x8fEoKCjAu+++C09PT4wcORKWlpZSIvntt9+iZcuW6Ny5MwIDA9GiRQs0atSowsekp6eH9evX49SpU6hfvz4+/fRTfPvtt2XadtKkSWjYsCGCgoIQEBAAlUpV4jOKRdzc3LB//36sW7cOo0ePhqmpKX777TfUqlUL77//Ptzd3TFgwAA8fvwYCoUCADBw4EBERUUhOjoanp6e8Pf3R0xMjDSSaWBggAULFmDp0qWws7NDly5dSt3/wIED4ePjg6VLl+Ly5cvw8fGBj48P/v77bwCAUqnE7t27cf36dTRq1AijR4/G5MmTS31Hpkqlwv79+3Hu3DmEhoZqZTT1WZRIhwyCheX1LjKUuRARUfncu3cPu3btwpAhQ4o9wqVSqRAaGooNGzZAiCfPevbt2xfr1q3DggULkJiYiKVLl0pzg9y8eROtWrWCXC7H/v37cerUKfTv37/cf1ifPXs2vLy8kJCQgC+++AIA8OjRI3zzzTeIiorChQsXUL16dURERODo0aNYv349zp49i+7duyM4OBhXrlyR+nr06BFmz56N1atX47fffkNKSgrGjBkjrV+8eDGGDh2KwYMH49y5c9i6dav0WB7w/LdElEXRec3NzS3TmyGAJ2+vMDIyQnx8PJYsWfLcc/u8tysUmThxIsaMGQO1Wg1XV1dp4KNZs2aYN28eFAoFUlNTkZqaKp2nvLw8TJs2DWfOnMGWLVuQnJys8YeB69evo1u3bggJCcGZM2fw0UcfafxhAngyV0xwcDA++OADnD17Fhs2bMDhw4c1Enqte0mTEr2wwMBA8f/+3//TdRhE5VY06xaQrvOJQVlYKrMQEenKs2bDxBRUWimv33//XQAQmzdvLnH9d999JwCIW7duiUuXLgkAYs+ePSW2nTBhgqhdu7bIzc0tcX3RGwSe1qVLFxEWFiYtOzg4iJCQEI020dHRAoBQq9VS3Z9//in09fXFzZs3Ndq2bdtWTJgwQWO7q1evSusXLVokbGxspGU7OzsxceLEEuMty1siSvL0+czKyhJDhgwR+vr64syZM899M4QQT86Tj4+PRpvnnduyvl0hKipKWl/0RoTExEQhRPG3S5TmxIkTAoB4+PChEEKIcePGifr162u0mThxogAg7t+/L4QQYsCAAcXeyHDo0CGhp6cnve3jaTqZXfZlePToEZYsWYKgoCDo6+tj3bp12Lt3r8b7LomIiIiI3kRCiOe2UavV0NfXh7+/f6nrW7ZsWWzywvL699sJgCdzajz9Rodz586hoKAArq6uGu1ycnI0JioyNTWFk5OTtPz0WyBu376Nv//+G23bti0xjrK8JaI0vXr1gr6+PrKzs1GtWjWsWLECDRo0wLRp0575Zoii4/n3XYfPOrflebtCaW/bqFu3bqnHcurUKUyZMgVnzpzB/fv3Nd4q4eHhgUuXLmm8DQJ4Mp/M086cOYOzZ89qTN4phEBhYSGuX78Od3f3UvdfUa9Ekll0W+v06dPx+PFjuLm54ZdffkFgYKCuQyMiIiIieimcnZ0hk8mQmJiIrl27FlufmJiIKlWqoFq1as99I8Lz1uvp6RVLZkuaDPHfbyco6vvpuVIyMzOhr6+PU6dOFXuDwNMJXEmz9RfF8Lx4y/KWiNLMnTsXgYGBUCqVqFatmkafz3ozRJF/n4NnxVqetyuU920bWVlZCAoKQlBQENasWYNq1aohJSUFQUFB5ZqQKDMzEx999BGGDx9ebF2tWrXK3E95vBJJpomJCfbu3avrMIiIiIiIKk3VqlXRrl07/PDDD/j00081kpm0tDSsWbMGffv2hUwmg6enJwoLC3Hw4MESB2IaNGiAVatWIS8vr8QRt2rVqmlMulNQUIDz58+jdevW5Y7bx8cHBQUFuH37Nlq2bFnu7YEnr+tzdHTEvn37Sozh6bdEODo6lqtvlUql8Wzn033+8ssvcHR0hIFB2dOgZ53bp9+uEBoaWq44n2ZkZFRsvpA//vgDd+/excyZM6V3sBdNXlrEzc0N27dv16j791s7GjZsiIsXL5Z4Tl6WF574h4iIiIiIKmbhwoXIyclBUFAQfvvtN9y4cQM7d+5Eu3btUKNGDUyfPh3Ak5lfw8LC0L9/f2zZskWa5X/jxo0AgIiICGRkZODDDz/EyZMnceXKFaxevRqXLl0CALRp0waxsbGIjY3FH3/8gU8++aTC72R0dXVFaGgo+vbti02bNuH69es4fvw4vv76a8TGxpa5nylTpmDOnDlYsGABrly5gtOnT+P7778HULa3RJTX894MUZrnndvnvV2hLBwdHZGZmYl9+/bhn3/+waNHj1CrVi0YGRnh+++/x7Vr17B161ZMmzZNY7uPPvoIf/zxB8aNG4fLly9j48aNiImJAfC/0dJx48bhyJEjiIiIgFqtxpUrV/Df//737Zz4h+h1xYl/WN7WQkSkK8+aqOR1kJycLMLCwoSNjY0wNDQU9vb2YtiwYeKff/7RaJednS0+/fRTYWtrK4yMjISzs7NYuXKltP7MmTPi3XffFaampsLCwkK0bNlSJCUlCSGEyM3NFZ988omwsrIS1atXF19//XWJE//MnTtXY5+lTUiTm5srJk+eLBwdHYWhoaGwtbUVXbt2FWfPni11u82bN4t/px9LliwRbm5uUh/Dhg2T1mVkZIhhw4YJOzs76byEhoaKlJSUUs8lUPpESkIIcfnyZdG1a1dhaWkpTExMRN26dcXIkSNFYWGhEKLkCZKEePa5FUKINWvWCG9vb2FkZCSqVKkiWrVqJTZt2iSE+N/EPwkJCVL7+/fvCwDiwIEDUt3HH38sqlatKgCIyMhIIYQQa9euFY6OjkIulws/Pz+xdevWYn3997//Fc7OzkIul4uAgACxePFiAUBjUp/jx4+Ldu3aCXNzc2FmZiYaNGggpk+fXuI50sbEPzIhhHh5KSzR2ycjI+P/HvROB6DQdThElYb/mxCRrjx69AiJiYlwd3eHqamprsMh0qnp06djyZIluHHjRoW2f9bPU9H33PT0dOkVhiV5JZ7JJCIiIiIiovL74Ycf0LhxY1StWhXx8fH49ttvX+6tsGXAJJOIiIiIiOg1deXKFXz11Ve4d+8eatWqhdGjR2PChAk6jYlJJhERERER0Wtq7ty5mDt3rq7D0MAkk+hlGa8EjF9e9yKSD8ARERER0auHrzAhIiIiIiIirWGSSURERERERFrDJJOIiIiIiIi0hkkmERERERERaQ2TTCIiIiIiItIazi5LRERERG8smazy9iU48TsRAI5kEhERERHpTHh4OGQyWbFy9epV/Pbbb+jcuTPs7Owgk8mwZcuWMvV55swZvPfee6hevTqMjY3h6OiInj174vbt2y/3YIj+D5NMIiIiIiIdCg4ORmpqqkapXbs2srKy4OXlhUWLFpW5rzt37qBt27awsrLCrl27kJiYiOjoaNjZ2SErK+ulHUNeXt5L65teP0wyiYiIiIh0SC6XQ6VSaRR9fX20b98eX331Fbp27VrmvuLj45Geno6oqCj4+Pigdu3aaN26NebOnYvatWtL7S5cuIBOnTpBoVDAwsICLVu2RFJSEgCgsLAQX375JWrWrAm5XA5vb2/s3LlT2jY5ORkymQwbNmyAv78/jI2NsWbNGgBAVFQU3N3dYWxsjLp16+KHH37Q0lmi1wmfySR6SdInpEOhUOg6DCIiInqLqFQq5OfnY/PmzejWrRtkJTyUevPmTbRq1QoBAQHYv38/FAoF4uPjkZ+fDwCYP38+5syZg6VLl8LHxwcrV67Ee++9hwsXLsDFxUXqZ/z48ZgzZw58fHykRHPy5MlYuHAhfHx8kJCQgEGDBsHMzAxhYWGVdg5I95hkEhERERHp0LZt22Bubi4tt2/fHj/99FOF+nrnnXfw+eefo3fv3vj444/RpEkTtGnTBn379oWNjQ0AYNGiRVAqlVi/fj0MDQ0BAK6urlIfs2fPxrhx4/Dhhx8CAL755hscOHAA8+bN07h1d+TIkXj//fel5cjISMyZM0eqq127Ni5evIilS5cyyXzL8HZZIiIiIiIdat26NdRqtVQWLFhQpu1mzJgBc3NzqaSkpAAApk+fjrS0NCxZsgT16tXDkiVLULduXZw7dw4AoFar0bJlSynBfFpGRgb+/vtvNG/eXKO+efPmSExM1Kjz9fWV/p2VlYWkpCQMGDBAI6avvvpKug2X3h4cySQiIiIi0iEzMzM4OzuXe7uPP/4YPXr0kJbt7Oykf1etWhXdu3dH9+7dMWPGDPj4+GD27NlYtWoVTExMtBZ3kczMTADA8uXL0bRpU412+vr6WtkfvT6YZBIRERERvYasrKxgZWX13HZGRkZwcnKSZpdt0KABVq1ahby8vGKjmQqFAnZ2doiPj4e/v79UHx8fjyZNmpS6DxsbG9jZ2eHatWsIDQ2t4BHRm4JJJhERERHRKygzMxNXr16Vlq9fvw61Wg0rKyvUqlWrxG22bduG9evX48MPP4SrqyuEEPj111+xfft2REdHAwAiIiLw/fff48MPP8SECROgVCrx+++/o0mTJnBzc8PYsWMRGRkJJycneHt7Izo6Gmq1WppBtjRTp07F8OHDoVQqERwcjJycHJw8eRL379/HqFGjtHdi6JXHJJOIiIiI3lhC6DqCijt58iRat24tLRclamFhYYiJiSlxGw8PD5iammL06NG4ceMG5HI5XFxcEBUVhT59+gB4civt/v37MXbsWPj7+0NfXx/e3t7Sc5jDhw9Heno6Ro8ejdu3b8PDwwNbt27VmFm2JAMHDoSpqSm+/fZbjB07FmZmZvD09MTIkSNf/GTQa0UmxOv8o0f06snIyIBSqUR6Ol9hQkREVBkePXqExMREuLu7w9TUVNfhEL3WnvXzVNbvuZxdloiIiIiIiLSGSSYRERERERFpDZNMIiIiIiIi0hommURERERERKQ1TDKJiIiIiIhIa5hkEhERERERkdYwySQiIiIiIiKtYZJJREREREREWsMkk4iIiIiIiLSGSSYRERERvblkssorVGF3795F9erVkZycrOtQKmzJkiXo3LmzrsN4JTDJJCIiIiLSkfDwcMhksmLl6tWrAIDffvsNnTt3hp2dHWQyGbZs2VKmfs+cOYP33nsP1atXh7GxMRwdHdGzZ0/cvn37JR5NxU2fPh1dunSBo6OjVLd582a88847UCqVsLCwQL169TBy5MiXHsuUKVPg7e1d7u369++P06dP49ChQ9oP6jXDJJOIiIiISIeCg4ORmpqqUWrXrg0AyMrKgpeXFxYtWlTm/u7cuYO2bdvCysoKu3btQmJiIqKjo2FnZ4esrKyXdRjIy8ur0HaPHj3CihUrMGDAAKlu37596NmzJz744AMcP34cp06dwvTp0yu8j8pgZGSE3r17Y8GCBboOReeYZBIRERER6ZBcLodKpdIo+vr6AID27dvjq6++QteuXcvcX3x8PNLT0xEVFQUfHx/Url0brVu3xty5c6XkFQAuXLiATp06QaFQwMLCAi1btkRSUhIAoLCwEF9++SVq1qwJuVwOb29v7Ny5U9o2OTkZMpkMGzZsgL+/P4yNjbFmzRoAQFRUFNzd3WFsbIy6devihx9+eGa827dvh1wuxzvvvCPV/frrr2jevDnGjh0LNzc3uLq6IiQkRCPZLhpxXLlyJWrVqgVzc3MMGTIEBQUFmDVrFlQqFapXr47p06dr7C8lJQVdunSBubk5FAoFevTogVu3bgEAYmJiMHXqVJw5c0YaVY6JiQEAPHjwAAMHDkS1atWgUCjQpk0bnDlzRqPvzp07Y+vWrcjOzi7rx/VGYpJJRERERPQGUalUyM/Px+bNmyGEKLHNzZs30apVK8jlcuzfvx+nTp1C//79kZ+fDwCYP38+5syZg9mzZ+Ps2bMICgrCe++9hytXrmj0M378eIwYMQKJiYkICgrCmjVrMHnyZEyfPh2JiYmYMWMGvvjiC6xatarUeA8dOoRGjRoVO4YLFy7g/PnzzzzWpKQk7NixAzt37sS6deuwYsUKdOzYEX/99RcOHjyIb775BpMmTcKxY8cAPEmeu3Tpgnv37uHgwYPYs2cPrl27hp49ewIAevbsidGjR6NevXrSqHLRuu7du+P27dvYsWMHTp06hYYNG6Jt27a4d++eFI+vry/y8/Ol/b21BBFpVXp6ugAg0tPTdR0KERHRWyErK0ucPHlSZGVlFV8JVF6pgLCwMKGvry/MzMyk0q1btxLbAhCbN28uU7+ff/65MDAwEFZWViI4OFjMmjVLpKWlSesnTJggateuLXJzc0vc3s7OTkyfPl2jrnHjxmLIkCFCCCGuX78uAIh58+ZptHFychJr167VqJs2bZrw8/MrNdYuXbqI/v37a9RlZmaKDh06CADCwcFB9OzZU6xYsUI8fvxYahMZGSlMTU1FRkaGVBcUFCQcHR1FQUGBVOfm5ia+/vprIYQQu3fvFvr6+iIlJUVaf+HCBQFAHD9+XOrXy8tLI55Dhw4JhUKhsf+i4126dKlGXZUqVURMTEypx/uqe9bPU1m/53Ikk4iIiIhIh1q3bg21Wi2V8jzTN2PGDJibm0slJSUFwJOJdNLS0rBkyRLUq1cPS5YsQd26dXHu3DkAgFqtRsuWLWFoaFisz4yMDPz9999o3ry5Rn3z5s2RmJioUefr6yv9OysrC0lJSRgwYIBGTF999ZV0G25JsrOzYWxsrFFnZmaG2NhYXL16FZMmTYK5uTlGjx6NJk2a4NGjR1I7R0dHWFhYSMs2Njbw8PCAnp6eRl3RhEeJiYmwt7eHvb29tN7DwwOWlpbFju1pZ86cQWZmJqpWrapxbNevXy92bCYmJhoxvo0MdB0AEREREdHbzMzMDM7OzhXa9uOPP0aPHj2kZTs7O+nfVatWRffu3dG9e3fMmDEDPj4+mD17NlatWgUTE5MXjht4EnuRzMxMAMDy5cvRtGlTjXZFz5iWxNraGvfv3y9xnZOTE5ycnDBw4EBMnDgRrq6u2LBhA/r16wcAxZJkmUxWYl1hYWHZD6oEmZmZsLW1RVxcXLF1lpaWGsv37t1DtWrVXmh/rzsmmURERERErykrKytYWVk9t52RkRGcnJyk2WUbNGiAVatWIS8vr1hSplAoYGdnh/j4ePj7+0v18fHxaNKkSan7sLGxgZ2dHa5du4bQ0NAyH4OPjw/+85//PLedo6MjTE1NX2iGXHd3d9y4cQM3btyQRjMvXryIBw8ewMPDA8CTc1VQUKCxXcOGDZGWlgYDAwON16z8W1JSEh4/fgwfH58Kx/gmYJJJRERERPSKyszMlN6ZCQDXr1+HWq2GlZUVatWqVeI227Ztw/r16/Hhhx/C1dUVQgj8+uuv2L59O6KjowEAERER+P777/Hhhx9iwoQJUCqV+P3339GkSRO4ublh7NixiIyMhJOTE7y9vREdHQ21Wi3NIFuaqVOnYvjw4VAqlQgODkZOTg5OnjyJ+/fvY9SoUSVuExQUhAkTJuD+/fuoUqUKgCczxz569AgdOnSAg4MDHjx4gAULFiAvLw/t2rWryKkEAAQGBsLT0xOhoaGYN28e8vPzMWTIEPj7+0u3/jo6OkrnuWbNmrCwsEBgYCD8/PwQEhKCWbNmwdXVFX///TdiY2PRtWtXadtDhw6hTp06cHJyqnCMbwI+k0lEREREb67KnPrnJTh58iR8fHykkbFRo0bBx8cHkydPLnUbDw8PmJqaYvTo0fD29sY777yDjRs3IioqCn369AHw5Fba/fv3IzMzE/7+/mjUqBGWL18ujWoOHz4co0aNwujRo+Hp6YmdO3di69atcHFxeWa8AwcORFRUFKKjo+Hp6Ql/f3/ExMRovDrl3zw9PdGwYUNs3LhRqvP398e1a9fQt29f1K1bF+3bt0daWhp2794NNze3Mp+/f5PJZPjvf/+LKlWqoFWrVggMDESdOnWwYcMGqc0HH3yA4OBgtG7dGtWqVcO6desgk8mwfft2tGrVCv369YOrqys+/PBD/Pnnn7CxsZG2XbduHQYNGlTh+N4UMiFe0k8E0VsqIyMDSqUS6enpUCgUug6HiIjojffo0SMkJibC3d0dpqamug6HKiA2NhZjx47F+fPnNSbteZ1cuHABbdq0weXLl6FUKnUdToU96+eprN9zebssERERERHpVMeOHXHlyhXcvHlTY+bX10lqaip+/PHH1zrB1BYmmUREREREpHMjR47UdQgvJDAwUNchvDJez7FoIiIiIiIieiUxySQiIiIiIiKtYZJJRERERG+EwsJCXYdA9Nor+jmSyWQV7oPPZBIRERHRa83Y2Bh6enq4fv06atSoAblc/kJfkIneRkII5OTk4ObNm9DT04NcLq9wX0wyiYiIiOi1pqenBw8PDyQnJ+P69eu6DofotWZubg5XV9cXepUMk0wiIiIieu3J5XK4uroiLy8P+fn5ug6H6LVkYGAAQ0PDF74TgEkmEREREb0RZDIZjIyMYGRkpOtQiN5qnPiHiIiIiIiItIZJJhEREREREWkNk0wiIiIiIiLSGj6TSaRlQggAQEZGho4jISIiIiLSnqLvt0Xfd0vDJJNIy+7evQsAsLe313EkRERERETa9/DhQyiVylLXM8kk0jIrKysAQEpKyjN/+OjtlpGRAXt7e9y4cQMKhULX4dAriNcIPQ+vEXoeXiP0POW9RoQQePjwIezs7J7ZjkkmkZYVvbhWqVTyFzo9l0Kh4HVCz8RrhJ6H1wg9D68Rep7yXCNlGUThxD9ERERERESkNUwyiYiIiIiISGuYZBJpmVwuR2RkJORyua5DoVcYrxN6Hl4j9Dy8Ruh5eI3Q87ysa0Qmnjf/LBEREREREVEZcSSTiIiIiIiItIZJJhEREREREWkNk0wiIiIiIiLSGiaZREREREREpDVMMomIiIiIiEhrmGQSVcCiRYvg6OgIY2NjNG3aFMePH39m+59++gl169aFsbExPD09sX379kqKlHSpPNfJ8uXL0bJlS1SpUgVVqlRBYGDgc68rev2V93dJkfXr10MmkyEkJOTlBkg6V95r5MGDBxg6dChsbW0hl8vh6urK/3PecOW9RubNmwc3NzeYmJjA3t4en376KR4/flxJ0VJl++2339C5c2fY2dlBJpNhy5Ytz90mLi4ODRs2hFwuh7OzM2JiYsq9XyaZROW0YcMGjBo1CpGRkTh9+jS8vLwQFBSE27dvl9j+yJEj6NWrFwYMGICEhASEhIQgJCQE58+fr+TIqTKV9zqJi4tDr169cODAARw9ehT29vZ49913cfPmzUqOnCpLea+RIsnJyRgzZgxatmxZSZGSrpT3GsnNzUW7du2QnJyMn3/+GZcuXcLy5ctRo0aNSo6cKkt5r5G1a9di/PjxiIyMRGJiIlasWIENGzbg888/r+TIqbJkZWXBy8sLixYtKlP769evo2PHjmjdujXUajVGjhyJgQMHYteuXeXbsSCicmnSpIkYOnSotFxQUCDs7OzE119/XWL7Hj16iI4dO2rUNW3aVHz00UcvNU7SrfJeJ/+Wn58vLCwsxKpVq15WiKRjFblG8vPzRbNmzURUVJQICwsTXbp0qYRISVfKe40sXrxY1KlTR+Tm5lZWiKRj5b1Ghg4dKtq0aaNRN2rUKNG8efOXGie9GgCIzZs3P7PNZ599JurVq6dR17NnTxEUFFSufXEkk6gccnNzcerUKQQGBkp1enp6CAwMxNGjR0vc5ujRoxrtASAoKKjU9vT6q8h18m+PHj1CXl4erKysXlaYpEMVvUa+/PJLVK9eHQMGDKiMMEmHKnKNbN26FX5+fhg6dChsbGxQv359zJgxAwUFBZUVNlWiilwjzZo1w6lTp6Rbaq9du4bt27ejQ4cOlRIzvfq09b3VQJtBEb3p/vnnHxQUFMDGxkaj3sbGBn/88UeJ26SlpZXYPi0t7aXFSbpVkevk38aNGwc7O7tiv+jpzVCRa+Tw4cNYsWIF1Gp1JURIulaRa+TatWvYv38/QkNDsX37dly9ehVDhgxBXl4eIiMjKyNsqkQVuUZ69+6Nf/75By1atIAQAvn5+fj44495uyxJSvvempGRgezsbJiYmJSpH45kEhG9YmbOnIn169dj8+bNMDY21nU49Ap4+PAh+vTpg+XLl8Pa2lrX4dArqrCwENWrV8eyZcvQqFEj9OzZExMnTsSSJUt0HRq9IuLi4jBjxgz88MMPOH36NDZt2oTY2FhMmzZN16HRG4YjmUTlYG1tDX19fdy6dUuj/tatW1CpVCVuo1KpytWeXn8VuU6KzJ49GzNnzsTevXvRoEGDlxkm6VB5r5GkpCQkJyejc+fOUl1hYSEAwMDAAJcuXYKTk9PLDZoqVUV+j9ja2sLQ0BD6+vpSnbu7O9LS0pCbmwsjI6OXGjNVropcI1988QX69OmDgQMHAgA8PT2RlZWFwYMHY+LEidDT4/jT2660760KhaLMo5gARzKJysXIyAiNGjXCvn37pLrCwkLs27cPfn5+JW7j5+en0R4A9uzZU2p7ev1V5DoBgFmzZmHatGnYuXMnfH19KyNU0pHyXiN169bFuXPnoFarpfLee+9Js//Z29tXZvhUCSrye6R58+a4evWq9AcIALh8+TJsbW2ZYL6BKnKNPHr0qFgiWfRHiSfzwtDbTmvfW8s3JxERrV+/XsjlchETEyMuXrwoBg8eLCwtLUVaWpoQQog+ffqI8ePHS+3j4+OFgYGBmD17tkhMTBSRkZHC0NBQnDt3TleHQJWgvNfJzJkzhZGRkfj5559FamqqVB4+fKirQ6CXrLzXyL9xdtk3X3mvkZSUFGFhYSEiIiLEpUuXxLZt20T16tXFV199patDoJesvNdIZGSksLCwEOvWrRPXrl0Tu3fvFk5OTqJHjx66OgR6yR4+fCgSEhJEQkKCACC+++47kZCQIP78808hhBDjx48Xffr0kdpfu3ZNmJqairFjx4rExESxaNEioa+vL3bu3Fmu/TLJJKqA77//XtSqVUsYGRmJJk2aiN9//11a5+/vL8LCwjTab9y4Ubi6ugojIyNRr149ERsbW8kRky6U5zpxcHAQAIqVyMjIyg+cKk15f5c8jUnm26G818iRI0dE06ZNhVwuF3Xq1Pn/7duxDYMwFEVRpUEsQQMLsAGj0DMFDXMwCiMxAEgvVaqkifRFdU5v2cUvfGU527blvu+HT82T/pmR67qyrmuGYUjbtum6Lsuy5DzP5w/OI47j+Hm/+MzFPM+ZpulrzTiOaZomfd9n3/e/930l3sYBAACo4U8mAAAAZUQmAAAAZUQmAAAAZUQmAAAAZUQmAAAAZUQmAAAAZUQmAAAAZUQmAAAAZUQmAAAAZUQmAAAAZUQmAAAAZd52IfVj+ha90AAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Labels | \n",
" Precision | \n",
" Precision (Smote) | \n",
" Recall | \n",
" Recall (Smote) | \n",
" F1 | \n",
" F1 (Smote) | \n",
" Occurrence Count | \n",
" Percentage | \n",
"
\n",
" \n",
" \n",
" \n",
" 9 | \n",
" Mute Swan 10km | \n",
" 0.948000 | \n",
" 0.951417 | \n",
" 0.948000 | \n",
" 0.940000 | \n",
" 0.948000 | \n",
" 0.945674 | \n",
" 2007 | \n",
" 0.751123 | \n",
"
\n",
" \n",
" 10 | \n",
" Pheasant 10km | \n",
" 0.952991 | \n",
" 0.968820 | \n",
" 0.927235 | \n",
" 0.904366 | \n",
" 0.939937 | \n",
" 0.935484 | \n",
" 1918 | \n",
" 0.717814 | \n",
"
\n",
" \n",
" 1 | \n",
" Canada Goose 10km | \n",
" 0.949580 | \n",
" 0.954447 | \n",
" 0.989059 | \n",
" 0.962801 | \n",
" 0.968917 | \n",
" 0.958606 | \n",
" 1789 | \n",
" 0.669536 | \n",
"
\n",
" \n",
" 16 | \n",
" Rock Dove 10km | \n",
" 0.904306 | \n",
" 0.911765 | \n",
" 0.931034 | \n",
" 0.916256 | \n",
" 0.917476 | \n",
" 0.914005 | \n",
" 1620 | \n",
" 0.606287 | \n",
"
\n",
" \n",
" 19 | \n",
" Wigeon 10km | \n",
" 0.776243 | \n",
" 0.778393 | \n",
" 0.946128 | \n",
" 0.946128 | \n",
" 0.852807 | \n",
" 0.854103 | \n",
" 1267 | \n",
" 0.474177 | \n",
"
\n",
" \n",
" 14 | \n",
" Red-legged Partridge 10km | \n",
" 0.869822 | \n",
" 0.853372 | \n",
" 0.936306 | \n",
" 0.926752 | \n",
" 0.901840 | \n",
" 0.888550 | \n",
" 1208 | \n",
" 0.452096 | \n",
"
\n",
" \n",
" 7 | \n",
" Little Owl 10km | \n",
" 0.859589 | \n",
" 0.850000 | \n",
" 0.919414 | \n",
" 0.934066 | \n",
" 0.888496 | \n",
" 0.890052 | \n",
" 1077 | \n",
" 0.403069 | \n",
"
\n",
" \n",
" 5 | \n",
" Grey Partridge 10km | \n",
" 0.813187 | \n",
" 0.824176 | \n",
" 0.906122 | \n",
" 0.918367 | \n",
" 0.857143 | \n",
" 0.868726 | \n",
" 1002 | \n",
" 0.375000 | \n",
"
\n",
" \n",
" 3 | \n",
" Gadwall 10km | \n",
" 0.780822 | \n",
" 0.714286 | \n",
" 0.814286 | \n",
" 0.833333 | \n",
" 0.797203 | \n",
" 0.769231 | \n",
" 830 | \n",
" 0.310629 | \n",
"
\n",
" \n",
" 13 | \n",
" Pochard 10km | \n",
" 0.747573 | \n",
" 0.734375 | \n",
" 0.827957 | \n",
" 0.758065 | \n",
" 0.785714 | \n",
" 0.746032 | \n",
" 738 | \n",
" 0.276198 | \n",
"
\n",
" \n",
" 11 | \n",
" Pink-footed Goose 10km | \n",
" 0.630332 | \n",
" 0.612766 | \n",
" 0.700000 | \n",
" 0.757895 | \n",
" 0.663342 | \n",
" 0.677647 | \n",
" 730 | \n",
" 0.273204 | \n",
"
\n",
" \n",
" 18 | \n",
" Whooper Swan 10km | \n",
" 0.618705 | \n",
" 0.572973 | \n",
" 0.483146 | \n",
" 0.595506 | \n",
" 0.542587 | \n",
" 0.584022 | \n",
" 659 | \n",
" 0.246632 | \n",
"
\n",
" \n",
" 12 | \n",
" Pintail 10km | \n",
" 0.696429 | \n",
" 0.593750 | \n",
" 0.553191 | \n",
" 0.673759 | \n",
" 0.616601 | \n",
" 0.631229 | \n",
" 513 | \n",
" 0.191991 | \n",
"
\n",
" \n",
" 8 | \n",
" Mandarin Duck 10km | \n",
" 0.643836 | \n",
" 0.615385 | \n",
" 0.746032 | \n",
" 0.571429 | \n",
" 0.691176 | \n",
" 0.592593 | \n",
" 478 | \n",
" 0.178892 | \n",
"
\n",
" \n",
" 0 | \n",
" Barnacle Goose 10km | \n",
" 0.489362 | \n",
" 0.427481 | \n",
" 0.410714 | \n",
" 0.500000 | \n",
" 0.446602 | \n",
" 0.460905 | \n",
" 466 | \n",
" 0.174401 | \n",
"
\n",
" \n",
" 4 | \n",
" Goshawk 10km | \n",
" 0.567568 | \n",
" 0.481132 | \n",
" 0.611650 | \n",
" 0.495146 | \n",
" 0.588785 | \n",
" 0.488038 | \n",
" 446 | \n",
" 0.166916 | \n",
"
\n",
" \n",
" 2 | \n",
" Egyptian Goose 10km | \n",
" 0.606557 | \n",
" 0.549296 | \n",
" 0.486842 | \n",
" 0.513158 | \n",
" 0.540146 | \n",
" 0.530612 | \n",
" 300 | \n",
" 0.112275 | \n",
"
\n",
" \n",
" 6 | \n",
" Indian Peafowl 10km | \n",
" 0.444444 | \n",
" 0.403226 | \n",
" 0.171429 | \n",
" 0.357143 | \n",
" 0.247423 | \n",
" 0.378788 | \n",
" 247 | \n",
" 0.092440 | \n",
"
\n",
" \n",
" 17 | \n",
" Ruddy Duck 10km | \n",
" 0.125000 | \n",
" 0.125000 | \n",
" 0.076923 | \n",
" 0.076923 | \n",
" 0.095238 | \n",
" 0.095238 | \n",
" 97 | \n",
" 0.036302 | \n",
"
\n",
" \n",
" 15 | \n",
" Ring-necked Parakeet 10km | \n",
" 0.800000 | \n",
" 0.272727 | \n",
" 0.166667 | \n",
" 0.250000 | \n",
" 0.275862 | \n",
" 0.260870 | \n",
" 96 | \n",
" 0.035928 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Labels Precision Precision (Smote) Recall \\\n",
"9 Mute Swan 10km 0.948000 0.951417 0.948000 \n",
"10 Pheasant 10km 0.952991 0.968820 0.927235 \n",
"1 Canada Goose 10km 0.949580 0.954447 0.989059 \n",
"16 Rock Dove 10km 0.904306 0.911765 0.931034 \n",
"19 Wigeon 10km 0.776243 0.778393 0.946128 \n",
"14 Red-legged Partridge 10km 0.869822 0.853372 0.936306 \n",
"7 Little Owl 10km 0.859589 0.850000 0.919414 \n",
"5 Grey Partridge 10km 0.813187 0.824176 0.906122 \n",
"3 Gadwall 10km 0.780822 0.714286 0.814286 \n",
"13 Pochard 10km 0.747573 0.734375 0.827957 \n",
"11 Pink-footed Goose 10km 0.630332 0.612766 0.700000 \n",
"18 Whooper Swan 10km 0.618705 0.572973 0.483146 \n",
"12 Pintail 10km 0.696429 0.593750 0.553191 \n",
"8 Mandarin Duck 10km 0.643836 0.615385 0.746032 \n",
"0 Barnacle Goose 10km 0.489362 0.427481 0.410714 \n",
"4 Goshawk 10km 0.567568 0.481132 0.611650 \n",
"2 Egyptian Goose 10km 0.606557 0.549296 0.486842 \n",
"6 Indian Peafowl 10km 0.444444 0.403226 0.171429 \n",
"17 Ruddy Duck 10km 0.125000 0.125000 0.076923 \n",
"15 Ring-necked Parakeet 10km 0.800000 0.272727 0.166667 \n",
"\n",
" Recall (Smote) F1 F1 (Smote) Occurrence Count Percentage \n",
"9 0.940000 0.948000 0.945674 2007 0.751123 \n",
"10 0.904366 0.939937 0.935484 1918 0.717814 \n",
"1 0.962801 0.968917 0.958606 1789 0.669536 \n",
"16 0.916256 0.917476 0.914005 1620 0.606287 \n",
"19 0.946128 0.852807 0.854103 1267 0.474177 \n",
"14 0.926752 0.901840 0.888550 1208 0.452096 \n",
"7 0.934066 0.888496 0.890052 1077 0.403069 \n",
"5 0.918367 0.857143 0.868726 1002 0.375000 \n",
"3 0.833333 0.797203 0.769231 830 0.310629 \n",
"13 0.758065 0.785714 0.746032 738 0.276198 \n",
"11 0.757895 0.663342 0.677647 730 0.273204 \n",
"18 0.595506 0.542587 0.584022 659 0.246632 \n",
"12 0.673759 0.616601 0.631229 513 0.191991 \n",
"8 0.571429 0.691176 0.592593 478 0.178892 \n",
"0 0.500000 0.446602 0.460905 466 0.174401 \n",
"4 0.495146 0.588785 0.488038 446 0.166916 \n",
"2 0.513158 0.540146 0.530612 300 0.112275 \n",
"6 0.357143 0.247423 0.378788 247 0.092440 \n",
"17 0.076923 0.095238 0.095238 97 0.036302 \n",
"15 0.250000 0.275862 0.260870 96 0.035928 "
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create graphs to show off data\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"plt.rcParams['figure.figsize'] = [9, 12]\n",
"\n",
"occurrence_count, occurrence_percentage = All_bird_occurrences['Occurrence Count'], All_bird_occurrences['Percentage']\n",
"precision = []\n",
"precision_smote = []\n",
"recall = []\n",
"recall_smote = []\n",
"f1 = []\n",
"f1_smote = []\n",
"labels = []\n",
"for dict in df_dicts:\n",
" precision.append(dict['report']['1']['precision'])\n",
" precision_smote.append(dict['report_smote']['1']['precision'])\n",
" recall.append(dict['report']['1']['recall'])\n",
" recall_smote.append(dict['report_smote']['1']['recall'])\n",
" f1.append(dict['report']['1']['f1-score'])\n",
" f1_smote.append(dict['report_smote']['1']['f1-score'])\n",
" labels.append(dict['name'])\n",
"\n",
"\n",
"\n",
"scores = pd.DataFrame({'Labels' : labels, \n",
" 'Precision': precision, 'Precision (Smote)': precision_smote, \n",
" 'Recall': recall, 'Recall (Smote)': recall_smote, \n",
" 'F1': f1, 'F1 (Smote)': f1_smote,\n",
" 'Occurrence Count' : occurrence_count, 'Percentage' : occurrence_percentage} )\n",
" \n",
"scores.sort_values('Occurrence Count', inplace=True)\n",
"\n",
"n=20\n",
"r = np.arange(n)\n",
"height = 0.25\n",
"\n",
"plt.barh(r, 'Percentage', data=scores, label='Occurrence Percentage', height = height, color='g')\n",
"plt.barh(r+height, 'F1', data=scores, label='F1-Score', height= height, color='b')\n",
"plt.barh(r+height*2, 'F1 (Smote)', data=scores, label='F1-Score (Smote)', height = height, color='r')\n",
"plt.legend(framealpha=1, frameon=True)\n",
"plt.yticks(r+height*2, scores['Labels'])\n",
"\n",
"\n",
"plt.show()\n",
"\n",
"\n",
"scores.sort_values('Occurrence Count', ascending=False)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Stored 'df_dicts_10km_no_fp' (list)\n"
]
}
],
"source": [
"# Store dictionaries for later use\n",
"df_dicts_10km_no_fp = df_dicts\n",
"%store df_dicts_10km_no_fp"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 255000.0 | \n",
" 235000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 685000.0 | \n",
" 325000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 575000.0 | \n",
" 435000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 555000.0 | \n",
" 545000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 675000.0 | \n",
" 245000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 55000.0 | \n",
" 155000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 945000.0 | \n",
" 215000.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 465000.0 | \n",
" 635000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 365000.0 | \n",
" 45000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 515000.0 | \n",
" 205000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"255000.0 235000.0 0 0\n",
"685000.0 325000.0 0 1\n",
"575000.0 435000.0 0 1\n",
"555000.0 545000.0 0 0\n",
"675000.0 245000.0 0 1\n",
"... ... ...\n",
"55000.0 155000.0 0 1\n",
"945000.0 215000.0 1 0\n",
"465000.0 635000.0 0 0\n",
"365000.0 45000.0 0 0\n",
"515000.0 205000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 195000.0 | \n",
" 175000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 445000.0 | \n",
" 45000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 365000.0 | \n",
" 545000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 345000.0 | \n",
" 405000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 435000.0 | \n",
" 105000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 65000.0 | \n",
" 265000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 705000.0 | \n",
" 205000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 295000.0 | \n",
" 435000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 255000.0 | \n",
" 605000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 325000.0 | \n",
" 415000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"195000.0 175000.0 0 0\n",
"445000.0 45000.0 0 0\n",
"365000.0 545000.0 1 1\n",
"345000.0 405000.0 1 1\n",
"435000.0 105000.0 0 0\n",
"... ... ...\n",
"65000.0 265000.0 1 1\n",
"705000.0 205000.0 1 1\n",
"295000.0 435000.0 1 1\n",
"255000.0 605000.0 1 1\n",
"325000.0 415000.0 1 1\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 235000.0 | \n",
" 605000.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 645000.0 | \n",
" 695000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 515000.0 | \n",
" 105000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 485000.0 | \n",
" 95000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 625000.0 | \n",
" 325000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 35000.0 | \n",
" 25000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 955000.0 | \n",
" 595000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 395000.0 | \n",
" 455000.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 325000.0 | \n",
" 655000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 445000.0 | \n",
" 45000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"235000.0 605000.0 1 0\n",
"645000.0 695000.0 0 0\n",
"515000.0 105000.0 0 0\n",
"485000.0 95000.0 0 0\n",
"625000.0 325000.0 0 0\n",
"... ... ...\n",
"35000.0 25000.0 0 0\n",
"955000.0 595000.0 0 0\n",
"395000.0 455000.0 1 0\n",
"325000.0 655000.0 0 0\n",
"445000.0 45000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 215000.0 | \n",
" 665000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 545000.0 | \n",
" 45000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 445000.0 | \n",
" 465000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 425000.0 | \n",
" 475000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 535000.0 | \n",
" 195000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 45000.0 | \n",
" 275000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 875000.0 | \n",
" 535000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 355000.0 | \n",
" 625000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 295000.0 | \n",
" 575000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 395000.0 | \n",
" 465000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"215000.0 665000.0 0 0\n",
"545000.0 45000.0 0 0\n",
"445000.0 465000.0 1 1\n",
"425000.0 475000.0 1 1\n",
"535000.0 195000.0 0 0\n",
"... ... ...\n",
"45000.0 275000.0 1 1\n",
"875000.0 535000.0 0 0\n",
"355000.0 625000.0 0 0\n",
"295000.0 575000.0 1 1\n",
"395000.0 465000.0 1 1\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 255000.0 | \n",
" 525000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 665000.0 | \n",
" 345000.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 565000.0 | \n",
" 365000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 545000.0 | \n",
" 405000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 655000.0 | \n",
" 555000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 45000.0 | \n",
" 125000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 935000.0 | \n",
" 675000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 445000.0 | \n",
" 145000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 355000.0 | \n",
" 175000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 505000.0 | \n",
" 205000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"255000.0 525000.0 0 0\n",
"665000.0 345000.0 1 0\n",
"565000.0 365000.0 1 1\n",
"545000.0 405000.0 0 1\n",
"655000.0 555000.0 0 0\n",
"... ... ...\n",
"45000.0 125000.0 0 0\n",
"935000.0 675000.0 0 0\n",
"445000.0 145000.0 0 0\n",
"355000.0 175000.0 0 0\n",
"505000.0 205000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 225000.0 | \n",
" 625000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 545000.0 | \n",
" 115000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 435000.0 | \n",
" 395000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 415000.0 | \n",
" 385000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 535000.0 | \n",
" 365000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 55000.0 | \n",
" 615000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 845000.0 | \n",
" 45000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 355000.0 | \n",
" 495000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 295000.0 | \n",
" 445000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 395000.0 | \n",
" 515000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"225000.0 625000.0 1 1\n",
"545000.0 115000.0 0 0\n",
"435000.0 395000.0 1 1\n",
"415000.0 385000.0 1 1\n",
"535000.0 365000.0 1 1\n",
"... ... ...\n",
"55000.0 615000.0 0 0\n",
"845000.0 45000.0 0 0\n",
"355000.0 495000.0 1 1\n",
"295000.0 445000.0 0 1\n",
"395000.0 515000.0 1 1\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 255000.0 | \n",
" 235000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 675000.0 | \n",
" 45000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 555000.0 | \n",
" 585000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 525000.0 | \n",
" 175000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 665000.0 | \n",
" 365000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 45000.0 | \n",
" 175000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 965000.0 | \n",
" 525000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 435000.0 | \n",
" 545000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 355000.0 | \n",
" 655000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 495000.0 | \n",
" 525000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"255000.0 235000.0 0 1\n",
"675000.0 45000.0 0 0\n",
"555000.0 585000.0 0 0\n",
"525000.0 175000.0 0 0\n",
"665000.0 365000.0 0 0\n",
"... ... ...\n",
"45000.0 175000.0 0 0\n",
"965000.0 525000.0 0 0\n",
"435000.0 545000.0 0 0\n",
"355000.0 655000.0 0 0\n",
"495000.0 525000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 205000.0 | \n",
" 495000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 475000.0 | \n",
" 475000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 385000.0 | \n",
" 365000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 375000.0 | \n",
" 495000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 465000.0 | \n",
" 345000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 55000.0 | \n",
" 485000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 835000.0 | \n",
" 435000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 315000.0 | \n",
" 365000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 265000.0 | \n",
" 95000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 345000.0 | \n",
" 5000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"205000.0 495000.0 1 1\n",
"475000.0 475000.0 1 1\n",
"385000.0 365000.0 1 1\n",
"375000.0 495000.0 1 1\n",
"465000.0 345000.0 1 1\n",
"... ... ...\n",
"55000.0 485000.0 0 0\n",
"835000.0 435000.0 0 0\n",
"315000.0 365000.0 1 1\n",
"265000.0 95000.0 0 0\n",
"345000.0 5000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 225000.0 | \n",
" 365000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 625000.0 | \n",
" 145000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 505000.0 | \n",
" 185000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 485000.0 | \n",
" 645000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 615000.0 | \n",
" 225000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 45000.0 | \n",
" 75000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 945000.0 | \n",
" 685000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 375000.0 | \n",
" 25000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 315000.0 | \n",
" 445000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 435000.0 | \n",
" 25000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"225000.0 365000.0 1 1\n",
"625000.0 145000.0 0 0\n",
"505000.0 185000.0 0 0\n",
"485000.0 645000.0 0 0\n",
"615000.0 225000.0 0 0\n",
"... ... ...\n",
"45000.0 75000.0 0 0\n",
"945000.0 685000.0 0 0\n",
"375000.0 25000.0 0 0\n",
"315000.0 445000.0 1 1\n",
"435000.0 25000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 205000.0 | \n",
" 315000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 465000.0 | \n",
" 445000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 375000.0 | \n",
" 415000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 355000.0 | \n",
" 245000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 445000.0 | \n",
" 245000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 75000.0 | \n",
" 355000.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 685000.0 | \n",
" 315000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 305000.0 | \n",
" 395000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 265000.0 | \n",
" 575000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 335000.0 | \n",
" 285000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"205000.0 315000.0 1 1\n",
"465000.0 445000.0 1 1\n",
"375000.0 415000.0 1 1\n",
"355000.0 245000.0 1 1\n",
"445000.0 245000.0 0 0\n",
"... ... ...\n",
"75000.0 355000.0 1 0\n",
"685000.0 315000.0 1 1\n",
"305000.0 395000.0 1 1\n",
"265000.0 575000.0 1 1\n",
"335000.0 285000.0 1 1\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 205000.0 | \n",
" 615000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 465000.0 | \n",
" 465000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 365000.0 | \n",
" 325000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 355000.0 | \n",
" 545000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 455000.0 | \n",
" 495000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 65000.0 | \n",
" 215000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 685000.0 | \n",
" 315000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 295000.0 | \n",
" 265000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 255000.0 | \n",
" 425000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 335000.0 | \n",
" 605000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"205000.0 615000.0 0 0\n",
"465000.0 465000.0 1 1\n",
"365000.0 325000.0 1 1\n",
"355000.0 545000.0 1 1\n",
"455000.0 495000.0 1 1\n",
"... ... ...\n",
"65000.0 215000.0 1 1\n",
"685000.0 315000.0 1 1\n",
"295000.0 265000.0 1 1\n",
"255000.0 425000.0 1 1\n",
"335000.0 605000.0 1 1\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 305000.0 | \n",
" 635000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 675000.0 | \n",
" 335000.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 565000.0 | \n",
" 255000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 545000.0 | \n",
" 115000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 665000.0 | \n",
" 355000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 45000.0 | \n",
" 195000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 925000.0 | \n",
" 435000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 455000.0 | \n",
" 385000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 385000.0 | \n",
" 335000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 515000.0 | \n",
" 295000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"305000.0 635000.0 1 1\n",
"675000.0 335000.0 1 0\n",
"565000.0 255000.0 1 1\n",
"545000.0 115000.0 0 0\n",
"665000.0 355000.0 1 1\n",
"... ... ...\n",
"45000.0 195000.0 0 1\n",
"925000.0 435000.0 0 0\n",
"455000.0 385000.0 1 1\n",
"385000.0 335000.0 0 1\n",
"515000.0 295000.0 1 1\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 235000.0 | \n",
" 405000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 625000.0 | \n",
" 135000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 515000.0 | \n",
" 375000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 485000.0 | \n",
" 265000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 615000.0 | \n",
" 295000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 45000.0 | \n",
" 375000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 915000.0 | \n",
" 235000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 405000.0 | \n",
" 445000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 325000.0 | \n",
" 545000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 455000.0 | \n",
" 335000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"235000.0 405000.0 0 1\n",
"625000.0 135000.0 0 0\n",
"515000.0 375000.0 0 0\n",
"485000.0 265000.0 0 0\n",
"615000.0 295000.0 0 1\n",
"... ... ...\n",
"45000.0 375000.0 0 0\n",
"915000.0 235000.0 0 0\n",
"405000.0 445000.0 1 1\n",
"325000.0 545000.0 1 1\n",
"455000.0 335000.0 0 1\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 225000.0 | \n",
" 55000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 595000.0 | \n",
" 685000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 475000.0 | \n",
" 265000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 455000.0 | \n",
" 575000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 575000.0 | \n",
" 265000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 45000.0 | \n",
" 285000.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 915000.0 | \n",
" 345000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 365000.0 | \n",
" 235000.0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" 305000.0 | \n",
" 405000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 415000.0 | \n",
" 105000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"225000.0 55000.0 0 0\n",
"595000.0 685000.0 0 0\n",
"475000.0 265000.0 0 0\n",
"455000.0 575000.0 0 0\n",
"575000.0 265000.0 0 1\n",
"... ... ...\n",
"45000.0 285000.0 1 0\n",
"915000.0 345000.0 0 0\n",
"365000.0 235000.0 1 0\n",
"305000.0 405000.0 1 1\n",
"415000.0 105000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 215000.0 | \n",
" 605000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 495000.0 | \n",
" 415000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 405000.0 | \n",
" 675000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 385000.0 | \n",
" 535000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 485000.0 | \n",
" 405000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 55000.0 | \n",
" 75000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 795000.0 | \n",
" 265000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 325000.0 | \n",
" 575000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 275000.0 | \n",
" 545000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 355000.0 | \n",
" 125000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"215000.0 605000.0 0 1\n",
"495000.0 415000.0 1 1\n",
"405000.0 675000.0 0 0\n",
"385000.0 535000.0 1 1\n",
"485000.0 405000.0 1 1\n",
"... ... ...\n",
"55000.0 75000.0 0 0\n",
"795000.0 265000.0 1 1\n",
"325000.0 575000.0 1 1\n",
"275000.0 545000.0 1 1\n",
"355000.0 125000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 245000.0 | \n",
" 15000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 695000.0 | \n",
" 155000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 575000.0 | \n",
" 545000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 545000.0 | \n",
" 25000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 685000.0 | \n",
" 255000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 45000.0 | \n",
" 445000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 975000.0 | \n",
" 335000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 455000.0 | \n",
" 395000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 365000.0 | \n",
" 265000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 515000.0 | \n",
" 485000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"245000.0 15000.0 0 0\n",
"695000.0 155000.0 0 0\n",
"575000.0 545000.0 0 0\n",
"545000.0 25000.0 0 0\n",
"685000.0 255000.0 0 0\n",
"... ... ...\n",
"45000.0 445000.0 0 0\n",
"975000.0 335000.0 0 0\n",
"455000.0 395000.0 0 0\n",
"365000.0 265000.0 0 0\n",
"515000.0 485000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 205000.0 | \n",
" 375000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 495000.0 | \n",
" 445000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 395000.0 | \n",
" 505000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 375000.0 | \n",
" 345000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 485000.0 | \n",
" 425000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 65000.0 | \n",
" 155000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 755000.0 | \n",
" 125000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 315000.0 | \n",
" 355000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 265000.0 | \n",
" 435000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 355000.0 | \n",
" 465000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"205000.0 375000.0 1 1\n",
"495000.0 445000.0 1 1\n",
"395000.0 505000.0 1 1\n",
"375000.0 345000.0 1 1\n",
"485000.0 425000.0 1 1\n",
"... ... ...\n",
"65000.0 155000.0 0 0\n",
"755000.0 125000.0 1 1\n",
"315000.0 355000.0 1 1\n",
"265000.0 435000.0 1 1\n",
"355000.0 465000.0 1 1\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 275000.0 | \n",
" 495000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 695000.0 | \n",
" 325000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 575000.0 | \n",
" 375000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 555000.0 | \n",
" 515000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 685000.0 | \n",
" 275000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 35000.0 | \n",
" 175000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 975000.0 | \n",
" 255000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 455000.0 | \n",
" 545000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 375000.0 | \n",
" 305000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 515000.0 | \n",
" 445000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"275000.0 495000.0 0 0\n",
"695000.0 325000.0 0 0\n",
"575000.0 375000.0 0 0\n",
"555000.0 515000.0 0 0\n",
"685000.0 275000.0 0 0\n",
"... ... ...\n",
"35000.0 175000.0 0 0\n",
"975000.0 255000.0 0 0\n",
"455000.0 545000.0 0 0\n",
"375000.0 305000.0 0 1\n",
"515000.0 445000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 295000.0 | \n",
" 275000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 685000.0 | \n",
" 55000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 585000.0 | \n",
" 105000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 565000.0 | \n",
" 205000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 675000.0 | \n",
" 155000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 65000.0 | \n",
" 245000.0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 945000.0 | \n",
" 245000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 495000.0 | \n",
" 575000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 395000.0 | \n",
" 75000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 535000.0 | \n",
" 95000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"295000.0 275000.0 0 1\n",
"685000.0 55000.0 0 0\n",
"585000.0 105000.0 0 0\n",
"565000.0 205000.0 1 1\n",
"675000.0 155000.0 0 0\n",
"... ... ...\n",
"65000.0 245000.0 0 1\n",
"945000.0 245000.0 0 0\n",
"495000.0 575000.0 0 0\n",
"395000.0 75000.0 0 0\n",
"535000.0 95000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Occurrence | \n",
" Predictions | \n",
"
\n",
" \n",
" y | \n",
" x | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 235000.0 | \n",
" 135000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 575000.0 | \n",
" 395000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 475000.0 | \n",
" 335000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 455000.0 | \n",
" 535000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 565000.0 | \n",
" 385000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 65000.0 | \n",
" 345000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 845000.0 | \n",
" 255000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 375000.0 | \n",
" 585000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 315000.0 | \n",
" 405000.0 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" 415000.0 | \n",
" 145000.0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
668 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Occurrence Predictions\n",
"y x \n",
"235000.0 135000.0 0 0\n",
"575000.0 395000.0 1 1\n",
"475000.0 335000.0 1 1\n",
"455000.0 535000.0 0 0\n",
"565000.0 385000.0 1 1\n",
"... ... ...\n",
"65000.0 345000.0 0 0\n",
"845000.0 255000.0 1 1\n",
"375000.0 585000.0 0 0\n",
"315000.0 405000.0 1 1\n",
"415000.0 145000.0 0 0\n",
"\n",
"[668 rows x 2 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Export predictions to CSV for QGIS\n",
"RESULTS_PATH = 'Datasets/Machine Learning/Results/10km/'\n",
"for dict in df_dicts:\n",
" # Join with y_test datafram\n",
" result_df = dict['y_test'] \n",
" result_df['Predictions'] = dict['predictions_smote']\n",
" display(result_df)\n",
" result_df.to_csv(RESULTS_PATH + dict['name'] + '(without Fertiliser+Pesticides).csv')\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Barnacle Goose 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 1009.098268 | \n",
" 3.952755e-188 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 822.960158 | \n",
" 5.383451e-158 | \n",
" Elevation | \n",
"
\n",
" \n",
" 23 | \n",
" 773.642924 | \n",
" 9.675580e-150 | \n",
" Surface type | \n",
"
\n",
" \n",
" 3 | \n",
" 286.074265 | \n",
" 4.806316e-61 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 268.765539 | \n",
" 1.255395e-57 | \n",
" Arable | \n",
"
\n",
" \n",
" 22 | \n",
" 235.656713 | \n",
" 4.939605e-51 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 24 | \n",
" 199.364053 | \n",
" 1.033356e-43 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 161.344102 | \n",
" 6.172420e-36 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 92.362595 | \n",
" 1.602427e-21 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 79.830321 | \n",
" 7.431887e-19 | \n",
" Urban | \n",
"
\n",
" \n",
" 17 | \n",
" 65.850294 | \n",
" 7.342235e-16 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 18 | \n",
" 54.991282 | \n",
" 1.617037e-13 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 15 | \n",
" 47.707380 | \n",
" 6.162071e-12 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 9 | \n",
" 35.077761 | \n",
" 3.574253e-09 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 32.408605 | \n",
" 1.385572e-08 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 16 | \n",
" 27.999637 | \n",
" 1.311868e-07 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 7 | \n",
" 26.715444 | \n",
" 2.531488e-07 | \n",
" Fen | \n",
"
\n",
" \n",
" 13 | \n",
" 10.814489 | \n",
" 1.020153e-03 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 4 | \n",
" 9.406941 | \n",
" 2.183328e-03 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 7.853502 | \n",
" 5.108829e-03 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 5 | \n",
" 5.092810 | \n",
" 2.410577e-02 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 4.030409 | \n",
" 4.478769e-02 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 10 | \n",
" 1.305533 | \n",
" 2.533074e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 6 | \n",
" 0.503498 | \n",
" 4.780290e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 0.304783 | \n",
" 5.809453e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 8 | \n",
" 0.030913 | \n",
" 8.604477e-01 | \n",
" Heather | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 1009.098268 3.952755e-188 Inflowing drainage direction\n",
"21 822.960158 5.383451e-158 Elevation\n",
"23 773.642924 9.675580e-150 Surface type\n",
"3 286.074265 4.806316e-61 Improve grassland\n",
"2 268.765539 1.255395e-57 Arable\n",
"22 235.656713 4.939605e-51 Cumulative catchment area\n",
"24 199.364053 1.033356e-43 Outflowing drainage direction\n",
"0 161.344102 6.172420e-36 Deciduous woodland\n",
"20 92.362595 1.602427e-21 Suburban\n",
"19 79.830321 7.431887e-19 Urban\n",
"17 65.850294 7.342235e-16 Littoral sediment\n",
"18 54.991282 1.617037e-13 Saltmarsh\n",
"15 47.707380 6.162071e-12 Supralittoral sediment\n",
"9 35.077761 3.574253e-09 Heather grassland\n",
"14 32.408605 1.385572e-08 Supralittoral rock\n",
"16 27.999637 1.311868e-07 Littoral rock\n",
"7 26.715444 2.531488e-07 Fen\n",
"13 10.814489 1.020153e-03 Freshwater\n",
"4 9.406941 2.183328e-03 Neutral grassland\n",
"1 7.853502 5.108829e-03 Coniferous woodland\n",
"5 5.092810 2.410577e-02 Calcareous grassland\n",
"12 4.030409 4.478769e-02 Saltwater\n",
"10 1.305533 2.533074e-01 Bog\n",
"6 0.503498 4.780290e-01 Acid grassland\n",
"11 0.304783 5.809453e-01 Inland rock\n",
"8 0.030913 8.604477e-01 Heather"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Canada Goose 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 21 | \n",
" 7343.666630 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 23 | \n",
" 5748.855110 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 5520.138505 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 3 | \n",
" 732.084357 | \n",
" 1.082679e-142 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 572.662758 | \n",
" 7.999142e-115 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 560.712879 | \n",
" 1.115248e-112 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 324.290358 | \n",
" 1.622397e-68 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 180.176262 | \n",
" 8.407061e-40 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 50.311028 | \n",
" 1.673556e-12 | \n",
" Urban | \n",
"
\n",
" \n",
" 1 | \n",
" 32.107127 | \n",
" 1.615132e-08 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 22 | \n",
" 28.330681 | \n",
" 1.107605e-07 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 6 | \n",
" 24.550281 | \n",
" 7.691838e-07 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 21.588824 | \n",
" 3.542001e-06 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 19.731579 | \n",
" 9.274335e-06 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 11.901638 | \n",
" 5.695458e-04 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 13 | \n",
" 11.468525 | \n",
" 7.180931e-04 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 17 | \n",
" 10.225843 | \n",
" 1.401059e-03 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 8 | \n",
" 8.771196 | \n",
" 3.087237e-03 | \n",
" Heather | \n",
"
\n",
" \n",
" 7 | \n",
" 7.234798 | \n",
" 7.194880e-03 | \n",
" Fen | \n",
"
\n",
" \n",
" 12 | \n",
" 5.603089 | \n",
" 1.799978e-02 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 15 | \n",
" 3.319150 | \n",
" 6.858907e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 9 | \n",
" 1.498448 | \n",
" 2.210184e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 1.364810 | \n",
" 2.428099e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 1.087899 | \n",
" 2.970316e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 11 | \n",
" 0.651580 | \n",
" 4.196203e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 16 | \n",
" 0.149181 | \n",
" 6.993498e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"21 7343.666630 0.000000e+00 Elevation\n",
"23 5748.855110 0.000000e+00 Surface type\n",
"25 5520.138505 0.000000e+00 Inflowing drainage direction\n",
"3 732.084357 1.082679e-142 Improve grassland\n",
"2 572.662758 7.999142e-115 Arable\n",
"24 560.712879 1.115248e-112 Outflowing drainage direction\n",
"0 324.290358 1.622397e-68 Deciduous woodland\n",
"20 180.176262 8.407061e-40 Suburban\n",
"19 50.311028 1.673556e-12 Urban\n",
"1 32.107127 1.615132e-08 Coniferous woodland\n",
"22 28.330681 1.107605e-07 Cumulative catchment area\n",
"6 24.550281 7.691838e-07 Acid grassland\n",
"4 21.588824 3.542001e-06 Neutral grassland\n",
"5 19.731579 9.274335e-06 Calcareous grassland\n",
"18 11.901638 5.695458e-04 Saltmarsh\n",
"13 11.468525 7.180931e-04 Freshwater\n",
"17 10.225843 1.401059e-03 Littoral sediment\n",
"8 8.771196 3.087237e-03 Heather\n",
"7 7.234798 7.194880e-03 Fen\n",
"12 5.603089 1.799978e-02 Saltwater\n",
"15 3.319150 6.858907e-02 Supralittoral sediment\n",
"9 1.498448 2.210184e-01 Heather grassland\n",
"14 1.364810 2.428099e-01 Supralittoral rock\n",
"10 1.087899 2.970316e-01 Bog\n",
"11 0.651580 4.196203e-01 Inland rock\n",
"16 0.149181 6.993498e-01 Littoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Egyptian Goose 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 827.599456 | \n",
" 9.132354e-159 | \n",
" Surface type | \n",
"
\n",
" \n",
" 2 | \n",
" 641.921266 | \n",
" 4.265779e-127 | \n",
" Arable | \n",
"
\n",
" \n",
" 25 | \n",
" 641.772899 | \n",
" 4.529104e-127 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 589.698428 | \n",
" 7.242005e-118 | \n",
" Elevation | \n",
"
\n",
" \n",
" 20 | \n",
" 432.216501 | \n",
" 4.225777e-89 | \n",
" Suburban | \n",
"
\n",
" \n",
" 24 | \n",
" 314.637554 | \n",
" 1.224799e-66 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 3 | \n",
" 305.393057 | \n",
" 7.805663e-65 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 0 | \n",
" 279.121118 | \n",
" 1.127077e-59 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 19 | \n",
" 163.844471 | \n",
" 1.886102e-36 | \n",
" Urban | \n",
"
\n",
" \n",
" 22 | \n",
" 37.622328 | \n",
" 9.858221e-10 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 18 | \n",
" 33.079310 | \n",
" 9.853602e-09 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 4 | \n",
" 30.003073 | \n",
" 4.715957e-08 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 11.229728 | \n",
" 8.161764e-04 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 6 | \n",
" 10.043311 | \n",
" 1.546316e-03 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 9 | \n",
" 5.307928 | \n",
" 2.130504e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 5.193269 | \n",
" 2.275315e-02 | \n",
" Fen | \n",
"
\n",
" \n",
" 5 | \n",
" 4.900666 | \n",
" 2.693057e-02 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 3.648895 | \n",
" 5.621345e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 8 | \n",
" 3.501216 | \n",
" 6.143306e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 1 | \n",
" 2.434389 | \n",
" 1.188187e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 16 | \n",
" 1.371591 | \n",
" 2.416432e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 12 | \n",
" 1.094713 | \n",
" 2.955240e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 14 | \n",
" 0.977077 | \n",
" 3.230110e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 0.938625 | \n",
" 3.327196e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 17 | \n",
" 0.283602 | \n",
" 5.943946e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 15 | \n",
" 0.136474 | \n",
" 7.118410e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 827.599456 9.132354e-159 Surface type\n",
"2 641.921266 4.265779e-127 Arable\n",
"25 641.772899 4.529104e-127 Inflowing drainage direction\n",
"21 589.698428 7.242005e-118 Elevation\n",
"20 432.216501 4.225777e-89 Suburban\n",
"24 314.637554 1.224799e-66 Outflowing drainage direction\n",
"3 305.393057 7.805663e-65 Improve grassland\n",
"0 279.121118 1.127077e-59 Deciduous woodland\n",
"19 163.844471 1.886102e-36 Urban\n",
"22 37.622328 9.858221e-10 Cumulative catchment area\n",
"18 33.079310 9.853602e-09 Saltmarsh\n",
"4 30.003073 4.715957e-08 Neutral grassland\n",
"13 11.229728 8.161764e-04 Freshwater\n",
"6 10.043311 1.546316e-03 Acid grassland\n",
"9 5.307928 2.130504e-02 Heather grassland\n",
"7 5.193269 2.275315e-02 Fen\n",
"5 4.900666 2.693057e-02 Calcareous grassland\n",
"10 3.648895 5.621345e-02 Bog\n",
"8 3.501216 6.143306e-02 Heather\n",
"1 2.434389 1.188187e-01 Coniferous woodland\n",
"16 1.371591 2.416432e-01 Littoral rock\n",
"12 1.094713 2.955240e-01 Saltwater\n",
"14 0.977077 3.230110e-01 Supralittoral rock\n",
"11 0.938625 3.327196e-01 Inland rock\n",
"17 0.283602 5.943946e-01 Littoral sediment\n",
"15 0.136474 7.118410e-01 Supralittoral sediment"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gadwall 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 1903.437525 | \n",
" 2.224486e-314 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 1645.682577 | \n",
" 9.981393e-281 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 1515.568547 | \n",
" 5.744852e-263 | \n",
" Elevation | \n",
"
\n",
" \n",
" 2 | \n",
" 949.689658 | \n",
" 1.109256e-178 | \n",
" Arable | \n",
"
\n",
" \n",
" 3 | \n",
" 594.080640 | \n",
" 1.201251e-118 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 24 | \n",
" 466.821680 | \n",
" 1.513555e-95 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 20 | \n",
" 367.505198 | \n",
" 7.557822e-77 | \n",
" Suburban | \n",
"
\n",
" \n",
" 0 | \n",
" 344.808292 | \n",
" 1.734076e-72 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 19 | \n",
" 127.613146 | \n",
" 6.120135e-29 | \n",
" Urban | \n",
"
\n",
" \n",
" 4 | \n",
" 42.409704 | \n",
" 8.812937e-11 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 38.573928 | \n",
" 6.094998e-10 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 22 | \n",
" 29.514784 | \n",
" 6.049909e-08 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 7 | \n",
" 22.969658 | \n",
" 1.735944e-06 | \n",
" Fen | \n",
"
\n",
" \n",
" 17 | \n",
" 17.396323 | \n",
" 3.130899e-05 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 13 | \n",
" 13.556296 | \n",
" 2.361016e-04 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 12 | \n",
" 13.254536 | \n",
" 2.770855e-04 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 8 | \n",
" 10.567615 | \n",
" 1.165165e-03 | \n",
" Heather | \n",
"
\n",
" \n",
" 6 | \n",
" 10.284403 | \n",
" 1.357450e-03 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 9.050744 | \n",
" 2.650406e-03 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 8.110622 | \n",
" 4.434319e-03 | \n",
" Bog | \n",
"
\n",
" \n",
" 15 | \n",
" 6.085671 | \n",
" 1.369060e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 9 | \n",
" 4.201548 | \n",
" 4.048459e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 0.766321 | \n",
" 3.814364e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 1 | \n",
" 0.296763 | \n",
" 5.859643e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.285778 | \n",
" 5.929833e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 14 | \n",
" 0.088228 | \n",
" 7.664655e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 1903.437525 2.224486e-314 Surface type\n",
"25 1645.682577 9.981393e-281 Inflowing drainage direction\n",
"21 1515.568547 5.744852e-263 Elevation\n",
"2 949.689658 1.109256e-178 Arable\n",
"3 594.080640 1.201251e-118 Improve grassland\n",
"24 466.821680 1.513555e-95 Outflowing drainage direction\n",
"20 367.505198 7.557822e-77 Suburban\n",
"0 344.808292 1.734076e-72 Deciduous woodland\n",
"19 127.613146 6.120135e-29 Urban\n",
"4 42.409704 8.812937e-11 Neutral grassland\n",
"18 38.573928 6.094998e-10 Saltmarsh\n",
"22 29.514784 6.049909e-08 Cumulative catchment area\n",
"7 22.969658 1.735944e-06 Fen\n",
"17 17.396323 3.130899e-05 Littoral sediment\n",
"13 13.556296 2.361016e-04 Freshwater\n",
"12 13.254536 2.770855e-04 Saltwater\n",
"8 10.567615 1.165165e-03 Heather\n",
"6 10.284403 1.357450e-03 Acid grassland\n",
"5 9.050744 2.650406e-03 Calcareous grassland\n",
"10 8.110622 4.434319e-03 Bog\n",
"15 6.085671 1.369060e-02 Supralittoral sediment\n",
"9 4.201548 4.048459e-02 Heather grassland\n",
"11 0.766321 3.814364e-01 Inland rock\n",
"1 0.296763 5.859643e-01 Coniferous woodland\n",
"16 0.285778 5.929833e-01 Littoral rock\n",
"14 0.088228 7.664655e-01 Supralittoral rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Goshawk 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 1516.675979 | \n",
" 4.034569e-263 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 1440.341773 | \n",
" 1.912231e-252 | \n",
" Elevation | \n",
"
\n",
" \n",
" 25 | \n",
" 1051.448282 | \n",
" 9.009989e-195 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 3 | \n",
" 615.251091 | \n",
" 2.114437e-122 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 24 | \n",
" 480.598054 | \n",
" 4.304565e-98 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 412.738950 | \n",
" 1.932868e-85 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 1 | \n",
" 257.265143 | \n",
" 2.402678e-55 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 6 | \n",
" 240.765684 | \n",
" 4.687337e-52 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 93.612918 | \n",
" 8.702609e-22 | \n",
" Arable | \n",
"
\n",
" \n",
" 20 | \n",
" 47.786916 | \n",
" 5.921305e-12 | \n",
" Suburban | \n",
"
\n",
" \n",
" 8 | \n",
" 41.501374 | \n",
" 1.392317e-10 | \n",
" Heather | \n",
"
\n",
" \n",
" 5 | \n",
" 19.665672 | \n",
" 9.597340e-06 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 13.908913 | \n",
" 1.958784e-04 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 22 | \n",
" 8.905596 | \n",
" 2.868761e-03 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 10 | \n",
" 2.891045 | \n",
" 8.918962e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 18 | \n",
" 2.474858 | \n",
" 1.157984e-01 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 19 | \n",
" 1.866841 | \n",
" 1.719524e-01 | \n",
" Urban | \n",
"
\n",
" \n",
" 9 | \n",
" 1.799764 | \n",
" 1.798551e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 1.525152 | \n",
" 2.169502e-01 | \n",
" Fen | \n",
"
\n",
" \n",
" 17 | \n",
" 1.414285 | \n",
" 2.344522e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 14 | \n",
" 0.880416 | \n",
" 3.481726e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 4 | \n",
" 0.595848 | \n",
" 4.402348e-01 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.430001 | \n",
" 5.120451e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 15 | \n",
" 0.143413 | \n",
" 7.049410e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 11 | \n",
" 0.042886 | \n",
" 8.359561e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 12 | \n",
" 0.035680 | \n",
" 8.501928e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 1516.675979 4.034569e-263 Surface type\n",
"21 1440.341773 1.912231e-252 Elevation\n",
"25 1051.448282 9.009989e-195 Inflowing drainage direction\n",
"3 615.251091 2.114437e-122 Improve grassland\n",
"24 480.598054 4.304565e-98 Outflowing drainage direction\n",
"0 412.738950 1.932868e-85 Deciduous woodland\n",
"1 257.265143 2.402678e-55 Coniferous woodland\n",
"6 240.765684 4.687337e-52 Acid grassland\n",
"2 93.612918 8.702609e-22 Arable\n",
"20 47.786916 5.921305e-12 Suburban\n",
"8 41.501374 1.392317e-10 Heather\n",
"5 19.665672 9.597340e-06 Calcareous grassland\n",
"13 13.908913 1.958784e-04 Freshwater\n",
"22 8.905596 2.868761e-03 Cumulative catchment area\n",
"10 2.891045 8.918962e-02 Bog\n",
"18 2.474858 1.157984e-01 Saltmarsh\n",
"19 1.866841 1.719524e-01 Urban\n",
"9 1.799764 1.798551e-01 Heather grassland\n",
"7 1.525152 2.169502e-01 Fen\n",
"17 1.414285 2.344522e-01 Littoral sediment\n",
"14 0.880416 3.481726e-01 Supralittoral rock\n",
"4 0.595848 4.402348e-01 Neutral grassland\n",
"16 0.430001 5.120451e-01 Littoral rock\n",
"15 0.143413 7.049410e-01 Supralittoral sediment\n",
"11 0.042886 8.359561e-01 Inland rock\n",
"12 0.035680 8.501928e-01 Saltwater"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Grey Partridge 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 3400.634758 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 2971.831794 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 25 | \n",
" 2704.779889 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 2 | \n",
" 1571.720673 | \n",
" 1.066172e-270 | \n",
" Arable | \n",
"
\n",
" \n",
" 3 | \n",
" 772.281638 | \n",
" 1.641378e-149 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 24 | \n",
" 584.987101 | \n",
" 5.010287e-117 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 327.534974 | \n",
" 3.804785e-69 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 298.002024 | \n",
" 2.183527e-63 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 77.634624 | \n",
" 2.187610e-18 | \n",
" Urban | \n",
"
\n",
" \n",
" 4 | \n",
" 44.253781 | \n",
" 3.486330e-11 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 33.060397 | \n",
" 9.948735e-09 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 24.530191 | \n",
" 7.771715e-07 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 22 | \n",
" 13.459902 | \n",
" 2.484816e-04 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 13 | \n",
" 12.699635 | \n",
" 3.721351e-04 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 11.344633 | \n",
" 7.673946e-04 | \n",
" Fen | \n",
"
\n",
" \n",
" 17 | \n",
" 9.944567 | \n",
" 1.631166e-03 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 11 | \n",
" 3.961874 | \n",
" 4.664365e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 15 | \n",
" 3.643353 | \n",
" 5.640058e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 10 | \n",
" 2.993600 | \n",
" 8.370969e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 6 | \n",
" 2.048774 | \n",
" 1.524459e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 1.786211 | \n",
" 1.815023e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 9 | \n",
" 1.212361 | \n",
" 2.709643e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.784977 | \n",
" 3.757031e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 8 | \n",
" 0.422222 | \n",
" 5.158862e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 12 | \n",
" 0.219961 | \n",
" 6.391078e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 1 | \n",
" 0.189243 | \n",
" 6.635828e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 3400.634758 0.000000e+00 Surface type\n",
"21 2971.831794 0.000000e+00 Elevation\n",
"25 2704.779889 0.000000e+00 Inflowing drainage direction\n",
"2 1571.720673 1.066172e-270 Arable\n",
"3 772.281638 1.641378e-149 Improve grassland\n",
"24 584.987101 5.010287e-117 Outflowing drainage direction\n",
"0 327.534974 3.804785e-69 Deciduous woodland\n",
"20 298.002024 2.183527e-63 Suburban\n",
"19 77.634624 2.187610e-18 Urban\n",
"4 44.253781 3.486330e-11 Neutral grassland\n",
"5 33.060397 9.948735e-09 Calcareous grassland\n",
"18 24.530191 7.771715e-07 Saltmarsh\n",
"22 13.459902 2.484816e-04 Cumulative catchment area\n",
"13 12.699635 3.721351e-04 Freshwater\n",
"7 11.344633 7.673946e-04 Fen\n",
"17 9.944567 1.631166e-03 Littoral sediment\n",
"11 3.961874 4.664365e-02 Inland rock\n",
"15 3.643353 5.640058e-02 Supralittoral sediment\n",
"10 2.993600 8.370969e-02 Bog\n",
"6 2.048774 1.524459e-01 Acid grassland\n",
"14 1.786211 1.815023e-01 Supralittoral rock\n",
"9 1.212361 2.709643e-01 Heather grassland\n",
"16 0.784977 3.757031e-01 Littoral rock\n",
"8 0.422222 5.158862e-01 Heather\n",
"12 0.219961 6.391078e-01 Saltwater\n",
"1 0.189243 6.635828e-01 Coniferous woodland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Indian Peafowl 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 754.797758 | \n",
" 1.483797e-146 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 562.392260 | \n",
" 5.565883e-113 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 554.303821 | \n",
" 1.587591e-111 | \n",
" Elevation | \n",
"
\n",
" \n",
" 2 | \n",
" 494.199893 | \n",
" 1.352579e-100 | \n",
" Arable | \n",
"
\n",
" \n",
" 0 | \n",
" 362.537756 | \n",
" 6.759522e-76 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 3 | \n",
" 355.699518 | \n",
" 1.388033e-74 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 20 | \n",
" 296.541227 | \n",
" 4.222218e-63 | \n",
" Suburban | \n",
"
\n",
" \n",
" 24 | \n",
" 246.800525 | \n",
" 2.918994e-53 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 19 | \n",
" 35.737943 | \n",
" 2.558060e-09 | \n",
" Urban | \n",
"
\n",
" \n",
" 22 | \n",
" 30.997451 | \n",
" 2.841086e-08 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 5 | \n",
" 28.689072 | \n",
" 9.222468e-08 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 11.928487 | \n",
" 5.614321e-04 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 8.214172 | \n",
" 4.188976e-03 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 13 | \n",
" 5.512478 | \n",
" 1.895389e-02 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 3.709709 | \n",
" 5.420288e-02 | \n",
" Fen | \n",
"
\n",
" \n",
" 18 | \n",
" 3.099160 | \n",
" 7.844719e-02 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 16 | \n",
" 2.110375 | \n",
" 1.464209e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 1.749114 | \n",
" 1.861015e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 14 | \n",
" 1.030285 | \n",
" 3.101837e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 0.433261 | \n",
" 5.104501e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 6 | \n",
" 0.349987 | \n",
" 5.541705e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 15 | \n",
" 0.275544 | \n",
" 5.996806e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 0.131766 | \n",
" 7.166368e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 9 | \n",
" 0.107604 | \n",
" 7.429141e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 0.025027 | \n",
" 8.743110e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 8 | \n",
" 0.007901 | \n",
" 9.291788e-01 | \n",
" Heather | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 754.797758 1.483797e-146 Surface type\n",
"25 562.392260 5.565883e-113 Inflowing drainage direction\n",
"21 554.303821 1.587591e-111 Elevation\n",
"2 494.199893 1.352579e-100 Arable\n",
"0 362.537756 6.759522e-76 Deciduous woodland\n",
"3 355.699518 1.388033e-74 Improve grassland\n",
"20 296.541227 4.222218e-63 Suburban\n",
"24 246.800525 2.918994e-53 Outflowing drainage direction\n",
"19 35.737943 2.558060e-09 Urban\n",
"22 30.997451 2.841086e-08 Cumulative catchment area\n",
"5 28.689072 9.222468e-08 Calcareous grassland\n",
"4 11.928487 5.614321e-04 Neutral grassland\n",
"1 8.214172 4.188976e-03 Coniferous woodland\n",
"13 5.512478 1.895389e-02 Freshwater\n",
"7 3.709709 5.420288e-02 Fen\n",
"18 3.099160 7.844719e-02 Saltmarsh\n",
"16 2.110375 1.464209e-01 Littoral rock\n",
"10 1.749114 1.861015e-01 Bog\n",
"14 1.030285 3.101837e-01 Supralittoral rock\n",
"11 0.433261 5.104501e-01 Inland rock\n",
"6 0.349987 5.541705e-01 Acid grassland\n",
"15 0.275544 5.996806e-01 Supralittoral sediment\n",
"12 0.131766 7.166368e-01 Saltwater\n",
"9 0.107604 7.429141e-01 Heather grassland\n",
"17 0.025027 8.743110e-01 Littoral sediment\n",
"8 0.007901 9.291788e-01 Heather"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Little Owl 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 3559.278760 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 3136.796514 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 25 | \n",
" 3021.897153 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 2 | \n",
" 1533.729395 | \n",
" 1.767848e-265 | \n",
" Arable | \n",
"
\n",
" \n",
" 3 | \n",
" 805.594552 | \n",
" 4.209572e-155 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 24 | \n",
" 578.181222 | \n",
" 8.231576e-116 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 413.099124 | \n",
" 1.653117e-85 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 334.433765 | \n",
" 1.751859e-70 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 78.360343 | \n",
" 1.530878e-18 | \n",
" Urban | \n",
"
\n",
" \n",
" 4 | \n",
" 48.334893 | \n",
" 4.499781e-12 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 40.548857 | \n",
" 2.250039e-10 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 22 | \n",
" 32.640589 | \n",
" 1.231441e-08 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 18 | \n",
" 21.008830 | \n",
" 4.781964e-06 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 7 | \n",
" 8.572271 | \n",
" 3.442080e-03 | \n",
" Fen | \n",
"
\n",
" \n",
" 11 | \n",
" 4.147986 | \n",
" 4.178254e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 8 | \n",
" 3.747195 | \n",
" 5.300166e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 16 | \n",
" 3.077734 | \n",
" 7.948576e-02 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 17 | \n",
" 2.992167 | \n",
" 8.378370e-02 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 15 | \n",
" 2.808580 | \n",
" 9.387843e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 9 | \n",
" 2.785733 | \n",
" 9.522440e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 1.798244 | \n",
" 1.800390e-01 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 1 | \n",
" 0.897553 | \n",
" 3.435244e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 12 | \n",
" 0.723618 | \n",
" 3.950360e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 6 | \n",
" 0.238446 | \n",
" 6.253705e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 0.090069 | \n",
" 7.641124e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 0.003703 | \n",
" 9.514821e-01 | \n",
" Bog | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 3559.278760 0.000000e+00 Surface type\n",
"21 3136.796514 0.000000e+00 Elevation\n",
"25 3021.897153 0.000000e+00 Inflowing drainage direction\n",
"2 1533.729395 1.767848e-265 Arable\n",
"3 805.594552 4.209572e-155 Improve grassland\n",
"24 578.181222 8.231576e-116 Outflowing drainage direction\n",
"0 413.099124 1.653117e-85 Deciduous woodland\n",
"20 334.433765 1.751859e-70 Suburban\n",
"19 78.360343 1.530878e-18 Urban\n",
"4 48.334893 4.499781e-12 Neutral grassland\n",
"5 40.548857 2.250039e-10 Calcareous grassland\n",
"22 32.640589 1.231441e-08 Cumulative catchment area\n",
"18 21.008830 4.781964e-06 Saltmarsh\n",
"7 8.572271 3.442080e-03 Fen\n",
"11 4.147986 4.178254e-02 Inland rock\n",
"8 3.747195 5.300166e-02 Heather\n",
"16 3.077734 7.948576e-02 Littoral rock\n",
"17 2.992167 8.378370e-02 Littoral sediment\n",
"15 2.808580 9.387843e-02 Supralittoral sediment\n",
"9 2.785733 9.522440e-02 Heather grassland\n",
"13 1.798244 1.800390e-01 Freshwater\n",
"1 0.897553 3.435244e-01 Coniferous woodland\n",
"12 0.723618 3.950360e-01 Saltwater\n",
"6 0.238446 6.253705e-01 Acid grassland\n",
"14 0.090069 7.641124e-01 Supralittoral rock\n",
"10 0.003703 9.514821e-01 Bog"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mandarin Duck 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 1570.251863 | \n",
" 1.693384e-270 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 1262.402052 | \n",
" 9.104361e-227 | \n",
" Elevation | \n",
"
\n",
" \n",
" 25 | \n",
" 1125.652741 | \n",
" 3.142630e-206 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 3 | \n",
" 719.444452 | \n",
" 1.568797e-140 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 0 | \n",
" 542.531902 | \n",
" 2.114696e-109 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 2 | \n",
" 465.257609 | \n",
" 2.949695e-95 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 449.870098 | \n",
" 2.130590e-92 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 20 | \n",
" 407.303250 | \n",
" 2.050692e-84 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 128.616823 | \n",
" 3.777432e-29 | \n",
" Urban | \n",
"
\n",
" \n",
" 5 | \n",
" 42.361723 | \n",
" 9.028347e-11 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 37.814586 | \n",
" 8.945254e-10 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 22 | \n",
" 35.248440 | \n",
" 3.278061e-09 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 13 | \n",
" 25.421537 | \n",
" 4.915887e-07 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 1 | \n",
" 24.882851 | \n",
" 6.483057e-07 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 7 | \n",
" 8.949163 | \n",
" 2.801367e-03 | \n",
" Fen | \n",
"
\n",
" \n",
" 18 | \n",
" 8.116605 | \n",
" 4.419752e-03 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 10 | \n",
" 5.180315 | \n",
" 2.292305e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 6 | \n",
" 4.543835 | \n",
" 3.312856e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 2.696160 | \n",
" 1.007080e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 12 | \n",
" 1.941605 | \n",
" 1.636104e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 14 | \n",
" 1.695076 | \n",
" 1.930455e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 15 | \n",
" 0.982589 | \n",
" 3.216502e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 17 | \n",
" 0.912160 | \n",
" 3.396284e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 9 | \n",
" 0.529182 | \n",
" 4.670147e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 0.054095 | \n",
" 8.161030e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 11 | \n",
" 0.000975 | \n",
" 9.750981e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 1570.251863 1.693384e-270 Surface type\n",
"21 1262.402052 9.104361e-227 Elevation\n",
"25 1125.652741 3.142630e-206 Inflowing drainage direction\n",
"3 719.444452 1.568797e-140 Improve grassland\n",
"0 542.531902 2.114696e-109 Deciduous woodland\n",
"2 465.257609 2.949695e-95 Arable\n",
"24 449.870098 2.130590e-92 Outflowing drainage direction\n",
"20 407.303250 2.050692e-84 Suburban\n",
"19 128.616823 3.777432e-29 Urban\n",
"5 42.361723 9.028347e-11 Calcareous grassland\n",
"4 37.814586 8.945254e-10 Neutral grassland\n",
"22 35.248440 3.278061e-09 Cumulative catchment area\n",
"13 25.421537 4.915887e-07 Freshwater\n",
"1 24.882851 6.483057e-07 Coniferous woodland\n",
"7 8.949163 2.801367e-03 Fen\n",
"18 8.116605 4.419752e-03 Saltmarsh\n",
"10 5.180315 2.292305e-02 Bog\n",
"6 4.543835 3.312856e-02 Acid grassland\n",
"16 2.696160 1.007080e-01 Littoral rock\n",
"12 1.941605 1.636104e-01 Saltwater\n",
"14 1.695076 1.930455e-01 Supralittoral rock\n",
"15 0.982589 3.216502e-01 Supralittoral sediment\n",
"17 0.912160 3.396284e-01 Littoral sediment\n",
"9 0.529182 4.670147e-01 Heather grassland\n",
"8 0.054095 8.161030e-01 Heather\n",
"11 0.000975 9.750981e-01 Inland rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mute Swan 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 21 | \n",
" 4285.029849 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 25 | \n",
" 3424.622932 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 23 | \n",
" 2829.482084 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 3 | \n",
" 446.956456 | \n",
" 7.437265e-92 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 380.563329 | \n",
" 2.424716e-79 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 322.537009 | \n",
" 3.554675e-68 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 220.990258 | \n",
" 4.368413e-48 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 128.128309 | \n",
" 4.777336e-29 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 36.403502 | \n",
" 1.826230e-09 | \n",
" Urban | \n",
"
\n",
" \n",
" 1 | \n",
" 27.029498 | \n",
" 2.155301e-07 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 22 | \n",
" 19.473657 | \n",
" 1.060429e-05 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 6 | \n",
" 17.927381 | \n",
" 2.372524e-05 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 4 | \n",
" 11.878184 | \n",
" 5.767304e-04 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 11.624678 | \n",
" 6.604854e-04 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 18 | \n",
" 9.096155 | \n",
" 2.585619e-03 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 13 | \n",
" 8.262555 | \n",
" 4.079125e-03 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 5 | \n",
" 7.944114 | \n",
" 4.859938e-03 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 7.085884 | \n",
" 7.815924e-03 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 10 | \n",
" 7.004938 | \n",
" 8.176260e-03 | \n",
" Bog | \n",
"
\n",
" \n",
" 8 | \n",
" 5.793136 | \n",
" 1.615635e-02 | \n",
" Heather | \n",
"
\n",
" \n",
" 15 | \n",
" 5.064779 | \n",
" 2.449789e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 7 | \n",
" 4.574230 | \n",
" 3.254681e-02 | \n",
" Fen | \n",
"
\n",
" \n",
" 16 | \n",
" 4.521071 | \n",
" 3.357137e-02 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 9 | \n",
" 3.430012 | \n",
" 6.413195e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 1.735838 | \n",
" 1.877801e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 11 | \n",
" 0.082067 | \n",
" 7.745383e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"21 4285.029849 0.000000e+00 Elevation\n",
"25 3424.622932 0.000000e+00 Inflowing drainage direction\n",
"23 2829.482084 0.000000e+00 Surface type\n",
"3 446.956456 7.437265e-92 Improve grassland\n",
"2 380.563329 2.424716e-79 Arable\n",
"24 322.537009 3.554675e-68 Outflowing drainage direction\n",
"0 220.990258 4.368413e-48 Deciduous woodland\n",
"20 128.128309 4.777336e-29 Suburban\n",
"19 36.403502 1.826230e-09 Urban\n",
"1 27.029498 2.155301e-07 Coniferous woodland\n",
"22 19.473657 1.060429e-05 Cumulative catchment area\n",
"6 17.927381 2.372524e-05 Acid grassland\n",
"4 11.878184 5.767304e-04 Neutral grassland\n",
"17 11.624678 6.604854e-04 Littoral sediment\n",
"18 9.096155 2.585619e-03 Saltmarsh\n",
"13 8.262555 4.079125e-03 Freshwater\n",
"5 7.944114 4.859938e-03 Calcareous grassland\n",
"12 7.085884 7.815924e-03 Saltwater\n",
"10 7.004938 8.176260e-03 Bog\n",
"8 5.793136 1.615635e-02 Heather\n",
"15 5.064779 2.449789e-02 Supralittoral sediment\n",
"7 4.574230 3.254681e-02 Fen\n",
"16 4.521071 3.357137e-02 Littoral rock\n",
"9 3.430012 6.413195e-02 Heather grassland\n",
"14 1.735838 1.877801e-01 Supralittoral rock\n",
"11 0.082067 7.745383e-01 Inland rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pheasant 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 21 | \n",
" 3918.088889 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 23 | \n",
" 3761.808452 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 3082.737272 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 3 | \n",
" 588.096290 | \n",
" 1.397570e-117 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 24 | \n",
" 489.630631 | \n",
" 9.347569e-100 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 2 | \n",
" 456.120338 | \n",
" 1.464185e-93 | \n",
" Arable | \n",
"
\n",
" \n",
" 0 | \n",
" 242.808633 | \n",
" 1.830101e-52 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 133.391825 | \n",
" 3.814028e-30 | \n",
" Suburban | \n",
"
\n",
" \n",
" 1 | \n",
" 35.297078 | \n",
" 3.198252e-09 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 19 | \n",
" 31.560526 | \n",
" 2.132963e-08 | \n",
" Urban | \n",
"
\n",
" \n",
" 6 | \n",
" 29.348583 | \n",
" 6.585463e-08 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 22 | \n",
" 23.940059 | \n",
" 1.052892e-06 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 4 | \n",
" 16.710172 | \n",
" 4.483242e-05 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 15.309706 | \n",
" 9.352465e-05 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 13.331895 | \n",
" 2.659400e-04 | \n",
" Heather | \n",
"
\n",
" \n",
" 18 | \n",
" 7.343273 | \n",
" 6.774440e-03 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 9 | \n",
" 6.407960 | \n",
" 1.141792e-02 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 5.214079 | \n",
" 2.248293e-02 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 11 | \n",
" 4.454565 | \n",
" 3.490084e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 7 | \n",
" 4.143647 | \n",
" 4.188959e-02 | \n",
" Fen | \n",
"
\n",
" \n",
" 10 | \n",
" 2.258077 | \n",
" 1.330373e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 14 | \n",
" 1.621027 | \n",
" 2.030596e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 16 | \n",
" 1.122800 | \n",
" 2.894122e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 13 | \n",
" 0.946162 | \n",
" 3.307864e-01 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 15 | \n",
" 0.687315 | \n",
" 4.071534e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 0.235982 | \n",
" 6.271634e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"21 3918.088889 0.000000e+00 Elevation\n",
"23 3761.808452 0.000000e+00 Surface type\n",
"25 3082.737272 0.000000e+00 Inflowing drainage direction\n",
"3 588.096290 1.397570e-117 Improve grassland\n",
"24 489.630631 9.347569e-100 Outflowing drainage direction\n",
"2 456.120338 1.464185e-93 Arable\n",
"0 242.808633 1.830101e-52 Deciduous woodland\n",
"20 133.391825 3.814028e-30 Suburban\n",
"1 35.297078 3.198252e-09 Coniferous woodland\n",
"19 31.560526 2.132963e-08 Urban\n",
"6 29.348583 6.585463e-08 Acid grassland\n",
"22 23.940059 1.052892e-06 Cumulative catchment area\n",
"4 16.710172 4.483242e-05 Neutral grassland\n",
"5 15.309706 9.352465e-05 Calcareous grassland\n",
"8 13.331895 2.659400e-04 Heather\n",
"18 7.343273 6.774440e-03 Saltmarsh\n",
"9 6.407960 1.141792e-02 Heather grassland\n",
"17 5.214079 2.248293e-02 Littoral sediment\n",
"11 4.454565 3.490084e-02 Inland rock\n",
"7 4.143647 4.188959e-02 Fen\n",
"10 2.258077 1.330373e-01 Bog\n",
"14 1.621027 2.030596e-01 Supralittoral rock\n",
"16 1.122800 2.894122e-01 Littoral rock\n",
"13 0.946162 3.307864e-01 Freshwater\n",
"15 0.687315 4.071534e-01 Supralittoral sediment\n",
"12 0.235982 6.271634e-01 Saltwater"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pink-footed Goose 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 1682.218122 | \n",
" 1.284141e-285 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 1663.088957 | \n",
" 4.613765e-283 | \n",
" Elevation | \n",
"
\n",
" \n",
" 23 | \n",
" 1582.046768 | \n",
" 4.142091e-272 | \n",
" Surface type | \n",
"
\n",
" \n",
" 2 | \n",
" 563.718068 | \n",
" 3.216301e-113 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 397.048799 | \n",
" 1.786134e-82 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 3 | \n",
" 354.864185 | \n",
" 2.008795e-74 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 0 | \n",
" 166.093714 | \n",
" 6.498543e-37 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 89.444154 | \n",
" 6.671769e-21 | \n",
" Suburban | \n",
"
\n",
" \n",
" 17 | \n",
" 61.599086 | \n",
" 6.041977e-15 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 18 | \n",
" 47.686527 | \n",
" 6.226801e-12 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 4 | \n",
" 42.574103 | \n",
" 8.113151e-11 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 19 | \n",
" 28.459930 | \n",
" 1.036802e-07 | \n",
" Urban | \n",
"
\n",
" \n",
" 13 | \n",
" 22.349456 | \n",
" 2.390759e-06 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 1 | \n",
" 21.292642 | \n",
" 4.128544e-06 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 6 | \n",
" 20.624488 | \n",
" 5.835555e-06 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 19.433700 | \n",
" 1.082683e-05 | \n",
" Fen | \n",
"
\n",
" \n",
" 15 | \n",
" 19.232874 | \n",
" 1.201842e-05 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 8 | \n",
" 18.744420 | \n",
" 1.549662e-05 | \n",
" Heather | \n",
"
\n",
" \n",
" 10 | \n",
" 12.768206 | \n",
" 3.588010e-04 | \n",
" Bog | \n",
"
\n",
" \n",
" 12 | \n",
" 10.405852 | \n",
" 1.271339e-03 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 9 | \n",
" 10.323252 | \n",
" 1.329281e-03 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 22 | \n",
" 7.309235 | \n",
" 6.903595e-03 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 16 | \n",
" 7.060852 | \n",
" 7.925588e-03 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 14 | \n",
" 5.804120 | \n",
" 1.605596e-02 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 5 | \n",
" 4.561093 | \n",
" 3.279693e-02 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 0.003258 | \n",
" 9.544873e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 1682.218122 1.284141e-285 Inflowing drainage direction\n",
"21 1663.088957 4.613765e-283 Elevation\n",
"23 1582.046768 4.142091e-272 Surface type\n",
"2 563.718068 3.216301e-113 Arable\n",
"24 397.048799 1.786134e-82 Outflowing drainage direction\n",
"3 354.864185 2.008795e-74 Improve grassland\n",
"0 166.093714 6.498543e-37 Deciduous woodland\n",
"20 89.444154 6.671769e-21 Suburban\n",
"17 61.599086 6.041977e-15 Littoral sediment\n",
"18 47.686527 6.226801e-12 Saltmarsh\n",
"4 42.574103 8.113151e-11 Neutral grassland\n",
"19 28.459930 1.036802e-07 Urban\n",
"13 22.349456 2.390759e-06 Freshwater\n",
"1 21.292642 4.128544e-06 Coniferous woodland\n",
"6 20.624488 5.835555e-06 Acid grassland\n",
"7 19.433700 1.082683e-05 Fen\n",
"15 19.232874 1.201842e-05 Supralittoral sediment\n",
"8 18.744420 1.549662e-05 Heather\n",
"10 12.768206 3.588010e-04 Bog\n",
"12 10.405852 1.271339e-03 Saltwater\n",
"9 10.323252 1.329281e-03 Heather grassland\n",
"22 7.309235 6.903595e-03 Cumulative catchment area\n",
"16 7.060852 7.925588e-03 Littoral rock\n",
"14 5.804120 1.605596e-02 Supralittoral rock\n",
"5 4.561093 3.279693e-02 Calcareous grassland\n",
"11 0.003258 9.544873e-01 Inland rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pintail 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 1063.762969 | \n",
" 1.090230e-196 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 23 | \n",
" 858.206427 | \n",
" 7.999859e-164 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 827.358145 | \n",
" 1.001460e-158 | \n",
" Elevation | \n",
"
\n",
" \n",
" 2 | \n",
" 467.480402 | \n",
" 1.142876e-95 | \n",
" Arable | \n",
"
\n",
" \n",
" 3 | \n",
" 323.738474 | \n",
" 2.076614e-68 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 24 | \n",
" 253.487931 | \n",
" 1.355850e-54 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 20 | \n",
" 181.209514 | \n",
" 5.168309e-40 | \n",
" Suburban | \n",
"
\n",
" \n",
" 0 | \n",
" 144.311367 | \n",
" 2.048534e-32 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 17 | \n",
" 112.352423 | \n",
" 9.640675e-26 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 18 | \n",
" 92.811561 | \n",
" 1.286938e-21 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 19 | \n",
" 72.835214 | \n",
" 2.326583e-17 | \n",
" Urban | \n",
"
\n",
" \n",
" 4 | \n",
" 56.173412 | \n",
" 8.971952e-14 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 12 | \n",
" 43.439880 | \n",
" 5.248672e-11 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 7 | \n",
" 29.234581 | \n",
" 6.980062e-08 | \n",
" Fen | \n",
"
\n",
" \n",
" 15 | \n",
" 28.134624 | \n",
" 1.224372e-07 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 13 | \n",
" 15.136192 | \n",
" 1.024709e-04 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 22 | \n",
" 4.288320 | \n",
" 3.847095e-02 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 10 | \n",
" 1.232586 | \n",
" 2.670047e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 8 | \n",
" 1.131802 | \n",
" 2.874875e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 9 | \n",
" 1.024465 | \n",
" 3.115539e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 0.743897 | \n",
" 3.884928e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 6 | \n",
" 0.298707 | \n",
" 5.847395e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 0.226972 | \n",
" 6.338170e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 14 | \n",
" 0.212749 | \n",
" 6.446585e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 5 | \n",
" 0.105490 | \n",
" 7.453641e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 0.061888 | \n",
" 8.035558e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 1063.762969 1.090230e-196 Inflowing drainage direction\n",
"23 858.206427 7.999859e-164 Surface type\n",
"21 827.358145 1.001460e-158 Elevation\n",
"2 467.480402 1.142876e-95 Arable\n",
"3 323.738474 2.076614e-68 Improve grassland\n",
"24 253.487931 1.355850e-54 Outflowing drainage direction\n",
"20 181.209514 5.168309e-40 Suburban\n",
"0 144.311367 2.048534e-32 Deciduous woodland\n",
"17 112.352423 9.640675e-26 Littoral sediment\n",
"18 92.811561 1.286938e-21 Saltmarsh\n",
"19 72.835214 2.326583e-17 Urban\n",
"4 56.173412 8.971952e-14 Neutral grassland\n",
"12 43.439880 5.248672e-11 Saltwater\n",
"7 29.234581 6.980062e-08 Fen\n",
"15 28.134624 1.224372e-07 Supralittoral sediment\n",
"13 15.136192 1.024709e-04 Freshwater\n",
"22 4.288320 3.847095e-02 Cumulative catchment area\n",
"10 1.232586 2.670047e-01 Bog\n",
"8 1.131802 2.874875e-01 Heather\n",
"9 1.024465 3.115539e-01 Heather grassland\n",
"16 0.743897 3.884928e-01 Littoral rock\n",
"6 0.298707 5.847395e-01 Acid grassland\n",
"11 0.226972 6.338170e-01 Inland rock\n",
"14 0.212749 6.446585e-01 Supralittoral rock\n",
"5 0.105490 7.453641e-01 Calcareous grassland\n",
"1 0.061888 8.035558e-01 Coniferous woodland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pochard 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 1829.302778 | \n",
" 6.722059e-305 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 1683.265511 | \n",
" 9.311467e-286 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 1558.054709 | \n",
" 7.942916e-269 | \n",
" Elevation | \n",
"
\n",
" \n",
" 2 | \n",
" 787.153513 | \n",
" 5.158704e-152 | \n",
" Arable | \n",
"
\n",
" \n",
" 3 | \n",
" 562.763291 | \n",
" 4.773860e-113 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 24 | \n",
" 530.095858 | \n",
" 3.785982e-107 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 20 | \n",
" 412.911486 | \n",
" 1.793393e-85 | \n",
" Suburban | \n",
"
\n",
" \n",
" 0 | \n",
" 317.068854 | \n",
" 4.116031e-67 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 19 | \n",
" 152.812725 | \n",
" 3.557010e-34 | \n",
" Urban | \n",
"
\n",
" \n",
" 4 | \n",
" 50.072834 | \n",
" 1.885312e-12 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 31.644878 | \n",
" 2.043336e-08 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 22 | \n",
" 27.531121 | \n",
" 1.667173e-07 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 13 | \n",
" 25.794352 | \n",
" 4.059689e-07 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 23.028471 | \n",
" 1.684083e-06 | \n",
" Fen | \n",
"
\n",
" \n",
" 17 | \n",
" 16.547624 | \n",
" 4.881792e-05 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 12 | \n",
" 15.922847 | \n",
" 6.775311e-05 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 16 | \n",
" 8.692650 | \n",
" 3.222677e-03 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 8.001764 | \n",
" 4.708055e-03 | \n",
" Bog | \n",
"
\n",
" \n",
" 1 | \n",
" 6.821431 | \n",
" 9.057488e-03 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 15 | \n",
" 5.737654 | \n",
" 1.667345e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 14 | \n",
" 2.180887 | \n",
" 1.398519e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 6 | \n",
" 2.110568 | \n",
" 1.464025e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 5 | \n",
" 1.764399 | \n",
" 1.841902e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 0.765235 | \n",
" 3.817738e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 8 | \n",
" 0.208957 | \n",
" 6.476236e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 9 | \n",
" 0.133778 | \n",
" 7.145760e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 1829.302778 6.722059e-305 Surface type\n",
"25 1683.265511 9.311467e-286 Inflowing drainage direction\n",
"21 1558.054709 7.942916e-269 Elevation\n",
"2 787.153513 5.158704e-152 Arable\n",
"3 562.763291 4.773860e-113 Improve grassland\n",
"24 530.095858 3.785982e-107 Outflowing drainage direction\n",
"20 412.911486 1.793393e-85 Suburban\n",
"0 317.068854 4.116031e-67 Deciduous woodland\n",
"19 152.812725 3.557010e-34 Urban\n",
"4 50.072834 1.885312e-12 Neutral grassland\n",
"18 31.644878 2.043336e-08 Saltmarsh\n",
"22 27.531121 1.667173e-07 Cumulative catchment area\n",
"13 25.794352 4.059689e-07 Freshwater\n",
"7 23.028471 1.684083e-06 Fen\n",
"17 16.547624 4.881792e-05 Littoral sediment\n",
"12 15.922847 6.775311e-05 Saltwater\n",
"16 8.692650 3.222677e-03 Littoral rock\n",
"10 8.001764 4.708055e-03 Bog\n",
"1 6.821431 9.057488e-03 Coniferous woodland\n",
"15 5.737654 1.667345e-02 Supralittoral sediment\n",
"14 2.180887 1.398519e-01 Supralittoral rock\n",
"6 2.110568 1.464025e-01 Acid grassland\n",
"5 1.764399 1.841902e-01 Calcareous grassland\n",
"11 0.765235 3.817738e-01 Inland rock\n",
"8 0.208957 6.476236e-01 Heather\n",
"9 0.133778 7.145760e-01 Heather grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Red-legged Partridge 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 23 | \n",
" 4665.558943 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 21 | \n",
" 3938.262278 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 25 | \n",
" 3326.396445 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 2 | \n",
" 1357.041556 | \n",
" 1.447426e-240 | \n",
" Arable | \n",
"
\n",
" \n",
" 3 | \n",
" 877.316210 | \n",
" 5.857134e-167 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 24 | \n",
" 800.790440 | \n",
" 2.674164e-154 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 333.873027 | \n",
" 2.249262e-70 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 215.130108 | \n",
" 6.638999e-47 | \n",
" Suburban | \n",
"
\n",
" \n",
" 5 | \n",
" 41.288957 | \n",
" 1.549560e-10 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 22 | \n",
" 35.695864 | \n",
" 2.613167e-09 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 4 | \n",
" 34.346891 | \n",
" 5.177697e-09 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 19 | \n",
" 31.037194 | \n",
" 2.784158e-08 | \n",
" Urban | \n",
"
\n",
" \n",
" 1 | \n",
" 17.036564 | \n",
" 3.779031e-05 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 8 | \n",
" 15.320668 | \n",
" 9.298663e-05 | \n",
" Heather | \n",
"
\n",
" \n",
" 7 | \n",
" 14.692745 | \n",
" 1.294536e-04 | \n",
" Fen | \n",
"
\n",
" \n",
" 18 | \n",
" 12.966514 | \n",
" 3.228901e-04 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 13 | \n",
" 6.630734 | \n",
" 1.007677e-02 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 10 | \n",
" 5.922399 | \n",
" 1.501478e-02 | \n",
" Bog | \n",
"
\n",
" \n",
" 12 | \n",
" 4.265842 | \n",
" 3.898227e-02 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 11 | \n",
" 3.963782 | \n",
" 4.659090e-02 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 6 | \n",
" 3.159555 | \n",
" 7.559756e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 2.079135 | \n",
" 1.494420e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 16 | \n",
" 0.751981 | \n",
" 3.859278e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 14 | \n",
" 0.685745 | \n",
" 4.076894e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 9 | \n",
" 0.684070 | \n",
" 4.082628e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 15 | \n",
" 0.068934 | \n",
" 7.929161e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"23 4665.558943 0.000000e+00 Surface type\n",
"21 3938.262278 0.000000e+00 Elevation\n",
"25 3326.396445 0.000000e+00 Inflowing drainage direction\n",
"2 1357.041556 1.447426e-240 Arable\n",
"3 877.316210 5.857134e-167 Improve grassland\n",
"24 800.790440 2.674164e-154 Outflowing drainage direction\n",
"0 333.873027 2.249262e-70 Deciduous woodland\n",
"20 215.130108 6.638999e-47 Suburban\n",
"5 41.288957 1.549560e-10 Calcareous grassland\n",
"22 35.695864 2.613167e-09 Cumulative catchment area\n",
"4 34.346891 5.177697e-09 Neutral grassland\n",
"19 31.037194 2.784158e-08 Urban\n",
"1 17.036564 3.779031e-05 Coniferous woodland\n",
"8 15.320668 9.298663e-05 Heather\n",
"7 14.692745 1.294536e-04 Fen\n",
"18 12.966514 3.228901e-04 Saltmarsh\n",
"13 6.630734 1.007677e-02 Freshwater\n",
"10 5.922399 1.501478e-02 Bog\n",
"12 4.265842 3.898227e-02 Saltwater\n",
"11 3.963782 4.659090e-02 Inland rock\n",
"6 3.159555 7.559756e-02 Acid grassland\n",
"17 2.079135 1.494420e-01 Littoral sediment\n",
"16 0.751981 3.859278e-01 Littoral rock\n",
"14 0.685745 4.076894e-01 Supralittoral rock\n",
"9 0.684070 4.082628e-01 Heather grassland\n",
"15 0.068934 7.929161e-01 Supralittoral sediment"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ring-necked Parakeet 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 20 | \n",
" 423.338015 | \n",
" 1.956491e-87 | \n",
" Suburban | \n",
"
\n",
" \n",
" 23 | \n",
" 263.539369 | \n",
" 1.363343e-56 | \n",
" Surface type | \n",
"
\n",
" \n",
" 19 | \n",
" 223.881090 | \n",
" 1.143620e-48 | \n",
" Urban | \n",
"
\n",
" \n",
" 25 | \n",
" 198.446382 | \n",
" 1.587181e-43 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 191.636187 | \n",
" 3.852663e-42 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 21 | \n",
" 178.348178 | \n",
" 1.989223e-39 | \n",
" Elevation | \n",
"
\n",
" \n",
" 24 | \n",
" 150.535710 | \n",
" 1.051957e-33 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 3 | \n",
" 139.678605 | \n",
" 1.876150e-31 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 22 | \n",
" 54.149221 | \n",
" 2.460819e-13 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 2 | \n",
" 43.990900 | \n",
" 3.978728e-11 | \n",
" Arable | \n",
"
\n",
" \n",
" 7 | \n",
" 15.485837 | \n",
" 8.524703e-05 | \n",
" Fen | \n",
"
\n",
" \n",
" 12 | \n",
" 9.050661 | \n",
" 2.650526e-03 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 4 | \n",
" 4.728565 | \n",
" 2.975315e-02 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 3.543688 | \n",
" 5.988106e-02 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 6 | \n",
" 3.422349 | \n",
" 6.442985e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 9 | \n",
" 1.669694 | \n",
" 1.964114e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 1.383683 | \n",
" 2.395797e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 8 | \n",
" 0.916534 | \n",
" 3.384733e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 13 | \n",
" 0.632534 | \n",
" 4.264981e-01 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 11 | \n",
" 0.426454 | \n",
" 5.137902e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 17 | \n",
" 0.367288 | \n",
" 5.445378e-01 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 14 | \n",
" 0.326919 | \n",
" 5.675272e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 16 | \n",
" 0.301721 | \n",
" 5.828517e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 18 | \n",
" 0.181267 | \n",
" 6.703211e-01 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 5 | \n",
" 0.060003 | \n",
" 8.065096e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 15 | \n",
" 0.056731 | \n",
" 8.117571e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"20 423.338015 1.956491e-87 Suburban\n",
"23 263.539369 1.363343e-56 Surface type\n",
"19 223.881090 1.143620e-48 Urban\n",
"25 198.446382 1.587181e-43 Inflowing drainage direction\n",
"0 191.636187 3.852663e-42 Deciduous woodland\n",
"21 178.348178 1.989223e-39 Elevation\n",
"24 150.535710 1.051957e-33 Outflowing drainage direction\n",
"3 139.678605 1.876150e-31 Improve grassland\n",
"22 54.149221 2.460819e-13 Cumulative catchment area\n",
"2 43.990900 3.978728e-11 Arable\n",
"7 15.485837 8.524703e-05 Fen\n",
"12 9.050661 2.650526e-03 Saltwater\n",
"4 4.728565 2.975315e-02 Neutral grassland\n",
"1 3.543688 5.988106e-02 Coniferous woodland\n",
"6 3.422349 6.442985e-02 Acid grassland\n",
"9 1.669694 1.964114e-01 Heather grassland\n",
"10 1.383683 2.395797e-01 Bog\n",
"8 0.916534 3.384733e-01 Heather\n",
"13 0.632534 4.264981e-01 Freshwater\n",
"11 0.426454 5.137902e-01 Inland rock\n",
"17 0.367288 5.445378e-01 Littoral sediment\n",
"14 0.326919 5.675272e-01 Supralittoral rock\n",
"16 0.301721 5.828517e-01 Littoral rock\n",
"18 0.181267 6.703211e-01 Saltmarsh\n",
"5 0.060003 8.065096e-01 Calcareous grassland\n",
"15 0.056731 8.117571e-01 Supralittoral sediment"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rock Dove 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 21 | \n",
" 3705.998132 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 23 | \n",
" 3523.491473 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 3167.612036 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 3 | \n",
" 657.131199 | \n",
" 9.319155e-130 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 574.453772 | \n",
" 3.822481e-115 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 551.770288 | \n",
" 4.542649e-111 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 327.864746 | \n",
" 3.283643e-69 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 215.806810 | \n",
" 4.847374e-47 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 63.875294 | \n",
" 1.953389e-15 | \n",
" Urban | \n",
"
\n",
" \n",
" 22 | \n",
" 26.401491 | \n",
" 2.973417e-07 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 4 | \n",
" 25.443583 | \n",
" 4.860554e-07 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 1 | \n",
" 16.105638 | \n",
" 6.155325e-05 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 5 | \n",
" 12.987362 | \n",
" 3.193321e-04 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 13 | \n",
" 12.549173 | \n",
" 4.031728e-04 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 18 | \n",
" 9.818544 | \n",
" 1.746353e-03 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 6 | \n",
" 9.049166 | \n",
" 2.652688e-03 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 8.408340 | \n",
" 3.765535e-03 | \n",
" Fen | \n",
"
\n",
" \n",
" 9 | \n",
" 7.278622 | \n",
" 7.021903e-03 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 6.951936 | \n",
" 8.421371e-03 | \n",
" Bog | \n",
"
\n",
" \n",
" 17 | \n",
" 6.807778 | \n",
" 9.126817e-03 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 16 | \n",
" 6.410824 | \n",
" 1.139956e-02 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 15 | \n",
" 6.211470 | \n",
" 1.275272e-02 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 14 | \n",
" 3.769668 | \n",
" 5.229508e-02 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 12 | \n",
" 2.376299 | \n",
" 1.233076e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 8 | \n",
" 1.048863 | \n",
" 3.058619e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 11 | \n",
" 0.076750 | \n",
" 7.817728e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"21 3705.998132 0.000000e+00 Elevation\n",
"23 3523.491473 0.000000e+00 Surface type\n",
"25 3167.612036 0.000000e+00 Inflowing drainage direction\n",
"3 657.131199 9.319155e-130 Improve grassland\n",
"2 574.453772 3.822481e-115 Arable\n",
"24 551.770288 4.542649e-111 Outflowing drainage direction\n",
"0 327.864746 3.283643e-69 Deciduous woodland\n",
"20 215.806810 4.847374e-47 Suburban\n",
"19 63.875294 1.953389e-15 Urban\n",
"22 26.401491 2.973417e-07 Cumulative catchment area\n",
"4 25.443583 4.860554e-07 Neutral grassland\n",
"1 16.105638 6.155325e-05 Coniferous woodland\n",
"5 12.987362 3.193321e-04 Calcareous grassland\n",
"13 12.549173 4.031728e-04 Freshwater\n",
"18 9.818544 1.746353e-03 Saltmarsh\n",
"6 9.049166 2.652688e-03 Acid grassland\n",
"7 8.408340 3.765535e-03 Fen\n",
"9 7.278622 7.021903e-03 Heather grassland\n",
"10 6.951936 8.421371e-03 Bog\n",
"17 6.807778 9.126817e-03 Littoral sediment\n",
"16 6.410824 1.139956e-02 Littoral rock\n",
"15 6.211470 1.275272e-02 Supralittoral sediment\n",
"14 3.769668 5.229508e-02 Supralittoral rock\n",
"12 2.376299 1.233076e-01 Saltwater\n",
"8 1.048863 3.058619e-01 Heather\n",
"11 0.076750 7.817728e-01 Inland rock"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ruddy Duck 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 20 | \n",
" 222.092265 | \n",
" 2.620429e-48 | \n",
" Suburban | \n",
"
\n",
" \n",
" 23 | \n",
" 201.385984 | \n",
" 4.016297e-44 | \n",
" Surface type | \n",
"
\n",
" \n",
" 25 | \n",
" 172.842486 | \n",
" 2.671584e-38 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 2 | \n",
" 165.229518 | \n",
" 9.785071e-37 | \n",
" Arable | \n",
"
\n",
" \n",
" 21 | \n",
" 161.746426 | \n",
" 5.100030e-36 | \n",
" Elevation | \n",
"
\n",
" \n",
" 19 | \n",
" 132.834071 | \n",
" 4.984261e-30 | \n",
" Urban | \n",
"
\n",
" \n",
" 24 | \n",
" 85.793209 | \n",
" 3.984836e-20 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 4 | \n",
" 71.341242 | \n",
" 4.862584e-17 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 3 | \n",
" 66.548473 | \n",
" 5.196588e-16 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 0 | \n",
" 51.792935 | \n",
" 7.978585e-13 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 22 | \n",
" 42.712031 | \n",
" 7.569164e-11 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 12 | \n",
" 10.652417 | \n",
" 1.113138e-03 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 17 | \n",
" 6.738880 | \n",
" 9.485083e-03 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 13 | \n",
" 3.537197 | \n",
" 6.011553e-02 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 18 | \n",
" 1.864963 | \n",
" 1.721681e-01 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 9 | \n",
" 1.561720 | \n",
" 2.115231e-01 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 8 | \n",
" 1.540714 | \n",
" 2.146205e-01 | \n",
" Heather | \n",
"
\n",
" \n",
" 10 | \n",
" 1.471490 | \n",
" 2.252181e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 6 | \n",
" 1.412058 | \n",
" 2.348207e-01 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 7 | \n",
" 0.686957 | \n",
" 4.072755e-01 | \n",
" Fen | \n",
"
\n",
" \n",
" 11 | \n",
" 0.581560 | \n",
" 4.457690e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 14 | \n",
" 0.540364 | \n",
" 4.623466e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 16 | \n",
" 0.278701 | \n",
" 5.975977e-01 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 15 | \n",
" 0.059568 | \n",
" 8.071982e-01 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 1 | \n",
" 0.055293 | \n",
" 8.141138e-01 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 5 | \n",
" 0.054017 | \n",
" 8.162336e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"20 222.092265 2.620429e-48 Suburban\n",
"23 201.385984 4.016297e-44 Surface type\n",
"25 172.842486 2.671584e-38 Inflowing drainage direction\n",
"2 165.229518 9.785071e-37 Arable\n",
"21 161.746426 5.100030e-36 Elevation\n",
"19 132.834071 4.984261e-30 Urban\n",
"24 85.793209 3.984836e-20 Outflowing drainage direction\n",
"4 71.341242 4.862584e-17 Neutral grassland\n",
"3 66.548473 5.196588e-16 Improve grassland\n",
"0 51.792935 7.978585e-13 Deciduous woodland\n",
"22 42.712031 7.569164e-11 Cumulative catchment area\n",
"12 10.652417 1.113138e-03 Saltwater\n",
"17 6.738880 9.485083e-03 Littoral sediment\n",
"13 3.537197 6.011553e-02 Freshwater\n",
"18 1.864963 1.721681e-01 Saltmarsh\n",
"9 1.561720 2.115231e-01 Heather grassland\n",
"8 1.540714 2.146205e-01 Heather\n",
"10 1.471490 2.252181e-01 Bog\n",
"6 1.412058 2.348207e-01 Acid grassland\n",
"7 0.686957 4.072755e-01 Fen\n",
"11 0.581560 4.457690e-01 Inland rock\n",
"14 0.540364 4.623466e-01 Supralittoral rock\n",
"16 0.278701 5.975977e-01 Littoral rock\n",
"15 0.059568 8.071982e-01 Supralittoral sediment\n",
"1 0.055293 8.141138e-01 Coniferous woodland\n",
"5 0.054017 8.162336e-01 Calcareous grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Whooper Swan 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 1078.343958 | \n",
" 5.965819e-199 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 1035.304027 | \n",
" 3.004691e-192 | \n",
" Elevation | \n",
"
\n",
" \n",
" 23 | \n",
" 961.388454 | \n",
" 1.486786e-180 | \n",
" Surface type | \n",
"
\n",
" \n",
" 3 | \n",
" 318.424551 | \n",
" 2.241705e-67 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 24 | \n",
" 265.819805 | \n",
" 4.812689e-57 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 2 | \n",
" 203.103471 | \n",
" 1.800704e-44 | \n",
" Arable | \n",
"
\n",
" \n",
" 0 | \n",
" 158.129913 | \n",
" 2.838432e-35 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 66.652066 | \n",
" 4.936860e-16 | \n",
" Suburban | \n",
"
\n",
" \n",
" 9 | \n",
" 55.135835 | \n",
" 1.504615e-13 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 17 | \n",
" 48.778897 | \n",
" 3.602661e-12 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 16 | \n",
" 38.969209 | \n",
" 4.992149e-10 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 7 | \n",
" 27.589008 | \n",
" 1.618513e-07 | \n",
" Fen | \n",
"
\n",
" \n",
" 1 | \n",
" 23.078754 | \n",
" 1.640978e-06 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 14 | \n",
" 21.307649 | \n",
" 4.096605e-06 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 19 | \n",
" 20.965698 | \n",
" 4.889980e-06 | \n",
" Urban | \n",
"
\n",
" \n",
" 18 | \n",
" 20.823870 | \n",
" 5.262746e-06 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 15 | \n",
" 19.643447 | \n",
" 9.708795e-06 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 22 | \n",
" 19.278206 | \n",
" 1.173841e-05 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 6 | \n",
" 15.340362 | \n",
" 9.202786e-05 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 10 | \n",
" 15.220989 | \n",
" 9.799603e-05 | \n",
" Bog | \n",
"
\n",
" \n",
" 13 | \n",
" 13.947603 | \n",
" 1.919085e-04 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 8 | \n",
" 12.718829 | \n",
" 3.683531e-04 | \n",
" Heather | \n",
"
\n",
" \n",
" 4 | \n",
" 12.465741 | \n",
" 4.214970e-04 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 11 | \n",
" 1.357531 | \n",
" 2.440699e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
" 12 | \n",
" 0.941124 | \n",
" 3.320768e-01 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 5 | \n",
" 0.003208 | \n",
" 9.548383e-01 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 1078.343958 5.965819e-199 Inflowing drainage direction\n",
"21 1035.304027 3.004691e-192 Elevation\n",
"23 961.388454 1.486786e-180 Surface type\n",
"3 318.424551 2.241705e-67 Improve grassland\n",
"24 265.819805 4.812689e-57 Outflowing drainage direction\n",
"2 203.103471 1.800704e-44 Arable\n",
"0 158.129913 2.838432e-35 Deciduous woodland\n",
"20 66.652066 4.936860e-16 Suburban\n",
"9 55.135835 1.504615e-13 Heather grassland\n",
"17 48.778897 3.602661e-12 Littoral sediment\n",
"16 38.969209 4.992149e-10 Littoral rock\n",
"7 27.589008 1.618513e-07 Fen\n",
"1 23.078754 1.640978e-06 Coniferous woodland\n",
"14 21.307649 4.096605e-06 Supralittoral rock\n",
"19 20.965698 4.889980e-06 Urban\n",
"18 20.823870 5.262746e-06 Saltmarsh\n",
"15 19.643447 9.708795e-06 Supralittoral sediment\n",
"22 19.278206 1.173841e-05 Cumulative catchment area\n",
"6 15.340362 9.202786e-05 Acid grassland\n",
"10 15.220989 9.799603e-05 Bog\n",
"13 13.947603 1.919085e-04 Freshwater\n",
"8 12.718829 3.683531e-04 Heather\n",
"4 12.465741 4.214970e-04 Neutral grassland\n",
"11 1.357531 2.440699e-01 Inland rock\n",
"12 0.941124 3.320768e-01 Saltwater\n",
"5 0.003208 9.548383e-01 Calcareous grassland"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Wigeon 10km\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" F Score | \n",
" P Value | \n",
" Attribute | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 2620.080822 | \n",
" 0.000000e+00 | \n",
" Inflowing drainage direction | \n",
"
\n",
" \n",
" 21 | \n",
" 2480.090800 | \n",
" 0.000000e+00 | \n",
" Elevation | \n",
"
\n",
" \n",
" 23 | \n",
" 2181.122669 | \n",
" 0.000000e+00 | \n",
" Surface type | \n",
"
\n",
" \n",
" 3 | \n",
" 510.895940 | \n",
" 1.185521e-103 | \n",
" Improve grassland | \n",
"
\n",
" \n",
" 2 | \n",
" 465.092494 | \n",
" 3.165023e-95 | \n",
" Arable | \n",
"
\n",
" \n",
" 24 | \n",
" 411.757352 | \n",
" 2.959990e-85 | \n",
" Outflowing drainage direction | \n",
"
\n",
" \n",
" 0 | \n",
" 204.705588 | \n",
" 8.524358e-45 | \n",
" Deciduous woodland | \n",
"
\n",
" \n",
" 20 | \n",
" 193.263684 | \n",
" 1.796472e-42 | \n",
" Suburban | \n",
"
\n",
" \n",
" 19 | \n",
" 77.447594 | \n",
" 2.398464e-18 | \n",
" Urban | \n",
"
\n",
" \n",
" 17 | \n",
" 31.117309 | \n",
" 2.672853e-08 | \n",
" Littoral sediment | \n",
"
\n",
" \n",
" 4 | \n",
" 30.396261 | \n",
" 3.859326e-08 | \n",
" Neutral grassland | \n",
"
\n",
" \n",
" 18 | \n",
" 28.206138 | \n",
" 1.180414e-07 | \n",
" Saltmarsh | \n",
"
\n",
" \n",
" 22 | \n",
" 24.248589 | \n",
" 8.983058e-07 | \n",
" Cumulative catchment area | \n",
"
\n",
" \n",
" 12 | \n",
" 21.876736 | \n",
" 3.052102e-06 | \n",
" Saltwater | \n",
"
\n",
" \n",
" 13 | \n",
" 20.162283 | \n",
" 7.416147e-06 | \n",
" Freshwater | \n",
"
\n",
" \n",
" 7 | \n",
" 17.487899 | \n",
" 2.984583e-05 | \n",
" Fen | \n",
"
\n",
" \n",
" 8 | \n",
" 16.260356 | \n",
" 5.675365e-05 | \n",
" Heather | \n",
"
\n",
" \n",
" 1 | \n",
" 15.823912 | \n",
" 7.136713e-05 | \n",
" Coniferous woodland | \n",
"
\n",
" \n",
" 9 | \n",
" 14.044356 | \n",
" 1.823323e-04 | \n",
" Heather grassland | \n",
"
\n",
" \n",
" 15 | \n",
" 12.813446 | \n",
" 3.502691e-04 | \n",
" Supralittoral sediment | \n",
"
\n",
" \n",
" 5 | \n",
" 8.336977 | \n",
" 3.915851e-03 | \n",
" Calcareous grassland | \n",
"
\n",
" \n",
" 16 | \n",
" 8.098755 | \n",
" 4.463355e-03 | \n",
" Littoral rock | \n",
"
\n",
" \n",
" 6 | \n",
" 4.360418 | \n",
" 3.687781e-02 | \n",
" Acid grassland | \n",
"
\n",
" \n",
" 14 | \n",
" 0.656884 | \n",
" 4.177344e-01 | \n",
" Supralittoral rock | \n",
"
\n",
" \n",
" 10 | \n",
" 0.171550 | \n",
" 6.787714e-01 | \n",
" Bog | \n",
"
\n",
" \n",
" 11 | \n",
" 0.002713 | \n",
" 9.584656e-01 | \n",
" Inland rock | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" F Score P Value Attribute\n",
"25 2620.080822 0.000000e+00 Inflowing drainage direction\n",
"21 2480.090800 0.000000e+00 Elevation\n",
"23 2181.122669 0.000000e+00 Surface type\n",
"3 510.895940 1.185521e-103 Improve grassland\n",
"2 465.092494 3.165023e-95 Arable\n",
"24 411.757352 2.959990e-85 Outflowing drainage direction\n",
"0 204.705588 8.524358e-45 Deciduous woodland\n",
"20 193.263684 1.796472e-42 Suburban\n",
"19 77.447594 2.398464e-18 Urban\n",
"17 31.117309 2.672853e-08 Littoral sediment\n",
"4 30.396261 3.859326e-08 Neutral grassland\n",
"18 28.206138 1.180414e-07 Saltmarsh\n",
"22 24.248589 8.983058e-07 Cumulative catchment area\n",
"12 21.876736 3.052102e-06 Saltwater\n",
"13 20.162283 7.416147e-06 Freshwater\n",
"7 17.487899 2.984583e-05 Fen\n",
"8 16.260356 5.675365e-05 Heather\n",
"1 15.823912 7.136713e-05 Coniferous woodland\n",
"9 14.044356 1.823323e-04 Heather grassland\n",
"15 12.813446 3.502691e-04 Supralittoral sediment\n",
"5 8.336977 3.915851e-03 Calcareous grassland\n",
"16 8.098755 4.463355e-03 Littoral rock\n",
"6 4.360418 3.687781e-02 Acid grassland\n",
"14 0.656884 4.177344e-01 Supralittoral rock\n",
"10 0.171550 6.787714e-01 Bog\n",
"11 0.002713 9.584656e-01 Inland rock"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for dict in df_dicts:\n",
" print(dict['name'])\n",
" display(dict['kbest']['Dataframe'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.13 ('env': venv)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "f025c48a9b67ab76bdc0400dfa0f9ba99120976b4a6ec6a63d1c946516165c91"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}