
Photo Montage Xinying Wang (C1466248)

1

Photo Montage

School of Computer Science and Informatics

Cardiff University

CM3203 – One Semester Individual Project (40 Credits)

Student: Xinying Wang (C1466248)

Supervisor: Paul L Rosin

Moderator: Federico Cerutti

May 2016

Photo Montage Xinying Wang (C1466248)

2

Acknowledgement

Firstly, I would like to express the deepest gratitude to my supervisor - Professor Paul L

Rosin, for his professional guidance and continual support throughout this project.

Secondly, I would like to thank my personal tutor – Professor David Walker, for

providing valuable suggestions.

Photo Montage Xinying Wang (C1466248)

3

Abstract

Photomontage is the process and the result of making a composite photograph by

cutting, joining and rearranging a group of photographs into a new image to show more

of the theme than can be shown in a single photograph.

This project implements a photomontage system for automatically creating a composite

picture from a collection of input images. The synthesised image can be viewed as a

visual summary, and the resulting image should be representative of the collection,

summarising its salient elements. However, if we create an image summary with

original input images, it will contain lots of uninformative regions, and the only few

images can be selected. Firstly, in order to maximise visible visual information on a

given space, we crop the input images by using a quick and computationally efficient

salient region detection algorithm. Second, join images together without overlay by

using two-dimensional rectangle bin packing algorithm. This step aims to summarise

the informative regions and maximise canvas coverage. However, the chance of

perfectly fitting all images into a rectangle canvas is very tiny, and inevitably there will

be some holes produced by image arrangement. Third, in order to hide the holes

generated by rectangle packing, a digital inpainting technique is used.

This project implements a frequency- tuned salient region detection algorithms with an

additional face detection function, two different rectangle packing algorithms, three

different inpainting algorithms and five methods to improve the runtime of the

exemplar-based inpainting. The report also explains and discusses several related

algorithms – including concepts relating to k-means clustering, integral image and face

detection. Due to the high runtime, a sequence of speed optimization methods has been

developed to improve the system performance.

Visual and runtime evaluation indicate the efficiency of the photo montage system, this

project shall be evaluated on its ability on each sub-system (saliency extraction, two-

dimensional rectangle packing, digital inpainting) respectively and also be assessed as a

whole.

Photo Montage Xinying Wang (C1466248)

4

Contents

1 Introduction -- 8

 1.1 Aims and Goals

 1.2 Project Scope

 1.3 Approach

2 Background --- 10

 2.1 Related Work

3 Methods & Algorithms --- 17

 3.1 Saliency extraction

 3.1.1 Why combine DOG band pass filters

 3.1.2 Computing saliency and highlight the salient regions

 3.1.3 Threshold to binarize the saliency map.

 3.1.4 Computing integral image (summed area table).

 3.1.5 K-Means clustering algorithm

 3.1.6 Viola Jones face detection algorithm

 3.2 Rectangle Packing

 3.2.1 Shelf Next-Fit Decreasing Height (NFDH) algorithm

 3.2.2 Extend image edge to pack the image with the same height.

 3.2.3 The Guillotine Algorithms

 3.3 Inpainting

 3.3.1 Navier-Stokes based inpainting method

 3.3.2 Telea inpianting method

 3.3.3 Exemplar-based inpainting

4 Implementation --- 31

 4.1 Technical Background

 4.2 Image sources

 4.3 System environment

 4.4 System framework

 4.5 Image convertor

Photo Montage Xinying Wang (C1466248)

5

 4.6 Saliency extractor

 4.7 Rectangle packer

 4.8 Digital inpainting

5 Results & Evaluation -- 44

 5.1 Saliency extraction

 5.2 Rectangle packing

 5.3 Digital inpainting

6 Future work -- 58

7 Conclusions --- 59

8 Reflection on learning -- 60

9 References --- 61

Photo Montage Xinying Wang (C1466248)

6

A list of figures

Figure 1. Related works.

Figure 2. Digital Tapestry

Figure 3. A sample result of this project.

Figure 4. Samples of saliency maps and binary images

Figure 4. Two-Dimensional Rectangle Bin Packing algorithms

Figure 5. The definition of Isophote

Figure 6. Exemplar and search based image inpainting - searching patches in a sample

image

Figure 7. Exemplar and search based image inpainting - searching patches in itself

Figure 8. The probability density function of Gaussian distribution

Figure 9. The difference of applying one DOG filter and applying several DOG filters

Figure 10. Flow chart of the Frequency-tuned saliency detection algorithm

Figure 11. The threshold to binarize saliency maps.

Figure 12. Integral image (summed area table) algorithm

Figure 13. Haar features and human face features

Figure 14. Haar features used in Viola-Jones face detection

Figure 15. The mechanism of the detector scans an image.

Figure 16. Cascade of Classifiers

Figure 17. Shelf Next-Fit Decreasing Height (NFDH) algorithm.

Figure 18. Sample packing images of edge extension based on the NFDH algorithm.

Figure 19. NFDH + Expand image boundaries with gaps.

Figure 20. Guillotine Algorithms (horizontally split placement).

Figure 21. Alexandru Telea inpaiting algorithm.

Figure 22. Schematic diagram of Exemplar-based inpainting algorithm

Figure 23. Data term of Exemplar-based inpainting algorithm

Figure 24. The processes to filling missing data of Exemplar-based inpainting algorithm

Figure 25. System framework.

Figure 26. Graphical user interface

Photo Montage Xinying Wang (C1466248)

7

Figure 27. The difference of the saliency extraction without segmentation and with
segmentation

Figure 28. The difference of the saliency extraction without face detection and with face
detection

Figure 29. Packing image and mask.

Figure 30. Expand image boundaries based on NFDH algorithm.

Figure 31. Guillotine algorithm

Figure 32. The isophote vector and normal vector

Figure 33. Bar chart of times for inpainting 30 patches in a 928×1376 image.

Figure 34. Search patches in image with steps

Figure 35. Searching neighbouring area

Figure 36. Results of saliency extraction without segmentation

Figure 37. Results of Saliency extraction with segmentation

Figure 38. Fail to detect faces

Figure 39. Mistakenly detect faces

Figure 40. The difference of Shelf algorithm and Guillotine algorithm

Figure 41. Different image arrangements

Figure 42. Results of Navier-Stokes based inpainting method and Alexandru Telea

inpainting method

Figure 43. Results of Exemplar-based inpainting in a big hole surrounded by different

images

Figure 44. Results of Exemplar-based inpainting in gaps between different images

Figure 45. Inpainting a hole at the centre of an image

Figure 46. Inpainting a hole at the centre of an image with strong linear structures

Figure 47. Inpainting used in a small damaged portions of an image

Figure 48. Inpainting time with different patch sizes.

Figure 49. Inpainting time with different searching steps.

Photo Montage Xinying Wang (C1466248)

8

Introduction

With the rapid development of digital cameras and popularisation of mobile phones,

people are more willing to take pictures because of the convenience and high resolution.

With a large amount of pictures produced every day, organising and summarising this

vast amount of data is important. Photomontage is a technique to make a composite

photograph by cutting, cropping, joining and rearranging a set of pictures.

1.1 Aims and Objectives

The aim of this project is to devise and implement a photomontage system that can

automatically specify salient regions on a set of photographs and construct them into a

single composite seamless picture. In order to create an ideal image summarization

which contains as many as possible informative regions, input images are cropped with

considering image content by using saliency region detection methods. To summarise

these representative regions, different two-dimensional bin rectangle packing

algorithms are used with considering space utilisation. This step aims to pack rectangles

together into a container as densely as possible. As producing gaps is a nature problem

when packing rectangles, we need an inpainting method to fill these extra space.

The main objective can be split into a series of goals, including researching approaches

surrounding visual saliency detection, rectangle packing, research digital inpainting

techniques; implementing the system itself; improving performance and speeding up

running speed; testing and evaluating the functionality of the system created.

Desirable properties include: meaningless image fragments are avoided, faces are

preserved whole, holes are minimised and inpainting can produce a good result. The

system should be time efficiency and quality guaranteed, for which system testing,

debugging and optimization are required.

Photo Montage Xinying Wang (C1466248)

9

1.2 Project structure

This photo montage system can be split into three modules, including saliency extractor,

image packer and digital inpainting. Each module contains different methods to achieve

its goal.

 _

-

1.3 Approach

I use a top-down approach while designing my system. It breaks the system into three

chunks and allows me to tackle each problem one at a time. The initial system includes

only the relatively simple algorithms which get the system up as quickly as possible. It

also allows me to refine each algorithm, build upon it and add more approaches in any

order after the basic framework of the system is formed and works successfully.

In short, break down the system to gain sub-systems, tackle each sub-system with a

relatively simple approach and get the entire system working before optimise it.

In this project, I use Java to develop my system. There are some open source computer

libraries can be used, for example, BoofCV and OpenCV. OpenCV has an official version

for Java while BoofCV is a new real-time computer vision library written in Java. Both of

them contain lots of different image processing algorithms implemented and high

performance. Consider that I have some grounding in OpenCV, I take OpenCV as my

external library to support the programming of this project.

 Load

images

Saliency

extractor
Image packer Inpainting Save

 Shelf Algorithms

 Shelf Algorithms based Edge Expansion

 Edge Expansion with gaps

 Guillotine Algorithms

 Frequency-tuned salient region detection without segmentation
 Frequency-tuned salient region detection with segmentation
 Frequency-tuned salient region detection with face detection
 Frequency-tuned salient region detection with segmentation and

face detection

 Navier-Stokes based inpainting

 Alexandru Telea inpainting

(based on Fast marching

method)

 Exemplar-based inpainting

algorithm

Photo Montage Xinying Wang (C1466248)

10

Background

2.1 Related Work

(a)Digital Tapestry [2] - 2005 (b) Auto Collage [3] - 2006 (c) Picture Collage [4] - 2009

Figure 1. Related works. Image source: [2][3][4]. (a) Digital Tapestry: assemble patches

from a batch of repeat shots of a scene. (b) Auto Collage extracts rectangle saliency

regions from a set of image, arrange images with overlay style and performs edge-

sensitive blending in the α-channel. (c) Picture Collage defines saliency regions using a

set of weighted rectangles and joins image using an album style.

There have been many methods developed to summarise visual data automatically.

Digital Tapestry [2] presents each image as a set of blocks and match a block from an

input image to the tapestry. The advantage of this method is that if the input set of

images are of the same scene (as shown below), it may produce a composite picture

with relatively high coherence and fewer artefacts.

(a) Input images (b)Result

Figure 2. Digital Tapestry. Input images are of the same scene.

Photo Montage Xinying Wang (C1466248)

11

The limitation of Digital Tapestry is the computational complexity. Each region in the

tapestry is assembled from salient input image block considering uniqueness constraint

and block coherence constraint, it searches over input image blocks and finds a

matching neighbouring block, hence is computationally intensive. And also, artefacts are

introduced along the joins from two different images.

Auto Collage [3] was researched in 2006 by Microsoft and later, AutoCollage 2008, a

Microsoft photomontage desktop application was initially released in Sep, 2008 and

lastly updated in 2011. It sales 19.95 dollars at the Microsoft Store online which shows

that Auto Collage is an existing state of software and has been used commercially.

Auto Collage automatically creates blended image collages, it defines four terms of

energy to encourage the selection of representative images from the input image set,

ensure informative and salient regions from selected image is extracted, treat certain

materials with particular respect(e.g. human face, sky), and encourage a seamless and

smooth layout. There are four steps in the Auto Collage framework, from the static

ranking of images, through salient region detection, images packing by the branch-and-

bound algorithm and lastly edge-sensitive blending in α-channel. Auto Collage can have

a beautiful result with its blending technology but the blending still introduces artefacts

on the boundaries of different images. In addition, Auto Collage weaken image

boundaries, making the result feeling soft and smooth, so that it may confusing people

when the number of images increases because the unclear boundaries. Another

limitation of this method is that it cannot deal with images with multiple salient regions.

Picture Collage [4] use multiple weighted rectangles to indicate salient regions, and

greater weight is assigned to the centre. It joins image with overlay style and

considering salience ratio balance. This collage style is more common in people’s daily

life which generally can be seen in albums.

Compared with Digital Tapestry, Auto Collage and Picture Collage use overly style to

avoid artefacts caused by tapestry; however, Auto Collage introduces transparent

blending to soft image boundaries and the blending may also bring artefacts. Picture

Collage is much faster than Auto Collage when dealing with a large number of images,

and can clearly summarise hundreds of images because it retains image boundaries.

 inpainting

Figure 3. A sample result of this project.

Photo Montage Xinying Wang (C1466248)

12

In this project, each image is represented by a rectangle enclosing the most salient

region, which is similar to Auto Collage and Picture Collage. Compared with the

blending style of Auto Collage and overlay style of Picture Collage, this project packs

images without allowing overlay and uses inpainting technique to inpaint the gaps

between images.

 2.1.1 Salient Region Detection

(a) (b) (c)

Figure 4. From top to bottom: input images, saliency maps and binary images generated
by Frequency-tuned salient region detection algorithm.

The first step that most of the paper detailed is to determine which regions of the input

images are representative or salient and should be selected. In Figure2, the leaf, flower

and swan stand out relative to its background and attract the most visual attention, and

they are the salient objects we need to detect and extract. The saliency map indicates

the importance of each pixel.

There are several methods for automatic detection of visually salient regions, most of

them are bottom-up framework based [6]-[9], which can split into three steps:

Photo Montage Xinying Wang (C1466248)

13

1. Feature extraction: by using one or multiple features of intensity, colour,

luminance, texture, orientation and motion to determine the contrast of objects

relative to their surroundings. (This project uses colour and luminance features).

2. Saliency computation: compute saliency map by using centre-surround feature

distances [6]-[9] or other methods. (This project measures centre-surround

feature distances using a Difference of Gaussians approach).

3. Identify the location of the salient region on the salient map. The approach in [7]

introduces a set of linearly weighted rectangles to enclose the regions. In this

project, the salient region is enclosed by a rectangle.

In this project, the approach in [9] is adopted to use for saliency detection.

2.1.2 Rectangle packing

This project is also related to two-dimensional rectangle bin packing algorithm for

image arrangement. Two-dimensional rectangle bin packing problem is known to be

NP-complete. In this problem, given a sequence of rectangles of different size and the

goal is to find a packing of these rectangles into a minimum number of bins of size.

Intersection and overlapping between rectangles are not allowed. For the two-

dimensional rectangle bin packing problem, one version is called online rectagnle bin

packing, receiving one rectangle at a time and placing it into bins immediately without

any knowledge of the next items. The opposite to this is called offline rectangle bin

packing, in which the whole sequence to pack is known in advance. In this project, we

consider the latter one because the input images are known. And also, we are not

considering rotatable rectangle bin packing which allows that rectangle may be rotated

by 90 degrees because the input images of this project contain natural scenery and

people.

The two-dimensional rectangle bin packing problem does not exist an optimal solution

currently but lots of work has been done to develop efficient algorithms that can

produce good result.

Photo Montage Xinying Wang (C1466248)

14

(a) (b)

(b) (d)

(e)

Figure 4. Two-Dimensional Rectangle Bin Packing algorithms. (a) Shelf algorithm, (b)

Floor-ceiling algorithm, (c) Guillotine algorithm, (d) Maximal rectangle algorithm, (e)

Skyline algorithm.

There are several algorithms for two-dimensional rectangle bin packing [10]:

 Shelf algorithms (or level algorithms): the simplest methods to produce

packings. Pack rectangles from left to right, in rows forming level. It places the

next rectangle R on the current level if fits, otherwise create a new level and

accommodate R in new level. Time complexity: O(n ∙ log n).

 Floor-ceiling algorithm: Consider a particular level. Place the rectangle R with

decreasing size on the floor from left to right and if the new rectangle does not fit

on the floor in the same level them place it on a ceiling.

 Guillotine algorithm: After placing an item, split the rectangle into 2 smaller

rectangles to store the remaining free space. Time complexity: O(𝑛2).

 Maximal rectangle algorithm: based on an extension of the guillotine algorithm.

After placing an item, split the rectangle into 2 smaller rectangles in both split

axes.

 Skyline algorithm: it maintains a list of the ‘skyline’ edges formed by the topmost

edges of previously packed rectangles.

1 2
3

4
5

6

7

8

1 2
3

4
5

6 7 8
Ceiling

Floor

Photo Montage Xinying Wang (C1466248)

15

2.1.3 Digital inpainting

Image inpainting is the process of reconstructing missing or corrupted parts of the

images and videos; it provides a means for concealment of a damaged image.

Auto Collage [3] allows image overlay; it creates a soft, transparent blend to hide the

seam by producing an alpha mask (defines the way of the pixel’s colour merged) for

each image. Picture Collage [4] use overlay style to maximise the canvas coverage and it

does not attempt to hide the borders of images so there are not inpainting methods

used. In this project, image overlay is not allowed, and holes will always exist as the

different size of image so the inpainting is required to fill holes generated by the image

packing.

There are different categories of image inpainting algorithms, including texture

synthesis based image inpainting, Exemplar and search based image inpainting.

 Texture synthesis based image inpainting

In this method, holes are filled by sampling and copying neighbouring pixels. [13][14]

The Navier-Stokes based inpainting method [13] uses ideas from classical fluid

dynamics to maintain continuity between hole’s pixel and original image pixels. It views

the image intensity as a stream function and utilizes partial differential equations. It

propagates isophote lines continuously from the outside into the target inpainting

region, filling pixels from surrounding pixel data.

The Telea inpinting technique [14] is based on the fast marching method. Compared

with the Navier-Stokes based inpainting method which are complex to understand, the

Telea inpinting technique is simple. This method propagates pixel data inward from the

boundary of target inpainting region, the missing pixel is filled by normalized weighted

sum of all the known pixels in a small neighbourhood around the pixel to be inpainted.

 Isophote directions Isophote directions

Figure 5. Isophote definition

There are some 'level lines' of the same intensity or a contour of equal luminance in an

image, they are called isophotes.

Photo Montage Xinying Wang (C1466248)

16

 Exemplar and search based image inpainting

In this method, holes are filled by searching and matching a patch to be inpainted from a

known patch.

 Sample Damaged image Damaged image

Figure 6. Searching patch in a sample image Figure 7. Searching itself

 With “pure” textures – starts from a small source sample image and copy

the similar patch from sample image to the damaged image [11]. It suits

for an image which has a repetitive occurring textural patterns while it

has difficulty filling missing data in pictures of real world scenes.

This project contains different kinds of image, there are photographs of

the natural sights, animal, plants and people. Because of the constraint of

image category, we are not consider the pure textures in this project.

 Exemplar based – starts from searching itself to find a similar patch and

copying colour values to fill the missing data from the undamaged part of

the image. [12]

The inpainting approach in [12] combine both exemplar based method and linear

structures for which following the isophote direction. In this project, we adopt it to do

the digital inpainting.

Photo Montage Xinying Wang (C1466248)

17

Methods & Algorithms

This section details each algorithms that have been used in this project. Equations and

graphs are used to support my explanation and also intended to assure readers can fully

understand the way of these approaches work.

3.1 Saliency extraction

The approach in [9] is adopt to use for saliency detection because it is efficiency and can

uniformly highlight the salient object. This approach considers colour and luminance

features in Lab colour space and use the Euclidean distance to estimate centre-surround

contrast. To highlight the salient object, this algorithm produces a saliency map by

combining the outputs of several band pass filters.

 3.1.1 Why combine DOG band pass filters

DOG (different of Gaussian) filter and LOG (Laplacian of Gaussian) filter are band pass

filters which can be used for edge detection and intensity changes detection. In this

project, a summation over DOG is used for saliency detection. The equations of DOG

filter is given below:

DOG(x, y) =
1

2𝜋
[

1

 𝜎1
2

 𝑒
−(𝑥2+𝑦2)

𝜎1
2 −

1

 𝜎2
2

 𝑒
−(𝑥2+𝑦2)

𝜎2
2]

= G(x, y, 𝜎1) − G(x, y, 𝜎2)

𝝈𝟏 and 𝝈𝟐 are the standard deviation of the Gaussian (𝝈𝟏> 𝝈𝟐). 𝝈𝟏 and 𝝈𝟐 control the

passband width of the DOG filter.

Photo Montage Xinying Wang (C1466248)

18

Figure 8. The probability density function of Gaussian distribution. The Image comes

from wikipedia.org

If define
𝛔𝟏

𝛔𝟐
= 𝛒 (keep 𝛒 constant at 1.6, as need for ideal edge detector), we have

𝝈𝟏 = 𝛒𝛔 and 𝝈𝟐 = 𝛔. Considering a combination of several DOG filters, then we have (n

is an integer and n≥0):

∑[𝐺(x, y, ρ𝑛+1σ) − G(x, y, ρ𝑛σ)

𝑛

0

]

= 𝐺(x, y, ρ𝑛+1σ) − G(x, y, ρ𝑛σ) + 𝐺(x, y, ρ𝑛σ) − G(x, y, ρ𝑛−1σ) + ⋯

 +𝐺(x, y, ρ𝑛+1σ) − G(x, y, ρ𝑛σ) + 𝐺(x, y, ρ1σ) − G(x, y, ρ0σ)

 = 𝐺(x, y, ρ𝑛+1σ) − 𝐺(x, y, σ)

One DOG filter can be an edge detector, adding up several DOG filter which means
summarizing the output of several edge detectors. So that rather than just highlight the
object edge, the salient regions will be uniformly covered.

 (a) (b) (c)

Figure 9. (a) Original image. (b) Apply one DOG filter, highlight only object edges.

(c) Apply several DOG filters (Gaussian(𝞼=40) – Gaussian (𝞼=5)), highlight whole

object.

Photo Montage Xinying Wang (C1466248)

19

3.1.2 Computing saliency and highlight the salient regions

As can be seen from Figure 7, the probability density function of Gaussian distribution

tends to be flat with the increasing 𝛔. Diving (𝛒𝒏+𝟏𝛔) to infinity means a large ratio in

standard deviations. In image, which is 2-dimensional space, it means infinitely large

Gaussian kernel standard deviation, which is close to image average. So use image

average to estimate Gaussian filter whose kernel standard deviation is infinitely large.

 𝑰µ presents the arithmetic mean pixel value of the image, which is determined by

(𝛒𝒏+𝟏𝛔). 𝑰𝒘𝒉𝒄 presents the pixel value of Gaussian blurred image (using a 5×5 kernel

size), which is determined by 𝞼.

Use the Lab colour space and find the Euclidean distance between the Lab pixel vectors

(𝐿µ is the mean image vector and 𝐼𝑤ℎ𝑐(𝑥, 𝑦) is corresponding image pixel vector in the

Gaussian blurred version of the original image).

The formula is written as:

 S(x, y) = || 𝐼µ − 𝐼𝑤ℎ𝑐(𝑥, 𝑦)|| = [𝐼µ − 𝐼𝑤ℎ𝑐(𝑥, 𝑦)]2

 = [𝐿µ − 𝐿𝑤ℎ𝑐(𝑥, 𝑦)]2+ [𝑎µ − 𝑎𝑤ℎ𝑐(𝑥, 𝑦)]2+[𝑏µ − 𝑏𝑤ℎ𝑐(𝑥, 𝑦)]2

Figure 10. Flow chart of the Frequency-tuned saliency detection algorithm. Image from

IVRG (Images and visual representation group).
ivrlwww.epfl.ch/supplementary_material/RK_CVPR09/

3.1.3 Threshold to binarize the saliency map.

Thresholding is the simplest method of image segmentation. In order to segment salient

object from the background, we need to binarize the saliency map by assigning ones to

salient object pixels and zeros to the background.

Photo Montage Xinying Wang (C1466248)

20

Rather than using a fixed threshold to binarize the saliency maps, an adaptive threshold

(𝑻𝒂) value is used because it is image saliency dependent. The adaptive threshold (𝑻𝒂)

is defined as two times the average saliency of the input image:

𝑇𝑎 = 2 ×
∑ 𝑤𝑖𝑑𝑡ℎ−1

0 ∑ 𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦(𝑥, 𝑦)ℎ𝑒𝑖𝑔ℎ𝑡−1
0

 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡

And also, two approaches for saliency map generation are employed. One is a simple

thresholding which is quick and easy to implement; another is thresholding with image

intensity segmentation, which can eliminate some noises.

 Simple thresholding: binarize the saliency map by each pixel, retain only

those pixels whose saliency value is greater than 𝑇𝑎. The binary maps are

generated by assigning ones to the chosen pixels and zeros to the rest of

pixels.

 Thresholding with image segmentation: binarize the saliency map with

intensity segmentation [7][9]. Use the k-means clustering to segment

image and retain only those segments whose average saliency is greater

than 𝑇𝑎. The binary maps are generated by assigning ones to the chosen

segments and zeros to the rest of segments. (K-means clustering is

explained in 3.1.5)

Figure 11. Threshold to binarize saliency maps.

Original image

K-means clustering image

Segmentation

Saliency image

Saliency image

Binary image

Binary image

Retain only those pixels

whose saliency value is

greater than 𝑻𝒂.

Retain only those segments

whose average saliency value is

greater than 𝑻𝒂.

S(x, y) = || 𝐼µ − 𝐼𝑤ℎ𝑐(𝑥, 𝑦)||

S(x, y) = || 𝐼µ − 𝐼𝑤ℎ𝑐(𝑥, 𝑦)||

Photo Montage Xinying Wang (C1466248)

21

3.1.4 Computing integral image (summed area table).

After we got binary maps, the next step is to use a rectangle to enclose the most salient

region. Instead of recomputing sums of rectangles for saliency value at every re-scaling,

form an integral image (summed area table) which computes all sums at the beginning.

The value at any point (x, y) in the integral image (summed area table) is the sum of all

the pixels above and to the left of (x, y) in the original image.

The integral image algorithm can quickly and efficiently generate the sum of values in a

rectangular subset of a grid. It effectively reduces the computational complexity from

O(n) to O(1).

 Binary image Integral image Binary image Salient region

Figure 12. Integral image (summed area table) algorithm

After finishing the integral image generation, we search for the minimal rectangle which

contains more than 85% of the highlighting area, in other word, find 4 points in integral

image on the condition that I(sum)> I(max)×85%. I(max) is the point in the bottom

right which is the sum of all the pixels in the binary image.

3.1.5 K-Means clustering algorithm

K-means clustering aims to partition n observations into k cluster and find centres of

clusters and groups input samples around the clusters. K-means clustering is an

iterative algorithm, it works as follow:

1. Decide the number of clusters k.

2. Randomly choose the centre of the clusters.

A B

C D

Sum(x,y)

Photo Montage Xinying Wang (C1466248)

22

3. Attribute the closest cluster to each data point.

4. Set the position of each cluster to the mean of all data points belonging to that

cluster.
5. Repeat steps 3-4 until convergence (until the position of each cluster

unchanged).

In this project, K-means clustering algorithm is used in saliency extraction and digital

inpainting. K-means clustering algorithm used in saliency extraction aims to produce

the segmented image which may eliminate certain noises and generate better binary

image. K-means clustering algorithm used in digital inpainting aims to classify patches

into several clusters which in order to narrow down the search and increase the speed.

3.1.6 Viola Jones face detection algorithm

Face detection is a specific case of object detection, it aims to identify human face in

digital images. In this project, faces should be regards as saliency and preserved whole.

Compute saliency map only using colour and luminance features that may fail to

highlight the face region in some cases. In order to ensure that the face region is

highlighted in saliency maps, apply face detection algorithm to indicate the position of

face.

The Viola–Jones object detection framework [16] is a popular and effective object

detection method. In face detection, Viola–Jones requires full view frontal upright faces.

This method includes 4 concepts: Haar features; Integral image; Adaboost; Cascading.

 Haar feature

Human faces have some common properties, for example, the eye region is darker than

the upper-cheeks and the nose bridge region is brighter than the eyes.

(a) (b)

Figure 13. Haar features and human face features. (a) A Haar feature that looks similar
to the eye region. (b) A Haar feature that looks similar to the bridge of nose

Photo Montage Xinying Wang (C1466248)

23

Haar feature are similar to convolution kernels used in edge detection (e.g. sobel

kernel). These black and white rectangles is to analyse the differences between the dark

and light regions of a face. Each feature is calculate by subtracting the sum of pixel

under white region from the sum of pixels under black region.

Figure 14. Haar features used in Viola Jones face detection. Image from OpenCV
document.

Figure 15. The mechanism of the detector scanning an image.

The sub-window is scanned across the image at various scales (start with a 24×24

window) to detect if there is a potential face within the window

The black region is replaced by +1 and

the white region is replaced by -1. This feature is based on the

property that eyes are

darker the bridge of the nose.

Photo Montage Xinying Wang (C1466248)

24

 Integral image

The basic principle of integral image already explained in 3.1.4.

In the face detection, using integral image simplifies calculation of the sum of the pixel

under white and black rectangles and makes things fast.

 Adaboost

Consider all possible sizes and location of each kernel, there can be around 160,000+

features values within a detector at a 24×24 window need to be calculated, most of

them are irrelevant. Adaboost is a machine learning algorithm which helps on finding

only a few set of useful features among all these features and decide which features to

consider.

These selected features are called as weak classifiers because each one of them cannot

work alone but together with others forms a strong classifier. Each selected feature is

assigned a weighted value to form a final classifier. Final classifier is a weighted sum of

these weak classifiers.

𝐹(𝑥) = 𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥) + 𝑤3𝑓3(𝑥) + ⋯

 final classifier(strong classifier) weak classifier

This step bring a great reduction of features to be calculated and time saving.

 Cascading

Group the features into different stages where each stage has a certain number of

features. If a window fails the first stage, discard it, remaining features are not

considered. If it passed, goes into the second stage of features and continue the process.

If the window passes all stages, it is a face region.

Figure 16. Cascade of classifiers

Stage 1 Stage 2 Final

stage
…

…

Yes

No

Discard

Yes Yes
Window contains

the face!

No

Discard

No
Window does not

contain the face.

100%

Photo Montage Xinying Wang (C1466248)

25

3.2 Rectangle Packing

This project provides three approaches based on rectangle packing algorithm to

arrange the images. The first one is Shelf Next-Fit Decreasing Height (NFDH) algorithm

which is fast and easy to implement. The second one is based on NFDH, it expands

image boundaries to maximise page coverage. The third one is the Guillotine

Algorithms, which utilise space usage.

3.2.1 Shelf Next-Fit Decreasing Height (NFDH) algorithm

First, create a rectangle canvas with fixed width and infinite height. Place images with

decreasing height order, if the size of the image is unfit in current level, create a new

level. Third, after finishing the arrangement of all images, cut off the excess height and

width. The time complexity of NFDH algorithm is O(n log n).

Figure 17. Shelf Next-Fit Decreasing Height (NFDH) algorithm.

3.2.2 Expand image boundaries based on NFDH

Increasingly extend the edge of the salient images until they cover the whole canvas or

unable to expand (has reached boundaries of the original image). In most of cases, it

creates a packing image without holes if there are enough space to expand.

Figure 18. Sample packing images of edge extension based on the NFDH algorithm.

1
2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1
2 3

4 5 6

7 8 9

1
2 3

4 5 6

7 8 9

Photo Montage Xinying Wang (C1466248)

26

3.2.3 Expand image boundaries and allow gaps.

(a) (b)

Figure 19. NFDH + Expand image boundaries with gaps. (a) Saliency images packed by

the NFDH algorithm. (b)Expand boundaries and allow gaps between images.

To increase the space usage and has a better image arrangement, this project expand

the boundaries of saliency images based on the Shelf Next-Fit Decreasing Height

(NFDH) algorithm. It creates narrow gaps which may be used to create a joins between

images by inpainting.

3.2.4 The Guillotine Algorithms

The Guillotine algorithm is a totally different approach to the shelf algorithm and

superior to the shelf algorithm in space usage. It records each free areas of the bin and

searches any free space.

Theoretically there are two possible split axes, vertical split and horizontal split. In this

project we use only the way of horizontal split to store the remaining free space,

because rather than using a fixed size container, a rectangle container with fixed width

and extra-large height results in better utilization of free space. The priority is to fill the

space horizontally.

 Each item (in decreasing height order) finds the smallest free rectangle in which

 enable to accommodate it.

 Horizontal subdivide the area into two free rectangle area.

 After finishing the placement of all images, cut off the excess height and width.

A relatively bigger gap occurs because the edge

has reached the original image’s boundary; it is

the maximum height this image can has.

Photo Montage Xinying Wang (C1466248)

27

Figure 20. Guillotine Algorithms (horizontally split placement).

3.3 Inpainting

The Navier-Stokes based inpainting method and the inpainting method by Alexandru

Telea which is based on Fast Marching Method both reconstruct the selected image area

from the pixel near the area boundary and fill one missing pixel at each time. The

difference between these two methods is that the Navier-Stokes based inpainting fills

pixels along the edges from known regions to unknown regions while the Alexandru

Telea inpainting method fills everything in the current boundary and goes into the

regions. The Exemplar-based inpainting method reconstructs the missing image area

from the patches searching in itself and fills several pixels in one patch each time.

The Navier-Stokes based inpainting method and the Alexandru Telea inpainting method

both have been implementing in OpenCV. The Exemplar-based inpainting method is

computationally intensive because it searches over the images to find the best patches.

3.3.1 Navier-Stokes based method [13].

This algorithm is based on fluid dynamics and views the image intensity as a streamline

of the flow. It matches gradient vectors at the boundary of the region to be inpainted

and continues isophotes, travelling along the edges from the known region to the region

to be inpainted.

Photo Montage Xinying Wang (C1466248)

28

3.3.2 Method by Alexandru Telea, based on Fast Marching Method [14].

Figure 21. Alexandru Telea inpaiting algorithm. The image comes from [14].

This algorithm starts from the boundary of the inpainting region, fill every point in the

front boundary and goes inside to gradually fill inner boundaries. For a point p on the

boundary B, a small known neighbourhood q around the point is considered. The value

of the pixel is determined by its known neighbourhood.

The priority of the point p on the boundary is (𝛻𝐼(q) is the gradient of point q):

 𝐼𝑞(𝑝) = 𝐼(𝑞) + 𝛻𝐼(𝑞)(𝑝 − 𝑞)

The weighting function is defined as:

 w(p,q)=directional(p,q)× distance(p,q) ×level (p,q)

From the above equation, more weightage is given to those pixels near to the normal

direction [directional (p, q)], close to the point [distance (p, q)], and those close to the

boundary contours [level (p, q)].

𝐼(𝑝) =
∑

𝑞⋲𝐵(𝜀) 𝑤(𝑝, 𝑞)[𝐼(𝑞) + 𝛻𝐼(𝑞)(𝑝 − 𝑞)]

 ∑ 𝑤(𝑝, 𝑞)

𝑞⋲𝐵(𝜀)

A weighted sum of all points q (the known pixels in the neighbourhood) is normalized

to fill the pixel.

Photo Montage Xinying Wang (C1466248)

29

3.3.3 Exemplar-based inpainting [12].

Figure 22. Schematic diagram of Exemplar-based inpainting algorithm. Patch Ψp is the
patch to be inpainted, 𝛁𝑰𝒑 is the unit vector of isophote at point p, 𝒏𝒑 is the unit normal

vector of the front contour δΩ at point p. The image comes from [12].

This algorithm focus on both surrounding linear structure and exemplar-based texture
synthesis. This algorithm can be concluded in 6 steps:

1. Fill every point in the front boundary and goes inside to gradually fill inner

boundaries. (onion peel method)

2. For patch Ψp centred at the point p in current boundary, compute their priorities

to determine the fill order.

3. Find the patch Ψp in the targeted area (damaged part of image) with maximum

priority.

4. Find the patch Ψq in the source area (undamaged part of image) that minimizes

the difference between these two patches.

5. Copy pixel data to from patch Ψq to patch Ψp

6. Update confidence values

The fill order of the patches in the same level boundary is determined by priority P(p),

which is defined as the product of the confidence term – C(p) and the data term – D(p):

 P(p) = C(P)×D(p)

C(p) is the percentage of the known pixels in inpainting patch Ψp. Patches that are

surrounded by more known pixels will tend to be filled first.

 Patch a Patch b

Figure 23. Data term is calculated by isophote vector and normal vector of the front

contour.

∇𝐼𝑝

𝒏𝒑 The data term of patch a < the data term of patch b

 D(a) < D(b)

Photo Montage Xinying Wang (C1466248)

30

The data term D(p) is the strength of isophote hitting the boundary, it boosts the

priority of a patches that an isophote flows into.

D(p) =
|∇𝐼𝑝 ·𝑛𝑝|

 α
 , 𝛁𝑰𝒑 is the unit vector of isophote at point p, 𝒏𝒑 is the unit normal

vector of the front contour at point p, α is a normalization factor (α=255 for grey image

and α=3×255 for 3 channel image like RGB image).

Figure 24. The processes to filling missing data. Replace the inpainting patchΨp with

the source patch Ψq.

Once all priorities on the fill front have been calculate, the patch Ψp with the highest

priority has found, then we search the patches Ψq in source region (undamaged part of

image) and find the most similar and fill the Ψp with Ψq.

The way to measure the similarity between two patches is the sum of squared

differences of the known pixels in these two patches. The smaller sum of squared

differences, higher similarity.

Source region

Inpainting area

P1 P2 P3 P4 P5

P6 P7

… …

 …

 …

 …

 …

 ...

… …

 …

 …

 …

 …

 …

 ... … … … … … …

1. Find the patch Ψp

with highest priority.

2. Search source

region to find a most

similar patch Ψq.

3. Fill the Ψp with Ψq
Ψq

Ψp

Photo Montage Xinying Wang (C1466248)

31

Implementation

4.1 Technical Background

OpenCV 2.4.11:

This project is written in Java and externally calls OpenCV as a support library. OpenCV

is an open source computer vision library and has C++, C, Python and Java interfaces

and supports Windows, Linux, Mac OS, iOS and Android. It implements lots of

algorithms for computer vision. It helps to develop this project, for example, it contains

the Gaussian filter, K-means clustering, Viola–Jones face detection, Navier - Stokes

inpainting method [13], Telea inpainting method [14] used in this project.

OpenCV 3.0.0 was used in this project in the period of first three weeks because it is

new and brings new functionalities, but it is currently beta and not the official release, it

was unstable and the functionality in some modules has been split into other

modules. In addition, the documentation and tutorial of OpenCV 3.0.0 online is limit

compared with OpenCV 2.4.11. Consider that I have encountered few bugs in 3.0.0 and

no additional needs is required in this project, so I replace OpenCV 3.0.0 with OpenCV

2.4.11, which is the last official stable release.

4.2 Images sources

Before the coding and testing could commence it is necessary to prepare digital image

data to be used. All images processed in this project are found and downloaded by

using an advanced search filter called "usage rights" on Google image search, which can

filter the results to find images that you have permission to use.

4.3 System environment

The runtime performance cost of algorithms externally depends on hardware. This

report will carry out comparison of runtime performance cost of different algorithms, a

declaration of the system environment is shown below:

Computer: Microsoft Surface Pro 3

Processor: Inter(R) Core(TM) i5-4300U CPU @ 1.90GHz 2.50 GHz

RAM: 4.00GB

Operating system type: Windows 10. 64-bit, X64-based processor

Photo Montage Xinying Wang (C1466248)

32

4.4 System framework

Before any coding work start, it is essential to understand fully the algorithms which are

intended to be used. The following is to create the basic framework of the system. The

coding work of the system is mainly split into four modules, they are:

 Graphical user interface which includes loading images, displaying images,

processing images and saving images.

 Saliency extractor

 Rectangle packer

 Digital inpainting

Figure 24. System framework. Initial system -> final system

Each sub-system was created by a relatively simple algorithm to get the whole system

work as quick as possible. After finishing the basic system, optimise each sub-system

and add more methods. A simple graphical user interface is used to run each sub-

system. Once the user opens and loads a directory of the image set, different methods in

each module can switch to run; the user does not need to reload the image or restart the

Photo Montage Xinying Wang (C1466248)

33

application. The user can click the image icons in the left lists and see their detail in the

right window.

A screenshot of the user interface is shown below.

Figure 26. Graphical user interface

4.5 Mat image and buffered image convertor

The class Mat in OpenCV represents an n-dimensional dense numerical single-channel

or multi-channel array, and it can be used to store real or complex-valued vectors and

matrices, grayscale or colour images. Images are loaded and processed as mat images, in

order to display the result images on the UI, a convertor for converting buffered image

to mat image and mat image to buffered image is provided.

Photo Montage Xinying Wang (C1466248)

34

4.6 Saliency extractor

There are four choices of saliency extractor can be used, the user can select which one

to use depends on the type of images. For example, if the set of images are all the natural

scenery and without people, there is not necessary to use saliency extractor with face

detection.

 Frequency-tuned salient region detection without segmentation
1. Convert the image from RGB colour space to Lab colour space.
2. Apply Gaussian filter with kernel size 5×5.
3. Calculate mean image colour vector.
4. Find the Euclidean distance between the Lab pixel vectors of Gaussian image and

mean colour vectors. Then normalise it to generate saliency image.
5. Generate binary image by assigning ones to the pixels whose saliency value are

greater than 2 × mean saliency (adaptive threshold) and zeros to the rest of
pixels.

6. Computing integral image based on the binary image.
7. Search with a 32k×32j window in integral image(k and j are increasing integers

and k>0, j>0) and find a minimum window with Sum(window) > 85%×
Sum(all)

 Frequency-tuned salient region detection with segmentation
1. Convert the image from RGB colour space to Lab colour space.
2. Apply Gaussian filter with kernel size 5×5.
3. Calculate mean image colour vector.
4. Find the Euclidean distance between the Lab pixel vectors of Gaussian image and

mean colour vectors. Then normalise it to generate saliency image.
5. Segment image with K-means segmentation algorithm and retains only those

segments whose average saliency is greater than 2 × mean saliency value. The
function of K-means clustering has already implemented by OpenCV.

6. Generate binary image by assigning ones to the pixels in selected segments and
zeros to the rest of pixels.

7. Computing integral image based on the binary image.
8. Find a minimum window.

 Frequency-tuned salient region detection with face detection
1. Convert the image from RGB colour space to Lab colour space.
2. Apply Gaussian filter with kernel size 5×5.
3. Calculate mean image colour vector.
4. Find the Euclidean distance between the Lab pixel vectors of Gaussian image and

mean colour vectors. Then normalise it to generate saliency image.
5. Load a Cascade classifier from an OpenCV file. Apply Cascade classifier class for

face detection. Face regions are represented by a list of rectangles.
6. Generate binary image by assigning 1s to the pixels whose saliency value are

greater than 2 × mean saliency (adaptive threshold) and 0s to the rest of pixels.
Assign ones to the pixels whose are in the face region to highlight the face region.

7. Computing integral image based on the binary image.
8. Find a minimum window.

Photo Montage Xinying Wang (C1466248)

35

 Frequency-tuned salient region detection with segmentation and face detection

Combine both K-means clustering and Viola–Jones face detection

 (a) (b) (c)

Figure 27. Results of the saliency extraction without segmentation and with
segmentation.

Generating binary image by segmentation can eliminate some noises in the background.

For example, it reduces the noises in (a) and removes the noises around the image

corner of (b) and in the top left corner of (c).

Binarize the

saliency map

by each pixel

K-means

clustering image

Binarize the

saliency map by

segmentation

Original images

Photo Montage Xinying Wang (C1466248)

36

 (a) (b) (c)

Figure 28. Results of saliency extraction without face detection and with face detection

The salient region extraction without face detection fails to enclose the face region in

some images because low saliency value in face region in the saliency map and face

region did not get the highlight in the binary image.

Original

image

Saliency

map

Binary image

without face

detection

Binary image

with face

detection

Salient region

extraction without

face detection

(some lost head)

Salient region

extraction with

face detection

Photo Montage Xinying Wang (C1466248)

37

4.7 Rectangle packer

A packing image and an inpainting mask are generated in this section. Inpainting mask

is an 8-bit 1-channel image which is used to indicate the area that needs to be inpainted.

Non-zero pixels indicate the area that needs to be inpainted.

 Packing image Mask

Figure 29. Packing image and mask.

 Shelf Next-Fit Decreasing Height (NFDH) algorithm

The first rectangle packer is using the shelf algorithm (also called level algorithm)

which is unarguably the fastest and simplest method one can use to produce

packings.

1. Estimate a fixed width by a square root of the sum of the width of all images, so

that the result can lead as close to square.

2. Rank images with decreasing height order

3. Place image in the current level, if the width of the image is unfit in the current

level, create a new level.

4. After finishing the placement of all images, cut off the excess height and width.

 Expand image boundaries

1. Expand image boundaries based on NFDH algorithm

Figure 30. Expand image boundaries based on NFDH algorithm.

1 2

3 4

Fill? No Fill? No
1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

Fill? No

Fill, stop.

Photo Montage Xinying Wang (C1466248)

38

 The Guillotine Algorithm

Use a binary tree to store free rectangles, create a class Node to store the

position and size of rectangles, use a Boolean data type to identify the rectangle if

is free to use.

1. Set the rectangle canvas by estimating a fixed width by a square root of the sum

of the width of all images, so that the result can come as close to square. Set the

height of canvas equals to 10×width.

2. Initialize the root of the binary tree = canvas(the biggest free rectangle)

3. Traverse the tree to find a free node with a minimal size which enables to

accommodate the image.

4. After placing the image, mark the node as used and split the node to two nodes

5. Repeat step 3-4

Figure 31. Binary tree used in the Guillotine algorithm

down

right

(row,col) – coordinate of point

BlockHeight

BlockWidth

Photo Montage Xinying Wang (C1466248)

39

4.8 Digital inpainting

4.8.1 NS inpainting and Telea inpainting

The Navier-Stokes based inpainting method and Alexandru Telea inpainting method

which is based on Fast Marching Method are both provided by OpenCV.

4.8.2 Exemplar based inpainting

 A patch from packing image A patch from inpainting mask

Figure 32. The isophote vector and normal vector of the front contour at point p

1. Initialize confidence term C(p). C(p) equals to the percentage of the known pixels in

inpainting patch. Use a mat to save them.

2. Calculate 𝒏𝒑 (the unit normal vector of the front contour at point p) by using Sobel

kernel in inpainting mask. Use two mats to save them, one for the horizontal direction

and one for the vertical direction.

3. Compute gradient in packing image by using Sobel kernel and them rotate gradient

90 degrees to get 𝛁𝑰𝒑 (the unit vector of isophote at point p). Use two mats to save

them, one for the horizontal direction and one for the vertical direction.

4. Found the front contour, use a List<MatOfPoint> to save their position.

5. Calculate priority value P(p) of points along the fill front which determines their

order to be inpainted. P(p)=
| 𝛁𝑰𝒑 × 𝒏𝒑 |

255×𝟑
 × 𝑪(𝒑)

6. Create a priority queue to store the position and priority value of contour points. The

Point with the highest priority at the top of the queue.

7. After priority queue construction, use poll () method to retrieve and remove the head

of this queue.

8. If the point with the highest priority value (the head of this queue) has already filled,

then remove the head of this queue and do nothing. If not, search the most similar

patches in the source image (known data) and fill the inpainting patch Ψp with matched

patch Ψq.

Normal vector
of the contour

Isophote

Source image

Inpainting area

Ψq

Ψp

Photo Montage Xinying Wang (C1466248)

40

9. After inpainting a patch, update confidence term - C(p) and data term D(p).

10. Repeat step 8-9 until this queue is empty.

11. Repeat step 4-10 until not front contour is found.

In the beginning, a simple array is used to store the priority and position of points. In

order to find the point with the highest priority, it needs to traverse the array every

time. For a size 928×1376 image, it cost 303 seconds to inpaint 30 patches (patch size is

11×11 pixels and jump a step of 11 pixels in source area to search a matched patch),

which means about 10 seconds spent for one patch. And there are thousands of patches

need to be inpainted so that it is very important to increase the inpainting speed.

In order to improve efficiency, there are six methods below (patch size are all 11×11

pixels):

 Priority queue

A priority queue is an abstract data type which an element with high priority is served

before an element with low priority.

A priority queue is used to store the priority and position of points rather than using a

simple array to store and traverse the array each time to find the maximum priority. It

speeds up the time for finding highest priority point without affecting inpainting

quality.

 Early jump-out

An early jump-out technique for speeding up the time of testing similarity of image

patches without affecting inpainting quality. The algorithm is shown below:

S_min is a previously selected patch whose has the minimum sum of Euclidean distance

so far.

For pixels in current patch Ψq {

The sum of Euclidean distance between two patches: S_current = S_current +

Distance(next pixel)

If S_current is greater than S_min, then break the loop. This patch has a greater

difference than previously selected patch. Give up this patch and go to next patch.

}

Photo Montage Xinying Wang (C1466248)

41

For an image with size 928 pixels ×1376 pixels:

 Simple array: 303 seconds to inpaint 30 patches

 Priority queue: 16 seconds to inpaint 30 patches

 Priority queue + Early jump-out: 7 seconds to inpaint 30 patches

Figure 32. The time for inpainting 30 patches in a 928×1376 image.

The time complexity for using simple array to find the highest priority point is O(n).

The time complexity for using priority queue to find the highest priority point is O(1).

Using priority queue greatly reduces the time in finding the highest priority and using

early jump-out reduces the time for testing similarity of image patches. Both of them

does not affect the inpainting quality.

7 seconds to inpaint 30 patches which means 4 minutes for relatively small holes which

has 1000 patches and 27 minutes for big holes which has about 7000 patches.

Obviously, it is not quick enough.

 A 928×1376 image with big holes (about 7000 patches)

0

50

100

150

200

250

300

350

Simple array Priority queue Priority queue +
early jump-out

Ti
m

e
/s

The time for inpainting 30 patches (image size
928×1376)

for 30 patches

Photo Montage Xinying Wang (C1466248)

42

The following 4 methods for speeding up time may affect the inpainting quality.

 Search patches with a big step

Searching every possible patch in source image can testing all possible patches and find

the best one. It produces the better result but low searching speed.

For an image with size 928 pixels ×1376 pixels:

Searching every possible patch (step =1 pixel) to fill 20 patches: 448 seconds

Searching patches with a big step (step =11 pixels) to fill 20 patches: 4 seconds

 Small step Big step

Figure 34. Search patches in image with steps. Small step and big step

 Search neighbours

Only search the patches near the hole.

Figure 35. Searching neighbouring area of the hole

The searching area is depends on the patch size. It is defined as 5 × patch size. For

example, if patch size = 11×11, the searching radius around the inpainting patch is

5×11=55 pixels.

 K-means clustering

The K-means clustering in this section use a fixed K-seeds rather than an adaptive K-

seeds by adding up histogram peaks in three channels (channel-L, channel-A and

channel-B) to obtain the total number of peaks and indicates the value of K. Because the

packing image summarise different images together which includes a variety of tone.

Searching area

Photo Montage Xinying Wang (C1466248)

43

The inpainting patch firstly searches the similar cluster and then go into the cluster and

search the patches around the points in this cluster. For example, the inpainting patch is

a part of the earth which is brown; then we are not looking for patches in the sky which

are blue.

The searching step is adaptive by the size of clusters.

The adaptive step =20 * cluster size/maximum cluster size;

Bigger cluster, bigger step.

 Candidate set

After filling the front part of patches, add their matched patches into candidate set and

fill the following patches by searching the similar patch in the candidate set. This

method can greatly reduce the time cost in searching patches from whole images.

Photo Montage Xinying Wang (C1466248)

44

Results & Evaluation

5.1 Saliency extraction

The frequency-tuned salient region detection algorithm is fast and provides full

resolution saliency maps which may suited to image segmentation. The segmentation is

based on the intensity and colour properties of the pixels which aims to take out some

noises.

 Compare saliency extraction without segmentation and with segmentation

Figure 36. Results of Saliency extraction without segmentation. The first column are the

original images, the second column are the binary images, and the third column are

saliency images extracted.

Figure 37. Results of Saliency extraction with segmentation. The first column are the

clustering images, the second column are the binary images, and the third column are

saliency images extracted.

Photo Montage Xinying Wang (C1466248)

45

Saliency extraction with segmentation may reduce noises in the background but also

introduce noises in some cases. Because it segments images based on the intensity and

colour of pixels and the binary image is generated considering the mean saliency of the

segments, the noise may be reduced by classifying the noise pixel to a segment which

has a low mean saliency value. Also, the mean saliency of the segment may be raised by

the noise pixel whose has a relatively higher saliency value, once the mean saliency of

the segment exceeds a threshold, it will result in a bigger noise.

 Viola–Jones face detection

This algorithm is fast and efficient. To detect a face, Viola–Jones requires full view
frontal upright faces.It is not perfect, given 80 images which contains human faces and
apply Viola–Jones face detection to detect faces, 61 of them are correctly detected.
There are two cases of failures:

 images that do include faces that are mistakenly classified by the face detector as
not including faces

 images that do not include faces that are mistakenly classified by the face
detector as including faces

The first case of failure:

Figure 38. Images that the face detector detects as not including faces.

In these images, face detection fails to detect a face from the side, a face with strong
facial expressions, and a face covered by some items. The failures due to the distortion
of certain face properties like irregular shape and size of eyes, mouth, and bridge of
nose, etc. The distortion of face properties results unmatchable facial features so that
the score representing the confidence of the face cannot reach the threshold at the end
of the classifier cascade of the face detector.

Photo Montage Xinying Wang (C1466248)

46

The second case of failure:

Figure 39. Images that the face detector detects the mistaken face region

In this case, a non-face region is mistakenly classified as a face. This non-face region

contains intensity features which similar to a face. This non-face region contains darker

regions and brighter regions which may mistakenly match to the human eye and mouth.

The detector returns a score of high confidence level about these matchings. So that the

score may reach the threshold at the end of the classifier cascade of the face detector

and classify the non-face region as a face.

In this two cases of the incorrect face dictation, the threshold at the end of the classifier

cascade of the face detector plays a key role in the accuracy. By decreasing the

threshold, the failure of the first case can be reduced and also increases the failure of the

mistaken face. Reversely, increasing the threshold increases the failure of the first case

but decrease the failure of the mistaken face.

In the Viola–Jones face detection, the detector is most effective only on full view frontal

upright faces without strong expressions. And also, it is sensitive to lighting conditions

because it uses features to match face properties based on pixel intensities.

Photo Montage Xinying Wang (C1466248)

47

5.2 Rectangle packing

 Shelf algorithm Guillotine algorithm

Figure 40. Shelf algorithm and Guillotine algorithm

Compared with the Shelf algorithm, Guillotine algorithm keeps exact track the free

spaces of the bin and allows more remaining space to use. Guillotine algorithm has a

higher availability of space and produces smaller holes. Guillotine algorithm utilises the

free space for smaller rectangles. However, if the sizes of rectangles are the same or

similar, the results of shelf algorithm and guillotine algorithm would be the same.

Based on the maximum size of each bin in Shelf algorithm, I expand the boundaries of

these saliency images to create a better image layout.

 (a)Shelf algorithm (b) Expand boundaries with gaps (c) Inpainting mask

Figure 41. Different image arrangements.

Photo Montage Xinying Wang (C1466248)

48

5.3 Digital inpainting

 Navier-Stokes based inpainting method and Alexandru Telea inpainting method

 Packing image (Shelf algorithm) Packing image (expand boundaries)

Navier-Stokes based inpainting method with an inpaintRadius=5 pixels

Alexandru Telea inpainting method with an inpaintRadius=5 pixels

Figure 42. Results of Navier-Stokes based inpainting and Alexandru Telea inpainting

Photo Montage Xinying Wang (C1466248)

49

Navier-Stokes based inpainting and Alexandru Telea inpainting both inpaint the missing

pixel with its neighbours. They are fast and displays strong visual artefacts when

inpainting a big hole. The curve joins between images may due to that the missing pixel

is filled with the image which are more close to it.

 Exemplar-based inpainting method applied on packing image generated by Shelf

algorithm

Image 1:

For an image with size 256×416 pixels (115 patches need

to be inpaintde, patch size = 15×15 pixels; Step=11 pixels

or use an adaptive step in the k-means clustering)

Search whole image to inpaint 115 patches: 3s

Search neighbours to inpaint 115 patches: 1s

Search whole image to inpaint 115 patches with the k-

means clustering: 1s

Search whole image to inpaint 115 patches with a

candidate set: 1s

Search whole image to inpaint 115 patches with the k-

means clustering and a candidate set: 1s

Photo Montage Xinying Wang (C1466248)

50

Image 2:

For an image with size 512×1056 pixels (1123

patches need to be inpainted, patch size = 15×15

pixels; Step=11 pixels or use an adaptive step in the

k-means clustering)

Search whole image to inpaint 1123 patches: 140s

Search neighbours to inpaint 1123 patches: 8s

Search whole image to inpaint 1123 patches with k-

means clustering: 16s

Search whole image to inpaint 1123 patches with a

candidate set: 16s

Search whole image to inpaint 1123 patches with k-
means clustering and a candidate set: 8s

Photo Montage Xinying Wang (C1466248)

51

Image 3:

For an image with size 768*1152pixels

(1150 patches need to be inpainted,

patch size = 15×15 pixels; Step=11

pixels or use an adaptive step in the k-

means clustering)

Search neighbours to inpaint 1150

patches with the k-means clustering: 15s

Search whole image to inpaint 1150
patches with the k-means clustering and
a candidate set: 75s

Figure 43. Results of Exemplar-based inpainting in a big hole surrounded by different

images

The strong visual artefacts can be clearly seen when inpainting a large hole surrounded

by different images. The visual artefacts increase with the distance increases from

boundary. The boundaries data of the large hole surrounded by different images are

very spread and sparsely distributed. The colour and intensity features of surrounding

data of holes differ greatly.

Photo Montage Xinying Wang (C1466248)

52

 Exemplar-based inpainting method applied on packing image generated by Shelf

algorithm and with expand boundaries

For an image with size 1026×908 pixels (1659

patches need to be inpainted, patch size = 15×15

pixels; Step=11 pixels or use an adaptive step in

the k-means clustering))

Search neighbours to inpaint 1651patches: 25s

Search whole image to inpaint 1651 patches with

the k-means clustering and a candidate set: 155s

Figure 44. Results of Exemplar-based inpainting in gaps betwwen different images

Photo Montage Xinying Wang (C1466248)

53

When doing the inpainting with a big hole surrounded by different images, it always has

strong artefacts and creates an awful image collage. Currently there is few of even no

researches conducted in inpainting with a large hole surrounded by different images.

The results of the Exemplar-based inpainting applied in big hole are disappointing

because the strong artefacts.

Surprisingly, the Exemplar-based inpainting applied in narrow gaps between different

images produces an interesting result although still artefacts exist. I call it basket

weave-effect because it is similar to a woven basket texture. To some extent, it can be

used in visual arts can be improved in the future to create a fantasy effect.

 A woven basket texture

 Joins of different images

Figure 45. Basket weave-effect

Photo Montage Xinying Wang (C1466248)

54

Although the Exemplar-based inpainting can introduces strong artefacts when

inpainting a big hole surrounded by different images, it can produce a good result when

inpainting a hole at the centre of an image and it is effective when applying at an image

which has strong linear structures.

 Inpainting with a hole at the centre of an image (patch size=15*15)

 Original Image Remove object

(a) (b) (c)

 (d) (e) (f)

(a) Apply Exemplar based inpainting (search whole image)

(b) Apply Exemplar based inpainting (search neighbours)

(c) Apply Exemplar based inpainting (search whole image with the k-means

clustering)

(d) Apply Exemplar based inpainting (search whole image with the k-means

clustering and a candidate set)

(e) Apply Navier-Stokes base inpainting

(f) Apply Alexandru Telea inpainting

Figure 46. Inpainting a hole at the centre of an image

Photo Montage Xinying Wang (C1466248)

55

The Navier-Stokes based inpainting method and Alexandru Telea inpainting method are

not working well with big holes. Because they fill missing pixels by sampling and

copying neighbouring pixels, the artefacts increase with the distance of the missing

pixel and boundaries increases.

The Exemplar-based inpainting can get a better result when used to inpaint a hole at the

centre of an image because there is more reliable pixel data along the boundaries of the

hole and a single image has coherent textures. However, there are still artefacts due to

incorrect selection of patches. Theoretically, search whole image with a small searching

step will produce the best result because it search patches in all probability but it is

computationally intensive and causes run-time inefficiency.

(a) Original image (b) Damaged image (c) inpainting result

Figure 46. Inpainting a hole at the centre of an image with strong linear structures

The Exemplar based inpainting method pays special attention to linear structures and

fills patches along the isophote. It is very effective in strong linear structures.

Photo Montage Xinying Wang (C1466248)

56

 Inpainting with a small damaged portions of an image

 Original image Small damaged portions of an image

(a) (b) (c)

Figure 47. Inpainting used in a small damaged portions of an image. (a) Navier-Stokes

based inpainting with an inpaintRadius=5. (b) Alexandru Telea inpainting with an

inpaintRadius=5. (c) Exemplar based inpainting with patch size 11×11 pixels.

Navier-Stokes based inpainting, Alexandru Telea inpainting and Exemplar-based

inpainting works well in a small damaged portions of an image because there are more

reliable surrounding data and also more information is provided.

Photo Montage Xinying Wang (C1466248)

57

 Runtime of the Exemplar-based inpainting method

The patches size and the searching step can both effect the runtime:

The time increases with the patch size increases. Because a bigger patch size results in

increasing computations when testing similarity of patches.

Figure 48. Inpainting time with different patch sizes.

Figure 49. Inpainting time with different searching steps.

Step = 1 means search patches in all probability.

Step = 3 means search patches doing:

Loop1： (row+=3 pixels)

 Loop2： (column+=3 pixels)

 Test similarity of patches

The time decreases with the searching step increases. Because a bigger searching step

results in decreasing patches to be tested.

0

50

100

150

11*11 13*13 15*15 17*17 19*19 21*21 23*23

Ti
m

e
/s

Patch sizes /pixels

Time for inpaint 180 patches. (image size=512*1056)

Time for inpaint 180 patches

0

100

200

300

400

1 3 5 7 9 11 13

Ti
m

e
/s

Steps /pixels

Time for inpaint 30 patches. (image size=512*1056, patch
size=11*11)

Time for inpaint 30 patches

Photo Montage Xinying Wang (C1466248)

58

Future work

Saliency extraction:

Although the saliency extractor (frequency tuned method) have achieved good results

with images, it can be insufficient to analyse complicated variations common in natural

images because it only considers first order average colour. Future work on saliency

extraction would consider more image features like spatial relationships across image

parts.

Two-dimensional bin rectangle packing:

In order to improve the quality of inpainting, it is essential to minimise holes.

Alternatively, there are other image arrangement methods like page layout or layout

style that allowing overlap or packing the images together with irregular shapes.

Digital inpainting:

There was very few or even not papers to do digital inpainting with big holes created by

different images. It was originally hoped that given a seamless good inpainting result

using Exemplar-based inpainting method. Pixel-based inpainting methods and

Exemplar-based inpainting methods can be efficiency in filling small holes but have

disappointed results in big holes. The joins of images cannot be perfectly hided by

inpainting. In this project, inpainting gaps between different images using Exemplar-

based inpainting produces a sense of "interweaving" effect and looks interesting. It

could be a good way to deal with the joins between different images.

There are some artworks to do an "interweaving" effect of an image in Photoshop. In the

future, we can improve the Exemplar-based inpainting and investigate an interweaving

way to create fantasy joins between images and apply it to the photomontage

automatically.

Photo Montage Xinying Wang (C1466248)

59

Conclusion

As a whole, this project implements a photo montage system which has attempted

different solutions to create an ideal image summary. The first part of this project is to

extract salient region. I believe that the first part of this project has been a success. The

frequency –turned approach of computing saliency using low-level features of colour

and luminance is easy to implement and fast. In particular, the human face is treated

with particular respect and preserved whole.

The second part is two-dimensional rectangle bin packing which mainly aims to

summarise saliency regions of images and minimise holes without allowing overlap.

The final part is digital inpainting, and it attempted three different inpainting methods

to restore the big hole generated by different images. Unfortunately, none of those

solutions has proved successful. The big hole inpainted using those method has strong

visual artefacts, the results are disappointing. In addition, inpainting gaps between

different images using Exemplar-based inpainting produces a sense of "interweaving"

effect and produces a better result.

Photo Montage Xinying Wang (C1466248)

60

Reflection on Learning

Having come towards the end of this project, I shall come to the reflection on what I

have learnt over this course.

My first exposure to image processing was about two years ago, in order to get a higher

mark, I chose a coursework about object recognition which aims to recognise one or

more oranges from a uniform green background and draw circles to enclose the

oranges. At that time, I have no relevant knowledge about image processing, in order to

complete the task which was a challenge for me, I found tutorials online and followed

the steps. Although I did lots of work to figure out how to use edge detector, Gaussian

filter and what is Hough transform, I still missed some fundamental concepts and

details of how they work.

The module ‘Scientific Computing and Multimedia Applications’ I took in my second

year introduced mainly general concepts of image format, image compression and

something about the video, it did not focus much on image processing. During my final

year in the module ‘Computer vision’, I was introduced many theories and concepts of

image processing. I also got some vital knowledge that was essential for this project.

Think back the orange recognition that I was struggling two years ago, and it has

become very easy for me now because I have got more understanding of image

processing and grew.

In this project, I have greatly developed my knowledge of image processing and deeper

understanding of code optimization. I have taken several optimization methods in the

Exemplar-based inpainting algorithm and stayed motivated to reduce the running time,

having never felt that the running speed of an algorithm is so important. Each time I

meet with the supervisor, it is the time for me to expand knowledge and gain a

guidance. Computer vision has become my favourite subjects and I decided to take

computer vision as my subject in the postgraduate study.

I have enjoyed working on this project immensely, having improved my problem-

solving skill and increased my knowledge about image processing. If I go back to when

the project starts, I would have done things differently.

Firstly, I would have managed my time more effectively because things always take

longer than I expect. It is better to have a tight schedule in the first few weeks and allow

more time in the end.

Secondly, I would have written a diary to track each process I made during the course of

the project. I did write some keywords to record my processes but it is not enough to

remind me of details.

Photo Montage Xinying Wang (C1466248)

61

Reference

[1] Agarwala, A., Dontcheva, M., Agrawala, M. Drucker, S., Colburn, A., Curless, B.,

Salesin, D., Cohen, M. 2004. Interactive Digital Photomontage. ACM Transactions on

Graphics vol. 23(3), SIGGRAPH ’04, p.294-295.

[2] Rother, C., Kumar, S., Kolmogorov, V., and Blake, A. 2005. Digital tapestry. In Proc.

Conf. Comp. Vision and Pattern Recog.

[3] Rother, C., Kumar, S., Kolmogorov, V., and Blake, A. 2006. Auto Collage. In Proc.

SIGGRAPH ’06, New York, pp. 847-852

[4] Liu, T., Wang, J., Sun, J., Zheng, N., Tang, X., and Shum, H. 2009. Picture Collage. In

IEEE Transactions on Multimedia, 11(7): 1225 - 1239.

[5] Ohashi, T., Aghbari, Z., and Makinouchi, 2003. A. Hill-climbing algorithm for efficient

colorbased image segmentation. In IASTED International Conference On Signal

Processing, Pattern Recognition, and Applications (SPPRA 2003), June 2003.

[6] Itti, L., Koch, C., and Niebur. 1998. A Model of Saliency-Based Visual Attention for

Rapid Scene Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,

20(11):1254-1259.

[7] Liu, T., Sun, J., Zheng, N., Tang, X., and Shu,H. 2007. Leaning to detect a salient object.

In Proc.CVPR, 2007.

[8] Achanta, R., Estrada, F., Wils, P., and Susstrunk, S. 2008. Salient Region Detection

and Segmentation. International Conference on Computer Vision System.

 [9] Achanta, R., Hemami, S., Estrada, F., and Susstrunk, S. 2009. Frequency-tuned

salient region detection. In IEEE CVPR, 2009, pp. 1597–1604.

[10] Jylänki,J. 2010. A Thousand Ways to Pack the Bin - A Practical Approach to Two-

Dimensional Rectangle Bin Packing.

[11] Ashikhmin, M. 2001. Synthesizing Natural Textures. In proc. ACM Symp. On

Interactive 3D Graphics, pp.217-226, Research Triangle Park, NC, Mar 2001.

[12] Criminisi,A., and Perez, P. 2003. Object Removal by Exemplar-Based Inpainting. In

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR’03).

[13] Bertalmio, M., Bertozzi, A. L., and Sapiro, G. 2001. Navier-Stokes, Fluid Dynamics,

and Image and Video Inpainting. In IEEE CVPR,vol. I, pp.355-365(2001).

[14] Telea,A. 2004. An Image Inpainting Technique Based on the Fast Marching

Method. Journal of graphics tools 9.1 (2004): 23-34.

Photo Montage Xinying Wang (C1466248)

62

[15] Patel, P., Prajapati, A., and Mishra, S. 2012. Review of Different Inpainting

Algorithms. International Journal of Computer Applications (0975 – 8887), Volume 59–

No.18.

[16] Viola,P. and Jones,M. 2001. Rapid Object Detection using a Boosted Cascade of

Simple Features. International Journal of Computer Vision.

