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Abstract 

Photomontage is the process and the result of making a composite photograph by 

cutting, joining and rearranging a group of photographs into a new image to show more 

of the theme than can be shown in a single photograph. 

This project implements a photomontage system for automatically creating a composite 

picture from a collection of input images. The synthesised image can be viewed as a 

visual summary, and the resulting image should be representative of the collection, 

summarising its salient elements. However, if we create an image summary with 

original input images, it will contain lots of uninformative regions, and the only few 

images can be selected. Firstly, in order to maximise visible visual information on a 

given space, we crop the input images by using a quick and computationally efficient 

salient region detection algorithm. Second, join images together without overlay by 

using two-dimensional rectangle bin packing algorithm. This step aims to summarise 

the informative regions and maximise canvas coverage. However, the chance of 

perfectly fitting all images into a rectangle canvas is very tiny, and inevitably there will 

be some holes produced by image arrangement. Third, in order to hide the holes 

generated by rectangle packing, a digital inpainting technique is used. 

This project implements a frequency- tuned salient region detection algorithms with an 

additional face detection function, two different rectangle packing algorithms, three 

different inpainting algorithms and five methods to improve the runtime of the 

exemplar-based inpainting. The report also explains and discusses several related 

algorithms – including concepts relating to k-means clustering, integral image and face 

detection. Due to the high runtime, a sequence of speed optimization methods has been 

developed to improve the system performance.  

Visual and runtime evaluation indicate the efficiency of the photo montage system, this 

project shall be evaluated on its ability on each sub-system (saliency extraction, two-

dimensional rectangle packing, digital inpainting) respectively and also be assessed as a 

whole.  
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Introduction 

With the rapid development of digital cameras and popularisation of mobile phones, 

people are more willing to take pictures because of the convenience and high resolution. 

With a large amount of pictures produced every day, organising and summarising this 

vast amount of data is important. Photomontage is a technique to make a composite 

photograph by cutting, cropping, joining and rearranging a set of pictures.  

 

1.1   Aims and Objectives 

The aim of this project is to devise and implement a photomontage system that can 

automatically specify salient regions on a set of photographs and construct them into a 

single composite seamless picture. In order to create an ideal image summarization 

which contains as many as possible informative regions, input images are cropped with 

considering image content by using saliency region detection methods. To summarise 

these representative regions, different two-dimensional bin rectangle packing 

algorithms are used with considering space utilisation. This step aims to pack rectangles 

together into a container as densely as possible. As producing gaps is a nature problem 

when packing rectangles, we need an inpainting method to fill these extra space. 

The main objective can be split into a series of goals, including researching approaches 

surrounding visual saliency detection, rectangle packing, research digital inpainting 

techniques; implementing the system itself; improving performance and speeding up 

running speed; testing and evaluating the functionality of the system created. 

Desirable properties include: meaningless image fragments are avoided, faces are 

preserved whole, holes are minimised and inpainting can produce a good result. The 

system should be time efficiency and quality guaranteed, for which system testing, 

debugging and optimization are required.  
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1.2    Project structure 

This photo montage system can be split into three modules, including saliency extractor, 

image packer and digital inpainting. Each module contains different methods to achieve 

its goal. 

 

 

                                  _ 
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1.3    Approach 

I use a top-down approach while designing my system. It breaks the system into three 

chunks and allows me to tackle each problem one at a time.  The initial system includes 

only the relatively simple algorithms which get the system up as quickly as possible. It 

also allows me to refine each algorithm, build upon it and add more approaches in any 

order after the basic framework of the system is formed and works successfully. 

In short, break down the system to gain sub-systems, tackle each sub-system with a 

relatively simple approach and get the entire system working before optimise it. 

In this project, I use Java to develop my system. There are some open source computer 

libraries can be used, for example, BoofCV and OpenCV. OpenCV has an official version 

for Java while BoofCV is a new real-time computer vision library written in Java. Both of 

them contain lots of different image processing algorithms implemented and high 

performance. Consider that I have some grounding in OpenCV, I take OpenCV as my 

external library to support the programming of this project. 

  Load 

images   

Saliency 

extractor 
Image packer Inpainting Save 

 Shelf Algorithms 

 Shelf Algorithms based Edge Expansion  

 Edge Expansion with gaps 

 Guillotine Algorithms 

 Frequency-tuned salient region detection without segmentation  
 Frequency-tuned salient region detection with segmentation  
 Frequency-tuned salient region detection with face detection 
 Frequency-tuned salient region detection with segmentation and 

face detection   

 

 Navier-Stokes based inpainting 

 Alexandru Telea inpainting 

(based on Fast marching 

method) 

 Exemplar-based inpainting 

algorithm 
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Background 

 

2.1   Related Work 

                                

         

(a)Digital Tapestry [2] - 2005         (b) Auto Collage [3] - 2006           (c) Picture Collage [4] - 2009 

Figure 1. Related works. Image source: [2][3][4]. (a) Digital Tapestry: assemble patches 

from a batch of repeat shots of a scene. (b) Auto Collage extracts rectangle saliency 

regions from a set of image, arrange images with overlay style and performs edge-

sensitive blending in the α-channel. (c) Picture Collage defines saliency regions using a 

set of weighted rectangles and joins image using an album style. 

 

There have been many methods developed to summarise visual data automatically. 

Digital Tapestry [2] presents each image as a set of blocks and match a block from an 

input image to the tapestry. The advantage of this method is that if the input set of 

images are of the same scene (as shown below), it may produce a composite picture 

with relatively high coherence and fewer artefacts. 

           

(a) Input images                  (b)Result 

Figure 2. Digital Tapestry. Input images are of the same scene. 
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The limitation of Digital Tapestry is the computational complexity. Each region in the 

tapestry is assembled from salient input image block considering uniqueness constraint 

and block coherence constraint, it searches over input image blocks and finds a 

matching neighbouring block, hence is computationally intensive. And also, artefacts are 

introduced along the joins from two different images.  

Auto Collage [3] was researched in 2006 by Microsoft and later, AutoCollage 2008, a 

Microsoft photomontage desktop application was initially released in Sep, 2008 and 

lastly updated in 2011. It sales 19.95 dollars at the Microsoft Store online which shows 

that Auto Collage is an existing state of software and has been used commercially.  

Auto Collage automatically creates blended image collages, it defines four terms of 

energy to encourage the selection of representative images from the input image set, 

ensure informative and salient regions from selected image is extracted, treat certain 

materials with particular respect(e.g. human face, sky), and encourage a seamless and 

smooth layout. There are four steps in the Auto Collage framework, from the static 

ranking of images, through salient region detection, images packing by the branch-and-

bound algorithm and lastly edge-sensitive blending in α-channel.  Auto Collage can have 

a beautiful result with its blending technology but the blending still introduces artefacts 

on the boundaries of different images. In addition, Auto Collage weaken image 

boundaries, making the result feeling soft and smooth, so that it may confusing people 

when the number of images increases because the unclear boundaries. Another 

limitation of this method is that it cannot deal with images with multiple salient regions.  

Picture Collage [4] use multiple weighted rectangles to indicate salient regions, and 

greater weight is assigned to the centre. It joins image with overlay style and 

considering salience ratio balance. This collage style is more common in people’s daily 

life which generally can be seen in albums.  

Compared with Digital Tapestry, Auto Collage and Picture Collage use overly style to 

avoid artefacts caused by tapestry; however, Auto Collage introduces transparent 

blending to soft image boundaries and the blending may also bring artefacts. Picture 

Collage is much faster than Auto Collage when dealing with a large number of images, 

and can clearly summarise hundreds of images because it retains image boundaries.  

 

                                     

 

    inpainting 

 

 

 

Figure 3. A sample result of this project. 
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In this project, each image is represented by a rectangle enclosing the most salient 

region, which is similar to Auto Collage and Picture Collage. Compared with the 

blending style of Auto Collage and overlay style of Picture Collage, this project packs 

images without allowing overlay and uses inpainting technique to inpaint the gaps 

between images. 

 

 2.1.1   Salient Region Detection  

                   

                  

                  

(a)                                                              (b)                                                                  (c) 

Figure 4. From top to bottom: input images, saliency maps and binary images generated 
by Frequency-tuned salient region detection algorithm. 

 

The first step that most of the paper detailed is to determine which regions of the input 

images are representative or salient and should be selected. In Figure2, the leaf, flower 

and swan stand out relative to its background and attract the most visual attention, and 

they are the salient objects we need to detect and extract. The saliency map indicates 

the importance of each pixel. 

There are several methods for automatic detection of visually salient regions, most of 

them are bottom-up framework based [6]-[9], which can split into three steps: 
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1. Feature extraction: by using one or multiple features of intensity, colour, 

luminance, texture, orientation and motion to determine the contrast of objects 

relative to their surroundings. (This project uses colour and luminance features). 

2. Saliency computation: compute saliency map by using centre-surround feature 

distances [6]-[9] or other methods. (This project measures centre-surround 

feature distances using a Difference of Gaussians approach). 

3. Identify the location of the salient region on the salient map. The approach in [7] 

introduces a set of linearly weighted rectangles to enclose the regions. In this 

project, the salient region is enclosed by a rectangle. 

In this project, the approach in [9] is adopted to use for saliency detection. 

 

2.1.2    Rectangle packing 

This project is also related to two-dimensional rectangle bin packing algorithm for 

image arrangement.  Two-dimensional rectangle bin packing problem is known to be 

NP-complete. In this problem, given a sequence of rectangles of different size and the 

goal is to find a packing of these rectangles into a minimum number of bins of size. 

Intersection and overlapping between rectangles are not allowed. For the two-

dimensional rectangle bin packing problem, one version is called online rectagnle bin 

packing, receiving one rectangle at a time and placing it into bins immediately without 

any knowledge of the next items. The opposite to this is called offline rectangle bin 

packing, in which the whole sequence to pack is known in advance. In this project, we 

consider the latter one because the input images are known. And also, we are not 

considering rotatable rectangle bin packing which allows that rectangle may be rotated 

by 90 degrees because the input images of this project contain natural scenery and 

people. 

The two-dimensional rectangle bin packing problem does not exist an optimal solution 

currently but lots of work has been done to develop efficient algorithms that can 

produce good result. 
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(a)  (b) 

                                                                             

 

 

 

                                                                                                                                                                              

(b) (d) 

 

 

 

 

 

 

(e) 

Figure 4. Two-Dimensional Rectangle Bin Packing algorithms. (a) Shelf algorithm, (b) 

Floor-ceiling algorithm, (c) Guillotine algorithm, (d) Maximal rectangle algorithm, (e) 

Skyline algorithm. 

 

There are several algorithms for two-dimensional rectangle bin packing [10]:  

 Shelf algorithms (or level algorithms): the simplest methods to produce 

packings. Pack rectangles from left to right, in rows forming level. It places the 

next rectangle R on the current level if fits, otherwise create a new level and 

accommodate R in new level. Time complexity: O(n ∙ log n). 

 Floor-ceiling algorithm: Consider a particular level. Place the rectangle R with 

decreasing size on the floor from left to right and if the new rectangle does not fit 

on the floor in the same level them place it on a ceiling. 

 Guillotine algorithm:  After placing an item, split the rectangle into 2 smaller 

rectangles to store the remaining free space. Time complexity: O(𝑛2). 

 Maximal rectangle algorithm: based on an extension of the guillotine algorithm. 

After placing an item, split the rectangle into 2 smaller rectangles in both split 

axes. 

 Skyline algorithm: it maintains a list of the ‘skyline’ edges formed by the topmost 

edges of previously packed rectangles.  
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2.1.3    Digital inpainting  

Image inpainting is the process of reconstructing missing or corrupted parts of the 

images and videos; it provides a means for concealment of a damaged image.  

Auto Collage [3] allows image overlay; it creates a soft, transparent blend to hide the 

seam by producing an alpha mask (defines the way of the pixel’s colour merged) for 

each image. Picture Collage [4] use overlay style to maximise the canvas coverage and it 

does not attempt to hide the borders of images so there are not inpainting methods 

used. In this project, image overlay is not allowed, and holes will always exist as the 

different size of image so the inpainting is required to fill holes generated by the image 

packing.  

There are different categories of image inpainting algorithms, including texture 

synthesis based image inpainting, Exemplar and search based image inpainting. 

 

 Texture synthesis based image inpainting 

In this method, holes are filled by sampling and copying neighbouring pixels. [13][14]  

The Navier-Stokes based inpainting method [13] uses ideas from classical fluid 

dynamics to maintain continuity between hole’s pixel and original image pixels. It views 

the image intensity as a stream function and utilizes partial differential equations. It 

propagates isophote lines continuously from the outside into the target inpainting 

region, filling pixels from surrounding pixel data.    

The Telea inpinting technique [14] is based on the fast marching method. Compared 

with the Navier-Stokes based inpainting method which are complex to understand, the 

Telea inpinting technique is simple. This method propagates pixel data inward from the 

boundary of target inpainting region, the missing pixel is filled by normalized weighted 

sum of all the known pixels in a small neighbourhood around the pixel to be inpainted.  

                              

           Isophote directions                                   Isophote directions        

 

Figure 5.  Isophote definition 

There are some 'level lines' of the same intensity or a contour of equal luminance in an 

image, they are called isophotes. 
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 Exemplar and search based image inpainting 

In this method, holes are filled by searching and matching a patch to be inpainted from a 

known patch. 

                    

   Sample                        Damaged image                                                              Damaged image                                                               

Figure 6.  Searching patch in a sample image                Figure 7.  Searching itself 

 With “pure” textures – starts from a small source sample image and copy 

the similar patch from sample image to the damaged image [11]. It suits 

for an image which has a repetitive occurring textural patterns while it 

has difficulty filling missing data in pictures of real world scenes. 

This project contains different kinds of image, there are photographs of 

the natural sights, animal, plants and people. Because of the constraint of 

image category, we are not consider the pure textures in this project.  

 Exemplar based – starts from searching itself to find a similar patch and 

copying colour values to fill the missing data from the undamaged part of 

the image. [12] 

The inpainting approach in [12] combine both exemplar based method and linear 

structures for which following the isophote direction. In this project, we adopt it to do 

the digital inpainting.  
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Methods & Algorithms   

This section details each algorithms that have been used in this project. Equations and 

graphs are used to support my explanation and also intended to assure readers can fully 

understand the way of these approaches work.  

 

3.1   Saliency extraction  

The approach in [9] is adopt to use for saliency detection because it is efficiency and can 

uniformly highlight the salient object.  This approach considers colour and luminance 

features in Lab colour space and use the Euclidean distance to estimate centre-surround 

contrast. To highlight the salient object, this algorithm produces a saliency map by 

combining the outputs of several band pass filters. 

 

     3.1.1    Why combine DOG band pass filters 

DOG (different of Gaussian) filter and LOG (Laplacian of Gaussian) filter are band pass 

filters which can be used for edge detection and intensity changes detection. In this 

project, a summation over DOG is used for saliency detection. The equations of DOG 

filter is given below: 

DOG(x, y) =
1

2𝜋
[

1

 𝜎1
2

 𝑒
−(𝑥2+𝑦2)

𝜎1
2 −

1

 𝜎2
2

 𝑒
−(𝑥2+𝑦2)

𝜎2
2 ] 

= G(x, y, 𝜎1) − G(x, y, 𝜎2) 

𝝈𝟏 and 𝝈𝟐 are the standard deviation of the Gaussian (𝝈𝟏> 𝝈𝟐). 𝝈𝟏 and 𝝈𝟐 control the 

passband width of the DOG filter.  

                                                                 



Photo Montage  Xinying Wang (C1466248) 

 
18 

 

                   

Figure 8. The probability density function of Gaussian distribution. The Image comes 

from wikipedia.org 

 

If define 
𝛔𝟏

𝛔𝟐
= 𝛒 (keep 𝛒 constant at 1.6, as need for ideal edge detector), we have    

𝝈𝟏 = 𝛒𝛔 and 𝝈𝟐 = 𝛔. Considering a combination of several DOG filters, then we have (n 

is an integer and n≥0): 

∑[𝐺(x, y, ρ𝑛+1σ) − G(x, y, ρ𝑛σ)

𝑛

0

]

= 𝐺(x, y, ρ𝑛+1σ) − G(x, y, ρ𝑛σ) + 𝐺(x, y, ρ𝑛σ) − G(x, y, ρ𝑛−1σ) + ⋯ 

                     +𝐺(x, y, ρ𝑛+1σ) − G(x, y, ρ𝑛σ) + 𝐺(x, y, ρ1σ) − G(x, y, ρ0σ) 

                                      = 𝐺(x, y, ρ𝑛+1σ) − 𝐺(x, y, σ) 

One DOG filter can be an edge detector, adding up several DOG filter which means 
summarizing the output of several edge detectors. So that rather than just highlight the 
object edge, the salient regions will be uniformly covered.   

         

                            (a)                                                                  (b)                                                               (c)  

Figure 9. (a) Original image. (b) Apply one DOG filter, highlight only object edges.         

(c) Apply several DOG filters (Gaussian(𝞼=40) – Gaussian (𝞼=5)), highlight whole 

object. 
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3.1.2 Computing saliency and highlight the salient regions 

As can be seen from Figure 7, the probability density function of Gaussian distribution 

tends to be flat with the increasing 𝛔. Diving (𝛒𝒏+𝟏𝛔) to infinity means a large ratio in 

standard deviations. In image, which is 2-dimensional space, it means infinitely large 

Gaussian kernel standard deviation, which is close to image average. So use image 

average to estimate Gaussian filter whose kernel standard deviation is infinitely large. 

 𝑰µ  presents the arithmetic mean pixel value of the image, which is determined by 

(𝛒𝒏+𝟏𝛔).   𝑰𝒘𝒉𝒄  presents the pixel value of Gaussian blurred image (using a 5×5 kernel 

size), which is determined by 𝞼.  

Use the Lab colour space and find the Euclidean distance between the Lab pixel vectors 

(𝐿µ is the mean image vector and 𝐼𝑤ℎ𝑐(𝑥, 𝑦) is corresponding image pixel vector in the 

Gaussian blurred version of the original image). 

The formula is written as: 

                           S(x, y) = || 𝐼µ − 𝐼𝑤ℎ𝑐(𝑥, 𝑦)|| = [𝐼µ − 𝐼𝑤ℎ𝑐(𝑥, 𝑦)]2 

                                         = [𝐿µ − 𝐿𝑤ℎ𝑐(𝑥, 𝑦)]2+ [𝑎µ − 𝑎𝑤ℎ𝑐(𝑥, 𝑦)]2+[𝑏µ − 𝑏𝑤ℎ𝑐(𝑥, 𝑦)]2 

 

 

Figure 10. Flow chart of the Frequency-tuned saliency detection algorithm. Image from 

IVRG (Images and visual representation group). 
ivrlwww.epfl.ch/supplementary_material/RK_CVPR09/ 

 

3.1.3   Threshold to binarize the saliency map. 

Thresholding is the simplest method of image segmentation. In order to segment salient 

object from the background, we need to binarize the saliency map by assigning ones to 

salient object pixels and zeros to the background. 
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Rather than using a fixed threshold to binarize the saliency maps, an adaptive threshold 

(𝑻𝒂) value is used because it is image saliency dependent. The adaptive threshold (𝑻𝒂) 

is defined as two times the average saliency of the input image: 

𝑇𝑎 = 2 × 
∑  𝑤𝑖𝑑𝑡ℎ−1

0 ∑  𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦(𝑥, 𝑦)ℎ𝑒𝑖𝑔ℎ𝑡−1
0

 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡
 

 

And also, two approaches for saliency map generation are employed. One is a simple 

thresholding which is quick and easy to implement; another is thresholding with image 

intensity segmentation, which can eliminate some noises. 

 Simple thresholding: binarize the saliency map by each pixel, retain only 

those pixels whose saliency value is greater than  𝑇𝑎. The binary maps are 

generated by assigning ones to the chosen pixels and zeros to the rest of 

pixels.  

 Thresholding with image segmentation: binarize the saliency map with 

intensity segmentation [7][9]. Use the k-means clustering to segment 

image and retain only those segments whose average saliency is greater 

than  𝑇𝑎. The binary maps are generated by assigning ones to the chosen 

segments and zeros to the rest of segments. (K-means clustering is 

explained in 3.1.5) 

 

 

 

                             

 

 

                             

 

 

 

Figure 11.  Threshold to binarize saliency maps. 

Original image 

K-means clustering image 

Segmentation  

Saliency image 

Saliency image 

Binary image  

Binary image  

Retain only those pixels 

whose saliency value is 

greater than  𝑻𝒂. 

Retain only those segments 

whose average saliency value is 

greater than  𝑻𝒂. 

S(x, y) = || 𝐼µ − 𝐼𝑤ℎ𝑐(𝑥, 𝑦)||  

 

S(x, y) = || 𝐼µ − 𝐼𝑤ℎ𝑐(𝑥, 𝑦)||  
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3.1.4 Computing integral image (summed area table). 

After we got binary maps, the next step is to use a rectangle to enclose the most salient 

region. Instead of recomputing sums of rectangles for saliency value at every re-scaling, 

form an integral image (summed area table) which computes all sums at the beginning. 

The value at any point (x, y) in the integral image (summed area table) is the sum of all 

the pixels above and to the left of (x, y) in the original image. 

    

The integral image algorithm can quickly and efficiently generate the sum of values in a 

rectangular subset of a grid. It effectively reduces the computational complexity from 

O(n) to O(1). 

 

 

                                                               

       Binary image                    Integral image                      Binary image                       Salient region                        

Figure 12.  Integral image (summed area table) algorithm  

 

After finishing the integral image generation, we search for the minimal rectangle which 

contains more than 85% of the highlighting area, in other word, find 4 points in integral 

image on the condition that  I(sum)> I(max)×85%. I(max) is the point in the bottom 

right which is the sum of all the pixels in the binary image. 

 

3.1.5    K-Means clustering algorithm 

K-means clustering aims to partition n observations into k cluster and find centres of 

clusters and groups input samples around the clusters. K-means clustering is an 

iterative algorithm, it works as follow: 

1. Decide the number of clusters k. 

2. Randomly choose the centre of the clusters. 

A B 

C D 

Sum(x,y) 
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3. Attribute the closest cluster to each data point.  

4. Set the position of each cluster to the mean of all data points belonging to that 

cluster. 
5. Repeat steps 3-4 until convergence (until the position of each cluster 

unchanged). 

In this project, K-means clustering algorithm is used in saliency extraction and digital 

inpainting. K-means clustering algorithm used in saliency extraction aims to produce 

the segmented image which may eliminate certain noises and generate better binary 

image. K-means clustering algorithm used in digital inpainting aims to classify patches 

into several clusters which in order to narrow down the search and increase the speed. 

 

3.1.6 Viola Jones face detection algorithm    

Face detection is a specific case of object detection, it aims to identify human face in 

digital images. In this project, faces should be regards as saliency and preserved whole. 

Compute saliency map only using colour and luminance features that may fail to 

highlight the face region in some cases. In order to ensure that the face region is 

highlighted in saliency maps, apply face detection algorithm to indicate the position of 

face. 

The Viola–Jones object detection framework [16] is a popular and effective object 

detection method. In face detection, Viola–Jones requires full view frontal upright faces. 

This method includes 4 concepts: Haar features; Integral image; Adaboost; Cascading. 

 

 Haar feature 

Human faces have some common properties, for example, the eye region is darker than 

the upper-cheeks and the nose bridge region is brighter than the eyes.  

                                      

(a)                                                                              (b) 

Figure 13. Haar features and human face features. (a) A Haar feature that looks similar 
to the eye region. (b) A Haar feature that looks similar to the bridge of nose 
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Haar feature are similar to convolution kernels used in edge detection (e.g. sobel 

kernel). These black and white rectangles is to analyse the differences between the dark 

and light regions of a face. Each feature is calculate by subtracting the sum of pixel 

under white region from the sum of pixels under black region. 

 

 

 

                    

Figure 14.  Haar features used in Viola Jones face detection. Image from OpenCV 
document.     

 

                                                         

 

 

Figure 15.  The mechanism of the detector scanning an image.  

 

The sub-window is scanned across the image at various scales (start with a 24×24 

window) to detect if there is a potential face within the window 

 

 

 

The black region is replaced by +1 and 

the white region is replaced by -1. This feature is based on the 

property that eyes are 

darker the bridge of the nose. 
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 Integral image 

The basic principle of integral image already explained in 3.1.4. 

In the face detection, using integral image simplifies calculation of the sum of the pixel 

under white and black rectangles and makes things fast. 

 

 Adaboost 

Consider all possible sizes and location of each kernel, there can be around 160,000+ 

features values within a detector at a 24×24 window need to be calculated, most of 

them are irrelevant. Adaboost is a machine learning algorithm which helps on finding 

only a few set of useful features among all these features and decide which features to 

consider.  

These selected features are called as weak classifiers because each one of them cannot 

work alone but together with others forms a strong classifier. Each selected feature is 

assigned a weighted value to form a final classifier. Final classifier is a weighted sum of 

these weak classifiers. 

𝐹(𝑥)  =  𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥) + 𝑤3𝑓3(𝑥) + ⋯ 

               final classifier(strong classifier)         weak classifier 

This step bring a great reduction of features to be calculated and time saving. 

 

 Cascading 

Group the features into different stages where each stage has a certain number of 

features. If a window fails the first stage, discard it, remaining features are not 

considered. If it passed, goes into the second stage of features and continue the process. 

If the window passes all stages, it is a face region. 

 

 

 

                 

 

 

Figure 16.  Cascade of classifiers 
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… 
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3.2 Rectangle Packing   

This project provides three approaches based on rectangle packing algorithm to 

arrange the images. The first one is Shelf Next-Fit Decreasing Height (NFDH) algorithm 

which is fast and easy to implement. The second one is based on NFDH, it expands 

image boundaries to maximise page coverage. The third one is the Guillotine 

Algorithms, which utilise space usage.  

 

3.2.1 Shelf Next-Fit Decreasing Height (NFDH) algorithm  

First, create a rectangle canvas with fixed width and infinite height. Place images with 

decreasing height order, if the size of the image is unfit in current level, create a new 

level. Third, after finishing the arrangement of all images, cut off the excess height and 

width. The time complexity of NFDH algorithm is O(n log n). 

 

 

 

 

 

 

 

Figure 17.  Shelf Next-Fit Decreasing Height (NFDH) algorithm. 

 

3.2.2  Expand image boundaries based on NFDH  

Increasingly extend the edge of the salient images until they cover the whole canvas or 

unable to expand (has reached boundaries of the original image). In most of cases, it 

creates a packing image without holes if there are enough space to expand.  

 

                                                                      

Figure 18.  Sample packing images of edge extension based on the NFDH algorithm.   
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3.2.3 Expand image boundaries and allow gaps. 

 

 

 

          

(a)                                                                                       (b) 

Figure 19.  NFDH + Expand image boundaries with gaps. (a) Saliency images packed by 

the NFDH algorithm.  (b)Expand boundaries and allow gaps between images. 

To increase the space usage and has a better image arrangement, this project expand 

the boundaries of saliency images based on the Shelf Next-Fit Decreasing Height 

(NFDH) algorithm. It creates narrow gaps which may be used to create a joins between 

images by inpainting.   

 

3.2.4  The Guillotine Algorithms 

The Guillotine algorithm is a totally different approach to the shelf algorithm and 

superior to the shelf algorithm in space usage. It records each free areas of the bin and 

searches any free space. 

Theoretically there are two possible split axes, vertical split and horizontal split. In this 

project we use only the way of horizontal split to store the remaining free space, 

because rather than using a fixed size container, a rectangle container with fixed width 

and extra-large height results in better utilization of free space. The priority is to fill the 

space horizontally. 

      Each item (in decreasing height order) finds the smallest free rectangle in which   

      enable to accommodate it.  

      Horizontal subdivide the area into two free rectangle area. 

      After finishing the placement of all images, cut off the excess height and width. 

 

 

A relatively bigger gap occurs because the edge 

has reached the original image’s boundary; it is 

the maximum height this image can has. 
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Figure 20.  Guillotine Algorithms (horizontally split placement). 

 

3.3 Inpainting   

The Navier-Stokes based inpainting method and the inpainting method by Alexandru 

Telea which is based on Fast Marching Method both reconstruct the selected image area 

from the pixel near the area boundary and fill one missing pixel at each time. The 

difference between these two methods is that the Navier-Stokes based inpainting fills 

pixels along the edges from known regions to unknown regions while the Alexandru 

Telea inpainting method fills everything in the current boundary and goes into the 

regions. The Exemplar-based inpainting method reconstructs the missing image area 

from the patches searching in itself and fills several pixels in one patch each time.  

The Navier-Stokes based inpainting method and the Alexandru Telea inpainting method 

both have been implementing in OpenCV. The Exemplar-based inpainting method is 

computationally intensive because it searches over the images to find the best patches. 

 

3.3.1 Navier-Stokes based method [13]. 

This algorithm is based on fluid dynamics and views the image intensity as a streamline 

of the flow.  It matches gradient vectors at the boundary of the region to be inpainted 

and continues isophotes, travelling along the edges from the known region to the region 

to be inpainted. 
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3.3.2 Method by Alexandru Telea, based on Fast Marching Method [14]. 

    

Figure 21.  Alexandru Telea inpaiting algorithm. The image comes from [14]. 

 

This algorithm starts from the boundary of the inpainting region, fill every point in the 

front boundary and goes inside to gradually fill inner boundaries. For a point p on the 

boundary B, a small known neighbourhood q around the point is considered. The value 

of the pixel is determined by its known neighbourhood. 

The priority of the point p on the boundary is (𝛻𝐼(q) is the gradient of point q): 

                                                     𝐼𝑞(𝑝) = 𝐼(𝑞) + 𝛻𝐼(𝑞)(𝑝 − 𝑞) 

The weighting function is defined as:  

                                              w(p,q)=directional(p,q)× distance(p,q) ×level (p,q) 

From the above equation, more weightage is given to those pixels near to the normal 

direction [directional (p, q)], close to the point [distance (p, q)], and those close to the 

boundary contours [level (p, q)]. 

𝐼(𝑝) =
∑   

𝑞⋲𝐵(𝜀) 𝑤(𝑝, 𝑞)[𝐼(𝑞) + 𝛻𝐼(𝑞)(𝑝 − 𝑞)]

 ∑  𝑤(𝑝, 𝑞)
 

𝑞⋲𝐵(𝜀)

 

A weighted sum of all points q (the known pixels in the neighbourhood) is normalized 

to fill the pixel.  
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3.3.3  Exemplar-based inpainting [12]. 

                                                  

Figure 22.  Schematic diagram of Exemplar-based inpainting algorithm. Patch Ψp is the 
patch to be inpainted, 𝛁𝑰𝒑 is the unit vector of isophote at point p,  𝒏𝒑 is the unit normal 

vector of the front contour δΩ at point p. The image comes from [12]. 

 

This algorithm focus on both surrounding linear structure and exemplar-based texture 
synthesis. This algorithm can be concluded in 6 steps: 

1. Fill every point in the front boundary and goes inside to gradually fill inner 

boundaries. (onion peel method) 

2. For patch Ψp centred at the point p in current boundary, compute their priorities 

to determine the fill order. 

3. Find the patch Ψp in the targeted area (damaged part of image) with maximum 

priority.  

4. Find the patch Ψq in the source area (undamaged part of image) that minimizes 

the difference between these two patches. 

5. Copy pixel data to from patch Ψq to patch Ψp 

6. Update confidence values 

The fill order of the patches in the same level boundary is determined by priority P(p), 

which is defined as the product of the confidence term – C(p) and the data term – D(p): 

                                                      P(p) = C(P)×D(p) 

C(p) is the percentage of the known pixels in inpainting patch Ψp. Patches that are 

surrounded by more known pixels will tend to be filled first. 

 

                     

    Patch  a                           Patch b 

Figure 23.  Data term is calculated by isophote vector and normal vector of the front 

contour. 

∇𝐼𝑝  

𝒏𝒑 The data term of patch a < the data term of patch b 

                                           D(a) < D(b) 
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The data term D(p) is the strength of isophote hitting the boundary, it boosts the 

priority of a patches that an isophote flows into. 

D(p) =   
|∇𝐼𝑝 ·𝑛𝑝|

 α
   ,   𝛁𝑰𝒑 is the unit vector of isophote at point p,  𝒏𝒑 is the unit normal 

vector of the front contour at point p, α is a normalization factor (α=255 for grey image 

and α=3×255 for 3 channel image like RGB image). 

 

 

 

 

 

 

 

 

 

 

 

Figure 24.  The processes to filling missing data. Replace the inpainting patchΨp with 

the source patch Ψq. 

 

Once all priorities on the fill front have been calculate, the patch Ψp with the highest 

priority has found, then we search the patches Ψq in source region (undamaged part of 

image) and find the most similar and fill the Ψp with Ψq.  

The way to measure the similarity between two patches is the sum of squared 

differences of the known pixels in these two patches. The smaller sum of squared 

differences, higher similarity. 
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Implementation 

 

4.1    Technical Background  

OpenCV 2.4.11: 

This project is written in Java and externally calls OpenCV as a support library. OpenCV 

is an open source computer vision library and has C++, C, Python and Java interfaces 

and supports Windows, Linux, Mac OS, iOS and Android. It implements lots of 

algorithms for computer vision. It helps to develop this project, for example, it contains 

the Gaussian filter, K-means clustering, Viola–Jones face detection, Navier - Stokes 

inpainting method [13], Telea inpainting method [14] used in this project.  

OpenCV 3.0.0 was used in this project in the period of first three weeks because it is 

new and brings new functionalities, but it is currently beta and not the official release, it 

was unstable and the functionality in some modules has been split into other 

modules. In addition, the documentation and tutorial of OpenCV 3.0.0 online is limit 

compared with OpenCV 2.4.11. Consider that I have encountered few bugs in 3.0.0 and 

no additional needs is required in this project, so I replace OpenCV 3.0.0 with OpenCV 

2.4.11, which is the last official stable release. 

 

4.2    Images sources    

Before the coding and testing could commence it is necessary to prepare digital image 

data to be used.  All images processed in this project are found and downloaded by 

using an advanced search filter called "usage rights" on Google image search, which can 

filter the results to find images that you have permission to use. 

 

4.3     System environment  

The runtime performance cost of algorithms externally depends on hardware.  This 

report will carry out comparison of runtime performance cost of different algorithms, a 

declaration of the system environment is shown below:  

Computer: Microsoft Surface Pro 3 

Processor: Inter(R) Core(TM) i5-4300U CPU @ 1.90GHz    2.50 GHz 

RAM: 4.00GB  

Operating system type: Windows 10. 64-bit, X64-based processor  



Photo Montage  Xinying Wang (C1466248) 

 
32 

 

4.4    System framework   

Before any coding work start, it is essential to understand fully the algorithms which are 

intended to be used. The following is to create the basic framework of the system. The 

coding work of the system is mainly split into four modules, they are: 

 Graphical user interface which includes loading images, displaying images, 

processing images and saving images. 

 Saliency extractor 

 Rectangle packer 

 Digital inpainting               

 

                  

              

 

          

 

 

 

 

Figure 24.  System framework. Initial system -> final system 

 

Each sub-system was created by a relatively simple algorithm to get the whole system 

work as quick as possible. After finishing the basic system, optimise each sub-system 

and add more methods. A simple graphical user interface is used to run each sub-

system. Once the user opens and loads a directory of the image set, different methods in 

each module can switch to run; the user does not need to reload the image or restart the 
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application. The user can click the image icons in the left lists and see their detail in the 

right window.   

A screenshot of the user interface is shown below. 

   

Figure 26. Graphical user interface 

 

4.5    Mat image and buffered image convertor  

The class Mat in OpenCV represents an n-dimensional dense numerical single-channel 

or multi-channel array, and it can be used to store real or complex-valued vectors and 

matrices, grayscale or colour images. Images are loaded and processed as mat images, in 

order to display the result images on the UI, a convertor for converting buffered image 

to mat image and mat image to buffered image is provided.  
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4.6    Saliency extractor    

There are four choices of saliency extractor can be used, the user can select which one 

to use depends on the type of images. For example, if the set of images are all the natural 

scenery and without people, there is not necessary to use saliency extractor with face 

detection. 

 Frequency-tuned salient region detection without segmentation  
1. Convert the image from RGB colour space to Lab colour space. 
2. Apply Gaussian filter with kernel size 5×5. 
3. Calculate mean image colour vector. 
4. Find the Euclidean distance between the Lab pixel vectors of Gaussian image and 

mean colour vectors. Then normalise it to generate saliency image.  
5. Generate binary image by assigning ones to the pixels whose saliency value are 

greater than 2 × mean saliency (adaptive threshold) and zeros to the rest of 
pixels. 

6. Computing integral image based on the binary image.  
7. Search with a 32k×32j window in integral image(k and j are increasing integers 

and k>0, j>0) and find a minimum window with Sum(window) > 85%× 
Sum(all) 
 

 Frequency-tuned salient region detection with segmentation  
1. Convert the image from RGB colour space to Lab colour space. 
2. Apply Gaussian filter with kernel size 5×5. 
3. Calculate mean image colour vector. 
4. Find the Euclidean distance between the Lab pixel vectors of Gaussian image and 

mean colour vectors. Then normalise it to generate saliency image.  
5. Segment image with K-means segmentation algorithm and retains only those 

segments whose average saliency is greater than 2 × mean saliency value. The 
function of K-means clustering has already implemented by OpenCV. 

6. Generate binary image by assigning ones to the pixels in selected segments and 
zeros to the rest of pixels. 

7. Computing integral image based on the binary image.  
8. Find a minimum window. 

 
 Frequency-tuned salient region detection with face detection 
1. Convert the image from RGB colour space to Lab colour space. 
2. Apply Gaussian filter with kernel size 5×5. 
3. Calculate mean image colour vector. 
4. Find the Euclidean distance between the Lab pixel vectors of Gaussian image and 

mean colour vectors. Then normalise it to generate saliency image.  
5. Load a Cascade classifier from an OpenCV file. Apply Cascade classifier class for 

face detection. Face regions are represented by a list of rectangles. 
6. Generate binary image by assigning 1s to the pixels whose saliency value are 

greater than 2 × mean saliency (adaptive threshold) and 0s to the rest of pixels. 
Assign ones to the pixels whose are in the face region to highlight the face region. 

7. Computing integral image based on the binary image.  
8. Find a minimum window. 

 



Photo Montage  Xinying Wang (C1466248) 

 
35 

 

 Frequency-tuned salient region detection with segmentation and face detection  

Combine both K-means clustering and Viola–Jones face detection 

 

 

                                                   

                                             

                                                                   

                                             

                                                         (a)                                       (b)                                              (c) 

Figure 27. Results of the saliency extraction without segmentation and with 
segmentation. 

 

Generating binary image by segmentation can eliminate some noises in the background. 

For example, it reduces the noises in (a) and removes the noises around the image 

corner of (b) and in the top left corner of (c).  
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                                               (a)                                         (b)                                           (c) 

Figure 28.  Results of saliency extraction without face detection and with face detection 

The salient region extraction without face detection fails to enclose the face region in 

some images because low saliency value in face region in the saliency map and face 

region did not get the highlight in the binary image. 

Original 

image 

Saliency 

map 

Binary image 

without face 

detection  

Binary image 
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detection  
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4.7   Rectangle packer     

A packing image and an inpainting mask are generated in this section. Inpainting mask 

is an 8-bit 1-channel image which is used to indicate the area that needs to be inpainted. 

Non-zero pixels indicate the area that needs to be inpainted. 

 

                         

                    Packing image                                                                              Mask  

Figure 29. Packing image and mask. 

 

 Shelf Next-Fit Decreasing Height (NFDH) algorithm  

The first rectangle packer is using the shelf algorithm (also called level algorithm) 

which is unarguably the fastest and simplest method one can use to produce 

packings. 

1. Estimate a fixed width by a square root of the sum of the width of all images, so 

that the result can lead as close to square. 

2. Rank images with decreasing height order 

3. Place image in the current level, if the width of the image is unfit in the current 

level, create a new level.  

4. After finishing the placement of all images, cut off the excess height and width.  

 

 

 Expand image boundaries   
 

1. Expand image boundaries based on NFDH algorithm  

 

 
 
 
 
 
 

Figure 30.  Expand image boundaries based on NFDH algorithm. 
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 The Guillotine Algorithm 
 
Use a binary tree to store free rectangles, create a class Node to store the 

position and size of rectangles, use a Boolean data type to identify the rectangle if 

is free to use.  

1. Set the rectangle canvas by estimating a fixed width by a square root of the sum 

of the width of all images, so that the result can come as close to square. Set the 

height of canvas equals to 10×width. 

2. Initialize the root of the binary tree = canvas(the biggest free rectangle) 

3. Traverse the tree to find a free node with a minimal size which enables to 

accommodate the image.  

4. After placing the image, mark the node as used and split the node to two nodes 

5. Repeat step 3-4 

 

 

 

Figure 31.  Binary tree used in the Guillotine algorithm 
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4.8 Digital inpainting  

 

4.8.1    NS inpainting and Telea inpainting  

The Navier-Stokes based inpainting method and Alexandru Telea inpainting method 

which is based on Fast Marching Method are both provided by OpenCV.  

 

4.8.2    Exemplar based inpainting  

                                        

                                                                                                              

                                                             A patch from packing image               A patch from inpainting mask                  

   

Figure 32.  The isophote vector and normal vector of the front contour at point p 

 

1. Initialize confidence term C(p). C(p) equals to the percentage of the known pixels in 

inpainting patch. Use a mat to save them. 

2. Calculate  𝒏𝒑  (the unit normal vector of the front contour at point p) by using Sobel 

kernel in inpainting mask. Use two mats to save them, one for the horizontal direction 

and one for the vertical direction. 

3. Compute gradient in packing image by using Sobel kernel and them rotate gradient 

90 degrees to get 𝛁𝑰𝒑 (the unit vector of isophote at point p). Use two mats to save 

them, one for the horizontal direction and one for the vertical direction. 

4. Found the front contour, use a List<MatOfPoint> to save their position. 

5. Calculate priority value P(p) of points along the fill front which determines their 

order to be inpainted.  P(p)=
| 𝛁𝑰𝒑 × 𝒏𝒑 |

255×𝟑
 × 𝑪(𝒑) 

6. Create a priority queue to store the position and priority value of contour points. The 

Point with the highest priority at the top of the queue. 

7. After priority queue construction, use poll () method to retrieve and remove the head 

of this queue. 

8. If the point with the highest priority value (the head of this queue) has already filled, 

then remove the head of this queue and do nothing. If not, search the most similar 

patches in the source image (known data) and fill the inpainting patch Ψp with matched 

patch Ψq.  

Normal vector 
of the contour 

Isophote 

Source image  

Inpainting area  

Ψq 

Ψp 
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9. After inpainting a patch, update confidence term - C(p) and data term D(p).  

10.  Repeat step 8-9 until this queue is empty. 

11. Repeat step 4-10 until not front contour is found. 

 

In the beginning, a simple array is used to store the priority and position of points. In 

order to find the point with the highest priority, it needs to traverse the array every 

time. For a size 928×1376 image, it cost 303 seconds to inpaint 30 patches (patch size is 

11×11 pixels and jump a step of 11 pixels in source area to search a matched patch ), 

which means about 10 seconds spent for one patch. And there are thousands of patches 

need to be inpainted so that it is very important to increase the inpainting speed. 

In order to improve efficiency, there are six methods below (patch size are all 11×11 

pixels): 

 

 Priority queue  

A priority queue is an abstract data type which an element with high priority is served 

before an element with low priority. 

A priority queue is used to store the priority and position of points rather than using a 

simple array to store and traverse the array each time to find the maximum priority. It 

speeds up the time for finding highest priority point without affecting inpainting 

quality. 

 

 Early jump-out 

An early jump-out technique for speeding up the time of testing similarity of image 

patches without affecting inpainting quality. The algorithm is shown below: 

 

S_min is a previously selected patch whose has the minimum sum of Euclidean distance 

so far. 

For pixels in current patch Ψq { 

The sum of Euclidean distance between two patches:  S_current = S_current + 

Distance(next pixel) 

If S_current is greater than S_min, then break the loop. This patch has a greater 

difference than previously selected patch. Give up this patch and go to next patch. 

} 
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For an image with size 928 pixels ×1376 pixels: 

   Simple array: 303 seconds to inpaint 30 patches 

   Priority queue: 16 seconds to inpaint 30 patches 

   Priority queue + Early jump-out: 7 seconds to inpaint 30 patches 

 

Figure 32.  The time for inpainting 30 patches in a 928×1376 image. 

 

The time complexity for using simple array to find the highest priority point is O(n). 

The time complexity for using priority queue to find the highest priority point is O(1). 

Using priority queue greatly reduces the time in finding the highest priority and using 

early jump-out reduces the time for testing similarity of image patches. Both of them 

does not affect the inpainting quality.   

7 seconds to inpaint 30 patches which means 4 minutes for relatively small holes which 

has 1000 patches and 27 minutes for big holes which has about 7000 patches. 

Obviously, it is not quick enough.  

 

  A 928×1376 image with big holes (about 7000 patches) 
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The following 4 methods for speeding up time may affect the inpainting quality.   

 Search patches with a big step 

Searching every possible patch in source image can testing all possible patches and find 

the best one. It produces the better result but low searching speed.  

  

For an image with size 928 pixels ×1376 pixels: 

Searching every possible patch (step =1 pixel) to fill 20 patches: 448 seconds 

Searching patches with a big step (step =11 pixels) to fill 20 patches: 4 seconds 

 

 

 

            Small step                                                             Big step 

Figure 34. Search patches in image with steps. Small step and big step  

 

 Search neighbours 

Only search the patches near the hole. 

    

Figure 35.  Searching neighbouring area of the hole 

The searching area is depends on the patch size. It is defined as 5 × patch size. For 

example, if patch size = 11×11, the searching radius around the inpainting patch is 

5×11=55 pixels.   

 

 K-means clustering  

The K-means clustering in this section use a fixed K-seeds rather than an adaptive K-

seeds by adding up histogram peaks in three channels (channel-L, channel-A and 

channel-B) to obtain the total number of peaks and indicates the value of K. Because the 

packing image summarise different images together which includes a variety of tone. 

Searching area  
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The inpainting patch firstly searches the similar cluster and then go into the cluster and 

search the patches around the points in this cluster. For example, the inpainting patch is 

a part of the earth which is brown; then we are not looking for patches in the sky which 

are blue. 

The searching step is adaptive by the size of clusters. 

The adaptive step =20 * cluster size/maximum cluster size; 

Bigger cluster, bigger step. 

 

 Candidate set 

After filling the front part of patches, add their matched patches into candidate set and 

fill the following patches by searching the similar patch in the candidate set. This 

method can greatly reduce the time cost in searching patches from whole images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Photo Montage  Xinying Wang (C1466248) 

 
44 

 

 

Results & Evaluation 

 

5.1   Saliency extraction  

The frequency-tuned salient region detection algorithm is fast and provides full 

resolution saliency maps which may suited to image segmentation. The segmentation is 

based on the intensity and colour properties of the pixels which aims to take out some 

noises. 

 Compare saliency extraction without segmentation and with segmentation 

       

            

                                              

Figure 36.  Results of Saliency extraction without segmentation. The first column are the 

original images, the second column are the binary images, and the third column are 

saliency images extracted. 

 

        

         

                                                   

Figure 37.  Results of Saliency extraction with segmentation. The first column are the 

clustering images, the second column are the binary images, and the third column are 

saliency images extracted. 
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Saliency extraction with segmentation may reduce noises in the background but also 

introduce noises in some cases. Because it segments images based on the intensity and 

colour of pixels and the binary image is generated considering the mean saliency of the 

segments, the noise may be reduced by classifying the noise pixel to a segment which 

has a low mean saliency value. Also, the mean saliency of the segment may be raised by 

the noise pixel whose has a relatively higher saliency value, once the mean saliency of 

the segment exceeds a threshold, it will result in a bigger noise. 

 

 Viola–Jones face detection  

This algorithm is fast and efficient. To detect a face, Viola–Jones requires full view 
frontal upright faces.It is not perfect, given 80 images which contains human faces and 
apply Viola–Jones face detection to detect faces, 61 of them are correctly detected.  
There are two cases of failures: 

 images that do include faces that are mistakenly classified by the face detector as 
not including faces 

 images that do not include faces that are mistakenly classified by the face 
detector as including faces 

 
 

The first case of failure: 
   

          

Figure 38.  Images that the face detector detects as not including faces.                 

In these images, face detection fails to detect a face from the side, a face with strong 
facial expressions, and a face covered by some items. The failures due to the distortion 
of certain face properties like irregular shape and size of eyes, mouth, and bridge of 
nose, etc. The distortion of face properties results unmatchable facial features so that 
the score representing the confidence of the face cannot reach the threshold at the end 
of the classifier cascade of the face detector.  
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The second case of failure: 

 

 

Figure 39.  Images that the face detector detects the mistaken face region  

In this case, a non-face region is mistakenly classified as a face. This non-face region 

contains intensity features which similar to a face. This non-face region contains darker 

regions and brighter regions which may mistakenly match to the human eye and mouth. 

The detector returns a score of high confidence level about these matchings. So that the 

score may reach the threshold at the end of the classifier cascade of the face detector 

and classify the non-face region as a face. 

In this two cases of the incorrect face dictation, the threshold at the end of the classifier 

cascade of the face detector plays a key role in the accuracy. By decreasing the 

threshold, the failure of the first case can be reduced and also increases the failure of the 

mistaken face. Reversely, increasing the threshold increases the failure of the first case 

but decrease the failure of the mistaken face. 

In the Viola–Jones face detection, the detector is most effective only on full view frontal 

upright faces without strong expressions. And also, it is sensitive to lighting conditions 

because it uses features to match face properties based on pixel intensities. 
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5.2   Rectangle packing    

                

               Shelf algorithm                                      Guillotine algorithm  

Figure 40.  Shelf algorithm and Guillotine algorithm  

Compared with the Shelf algorithm, Guillotine algorithm keeps exact track the free 

spaces of the bin and allows more remaining space to use.  Guillotine algorithm has a 

higher availability of space and produces smaller holes. Guillotine algorithm utilises the 

free space for smaller rectangles. However, if the sizes of rectangles are the same or 

similar, the results of shelf algorithm and guillotine algorithm would be the same. 

 

Based on the maximum size of each bin in Shelf algorithm, I expand the boundaries of 

these saliency images to create a better image layout. 

    

        (a)Shelf algorithm          (b) Expand boundaries with gaps        (c) Inpainting mask 

Figure 41.  Different image arrangements.  
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5.3  Digital inpainting 

 

 Navier-Stokes based inpainting method and Alexandru Telea inpainting method 

   

         Packing image (Shelf algorithm)                 Packing image (expand boundaries) 

 

   

Navier-Stokes based inpainting method with an inpaintRadius=5 pixels          

             

   

Alexandru Telea inpainting method with an inpaintRadius=5 pixels           

Figure 42.  Results of Navier-Stokes based inpainting and Alexandru Telea inpainting  
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Navier-Stokes based inpainting and Alexandru Telea inpainting both inpaint the missing 

pixel with its neighbours. They are fast and displays strong visual artefacts when 

inpainting a big hole. The curve joins between images may due to that the missing pixel 

is filled with the image which are more close to it. 

 

 Exemplar-based inpainting method applied on packing image generated by Shelf 

algorithm  

Image 1:  

For an image with size 256×416 pixels (115 patches need 

to be inpaintde, patch size = 15×15 pixels; Step=11 pixels 

or use an adaptive step in the k-means clustering) 

 

 

Search whole image to inpaint 115 patches: 3s 

 

 

 

Search neighbours to inpaint 115 patches:  1s 

 

 

 

Search whole image to inpaint 115 patches with the k-

means clustering: 1s 

 

 

Search whole image to inpaint 115 patches with a 

candidate set: 1s 

 

 

 

Search whole image to inpaint 115 patches with the k-

means clustering and a candidate set: 1s 
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Image 2: 

For an image with size 512×1056 pixels (1123 

patches need to be inpainted, patch size = 15×15 

pixels; Step=11 pixels or use an adaptive step in the 

k-means clustering) 

 

 

Search whole image to inpaint 1123 patches: 140s 

 

 

 

Search neighbours to inpaint 1123 patches:  8s 

 

 

 

Search whole image to inpaint 1123 patches with k-

means clustering: 16s 

 

 

Search whole image to inpaint 1123 patches with a 

candidate set: 16s 

 

 

 

Search whole image to inpaint 1123 patches with k-
means clustering and a candidate set: 8s 
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Image 3: 

For an image with size 768*1152pixels 

(1150 patches need to be inpainted, 

patch size = 15×15 pixels; Step=11 

pixels or use an adaptive step in the k-

means clustering) 

 

 

 

 

Search neighbours to inpaint 1150 

patches with the k-means clustering: 15s  

 

 

 

 

 

 

Search whole image to inpaint 1150 
patches with the k-means clustering and 
a candidate set: 75s 

 

 

 

 

 

Figure 43.  Results of Exemplar-based inpainting in a big hole surrounded by different 

images 

The strong visual artefacts can be clearly seen when inpainting a large hole surrounded 

by different images. The visual artefacts increase with the distance increases from 

boundary. The boundaries data of the large hole surrounded by different images are 

very spread and sparsely distributed. The colour and intensity features of surrounding 

data of holes differ greatly. 
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 Exemplar-based inpainting method applied on packing image generated by Shelf 

algorithm and with expand boundaries  

For an image with size 1026×908 pixels (1659 

patches need to be inpainted, patch size = 15×15 

pixels; Step=11 pixels or use an adaptive step in 

the k-means clustering)) 

 

 

 

 

 

 

 

Search neighbours to inpaint 1651patches: 25s 

 

 

 

 

 

 

 

 

 

Search whole image to inpaint 1651 patches with 

the k-means clustering and a candidate set: 155s 

 

 

 

 

 

 

Figure 44.  Results of Exemplar-based inpainting in gaps betwwen different images 
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When doing the inpainting with a big hole surrounded by different images, it always has 

strong artefacts and creates an awful image collage. Currently there is few of even no 

researches conducted in inpainting with a large hole surrounded by different images. 

The results of the Exemplar-based inpainting applied in big hole are disappointing 

because the strong artefacts.  

Surprisingly, the Exemplar-based inpainting applied in narrow gaps between different 

images produces an interesting result although still artefacts exist. I call it basket 

weave-effect because it is similar to a woven basket texture. To some extent, it can be 

used in visual arts can be improved in the future to create a fantasy effect. 

  

 

 

 

 

                           A woven basket texture 

 

 

 

 

 

 

     Joins of different images 

Figure 45.  Basket weave-effect 
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Although the Exemplar-based inpainting can introduces strong artefacts when 

inpainting a big hole surrounded by different images, it can produce a good result when 

inpainting a hole at the centre of an image and it is effective when applying at an image 

which has strong linear structures.  

 

 Inpainting with a hole at the centre of an image (patch size=15*15) 

 

     

        Original Image                       Remove object  

         

(a)                                                    (b)                                                 (c)                                     

       

                  (d)                                              (e)                                                   (f) 

(a) Apply Exemplar based inpainting (search whole image)  

(b) Apply Exemplar based inpainting (search neighbours)  

(c) Apply Exemplar based inpainting (search whole image with the k-means 

clustering )  

(d) Apply Exemplar based inpainting (search whole image with the k-means 

clustering and a candidate set) 

(e) Apply Navier-Stokes base inpainting 

(f) Apply Alexandru Telea inpainting 

Figure 46. Inpainting a hole at the centre of an image 
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The Navier-Stokes based inpainting method and Alexandru Telea inpainting method are 

not working well with big holes. Because they fill missing pixels by sampling and 

copying neighbouring pixels, the artefacts increase with the distance of the missing 

pixel and boundaries increases.  

The Exemplar-based inpainting can get a better result when used to inpaint a hole at the 

centre of an image because there is more reliable pixel data along the boundaries of the 

hole and a single image has coherent textures. However, there are still artefacts due to 

incorrect selection of patches.  Theoretically, search whole image with a small searching 

step will produce the best result because it search patches in all probability but it is 

computationally intensive and causes run-time inefficiency.  

 

       

(a) Original image                       (b) Damaged image                   (c) inpainting result 

Figure 46.  Inpainting a hole at the centre of an image with strong linear structures 

 

The Exemplar based inpainting method pays special attention to linear structures and 

fills patches along the isophote. It is very effective in strong linear structures.  
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 Inpainting with a small damaged portions of an image  

             

           Original image                       Small damaged portions of an image  

           

(a)                                                (b)                                               (c) 

Figure 47. Inpainting used in a small damaged portions of an image. (a) Navier-Stokes 

based inpainting with an inpaintRadius=5. (b) Alexandru Telea inpainting with an 

inpaintRadius=5. (c) Exemplar based inpainting with patch size 11×11 pixels. 

 

Navier-Stokes based inpainting, Alexandru Telea inpainting and Exemplar-based 

inpainting works well in a small damaged portions of an image because there are more 

reliable surrounding data and also more information is provided. 
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 Runtime of the Exemplar-based inpainting method 

The patches size and the searching step can both effect the runtime: 

  

The time increases with the patch size increases. Because a bigger patch size results in 

increasing computations when testing similarity of patches. 

Figure 48. Inpainting time with different patch sizes. 

 

 

Figure 49. Inpainting time with different searching steps. 

Step = 1 means search patches in all probability.  

Step = 3 means search patches doing:  

Loop1： (row+=3 pixels)  

        Loop2： (column+=3 pixels) 

        Test similarity of patches  

The time decreases with the searching step increases. Because a bigger searching step 

results in decreasing patches to be tested. 
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Future work 

 

Saliency extraction: 

Although the saliency extractor (frequency tuned method) have achieved good results 

with images, it can be insufficient to analyse complicated variations common in natural 

images because it only considers first order average colour. Future work on saliency 

extraction would consider more image features like spatial relationships across image 

parts. 

 

Two-dimensional bin rectangle packing:  

In order to improve the quality of inpainting, it is essential to minimise holes.  

Alternatively, there are other image arrangement methods like page layout or layout 

style that allowing overlap or packing the images together with irregular shapes.  

  

Digital inpainting: 

There was very few or even not papers to do digital inpainting with big holes created by 

different images. It was originally hoped that given a seamless good inpainting result 

using Exemplar-based inpainting method. Pixel-based inpainting methods and 

Exemplar-based inpainting methods can be efficiency in filling small holes but have 

disappointed results in big holes. The joins of images cannot be perfectly hided by 

inpainting. In this project, inpainting gaps between different images using Exemplar-

based inpainting produces a sense of "interweaving" effect and looks interesting. It 

could be a good way to deal with the joins between different images. 

 

There are some artworks to do an "interweaving" effect of an image in Photoshop. In the 

future, we can improve the Exemplar-based inpainting and investigate an interweaving 

way to create fantasy joins between images and apply it to the photomontage 

automatically.  
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Conclusion  

 

As a whole, this project implements a photo montage system which has attempted 

different solutions to create an ideal image summary. The first part of this project is to 

extract salient region. I believe that the first part of this project has been a success. The 

frequency –turned approach of computing saliency using low-level features of colour 

and luminance is easy to implement and fast. In particular, the human face is treated 

with particular respect and preserved whole. 

The second part is two-dimensional rectangle bin packing which mainly aims to 

summarise saliency regions of images and minimise holes without allowing overlap.  

The final part is digital inpainting, and it attempted three different inpainting methods 

to restore the big hole generated by different images. Unfortunately, none of those 

solutions has proved successful. The big hole inpainted using those method has strong 

visual artefacts, the results are disappointing. In addition, inpainting gaps between 

different images using Exemplar-based inpainting produces a sense of "interweaving" 

effect and produces a better result. 
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Reflection on Learning 

 

Having come towards the end of this project, I shall come to the reflection on what I 

have learnt over this course. 

My first exposure to image processing was about two years ago, in order to get a higher 

mark, I chose a coursework about object recognition which aims to recognise one or 

more oranges from a uniform green background and draw circles to enclose the 

oranges. At that time, I have no relevant knowledge about image processing, in order to 

complete the task which was a challenge for me, I found tutorials online and followed 

the steps. Although I did lots of work to figure out how to use edge detector, Gaussian 

filter and what is Hough transform, I still missed some fundamental concepts and 

details of how they work. 

The module ‘Scientific Computing and Multimedia Applications’ I took in my second 

year introduced mainly general concepts of image format, image compression and 

something about the video, it did not focus much on image processing. During my final 

year in the module ‘Computer vision’, I was introduced many theories and concepts of 

image processing. I also got some vital knowledge that was essential for this project. 

Think back the orange recognition that I was struggling two years ago, and it has 

become very easy for me now because I have got more understanding of image 

processing and grew. 

In this project, I have greatly developed my knowledge of image processing and deeper 

understanding of code optimization. I have taken several optimization methods in the 

Exemplar-based inpainting algorithm and stayed motivated to reduce the running time, 

having never felt that the running speed of an algorithm is so important. Each time I 

meet with the supervisor, it is the time for me to expand knowledge and gain a 

guidance. Computer vision has become my favourite subjects and I decided to take 

computer vision as my subject in the postgraduate study. 

I have enjoyed working on this project immensely, having improved my problem- 

solving skill and increased my knowledge about image processing. If I go back to when 

the project starts, I would have done things differently.  

Firstly, I would have managed my time more effectively because things always take 

longer than I expect. It is better to have a tight schedule in the first few weeks and allow 

more time in the end. 

Secondly, I would have written a diary to track each process I made during the course of 

the project. I did write some keywords to record my processes but it is not enough to 

remind me of details.    
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