
	 i	

	
	

Cardiff	University	
	

Final	Report	
	
	

Personal	Finance	Manager	

	
	
Author:	Thomas	Whiddett	
	 	 	 	 	 	 	 Module	Code:	CM3203	
Student	Number:	C1130231	 	
	 	 	 	 	 	 	 Module	Name:	One	Semester	Project	
Supervisor:	David	W	Walker	
	 	 	 	 	 	 	 Credits	Due:	40	
Moderator:	Kirill	Sidorov	
	 	

	 ii	

ACKNOWLEDGEMENTS		

I	would	like	to	thank	Professor	David	Walker	for	his	support	and	advice	throughout	the	
project.	I	would	also	like	to	thank	my	friends	and	family	for	their	support	during	my	
time	at	Cardiff	University.		

	 	

	 iii	

CONTENTS		

	

Contents	...	iii	

1	INTRODUCTION	...	5	
1.1	outline	...	5	
1.2	Aims	and	objectives	..	5	
1.2.1	Aims	..	5	
1.2.2	Objectives	...	5	

1.3	Initial	assumptions	...	6	
2	Background	...	7	
2.1	Wider	context	and	the	problem	that	has	been	identified	..	7	
2.2	Existing	solutions	...	7	
2.2.1	Quicken	...	7	
2.2.2	Mint	...	7	
2.2.3	You	Need	A	Budget	(YNAB)	...	8	
2.2.4	Money	Dance	..	8	
2.2.5	Accountz	...	8	
2.2.6	Microsoft	Excel	Spreadsheet	Template	...	8	
2.2.7	Summary	..	8	

2.3	Potential	use	cases	and	stakeholders	...	9	
2.4	Theory	associated	with	problem	area	and	tools	to	be	used	..	10	

3	Specification	and	Design	..	11	
3.1	Overview	..	11	
3.2	Requirement	Specification	..	11	
3.2.1	User	requirements	..	11	
3.2.2	Functional	and	Non-Functional	Requirements	..	13	

3.3	Design	...	19	
3.3.1	Database	design	...	19	
3.3.2	UI	design	..	21	
3.3.3	Finalising	design	details	...	33	
3.3.4	TEST	Cases	..	36	

4	Implementation	..	43	
4.1	General	Structure	...	44	
4.1.1	Database	setup	..	45	
4.1.2	Templates	...	48	
4.1.3	Error	Reporting	..	49	

4.2	Login	and	Register	..	51	
4.3	Overview	..	52	
4.3.1	Accounts,	Transactions	and	charts	..	53	
4.3.2	CSV	Upload	...	54	

4.4	Reports	...	56	
4.4.1	Customisable	Reports	..	57	

4.5	Student	Finance	...	60	
4.6	Problems	Encountered	...	62	

5	Results	and	Evaluation	...	64	
5.1	Test	CASes	...	64	
5.2	Strengths	and	Weaknesses	..	68	

6	Future	Work	...	70	

	 iv	

7	Conclusions	..	71	

8	Reflection	on	Learning	...	72	
Bibliography	..	73	

	 5	

1	INTRODUCTION	

1.1	OUTLINE	

Managing	personal	finances	can	be	a	daunting	process	but	it	should	not	be	overlooked.	
Without	proper	organisation	and	budgeting,	debt	can	easily	be	incurred.	A	vast	majority	
of	people	own	multiple	bank	accounts,	whether	it’s	a	current	account,	savings	account	
or	credit	card.	They	can	also	be	faced	with	phone	bills	and	subscriptions	for	services	
such	as	Netflix	or	Spotify.	All	of	which	can	make	it	increasing	difficult	to	keep	track	of	
your	finances.	Credit	cards	and	loans	also	require	special	attention	to	ensure	
repayments	are	made	before	the	deadline.	Different	users	potentially	have	varied	needs	
and	levels	of	understanding	financial	management.	Take	a	young	person	heading	off	to	
university,	they	often	move	away	from	home,	forcing	them	to	be	more	responsible.	
However	it	may	also	be	the	first	time	they	have	had	the	independence	and	
responsibility	to	manage	their	finances.	With	rent,	living	costs	and	various	other	fees	to	
consider	they	are	likely	to	have	a	stricter	budget	and	hence	must	be	managed	correctly.		
	
This	project	will	begin	by	exploring	existing	financial	management	products	and	
identify	any	drawbacks,	before	developing	the	project	requirements.	These	
requirements	will	set	the	basis	for	the	rest	of	the	project.	The	approach	will	be	adapted	
accordingly	and	will	progress	to	formulating	a	design	for	the	system.	The	
implementation	process	will	be	documented	before	concluding	with	an	evaluation	of	
the	finished	product	and	a	reflection	over	the	course	of	the	project.		

1.2	AIMS	AND	OBJECTIVES	

1.2.1	AIMS	
The	core	aim	of	this	project	is	to	develop	a	system	that	will	aid	the	user	in	managing	
their	personal	finances.	The	sub	aims	are	to	produce	a	piece	of	software	that	is	both	
functional	and	aesthetically	pleasing.		
	
A	breakdown	of	how	this	will	be	achieved	is	provided	by	the	objectives	below.	

1.2.2	OBJECTIVES	
1. Research	existing	personal	finance	management	software	to	gain	an	insight	into	

their	functionality	and	why	they	are	unsuitable.	

2. Identify	a	user	base	to	focus	on	and	a	new	solution	to	the	problem.	

3. Explore	the	available	tools	and	technologies	to	assist	in	implementing	the	
solution.	

4. Define	a	detailed	requirement	list	for	the	system.	

5. Design	the	system	to	meet	the	requirements	identified	in	step	4.	

6. Implement	and	develop	the	designed	system,	identifying	any	problems	
encountered	along	the	way.	

	 6	

7. Analyse	the	results	of	testing	the	system.	

8. Review	the	project	and	evaluate	how	it	could	be	developed	further.		

1.3	INITIAL	ASSUMPTIONS		

Initial	thoughts	are	to	implement	a	web	application	for	ease	of	access	however	this	will	
present	some	questions	about	security.	After	uploading	their	finances,	some	form	of	
categorisation	would	be	recommended	to	help	produce	a	helpful	overview	and	report.	
Assigning	categories	to	transaction	would	also	provide	a	means	to	identify	spending	
habits	and	trends.		 	

	 7	

2	BACKGROUND		

2.1	WIDER	CONTEXT	AND	THE	PROBLEM	THAT	HAS	BEEN	IDENTIFIED	

Having	identified	users	owning	multiple	account,	this	often	means	individuals	having	
their	money	spread	out	and	sometimes	across	various	banks.	This	makes	it	increasingly	
difficult	to	see	an	overview	of	their	finances.	With	the	rise	of	online	banking	and	bank	
statements	providing	an	itemised	list	of	transactions,	it	is	becoming	easier.	However,	it	
is	still	difficult	to	identify	spending	habits	or	periods	when	expenses	were	higher	than	
they	should	have	been.	This	presents	a	problem	when	it	comes	to	budgeting.	A	slip	up	
or	lapse	in	your	budget	could	go	by	unnoticed	with	small	increases	in	expenses	each	
week,	but	this	will	eventually	add	up	and	could	take	you	by	surprise.	Combining	
accounts	and	transactions	into	a	central	system	can	help	overcome	this	difficulty.	
Having	access	to	your	financial	information	in	a	central	location	could	provide	key	
information	and	statistics,	for	example,	your	net	worth.	The	use	of	reports	and	
infographics	can	also	provide	extremely	helpful	information	from	numerous	accounts	
across	various	time	periods.	This	is	exactly	what	is	required	to	keep	track	of	spending	
habits	and	ensure	a	well	organised	budget.		
	
There	are	existing	products	that	cover	these	features,	which	will	be	discussed	in	further	
detail	in	the	next	section.	They	can	range	from	a	simple	customised	spreadsheet	to	a	
fully	featured	specialised	package	with	a	monthly	subscription.	Depending	on	the	users	
needs,	these	products	will	have	a	range	of	advantages	and	disadvantages	that	will	be	
identified	and	discussed.		

2.2	EXISTING	SOLUTIONS	

There	are	currently	various	existing	applications	for	managing	a	users	personal	finance.	
By	reviewing	some	of	these,	drawbacks	can	be	identified	and	developed	in	this	project	
to	address	the	problem.	The	existing	solutions	range	from	a	simple	spreadsheet	to	
standalone	applications	and	web	based	applications.	The	products	that	will	be	
discussed	further	include,	Quicken,	Mint,	You	Need	A	Budget	(YNAB),	Money	Dance,	
Accountz	and	a	Microsoft	Excel	Spreadsheet	template	for	personal	finance	management.		

2.2.1	QUICKEN	
Quicken	is	a	standalone	application	for	use	on	both	Windows	and	Macintosh,	it	also	
offers	a	mobile	application	[1].	It’s	a	general	all	round	financial	management	tool,	with	
lots	of	features	including,	categorisation,	budgeting	and	bill	tracking,	that	connects	
directly	to	your	bank	account.	However	there	is	not	a	free	version,	the	cheapest	package	
starts	at	$39.99	for	the	starter	version,	which	offers	the	most	basic	features.	While	the	
premium	version	costs	$104.99	that	includes	additional	features	such	as	investment	
tracking.	Being	a	pay	only	service,	many	users	may	decide	to	use	an	alternate	system	
with	a	free	version	available.		

2.2.2	MINT	
Mint	offers	very	similar	features	to	Quicken	and	is	also	available	on	both	desktop	and	
mobile	devices	[2].		Their	service	is	also	offered	for	free	which	makes	it	very	accessible	
to	users	both	on	the	go	or	through	the	web.	It	connects	directly	to	your	bank	account,	

	 8	

and	so	pulls	the	users	transactions	straight	from	their	account.	Features	include	an	
overview	of	spending	based	on	these	transactions,	bill	reminders,	a	budgeting	system	
and	advice	on	reducing	fees	and	saving	money.	They	do	also	offer	a	credit	score	check.	
However	their	main	drawback	is	only	being	available	in	the	US.		

2.2.3	YOU	NEED	A	BUDGET	(YNAB)	
You	Need	A	Budget	is	a	budgeting	focused	application	that	provides	a	simple	and	clean	
user	interface	to	create	and	manage	a	budget	[3].	You	can	add	an	account	simply	for	
tracking	the	balance	for	said	account,	or	as	a	budgeting	account.	The	money	and	
transactions	in	this	account	will	make	up	the	budget.	Features	include	adding	scheduled	
transactions,	categorising	transactions	and	setting	a	budget	amount	for	each	category.	
Based	on	the	transactions	in	your	account,	YNAB	will	inform	the	user	how	much	of	the	
budget	is	remaining.	Similar	to	Quicken	and	Mint,	YNAB	links	to	your	bank	account	to	
gather	the	transactions.	They	offer	a	34	day	free	trial,	but	from	there	a	$5	per	month	
subscription	or	a	single	$50	a	year	payment	is	required.	

2.2.4	MONEY	DANCE	
Money	Dance	is	a	standalone	application,	which	similar	to	the	previously	discussed	
applications,	connects	to	online	banking	to	download	the	transactions	[4].	Alternatively	
to	this,	it	also	allows	the	user	to	add	transactions	without	the	need	to	connect	to	a	bank.	
Being	able	to	import	files	from	other	sources,	such	as	.CSV,	makes	this	process	much	
quicker.	They	also	provide	features	to	view	a	summary	of	the	finances	with	graphs	and	
reports	as	a	visual	aid,	and	investment	tracking	that	downloads	current	prices	
automatically.	Their	mobile	application	is	free	to	download;	however	it	does	require	a	
full	version	of	the	desktop	app	to	function	that	costs	$49.99.	

2.2.5	ACCOUNTZ	
Accountz	is	another	standalone	desktop	app	based	in	the	UK,	but	you	can	access	the	
data	anywhere	using	their	mobile	application	[5].	This	again	is	free	but	requires	the	
paid	version	of	the	desktop	application,	costing	£39.99	as	a	one	off	payment.	Features	
include	investment	tracking,	importing	data	from	external	sources,	such	as	online	bank	
accounts	in	a	CSV	or	QIF	file	format.	They	also	offer	budgeting	and	reporting	based	on	
pre-defined	categories	that	can	be	assigned	to	transactions.	However	this	seems	rather	
restricted	as	the	available	categories	and	reporting	options	seems	fairly	limited.		

2.2.6	MICROSOFT	EXCEL	SPREADSHEET	TEMPLATE	
Finally	Microsoft	Office	Excel	offers	various	templates	for	financial	management	[6].	
They	are	rather	simple,	making	use	of	the	standard	Excel	spreadsheet.	Transactions	are	
added	manually	and	are	used	to	generate	simple	reports.	These	are	lacking	any	
advanced	features	but	for	what	is	provided	it	is	easy	to	use	for	low-level	financial	
management.		
	

2.2.7	SUMMARY		
While	the	majority	of	the	existing	solutions	are	fairly	easy	to	use,	some	are	quite	
complex	and	offer	a	wide	range	of	advanced	features,	such	as	investment	and	stock	
tracking.	Mint,	for	example,	also	provides	recommendations	on	how	to	save	money	
based	on	users	transactions.	These	additional	features	sometimes	take	away	from	the	
basic	functionality	or	an	application	will	specialise	in	one	area.	YNAB	for	example	

	 9	

focuses	on	planning	and	creating	a	budget	and	consequently	lacks	in	variation	for	the	
reports.	While	it	provides	great	functionality	with	a	simple	and	clean	user	interface	for	
budgeting,	it	is	rather	difficult	to	see	a	detailed	overview	of	your	accounts.		
	
None	of	the	explored	applications	provide	a	means	to	view	a	break	down	of	loans	or	tax.	
The	only	information	available	is	viewing	a	previous	transaction	where	the	money	was	
paid	into	your	account	or	debited.	Some	did	provide	the	option	to	add	upcoming	or	
scheduled	transactions	such	as	direct	debits,	but	details	of	a	loan	including	the	total	
amount	received	or	the	total	amount	repaid,	are	not	easily	accessible.	Another	feature	
that	seems	to	be	overlooked	in	these	existing	products	is	incorporating	payslips	from	a	
job,	be	it	part	time	or	full	time	employment.	As	part	of	a	payslip,	details	are	provided	for	
the	total	amount	earned	for	the	current	tax	year,	the	total	tax	paid,	bonus	received,	any	
deductions	such	as	loan	repayments,	or	mortgages	[7]	[8].	This	kind	of	information	isn’t	
available	in	the	applications	explored.	Finally,	while	most	have	some	form	of	
classification	method,	or	tags	for	the	transactions,	it	is	still	difficult	to	drill	down	into	
specific	categories.	For	example,	electricity	bills	as	part	of	the	bills	parent	category.		
	
These	drawbacks	present	further	development	in	the	initial	problem	of	personal	
finance	management.	The	existing	solutions	that	have	been	explored	cater	for	the	
general	user	and	may	focus	on	a	specific	section	of	financial	management.	For	a	student	
who	is	faced	with	the	prospect	of	managing	their	finances	for	the	first	time,	they	would	
have	to	utilise	more	than	one	existing	application.	Not	only	does	a	student	have	to	keep	
to	a	strict	budget,	they	also	have	to	keep	track	of	their	student	loan	throughout	their	
time	at	university,	and	any	income	earned	in	a	part	time	job.	The	project	will	continue	
to	address	the	problem	based	on	the	needs	of	a	student.		

2.3	POTENTIAL	USE	CASES	AND	STAKEHOLDERS	

Expand	on	use	cases	identified	in	initial	plan	and	incorporate	users	needs	from	the	
drawbacks	of	the	existing	solutions	above.		
	
As	mentioned	above,	this	project	is	going	to	focus	on	a	main	use	case	for	students.	They	
are	most	likely	needing	to	keep	to	a	strict	budget.	This	will	depend	on	various	factors	
such	as	any	income	from	loans	or	part	time	work	and	numerous	expenses	including	
rent	and	living	costs.	Student	loans	play	a	big	part	in	their	financial	management.	
Sticking	to	a	budget	may	depend	on	when	instalments	from	the	student	loan	are	due	to	
deposit	into	your	account.	Therefore	keeping	a	record	of	what	has	been	received	so	far,	
what	is	still	to	come	and	instalment	dates	are	important.	Loan	repayments	will	also	
become	crucial	once	finishing	university.	This	will	tie	into	their	employment	as	
repayments	are	generally	deducted	from	their	pay,	once	the	student	is	earning	above	a	
certain	threshold.	So	keeping	a	running	tally	of	the	total	amount	left	to	pay	will	be	
beneficial.		
	
The	project	will	not	only	be	a	useful	tool	for	students	but	for	the	general	user	wanting	to	
keep	track	of	their	finances	and	employment.	This	will	be	a	secondary	use	case,	for	the	
likes	of	self	employed	working	professionals.	Being	self-employed	requires	strict	
records	regarding	tax,	to	be	able	to	file	their	own	tax	return.	Therefore	having	a	clear	
overview	of	their	earnings	for	the	tax	year	and	a	breakdown	of	the	tax	paid	will	prove	
essential.		

	 10	

2.4	THEORY	ASSOCIATED	WITH	PROBLEM	AREA	AND	TOOLS	TO	BE	
USED	

To	accomplish	the	goals	of	the	project	and	produce	a	practical	product,	some	
background	research	into	tax,	payslips	and	student	loans	was	required.	By	
understanding	what	information	can	be	provided	on	a	payslip	will	help	when	designing	
how	the	system	will	work	and	how	to	process	the	employment	records.	Similarly	
understanding	how	tax	is	deducted	and	handled	for	someone’s	earnings	and	details	of	
student	loans	will	have	to	be	taken	into	consideration	in	the	design	phase.	Every	payslip	
will	have	the	earnings	and	any	tax	that	has	been	paid.	However	there	are	various	other	
income	and	deductions	that	could	be	present.	These	include	gross	pay,	total	amount	
after	deductions,	bonuses	and	commission,	sick	pay	and	maternity,	paternity	and	
adoption	pay.	Deductions	could	consist	of	the	following,	tax,	national	insurance,	
pensions,	student	loan	payments	and	child	maintenance.	A	few	miscellaneous	options	
could	also	be	deducted	or	repaid	such	as	parking	permits	and	trade	union	subscriptions.	
A	payslip	will	also	show	the	tax	code	and	period	and	as	well	as	a	summary	of	the	
current	financial	year	(from	6th	April	to	5th	April)	[7]	[8].	
	
The	types	of	finance	available	from	a	student	loan	are	tuition	fee	loan,	maintenance	loan	
and	maintenance	grant.	A	tuition	fee	grant	and	course	grant	is	available	for	part	time	
students.	Bursaries	and	scholarships	are	also	available	from	the	university	or	college,	
however	these	and	the	grants	do	not	have	to	be	paid	back.	Repayment	depends	on	what	
plan	you	are	on.	Plan	1	is	for	students	who	started	before	1st	September	2012	and	plan	
2	is	for	those	who	started	on	or	after	1st	September	2012.	For	plan	1	repayments	start	
when	the	student	has	an	income	above	£17,495,	although	this	may	change	each	year.	
For	plan	2	they	start	when	the	income	is	above	£21,000.	Interest	is	also	charged	on	the	
loan	and	starts	being	added	from	the	first	loan	instalment.	The	rates	are	0.9%	for	plan	1	
and	the	Retail	Price	Index	(RPI)	plus	3%	for	plan	2,	currently	3.9%.	However	for	plan	2,	
this	initial	interest	rate	only	applies	while	studying.	After	leaving	your	course	it	changes	
to	a	variable	rate	that	is	dependent	on	income.	The	rates	are	RPI	for	£21,000	or	less,	RPI	
plus	up	to	3%	between	£21,000	and	£41,000	and	RPI	plus	3%	for	over	£41,000.	The	
interest	amount	is	added	every	month	to	the	total	owed	[9].		
	
The	tools	that	are	going	to	be	used	throughout	this	project	are	HTML	and	CSS	for	
generic	website	coding.	JavaScript	and	JQuery	will	be	used	for	client	side	validation,	
visual	effects	and	for	the	use	of	AJAX.	This	will	be	used	to	create	asynchronous	calls	to	
the	database	and	thus	allowing	the	system	to	process	data	requests	without	having	to	
constantly	refresh	the	page.	Sass	is	going	to	be	used	as	a	pre-processor	for	CSS	as	it	
provides	extra	functionality	such	as	variables,	nested	rules	and	generally	allows	for	the	
faster	creation	of	stylesheets.	PHP	and	MySQL	are	going	to	be	used	for	back	end	
scripting	and	database	functionality.	PHP	is	commonly	used	for	server	side	
programming	and	works	very	well	with	HTML,	AJAX	and	MySQL.	This	combination	will	
provide	functionality	between	client	side	code	and	the	database	with	PHPMyAdmin	
handling	the	database	and	MySQL.	Finally	for	responsive	web	design	the	project	will	
follow	the	general	design	set	out	by	Ethan	Marcotte	book,	Responsive	Web	Design	[10].	
This	will	make	use	of	percentage	and	relative	length	sizing,	as	well	as	media	queries	to	
achieve	a	clean	responsive	design.		

	 11	

3	SPECIFICATION	AND	DESIGN	

3.1	OVERVIEW	

One	of	the	objectives	identified	in	the	introduction	was	for	a	clean,	easy	to	use	interface.	
Managing	finances	can	be	a	laborious	task	so	an	efficient	interface	will	help	speed	up	
this	process.	This	will	be	the	main	focus	of	the	requirements,	as	well	as	a	responsive	
design.	For	a	student	on	the	go,	having	access	to	the	app	on	their	portable	devices	will	
be	necessary	to	keep	up	to	date	with	their	finances.	This	will	also	enable	them	to	check	
their	budget	while	out	and	about,	which	could	affect	their	decisions	if	they	discover	they	
do	not	have	many	funds	available.		
	
Also	mentioned	in	the	initial	assumptions	was	to	create	a	web	application.	The	
reasoning	behind	this	is	to	accommodate	the	user	across	various	devices.	The	
advantages	of	a	web	app	over	a	standalone	app	is	that	it	can	be	accessed	anywhere,	
providing	they	have	an	internet	connection.	Publically	available	Wi-Fi	is	becoming	more	
and	more	accessible,	while	this	does	pose	a	potential	security	risk;	there	are	a	few	
measures	that	can	be	taken	to	reduce	this	threat.	Such	as	using	HTTPS	and	Secure	
Sockets	Layer	(SSL).	HTTPS	is	a	protocol	that	uses	the	SSL	for	secure	communication	
over	a	network	that	can	protect	against	man	in	the	middle	attacks.	This	is	achieved	by	
encrypting	page	requests	to	a	web	server	and	the	data	returned	from	this	server.	
Building	a	standalone	application	would	mean	developing	both	a	desktop	and	mobile	
version,	whereas	a	web	app	with	a	responsive	design	would	function	in	both	
environments.		
	
The	next	steps	will	identify	user	requirements	based	on	the	main	use	case	of	a	student.	
Not	having	a	physical	client	to	draw	these	requirements	from	meant	exploring	and	
specifically	defining	what	will	be	required	from	the	main	user.	This	can	be	seen	
throughout	the	next	section	where	the	students	needs	will	be	explored,	followed	by	
creating	an	initial	high-level	functionality	of	the	system.			

3.2	REQUIREMENT	SPECIFICATION		

3.2.1	USER	REQUIREMENTS	
With	students	being	the	main	use	case	for	the	project,	this	section	will	attempt	to	
identify	any	tasks	or	scenarios	that	a	student	may	come	across	when	faced	with	
managing	their	personal	finances.	Firstly	starting	off	with	student	loans,	then	
employment,	budgeting	and	finishing	with	general	everyday	tasks	that	will	require	
financial	management.		
	
Student	Loans:	

• Applying	for	a	student	loan	and	receiving	confirmation	of	the	final	amount	to	be	
received	over	the	year.		

• Checking	instalment	amount	and	the	date	this	will	be	received.		
• Checking	how	much	of	the	student	loan	has	been	received	so	far.		
• Once	finishing	the	course,	to	see	the	total	loan	received	throughout	the	whole	

period	of	university.		

	 12	

• How	much	needs	to	be	paid	back	after	interest	has	been	added.	
• How	much	has	been	paid	so	far	and	what	is	left	to	pay.		

	
Employment:	

• See	a	breakdown	of	their	payslip,	
o Total	earned	for	this	period.	
o Total	tax	paid	this	period.	
o Any	other	income	or	deductions	of	importance.	

• See	an	overview	of	total	amount	earned	this	financial	year.	
• See	an	overview	of	total	tax	paid	this	financial	year.	
• View	the	pay	rate	and	hours	worked,	if	it	is	a	part	time	job.	
• Keep	a	record	of	hours	worked	to	check	correct	amount	is	received.	
• Check	correct	amount	of	tax	has	been	paid	at	the	end	of	financial	year.	

	
Budgeting:	

• Set	an	amount	limit	for	each	month.	
• Set	an	amount	limit	for	individual	categories,	such	as	rent	and	bills,	or	food	

shopping.	
• See	how	much	of	the	budget	is	remaining.	
• See	an	overview	of	what	has	been	spent.	
• Predict	income	over	a	period	to	help	determine	budget	limits.	

	
Everyday	Tasks:	

• View	previous	transactions.	
• Check	bank	balances.	
• Confirm	a	transaction	has	been	processed,	for	example	confirming	money	

transfer	between	accounts	or	that	employment	earnings	have	been	paid.		
	
These	scenarios	will	form	the	basis	of	developing	a	solution.	A	system	can	be	devised	to	
function	around	each	main	area	identified	above.	While	the	scenarios	identify	every	
possible	task,	the	reality	is	that	a	user	may	not	want	to	create	a	budget,	or	may	not	have	
a	job	and	so	would	not	need	to	record	any	employment	information.	The	everyday	
tasks,	like	viewing	account	balances	or	previous	transactions,	are	ones	that	would	be	
required	by	every	user	of	the	system.	Therefore	an	overview	should	be	provided	that	
will	show	any	accounts	added,	along	with	their	balances	and	recent	transactions.	Any	
budgets,	student	loans	or	employment	records	should	also	be	displayed	if	they	exist.	
Further	sections	of	the	system	will	allow	creation,	editing	and	analysis	of	student	loans,	
employment	and	budgets.	The	functional	and	non-functional	requirements	below	will	
look	into	each	of	these	sections	in	detail.		

	 13	

3.2.2	FUNCTIONAL	AND	NON-FUNCTIONAL	REQUIREMENTS	
The	requirements	listed	below	have	been	split	into	sections	relating	to	a	part	of	the	
system.	These	are	General	requirements,	Overview,	Accounts	and	Reporting,	Student	
Loan,	Employment	and	Budgeting.		Following	on	from	the	requirements	a	design	will	be	
developed.		 	
	

GENERAL	

Functional	Requirements	 Acceptance	Criteria	

A	user	must	be	able	to	register	an	
account	

Demonstration	of:	

• User	registering	using	their	name,	
email	address	and	creating	a	
password.	

• Confirmation	of	registration.	

• Being	able	to	log	into	the	system.	

User	must	be	able	to	log	into	the	
system.	

Demonstration	of:	

• User	entering	their	email	address	
and	password.	

• Being	logged	into	the	system	and	
presented	with	the	home	page.	

User	must	be	able	to	log	out	at	any	
time.	

Demonstration	of:		

• Locating	and	clicking	the	log	out	
button.	

• Be	logged	out	of	the	system.	

The	user	must	be	able	to	delete	their	
account	and	consequently	any	data	
associated	with	it.	

Demonstration	of:		

• Clicking	delete	account	and	
confirming	deletion.	

• Account	having	been	successfully	
deleted.	

• The	account	details	should	not	be	
able	to	log	the	user	into	the	system.	

	

Non-Functional	Requirements	 Acceptance	Criteria	

The	system	must	be	secure.	Each	
transaction	must	be	uploaded	and	
stored	securely.		

Demonstration	of:	

• HTTPS	enabled	for	secure	access.	

Only	a	user	with	the	correct	email	 Demonstration	of:	

	 14	

address	and	password	combination	
must	be	allowed	to	log	into	the	system.	

• In-correct	login	attempt.	

• Failed	attempt	to	access	application	
pages	without	logging	in.	

The	system	must	have	a	clean	and	
intuitive	design,	so	that	the	user	is	able	
to	quickly	and	easily	navigate	the	
application.		

Demonstration	of:	

• Accessible	navigation	on	both	
desktop	and	mobile	devices.	

The	application	must	be	responsive	so	
that	it	can	be	used	easily	on	a	variety	of	
devices.		

Demonstration	of:	

• Application	working	on	mobile	
device.		

• Displayed	appropriately.	

	

OVERVIEW	AND	REPORTS	

Functional	Requirements	 Acceptance	Criteria	

The	system	must	provide	a	means	for	
the	user	to	add	a	bank	account.	

Demonstration	of:		

• User	being	able	to	specify	account	
name	and	balance	

• The	account	should	be	displayed	in	
the	accounts	section	with	the	
specified	details.		

A	user	must	be	able	to	edit	or	delete	
bank	accounts	that	have	been	added.		

Demonstration	of:		

• Editing	part	of	a	created	account	
such	as	account	name.	

• Successful	name	change.	

• Clicking	delete	bank	account	
option.	

• Confirmed	deletion	and	account	
should	no	longer	be	visible	in	
accounts	section.		

System	must	allow	the	user	to	
manually	enter	individual	transactions	
as	well	as	uploading	transactions	from	
an	external	source	(i.e.	downloaded	
from	banking	website	in	the	form	of	
.CSV	.QIF	.OFX).	

Demonstration	of:		

• Entering	individual	transaction	
details	and	uploading	.CSV	file.	

• Specified	transaction	details	should	
appear	in	the	transaction	list.	

System	must	allow	transactions	to	be	
edited	so	the	user	can	change,	
description,	date,	amount	or	category	

Demonstration	of:		

• User	changing	transaction	details	

	 15	

of	the	transaction.		 such	as	amount.	

• This	change	should	be	accepted	and	
visible	in	the	transaction	list.	

A	user	must	also	be	allowed	to	delete	
any	uploaded	transactions.	

Demonstration	of:		

• A	user	selecting	a	transaction	to	
delete	and	confirming.	

• Transaction	should	be	removed	
from	the	transaction	list	and	
therefore	deleted.		

Each	transaction	must	be	allocated	to	a	
category,	either	from	a	pre-defined	list	
or	by	creating	a	new	one.		

Demonstration	of:		

• Assigning	a	category	to	a	
transaction.	

• Upon	submission	this	should	be	
saved	and	visible	in	the	transaction	
list.	

The	system	must	be	able	to	produce	
reports	of	the	uploaded	transactions	
represented	by	infographics	

Demonstration	of:		

• Various	graphs	and	charts	
representing	transactions	for	each	
account,	

A	user	must	be	able	to	select	the	
criteria	to	determine	which	
transactions	will	be	displayed	in	the	
report.	This	could	be	by	data	range,	
category	type,	and	specific	amount.	

Demonstration	of:		

• A	user	selecting	criteria	for	the	data	
to	be	displayed.	

• The	result	should	be	displayed	with	
inforgraphics.		

	

STUDENT	LOAN	

Functional	Requirements	 Acceptance	Criteria	

The	user	must	be	able	to	add	a	student	
loan.	

Demonstration	of:		

• User	being	able	to	specify	student	
loan	name	and	instalments.	

• The	loan	should	be	displayed	with	
the	details	and	an	overview	of	the	
loan	amount.	

A	user	must	be	able	to	edit	or	delete	a	
student	loan	that	has	been	added.		

Demonstration	of:		

• Editing	details	of	the	student	loan,	
such	as	a	name	change.		

	 16	

• Successful	name	change.	

• Clicking	delete	student	loan.	

• Confirmed	deletion	and	loan	should	
no	longer	be	available.		

The	system	must	allow	the	user	to	add	
instalments	for	the	loan,	of	a	specific	
type,	i.e.	maintenance	loan,	tuition	fee	
etc.		

Demonstration	of:		

• Entering	instalment	date,	amount	
and	type.	

• Specified	instalment	should	be	
visible	in	the	loan	overview	and	be	
displayed	as	a	previous	or	
upcoming	instalment	depending	on	
the	date.		

A	user	must	be	able	to	edit	or	delete	
existing	instalments.			

Demonstration	of:		

• User	changing	instalment	details	
such	as	date.	

• This	change	should	be	accepted	and	
visible	in	the	instalments	list.	

• Deleting	an	instalment.	

• The	instalment	should	be	
completely	removed	from	the	loan.		

The	user	must	be	able	to	see	an	
overview	of	the	loan,	including	the	
total	loan	amount	and	the	next	
instalment	date.		

Demonstration	of:	

• Key	loan	details	should	be	visible	
from	the	student	loan	section,	such	
as	total	amount	received.	

• Upon	adding	extra	instalments,	
these	details	must	be	updated.	

	

EMPLOYMENT		

Functional	Requirements	 Acceptance	Criteria	

The	system	must	provide	the	
functionality	for	the	user	to	add	a	job,	
including	a	name	and	pay	rate.		

Demonstration	of:		

• User	creating	a	job	account.	

• User	being	able	to	specify	a	name	
for	the	job	and	its	starting	pay	rate	
or	salary.		

A	user	must	be	able	to	edit	or	delete	a	
job	that	has	been	added.		

Demonstration	of:		

• Editing	details	of	the	job,	such	as	a	

	 17	

pay	rate		

• Successful	change	of	the	pay	rate,	
with	confirmation.	

• Clicking	delete	job.	

• Confirmed	deletion,	the	job	and	any	
associated	details	must	no	longer	
be	visible.			

The	system	must	allow	the	user	to	add	
payslips	to	the	job	account,	this	should	
include	key	details	such	as	hours	
worked,	gross	pay,	deductions,	final	
net	pay,	etc.			

Demonstration	of:		

• Entering	payslip	and	required	
details.	

• Upon	adding	a	payslip,	the	total	
earned	and	tax	paid	for	the	current	
financial	year	should	be	updated.	

• A	record	of	the	payslip	should	be	
available	in	the	job	overview.		

A	user	must	be	able	to	edit	or	delete	
existing	payslips.			

Demonstration	of:		

• User	changing	payslip	details	such	
as	net	pay.	

• This	change	should	be	accepted	and	
visible	within	the	payslip	overview.	

• Deleting	a	payslip	record.	

• The	payslip	and	associated	details	
should	be	removed	from	the	job	
account.		

The	system	should	allow	the	user	to	
enter	a	record	of	hours	worked.	

Demonstration	of:	

• User	entering	date	and	hours	
worked.	

• This	should	update	the	job	
overview	with	the	added	hours.		

	

BUDGETING	

Functional	Requirements	 Acceptance	Criteria	

The	user	must	be	able	to	create	a	
budget	for	the	current	academic	year.	

Demonstration	of:		

• A	budget	being	created.	

• The	user	being	present	with	the	
next	steps	to	set	up	the	budget	for	
the	year.	

	 18	

A	user	must	be	able	to	enter	a	limit	to	
pre-defined	categories	relating	to	
various	income	and	expenses.	None	of	
which	are	required,	but	cover	a	wide	
enough	base	to	account	for	most	
options.	

Demonstration	of:		

• Setting	a	limit	for	certain	
categories.	Such	as	food	or	travel	
limits.		

The	user	must	be	able	to	define	an	
account	the	budget	will	refer	to.	

Demonstration	of:	

• A	user	selecting	an	account	that	has	
already	been	added.		

• The	transactions	from	this	account	
will	be	used	to	calculate	the	
remaining	budget.	

The	system	must	display	the	budget,	
amount	consumed	so	far	and	the	
remaining	funds.	

Demonstration	of:		

• The	user	being	able	to	visibly	see	
the	budget	limit	and	the	remaining	
funds.		

• Adding	a	transaction	should	update	
these	amounts.	

A	user	must	be	able	to	edit	or	delete	
the	budget	and	any	limits	set.			

Demonstration	of:		

• User	changing	limits	set	on	various	
categories,	this	will	update	the	
budget.	

• Changing	of	budget,	such	as	the	
associated	account.		

• Deleting	the	limit	set	for	a	category	
should	remove	that	category	from	
the	budget.	

• Deleting	the	budget	should	remove	
the	budget	and	any	limits	set	within	
the	budget.	It	should	not	affect	the	
transactions	within	the	associated	
account.		

	
Figure	1	below,	shows	a	diagram	representing	the	system	at	a	high	level.	This	has	been	
created	based	on	the	requirements	above	but	is	likely	to	change	during	the	design	
process.	The	main	pages	of	the	application	are	highlighted	in	green.	
	

	 19	

	
Figure	1	-	An	abstract	diagram	to	represent	components	of	the	system	

3.3	DESIGN		

3.3.1	DATABASE	DESIGN		
The	decision	to	use	a	relational	database	rather	than	NoSQL	for	example	was	mainly	
due	to	existing	experience	with	relational	databases.	The	content	naturally	presents	
itself	in	a	structured	manner	with	relationships	between	users	and	their	associated	
accounts,	loans	etc.	The	benefits	of	indexing	data	and	complex	SQL	queries	available	
with	relational	databases	will	also	play	a	huge	part	in	representing	the	stored	data	to	
the	user	through	the	system.	However,	if	the	system	were	to	significantly	grow	in	size	
then	a	NoSQL	alternative	may	have	to	be	considered	due	to	scalability	and	performance	
issues	that	could	occur.	This	can	be	explored	later	in	future	work	section	of	the	project.		
	
The	database	design	has	been	developed	from	the	requirements	to	create	a	system	
architecture	that	should	represent	each	area	of	the	system.	Initially	student	loans	and	

	 20	

jobs	were	going	to	be	stored	as	an	account	within	the	‘accounts’	table.	However	as	the	
complexity	of	each	section	increased	the	amount	of	data	to	be	stored	grew.	This	led	to	
each	major	area	being	built	up	of	multiple	tables	to	store	data	specific	to	its	area.		
	
Figure	2	shows	the	Entity	Relationship	Diagram	(ERD)	for	the	database	design.	Each	
major	section	is	colour	coded	accordingly,	white	for	users,	blue	for	accounts	and	
transactions,	yellow	for	student	loans,	green	for	employment	and	purple	for	budgets.	
	
Once	a	user	registers,	their	details	will	be	stored	in	the	“users”	table.	An	active	state	is	
also	created;	this	will	initially	be	set	to	false	to	force	the	user	to	confirm	their	account	
through	email	activation.	However	this	feature	will	only	be	implemented	if	time	
constraints	permit.	A	users	details	will	be	accessed	through	a	login	request.		
	
A	user	will	be	able	to	add	multiple	bank	accounts,	with	the	name,	start	date,	opening	
balance	and	overdraft/credit	limit	set	upon	creation.	A	boolean	‘credit_card’	field	will	
specify	if	an	account	is	a	credit	card	as	it	will	have	to	be	handled	accordingly.	Within	the	
account,	multiple	transactions	can	be	added,	specifying	a	transaction	date,	description	
and	amount.	Each	transaction	must	be	assigned	a	category,	with	the	available	options	
defined	within	the	categories	table.	A	child	category	will	be	referenced	back	to	its	
parent	category	through	its	parents	id.	If	a	parent	category	doesn’t	exists	its	value	will	
be	null.	Split	transactions	stem	from	an	initial	transaction,	where	the	total	amount	from	
each	split	transaction	must	equal	the	amount	set	in	the	initial	transaction.	Finally	a	
running	balance	is	calculated	within	the	“accounts”	table,	its	value	is	updated	each	time	
a	transaction	is	added.	This	will	allow	quicker	access	for	reports	rather	than	having	to	
query	and	calculate	the	value	every	time.		
	
As	part	of	the	“student_loans”	table,	a	running	total	of	each	maintenance	loan,	
maintenance	grant,	tuition	fees	and	total	loan	is	calculated	when	an	instalment	is	added.	
When	an	instalment	is	added	the	user	must	specify	the	year	period	(e.g.	2015/2016),	
date,	amount	and	instalment	type.	The	types	are	predefined	within	the	
“instalment_types”	table	as	maintenance	loan,	maintenance	grant	etc.	
	
Similarly	each	job	is	broken	down	for	each	payslip	received,	updating	the	net	pay	and	
tax	paid	each	time	one	is	added.	As	seen	in	section	2.4,	payslips	can	consist	of	various	
deductions	and	income	types,	including	bonus	pay	and	student	loan	deductions.	To	
allow	these	details	to	be	retrieved	at	a	later	date,	they	are	stored	in	a	separate	table	
along	with	the	associated	payslip	id.	This	is	similar	to	the	“split_transactions”	table	in	
that	the	total	amount	of	each	sub	item	of	a	payslip	must	add	up	to	the	total	pay	within	
the	“payslips”	table.	The	“tax_periods”	table	will	represent	each	month	within	the	
financial	year,	defined	as	“M1”	through	to	“M12”.	This	will	allow	a	faster	lookup	when	it	
comes	to	displaying	the	payslip	details.	As	part	of	recording	hours,	the	“job_hours”	table	
will	store	records	of	days	worked,	from	start	to	finish	time,	with	the	“hours”	field	being	
calculated	from	the	start	and	finish	times.	
	
Finally	the	“budgets”	table	allows	an	overall	budget	to	be	set	for	the	defined	length.	This	
amount	should	equal	the	total	allowance	set	within	the	“budget_items”	table.	The	
“budgets”	table	is	also	connected	to	the	“accounts”	table	so	that	a	budget	can	be	created	
for	a	specific	account,	which	can	then	be	used	to	calculate	the	remaining	allowance	from	
the	transactions	within	the	defined	account.	The	“budget_items”	table	is	linked	to	the	

	 21	

categories	table	so	that	an	allowance	can	be	set	for	a	specific	category	and	hence	the	
remaining	allowance	can	be	calculated	from	the	transactions	added	to	the	associated	
category	and	account.		
	

	
Figure	2	-	Entity	Relationship	Diagram	(ERD)	to	represent	the	database	

3.3.2	UI	DESIGN		
With	a	database	design	complete	the	user	interface	can	be	developed	to	provide	a	clean	
responsive	experience	to	the	users.	As	per	the	objectives	set	out	in	the	introduction.	To	
achieve	a	functional	responsive	layout,	a	mobile	first	design	approach	has	been	used.	
Usually	starting	with	a	full	featured	desktop	design,	the	developer	has	to	gradually	
degrade	the	features	and	remove	content	to	allow	it	to	function	on	mobile	devices.	
However	with	a	mobile	first	approach	this	is	flipped	on	its	head.	By	developing	a	
platform	that	performs	perfectly	and	efficiently	on	a	mobile	device,	the	developer	can	
then	gradually	add	features	to	make	it	friendlier	for	larger	devices.	The	enhancement	
process	over	degrading	ensures	designs	are	consistent	throughout	and	alleviates	
situations	where	the	mobile	version	is	seemingly	neglected.		
	
Firstly	a	product	name	and	logo	had	to	be	developed.	Initial	thoughts	were	to	
incorporate	the	pound	symbol	into	the	logo	or	name.	So	inspecting	the	alphabet	for	
letters	that	could	be	merged	with	the	pound	symbol	resulted	in	the	letters	“B”,	“C”,	“E”,	
“F”	and	“O”.	After	some	research	into	words	and	phrases	relating	to	money	that	

	 22	

included	one	of	these	letters,	the	name	“Bread”	was	settled	on.	The	relation	to	money	
comes	from	cockney	rhyming	slang	“bread	and	honey”	meaning	“money”.	But	also	
tracing	back	to	the	bible,	it	can	be	linked	with	the	expression	“earning	a	crust”	referring	
to	being	able	to	afford	to	buy	bread.	Figure	3	shows	some	initial	design	concepts	and	
incorporating	the	pound	symbol	into	some	of	the	identified	letters	in	the	alphabet.	The	
final	development	of	the	logo	is	show	in	Figure	4.		

	
Figure	3	-	Initial	logo	design	concepts	

	
Figure	4	-	Final	development	of	logo	

	
The	following	figures	depict	the	user	interface	designs.	They	have	been	created	using	
Balsamiq	and	show	both	the	mobile	first	design	as	well	as	a	desktop	version.	Each	area	
of	the	system	has	been	designed	so	that	it	is	easily	accessible	from	every	page	while	
maintaining	a	consistent	structure.	Consistency	is	key	to	achieving	an	easy	to	use	
interface	and	will	also	help	during	implementation	as	the	core	structure	can	be	set	up	as	
a	template,	this	will	help	reduce	redundant	code.		
	

LOGIN	AND	REGISTRATION	

The	login	and	registration	pages	are	both	fairly	simple,	with	one	directing	to	the	other	
as	needed.	Initially	both	were	on	the	same	page	but	the	design	looked	cluttered	and	
with	further	thought	it	seemed	unnecessary	to	include	the	registration	form	every	time	
the	user	wishes	to	login.	In	Figure	6,	the	first	name	and	last	name	fields	have	been	
omitted	and	removed	from	the	users	table	in	the	database.	The	reasoning	for	this	action	
is	because	it	is	not	relevant	or	required	and	hence	wasted	space	within	the	database.	
Figure	7	shows	the	original	login	and	registration	page.	

	 23	

	
Figure	5	-	Login	design	

	
Figure	6	-	Registration	design	

	
Figure	7	-	Original	login	and	registration	design	

	 24	

OVERVIEW	

Key	points	to	note	within	Figures	8	and	9	are	the	navigation	menu	and	its	responsive	
design.	On	a	mobile	view	the	menu	is	collapsed	into	a	dropdown,	this	can	be	seen	in	
Figure	8.	While	the	desktop	view	takes	advantage	of	the	extra	screen	space	to	expand	
into	a	fully	visible	navigation	menu.	Also	shown	in	both	figures	is	the	in-line	editing	for	
existing	transactions.	Clicking	the	“gear”	icon	actives	the	row	for	editing	and	presents	a	
further	three	options	“delete”,	“submit”	and	“cancel”.	This	will	delete	the	entire	row,	
submit	any	changes	made	or	cancel	the	edit	respectively.	On	the	larger	desktop	version,	
an	overview	for	every	account	can	be	displayed.	On	the	mobile	version	the	select	
account	dropdown	will	update	the	pie	chart	accordingly,	as	will	swiping	left	or	right	on	
the	graph	itself.	

	
Figure	8	-	Mobile	design	for	Overview	page	

	 25	

	
Figure	9	-	Desktop	version	of	the	Overview	page	

The	original	design	for	the	navigation	and	the	overview	page	can	be	seen	in	Figure	10.	
You	can	see	the	initial	thoughts	to	use	sidebar	navigation.	While	this	would	work	well	
on	both	desktop	and	mobile	platforms,	it	is	not	the	most	functional.	On	smaller	devices	
the	navigation	would	collapse	in	a	similar	manner	to	the	method	shown	in	Figure	8.	
This	placement	meant	that	the	navigation	would	have	to	collapse	into	the	top	left	corner	
and	consequently	push	the	logo	over.	This	is	not	in	keeping	with	the	requirements	of	a	
clean	and	simple	design	as	the	main	logo	would	be	inconsistent	across	different	devices.	
Due	to	this	reason	and	because	it	consumes	extra	screen	real	estate,	the	navigation	was	
moved	to	a	top	horizontal	bar.	The	design	in	Figure	9	allows	the	core	content	of	the	
application	to	fill	the	entire	width	of	the	display.		
	
Within	the	original	design	the	“Accounts”	page	was	displaying	the	same	content	as	the	
overview.	So	it	makes	sense	to	remove	the	page	entirely.	Any	information	required	
about	an	account	or	its	transactions	are	available	from	either	the	Overview	or	Reports	
page	in	the	designs	shown	in	Figure	8	and	9.	The	original	design	also	showed	multiple	
tables	being	displayed	at	once.	This	was	disregarded	for	two	reasons,	firstly	as	it	is	
confusing	for	the	user,	imagine	if	there	were	6	accounts	with	6	tables	showing	their	
transactions,	it	would	be	a	very	messy	and	confusing	page.	Secondly	you	can	only	show	
a	limited	amount	of	transactions	from	each	account	using	this	method.	Therefore,	the	
logical	decision	was	to	switch	to	a	single	table	where	the	user	could	select	which	
account	transactions	to	display.		

	 26	

	
Figure	10	-	Original	navigation	and	overview	page	designs	

MODALS	

From	the	overview	and	reports	pages,	the	user	is	able	to	add	an	account	and	
transactions	to	the	system.	This	is	achieved	by	clicking	the	appropriate	button	and	
following	the	steps	within	the	pop	up	modal.	Figure	11	shows	the	modal	design	for	
adding	an	account.	Figures	12	through	15	shows	modal	designs	for	adding	transactions.	
There	are	multiple	methods	available.	Firstly	adding	individual	transactions	(Figure	
12),	adding	multiple	transactions	(Figure	13)	and	uploading	transactions	through	a	CSV	
file	(Figure	14).	Figure	15	shows	the	second	step	of	uploading	transactions,	the	system	
reads	the	uploaded	CSV	file	and	presents	the	content	to	the	user	for	verification	and	any	
alterations,	before	submitting	to	the	database.	The	user	must	specify	the	account	to	
upload	the	transactions	to	and	also	select	a	category	for	each	transaction.		

	 27	

	
Figure	11	-	Modal	design	for	adding	an	account	

	
Figure	12	-	Modal	design	for	adding	a	single	transaction	

	 28	

	
Figure	13	-	Modal	design	for	adding	multiple	transactions	

	
Figure	14	-	Modal	design	for	uploading	a	CSV	file	

	 29	

	
Figure	15	-	Modal	design	for	verification	of	the	CSV	file	

REPORTS	

Similar	to	the	Overview	screen,	only	one	graph	is	shown	on	the	mobile	view	but	swiping	
left	or	right	will	display	the	secondary	bar	chart	for	the	income	and	expense	
comparison.	The	four	selection	dropdowns	will	update	the	pie	chart	and	transaction	list	
according	to	the	value	selected.	Figure	16	shows	the	Report	design.	

	
Figure	16	-	Design	for	the	mobile	and	desktop	Report	screen	

STUDENT	FINANCE	

Figure	17	shows	the	initial	setup	for	a	student	loan	account,	this	will	be	shown	when	the	
user	first	visits	the	page	or	when	they	do	not	have	a	loan	account	setup.	In	practice	the	
Add	instalments	form	would	be	disabled	until	the	student	loan	set	up	form	has	been	
submitted.	Only	then	can	an	instalment	be	added	to	the	created	loan.	Therefore	clicking	
“Create	student	loan”	will	disable	the	loan	set	up	for	and	enable	the	add	instalments	

	 30	

form,	providing	the	request	is	successful.	Similarly	if	clicking	“Add	instalments”	is	
successful,	both	forms	will	be	removed	and	the	overview	will	be	displayed.	This	is	
shown	in	Figure	18.	An	overview	of	the	entire	loan	is	displayed	along	with	a	summary	of	
each	academic	year	since	the	loan	was	created.	The	add	instalments	form	will	be	
available	at	all	times,	to	allow	the	user	to	add	more	instalments.		

	
Figure	17	-	Design	showing	the	mobile	and	desktop	version	of	setting	up	the	Student	Finance	page	

	
Figure	18	-	Design	for	the	overview	of	the	Student	Finance	page	

EMPLOYMENT	

Figure	19	represents	the	designs	for	the	employment	setup.	The	design	functions	in	the	
same	manner	as	the	Student	Finance	setup.	Figure	20	shows	the	Employment	overview	
screen.	A	user	can	add	multiple	jobs	and	multiple	payslips	for	each	job.	Upon	adding	a	
payslip	the	main	totals	(net	pay,	tax,	NI	and	hours)	are	recorded	but	a	user	can	break	
the	details	of	the	payslip	down	further.	For	example	adding	student	loan	deductions,	
bonuses	or	pensions	to	the	description	and	amount	fields.	Each	amount	added	must	

	 31	

sum	to	the	net	pay	originally	specified.	Figure	20	shows	these	totals	for	the	selected	job	
and	financial	year,	as	well	as	showing	each	payslip	that	has	been	added.	Expanding	the	
payslip	will	reveal	the	extra	details.	Finally,	any	hours	that	are	entered	are	shown	to	
allow	the	user	to	confirm	recorded	hours	with	hours	actually	paid	for.		

	
Figure	19	-	Employment	setup	designs	

	
Figure	20	-	Employment	overview	designs	

	 32	

BUDGETS	

Lastly	Figures	21	and	22	show	the	designs	for	budgeting.	The	functionality	is	the	same	
as	previous	pages.	An	initial	setup	to	select	the	associated	account,	budget	length	and	
limit.	These	values	are	shown	in	the	overview	with	a	series	of	inputs	to	allow	the	user	to	
add	a	budget	to	specific	categories.	The	remaining	budget	is	calculated	from	the	
transactions	within	the	selected	account,	hence	also	displaying	these	transactions	for	
easy	access.		

	
Figure	21	-	Designs	for	the	budget	setup	page	

	
Figure	22	-	Designs	for	the	budget	overview	page	

	

	 33	

GENERAL	

Figure	23	shows	the	FAQ’s	and	the	menu	for	user	settings	and	sign	out	options.	The	
other	two	icons	to	the	right	of	the	settings	are	for	a	FAQ	section	that	will	address	
general	questions	and	answers	on	the	majority	of	the	features	from	each	section.	The	
search	icon	is	provided	to	search	for	specific	accounts	or	transactions	with	specific	
categories,	however	this	will	have	to	be	a	development	for	future	work.	

	
Figure	23	-	FAQ	page	design,	also	showing	user	settings	menu	

3.3.3	FINALISING	DESIGN	DETAILS	
The	final	designs	that	need	to	be	completed	are	an	overall	colour	scheme	that	can	be	
used	throughout	the	whole	application,	a	definitive	list	of	categories	and	an	array	of	
colours	that	will	provide	a	wide	range	for	the	graphs	and	charts.		
	
Rather	than	designing	a	colour	scheme	for	each	individual	page,	a	master	template	
demonstrated	on	one	page	will	set	a	precedent	for	the	rest	of	the	system	and	will	
provide	a	good	representation	of	the	final	product.	Earlier	in	the	report	Figure	4	
introduced	the	logo	for	the	application	and	a	couple	of	colours,	a	dark	blue	background	
with	a	bright	green	highlight	for	the	pound	symbol.	These	two	colours	provide	a	good	
contrast	to	be	used	throughout	the	system.	The	dark	blue	will	function	perfectly	as	a	
background	for	main	headers,	with	various	monochromatic	shades	of	the	blue	for	
secondary	headers.	Again	the	green	will	provide	a	simple	contrast	for	hover	effects	and	
button	feedback,	this	will	help	create	a	simple	and	clean	design.	Figure	24	shows	a	mock	
up	of	the	Overview	page	using	these	colours.	This	design	was	created	using	a	visual	
design	package	called	Sketch	[11]	and	makes	use	of	their	predefined	template	sizes	for	
both	desktop	and	mobile	devices.	This	has	resulted	in	the	layout	being	slightly	altered	to	
fit	the	smaller	dimensions,	however	this	will	not	affect	the	actual	designs	or	
implementation.		

	 34	

	
Figure	24	-	Mock	up	of	Overview	designs	using	colour	template	

Table	1	includes	a	list	of	initial	categories	that	will	be	available	to	users	to	assign	to	
their	transactions.	The	list	is	an	attempt	to	cover	a	vast	majority	of	categories	a	student	
would	require.	The	list	is	likely	to	develop	over	the	course	of	implementation	and	
testing.		
	
Table	1	-	Table	listing	possible	categories,	and	sub	categories	

Category	Name	 Category	Name	

Bills	
• Electric	
• Gas	
• Water	
• Internet	
• Phone	Bill	

Car	
• Fuel	
• Car	Insurance	
• Service	
• MOT	
• Road	Tax	
• Miscellaneous	

Food	
• Eating	out	
• Groceries	
• Takeaway	

Subscriptions	
• Spotify	
• ITunes	
• Netflix	

	 35	

• Amazon	Prime	
Education	

• Books	
• Course	Costs	
• Society		

Money	
• Cash	Withdrawal	
• Transfer	
• Credit	Card	
• Parents	

House	
• Rent	
• Council	Tax	
• Home	Insurance	
• Parking	
• TV	Licence	

Leisure	
• Night	out	
• Drinks	
• Cinema	
• Theatre	
• Football	
• Gym	

Shopping	
• Clothes	
• Shoes	
• Electronics	
• Music	
• Sport	Gear	
• Computing	
• Books	/	Magazines	

Student	Finance	
• Tuition	Fee	
• Maintenance	Loan	
• Maintenance	Grant	
• Tuition	Fee	Grant	
• Course	Grant	
• Bursaries	

Travel	
• Train	
• Bus	
• Taxi	
• Flight	
• Boat	

Work	
• Basic	Pay	
• Bonus	
• Commission	
• Overtime	
• Holiday	Pay	
• Sick	Pay	
• Other	
• Tax	
• NIC	
• Pension	
• Student	Loan	

Holiday	
• Accommodation		

	

	 36	

• Travel	
• Spending	

	
Regarding	the	array	of	colours,	it	would	be	a	difficult	task	to	find	a	different	colour	for	
every	category,	especially	to	avoid	colours	that	are	indistinguishable	from	each	other.	
Therefore	having	a	different	colour	for	each	parent	category	with	sub-categories	being	a	
different	shade	of	its	parent	colour,	would	allow	a	wider	range	of	colours.	Table	2	shows	
the	initial	list	of	base	colours	and	their	hexadecimal	value.		
	
Table	2	-	Table	of	colours	for	graphs	and	charts	

Colour	 Hexadecimal	

Green	 #37EF86	

Red	 #EE596C	

Yellow	 #FFEB00	

Light	Blue	 #76D7EA	

Light	Purple	 #C9A0DC	

Orange	 #FF6037	

Light	Green	 #66FF66	

Pink	 #FC80A5	

Blue	 #0066FF	

Brown	 #87421F	

Purple	 #652DC1	

Peach	 #FFCBA4	

Grey	 #C8C8CD	

Light	Yellow	 #FFFF9F	

	

3.3.4	TEST	CASES	
Testing	will	be	completed	during	the	implementation	section,	with	the	majority	being	
conducted	on	the	go	during	development.	As	a	new	feature	is	implemented,	it	will	be	
tested	accordingly	to	ensure	its	functionality.	A	final	test	will	be	conducted	at	the	end	to	
confirm	it	is	still	working	as	expected.	The	test	cases	defined	here	will	be	the	basis	for	
these	final	tests.	They	will	cover	the	main	requirements	defined	in	section	3.2	while	also	
assessing	the	functionality	of	the	application	across	a	variety	of	different	browsers	on	a	

	 37	

variety	of	different	operating	systems.		Not	every	test	case	will	be	defined	here,	as	there	
will	be	in	excess	of	50	plus	cases,	hence	the	only	the	core	tests	will	be	defined.	
	

Test	1:	 Can	the	user	register	an	account.	

Environment:	 OS	X	

Browser:	 Safari	

Pre-Conditions:	 On	the	Login	page	

Process:	 1. Select	‘Sign	Up’	from	the	bottom	of	the	login	form.	
2. User	enters	email	address	‘twhiddett@gmail.com’	in	the	

email	field.	

3. User	enters	username	‘twhiddett’	in	the	username	field.	
4. User	enters	password	‘password’	in	the	password	field.	

5. User	re-enters	password	‘password’	in	confirm	password	
field.	

6. Select	the	‘Sign	Up’	button.	

Expected	Outcome:	 The	entered	details	should	be	stored	within	the	‘Users’	table	in	
the	database.	The	details	will	be	used	to	login.		

Actual	Outcome:	 Pass	/	Fail	

	

Test	2:	 Can	the	user	log	into	the	application	

Environment:	 OS	X	

Browser:	 Safari	

Pre-Conditions:	 User	must	be	registered	and	on	the	login	page.	

Process:	 1. Input	the	username	‘twiddett’	in	the	username	field.	

2. Input	the	password	‘password’	in	the	password	field.	

3. Select	‘Sign	In’	button.	

Expected	Outcome:	 The	user	is	redirected	to	the	home	page	(Overview	page).	

Actual	Outcome:	 Pass	/	Fail	

	

Test	3:	 Can	the	user	create	an	account.	

Environment:	 OS	X	

	 38	

Browser:	 Safari	

Pre-Conditions:	 User	must	be	logged	in	and	on	the	overview	page	

Process:	 1. Select	‘Add	Account’	button	just	under	the	navigation	bar.	

2. Input	the	account	name	‘ISA’	in	the	‘Account	Name’	field	

3. Input	the	start	date	‘20/04/16’	in	the	‘Start	Date’	field.	
4. Input	the	opening	balance	‘£1234.56’	in	the	‘Opening	

Balance’	field.	

5. Select	‘Add	Account’	button.	

Expected	Outcome:	 The	account	details	are	saved	in	the	accounts	table.	

A	confirmation	message	is	received	telling	the	user	the	account	
was	successfully	added.		
The	account	is	displayed	in	the	overview	page.	

Actual	Outcome:	 Pass	/	Fail	

	

Test	4:	 Can	the	user	upload	transactions	to	an	account.	

Environment:	 OS	X	

Browser:	 Safari	

Pre-Conditions:	 User	must	have	created	an	account	and	be	on	the	overview	page.	

Process:	 1. Select	‘Add	Transactions’.	

2. Select	‘Upload.	
3. Select	‘Choose	File’.	

4. User	selects	a	CSV	file	on	their	system.	

5. Select	‘Upload	Transactions’.	
6. ‘Verify	CSV	Content’	Modal	is	displayed	with	the	each	

transaction	displayed	in	a	row	of	inputs.	
7. Select	account	‘ISA’	from	the	‘select	account’	dropdown.	

8. Select	a	category	for	each	transaction.	

9. Select	‘Upload	Transactions’.	

Expected	Outcome:	 The	CSV	file	is	verified	and	uploaded	to	the	transactions	table.	

A	confirmation	message	is	displayed	to	confirm	upload	success.	

The	uploaded	transactions	are	visible	in	the	‘Transactions’	
section	of	the	overview	page.	

	 39	

Actual	Outcome:	 Pass	/	Fail	

	

Test	5:	 The	user	can	customise	the	display	of	different	reports.	

Environment:	 OS	X	

Browser:	 Safari	

Pre-Conditions:	 An	account	must	have	been	created	with	transactions	added.	
Must	be	on	reports	page.	

Process:	 1. Select	‘Income’	from	transaction	type	selector.	

2. Select	‘ISA’	from	account	selector.	
3. Select	‘Last	6	Months’	from	date	range	selector.	

4. Select	‘All	categories’	from	category	selector.	

Expected	Outcome:	 The	pi	chart	will	display	the	spread	of	transactions	by	the	total	of	
each	category.	

The	bar	chart	will	display	income	vs.	expense	values	for	each	
month	within	the	last	6	months.	

The	‘Transactions’	section	will	be	populated	with	the	
transactions	that	meet	the	defined	criteria.		

Actual	Outcome:	 Pass	/	Fail	

	

Test	6:	 Can	the	user	edit	individual	transactions.	

Environment:	 OS	X	

Browser:	 Safari	

Pre-Conditions:	 An	account	must	have	been	created	and	populated	with	
transactions.	

Be	on	the	Overview	or	Reports	page.	

Process:	 1. Selects	the	gear	icon	next	to	the	transaction	to	be	edited.	
2. Change	the	description	to	‘Co-Op	food	shop’.	

3. Select	the	category	‘Groceries’	from	the	category	selector.	

4. Click	the	tick	icon	to	submit	the	change.	

Expected	Outcome:	 The	description	of	the	selected	transaction	now	read	‘Co-Op	food	
shop’.	
The	category	for	the	selected	transaction	is	not	‘Groceries’.	

	 40	

The	values	are	changed	in	the	transactions	table	in	the	database.	

The	updated	transaction	is	displayed	within	the	‘Transactions’	
section.		

Actual	Outcome:	 Pass	/	Fail	

	

Test	7:	 Can	the	user	delete	a	transaction.	

Environment:	 OS	X	

Browser:	 Safari	

Pre-Conditions:	 An	account	must	have	been	created	and	populated	with	
transactions.	

Be	on	the	Overview	or	Reports	page.	

Process:	 1. Select	the	gear	icon	next	to	the	transaction	to	be	deleted.	

2. Select	the	trash	icon.	

3. Select	‘Confirm	delete’	from	the	confirmation	pop	up.	

Expected	Outcome:	 The	select	transaction	has	been	deleted	from	the	transactions	
table.	

The	selected	transaction	is	no	longer	visible	in	the	‘Transactions’	
section	on	the	page.	

Actual	Outcome:	 Pass	/	Fail	

	

Test	8:	 Test	whether	the	user	can	create	a	student	loan	

Environment:	 OS	X	

Browser:	 Safari	

Pre-Conditions:	 Be	on	the	overview	page.	

Process:	 1. Select	‘Student	Finance’	from	the	navigation	menu.	

2. Input	loan	name	‘Tom’s	Loan’	in	the	loan	name	field.	
3. Select	‘Create	Student	Loan’	button.	

4. Select	‘2015/2016’	from	loan	period	selector.	

5. Select	‘Maintenance	Loan’	from	the	loan	type	selector.	
6. Input	date	‘28/04/16’	in	the	date	field.	

7. Input	‘1836.84’	in	the	amount	field.	
8. Select	the	plus	icon.	

	 41	

9. Select	‘2015/2016’	from	the	loan	period	selector.	

10. Select	‘Tuition	Fee’	from	the	loan	type	selector.	
11. Input	date	‘28/04/16’	in	the	date	field.	

12. Input	‘1528.28’	in	the	amount	field.	

13. Select	‘Add	instalments’	button.	

Expected	Outcome:	 A	loan	called	‘Tom’s	loan	is	created	in	the	loans	table.		

The	two	instalments	are	stored	in	the	instalments	table.	
The	‘Student	Finance’	page	now	displays	the	overview	of	‘Tom’s	
loan’.	

The	instalments	are	displayed.	

Actual	Outcome:	 Pass	/	Fail	

	

Test	9:	 Test	whether	the	user	can	create	a	budget.	

Environment:	 OS	X	

Browser:	 Safari	

Pre-Conditions:	 Be	on	the	overview	page	and	has	created	an	account.	

Process:	 1. Select	‘Budget’	from	the	navigation	menu.	
2. Input	budget	name	‘university	budget’	in	the	loan	name	

field.	
3. Select	account	‘ISA’	from	the	accounts	selector.	

4. Select	length	‘monthly’	from	the	length	selector.	

5. Input	‘600.00’	in	the	overall	limit	field.	
6. Select	‘Create	budget’	button.	

7. Select	the	category	‘rent’	from	the	category	selector.	

8. Input	‘380.00’	in	the	allowance	field.		
9. Select	the	category	‘bills’	from	the	category	selector.	

10. Input	’50.00’	in	the	allowance	field.		
11. Select	the	category	‘food’	from	the	category	selector.	

12. Input	‘120.00’	in	the	allowance	field.	

13. Select	the	category	‘travel’	from	the	category	selector.	
14. Input	’50.00’	in	the	allowance	field.	

Expected	Outcome:	 A	budget	called	‘university	budget’	is	stored	in	the	budgets	table.	

The	budgets	page	displays	budget	overview	and	the	4	categories	

	 42	

budgeted	for.		

The	transactions	section	will	display	the	transactions	for	the	
current	month.		

The	remaining	funds	are	shown.	

Actual	Outcome:	 Pass	/	Fail	

	

Test	10:	 Can	the	user	log	out.	

Environment:	 OS	X	

Browser:	 Safari	

Pre-Conditions:	 Must	be	logged	in.	

Process:	 1. Select	the	user	icon.	
2. Select	‘Log	out’	button.	

Expected	Outcome:	 The	user	is	logged	out	and	redirected	to	the	Login	page.	

Actual	Outcome:	 Pass	/	Fail	

	

Test	11:	 Does	the	application	display	correctly	in	Google	Chrome.	

Environment:	 OS	X	

Browser:	 Google	Chrome	

Pre-Conditions:	 -	

Process:	 1. Open	the	application	in	Google	Chrome.	

2. Login.	
3. Select	‘Reports’	page	from	the	navigation	menu.	

Expected	Outcome:	 The	display	is	consistent	between	browsers.		

Actual	Outcome:	 Pass	/	Fail	

	 	

	 43	

4	IMPLEMENTATION	

This	section	will	follow	the	steps	taken	to	produce	a	final	implementation	based	on	the	
designs	from	previous	sections.	The	first	steps	were	to	set	up	a	development	
environment.	MAMP	(which	stands	for	Macintosh,	Apache,	MySQL	and	PHP)	is	a	piece	of	
software	that	runs	a	local	server	environment	on	your	computer	[12].	This	allows	
server	side	languages	such	as	PHP	to	be	processed	as	well	as	connecting	to	MySQL	
databases.	This	is	achieved	through	an	Apache	and	MySQL	server	that	MAMP	provides,	
which	allows	for	development	and	testing	as	if	the	application	is	hosted	online.	Sequel	
Pro	or	phpMyAdmin	can	be	used	with	MAMP	to	create	and	manage	the	database.	
Initially	phpMyAdmin	was	used	but	was	later	swapped	out	for	Sequel	Pro,	a	free	
desktop	application	for	database	management.	This	decision	was	made	after	a	weeks	
work	experience	at	a	web	development	agency	and	the	reasoning	is	purely	a	personal	
preference	over	the	features	that	Sequel	Pro	offers	and	its	superior	user	interface.		
	
Using	PHP	to	access	a	MySQL	database	means	using	one	of	three	API’s,	‘mysql’,	‘mysqli’	
or	‘PDO’	(PHP	Data	Objects).	Upon	starting	development	the	‘mysql’	extension	was	used	
without	realising	that	it	has	been	depreciated	in	PHP	versions	5	and	above,	and	
removed	in	PHP	versions	7	and	above.	Unfortunately	this	was	not	realised	until	half	
way	through	development.	This	presented	two	options,	to	change	every	instance	of	the	
depreciated	extension	to	either	‘mysqli’	or	‘PDO’.	During	the	work	experience	
mentioned	above,	‘PDO’	was	introduced	to	me	and	was	practiced	during	a	project	over	
that	week.	The	main	advantages	of	‘PDO’	over	‘mysqli’	is	its	support	for	various	other	
database	drivers,	not	just	MySQL,	and	the	ability	to	name	and	bind	parameters	and	use	
prepared	statements.	The	initial	database	setup	using	‘mysql’	was	not	object	oriented	
and	so	there	was	a	lot	of	duplicated	code.	While	‘mysqli’	does	support	both	procedural	
and	OOP,	the	decision	to	use	‘PDO’	was	taken	based	on	the	advantages	listed	above.	This	
did	result	in	having	to	completely	re-write	the	database	setup,	configuration	and	how	
functions	interact	with	the	database,	but	it	was	a	necessary	step	towards	a	cleaner	and	
improved	application.	The	affects	meant	not	fully	completing	every	feature	and	a	less	
than	rigorous	testing	phase,	but	this	will	be	discussed	in	section	5.0.	The	online	manual	
for	‘PDO’	was	extremely	helpful	in	processing	this	change	[13].		
	
As	mentioned	in	the	background,	Sass	is	being	used	as	a	pre-processor	for	CSS.	It	
extends	the	original	CSS	to	make	use	of	helpful	features.	Some	of	these	include	
variables,	imports	and	mixins.	Variables	allow	for	global	variables	to	be	set	and	
accessed	through	a	variable	name.	This	proves	useful	when	defining	fonts	or	colours,	as	
only	one	line	of	code	needs	to	be	altered	if	these	are	changed.	Imports	keep	the	code	
structured	and	organised	by	having	separate	files	for	resets,	variables,	etc.	and	
importing	them	into	the	main	code.	Mixins	help	reduce	repeated	code	by	defining	set	
rules	for	styles	such	as	borders	and	shadows,	which	can	be	called	within	the	main	file.	
All	of	these	features	help	to	produce	CSS	efficiently	and	once	Sass	is	installed	it	can	be	
setup	to	watch	a	Sass	file	and	automatically	compile	it	into	a	useable	CSS	file.	The	online	
documentation	[14]	and	Sass	for	Web	Designers	book	[15]	were	used	as	reference	for	
the	correct	setup	and	usage.		
	
Parts	of	the	designs	indicate	various	icons	to	represent	the	user	options	or	the	
navigation	dropdown	on	smaller	devices.	Font	Awesome	has	been	used	as	it	provides	a	
wide	range	of	scalable,	customisable	icons	that	can	be	used	throughout	the	application	

	 44	

[16].	Browsers	have	their	own	default	styles	for	HTML,	so	to	help	avoid	any	conflicts	or	
issues	across	different	browsers,	a	reset	stylesheet	is	going	to	be	implemented.	Eric	
Meyer’s	reset	[17]	is	used	during	the	project	and	is	also	recommended	by	Ethan	in	the	
Responsive	Web	Design	book	[10].	Google	Fonts	is	being	used	to	provide	the	Open	Sans	
font.	While	this	does	mean	the	font	files	will	have	to	be	downloaded	to	the	users	
computer	when	the	page	loads,	the	difference	in	response	time	should	be	negligible.	You	
can	select	the	range	of	styles	to	be	included,	so	by	only	selecting	the	styles	that	will	be	
used	will	reduce	the	load	time.	The	Font	is	also	cached	in	the	browser	after	it	is	first	
downloaded	which	will	also	reduce	the	page	load	time.		
	
As	the	application	will	be	storing	potentially	sensitive	information	about	the	users	
financial	transactions,	it	is	essential	security	measures	are	taken	to	ensure	the	
application	is	secure.	This	involves	providing	adequate	authentication	during	the	login	
process.	A	user	should	not	be	able	to	access	the	application	without	logging	in.	The	
implementation	of	this	will	be	discussed	in	section	4.2.	Secure	connection	between	the	
web	server	and	client	should	also	be	employed.	An	SSL	(Secure	Socket	Layers)	
certificate	is	used	for	this	purpose,	using	a	public	/	private	key	pair,	communications	
sent	between	the	server	and	the	client	will	be	encrypted	and	signed	by	the	SSL	
certificate.	This	would	allow	the	application	to	be	accessed	through	HTTPS.	Self-signed	
certificates	could	be	set	up	for	development	on	the	local	environment,	but	has	not	been	
implemented.		
	
Finally	JavaScript	and	JQuery	will	be	used	for	client	side	validation,	interactive	content	
and	Ajax	to	request	data	from	the	server	and	update	the	page	without	reloading.	The	
asynchronous	requests	will	provide	a	more	interactive	experience	on	the	application,	
especially	when	customising	the	transactions	to	be	displayed	for	reports.	Similar	to	
Google	Fonts,	JQuery	and	JQuery	UI	is	being	served	through	Google	API’s.	JQuery	UI	is	
only	being	used	for	the	calendar	dropdown	feature	for	date	entry.	“JavaScript	&	JQuery	
–	Interactive	Front-End	Web	Development”	by	Jon	Duckett	[18]	and	the	JQuery	online	
documentation	[19]	provided	extremely	helpful	reference	during	the	development.	The	
book	also	provided	the	template	for	a	pop	out	modal.	
	
Now	that	the	development	environment	has	been	setup,	the	report	will	continue	to	
explain	key	sections	of	the	implementation	process	and	any	problems	encountered.	The	
full	source	code	is	provided	separately	but	snippets	of	key	areas	will	be	included	in	this	
report.	

4.1	GENERAL	STRUCTURE	

This	section	will	describe	the	core	structure	of	the	application,	which	consists	of	the	
database,	php	template	and	error	reporting.	The	database	section	will	discuss	how	it	
has	been	implemented	based	on	the	design	in	section	3.3.1.	The	template	combines	
common	code,	such	as	the	navigation,	into	one	file	so	that	it	can	be	included	within	each	
subsequent	page.	Both	will	be	explained	in	further	detail	below.		
	
Figure	25	shows	the	file	directory	structure.	The	root	will	contain	files	for	each	page	of	
the	application.	‘Stylesheets’	contains	a	‘Sass’	subdirectory	where	the	Sass	code	will	be	
written,	this	is	then	complied	into	a	CSS	file	and	stored	within	the	‘stylesheets’	
directory.	The	‘js’	directory	contains	any	JavaScript	or	jQuery	files	that	will	be	used	and	

	 45	

the	‘fonts’	folder	contains	the	Font	Awesome	source	code.	The	template	files	will	be	kept	
within	the	‘includes’	directory,	each	of	these	files	will	be	included	by	a	core	initiation	
file.	This	is	part	of	the	‘core’	directory	and	will	be	explained	in	more	detail	during	
section	4.1.2.	The	‘core’	folder	also	consists	of	four	subdirectories,	‘ajax’	for	any	server	
code	to	be	executed	using	ajax,	‘database’	for	the	database	configuration,	‘functions’	
which	will	contain	general	functions	to	be	used	throughout	the	application,	and	finally	
‘classes’	that	contains	the	object	oriented	classes	used	in	the	application.	This	file	
structure	is	key	to	keeping	the	code	organised.	
	

	
Figure	25	-	File	directory	structure	

4.1.1	DATABASE	SETUP	
A	separate	configuration	file	is	used	to	define	the	database	connection	details.	Using	the	
PHP	function	‘define()’	will	create	a	constant	variable	that	can	not	be	changed	once	set	
but	can	be	accessed	throughout	the	application.	This	has	been	done	for	the	database	
name,	username,	password	and	hostname.	The	following	code	is	from	the	‘config.php’	
file.	
	
// name of the database
define('DB_NAME', 'bread');
// database username
define('DB_USER', 'root');
// database password
define('DB_PASSWORD', 'root');
// hostname
define('DB_HOST', '127.0.0.1');

	
Throughout	the	application,	multiple	requests	to	the	database	are	going	to	be	made	for	
entering	or	retrieving	data.	To	save	having	to	duplicate	code	each	time	access	to	the	
database	is	required,	a	database	class	has	been	created.	The	singleton	design	pattern	is	
used	here	to	ensure	one	and	only	one	instance	of	the	database	is	available.	When	the	
database	class	is	first	called	and	constructed,	the	database	connection	is	saved	to	a	
private	‘instance’	variable.	In	this	way	when	the	database	is	called	again,	the	instance	of	
the	connection	will	be	used.	This	means	that	the	application	does	not	have	to	keep	
opening	a	new	connection	to	the	database	for	each	page.	The	class	also	contains	various	
methods	that	can	be	called	to	access	the	database.	These	methods	can	be	seen	in	the	

	 46	

following	code,	note	the	actual	content	of	the	methods	are	not	shown	as	it	is	available	
within	the	source	code.		
	
class Database {
private static $_instance = null;
private $_dbh, $_query, $_results, $_error = false, $_count = 0;

private function __construct() {
 try {
 $path = $_SERVER['DOCUMENT_ROOT'];
 include "{$path}/core/database/config.php";
 $this->_dbh = new PDO('mysql:host=' . DB_HOST . ';dbname='
. DB_NAME, DB_USER, DB_PASSWORD, array(PDO::MYSQL_ATTR_INIT_COMMAND => "SET
NAMES 'utf8'"));
 $this->_dbh->setAttribute(
PDO::MYSQL_ATTR_USE_BUFFERED_QUERY, true);
 $this->_dbh->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 } catch(PDOException $e) {
 die($e->getMessage());
 }
}

public static function getInstance() {
 if(!isset(self::$_instance)) {
 self::$_instance = new Database();
 }
 return self::$_instance;
}

public function query($sql, $params = array()) {}
public function queryAction($sql, $values = array()) {}
public function advancedAction($action, $columns, $table, $where, $extras =
'') {}
public function action($action, $columns, $table, $where = array()) {}
public function get($columns, $table, $where = array()) {}
public function advancedGet($columns, $table, $where, $extras = '') {}
public function insert($table, $fields = array()) {}
public function update($table, $fields, $where, $id) {}
public function results() {}
public function first() {}
public function error() {}
public function count() {}
}

	
The	construct	method	uses	the	constant	variables	defined	in	the	configuration	file	to	
connect	to	the	database.	The	following	code	represents	how	the	database	class	is	called	
from	within	another	class,	for	example	the	Users	class.	
	
$this->_db = Database::getInstance();

	 47	

	
The	Users	class	calls	the	‘getInstance()’	method	to	store	an	instance	of	the	database	
connection	so	that	it	can	be	used	within	this	class.		If	an	instance	does	not	exist	then	a	
new	connection	is	created.	The	other	methods	shown	retrieve,	store	and	delete	data	
within	the	database.	For	example	to	create	a	user	from	within	the	Users	class,	the	
following	code	is	used.		
	
$this->_db->insert('users', $fields)

	
The	database	handler	‘_db’	that	holds	the	instance	of	the	database	is	used	to	call	the	
insert	method.	The	two	arguments	passed	through	are	the	table	name	to	insert	data	to	
and	an	array	of	key-value	pairs	for	the	data	to	be	entered	into	the	associated	field.	
Within	the	insert	method	the	fields	array	is	split	into	keys	and	values	to	create	an	SQL	
statement	that	is	then	passed	to	the	query	method	along	with	the	fields	array.		
	
public function insert($table, $fields = array()) {
 $keys = array_keys($fields);
 $values = '';
 $x = 1;
 foreach ($fields as $field) {
 $values .= '?';
 if($x < count($fields)) {
 $values .= ', ';
 }
 $x++;
 }
 $sql = "INSERT INTO $table (`" . implode('`, `', $keys) . "`)
VALUES ({$values})";
 if(!$this->query($sql, $fields)->error()) {
 return true;
 }
 return false;
}

	
The	query	method	uses	the	PDO	prepare	function	to	prepare	the	SQL	statement	and	
then	binds	each	value	within	the	fields	array	to	the	SQL	statement.	This	process	is	very	
important	as	it	helps	prevent	SQL	injections.	By	preparing	the	SQL	statement	and	then	
binding	the	parameters	separately	it	is	impossible	for	SQL	injection	to	occur.	
	
public function query($sql, $params = array()) {
 $this->_error = false;
 if($this->_query = $this->_dbh->prepare($sql)) {
 $x = 1;
 if(count($params)) {
 foreach ($params as $param) {
 $this->_query->bindValue($x, $param);
 $x++;
 }
 }
 if(!$this->_query->execute()) {

	 48	

 $this->_error = true;
 }
 }
 return $this;
}

	
This	process	is	the	basic	functionality	for	every	method	within	the	Database	class.	
However	the	‘advancedGet’,	‘advancedAction’	and	‘queryAction’	were	added	further	into	
the	implementation	to	accommodate	for	complex	SQL	statements	that	are	required	for	
the	reports.		

4.1.2	TEMPLATES	
The	main	reasoning	for	setting	up	a	template	system	for	the	application	is	to	reduce	
repeated	code.	The	header,	footer,	navigation	and	initiation	file	will	be	consistent	across	
every	web	page	so	it	does	not	make	sense	to	repeat	this.	PHP	include	and	require	
statements	can	be	used	to	accomplish	this.	The	opening	‘html’	and	‘body’	tags	as	well	as	
the	‘head’	tag	are	placed	within	a	separate	‘header.php’	file.	The	same	is	done	for	the	
closing	‘html’	and	‘body’	tags,	navigation	and	modal	html	content.	They	are	separated	
into	‘footer.php’,	‘nav.php’	and	‘modal.php’	respectively.	These	are	then	included	on	
each	page	using	the	following	code:	
	
<?php
$path = $_SERVER['DOCUMENT_ROOT'];

require_once "{$path}/core/init.php";

$user = new User();
if(!$user->isLoggedIn()) {
 Redirect::to('login.php');
}

$categories = $user->getCategories();
$accounts = $user->getAccounts();

include "{$path}/includes/overall/header.php";
include "{$path}/includes/nav.php"; ?>

	
‘require_once’	has	been	used	for	the	initiation	file	as	it	contains	code	that	is	crucial	to	
the	application	and	subsequent	inclusions	of	the	same	code	would	throw	and	error.	An	
instance	of	the	User	class	is	also	created	on	each	page.	The	constructor	for	the	user	class	
will	attempt	to	find	the	user	using	a	session	that	stores	the	user	id,	if	this	is	successful	
then	a	‘isLoggedIn’	flag	is	set	to	true.	This	session	is	set	when	the	user	logs	into	the	
application.	So	if	the	user	has	not	logged	in	then	no	session	will	be	set	and	the	logged	in	
flag	will	be	set	to	false.	As	part	of	the	authentication	process,	every	page	of	the	
application	will	perform	a	check	to	see	if	the	user	is	logged	in.	If	this	fails	then	the	user	
will	be	redirect	to	the	login	page.	This	prevents	unauthorised	access	to	the	application.	
The	‘init.php’	file	is	used	to	initialise	the	entire	system.	Sessions	are	started	and	the	
class	files	are	loaded.	The	following	code	demonstrates	this:	
	
<?php

	 49	

session_start();
date_default_timezone_set('Europe/London');
$path = $_SERVER['DOCUMENT_ROOT'];
#Autoloader with annonymous function
spl_autoload_register(function($class) {
 $path = $_SERVER['DOCUMENT_ROOT'];
 require_once "{$path}/classes/{$class}.php";
});
require_once "{$path}/functions/sanitise.php";

	
The	PHP	‘spl_autoload_register’	has	been	used	to	load	the	class	as	and	when	they	are	
declared.	PHP	will	put	each	class	into	a	queue	and	only	call	the	class	when	its	explicitly	
declared.	For	example,	when	a	new	instance	of	the	User	class	is	declared	as	follows:		
	
$user = new User();

	
The	autoloader	will	load	the	file	with	the	class	name	‘User.php’.	This	effectively	removes	
the	need	to	include	redundant	classes	that	are	not	used	on	a	specific	page.	The	default	
time	zone	is	also	set	within	the	‘init.php’	file	as	the	‘datetime’	object	is	used	for	part	of	
the	report	customisation	settings.	This	will	be	explained	further	into	the	report.	The	last	
file	included	within	‘init.php’	is	the	sanitise	function,	seen	below.	
	
function escape($string) {
 return htmlentities($string, ENT_QUOTES, 'UTF-8');
};

	
Sanitising	and	escaping	is	a	very	important	concept	as	it	prevents	SQL	injection	and	
cross-site	scripting	attacts	(XSS).	Sanitising	is	done	during	data	input,	through	PDO	
prepared	statements	and	binding,	and	escaping	is	done	when	outputting	data.	Just	
sanitising	on	input	is	not	enough,	if	the	output	is	not	escaped	the	user	can	inject	HTML	
to	the	URL	which	in	turn	can	load	scripts	and	cause	various	problems.	The	
‘htmlentities()’	function	converts	characters	to	HTML	entities,	the	second	argument	
specifies	that	double	quotes	should	also	be	escaped,	while	the	third	argument	specifies	
the	encoding,	‘UTF-8’	is	used	throughout	the	application	and	database.	This	escape	
function	is	used	within	the	application	and	‘json_encode()’	is	used	to	escape	JavaScript.	

4.1.3	ERROR	REPORTING	
As	part	of	the	development	and	testing	process	the	following	code	was	used	to	ensure	
all	errors	would	be	displayed.		
	
#temp error settings to display errors for testing and debugging
ini_set('display_errors', 1);
ini_set('display_startup_errors', 1);
error_reporting(E_ALL);

	
As	part	of	the	application,	success	and	error	messages	will	be	set	when	submitting	
forms.	These	messages	are	stored	in	a	session	and	then	displayed	appropriately	after	
form	submissions.	The	following	code	shows	the	‘success’	and	‘error’	sessions	being	
initialised	and	then	output	process.	

	 50	

	
if(!isset($_SESSION['success'])){
 $_SESSION['success'] = array();
}
if(!isset($_SESSION['errors'])){
 $_SESSION['errors'] = array();
}

	
<section id="message-alert">
<?php
if(Session::exists('success')) {
 foreach(Session::get('success') as $key => $msg){
 echo '<div class="alert success"><p>' .
Session::flash('success', $key) . '</p><a href="#" class="alert-
close"></div>';
 }
}

if(Session::exists('errors')) {
 foreach(Session::get('errors') as $key => $msg){
 echo '<div class="alert error"><p>' .
Session::flash('errors', $key) . '</p><span
class="fa fa-close fa-fw"></div>';
 }
}
?>
</section>

	
Figure	26	shows	an	example	of	an	error	message	displayed	after	a	failed	login	attempt.	
	

	
Figure	26	-	An	example	of	the	error	message	displayed	after	a	failed	login	attempt	

	 51	

	
Figure	27	-	Shows	the	registration	form	

4.2	LOGIN	AND	REGISTER	

The	login	and	registration	process	is	key	to	the	security	of	the	application.	It	is	
important	that	only	authenticated	users	can	access	the	system.	As	mentioned	in	section	
4.1.2,	each	page	checks	to	see	if	the	user	is	logged	in	and	will	redirect	back	to	the	login	
page	if	not.	However	this	is	not	the	only	security	concern.	The	users	password	must	be	
stored	and	retrieved	securely	without	knowing	the	actual	password.	In	the	past	this	
could	be	achieved	by	creating	a	salt	and	using	a	hashing	function,	such	as	md5,	both	the	
hash	and	salt	would	be	stored	in	the	database	so	that	login	could	be	verified.	However	
this	will	pose	various	security	problems,	such	as	using	the	same	salt	and	attacks	to	
intercept	the	salt	such	as	XSS	or	SQL	injection.	PHP	now	provides	‘password_hash()’	
function,	this	will	take	the	password	string	as	input	and	encrypt	with	a	randomly	
generated	salt	for	each	password,	providing	an	encrypted	string	up	to	255	characters	
long.	This	will	prevent	the	same	passwords	having	the	same	hash.	It	uses	the	bcrypt	
algorithm	that	is	changed	over	time	as	newer	and	stronger	algorithms	are	added	to	
PHP,	providing	some	future	proofing.	The	code	below	shows	this	being	implemented.	
	
$user->create(array(
 'username' => Input::get('username'),
 'password' => password_hash(Input::get('password'),
PASSWORD_DEFAULT),
 'email' => Input::get('email')
));

Session::add('success', 'You have been registered and can now login');
Redirect::to('index.php');

	
The	counterpart	to	this	is	‘password_verify()’,	which	simply	takes	two	arguments,	the	
password	to	verify	and	the	hash	to	compare	with.	The	hash	from	the	‘password_hash()’	
function	contains	all	the	information	needed	for	‘password_verify()’	to	verify	a	

	 52	

password.	The	function	returns	true	or	false	depending	if	the	password	match.	This	
code	is	used	to	verify	and	login	the	user:	
	
public function login($username = null, $password = null) {
#finds username, if it does not exist then returns false
$user = $this->find($username);
if($user) {
 #checks password and stores user_id as _Session 'user_id'
 if(password_verify($password, $this->data()->password)) {
 Session::put($this->_sessionName, $this->data()->user_id);
 return true;
 }
}
return false;
}

4.3	OVERVIEW	

The	overview	section	uses	various	Ajax	requests	to	get	a	users	accounts	and	
transactions	to	then	plot	them	on	a	HTML	canvas	element.	Both	of	these	will	be	
explained	in	the	next	section,	followed	by	the	process	of	uploading	a	CSV	file.	The	code	
referenced	in	this	section	is	contained	within	‘overview.js’.		
	

	
Figure	28	-	Shows	the	overview	page	with	the	pie	charts	for	two	accounts	

	 53	

	
Figure	29	-	showing	the	transaction	list	for	the	first	account	

4.3.1	ACCOUNTS,	TRANSACTIONS	AND	CHARTS	
Once	a	user	has	added	an	account	and	transactions	to	their	account,	a	pie	chart	is	
displayed	for	each	account	showing	the	total	income,	expenses	and	available	balances.	
Figures	28	and	29	show	the	pie	charts	and	transactions	list	respectively.	PHP	was	used	
to	generate	a	container	for	each	account	so	that	Ajax	could	be	used	to	display	the	
content.	JQuery’s	Ajax	method	provides	greater	control	over	the	requests,	with	a	range	
of	settings	to	apply.	Mainly	‘type’,	to	define	a	HTTP	‘GET’	or	‘POST’	request,	a	‘url’	to	
point	to	the	document	that	will	process	the	request,	‘data’	to	send	data	along	with	the	
request,	‘dataType’	to	define	the	type	of	data	to	be	returned,	and	finally	a	success	and	
error	function	that	is	called	if	the	request	is	successful	or	fails.	The	following	code	
shows	this	for	retrieving	user	accounts:	
	
$.ajax({
type: "GET",
dataType: "json",
url: "/core/ajax/getAccounts.php",
success: function(json) {}
error: function(xhr, textStatus, errorThrown) {
 alert(xhr.responseText);
}

	
	
	
The	error	functions	are	currently	setup	to	pop	up	an	alert	with	the	error	message.	This	
was	to	aid	debugging	but	would	be	implemented	with	functional	error	reporting	in	a	
final	development.	The	success	function	code	is	not	show	as	it	is	too	large,	however	
parts	will	be	sectioned	out	below.	Upon	success	it	loops	through	each	account	and	
executes	another	Ajax	request	to	retrieve	the	associated	transactions.	As	shown	below:	
	
$.ajax({
type: "POST",
data: { accountId: item.account_id },
dataType: "json",
url: "/core/ajax/getTransactions.php",
success: function(json) {}

	

	 54	

This	sums	the	total	of	each	income	and	expense,	which	is	then	passed	as	an	object	to	a	
‘plotChart’	function.	Here	the	total	amount	is	calculated	so	that	the	angle	for	each	arc	of	
the	pie	chart	can	be	calculated.	Looping	over	the	transactions	object	to	create	another	
object,	where	each	value	is	associated	with	a	name,	value,	color,	start	and	end	angle.	
	
for(var key in data) {
 pieData[k] = {
 name: key,
 value: data[key],
 color: colors[k],
 startAngle: 2 * Math.PI * lastPos,
 endAngle: 2 * Math.PI * (lastPos + (data[key]/myTotal))
 };
lastPos += data[key]/myTotal;
k++;
}

	
This	data	is	then	used	to	draw	the	pie	chart.	The	code	below	demonstrates	this	process:	
	
for (var i = 0; i < pieData.length; i++) {
 ctx.beginPath();
 ctx.moveTo(center[0], center[1]);
 ctx.arc(center[0], center[1], radius, pieData[i].startAngle,
pieData[i].endAngle, false);
 ctx.lineTo(center[0], center[1]);
 ctx.closePath();
 ctx.fillStyle = pieData[i].color;
 ctx.fill();

 //set up legend
 $('<tr>').append(
 $('<td>').append($('<span style="background-color:' +
pieData[i].color + '">')),
 $('<td>').text(pieData[i].name),
 $('<td>').text("£" + pieData[i].value.toFixed(2))
).appendTo($table);
}

	
Firstly	the	canvas	radius	and	centre	are	calculated.	The	path	point	is	set	to	the	centre	of	
the	circle,	‘ctx.arc()’	draws	the	sector	from	the	center,	out	to	the	radius,	from	the	
starting	angle	to	the	end	angle	as	previously	defined.	This	path	is	then	filled	with	the	
assigned	color	and	repeated	for	each	part	of	the	pie	chart.	A	legend	is	created	and	
appended	to	the	canvas.	

4.3.2	CSV	UPLOAD	
As	per	the	requirements,	the	user	can	upload	bulk	transaction	through	a	CSV	file.	This	is	
accessed	through	the	add	transactions	modal.	The	code	is	referenced	from	‘modal-
init.js’	which	contains	an	event	listener	that	executes	when	the	upload	input	type	is	
changed,	i.e.	when	a	file	is	selected.	Both	client-side	and	server-side	validation	ensure	
one	and	only	one	file	has	been	selected	and	checks	it	is	a	CSV	file	less	than	2MB	in	size.	

	 55	

The	File	API	is	then	used	to	read	the	content	of	the	file	and	display	each	record	to	the	
user	so	that	they	can	verify	and	change	any	data	if	necessary.	As	seen	in	the	code	below,	
once	the	file	has	been	selected,	each	row	is	split	by	a	new	line	and	subsequently	each	
row	split	by	a	comma	to	obtain	an	array	of	fields	for	each	row.	
	
var files = evt.target.files; // FileList object
var f = files[0];
var reader = new FileReader();
// Read the contents of the file
reader.onload = (function(theFile) {
return function(e) {
 var article = document.createElement('article');
 // get data from csv file and split at each line break
 var data = e.target.result;
 var row = data.split("\n");

 for (i = 0; i < row.length-1; i++) {
 var item = row[i].split(','); // split row by comma
 var dateParts = item[0].split('-');
 var newDate = dateParts[2]+'/'+dateParts[1]+'/'+dateParts[0];
 }
}

	
Within	the	for	loop	above	each	item	is	displayed	in	an	input	element	and	appended	to	
the	modal.	Some	CSV	files	downloaded	from	a	bank	account	very	rarely	have	an	extra	
field	for	a	transaction	record.	This	is	caused	by	the	transaction	record	having	a	double	
description	name.	Usually	the	file	has	three	columns,	the	first	being	the	transaction	date,	
then	the	description	and	finally	column	three	for	the	amount.	For	a	transaction	with	a	
double	description	this	structure	changed	to	four	columns,	the	transaction	date,	
description	name	1,	description	name	2	and	finally	the	amount	in	column	four.	This	only	
affected	the	offending	row,	so	to	overcome	this	problem	a	simple	if	statement	was	used	
to	check	the	length	of	the	row.	If	the	length	equalled	four	then	column	three	would	be	
ignored,	and	column	four	is	placed	in	the	html	as	the	amount.		
	
Figures	30	and	31	show	the	modal	to	upload	a	CSV	file	and	the	subsequent	modal	to	
verify	the	contents	before	upload.		
	

	
Figure	30	-	Upload	CSV	modal	

	 56	

	
Figure	31	-	Verify	CSV	modal	showing	the	details	that	can	be	edited	before	submission	

4.4	REPORTS	

The	reports	page	provides	an	in	depth	look	into	the	users	transactions.	They	are	
presented	with	four	categories	to	define	which	transactions	are	displayed.	Firstly	to	
select	which	account	will	be	used,	a	specific	account	can	be	selected	or	all	accounts	can	
be	used.	The	next	option	is	to	select	either	income	or	expenses	or	both.	Next,	specific	
parent	categories	can	be	selected	or	all	of	them	can	be	displayed.	Finally	a	date	range	
can	be	choosen.	Various	options	are	available	including,	the	current	week,	month	or	
year;	figure	32	shows	the	full	list.	The	next	section	will	show	how	these	were	
implemented.	The	pie	chart	uses	the	same	code	as	described	in	section	4.3.1	and	the	bar	
chart	uses	very	similar	code,	so	will	not	be	covered	in	detail	but	they	can	both	been	seen	
in	figure	33	below.	The	modals	to	add	accounts	and	transactions	are	also	accessible	
from	this	page,	but	again	the	key	details	have	been	discussed	previously.		
	

	
Figure	32	-	The	full	list	of	possisble	date	ranges,	shown	alongside	the	other	selctions	

	 57	

	
Figure	33	-	Shows	the	two	charts	for	expenses	from	the	year	so	far	

4.4.1	CUSTOMISABLE	REPORTS	
The	category,	transactions	type	and	date	range	selections	are	all	pre	defined	options	
whereas	the	accounts	selection	is	populated	using	an	Ajax	request	to	fetch	all	of	the	
users	accounts.	All	four	are	connected	to	an	event	listener;	this	calls	three	functions	to	
update	the	charts	and	transaction	list	every	time	one	of	the	selections	is	changed.		The	
values	of	each	selection	are	passed	onto	these	functions	to	define	the	selection	criteria,	
however	the	date	criterion	requires	a	range	between	two	dates.	This	range	is	calculated	
using	the	following	code	within	‘reports.js’:	
	
var now = new Date();
var thisWeek = new Date();
var thisMonth = new Date();
var lastMonth = new Date();
var last3Months = new Date();
var last6Months = new Date();
var last12Months = new Date();
var thisYear = new Date();
var lastYear = new Date();

thisWeek.setDate(now.getDate() - 7);
thisMonth.setDate(1);
lastMonth.setMonth(now.getMonth() - 1, 1);
last3Months.setMonth(now.getMonth() - 3);
last6Months.setMonth(now.getMonth() - 6);
last12Months.setMonth(now.getMonth() - 12);
thisYear.setMonth(0, 1);
lastYear.setFullYear(now.getFullYear() - 1, 0, 1);

dateRanges = [thisWeek, thisMonth, lastMonth, last3Months, last6Months,
last12Months, thisYear, lastYear];

	

	 58	

Firstly	a	variable	for	each	of	the	possible	options	is	instantiated	as	a	date.	The	values	are	
then	calculated	using	JQuey’s	date	methods	by	subtracting	the	appropriate	number	of	
days,	months	or	years	from	todays	date.	This	will	ensure	the	selected	range	is	always	
based	from	todays	date.	These	values	are	then	stored	in	an	array	so	they	can	be	
accessed	easily.	The	code	below	shows	a	switch	statement	for	the	date	range	selected	by	
the	user.	Each	case	assigns	a	start	date	and	end	date	using	the	array	of	dates	created	
above.	For	example,	if	the	user	selects	the	option	‘last3Months’	then	a	start	date	is	set	as	
the	first	day	of	the	month,	three	months	before	todays	date	and	an	end	date	as	todays	
date.	The	date	range	is	set	to	‘thisWeek’	by	defualt.		
	
switch(dateRange) {
 case '4':
 startDate = dateRanges[4];
 endDate = now;
 break;
 default:
 startDate = dateRanges[0];
 endDate = now;
 break;
}

	
While	plotting	the	Income	vs	Expense	bar	chart,	a	problem	arose	involving	getting	the	
transactions	and	plotting	the	data	once	received.	The	bar	chart	uses	a	for	loop	and	a	
series	of	Ajax	requests	within	the	loop	to	retrieve	the	transactions	for	each	bar	group	of	
income	and	expense	to	then	store	in	a	data	array.	So	for	example,	a	date	range	of	last	
week	would	require	7	loops	of	Ajax	requests	to	obtain	the	income	and	expense	for	each	
day	of	the	week,	adding	the	data	for	each	day	to	the	data	array	after	every	loop.	The	
chart	could	only	be	plot	once	the	data	array	was	complete.	As	Ajax	uses	an	
asynchronous	processing	model,	its	success	function	would	execute	the	plotData()	
function	every	time	the	request	was	successfully	completed	and	so	was	executing	with	
incomplete	data.	To	solve	this	an	if	statement	was	created	with	the	condition	to	only	
execute	once	a	variable	was	equal	to	the	number	of	requests	required	for	a	complete	
data	set.	The	for	loop	initialising	the	Ajax	requests	can	be	seen	below.	Followed	by	the	
Ajax	request	itself	and	the	plotData()	function.		
	
case '0':
// for loop calculates number of days between date range
for (var i = 0; currDate <= endDate; i++) {
 dates[i] = [days[currDate.getDay()] + " " + currDate.getDate(),
currDate.getTime()];
 currDate.setDate(currDate.getDate() + 1);
}
// for loop to call ajax request for transactions
for (var i = 0; i < dates.length-1; i++) {
 var date1 = new Date(dates[i][1]);
 var date2 = new Date(dates[i+1][1]);
 // ajax request
 getTrans(type, accountId, date1.toString(), date2.toString())
}
break;

	 59	

	
function getTrans(type, accountId, startDate, endDate){
$.ajax({
 type: "GET",
 data: { type: type, accountId: accountId, startDate: startDate,
endDate: endDate, categoryId: categoryId },
 dataType: "json",
 url: "/core/ajax/getReportTransactions.php",
 success: function(json) {
 var income = 0;
 var expense = 0;
 $.each(json, function(j, item) {
 var value = parseFloat(item.amount);
 if(value < 0) {
 expense += value;
 } else {
 income += value;
 }
 });
 expense *= -1;
 tempData.push([income, expense]);
// plotData function to execute only after all ajax requests finished
 plotData();
 },
 error: function(xhr, textStatus, errorThrown) {
 alert(xhr.responseText);
 }
});
};

	
function plotData() {
// if statement solution
if(ready >= dates.length-1){
 for (var i = 0; i < dates.length-1; i++) {
 barChartData[dates[i][0]] = [tempData[i][0],
tempData[i][1]];
 }

 var canvas = "canvas2";
 var container = "#report-graph-2";
 $(container).find('.legend').empty();
 $(container).find('.legend').append($('<table>').append($('<tr>').a
ppend(
 $('<td>').append($('<span style="background-color:' +
colors[0] + '">')),
 $('<td>').text("income"),
 $('<td>').append($('<span style="background-color:' +
colors[1] + '">')),
 $('<td>').text("expense")
)));

	 60	

 plotBarData(canvas, barChartData);
}
// incrments variable for if condition
ready++;
}

	 	

4.5	STUDENT	FINANCE	

The	student	finance	system	has	been	set	up	so	that	a	user	can	only	have	one	student	
loan	account	as	the	majority	of	students	will	only	ever	have	one.	This	could	be	expanded	
in	the	future	to	allow	for	students	on	second	degrees	that	are	able	to	receive	a	second	
student	loan.	The	setup	process	is	shown	in	the	figures	34	and	35.	The	student	loan	
setup	module	is	active	while	the	add	instalment	module	is	deactivated	so	no	instalments	
can	be	added	before	an	account	is	created.	Once	a	loan	name	is	submitted,	an	Ajax	
request	is	executed	to	create	the	account,	this	will	active	the	add	instalments	module	
and	deactivate	the	loan	setup.		
	

	
Figure	34	-	The	student	loan	setup,	showing	instalments	as	disabled	

	

	
Figure	35	-	The	second	step	of	student	loan	setup,	Instalments	is	active	and	setup	is	deactivated	

	 61	

Any	number	of	instalments	can	be	added	by	clicking	the	‘plus’	icon.	This	will	add	
another	row	of	inputs,	similarly	clicking	the	‘minus’	icon	will	remove	a	row	of	inputs.	
The	code	below	shows	how	this	is	implemented.	
	
// add installment input row
$(document).on('click', '.add-installment-btn', function() {
 $container = $(this).closest('form').find('table');
 $(this).parent().prepend($removeBtn);
 var $row = $('<tr>').append(
 $('<td>').append($periodSelect),
 $('<td>').append($loanTypeSelect),
 $('<td>').append('<input type="date" class="loan-calendar"
name="installment_date[]" placeholder="Installment Date" required/>'),
 $('<td>').append('<input type="number" name="amount[]"
placeholder="Amount" required/>')
);
 $container.append($row);
});

// remove installment input row
$(document).on('click', '.remove-installment-btn', function() {
 $lastRow = $(this).closest('form').find('table tr:last');
 $lastRow.remove();
 if ($(this).closest('form').find('tr').size() <= 2) {
 $removeBtn.detach();
 }
});

	
An	if	statement	checks	the	number	of	rows	remaining	after	clicking	the	‘minus’	icon,	if	
this	value	is	less	than	or	equal	to	two	then	the	button	is	removed	so	that	no	more	rows	
can	be	removed.	The	two	remaining	rows	are	the	header	and	one	input	row.	After	
clicking	‘add	installments’	another	Ajax	request	is	submitted.	During	this	process	The	
instalments	have	to	be	added	to	their	corresponding	totals	within	the	‘loan’	database.	
The	code	below	demonstrates	this:	
	
$current_total = $this->data()->total_loan;
$new_total = $fields['amount'] + $current_total;
$this->update(array('total_loan' => $new_total));
$loan_type_id = $fields['loan_type_id'];

if ($loan_type_id != 2) {
 $current_owed = $this->data()->amount_owed;
 $new_owed = $fields['amount'] + $current_owed;
 $this->update(array('amount_owed' => $new_owed));
}
if ($loan_type_id == 1) {
 $maintenance_loan = $this->data()->maintenance_loan;
 $new_maintenance_loan = $fields['amount'] + $maintenance_loan;
 $this->update(array('maintenance_loan' => $new_maintenance_loan));
} elseif ($loan_type_id == 2) {

	 62	

 $maintenance_grant = $this->data()->maintenance_grant;
 $new_maintenance_grant = $fields['amount'] + $maintenance_grant;
 $this->update(array('maintenance_grant' =>
$new_maintenance_grant));
} elseif ($loan_type_id == 3) {
 $tuition_fee = $this->data()->tuition_fee;
 $new_tuition_fee = $fields['amount'] + $tuition_fee;
 $this->update(array('tuition_fee' => $new_tuition_fee));
}

	
Firstly,	the	current	total	is	fetched	from	the	database.	The	sum	of	the	instalment	amount	
and	current	total	is	submitted	back	to	the	database,	using	the	database	update	method.	
A	series	of	if	statements	check	the	‘loan_type_id’	so	that	the	accumulated	loan_type	total	
is	updated	correctly.	After	the	instalments	have	been	submitted	the	overall	summary	of	
the	loan	and	yearly	breakdown	is	displayed,	shown	in	figure	36.		
	

	
Figure	36	-	Student	Loan	overview	

4.6	PROBLEMS	ENCOUNTERED	

Having	identified	a	few	problems	specific	to	areas	in	the	above	sections,	other	problems	
encountered	will	be	discussed	here.	Most	were	fairly	minor	and	were	identified	during	
testing	throughout	the	development.	Examples	include:		

• Incorrect	dates	being	stored	in	transactions	table	as	0000-00-00.	This	was	due	to	
the	format	that	the	date	was	being	submitted	to	the	database.	A	simple	change	of	
syntax	in	php	and	the	JQuery	datepicker	solved	this	issue.		

• Problems	closing	the	modal	using	the	‘close’	icon	button.	This	was	caused	by	a	
low	level	scope	for	the	event	listener,	such	that	it	was	not	being	recognised.	
Changing	to	JQuerys	‘on()	method	applied	to	the	document	solved	this.		
$(document).on('click', '.alert-close', function() {}

	 63	

• Font	weights	appearing	differently	across	different	browsers.	This	is	down	to	the	
browsers	font	rendering	engine.	Using	CSS	to	alter	‘text-rendering’	or	‘font-
smoothing’	may	help	but	ultimately	their	default	values	differ	between	browsers.	
So	difference	may	still	occur.		

	
As	mentioned	at	the	start	of	section	4,	the	main	problem	encountered	was	using	a	
depreciated	database	extension.	This	has	subsequently	had	knock	on	effects	for	the	rest	
of	the	implementation.	The	original	plan	set	out	in	the	initial	report	states	the	
implementation	should	have	been	finished	by	the	end	of	week	9.	However	the	mistake	
during	this	process	delayed	this	task	by	an	extra	week	and	also	resulted	in	two	sections,	
Employment	and	Budgeting,	not	being	implemented	in	the	final	development.	They	
would	have	been	completed	within	another	week,	but	due	to	time	constraints	it	was	
decided	the	risk	was	not	worthwhile	delaying	the	report	any	longer.	 	

	 64	

5	RESULTS	AND	EVALUATION	

The	aim	identified	at	the	start	of	the	project	has	partially	been	achieved.	A	system	has	
been	created	to	allow	the	user	to	manage	their	personal	finances.	However	various	
requirements	have	not	been	met.	This	is	mainly	due	to	the	Budgeting	and	Employment	
sections	not	being	implemented.	This	has	been	described	in	section	4.6	above.	The	
objectives	set	out	in	introduction	have	largely	been	met	as	well.	They	identified	
objectives	for	the	progression	of	the	project,	which	have	been	followed	through	to	the	
end.	While	some	requirements	may	not	have	been	accomplished,	those	relating	to	what	
has	been	implemented	have	largely	been	achieved.	Functionality	testing	during	the	
development	process	has	helped	this	achievement.	Each	feature	that	was	implemented	
was	tested	for	redirects,	validation	and	wrong	inputs.	For	example,	adding	transactions	
to	an	account.	This	process	involved	constant	trials	on	incorrect	or	unwanted	data	to	
produce	strict	validation	rules	that	only	allow	required	data.	Regular	expression	have	
been	used	to	ensure	only	the	correct	date	format	is	accepted,	similarly	with	an	email	
address,	only	strings	with	the	accepted	format	will	be	allowed.	The	test	cases	proposed	
in	section	3.3.4	set	out	functional	testing	for	various	requirements.	These	will	be	
discussed	in	the	next	section.		

5.1	TEST	CASES	

The	test	cases	defined	in	the	specification	and	design	section	were	chosen	as	they	
covered	the	main	functionality	proposed.	Some	test	cases	across	the	different	sections	
would	be	very	similar	because	of	the	features	they	both	provide.	For	example,	
Displaying	and	editing	transactions	within	the	transaction	list	on	both	the	Overview	and	
Reports	pages	would	yield	practically	the	same	tests.	Test	case	11	has	been	selected	to	
represent	the	other	browsers.	The	two	main	browsers	available	were	Safari	and	Google	
Chrome	on	a	mac,	so	have	been	tested	on	both.	Internet	explorer	has	been	tested	to	the	
extent	of	using	Safari	developer	tools	to	simulate	using	IE.	This	section	will	continue	by	
evaluating	the	results	of	the	test	cases.		
	

Test	1:	 Can	the	user	register	an	account.	

Actual	Outcome:	 User	successfully	registered	an	account	with	username	
‘twhiddett’	and	email	‘twhiddett@gmail.com’.	

Details	are	stored	in	the	database.	

	

Test	2:	 Can	the	user	log	into	the	application	

Actual	Outcome:	 User	successfully	logged	in	and	redirect	to	the	overview	page.	

	

Test	3:	 Can	the	user	create	an	account.	

Actual	Outcome:	 Successfully	added	the	account	with	provided	details.	

	

	 65	

Test	4:	 Can	the	user	upload	transactions	to	an	account.	

Actual	Outcome:	 Successfully	selected	CSV	file	to	upload,	verified	the	contents	and	
selected	an	account	and	categories	for	each	transaction.		

	

Test	5:	 The	user	can	customise	the	display	of	different	reports.	

Actual	Outcome:	 All	the	transactions	are	shown	as	expected	with	the	results	show	
in	both	the	pie	chart	and	bar	chart.		

	

Test	6:	 Can	the	user	edit	individual	transactions.	

Actual	Outcome:	 Successful	edit	of	transaction,	from	category	‘food’	to	‘groceries’.	

	

Test	7:	 Can	the	user	delete	a	transaction.	

Actual	Outcome:	 Transaction	successfully	deleted,	no	longer	displayed	within	the	
database	or	the	transactions	list.		

However	directly	after	deletion,	the	remaining	transactions	were	
duplicated	within	the	transactions	list.	This	is	only	a	visual	bug	
caused	by	the	table	not	clearing	properly.	After	a	page	refresh	
they	are	displayed	correctly.	

	

Test	8:	 Test	whether	the	user	can	create	a	student	loan	

Actual	Outcome:	 Student	loan	successfully	created	and	an	overview	displayed.	

	

Test	9:	 Test	whether	the	user	can	create	a	budget.	

Actual	Outcome:	 Failed	test	as	the	Budgeting	has	not	been	implemented.	

	

Test	10:	 Can	the	user	log	out.	

Actual	Outcome:	 User	successfully	logged	out	and	redirected	to	the	login	screen.		

	

Test	11:	 Does	the	application	display	correctly	in	Google	Chrome.	

Actual	Outcome:	 The	application	displays	correctly	in	Google	Chrome	as	well	as	
internet	explorer	through	Safari	developer	tools.	The	only	
noticeable	difference	is	the	font	rendering	which	was	previously	
mentioned	in	section	4.6.	

	

	 66	

Test	12	and	13	have	been	added	to	include	features	that	have	been	overlooked	in	the	
initial	test	case.	Mainly	compatibility	testing.	Mobile	devices	need	to	be	tested	to	
observe	the	responsive	design	and	its	functionality.	
	

Test	12:	 Can	the	user	delete	their	account	and	subsequently	all	
associated	accounts	and	transactions.	

Environment:	 OS	X	

Browser:	 Safari	

Pre-Conditions:	 Must	be	logged	in	and	have	created	an	account	with	
transactions.	

Process:	 1. Select	the	user	icon.	
2. Select	‘Update	Details’	button.	

3. Select	‘Delete	Account’	
4. Select	‘Are	you	sure?’	

Expected	Outcome:	 The	user	is	logged	out	of	the	application,	they	cannot	log	back	in	
and	their	accounts	have	been	deleted	from	the	database.	

Actual	Outcome:	 User	is	logged	out	and	a	confirmation	message	is	displayed	at	
the	login	page.	The	users	account	transactions	and	student	loan	
have	successfully	been	removed	from	the	database.		

	

Test	13:	 Is	the	application	responsive.	

Environment:	 OS	X	

Browser:	 Google	Chrome	–	Device	mode	

Pre-Conditions:	 Must	be	logged	in.	

Process:	 1. Within	Google	chrome	access	the	developer	tools	and	
toggle	device	mode.		

2. Select	responsive	to	customise	screen	size	to	various	
sizes.	

3. Select	iPhone	6	Plus	and	Galaxy	S5.	

Expected	Outcome:	 The	application	should	scale	accordingly	and	function	on	a	
mobile	device.		

Actual	Outcome:	 The	application	scales	down	to	size,	however	on	the	smaller	
screens	of	a	mobile	device	the	navigation	bar	is	too	congested	as	
is	the	transaction	list.	The	application	functions	very	well	on	an	
iPad.	Figure	37	shows	an	iPhone,	figure	38	shows	a	Galaxy	S5	

	 67	

device	and	figures	39	and	40	show	an	iPad	version.	

	

	
Figure	37	-	Test	13	Shows	the	application	displayed	on	an	iPhone	6	Plus	

	
Figure	38	-	Test	13	Show	the	application	displayed	on	a	Galaxy	S5	

	 68	

	
Figure	39	-	Test	13	shows	the	overview	chart	displayed	on	an	iPad	

	

	
Figure	40	-	Test	13	shows	the	overview	transactions	on	an	iPad	

5.2	STRENGTHS	AND	WEAKNESSES		

Reflecting	on	the	results	from	the	tests	has	revealed	some	strengths	and	weaknesses	
within	the	application.	Areas	where	the	system	is	successful	include	the	reporting	and	
student	loan.	Mainly	the	flexibility	to	customise	and	produce	various	reports.	The	
available	options	for	selecting	a	date	range	and	parent	categories	provide	a	good	range	
of	possibilities.	The	infographics	supporting	these	options	provide	a	clear	visual	aid	of	
income	and	expenses	over	a	period	of	time.	While	the	pie	chart	allows	further	insight	
into	spending	habits	by	assessing	areas	of	high	expenditure.	The	student	loan	interface	

	 69	

may	be	fairly	straightforward	but	having	access	to	all	the	information	in	one	location	
will	be	beneficial.	Another	feature	that	is	invaluable	is	the	ability	to	import	CSV	files.	
This	makes	the	application	so	much	more	practical	and	will	save	a	lot	of	time.	
Furthermore	the	layout	and	structure	also	strengthen	the	application.	Every	feature	is	
within	a	few	clicks	and	is	easy	to	navigate	between	different	sections.	However,	there	is	
room	for	improvements,	but	these	will	be	discussed	in	the	next	section.	
	
Areas	of	weakness	within	the	application	include	the	responsive	architecture.	While	it	is	
responsive,	unfortunately	the	implementation	is	lacking	on	smaller	devices.	Further	
thought	needs	to	be	put	in	to	the	transaction	list.	It	may	be	a	case	of	making	the	font	
smaller	to	help	fit	all	the	columns	onto	the	screen	or	change	the	method	of	editing	
transactions.	The	navigation	can	be	fixed	by	moving	the	various	icons	into	the	
responsive	navigation	dropdown.	With	more	time	this	would	have	been	implemented.	
Another	area	of	weakness	is	the	account	overview.	The	available	balance	is	helpful	but	
in	hindsight	the	piecharts	are	not	exactly	meaningful.	Displaying	the	5	most	recent	
transactions	would	have	been	more	beneficial.	Lastly,	the	application	feels	too	ridged;	
there	is	no	animation	that	is	needed	to	enhance	the	user	interaction.	
	
Overall	the	application	has	proved	a	success,	fulfilling	the	overall	aim	to	provide	a	tool	
to	manage	personal	finance.	Of	the	three	sections	implemented,	all	of	their	functional	
requirements	have	been	met	as	well	as	most	of	the	general	functional	and	non-
functional	requirements.	The	only	non-functional	requirement	that	has	fallen	short	is	
the	responsiveness	for	a	variety	of	devices.		
	
The	approach	throughout	the	project	has	worked	well,	although	completing	an	in-depth	
risk	analysis	would	have	supported	some	leeway	in	the	project	plan.	This	would	have	
potentially	reduced	the	knock	on	affect	of	restructuring	the	database	half	way	through	
the	implementation.	The	chosen	programing	languages	presented	a	challenge,	having	
not	used	Ajax	in	the	past.	Therefore	some	research	into	various	frameworks,	such	as	
angular.js,	could	have	eased	the	learning	curve	required.	
	
An	alternative	approach	might	have	produced	a	better	solution	that	met	all	the	
requirements.	However	it	would	not	have	developed	the	experience	gained	throughout	
this	process.	Therefore	the	chosen	approach	is	still	considered	to	have	been	appropriate	
for	the	project.	 	

	 70	

6	FUTURE	WORK	

Firstly	the	future	work	would	consist	of	finishing	the	uncompleted	features,	the	
employment	and	budgeting	sections.	Implementing	a	planner	for	future	savings	could	
further	expand	the	budget	system.	While	also	including	a	savings	calculator,	with	two	
modes.	One	to	save	up	for	an	item	with	a	given	cost,	the	calculator	would	then	estimate	
how	long	it	would	take	to	save	up	for	the	item	based	on	a	set	savings	rate.	Secondly	to	
save	up	for	an	item	by	a	given	date,	the	calculator	would	then	calculate	how	much	needs	
to	be	saved	each	week	or	month.		
	
The	other	sections	can	also	be	developed	by	slightly	improving	some	features.	For	
instance,	rather	than	clicking	a	button	to	edit	a	row	of	transitions,	the	user	could	click	
on	the	field	itself	to	begin	editing.	Once	focus	is	lost	from	the	field,	an	Ajax	request	can	
attempt	to	submit	the	changes.	The	reporting	could	also	be	improved	upon	by	selecting	
multiple	categories;	this	could	effectively	be	used	to	compare	different	categories.	
Enhancing	the	piecharts	by	clicking	on	a	segment	that	is	a	parent	category,	this	would	
then	progress	to	its	subcategories,	displaying	their	breakdown	on	the	piechart.		
	
Some	of	these	could	be	implemented	using	existing	frameworks.	Chart.js	provides	
various	chart	types	with	customisable	animations	and	a	responsive	design.	Angular.js	is	
an	example	of	a	framework	that	would	allow	for	a	more	fluid	web	application.		
	
As	mentioned	in	section	5.2	the	user	interaction	needs	to	be	developed	to	incorporate	
some	animations	and	to	improve	the	overall	functionality	of	the	application.	A	touch	
friendly	design	on	mobile	devices	could	implement	swiping	between	different	sections	
of	the	page.	The	final	future	work	would	be	to	explore	further	security	threats	and	the	
measures	needed	to	protect	against	them.		 	

	 71	

7	CONCLUSIONS	

The	project	set	out	with	the	core	aim	to	produce	a	piece	of	software	that	would	assist	a	
user	in	managing	their	personal	finances.	Secondary	aims	were	to	develop	the	system	to	
be	a	functional	and	aesthetically	pleasing	product.	As	part	of	this	process,	requirements	
were	defined	that	would	guide	the	project	towards	completing	these	goals.	These	have	
been	evaluated	and	so	it	can	be	concluded	that	the	overall	aims	have	been	achieved.		
	
Some	challenges	were	encountered	along	the	way	that	set	the	project	behind,	but	in	the	
end	a	solution	has	been	produced	that	satisfies	the	requirements.	While	the	proposed	
design	was	not	completed,	the	sections	that	were,	accomplished	the	goals	they	were	
designed	for.	An	alternative	approach	may	have	produced	a	different	outcome	but	it	
would	not	have	developed	the	experienced	gained	in	overcoming	these	challenges.	
Improvements	have	been	identified	for	both	the	completed	and	unfinished	designs,	so	
that	the	project	can	be	developed	in	future	work.		 	

	 72	

8	REFLECTION	ON	LEARNING	

This	project	has	certainly	provided	me	with	some	valuable	experience	both	in	the	
software	development	lifecycle	and	in	developing	my	programming	skills.	Having	little	
experience	with	Ajax	and	the	basics	of	PHP,	I	feel	the	project	has	allowed	me	to	
challenge	my	abilities	and	push	myself	to	quickly	learn	new	languages	and	approaches	
to	problem	solving.		
	
Programming	the	whole	application	from	scratch	rather	than	using	a	framework	such	
as	angular.js,	may	have	been	a	bit	ambitious.	But	it	has	allowed	me	to	actually	learn	
about	the	core	language	and	understand	various	functions	rather	than	learning	how	a	
framework	implements	the	same	functionally.	Although	I	would	have	liked	to	have	
implemented	more	of	the	designed	system,	the	mistake	I	made	by	using	the	depreciated	
mysql	extension	rather	than	the	mysqli	will	teach	me	to	be	more	cautious	and	conduct	
thorough	research	before	rushing	into	the	development.		
	
Initially	I	was	worried	that	my	weeks	work	experience	was	going	to	hamper	the	time	I	
had	to	spend	on	the	project.	But	it	actually	turned	out	to	be	very	helpful.	They	
introduced	me	to	PDO	databases,	while	it	was	only	the	basic	concepts	to	create	a	
database	connection,	bind	and	prepare	statements	and	the	basic	functionality.	It	
prompted	me	to	research	it	further	and	consequently	implement	it	into	the	project.	This	
did	involved	a	quick	and	steep	learning	curve	to	get	to	grips	with	the	more	advanced	
features	but	it	totally	paid	off	as	the	database	object	setup	ended	up	being	so	flexible.		
	
The	project	plan	was	affected	and	delayed	after	having	to	restructure	the	database.	But	I	
feel	I	could	have	created	an	updated	work	plan	so	I	had	clearer	goals	that	could	be	
achieved	each	week.	This	may	have	helped	get	back	on	track	and	may	have	also	allowed	
for	further	development	and	testing.		
	
Ultimately	the	project	has	provided	me	with	a	developed	skillset	that	I	can	use	to	take	
with	me	in	future	projects	and	further	in	my	career.			
	 	

	 73	

	

REFERENCES	

[1]	Quicken	Inc.	"Quicken®	personal	finance,	money	management,	budgeting,"	2016.	
[Online].	Available:	http://www.quicken.com.	[Accessed:	30th	Jan.	2016]	

[2]	Intuit.	"Mint:	Money,	bill	pay,	credit	score	&	investing,"	2016.	[Online].	Available:	
https://www.mint.com.	[Accessed:	30	Jan.	2016]	

[3]	You	Need	A	Budget.	"YNAB.	Personal	finance	software	to	take	total	control	of	your	
money,"	2016.	[Online].	Available:	http://www.youneedabudget.com.	[Accessed:	
31	Jan.	2016]	

[4]	Money	Dance.	"Personal	finance	manager	for	Mac,	windows,	and	Linux,"	2015.	
[Online].	Available:	http://moneydance.com.	[Accessed:	30	Jan.	2016]	

[5]	Accountz.	"Accounting	software	|	bookkeeping	software,"	2016.	[Online].	Available:	
http://www.accountz.com.	[Accessed:	31	Jan.	2016]	

[6]	Microsoft	Office.	"Financial	management	Templates,"	2016.	[Online].	Available:	
https://templates.office.com/en-ca/Financial%20Management.	[Accessed:	31	Jan.	
2016]	

[7]	GOV.UK.	"Running	payroll	-	Payments,"	2016.	[Online].	Available:	
https://www.gov.uk/running-payroll/payments.	[Accessed:	06	Feb.	2016]	

[8]	GOV.UK.	"Running	payroll	-	Deductions,"	2016.	[Online].	Available:	
https://www.gov.uk/running-payroll/deductions.	[Accessed:	06	Feb.	2016]	

[9]	GOV.UK.	"Student	finance,"	2016.	[Online].	Available:	https://www.gov.uk/student-
finance-for-existing-students.	[Accessed:	06	Feb.	2016]	

[10]	Ethan	Marcotte,	"Responsive	Web	Design,	2nd	ed.",	2014.	
[11]	Sketch.	"Professional	Digital	Design	for	Mac,"	2016.	[Online].	Available:	

https://www.sketchapp.com.	[Accessed:	14	Feb.	2016]	
[12]	"MAMP	&	MAMP	PRO".	[Online].	Available:	https://www.mamp.info/en/.	

[Accessed:	25	Apr.	2016]	
[13]	The	PHP	Group..	[Online].	Available:	http://php.net/manual/en/book.pdo.php.	

[Accessed:	26	Mar.	2016]	
[14]	Sass.	"Sass	documentation".	[Online].	Available:	http://sass-

lang.com/documentation/file.SASS_REFERENCE.html.	[Accessed:	24	Feb.	2016]	
[15]	Dan	Cederholm,	"Sass	for	web	designers".:	A	Book	Apart,	2013.	
[16]	Dave	Gandy.	"Font	Awesome".	[Online].	Available:	http://fontawesome.io.	

[Accessed:	24	Feb.	2016]	
[17]	Eric	Meyer.	"CSS	tools:	Reset	CSS".	[Online].	Available:	

http://meyerweb.com/eric/tools/css/reset/.	[Accessed:	24	Feb.	2016]	
[18]	Jon	Duckett,	"JavaScript	and	JQuery:	Interactive	front-end	web	development".:	John	

Wiley	&	Sons,	2014.	
[19]	Ajax.	"Ajax	Documentation,"	02	Mar.	2016.	[Online].	Available:	

http://api.jquery.com.	[Accessed:]	
	

