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Abstract 
	 The main aim of  this project was to develop a software application which could solve 
Killer Sudoku puzzles. An application would be created with which a user could create a 
puzzle, and then the application would attempt to solve that puzzle. The software would then 
be tested and analysed using different solving strategies, in an attempt to identify the most 
effective way of  solving a Killer Sudoku puzzle. 
	 Two components of  the application were built during the course of  this project: a 
graphical user interface with which the user could build a Killer Sudoku puzzle; a solver 
component which could apply different rules to solve a given puzzle. This solver component 
was the subject of  a comprehensive experiment, in which different solvers were implemented 
and tested against a test suite of  100 puzzles of  varying difficulty to determine which solving 
strategies were the most effective.  
	 This report documents the requirements of  the software I set out to create, as well as 
the design and implementation of  that software. Furthermore, it also documents the 
experiments performed to analyse the solver component and evaluates the findings of  those 
experiments.  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1. Introduction 
	 The goal of  this project is to create a software application capable of  solving Killer 
Sudoku puzzles (described in detail in section 2). This application would allow a user to 
construct a Killer Sudoku puzzle digitally, which could be saved and restored to the 
application. The application would contain a component which would read the given puzzle 
and attempt to solve it using a variety of  methods. The different solving strategies would be 
analysed to identify which techniques were the most effective and how to order the execution 
of  different strategies to improve efficiency.  

1.1 Goal of  Implementation 
	 In the implementation phase of  this project, I intend to create a single piece of  
software which allows for the creation and resolution of  Killer Sudoku puzzles. The 
application in question will have an intuitive graphical user interface (GUI), with which a user 
can easily create a complete Killer Sudoku puzzle. A saving/loading function will be provided 
to allow users to store puzzles they have created. The application will support two different 
grid size for the puzzles, 4 x 4 and 9 x 9.  
	 The solving component will attempt to solve the puzzle currently loaded into the 
application, by combining a number of  solving techniques and rules. It will update the GUI 
to show it’s progress towards solving the puzzle, and when the puzzle is solved it will display 
the solution. 
	 The entire application will be designed and built as a highly extensible object-oriented 
solution, in which new techniques and strategies can be added, removed or modified with 
ease.  

1.2 Goal of  Analysis 
	 Once the initial application has been developed, I will carry out experiments to 
analyse the efficiency and effectiveness of  different puzzle solving strategies. The solver 
component of  the application will contain a number of  different strategies, rules and 
techniques which help to solve any given Killer Sudoku puzzle. Tests will be performed, using 
a test suite of  puzzles ranging in difficulty from easy to extreme, in order to analyse the 
software’s ability to solve puzzles when using different combinations of  strategies and different 
orders of  execution of  different strategies. Results will be recorded in terms of  time taken to 
solve a given puzzle, and they will be evaluated in order to determine which strategies work 
better.  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2. Background 
2.1 Classic Sudoku 

	 Sudoku is a logic-based puzzle in which the player must populate a grid of  n x n cells 
with values between 1 and n. The placement of  these values is constrained such that no cells 
in the same row or column can contain the same value. A Sudoku grid is typically 9 x 9 cells, 
and in this case each row and each column must contain all the values from 1 to 9 only once. 
Furthermore, the grid is also divided into n square regions, known as boxes. Each square is √n 
x √n big. Like the rows and columns, all the values in these boxes must be distinct. A unique 
puzzle is created by placing fixed values into the grid to begin such that there is only one 
possible solution.[1] An example Sudoku puzzle is given below.  

Figure 2.1.1 - Example of  a traditional Sudoku puzzle[2] 

	 The boxes are the regions with a thick border. The values in this grid are provided at 
the beginning of  the puzzle, and are placed such that there is only one possible solution. The 
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player should be able to use these values and the general constraints of  the puzzle to fill in the 
empty cells.  

2.2 Killer Sudoku 
	 A Killer Sudoku puzzle is an expansion of  the traditional Sudoku puzzle. Killer 
Sudoku uses the same grid and inherits the same constraints as a classic Sudoku puzzle, in 
that none of  the values in any given row, column or box in the grid can be identical. However, 
in Killer Sudoku there are no starting values. Instead, the grid is covered in a set of  cages. A 
cage is a group of  adjacent cells in which there must be no identical values, and the values of  
the cells in the cage must sum to a given total for that cage.[3] An example Killer Sudoku 
puzzle is given below.  

Figure 2.2.1 - Example of  a Killer Sudoku puzzle[4] 

	 In this example, the coloured regions of  the grid represent different cages, with the 
number in the top corner of  a cell representing the value the cells of  that cage must sum to. 
These cages constrain the grid such that there is only one possible solution. The extra 
constraints and lack of  starting values generally make Killer Sudoku more difficult to solve 
than classic Sudoku.  
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2.3 Common Solving Strategies 
	 There is no single definitive strategy for solving a Killer Sudoku puzzle. However, 
there are a number of  basic rules and techniques which can be used together to solve a 
puzzle. Again, there is no single definitive structure for the execution of  these rules, and they 
are generally applied on an ad-hoc basis as the player sees fit for any given puzzle. Most of  
these basic rules work out which values cannot be in a cell, so the best approach is usually to 
start under the assumption that any value can be placed in any cell, and then apply rules to 
eliminate possibilities from cells or cages. As the possibilities become less and less, it becomes 
easier to assign values to cells, which in turn constrains more of  the grid. When describing 
these rules, I will be assuming that the Killer Sudoku puzzle is using a 9 x 9 grid. I will also 
use the term “region” to describe a row, column or box.  

• Rule of  1: Since no region or cage can contain duplicate values, once a value has been 
assigned to a cell, that value can be eliminated as a possible value from all the cells in the 
same region or cage as that cell.[5]  

• Rule of  Necessity: For any region, if  all the values from 1 to 9 appear apart from one, 
that value must appear in the empty cell. Likewise for a cage, if  only one cell in the cage is 
unassigned, only one value will sum with the rest to make the total, so that value must be 
assigned to the empty cell. For example, if  a cage containing 3 cells has a sum of  15, and 
the values 4 and 6 have already been assigned, only the value 5 is both distinct from 4 and 6 
and will sum with 4 and 6 to produce 15.[5] 

• Rule of  45: This rule involves the comparison of  regions with cages. A region must contain 
all the values from 1 to 9, meaning the sum for that region is 45. Therefore, if  S is the sum 
of  the totals of  every cage contained entirely within the region in question, the 
remaining cells not covered by these cages must sum to 45-S. For example, in figure 2.2.1 
above, a cage of  size 4 and total 15 and another cage of  size 2 total 12 are entirely 
contained within the right-most column. Therefore, they represent a total sum of  27. The 
remaining 3 cells in that column which are in cages not entirely contained with the column 
must sum to 45-27, giving 18. Those 3 cells can now be treated as a new cage of  size 3 and 
total 18.[5] 

• Rule of  K: This rule expands upon the Rule of  1. If  a collection of  k cells contain exactly k 
possible values, then these cells cannot appear in any region all of  the cells are also in. 
Therefore, these values can be eliminated from the rest of  the region. For example, in figure 
2.2.1 above, there are 2 yellow cells in the bottom-left box. If  both of  these cells have 
possible values of  1 and 2, then we know that those values will definitely appear in those 
cells. Therefore, the values 1 and 2 can be eliminated from the other cells in the same box 
and row as the 2 cells.[5] 

• Sum Elimination: This technique involves calculating all the possible combinations of  
values which can make up the total for a given cage. For example, a cage of  size 3 and total 
6 can only contain 1 possible combination of  values, 1, 2 and 3. Therefore, the values from 
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4 to 9 can be eliminated from that cage. For all cages of  size 2, at least 1 value can be 
eliminated by using this method.[5] 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3. Specification and Design 
3.1 Specification 

	 For this project, I will create a software application which allows for the creation and 
resolution of  Killer Sudoku puzzles. The application will be created using the Java 
programming language and has the following requirements: 

• It must have an intuitive graphical user interface (GUI) with which the user can create a 
Killer Sudoku puzzle.  

• The user must be able to save a puzzle to a file, and likewise be able to load a stored puzzle 
from a file into the application.  

• The software should work for two different puzzle sizes: 4 x 4 puzzles; 9 x 9 puzzles. 
• It must be possible for the GUI to be updated while the puzzle is being solved to show the 

progress being made. The user should be able to toggle this feature on or off. 
• An object-oriented programming approach should be used, to make the application 

extensible and allow for the easy implementation of  multiple solving components. 

 	 In addition to this, the solver component of  the application has it’s own requirements: 
• Multiple puzzle-solving rules must be implemented and used in combination with each 

other to solve a Killer Sudoku puzzle.  
• The solver must use a cache of  sub-solutions to improve the overall speed and efficiency of  

it’s algorithms.  

3.2 Software Architecture 
	 The architecture of  the application will be similar to a model-view-controller (MVC) 
layout. MVC typically contains 3 separate components, which interact with each other in a 
cyclic process. The view component represents the graphical UI which the user sees. The user 
uses the controller component to interact with the application, and the actions taken by the 
controller manipulate the data in the model component. The model component contains the 
background data required by the application. Changes to the model are then sent to the view 
component, to update the GUI.[6] The diagram below illustrates this design.  
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Figure 3.2.1 - Top-level structure of  the model-view-controller software architecture[7] 

	 However, the structure of  the application I am creating will differ slightly from this 
architecture for a number of  reasons. Firstly, user interaction is reduced, as they will only 
interact with the system to create/save/load a puzzle. The user has no further impact on the 
system once the solving begins. Secondly, as I will be using Java to develop this application, I 
intend to create data objects which inherit properties from Java Swing components, which will 
remove the definite distinction between model and view. Therefore, I intend to use a modified 
version of  the MVC format containing just two components.  
	 Due to my use of  class inheritance in Java, the model and view components shall be 
combined. This component will be called the Puzzle, and will contain all the relevant data for 
the given instance of  a Killer Sudoku puzzle as well as the graphical components displayed on 
screen. As almost all of  the user’s interactions with the system relate to the creation of  a 
puzzle, I think it is also sensible to have the Puzzle component handle these interactions. The 
fact that the model, data and controller elements of  the puzzle itself  are so similar, means it is 
only logical to merge them into the same class. Attempting to separate them into a classic 
MVC architecture will only lead to a more convoluted design which does not provide much 
benefit. The design of  the Puzzle component is discussed in more detail in section 3.3.  
	 The second component will be the Solver. This component shall be initiated by the 
user, but after that point it will act independently and it will not be possible for the user to 
interfere with it’s actions. The Solver will begin to solve the puzzle represented by the Puzzle 
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component. It will make changes to the data in the Puzzle, and tell the Puzzle when to update 
the GUI. A diagram to illustrate this architecture is given below.  
 
 
 
 

 
 

Figure 3.2.2 - Top-level design of  the Killer Sudoku software I will create in this project 

	 This separation between the Puzzle and Solver components will allow for the easy 
implementation of  different solving strategies for the analysis part of  this project. This 
architecture also creates a simple relationship between Puzzle and Solver, which should make 
the development of  the Solver component simpler as all of  the data will be provided by a 
single object. Isolating the Puzzle from the rest of  the application should also facilitate easier 
saving/loading of  puzzles to/from files. By having the Puzzle class and it’s constituent 
elements implement the Serializable Java interface, I will be able to simply write the entire 
object to a data file in one command. 

3.3 Digital Representation of  a Puzzle 
	 In order to design a digital representation of  a Killer Sudoku puzzle, I have to 
consider the basic constituent elements of  the puzzle, and how they interact with each other. 
The basic elements of  the puzzle are the cells, cages, regions (rows, columns and boxes) and 
values.  

• Cells and values: I shall create a Cell class, and an instance of  this class will be created 
for each cell in the puzzle grid. Values are applied to single cells, so the assignment of  
values can be handled by the individual Cell objects. The solving techniques discussed in 
section 2.3 all work by eliminating values from a cell. Therefore, each Cell will contain a 
domain of  possible values the cell can still take. When the Solver is initiated, values will be 
removed (and when necessary, added) to the domain of  a Cell. When the domain contains 
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only one value, that value will be assigned to the Cell as a fixed value. Each Cell will also 
contain column and row variables to signify it’s position in the grid. Column 0 will be the 
left-most column, and row 0 the top-most row.  

• Cages and regions: I shall create a Cage class, and an instance of  this class will be 
created for each cage. Regions have all the same characteristics as cages, and so will be 
represented as Cages in the puzzle. For a 9 x 9 grid, a region can be defined as a Cage with 
a total of  45 (the sum of  the values 1 to 9). Regions will not appear on the GUI as cages, 
but the box regions will have a thicker border. Each Cage object will contain a list of  Cell 
objects which the Cage consists of. It will also contain the total the values of  the Cells must 
sum to.  

	 The Puzzle class shall be built upon these two classes, Cell and Cage. A 2-dimensional 
array of  Cells will be used to represent all of  the cells in the grid. They will be arranged in the 
array in the same way they are arranged in the puzzle grid; this should help to streamline the 
implementation for the Solver, as this layout will make it easier to identify which cells are 
affected by a change to another.  
	 The Puzzle will also contain a list of  Cages. When a new Puzzle object is created, the 
grid of  Cells will be built and the rows, columns and boxes will be stored as Cages. In a 9 x 9 
grid, there will be 27 of  these regions, and 12 in a 4 x 4 grid. Once the Puzzle has been built 
by the user, each Cell will be in 4 different Cages: row; column; box; custom. The structure of  
the Cage object means the Cells in the Cage can be easily accessed, but there also needs to be 
a way of  finding which Cages any given Cell is in. Therefore, I will store the Cages in a 
HashMap object in the Puzzle. Each Cage will have a corresponding Integer key, which can 
be used in the HashMap to find the correct Cage. Each Cell object will contain an array of  4 
Integers, corresponding to the 4 Cages it is a part of. This will allow the Solver component to 
easily find the Cages any given Cell is in and make changes to the Cells in those Cages 
accordingly. The three classes discussed in this section are described in the UML-style class 
diagrams below (for a 9 x 9 puzzle).  
 

 
 

Figure 3.3.1 - UML-style class diagrams for the main classes in the Puzzle component 
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3.4 User Interface 
	 In order for the user interface to be intuitive and easy to understand and use, it must 
closely resemble a Killer Sudoku puzzle. This is why I will be implementing the Puzzle class 
as a visual component of  the application. The Puzzle and Cell classes will both extend the 
JPanel Java class, and the Cell panels will fill the Puzzle panel in a grid. This panel will make 
up most of  the user interface, while there will also be a side panel containing controls to 
handle other features (saving/loading etc) and instructions on how to use the interface to 
create a new puzzle. The individual Cells will contain labels for each domain value. If  the 
domain contains multiple values, they will appear in the Cell as small digits. If  the domain 
contains only one value, that value will appear as a large digit. The hand-drawn diagram 
below shows the basic design for the interface (with a 9 x 9 puzzle grid).   

Figure 3.4.1 - Hand-drawn interface design for the Killer Sudoku application 

	 The plus shaped collection of  5 cells in the centre of  the grid shows how a cage will 
appear, with the total for the cage shown in the top-most cell. To add a cage to the current 
puzzle, the user simply clicks on the cells they wish to include. Selected cells will change 
colour, and clicking a selected cell will deselect it. Once the user has selected the cells they 
want, they will press the enter key. This will display an addition dialog box in which they will 
enter the total for that cage. Submitting that dialog will confirm the creation of  the cage; the 
cells will be surrounded by a thick border and the total will be displayed in the top-most cell 
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(if  there are multiple top-most cells, the left-most of  those cells will be used). The user will not 
be able to save or solve the current puzzle if  any cell is not in a custom cage or if  the totals of  
all the custom cages do not sum to the total of  all the values in a solution (in a 9 x 9 grid, the 
values in each row/column should sum to 45. 45 x 9 = 405, so the cage totals should sum to 
405). The interface will also support 4 x 4 puzzle grids, and which grid is loaded will be 
chosen using a command line argument when the application is launched.  

3.5 Structure of  the Solver 
	 The Solver will be implemented with extensibility in mind. It must be designed in 
such as way as to allow for the creation of  multiple different solving strategies, each of  which 
utilises a set of  rules in a different way. Therefore, I will utilise object-oriented programming 
techniques with a focus on inheritance. I will first create a Solver superclass. This class will 
contain the implementations of  the different solving techniques and rules as functions. Then, 
the different solving approaches will be developed as subclasses of  the Solver class, therefore 
inheriting these functions. To facilitate this, I will develop these subclasses as threads, meaning 
each subclass will have a run() function in which the order of  execution of  rules can be 
defined. If  a subclass needs to use an altered implementation of  a certain rule, it can be easily 
overridden by the subclass.  
	 The Solver superclass will contain implementations of  each of  the rules described in 
section 2.3. Each rule will have it’s own function, which can be called by the subclasses. In 
addition to these rules, I will also implement some others, such as checking the domains in a 
region to find any values which appear only once; in those cases the value in question must be 
assigned to the cell it was found in. I will also implement a guessing strategy by which the 
application can guess a value if  the execution of  the other rules is yielding no change to the 
puzzle. Likewise, I will also develop a way of  backtracking on a guess if  it is found to be 
incorrect.  
	 The implementation of  the sum elimination rule will utilise a memory cache. 
Combinations of  values found for cages will be stored in a HashMap object, and will be 
retrieved when necessary. The algorithm for this rule will be recursive; the function will call 
itself  by passing the current cage minus one cell as an argument. This will be done for every 
possible value a cell can take (typically 1 to 9), and the cage passed to the function call will 
have it’s total adjusted to reflect that. The value being used will also be added to a closed list 
of  values. This means that the recursive call is essentially finding the combinations the other 
cells in the cage can take given the first, removed cell carries a specific value. The following 
pseudocode describes the basic algorithm.  

SumElimination(cage,closedList,memory) returns combinations: 
if cage is in memory: 
 return combinations from memory 
else if cage.size == 2: 
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 for each combination for cage: 
  if combination does not contain value in closedList: 
   add combination to list 
 return list 
else: 
 remove cell from cage 
 for each possible value: 
  cage.total -= current value 
  add current value to closed list 
  combos = SumElimination(cage,closedList,memory) 
  add current value to each combination in combos 
  cage.total += current value 
  remove current value from closed list 
 store all combinations in memory 
 return all combinations 

Figure 3.5.1 - Pseudocode to describe the design of  the Sum Elimination algorithm  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4. Implementation 
4.1 Implementation of  the Puzzle 

	 As discussed in section 3.3, I have implemented a Puzzle class, which uses Cell and 
Cage objects to represent a Killer Sudoku puzzle. The Puzzle and Cage classes are defined in 
the Puzzle.java and Cage.java files respectively, but in a departure from the original design, I 
have implemented cells using two different classes: Cell and JCell, defined in the Cell.java and 
JCell.java files respectively. For each of  these files, I will briefly describe the basic features of  
the implementation, and explore some of  the more critical features and complex algorithms 
in more depth. A UML class diagram generated by my IDE has also been provided in the 
appendices, which helps to further describe these classes and their relationships. All source 
code for the application has also been included in an appendix, along with JavaDoc generated 
documentation for each class.  

Cell.java 
	 The Cell class contains all of  the non-graphical data relating to a cell (row, column, 
domain etc), while the JCell class contains a Cell object, along with every graphical 
component required for the cell to be represented in the GUI. The reason for this design 
change is to create a class which can be more easily manipulated by the Solver, and which can 
also be used to store combinations of  values in memory (see sections 4.2-4.3 for a more 
detailed explanation of  this).  
	 The Cell class contains the row and column of  the cell, the current domain of  the cell, 
and the integer keys of  the Cages the cell is part of. The domain is stored as a boolean array. 
Each record refers to whether or not it’s index is present in the domain. As Java does not 
support dynamic arrays using primitive data types, such as int, using this boolean array allows 
for easier manipulation of  the domain by removing the need to resize the array every time a 
value is added or removed. However, when the domain is retrieved from the Cell using the 
getDomain() function, it is returned as an int array of  all the values currently in the domain to 
make it easier for the calling class to evaluate. The domain can also be queried using the 
valueInDomain(int) function, which returns whether or not a given value is in the domain.  
	 The keys for the Cages the Cell is in are stored in the “cages” array in the order row, 
column, box and custom. All the keys can be retrieved using the getCageKeys() function, and 
a cage key can be added using the setCage(int) function. A separate function exists to retrieve 
the key of  the cell’s custom cage, getCustomCageKey(). The total for the custom cage is also 
stored in the cageValue variable, and can be set and retrieved using the 
setCustomCageValue(int) and getCustomCageValue() functions respectively. This has the 
simple benefit of  saving time when trying to find the custom cage total, as opposed to 
retrieving the key, then the Cage, then the total. If  the Cell is not yet in custom cage, 
cageValue is -1 (an impossible cage total). 
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	 Many of  the functions in the Cell class simply get or set variables, but there are some 
exceptions. First, I have overridden the equals(Object) function to compare the domain of  the 
Cell with the Cell object passed in to it. I chose to override this function as opposed to writing 
a new one, so that this comparison is used whenever two Cells are compared, even by code in 
the core Java library (such as contains(Object) functions of  ArrayList objects etc). I have also 
implemented a collection of  functions which perform set operations on the cell domains. 
These operations are used in the Solver implementation, and the uses are described in more 
detail in section 4.3. 

• getUnion(Cell): Performs the union operation between this domain and the domain of  
the given cell. This creates and returns an int array containing any value which appears in 
either Cell’s domain.  

• getIntersection(Cell): Performs the intersection operation between this domain and 
the domain of  the given cell. This creates and returns an int array containing any value 
which appears in the domains of  both the Cells.  

• getInverse(): Performs the complement operation on this Cell’s domain. This creates 
and returns an int array of  any value which does not appear in this Cell’s domain.  

• unionOfSet(Cell[], int): Performs the union operation on the domains of  any number 
of  Cells. This creates and returns an int array of  any value which appears in the domain of  
any of  the Cells in the given array.  

	 The changeValue(int, boolean) method is also an important function, which adds or 
removes a value from the cell’s domain depending on the arguments passed in. If  the boolean 
variable is true, the given value is added to the domain, and the value is removed if  the 
variable is false.  

JCell.java 
	 The JCell class is a subclass of  the JPanel Java Swing class. The JCell constructor calls 
the JPanel constructor to create a small square panel on the GUI, and then fills the panel with 
the required components. The UI design in section 3.4 outlined the use of  different sized 
digits to show the difference between a domain of  multiple values, and a single assigned 
value. As such, different objects are used for these instances in the JCell class. A single 
assigned value (big digit) is shown using the bigNumLabel JLabel object, while a domain of  
multiple possible values is shown using the numGrid JPanel object, which is populated by the 
JLabels stored in the numLabels array. bigNumLabel and numGrid are added and removed 
from the JCell accordingly, using the add(JComponent) and remove(JComponent) functions 
inherited from the JPanel class. JLabels are not removed from the numGrid JPanel; instead, 
the visibility of  the JLabels are toggled accordingly, using the setVisible(boolean) function.  
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Figure 4.1.1 - Screen capture of  two JCell objects in the puzzle grid of  the GUI 

	 Similar to the Cell class, most of  the functions in the JCell class are for getting and 
setting variables. The entire Cell object contained in the JCell can be retrieved using the 
getRawCell() function. Many of  the getters and setters from the Cell class are repeated in 
JCell, and simply call and return the output of  their Cell counterpart. One such function is 
the changeValue(int, boolean) function, which performs the same operation as the 
corresponding function in the Cell class. It does not carry out any updates to the GUI relating 
to the modification of  the domain, and this is handled instead by a separate function 
updateDisplayForValue(int, boolean). This way, the data can be altered without the UI being 
affected, which is necessary when the user does not want the puzzle to update while it is being 
solved.  
	 The JCell constructor handles the initialisation and placement of  all the relevant 
components within the panel. It is also responsible for drawing the cell’s border which, along 
with the other cells, visualises the puzzle grid. The constructor uses the row and column 
variables passed in as arguments to determine whether or not the cell is on the border of  a 
box region and if  so, thickens the borders on the correct edge or edges. This means that the 
boxes appear on the puzzle grid as areas with a thicker border, as is traditional for Sudoku 
puzzles (see figure 2.1.1). 
	 JCell also handles the drawing of  cage borders. The Cage class determines which 
JCell borders the Cage border appears on, and passes this data to each JCell as boolean 
variables. These arguments (eight in total) are passed to the displayCageBorder(boolean, 
boolean, boolean, boolean, boolean, boolean, boolean, boolean) function. The eight 
arguments refer to whether a border should be drawn for each edge, and each corner of  the 
cell. If  the argument is true, the corresponding border is drawn. For edges, this is simply done 
by drawing a new border object parallel to the JCell’s original border. However, for the 
corners this isn’t possible, so a small JPanel object is made visible in the correct corner. This is 
what the topLeftCorner, topRightCorner, bottomLeftCorner and bottomRightCorner global 
JPanel variables are for. The displayCageValue(int) method also handles the displaying of  the 
total for a Cage in the top left hand corner of  the JCell. Again, the Cage class determines 
which Cell to use for this (the top-most cell). 
	 Finally, instead of  overriding the equals(Object) function as I did in the Cell class, I 
have implemented the distinct function hasSameDomain(JCell). While this function simply 
calls the Cell.equals(Object) function, I wanted to make sure this was not an override in the 
JCell class as these objects will populate the puzzle grid, and I will be using 
JCell.equals(Object) and other functions which use it to locate an exact cell in the grid. 
Therefore I needed to leave the JCell.equals(Object) function as it’s default.  
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Figure 4.1.2 - Screen capture of  the empty puzzle grid in the application GUI 

Cage.java 
	 Unlike JCell, the Cage class is not a graphical class and as such does not inherit any 
properties or functions from a Java Swing class. It contains three basic variables: cells, an 
ArrayList of  JCell objects; total, an int containing the total value for this cage; type, a 
CageType enumerator object specifying the type of  cage this object represents (row, column, 
box or custom).  
	 Again, many of  the functions are simply getters and setters for the object’s attributes. I 
have also tried to mimic the functions which would be found in an array-type object in Java, 
by implementing add(JCell), remove(JCell), contains(JCell), size() and toArray() functions. As 
the names suggest these functions respectively add a JCell to the cage, remove a JCell from 
the cage, return a boolean indicating whether the given JCell is in this Cage, return the 
number of  JCells in the cage and return a JCell array of  all the cells in the Cage. The 
setTotal(int, int, boolean, boolean) method, which sets the total for the Cage, has the option 
of  checking whether the given total is possible for the size of  the Cage. The use of  this option 
is defined by a boolean argument.  
	 One function of  particular interest is the checkOverlap(JCell) function. This function 
returns true if  the current Cage contains every JCell in the Cage passed in as an argument, 
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and false if  not. This function is used by the Solver class, and is discussed in more detail in 
section 4.3. 

Figure 4.1.3 - Screen capture of  a newly created Killer Sudoku puzzle in the GUI 

Puzzle.java 
	 The Puzzle class combines the three previously described classes to create a digital 
representation of  a Killer Sudoku puzzle. This is the object which is saved and loaded by the 
user and the object which the Solver interacts with when attempting to solve a puzzle. Like 
JCell, Puzzle is a subclass of  the JPanel Java Swing class, and inherits its properties and 
methods.  
	 The Puzzle contains all of  the cells and cages which make up the puzzle. The cells are 
represented by a 2-dimensional array of  JCell objects, called “grid”. The cages are stored in a 
HashMap<Integer, Cage> object called “cages”. As previously discussed, each JCell object 
contains the Integer keys for the Cages it is a part of, and they can be used to find the correct 
Cages from the “cages” object. The row, column and box regions are also stored as Cages in 
this HashMap, as they share the same properties as a custom cage, and as such can be 
processed in the same way by the Solver. There is also an individual Cage object called 
newCage. This is the Cage which JCells are added to or removed from when the user selects 
or deselects them. When a Cage is finally created, the total entered by the user is added to 
newCage, which is then added to the cages HashMap. The Integer key for the Cage is then 
stored in the relevant JCells.  
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	 The Puzzle’s constructor function creates a blank puzzle grid for the user to then fill in 
with cages. To begin it calls the constructor of  it’s superclass, JPanel, to create the panel 
region of  the GUI the grid will inhabit. The panel’s layout is then defined as a GridLayout, 
with the dimensions of  the grid defined by the constructor’s only argument, inSize. This 
refers to the size of  the grid, either 4 or 9. This size has been previously determined by a 
command line variable when the application is launched (“-s” = 4 x 4, “-l” = 9 x 9). The 
constructor then sets about initialising the JCell’s in the grid array (the size of  which is also 
defined by inSize) and adding them to the panel. The GridLayout layout manager being used 
ensures that they are arranged in a grid format to create a Sudoku puzzle on screen.  
	 As the JCells are being initialised, the constructor also builds Cage objects for each of  
the row, column and box regions of  the grid. The initialisation process uses nested loops to 
move along each row of  the grid. This means that every JCell created in one iteration of  the 
internal loop are part of  the same row Cage. Therefore, a new Cage can be added to the 
HashMap at the end of  every internal iteration. Meanwhile, a Cage exists for every column, 
and every JCell is added to the correct column Cage during the iteration. At the end, the 
columns are added to the HashMap. As for boxes, multiple box Cages exist at the same time 
(again defined by the grid size). The algorithm uses the row and column values to determine 
which box the current JCell should be added to. They are then added to the HashMap after 
the last iteration of  the outer loop. The following pseudocode describes how this process 
works for a grid size of  9. 

create array of cages columns[9] 
create array of cages boxes[3] 
for integer i = values 1 to 9 
 create empty row cage 
 for integer j = values 1 to 9 
  create cell 
  add cell to row cage 
  add cell to columns[j] 
  add cell to boxes[j/3 + ((i/3)*3)] 
 store row cage 
 row cage = new empty row cage  
store all column and box cages 

Figure 4.1.4 - Pseudocode to describe the algorithm for creating Cage objects to 
represent regions in the puzzle grid 

	 Many basic methods exist in the Puzzle class for the retrieval of  data. getCell(int, int) 
returns the JCell with the given row and column reference, getCage(int) returns the Cage 
which corresponds to the given Integer key, and getCages() returns all of  the Cages stored in 
the cages HashMap. Functions also exist to determine whether the Puzzle is completely is 
valid (validatePuzzle()) and whether a Puzzle has been solved (isSolved()). Like the Cell class, I 
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have overridden the equals(Object) method to return true if  the domains of  the cells in the 
Puzzle match those of  the Puzzle passed in. This is to help the Solver detect when it has 
stopped make eliminating values, and is discussed in more detail in section 4.2. 
	 The Puzzle class also handles the user’s interaction with the Puzzle, in terms of  adding 
Cages to the Puzzle. To achieve this, the class implements the MouseListener and 
KeyListener Java interfaces. Mouse and key listeners are assigned to receive mouse and key 
events from every JCell in the puzzle grid, and the following methods have been implemented 
in the Puzzle class to handle these events: 

• mouseClicked(MouseEvent): Called when the user clicks on a cell. If  the JCell is not 
part of  the user’s current selection of  cells, then mark the JCell as selected using the 
JCell.select() method if  the JCell in question is adjacent to another selected JCell in any 
direction. If  the JCell is already part of  the user’s selection, deselect the JCell using the 
same method.  

• mouseEntered(MouseEvent): Called when the user’s mouse pointer enters a cell. 
Change the background colour of  the JCell in question to a light red to feedback to the 
user that this is the cell that will be selected if  they click the mouse.  

• mouseExited(MouseEvent): Called when the user’s mouse pointer leaves a cell. If  the 
JCell being exited is selected, change the background colour of  that JCell to a light blue to 
inform the user that the cell has been successfully selected. If  the JCell is not selected, 
change the background colour to white to inform the user the JCell is not currently 
selected.  

• keyTyped(KeyEvent): Called when the user presses a keyboard key. If  the user has 
pressed the enter key, and more than one JCell is selected, prompt the user to enter a total 
for the new cage they wish to create. If  this value is valid for the size of  the cage, then add 
this total to the new Cage, store it and display it on screen. If  the value is invalid, inform 
the user and ask them to submit a new value. If  an incorrect number of  JCells are selected, 
inform the user of  the error.  

Figure 4.1.5 - Screen capture of  three cells in the puzzle grid in the GUI, which are blank, 
selected and hovered over respectively 

Saving and Loading 
	 The saving and loading of  a Puzzle is handled by code in the KillerSudoku.java file. 
This class is the main class for the GUI, and is responsible for constructing every component 
of  the user interface. When the application is started, KillerSudoku calls it’s 
createAndShowGUI(String) function, which creates a new JFrame object and populates it 
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with every component required. This includes the save and load JButtons, and their function 
is defined when they are created here. These buttons simply prompt the user to select a 
location to create the file, or select the file to load. Once selected, the saving/loading is 
performed.  
	 As previously mentioned, the Puzzle, JCell, Cell and Cage classes are all Serializable. 
This means that to save a file, I can simply use an ObjectOutputStream object to write the 
entire Puzzle object to a file, using the writeObject(Object) function provided by this class. 
Similarly, an ObjectInputStream can be used to read in a Puzzle object from a file and 
replace the current Puzzle in the KillerSudoku class with the new one. For both saving and 
loading, the Puzzle.validatePuzzle() method is called on either the Puzzle to be saved, or the 
Puzzle being loaded from a file. If  the method returns false, the user is informed of  an error, 
and the function does not complete (file is not saved or loaded into the GUI). 

Other Components of  the GUI 
	 The JFrame created by the KillerSudoku class contains two JPanels: the Puzzle and 
another called the controlPanel. This second JPanel contains all of  the controls needed to 
perform any function unrelated to the building of  a puzzle. Along with the buttons for saving, 
loading and solving, there are two more features accessed in this part of  the GUI.  

4.1.6 - Screen capture of  the entire application GUI, containing an empty puzzle grid 
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	 Firstly, there are two JRadioButton controls, labeled “Yes” and “No”, beneath a Label 
which reads “Update GUI while solving?”. These radio buttons allow the user to freeze the 
Puzzle so that the GUI does not update while it is being solved. The 
Puzzle.setFrozen(boolean) method does this, by changing the Puzzle object’s boolean variable 
“frozen”. More detail on how this prevents GUI updates in given in section 4.2. By default 
the Puzzle is unfrozen, with the “Yes” radio button to selected, but selecting the “No” radio 
button will freeze the Puzzle an vice-versa.  
	 There is also a JSlider slider bar object, with the values 0, 0.2, 0.4, 0.6, 0.8 and 1 as 
the increments, beneath a JLabel which reads “Update Delay:”. This control is used to set 
how long the application should wait in seconds after making a move when solving the puzzle. 
By default this is set to 0 seconds, but moving the slider will alter the delay. When the Solver is 
initiated by the user, the time they have selected in milliseconds is passed into the Solver’s 
constructor. How the Solver achieves this time delay is discussed in more depth in section 4.2.  

4.2 Implementation of  the Solver 
	 To allow for the implementation of  multiple solvers, I have created a Solver abstract 
superclass, Solver.java. This class contains the implementations of  the different solving rules 
as separate functions (discussed in depth in section 4.3), and the global variables these 
methods use. Then, different solving strategies can be implemented in subclasses of  Solver 
and if  necessary, the rules can be overridden to provide alternative implementations. In this 
section, I will discuss the basic properties of  the Solver.java class and why I have chosen to 
implement it in the way I have. Once again, a UML class diagram generated by my IDE has 
been provided in the appendices.  

Using SwingWorker 
	 In order to provide an efficient way of  updating the GUI while solving a puzzle, I 
have implemented the Solver class as a subclass of  the SwingWorker class. SwingWorker is an 
abstract class which uses threading to facilitate lengthy GUI-interactions while performing 
other processing tasks.[8] This is perfect for this application, as the Solver may need to make 
thousands of  GUI updates before solving the puzzle. If  the processing was to pause and wait 
every time this happened, the puzzle would take much longer to solve. Handing GUI updates 
to a separate thread is a more efficient method, as it allows the Solver to run uninterrupted 
(thus providing more accurate solving times for analysis), and if  the machine used uses a 
capable multi-core processor, the use of  multiple threads should not impact the performance 
of  the application. Creating a separation between processing and updating also makes it 
easier to prevent updates if  the user has elected to do so.  
	 As an abstract class, SwingWorker defers the implementation of  several methods to its 
subclass. The two most important of  these are doInBackground() and process(List). These 
method represent the two different threads, performing calculation and GUI updates 
respectively. SwingWorker must also be defined with two type parameters. The first of  these is 
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the type the doInBackground() method returns when called, and the second is the object type 
the List input parameter contains in the process(List) method.[8] For this implementation, the 
type parameter are Boolean and UpdateObject respectively. UpdateObject is a class I have 
created, and will be described in more detail further on.  
	 When the SwingWorker is created, it is then initiated using the execute() command. 
This calls the doInBackground() thread. In my implementation, this method begins to solve 
the puzzle. Whenever an update to the GUI has to be made, the doInBackground() method 
calls the publish(UpdateObject) function. The object passed in is added to a List in the update 
thread. This thread continually calls the process(List) function, which processes every object in 
this List and updates the GUI accordingly.  
	 The UpdateObject class I have created contains three attributes: a JCell, cell, referring 
to the cell which must be updated; an int, value, referring to the value in the cell which must 
be updated; a boolean, display, referring to whether the value should be displayed (true) or 
removed (false). Whenever a value is changed by the doInBackground() thread, it calls 
changeValue(int, boolean) on the relevant JCell to make the change on a data level. Then, if  
the Puzzle is not frozen, it creates a new UpdateObject containing the data relating to the 
change it made and publishes it using the publish(UpdateObject) method. The process(List) 
method, for each item in the List argument, calls updateDisplayForValue(int, boolean) on the 
correct JCell to perform the GUI update.  
	  

Developing Multiple Solving Strategies 
	 The different solving rules are implemented as functions in the Solver class. To 
analyse the different rules, I intend to execute different combinations and orders of  rules, and 
this is the main way in which the subclasses of  Solver will differ.  
	 I have already explained that the doInBackground() method is used to define the 
function of  the class extending SwingWorker, and that the implementation of  this class is 
deferred to the SwingWorker’s subclass. By defining Solver as an abstract class and not 
defining doInBackground() in Solver, I can defer the method’s implementation again, so that 
it must now be defined by it’s subclasses (i.e. the different solvers I will use in analysis). This is 
how I will be able to develop multiple solving strategies. When a new solver is created which 
extends the Solver superclass, a new doInBackground() function will need to be implemented. 
In this method, the execution of  the solving rules will be defined by calling their functions 
(inherited from the superclass). If  the inherited methods are correctly documented, this 
format should allow for the easy implementation of  new solvers by new users, making the 
solver component of  the application highly extensible. 
	 By default, I have setup the application to use the LinearAvgLeast subclass as the main 
puzzle Solver. 

Snapshotting the Puzzle 
	 The solver must be able to detect when it is no longer making any progress towards 
solving the puzzle (i.e. no changes are being made to any cell’s domain), so that it can either 
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guess a value (section 4.4) or make some other corrective action. In order to do this, the 
Solver class provides methods for creating “snapshots” of  the Puzzle object.  
	 If  the doInBackground() method of  a solver is set up to iterate over a collection of  
rules, it will be stuck if  after one iteration, the Puzzle has not changed. In order to detect this, 
the current Puzzle state needs to be compared to the state at the beginning of  the iteration. 
The Solver class contains two methods to achieve this. The first, takeSnapshot(), serializes the 
Puzzle object as if  it was being written to a file, but stores it in a ByteArrayOutputStream 
object, which is returned by the function. The second method, 
checkSnapshot(ByteArrayOutputStream), takes this object as an argument and restores it to a 
Puzzle object, as if  being read from a file. It then compares this object to the current Puzzle, 
and returns true if  they match and false if  they don’t.  
	 I have used this process because copying the Puzzle object into a new variable would 
only create a memory reference to the original object, due to the way the Java Runtime 
Environment handles memory. By serialising the object, I can ensure that the copied Puzzle is 
not altered during processing, so the comparison of  states will be accurate and correct.  
	 The idea is that when implementing a new doInBackground() method, the 
takeSnapshot() method is called at the start of  a new iteration, and the 
checkSnapshot(ByteArrayOutputStream) method is called at the end of  that iteration. If  
checkSnapshot(ByteArrayOutputStream) returns true, no progress has been made during the 
iteration, so corrective action must be taken (e.g. a guess).  

4.3 Implementation of  the Solving Techniques 
	 In the Solver class I have implemented the rules discussed in section 2.3 as individual 
methods. I have also implemented another addition basic rule, and a method which calls 
other rules in response to a value being removed from a domain. Each of  these methods can 
still be overwritten by the subclasses of  Solver to provide a different implementation.  
	 I chose not to use the names of  the rules given in section 2.3 when naming the 
different methods. This is because I felt that they did not suitably describe what the rule does, 
and I have instead tried to use names which do this, to allow for easier development of  new 
solvers by new users.  
	 I will describe the implementation of  each rule in detail, and explain why I have 
developed them in the manner I have.  

Cage Total Rule 
	 The cageTotalRule(Cage) and ctrForCage(Cage, Cell) methods contains my 
implementation of  Sum Elimination: This techniques involves calculating all the possible 
combinations of  values which can make up the total for a given cage.[5] This is by far the most 
complex algorithm I have implemented for this project, and it makes extensive use of  
recursion and a memory cache. 
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	 This implementation uses two methods. The ctrForCage(Cage, Cell) method is the 
recursive function which returns the different combinations which the given Cage can have. 
The cageTotalRule(Cage) function calls this method, and then removes the values which are 
not in the combinations from the cells of  the Cage. Before it calls ctrForCage(Cage, Cell) 
however, it first checks every cell in the given Cage. If  a cell contains only one value in it’s 
domain, then that JCell is removed from the Cage and it’s value is subtracted from the Cage’s 
total and added to a Cell object called closed. Once every cell has been evaluated, the Cage 
and closed Cell are passed in to the ctrForCage(Cage, Cell) function.  
	 The ctrForCage(Cage, Cell) method will return an array of  Cell objects, where the 
domain of  each Cell refers to one possible combination of  values that can fill the given Cage. 
The algorithm functions by working out what combination would be available in the rest of  
the Cage if  one of  the cells in the Cage took a specific value. This is done through a recursive 
algorithm, where a JCell is removed from the Cage before the Cage is passed into another 
ctrForCage(Cage, Cell) call. The value which is temporarily assigned to the removed Cage is 
added to the closed Cell, and removed once the recursive call returns. This recursive process 
continues until the Cage contains only two JCells, in which case the combinations can be 
found easily by iterating through the possible domain and removing each value from the Cage 
total to find it’s compliment. When combinations are received from a call, the temporarily 
assigned value just added to closed, is added to each combination before being passed back 
up to the previous call. The only exception to this process is when the number of  cells in the 
Cage is one less than the grid size. In this case, the value to be removed can be easily 
calculated using the Rule of  45 (for a 9 x 9 grid, the value to remove is S-45). 
	 This is obviously a time-consuming process, especially for a 9 x 9 grid where there are 
a large number of  Cages to process, and some of  these Cages will be very large, leading to 
more recursive calls. Therefore, to improve performance, a memory cache of  previously 
discovered solutions is used. Before ctrForCage(Cage, Cell) returns, the array of  combinations 
it has created is stored in a global HashMap object called memory. The key for this HashMap 
is a Point object: an object containing two int values. In this context, the first value refers to 
the size of  the Cage in terms of  number of  JCells, and the second value refers to the sum 
total for the Cage. The combinations are stored as the value. When ctrForCage(Cage, Cell) is 
called, previously stored combinations for a Cage with the same size and total are looked up 
in the memory variable. This prevents the algorithm from calculating combinations which 
have already been found, greatly improving performance and efficiency.  
	 I have already discussed how the closed Cell object contains the values which have 
been temporarily selected for removed JCells in previous recursive calls. Any combination 
which contains a closed value, cannot be valid in the current context, but the combination is 
still valid for the current Cage so must appear when the combinations are stored in memory. 
To work around this difficulty, the Cell class contains a boolean variable called display. This 
variable determines whether a combination should appear in the Cage in the current context 
or not (true and false respectively). So, after receiving an array of  combinations, the algorithm 
checks each Cell to see if  it contains a closed value. If  so, display is set to false, and set to true 
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if  otherwise. Every combination is then stored in memory. When the combinations are 
returned to cageTotalRule(Cage), it only considers those for which display is true. This means 
that only the valid combinations are used.  
	 The cageTotalRule(Cage) method uses the Cell.unionOfSet(Cell[], int) method to 
combine the combinations returned by ctrForCage(Cage, Cell) into a new domain. It then 
inverses this domain, using the Cell.getInverse() method, and removes these values from every 
JCell in the Cage.  
	 This algorithm is slow for the first few times it is called, as the number of  solutions 
stored in memory is small. However, each sub-solution found by the ctrForCage(Cage, Cell) 
method is stored in memory, so a large cache is quickly built, increasing the efficiency of  the 
algorithm with each new stored set of  combinations. Repeating the method on a Cage yields 
benefits if  none of  the cells in the Cage have been assigned a value. If  the same Cage is 
handed to ctrForCage(Cage, Cell), the previously found combinations will be retrieved, and 
no new values will be removed. However, if  a cell has been given a final value, that JCell will 
be removed from the Cage, and an entirely new set of  values will be retrieved for the rest of  
the Cage.  

Constraining Cage Rule 
	 The constrainingCageRule(Cage) and ccrForCage(Cage) methods contains my 
implementation of  the Rule of  K: If  a collection of  k cells contain exactly k possible values, 
then these cells cannot appear in any region all of  the cells are also in. Therefore, these values 
can be eliminated from the rest of  the region.[5] 
	 Like the Cage Total Rule implementation, this rule uses two functions. The 
constrainingCageRule(Cage) method finds groups of  cells within the given Cage which have 
identical domains. If  the size of  the domain is less than or equal to the number of  cells which 
share it, that group is passed to ccrForCage(Cage) as a Cage object. That method then sets 
about removing the values of  that domain from the cells of  the related regions.  
	 The constrainingCageRule(Cage) method works by evaluating custom Cages. It starts 
by looping through every JCell in the Cage. If  the JCell’s domain  size is less than or equal to 
the number of  cells in the Cage, the JCell is added to a new Cage. JCells with the same 
domains are added to the same Cage. Once this iteration is complete a new loop is started, 
this time looping through every new Cage created. If  the Cage contains more than one JCell, 
and the JCell’s domain size is less than or equal to the number of  JCell’s in the Cage, it is 
passed into the ccrForCage(Cage) function, as these values will not be able to appear in the 
other JCell’s of  any region the Cage is entirely contained in.  
	 The ccrForCage(Cage) method starts by finding which regions are constrained by the 
given Cage. It does this by comparing the Cage keys stored in each JCell of  the Cage. Note 
that there is no need to compare the actual Cage objects, as the keys can only refer to one 
specific Cage. If  the same region key appears in every JCell in the Cage, then the Cage for 
that region is retrieved. There should be a maximum of  two regions to constrain, as a Cage 
cannot constrain a row and column at the same time, but a box can be constrained alongside 
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either a row or a column. Then for every region Cage retrieved, simply loop through the 
JCells of  the Cage and remove the values from the given Cage’s domain, making sure not to 
make any changes to the JCells in the given Cage.  
	 This is a very important rule as it can help to eliminate a lot of  values from a lot of  
cells in a few simple steps. Once a group of  cells has constrained a region, there is no benefit 
to attempting to constrain with that group again. However, there is still a benefit from calling 
the algorithm on the same custom Cage multiple times, as changes to the domain of  the other 
cells in the Cage may create another collection of  cells which constrain a region.  

Cage Difference Rule 
	 The cageDifferenceRule(Cage) method contains my implementation of  the Rule of  
45: A region must contain all the values from 1 to 9, meaning the sum for that region is 45. 
Therefore, if  S is the sum of  the totals of  every cage contained entirely within the region in 
question, the remaining cells not covered by these cages must sum to 45-S.[5] 
	 My algorithm takes a non-custom Cage as input (custom cages cause the method to 
return null). The first task is to divide the cells of  the Cage into two groups: cells from fully 
contained Cages, cells from partially contained Cages. The algorithm iterates through the 
JCells in the Cage, and uses the Cage.checkOverlap(Cage) method to evaluate whether the 
current JCell’s custom Cage is entirely contained within the region passed into the function. 
If  the method returns true (full overlap), the custom Cage is added to an ArrayList of  Cages. 
The Cage’s sum total is also added to a running total. This running total is the variable S 
referred to in the description of  the Rule of  45. If  the method returns false (partial overlap), 
the JCell is added to a new Cage, called “cells”.  
	 Once the iteration is complete, the sum total of  the “cells” Cage is set as S-45. We 
now have a new Cage of  values, with a sum total, which we can pass into the 
ctrForCage(Cage) method. This will return the different combinations which apply to this 
Cage, as an array of  Cell objects. Combining these Cells and inverting the domains 
(Cell.unionOfSet(Cell[], int) and Cell.getInverse() respectively) gives the values which cannot 
appear in the “cells” Cage, and they can be removed from the domains of  the Cage’s JCells. 
The only exception to this is if  the “cells” Cage only contains one JCell, in which the value 
the JCell contains must be S-45. 
	 Once the correct values have been removed from the cells, we must evaluate whether 
the Rule of  K applies. If  the number of  values left in the domains of  the cells is the same as 
the number of  cells there are in the “cells” Cage, then none of  the values can appear in the 
other cells of  that region. Calling constrainingCageRule(Cage), and passing in the “cells” 
Cage as an argument, carries out the Rule of  K on those cells.  
	 This is the only rule I have implemented which is guaranteed to only yield results once 
for each region. If  it was called for a second time on the same region, it would identify the 
same cells and the same total and attempt to eliminate the same values from the cells 
domains. The method could be made more effective if  I modified it to treat JCell’s containing 
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only one value as cells from entirely contained Cages (similar to cageTotalRule(Cage)). This 
way, the method would yield different results if  a cell was assigned a value between calls.  

Last Cell Rule 
	 The lastCellRule(Cage) method contains my implementation of  the Rule of  
Necessity: For any region if  all the values from 1 to 9 appear apart from one, that value 
must appear in the empty cell. Likewise for a cage, if  only one cell in the cage is unassigned, 
only one value will sum with the rest to make the total, so that value must be assigned to the 
empty cell.[5] 
	 The function of  this algorithm is fairly simple. Firstly, it iterates through the JCells in 
the given Cage to find the only JCell with multiple values in it’s domain (i.e. no fixed value). 
While it does this, it also sums the values assigned to the other cells. Then, when the loop is 
complete it simply subtracts the sum from the Cage’s total to get the value to be assigned to 
the empty JCell. After checking this value will not contradict another cell in the Cage, the 
correct values are added and removed from the last JCell to complete the Cage. The 
valueFoundInCageRule(JCell) method is also called, to make changes to the JCell’s regions in 
response to the value assignment (see below).  
	 Obviously this rule can only be applied once to any given Cage (given it completes 
successfully), but it is a very useful rule as it assigns a final value to a JCell. This can have a 
knock-on effect to the regions the JCell is in, and can initiate a chain of  rule applications 
which help to assign values elsewhere in the grid.  

Value Found In Cage Rule 
	 The valueFoundInCageRule(JCell) method contains my implementation of  the Rule 
of  1: Since no region or cage can contain duplicate values, once a value has been assigned to 
a cell, that value can be eliminated as a possible value from all the cells in the same region or 
cage as that cell.[5] 
	 This algorithm is also very simple. The value which has been assigned to the given 
JCell is found. Then for each region and cage the JCell is in, that value is removed from the 
domains of  it’s JCells. If  the assignment of  this value to this JCell has lead to only one more 
empty JCell in the current Cage, lastCellRule(Cage) is also called.  
	 Similarly to lastCellRule(Cage), this function can only be called once for any given 
JCell. However, it can remove values from the domains of  cells in three different regions, so 
can be very effective. Like lastCellRule(Cage), this can initiate a chain of  rule application 
which make good progress towards solving the puzzle. I suspect that during my analysis, I will 
discover that this rule is best applied in immediate response to a value being assigned as 
opposed to routinely applied to every JCell by iteration, because I believe creating the knock-
on effect described will be the most effective way of  solving a puzzle quickly.  
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Only Occurrence In Cage Rule 
	 The onlyOccurenceInCageRule(Cage) method implements a rule based on the 
principle that for any region, if  a value only appears in one domain in that region, that cell 
must contain that value.  
	 For each possible domain value, the algorithm loops through every JCell in the given 
Cage. If  the value only appears in the domain of  one JCell, all other values are removed from 
that domain. This only works for region Cages, as it is based on the fact that a region must 
contain one of  every domain value.  
	 Like lastCellRule(Cage) and valueFoundInCageRule(JCell), because this rule assigned 
a final value to a JCell, it is useful for removing lots from other JCells as a result of  the rule 
application chain it creates. However, unlike these other two rules, it is more difficult to apply 
in response to changes. It may be useful to apply this rule after a region is processed by 
another rule which is likely to have removed a lot of  value from the region, such as 
constrainingCageRule(Cage) or cageDifferenceRule(Cage).  

Remove Value 
	 The removeValue(JCell, int, boolean) method is used to remove a value from a cell, 
and make the relevant changes to the related surrounding cells in response to that removal. 
Removing a value from a cell could have a number of  effects: it may eliminate other values 
from the cells custom Cage because a certain combination of  values is now impossible; it may 
leave only one value in the cell’s domain meaning valueFoundInCageRule(JCell) can be 
applied; it may leave only one cell in a Cage empty meaning lastCellRule(Cage) can be 
applied. Using removeValue(JCell, int, boolean) to remove a domain value allows the solver to 
make any relevant changes as soon as the value is removed, and initiate a chain reaction of  
rules which can make good progress towards solving the problem.  
	 After firstly removing the given value from the given JCell, the algorithm checks the 
JCell’s domain size. If  it is now just 1, valueFoundInCageRule(JCell) can be applied. This 
function will also call lastCellRule(Cage) if  necessary. After this is done, it goes about 
removing values from the JCell’s custom Cage which are now no longer valid.  
	 Firstly, the algorithm checks the other JCell’s in the custom Cage, to see if  their 
domains contain the value removed from this JCell’s domain. If  any JCell does have this value 
in it’s domain, no value need be removed, as any combination containing the value is still 
possible in the Cage. If  no JCell’s contain this value, the array of  combinations for this Cage 
(stored as Cell objects) is retrieved directly from the memory HashMap. The next step is to 
identify the combinations which have been invalidated, but we must make sure not to remove 
a value from an invalid combination which is still also part of  a valid combination. Therefore, 
a boolean array is created, with one record for every possible domain value (similar to a Cell 
object’s domain array). This array is called remove, and every record is initialised to true, with 
the exception of  the value removed from this JCell. A loop through every combination then 
begins, and every value which appears in a combination NOT containing the removed value 
has it’s corresponding ‘remove’ record set to false. Once this loop is complete, every value for 
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which ‘remove’ still reads true must be removed from the other JCell’s in the Cage. This is 
done, and valueFoundInCageRule(JCell) is called if  necessary for each JCell. 
	 Executing these rules in direct response to a domain change is far more efficient than 
executing the rules routinely as part of  a main loop. If  the latter was done, various changes 
could be easily missed. This method creates the chain reaction I have already described, and 
can help to assign values to cells much quicker.   

4.4 Making Guesses 
	 There will be times when the Solver is unable to make any further process towards 
solving a puzzle by applying the same rules routinely, especially for the harder puzzles. In 
these cases, a guess must be made, where the Solver selects a JCell and assigns it a value 
within it’s domain. The Solver then continues processing as usual, and if  it finds that the 
puzzle cannot be solved with that guess, it simply reverts every change made since the guess 
was made, and removes the guessed value from the JCell’s domain before making another 
guess.  
	 There are two parts to this process, making a guess and backtracking on an incorrect 
guess. The Solver superclass contains an implemented method for each of  these components: 
makeGuess() and backtrack() respectively. The general principle is that the doInBackground() 
method of  the subclass contains a loop, iterating through a series of  rules in a routine fashion. 
At the end of  each iteration, the algorithm checks to see if  the Puzzle has been altered in the 
previous iteration (using the snapshotting feature described in section 4.2). If  not, 
makeGuess() is called, and a guess is made in the Puzzle. From that point on, all moves made 
by the Solver are stored in a Stack object. If  any rule later detects that the solution is 
incorrect, it can drop back to the doInBackground() method where backtrack() is called. This 
method then uses the Stack to revert every change made since the guess was made, including 
the guess itself.  

makeGuess() 
	 The makeGuess() method has three parts: choosing the JCell to make the guess in; 
choosing the value to guess in that JCell; making the guess. There are multiple different 
methods and heuristics which can be used to determine where to make a guess and what 
value to guess, and I intend to explore some of  these in the analysis section of  this project. 
However, in this section I shall describe the algorithm which has been implemented in the 
Solver superclass.  
	 To select the JCell to make the guess in, the algorithm first looks for the Cage (custom 
or region) with the lowest average domain size, which is defined as the sum of  all the JCell’s 
domain sizes divided by the number of  JCells in the Cage. Within the selected Cage, the JCell 
with the smallest domain is then chosen as the target cell. This is based on the idea that if  
there are less possible values remaining in the cell, any value guessed has a greater chance of  
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being correct than a guess in a cell with a larger domain. The JCell selected must have more 
than one value in it’s domain.  
	 Once the JCell is selected, a value is chosen from it’s domain. In this algorithm, the 
Cages the target JCell is in are checked. For each value in the target JCell’s domain, the 
number of  times that value appears in the domains of  the Cage’s JCells is counted. The value 
with the smallest number of  appearances is then chosen as the value to guess. This is because 
if  the value has been removed from many of  the cells in these Cages, it is more likely that the 
value should be in this cell.  
	 Once the JCell and value have been chosen, all other values in the JCell’s domain are 
removed using the removeValue(JCell, int, boolean). However, unlike other calls to this 
function, the boolean variable is given as true for the first call made, which starts the process 
of  recording moves.  

Recording Moves and Guesses 
	 If  a guess is proven to be false, then any move made since the guess was made is 
invalidated. In these instances, all of  these moves need to be reversed, and the Solver needs to 
continue from the point before the incorrect guess was made. In order to achieve this, a 
record needs to be kept of  every guess made, and every move made since the first guess was 
made.  
	 The Solver uses two Stack object to record moves and guesses, called guessStack and 
guessesMade respectively. Both of  these Stack objects store UpdateObject objects, the custom 
object I created to facilitate GUI updates from the SwingWorker. This object records the JCell 
and value of  a change, and whether it was added or removed, which is everything needed to 
reverse the move. Calling the removeValue(JCell, int, boolean) function and setting the 
boolean argument to true causes the method to store the move being made in the 
guessesMade Stack. Then, whenever any move is made by any method in the Solver class, 
that move is stored in the guessStack Stack. The initial move is also stored here, so the same 
object exists in both Stacks. In the event of  a false guess being discovered, the backtrack() 
method can then use these Stacks to reverse every invalided move.  

Discovering an Incorrect Guess 
	 The backtrack() method is called in response to a false guess being discovered. All of  
the rule functions contain checks when making moves, which ensure that the solution being 
created is still valid. These checks include making sure a JCell’s domain isn’t being completely 
emptied by a move, checking that identical values are not appearing in the same Cage, 
checking that the values in a completed Cage sum to the correct total, among others. In the 
event that one of  these checks fails, the Solver immediately drops out of  any methods until it 
returns to the doInBackground() method, where the backtrack() function is then initiated.  
	 The Solver class contains a boolean variable called backtrack. By default it is set to 
false. When an inconsistency in the solution is detected, the guessesMade Stack is checked. If  
the Stack is not empty, then we know that the inconsistency must have been caused by the last 

FINAL REPORT - ‘KILLER SUDOKU’ SOLVER !36



guess made, so the method sets the backtrack boolean to true, and immediately returns null. 
Throughout the Solver class, the backtrack variable is checked directly after a call to another 
Solver function returns. If  backtrack is true, then that function also returns null immediately. 
This process essentially halts the Solver to allow for the error to be quickly rectified. 
Eventually, the Solver will return to the doInBackground() method which will detect that 
backtrack is set to true, and as a result call the backtrack() method.  
	 The ideal method of  backtracking would have been to implement an entirely 
recursive algorithm, in which the program could automatically move back through the call 
stack to revert moves. However, the fact that the rules were implemented as different methods 
would have made this very difficult to implement. I had some difficultly ensuring this method 
was working, because there are multiple points in each rule method where an inconsistency 
can be detected, and making sure that backtrack was being set for every check took a lot of  
time.  

backtrack() 
	 The backtrack() method reverts to before the last guess was made by removing items 
from the guessStack Stack. It pops an item from the Stack (the most recent move coming first 
due to the “last in, first out” nature of  a Stack) and for the JCell and given value it performs 
the opposite action to that stored in the UpdateObject, thus reversing the move. It continues 
to do this until it pops an item from the guessStack Stack which is identical to the top item in 
the guessesMade Stack. This means we have reached the point at which the guess was made. 
This move is reversed, and the move is removed from the guessesMade Stack.  
	 The failure of  the guess also proves that the value guessed cannot be in that JCell’s 
domain, so it can be removed. However, removing the value could disprove other guesses 
made previously. Therefore, before the value is removed, backtrack() checks the domain size 
of  the target JCell. If  the JCell’s domain only contains one value, then removing the value 
will create a false state, meaning the previous guess to this one is incorrect. In this instance, 
backtrack() calls itself. If  not, removeValue(JCell, int, boolean) is called to remove the guessed 
value. It is not stored as a guess, but is still stored as a move if  there are still previous guesses 
in the guessesMade Stack. Like all other function calls in the Solver, backtrack() checks the 
backtrack variable when the function call returns, and calls backtrack() if  it is set to true. 
When backtrack() returns to the doInBackground() method, it resets the backtrack boolean to 
false, and continues to process as normal.  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5. Testing 
5.1 Approach 

	 Before I began analysing my software, I had to ensure that it functioned correctly. 
Firstly, I needed to confirm that all the components of  the user interface were functioning 
correctly: the puzzle builder; saving and loading of  puzzles; puzzle updates during solving etc. 
Once this was done, I was able to test the function of  the Solver, by ensuring that all of  the 
implemented rules made the correct changes to the puzzle, ensuring it could correctly detect 
errors and inconsistencies within the solution, and ensuring that it could correctly solve 
puzzles of  all difficulties.  
	 To carry out these tests I used a combination of  both white-box testing and black-box 
testing. Black-box testing (testing the functionality without assessing the internal code or logic) 
was used to check the basic function of  the user interface, and review the output of  the 
Solver. The white-box testing (testing by reviewing the internal operations of  the system), was 
primarily used to ensure that the actual data was consistent with what was being shown on the 
UI, and that no incorrect calculations were being made by any component of  the software. 

5.2 Testing the User Interface 
	 I identified five different areas of  the user interface to test: cage construction, saving/
loading, validation, updating while solving (including an added delay), and puzzle freezing. I 
shall describe what tests I performed to successfully evaluate these factors.  

Cage Construction 
	 Puzzle building is the main feature of  the GUI, so it was important to ensure that it 
functioned correctly. Without the ability to correctly create new puzzles, I would not be able 
to solve them and therefore not be able to perform my analysis.  

• Cell selection: I performed black-box tests to check the selection of  cells by the user. 
Every cell I clicked on was successfully selected, and the background of  said cells were 
coloured blue as intended. The reverse happened when deselecting a cell. Once a Cage 
had been created, I was unable to select any cells in the Cage. 

• Entering a Cage total: I was also able to successfully create a Cage containing my 
selection of  cells, and the enter the total for the Cage which was displayed in the correct 
part of  the Cage. I created Cages of  all possible sizes, and tried multiple shapes of  Cage 
as well, and all proved successful. 

	 Once I had confirmed these tests as successful, I white-box tested by debugging the 
application to check that what was displayed on-screen was a true reflection of  the data 
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stored. I was able to confirm that only the correct cells had been included in the new Cage, 
and that the total had been correctly stored.  
	 I was also unable to select cells which did not share a border with an already selected 
cell (with the exception of  the first cell selected). However, I was already aware of  the fact that 
a similar type of  validation was not implemented for deselecting a cell, and that it was 
possible to remove a cell in such a way as to create two or more individual collections of  
selected cells. When I pressed enter to create the Cage, the application did not prevent the 
selection, and instead showed two caged regions on the grid, with only one showing the 
entered value. Debugging the application as I had previously showed that all of  these cells 
had been included in one Cage object with the total I had entered.  

Figure 5.2.1 - Screen capture of  an error in which a cage has been split before creation 

	 Although this is clearly a bug, it does not affect my ability to perform analysis of  the 
system as the puzzles will be entered by myself, so I can ensure that the Cages are correct. 
However, validation should be added in the future to eliminate this error.  

Saving/Loading of  Puzzles 
	 To test this feature I created five different Killer Sudoku puzzles using the system, and 
saved them to individual files. I then loaded each file back into the program and checked 
them to confirm that they were the same puzzles. Each of  the five puzzles was saved and 
loaded successfully with no change to the layout of  the puzzle. Furthermore, I then 
performed a white-box test on each puzzle, in which I checked the data of  five random 
custom Cages in each puzzle, to ensure that they contained the same cells and total visible on 
screen. Once again, all of  these tests were passed successfully.  

Validation 
	 The user interface contains validation in two key places: cage construction; saving a 
puzzle.  

• Cage construction: The software checks for valid cell selection (already tested) and 
valid totals when creating a Cage. For this, the software should only allow totals to be 
entered which are valid for that Cage size. If  not, the user should be asked to enter a valid 
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total. Each different Cage size has an upper and lower bound for totals, so for each size I 
performed five tests: total below lower bound; total on lower bound; total between lower 
and upper bounds; total on upper bound; total above upper bound. Totals below the 
lower bound or above the upper bound should be rejected, while all other totals should be 
accepted. Every test was passed successfully. For the instances where I tested a rejected 
total, I also white-box tested to ensure that only the correct total was stored, and not the 
initial incorrect total. This was the case.  

• Saving the puzzle: Two validation checks are made when saving: every cell is in a 
custom Cage; the Cage totals sum to the sum of  all values in a correct solution (405 for a 
9 x 9 grid). Firstly, I checked that a puzzle with uncaged cells could not be saved which 
was the case. I then tested to see if  a fully caged puzzle could be saved in three different 
instances (all using 9 x 9 grids): sum of  Cages less than 405; sum of  Cages more than 405; 
sum of  Cages equal to 405. The first two of  these tests should reject the save action, and 
last one should accept the save action and let the user proceed. These tests produced the 
expected results. I saw no need to perform white-box testing of  this validation check, as 
the error is discovered before the user is prompted to select a save location, so it is not 
possible for the file to have been saved.  

Updating While Solving and Puzzle Freezing 
	 A simple black-box test was performed to evaluate the UI updates while solving a 
puzzle. I simply attempted to solve the same puzzle multiple times, setting the delay slider to a 
different increment each time. The different increments of  time in seconds were 0, 0.2, 0.4, 
0.6, 0.8 and 1. I was able to observe the expected difference in delay, and I also performed a 
white-box test whereby I measured the delay using system time printouts to the system 
console. The delay measured was slightly over the expected delay time (a matter of  
milliseconds, likely caused by the time needed to printout the data). I also performed another 
black-box test to evaluate the user’s ability to prevent UI updates during solving. I froze the 
puzzle using the radio buttons and initiated the solver. No updates were made to the UI until 
the puzzle was solved, at which point the correct solution was displayed.  

User Testing 
	 After completing my own tests, I also carried out some user testing. The GUI was 
presented to a number of  independent third-party users, who were asked to construct a Killer 
Sudoku puzzle and save it to a file. They were also asked to explore the interface to try to find 
any missing features or bugs. The consensus amongst the users was that the GUI was 
understandable, intuitive and easy to use. However, they did identify that there was no way of  
removing a Cage once it had been placed, and if  a mistake was made while creating a puzzle, 
their only option was to restart the application. In response to this, I implemented a new 
feature in which the user can select Cages in the same way they select cells. When the user 
presses the backspace key on their keyboard, they are asked if  they would like to remove the 
selected Cages. If  they click yes, the Cages are removed from the puzzle.  
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5.3 Testing the Solver 
	 The five areas of  the Solver component I need to evaluate are: function of  the 
individual rules; guessing; detecting errors in the solution; backtracking; overall solution to a 
puzzle. Testing these components involved more white-box testing than my testing of  the user 
interface, as I needed to understand what was happening on the data level to guarantee that 
the code was functioning correctly.  

Function of  the Individual Rules 
	 I primarily used white-box testing to analyse the individual solving rules. After 
analysing the output of  a Solver using only that rule, I then used the debugging tools of  my 
IDE to step through the rule and make sure it was processing the data correctly, and not just 
producing the correct results by chance in those instances. There were also some rules, Cage 
Total Rule for example, for which I was able to black-box test the output on different puzzles. 
In this instance, I created a puzzle which contained all possible 2-cell Cages and compared 
the results with a list of  possible combinations for each Cage. After performing all of  these 
tests I was able to conclude that all of  the implementations of  the rules functioned correctly 
and produced the correct results.  

Guessing 
	 To test the guessing implementation I had to check whether the Solver made a guess 
at the right time, and chose the correct JCell and value for the guess. Once again, I mainly 
used white-box testing to achieve this.  

• Electing to Guess: I used breakpoints in the doInBackground() method to check that 
guesses were only being made when the other rules were failing to change the puzzle. This 
was the case.  

• Choosing the Guess: This time I used breakpoints in the makeGuess() method to check 
that the correct JCell and correct value were being selected, in line with the method 
described in section 4.4. This was the case. I analysed the makeGuess() method for 
multiple puzzles.  

Detecting Inconsistencies in the Solution 
	 This testing involved modifying the Puzzle object slightly before performing the test. I 
created a puzzle for which I knew the solution, and placed values in it which I knew to be 
incorrect. These included values in the wrong cells, and values in Cages which summed to 
more than or less than the Cage’s total.  

• Misplaced value: I placed values into the puzzle which I knew were not correct for that 
cell. I then let the Solver run, and added a breakpoint to pause the application when the 
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backtrack boolean variable was set to true. By testing this using multiple misplaced values, 
I was able to verify that all of  the error checks were able to detect the inconsistencies.  

• Cage not summing to total: I tested three instances for this: values sum to less than 
total; values sum to more than total; values sum to exact total. Once again, I placed the 
same breakpoint to trigger when backtrack was set to false, and found that it was changed 
correctly when the sum of  the values in a Cage did not equal that Cage’s total.  

	  
	 While these tests prove that the checks I have implemented do work, they are not 
definitive proof  that every inconsistency will be caught. There may still be instances where an 
inconsistency can be created and not found, but I have performed these tests on multiple 
puzzle containing multiple inconsistencies, and am yet to find any scenario where they are not 
detected, so I am happy to conclude that these tests were successful.  

Backtracking 
	 As I had already tested the error detection, the backtracking tests only involved 
ensuring backtracking is initiated once an error has been found, and ensuring that all the 
previous move are reversed. I also had to test what backtrack() does after reversing the moves, 
i.e. removing the guessed value or backtracking further.  

• Initiating backtrack(): I used a simple white-box test where I placed a breakpoint in 
doInBackground() to ensure backtrack() was called when the backtrack variable was true. 
This was the case. 

• Reversing the correct moves: This test involved stepping through the loop in the 
backtrack() method, to first make sure that every move was correctly reversed by checking 
the state of  the relevant JCell after the reversal, and secondly checking that it correctly 
detects the match between the UpdateObjects in both Stacks when the loop should end. 
Both of  these tests were passed.  

• Action after backtracking: I stepped through the backtrack() method in two instances. 
The first, when the guessed value was the last value in the JCell’s domain. In this case, the 
algorithm is meant call itself  again to backtrack to the previous guess. I successfully 
observed this. The second instance was when there was more than one value in the JCell’s 
domain, meaning the guessed value was simply removed from the domain. I also observed 
this activity successfully.  

Successfully Solving a Puzzle 
	 This was a black-box experiment, in which I simply let the application solve a number 
of  Killer Sudoku puzzles ranging in difficulty from easy to extreme. Every puzzle I tried was 
solved successfully.  
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	 I am confident that the results of  my tests prove that the application is fit for purpose, 
and meets all of  the requirements set out in section 3 of  this report. I also believe that it shows 
that this software is ready to be used in the analysis phase of  the project.  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6. Analysis and Findings 
6.1 Description of  Experiments 

	 Now that I have successfully created a software solution capable of  solving Killer 
Sudoku puzzles, I intend to carry out experiments to analyse and evaluate the different 
solving techniques.  
	 Although I have implemented many different solving rules, I don’t know the most 
effective way of  applying these rules when solving a puzzle. I want to explore the difference 
between executing the rules in a linear order in which every rule is executed once in an 
iteration, and an order in which some rules are executed multiple times in a loop, after other 
rules have completed. Some rules may be best applied in response to changes made by others, 
so I want to test implementations in which certain rules are applied multiple times throughout 
an iteration. Conversely, I also want to test implementations where rules are never applied in 
response to changes in another, such as when a value is assigned to a cell. I am not concerned 
by which rules should be executed before others, as I don’t believe that the differences 
between different specific orders will be significant, given the current set of  available rules. 
However, this line of  enquiry could form the basis of  further experiments in the future. 
	 Despite not being originally planned in the specification of  this project, I also want to 
examine how guessing effects the application. Making an incorrect guess can leave the Solver 
attempting to complete an incorrect solution for some time, which obviously has a large effect 
on performance. Being able to make a correct guess as often as possible is critical to the 
success of  the software, especially in cases where either the puzzle is extremely difficult or 
there are only a small number of  rules being applied. Therefore, I also intend to experiment 
with different guessing heuristics and methods, to try and find the method of  guessing which 
is most successful, and evaluate how reliant the Solver is on its ability to make correct guesses.  
	 In total I have devised three different ordering techniques I wish to test, three different 
methods to selecting the cell to guess in, and two different methods of  selecting the value to 
guess (these are all described in section 6.3-6.4). I will cross-pollinate these techniques to 
create 18 different Solvers, which I will then test against a test suite of  puzzles, ranging in 
difficulty from easy to extremely difficult. I will record the times taken for each Solver to solve 
the puzzle in the test suite, and analyse the results to evaluate which methods are the most 
effective.  

6.2 Test Data and Format of  Experiment 
	 I have compiled a test suite of  100 individual Killer Sudoku puzzles, all stored in files 
readable by my software. The puzzles are taken from the www.killersudokuonline.com 
website, and cover five difficulty levels: easier; easy; moderate; hard; extreme.[9] There are 20 
puzzles from each difficulty level in the test suite. The solutions for these puzzles (and by 
extension, the layouts of  the puzzles) are provided in the appendices.  
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	 For the purposes of  the experiment, I have also saved the solved versions of  these 
puzzle to files readable by my software. I have then created a small command line application, 
called BatchSudoku. I created 18 different versions of  this file (BatchSudoku1.java through to 
BatchSudoku18.java), which each use a different Solver to iterate over the 100 puzzles in the 
test suite, applying the given Solver to each one and timing how long it takes to solve them. 
When a puzzle is solved, it compares it’s solution to the solution file to check it has been 
solved correctly. One example of  this application, BatchSudoku1.java has been included with 
the source code in the appendices of  this report.  
	 To carry out the experiments, I will execute each BatchSudoku program on a different 
machine in the Cardiff  Computer Science School’s Linux laboratory, by creating ssh 
connections to each machine from my personal computer. I have chosen this approach 
because attempting to test all 18 Solvers on the same machine will take an extremely long 
amount of  time, so the only feasible way to perform an experiment as comprehensive as I 
have planned is to find a way of  testing the Solvers concurrently. I realise that this approach 
has an element of  unreliability as I cannot fully guarantee that the environment is the same 
for every Solver. However, I have considered this and concluded that the hardware of  the 
machines being used is not only identical, but also very powerful, so any other activity on the 
machine is very unlikely to effect the results of  my tests. Therefore, I am happy that the 
environments of  the machines during testing will be essentially identical, and the risk of  
producing unreliable data with this approach is small enough that the data can still be trusted.  
	 The hardware (identical on all 18 Linux machines) I will use to perform these 
experiments carry the following specifications: 
• Processor: Intel Core i7-4790 8-core CPU @ 3.60 GHz per core. 
• Random Access Memory: 15.5 GiB 
• Operating System: Linux Ubuntu 14.04 

	 The names of  the 18 machines I will use during this experiment have been provided 
in the appendices.  

6.3 Analysis of  Orders of  Techniques 
	 There are three different patterns of  rule ordering I wish to explore: 

• Linear: This pattern contains a simple routine in which four rules are executed one after 
the other in each iteration of  the main loop. The only exception is when one of  the rules 
calls another in response to a change. The order of  rules is as follows: 
cageTotalRule(Cage); cageDifferenceRule(Cage); constrainingCageRule(Cage); 
onlyOccurenceInCageRule(Cage). In one iteration, the first rule is called on every Cage, 
then the second and so on. The lastCellRule(Cage) and valueFoundInCageRule(JCell) 
methods are still called by removeValue(JCell, int, boolean), so are not included in the 
loop. I will not be testing different orders of  this format (executing a different rule first 
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etc), as I am more concerned with exploring the differences between types of  ordering 
and how that effects efficiency. I don’t believe an experiment into different linear orders 
would provide as much insight as the experiments I am planning to carry out. The names 
of  the Solvers which use this ordering format start with “Linear”. 

• Repeated Application of  Rule in Loop: This pattern is a departure from the linear 
format. In this implementation, one rule is always executed after the completion of  
another, in an attempt to respond to changes made by the initial execution of  the rule. 
The order of  the rules is the same, except that instead of  executing the 
onlyOccurenceInCageRule(Cage) as the last rule of  an iteration, it is executed whenever 
another rule call returns. Again, I will not be testing different examples of  this format, 
although I believe that if  these experiments prove successful and this orientation shows 
different results from the others, further tests could be performed in which different rules 
are repeated in this way. For example, the constrainingCageRule(Cage) method could be 
used in place of  the onlyOccurenceInCageRule(Cage) method. However, some methods 
such as cageDifferenceRule(Cage), could not be used in this way, as they are only effective 
once. The names of  the Solvers which use this ordering format start with “OnlyOcc”.  

• No Response to Values Being Removed: This pattern can be seen as an extension of  
the linear pattern. This time, the removeValue(JCell, int, boolean) method just removes 
the given value from the given JCell, and does not call any other methods or make any 
other changes to any other JCell’s. The valueFoundInCageRule(JCell) and 
lastCellRule(Cage) methods which are normally called by removeValue(JCell, int, 
boolean), are instead added to the end of  the linear sequence of  rules, in that order. 
Again, I do not believe that trying different sequences of  rules in this way will yield much 
change in efficiency. However, implementing all six rules in the “repeated application” 
pattern described above may prove a useful experiment, trying the use the two addition 
rules in this pattern as the repeated rule in that design. However, for this experiment I will 
only the using one implementation of  this pattern. The names of  the Solvers which use 
this ordering format start with “Remove”. 

6.4 Analysis of  Guessing 
	 There are two different parts of  the guessing algorithm I want to test: selecting the cell 
to make the guess in; selecting the value is guess in that cell. For cell selection, there are three 
methods I want to test: 

• Smallest Average Domain: Select the cell with the smallest domain from the Cage 
with the smallest average domain (combined domain size / cage size). This is the method 
of  selection which is implemented into the Solver superclass. The names of  the Solvers 
which use this selection method contain “Avg”. 

FINAL REPORT - ‘KILLER SUDOKU’ SOLVER !46



• Smallest Cage: Select the cell with the smallest domain which appears in one of  the 
smallest sized unfilled Cages. The names of  the Solvers which use this selection method 
contain “SCage”. 

• Smallest Domain: Select the cell with the smallest domain across the entire puzzle grid. 
In the event that two cells have the same domain size, the cell from the smaller custom 
Cage is selected. The names of  the Solvers which use this selection method contain 
“SDom”. 

	 The “smallest cage” and “smallest domain” methods provide two very different 
approaches to selecting a cell, while the “smallest average domain” method combines the two. 
It is important to select a cell which does not have too many possible values, but will also have 
a big effect on the surrounding area. The “smallest domain” method covers the first 
requirement, and the “smallest cage” method covers the second, as an assignment of  a value 
in a smaller cage is more likely to lead to the rest of  the cage being completed. This test will 
hopefully show which of  these requirements is more important, or whether a combination of  
the two can be realised through use of  the average heuristic I have created.  
	 I also intend to test two different methods of  selecting the value to guess once a cell 
has been selected. These methods involve selecting: 

• Least Constrained Value: The value which appears the least number of  times in the 
target cell’s cages and regions. This is the default implementation in the Solver superclass. 
The names of  the Solvers which use this selection method end with “Least”. 

• Most Constrained Value: The value which appears the most number of  times in the 
target cell’s cages and regions. The names of  the Solvers which use this selection method 
end with “Most”. 

	 The first method seems the most logical, as the value which has been eliminated more 
times from the surrounding cages and regions is more likely to be the value that cell must 
take. However, using the second method would create the most changes to the puzzle, and 
possibly lead to more values being assigned elsewhere in the puzzle. This could lead to the 
puzzle being solved more quickly, or lead to an incorrect guess being discovered more quickly, 
so less time is spent by the program attempting to solve the puzzle with incorrect data. This 
experiment should prove which of  these techniques is the most suitable.  

6.5 Findings 
	 To analyse my test results, I calculated average solve times for each difficulty of  puzzle, 
within each class. I have compared the different solving techniques, cell guessing techniques 
and value guessing techniques, by then averaging the calculated averages for all the classes 
using a specific technique. For example, for the value guessing results, I have created an 
average of  all nine classes using least constraining value, and another for all nine classes using 
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most constraining value. This cross-pollination of  classes, means that the data being analysed 
for any given technique, is taken from solvers using each of  the other types of  techniques (e.g. 
data for one ordering techniques is made from results of  that technique combined with every 
guessing technique). All of  the timing data returned as part of  this analysis has been provided 
in an appendix.  

Ordering 
	 The graph below shows how the three different ordering techniques I developed 
performed in my experiment.  

Figure 6.5.1 - Line graph to show the average time taken for the Killer Sudoku 
application to solve puzzles of  varying difficulty, using different rule ordering 

techniques 

	 The first observation to make is that the Linear and OnlyOcc 
(onlyOccurenceInCageRule(Cage) applied after every other rule is applied) techniques exhibit 
almost identical performance, with OnlyOcc performing slightly faster for moderate and 
extreme puzzles. The onlyOccurenceInCageRule(Cage) method only affects the puzzle if  a 
value is found only once in a Cage, so the number of  useful calls is likely to quite small. 
Therefore, it seems logical that executing this rule more often would have very little effect on 
performance. Any change which is made by a call in the OnlyOcc setup would eventually be 
made at the end of  the loop in the Linear setup. Any benefit gained from making the changes 
earlier is likely offset by the processing time needed for all the extra function calls which do 
not make any changes (onlyOccurenceInCageRule(Cage) is called three times more often in 
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OnlyOcc than in Linear). However, this benefit is likely the reason for OnlyOcc performing 
slightly better than Linear for some difficulties.  
	 Both of  these techniques are also very efficient for all difficulties of  puzzles, with the 
highest average being 214 seconds for moderate puzzles. These timings show that these 
formats are clearly very effective, and perhaps a further investigation into specific linear 
orders or different rules being repeated could be carried out to find an even more efficient 
solving strategy.  
	 The other observation to make is the significant difference between these two ordering 
techniques and the Remove technique (no automatic response to a value being removed). 
This strategy is significantly less efficient for all difficulties of  puzzle, and the difference in 
average solving times between Remove and the other techniques increases as the puzzle 
difficulty increases. The average solving time for extreme puzzles using this technique is 1264 
seconds (approximately 21 minutes), over 1000 seconds faster than the equivalent for Linear 
and OnlyOcc strategies. I suspect that there are a number of  contributing factors. The default 
implementation of  the removeValue(JCell, int, boolean) function responds to a removal by 
taking values out of  a cell’s Cage, and calling the valueFoundInCageRule(JCell) and 
lastCellRule(Cage) methods. However, it only does this when necessary by making simple 
checks, so no time is wasted trying to make unneeded changes. This means that the Remove 
strategy has no natural advantage in terms of  efficiency. Similarly, the 
valueFoundInCageRule(JCell) and lastCellRule(Cage) methods are called for every JCell and 
Cage respectively from the doInBackground() method. Calling these functions on objects 
which will not be affected by it may also negatively impact solving time.  
	 I have also previously discussed the “chain reaction” that the default 
removeValue(JCell, int, boolean) method creates, whereby other methods are called and 
values are removed or assigned in response to just one change. The Remove ordering strategy 
does not benefit from this effect, meaning cells are not assigned values as quickly. Assigning 
values helps to constrain the domains of  other cells, which in turn helps to assign more values, 
so assigning values as quickly as possible is obviously going to have a good effect on efficiency. 
It also effects guessing, as false guesses are detected by contradiction with assigned values. If  
false guesses are detected later, it means more time has been wasted on attempting to solve the 
puzzle with incorrect values, again negatively affecting efficiency.  
	 In summary, the results clearly show that the Linear and OnlyOcc ordering 
techniques are the most efficient, and that the Remove ordering technique is very inefficient 
and should not be used. The Linear and OnlyOcc techniques should be used as the basis for 
any Solver, and these techniques should be tested in more depth to determine which specific 
orientation of  rules is the most effective.  

Guessing - Cell Selection 
	 The graph below shows how the three different cell selection techniques I developed 
for guessing performed in my experiment. 
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Figure 6.5.2 - Line graph to show the average time taken for the Killer Sudoku 
application to solve puzzles of  varying difficulty, using different methods for selecting 

cells to make guesses in 

	 These results are difficult to analyse, as there is no consistent pattern to show which 
strategy is the most effective. Every strategy is the most effective option for at least one 
different difficulty of  puzzle, and the least effective for another. The “Smallest Domain” 
strategy seems to be the most effective, as it produced the best average solve time for three 
different puzzle difficulties (easier, easy and extreme), and was the least efficient solver for 
moderate puzzles only. Likewise, this would suggest that the “Average Domain Size” strategy 
is the least effective, as it produced the least average solve time for three different puzzles 
difficulties (easy, hard, extreme), and was the most efficient for just one difficulty (moderate).  
	 It seems logical that the “Smallest Domain” strategy should provide more efficiency. If  
a guess is made in a cell with a full domain of  nine values, there is an 11.1r% chance that the 
guess will be correct. The percentage chance of  a guess being correct increases as the domain 
size of  the cell decreases, leaving a 50% chance of  a guess being correct in a cell with a 
domain size of  two. Using a cell with a smaller domain also helps to detect incorrect guesses 
made previously. If  every guess in a cell is found to be false, the previous guess must also be 
false, and backtrack() is initiated. If  the domain size is smaller, this will happen more quickly, 
which in turn helps to reduce the time needed to solve the puzzle.  
	 However, in some situations the “Smallest Cage” and “Average Domain Size” provide 
a more efficient solution. It is not clear what causes this trend, but it would suggest that none 
of  strategies tested have any significant effect on the Solver’s ability to make correct guesses. I 
think that a more detailed experiment should be carried out to focus on identifying a more 
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suitable technique. A larger data set should be used in this experiment to reduce the effect 
anomalous data has on the results, and other selection techniques should be developed to 
analyse what factors help to select an accurate and correct guess. I also think that other 
metrics should be recorded and analysed. Most of  the work towards solving a puzzle is made 
by the solving rules, so these inconclusive results may be down to the fact that guessing does 
not have as significant an effect. If  the guess success rate were to be recorded, in which 
correct and incorrect guesses are tallied to give a percentage success rate, an experiment 
would be able to focus more closely on how well each Solver is guessing, and the most suitable 
strategy could be identified. 

Guessing - Value Selection 
	 The graph below shows how the two different value selection techniques I developed 
for guessing performed in my experiment. 

Figure 6.5.3 - Line graph to show the average time taken for the Killer Sudoku 
application to solve puzzles of  varying difficulty, using different methods of  selecting 

values to guess 

	 The results show that the two techniques exhibit very similar performance, with the 
“Most Constrained Value” being more efficient for moderate and hard puzzles, “Least 
Constrained Value” being more efficient for extreme puzzles, and the two strategies 
producing almost identical results for easier and easy puzzles.  
	 Unless a cell is selected with a domain size of  two, the value selected will always be 
more likely to be incorrect than correct, regardless of  how the value is selected. This may 
explain why this heuristic has not greatly affected the solving times, as any guess made is 
always more likely to be incorrect. The results would seem to suggest that using the “Most 
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Constrained Value” technique yields better results. This makes sense, because if  the guess is 
more likely to be incorrect, it may be more prudent to attempt to prove it is incorrect so it can 
be removed from the domain more quickly, thus increasing the chance of  the next guess being 
correct, which was one of  the ideas behind using the “Most Constrained Value” strategy.  
	 Again, a more detailed investigation into guessing values may help to shed more light 
on how to make a successful guess, with larger data sets, different techniques and new metrics 
being used.  

Conclusion 
	 I believe that the experiment I have performed has provided some interesting insights 
into how the efficiency of  the application can be affected by the design of  the Solver. The 
most efficient ordering techniques have been identified, while another has been proven to be 
unsuitable. I believe that this discovery can provide the basis for further testing and 
experimentation, in which the Linear and OnlyOcc techniques are analysed in more depth to 
determine how to maximise their efficiency.  
	 The experiments into guessing have been less conclusive, with no single technique 
being identified as consistently superior. However, the “Smallest Domain” method of  cell 
selection did perform well, and I think that a more comprehensive experiment would be able 
to identify this technique as the most efficient. The fact that different guessing techniques 
performed at different levels for different difficulties of  puzzle leads me to believe that an 
experiment in which the layout of  the puzzle is considered may provide further insight. The 
irregular results of  this test may be down to the specific layouts of  the individual puzzles, so 
more insight may be gained from comparing performance for different puzzle patterns.  
	 As I have already mentioned, analysing different metrics could also help to improve 
experiments involving guessing. The number of  guesses needed when solving a puzzle varies 
from puzzle to puzzle, so the time taken to solve a puzzle may not be the best metric to record 
and the “guess success rate” metric could be more useful for analysis. This heuristic represents 
the primary concern when considering guessing, and should always be maximised, so this is 
likely to be a better indicator of  performance when comparing guessing techniques.  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7. Future Work 
	 Having built the software in this project from scratch myself, and then having also 
performed a broad-ranging experiment to analyse the performance of  the software in 
different circumstances, I believe that there is adequate scope for expansion of  the software. 
During the project I have had many ideas for how the user interface could be enhanced to 
provide greater control over the Solver, and how the Solver itself  could be improved, through 
development of  new solving rules. I have also thought of  ways to expand the analysis of  the 
application to consider specific orders of  the execution the rules, and also comparison of  
different approaches and implementations of  some features.  

7.1 Additional Solving Techniques 
	 The number of  solving rules I was able to implement during development of  the 
software was limited by the timespan of  the project. I am aware of  a number of  rules which I 
was unable to implement into the Solver class, some of  which are specific to Killer Sudoku 
but also other which are taken from classic Sudoku strategies, and which could be 
implemented as extensions of  current rules.[10] 
	 For example, a basic Sudoku strategy is the concept of  hidden and naked candidates. 
These terms refer to pairs, triples or quadruples of  values in cell domains which, in the 
correct circumstances, constrain those cell’s regions. This essential idea, mainly focussing on 
naked candidates, has been implemented in the constrainingCageRule(Cage) method of  the 
Solver class, but by exploring the idea of  naked candidates further, this rule can be expanded 
to accommodate  collections of  values which appear only a certain number of  times in a 
region, but not as the only values in their cell’s domains.[11][12] 
	 As well as expanding current rules, there are new rules which can be developed. One 
such rule I have considered involves combining regions to make new discoveries. For example, 
combining two rows and treating them as one cage (with a total of  90 in a 9 x 9 puzzle) could 
help to identify collections of  cells which can be treated as a pseudo-cage, either through 
application of  the cageDifferenceRule(Cage) method or otherwise.  
	 I knew that no matter how many rules I implemented, there would still be many more 
I was unable to include. This is why I designed the Solver component of  the application with 
extensibility in mind, to ensure that the implementation of  addition rules in the future would 
be simple and easy to understand for any developer.  

7.2 Alternative Approach to Guessing 
	 When I began to design the guessing feature of  the Solver component, I devised two 
potential methods of  implementation. The first design was the one eventually implemented, 
where a guess is selected and made, and can then be reverted if  it is discovered to be 
incorrect. The alternative design however, involved using parallelism to attempt multiple 
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different guesses at the same time. In this algorithm, a cell is selected in which to make a 
guess, just as the current implementation does. However, instead of  choosing which guess to 
make, this implementation would instead have created a new thread for each possible guess 
which can be made in that cell. The threads then proceed to attempt to solve then puzzle with 
that guess in place. A thread is terminated as soon as the guess in that thread is found to be 
incorrect, until just one thread remains which must contain the correct guess. The Solver 
would also terminate in the event of  one thread producing a valid solution.  
	 I opted not to develop this design, because I was concerned about how successive 
guesses would lead to an extremely large number of  threads. This is to say that if  the threads 
need to make another guess, these threads will produce child threads, causing the number of  
threads to increase exponentially. This could cause the application to run out of  memory, and 
is therefore a very risky design. However, with more time to develop the application I believe I 
could find a way to safely implement this algorithm and, if  developed intelligently and 
efficiently, I think it could greatly improve the performance of  the Solver component.  
	 The implementation of  alternative guessing methods would open up a new line of  
potential analysis. A similar experiment to the one performed as part of  this project could be 
carried out to compare the two guessing implementations and determine which it the most 
efficient. A third implementation, containing a hybrid of  both techniques in which the 
original method of  choosing one selection is used if  multiple threads already exist (to prevent 
creating too many threads), could also be analysed as part of  this experiment.  

7.3 Defining the Solver 
	 I have designed and implemented the Solver component of  the software to be 
extensible, allowing new Solvers to be easily created and implemented. However, while 
building a new Solver would be easy for a technically astute individual, it would not be easy 
for a first-time user, or somebody without programming experience. Therefore, I think the 
development of  a feature whereby a user can specify the solving format using the GUI would 
be beneficial. I envisage this feature as a separate settings window, in which the user can drag 
and drop different rules into a panel, and reorder them as they see fit to determine how the 
rules are executed in one iteration of  the Solver. The different rules would carry descriptions 
on the GUI, to educate the user on how they contribute to the solving of  the puzzle. The user 
would also be able to save and load these configurations in a similar fashion to the way 
puzzles are currently saved and loaded.  
	 The addition of  this feature would allow anybody to design a new Solver, which could 
be very useful if  further experiments and tests were to be carried out. It means that the 
application could be given to experienced Killer Sudoku players (such as those who engage in 
competitive Sudoku) without programming skills, who could provide further insight into how 
best to solve puzzles, or what strategies would be best suited to specific puzzle layouts.  
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7.4 Further Analysis 
	 In section 6.5 I have already discussed potential areas for further experimentation. I 
believe that in response to my findings in this project, new tests could be performed to analyse 
how the performance of  the Linear and OnlyOcc ordering techniques can be optimised by 
finding the best specific order of  rules, or the best rule to repeat throughout an iteration. The 
addition of  new rules would also create scope for additional tests to evaluate the effectiveness 
of  the new rules. More experiments could also be performed to further clarify which guessing 
strategies are the most successful. In particular, and given that the analysis provided proof  
that executing rules in response to other changes was effective, I would like to implement 
Solvers in which there are more rules executed in direct response to other changes being 
made (in a fashion different from the OnlyOcc implementation in which rules are repeated 
regardless of  changes). Some of  the rules implemented, and rules which could be 
implemented in the future, may function more efficiently in response to other rules being 
executed, much like the valueFoundInCageRule(JCell) and lastCellRule(Cage) methods do, 
and experiments could help to identify these rules and in what context they are most effective.  
	 If  further experiments were to be performed, I would also use a different testing 
environment. While I am confident that the use of  multiple machines with identical hardware 
will not have significantly affected the test results, performing all of  the tests on the same 
machine would have been a more reliable model, and I would have carried out the tests in 
this way if  I had had the time. In future tests, I would run all experiments on the same 
machine, and I would record additional statistics and metrics alongside solving time, such as 
total number of  moves made, guess success rate, and time spent backtracking. I would also 
use a significantly larger data set, and I would also include puzzles of  even greater difficulty 
than the ones used in my experiment. These additions would not only allow me to perform 
more in-depth analysis, but the extra statistics would help me to identify the primary cause of  
any trend in the data. This would help me to understand exactly why certain strategies are 
more or less successful than others.  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8. Conclusions 
	 This project had three main aims: 

• Build a computer application with which a user could create a Killer Sudoku puzzle 
• Implement a second component of  this application, which would be able to solve a Killer 

Sudoku puzzle. 
• Analyse the performance of  the solving component of  the application, to determine 

which order of  execution of  rules is the most effective.  

	 The first aim has been achieved, as I believe I have built an intuitive and easy-to-use 
GUI in which a puzzle can be created, saved and loaded. I have tested the application myself, 
and found that almost all features work without error. I have also carried out user testing with 
independent third-party users, who were satisfied with the usability of  the GUI. Every 
requirement set in the specification has been met, and this evidence leads me to conclude that 
this component of  the software matches the specification and is fit for purpose.  
	 I also believe that the second aim has been achieved. Tests have proven that the Solver 
component of  the software is capable of  solving Killer Sudoku puzzles of  varying difficulty, 
and in an experiment of  100 puzzles, no attempts at solving the puzzle were unsuccessful. 
The same tests also proved that the Solver can solve the same puzzles using different 
configurations and rule ordering strategies, meaning that the goal of  allowing multiple solvers 
to be developed has also been achieved. However, I do believe that the current 
implementation is perhaps too reliant on it’s ability to guess values when stuck. While it would 
appear that the Solver can successfully solve some easy puzzles without needing to make a 
guess, it is almost always necessary for more difficult puzzles. The only way to alleviate this 
would be to reduce the likelihood of  the Solver getting stuck, which the implementation of  
more solving rules would achieve. I therefore conclude that while the application is capable of  
solving a wide range of  puzzles, the implementation of  additional solving rules would make it 
more complete.  
	 While some of  the experiments performed on the software provided useful insight into 
the most effective solving strategies, others were inconclusive. The primary goal of  the 
analysis was to identify the most effective way of  ordering the rules, which I believe I have 
done. However, I still believe that there are plenty of  areas which future analysis could 
explore, and given more time I would have liked to have performed these tests as part of  this 
project. Although it was not specified in the initial project goals, I also decided it was 
important to analyse the guessing function of  the Solver. These tests were largely 
inconclusive, but I do believe that their results have helped to identify areas for further 
investigation, and have suggested that the format of  the guessing implementation can have an 
effect on the Solver’s ability to solve puzzles efficiently. Overall I think that the tests carried 
out as part of  this experiment were successful, as they helped to identify effective strategies for 
solving Killer Sudoku puzzles.  
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	 In summary, I am very satisfied with the end product of  this project. I have been able 
to successfully create a user-friendly GUI for puzzle building, and an extensible and 
functioning software component for solving Killer Sudoku puzzles. I have also performed 
analysis of  the Solver component, which has provided some useful insight into how best to 
structure the Solver component.  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9. Reflections on Learning 
	 This has been the largest project I have ever attempted on my own, and as such I have 
learned many valuable lessons during the process. Firstly, I have learned the importance of  
planning. Given the scale of  the project, I have realised that had I not started by creating a 
formal plan, outlining the different phases of  the project and the steps I would take to 
complete each phase, I would probably have worked at a much slower rate and the end 
product would have been much worse. When I have worked on large projects in the past, I 
have either been working with a group of  people who have managed the project plan 
themselves and given me instructions and guidance on what to do next, or I have taken on a 
project which has already been started and the next steps are clear. Starting a large project 
from scratch was a new experience for me, and as such I have learned a lot from the process 
of  breaking the project down into individual parts and planning how to achieve each goal 
within the given timeframe.  
	 Likewise, I have also learned a lot about how to go about starting a new project. At 
various points during the development of  my software, I felt like I didn’t know where to begin. 
The end product of  the next development phase was clear to me, but I had no idea how to go 
about achieving it. For example, once I had created the GUI and implemented all of  it’s 
features, the next phase of  the project was to begin development of  the solver. I knew what 
rules were going to be implemented and what the structure of  the Solver would be, but I 
didn’t know which part to take on first, or in what order I should implement the constituent 
parts. In the end, I just picked a solving rule and began to implement it. As I wrote the code, 
it became obvious what should be written next, and I formed a general idea of  the approach I 
should take to complete that phase of  the project. I think this has taught me that, while it is 
important to develop a high-level plan of  a project, thinking too much about how to 
approach the finer details can waste time, and it is often better to simply start working on 
something, and allow the rest of  the plan to form around that work.  
 	 The experiments I carried out to analyse the Solver taught me a lot about how to plan 
an experiment. Before this project, I had analysed software in a similar way, but never on the 
same scale as this investigation. I think that as a result of  this, I didn’t fully consider how large 
and time-consuming a full investigation would be. My approach was to develop the software, 
and then perform tests once it was complete, but when I came to the testing, I realised how 
long the tests were going to take. I didn’t want to downsize the experiments, so I was forced to 
use multiple machines for the tests, which produced slightly less reliable results. In retrospect, 
I now realise that I should have been considering the analysis more during the 
implementation phase, and I should not have treated them as two distinct phases of  the 
project. The format of  the analysis is obviously effected by the implementation, and as such 
plans for experiments and tests should be created and altered as the software is being 
developed.  
	 Finally, the fact that I have been able to successfully create a piece of  software which 
can solve Killer Sudoku puzzles has made me realise what I am able to achieve with my skills. 
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From the outset, I was prepared for the eventuality that the software would not work. I was 
very unsure as to whether I could create an application capable of  solving Killer Sudoku 
puzzles before the deadline. I expected that even if  I got the software working, there would 
still be bugs, and that it still wouldn’t be able to solve difficult puzzles. However, I have been 
able to create an application which is fully-functioning, and can successfully solve puzzles of  
any difficulty. This has helped me come to realise how proficient I am with the skill I posses, 
and what I am capable of  achieving if  I approach a problem in the correct way.  
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10. Appendices 
	 All of  the appendices for this report can be found in a .zip archive file titled 
Appendices.zip. The list below contains every appendix included, and the folder or file they 
can be found in within this archive file.  

A. Compiled version of  the Killer Sudoku application (including all 18 solvers) - 
KillerSudoku folder 

B. Source code for the Killer Sudoku application - SourceCode folder 
B.i)  All classes which form the Puzzle component 
B.ii) All classes which form the Solver component 
B.iii) All 18 individual solvers created for the analysis phase 
B.iv) The BatchSudoku1 class used during the analysis phase 

C. JavaDoc generated documentation for all main classes of  the software - JavaDoc folder 
D. UML Class Diagrams 

D.i) Class diagram describing the structure of  the Puzzle component - 
UMLPuzzle.jpg 

D.ii) Class diagram describing the structure of  the Solver component - 
UMLSolver.jpg 

E. List of  machines used during the experiment carried out on the Solver component - 
machines.txt 

F. Full listing of  times returned during the experiment carried out on the Solver component 
- timings.xlsx 

G. 100 puzzle test suite (including solutions, represented as .gif  images) used during the 
experiment carried out on the Solver component - Puzzles folder  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