
Initial Plan - ‘Killer Sudoku’
Solver

CM3203 - One Semester Individual Project
Thomas Petty - 1119707
Supervisor: Ralph Martin
Moderator: Richard Booth

January 2016  

INITIAL PLAN - ‘KILLER SUDOKU’ SOLVER !1

Project Description
The aim of this project is to write a piece of software which is capable of
solving a ‘Killer Sudoku’ puzzle. A Killer Sudoku takes the format of a
traditional Sudoku puzzle, with an n x n grid of cells which contains n squares,
called cages, each containing n cells. Each row, column and cage must contain
each number between 1 and n. In traditional Sudoku, some of the cells in the
initial puzzle already contain values, but in Killer Sudoku no such cells exist,
and instead additional cages are defined, which must contain distinct values
which sum to a given value. An example puzzle is given below.

In this example, the coloured areas represent cages, with the number in the cage
representing the sum of values it contains. In this project, I will create software
to create and save Killer Sudoko puzzles, and then extend that software to be
capable to solving such a puzzle. I will implement a number of different solving
strategies in my solution, and I will perform a series of experiments using
different combinations or orderings of strategies to determine which
combinations are the most effective or run fastest.

INITIAL PLAN - ‘KILLER SUDOKU’ SOLVER !2

Project Aims and Objectives
The following bullet points represent the primary objectives of the project, and
what should be achieved to satisfy these objectives.

• Create a single piece of software which allows for the creation and
resolution of Killer Sudoku puzzles.

- A graphical user interface should be provided to allow the user to
easily input a puzzle.

- A component should exist which can be enabled/disabled by the
user, which updates the same GUI with the steps in a solution as it is
being solved.

- A model-view-controller architecture should be used, and the solving
component should use a recursive algorithm, and a cache of sub-
solutions to improve efficiency.

- Facilities should be provided for the saving and loading of puzzles.
- Multiple puzzle solving techniques and strategies should be

implemented for the solver.
- The software should support 4x4 grid puzzles as well as 9x9 grid

puzzles, to allow to easier debugging/testing.
- An object oriented programming approach should be used, to allow

for the easy implementation and removal of different components.
• Carry out experiments to analyse the efficiency and effectiveness

of different solving strategies.
- Compile a test suite of puzzles, ranging in difficulty from easy to very

difficult.
- Perform tests which analyse the software’s ability to solve puzzles of

varying difficulty when using different combinations or orders of
solving strategies.

- Collate experiment results to show which strategies are most
effective, and in which situations to software performed best, in terms
of time taken to solve puzzles.

INITIAL PLAN - ‘KILLER SUDOKU’ SOLVER !3

Work Plan
Below is the project timeline, which outlines the development process for the
software, and how I will go about achieving the project objectives defined
previously. A weekly supervisor meeting will be scheduled, to review the progress
of the project and ensure that work has remained on track and within the scope
of the project.

Week 1: 25th - 31st January 2016
• Meet with supervisor to discuss objectives, scope of project, rough work

plan.

• Write Initial Plan: outlining project objective and work plan

• Deliver Initial Plan: 31st January.
• Background research: research killer sudoku puzzles; research solving

strategies; attempt some killer sudoku puzzles myself.

Week 2-3: 1st - 14th February 2016

• Design main classes and methods for implementation.
• Design graphical user interface for creation of puzzles.

• Devise method of storing a puzzle in a file.

• Implement the GUI design, and the facility to save/load puzzles from files.
Initially, implement interface for puzzles using a 4x4 grid.

• Test the software to ensure that puzzles and being saved/loaded correctly,
and that changes made to a loaded puzzle are reflected in the file after it is
saved.

• Modify implementation to support different grid sizes, with 9x9 as the
default.

• Retest to ensure functionality has not be impaired.
• Compile test suite of puzzles of varying difficultly for use in testing and

performance experiments.

INITIAL PLAN - ‘KILLER SUDOKU’ SOLVER !4

Week 4-7: 15th February - 13th March 2016
• Meet with supervisor to discuss implementation of problem solving

strategies (week 4): which strategies to implement first; how progress should
be fed back to the GUI.

• Start by implementing rules to solve regular sudoku puzzles, then modify
implementation to solve killer sudoku puzzles.

• Iteratively implement different problem solving strategies using object
oriented programming.

• For each strategy, test it’s ability to function as the only strategy (when
possible), and in combination with other strategies.

• Implement functionality which allows the solver to display it’s progress on
the GUI.

• Test GUI progress feedback by comparing the progress displayed with an
alternative form of progress feedback (e.g. command-line trace). Unit testing
may also be used to test certain rules.

Week 8: 14th - 20th March 2016
• Buffer week: allow for any development overrun.

• Meet with supervisor to discuss work during easter break, outline for
performance experiments.

• Formalise and document plan for experiments.
• If time available, carry out in-depth debugging of code to identify and

remedy potential faults.

Easter Break: 21st March - 10th April 2016

• Conduct performance experiments, analysing and recording the times taken
for different combinations of solving strategies to solve puzzles or varying
difficulty.

• Document results of experiments, and write formal evaluation the results.

Week 9: 11th-17th April 2016
• Buffer week: allow for any overrun of experiments or evaluation.

INITIAL PLAN - ‘KILLER SUDOKU’ SOLVER !5

• Meet with supervisor to discuss experiment results: what else can be
analysed; further experiments which could be performed.

Week 10-12: 18th April - 6th May 2016
• Write Final Report: showing my solution to the problem; details of my

design, implementation and testing; my evaluation of the experiments
performed etc.

• Deliver Final Report and Project VIVA: 6th May 2016

References
"Killersudoku color" by Toon Spin (Toon81) - Own work. Licensed under Public Domain via
Commons - https://commons.wikimedia.org/wiki/File:Killersudoku_color.svg#/media/
File:Killersudoku_color.svg

INITIAL PLAN - ‘KILLER SUDOKU’ SOLVER !6

https://commons.wikimedia.org/wiki/File:Killersudoku_color.svg#/media/File:Killersudoku_color.svg

