
MODULE CODE: CM3203

Cardiff University: Final Year Project Report

Recognising Place
Names in Text
Documents
Supervisor: Prf. Chris B Jones

Craig Harris: c1335098
5-6-2016

1

Abstract

Due to the growing amount of information, created by online social media, there are

opportunities to study and understand the usage of natural language throughout the world.

The human brain can evaluate and extract information from seemingly random data with

ease, however, computers are still unable to process data with little to no context

efficiently. This project will attempt to develop a series of machine learning methods to aid

in the computer automated recognition of place names within Twitter posts. By examining

the usage of toponyms within social media, it may be possible to identify notable patterns

that may aid computer recognition systems. Using this approach could allow the possibility

of applying co-ordinates (geocoding) to social media information allowing for systems to

efficiently identify and provide information on the toponym being discussed. This project is

focused around the ambiguity and context issues that are found in non-structured and

informal language patterns.

2

Table of Contents
Introduction ... 5

Project Overview .. 5

Main Project Objectives ... 5

Project Outcomes ... 6

Identified Difficulties for Toponym Recognition .. 6

Toponym Recognition and Geocoding: Background .. 7

Related Work .. 7

Toponym Recognition ... 7

Geocoding ... 9

Machine Learning Approaches ... 9

ID3 Decision Tree Algorithm .. 9

Markov Models .. 11

Hidden Markov Model (HMM) ... 11

Maximum Entropy Markov Model (MEMM) .. 12

Bayesian Networks ... 13

Word Frequency Analysis ... 14

Supervised vs Unsupervised Learning .. 14

System Specification ... 15

System Requirements .. 15

Functional Requirements ... 15

Non-Functional Requirements ... 17

System Design .. 18

System Structure Overview .. 18

Database Access and CSV / Text File Creation ... 20

Tagging Preparation and Processing of Tagged Words ... 21

ARFF File Output ... 22

Implementation ... 22

Python .. 22

Module and Program Overview ... 23

Comma Separated Value (CSV) Module ... 23

Python WEKA Wrapper Module ... 23

Python DB Module .. 24

3

Natural Language Toolkit (NLTK) Module .. 24

Regular Expressions Operations (re) Module ... 24

LIAC-ARFF Module .. 24

Windows, Apache, MySQL, PHP (WAMP) Program and phpMyAdmin 25

Overview of Implementation ... 26

Database Access ... 26

CSV and Text File Creation ... 28

Regular Expression Character Stripping ... 29

Preparing Spatial Preposition List .. 31

Gazetteer Lookup ... 31

Word Frequency Analysis and NLTK... 31

Manual Part-of-Speech Tagging ... 32

Joining of Multi-Worded Toponyms and Phrases (Tokeniser) ... 33

ARFF File Creation .. 34

Geocoding Function ... 36

Issues found during Implementation ... 37

Weka File Processing ... 38

Analysis of Accuracy (Naïve Bayes) .. 38

Analysis of Accuracy (J48) .. 41

Evaluation .. 44

Overview of WEKA Results ... 44

ROC Curves (Receiver Operating Characteristic Curve) ... 45

Areas to Improve in WEKA Results .. 48

Evaluation of Requirements ... 48

Conclusion ... 51

Future Work ... 52

Reflection and Learning .. 53

Reflection ... 53

Learning .. 53

Reference List ... 55

4

Figure Listing

Figure 1: ID3 Training Data .. 10

Figure 2: ID3 Entropy ... 11

Figure 3: Hidden Markov Model .. 13

Figure 4: Functional Requirements .. 16

Figure 5: Non-Functional Requirements .. 17

Figure 6: System Structure ... 19

Figure 7: Database Access Class Diagram .. 20

Figure 8: Tagging Preparation and Joining of multi-worded toponyms Class Diagram 21

Figure 9: ARFF File Output Class Diagram .. 22

Figure 10: Database Overview ... 26

Figure 11: Example of implemented code for Database query and CSV storage of data 27

Figure 12: Example of resulting CSV file format containing Twitter posts 28

Figure 13: Example of Dictionary to CSV ... 28

Figure 14: Example of basic file writing function ... 29

Figure 15: Example of implemented code for the removal of special characters................... 30

Figure 16: Word Frequency Table .. 32

Figure 17: Key for custom made part-of-speech tagging .. 32

Figure 18: Example of a tagged Twitter Post ... 33

Figure 19: Lower Case Conversion ... 34

Figure 20: ARFF File Creation ... 35

Figure 21: Feature List Example ... 36

Figure 22: Geocoding function ... 37

Figure 23: Naive Bayes Output 1 ... 38

Figure 24: Naive Bayes Output SMOTE .. 39

Figure 25: Database Accuracy Comparison ... 40

Figure 26: Naive Bayes Model Results ... 41

Figure 27: J48 Results Output 1 ... 42

Figure 28: Results Output SMOTE .. 43

Figure 29: J48 Dataset Accuracy .. 43

Figure 30: J48 Model Output ... 44

Figure 31: ROC Curve Naive Bayes ... 45

Figure 32: Naive Bayes Model Summary ... 46

Figure 33: Mix Data Summary ... 46

Figure 34: ROC Curve Mix Data .. 47

5

Introduction

Project Overview

The primary objective of this project is to develop machine learning methods to correctly
identify place names within documents. Due to the difficulty of distinguishing place names
from other terms, such as names of people, objects and organisations, the machine learning
methods will need to be capable of distinguishing the names of locations in an absolute
form.

To attempt to overcome the ambiguous nature of place names in text documents, the
machine learning process will have to utilize various pieces of evidence to aid in the correct
categorisation and recognition of such names. Examples of the sort of evidence that will be
employed in the machine learning process include: whether the name occurs in a gazetteer
(a list of place names of the concerning region), if the name is preceded by spatial
prepositions such as “near to” or “towards” and whether it is associated with place type
terms, such as “town” or “river.”

The focus of this project will be aimed primarily in the areas of Wales and the United
Kingdom as a whole. Therefore, the gazetteer used will be locally focused, such as the
National Gazetteer of Wales and the Ordnance Survey OpenNames gazetteer product.

The use of spatial relationships will be key in determining if a name is a place or something
else. This will be achieved by examining the qualitative and quantitative information that
may precede or follow a place name within the particular document. For this particular
project it will be more common to find qualitative spatial relationships mentioned within
the documents, such as relative locations using proximal relations (“near”, “close”) and
orientation based relations (“north”, “south”). Parsing this information will be key in
developing the machine learning methods required to correctly identify absolute place
names in their correct context.

It has been decided that rather than using traditional text documents to perform analysis
on, the project will focus on recognising place names in a pre-made, database, of Twitter
posts. This will mean that the documents being dealt with are smaller and somewhat easier
to process. However, due to the nature of social media, it would also mean that there is
more variation within the text documents. The use of Twitter documents will also introduce
several interesting focus points within the project, including the analysis of place name
trends, such as when an event happens in a particular area. Also, the way in which places
are defined by individuals can change from person to person.

Main Project Objectives

The primary identified objectives of this project are as follows:

 Develop a series of machine learning methods to correctly identify place names
within a Twitter post.

6

 Create a stable accuracy rate regarding place name recognition by developing and
expanding the machine learning methods.

 Word recognition should be as accurate as possible to ensure proper place name
indexing.

 Attempt to perform geocoding on the results for the place name recognition
function.

Project Outcomes

The following points are the desired outcomes for the project. These outcomes include what
are required as deliverables for this project and any features that could be used in further
development of the project:

 A system that contains appropriate identifiers that will help locate place names
within Twitter posts.

o The system must be mutable, allowing for further development of the
identifiers that are in place to locate place names. This will allow for further
development to increase system accuracy.

 A system that is able to work with a database or document containing a large
amount of text in a variety of formats.

 The system output after the parsing of a body of text will need to include:
o An appropriate Waikato Environment for Knowledge Analysis (WEKA) file to

analyse the performance of the system.
o A word frequency document for further development of the machine

learning methods.

Identified Difficulties for Toponym Recognition

Upon initial review of the project overview and objectives, several obstacles were identified
that may be encountered when attempting to retrieve correct place names from the Twitter
documents.

The first obstacle identified, was the ambiguous nature of Twitter posts. Twitter posts can
be comprised of up to 140 characters. Due to the restrictive character limit, posts are often
written in shorthand or abbreviated forms. This could cause issue with understanding what
post relates to and if a reference to a place was actual made in the post. The abbreviated
format of the posts may make it difficult to identify spatial prepositions that precede or
spatial terms that follow a specific place name.

A second obstacle identified is acquiring place names within the correct context. Twitter
users employ the use of ‘hashtags’ within their posts. Hashtags are generally short links that
are preceded by an octothorpe (#). By using hashtags, users are able to turn single or groups
of words into a searchable link, allowing users to search content and keep track of ongoing
discussions (Hiscott 2013). Hashtags can relate to a variety of different information; this
could potentially cause confusion when parsing the posts for place names being used in the
correct context.

7

Following this obstacle, a second issue in regards to the Twitter post format is ‘@’ symbols.
The ‘@’ symbol is used to direct a message to a specific user and usually precedes the users
name. This symbol could cause the same issue as the hashtag if a user was referring to a
particular company or organisation. In this particular case, the user would be referring to a
place, but not in the context in which the system is seeking.

Generally, the overall obstacle for this project is the high state of ambiguity and difficulty of
establishing context within the Twitter post format.

Toponym Recognition and Geocoding: Background

Related Work

In January 2016, there were a total of 2.307 billion social media users worldwide, this
equates to a global penetration of 31% and has risen by 10% since 2015 (Kemp 2016). This is
a staggering number of social media users, when considering the world’s population in
January 2016 was 7.395 billion (Kemp 2016). The large user count for social media has led to
a massive amount of usable data in which to explore ambiguous toponym recognition and
geocoding. Unlike traditional text, social media is difficult to understand when evaluating
context. Users are not bound to the standard rules and typical stylistic approaches that form
natural language, this can lead to confusion and misunderstanding (Habib & Keulen 2014).

There have been several, prominent, approaches towards extracting information and
correctly geocoding found toponyms within social media text. To better understand how to
proceed with this project it was appropriate to examine and outline some key works in this
field.

Toponym Recognition

The correct recognition of toponyms in social media can be considered the key approach to
attempting to geocode any information found. The basis of geocoding relies on the correct
identification of a place name, furthermore, the place name is required to be in the correct
context. The underlying problem for toponym recognition in social media text is ambiguity
(Overell 2011). The removal of ambiguity from a named entity in text is considered crucial to
the success of correct extraction and recognition of toponyms (Leidner & Lieberman 2011).
Attempts have been made to disambiguate place names from within a text, however, it is
considered a difficult problem when working with data that can reference any global region
(Overell 2011).

Alongside ambiguity, there are several other issues that can be identified when reviewing
works relating to toponym recognition such as spelling and punctuation issues and
constantly changing / new instances of names. Twitter posts are not always written with the
most accurate punctuation or correct spelling, this generally leads to ‘fuzzy’ searches being
implemented as an initial, toponym recognition step (Balaji & Gelernter 2013). A ‘fuzzy’

8

search is usually implemented as a pattern match algorithm (often using Regular
Expressions), allowing place names not spelt correctly to be matched to the correctly spelt
toponym within the lexicon / gazetteer. New and changing place names affect the way in
which gazetteer lookups can be used within an NER (Named Entity Recognition) project. The
model chosen cannot rely solely on whether the name appears in a gazetteer or dictionary
and will need to be couple with other features in order to provide and accurate match.

Toponym recognition is considered a subproblem of information extraction, usually
consisting of two phases: identification and classification (Mamat et al 2008). Identification
simple refers to the correct recognition of named entities; such as a place name, person or
organization. Classification refers to the process of assigning the found names into an
appropriate catergory (Mamat et al 2008). According to Mamat et al 2008, there are
considered to be three main approaches that can be used to attempt named entity
recognition; rule-based, machine Learning-based and hybrid NER. These approaches have
been explored and the pros and cons have been considered for each.

 Rule-based NER
o Hand-made rule set that considers grammatical, syntactic and orthographic

features
o Usually paired with dictionaries
o Rely on manually coded rules and corpora

o Pros

 Useful when dealing with complex entities
 Can contain a large rule-set
 Generally accurate in focused data sets
 High precision

o Cons
 Rules need to be changed when examining different domains
 Rule set can be time consuming to produce

 Machine Learning-based NER
o Use either supervised or unsupervised approaches
o Statistical analysis for clustering
o Labelling of entities via classification

o Pros

 Supervised learning allows for a multitude of approaches
 Statistical models examine relationships of labelled text

o Cons
 Supervised learning needs a large amount of data to work accurately
 Unsupervised learning is mostly unused for NER

 Hybrid NER
o Combination of both rule-based and machine learning-based systems

o Pros

9

 Creation of new methods using the strongest aspects of both
approaches

o Cons
 Alongside using the best features of both approaches, Hybrid NER

generally suffers from the same cons as rule-based NER

(Mamat et al 2008)

Machine learning models that have been commonly applied to solving the problem of
Named Entity Recognition include the Hidden Markov Model, Bayesian Networks, Maximum
Entropy Models and Decision Trees. As this project is focused on producing a machine
learning solution to NER and geocoding; these approaches have been further explored in
the following sections.

Geocoding

Geocoding refers to the process of applying co-ordinates to an address or place name
(Gelernter and Zhang 2014). To apply this process effectively the named entity recognition
system must be fairly accurate; this is due to the difficulties highlighted above such as place
name ambiguity. To ensure the accuracy of geocoding it is important to ensure that the
‘feature’ set used to classify each word is able to discriminate between a variety of proper
nouns (including a name of a person or organisation used in the wrong context). This
process will require the experimentation of features to find which provide the most
accurate results when run through a classification algorithm.

The most straightforward approach to geocoding a toponym is by using a gazetteer or atlas
lookup. Once a toponym in the data set is found, the name identified is compared to an
existing gazeteer or atlas, longitude and latitude can be looked up and append to the place
name, effectively geocoding the toponym located (Balaji & Gelernter 2013). Again, the
problem with this approach is the ambiguity of the text being examined, potentially the
place found will be incorrect or simply will not exist within the gazeteer. The ambiguity of
Twitter posts is what fuels the need for a more extensive feature list to classify place names
and then geocode them effectively.

Machine Learning Approaches

As mentioned in the previous section, there are several options when exploring the machine
learning approaches for correct toponym recognition. The options outlined below are seen
to be the most popular and explored approaches when focusing on supervised (or semi-
supervised) machine learning (Nadeau and Sekine 2007). To better approaches available this
section explores and evaluates these models to better understand the options available to
during the design and implementation of the proposed system.

ID3 Decision Tree Algorithm

10

The ID3 Decision Tree Algorithm is a common machine learning approach when working
with a set of data that can fall into ‘if-then’ rules. This approach to machine learning will
create a tree based on tests of specified attributes, this will start with some key value
represented as a root node and proceed to develop itself based on the attribute tests
producing some leaf nodes as it classifies each case. Each leaf node is joined by branches
that corresponds to one option from the attribute testing.

Decision Trees allow the users to fully understand and analyse all possible outcomes of a set
of decisions. In essence, the ability to discern place names from an unknown test revolves
around the ability to decide if a word is a place name via a set of tests or attributes in which
they are filtered.

A basic example of the use of the Decision Tree algorithm for use within place name
recognition can give us insight on whether this method is appropriate in our system. In this
example, the word being evaluated is in bold and any preceding phrase is taken note of for
use as an attribute in the process.

Figure 1: ID3 Training Data

5 Yes / 5 No

Word / Phrase In Gazetteer? Capital Letter? Spatial
Preposition?

Is Place
Name?

Going to Cardiff True True False Yes

North of
Natwest

False True True Yes

Found in
Gabalfa

True True False Yes

At Home False True False No

Travel to shops False False False No

Here they are False False False No

We’re Safe False True False No

Newport True True False Yes

This is Swansea True True False Yes

Near James False True True No

To start the decision tree process, it is required to work out the entropy of each possible
attribute to find the purest set.

 Entropy:

𝐻(𝑆) = −𝑝(+) 𝑙𝑜𝑔2 𝑝(+) − 𝑝(−)𝑙𝑜𝑔2 𝑝(−)

Applying this algorithm to the three potential attributes for this data we generate the
following entropy for each (Figure 2: ID3 Entropy)

11

Figure 2: ID3 Entropy

 Entropy (True) Entropy (False)

In Gazetteer? 0 (Pure Set) 0.65

Capital Letter? 0.95 1 (Impure Set)

Spatial Preposition? 1 (Impure Set) 1 (Impure Set)

The ID3 algorithm will perform this function recursively for each unused attribute and select
the one the possess the lowest entropy. This function can also work using the information
gain algorithm, selecting the attribute with the highest information gain of all attributes.

Information Gain:

𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐻(𝑆) − ∑((
|𝑆𝑣|

|𝑆|
) ∗ 𝐻(𝑆𝑣))

The ID3 algorithm, in this case, would find the ‘In Gazetteer?’ attribute to be the most
suitable root node. The algorithm would then continue to process all attributes in this
manner until all were used or a perfect fit was found. Examining this example, of which the
training set is extremely small, it is clear that no perfect fit would be found before the
algorithm exhausted all possible attributes.

The ID3 algorithm is worth considering as a machine learning approach as it adopts an ‘If-
then’ approach which is ideal when attempting to classify named entities such as toponym.
However, exploring this method may lead to issues when evaluating Twitter posts due to
the ambiguous nature of the language. It would be reasonable to assume that given the
three attributes above (Fig 1) a toponym could still be found false in all three cases and
incorrectly classified. This problem may occur when the toponym is referred to in a way
other than the administrative name given, such as spelling errors or shortening of the name
(or not present in the gazetteer), incorrectly capitalised and is found at the beginning of the
post (or after a ‘hashtag’).

Markov Models

The following section looks at both Hidden Markov Models and Maximum Entropy Markov
Models as a way to find named entities in text. The two approaches are similar; however,
each model differs when dealing with the identification of current states.

Hidden Markov Model (HMM)

The Hidden Markov Model is often used in conjunction with Named Entity Recognition
(NER) systems and Part-of-speech Tagging. These systems are designed to classify named
entities when provided with a body of text via sequence labelling.

12

A brief summary of the generative Hidden Markov Model is as follows:

The Hidden Markov Model can provide a generative model for sequences (in this case a
sentence or Twitter post). This will enable the model to move from each entity in a sentence
via a probabilistic approach. The model will decide what the most likely word to follow its
current state is, based on the probabilities inferred from the training set. The training set is
usually a pre-defined corpus.

The Hidden Markov Model could be a useful approach to locating toponyms within Twitter
documents. The model allows for a probabilistic approach to the problem which, when
paired with manual tagging and analysing of word trends, may provide a reliable method in
which to locate proper nouns.

However, there are several issues with this model in regards to the analysing of Twitter
posts. The natural language of Twitter does not always follow the normal structure of the
English language. Many words are ambiguous in nature and tagged terms within Twitter
(‘hashtags’, ‘@’) have a high likelihood to confuse the probabilities determined by the
Markov model. A further issue is finding a place name in the correct context; an
organization may be mentioned as oppose to the place in the context of the sentence. The
final issue found with the Hidden Markwov Model is that each word is examined as a
singular entity. This means that a toponym with a multi-word name such as “St Fagans”
would be tagged incorrectly. These problems would provide incorrect results in regard to
the correct gathering of toponyms.

Maximum Entropy Markov Model (MEMM)

The Maximum Entropy Markov Model is similar to the Hidden Markov Model. The model
relies on probabilities, generated from the current state. The model then employs a list of
features to determine the correct tag for the state it is at.

The set of features that the MEMM employs is pre-determined by the user. The features can
contain items such as: what the previous tag was, what the following tag is (if any), if the
word is alpha or numerical, if the word contains a capital letter or if the previous word
contained a capital letter. This process is known as Feature Extraction and helps classify the
particular article in the sequence and label it correctly.

This approach is more suited to the locating of toponyms within Twitter posts. The ability to
pre-define a list a features and enable the system to check previous and following words
would help catergorise the current word being examined, while maintaining the context in

Given a set of training examples (x(1), y(1))…(x(n), y(n))
Assuming that each x refers to a sequence (sentence or post) and each y refers to a tag
sequence (Noun, Proper Noun etc.).

Once a word is seen in the training data the system can attempt to find the most
probable following word in the sequence using the joint probability p(x,y).

13

which it is used. The features could also help narrow down ambiguous terms, potentially
finding vernacular names that are not defined in gazetteers.

The issues with this approach are less prominent than the Hidden Markov approach.
However, difficulties in catergorising ambiguous names or retrieving toponyms in the
correct context may still be challenging.

Bayesian Networks

Bayesian Networks are a second, probabilistic approach that could be used to explore the
named entity recognition problem. The Markov Models (described in the previous sections)
fall under a similar category as the Bayesian Network, however, Bayesian Networks allow
for a more complex dependency set. The basis of this dependency is that each variable in
the network is conditionally independent of any other variable given its Markov Blanket.
Using the Bayesian Network model, it is possible to discover relationships in sequences, if
the structure of the sequence (much like a sentence) is unknown.

In the context of named entity recognition, this would allow the inclusion of a set of
attributes that are independent of each other, such as a simple check to see if the current
word is present in a gazetteer. The model would also allow for a string of attributes that are
conditionally, only dependent on its parent to reach a conclusion.

To apply this model to the named entity recognition problem, it would be useful to assign
each node as an attribute, such as “Capitalised?” or “Spatial Preposition Present?”, which
could then be used to find the probability of whether or not the word being examined is a
place name or not. A basic, visual representation of this can be seen in Figure 3.

Figure 3: Hidden Markov Model

In
Gazetteer?

Is
Capitalised?

Has Spatial
Preposition?

Is Place
Common
Following

Word?

Is Place

As seen in Figure 2, “In Gazetteer?” is completely independent of the other nodes, this is
because if it exists in the gazetteer, it is most likely to be a place name. The other nodes link
to each other, creating a flow of attribute checks that will narrow down the probability that
the current state, is in fact, a place name.

14

Overall, the Bayesian Network model appears to be a reasonable approach to finding place
names within Twitter posts. Examining a set of data and building a probability table to
predict the existence of a toponym may be fairly reliable. The issues with this approach is
somewhat similar to the Hidden Markov Model, despite the extended relationships found
within Bayesian Networks, a false negative could still be identified.

Word Frequency Analysis

Word frequency analysis in regards to this project would be an aid to the machine learning
process as oppose to being the sole way in which to achieve the main objectives. The basis
of the word analysis approach would assist in the creation of lists that could be used to
create filters or attributes in which to narrow down toponyms.

Word frequency analysis, at its core, is a simple concept. Each word in a body of text is
placed into a data structure with a corresponding number based on the amount of
appearances within the text. If the word has not been seen before, the word is added to the
data structure as a new entry. If the word has been seen, then an attribute associated with
that word is incremented. Essentially this process is a simple matter of counting words,
however, when working with a large amount of text, using a system to perform the word
analysis is very efficient.

Within the pre-populated Twitter database that was supplied at the start of the project,
there are a total of 219446 Twitter entries for the Cardiff area. Twitter (2016) states that the
maximum character length of a post is 140 characters and Wolfram|Alpha (2016) suggests
that the average length of an English word is 5.1 characters long. Considering this
information, at the high end of the scale, if each Twitter post within the database was a
maximum of 140 characters and all written in English, there would be a rough total of
4,817,019 words. This calculation assumes that there is a space after each word except the
final word in each the post. This is an extremely large set of data and the use of the whole
database within this project may prove to be difficult. Applying some simple word frequency
analysis techniques would help make use of every entry within this database table, aiding
with the creation of training data for the primary objectives of the project.

Using a basic data structure (such as Python’s Dictionary) I would be able to create a simple
tally of word frequencies. This paired with a gazetteer lookup function could help prepare a
list of the most frequent words that precede and follow a place name which exists within
the gazetteer. This may not be an optimal approach as many place names may not exists
within the gazetteer itself, such as vernacular variants of administrative names. However,
this simple implementation could still provide the project with a good starting point in
which to develop a list of features to aid in the identification of all toponyms.

Supervised vs Unsupervised Learning

To better understand what approach would best suit a named entity recognition problem it
is worth exploring the differences between supervised and unsupervised machine learning.

15

Within supervised learning models, training data is supplied to the model with both the
input data and the expected results. The training data must be comprised of negative and
positive results in order to train the model on what is expected and what is not. The model
then uses the training data to make an educated estimation on what the correct and
incorrect results of a set of unannotated data will be. These methods are usually quicker to
produce results and are fairly well accurate. The drawbacks to using supervised models are
that it requires the data to be annotated with the correct outputs beforehand, this can be
time consuming when working with large datasets.

Unlike supervised learning models, unsupervised learning is not supplied with the correct
results in the training data. This means that the training data is examined by the model and
then (usually) using statistical probability, the model is able to infer the correct output. The
input data can be clustered based on statistical properties, the clusters can then be
examined and labelled by the user. This model requires no user annotation which can save
time on the user’s behalf. However, unsupervised models tend to need a much larger
amount of data to correctly produce results. The time taken by the system is also increased
compared to that of the supervised models.

Considering the main objective of the project, there are benefits of using both unsupervised
and supervised learning techniques. Due to the ambiguity of the text being examined and
the possibility of different vernacular names for toponyms, I feel that supervised learning
(such as the ID3 algorithm) may be the most appropriate approach. Using this approach, I
will be able to create a list of testable attributes to filter the data until correct place names
are identified. I feel that manually tagging the data, or using a part-of-speech tagger will
speed up this process significantly.

System Specification

System Requirements

The areas outlined in this section are key system requirements which have been selected,
through the identification, of the main system objectives and project overview.

Functional Requirements

Figure 4 shows the functional requirements that have been identified. These requirements
are core features for the system that are desired to achieve the project objectives.

16

Figure 4: Functional Requirements

Requirement MoSCoW Acceptance
Criteria

The system is able to
correctly distinguish
between proper nouns. The
system will identify that an
initial capital letter for words
within the database of
tweets can refer to
organisations, peoples
names or simple incorrect
grammar.

Must Have

(Key functionality for
system and end user)

System can correctly
identify a place name from
a text document or Tweet.
The system will use
capitalisation as an early
baseline to establish the
type of word being used
and then proceeded to
determine if the word is a
place name.

The System can develop
appropriate datasets to use
within the machine learning
process.

Must Have

(Key functionality for
system and end user)

The system will be able to
produce helpful datasets
that can be used in further
iterations to improve the
correct identification of
desired data. This can be
achieved via appropriate
output once the system has
run on supplied test data.

The system can
appropriately, and correctly,
index and geocode
locations found within the
Twitter database.

Must Have

(Key functionality for
system and end user)

With the aid of a Gazetteer,
the system will correctly
identify and geocode
locations found with Twitter
posts and text documents.
This will require a gazetteer
lookup function upon
implementation.

The System is able to
correctly identify vernacular
/ colloquial place names
within the Twitter database.

Should Have

(High priority
functionality for

system and end user)

The system will be able to
correctly determine if, and
what, location is being
referred to within a Tweet
and output the appropriate
location. This may be
achieved through the use of
‘fuzzy’ word matching
through regular
expressions.

The system should be able
to deal with datasets from
other database formats. It

Should Have

The system will be
compatible with multiple
database formats and not

17

should also be able to work
with various text formats.

(High priority
functionality for

system and end user)

force the user into using a
particular format for the
dataset. Using specific
software that are designed
to work with a wide variety
of file formats and
structures should enable
this requirement.

The system can create
mapped space via data
gathered throughout the
machine learning process.
The mapped space will
show borders that are often
referred to as part of a town
or city locally, but
administratively are actually
not part of that region.

Could Have

(Possible functionality
for system (Desired))

The system will output a
visual, or text based, report
showing two bordered
regions of a particular
location. One of these
borders will refer to the
official administrative
borders and the other will
use data gathered from
parsed Twitter posts to
determine where the local
population consider part of
their town / city. This
requirement will be
dependent on time
constraints but may be
achievable during the
geocoding step of the
system.

Non-Functional Requirements

Figure 5 shows the non-functional requirements that have been identified. These
requirements are system based and provide an outline analysis on how the system should
perform, as well as desirable system performance features.

Figure 5: Non-Functional Requirements

Requirement MoSCoW Acceptance
Criteria

Efficient code design that
allows the system to
perform the word lookup in
an appropriate time scale.

Must Have

(Key functionality for
system)

The system will perform the
text parsing and supply
correct result (in this case,
a place name) in an
appropriate and workable
time frame.

18

The system must be
secure. Data being used
within the system, despite
being publicly broadcast
online, should be kept out
of reach of third parties.

Must Have

(Key functionality for
system)

Any information stored
online must be
appropriately secured via
standard means (password
protected).

The system must be
scalable and allow for
project sizes both larger
and smaller than the
current dataset being
used.

Must Have

(Key functionality for
system)

The system must perform
appropriate for all dataset
sizes. Single and multiple
database entries should be
processed at appropriate
speeds and with the same
results. The system
performance will be
analysed during
implementations.

The system must follow
appropriate error handling
procedures and produce
correct and informative
user errors.

Must Have

(Key functionality for
system)

The system must display
any errors in a readable
format, allowing users to
recognise machine or user
error and troubleshoot.

System Design

Following the evaluation of machine learning approaches and system requirements, it is
necessary to design the system. This process involves mapping out the system both
structurally and associating correct components within the system. The design has been
split into sections that cover the main processes which need to be addressed within the
system.

System Structure Overview

The following diagram shows a general overview of the system structure. Including the main
process used by the system and the connection between the relevant sections (Figure 6).

19

Figure 6: System Structure

20

Database Access and CSV / Text File Creation

Figure 7: Database Access Class Diagram

This class diagram displays the basic way in which the system accesses and outputs a
Comma Separated File from the information stored within the database. The information is
accessed through the ConnectDatabase() function and then fed to the WriteCSVfunction().
This functionality is used to create both the gazetteer and Twitter post CSV files. The CSV file
can then be exported to a further function to create a standard text file.

21

Tagging Preparation and Processing of Tagged Words

Figure 8: Tagging Preparation and Joining of multi-worded toponyms Class Diagram

This class diagram shows the relationship of the main classes used within the stripping of
Twitter posts and joining of multi-worded phrases / place names. The system prepares the
file within the TaggingPrep class, the file is converted to a list and stripped of special
characters. The createCSV file then uses the list processed in TaggingPrep to create a text
file of the stripped text. The joinStrip class then uses a manually tagged file, alongside a copy
of the tagset to join multi-worded toponyms and spatial phrases and output them as a list.

22

ARFF File Output

Figure 9: ARFF File Output Class Diagram

This class diagrams highlights the relationships between the joinStrip and ARFFOutput
classes. Within the joinStrip class, the createTweetsList() function outputs both a stipped
and non-stripped version of the Twitter posts, in the form of lists. The joinStrip class then
provides the ARFFOutput with the appropriate lists required by the ARFFDataset() function.
The ARFFDataset() function is called by the ARFFCreation() function, ultimately producing
the ARFF file used for WEKA analysis.

Implementation

In this section of the report I will explain the choices I have made in regards to my
implementation approach. This will review the language, modules and libraries used as well
as each process I have implemented into my code to achieve the desired objectives for the
project.

Python

For the project I chose to use Python 2.7 as the programming language. There are several
reasons behind this choice which I will briefly examine. The modules used in the project will
be evaluated in more depth later in this section.

 Pre-defined Objects
o Python Lists

 Easily traversable.
 Due to my approaches to dealing with words in this project, lists were

an appropriate data structure to use.
o Python Dictionaries

 Simple data structure to use for word frequency analysis.
 Can be easily output to a ‘Comma Separated Value’ file format (.CSV).

23

 Existing Modules
o CSV Module

 CSV module in Python implements classes to easily read and write
CSV files.

 Useful for the project for storage of ‘tweets’ and frequency analysis.
o Python WEKA Wrapper

 Allows for the use of WEKA classifiers within Python
 Useful for the output of classified toponyms in which to geocode

o Python DB
 DB module allows for easy access to query MySQL databases from

within Python.
 Necessary for accessing the pre-defined Twitter database.

o NLTK (Natural Language Toolkit)
 NLTK is a part-of-speech tagger written for Python.
 Will be used for the tagging of Twitter posts for analysis of

appropriate word context.
o LIAC-ARFF

 This module helps to create an ARFF file used by WEKA within Python
o Regular Expressions Operations

 Used to perform regular expressions in Python

Module and Program Overview

During the creation and implementation of the code I was able to find several Python
Modules (briefly explained in previous section) and programs that would make the
implementation process easier. This section will highlight the key uses of the modules and
programs within the project, along with any additional information that will help
understand how they aid reaching the project objectives.

Comma Separated Value (CSV) Module

The CSV module introduced several classes to aid in the creation and reading of the CSV file
format. This module was selected to assist in the storage of the majority of data used within
this project.

The main functions used within the project were the reader / writer and Dictreader /
Dictwriter functions. Using the module API, I was able to effectively implement these
functions for use in my project. These functions allowed for the storage of tweets contained
within the Twitter database used for the project. The functions were also used for creation
of the word frequency analysis graphs which were used to aid the creation of the system
feature list.

Python WEKA Wrapper Module

24

The Python WEKA Wrapper module allows for the use of WEKA classifiers within the Python
environment. I attempted to use this module to help with the creation of geocoding
function, however, I was unable to utilise the module to great effect. When trying to import
the Naïve Bayes classifier model that I had created, the datasets were not processed
correctly, resulting in incorrect and incomplete data.

I have used this module with the J48 classifier as an example of how I would solve the
geocoding problem within this project.

Python DB Module

The Python DB module was used to access the MySQL database where the Twitter posts
were stored. This module was used as an appropriate way to obtain the tweets stored
within the Twitter database provided to use directly within the Python platform. Once the
data had been queried from the database I was able to output the information into usable
formats for the continuation of the project. This module was primarily used in the initial
stages of the implementation process.

Natural Language Toolkit (NLTK) Module

Using the NLTK module I was able to part-of-speech tag the existing tweets. This allowed for
analysis of the word types found within each post. NLTK allowed me to tagged tweets using
a corpus, I was then able to review the data and look for any patterns to use in a statistical
approach. Due to the ambiguous and non-structured format of Twitter posts the NLTK part-
of-speech tagger identified many, incorrect proper nouns within the text. However, this was
useful for reference during the implementation of my own, manual tagging procedure.

Regular Expressions Operations (re) Module

The ‘.re’ module was used as part of the character stripping process within the system. The
module allows for the use of regular expressions within Python. This module enabled me to
build pattern matching expressions for use within the feature list within the system. The
module also allowed me to remove unwanted punctuation and Twitter tags with ease.

Using the ‘re’ module to pattern match words within the Twitter document made the
gazetteer lookup function trivial to implement.

LIAC-ARFF Module

The LIAC-ARFF module was added to the implementation to help trivialise the creation of
the ARFF file for Weka analysis. This module simply allows for the creation of an object
within Python that, when provided with the correct data, formats the object to allow for
direct writing to an ARFF file.

25

Windows, Apache, MySQL, PHP (WAMP) Program and phpMyAdmin

WAMP was used to host a local server containing a version of phpMyAdmin. This allowed
me to reliable utilise the database containing the primary data (Twitter posts). I chose to use
WAMP over an online version of phpMyAdmin to ensure reliable access to the database at
all times. This method worked well throughout the implementation process, however, it
meant that the system was less portable. With modifications to the database access
functions the system could be used in conjunction with an online version of the database
fairly easily.

26

Overview of Implementation

Database Access

The logical starting point for this particular project is being able to effectively access and
store the pre-defined Twitter database. This would be an optimal way in which to use the
large amount of data effectively within the rest of the system.

The first step was accessing the database manually. To do this I felt that the WAMP software
would be most appropriate. WAMP creates a virtual environment on the system the user is
working from, emulating a local server. The WAMP software includes the most recent
version of phpMyAdmin, this allows for the creation or import of database files to create a
functional MySQL database. Due to the size of the database file supplied at the start of the
project, using a local host was a more reliable option than using an actually web server.
After importing the miner.db file supplied to the virtual server, I was able to view the
database and review where I would be acquiring the data for this project from.

Figure 10: Database Overview

27

The Twitter posts that I would be using for this project were found within the tweets_cardiff
tables of the miner database. The ‘tweets’ themselves were located within the text column.
The next step was creating a small function within Python that would allow me to extract
the information from this table and store it in a mutable format.

Using the Python DB module API, I was able to easily create a function that would allow me
to query the database effectively. Initially this function was implemented with a simple
‘print’ statement for testing purposes, later the function was modified using the CSV module
so that all resulting rows of the query were stored in a CSV file format (Figure 11, Figure 12)

Figure 11: Example of implemented code for Database query and CSV storage of data

import MySQLdb as mdb

import csv

Open database connection

db = mdb.connect("localhost","root","","miner")

prepare a cursor object

cursor = db.cursor()

SQL query construction

sql = "SELECT text FROM tweets_cardiff \

 LIMIT 100"

try:

 # Execute command

 cursor.execute(sql)

 rows = cursor.fetchall()

 # Open a .csv file

 fp = open('cardiff100.csv', 'w')

 # Write database rows to .csv file

 myFile = csv.writer(fp)

 myFile.writerows(rows)

 fp.close()

Error handling

except:

 print "Error: unable to fetch data"

disconnect from server

db.close()

28

Figure 12: Example of resulting CSV file format containing Twitter posts

Once this basic function was implemented I was able to easily manipulate the data within
the rest of my system.

CSV and Text File Creation

I found that an appropriate solution to the storage of data was using a simple CSV file
format. As the majority of data would need to be stored to some degree I produced a series
of simple functions that could be called to ease this process.

Figure 13: Example of Dictionary to CSV

@FA @england Did Villa have any entry?

Probs because I've packed 7pairs of trainers LOL

@nathanhurn1 aw nothing butt ?? FIFA?

import csv

def createAfter(list1, dict1, dict2):

 for i in range(0, len(list1)):

 if list1[i] in dict1: #Check key in Dict

 dict1[list1[i]] += 1 #Increment Value

 elif list1[i] in dict2:

 dict2[list1[i]] += 1

 else:

 dict2[list1[i]] = 1

 with open('.\CreatedCSVs\preListAfter.csv', 'wb') as f:

 w = csv.DictWriter(f, dict1.keys())

 w.writeheader()

 w.writerow(dict1) #Write Dict to CSV

 with open('.\CreatedCSVs\unDictAfter.csv', 'wb') as f:

 w = csv.DictWriter(f, dict2.keys())

 w.writeheader()

 w.writerow(dict2) #Write Dict to CSV

29

Figure 13 shows the approach taken to write a dictionary data structure to a CSV file within
Python. This particular function was produced to track spatial prepositions in a pre-
populated dictionary. The function also created a new dictionary which would populate
itself with any words that were not found to be in the spatial preposition dictionary, for use
with word frequency analysis and refinement of the pre-populated spatial preposition list.
This was one of two functions, one would populate based on words that precede the word
being examined; the other would track words that followed.

The other functions within this file simply produced text files for use with tagging tweets
(Figure 14).

Figure 14: Example of basic file writing function

Regular Expression Character Stripping

Now that the raw Twitter posts are stored in a mutable format, I felt the next logical
approach was to remove all special characters from the posts themselves. Due to the nature
of Twitter posts, as mentioned in previous sections, there are many special characters that
do not appear frequently in normal text documents. These characters include the frequent
use of the octothorpe or ‘hashtag’ (#) and the (@) symbol. Removing these characters
create both negatives and positives when dealing with the problem of ambiguity of
toponyms within the post.

‘Hashtags’ and ‘@’ tags in Twitter can refer to multitude of different things, varying from
popular quotes or groups/users within Twitter, to organisations and place names. For
example, if a user is talking about watching Cardiff City FC on the television, they may post a
tweet similar to:

“Loving the football!! #CardiffCity”

This example highlights the potential ambiguity problem with removing all special
characters from a Twitter post. ‘CardiffCity’ is in fact a place name, however, in the context
of the post, the user is not referring to the actual city of Cardiff, but more likely the football
team Cardiff City FC. With the special characters intact, we can make an educated
assumption that the ‘CardiffCity’ mentioned is referring to the football club, based on the
overall context of the post. Once the special characters are removed, this becomes less
obvious:

“Loving the football CardiffCity”

def createStrippedFileList(twitterList):

 with open('.\strippedTweetsList.txt', 'a') as f:

 f.writelines(str(twitterList)+'\n')

30

With all the special characters removed it is less obvious to what context ‘CardiffCity’ is
being used in. This user may in fact be saying that he is enjoying the football in the city of
Cardiff.

After considering this issue, I decided to proceed with the character stripping of all special
characters from the Twitter post. This decision was made following a meeting with my
supervisor regarding the manual text tagging of the tweets. Once it was decided that the
manual tagging of tweets would be a good step towards the removal of ambiguity within
the text, I was able to safely remove all special characters as I would have both stripped and
non-stripped versions of each Tweet as reference material.

To strip all special characters within the Twitter posts I used the Python module; Regular
Expressions Operations (.re). This module allows for the use of regular expressions within
the Python environment, replacing all characters following the pattern provided. The
example code in figure 15 shows the basic structure of the code used to perform the
removal of special characters.

Figure 15: Example of implemented code for the removal of special characters

import createCSV

import csv

import re

def taggingPrep():

 # Open file as f

 with open('.\InputFiles\cardiff100.csv', 'rb') as f:

 reader = csv.reader(f)

 # Create list 'cardList' from file

 cardList = list(reader)

 for i in range(0, len(cardList)):

 # Convert current index to string

 y = str(cardList[i])

Regular Expression to replace all special

characters except Alphanumeric and Whitespace

with a blank entry ''

 subString = re.sub('[^a-zA-Z\d\s]', '', y)

#Join stipped string to remove multiple

whitepaces

 subString = ' '.join(subString.split())

#Call function to create text file of stripped

Tweets

 createCSV.createStrippedFile(subString)

31

Once the function is complete, a createCSV function is called to output the stripped Twitter
posts to a text document, ready for manual part-of-speech tagging.

Preparing Spatial Preposition List

To create a functional feature list to properly identify place names within a Twitter post; I
implemented a spatial preposition list for the feature list to cross reference. This would
allow the implementation of a feature to check if a special preposition such as ‘North’ or
multi-word preposition such as ‘close to’ was found to precede a word. Using a combination
of word frequency analysis, online resources (grammar.yourdicitionay.com) and general
knowledge I was able to construct a list to use as reference during the feature check.
If a word or phrase from the list was found to match a word or phrase that preceded the
current item being examined, a flag was set in the feature list, creating another filter for the
classifier to use to determine toponym existence.

Gazetteer Lookup

To create a gazetteer lookup function, I first needed a reliable source for the gazetteer to be
acquired. At the start of the project I was provided with information on two different
gazetteers that could be used to cross reference place names found from my system, these
gazetteers were the OS OpenNames and National Gazetteer of Wales.

I chose to focus on correctly identifying the toponyms found in tweets within the Cardiff
table of the database, however it was necessary to include a large gazetteer as references
may be made to other areas of Britain. As finding correct toponyms would be a difficult task,
I felt it was worth focusing on larger areas (villages, towns, cities, districts) for the gazetteer
and ignoring locations such as street names and addresses. This focus may result in a loss of
accuracy within the final system, however, the dataset is extremely large if street names are
included, making it difficult to analyse the system performance appropriately.

To implement the gazetteer, it was first uploaded to the working database system. To
reduce load on the database and speed up query time, the data was then exported to a CSV
file and ultimately converted to a text file for quick, toponym comparison. Using the text file
gazetteer, I was able to compare the current word being examined with the gazetteer list
easily within the feature list.

Word Frequency Analysis and NLTK

While developing the feature list for my classifier I felt it would be useful to apply some
basic word frequency analysis to the Twitter database, allowing me review any instances of
common following words after a place name found in the gazetteer. I felt that this process
would be helpful in identifying opportunities to implement new features to my feature list.

Figure 16 shows the top 5 results for words that follow a gazeteer place name. This
information was generated by the word frequency function.

32

Figure 16: Word Frequency Table

To Count: 2130

You Count: 1019

In Count: 974

And Count: 911

From Count: 555

This information was gathered and examined to attempt to create an accurate ‘following
word’ feature for the classifier to work. Upon the examination of the data, it was clear that
many of the words would not be include as they are just general words that are common to
follow any type of word (not just toponyms). Ultimately, I decided that words such as
‘street’ and ‘avenue’ were more appropriate for the following word list.

NLTK was used within this project to attempt basic part-of-speech tagging for the collection
of tweets pulled from the database. The speech tagging that NLTK attempted to perform
was fairly reasonable given the state of the data. However, due to the difficulty in
interpreting non-structured language found in Twitter posts, many words were mislabeled.
To perform the tagging, I used the Brown Corpus and applied the part-of-speech tagger to
the entire Twitter list that had been compiled. NPP is the tag given to proper nouns through
NLTK tagging and the tagger chose to mark any instance of a capital letter as such. As there
is no need for a spell or grammar checker when writing Twitter posts, much of this tagging
was incorrect. Once I had started to develop the plan for the feature list, using word
frequency analysis and preposition lists the NLTK data acquired became less relevant. It
became fairly clear that part-of-speech taggers could not perform well on ambiguous text,
therefore I opted to manually tagging the Twitter posts myself.

Manual Part-of-Speech Tagging

Considering the evaluation of text tagging using automated means (NLTK) and following a
meeting with my supervisor, I decided that manual tagging of the Twitter posts would
provide the most accuracy when deal with ambiguous toponyms. During the initial word
frequency analysis, it became apparent that multiple worded place names and spatial
prepositional phrases would be difficult to track, even when exploring the use of a ‘moving
window’ approach. To solve this problem and to reduce the ambiguity of certain toponyms,
a custom based tagging system that would be appended to the text manually seemed like
an appropriate solution (Figure 17).

Figure 17: Key for custom made part-of-speech tagging

Tag Type Tag

End of Word / Phrase [#]

Proper Noun [np]

Noun [n]

City [c]

33

Spatial Preposition Phrase [spp]

Spatial Preposition Single [sp]

Organisation [o]

Generic Place [pl]

County [cu]

Town [t]

District [d]

Country [cr]

Village [v]

To allow for future proofing of the project, I included a more in-depth tagging system than
required for this project. This breakdown of the types of places mentioned could be useful
for further development with the current system, allowing for a more specific search for
named entities.

Joining of Multi-Worded Toponyms and Phrases (Tokeniser)

With the creation of the tag set, I was able to mark multiple word toponyms and spatial
prepositions, allowing the system to identify them and combined them into a single index
within the list. When paired with the preposition lists and gazetteer lookup function created
previously, the system would be able to classify a larger array of place names.

Figure 18: Example of a tagged Twitter Post

In the example shown in Figure 18, each of the appropriate place names within the post
have been tagged. However, in the context of this Tweet, the classifier should be able to
extract only the toponym that is actually relevant; in this case that would be ‘[c]Cardiff[#]
[cu]South Glamorgan[#]’ at the end of the post.

Using the end tag that I have defined [#], the initial function that processes the ‘tweets’ will
be able to identify that because there is no end tag after ‘South’ then it must be a multi-
worded toponym. The function will parse the text, looking for the tags and end tags and
then merge any multi-worded entries into their own index within the list. This will result in
the following Python list:

Non-stripped / Non-Tagged:
366. Cardiff #Spoons (@ The Ernest Willows (Wetherspoon) in Cardiff,
South Glamorgan) https://t.co/EvAVDNctBf

Stripped / Tagged:
366 [c]Cardiff[#] Spoons [pl]The Ernest Willows[#] [o]Wetherspoon[#] in
[c]Cardiff[#] [cu]South Glamorgan[#] httpstcoEvAVDNctBf

34

The function outputs both a tagged and completely stripped version (as shown in the above
example) for processing by the feature list defined. Having the non-tagged version allows for
direct and simple gazetteer lookups, where the tagged list allows for the identification and
reduced ambiguity of what is actually the place name in the context of the post.

ARFF File Creation

To create the ARFF file I implemented an ‘if-then-else’ statement which would utilise the
data obtained throughout the implementation process to output a set of Boolean results.
This process makes use of multiple outputs created throughout the system including:
Gazetteer List, Preposition List, Following Words List. The purpose of this function is to
create a set of data which will be useable in WEKA to allow for the comparison and analysis
of the best classifier to use for the ultimate goal of geocoding toponyms found in Twitter
posts.

All produced lists are opened within this function and then converted to a Python list. In
many cases, the ‘.lower()’ method is called on the lists to allow for a more accurate
comparison between the tweets and the lists created. This is due to Twitter posts not
requiring correct capitalisation and therefore certain place names may be found in a
lowercase format. Likewise, prepositions may be found to be incorrectly capitalised (Fig 19).

Figure 19: Lower Case Conversion

The process of applying True or False values to each word is performed through multiple
check phases for each word being examined. The check phases are comprised of ‘if-else’
statements which evaluate each word based on my identified list of features. The feature
list examines the following:

1. Is the word present in the Gazetteer?
2. Is the word alphabetic and does it start with a capital letter?
3. Does a preposition precede the word?
4. Does a unique following word come after the currently examined word?

[[366], [Cardiff], [Spoons], [The Ernest Willows], [Wetherspoon], [in],
[Cardiff], [South Glamorgan], [httpstcoEvAVDNctBf]]

with open('.\InputFiles\gazList.txt', 'rb') as f:

 for line in f:

 k = line

 placenamesLower.append(k.strip().lower())

35

Using this list of features, the systems examines each word and appends the True or False
result to a list of lists. This data is then placed into an object which allows LIAC-ARFF to
format the data correctly and then be written to an ARFF file (Fig 20).

Figure 20: ARFF File Creation

As seen in Figure 20, the feature list chosen is provided with a Boolean option, when each
word is run through the feature list it outputs an appropriate Boolean value for each
attribute. An example of this can be seen in Figure 21. The ‘Place’ attribute is given a ‘yes’ or
‘no’ option to choose from. This attribute is not assigned within the feature list. The ‘Place’
attribute is assigned manually to each set of data to create the training data that will be
used in WEKA.

def ARFFCreation():

 dataSet = ARFFDataset(Stripped, nonStripped)

 attList = [

 ('Gazetteer', ['TRUE', 'FALSE']),

 ('CapitalLetter', ['TRUE', 'FALSE']),

 ('Preposition', ['TRUE', 'FALSE']),

 ('FollowingWord', ['TRUE', 'FALSE']),

 ('Place', ['yes', 'no'])

]

 obj = {

 'description': u'',

 'relation': 'PlaceNames',

 'attributes': attList,

 'data': dataSet,

 }

 with open('.\CreatedCSVs\Data.arff', 'a') as f:

 f.write(arff.dumps(obj))

36

Figure 21: Feature List Example

Geocoding Function

I was unable to fully implement the geocoding function as I initially planned. Using WEKA I
was able to create a model to help classify toponyms correctly. Despite the progress made
with regards to classifying the toponyms in Twitter posts I was unable to get the model
working correctly using the Python WEKA Wrapper module.

Despite not having fully implemented the geocoding functionality, I was able to prepare
code to display how I planned on approaching this problem. By using the Python WEKA
Wrapper module, I was able to import classifiers used in WEKA, directly into the Python
code. This would allow me to step through each classification result, alongside the actual
Twitter posts. By accessing the label for each instance, I would be able to make an index
search within the Twitter post list and output the relevant word.

Word to be examined: ‘cardiff’
Preceding words: ‘north of’
Following word: ‘here’

Is in gazetteer? True
Has capital letter? False
Preposition? True
Following Word? False

Data = [True, False, True, False, yes]

37

Figure 22: Geocoding function

Once the correctly classified toponyms have been output to a list or dictionary I could assign
co-ordinates based on the gazetteer list stored on the database. This could then be
compared to the co-ordinates provided within the Twitter post database to attempt to
narrow down the ambiguity of the place name.

Issues found during Implementation

The main issues I discovered during the implementation section of the system were the
processing of features for the ARFF file creation section. The issues stemmed from deciding
upon an appropriate model to use to create the feature list filter. Initially it seemed the ‘if-
then-else’ approach would suffice, however, upon the evaluation of the WEKA results, it
seems this approach may have aided in skewing the results to a certain extent (this is mainly
in regards to the gazetteer lookup attribute holding so much weight in the classifier testing).

The second issue I encountered was the implementation of the geocoding function.
Although the basic functionality is present (as shown in the previous section), I was unable
to achieve full implementation of this function into the system. This was mainly due to
problems encountered when using the Python Weka Wrapper module. The problems

import weka.core.jvm as jvm

import joinStrip

tempList = list()

jvm.start()

data_dir = "C:\Users\Softmints\Desktop\Diss\Code\WEKA"

from weka.core.converters import Loader

#Prepare ARFF Loader

loader = Loader(classname="weka.core.converters.ArffLoader")

#Assign and load ARFF data file

data = loader.load_file(data_dir +

"\TestDataEleventoTwentyTwo.arff")

data.class_is_last()

from weka.classifiers import Classifier

#Assign classifier

cls = Classifier(classname="weka.classifiers.trees.J48")

cls.build_classifier(data)

#For each item in the dataset, output label index and distribution

for index, inst in enumerate(data):

 pred = cls.classify_instance(inst)

 dist = cls.distribution_for_instance(inst)

 print(str(index) + ": label index=" + str(pred) + ", class

 distribution=" + str(dist))

 if str(pred) == "0.0":

 tempList.append(str(index))

jvm.stop()

38

encountered involved not being able to instantiate my Bayes classifier model into the
Wrapper module.

Weka File Processing

When classifying data through WEKA it is useful to examine certain aspects of the output
report to create a comprehensive and correct analysis of the system performance. Using the
WEKA explorer, I was able to run my ARFF training data through several different classifiers,
allowing me to evaluate the way in which the data is handled and identify any issues within
the feature list used to create the dataset.

Analysis of Accuracy (Naïve Bayes)

The first classifier examined on the dataset was Naïve Bayes. The data was run using 10-fold
cross validation. The first dataset consisting of 111 words was ran within the WEKA explorer.
The results for this classifier are shown in Figure 23.

Figure 23: Naive Bayes Output 1

Upon initial review of the accuracy of the NaiveBayes classifier, the process seems to have
performed well. However, upon further inspection of the results it is evident that the
correctly classified instances have a skewed accuracy. Due to large amounts of ‘no’ (or
words that are considered to be non-place names), the classifier looks as if it has performed
well. Looking at the Correctly Classified Instances we see that 99 of 11 are correctly
classified and only 12 incorrectly classified, resulting in an accuracy of 89.1892%. Upon
further inspection, if we examine the confusion matrix, we can see that in fact, 9 of the
place names labelled as ‘yes’ (were place names) within the training data were incorrectly

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 99 89.1892 %

Incorrectly Classified Instances 12 10.8108 %

Kappa statistic 0.5644

Mean absolute error 0.1427

Root mean squared error 0.2839

Relative absolute error 49.5292 %

Root relative squared error 75.3171 %

Total Number of Instances 111

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 0.526 0.033 0.769 0.526 0.625 0.835 yes

 0.967 0.474 0.908 0.967 0.937 0.835 no

Weighted Avg. 0.892 0.398 0.884 0.892 0.883 0.835

=== Confusion Matrix ===

 a b <-- classified as

 10 9 | a = yes

 3 89 | b = no

39

considered to not be place names and classified as such. This information is known as false
negatives and can be further examined within the Recall percentage of the WEKA output.
Recall (sensitivity) of the classified instances displays what fraction of the data that was
actually positive was predicted positive. In figure 23 we can see that the recall for the
classification of ‘yes’ is very low, resulting in 0.526 which is little over half of the correctly
classified positives.

As the accuracy seemed to be skewed from the high percentage of ‘no’ results in the
training data, I chose to apply a filter to attempt to balance the results. The filter used is
known as SMOTE (Synthetic Minority Over-sampling TEchnique). SMOTE attempts to
balance datasets by artificially creating more instances of the lowest found attribute, in the
case of this particular dataset the attribute found to be the lowest was ‘Place: Yes’. I applied
the SMOTE filter to increase the amount of positive results in the dataset by 200%. Once the
SMOTE method had been invoked on the dataset I then applied another filter to
randomized the ordering of the data in the ARFF file. The randomization was to ensure that
when 10 fold cross-validation was performed, data would not be grouped together (large
amounts of no’s and yes’s next to each other). The results of the SMOTE filtered dataset are
displayed in Figure 24.

Figure 24: Naive Bayes Output SMOTE

The results of the dataset once SMOTE had attempted to balance the results were more
positive, however, I believe that this is due to the replication of instances in the dataset that
contain a ‘True’ label for if it is contained within the gazetteer listing.

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 140 83.3333 %

Incorrectly Classified Instances 28 16.6667 %

Kappa statistic 0.6689

Mean absolute error 0.2155

Root mean squared error 0.3252

Relative absolute error 43.4751 %

Root relative squared error 65.3105 %

Total Number of Instances 168

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 0.908 0.228 0.767 0.908 0.831 0.888 yes

 0.772 0.092 0.91 0.772 0.835 0.888 no

Weighted Avg. 0.833 0.154 0.845 0.833 0.833 0.888

=== Confusion Matrix ===

 a b <-- classified as

 69 7 | a = yes

 21 71 | b = no

40

Figure 25: Database Accuracy Comparison

Precision: The precision accuracy relates to the what fraction of the data that was predicted
positive was actually positive. In the comparison shown in figure 25, there is little to no
difference in the cases of true positives classified.

Recall: The recall accuracy refers to what fraction of the data that was actually positive was
predicted positive. The recall values vary somewhat for the SMOTE and non-SMOTE
datasets. The number of instances of actual positives being predicated as positive in the
SMOTE dataset is roughly 38% higher than that of the Non-SMOTE dataset. However, as
mentioned previously, this may be due to the way in which SMOTE has synthetically
generated its extra datasets.

Once I had analysed the accuracy of the initial SMOTE dataset, I created a model using the
dataset as the training data. Using a second set of data, consisting of 125, I once again
applied the SMOTE filter to the dataset to help balance the ‘yes’ and ‘no’ classes
respectively. I then ran the saved model from the initial training set on the new test set
resulting in the figures shown in figure 26. Much like the original dataset, I found that the
high Precision and Recall rates may be explained by the existence of the gazetteer lookup
attribute.

Yes - Precision Yes - Recall No - Precision No - Recall

NaiveBayes Classifier (Non-SMOTE) 76% 52% 90% 93%

NaiveBayes Classifier (SMOTE) 76% 90% 91% 72%

7
6

%

5
2

%

9
0

% 9
3

%

7
6

%

9
0

%

9
1

%

7
2

%

FIRST DATASET ACCURACY COMPARISON
(NAIVEBAYSE)

41

Figure 26: Naive Bayes Model Results

Analysis of Accuracy (J48)

The second classifier I chose to evaluate was a decision tree model known as J48. This model
as it applies a different approach compared to that of the Naïve Bayes classifier by
attempting to construct a tree to determine correct data classification. Using the same
datasets as previously used I performed an initial classification of the dataset using 10 fold
cross-validation as before figure 27. I then continued to perform the same SMOTE and
model creation as used with the Naïve Bayes classifier (Fig 28, 29 and 30)

Upon examination of the J48 classifier I found that when using the non-SMOTE filtered
dataset, the tree created by J48 was pruned to just the gazetteer attribute (Figure 27). Once
the dataset had grown through the use of the SMOTE method the tree size increased,
resulting in the inclusion of the preposition attribute to classify the dataset.

Once the trained classifier model had been created I was able to review the J48 classifier’s
performance. Ultimately, the results of the model suggest that the J48 classifier was a
weaker choice than that of the Naïve Bayes model. The Recall and Precision values found
within Naïve Bayes were more consistent in correctly identifying actual and predicted
positives. Due to the amount of words being classed as ‘not’ a place name was higher, the
correct identification of the negative values is of less interest to me.

=== Summary ===

Correctly Classified Instances 141 82.9412 %

Incorrectly Classified Instances 29 17.0588 %

Kappa statistic 0.6635

Mean absolute error 0.1322

Root mean squared error 0.2336

Total Number of Instances 170

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 1 0.264 0.674 1 0.805 0.993 yes

 0.736 0 1 0.736 0.848 0.993 no

Weighted Avg. 0.829 0.093 0.885 0.829 0.833 0.993

=== Confusion Matrix ===

 a b <-- classified as

 60 0 | a = yes

 29 81 | b = no

42

Figure 27: J48 Results Output 1

=== Classifier model (full training set) ===

J48 pruned tree

Gazetteer = TRUE: yes (11.0/2.0)

Gazetteer = FALSE: no (100.0/10.0)

Number of Leaves : 2

Size of the tree : 3

Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 97 87.3874 %

Incorrectly Classified Instances 14 12.6126 %

Kappa statistic 0.4918

Mean absolute error 0.2083

Root mean squared error 0.342

Relative absolute error 72.2839 %

Root relative squared error 90.7277 %

Total Number of Instances 111

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 0.474 0.043 0.692 0.474 0.563 0.628 yes

 0.957 0.526 0.898 0.957 0.926 0.628 no

Weighted Avg. 0.874 0.444 0.863 0.874 0.864 0.628

=== Confusion Matrix ===

 a b <-- classified as

 9 10 | a = yes

 4 88 | b = no

43

Figure 28: Results Output SMOTE

Figure 29: J48 Dataset Accuracy

Yes - Precision Yes - Recall No - Precision No - Recall

J48 Classifer (Non-SMOTE) 69% 47% 89% 95%

J48 Classifer (SMOTE) 75% 57% 84% 92%

6
9

%

4
7

%

8
9

% 9
5

%

7
5

%

5
7

%

8
4

% 9
2

%

FIRST DATASET ACCURACY COMPARISON (J48)

=== Classifier model (full training set) ===

J48 pruned tree

Gazetteer = TRUE: yes (20.0/2.0)

Gazetteer = FALSE

| Preposition = TRUE: yes (8.0/2.0)

| Preposition = FALSE: no (102.0/14.0)

Number of Leaves : 3

Size of the tree : 5

Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 107 82.3077 %

Incorrectly Classified Instances 23 17.6923 %

Kappa statistic 0.5404

Mean absolute error 0.2596

Root mean squared error 0.3859

Relative absolute error 62.4977 %

Root relative squared error 84.7999 %

Total Number of Instances 130

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 0.579 0.076 0.759 0.579 0.657 0.77 yes

 0.924 0.421 0.842 0.924 0.881 0.77 no

Weighted Avg. 0.823 0.32 0.817 0.823 0.815 0.77

=== Confusion Matrix ===

 a b <-- classified as

 22 16 | a = yes

 7 85 | b = no

44

Figure 30: J48 Model Output

Evaluation

Overview of WEKA Results

Following on from the previous section, the first areas to evaluate are the results of the
classifiers trained with WEKA. In the Accuracy Analysis I was able to identify some possible
difficulties within the training and test data that may have caused some issues with the
accuracy of the models.

After the initial accuracy comparison of the two main classifiers I decided to evaluate, Naïve
Bayes seemed like the most reasonable choice. Once the classifier had been trained using
the supplied with the training data the accuracy of the classifications seemed to be fairly
reasonable. However, as mentioned within the Accuracy Analysis, I believe that the accuracy
is fairly skewed. Due to the way in which I process each word within the ARFF output
function, it seems that the most definitive attribute to if a word is a place name or not is the
existence of a ‘true’ Boolean value within the ‘Is in Gazetteer?’ attribute. This suggests that
the feature list is not strong enough to properly determine an ambiguous place name and
relies on the gazetteer lookup as its main deciding factor.

Once the data had been expanded using the SMOTE filter within WEKA the results became
slightly less skewed. The decisions made by the classifier seemed to extend beyond just the
existence of ‘true’ within the gazetteer attribute. This was made more apparent when
exploring the J48 classifier. The J48 classifier, using the expanded dataset, produced a tree
which also included leaf nodes that checked the value within the preposition attribute. This
suggests that with a larger data set the results may be less skewed in favor of the gazetteer
lookup attribute.

Despite the difficulties with the implementation of a working classifier, it is worth reviewing
the general performance and accuracy of the selected NaiveBayes classifier. Once supplied

=== Summary ===

Correctly Classified Instances 160 94.1176 %

Incorrectly Classified Instances 10 5.8824 %

Kappa statistic 0.8741

Mean absolute error 0.1778

Root mean squared error 0.2356

Total Number of Instances 170

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 0.967 0.073 0.879 0.967 0.921 0.971 yes

 0.927 0.033 0.981 0.927 0.953 0.971 no

Weighted Avg. 0.941 0.047 0.945 0.941 0.942 0.971

=== Confusion Matrix ===

 a b <-- classified as

 58 2 | a = yes

 8 102 | b = no

45

with enough data, the classifier is able to correctly label the vast majority of the dataset, this
provides a solid foundation for the further development of the geocoding function.

ROC Curves (Receiver Operating Characteristic Curve)

In order to evaluate the trained Naïve Bayes classifier further I have produced the ROC
curves for several instances of test data. A ROC curve is plotted against the False Positive
and True Positive results of the model being run on the test data. The information plotted
can be used to examine the classifiers ability to correctly predict the correct way in which to
classify the dataset provided to it. All of the ROC curves shown were created through the
WEKA explorer upon completion of classifying a given dataset.

Figure 31: ROC Curve Naive Bayes

This curve was plotted under the ROC value of 0.9721 and is examining the results of the
‘yes’ class within the dataset. The Y axis represents the True Positive Rate; in this case this
was equal to 1. The X axis represents the False Positive Rate; in this particular example this
was equal to 0.264.

The ROC curve suggests that the classifier performed well within this field. However, upon
further inspection of the model summary we can see that the system incorrectly classified
29 instances in the ‘no’ class (Figure 32).

46

Figure 32: Naive Bayes Model Summary

As mentioned in the WEKA Accuracy analysis section of this report, despite what seem like
positive results from the classifier, the system is only able to correctly identify the Gazetteer
attributes effectively. After a review of the test data the model was run on, I found that the
15 True Positives that are shown within the results section contain a mix of True and False
values within the gazetteer attribute. Despite this, I feel that 29 False Positives are caused
by the fact that several of the correctly classified instances contain a False value in the
gazetteer attribute. The classifier is pattern matching to attempt to correctly identify the
True Positives and failing when a similar match is found but is actually labeled as not being a
place name. This may be considered an issue with the data size, the total number of
instances used is 125. The issue with increasing the instance size is the difficulty in obtaining
useful tweets that can provide varied attributes from the existing database.

I felt it necessary to investigate any possibility of incorrect or weighted results further. To
attempt to resolve this issue I created a file with, close to, an even mix of yes and no classed
instances (25 yes, 24 no). I then randomised the ordering of the data to ensure that there
was a reduced possibility of association based on neighbours weighting the results. The ROC
curve for the mix data set is shown in Figure 34. The summary of the results are shown in
Figure 33.

Figure 33: Mix Data Summary

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 1 0.264 0.341 1 0.508 0.972 yes

 0.736 0 1 0.736 0.848 0.972 no

Weighted Avg. 0.768 0.032 0.921 0.768 0.807 0.972

=== Confusion Matrix ===

 a b <-- classified as

 15 0 | a = yes

 29 81 | b = no

Correctly Classified Instances 41 83.6735 %

Incorrectly Classified Instances 8 16.3265 %

Kappa statistic 0.6717

Mean absolute error 0.226

Root mean squared error 0.3328

Total Number of Instances 49

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 0.96 0.292 0.774 0.96 0.857 0.9 yes

 0.708 0.04 0.944 0.708 0.81 0.9 no

Weighted Avg. 0.837 0.168 0.858 0.837 0.834 0.9

=== Confusion Matrix ===

 a b <-- classified as

 24 1 | a = yes

 7 17 | b = no

47

Figure 34: ROC Curve Mix Data

This curve was plotted under the ROC value of 0.9 and is examining the results of the ‘yes’
class within the dataset. The Y axis represents the True Positive Rate; in this case this was
equal to 0.96. The X axis represents the False Positive Rate; in this particular example this
was equal to 0.292.

The Precision and Recall contained in Figure 33 are fairly high once again. I have examined
the dataset and have not identified any striking patterns that would suggest severe
interference with the results of the classifier. Therefore, it is of my opinion that the accuracy
figures are appropriate.

Based on the examination of this evenly split dataset, I feel that the accuracy of identifying
toponyms within the Twitter posts examined are reported slightly too high, however still
within a reasonable margin of error. The classifier is correctly labelling place name instances
that have varying attribute values, suggesting that the output is correct to a certain degree.
To ensure that the classifier was correctly labeling the place names, I matched the outputs
of all instances labelled ‘yes’ to the number that existed within the dataset.

I feel that further development of the training data supplied to the classifier would produce
a more conclusive result. The difficulty I have encountered when attempting to apply this to
the system is keeping the Twitter posts intact, in order to retain the context of how the
words are used within the post itself. To correctly classify the toponyms within the system,
to a higher degree of accuracy, would require a more selective approach to the datasets
used. This would allow for a greater balance of False Positives and True Positives within the
classifier.

48

Areas to Improve in WEKA Results

I have evaluated the key areas which I believe need to be improved within the system to
create a more specific and accurate result set.

The first area that needs improving (namely expanding) is the feature list. I feel that despite
selecting several key features in which to classify the toponyms from, there is room for
expansion. The first, clear attribute that needs to be expanded or established further is the
‘Following Word’ feature. This feature was implemented based on the results of the word
frequency analysis performed throughout the project. The issue with this particular feature
is that there are no, immediately obvious, following words that help define the context of a
place name. Street names and addresses within the Twitter posts mostly became
incorporated into the place name, resulting in entries such as “Park Street” becoming a
singular entry within the token list. Furthermore, the features list could have been
expanded, creating more areas in which to help the classifier find a toponym within the
correct context. The feature list stayed at its current size as finding other, strong features, to
implement was proved difficult when working with an unstructured format such as Twitter.

I feel that the overall datasets that were supplied to WEKA could also have been improved.
A more selective process of instances (words) and overall tweets may have resulted in a
more comprehensive result, possibly removing the uncertainties that were found when
analysing the classifier accuracy. I chose to use the current datasets as I wanted to keep the
tweets within the correct structure, allowing easier reference when attempting the
geocoding process and evaluating the place names found.

Evaluation of Requirements

This section will review the functional requirements outlined at the start of the project and
provide an overview on what was achieved and what was left to improve upon or
implement. Some of the requirements found with the labels ‘Could Have’ or ‘Should Have’
did not make it into the final project.

49

Requirement:

The system is able to correctly distinguish between proper nouns. The system will
identify that an initial capital letter for words within the database of tweets can refer to
organisations, peoples names or simple incorrect grammar.

MoSCoW: ‘Must Have’
Implemented: Yes

This requirement has been expanded since the initial creation of the requirements at
the start of the project. The requirement should be changed to include the
implementation of a feature list in order to identify toponyms as opposed to the
mention of only proper noun recognition based on capital letters.

This requirement was the backbone of the project and I believe that it has been
implemented to a good standard. The system is capable of identifying toponyms based
on a pre-defined feature set, examining both the word itself and its neighbours. The
WEKA analysis shows the successful retrieval of toponyms from a dataset and
performance to a reasonable standard.

Requirement:

The System can develop appropriate datasets to use within the machine learning
process.

MoSCoW: ‘Must Have’
Implemented: Yes

As outlined in the Implementation and System Design sections of this project, the
system implemented is able to produce ARFF files in the correct format to use within
WEKA. The implementation of this requirement was necessary to help deal with the
dataset sizes that I was working with. Manually creating ARFF files and applying a
feature list to each instance would be time consuming and an example of poor
preparation.

50

Requirement:

The system can appropriately, and correctly, index and geocode locations found within
the Twitter database.

MoSCoW: ‘Must Have’
Implemented: Partial

Unfortunatley, due to difficulties using the Python Weka Wrapper module and a large
amount of project time spent creating the toponym recognition process, I was unable to
fully implement the geocoding portion of this project. I have supplied the progress I
have made within the implementation section and I believe that, if given more time, the
implementation of this function would be complete.

My main focus during this project was to ensure that the toponym recognition was
working correctly. I considered this to be the main focus of the project, as without the
correct identification of place names, geocoding would have been impossible to
perform.

Requirement:

The System is able to correctly identify vernacular / colloquial place names within the
Twitter database.

MoSCoW: ‘Should Have’
Implemented: Yes (Indirectly)

This requirement was achieved through the implementation of the toponym recognition
function. Vernacular names are found within the datasets via the various features used
to identify place names.

The vernacular names are not directly categorised with their appropriate relationship to
the administrative names. However, providing the classifier is supplied with the instance
within the dataset, it can be recognised as a place name within this system. I purposely
did not include direct pattern matching to the feature list to assist with this
requirement.

51

Conclusion

Overall, after reviewing the results from the toponym recognition process and achieved
system requirements, I believe the project was a good example of the implementation of
machine learning to find toponyms within social media data. By evaluating the WEKA
results, it is clear that the toponyms are being located from the datasets provided, however,
I feel that the feature list and approach to producing the data set is the ultimate weakness
of the system.

The system suffered from many issues that, given more time and a greater understanding of
the machine learning processes, I believe I could rectify. A recurring issue I found during the
evaluation of the classifiers was that the system was focusing its results on the gazetteer
attribute and not considering the weightings of the other features. I believe this is due to
the dataset that I was using, many of the place names identified were present within the
gazetteer list and therefore the attribute was often flagged with ‘true’. When the classifier
evaluated the training data, it frequently found that if the gazetteer attribute was set to true
then the word was in fact a place name. When balanced against the high proportion of
words found as being not a place name this led to an overall skewed result.

Requirement:

The system should be able to deal with datasets from other database formats. It should
also be able to work with various text formats.

MoSCoW: ‘Should Have’
Implemented: Yes

I approached this requirement by selecting the Python DB Module to communicate with
the database system. Python DB allows access to many different database platforms,
therefore the system is portable enough to be applied to any database protocols
supported within the module.

Requirement:

The system can create mapped space via data gathered throughout the machine
learning process. The mapped space will show borders that are often referred to as part
of a town or city locally, but administratively are actually not part of that region.

MoSCoW: ‘Could Have’
Implemented: No

This was a desired feature but due to the time constraints of the project and incomplete
implementation of the geocoding function I was unable to implement this feature.

52

My main focus within this project was to ensure that the toponym recognition was as
correct as possible. Due to the focus on this segment of the project, I found that the
implementation of the geocoding system to be difficult within the remaining timeframe.
With better time management within this project and a better understanding of the ways in
which to approach the classification of the datasets, I believe that the geocoding
functionality may have been completed.

 Future Work

There are many opportunities to expand the system I have produced. The most obvious area
for future development would be the full implementation of the geocoding feature, as this
was considered a main project objective. Given the opportunity to further develop this
system, I would focus on applying the trained classifier model on the appropriate datasets
from within Python, rather than relying on the WEKA explorer. This process would allow me
to then cross-reference the output with the co-ordinates found within the gazetteer.

A further area of development could include the addition of a wider array of social media
sources. There are many popular social media sites that could provide data for the toponym
recognition and geocoding process (Facebook). These data sources could also include the
geocoding of photos uploaded to the social media sites (Flikr). This process would involve
reviewing the metadata stored within the photograph and developing a system to extract
relevant information. I believe that this would be a great opportunity to develop valuable,
geocoding data.

I believe that the accuracy of the system would benefit from a larger feature list. For a
future development of the system I believe that a more extensive feature list could be
implemented, reviewing more standardised features found within plain text analysis (Length
of word and tag pattern matching). I felt that given the time frame to produce the system,
these features would not be necessary to produce a relatively accurate working system.
However, based on the accuracy of the WEKA results, it would have been useful to have
implemented more features.

The following requirement highlights a great opportunity for development within the
system.

Requirement: The system can create mapped space via data gathered throughout the
machine learning process. The mapped space will show borders that are often referred to as
part of a town or city locally, but administratively are actually not part of that region.

I believe that implementation of this feature would have been an excellent example of the
geocoding system working correctly, allowing the user to review the areas marked on a
mapped space. Using boundaries for each grid reference it would also be possible to include
clustering analysis to find the most popular areas referenced with the social media data.

53

Reflection and Learning

There are many changes that I would make if I was to work on this project again. I feel that I
have developed a greater understanding and expanded my skill set in regards to machine
learning. I feel I have also developed a variety of technical approaches to resolve issues
experienced when working with a project of this size.

Reflection

I believe that my greatest weakness during this project was my understanding on how to
implement the machine learning methods within the system I had created. I spent a lot of
time attempting to create a system which managed the data to use within different
processes, however, this ultimately led to difficulty with time when it approached the end of
the project. I understood how I would approach the problems the main objectives of the
project, though my lack of experience within this field resulted in what I consider a lower
standard of work than I am capable of producing.

Upon review of the functionality of the system, I found several areas that I could have
focused less upon, this would have created a larger amount of time to work on the
implementation of the geocoding functionality and the overall system results. I feel that I
have greatly increased my understanding of machine learning methods and how to
approach the classification and training of data sets. However, I feel that there is still a large
amount of development I could pursue within this area.

A greater time frame allocated to experimentation of the system outputs may have given
me the further knowledge needed to develop a more functional and complete project. Upon
review of the initial report written before the start of the main project I noticed that I had
not allocated an appropriate time scale to the testing of the system. Allowing myself a larger
time frame to test and experiment with the system results would have helped developed
the system and allowed for a more expansive listing of results.

The system was designed to work mostly independently, with the majority of functions
ultimately producing the ARFF files for training and evaluation of the chosen classifier. I feel
that If I had structured the system differently, allowing for greater communication between
the functions implemented, the production of data to train and test classifiers would have
been quick. This would have resulted in more time to develop the geocoding portion of the
system.

Learning

During the process of this project I have learnt a great deal about the systems used to
correctly identified toponyms in an ambiguous dataset. At the start of the project I had
made many assumptions about the way in which I would approach the development of the
system. Many of my assumptions quickly became redundant, as I researched deeper into
the problems regarding implementation and retrieval of the appropriate data. Generally, I

54

feel that this project has increased my technical skill set in regards to the WEKA
environment and Python based programming.

The greatest learning experiences I have gained from this project are that of an
administrative nature. Throughout the course of the degree process I have developed my
programming skills from having zero knowledge to being able to develop appropriate
systems. However, until this module, my experience with project management was
somewhat limited. By attempting a project based on a subject that I had a limited
knowledge of and developing a project plan on how to approach and ultimately create a
system, has expanded my understanding of the project development lifecycle dramatically. I
feel that given the opportunity to attempt a project of a similar size, I would be able to apply
my knowledge gained from this project in order to create a more structured time frame to
work within. This would allow for a more focused approach on the areas of this particular
project that I feel show clear weaknesses in my understanding of appropriate time scales
and planning.

When approaching projects in the future, I will allow more time for initial research and
knowledge gathering before creating a project plan. I will also assign more realistic
timescales to projects in future.

55

Reference List

Balaji, S. & Gelernter, J. 2013. An algorithm for local geoparsing of microtext. School of
Computer Science, Carnegie Mellon University. New York: Springer Science+Business Media.

Gelernter, J. & Zhang, W. 2014. Geocoding location expressions in Twitter messages: A
preference learning method. Available at:
http://www.josis.org/index.php/josis/article/viewFile/170/129. [Accessed 22nd April 2016].

Hiscott, R. 2013. The Beginner's Guide to the Hashtag. Available at:
http://mashable.com/2013/10/08/what-is-hashtag/#u07hwOBf4uqg. [Accessed 20th April
2016].

Habib, M. & Keulen, M. 2014. Information Extraction for Social Media. Available at:
http://www.aclweb.org/anthology/W14-6202. [Accessed 20th April 2016].

Kemp, S. 2016. Digital in 2016. Available at: http://wearesocial.com/uk/special-
reports/digital-in-2016. [Accessed 20th April 2016].

Leidner, J. L. & Lieberman, M. D. 2011. Detecting Geographical References in the Form of
Place Names and Associated Spatial Natural Language. Available at:
http://www.umiacs.umd.edu/~codepoet/pubs/recognition-special.pdf. [Accessed 22nd April
2016].

Mamat, A. & Mansouri, A. & Suriani, L. Named Entity Recognition Approaches. Available at:
http://paper.ijcsns.org/07_book/200802/20080246.pdf. [Accessed 22nd April 2016].

Nadeau, D. & Sekine, S. 2007. A survey of named entity recognition and classification.
Available at: http://nlp.cs.nyu.edu/sekine/papers/li07.pdf. [Accessed 23rd April 2016].

Overell, S. 2011. The Problem of Place Name Ambiguity. Department of Computing, Imperial
College London. London.

Twitter. 2016. Counting Characters. Available at:
https://dev.twitter.com/overview/api/counting-characters. [Accessed 20th April 2016].

Wolfram|Alpha. 2016. Average English word length. Available at:
http://www.wolframalpha.com/input/?i=average+english+word+length. [Accessed 20th
April 2016].

