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1 Introduction

Through the years people have made computers capable of challenging humans at games with
the use of Artificial Intelligence (Al). From simple games such as Tic-Tac-Toe, to more complex
games such as poker and even used in video games to accompany human players throughout
the game.

Conventional Artificial Intelligence approaches such as Monte Carlo Tree Search (MCTS)
are used for creating computational players for the board game Go, in this project I set out
to analyse the ability of one of these Als when augmented with a Neural Network. I plan on
testing this by creating two Al players one with the neural network, and make them play each
other while analysing their ability to play the game, and their computational efficiency. I hope
to see an improvement with the AI that has the neural network helping make it’s decisions.



2 Background

2.1 Goll

Go is a board game, created in China more than 2.500 years ago, commonly played on a 19 by
19 grid. It is a two player game with full information, meaning there is no hidden elements like
in poker, and nothing is left to chance, like games with dice. There are a few specific terms
used in the game of Go such as:

e Counter - What each player places on the board, either black or white.

e Chain - A set of counters of the same colour adjacent to each other (vertically and/or
horizontally).

e Liberty - This is the number of empty spaces surrounding a counter or chain.

e Territory - Space that has only one counters around it.

Each player takes it in turns to place a counter of their colour on the board in an empty
space. The aim of this is to create as much territory as you can. A player can only place a
counter if there is an empty space to place it, and when placed it will have a free liberty. When
a chain loses all its liberties it is removed from the board.

There are many ranks for players of Go, 30k - 1k (kyu), which is a beginner to an interme-
diate player; 1d - 7d (Amateur dan), for Advanced players; 1p - 9p, for professional players. 9p
is comparable to a Grandmaster in Chess. With these ratings players are able to play others
of different ranks with an handicap, so if a 5k player wanted to play a 1k player they would
be presented with 4 stones to place, with Chinese rules? these stones can be placed anywhere,
though other versions of Go have fixed positions for these handicap stones. Also since the
player who plays second is also at a slight disadvantage there is sometimes a komi, a set num-
ber of points, that are presented to the second player at the end of the game to equalise this
advantage.

2.2 Artificial Intelligence!®

Artificial Intelligence (AI) was coined back in 1955 as “the science and engineering of making
intelligent machines”, these machines are usually designed to be good at a single (or small
range) of tasks and has since been used in a wide range of fields from Technology, used to
process and understand natural language™: Medicine, to help find patterns in research and
patients symptoms®: Entertainment, in video games as a computer player to help or challenge

the player®: and more recently travel, with the appearance of self driving cars!?.



2.3 Minimax Search!(®

One of the commonly used techniques in Al for games is Minimax search, this uses a game tree.
Game trees are data structures where many nodes are attached together through branches. The
nodes represent separate possible game states, where the branches between the nodes represent
the action taken to get from one game state to the other. Minimax search is an Al technique
that is used to search through these trees and pick the most promising move from them to
increase the chance of a victory. Each node is given a score, using a predefined heuristic which
shows how “promising” the game state is for the Al at that moment in time. The algorithm
then goes through the tree searching for the best score it can while assuming the opponent will
play the best possible move it can at any of it’s turns, the move chosen is the highest score it can
guarantee, not the highest possible score. However, this is a very intensive search since it needs
to search through every node at each layer, and go down as many layers as it possibly can. This
can be troublesome if the game (like Chess or Go) which have many different possible moves
at any one point (called the branching factor). This causes the amount of memory needed to
store the game tree to expand exponentially and be troublesome.

2.4 Deep Bluel

In 1996 a computer program called Deep Blue used an algorithm similar to Minimax to where
it would search forward up to 12 moves (layers) and then use an additional heuristic to evaluate
those game states. The Al was put to test against a grandmaster of chess, Garry Kasparov 2,
it won and was therefore was the first computer player to beat a grandmaster at Chess. This
was a demonstration of pure computing power, showing it’s ability to evaluate over a 100 million
moves each second. The ability of the Al was still needed since pure computational speed was

still not enough since chess has approximately 10'?° possible games .

2.5 Monte Carlo Tree Search [121[13]

Due to the memory intensity of Minimax Search other searched such as Monte Carlo Tree
Search were designed that use a fraction of the memory space, and also not have the need
for a scoring heuristic to score the game states it relies on probability stored in the nodes
themselves with the relationship of how often the node has been played in a simulation and
how many of those simulations were victories. However, the downfall to this search algorithm
is the move it gives back is likely less optimal than that given by Minimax. The longer the
algorithm runs the higher the chance it will give back the same move as Minimax, though
the rate which it tends to this move is slow. Firstly, the algorithm selects a node already in
the tree using an Upper Confidence Bound, which determines if a node should be investigated
because it’s not already been searched (Exploration) or if the value of a node that’s already
been searched should be refined (Exploitation). This balance of exploration vs exploitation is
where the algorithm saves on memory space since many possible moves may not be searched if
it finds one that is promising. From that selected node one or more children are added, then
simulated. The nodes visited in the simulation stage aren’t added to the tree to save memory
space, but the results of the simulation (if it’s a win or not) are appended to the node that
was simulated from and iterated up changing the values of that nodes win and plays values.
Since there is no heuristic evaluation at each node the Al only needs an implementation of the
game’s mechanics.



2.6 Neural Network 4

Where the other Al techniques search game trees Neural Networks come from a different realm
of Al. Neural Networks are made to mimic the structure of a human brain, where many neurons
connect together to accomplish a complex task. The neurons are simple, they take in a value,
either augment it, or pass on a signal if a certain condition is met (like if the input is greater
than a certain level), then passes that new output or signal onto another neuron. When many
of these are connected together you can get complex behaviour that is capable of things like
pattern recognition, and classification of data.

2.7 Al & Go

Since Go is such an expansive game having 10'023 possible games™® and the amount of possible

moves at any one time are much greater than that found in Chess it has been adopted by the
AT community as a great challenge for creating ever more intuitive Al for. It has found interest
from enthusiasts all the way to technological giants such as Google and their company Deep-
MindH9. Since the game space of Go is so large it is practically impossible to search through
all of the possible games and their moves, as you would need more atoms than there are in the
universe to store all the possibilities on, it has forced people to create more innovative ways
to search through the game space and act on their findings. Many human players of Go have
described it as an intuitive game where they rely on feeling, and intuition to play well. This
has been the biggest challenge for computers since intuitive programs are not easy to define or
create.

Recently (2015-2016) Google’s DeepMind has made a massive breakthrough with this area
of AT and have achieved the main challenge of artificial Go players, their AI named AlphaGo 1!
was able to beat a professional level Go player Fan Hui in October 2015. It won 5-0 and was
the first Al to beat a professional player with no handicap. They later on, March 2016, went up
against the world’s top Go player Lee Sedol and played 5 matches, no handicap and a komi of
7.5. AlphaGo won with a score of 4-1 with many praises. The base of this program is the same
that many enthusiasts use, Monte Carlo Tree Search. However, there’s was augmented with
Neural Networks designed to reduce the depth and width of the tree they needed to search,
meaning more time could be spent looking at what the AI thought to be the better moves.



3 Design & Specification

3.1 The Game

3.1.1 Requirements

For this project I needed a platform to play Go on which has the ability to be interfaced with
a combination of human or AI players, I needed this to be lightweight as I would be running
it on the same machine as the Al and would be sharing the resources. It should handle all
the game mechanics, placing counters on the board, calculating a counters and chains liberty,
making sure moves are legal, testing if the game has finished, and calculating the scores of
a finished game. To reduce memory usage and expand usability the game logic should also
be separated from the game state container, letting the game state be stored without extra
unneeded methods, and the game logic can be accessed by all classes that need to.

3.1.2 Class Diagram

C) Server

i gs GameState
I players Player[]
&% main(String[]) void
m start() void

M render(GameState) void

€) GameState
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b debug boolean
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void
ArrayList<Integer>

ArrayList<Integer>
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) lastMove int

3.1.3 Overview

My version of the game does not introduce concepts such as handicaps, or komi. This is to
reduce the time programming these concepts along with them not being needed for testing the
relative ability of my two AI. Along with this my game board will only be 9 by 9 in size to
reduce the game space the Al have to search, speed up the time it takes to complete a full
game, and it being a common size of board for starting off players and Al.

I did originally plan to create a networked version with a GUI though it was later decided
that this would not be a wise use of my time and that there was no real benefit from doing
this. I ended up using a console interface and having a single computer host the game and the
players (AT or Human).



3.2 Monte Carlo Tree Search

3.2.1 Requirements

The first of my two Al is to only use the Monte Carlo Tree Search method to search through
the game tree to find its desired move. To do this it needs the ability create a game tree.
The nodes store their parent, their children, the amount of times they have been visited, how
many of those visits resulted in a win, along with the game state at that time. The main
implementation is handled within the AI Class due to the similarities between both of the Al
making the code reusable.

3.2.2 Class Diagram
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3.2.3 Overview

My implementation of MCTS is one that includes the use of Upper Confidence Bounds, this
is how the MCTS scores a node to figure out which node to try more simulations down. It
is designed to find a balance between exploration, investigating new moves that haven not
been tried yet; and exploitation, simulating moves along already well known paths to create
more accurate results. This also improves the speed in which MCTS tends towards the same
answer as Minimax search. Though there are many more improvements that can be made to
this algorithm competency along with its efficiency I did not feel these were critical parts to
concentrate on due to the fact it is being tested against an exact duplicate of itself, so any
disadvantages this algorithm has will be mimicked with the other implementation.

UCB =V;+ C x y/InN/n; 11

Where V; is the probability of the given node, C' is a constant that can be tuned to suit the
AT and is decided by trial and error, N is the number of times the parent has been visited, and
n; is the amount of times that node has been visited. Changing C' will change how much the
algorithm balances the exploration and exploitation of the search.

10



3.3 Monte Carlo Tree Search & Neural Network

3.3.1 Requirements

This AT also inherits the majority of it’s methods from the Al class, only overriding the expand-
Children method since this is where the Neural Network acts. For the Neural Network I decided
to use Matlab’s Neural Network Toolbox 8. This gave me a easy way to create and train the
structure of the network through graphical tools rather than spending extra time implementing
the network in Java. To use this network I also used a utility called matlabControl™ which
let me access and execute Matlab commands and scripts from within my Java code.

3.3.2 Overview

For the structure of the Neural Network I chose to use the pattern recognition toolkit from
Matlab. I used an augmented version of the game to create a random version of the game
board, checked to see if it’s a valid game state, then had a player object simulate 500 games for
each legal position on the board. This gave me varying set of game states and the probabilities
for a given player (black or white). The board state and probabilities were written to files and
used as the dataset for training the neural network. This was done for both the black and white
player, since the probabilities for either player differ.

The Neural Network’s feedback is used to select the most promising half of the legal moves.
This hopefully reduces the branches that the AI needs to investigate by half, while keeping the
chance of finding the most promising moves high. This also means a lot more time can be spent
by the AI simulating for these moves refining the probabilities these moves have giving more
accurate results.
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4 Implementation

For my project I decided to use Javal?¥ as my language of choice, this gave me the advantages

of saving time since I have used Java a lot over the past few years and meant I did not need
to take time to learn how to implement certain concepts in another language. It also did
not disadvantage me with the speed and power of the language since I am comparing relative
abilities of Al and since both of them are written in Java they are both hindered by the language
in the exact same way.

4.1 Server

The Server class in the entry point of the entire program and is what hosts both the game
and the players. It controls the flow of the game and implements the game logic (contained in
GameLogic) to play Go.

During the creation of the Server object the GameState and Player objects are also created.
This GameState object is used to store the current state of the game. The Player objects can
be changed so to switch between a Human or Computer player. The Player objects are created
when the game is loaded since some players need time to setup components like the MCTNN
Player.

When the server is started up after creation a game loop is started that repeats until the
game has finished. The current player is gotten and a request made for a move is made using
the Player Interface, if the move is determined to be an illegal move the player is requested
to make another. If the move is legal, it is sent with the current game state to the game
logic which makes the move. After this, the new game state is stored and it’s tested to see
if the game has finished. When the game is finished the scores are shown and the program ends.

4.2 GameState

This object is used as a container for all the information about the game at any given point in
time. Which players go it is, the state and size of the board and the counters, and the previous
player’s move.

The game board is an interesting data type. Even though it is stored in an single dimensional
integer array it is used as a two dimensional array and stores a few pieces of information. Where
the counters are on the board, represented with any number that is not zero. Who the counters
belong to, determined with positive (black) or negative (white) numbers. Along with the liberty
of chain that counter is apart of, which is the absolute value of the number stored. Storing
data in this fashion improved memory usage greatly (as previously I had 3 different objects to
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store the same information), along with computational benefits since keeping track of which
counters were part of which chain was becoming a complicated task.

4.3 GameLogic

The mechanics and rules of the games are implemented in this class, the methods are static
since there only needs to be 1 instance of these methods in the entire program that can be ac-
cessed by the other objects in the program. All methods in this class act off a game state that
is passed in and any game state given back is a new object so not to interfere with previously
stored game’s state, this had to be done because or memory management to handle how Java
passes objects.

Here is an overview of what each method does:

getLegalMoves: Goes through every empty position on the board if it is a legal move (with
use of the isLegal method) for the given player it adds it to a list and passes that list
back when it is evaluated all empty positions.

ifLegal: Tests a given move and player to see if that move is legal within the rules of Go. If
the position is filled then it is outright illegal and returns false, if the move is to pass it
is returned true straight away since these are easy to compute. For the move to be legal
it must, after evaluation of neighbouring chains, have a liberty. This is tested by making
sure only of the following are true:

e One of the counters neighbours is empty.

e One of the neighbouring chains is owned by the same player and that chain has a
liberty of two or more, the liberty can by 1 only if one of the neighbours is empty
which is covered by the previous condition.

e One of the neighbouring chains is owned by the opponent and has a liberty of equal
to one. This means that chain would be removed thus creating an empty place
around the counter thus making a liberty.

Though if this move would put the board in the same state it was in 2 moves ago that is
also illegal.

makeMove: Takes in the game state and the move that is to be applied to that game state,
assumes that it is a legal move, and acts on that game state accordingly. Placing the
current players counter at the given position, it then iterates around that counter recal-
culating the chains of the neighbouring counters.

chainCheck: This is what is used to recalculate the liberty of a given chain, given the game
state and the position of any counter in a chain it calculates what the liberty is and sets
the value of it for each counter in the chain.

isOpponent: Simply returns if the counter at a given location is owned by the given player
or their opponent.

13



getNeighbours: Returns an iterable list of all the neighbouring positions around a given po-
sition, handles whether the given position is at the edge of the board or not.

getChain: Returns a list of all the positions of counters in a chain that the given counter be-
longs to. It does this by expanding out from the given position looking for counters with
the same sign (positive/negative) keeping track of which counters it has visited. Once no
more counters are being added to the chain it returns the discovered chain.

setChain: Uses the getChain method to set the chain to a given value.

getBorder: This is used for getting the surrounding positions of a chain, and is mostly used
within the chainCheck to count the liberty of a chain. It simply uses getChain to get a
chain, then expands all the counters out in all directions, if a position which is not in
the chain is found it must be on the border of the chain. These are all stored and returned.

ifFinished: Checks to see if the game is at it is end state, which is simply if both players have
passed consecutively then the game is over.

score: This is used at the end of the game to evaluate who won the game. I used Chinese
scoring since it was one of the simplest to implement. A player’s score is equal to the
number of counters they have on the board, plus the number of spaces in territory they
own. A player owns territory if only their counters surround the empty spaces.

4.4 Player

Player is an interface used by the server to interact with any type of player be it Human or
Computer without special exceptions. The only method that is required is getMove which is
what is called when the server is requesting a move from a certain player.

4.5 ConsolePlayer

ConsolePlayer is a simplistic console based interface for humans to interact and play the game.
It implements the Player interface so that the server knows how to request a move from them.
This is done by rendering the board in the console (through use of a text representation of
the board and counters that occupy it). Then requests an X and Y coordinate to be entered
into the console. This is turned into a single number, since the board is stored as a single
dimensional array and returned to the server.

4.6 Treenode

Treenode is what the game trees are made out of. Each tree node holds a reference to its
parent, children, the amount of times it has been visited, and the amount of those visits which
resulted in a win. They also hold the game state for the game at that given node. Using these
the Al is able to create and search through a game tree.

14



4.7 Al

The AI class is an abstract class that implements many methods that are shared by all the
other Al and lays out the methods that should be implemented by the Al that inherit it. The
methods are as follows:

getMove: Implemented from the Player interface, this method is was starts up the AI and
makes it decide which move it should make dependant on the game state it’s given. Starts

a thread which expands the game tree while it counts down a predefined amount of time
then kills the thread.

selectMove: Picks the best move from the children of the current game state node. This is
what’s called after the Al has expanded it’s tree to get the most promising move.

selectUCB: Used for the selection part of Monte Carlo Tree Search, where it picks the node
with the best Upper Confidence Bound to iterate down and simulate.

selectBest: Does the same as selectMove but a more general implementation for any given
node.

expandChildren: Abstract method not implemented in this class, view description of this
method in the AI implementations. Handles the expansion part of MCTS

isLeaf: Returns a boolean of if the given node has any children.

isTerminal: Returns a boolean of if the given node is a terminal node and represents the end
of the game.

optimalLeaf: Uses selectUCB to iterate down the tree from a given node for the selection part
of MCTS

simulate: Handles the simulate part of MCTS, plays a random game from a given tree node
and checks to see if that random game wins, the results of the win iterate back up the
nodes, changing their win/plays values.

run: Executes the thread which expands the game tree using the stated methods above. Going
through each step, selection, expansion, and simulation, until the thread is killed by the
timer.

killThread: This is what’s called to kill the thread in a safe manner.
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4.8 MCT

This is where the first Al using a simplistic Monte Carlo Tree Search is implemented. It extends
the class Al since that handles the majority of the programming, the only method in this class
is the implementation of expandChildren.

expandChildren: Given a tree node it gets the list of legal moves using the Game Logic, then
expands the tree out with all the legal moves at that are possible from that node.

4.9 MatLabContainer

Since I created the Neural Network using Matlab I needed some way to interact and execute
it. To do this I created this class which implements the abilities of a Java MATLAB Interface
(JMI) called matlabcontrol to the extend needed in this project. When created this object sets
up the interface between Java and Matlab and configures it with predefined settings, such as
whether to create a new session or connect to a previous session.

setupVariable: Variables have to be defined and set before executing the Neural Network
script so this is what handles sending Matlab the board state that is being tested and
creates a variable for the returned data.

runNN: This method is what adds the location of the Neural Networks script, requests that
Matlab run it, and waits for the response.

disconMatLab: Closes the JMI properly so extra connections aren’t laying around, usually
executed at the end of a game.

4.10 MCTNN

This is the second implementation of the Al class, it also uses the MatLabContainer since this
is where the Neural Network is used. Like MCT this class doesn’t have many methods since
they are handled by the AI class.

expandChildren: The implementation for this method differs quite a bit from the one in
MCT. It takes the game board and formats it into a 81x1 matrix, passes it to Matlab and
has the MatLabContainer execute the Neural Network. The returned results are passed
through the top method which decides which of the positions should be added to the
game tree and investigated.

top: This method decides from the Neural Network data which positions should be added to
the game tree. It does this by looking at the returned values for the legal moves. The
method makes a list of all the legal moves greater than the median value of the legal
moves. If the amount of legal moves is lower than a certain percentage, the list of legal
moves is just used. This helps the Al in late game scenarios where there are very few
positions to choose from, but helps greatly with speed at the start of the game since the
branching factor at the start is greatly reduced.

The reason I go back to using the entire set of legal moves is due to the percentage any
single good move makes of the entire legal set. When at the beginning of the game a

16



single good move is 1/81 of the entire set, meaning the amount you gain from simulating
one more move (if it’s good or not) is very low. Where as when you reach the late game
you have single moves representing 1/5 to 1/3 of the legal set, giving a lot more intensive
to investigate and simulate these moves.

17



5 Testing

The aim of this project is to determine the relative ability of each of the aforementioned Al to
play Go. To do this I have decided to test these Al by comparing their outright skill to play
Go by running multiple matched between them, since their running on the same computer this
means their resources will be exactly the same, and also the time they get to expand the game
trees will also be restricted to the same length. This will ensure a fair test and will purely
show how well they are at playing against each other. In the matches the Al that goes first will
be switched so to remove any advantage the first player may obtain by going first. After each
game the program will be restarted so that the game trees are destroyed. This gives both Al
a fair starting point. All tests are run over 30 games of Go.

5.0.1 Results

For a control I tested MCT vs MCT, since this will show the disparity and advantage the black
player has for going first.

Table 5.1: MCT vs MCT
Black | Draw | White

14 0 16

Table 5.2: MCTNN vs MCT
Black | Draw | White

19 0 11

Table 5.3: MCT vs MCTNN
Black | Draw | White

13 0 17

5.0.2 Analysis

The results of the control test seem to show that the Al are reasonably evenly matched with
the game going either way, with the results looking to hover around half each. This seems to
suggest there is not an advantage for going first between the two players.

The second round of games MCTNN vs MCT show a that the black player won a great
deal more than before where it was nearly 1:1 this round is closer to 2:1. This suggest that the
Neural Network has improved the Als ability to play Go.

This is further shown by the results of the third round where MCTNN (now playing white)
won just a few more games than MCT (playng black). This lead could likely have been extended

18



by spending more time training the Neural Network as white, since the training data for this
neural network is slightly less than that taken for the black player.

Overall this shows that the Neural Network has been shown to increase the chances that
the Al will win against it’s counterpart, which was the target for this project.
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6 Improvements and Future Work

There are many things in this project that would have been implemented, improved, and
changed if I were to of had more time. One of these things is the language I chose to write
the project in, a language like C++ have given me more control over the way my Objects were
passed throughout my program and in turn would have given me more control to implement
some aspects of the game with greater ease. I also would have used threading more if I had
time to improve my code, since this would have benefited the Al greatly. Other improvements
would be things such as a GUI for human interaction, Networking so Al can be run on separate
machines, and the ability to run multiple games at once for faster data collection.

As for the research I would like to have looked into other ways of using the Neural Network
to improve the Al. Since my approach reduced the width of the game tree, there may be uses
for Neural Networks to reduce the height of which the Al has to go through the game tree.
Maybe more localised Neural Networks could pick out defined patterns that should be noted
and which positions to play when those patterns appear.

Other tests could also be run to determine how the Neural Network helps the Al, through
testing the amount of simulations it runs you can see if the fidelity of the values used for
selection are improved, and by testing how well the AI play consecutive games shows how
quickly they learn and expand the game tree.

7 Applications

The ability for Al to play more intuitive games is a huge step forward for Al in many fields
of science and life. With the ability to make more intuitive decisions it could improve the ability
for physical robots to make last minute actions in situations it was not specifically designed
for, which means we could possibly send robots into more dangerous situations like earthquake
zones to help find survivors, or deeper seas and caves for research. Computers may see a boost
in ability for understanding natural language and speech, making human computer interfaces
more user friendly and intuitive to use.

8 Conclusion

Overall I feel that I have achieved my aim of this project. I implemented the game of Go
in Java that was capable of being played by AI. I implemented an Al using Monte Carlo Tree
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Search then made an augmented version with a Neural Network helping choose which moves it
should investigate. Testing these Al against each other I was able to show an increased level
of skill and speed at which the Al expands the game tree. Thus proving that Neural Networks
are able to be used to improve Monte Carlo Tree Search based Al at playing the game of Go.
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