
	

	
	
	

Cardiff University
	
	

Final	Year	Project	
	

	

	
	

“Pocket	Waiter”-	iOS	Application	in	SWIFT.	
Integrated	Development	Environment:	Xcode	

	

	
	
	 	
	 	
	
	 	 	 	 	 	 	 	 	 	 Supervisor:
Author:																		 	 	 	 	 								Dr	Martin	Chorley											
Athanasios	Gkavalis																																																		 Moderator:		

								Dr	Yu-Kun	Lai

	 2	

	
	 	

	 3	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
“I	Always	did	something	I	was	a	little	not	ready	to	
do.	I	think	that’s	how	you	grow.	When	there’s	that	
moment	of	‘Wow	I’m	not	sure	I	can	do	this’	and	
you	push	through	those	moments,	that’s	when	
you	have	a	breakthrough”	
	
	
	
	

-Marissa	Mayer	
																									CEO	of	Yahoo							

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	 4	

Abstract	
	

This	project	is	about	an	IOS	application,	which	I	programmed	in	SWIFT	language	and	its	main	aim	is	to	
help	people	order	when	they	sit	at	a	restaurant.	The	idea	of	the	application	came	up	when	I	was	
sitting	with	my	friends	at	a	restaurant	and	we	had	been	waiting	too	long	to	be	served.	So	what	I	did,	
was	to	take	my	phone	out	of	the	pocket,	call	the	restaurant	and	place	my	order.	In	the	end,	when	
they	asked	me	where	to	deliver	the	food	I	told	them,	at	table	number	16.	From	that	day	on,	I	was	
thinking	how	easier	life	would	be,	if	everyone	of	us	could	order	from	something	almost	everyone	has;	
his	mobile	phone.		
	
Since	today,	I	haven’t	seen	any	restaurant	use	technology	like	that	to	help	with	customer’s	
satisfaction	and	the	restaurant’s	productivity.	I	strongly	believe	that	the	main	reason	of	that,	is	
because	small	restaurants	can’t	afford	a	system	like	that,	with	screens	to	all	tables	that	will	allow	
people	to	order	directly	from	them.	So	my	main	idea	here	was	to	build	a	cheap	“system”	for	ordering	
and	menu	displaying,	in	a	portable	device	that	almost	everyone	has,	like	mobile	phones.	That	would	
save	a	lot	of	money	from	restaurants	which	couldn’t	afford	expensive	systems	like	EPOS.	So	an	
application,	where	anyone	can	download	from	their	smart	phone	and	order	directly	from	it,	is	a	very	
revolutionary	and	low-budget	idea,	which	can	change	the	way	people	order	today.	It	is	as	if	almost	
everyone	has	a	Waiter	in	his	Pocket,	who	explains	to	them	the	menu	of	the	restaurant	and	informs	
them	of	the	price	of	each	item,	at	the	same	time.	
	
	
	
	

Acknowledgements	
	
	
I	would	like	to	thank	my	supervisor,	Dr	Martin	Chorley,	for	his	unwavering	support	throughout	this	
whole	project.	It	has	been	marvelous	to	have	guidance	from	someone	close	to	my	generation	who	
listened	to	my	concerns	and	problems	patiently	in	every	meeting	and	helped	me	calm	down	and	
overcome	some	stressful	situations	during	the	building	of	the	application.	His	help	has	contributed	
through	the	three	months	of	working	on	this	application.	
	
I	would	also	like	to	thank	my	parents	(Penelope	Antoniadou	and	Stamatis	Gkavalis)	for	their	financial	
and	emotional	support	during	my	whole	“Undergraduate	Career”	as	a	computer	scientist	in	Cardiff	
University.	
	
Also,	I	want	to	thank	Mr.	Iheanyi	Ibe	from	the	Cardiff	University	Enterprise	Centre	for	Skills,	for	his	
guidance	and	support	with	the	Santander	bank	awards	application.	
	
Lastly,	I	want	to	thank	all	of	my	friends	who	always	supported	me	and	evaluated	the	application	after	
the	final	implementation	and	they	gave	me	valuable	feedback	on	how	to	improve	it.		
	
	
	
	
	
	
	
	
	 	

	 5	

Table	of	Contents	

1	Introduction	..	8	
1.1	Outline	...	8	
1.2	SUMMARISED	POCKET	WAITER	APPLICATION	FUNCTIONS	..	9	

2	The	Background	and	Implementation	..	10	
2.1	Market	Research	..	10	
2.2	Background	Learning	and	Problems	..	12	
2.3	Application	Construction	&	Problems	..	14	

2.3.1	Cloud	Based	Service	...	18	
2.3.1.1	Introduction	..	18	
2.3.1.2	MySQL	Database	..	19	

2.3.2	Problems	&	Solutions	to	App	Functions	...	22	
2.3.2.1	Restaurant	Table	View	...	22	
2.3.2.2	QR	Code	Reader	...	28	
2.3.2.3	Restaurants	Nearby	..	31	
2.3.2.4	Share	Us	..	34	
2.3.2.5	Quizzy	...	36	

2.4	iOS	App	Development	Risks	...	40	
2.5	Competitors	...	42	

3	The	“Specification	&	Design”	...	44	
3.1	User	Interface	..	44	

3.1.1	Buttons	...	45	
3.1.2	App	Logo	...	45	

3.2	User	Requirements	..	46	
3.3	System	Design	..	47	

3.3.1	Table	View	..	47	
3.3.2	QR	Code	Scanner	..	49	
3.3.3	Restaurants	Nearby	..	50	
3.3.4	Share	Us	&	Quizzy	..	50	
3.3.5	Bug	Report	..	51	
3.3.6	About	Us	...	52	

3.4	Database	Design	...	52	
3.5	API	Details	&	Database	Components	...	54	

4	Results	&	Evaluation	...	55	
4.1	Testing	..	55	

4.1.1	Xcode	Simulator	VS	iOS	Device	Testing	..	56	
4.1.2	Differences	Between	Simulator	and	Device	Testing	..	57	
4.1.3	How	testing	is	Performed	...	57	
4.1.4	TestFlight,	the	Professional	way	of	App	testing	...	59	
4.1.5	Speed	And	Runtime	Testing	...	59	

4.2	SWOT	Analysis	...	59	
4.3	Products,	Services	and	Benefits	...	60	

4.3.1	Product	and	Services	..	60	
4.3.2	Benefits	..	61	

5	Future	Work	..	61	

6	Conclusions	...	62	

7	Reflection	and	Learning	...	62	

	 6	

8	Glossary	&	Referencing	..	64	
8.1	Glossary	..	64	
8.2	Referencing	..	65	

9	Appendix	..	70	
9.1	UI	Evaluations	Testing	..	70	
9.2	QR	Code	Scan	Example	..	74	
9.3	Business	Plan	..	75	

Table	of	Figures	

1. FIGURE	#	1.	THE	TIME	USERS	SPEND	ON	MOBILE	APPS.	...	11	
2. FIGURE	#	2.	SWIFTY,	AN	IOS	APP	WHICH	HELPS	YOU	PRACTICE	WITH	SWIFT		..	12	
3. FIGURE	#	3.	GENERAL	APP’S	XCODE	PAGE		..	14	
4. FIGURE	#	4.	PROJECT’S	STORYBOARD	WITH	A	BUTTON	ITEM	SELECTED		...	15	
5. FIGURE	#	5.	SWIFTY,	AN	IOS	APP	WHICH	HELPS	YOU	PRACTICE	WITH	SWIFT		..	16	
6. FIGURE	#	6.	OUTLET	CONNECTIONS	BETWEEN	STORYBOARD	&	CODE		...	16	
7. Figure	#	7.	Identity	Inspector	..	17	
8. FIGURE	#	8.	CONNECTION	INSPECTOR		..	17	
9. FIGURE	#	9.	BACKENDLESS	DATABASE	...	18	
10. FIGURE	#10,	PHP	SCRIPT	FOR	DATABASE	CONNECTION		...	19	
11. FIGURE	#11,	“GET”	REQUEST	FOR	THE	PHP	SCRIPT	FROM	THE	SERVER		..	20	
12. FIGURE	#12,	THE	MENU	ITEMS	BEFORE	THE	JSON	FORMAT		...	21	
13. FIGURE	#13,	THE	MENU	ITEMS	IN	JSON	FORMAT		...	21	
14. FIGURE	#14,	NSOBJECT	TYPE	DECLARATION		..	21	
15. FIGURE	#	15.	SCROLL	DOWN	MENU	–	COLOR	CHANGE	UPON	RESTAURANT	SELECTION		..	22	
16. FIGURE	#	16.	NSOBJECT	TYPES,	VERY	IMPORTANT	FOR	JSON		..	23	
17. FIGURE	#	17.	DYNAMIC	TABLE	CELL	FILLING		...	23	
18. FIGURE	#	18.	DYNAMIC	RESTAURANTS	TABLE		...	23	
19. FIGURE	#	19.	RESTAURANTS	TABLE		..	24	
20. FIGURE	#	20.	IPHONE	SETTINGS	MENU	TABLE		...	24	
21. FIGURE	#	21.	TABLES	STRUCTURE		..	25	
22. FIGURE	#	22.	TABLE	ROWS	AND	SECTIONS	DECLARATION		...	25	
23. FIGURE	#	23.	TABLE	DETAILS	IN	A	MORE	DYNAMIC	WAY		...	25	
24. FIGURE	#	24.	MENU	ITEMS	TYPE		...	26	
25. FIGURE	#	25.	NAVIGATION	BETWEEN	TABLES		...	26	
26. FIGURE	#	26.	IDENTITY	INSPECTOR		...	27	
27. FIGURE	#	27.	DETAILED	VIEW	OF	ITEMS		..	27	
28. FIGURE	#	28.	SCENE	DOCK		...	27	
29. FIGURE	#	29.	LINE	OF	CODE,	RESPONSIBLE	FOR	TABLE	REPETITION		...	28	
30. FIGURE	#	30.	IPHONE	CAMERA	OPENS	UPON	USER	PERMISSION		..	29	
31. FIGURE	#	31.	QR	CODE	READER	CLASS		...	29	
32. FIGURE	#	32.	THE	TWO	VERSIONS	OF	CODE-	THE	FIRST	IS	OUTDATED	..	30	
33. FIGURE	#	33.	CAPTURING	&	DECODING	OF	QR	CODE		...	30	
34. FIGURE	#	34.	YELLOW	QR	BOX	IDENTIFIER	SPECIFICATIONS		..	30	
35. FIGURE	#	35.	QR	READER,	WHEN	USER	SCANS	A	QR	CODE		...	31	
36. FIGURE	#	36.	MAP	KIT	VIEW		..	32	
37. FIGURE	#	37.	IMAPKIT	LOCATION	SETTINGS		..	32	
38. FIGURE	#	38.	ZOOM	AT	USER’S	CURRENT	LOCATION		..	33	
39. FIGURE	#39.	MAPPING	SPHERICAL	DATA	TO	FLAT	SURFACE		..	33	
40. FIGURE	#	40.	POSITIONING	THE	RED	PINS	ACCORDING	TO	RESTAURANTS	GEO-POSITION		..	34	
41. FIGURE	#	41.	‘PLAYROOM’	..	35	
42. FIGURE	#	42.	SHARE	TO	FACEBOOK	SERVICE		..	35	
43. FIGURE	#	43.	POCKET	WAITER	LOGO,	EMBEDDED	INSIDE	THE	APP	CODE		...	35	
44. FIGURE	#	44.	ADD	A	PREFIXED	MESSAGE	TO	‘SHARE	US’	FUNCTION		..	36	

	 7	

45. FIGURE	#	45.	THE	FIGURE	DECLARES	ALL	TYPES	OF	SERVICES	THAT	SOCIAL	FRAMEWORK	PROVIDES	36	
46. FIGURE	#	46.	QUIZZY	GAME	UI	INTERFACE		...	36	
47. FIGURE	#	47.	THE	QUIZZY	VIEW	CONTROLLER	AT	MY	STORYBOARD	...	37	
48. FIGURE	#	48.	PICK	QUESTIONS	FUNCTION		...	37	
49. FIGURE	#	49.	STRING	OF	QUESTIONS	&	ANSWERS		..	38	
50. FIGURE	#	50.	NSLOG	DEVELOPER	REPORTS		...	38	
51. FIGURE	#	51.	IAD	NETWORK	DIAGRAM		...	39	
52. FIGURE	#52.	APPLICATION	UPLOAD	TO	ITUNES	CONNECT	PROCEDURE	...	39	
53. FIGURE	#	53.	IAD	NETWORK	IMPLEMENTATION	GUIDE		...	40	
54. FIGURE	#	54.	IAD	BANNER	FUNCTIONS		...	40	
55. FIGURE	#	55.	MCDONALD’S	ORDERING	KIOSKS		..	42	
56. FIGURE	#	56.	DIFFERENT	SIZES	OF	POCKET	WAITER	LOGO		...	45	
57. FIGURE	#	57.	FIRST	LOGO	VS	THE	UPDATED	LOGO	...	46	
58. FIGURE	#	58.	APP	NAME	SPACE	DIFFERENCES		..	46	
59. FIGURE	#	59.	THE	RESTAURANTS-->THE	MENU	&	THE	DETAIL	VIEW		..	47	
60. FIGURE	#	60.	DYNAMIC	TABLE	IN	STORYBOARD	&	ON	DEVICE		...	48	
61. FIGURE	#	61.	EMAIL	FORM	WITH	RESTAURANT’S	EMAIL	PREFIXED		..	48	
62. FIGURE	#	62.	NO	INTERNET	CONNECTION	ALERT		...	49	
63. FIGURE	#	63.	ALGORITHM	FOR	REMOVING	THE	STATUS	BAR	FROM	AN	IOS	DEVICE		...	49	
64. FIGURE	#	64.	QR	CODE	READER	LOCATES	THE	QR	CODE		..	49	
65. FIGURE	#	65.	REQUESTS	AUTHORIZATION	FROM	USER,	FOR	HIS	LOCATION	MONITORING		...	50	
66. FIGURE	#	66.	BUG	FEEDBACK		..	51	
67. FIGURE	#	67.	ABOUT	US		..	52	
68. FIGURE	#68.	DATABASE	ERD	(ENTITY	RELATIONSHIP	DIAGRAM)	...	53	
69. FIGURE	#	69.	RESTAURANTS	TABLE		..	53	
70. FIGURE	#	70.	MENU	ITEMS	TABLE		...	53	
71. FIGURE	#	71.	UML	DIAGRAM	OF	THE	APP	COMPONENTS	&	INTERACTION	BETWEEN	THEM		...	54	
72. FIGURE	#	72.	TEST	CASE		..	56	
73. FIGURE	#	73.	APP	PERFORMANCE	WHILE	RUNNING	ON	THE	SIMULATOR		...	57	
74. FIGURE	#	74.	DIFFERENT	SIMULATORS	&	DEVICE		...	58	
75. FIGURE	#	75.	PROJECT’S	GENERAL	SETTINGS		...	58	

	
	 	

	 8	

1 Introduction

1.1 Outline

Applications	nowadays	have	“invaded”	people’s	lives	and	they	have	become	very	necessary.	If	you	
woke	up	on	time	this	morning,	it	was	thanks	to	the	alarm	app	on	your	smartphone.	Applications	
known	as	“Apps”,	are	programs	on	your	computer	or	your	smart	phone	that	allow	you	to	do	
something	and	make	people’s	lives	more	convenient.	For	example,	if	you	left	your	coffee	at	home	you	
don’t	have	to	worry.	A	mobile	app	like	Maps	will	determine	your	current	location	and	suggest	you	
espresso	bars	close	to	your	area.	Apps	are	about	productivity,	communication,	entertainment	and	
more.		

There	are	more	than	three	million	applications	out	there,	that	have	been	designed	to	help	people’s	
lives	but	also	make	them	addicted	to	technology.	My	Project	is	called	“Pocket	Waiter”.	I	built	it	in	
Xcode	on	a	Mac	system,	using	SWIFT	language	and	it	is	available	for	all	type	of	iOS	devices.	Swift	
language,	is	a	very	powerful	programming	language	for	all	kinds	of	apple	products,	which	is	
interactive,	expressive	and	the	most	important	is	that	with	that	language,	apps	run	lighting	fast.	
Basically	Swift	language	is	a	very	simple	combination	of	C	and	Objective-C	language	with	low-level	
primitives	like	operators	which	provides	developers	with	the	power	and	performance	they	demand	
for	their	project.		
	

Now,	my	project	Application	main	use,	is	to	let	people	order	and	view	their	food	menu,	when	they	sit	
at	a	restaurant,	directly	from	their	mobile	devices.	I	think	everyone	has	sat	at	a	restaurant	during	a	
busy	day,	waiting	for	hours	to	be	served.	‘Pocket	Waiter’	is	an	iOS	based	Mobile	Application	aimed	at	
the	restaurant	sector.	While	it	is	aimed	at	this	area,	emphasis	is	on	small	to	medium-	sized	
restaurants	with	limited	resources	and	budget	restrictions.	
	
This	application	will	provide	ordering	services	to	restaurants	at	an	affordable	or	minimal	cost.	The	
application	uses	email	services,	which	are	provided	for	free	from	providers	like	Google	or	Yahoo,	to	
process	orders.	In	that	way,	restaurant	owners	with	limited	funds	can	have	the	same	ordering	system	
standard	used	by	bigger	food	outlets	like	McDonald’s,	at	no	considerable	cost.	The	Pocket	Waiter	
Application	will	reduce	the	time	waiters	invest	in	‘waiting’	allowing	their	time	to	be	spent	on	other	
areas	and	improve	productivity.	
	
The	Application	will	be	very	beneficial	for	low-budget	restaurants,	because	it	is	designed	to	use	
systems	that	are	mostly	provided	for	free	to	the	society	and	will	be	available	to	restaurant	owners	at	
a	minimal/competitive	cost	compared	to	similar	existing	products.	It	will	allow	our	target	audience	to	
attract	more	customers,	more	business	and	invariably	get	more	revenue.		
	
My	mission	is	to	develop	an	affordable	and	efficient	product	to	help	our	users	operate	their	
businesses	in	a	more	competitive	way.	The	idea	for	the	product	came	from	personal	experience	and	
the	ongoing	acquisition	of	skills	and	knowledge	from	my	time	as	a	computer	scientist	at	Cardiff	
University.	However,	I	had	to	learn	the	Swift	language	and	get	familiar	with	the	Xcode	programming	
platform	from	scratch	and	without	any	academic	guidance,	so	as	to	be	able	and	create	this	iOS	
application.		
	
Pocket	Waiter,	will	load	all	the	restaurants	dynamically	from	a	server	and	upon	user	restaurant	
selection,	the	respectively	menu	will	appear.	After	costumer	decides	what	he	wants	to	order,	he	can	

	 9	

then	place	the	order	via	email.	The	procedure	of	placing	the	order	and	sending	it	to	the	kitchen	is	
designed	to	be	free	for	both.	After	the	user	sees	the	main	menu,	he	can	then	click	on	the	“waiter”	
icon-button	which	is	positioned	on	the	top	right	of	the	menu	of	each	restaurant	and	a	special	form	
will	come	up,	requesting	users	to	type	their	order	and	their	table	number.	In	the	form,	the	email	of	
the	company	is	prefixed.		
	

	
	

This	new	way	of	ordering,	is	meant	to	replace	in	the	future	the	already	expensive	EPOS	systems	which	
require	very	high	maintenance	fees	from	restaurant	owners.	There	are	applications	on	the	market	
who	offer	ordering	services,	but	yet	none	of	them	is	multifunctional	and	using	email	for	processing	
the	order.	The	reason	is	because	large	software	companies	promote	centralised	systems	on	the	
market	and	they	try	to	sell	as	much	equipment	as	possible,	like	PDA’s,	so	restaurant	holders	to	
depend	exclusively	on	them.	A	couple	lines	above,	I	used	the	term	multifunctional	because	apart	from	
an	ordering	system	it	provides	users	with	other	extra	features	like	Restaurants	nearby,	QR	reader,	
social	media	integration,	a	quiz	game	and	much	more,	so	the	user	to	has	everything	he	needs,	
“wrapped”	into	one	only	application.			
	
	

1.2 Summarised Pocket Waiter Application Functions

Restaurants

• It	loads	all	restaurants	directly	from	the	Database	(phpMyAdmin)	and	after	that	when	the	
restaurant	is	selected,	its	main	menu	pops	up	and	after	user	clicking	on	an	item,	it	gives	him	
more	details	about	the	item	he	selected.	This	function	requires	internet	connection.	Without	
internet	connection,	restaurants	and	items	cannot	be	loaded	and	an	error	message	is	
displayed,	informing	the	used	to	activate	his	mobile	data.	
	
QR Code Reader

• It	has	a	QR	Code	viewer	button.	When	user	touches	this	button,	the	iPhone	camera	loads	and	
reads	all	types	of	unlocked	QR	codes	and	displays	the	message	(i.e.	Table	number)	on	the	
screen	of	the	phone,	to	inform	the	user	about	the	table	number	he	is	sitting	at.	The	great	
thing	about	this	function	is	that	it	does	not	require	any	internet	connection.	
	
Restaurants Nearby

• Another	function	I	built	for	the	purpose	of	the	project	was	the	Restaurant	Nearby.	When	user	
selects	this	function,	a	map	pops	up	and	zooms	into	his	current	location.	Near	the	user	
location	it	shows	the	restaurants	that	operate	with	“Pocket	Waiter”	with	red	pins.	When	the	
user	taps	on	the	pin,	more	details	come	up	like	the	name	of	the	restaurant	and	its	address	

	 10	

Share Us
• Share	Us	on	Facebook,	is	another	function	which	allows	user	to	post	something	on	his	

Facebook	account.	This	function	is	designed	to	help	with	advertisement	of	Pocket	Waiter,	
because	each	post	a	user	will	make	will	be	followed	by	the	app	logo	which	is	embedded	into	
the	app.	The	user,	in	order	to	be	able	to	use	this	amazing	feature,	has	to	pre	enter	his	
Facebook	account	information	in	his	iPhone	settings.	After	that,	the	ID	and	the	password	will	
automatically	be	collected	from	the	application	and	it	will	allow	him	to	post.		
	
Quizzy Game

• Quizzy	is	a	small	game	that	I	created	for	users	who	are	bored	just	to	refresh	their	Facebook	or	
Twitter	page	again	and	again,	while	they	wait	for	their	food.	This	is	a	question	game,	asks	
questions	at	random	order	and	it	only	goes	to	the	next	question	if	the	user	has	previously	
answered	correctly.	Also,	this	is	a	great	opportunity,	for	the	maintenance	of	my	application.	
To	be	more	specific,	I	have	added	an	advert	banner	which	will	show	adverts	to	users	as	long	
as	the	internet	connection	is	enabled,	so	to	be	able	to	pay	for	the	server	maintenance	fees.	
	
Bug Report

• On	the	main	App	page,	on	the	top	left	corner	there	is	a	small	‘bug’	icon.	Obviously,	this	is	for	
users	to	report	to	me	any	bugs	or	problems	they	found	using	the	application.	When	user	
selects	“Report	a	bug”	it	opens	up	his	email	account	with	Pocket	Waiter	email	pre-entered	
and	allows	him	to	send	his	complaint	to	the	developers	of	the	Application	(in	the	current	
situation	to	my	personal	Cardiff	University	mail	account).	
	
About Us

• On	the	top	right	corner	of	the	application	there	is	an	info	button.	This	is	the	“About	Pocket	
Waiter”	page,	where	users	can	find	the	name	of	the	developer,	the	version	of	the	application	
and	some	general	information	about	the	developer.					
	

• To	sum	up,	I	was	trying	to	build	the	application	according	to	Apple	suggestions,	to	provide	
best	user	experience.	The	environment	of	an	application	is	not	in	command	line,	because	the	
user	is	not	necessarily	a	programmer.	So	I	had	to	connect,	the	back-end	with	the	front-end	of	
the	application	and	make	it	look	very	user	friendly,	in	order	to	provide	users	with	best	
experience.			

	
	

2 The Background and Implementation

2.1 Market Research

For	my	final	year	project,	I	wanted	to	create	something	that	was	really	missing	from	the	market.	
Something	that	will	“sail”	side	by	side	with	the	new	generation	requirements	and	provide	comfort	to	
low	budget	restaurants	and	bars.	I	was	always	wondering	why	there	is	not	any	App	like	“Just	Eat”,	in	
restaurants	and	instead	of	waiting	for	someone	to	explain	or	bring	the	menu	to	you,	to	have	it	directly	
from	your	mobile	device.	So	I	strongly	believe	that	an	application	like	the	one	I	have	created,	is	really	
missing	from	the	market.	The	concept	of	‘restaurant	Apps’	is	not	entirely	new.	Existing	‘restaurant	
Apps’	are	predominantly	used	to	explore	local	restaurants,	find	establishments	near	you,	view	menus	
and	order	takeaway	deliveries.	This	is	great	if	you	are	exploring	what	is	available	near	you.		
	

	 11	

Pocket	Waiter	is	ideal	if	you	already	know	which	restaurant	you	want	to	dine	at	or	your	favourite	
restaurant	and	also	combines	previous	technologies	which	I	mentioned	above	and	many	more,	like	
social	media	integration	or	a	quiz	game	and	apart	from	that,	it	is	designed	to	provide	ordering	
services,	mostly	for	free,	to	both,	customers	and	restaurant	owners.	I	focused	on	building	an	app	that	
will	easily	be	adopted	on	the	part	of	the	society	in	a	sector	that	is	constantly	evolving,	foodservices.		
	
According	to	the	UK	Restaurant	Market	Report	2014	published	by	Allegra	Foodservice,	it	was	
estimated	that	the	value	of	the	UK	restaurant	market	will	reach	£48.2	billion	in	2014	and	rise	to	£52	
billion	by	2017.	Branded	eateries	are	forecast	to	grow	by	6.5%	over	the	next	three	years	to	reach	a	
value	of	£17.6	billion	by	2017.	In	particular,	fast	food	outlet	sales	are	forecast	to	grow	by	12.4%	and	
numbers	of	outlets	are	expected	to	increase	by	7.6%	between	2013	and	2014,	with	McDonald's	and	
KFC	leading	the	growth.	The	report	also	revealed	that	the	most	active	consumers	in	the	restaurant	
sector	are	aged	18	to	24,	indicating	opportunities	for	restaurateurs	to	engage	better	with	older	
consumers	[0].	This	study	shows	that	the	sector	of	foodservices	is	evolving	and	that	the	most	active	
consumers	are	young	people,	something	which	will	facilitate	the	faster	adoption	of	my	application.	
Young	generations	always	like	changes	and	new	technological	innovations	which	will	help	them	in	
their	daily	lives.	
	
Furthermore,	according	to	a	2012	report	by	Deloitte	entitled	'Taste	of	the	Nation',	generational	
divisions	have	emerged	in	terms	of	the	frequency	with	which	individuals	go	out	to	eat	and	drink.	
Despite	financial	pressures	caused	by	the	economic	slump,	18	to	34-year-olds	are	driving	the	market	
by	eating	out	more	-	on	average	31	times	a	month,	up	from	25	times	a	month	in	2011.	This	is	nearly	
double	the	rate	among	35	to	54-year-olds	and	more	than	three	times	that	of	people	aged	55	and	
over,	who	eat	out	on	average	just	11	times	per	month	[55].	This	survey	clearly	shows	that	young	
people	are	responsible	for	the	growth	of	the	market,	and	my	app	targets	mostly	this	age	group.		

		
So	it	is	clear	that	my	“Pocket	Waiter”	application	could	be	adopted	quickly	because	we	can	observe	
that	nowadays	the	world	is	“connected”	via	mobile	devices	and	people	are	addicted	to	new	
applications.	A	research	shows	that	people	spend	the	85%	[1]	of	their	time	on	their	smartphone	using	
an	App	while	40%	of	them	have	already	placed	orders	online	via	their	mobiles.	Mobile	orders	can	
become	a	significant	percentage	of	restaurant	business.	
	
	

	

	
Figure	#	1.	The	time	Users	spend	on	Mobile	Apps.	

	
	
	

	

	 12	

2.2 Background Learning & Problems

Before	starting	searching	and	implementing	the	application,	I	had	to	contact	my	supervisor	to	my	
project	idea.	I	visited	Dr	Chorley,	I	explained	him	my	idea	and	we	agreed	on	that	project.	The	big	
problem	for	me	was	that	I	did	not	have	any	experience	with	application	development	and	I	did	not	
know	if	in	the	end	I	would	be	able	to	demonstrate	an	application.	I	had	to	choose	between	creating	
an	android	application	or	an	iOS	application.	I	had	read	a	statistic	analysis,	which	clearly	showed	that	
iOS	applications	are	more	popular	with	100bn	downloads	whereas	the	android	downloads	were	at	
about	1,600,000m	downloads	[2].	So	I	decided	to	develop	an	iOS	application,	despite	the	big	obstacle	
and	difficulty	of	learning	a	new	language,	Swift,	that	Apple	requires	for	iOS	application	development,	
within	a	very	limited	period	of	time.	An	android	application	maybe	would	be	easier	for	me,	because	
for	its	development,	I	had	to	use	a	language	that	I	had	been	taught	from	my	first	year	at	University,	
Java.				

	
Learning	a	new	language	by	yourself	is	not	an	easy	process	because	you	do	not	have	an	anchor	point	
to	start	and	it	is	much	more	difficult	when	time	is	pressing	you.	I	did	not	have	someone	who	is	an	
expert,	to	guide	me	through	the	correct	steps	of	learning	something	new	and	protecting	me	from	
useless	and	inaccurate	pieces	of	information	that	exist	on	the	internet.	The	language	I	needed	for	the	
development	of	this	project	is	called	SWIFT.	I	started	reading	and	learning	this	new	language	in	the	
same	way,	Cardiff	University	introduced	us	to	a	new	language	called	python,	via	its	official	book	that	
was	called	“Learn	Python	the	hard	way”.	So	I	downloaded	the	official	Apple	SwiftBook	[3]	and	started	
learning	a	couple	of	basic	variables	names	like	“var”	or	“let”,	some	basic	functions	like	print	“Hello	
World”	but	the	most	important	outcome	I	got	from	that	book,	was	that	If	someone	can	understand	
the	“Rules”	of	a	new	language,	then	it	is	much	easier	for	him	to	start	developing	small	apps	from	the	
beginning.	To	test	what	I	learned	from	the	SwiftBook,	I	downloaded	a	very	well	developed	application	
called	SWIFTY	(figure	#2).	That	application	asks	you	very	simple	questions	and	as	you	move	on,	it	
levels	up	and	gets	more	difficult.	It	really	helped	me	understand	the	basics	of	Swift	and	allowed	me	to	
go	deeper	into	that	language	and	start	building	a	more	complicated	code.		
	

	 	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure	#	2.	Swifty,	an	iOS	app	which	helps	you	practice	with	Swift.	

	

	 13	

	
	

Apart	from	the	Swift	language	had	to	learn,	in	order	to	start	building	an	application,	I	also	had	to	learn	
how	to	use	the	basic	app	developing	tool,	Xcode.	The	combination	of	Swift	language	and	Xcode	IDE	is	
the	“Rules”	I	have	mentioned	above	and	they	are	both	dependent	on	each	other	in	order	an	
application	to	be	built.	

	
After	installing	Xcode	on	my	Mac	computer,	I	checked	some	Apple’s	existing	projects	so	to	introduce	
myself	to	the	iOS	app	development,	but	the	truth	is	that	it	was	a	really	big	shock	for	me	at	first,	as	I	
had	no	idea	what	each	item	and	attribute,	at	Xcode,	meant.	Xcode	is	a	very	powerful	tool	but	you	
have	to	spend	a	great	amount	of	time	in	order	to	learn	and	understand	how	it	is	working.	So	in	order	
to	learn	the	basics	of	Xcode,	I	had	to	read	an	online	book	[4],	which	guided	me	to	make	my	very	first	
simple	steps.	The	great	difficulty	with	Xcode	and	Swift	is	that	they	are	both	continuously	updated	and	
most	of	the	things	I	read	on	that	book,	were	quite	outdated	and	most	of	them	did	not	work	properly.	
Apart	from	reading	that	book,	I	watched	many	online	videos	on	YouTube	on	how	to	make	your	first	
steps	with	Xcode	and	create	a	very	simple	application,	but	“YouTubers”	are	people	mostly	without	
any	teaching	experience	and	for	me	it	was	very	difficult	to	understand	how	they	got	from	one	step	to	
the	next	without	any	explanation.	What	I	did	was	to	visit	a	website	called	“Lynda.com”	where	I	found	
videos	galore	on	how	to	start	building	something	from	scratch,	like	a	simple	“Hello	World”	app.	That	
website	helped	me	create	2-3	very	small	and	not	so	useful	applications,	but	after	that	I	got	a	general	
idea	on	how	some	items	are	constructed	and	how	Xcode	“reacts”.		

	
After	making	a	concept	interface	on	a	paper	and	started	realising	how	Xcode	works,	I	made	my	first	UI	
Buttons.	I	had	to	use	Photoshop	in	order	to	make	buttons	look	nice.	That	is	another	factor	that	makes	
the	app	creation	more	challenging	than	making	a	program	running	via	a	terminal.	I	had	to	care	about	
the	front-end	in	order	to	make	it	user	friendly.	I	had	to	learn	about	fixing	all	the	constraints	of	the	
items	I	added	to	my	application,	in	order	to	fit	to	all	iOS	devices	and	also	follow	the	official	Apple	iOS	
Human	Interface	Guidelines	[5]	in	order,	this	application,	to	pass	Apple	Design	tests	and	get	permitted	
from	the	Apple’s	team,	to	be	uploaded	to	the	apple	store	and	be	available	for	download.	To	be	more	
specific,	at	first	I	had	created	a	very	basic	interface	with	a	simple	‘back’	button,	without	using	any	
navigation	bar	(Apple	Human	Interface	Guideline).	Obviously	because	of	my	lack	of	experience	with	
Xcode	IDE	and	Swift,	I	did	not	know	that	I	had	to	use	a	navigation	bar	to	“go	back”	instead	of	putting	a	
simple	“<	back”	button	on	the	top	left	corner	of	my	view	controller	of	the	application	and	connect	it	
manually	with	the	storyboard.	Without	a	navigation	bar,	my	application	would	not	meet	the	“Apple	
Standards”	so	Apple	would	not	allow	me	to	publish	it	on	the	App	Store.	

	
Another	problem	which	I	have	listed	above	and	I	had	to	overcome,	was	the	constraints	of	some	of	my	
buttons.	After	placing	the	buttons	to	my	storyboard	and	running	the	app,	all	the	buttons	lost	their	
position.	I	found	some	guidance	online	on	how	to	fix	the	constraints	but	it	was	quite	confusing	on	the	
Xcode	platform.	Xcode	does	not	give	you	the	mobile	device	real	size	interface	in	order	just	to	place	all	
the	buttons	you	want	at	the	position	you	want.	It	gives	you	a	square	interface,	and	we	all	know	that	
there	is	no	iOS	device	(iPhone)	with	a	square	screen,	and	for	each	button	individually,	I	had	to	add	
their	vertical	and	horizontal	position	manually.		

	
What	constraints	do	is	to	describe	positioning	relationships	between	buttons	and	the	view	controller.	
After	getting	a	feeling	of	how	to	build	and	design	an	iOS	application,	I	created	a	new	project	in	order	
to	start	building	my	Final	Year	Project	application.	With	iOS	development	I	ended	up	with	more	

	 14	

questions	than	when	we	agreed	with	my	supervisor	to	take	this	application	construction	as	my	final	
year	project.	

	
		

2.3 Application Construction & Problems

After	a	few	small	app	samples,	I	started	creating	my	Application	for	the	project.	Xcode	asked	me	to	
provide	a	bundle	Identifier	and	select	a	team.	After	some	research	I	did	online	[6]	about	the	meaning	
of	them,	I	found	out	that	I	should	have	an	Apple	developer	account	and	a	certificate	in	order	to	be	
able	to	run	the	application	on	my	phone	and	upload	it	to	the	app	store.	Thankfully,	Cardiff	University	
gave	me	an	account	so	I	was	able	to	proceed	with	my	project	without	having	to	pay	79	pounds,	for	
the	Apple	developer	account.	So	for	the	bundle	identifier,	I	had	to	add	a	personal	ID,	in	order	my	app	
to	be	unique	and	for	the	“team”	I	added	the	Cardiff	University	certificate,	in	order	to	be	able	to	install	
the	application	to	my	iPhone	and	also	make	it	available	to	the	app	store.	(figure	#3)	
	

	
Figure	#	3.	General	App’s	Xcode	Page.	

	
As	I	mentioned	a	couple	of	times	before,	constraints	were	a	big	headache	for	someone	like	me,	with	
no	previous	background	in	Xcode.	When	I	was	trying	to	make	my	application	look	similar	to	my	
handmade	design	mock-ups,	I	faced	a	problem	of	the	positioning	of	the	buttons.	There	were	some	
errors	in	the	button	constraints,	that	prevented	my	application	from	running	and	giving	me	an	error	
message	in	the	app	delegate.	The	error	did	not	mention	where	the	problem	was	and	it	was	just	taking	
me	back	to	the	app	delegate	of	my	application	every	time	I	was	running	it.	The	app	delegate	is	the	
application	delegate.	It	is	a	helper	object	that	takes	responsibility	for	everything	that	happens	to	the	
application	while	is	running	and	also	it	is	normally	used	to	perform	tasks	on	application	start-up	and	
shutdown.	Think	of	the	app	delegate	representing	the	app	and	the	view	controller	representing	each	
individual	screen.	So,	after	a	lot	of	experimentation	with	my	application,	by	running	it	again	and	again,	
I	found,	that	the	missing	constraints	were	the	reason	why	my	application	was	not	running.	What	I	did	
was	to	disable	the	automatic	constraints	option	and	add	them	by	myself,	manually.	
I	think	Apple	should	make	the	Xcode	IDE,	more	helpful	to	programmers	with	less	experience	and	
provide	better	guidance	with	errors,	instead	of	giving	them	a	single	“There	is	somewhere	an	error	we	
can’t	define”,	message.	For	me,	these	types	of	errors	were	very	annoying	and	time	consuming,	
because	I	had	to	go	over	my	code	many	times	in	order	to	identify	and	fix	them.	After	that,	I	wanted	to	
follow	my	mock-ups	and	make	my	first	list	of	restaurants	in	order	to	move	on	with	my	application.	At	
first,	I	wanted	the	restaurants	to	be	shown	as	a	scroll	down	menu	and	change	colour	upon	user	
selection	using	Picker	View.	I	tried	to	make	it	in	my	main	application	but	something	was	not	working	

	 15	

and	my	whole	code	was	messed	up.	To	overcome	that	problem,	I	decided	for	everything	new	I	
wanted	to	implement,	I	would	make	it	in	a	separate	app	and	if	it	was	working	properly,	then	I	would	
transfer	it	to	my	main	app.	That	move,	saved	me	a	lot	of	time,	because	every	time	something	was	not	
working,	I	could	fix	it	separately,	without	messing	up	my	whole	application.	After	a	conversation	with	
my	supervisor,	he	suggested	to	me	that	the	restaurants	have	to	be	connected	to	a	database	and	
loaded	directly	from	the	server,	otherwise,	every	time	I	wanted	to	add	a	restaurant	I	had	to	release	an	
update	to	the	App	store.	Something	that	would	be	very	annoying	to	customers	who	have	downloaded	
and	were	using	the	app.	The	problem	here	for	me	was	obvious,	how	to	connect	my	application	to	a	
database.	I	did	research	[7]	on	that	and	I	found	out	that	I	firstly	had	to	create	tables	to	my	application,	
so	in	the	future,	to	be	able	to	connect	it	with	a	server	and	load	data	dynamically	from	it.	Therefore,	I	
had	to	convert	the	scroll	down	menu,	into	a	table.	At	first,	I	used	static	cells	because	that	was	what	I	
read	from	apple	Xcode	tutorial	page	[7].	To	be	more	specific,	for	each	restaurant,	I	added	a	cell	into	
the	table	manually	and	to	each	cell	I	added	the	name	and	a	photo	of	the	restaurant,	again	manually.	It	
was	working	and	it	looked	quite	nice,	but	afterwards,	it	would	be	impossible	for	me	to	connect	it	to	a	
database	and	load	data	from	the	server	but	that	was	the	anchor	point	for	me,	to	start	creating	
something.	Afterwards,	I	transformed	my	static	table	cells	into	dynamic,	in	order	later	to	be	able	to	
make	them	load	from	a	server’s	database.	Before	talking	about	the	tables,	I	want	first	to	explain	how	I	
used	the	Xcode	object	library	in	order	to	be	able	to	add	buttons,	labels	and	images	to	the	application.	

	
Xcode	provides	you	with	a	library	which	allows	developers	to	create	items	like	buttons,	faster.	The	
object	library	which	is	positioned	in	the	lower-right	corner	of	the	workspace	window	in	the	utilities	
area,	contains	the	visual	and	auditory	elements	which	you	build	your	application’s	user	interface.		

	
	
	

	
Figure	#	4.	Project’s	Storyboard	with	a	button	item	selected.	

	
After	adding	some	elements	from	the	object	library	like	“Image	View”	or	“Label”	to	my	app’s	
storyboard,	I	had	to	connect	them	to	the	appropriate	piece	of	code	from	my	project	so	to	respond	
upon	user	request.	The	code	communicates	with	the	user	interface	objects	via	Action	and	Outlet	
connections	[8].	When	we	need	to	send	a	message	from	a	control	to	our	code,	we	first	need	to	create	
an	Action	connection.	A	control	is	an	object	of	the	user	interface	that	makes	instant	actions	when	
user	uses	the	object.	For	example,	when	a	user	touches	a	button,	the	button	sends	an	action	message	
to	the	code	in	order	to	execute	the	proper	action.	The	easiest	way	a	developer	can	create	a	
connection	between	a	control	(i.e.	button)	and	the	code,	is	by	Control-dragging	(figure	#5)	the	
control,	which	is	at	our	storyboard,	to	the	object’s	implementation	file	(code).	

	

	 16	

	

	
Figure	#	5.	Swifty,	an	iOS	app	which	helps	you	practice	with	Swift.	

	
On	the	other	hand,	if	we	need	to	send	a	message	from	our	code	to	a	user	interface	object,	we	need	
to	create	an	Outlet	connection.	(figure	#6)	

	

	
Figure	#	6.	Outlet	Connections	between	storyboard	&	code.	

	
	

A	small	problem	I	encountered	with	Action	and	Outlet	connections	was	that	when	I	added	to	my	
project	more	View	Controllers,	Xcode	could	not	recognize	how	to	match	the	view	controllers	from	the	
storyboard	with	the	correct	code	files.	So	it	did	not	allow	me	to	connect	anything	in	the	beginning	
when	I	added	more	than	one	view	controller	file.	The	problem	with	a	situation	like	this	is	that	you	
only	learn	these	small	details	only	by	experimenting	with	the	construction	of	your	app.	No	one	online	
who	is	not	a	teacher,	will	explain	these	small	details	to	you,	because	they	obviously	lack	of	teaching	
experience	and	they	also	take	for	granted	that	beginners	in	Xcode,	like	me,	should	know	these	steps.	
After	experimenting	with	my	project,	I	found	out	that	if	you	click	at	the	view	controller	you	want	to	

	 17	

connect	the	code	with,	on	the	top-right	corner	there	is	a	small	square	attribute	called	“show	the	
identity	inspector”,	which	allows	you	to	select	a	class	(figure	#7),	meaning	the	file	you	want	to	
connect	with	your	controller’s	object.	After	selecting	a	class,	Xcode	allows	you	to	connect	your	
objects	with	Action	or	Outlet	connections.		

	

	
Figure	#	7.	Identity	Inspector.	

	
Now,	if	you	have	done	a	wrong	connection	you	can	change	it	by	Right-Clicking	at	the	controller’s	
object	(figure	#8)	and	click	the	X	to	the	left	of	the	connection	name	in	order	to	remove	the	
connection.	

	
	

	
																																																																															Figure	#	8.	Connection	Inspector.	

	
	
	
	
	
	
	
	

	 18	

2.3.1 Cloud Based Service

2.3.1.1 Introduction

After	fixing	some	small	problems	I	had	with	the	constraints,	object	connections	and	cell	design,	I	
started	searching	for	a	backend	service	to	host	my	application,	in	order	to	reach	my	project	
requirements.	I	had	read	that	there	was	an	amazing	backend	service	called	Parse	that	was	very	fast	
and	the	installation	was	quite	straightforward.	It	is	a	Backend	as	a	service	[9],	which	was	acquired	by	
Facebook	in	2013.	Parse	allowed	app	developers	to	focus	more	to	the	frontend	and	enrich	user	
experience,	as	the	backend	was	taken	care	by	the	BaaS	provider.	Unfortunately,	Parse	announced	
that	it	was	closing	and	new	users	like	me,	did	not	have	the	opportunity	to	create	a	new	account.	
Parse	suggested	users	should	go	and	create	an	account	to	a	cloud	based	system	called	backendless.	
So	I	created	an	account	there	and	filled	my	tables	but	the	big	drawback	with	that	service	was	that	
they	weren’t	any	tutorials	on	how	to	connect	using	Swift	language.	Also,	for	the	connection	with	this	
backend	service,	I	found	out	that	I	had	to	code	in	objective-c	in	order	to	be	able	to	connect	it	with	
that	server.	My	whole	project	was	based	in	Swift	language	so	I	could	not	use	even	that	service	as	a	
backend	for	my	application.	A	couple	of	weeks	before	the	deadline,	after	having	the	biggest	part	of	
my	application	working,	I	started	searching	for	a	database	to	store	all	my	data	and	make	them	load	
dynamically	to	my	application	and	finally,	I	successfully	achieved	to	store	and	retrieve	data	to	my	
application	dynamically,	from	MySQL	server	via	phpMyAdmin.		

	

	
Figure	#	9.	Backendless	Database.	

	
	
	
	
	
	
	
	
	

	 19	

2.3.1.2 MySQL Database

Background	&	Implementation	
	
The	connection	of	the	application	to	load	dynamically	all	the	data	from	an	online	server,	was	by	far	
one	of	the	most	difficult	parts	of	my	project.	For	that	reason,	I	left	it	for	the	end.	Before	that	I	have	
converted	all	the	tables,	from	static,	to	load	data	dynamically	from	a	file,	within	my	Xcode	project.	In	
that	way	it	would	be	much	easier	for	me	to	connect	it	afterwards,	with	the	server.	
	
The	reason	why	I	selected	phpMyAdmin	for	the	MySQL	database	connection,	is	because	Cardiff	
university	had	already	provided	me	with	a	MySQL	account,	from	the	first	year	of	my	degree.	Just	to	
specify,	phpMyAdmin,	is	an	open	source	tool	written	in	PHP	and	its	purpose	is	to	take	control	of	the	
administration	of	MySQL.	Via	phpMyAdmin,	programmers	can	create,	delete,	update	database	tables	
or	rows.	
	
First	and	foremost,	I	created	two	tables,	one	for	the	restaurants	and	one	for	the	menu	items	and	
afterwards	I	filled	them	with	data.	I	found	guidance	from	an	online	source	[48],	which	helped	me	with	
the	filling	of	the	database	tables.		
	
After	the	successfully	filling	of	the	database,	I	had	to	create	a	php	script	so	my	application	to	be	able	
to	connect	with	the	database	and	load	the	data	dynamically.	This	php	script	includes	the	server	login	
details,	so	the	app	to	get	the	right	permission	for	accessing	the	database	and	also	what	type	of	data	
to	“GET”	from	the	database.	This	script	contains	credentials	for	database	connection	and	queries.	
	
<?php
$servername = "csmysql.cs.cf.ac.uk"; //Cardiff University Server
$username = "c1332970";//My academic student number as server username
$password = "Thanasis2016";//Server password. Different from my university password
$database = "c1332970";

 try
 {
 $conn = new PDO("mysql:host=$servername;dbname=$database", $username, $password);
 // set the PDO error mode to exception
 $conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $restaurants = array();
 // get all restaurants
 $sth = $conn->prepare('SELECT * FROM Restaurant');
 $sth->execute();
 $result = $sth->fetchAll();

 // loop through restaurants
 // get menu items for each restaurant and add to restaurant array
 // add the restaurant array to restaurants array
 // r_id is very important, connects two tables, restaurants with menu items.
 foreach ($result as $row) {
 $sth2 = $conn->prepare('SELECT * FROM MenuItem WHERE r_id = ' . $row["r_id"]);
 $sth2->execute();
 $result2 = $sth2->fetchAll();
 $row['MenuItems'] = $result2;
 array_push($restaurants, $row);
 }

 echo json_encode($restaurants);
 }
 catch(PDOException $e)
 {
 echo "Connection failed: " . $e->getMessage();
 }
// close the connection - important!
$conn = null;
?>		

Figure	#10,	PHP	script	for	database	connection.	

	

	 20	

As	I	previously	stated,	before	we	can	gain	access	to	data	from	MySQL	database,	we	need	firstly	to	be	
able	to	connect	with	the	server	and	this	can	be	performed	only	via	the	php	script	I	have	created	
(figure	#10).	This	php	script	is	a	PDO	(PHP	Data	Objects).	PDO,	is	a	database	access	layer	which	
provides	a	uniform	interface	for	accessing	multiple	databases.	In	the	design	section,	I	explain	the	
reason	why	I	preferred	a	PDO	over	MySQL	and	MySQLi,	as	database	accessing	layer.	For	the	creation	
of	this	php	script,	my	main	and	most	accurate	guide	was	the	W3schools.com	website	at	the	php	
section,	under	the	PDO	example	[49].		
	
The	script	from	the	figure	#10,	was	written	in	php	language.	The	language	I	use	for	my	project,	is	Swift	
and	obviously	I	couldn’t	simply	copy	and	paste	that	php	script	inside	my	application	code.	In	order	to	
be	able	and	make	my	app	read	this	script	file,	I	uploaded	the	php	file	to	an	online	server	and	
afterwards	I	used	a	“GET”	request	within	my	main	code	to	allow	my	application,	read	the	php	script.	
This	file	basically,	is	the	connector	between	the	app	and	the	database.	
	
	
Alamofire.request(.GET, "http://users.cs.cf.ac.uk/A.Gkavalis/waiter/").responseJSON {
 response in switch response.result {
 case .Success(let data):
 let json = JSON(data)

Figure	#11,	“GET”	request	for	the	PHP	script	from	the	server.	
	

For	the	hosting	of	the	php	script,	I	used	the	Cardiff’s	University	servers.	In	order	to	upload	the	php	file	
to	the	university	servers,	I	used	the	WinSCP	program,	on	a	windows	computer.	WinSCP	is	an	open	
source	FTP	client	which	allows	you	to	transfer	files	securely	between	a	local	(University	Server)	and	a	
remote	computer	(my	computer).	I	have	previously	used	that	FTP	client	in	my	first	year	in	university	
but	I	had	to	refresh	my	memory	for	the	installation	and	the	access	gaining.	Fortunately,	Cardiff	
University	had	provided	us	with	the	right	guidance	on	how	to	gain	access	to	school’s	servers	remotely	
and	also	it	has	a	fully	documented	website	about	accessing	files	remotely	[50].	
	
The	PDO	file	I	needed	for	the	database	and	the	app	connection,	is	now	available	online	and	can	be	
found	in	the	above	URL.	(http://users.cs.cf.ac.uk/A.Gkavalis/waiter/).	The	big	challenge	for	me	
now,	was	to	search	and	find	a	way	on	how	to	make	my	code	to	access	the	php	file	from	that	URL.	
Luckily,	after	very	intense	searching	on	the	web,	I	found	the	fastest,	newest	and	the	only	library,	
written	in	Swift	language,	which	allowed	my	code	to	read	the	php	file	over	the	URL.	This	library	is	
called	Alamofire.	It	is	basically	an	HTTP	networking	library	written	in	Swift.	Xcode	don’t	provide	
developers	with	this	library,	so	in	order	to	be	able	to	import	it	to	my	code,	I	firstly	downloaded	the	
Alamofire	library	from	the	official	creator’s	GitHub	account	[51]	and	afterwards	I	dragged	and	
dropped	it	to	my	main	project.	The	problem	with	the	Alamofire	when	I	was	trying	to	install	it	to	my	
project,	was	that	in	required	from	me	to	update	my	Xcode	version	and	because	I	was	running	out	of	
time	I	didn’t	want	the	last	fifteen	days	before	my	project	submission,	an	IDE	update,	to	bring	new	
bugs	to	my	application.	The	Xcode	update,	fifteen	days	before	the	deadline,	was	a	giant	risk	for	me,	
but	it	was	the	only	way	that	I	could	make	Alamofire	work.	Fortunately,	after	the	update	I	only	had	
only	a	couple	of	alerts,	which	I	fixed	them,	without	any	bugs.				
	
Last	but	not	least,	the	app	couldn’t	read	the	database	as	it	was.	It	had	to	be	in	JSON	form.	JSON	
stands	for	JavaScript	Object	Notation	and	it	is	a	syntax	for	storing	and	exchanging	data.	In	order	to	
parse	JSON	I	had	to	use	SwiftyJSON.	SwiftyJSON	is	a	very	simple	parsing	library,	which	gives	a	better	
and	clearer	syntax,	than	the	build-in	Xcode	libraries.	I	downloaded	the	SwiftyJSON.	Swift	file	from	the	
creator’s	GitHub	Account	[52]	and	I	dragged	and	dropped	it,	into	my	Xcode	app	project.	
	
In	order	the	data	to	start	loading	dynamically	from	the	server	to	my	application,	I	had	to	make	some	
changes	within	my	RestaurantViewController.swift	file.	I	converted	my	previous	dynamic	table		

	 21	

(figure	#12)	into	a	JSON	form	(figure	#13),	so	my	application	to	be	able	and	communicate	with	the	
server	for	“Getting”	the	appropriate	request	results.	
	
let trattoria = Restaurant();

 trattoria.name = "Trattoria"
 trattoria.image = UIImage(named:"trattoria.jpg");
 trattoria.imageName = "trattoria.jpg";
 trattoria.menuItems = ["Chicken","Chips"];
 trattoria.itemPrice = ["8,50 £","2.99 £"];
 trattoria.itemImage = ["chicken.jpg","chips.png"];	

Figure	#12,	the	menu	items	before	the	JSON	format.	

	 	
menuItem.descript = json[inc!]["MenuItems"][i!]["descript"].stringValue
 menuItem.title = json[inc!]["MenuItems"][i!]["title"].stringValue
 menuItem.imageUrl = json[inc!]["MenuItems"][i!]["imageUrl"].stringValue
 menuItem.price = Float(json[inc!]["MenuItems"][i!]["price"].stringValue)

Figure	#13,	the	menu	items	in	JSON	format.	

	
Swift	is	a	very	strict	language	with	the	data	types,	so	before	converting	the	NSObject	class	objects	into	
JSON	in	swift,	I	had	first	to	declare	each	data	type	within	the	Restaurant.swift	file,	located	inside	the	
“Models”	folder	in	my	Xcode	project.	

class Restaurant: NSObject {
var id: String = ""

var name: String = ""
var image: UIImage?

var imageName: String?
var MenuItems: [MenuItem] = [MenuItem]()

}	
Figure	#14,	NSObject	type	declaration.	

	

	
Languages	I	Used:	

• Swift	
• PHP	
• JSON	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	 22	

2.3.2 Problems & Solutions to App functions

2.3.2.1 Restaurant Table View

As	I	said	in	my	introduction	page,	creating	a	list	of	restaurants	was	quite	challenging	for	me.	At	first	I	
entered	to	my	application	a	couple	restaurants	manually	in	form	of	simple	names	in	order	to	create	
something	to	look	like	table	cells	and	upon	selection	I	made	them	change	colour	(figure	#15).	

	

	
	

Figure	#	15.	Scroll	Down	menu	–	color	change	upon	restaurant	selection.	

	
When	I	made	my	first	attempt,	it	looked	quite	nice	but	I	was	sure	that	afterwards	it	would	be	
impossible	for	me	to	connect	it	with	a	database,	because	it	was	completely	static	and	all	the	
restaurant	names	were	inserted	manually	by	myself.	By	looking	at	another	application	for	online	food	
ordering,	which	is	called	“Just	Eat”	I	found	out	that	that	application	used	tables	with	cells	in	order	
their	items	to	be	displayed.	After	that,	I	started	searching,	from	online	resources,	how	to	create	
tables.	Again,	Apple’s	official	developer	help	website	[10],	helped	me	understand	how	tables	work,	
how	to	display	data	into	table	cells	and	how	to	pass	data	from	one	table	to	another.	But	theory	is	
always	easier	than	actually	developing	and	building	it.	I	wanted	to	give	another	form	to	my	
restaurants,	in	order	the	display	to	look	more	professional.	So	I	went	to	my	main	storyboard,	I	deleted	
my	previous	version	of	the	restaurants	list	and	I	dragged	and	dropped	a	table	view	controller,	to	my	
main	view	controller.	Afterwards,	I	entered	manually	again	from	the	object	library	a	couple	of	table	
view	cells	into	my	table	view	controller	and	I	added	a	label	and	an	image	for	each	restaurant.	It	looked	
more	professional	now,	but	I	had	to	find	a	more	dynamic	way	to	display	my	restaurants	for	future	
data	retrieval	from	a	database.	As	I	have	mentioned	before,	YouTube	is	not	the	best	tool	for	a	
“rookie”	developer,	because	people	there	help	you	build	something	with	Xcode	and	they	take	some	
simple	steps	for	granted	by	assuming	that	you	know	them.	After	subscribing	to	Lynda.com	I	found	a	
very	helpful	video	[11]	that	helped	me	find	out	how	to	make	my	table	view	cells	more	dynamic.	What	
I	did	was	to	create	a	new	view	controller	for	restaurants	and	I	added	on	it,	a	single	table	view	with	a	
single	image	view	(an	item	from	object	library	to	display	images)	and	a	Label.	After	that,	I	had	to	
connect	these	two	items	with	my	code.	I	created	a	new	file	that	I	named	it	CustomCell.swift	and	I	did	
all	my	Outlet	connections	there,	one	for	the	image	view	and	one	for	the	label.	After	that,	I	created	
another	file	with	an	NSObject	class.	With	an	NSObject	class	(figure	#16)	you	can	specify	the	type	of	

	 23	

your	object.	In	my	case,	the	name	of	the	restaurant	is	specified	it	as	a	String	and	the	image	as	a	
UIImage.	

	
import Foundation
import UIKit

class Restaurant: NSObject {
var id: String = ""
var name: String = ""
var image: UIImage?
var imageName: String?
var MenuItems: [MenuItem] = [MenuItem]()
}

Figure	#	16.	NSObject	Types,	very	important	for	JSON.

The	procedure	of	converting	something	static	into	something	more	dynamic,	in	order	in	the	future	to	
allow	me	to	connect	the	app	with	a	server	was	very	challenging.	Later,	I	had	to	fill	the	cells	with	
images	and	labels.	At	that	point,	I	created	my	main	RestaurantViewController.swift	and	I	started	filling	
my	empty	cells	dynamic	(figure	#17).	

	
Figure	#	17.	Dynamic	table	cell	filling	(code	has	been	commented	out	in	my	code).	

	
I	cannot	say	that	now	my	table	is	absolutely	dynamic,	because	all	the	details	had	to	be	entered	by	me	
manually	again,	but	in	my	storyboard	now	I	had	only	one	table	view	controller	with	only	one	image	
and	only	one	label	(figure	#18),	where	they	were	both	filled	dynamically	from	another	file	I	had	for	
details	(the	file	above).	It	was	something	like	having	a	server	embedded	to	my	code.	

	

		 	
	

Figure	#	18.	Dynamic	restaurants	table.	

	
After	creating	the	list	of	restaurants	to	look	like	a	table,	I	faced	a	small	problem	with	my	images.	They	
were	not	displayed	and	I	was	not	sure	for	the	reason.	After	some	research	[12]	I	found	out	that	the	
images	had	to	be	stored	inside	the	Xcode	project	in	a	specific	file	called	“Assets.xcassets”.	What	this	
file	does,	is	to	resize	all	the	images	in	order	to	fit	to	table	cells	and	avoid	having	problems	with	the	
constraints.	After	fixing	this	small	bug,	my	first	table	was	working	absolutely	fine	and	started	looking	
more	professional	(figure	#19).	I	also	added	some	arrows	in	the	end	called	“Disclosure	Indicator”	in	
order	to	inform	the	user	that	there	is	another	page	after	clicking	on	a	restaurant.	

	 24	

	
Figure	#	19.	Restaurants	table.	

	

	
Before	moving	on	to	my	second	table	view	and	explaining	how	I	reached	the	point	to	pass	data	
between	the	two	tables,	I	wanted	first	to	explain	a	little	more	about	my	first	table	view	and	give	some	
more	information	about	it	and	why	table	views	are	so	important	to	iOS	development.	

	
If	you	have	used	an	iOS	device	like	iPhone	or	iPad,	for	more	than	10	minutes	you	have	already	used	
table	views.	These	are	one	of	the	most	usual	iOS	interface	options	for	both	third	party	developers	and	
Apple’s	own	applications.	Whenever	you	see	numerous	rows	of	data	being	presented	like	this,	is	
almost	always	a	table	view.	A	great	example	for	my	assumption	is	the	main	settings	app	(figure	#20)	
of	all	iOS	devices.	It	uses	grouping	rows	into	different	sections	and	in	each	row	there	is	a	different	
control,	where	when	a	user	clicks	it,	it	takes	him	to	another	view	controller.	

	
	

	
	
	
	
	
	
	
	
	
	
	

	
																															Figure	#	20.	iPhone	Settings	Menu	Table.	

	
Also	the	mail	application	or	the	music	application,	uses	table	views,	in	order	to	display	the	data	like	
mail	or	songs	in	the	form	of	cells,	which	provides	a	better	user	experience.	Table	views	are	one	
column	wide.	They	do	not	store	data	and	that	is	very	important!	Table	views	only	show	data	that	is	
stored	somewhere	else	like	an	array	or	property	list.	So	here,	I	had	to	understand	this	big	difference	
between	a	table	view	and	a	database	table.	Now,	each	piece	of	data	that	is	displayed	in	a	table	view	is	
considered	to	be	one	row	and	each	row	contains	precisely	only	one	cell.	In	my	app,	in	my	first	table	
view	with	restaurants,	I	have	three	rows	and	each	cell	has	an	image	and	a	label.	In	order	to	be	able	to	
display	images	dynamically	and	data	to	my	table	view	controller,	I	had	to	hook	it	up	to	a	data	source.	

	

	 25	

	
Figure	#	21.	Tables	Structure.	

	
Now	for	the	data	source,	we	should	have	an	object	defined	as	a	data	source	for	this	table	view	and	
that	data	source	needs	to	provide	methods	that	will	say	at	its	most	basic,	how	many	sections	the	
table	has	and	in	each	section	how	many	rows	exist.	We	can	hard-code	these	commands	or	when	we	
create	a	new	view	controller,	Xcode	gives	us	the	opportunity	to	select	its	property	from	the	beginning	
i.e.	tableViewController.swift	and	Xcode	will	create	a	file	for	us	with	some	basic	and	mandatory	
functions	we	have	to	fill	in	order	to	create	a	table	view.		
	
The	following	two	lines	of	code,	give	the	program	to	understand	how	many	sections	and	how	many	
rows	we	want	to	our	our	table	to	have.	In	the	second	function,	which	refers	to	the	number	of	rows	of	
the	table	(figure	#22),	I	could	have	typed	“return	3”	like	the	number	of	restaurants,	but	in	the	future	if	
I	wanted	to	connect	it	to	a	database,	every	time	I	wanted	to	add	a	restaurant	I	had	to	go	back	here	
and	increment	the	number	of	rows	in	order	my	new	restaurant	to	be	displayed.		
	
override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return 1
 }
 override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return restaurants.count
 }	

Figure	#	22.	Table	rows	and	sections	declaration.	
	
By	returning	myrestaurants.count,	every	time	I	want	a	new	restaurant	to	be	added,	the	only	thing	I	
have	to	do	is	to	fill	my	RestaurantViewController.swift,	with	a	restaurant’s	details	(figure	#23).	
	
trattoria.name = "Trattoria"
 trattoria.image = UIImage(named:"trattoria.jpg");
 trattoria.imageName = "trattoria.jpg";
 trattoria.menuItems = ["Chicken","Chips"];
 trattoria.itemPrice = ["8,50 £","2.99 £"];
 trattoria.itemImage = ["chicken.jpg","chips.png"];

 myrestaurants.append(trattoria)	

Figure	#	23.	Table	details	in	a	more	dynamic	way.	
	

For	my	second	table,	I	used	the	same	tactic.	Again	I	have	created	another	view	controlled	and	I	have	
control-dragged	from	the	object	library	another	table	view,	in	order	the	menu	to	start	displaying	
items	for	each	restaurant	respectively.	I	have	connected	the	table	the	same	way	as	before	with	Outlet	
connections	in	order	to	interact	with	my	code.	After	that,	I	created	another	file	with	objects	
(NSObject)	(figure	#24)	and	I	defined	each	type	of	the	items.	
	
	
	
	

	 26	

	
import Foundation

class MenuItem: NSObject {
 var title: String?
 var descript: String?
 var imageUrl: String?
 var price: Float?
}	

Figure	#	24.	Menu	items	type.	
	
With	that	table	view	I	faced	three	problems	and	the	two	of	them,	took	me	a	huge	amount	of	time	to	
solve	them.		
	
Firstly,	I	could	not	pass	data	between	tables.	I	had	done	all	the	connections	on	the	storyboard	but	
when	I	was	compiling	the	application,	it	was	constantly	taking	me	back	to	the	app	delegate,	which	
means	that	there	was	an	error.	My	worst	nightmare,	an	error	that	Xcode	couldn’t	specify	and	I	had	to	
locate	and	solve	it.	The	problem	with	tables,	is	that	they	do	not	cope	with	simple	connections	from	
the	storyboard	in	order	to	transfer	the	user	from	the	one	view	to	another.	The	navigation	with	table	
views	had	to	be	hard-coded	and	use	a	function	called	“PrepareForSegue”.	I	was	unaware	of	the	fact	
that	it	was	impossible	to	connect	tables	from	the	storyboard	with	a	single	control-drag	line.	After	
doing	a	lot	of	research	online	[13,14,15,16]	about	table	views,	I	observed	that	all	of	them	had	a	piece	
of	code	at	the	end,	that	seemed	to	be	a	navigator	between	tables.	After	my	research	in	the	
aforementioned	resources,	I	finally	understood	how	this	piece	of	code	works	and	why	is	that	
important	when	you	work	with	tables.		
	
	
override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 //print(sender);

 if (segue.identifier == "menu")//this is to go back
 {
 let menu = segue.destinationViewController as! Menu

 if let indexPath = self.tableView.indexPathForSelectedRow{
 menu.restaurant = restaurants[indexPath.row];
 }

	
Figure	#	25.	Navigation	between	tables.	

	
	

The	figure	above,	is	from	my	project’s	code	when	I	finally	achieved	to	pass	data	from	the	restaurants	
to	the	menu.	The	“menu”	which	is	positioned	next	to	performSegueWithIdentifier,	is	the	ID	I	gave	to	
my	menu	view	controller	at	the	storyboard.	When	a	developer	uses	more	than	one	tables	in	his	
application,	he	has	to	go	to	the	storyboard,	select	the	table	and	give	it,	a	unique	ID,	in	order	Xcode	
understand	in	which	view	controller	to	“take”	the	app	user.	
	
Adding	an	ID	to	a	table	view	is	a	very	easy	procedure.	The	only	thing	you	have	to	do	is	to	select	the	
table	you	want	from	the	storyboard,	click	a	square	button	on	your	Xcode	IDE,	called	“identity	
inspector”,	located	on	the	top-right	of	it	and	give	an	ID	at	the	storyboard	ID	which	falls	under	the	
identity	(figure	#26).	But	with	iOS	development	and	Xcode,	if	you	have	not	understood	or	you	are	not	
familiar	with	the	“Rules”,	sooner	or	later	you	will	find	obstacles	that	will	be	very	time	consuming	for	
your	project,	especially	when	you	have	a	short	period	of	time.	
	
	

	 27	

	
	

Figure	#	26.	Identity	inspector.	
	

After	creating	my	second	table	with	the	menu	items,	I	had	the	idea	of	creating	a	detailed	view	for	
each	item	separately,	in	order	to	give	user	more	feedback	about	the	item	he	selected.	So	now,	after	
user	selecting	a	restaurant	and	his	preferable	item	from	the	“Menu	Items”	the	application	takes	him	
to	another	view	controller	with	more	details	of	the	item	he	selected.	For	example,	when	user	selects	
an	item	from	“Menu	Items”	a	new	page	appears	with	a	bigger	image	of	the	item,	an	item	description	
and	a	label	(figure	#27).	

	
																																																																																																Figure	#	27.	Detailed	view	of	items.	

	
	
	

Unfortunately,	this	nice	feature	of	detailed	view,	has	created	a	new	bug	to	my	application.	The	bug	
was	quite	annoying	for	the	progress	of	my	app	development.	The	problem	here	was	that	if	the	user	
wanted	to	go	from	the	detailed	view	of	the	item,	back	to	the	main	menu,	all	the	items	were	whipped	
out.	I	was	very	sure	that	the	bug	was	not,	more	than	a	line	of	code.	It	was	very	tricky,	because	I	used	
the	same	piece	of	code	when	I	guided	from	one	table	to	the	other,	without	having	any	problem.	The	
problem	appeared	when	I	added	the	detail	view,	so	at	first	I	thought	it	was	something	wrong	with	
that	file	of	code.	But	the	solution,	was	much	simpler.	I	did	research	and	I	found	out	that,	because	of	
Table	View	complexity,	I	had	to	embed	in	the	table,	a	navigation	controller	[18].	To	fix	that	bug,	I	
clicked	on	the	scene	dock	(figure	#28)	of	my	table	view	and	selected	“Embed	in	Navigation	
Controller”.	What	navigation	controller	did	was	to	connect	all	the	table	views	and	detail	view	
together.	

	
Figure	#	28.	Scene	Dock.	

	

	 28	

After	that	I	had	two	navigation	controllers,	the	one	that	I	have	hard-coded	(prepare	for	segue)	and	
the	one,	that	Xcode	embedded	into	my	project.	After	that,	a	second	bug	made	its	appearance	and	
every	time	I	was	clicking	on	a	menu	item	or	a	restaurant,	it	navigated	there	twice.	To	fix	that	issue,	I	
got	back	to	my	code	and	commented	out,	a	single	line	of	code,	which	was	responsible	for	the	
repetition	of	the	table	view	display.	
	
	
//the line below with performsegue is responsible for the error with whiping out the table
 //performSegueWithIdentifier("menu", sender: selectedRestaurant) //storyboard ID
	

Figure	#	29.	Line	of	code,	responsible	for	table	repetition.	

	
	

	
	
	
2.3.2.2 QR Code Reader

QR	code,	is	a	machine-readable	code,	consisting	of	an	array	of	black	and	white	squares,	which	is	
mostly	used	for	storing	small	pieces	of	information,	like	a	short	text	or	a	URL,	which	afterwards	can	be	
read	by	the	camera	of	the	smartphone	device	[19].	The	first	letters,	QR,	mean	Quick	Response,	
something	that	is	very	useful	and	necessary	to	our	modern	and	very	fast	in	rhythms	as	well	as	growth	
of	our	society.	The	big	difference	of	QR	code	over	an	ordinary	barcode,	is	that	the	QR	code	can	be	
scanned	from	a	mobile	device	with	a	camera,	vertically	or	horizontally	with	an	instant	response.	Also,	
QR	code	stores	data	inside	these	square	boxes	that	can	be	retrieved	without	internet	connection.		
	
I	thought	that	a	QR	code	reader	will	be	a	useful	function	for	the	“Pocket	Waiter”	users,	in	order	to	
help	them	scan	and	find	out	their	table	number.	Making	a	QR	code	reader	from	scratch	would	not	be	
a	wise	idea,	because	I	could	have	wasted	my	limited	time	there,	and	end	up	with	a	QR	reader	instead	
of	an	ordering	system.	I	asked	my	supervisor	whether	I	could	get	help	from	the	internet,	from	a	
project	similar	to	the	QR	reader	I	wanted	to	develop,	and	he	strongly	advised	me	that	there	was	no	
reason	for	“reinventing	the	wheel”	and	he	was	absolutely	right.	The	evolution	of	applications	did	not	
happen	within	a	day,	from	a	single	developer.	Daily,	application	developers	around	the	world,	have	
conversations	via	forum	websites	like	stackoverflow,	read	about	all	the	new	updates	that	Apple	
releases	and	most	important,	they	take	a	piece	of	code	or	an	application	and	they	try	to	improve	it.		
	
My	first	aim	in	order	to	make	this	function	work,	was	to	make	the	iPhone	camera	load.	For	a	QR	
reader,	camera	is	the	most	necessary	hardware	mechanism,	a	devise	should	have.	I	found	a	very	
helpful	website	[20]	which	helped	me	understand	what	kind	of	methods	I	had	to	implement	in	order	
to	make	a	simple	app,	which	just	asks	from	an	iOS	mobile	device	to	load	the	camera	(figure	#30).	
	

	 29	

	
Figure	#	30.	iPhone	Camera	opens	upon	user	permission.	

	 	
	

As	I	have	declared	in	my	introduction	page,	every	time	I	wanted	to	implement	something	new	to	my	
application,	my	strategy	was	to	take	everything	apart.	In	that	situation,	I	have	created	a	new	
application	where	the	only	thing	it	did,	was	to	make	iPhone	load	the	camera	via	the	application.	
Afterwards,	I	started	searching	on	how	to	build	a	QR	reader,	using	Swift	language.	I	found	an	
interesting	project	on	GitHub	[21]	which	helped	me	understand	what	kind	of	methods	an	app	like	that	
should	have.	First	and	foremost,	I	realised	what	kind	of	frameworks	I	had	to	include	to	my	QR	reader	
application,	what	type	of	connections	I	had	to	do,	in	order	everything	to	be	displayed	to	the	user	and	
also	this	project	guided	me	to	search	some	protocols	like	AVCaptureMetadataOutputObjectsDelegate	
[22],	which	are	necessary	when	you	build	an	app	that	uses	the	camera	of	the	device.	His	whole	
project,	gave	me	a	larger	image	of	what	I	had	to	search	and	what	I	had	to	import	to	my	code.	In	my	
case	I	had	to	import	AVFoundation	and	at	the	QRView	class,	to	add	
AVCaptureMetadataOutputObjectsDelegate	(figure#31).	
	
import UIKit
import AVFoundation

class QRView: UIViewController, AVCaptureMetadataOutputObjectsDelegate {	
Figure	#	31.	QR	code	reader	class.	

	
	

It	was	a	small	step	for	developing	this	QR	reader	app	but	the	problem	here	was	that	the	instructions	I	
found	online	about	building	a	QR	code	were	outdated	and	even	my	Xcode	simulator	could	not	run	his	
QR	code	project.	Here	comes	the	big	difficulty	in	developing	iOS	applications.	Apple	continuously	
releases	new	updates	and	developers	have	to	be	daily	informed	about	Apple	future	updates,	in	order	
to	make	their	applications	run	smoothly	on	all	iOS	devices.	I	got	a	general	idea	on	how	a	QR	reader	
works	but	I	had	to	find	a	newer	version	of	it,	in	order	to	be	able	to	build	something	similar	to	the	one	I	
wanted	to.	My	first	attempt	to	make	a	QR	reader	was	by	importing	a	framework	from	the	Xcode.	I	
found	that	method	online	[23]	but	it	was	not	as	simple	as	it	looked.	The	problem	here	was	that	when	I	
was	trying	to	import	the	Framework	to	the	app,	Xcode	did	not	recognise	that	framework.	After	a	
couple	of	attempts,	I	discovered	that	this	framework	had	to	be	created	by	me,	by	installing	the	
cocoapods	of	this	QR	code	reader,	from	my	Mac	terminal.		
CocoaPods	[26],	is	a	dependency	manager	for	Swift	and	Objective-C.	It	has	thousands	of	libraries	that	
can	help	you	scale	iOS	projects	elegantly.	These	are	some	amazing	tools	that	experienced	app	
developers,	who	know	the	Apple	“Rules”	use,	in	order	to	progress	with	their	projects	faster	and	in	a	
more	elegant	way.	These	libraries,	are	daily	tested	on	the	part	of	developers	and	they	are	
continuously	updated,	in	order	to	“sail”	side	by	side	with	Apple	latest	requirements.	
	

	 30	

After	understanding	what	I	had	to	import	to	my	code	and	how	some	objects	like	
AVCaptureMetadataOutputObjectsDelegate	work,	I	found	a	great	tutorial	online	[27]	which	helped	
me	build	a	QR	reader.	The	problem	I	faced	here	was	that	the	tutorial	was	based	to	an	older	Xcode	
version	and	when	I	tried	to	build	something	similar	to	that,	my	Xcode	was	giving	me	errors.	The	QR	
reader	application	was	working	perfectly	when	I	first	made	as	separate	app,	but	when	I	tried	to	
implement	it	to	my	code,	which	was	based	on	a	newer	version	of	Xcode,	I	had	connectivity	issues.	
What	I	did	here,	was	to	make	some	changes-updates	to	the	QR	reader	code.	Some	of	them	were	
small	changes,	for	example	at	the	end	I	had	to	add	(;)	or	(!)	or	in	some	cases	I	had	to	replace	var	with	
let	but	some	others	changes	were	more	challenging.	A	great	example	here	is	that	I	had	to	update	a	
line	of	code	from	the	VideoSnapReview	function	in	order	to	be	compatible	with	iOS	9	and	later	
versions.	In	the	figure	#32,	I	have	commented	out	the	line	which	game	me	the	error	and	prevented	
my	app	from	running	properly.	Under	the	first	line	of	code	from	figure	#32,	is	the	newer	version	of	it.	
	
do {
 //PhoneDeviceInput = try AVCaptureDeviceInput.deviceInputWithDevice(PhoneDevice)
 PhoneDeviceInput = try AVCaptureDeviceInput(device: PhoneDevice) as AVCaptureDeviceInput

 }
Figure	#	32.	The	two	versions	of	code-	the	first	is	outdated.	

The	exciting	thing	about	QR	Readers,	is	that	they	can	read	instantly	any	QR	code	which	is	“unlocked”	
without	internet	connection.	By	the	term	unlocked,	I	mean	that	some	companies	use	QR	codes	to	
hide	important	messages,	like	the	passenger	details	on	the	airplane	tickets,	which	these	can	only	be	
read	from	special	QR	readers,	which	require	internet	connection	for	verification.	In	my	QR	code	app	
the	following	code	from	figure	#33,	is	responsible	for	capturing	the	QR	code	and	decoding	the	
information	which	is	embedded	in	it.	
	
// AVCaptureOutput Delegate Standard Function for QR code reading
 func captureOutput(captureOutput: AVCaptureOutput!, didOutputMetadataObjects metadataObjects: [AnyObject]!,
fromConnection connection: AVCaptureConnection!) {

 if metadataObjects == nil || metadataObjects.count == 0 {
 QRCodeMain?.frame = CGRectZero// again apple data types for geometry CGRectZero
 lblQRCodeResult.text = "No QR Code Found"// it will show that message as long as our phone camera
doesnt detects a QR code

 return;
 }
 let QRMachineReaderStandard = metadataObjects[0] as! AVMetadataMachineReadableCodeObject

 if QRMachineReaderStandard.type == AVMetadataObjectTypeQRCode {
 let objBarCode = SnapCaptureVideo?.transformedMetadataObjectForMetadataObject(QRMachineReaderStandard
as AVMetadataMachineReadableCodeObject) as! AVMetadataMachineReadableCodeObject
 QRCodeMain?.frame = objBarCode.bounds;
 if QRMachineReaderStandard.stringValue != nil {
 lblQRCodeResult.text = QRMachineReaderStandard.stringValue

 }	
Figure	#	33.	Capturing	&	Decoding	of	QR	code.	

	
	
	

Once	completing	this	piece	of	code	and	after	a	little	debugging,	I	wanted	to	initialize	a	yellow	box	in	
order	to	highlight	the	QR	code.	To	achieve	that,	I	had	to	create	an	UIView	object	which	was	already	
embedded	in	the	Xcode	library,	and	add	the	square	frame	details,	like	its	colour	and	its	width.		
	
	
//this shows the yellow square...without it, it still shows QR code but without square
 func PrepareQRCodeSquarePreview() {
 QRCodeMain = UIView()
 QRCodeMain?.layer.borderColor = UIColor.yellowColor().CGColor //QR Code Square colour = yellow
 QRCodeMain?.layer.borderWidth = 3 //border width 3..we can clearly see it.
 self.view.addSubview(QRCodeMain!) // add the subview
 self.view.bringSubviewToFront(QRCodeMain!) //show to preview in the front + send to the front and animate
to the center of the view.

 }	
Figure	#	34.	Yellow	QR	box	Identifier	Specifications.	

	

	 31	

So	now	every	time	the	user	wants	to	scan	the	QR	code	from	its	table,	the	only	thing	he	has	to	do	is	to	
click	on	the	“QR	CODE”	button	which	is	positioned	between	the	“RESTAURANTS”	&	“RESTAURANTS	
NEARBY”	buttons	and	when	he	scans	the	QR	code,	a	message	will	appear	at	the	navigation	bar	with	
the	number	of	the	table	(figure	#35).	
	

	
	

Figure	#	35.	QR	reader,	when	user	scans	a	QR	code.	
	
	

2.3.2.3 RESTAURANTS NEARBY

	
	
	
Nearby	Restaurants	and	the	QR	code	reader,	were	the	two	extra	functions	that	I	really	wanted	to	add	
to	my	application,	in	order	to	make	it	look	professional	but	most	importantly	I	wanted	it	to	be	unique	
and	multifunctional.	Applications	nowadays,	in	order	to	“Survive”	they	have	to	look	like	something	
similar	to	a	Swiss	Knife.			

	
	

To	be	more	specific	here,	everyday	new	applications	are	being	created	and	the	ones	which	do	not	
follow	user	preferences,	they	become	less	downloadable	and	at	a	certain	point,	users	stop	using	
them.	By	the	term	“Swiss	Knife”	I	mean	that	applications	nowadays,	should	provide	users	with	many	
other	functionalities	apart	from	the	main	one	that	they	have	been	designed	for.	A	great	assumption	
to	support	my	example	is	that	more	and	more	social	applications	like	Instagram	or	Snapchat,	apart	
from	their	main	functionality	which	is	photo	uploading,	they	have	embedded	in	a	chat	function,	in	
order	to	keep	their	users.	Imagine	how	many	users,	the	Facebook	would	have	lost	if	it	did	not	provide	
their	users	with	the	“messenger”	app.	

	 32	

My	ambition	for	this	application,	is	when	a	user	clicks	on	the	“Restaurants	Nearby”	button,	a	map	to	
be	loaded	and	zoom	into	the	user	current	location	and	show	the	restaurants	in	form	of	red	pin	
annotations,	so	the	user	finds	places	to	eat	near	him,	compatible	with	the	“Pocket	Waiter”	app.	I	also	
designed	the	code	in	a	way,	so	when	the	user	clicks	on	a	red	pin,	more	details	to	be	displayed	for	the	
restaurant,	i.e.	its	post	code.	It	was	a	great	idea	to	have	this	function	inside	my	main	application,	but	I	
knew	that	it	would	be	challenging	to	build	it	plus	the	fact	that	time	was	pressuring	me,	to	finish	with	
the	main	functions	of	my	project	like,	connecting	my	app	with	a	server	so,	all	restaurants	and	items	to	
be	loaded	directly	from	it.	My	main	motivation	to	try	and	insist	on	building	this	function,	was	my	
supervisor,	who	from	the	time	I	told	him	my	idea,	he	liked	it	and	he	strongly	advised	me	to	find	a	way	
and	build	it	in	the	end,	because	as	he	said,	it	would	be	very	interesting	to	have	a	‘location	app’	inside	
my	“Pocket	Waiter”	app.	
	
The	tough	part,	when	I	started	searching	and	building	this	function	was	the	fact	that	in	parallel,	I	was	
trying	to	make	my	app	load	data	dynamically	from	a	server	plus	that	I	was	writing	my	dissertation	
report	because	time	was	getting	eliminated	from	day	to	day.	
	
Before	doing	any	research	on	how	to	add	a	map	to	my	application,	I	went	to	the	object	library	of	
Xcode	to	see	if	Xcode	provided	me	with	a	map	library	or	I	had	to	search	online	for	a	map	library.	
Luckily,	Xcode	provides	iOS	developers	with	the	“Map	Kit	View”	library	(figure	#36).	
	

	
Figure	#	36.	Map	Kit	View.	

	
	
In	order	to	learn	how	to	use	this	map	kit,	I	went	to	the	Apple’s	official	website	for	developers	[28].	
Firstly,	I	wanted	to	create	a	simple	app	which	just	locates,	with	a	blue	dot,	the	current	position	of	the	
user.	Unfortunately,	all	of	the	apple	suggestions	and	help	books	were	in	Objective-C	and	for	my	
project	I	was	using	Swift	language.	I	could	have	combined	these	two	languages	together,	but	I	did	not	
want	to	just	copy	&	paste	code	from	the	internet	without	having	any	idea	on	how	to	use	it.	So	I	
started	searching	for	other	resources	online	to	get	helped	and	understand	the	Map	Kit	View	deeply.	
Before	starting	hard	coding,	in	a	new	view	controller	I	added	the	Map	Kit	from	the	Xcode	object	
library,	after	that,	I	created	a	new	Swift	file	at	my	project,	which	I	named	
MapLocationViewController.swift	and	in	the	end	I	made	an	Outlet	connection	between	them,	in	order	
the	storyboard	to	respond	to	the	code.	After	importing	the	Map	Kit	and	the	CoreLocation	from	Xcode	
library,	I	started	building	the	current	location	finder	app.	The	Map	kit	is	a	framework,	is	based	on	the	
Apple	Maps	and	APIs	and	provides	iOS	developers	with	a	simple	mechanism	for	integrating	detailed	
mapping	capabilities	into	any	application.	On	the	other	hand,	the	CoreLocation	is	another	framework,	
created	by	Apple,	which	gives	developers	the	opportunity	to	get	user	location.	My	first	aim	for	this	
app	was	to	find	user’s	current	location,	with	the	user	permission.	To	make	this	locator	app,	work	at	its	
best,	I	made	it	updating	user	current	location	every	second	and	I	set	its	accuracy	to	the	highest	level	
(figure	#37).	
	
 self.UserlocationManager.desiredAccuracy = kCLLocationAccuracyBest //user current location with best
results, user exact location

 self.UserlocationManager.requestAlwaysAuthorization() //use location services only after user approval

 self.UserlocationManager.startUpdatingLocation() //turn on location..start searching for user location

	
Figure	#	37.	iMapKit	location	settings.	

	

	 33	

Apple	provides	this	feature	[30]	of	location	accuracy	to	all	iOS	devices	with	a	newer	firmware	that	2.0.	
For	example,	I	could	have	replaced	the	first	line	of	code	from	the	figure	#37,	with	
kCLLocationAccuracyNearestTemMeters.	With	that	simple	change,	the	user’s	current	location	would	
not	be	precise,	but	it	would	be	accurate	to	within	ten	meters	of	the	desired	user	location.	I	also	set	
the	map	to	be	two	dimensional	(2D)	and	additionally	I	made	the	app	zoom	into	current	user’s	
location.	I	found	this	structure	(figure	#38)	on	the	official	Apple’s	help	for	developer’s	page	[31],	
under	the	Data	types.		

let regionZoom = MKCoordinateRegion(center: centerCircle, span: MKCoordinateSpan(latitudeDelta: 1, longitudeDelta:
1)) //circle were map zoom to and spam numbers are how to zoom

 self.mapView.setRegion(regionZoom, animated: true) //go to that region and zoom in, animation is for zoom

Figure	#	38.	Zoom	at	user’s	current	location.	

	
	
	

The	latitudeDelta	is	the	amount	of	north-to-south	distance	to	display	the	map.	
The	longitudeDelta	is	the	amount	of	east-to-west	distance	to	display	the	map.	
	
The	Delta	values	in	my	code	(1,1)	indicate	the	level	of	the	desired	zoom	on	the	map.	The	smaller	the	
Delta	values	are,	the	higher	the	zoom	level.		
	
To	understand	the	coordinates	systems	used	by	Map	Kit,	we	have	first	to	understand	how	the	three-
dimensional	(3D)	surface	of	the	Earth,	is	mapped	to	a	two-dimensional	(2D)	map	(figure	#39).	
	

	
	

											Figure	#39.	Mapping	spherical	data	to	flat	surface.	
	 	

Map	Kit	uses	a	cylindrical	map	projection	[33]	like	the	one	in	the	figure	above.	In	a	Mercator	Map	
projection	(cylindrical	map),	the	coordinates	of	a	sphere	are	positioned	onto	the	surface	of	the	
cylinder,	which	is	then	unwrapped	to	generate	a	flat	map.	This	type	of	map	became	the	standard	map	
projection	for	nautical	purpose	[34],	because	of	its	ability	to	connect	object’s	consecutive	positions.	
The	advantage	of	a	Mercator	map	projection	is	that	content	of	the	map,	is	scaled	in	a	way	that	
benefits	the	general	navigation.	The	map	projection	which	is	used	by	Map	Kit,	uses	the	Prime	
Meridian	as	its	central	meridian.	
	
Once	I	had	managed	to	locate	current	user	location,	I	wanted	to	enter	three	annotations	to	display	
the	location	of	each	restaurant	that	is	listed	inside	my	“Pocket	Waiter”	app	to	the	map	I	had	
previously	created.	To	get	this	done,	firstly,	I	needed	the	longitude	and	the	latitude	of	each	
restaurant.	For	the	purpose	of	the	project	I	went	to	an	online	latitude	&	longitude	generator	[32]	and	
I	created	three	coordinates	near	my	University.	After	that,	I	added	a	title	and	a	subtitle	for	each	
annotation	in	order	to	give	further	details	to	the	user	about	the	restaurant	(figure	#40).		
	

	 34	

	
let userlocation = CLLocationCoordinate2DMake(51.484478, -3.1702539)// i added these coordinates to be close to my
possition to help the presentation, so i made them close to cardif university
 let userlocation2 = CLLocationCoordinate2DMake(51.5030142, -3.1941843)
 let userlocation3 = CLLocationCoordinate2DMake(51.48865188, -3.26517105)

 let annotationPin: MKPointAnnotation = MKPointAnnotation()
 annotationPin.coordinate = userlocation
 annotationPin.title = "Trattoria"
 annotationPin.subtitle = "Cardiff Newport Road 12"

 let annotationPin2: MKPointAnnotation = MKPointAnnotation()
 annotationPin2.coordinate = userlocation2
 annotationPin2.title = "Pantheon"
 annotationPin2.subtitle = "Cardiff Quentin Street"

 let annotationPin3: MKPointAnnotation = MKPointAnnotation()
 annotationPin3.coordinate = userlocation3
 annotationPin3.title = "Mostar"
 annotationPin3.subtitle = "St.Fagans street,Cardiff"

 self.mapView.addAnnotation(annotationPin)
 self.mapView.addAnnotation(annotationPin2)
 self.mapView.addAnnotation(annotationPin3)

Figure	#	40.	Positioning	the	red	pins	according	to	restaurants	Geo-position.	
	

The	big	difficulty	I	had	when	I	was	constructing	this	app,	was	the	combination	of	all	this	information	
from	different	resources.	For	example,	in	order	to	find	the	user	location	and	understand	the	iMapKit	
object	meanings,	I	had	firstly	to	read	the	Apple’s	developers	page	and	after	realising	how	it	should	be	
done	in	order	to	work	properly,	I	‘decoded’	some	tutorials	(that	I	have	referenced	in	my	code)	which	
used	older	versions	of	Xcode	and	sometimes	Objective-C.	For	the	annotations,	I	read	the	Apple	official	
page,	and	I	realised	that	I	had	to	use	a	title,	a	subtitle	and	their	coordinate	position,	when	I	wanted	to	
create	one	annotation.	The	last	part	with	the	annotations,	I	built	it	exclusively,	by	trying	numerous	of	
times	to	combine	the	information,	I	found	in	the	Apple	developers’	website.		
	
	

2.3.2.4 Share Us

	
	

After	2004,	when	Facebook	made	its	first	appearance,	the	way	people	used	to	communicate	in	the	
past,	has	dramatically	changed.	Worldwide,	there	are	over	1,59	billion	[35]	active	Facebook	users.	
What	this	means	for	new	generation	developers	is	that	Facebook	is	too	big	to	ignore.	Because	of	the	
fact	that	every	minute	on	Facebook	there	are	posted	more	than	135k	photos	and	almost	290k	
statuses	are	uploaded	[35],	I	wanted	to	give	both,	to	my	application	and	to	the	app	users,	the	
opportunity	to	share	their	ideas	and	their	thoughts	to	this	enormous	social	network,	via	my	app.	
Inside	my	application,	when	the	user	clicks	on	the	“Pocket	Waiter”	logo	in	the	main	menu,	a	new	view	
controller	appears	which	is	more	fancy	that	the	rest.	I	have	named	this	space	“Playroom”	(figure	#41).	
It	is	a	place	inside	my	app,	where	the	user	can	spend	his	time,	while	waiting	for	his	order.	
	

	 35	

	
Figure	#	41.	‘Playroom’.	

	
	
When	the	user	clicks	on	the	Share	us	button,	the	application	automatically	pops	up	a	form	to	the	
user’s	device	display,	with	the	“Pocket	Waiter”	logo	pre-installed	to	that	form.	After	that,	the	user	can	
share	his	preferable	status	on	his	Facebook	account.	This	way	of	status	sharing,	is	beneficial	for	both,	
my	application	and	user.	The	reason	why	this	add	on	is	so	important	for	my	application	is	because	
users	cannot	post	a	status	without	the	pocket	waiter	logo	on	their	status.	This	is	a	basic	marketing	
strategy	I	have	formed,	in	order	to	advertise	my	application	via	user	shares	and	statuses.	The	
construction	of	this	function	was	quite	straightforward	because	Xcode	provides	developers	with	an	
already	made	social	sharing	framework.	
	
Primarily,	I	added	the	Social.Framework	to	my	application,	in	order	to	be	able	to	import	afterwards,	
the	class	“Social”,	to	my	PostToFacebookViewController.swift	file	where	I	was	building	the	code	for	
this	sharing	function.	Before	starting	coding,	I	created	a	new	view	controller	with	a	‘share	us’	button	
on	it	and	I	linked	it	with	the	swift	file,	via	an	Action	connection.	After	that,	I	created	a	variable	and	I	
called	it	“ShareToFacebook”	in	order	to	set	this	function	to	be	posted	directly	to	Facebook,	by	
automatically	taking	the	username	and	password	details	of	the	user	from	his	main	iPhone	device	
settings.	The	user	is	required	to	have	previously	entered	his	Facebook	account	information	to	his	
iPhone	settings	menu.	
	
var ShareToFacebook : SLComposeViewController =
 SLComposeViewController(forServiceType: SLServiceTypeFacebook)	

Figure	#	42.	Share	to	Facebook	service.	

	
With	the	above	figure	#42,	by	declaring	the	type	of	service	to	be:	SLServiceTypeFacebook,	I	navigate	
this	app	to	find	user’s	Facebook	account	information.	At	the	moment	Xcode	supports	services	for	
Facebook	and	Twitter.	For	example,	if	I	wanted	instead	of	Facebook	to	make	my	application	share	to	
twitter	I	only	had	to	convert	a	single	line	of	code	and	from	SLServiceTypeFacebook	to	change	it	to	
SLServiceTypeTwitter.	In	order	to	make	the	app	users,	unable	to	delete	the	“Pocket	Waiter”	logo	from	
their	shares,	I	firstly	added	the	Logo	to	my	Assets.xcassets	file	of	my	project	and	then	I	‘called’	it	in	the	
ShareToFacebook	line	of	code	(figure	#43).	
	
ShareToFacebook.addImage(UIImage(named: "PWlogo.png"))	

Figure	#	43.	Pocket	Waiter	logo,	embedded	inside	the	app	code.	

	
The	ShareToFacebook.addImage	line	of	code,	is	in	order	to	make	the	device,	recognise	the	service	
type	of	the	composing	posts.	For	example,	if	I	wanted	to	add	a	prefixed	text,	I	had	to	add	the	service	
type	called:	.setInitialText(_:)	and	the	message	I	wanted.	A	great	example	is	the	following	figure	from	
my	code:	
	

	 36	

ShareToFacebook.setInitialText ("Hey, I just used Pocket Waiter For my order and everything was done, as fast as my
laundry besket gets refilled xD")	

Figure	#	44.	Add	a	prefixed	message	to	‘share	us’	function.	

	
	
In	order	to	be	able	to	learn	about	all	these	service	types	that	the	Social	statement	provides,	I	had	
again	to	visit	my	main	guide,	the	official	Apple	developers	page	[36].	It	is	the	only	source	that	has	the	
latest	updates	directly	from	Apple	and	it	is	the	main	website,	where	iOS	developers	around	the	world,	
got	educated	from.		
	
	

	
Figure	#	45.	The	figure	above	is	from	Apple	website,	which	declares	

	all	types	of	services	that	Social	framework	provides	
	

2.3.2.5 Quizzy

	
	

The	Quizzy,	is	my	last	extra	function	I	added	to	my	application,	to	make	it	more	attractive	to	users.	
Quizzy	is	a	Question	game,	which	tests	user’s	knowledge,	by	displaying	random	questions	and	user	
has	to	choose	among	four	possible	answers.	By	the	time	he	makes	the	right	choice,	the	Quizzy	game	
displays	to	him	another	question	at	random	order.	If	user	closed	the	application	and	opened	it	again	
the	Quizzy	game,	the	question	would	be	different	from	the	previous	one.	

	

	
																																																																																															Figure	#	46.	Quizzy	Game	UI	interface.	

	
Again	for	the	development	of	this	application	I	used	dynamic	table	cells	instead	of	having	hundreds	of	
view	controllers	with	static	data	on	them.	The	figure	below,	shows	one	view	controller	with	a	label	
and	four	buttons	which	will	load	data	randomly,	from	the	file	where	I	have	placed	my	questions	and	
the	output	will	be	like	the	above	figure	#46.	The	questions	haven’t	been	inspired	by	me,	but	from	a	

	 37	

book	called	“10000	general	knowledge	questions	and	answers”	I	found	online	[37].	I	got	some	really	
good	pieces	of	advice,	from	some	online	tutorials	on	how	to	make	buttons	react	among	user	touch	&	
click,	that	I	have	referenced	at	my	code.	
	

	
	

Figure	#	47.	The	Quizzy	view	controller	at	my	storyboard.	
	

For	this	task,	I	created	a	new	view	controller	in	my	main	storyboard	and	I	added	four	buttons	and	one	
label.	I	connected	the	four	buttons	with	Action	connections,	to	my	new	swift	file	I	created	
(QuizzGameViewController.swift),	in	order	to	store	the	code,	which	will	run	in	the	background	of	the	
app	and	I	connected	the	label	with	an	Outlet	connection	in	order	to	show	the	questions	that	are	
stored	to	my	swift	file,	randomly.	After	that,	I	gave	an	ID	to	each	button	(i.e.	for	the	first	button	I	gave	
the	number	0	because	it	is	swift	and	almost	in	all	programming	languages,	they	start	counting	from	
0).	Next,	I	created	a	function	in	order	the	app	to	pick	a	question	from	my	“Questions”	array	(figure	
#48).	
	
func PickQuestion(){

 if QuestionsGenerator.count > 0 //meaning that if there is sommething inside my "Question" array, ther run!

 {

 //QNumber = 0 that was for questions in a row-static, not random

 QuestionNumber = random() % QuestionsGenerator.count //it will choose between zero and how many
questions I have

 QuestionLabel.text = QuestionsGenerator[QuestionNumber].QuestionSTRING//this is the question we are
on,it will take the question from code and place it to our app

 NumberOfAnswer = QuestionsGenerator[QuestionNumber].AnswerNumber

 for i in 0..<Buttons.count

 {
 Buttons[i].setTitle(QuestionsGenerator[QuestionNumber].AnswersSTRING[i], forState:
UIControlState.Normal)

QuestionsGenerator.removeAtIndex(QuestionNumber)

Figure	#	48.	Pick	questions	function.	

	
	
The	figure	#48	above,	shows	my	main	function	(func),	which	selects	a	random	question	from	the	
array	where	my	questions	are	stored	in.	The	“for	loop”	here	is	very	important	here	because	it	guides	
the	program	to	do	something	if	the	buttons	are	more	than	zero.	Inside	the	for	loop,	what	this	line	of	
code	does,	is	to	grab	each	of	the	buttons	and	set	a	title.	I	put	the	[i]	inside	the	Answers	array	in	order	
to	make	the	program,	each	time,	take	all	the	answers	and	place	them	inside	the	Buttons[i].	the	last	
line	of	code	from	the	figure	above,	will	remove	the	questions,	the	user	has	answered	correctly,	so	to	

	 38	

avoid	repetitions.	If	I	comment	out	this	last	line	of	code	from	the	figure	#48	
[QuestionsGenerator.removeAtIndex(QNumber)],	the	Quizzy	app	will	never	run	out	of	questions,	but	
the	same	questions	will	be	repeated	again	and	again.	
	
Now,	the	following	figure	#49,	shows	how	the	questions	are	structured	inside	the	application.	The	
text,	next	to	“Question:”	will	be	displayed	to	the	label	on	top	of	the	app	which	uses	an	Outlet	
connection,	whereas	the	“Answers:”	array,	will	display	each	of	its	text,	at	the	buttons.	These	four	
items	inside	the	array	are	represented	with	the	numbers	0,1,2,3	respectively.	So	at	the	end	of	each	
question	there	is	an	“Answer:”	item.	This	makes	it	clear	to	the	compiler	which	answer	is	the	correct	
one	in	order	fill	the	user	with	more	questions.			
			
//start writing questions
 //we start cointing from zero so 4 questions...0,1,2,3
 QuestionsGenerator = [CreateQuestion(QuestionSTRING: "Who was the President of the United States in 2015?",
AnswersSTRING: ["Biil Clinton","Barack Obama","Abraham Lincoln","John F.Kennedy"], AnswerNumber: 1),
CreateQuestion(QuestionSTRING: "When Cardiff University was founded?", AnswersSTRING: ["1780","1946","1783","1883"],
AnswerNumber: 3),
CreateQuestion(QuestionSTRING: "Who was the Main founder of Apple Inc?", AnswersSTRING: ["Steve Jobs","Bill Gates","Steve
Wozniak","John Terry"], AnswerNumber: 0),
CreateQuestion(QuestionSTRING: "What is converted into alcohol during brewing?", AnswersSTRING:
["Water","Sugar","Lemon","Coffee"], AnswerNumber: 1),
CreateQuestion(QuestionSTRING: "In which bay is Alcatraz?", AnswersSTRING: ["Greece","Brasil","San Fransisco","New York"],
AnswerNumber: 2),
CreateQuestion(QuestionSTRING: "When was Ferrari founded?", AnswersSTRING: ["1999","1945","1899","1939"], AnswerNumber: 3),
CreateQuestion(QuestionSTRING: "How tall a Giraffe can be?", AnswersSTRING: ["18ft","17ft","20ft","10ft"], AnswerNumber: 0),
CreateQuestion(QuestionSTRING: "What colour is Facebook logo?", AnswersSTRING: ["Pink","Green","Red","Blue"], AnswerNumber:
3),
CreateQuestion(QuestionSTRING: "How Long Do Sea Turtles Live?", AnswersSTRING: ["300 years","30 years","50 years","100
years"], AnswerNumber: 2),
CreateQuestion(QuestionSTRING: "How many eyes does a tiger has?", AnswersSTRING: ["Five","Three","One","Two"], AnswerNumber:
3),
CreateQuestion(QuestionSTRING: "When World War II started?", AnswersSTRING: ["1932","1930","1939","1945"], AnswerNumber: 2),
CreateQuestion(QuestionSTRING: "What is the capital of Greece?", AnswersSTRING:
["Athens","Chalkis","Thessaloniki","Santorini"], AnswerNumber: 0),
CreateQuestion(QuestionSTRING: "What is the weight of an elephant approximately?", AnswersSTRING:
["7.000kg","2.000kg","25.000kg","4.000kg"], AnswerNumber: 0),
CreateQuestion(QuestionSTRING: "How old is Queen Elizabeth in 2016?", AnswersSTRING: ["89","90","93","85"], AnswerNumber:
1),
CreateQuestion(QuestionSTRING: "Who is the creator of Emails?", AnswersSTRING: ["John Applesed","Bill Gates","Ray
Tomlinson","Thanos Gkavalis"], AnswerNumber: 2)]

PickQuestion()

	
Figure	#	49.	String	of	questions	&	Answers.	

	
	
Because	I	had	four	buttons	and	I	did	not	remember	all	the	answers	from	my	Quizzy	app,	I	created	a	
few	NSLog(“”)	reports-alerts	(figure	#50),	which	are	only	visible	to	the	developer	via	Xcode	and	not	to	
users,	in	order	complexity	and	confusion	when	developing	the	app,	to	get	eliminated.	For	example,	
when	I	was	building	this	application	and	I	had	not	added	that	kind	of	report,	I	had	every	time	to	run	
the	application	to	my	simulator	and	try	all	the	possible	answers,	in	order	to	be	sure	that	everything	
was	working	fine.	
	

// NSLog("Wrong!")this shows to our *Xcode IDE* a message when the answer is wrong	
Figure	#	50.	NSLog	developer	reports.	

	
	
As	I	have	previously	declared,	my	application	is	designed	for	low	budget	restaurants,	that	do	not	have	
the	financial	liberty	to	supplement	their	businesses	with	expensive	ordering	systems	like	the	one	
McDonald’s	uses,	but	I	will	refer	to	them	later.	The	importance	of	this	Quiz	game,	is	divided	into	two	
sections.	Firstly,	because	it	will	raise	the	interest	of	the	restaurant	customers,	while	they	wait	for	their	
order	and	it	will	prevent	them	from	getting	bored,	doing	something	more	interesting	than	refreshing	
numerous	of	times	their	Facebook	“Wall”	for	a	remarkable	photo	or	status	to	come	up.	Secondly,	this	
Quiz	game	will	provide	me,	with	a	small	amount	of	income,	in	order	to	pay	for	the	server	
maintenance,	via	an	advert	banner	that	I	have	implemented.	
	

	 39	

I	came	up	with	this	idea,	of	adding	an	advert,	because	I	had	to	find	a	way	to	raise	funds	for	the	server	
maintenance	after	leaving	university.	As	a	student,	Cardiff	University	provides	me	with	a	free	server	
hosting,	but	afterwards	I	have	to	pay	for	that,	myself.	After	iOS	4.0,	Apple	has	created	a	framework,	
called	“iAd”	[38]	where	developers	can	use,	in	order	to	add	adverts	to	their	application.			
	
The	iAd,	is	a	platform	for	advertising,	which	provides	developers	with	new	opportunities	to	raise	their	
funds,	plus	promote	their	applications.	The	iAd	framework,	does	the	necessary	work	to	download	
adverts	from	the	iAd	app	network.	The	only	thing	that	developers	should	care	about	is	to	design	the	
app	in	a	way,	to	accommodate	space	for	the	advert	banners.	

	
Figure	#	51.	iAd	Network	diagram.	

	
In	order	for	developers	to	be	able	to	add	adverts	to	their	app,	after	all	the	coding	implementations	
and	user	interface	design,	they	have	to	agree	with	Apple’s	contract	for	the	iAd	network	and	complete	
related	tax	and	finance	information.	After	that,	developers	have	to	upload	their	application	with	the	
banner	embedded	in	the	code	and	once	it	has	been	approved	from	iAd	team,	the	app	will	start	
earning	money	per	advert	click.	
	

	
Figure	#52.	Application	Upload	to	iTunes	Connect	Procedure		

	

The	iAd,	gives	developers	the	opportunity	to	decide	the	portion	of	the	user	interface	screen,	to	
display	the	banner	ad.	In	order	to	have	a	banner	view	advert	in	the	application	user	interface,	we	
have	to	use	the	class	called	ADBannerView	whereas	if	the	developer	wants	to	have	a	full	screen	ad,	he	
has	to	use	the	ADInterstitialAd	class.	A	full	screen	app	most	of	the	times	is	little	annoying	for	users	but	
the	chances	are,	that	more	users	will	tap	on	a	full	screen	advert	rather	that	a	small	banner	on	the	
bottom	of	the	user	interface.	Despite	the	fact	that	full	screen	banners	are	more	visible	to	users,	I	
preferred	to	have	a	small	ad	banner	in	my	application	just	because	I	can	understand	that	sometimes,	
adverts,	can	become	very	annoying	to	users	and	prevent	the	app	from	being	user	friendly.	IAd	
network	implementation	guide	[39]	helped	me	select	the	right	Ad	format	for	a	standard	banner.	
	

	 40	

	
Figure	#	53.	iAd	Network	Implementation	Guide.	

	
Now,	for	the	implementation	of	the	advert	banner,	I	dragged	and	dropped	from	the	Xcode	object	
library,	the	iAd	banner	view	and	afterwards	I	connected	it	with	my	code,	through	an	Outlet	
connection.	After	that,	I	imported	the	iAd	and	I	coded	the	three	basic	functions,	(they	were	already	
embedded	in	the	Xcode,	figure	#54)	which	are	standard	and	necessary,	every	time	a	developer	wants	
to	add	an	advert	to	his	application.	
	

 //functions for the advert baner

 }

 func bannerView(banner: ADBannerView!, didFailToReceiveAdWithError error: NSError!) {
 AdvertBanner.hidden = false
 }

 func bannerViewDidLoadAd(banner: ADBannerView!) {
 AdvertBanner.hidden = false
 }

 func bannerViewActionShouldBegin(banner: ADBannerView!, willLeaveApplication willLeave: Bool) -> Bool {
 return true

 }

	
Figure	#	54.	iAd	banner	functions.	

	
	

2.4 iOS App Development Risks

Before	making	my	proposal	to	my	supervisor,	Dr	Chorley,	and	both	agreeing	to	take	this	application	
development,	as	my	final	year	project,	I	have	met	with	some	other	teachers,	to	talk	about	some	final	
year	projects	proposals	and	about	their	difficulty.	All	of	the	projects	were	quite	interesting	and	the	
most	important	was	that	the	language	that	I	needed	for	almost	all	of	them	was	python.	It	was	the	
language	I	learned	from	the	first	year	in	Computer	Science	and	it	was	an	easy	human	readable	
language,	that	made	me	like	programming	from	the	beginning.	All	of	my	teachers	and	my	tutor	
advised	me,	that	dissertation	is	not	something	easy	and	that	I	had	to	choose	something	that	
interested	me	and	something	beneficial	for	the	society.	I	always	was	very	curious	how	all	these	phone	
applications	were	created	and	I	was	very	interested	in	creating	something	which	involved	user	
interface,	rather	than	creating	something	which	would	run	on	the	terminal.	So	I	came	up	with	the	
idea	of	making	an	ordering	application	for	iOS	devices.		
	

	 41	

The	great	risk	I	took	for	this	project	was	that	I	had	not	any	previous	experience	with	application	
development	and	the	most	important	was	the	fact	that	I	did	not	know	Swift	and	Xcode.	I	also	was	a	
windows	user	all	these	years	and	for	the	purpose	of	the	project	I	bought	a	Mac	computer,	three	
months	before	the	project	deadline	because	the	Xcode	IDE	is	only	available	to	Apple	computers.	As	I	
said,	the	risk	was	enormous	for	me,	because	I	had	to	learn	how	to	use	Xcode	IDE	and	Swift	language	
in	a	very	limited	amount	of	time,	from	online	resources	and	not	from	experienced	teachers	who	can	
guide	me	step	by	step	on	how	to	build	an	application	from	scratch.	The	first	two	months	of	learning	
how	to	use	Xcode	and	Swift,	I	was	continuously	filtering	everything	I	saw	at	online	tutorials	and	I	also	
tried	to	follow	the	Apple	instructions,	from	the	Apple	help	for	developers’	website,	because	it	was	the	
only	verified	material	I	found	online.	Unfortunately,	it	took	me	a	long	time	to	understand	this	website	
(almost	five	weeks	before	the	dissertation	submission),	because	Apple	assumes	that	its	website,	is	
read	by	experienced	developers	and	it	used	expressions	that	were	not	readable	by	new	developers.	
Another	problem	I	had	with	the	Swift	language,	was	that	it	was	a	very	new	language	and	there	were	
not	many	resources	online	for	new	developers.		
	
I	do	not	know	if	my	proposal	was	a	wise	choice,	for	doing	something	for	first	time	to	the	most	
important	coursework	of	my	three	years	at	university,	but	the	sure	thing	is	that	I	“looked	at	the	tree	
and	I	overlooked	the	forest”.	The	only	thing	that	motivated	me,	was	the	fact	that	I	was	doing	
something	new.	Since	I	was	a	kid,	when	the	first	iPhone	was	released,	I	have	wanted	to	create	apps	
and	I	have	been	very	excited	about	it.	The	first	month	of	searching	and	exploring	the	iOS	application	
world,	I	was	surrounded	by	the	fear	of	not	handing	in	anything.	In	fact,	I	was	discouraged	and	I	
suffered	severe	depression.	I	realised	how	difficult	it	was	to	do	something	completely	new,	without	
any	qualified	guidance	and	the	most	important,	to	develop	something	new	completely	alone.	In	the	
second	year	of	my	computer	science	degree,	I	had	to	make	a	website	for	movie	fans	with	a	group	of	
other	seven	people.	We	had	a	lot	of	obstacles	and	difficulties,	but	firstly	the	project	was	about	
something	we	were	familiar	with,	from	the	first	year,	when	we	had	to	make	a	website	for	an	online	
shop	and	secondly	we	were	a	team.	If	someone	was	unfamiliar	with	something,	the	rest	of	the	team	
helped	him	move	forward	and	in	the	end	we	had	a	great	result.	The	remarkable	fact	to	mention	here	
is	that	for	that	group	project,	we	had	two	semesters	to	complete	it,	whereas	for	this	new	project	I	
chose	to	be	my	final	year	project,	I	only	had	about	three	months.	This	project	was	not	my	supervisor’s	
proposal,	so	to	be	able	to	help	me,	if	I	had	a	problem	during	the	development,	but	it	was	my	proposal	
and	my	supervisor	had	made	clear,	from	our	first	meeting	that	he	was	not	familiar	with	iOS	
application	development	and	that	I	had	to	fend	for	myself.	
	
Another	big	risk	I	had	to	deal	with,	was	the	Apple	updates.	When	the	new	iOS	was	released	and	Xcode	
asked	from	me	to	update	it,	I	had	never	thought	that	Apple	in	its	updates	also	changed	Swift	code	
commands.	After	the	update,	part	of	my	application	wasn’t	working	and	until	I	realised	that	this	was	
due	to	the	update	and	fix	it,	it	took	me	valuable	time.	For	a	beginner	like	me,	that	was	really	stressful	
and	also	in	every	obstacle	I	had,	the	risk	of	not	overcoming	it	was	ten	times	higher	because	I	was	
alone	and	if	part	of	the	code	was	not	working	I	could	not	move	forward,	neither	had	I	someone	to	
turn	to	for	help.		
	
In	short,	the	risk	of	this	project	was	in	an	enormous	level	because	I	could	either	develop	something	or	
not	to	hand	in	anything	at	all.	This	was	because	I	decided	to	make	something	completely	new	for	me,	
away	from	step	by	step	guidance	from	verified	resources,	like	the	University	guidance	which	helped	
me	learn	my	first	programming	language,	python.		
	
The	last	risk	I	took	for	this	project,	is	that	ten	days	before	the	dissertation	deadline,	I	entered	an	
application	competition	and	I	was	chosen	to	represent	Cardiff	University	in	the	yearly	Santander	Bank	
app	competition.	I	said	risk	because	in	parallel	with	my	dissertation	and	app	development,	I	had	to	
write	a	business	plan	of	my	application,	so	to	be	able	to	enter	that	competition.	

	 42	

	
I	like	taking	risks	and	I	do	not	regret	it	now,	because	I	strongly	believe	that	the	higher	the	risk	is,	the	
highest	the	outcome,	and	in	my	situation	the	outcome	was	that	I	learned	a	very	fast	growing	language	
in	a	short	period	of	time,	that	will	help	me	build	future	applications	and	just	within	three	months	of	
self-learning	about	application	development,	I	entered	for	the	first	time	in	my	life,	an	application	idea-
development	competition	which	is	organised	by	Santander	Bank	in	cooperation	with	Cardiff	
University,	having	as	my	main	app	idea	proposal,	my	final	year	project,	“Pocket	Waiter”.		
	
	

2.5 Competitors

The	idea	of	ordering	from	your	mobile	device	is	not	something	new.	We	have	previously	seen	
applications	like	“just	eat”,	which	help	people	select	an	item	from	the	food	menu	and	at	a	touch	of	a	
button	to	have	it	delivered	to	their	door.	But	still,	I	have	not	met	a	single	application	which	gives	the	
restaurant	customers	to	order	from	their	mobile	devices	instead	of	waiting	for	the	waiter	to	be	
served	via	email	as	its	main	service.	We	can	find	an	application	close	to	the	one	I	have	developed,	if	
we	visit	a	McDonald’s	restaurant.	

	
Figure	#	55.	McDonald’s	ordering	kiosks.	

	
	

At	the	entrance	of	every	McDonald’s	restaurant,	there	are	these	large	ordering	screens	(figure	#55)	
which	are	called	“McDonald’s	ordering	kiosks”.	From	there,	people	can	order	and	pay	for	their	food	
with	the	aid	of	credit	card	terminals.	But	a	ginormous	company	like	McDonald’s,	which	is	worldwide	
spread	can	afford	for	systems	like	the	one	I	just	described.	I	couldn’t	find	the	cost	of	each	kiosk	online,	
so	I	asked	the	manager	of	McDonald’s	in	Cardiff	Queen	street	directly	and	he	told	me	that	each	of	
these	screens	cost	at	about	2,500£,	but	they	are	profitable	because	they	have	replaced	almost	two	
workers	from	each	McDonald’s	restaurant	and	over	a	year	they	“save”	almost	15,000£/kiosk,	to	the	
company.	It	is	obvious	that	low	budget	restaurants	cannot	afford	systems	like	these,	because	they	are	
very	expensive	and	also	these	systems	have	to	be	paid	by	the	owner	of	the	restaurant	and	not	by	the	
central	authority	for	a	restaurant	like	McDonald’s.		
	
My	system	is	much	more	friendly	and	affordable	for	low	budget	restaurants,	because	I	have	
embedded	these	“kiosks”	to	my	application.	In	that	way,	all	the	costumers	have	the	opportunity	to	
have	a	“kiosk”	embedded	in	their	smart	phones	if	they	downloaded	the	app	and	the	owner	of	the	
restaurant	will	not	have	to	care	about	installing	expensive	EPOS	systems	for	the	same	ordering	result.	

	 43	

I	strongly	believe	that	restaurants	who	cannot	afford	to	pay	for	new	technologies,	like	ordering	
systems,	fail	to	follow	the	evolution	and	as	a	result	they	close.	This	phenomenon	is	called	by	
economists	“creative	destruction”	[40].	I	truly	believe	that	this	kind	of	antagonism,	is	really	unfair	and	
it	is	something	that	low	budget	restaurants	struggle	to	follow.	With	this	application,	I	give	every	
restaurant	owner,	the	opportunity	to	evolve	and	stand	among	the	competition	with	colosseum	
companies	which	use	latest	technology	systems.	This	is	the	main	reason	why	I	tried	and	make	it	cost	
nothing	to	restaurant	owners.	As	I	have	mentioned	before,	the	funds	for	the	server	maintenance	will	
be	raised	by	the	adverts	I	have	added	to	this	application	in	the	quiz	game.	The	only	thing	that	the	
restaurant	owner	is	required	to	have,	is	an	email	account,	which	is	provided	free,	thanks	to	
companies	like	Google	and	Yahoo,	so	that	to	receive	orders.	
	
I	am	coming	from	a	country,	Greece,	where	the	“ordering	systems”	that	most	of	the	restaurants	use,	
is	to	take	the	order	by	hand	on	a	paper.	This	old-fashioned	system,	is	very	time	consuming	and	it	is	
also	very	outdated.	The	main	reason	why	this	ordering	system	is	so	popular	in	my	country,	is	because	
restaurant	owners,	cannot	afford	to	pay	for	large	ordering	systems	with	PDA’s	and	many	times	in	the	
summer	period,	I	have	observed	tourists,	preferring	restaurants	with	systems	like	these	because	they	
found	them	more	attractive	and	they	do	not	care	that	much	for	the	food	quality.	That	is	why	I	insisted	
on	making	an	application	which	would	try	to	restore	the	balance	in	the	restaurant	market.	
	
My	main	strategy	was	to	make	it	cheap,	so	in	the	future	to	replace	the	already	large	and	expensive	
systems.	Pocket	Waiter,	will	intergrade	into	existing	EPOS	systems	where	it	already	exists,	to	help	
restaurants	engage	better	with	their	existing	and	potential	customers.	The	app	will	allow	customers	
to	view	the	menu,	order	from	them	and	many	more	other	features.	The	reason	why	I	intensely	
believe	that	my	application	is	revolutionary,	is	for	the	simple	reason	that	it	can	provide	customers	and	
the	restaurant	managers,	with	more	functionality	than	the	already	systems	and	it	will	cost	nothing	to	
both	of	them.	In	my	application	I	have	added	some	other	extra	features	like	find	restaurants	nearby,	
QR	code	scanner	or	a	quiz	game,	because	I	want	to	make	people	like	it	and	use	it	as	their	main	
ordering	system,	when	they	visit	a	restaurant.		
	
If	this	application	be	released	to	the	market	and	attract	a	giant	number	of	users	and	reach	the	target	
amount	of	downloads	within	a	short	period	of	time,	then	the	competitor	companies	will	try	to	
eliminate	its	existence.	By	competitor	companies,	I	mean	all	these	colosseum	software	companies,	
which	have	created	Centralised	systems	and	charge	ginormous	amounts	for	“server	maintenance”.	An	
example	for	a	company	like	that	is	EPOSCOMPANY.	Epos	Company,	supplies	various	PDA	equipment	
to	restaurants	mainly,	for	remote	order	taking.	If	EposCompany	feels	that	it	is	extinction	is	being	
threatened	by	my	application,	it	will	try	in	various	ways	to	minimize	the	“power”	of	“Pocket	Waiter”	
and	try	to	push	my	application	out	of	the	market.	
	
This	application	is	unique	and	after	a	lot	of	research	I	did	nοt	find	any	project	close	to	mine,	designed	
to	be	that	cheap.	Also,	my	application	combines	many	technologies	that	many	different	“competitor”	
apps	have	them	as	their	basic	functions.		
For	example:	
	

• Toptable	
This	app	allows	users	to	book	tables	online	but	it	is	limited	only	to	London.	

• Poynt	
This	app	allows	users	to	find	restaurant	near	their	current	location	

• Square	meal	
This	app	allows	user	to	find	information	about	restaurants	and	book	tables.	
	
	

	 44	

• Just	Eat	
This	app	is	very	close	to	my	app’s	functionality,	but	Just	eat	is	only	for	delivery	and	also	it	
doesn’t	provide	users	with	any	extra	features	apart	from	ordering.	

	
Pocket	Waiter	will	be	more	than	just	a	comparison	or	search	app	for	restaurants.	Being	able	to	view	
the	menu,	find	restaurants	near	you,	play	a	game	and	order	your	entire	meal	using	the	app,	while	at	
the	restaurant	takes	it	one	step	above	some	of	the	apps	mentioned	above	
	
	
	

3 The “Specification & Design”

3.1 User Interface

Before	starting	doing	my	research	about	developing	an	iOS	application,	firstly,	I	had	to	design	the	UI	
of	the	application	on	a	piece	of	paper,	in	order	to	have	a	general	picture	of	what	it	had	to	be	look	like	
in	the	future.	After	drawing	a	prototype	on	a	piece	of	paper,	then	it	was	easier	for	developers	to	
follow	the	pattern	and	create	the	user	interface,	similar	to	the	handmade	prototype.	The	following	
figures,	show	how	my	application	looked	like	when	I	made	my	first	attempt,	drawing	the	user	
interface	by	hand	and	how	it	looks	like	now,	after	converting	a	drawing	into	a	real	application,	with	
full	functionality.		
	
	

																																																																 	
	
The	Xcode	IDE	helped	me	position	all	the	buttons	and	add	the	right	constraints	to	each	of	them,	so	
every	time	user	launches	the	application	from	an	iOS	device,	all	items	on	the	interface	to	be	
symmetric.	This	section	of	designing	the	application	and	make	it	look	more	fancy	and	user	friendly,	is	
in	the	same	level	of	importance	for	me	with	the	code	that	will	run	in	the	background.	Even	if	a	
developer	has	created	an	app	which	provides	user,	with	amazing	functionality,	if	the	front-end	of	the	
application	is	outdated	or	it	is	very	difficult	for	user	to	use,	then	is	more	likely	his	app	to	be	used	from	
less	and	less	users	and	as	a	result,	not	to	reach	the	preferable	amount	of	downloads	and	placed	on	
the	Apple	store	“shelf”.	Xcode	did	not	provide	me	with	any	tools	to	design	the	buttons	but	it	allowed	
me	to	replace	buttons	with	icons.	
	
	
	

	 45	

3.1.1 Buttons
	
For	the	button	design,	I	used	Adobe	Photoshop	CS6.	It	is	a	marvellous	tool,	which	provides	developers	
with	all	the	tools	they	need	in	order	to	give	that	user	friendly	feeling	to	their	applications.	I	am	one	of	
those	developers	who	emphasise	a	lot	on	the	design	of	the	application	and	believe	that	a	small	detail	
can	make	a	huge	difference	to	the	app	user.	For	example,	tablets	are	not	something	new.	Bill	Gates	
launched	Microsoft’s	touch	input	tablet	computer	a	decade	before	Steve	Jobs	released	the	iPad	to	
the	market	[41].	The	reason	why	iPad	achieved	such	fast	popularity,	was	because	of	their	very	user	
friendly	design	and	because	of	Apple’s	great	marketing	strategy.		
This	example	makes	my	assumption	clear	that	even	if	a	developer	makes	an	application	with	perfect	
functionality,	if	he	does	not	use	a	modern	and	user	friendly	interface,	his	application	will	not	attract	
people’s	attention	and	there	is	a	chance,	that	another	developer	will	upload	a	similar	app	to	the	
market,	with	similar	or	even	less	functionality,	but	with	much	better	UI	design,	and	his	application	to	
be	preferred	by	users.	In	order	to	achieve	a	great	result	and	make	my	app	user	friendly,	I	followed	the	
Apple	human	interface	for	iOS	devices,	guidelines	[42].	Also,	some	buttons	in	my	application,	like	the	
info	button	or	the	bug	button,	because	I	wanted	to	make	them	look	professional,	I	downloaded	these	
icons	from	an	Apple	suggested	webpage	[43]	and	I	replaced,	the	buttons	Xcode	provided	me,	with	
them.	On	that	website,	I	found	all	the	new	iOS	(iOS	9)	updated	icons	in	order	to	represent	some	
common	tasks	and	types	of	content	like	the	information	button.	I	insisted	on	using	these	built-in	icons	
for	my	app	because	users	already	know	what	they	mean.	
	

3.1.2 App Logo

The	logo	of	the	app,	is	another	detail	that	developers	should	care	about.	Every	application	needs	a	
beautiful	app	icon.	It	is	not	unusual	for	people	to	base	their	opinions	about	the	app	quality	and	
reliability,	solely	on	the	look	of	the	app	icon.	It	is	like	the	cover	page	of	a	book	and	the	more	attractive	
it	is	to	the	user,	the	more	the	chances	are,	to	download	it	to	his	mobile	device.	It	is	the	first	
impression	a	user	has,	when	he	sees	the	app	on	the	Apple	store	and	it	is	a	great	chance	to	persuade	
him	download	it,	just	from	the	“cover	page”.	I	wanted	via	the	logo	of	the	app,	to	make	users	
understand	what	the	application	is	about.	So,	I	created	a	logo	to	look	like	a	waiter,	with	a	suit	and	a	
bow	tie.	For	the	design	of	it,	I	used	a	more	specific	tool,	called	Adobe	illustrator	CC.	After	designing	
the	app	icon,	in	order	to	add	it	to	the	program,	I	had	to	resize	it	six	times	(figure	#56),	in	order	the	
logo	quality	to	remain	the	same,	in	all	iOS	device	sizes.	For	rendering	the	size	of	the	different	logos,	I	
used	Adobe	Photoshop	again.		
	

	
Figure	#	56.	Different	sizes	of	Pocket	Waiter	Logo.	

	
	
	
	

	 46	

In	my	first	attempt	in	creating	the	logo	for	my	application,	I	had	not	added	any	label	under	it,	mainly	
because	I	had	not	installed	the	application	to	an	iOS	device	to	see	what	it	would	look	like.	After	
installing	it	to	my	iPhone,	I	observed	that	the	whole	name	did	not	fit	under	the	application	logo.	
	

																																						 																																													 	
Figure	#	57.	First	logo	VS	the	updated	logo.	

	
Insisting	on,	that	details	are	those	which	can	attract	attention	from	people,	I	embedded	in	the	first	
label	“Pocket”	inside	the	app	logo,	and	I	named	my	app	“Waiter”	(figure	#58).	In	that	way,	users	can	
see	the	whole	name	of	the	app	and	also	the	word	“waiter”	helps	them,	find	the	app	faster.		
	
In	my	updated	logo,	the	reason	why	I	have	added	black	icon	borders,	is	because	research	has	shown	
that	most	people	prefer	to	use	black	backgrounds	because	it	saves	them	battery,	by	eliminating	LCD	
light	[44]	so	it	will	look	more	elegant	on	a	black	background.		
	

	

																								 	
	
	

Figure	#	58.	App	Name	space	differences.	

	
	
	
	

3.2 User Requirements

USER	MUST:	

	
• Have	an	Apple	account	in	order	to	be	able	to	download	the	application	from	Apple	

App	store.	
• Have	an	iOS	device	like	iPhone,	with	software	version	bigger	than	iOS	7.0.	

	
	
	

	 47	

USER	SHOULD:	
	

• Have	internet	connection	in	order	to	be	able	to	use	most	of	the	application	
functionalities.	

• Have	previously	added	his	Facebook	account	details	to	his	phone	settings,	under	the	
Facebook	icon.	

• Have	an	email	account	connected	with	his	mobile	device	so	to	place	orders	directly	
from	“Pocket	Waiter”	app.	

• Be	sitting	to	one	of	the	associated	restaurants	with	“Pocket	Waiter”.		
• Allow	the	app	to	use	their	location	services	
• Allow	the	application	to	access	the	camera.	

	
	
	
	

3.3 System Design

3.3.1 Table View

This	application	is	designed	to	fit	to	all	iOS	devices.	The	programming	language	I	used	for	this	project	
was	Swift	and	the	programming	platform	was	Xcode.	The	main	function	of	this	application	is	to	load	
the	menu	of	the	restaurant	and	place	customer	orders,	via	email.	For	that	project	I	needed	two	
dynamic	table	views	and	one	detailed	view	controller.	When	user	clicks	on	“Restaurants”	the	first	
table	view	appears	with	all	of	its	data	loaded	from	the	server.	After	user	restaurant	selection,	the	
second	table	view	appears.	This	time	the	user	can	see	all	the	menu	items,	followed	by	their	image,	
their	name	and	their	price.	Now,	if	user	wants	more	details	about	a	product,	he	can	simply	click	on	an	
item	and	the	app	will	transfer	him	to	a	more	detail	view	of	the	item,	with	a	larger	picture	and	a	better	
description	(figure	#59).	
	

											 											 	
Figure	#	59.	The	Restaurants-->the	Menu	&	the	detail	view.	

	
	
All	these	items	and	restaurants	have	been	developed	in	a	very	dynamic	way,	in	order	to	be	able	to	
retrieve	the	data	from	the	server	and	load	it	to	my	application.	The	left	image	from	the	figure	#60,	
shows	how	the	menu	items	table,	look	like	in	my	storyboard	and	the	right	figure	shows	how	the	menu	
table	looks	dynamically,	after	loading	all	these	data	from	the	server.	
	

	 48	

																																						 	
	

Figure	#	60.	Dynamic	table	in	storyboard	&	on	device.	
	

After	user	decides	what	he	wants	to	order,	he	can	click	on	the	“waiter”	button	on	the	top	right	
corner.	This	button,	will	load	his	email	account,	with	the	email	of	the	restaurant	preinstalled	and	
some	prefixed	text	which	reminds	users	not	to	forget	to	select	their	table	number	(figure	#61).	The	
reason	why	this	application	is	so	unique,	is	because	of	that	simple	function.	New	generation	users,	are	
very	experienced	with	sending	and	receiving	emails	and	also	the	inimitable	service	this	system	
provides	is	that	allows	restaurant	owners,	receive	orders	from	their	customers	with	a	system,	
worldwide	known	as	email,	which	is	provided	for	free.	It	also	gives	the	restaurant	manager	the	
opportunity	to	contact	their	customer	if	needed	and	apart	from	that,	the	restaurant	owner	can	save	
the	customer’s	email	and	inform	him	about	future	deals	and	services,	the	restaurant	provides.	
	

	
	

Figure	#	61.	Email	form	with	restaurant’s	email	prefixed.	

	
	

The	application	has	been	designed	especially	for	low	budget	restaurants,	that	cannot	afford	PDA’s,	
large	screens	and	other	expensive	systems,	in	order	to	place	orders	for	the	customers.	A	system	
which	uses	email	for	exchanging	information,	is	very	reliable,	especially	if	the	providers	of	the	email	
account	is	Google,	Yahoo	or	Microsoft,	where	all	these	years	have	not	proven	the	opposite.		
	
To	provide	user	with	best	experience	and	guidance,	I	have	equipped	my	application	with	some	alerts	
that	will	inform	user,	if	something	goes	wrong	within	the	app.	For	example,	in	order	the	restaurants	
and	the	menu	items	to	be	loaded	from	the	server,	internet	connection	is	required.	If	user	has	his	Wi-

	 49	

Fi	or	mobile	data	off,	then	an	alert	will	pop	up	(figure	#62),	telling	him	that	in	order	to	be	able	to	view	
the	list	of	the	restaurants,	he	has	to	activate	the	Wi-Fi.		
	

	
	

Figure	#	62.	No	Internet	Connection	Alert.	
	

I	have	also	removed	the	status	bar	from	the	restaurants	table	view,	firstly	for	design	purposes	and	
secondly	because	Apple	suggests	that	app	users	should	not	see	unnecessary	items	within	the	app.	To	
have	the	status	bar	removed,	I	had	to	code	the	following	command	(figure	#63),	in	each	view	
controller,	I	wanted	to	have	it	removed.	
	
	
//function to hide status bar
 override func prefersStatusBarHidden() -> Bool {
 return true

 }	
Figure	#	63.	Algorithm	for	removing	the	status	bar	from	an	iOS	device.	

	
	
The	status	bar,	is	one	of	these	items	that	Apple	embeds	in	every	new	view	controller	automatically,	
that	can	only	be	removed,	by	adding	a	small	piece	of	code	after	the	main	Class	of	the	file.	
	
	

3.3.2 QR Code Scanner

This	function,	provides	user	with	some	details	of	the	table	he	is	sitting	on,	so	to	place	his	order	
successfully.	This	application,	reads	all	types	of	QR	codes	and	frames	them	with	a	yellow	box	(figure	
#64),	to	help	user,	locate	the	QR	code	on	the	table	(Appendix,	2	QR	Code	Scan	Example).	
	

	
Figure	#	64.	QR	code	reader	locates	the	QR	code.	

	
The	reason	why	I	prefer	the	number	of	the	table	to	be	in	QR	code	format	rather	than	a	simple	
number,	is	because	I	want	customers	to	use	–	depend	on	“Pocket	Waiter”.	To	be	more	specific	here,	
if	a	user	has	visited	the	restaurant	before	and	knows	what	he	wants	to	order,	if	he	has	previously	
saved	the	email	of	the	restaurant	then	he	can	process	the	order	directly	from	his	email	application	
without	launching	“Pocket	Waiter”.	The	only	obstacle	for	him	will	be	the	number	of	the	table,	and	in	
order	to	find	it,	he	has	to	open	“Pocket	Waiter”	app	and	click	on	the	QR	code	button.	

	 50	

3.3.3 Restaurants Nearby

This	function,	is	designed	to	help	users	find	the	location	of	the	restaurants	easily,	depending	on	their	
current	position.	The	user	firstly	should	allow	the	app	to	use	his	current	location.	User	should	always	
be	informed	when	his	location	is	being	used	within	an	app.	If	his	location	is	being	used	without	his	
permission,	then	the	developer	of	the	app	may	be	confronted	with	the	justice,	for	illegal	location	
monitoring.	In	order	to	avoid	having	such	problems	with	justice,	I	added	this	line	of	code	to	my	app	
(figure	#65),	so	the	user	to	be	aware	when	his	location	is	being	monitored.	
	
self.UserlocationManager.requestAlwaysAuthorization() //use location services only after user approval	

Figure	#	65.	Requests	authorization	from	user,	for	his	location	monitoring.	
	
	
	

	

3.3.4 Share Us & Quizzy

These	two	extra	functions	are	located	inside	the	app	and	they	are	only	visible,	if	the	user	taps	on	the	
“Pocket	Waiter”	logo.	The	main	reason	why	I	“hid”	them	there	is	because	they	are	less	important	and	
according	to	Apple	Human	Interface	Suggestions,	it	is	not	suggested	to	overload	the	first	page	of	an	
app,	with	second	priority	functions.	
	
	

															 																																									 	
	
	
In	that	view	controller,	I	wanted	the	user	to	get	a	feeling	of	a	friendly	and	enjoyable	environment,	
where	he	can	relax,	while	he	is	waiting	to	be	served.	For	designing	purposes,	I	have	added	a	comic	
hero	to	this	page	of	the	app,	in	order	to	make	it	more	attractive.	If	he	clicks	on	the	first	button,	share	
us,	a	Facebook	form	will	pop	up	with	the	logo	of	my	app	embedded	in	and	impossible	to	be	removed.	
Via	this	“share	us”	button,	user	can	upload	his	post,	followed	be	the	“Pocket	Waiter”	logo.	For	the	
ease	of	the	user,	instead	of	requesting	him,	every	time	to	add	his	Facebook	details,	like	username	and	
password,	I	made	the	app	to	automatically	sign	in	to	his	Facebook	account	via	taking	his	details	from	
the	phone	Facebook	settings.	After	iOS	8,	Apple	has	given	the	iOS	users	the	opportunity	to	post	an	
image,	directly	from	their	mobile	devices,	without	having	to	open	the	original	Facebook	app.		
	
On	the	other	hand,	the	Quizzy,	is	not	just	a	game	which	prevents	users	from	getting	bored,	while	they	
wait	for	their	meal.	It	is	the	main	source	of	income	of	my	app.	It	is	designed	to	display	adverts	to	users	
and	through	these	adverts	to	be	able	to	pay	for	maintaining	the	application	servers.	The	advert	
banner	is	positioned	at	the	bottom	of	the	game,	so	not	to	disturb	users	while	playing.	Also,	its	size	is	
very	small	because	it	is	a	banner	advert,	so	not	to	annoy	the	app	users,	while	they	are	playing.	The	

	 51	

game	is	designed	to	display	questions	at	random	order,	and	the	next	question	is	displayed	only	after	
the	user	has	correctly	answered	the	previous	one.	Each	question	is	displayed	once,	so	to	avoid	
repetitions.	The	questions	will	be	repeated,	only	if	the	user	has	answered	all	the	questions.	The	
design	of	that	game	is	more	like	a	“tap”	game	rather	than	a	question	game.	By	the	term	“tap”	I	mean	
that	this	game	does	not	have	a	score,	so	that	the	user	does	not	have	to	think	too	much	while	he	is	
playing	and	gets	exhausted.	It	is	just	a	simple	quiz	game,	where	the	user	taps	on	buttons	while	he	is	
waiting	for	his	order.		
	
	
	
	
	

3.3.5 Bug Report

Even	the	best	and	most	experienced	developers	have	bugs	in	their	applications.	After	they	fix	a	bug,	
they	release	an	updated	version	of	the	app	to	the	App	store	and	strongly	suggest	users	to	download	
it.	Obviously,	developers	do	not	release	apps	with	bugs	on	purpose.	The	main	reason	why	bugs	exist	
in	all	applications,	is	because	of	the	inefficient	app	testing	and	the	poor	user	error	report	feedback.	
Even	Apple	company	has	bugs	in	its	software.	Every	time	it	releases	a	new	iOS	update,	a	couple	of	
weeks	later,	with	mathematical	accuracy,	they	will	release	an	updated	version	of	their	software,	
where	it	will	fix	some	bugs	or	several	security	issues.	The	error	reports,	Apple	receives	from	
costumers,	when	a	new	software	is	being	released,	is	in	a	much	bigger	scale	than	the	bug	reports	
from	Apple’s	software	testing	team.	So,	they	have	customer’s	feedback,	and	they	improve	their	
software,	faster.	
	
For	this	purpose,	I	added	this	bug	report	button	(figure	#66)	to	my	app	on	the	top	left	of	my	main	app	
page.	When	user	taps	on	it,	it	opens	an	email	form,	with	my	email	prefixed	and	then,	user	can	give	me	
feedback,	on	how	to	improve	the	“Pocket	Waiter”	app	and	inform	me	about	errors	and	bugs	that	my	
application	has	that	I	had	overlooked.	
	
	

	
	

Figure	#	66.	Bug	feedback.	

	

	 52	

3.3.6 About Us

The	About	US	page,	is	something	that	almost	all	the	applications	and	websites	have.	It	is	a	page,	
which	give	users	the	opportunity	to	learn	more	about	the	company	and	the	developers,	who	created	
that	app.	At	the	bottom	of	each	About	Us	page	(figure	#67),	there	is	usually	the	name	of	the	company	
or	the	developer	who	built	the	app,	the	year	of	its	production	and	the	name	of	the	app	followed	by	
the	characteristic	trademark	symbol,	to	inform	readers	that	all	rights	for	the	app	and	the	name	are	
reserved.	
	
			

	
Figure	#	67.	About	us.	

	
	

3.4 Database Design
	
For	the	project	purposes,	I	used	an	SQL	server	via	phpMyAdmin.	For	my	project,	I	designed	two	
different	tables	in	my	database.	The	reason	why	I	created	two	tables	instead	of	one,	is	to	enable	me	
to	add	more	restaurants	to	my	app	in	the	future,	dynamically	via	the	database.	If	I	had	everything	in	
one	table,	afterwards	it	would	be	extremely	difficult	for	me	to	insert	new	restaurants	and	menu	
items,	because	I	would	have	to	completely	change	the	structure	of	my	database.	With	the	current	
design,	if	I	want	to	add	a	new	restaurant	for	example,	I	have	to	log	in	my	phpMyAdmin,	select	the	
restaurants	table	and	create	a	new	restaurant.	In	my	database,	I	have	programmed	an	error	
prevention	command.	To	be	more	specific,	if	the	admin	of	the	database	adds	a	restaurant	name	and	
forgets	its	image,	then	this	new	“row”	of	data	will	not	be	imported	to	the	database.	This	error	
prevention	command,	will	be	helpful	to	me	in	the	future,	when	I	will	have	to	add	new	restaurants	and	
items.	Also,	I	have	specified	the	type	of	each	data	inside	the	database	tables.	The	data	type	(figure	
#68),	is	a	guideline	for	SQL	to	recognize	what	type	of	data	is	expected	inside	each	column	and	it	also	
identifies	how	SQL	will	interact	with	the	stored	data.	It	is	helpful	again	for	the	admin	of	the	database,	
because	it	prevents	him	from	making	mistakes	with	the	data	types.		
			
	

	 53	

	
	

Figure	#68.	Database	ERD	(Entity	Relationship	Diagram)	
	
	

	

In	order	to	connect	these	two	tables,	I	have	created	an	r_id	and	every	time	I	want	a	restaurant	to	
have	certain	items,	I	have	to	make	sure	that	in	both	tables,	the	restaurant	and	menu	item	r_id,	is	the	
same.	
	

	
Figure	#	69.	Restaurants	Table.	

	

	
Figure	#	70.	Menu	Items	Table.	

	
	
	

	 54	

3.5 API Details & Database Components

As	I	have	already	mentioned,	the	database	is	designed	to	provide	the	best	usability	for	the	admin	of	
the	database.	Within	a	couple	of	minutes,	a	restaurant	can	be	added	with	its	menu.	The	problem	with	
the	SQL	database	that	my	University	provided	me	with,	is	that	it	is	not	that	fast.	In	order	to	make	it	
load	a	little	faster,	I	resized	all	the	icons	of	the	restaurants	and	items,	and	converted	them	to	the	
smallest	possible	size,	so	to	load	faster	to	the	app	tables.	The	images	are	stored	to	another	database	
[45]	and	in	my	main	database,	I	only	had	to	add	their	URL.	The	reason	why	I	uploaded	them	to	
another	server	and	not	to	my	main	one,	is	because	phpMyAdmin,	permitted	me	to	upload	images	
with	restricted	maximum	capacity	of	45	KB.		
	
I	used	the	program	draw.io	to	create	the	UML	diagram	below	(figure	#71),	that	shows	the	interaction	
between	user	and	app	components	in	a	more	elegant	way.	The	following	figure	is	the	UML	diagram	I	
designed,	which	represents	the	components	in	my	system	and	the	interaction	between	them.		
This	diagram	allowed	me	to	represent	the	communications	between	the	user	and	the	kitchen’s	chef.		

	
Figure	#	71.	UML	Diagram	of	the	app	components	&	interaction	between	them.	

	
	
	
	
	

	 55	

The	diagram	from	figure	#71	shows:	
	

• Interactions	with	the	user	and	the	app	UI	
• Interactions	between	the	app	and	the	database	with	the	aid	of	API	
• Interactions	between	the	user	and	the	e-mail	server	
• Interactions	between	the	e-mail	server	and	the	chef	of	the	kitchen.	

	
	
PHP	Script	Body	Design	
	
The	main	reason	why	I	preferred	PDO	over	MySQLi	is	mainly	for	the	future	evolution	of	this	app.	PDO	
supports	twelve	different	database	drivers	plus	MySQL,	whereas	MySQLi	supports	only	MySQL.	With	
PDO,	if	in	the	future,	I	want	to	move	to	another,	faster	database,	I	only	have	to	change	the	connection	
string	and	a	few	queries,	whereas	with	MySQLi,	I	would	have	to	rewrite	the	entire	code.	Also,	
according	to	runtime	results,	a	chart	shows	[53]	that	the	PDO	performance	is	faster	than	the	MySQLi.	
Also	PDO	allows	Named	parameters	like	SELECT	*	FROM	RESTAURANT,	whereas	MySQLi	does	not	
allow	named	parameters.	Although	MySQLi	is	easier	for	newcomers	to	understand,	I	insisted	on	
making	it	in	PDO,	so	afterwards	to	be	able	to	use	it	with	any	database	I	like.	
	
	
	

4 Results & Evaluation

4.1 Testing

	
Testing	was	performed	in	order	to	make	sure	that	each	feature	of	the	application	was	working	
properly.	There	was	no	formal	testing	approach	while	I	was	building	the	app	in	question.	During	each	
stage	of	the	application	building,	each	part	of	the	app	functionality,	was	fully	tested	to	make	sure	that	
I	can	move	on	with	the	project,	without	having	bugs.	This	informal	app	testing	during	the	building	
process	was	performed	by	myself,	by	running	the	app	to	both	the	Xcode	simulator	and	the	iPhone	
device	and	fixing	everything	that	was	preventing	my	app	from	running	properly.	
	
The	formal	testing	was	performed	from	third	party,	after	my	application	had	been	implemented.	To	
construct	a	formal	testing,	I	had	to	use	my	previous	knowledge	from	Human	Computer	Interaction	
subject,	from	the	second	year	of	my	academic	period.	It	was	a	form	of	user	testing.	This	was	
accomplished	successfully	from	friends	of	mine,	who	had	been	requested	to	use	my	application.	
Before	that,	I	had	given	them	a	test	script,	with	a	list	of	instructions	[Appendix,	1	UI	Evaluation	
Testing]	they	had	to	follow	in	order	to	perform	activities	on	the	application.	They	followed	the	
instructions	and	afterwards	they	told	me	if	they	agreed	or	not	with	the	general	functionality	of	the	
application.	However,	all	of	their	comments	were	positive	about	my	application	and	all	of	them	
agreed	that	the	application	was	very	user	friendly.	From	this	formal	user	testing,	no	problems	were	
identified	because	I	had	previously	tested	and	fixed	all	the	bugs	in	my	app.	
	
	
	
	
	
	

	 56	

Example	Test	Case	
	

Test	Case	–	User:	Athanasios	Gkavalis	

Step	 Procedure	 Expected	Outcome	 Pass/Fail	
1	 Open	the	Pocket	Waiter	

Application.	
Application	opens	without	crashing.		 Pass	

2	 Click	on	restaurants	button	
and	after	view	more	details	
about	an	item.	

All	the	restaurants	loaded	correctly	from	the	server	
and	when	user	selects	a	restaurant,	its	menu	
appear	and	he	can	have	a	more	detailed	view	about	
an	item.	

Pass	

3	 Click	on	the	waiter	icon,	
positioned	inside	the	menu,	
and	place	an	order.	

An	email	form	pops-up,	with	the	email	of	the	
restaurant	preinstalled	and	after	completing	the	
order	and	clicking	send,	the	order	is	send	via	email	
to	the	restaurant’s	email.	

Pass	

4	 Click	on	QR	code	button	and	
scan	a	QR	code.	

Camera	of	the	iOS	device	to	open	and	when	a	QR	
code	is	found,	a	label	with	its	content	to	appear.	

Pass	

5	 Click	on	Restaurants	nearby	
button	and	find	the	post	
code	of	“Pantheon”	
restaurant.	

A	map	with	user	current	location	to	load,	followed	
by	red	pin	annotations.	When	user	click	on	an	
annotation,	he	can	find	more	details	for	the	
restaurant	i.e.	its	post	code	

Pass	

6	 Click	on	the	bug	icon	and	
send	feedback	to	developer’s	
email.	

An	email	form	pops	up	with	developer’s	email	
account	preinstalled.	

Pass	

Figure	#	72.	Test	Case.	
	

4.1.1 Xcode Simulator VS iOS Device Testing

Xcode	simulator	is	a	very	useful	and	powerful	tool,	but	it	should	not	be	the	only	way	for	a	developer	
to	test	his	app.	Simulator,	is	basically	an	application	inside	Xcode	IDE,	which	runs	on	a	Mac	computer.	
The	Xcode	simulator	has	access	to	the	resources	of	the	computer,	including	the	CPU,	memory	and	
network	connection.	All	these	resources,	most	times	are	probably	faster	than	those	found	to	an	iOS	
device.	As	a	result,	the	simulator	is	not	a	precise	test	of	app’s	performance	and	developers	should	not	
rely	exclusively	on	it.	It	is	a	great	tool	which	helps	developers	perform	hundreds	of	informal	tests	
during	their	app	implementation.	In	order	the	test	to	provide	accurate	results,	developers	should	test	
their	app	performance	on	a	real	iOS	device	like	iPhone.	In	the	simulator	the	application	user	interface	
may	run	faster	and	more	smoothly	than	on	an	Apple’s	actual	mobile	device.	
	
My	first	app	tests	were	performed	with	the	Xcode	simulator.	It	was	easier	for	me	to	test	every	small	
implementation	to	my	app	there,	instead	of	every	time	to	run	it	and	test	it	on	my	mobile	device.	The	
problem	with	the	simulator	was	that	it	had	some	significant	hardware,	API	and	OpenGL	ES	differences	
from	an	iOS	device.	Because	of	that,	I	was	unable	to	run	some	features	of	my	application	directly	from	
the	simulator,	so	I	had	to	install	the	app	on	my	device	and	test	it	from	there.	For	example,	when	I	
completed	the	implementation	of	QR	Reader,	I	wanted	to	test	it	on	the	simulator	to	ensure	that	it	
was	working	properly.	I	was	continuously	getting	an	error	and	at	first	I	thought	that	was	a	bug	within	
the	code.	Afterwards,	I	found	out	from	iOS	Developer	Library	[46],	that	Audio	and	Video	are	not	
supported	from	the	simulator.	Next,	I	installed	the	application	on	my	iOS	device	and	I	informally	test	it	
there	with	great	success.	
	
Although	most	the	functionality	of	the	iOS	devices	can	be	simulated	in	a	simulator,	some	hardware,	
API	and	OpenGL	ES	features,	must	be	tested	directly	on	a	device.	The	reason	why	developers,	prefer	
simulator	for	informal	testing,	is	firstly	because	it	is	faster	than	a	device	and	it	also	produces	a	“crash	
logs”	report,	where	developers	can	locate	and	fix	coding	and	UI	problems,	faster.	Last	but	not	least,	
simulator	informs	developers	about	the	performance	of	their	application	while	they	are	running	it	and	

	 57	

it	notifies	them,	when	a	function	within	the	application	“holds”	a	bigger	amount	of	Ram	memory	than	
usual	(figure	#73).	
	

	

	
Figure	#	73.	App	performance	while	running	on	the	simulator.	

	
To	sum	up,	with	all	these	’tests’	I	performed	in	my	application,	I	realised	that	developers	should	never	
assume	that	Simulator,	mirrors	the	real-world	performance	of	an	application.	The	final	stage	test	of	
an	application,	should	always	be	performed	on	a	real	device.	
	
	

4.1.2 Differences between Simulator and Device testing

Hardware	Differences		
• Audio	and	Video,	Unsupported		
• Motion	Support,	Unsupported	
• Led	flashlight,	Unsupported	

	
API	Differences	

• Receiving	and	sending	push	notifications,	Unsupported	
• Handoff	support,	Unsupported	
• Privacy	alert	for	accessing	Photos,	Calendar	and	Contacts,	Unsupported	
• Message	UI,	Unsupported	

	
OpenGL	ES	Differences	

• Simulator	has	not	a	pixel-accurate	match	to	the	graphics	hardware	
	
	
	
	

4.1.3 How testing is performed

o Via	The	Xcode	Simulator.	
	
Simulator	is	designed	to	assist	developers	in	designing	and	testing	their	app,	but	as	I	
mentioned	previously,	it	should	not	be	the	sole	platform	for	testing.	To	test	an	application	on	
the	simulator	is	a	very	easy	process.	Firstly,	you	have	to	select	the	Xcode	project-app	you	
want	to	run/test,	secondly	you	have	to	select	the	device	you	want	your	app	to	be	simulated	
(figure	#74),	so	to	give	developers	an	approximate	idea	of	the	display	and	lastly	you	have	to	
hit	“command+b”	and	the	simulator	will	start	compiling/running	your	app.	
	
	

	 58	

	
	

Figure	#	74.	Different	simulators	&	Device.	

o Via	The	Device.	
	
The	application	testing	on	an	iOS	device	can	be	performed	as	easily	as	with	the	simulator,	but	
the	developer	has	to	make	some	changes	in	order	to	be	able	to	test	it	on	his	device.	Firstly,	he	
has	to	select	the	main	swift	project	and	select	a	“Team”	(figure	#75)	for	his	project.	Without	a	
team,	Xcode	will	not	allow	the	application	to	be	installed	on	another	device.	This	is	a	security	
measure	Xcode	takes,	in	order	to	protect	developer	projects.	For	being	able	to	run	it	on	my	
device,	I	had	to	request	from	my	University	an	Apple	developers	account	so	to	be	able	to	
select	a	“Team”.	
	

	
Figure	#	75.	Project’s	General	Settings.	

	
	

After	selecting	Cardiff	University	team,	I	went	back	to	Different	Simulators	and	Devices	(figure	
#73)	and	I	selected	my	mobile	device	which	I	had	previously	connected	via	USB	cable	to	my	
Mac	computer.	With	the	same	process,	I	hit	“command	+	b”	and	the	application	was	loaded	
to	my	device	and	then	I	was	able	to	test	it.	
	
	
	
	
	
	
	
	
	

	 59	

4.1.4 TestFlight, the professional way of app testing.

TestFlight	is	an	online	service	for	mobile	application	testing,	owned	by	Apple	Inc.	and	it	is	only	
available	to	iOS	developers.	Developers	that	are	signed	up	with	this	network,	can	send	their	
application	to	internal	or	external	testers,	who	can	send	feedback	about	the	application,	to	
developers.	Test	flight	used	to	support	both	Android	and	iOS	application	testing,	but	after	2015	[47],	
Apple	Inc.	made	it	available	only	to	iOS	developers,	who	hold	a	special	invitation.	Every	time	a	
developer	tests	another	developer’s	application	successfully,	he	gets	a	special	invitation	and	he	can	
use	it	afterwards	when	he	wants	his	application	to	be	tested,	from	third	parties.		
	
Unfortunately,	I	did	not	have	the	benefit	of	having	this	professional	way	of	testing	of	my	app.	The	
reason	is	because	this	was	the	first	time	I	had	built	an	application	and	most	specifically	an	iOS	
application,	and	I	had	not	had	any	invitations	from	external	developers	so	to	have	my	app	tested	by	
them.	After	receiving	an	invitation	from	an	external	tester,	then	it	will	be	very	easy	for	someone	to	
publish	their	app	to	TestFlight	for	testing.	Firstly,	you	have	to	download	the	TestFlight	app	from	the	
app	store	to	your	phone,	and	afterwards	click	on	the	redeem	invitation.	Secondly,	you	have	to	select	
the	application	you	want	to	publish	for	testing	and	click	on	the	“send	for	testing”	button.	Within	a	
couple	of	hours,	you	will	receive	registered	email	account	feedback	from	testers	to	your	Apple,	on	
how	to	improve	your	app	and	where	your	app	fails/crashes.	
	
	

4.1.5 Speed and Runtime Testing
	
The	speed	of	Pocket	Waiter	user	interface,	for	retrieving	restaurants’	data	is	extremely	quick.	
Although,	in	the	scenario	that	restaurant	and	menu	items	take	a	while	to	load,	is	due	to	the	fact	that	
the	“UI”	will	sometimes	have	to	wait	a	while	for	the	server	to	respond.	I	use	an	SQL	server,	for	the	
development	of	this	application,	which	is	provided	to	me	by	my	University,	for	free.	In	the	future	I	
have	to	move	my	application	hosting	to	a	faster	responding	server,	like	those	which	Amazon	Inc.	
provides	to	provide	users	with	the	best	experience.	Another	cause	which	prevents	the	application	
from	loading	data	faster,	is	the	user’s	poor	internet	connection.	So	the	response	time	it	depends	on	
the	speed	of	the	user’s	internet	connection	and	the	database	respond	time.	In	order	to	make	the	
tables	load	as	fast	as	possible,	all	the	restaurant	and	food	icons	have	been	rendered	from	me	to	the	
smallest	possible	size	so	to	help	the	server	to	respond	faster.	To	provide	users	with	the	best	possible	
feedback,	while	the	restaurant	table	is	loading,	I	have	embedded	into	the	application	a	loading	
symbol	which	shows	that	processing	is	taking	place.	
	
	

4.2 SWOT Analysis (Strengths,	Weaknesses,	Opportunities,	Threats)
	
Strengths		

• The	application	is	designed	especially	for	low	budget	restaurants	that	can’t	afford	for	PDA’s	or	
large	screens	in	order	to	place	orders	for	the	customers.		

• This	application	will	be	on	the	Apple	Store	for	free,	so	users	can	download	it	and	start	using	it.		
• Easy	and	cheap	maintenance	of	App.	

	 60	

• Easily	integrated	into	existing	EPOS	systems.	
• Branded	for	individual	restaurant.	
• All	orders	are	sent	via	e-mail.	

	
Weaknesses	

• Initially	only	available	on	iOS	operating	system,	for	the	moment.	
• May	reduce	the	human	interaction	between	restaurant	staff	(waiter)	which	some	might	see	

as	part	of	the	eating	out	experience.	
	
Opportunities	

• Experience	from	this	will	provide	a	platform	for	future	products.	
• An	opportunity	to	develop	a	database	of	restaurant	businesses	for	associate	marketing.	
• An	opportunity	to	start	a	company	off	the	back	of	this	product.	
• A	great	opportunity	afterwards	will	be,	adverts	to	target	a	selected	audience	and	depending	

user	preferences,	a	relevant	advert	to	be	displayed.	
• Another	great	opportunity	for	the	evolution	of	this	application	will	be	the	introduction	of	

bitcoins	as	a	method	of	payment.	Until	now,	bitcoins	have	not	proven	to	be	a	stable	and	safe	
currency	but	in	the	future,	a	combination	of	these	two,	will	bring	people	closer	to	
Decentralisation.	

• Possible	commercialisation	routes	(licensing,	merging	or	sale	to	existing	firms).		
	

	
Threats		

• Slow	uptake	of	product	as	a	result	of	being	a	new	and	untested	product.	
• Fear	of	change	for	those	already	using	existing	similar	product,	including	EPOS	products.	
• Threat	from	established	companies.	

	

4.3 Products, Services and Benefits

4.3.1					Products	and	Services		
	
‘Pocket	Waiter’	is	an	iOS-based	Mobile	Application	aimed	at	the	restaurant	market/sector.	While	it	is	
aimed	at	this	sector,	emphasis	is	on	small	to	medium	sized	restaurants	with	limited	resources	and	
budgetary	restrictions.	
	
Pocket	Waiter	will	integrate	into	existing	EPOS	(Electronic	Point	of	Scale)	systems,	where	they	already	
exist	or	act	as	a	stand-alone	tool	to	help	restaurants	engage	better	with	their	existing	and	potential	
customers.		
	
Other	features	provided	by	the	Pocket	Waiter	include:	
	

• It	can	act	as	a	stand-alone	product	or	integrated	into	existing	EPOS	system	
• Provides	full	menu	with	information	
• Social	Media	integration	
• Provide	restaurant	location	visible	on	map.	
• Take	full	control	over	your	App	content	
• App	matched	with	restaurant	branding	
• QR	reader	
• Quiz	game	–	add	small	banner	adverts	

	

	 61	

4.3.2					Benefits	
	

• Boosts	business	especially	from	existing	customers.	
	

• Increase	your	orders,	visitors	and	ultimately	revenue.	
		

• It	is	anticipated	that	the	Mobile	Application	will	continue	to	be	updated	to	meet	new	
demands	and	keep	up	with	market	sector	changes	and	trends.	This	will	mainly	be	done	by	
constantly	reviewing	restaurant	and	customer	usage	and	feedback.	This	will	allow	me	to	
extend	the	shelf	life	of	the	product.	

	
• While	there	is	no	environmental	legislation	applicable	to	the	product,	I	am	confident	the	

product	will	reduce	the	amount	of	paper	products	used	by	restaurants	in	the	process	of	order	
taking	as	it	will	predominantly	be	done	electronically.	

	
	
	

5 Future Work
	
My	project	was	completed,	unexpectedly	well	with	great	success.	I	have	completed	my	main	project	
plan	idea,	I	have	managed	to	do	my	two	extra	functions	of	the	QR	code	reader	and	the	Restaurants	
nearby	and	I	also	added	two	more	additional	features,	so	to	make	my	app	unique	and	irreplaceable.	
	
If	this	application	enters	the	market	and	people	start	using	it,	I	have	to	add	some	additional	features	
so	to	stand	among	the	competition.	In	the	future,	I	want	to	give	“Pocket	Waiter”	users,	the	ability	to	
pay	directly	via	this	application	and	receive	a	confirmation	of	their	deposit.	Also,	I	want	to	enable	
restaurant	owners	to	send	push	notifications	and	messages	to	costumers	about	the	processing	time	
of	their	order	plus	alerts	about	special	offers	and	discounts.	
	
Furthermore,	in	the	future	I	want	to	do	research	among	all	the	Server	providers	and	move	my	
database	to	the	fastest	and	the	most	reliable	server,	so	as	to	eliminate	customer	waiting	time	for	the	
restaurants	to	load	from	the	server.	Unfortunately,	I	run	out	of	time	and	I	did	not	implement	to	my	
application,	a	search	bar.	I	have	created	a	different	application	with	a	search	bar	which	allows	users	
to	view	results	as	they	are	typing	but	I	did	not	have	time	to	implement	it	into	my	main	application.	
	
Last	but	not	least,	in	the	future,	I	want	to	prevent	“spam”	and	fake	orders	which	will	annoy	and	
confuse	the	restaurants	with	its	orders.	To	prevent	that,	in	the	future	I	will	change	the	structure	of	
the	application	so	the	customers	to	be	able	to	order	from	the	selected	restaurant	only	if	they	have	
connected	to	its	WIFI	network.	To	be	more	specific,	I	have	to	register	the	SSID	and	the	mac	address	
of	the	restaurant’s	router,	inside	the	application	via	the	CaptiveNetwork	interface	[54]	so	to	make	
the	menu	of	the	restaurant	load,	only	if	the	user	is	connected	to	the	restaurant’s	network.	That,	will	
save	valuable	time	from	restaurants,	who	will	receive	fake	orders	from	people	who	are	not	at	the	
restaurant.	For	the	same	reason,	in	the	future	I	want	to	hide	restaurant’s	email	from	users,	so	not	to	
be	able	to	send	an	email	order	from	their	email	app,	without	Pocket	Waiter	app	intermediary.	
		
To	sum	up,	from	my	point	of	view	I	strongly	believe	that	the	development	of	each	application	does	
not	have	an	end	point.	New	technologies	and	software	updates	are	released	at	very	rapid	rhythms,	
so	developers	have	to	continuously	learn	and	follow	these	changes,	in	order	to	keep	their	apps,	
updated	and	able	to	follow	these	new	technologies.		
	
	

	 62	

6 Conclusions
	
The	most	interesting	conclusion	for	me	is	the	fact	that	I	learned	by	myself,	without	any	structured	
guidance	and	within	a	very	limited	time,	how	to	build	an	iOS	application,	using	Swift	language	and	I	
ended	up	representing	Cardiff	University,	in	the	yearly	Santander	Universities	Entrepreneurship	
Awards	2016	competition,	for	New	technologies	and	Mobile	Applications.	This	project	has	also	
broadened	my	horizons	from	a	business	aspect.	I	learned	how	to	build	a	business	plan	properly,	why	
is	that	important	and	I	got	a	general	idea	of	the	whole	cycle	of	an	official	app	building,	from	the	
background	searching	to	the	implementation	and	afterwards	to	the	app	release	on	the	market.	
	
One	of	the	major	difficulties	of	this	project	was	the	connection	with	the	database	and	the	
dynamically	data	loading	from	the	server.	I	realised	how	difficult	it	is	to	deal	with	new	problems	
when	you	work	on	a	project	alone	but	I	also	found	out	how	to	cope	with	these	stressful	situations.	It	
is	true,	that	online	you	can	find	everything	you	are	interested	in	but	the	problem	is	that	you	have	to	
filter	many	times	your	result	outputs,	because	the	world	wide	web	contains	a	lot	of	untrusted	and	
fake	resources.	
	
I	truly	believe	that	this	application	can	give	low	budget	restaurants,	who	cannot	afford	EPOS	
systems,	the	opportunity	to	follow	the	evolution	of	technology	and	introduce	this	new	way	of	
ordering	system	to	their	restaurants	and	get	benefited	from	the	multitude	of	opportunities,	Pocket	
Waiter	will	provide	them.	The	reason	why	this	application	is	revolutionary	and	unique,	is	because	it	
combines	all	the	already	existing	systems	and	application,	like	online	reservation	apps	or	menu	
catalogue	apps.	Apart	from	that,	because	the	main	structure	of	it	is	designed	to	be	at	the	lowest	
possible	cost,	it	can	be	afforded	by	anyone.			
	
This	project	helped	me	with	the	expansion	of	my	research	and	technical	skills	and	besides	it	made	
me	cope	with	stressful	situations	in	a	much	better	way	than	before.	Dissertation	is	the	most	
important	coursework	for	a	University	student	and	more	or	less,	the	overall	grade	and	future	career	
of	a	student,	depends	on	it.	My	decision	of	creating	something	new	for	my	dissertation,	without	any	
background	experience	and	academic	guidance,	was	very	risky	because	I	could	have	ended	up	being	
unable	to	build	something	and	as	a	result	I	could	have	taken	a	very	low	mark	or	even	ended	up	with	
a	failure.	Despite	all	the	difficulties	I	have	encountered	in	the	course	of	the	project	and	the	sleepless	
nights	fretting	over	the	task	in	question,	I	feel	very	lucky	that	I	had	the	opportunity	to	live	that	
experience,	because	it	made	me	reach	my	limits	and	realise	that	the	difficulty	of	something,	depends	
on	how	extensively	one	is	willing	to	search	and	how	hard	one	is	willing	to	work,	most	of	the	time	
under	great	pressure,	to	accomplish	it.	This	project	has	been	a	real	proof	for	me,	that	everything	is	
achievable	if	we	really	need	something	and	the	higher	the	risk	is,	the	higher	the	outcome.	I	insist	on	
the	last	phrase,	because	despite	all	these	difficulties	I	faced,	in	the	end,	I	had	a	great	result	with	a	
prototype	app	working	properly	and	I	got	the	opportunity	to	enter	a	real	world	mobile	application	
competition.	
	
	

7 Reflection and Learning

Firstly,	this	project	allowed	me,	to	expand	my	technical	and	searching	skills	and	also	helped	deal	with	
stressful	situations	under	the	pressure	of	time.	It	is	really	remarkable	the	fact	that	you	can	actually	
build	an	iOS	application	without	any	professional	guidance,	just	with	the	aid	of	the	internet.	For	this	
project	I	used	two	languages.	I	used	SWIFT,	for	building	the	application	and	adding	all	the	functions	
on	it,	and	PHP	in	order	to	make	my	application	connect	with	the	server.	PHP	is	a	language	that	I	have	

	 63	

met	in	my	first	year	when	I	had	to	make	a	website	but	this	time	it	was	much	harder	because	I	had	to	
connect	my	iOS	application	using	this	language	and	the	difficulty	with	iOS	applications	is	that	after	
every	update,	you	have	to	update	big	part	of	your	code	including	my	PHP	request	script.	The	big	
obstacle	I	faced	when	I	was	developing	the	application,	was	the	fact	that	I	didn’t	have	the	flexibility	to	
choose	a	different	programming	language	rather	than	SWIFT,	which	is	a	programming	language	that	I	
had	to	learn,	within	a	short	period	of	time	from	online	recourses,	where	most	of	the	times	the	online	
content	in	tutorials	was	outdated	and	incorrect.	The	skills	that	I	have	acquired	from	this	self-learning,	
made	me	more	confident	with	myself	and	made	me	realise	that	everything	is	achievable	if	done	
under	a	lot	of	pressure	and	accompanied	by	real	willingness	for	the	project	accomplishment.		
	
I	have	also	learned	to	use	Xcode	IDE	and	I	have	a	clear	picture	now,	of	what	each	item	on	this	
development	environment	is	referred	to	and	also	I	have	understood	how	to	choose	the	best	technical	
tools	for	iOS	applications.	What	I	mean	here	is	that	I	learned	a	majority	of	available	libraries	in	Xcode	
and	I	realized	how	to	use	them	and	why	developers	are	‘addicted’	to	them.	The	simple	reason	is	
because	libraries	include	all	the	required	functionalities	a	developer	wants,	to	complete	his	project	
faster	and	more	accurate.	Now	after	the	completion	of	this	application,	I	feed	a	better	computer	
scientist,	who	did	something	useful	for	the	real-world,	away	from	the	“University	Guidance”.	All	this	
exposure	to	new	technical	material,	gave	me	a	lot	of	self-esteem	which	will	hopefully	help	me	with	
my	future	career.				
	
Moreover,	despite	the	fact	that	I	had	a	little	experience	with	photo	editing	I	had	to	learn	the	Adobe	
Photoshop	CS6	deeper,	in	order	to	design	my	application	buttons,	to	meet	with	Apple	Human	
interface	suggestions	and	also	to	provide	users	with	best	experience.	When	you	make	a	mobile	
application,	apart	from	the	code	which	will	run	in	the	background,	the	developer	has	to	be	very	
careful	with	the	front-end	design	because	even	if	the	design	of	the	background	code	is	perfect,	if	the	
application	isn’t	user	friendly,	then	it’s	worthless.	This	project	made	me	realise	the	difficulty	that	
developers	face	in	their	effort	to	convert	the	hard	coded	background	to	simple	buttons.	After	
developing	my	first	application,	every	time	I	launch	an	application	I	appreciate	each	function	of	it	and	
I	continuously	think	and	send	feedback	on	how	the	developer	could	have	improved	his	application.	
	
Furthermore,	this	project	made	me	manage	better	myself,	deal	with	stressful	situations	and	
managing	to	finish	before	the	deadline.	I	have	been	involved	in	many	group	projects	in	the	past,	
during	my	first	and	second	year	in	university,	but	I	had	never	met	such	an	enormous	amount	of	
responsibilities	and	research,	that	had	to	be	done	by	myself,	in	a	very	limited	period	of	time.	I	knew	
from	the	beginning	of	this	project	that	my	supervisor	isn’t	allowed	to	help	me	with	my	project	and	
that	made	me	a	better	“fighter”,	but	Dr	Chorley	has	provided	me	with	very	useful	advices	on	how	the	
application	would	be	more	functional	to	the	users.	To	be	more	specific,	in	the	beginning	of	this	
project,	I	wanted	to	insert	all	the	restaurants	and	the	food	items,	in	a	static	way	but	he	strongly	
advised	me	to	make	it	in	a	more	dynamic	way	and	make	them	load	from	an	online	database,	because	
it	would	not	be	so	user	friendly,	if	every	time	I	wanted	to	insert	a	new	restaurant	to	my	app,	I	had	to	
release	a	new	update,	instead	of	doing	it	directly	from	the	server.	
	
Last,	via	this	project	I	learned	how	to	make	a	business	plan	(Appendix,	3	Business	Plan)	and	I	realised	
why	is	so	important	for	the	business	market.	I	have	never	heard	before	the	term	business	plan	and	I	
wasn’t	aware	of	its	main	purpose.	After	taking	part	and	being	chosen	to	represent	Cardiff	University,	
in	the	Santander	bank	Mobile	Application	Awards	2016,	I	was	asked	to	provide	the	bank,	with	my	
proposal	embedded	in	a	business	plan.	This	business	plan,	helped	me	understand	how	apps	enter	the	
real	world	and	how	developers	request	funding	from	banks	or	other	establishments,	so	to	be	able	to	
start	developing	a	project.		
	
	

	 64	

8 Glossary & Referencing
	
	
	

8.1					Glossary	
	
API	An	access	point	for	an	app,	that	can	be	remotely	called.	It	stands	for	Application	Programming	
Interface	
	

Baas	Provider	Backend	as	a	service.	It	falls	under	cloud	computing	category	and	makes	easier	
for	developers	to	setup,	use	and	operate	a	cloud	backend	for	their	apps.	

	
EPOS	The	electronic	point	of	sale.	It	is	the	time	and	place	where	a	retail	transaction	is	completed.	
Under	this	category,	there	are	all	these	ordering	systems	with	PDA’s	and	monitors	which	help	with	
the	more	efficient	management	of	a	company.	
	

FTP	Stands	for	File	Transfer	Protocol.	
	
IDE	An	Integrated	Development	Environment,	is	a	software	application,	like	Xcode,	which	provide	
developers	with	tools	necessary	for	software	development.	

	
iOS	A	software	for	mobile	devices,	created	from	Apple	Inc.	for	all	its	devices.	

	
JSON	A	famous	object	interchange	format.	JSON	stands	for	JavaScript	Object	Notation.	
	

Latitude	It	is	the	amount	of	north-to-south	distance	to	display	the	map.	

	
Longitude	It	is	the	amount	of	east-to-west	distance	to	display	the	map.	

	
NSObject	A	universal	base	class	for	all	Cocoa	Touch	classes	in	both	Swift	and	Objective-c.	
	
PHP	A	server	side	scripting	language.	it	stands	for	Personal	Home	Page.	

	
QR	Code	A	type	of	matrix	barcode	(2D)	for	data	storing	and	fast	readability.	It	stands	for	Quick	
Response	Code.	

	
UI	It	is	the	user	interface.	It	is	basically	the	space	where	interactions	between	humans	and	
machines,	occur.	
	
	

	 65	

8.2					References	
	
 [24] @twostraws, P. (2016). How to scan a QR code – Swift 2 example code. [online] Hackingwithswift.com.

Available at: https://www.hackingwithswift.com/example-code/media/how-to-scan-a-qr-code [Accessed 4

May 2016].

[44] AndroidPIT. (2015). How black wallpaper can save your Android battery - AndroidPIT. [online] Available

at: https://www.androidpit.com/how-black-wallpaper-can-save-your-battery [Accessed 4 May 2016].

[4] Anon, (2016). [online] Available at: http://www.tutorialspoint.com/swift/swift_tutorial.pdf [Accessed 4 May

2016].

[37] Anon, (2016). [online] Available at: http://www.keloo.ro/doc/10000_intrebari.pdf [Accessed 4 May 2016].

[39] Anon, (2016). [online] Available at: https://developer.apple.com/iad/monetize/Implementing-iAd-in-Your-

iOS-Apps.pdf [Accessed 4 May 2016].

[55] Anon, (2016). [online] Available at:

http://www.deloitte.com/view/en_GB/uk/industries/thl/43ef03869ef4b310VgnVCM2000003356f70aRCR

D.htm [Accessed 4 May 2016].

[3] Anon, (2016). Swift Book PDF. [online] Available at: http://carlosicaza.com/swiftbooks/SwiftLanguage.pdf

[Accessed 4 May 2016].

[27] Appcoda.com. (2014). Building a QR Code Reader in Swift. [online] Available at:

http://www.appcoda.com/qr-code-reader-swift/ [Accessed 4 May 2016].

[0] BigHospitality.co.uk. (2016). Value of restaurant market to reach £52bn by 2017. [online] Available at:

http://www.bighospitality.co.uk/Trends-Reports/Value-of-restaurant-market-to-reach-52bn-by-2017

[Accessed 4 May 2016].

[41] Bort, J. (2016). Microsoft Invented A Tablet A Decade Before Apple And Totally Blew It. [online] Business

Insider. Available at: http://www.businessinsider.com/heres-visual-proof-of-just-how-badly-microsoft-

blew-it-with-tablets-2013-5?IR=T [Accessed 4 May 2016].

[14] Code School Forum. (2016). App Evolution with Swift 5.3 - prepareForSegue...?. [online] Available at:

https://www.codeschool.com/discuss/t/app-evolution-with-swift-5-3-prepareforsegue/25182 [Accessed 4

May 2016].

[8] Developer.apple.com. (2016). About Connecting Objects to Code. [online] Available at:

https://developer.apple.com/library/ios/recipes/xcode_help-

IB_connections/chapters/AboutConnectingObjectstoCode.html#//apple_ref/doc/uid/TP40014227-CH42

[Accessed 4 May 2016].

	 66	

[38] Developer.apple.com. (2016). About iAd. [online] Available at:

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/iAd_Guide/Introductio

n/Introduction.html#//apple_ref/doc/uid/TP40009881-CH1-SW1 [Accessed 4 May 2016].

[22] Developer.apple.com. (2016). AVCaptureMetadataOutputObjectsDelegate Protocol Reference. [online]

Available at:

https://developer.apple.com/library/ios/documentation/AVFoundation/Reference/AVCaptureMetadataOut

putObjectsDelegate_Protocol/ [Accessed 4 May 2016].

[54] Developer.apple.com. (2016). CaptiveNetwork Reference. [online] Available at:

https://developer.apple.com/library/ios/documentation/SystemConfiguration/Reference/CaptiveNetworkR

ef/index.html [Accessed 4 May 2016].

[6] Developer.apple.com. (2016). Configuring Your Xcode Project for Distribution. [online] Available at:

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/Configurin

gYourApp/ConfiguringYourApp.html [Accessed 4 May 2016].

[30] Developer.apple.com. (2016). Core Location Constants Reference. [online] Available at:

https://developer.apple.com/library/ios/documentation/CoreLocation/Reference/CoreLocationConstantsRe

f/#//apple_ref/doc/constant_group/Accuracy_Constants [Accessed 4 May 2016].

[33] Developer.apple.com. (2016). Displaying Maps. [online] Available at:

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG

/MapKit/MapKit.html#//apple_ref/doc/uid/TP40009497-CH3-SW1 [Accessed 4 May 2016].

[5] Developer.apple.com. (2016). iOS Human Interface Guidelines: Designing for iOS. [online] Available at:

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/index.html

?utm_source=twitterfeed&utm_medium=twitter [Accessed 4 May 2016].

[42] Developer.apple.com. (2016). iOS Human Interface Guidelines: Designing for iOS. [online] Available at:

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/index.html

?utm_source=twitterfeed&utm_medium=twitter [Accessed 4 May 2016].

[28] Developer.apple.com. (2016). main.m. [online] Available at:

https://developer.apple.com/library/ios/samplecode/CurrentAddress/Listings/main_m.html#//apple_ref/doc

/uid/DTS40009469-main_m-DontLinkElementID_11 [Accessed 4 May 2016].

[31] Developer.apple.com. (2016). MapKit Data Types Reference. [online] Available at:

https://developer.apple.com/library/ios/documentation/MapKit/Reference/MapKitDataTypesReference/#//

apple_ref/c/tdef/MKCoordinateSpan [Accessed 4 May 2016].

	 67	

[36] Developer.apple.com. (2016). SLComposeViewController Class Reference. [online] Available at:

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Reference/SLComposeViewCo

ntroller_Class/#//apple_ref/doc/uid/TP40012205-CH1-SW4 [Accessed 4 May 2016].

[7] Developer.apple.com. (2016). Start Developing iOS Apps (Swift): Create a Table View. [online] Available

at:

https://developer.apple.com/library/ios/referencelibrary/GettingStarted/DevelopiOSAppsSwift/Lesson7.ht

ml [Accessed 4 May 2016].

[10] Developer.apple.com. (2016). Start Developing iOS Apps (Swift): Create a Table View. [online] Available

at:

https://developer.apple.com/library/ios/referencelibrary/GettingStarted/DevelopiOSAppsSwift/Lesson7.ht

ml [Accessed 4 May 2016].

[18] Developer.apple.com. (2016). Start Developing iOS Apps (Swift): Implement Navigation. [online]

Available at:

https://developer.apple.com/library/ios/referencelibrary/GettingStarted/DevelopiOSAppsSwift/Lesson8.ht

ml [Accessed 4 May 2016].

[46] Developer.apple.com. (2016). Testing and Debugging in Simulator. [online] Available at:

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/Testingont

heiOSSimulator/TestingontheiOSSimulator.html#//apple_ref/doc/uid/TP40012848-CH4-SW1 [Accessed 4

May 2016].

[50] Docs.cs.cf.ac.uk. (2016). Accessing Your University Files Remotely from Windows. [online] Available at:

https://docs.cs.cf.ac.uk/notes/accessing-your-university-files-remotely-from-windows-and-vista/

[Accessed 4 May 2016].

[40] Economics.mit.edu. (2016). [online] Available at: http://economics.mit.edu/files/1785 [Accessed 4 May

2016].

[2] Facts, M. (2016). Topic: Mobile App Usage. [online] www.statista.com. Available at:

http://www.statista.com/topics/1002/mobile-app-usage/ [Accessed 4 May 2016].

[51] GitHub. (2016). Alamofire/Alamofire. [online] Available at: https://github.com/Alamofire/Alamofire

[Accessed 4 May 2016].

[52] GitHub. (2016). SwiftyJSON/SwiftyJSON. [online] Available at:

https://github.com/SwiftyJSON/SwiftyJSON [Accessed 4 May 2016].

[21] GitHub. (2016). yannickl/QRCodeReader.swift. [online] Available at:

https://github.com/yannickl/QRCodeReader.swift [Accessed 4 May 2016].

	 68	

[48] Hosting, S. (2016). How to Create Database with PhpMyAdmin Tutorial. [online] Siteground.co.uk.

Available at: https://www.siteground.co.uk/tutorials/phpmyadmin/phpmyadmin_create_database.htm

[Accessed 4 May 2016].

[43] Icons8.com. (2016). [online] Available at: https://icons8.com/free-ios-7-icons-in-vector/#/win [Accessed 4

May 2016].

[16] Jacobs, B. (2015). iOS From Scratch With Swift: Table View Basics. [online] Code Envato Tuts+.

Available at: http://code.tutsplus.com/tutorials/ios-from-scratch-with-swift-table-view-basics--cms-25160

[Accessed 4 May 2016].

[32] Karger, H. (2016). Geo Tag Generator. [online] Geo-tag.de. Available at: http://www.geo-

tag.de/generator/en.html [Accessed 4 May 2016].

[15] Leist, J. (2014). iOS Swift Tutorial - passing data between ViewControllers - James Leist. [online] James

Leist. Available at: http://jamesleist.com/ios-swift-passing-data-between-viewcontrollers/ [Accessed 4

May 2016].

[23] Liu, F. (2016). SwiftQRCode on CocoaPods.org. [online] Cocoapods.org. Available at:

http://cocoapods.org/pods/SwiftQRCode [Accessed 4 May 2016].

[11] Lynda.com - A LinkedIn Company. (2016). Create a basic table view and a data source iOS App

Development. [online] Available at: http://www.lynda.com/Swift-tutorials/Creating-basic-table-view-data-

source/185036/362308-4.html? [Accessed 4 May 2016].

[35] Noyes, A. and Noyes, A. (2016). Top 20 Facebook Statistics - Updated March 2016. [online] Zephoria Inc.

Available at: https://zephoria.com/top-15-valuable-facebook-statistics/ [Accessed 4 May 2016].

[9] Parse.com. (2016). Parse. [online] Available at: https://parse.com/about [Accessed 4 May 2016].

[1] Perez, S. (2016). Consumers Spend 85% Of Time On Smartphones In Apps, But Only 5 Apps See Heavy Use.

[online] TechCrunch. Available at: http://techcrunch.com/2015/06/22/consumers-spend-85-of-time-on-

smartphones-in-apps-but-only-5-apps-see-heavy-use/ [Accessed 4 May 2016].

[45] Postimage.org. (2016). Postimage.org - free image hosting / image upload. [online] Available at:

http://postimage.org/ [Accessed 4 May 2016].

[53] Potop, R. (2016). PDO vs MySQLi performance comparison. [online] Wooptoo.com. Available at:

http://wooptoo.com/blog/pdo-vs-mysqli-performance-comparison/ [Accessed 4 May 2016].

[25] Shrikar Archak. (2015). AVFoundation : Implementing Barcode Scanning in Swift. [online] Available at:

http://shrikar.com/implementing-barcode-scanning-in-ios8-with-swift/ [Accessed 4 May 2016].

	 69	

[12] Swift, H. (2016). How to load specific image from assets with Swift. [online] Stackoverflow.com. Available

at: http://stackoverflow.com/questions/29356574/how-to-load-specific-image-from-assets-with-swift

[Accessed 4 May 2016].

[13] Swift, P. (2016). Prepare for Segue in Swift. [online] Stackoverflow.com. Available at:

http://stackoverflow.com/questions/24040692/prepare-for-segue-in-swift [Accessed 4 May 2016].

[26] Team, C. (2016). CocoaPods.org. [online] Cocoapods.org. Available at: https://cocoapods.org/ [Accessed 4

May 2016].

[20] Techotopia.com. (2016). An Example Swift iOS 8 iPhone Camera Application - Techotopia. [online]

Available at:

http://www.techotopia.com/index.php/An_Example_Swift_iOS_8_iPhone_Camera_Application

[Accessed 4 May 2016].

[49] W3schools.com. (2016). PHP Connect to MySQL. [online] Available at:

http://www.w3schools.com/php/php_mysql_connect.asp [Accessed 4 May 2016].

[19] Whatisaqrcode.co.uk. (2016). What is a QR Code?. [online] Available at: http://www.whatisaqrcode.co.uk/

[Accessed 4 May 2016].

[34] Wikipedia. (2016). Mercator projection. [online] Available at:

https://en.wikipedia.org/wiki/Mercator_projection [Accessed 4 May 2016].

[47] Wikipedia. (2016). TestFlight. [online] Available at: https://en.wikipedia.org/wiki/TestFlight [Accessed 4

May 2016].

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 70	

9 Appendix
	
9.1					UI	Evaluation	Testing	

	
General	Questionnaire	

Pocket	Waiter	Usability	Questionnaire	
	

1. I	like	the	design	of	the	“Pocket	waiter”	and	it	is	very	user	friendly.	
Disagree	1¨,	2¨,	3¨,	4¨,	5¨,	6¨,	7¨,	8¨,	9¨,	10¨	Agree	
	

2. The	navigation	inside	the	app	was	easy.	
Disagree	1¨,	2¨,	3¨,	4¨,	5¨,	6¨,	7¨,	8¨,	9¨,	10¨	Agree	
	

3. I	immediately	understood	the	function	of	each	button.	
Disagree	1¨,	2¨,	3¨,	4¨,	5¨,	6¨,	7¨,	8¨,	9¨,	10¨	Agree	

	
4. The	buttons	were	well	organised	and	easy	to	find.	

Disagree	1¨,	2¨,	3¨,	4¨,	5¨,	6¨,	7¨,	8¨,	9¨,	10¨	Agree	
	

5. I	found	easily	the	“Playroom”	inside	the	app.	
Disagree	1¨,	2¨,	3¨,	4¨,	5¨,	6¨,	7¨,	8¨,	9¨,	10¨	Agree	
	

6. I	found	the	Pocket	Waiter	app	very	complex	to	use.	
Disagree	1¨,	2¨,	3¨,	4¨,	5¨,	6¨,	7¨,	8¨,	9¨,	10¨	Agree	
	

7. I	have	completely	understood	after	one	use,	how	the	app	works.	
Disagree	1¨,	2¨,	3¨,	4¨,	5¨,	6¨,	7¨,	8¨,	9¨,	10¨	Agree	
	

8. I	successfully	placed	an	order	via	this	app.	
Disagree	1¨,	2¨,	3¨,	4¨,	5¨,	6¨,	7¨,	8¨,	9¨,	10¨	Agree	
	

9. In	comparison	with	other	apps	I	have	used	in	the	past,	I	found	Pocket	
Waiter	to	meet	all	the	quality	criteria.	
Disagree	1¨,	2¨,	3¨,	4¨,	5¨,	6¨,	7¨,	8¨,	9¨,	10¨	Agree	
	
Name:	
Surname:	
Student	Number:	

																																																																																	Signature	

	 71	

User	#1		
	

	
	
	
	
	
	

	 72	

User	#2	
	

	
	
	
	
	
	

	 73	

User	#3	
	

	
	
	
	
	
	
	

	 74	

9.2 		QR	Code	Scan	example:	
	

	

	 75	

9.3 Business	Plan.	
	

Introduction	
	
Pocket	Waiter	is	an	iOS-based	Mobile	Application,	which	will	provide	“ordering”	services	to	
restaurants	at	an	affordable	or	minimal	cost.	The	Application	uses	email	services,	which	are	provided	
for	free	from	providers	like	Google	or	Yahoo,	to	process	orders.	In	that	way,	restaurant	owners	with	
limited	funds	can	have	the	same	ordering	system	standard	used	by	bigger	food	outlets	like	
McDonalds,	at	no	cost.	The	Pocket	Waiter	Application	will	reduce	the	time	waiters	invest	in	‘waiting’	
allowing	their	time	to	be	invested	in	other	areas	and	improve	productivity	
	
This	application,	will	load	all	the	restaurants	dynamically	from	the	server	and	upon	user	restaurant	
selection,	the	respectively	menu	will	appear.	After	customer	decides	what	he	wants	to	order,	he	can	
then	place	the	order.	
	
The	procedure	of	placing	the	order	and	sending	it	to	the	kitchen	is	being	designed	to	be	free	for	
both.	After	user	sees	the	main	menu,	he	can	then	click	on	the	“waiter”	icon-button	which	is	
positioned	on	the	top	left	of	the	menu	of	each	restaurant	and	a	special	form	will	come	up,	
requesting	from	users	to	type	their	order	and	their	table	number.	In	the	form,	the	email	of	the	
company	will	be	prefixed.	
	
This	new	way	of	ordering,	we	aim	in	the	future	to	replace	the	already	expensive	systems	which	
require	from	restaurant	owners	very	high	maintenance	fees.	
	
There	are	applications	on	the	market	who	offer	ordering	services,	but	yet	none	of	them	is	using	
email	for	processing	of	the	order.	The	reason	is	because	large	software	companies	promote	
centralised	systems	on	the	market	and	they	try	to	sell	as	more	equipment	as	possible,	like	PDA’s,	so	
restaurant	holders	to	depend	exclusively	on	them.		
	
My	application	will	fall	under	the	freemium	applications.	These	type	of	applications	are	much	more	
downloadable	and	it	is	the	only	way	to	persuade	someone	to	replace	his	already	ordering	system	
with	ours.	It	will	be	provided	for	free	to	both,	application	users	and	restaurant	owners.	If	restaurant	
managers	want	this	application	to	provide	“more”	to	customers,	I	will	give	them	the	opportunity	to	
upgrade	from	the	basic	plan	to	premium	with	upon	requesting	a	“friendly”	fee.		
	
To	sum	up,	this	application	will	look	like	a	“Swiss	knife”	so	to	be	preferred	among	others.	I	compared	
“Pocket	Waiter”	with	a	Swiss	knife,	because	I	don’t	want	just	to	be	a	knife	but	a	multifunctional	app.	
I	will	add	extra	features	like	restaurants	nearby,	QR	Reader,	social	media	integration,	game	and	
much	more,	so	the	user	to	have	everything	he	needs	in	just	one	application.		
	
SWOT	Analysis	(Strengths,	Weaknesses,	Opportunities,	Threats)		
Strengths		

• The	application	is	designed	especially	for	low	budget	restaurants	that	can’t	afford	for	PDA’s	
or	large	screens	in	order	to	place	orders	for	the	customers.		

• This	application	will	be	on	the	Apple	Store	for	free,	so	users	can	download	and	start	using	it.		
• Easy	maintenance	of	App	
• Easily	integrated	into	existing	EPOS	systems	
• Branded	for	individual	restaurant	
• All	orders	are	sent	via	e-mail	

	

	 76	

Weaknesses	
• Initially	only	available	on	iOS	operating	system	with	intentions	to	extend	to	other	Operating	

Systems	
• May	reduce	the	human	interaction	between	restaurant	staff	(waiter)	which	some	might	see	

as	part	of	the	eating	out	experience.	
Opportunities	

• Experience	from	this	will	provide	a	platform	for	future	products	
• An	opportunity	to	develop	a	database	of	restaurant	businesses	for	associate	marketing	
• An	opportunity	to	start	a	company	off	the	back	of	this	product	
• A	great	opportunity	afterwards	will	be,	adverts	to	target	a	selected	audience	and	depending	

on	user	preferences,	a	relevant	advert	to	be	displayed.	
• Another	great	opportunity	for	the	evolution	of	this	application	will	be	the	introduction	of	

bitcoins	as	a	method	of	payment.	Until	now,	bitcoins	haven’t	proven	to	be	a	stable	and	safe	
currency	but	in	the	future,	a	combination	of	these	two,	will	bring	people	closer	to	
Decentralisation.	

• Possible	commercialisation	routes	(licensing,	merging	or	sale	to	existing	firms)			
	

Threats		
• Slow	uptake	of	product	as	a	result	of	being	a	new	and	untested	product	
• Fear	of	change	for	those	already	using	existing	similar	product,	including	EPOS	products	
• Lack	of	track	record	by	the	owner/developer	of	the	App	
• Threat	from	established	companies	

	
Products	and	Services		
	
‘Pocket	Waiter’	is	an	iOS-based	Mobile	Application	aimed	at	the	restaurant	market/sector.	
While	it	is	aimed	at	this	sector,	emphasis	is	on	small	to	medium	sized	restaurants	with	
limited	resources	and	budgetary	restrictions.	
	
Pocket	Waiter	will	integrate	into	existing	EPOS	system	where	it	already	exists	or	act	as	a	stand-alone	
tool	to	help	restaurants	engage	better	with	their	existing	and	potential	customers.	The	App	will	
allow	customers	to	view	menus,	special	offers,	book	their	own	tables,	order	from	menus	and	many	
more	features.	These	can	be	done	before	arriving	at	the	restaurant	or	at	the	restaurant	itself.	It	will	
allow	for	the	restaurants	to	reduce	the	amount	of	time	required	by	the	waiters	to	manage	other	
activities.	
	
Other	features	provided	by	the	Pocket	Waiter	include:	
	

• It	can	act	as	a	stand-alone	product	or	integrated	into	existing	EPOS	system	
• Provides	full	menu	with	blurbs	and	information	
• Make	reservations	and	pre-order	food	
• Take	deposit	confirmation	
• Social	Media	integration	
• Send	push	notification	and	messages	to	customers	
• Provide	restaurant	location	visible	on	map.	
• Integrated	loyalty	coupons	
• Take	full	control	over	your	App	content	
• App	matched	with	restaurant	branding	
• QR	reader	
• Quiz	game	–	add	small	banner	adverts	

	 77	

Benefits	
	

• Boosts	business	especially	from	existing	customer	
• Increase	your	orders,	visitors,	customer	base,	and	ultimately,	revenue	
• It	is	anticipated	that	the	Mobile	Application	will	continue	to	be	updated	to	meet	new	

demands	and	keep	up	with	market	sector	changes	and	trends.	This	will	mainly	be	done	by	
constantly	reviewing	restaurant	and	customer	usage	and	feedback.	This	will	allow	us	to	
extend	the	shelf	life	of	the	product.	

	
• Our	company	will	aim	to	own	all	relevant	Intellectual	Property	Rights	to	the	product.	IPR	

rights	currently	being	considered	include	Trademark	of	the	name	and	copyright.		
• While	there	is	no	environmental	legislation	applicable	to	the	product,	we	are	confident	the	

product	will	reduce	the	amount	of	paper	products	used	by	restaurants	in	the	process	of	
order	taking	as	it	will	predominantly	be	done	electronically.	

• Restaurant	will	be	offered	regular	after	sales	updates,	but	will	have	access	to	the	back	end	of	
the	App	to	enable	quick	updates	(e.g.	changing	prices	for	special	offers)		

	
Markets	and	Marketing	
	
The	concept	of	‘restaurant	Apps’	is	not	entirely	new.	Existing	‘restaurant	Apps’	are	predominantly	
used	to	explore	local	restaurants,	find	establishments	near	you,	view	menus	and	order	takeaway	
deliveries.	This	is	great	if	you	are	exploring	what	is	available	to	you.		
	
Pocket	Waiter	is	ideal	if	you	already	know	which	restaurant	you	want	to	dine	at	or	your	favourite	
restaurant.	
	

• There	are	3	main	types	of	mobile	experiences	–	Mobile	Apps,	Mobile	Websites	and	QR	
Codes	

• According	to	a	recent	research	(2012),	of	the	world’s	4	billion	mobile	phones	in	use,	1.08	
billion	are	smart	phones.	91%	of	all	adults	have	a	smartphone.	

• 94%	of	smartphone	users	look	for	local	information	on	their	phone,	and	90%	take	action	as	a	
result.	

• 67%	say	they	are	more	likely	to	buy	a	product	or	service	from	a	mobile-friendly	site.	
• Apple	sold	9	million	iPhone	5S	&	5C’s	during	the	first	weekend	of	availability.	
• Customers	spend	more	when	using	online	and	mobile	apps	
• 40%	of	customers	already	place	orders	online	
• 20%	of	quick	service	restaurants	already	allow	customers	to	submit	orders	with	their	mobile	

phones.	
• Mobile	orders	can	become	a	significant	percentage	of	restaurant	business.	

	
	
	
	
	
General	description		
	
According	to	the	UK	Restaurant	Market	Report	2014	published	by	Allegra	Foodservice,	it	is	
estimated	that	the	value	of	the	UK	restaurant	market	will	reach	£48.2	billion	in	2014	and	rise	to	£52	
billion	by	2017.	Branded	eateries	are	forecast	to	grow	by	6.5%	over	the	next	three	years	to	reach	a	
value	of	£17.6	billion	by	2017.	In	particular,	fast	food	outlet	sales	are	forecast	to	grow	by	12.4%	and	
numbers	of	outlets	are	expected	to	increase	by	7.6%	between	2013	and	2014,	with	McDonald's	and	

	 78	

KFC	leading	the	growth.	The	report	also	revealed	that	the	most	active	consumers	in	the	restaurant	
sector	are	aged	18	to	24,	indicating	opportunities	for	restaurateurs	to	engage	better	with	older	
consumers	(www.bighospitality.co.uk/Trends-Reports/Value-of-restaurant-market-to-reach-52bn-
by-2017).	
	
A	related	study	published	by	Allegra	Foodservice	in	July	2014	indicated	that	independent	restaurants	
are	expected	to	suffer	as	consumers	switch	to	branded	chains,	and	the	total	restaurant	sector,	
including	independents,	is	forecast	to	grow	by	just	1.7%	in	2014	
(www.bighospitality.co.uk/Business/Independent-restaurants-could-suffer-as-eating-out-market-
grows).	
	
According	to	a	2014	consumer	survey	by	the	NPD	Group,	the	annual	traffic	in	fast	casual	dining	
restaurants,	such	as	Nando's	and	Wagamama	grew	by	11%	between	2009	and	the	year	ending	
March	2014.	This	is	equivalent	to	an	increase	of	47	million	restaurant	visits.	Affordability	is	one	
factor	that	has	been	attributed	to	the	growth	of	fast	casual	dining,	with	the	average	bill	per	visit	for	
one	person	at	this	type	of	eatery	working	out	at	£11.90.	The	report	also	revealed	that	the	casual	
dining	sector	is	often	the	choice	for	family	visits,	which	account	for	36%	of	visits	to	casual	dining	
restaurants	at	dinner	time.	More	than	10%	of	survey	respondents	said	that	they	visited	casual	dining	
outlets	because	they	are	popular	with	children	(www.bighospitality.co.uk/Trends-Reports/Casual-
dining-restaurants-are-increasing-in-popularity).	
	
According	to	a	2012	report	by	Deloitte	entitled	'Taste	of	the	Nation',	generational	divisions	have	
emerged	in	terms	of	the	frequency	with	which	individuals	go	out	to	eat	and	drink.	Despite	financial	
pressures	created	by	the	economic	downturn,	18	to	34-year-olds	are	driving	the	market	by	eating	
out	more	-	on	average	31	times	a	month,	up	from	25	times	a	month	in	2011.	This	is	nearly	double	
the	rate	among	35	to	54-year-olds	and	more	than	three	times	that	of	people	aged	55	and	over,	who	
eat	out	on	average	just	11	times	per	month.	Londoners	also	tend	to	eat	out	the	most	at	over	25	
times	a	month,	an	11%	increase	from	2011	
(www.deloitte.com/view/en_GB/uk/industries/thl/43ef03869ef4b310VgnVCM2000003356f70aRCR
D.htm).	

Taking	payment	

A	till	(from	£150)	will	handle	basic	transactions.	Go	to	www.cashregistergroup.com	for	examples.	
Specialist	electronic	point-of-sale	(EPOS)	systems,	typically	including	spill-proof	touch-screen	
terminals	and	software	that	gives	detailed	inventory	and	stock	reports	are	available	from	around	
£2,000.	Examples	of	suppliers	include	South	West	Systems	(www.southwestsystemsuk.com)	and	
Global	Retail	(www.global-retail.co.uk).	
	
A	Chip	and	PIN	machine	with	portable	handsets	will	be	required	to	process	credit	and	debit	card	
payments.	Examples	of	providers	
include	www.lloydsbankcardnet.com,	www.streamline.com	andwww.chipandpinsolutions.com.	
Alternatively,	they	can	be	leased	from	banks.	Equipment	rental	costs	between	£15	and	£35	a	month	
(prices	vary	according	to	the	supplier	and	whether	the	terminal	is	portable	or	fixed	on	the	
countertop),	plus	per-transaction	charges	of	around	2%.	
	
Restaurants	are	increasingly	taking	payment	via	smartphone	apps	and	keypads.	Examples	of	
providers	include	iZettle	(www.izettle.com),	which	charges	variable	rates	on	a	percentage	basis	
depending	on	sales	figures,	and	WorldPay	Zinc,	which	charges	around	£60	for	a	chip	and	pin	keypad	
and	2.75%	per	payment	with	no	monthly	fees.	Go	to	www.worldpayzinc.com	for	details.	PayPal	Here	
also	provides	a	free	app,	which	requires	a	card	reader	costing	£99.	A	fee	of	2.75%	applies	to	all	

	 79	

payments	accepted	with	chip	and	pin	cards	or	via	'PayPal	Check-in'.	Go	
towww.paypal.com/uk/webapps/mpp/merchant	for	more	information.	
	
	
	

Specialist	software	

There	are	a	number	of	restaurant	reservation	management	software	packages	that	allow	staff	to	
enter	customer	reservations	onto	a	calendar.	Examples	include	MICROS	(www.micros-
systems.co.uk/en-GB/Solutions/Restaurants-and-Catering.aspx)	and	Resdiary	(www.resdiary.com).	
Prices	start	from	around	£80	per	month	for	a	restaurant	taking	up	to	350	bookings	a	month.	
	
Online	reservation	software	that	allows	customers	to	make	their	own	reservations	via	the	
restaurant's	website	is	also	available.	Examples	include	Kernow	Software's	e-restaurant	package	
(www.kernow-software.co.uk).	
	
Major	competitors	
	
There	are	a	range	of	Mobile	and	Web-based	applications	in	the	market	including;		
		
Square	Meal	
Provides	a	combination	of	professional	reviews	and	the	fact	that	you	can	get	details	of	special	offers	
and	make	online	bookings.	All	that	from	a	free	app.	
	
Time	Out	
Time	Out	is	a	good	app	for	finding	good	restaurants	in	and	around	London.	Many	of	these	
restaurants	have	been	reviewed	by	Time	Out's	team	of	critics,	which	we	find	makes	the	reviews	
more	credible.	only	limitation	is	the	fact	that	it's	focused	on	London.	
	
Poynt	
The	fact	that	this	app	offers	more	than	restaurant	information	is	a	factor	in	its	favour,	and	YouTube	
is	now	built	into	the	app.	
	
	
Toptable	
We	love	the	fact	that	we	can	book	tables	online	without	needing	to	talk	to	anyone.	The	only	thing	
that	lets	Toptable	down	is	the	fact	that	the	app	can	be	limited	because	not	every	restaurant	you	
might	want	to	go	to	offers	online	booking	via	Toptable.	
	
Matchbook	
Matchbook	might	be	useful	if	you	arrived	at	a	location	and	wanted	to	find	a	place	to	eat	that's	
nearby,	but	rather	than	providing	reviews,	the	onus	is	on	you	to	write	the	review,	and	for	that	
reason	it's	not	really	that	useful.		
	
The	Mobile	Food	Guide	
This	app	is	a	little	too	limited	in	its	offering	of	restaurants	at	the	moment,	and	given	that	at	log	in	it	
boasts	that	it	is	"The	UK's	Premier	Mobile	Restaurant	Guide"	that	is	a	disappointment.	
	
	
	
	

	 80	

Foursquare	
Foursquare	has	built	up	a	social	community	in	some	areas,	and	in	these	areas	it	works	well	enough	
as	a	restaurant	recommendation	app.	Like	Forkly	and	Foodspotting	it	offers	photos	of	food,	but	it	
offers	more	of	a	focus	on	user	reviews	and	more	information	about	the	venue.	
	
Forkly	
If	you	like	taking	photos	of	your	food	this	app	might	appeal,	but	unfortunately	it's	competing	with	
Foodspotting	-	and	Instagram	–	and	this	app	really	doesn't	seem	to	cover	enough	restaurants	to	be	
useful.	
	
Competitive	advantages		
	
Pocket	Waiter	will	be	more	than	just	a	comparison	or	search	app	for	restaurants.	Being	able	to	
reserve	a	booking	and	order	your	entire	meal	using	the	app	while	at	the	restaurant	takes	it	one	step	
above	some	of	the	apps	mentioned	above.	
	
Our	competitive	pricing	strategy	also	allows	us	to	be	relatively	affordable	compared	to	our	
competitors,	taking	into	consideration	our	range	of	feature	because	the	whole	system	is	based	on,	
email,	is	provided	for	free.	So	even	restaurants	can’t	afford	for	a	computer	screen,	the	owner	can	
receive	his	orders	directly	to	his	mobile	device.		
	
Marketing	
	
Our	primary	target	market	is	the	restaurants	themselves.	With	that	in	mind,	most	marketing	efforts	
will	be	aimed	at	them.		We	intend	to	implement	direct	marketing,	simply	by	identifying	the	
restaurants,	approaching	them	and	possibly	doing	a	demonstration	of	how	the	app	will	integrate	
and	work	for	them.	Once	we	acquire	some	early	adopters	(through	incentive),	we	intend	to	use	
these	as	case	studies	to	engage	further	users.	
	
We	also	intend	to	employ	a	Social	Media	campaign	to	facilitate	this	process,	possibly	using	a	
marketing	agency	with	experience	in	the	area	(resources	permitting)	
	
Management,	team	and	Personnel		
	
Name:	Athanasios	Gkavalis	
Work:	Cardiff	University	School	of	Computer	Science	–	3rd	year	Undergraduate	Student	
Telephone:	(+44)	7716748397	
Email:	thanasisgavalis@gmail.com	
Home	Address:	Windsor	house	6,	Westgate	Street	–	Cardiff	[CF10	1DG]	
	
Future	Developments		
	
There	are	options	for	the	future	development	of	‘Pocket	Waiter’	in	the	long	term.	Considerations	
include	the	potential	collaboration	of	a	3rd	party	organisation	to	increase	its	functionality,	integrating	
detailed	inventory	and	stock	report	for	the	restaurants.	
	
There	is	also	consideration	in	expanding	into	extended	regions	depending	on	the	success	of	the	app	
in	the	early	stages	within	our	target	region.	
	
	
	

	 81	

Finance		
	
Current	start-up	investment	already	made.	
	

• £2500	total	cost	of	the	iMac	
• £80/year	apple	developers’	subscription	(in	order	to	make	it	available	to	the	app	store)	
• £120/year	for	CS5	Adobe	Photoshop	
• £40/year	for	server	maintenance	

	
	
	
Product	/	Service	cost:	
	
There	will	be	3	introductory	models.	These	will	be	differentiated	by	the	range	of	feature	available.	
	
Basic	model	@	Free:	
	
The	basic	plan	will	be	provided	to	all	restaurants	for	free.	It	will	provide	them	with	the	basic	
operations	of	the	Pocket	Waiter	App,	like	having	their	restaurant	and	their	menu	on	the	app,	plus	
allow	customers	to	order.	
	
Premium	Model	@	£12/month:	
	
The	premium	plan	will	provide	the	restaurant	owners	with	more	details	of	user	preferences	and	also	
the	user-interface	will	be	more	advanced.	For	example,	restaurants	under	premium	plan	can	see	
what	people	at	that	area	like	most,	so	to	supply	their	restaurant’s	warehouse	with	food	items	that	
are	mostly	preferred.	Also	the	email	order	will	be	processed	automatically	from	my	team,	so	in	the	
kitchen	to	see	a	more	structured	email	rather	that	a	common	email.	
	
Diamond	Model	@	£19/month:	
	
The	diamond	plan	is	the	best	for	large	restaurants	that	already	use	expensive	EPOS	systems.	It	will	
provide	them	with	all	the	above	and	it	will	also	give	priority	listing	inside	the	App,	to	the	restaurant.	
When	users	pass	through	a	restaurant	with	the	diamond	plan,	Pocket	Waiter	app	will	also	send	users	
notifications	about	new	deals	or	discounts	the	restaurant	offers.	The	price	for	this	plan	will	not	be	
higher	than	£19	monthly	so	restaurants	to	allow	easy	transition	from	premium	to	diamond	plan.		
	
Financial	Assumptions:	
	
We	do	not	anticipate	generating	any	significant	sales	income	in	the	Y1	from	the	product	itself	(i.e.	
the	App).	As	we	go	through	the	beta-phase	in	Y1,	the	App	will	be	available	for	free.	The	only	source	
of	income	will	be	from	‘ads’	available	through	the	App.	This	will	depend	on	‘click	per	pay’	and	
challenging	to	estimate.	We	have	gone	for	a	conservative	estimate.	
		
	
	
	

	
	
	

	 82	

	

