
Final Report

ANDROID ‘TIDES’ APPLICATION

Carlton Sandhu

Supervisor: Ralph Martin
Moderator: Martin Caminada

Module CM3203 One Semester Project (40 Credits)

Project Android ‘Tides’ Application 1315913

1

Abstract

In completing of this project I have produced a fully location-aware android application that can not

only display tidal results but has an implementable way of estimating tides as a vast solution to

existing applications that lack functionality. There are several ways, designed to fulfil User needs that

tidal ports are able to be selected and their respective data retrieved. This already offers more

functionality than pre-existing applications.

However the real investigation was into providing an acceptable estimation of Tidal Data at an

uncharted location using existing data. Challenges of which included which data is selected, what

criteria influences the tides and how best to approximate the data. This assignment looked to

provide a usable, feasible solution to the problem and look to improve on existing methods, where

available.

Acknowledgements

I would like to sincerely thank Professor Ralph Martin for his continuing support, patience and

insight he has provided in my project and for providing fruitful criticism and invaluable suggestions

through the duration. Without Professor Martin, I wouldn’t have learned half as much from this

venture and I hope the project reflects his efforts in doing so.

Project Android ‘Tides’ Application 1315913

2

Contents
Abstract ... 1

Acknowledgements ... 1

1 - Introduction ... 4

1.1 – Aims and Goals ... 4

1.2 – Project importance... 4

1.3 – Audience and potential beneficiaries .. 4

1.3 – Scope of the project and outcomes ... 5

1.4 Approach ... 5

1.5 Assumptions .. 5

2. Background ... 6

2.1 Problem Identification and Context .. 6

2.2 Coastal Theory and Interpolation ... 7

2.3 Constraints to the approach ... 7

2.4 Exploring existing solutions ... 8

2.5 Methods and Tools for Solution ... 8

2.6 Question the project addresses ... Error! Bookmark not defined.

3. Specification .. 10

3.1 Application/Program Specification ... 10

3.2 User Interface Specification .. 11

4. Design .. 12

4.1 Android Modules .. 12

4.1.1 HCI .. 12

4.1.2 Data types .. 15

4.1.3 Back-Stack model ... 16

4.2 External Modules .. 17

4.2.1 Module Design (Static Architecture) .. 17

4.2.2 Tide Calculation Algorithm ... 18

4.2.3 Tide Calculation Analysis Algorithm ... 21

4.3 Considerations .. 22

4.3.1 Data acquisition ... 22

4.3.2 Visual computation of Coastline .. 22

4.4 Static Architecture .. 23

4.5 Data Flow .. 24

4.5.1 Project Data Flow ... 24

4.5.2 Tide Calculation Data Flow ... 25

Project Android ‘Tides’ Application 1315913

3

5 – Implementation .. 25

5.1 minMap ... 25

5.2 Screen by screen walkthrough (Android Implementation) .. 26

5.2.1 Main Menu ... 26

5.2.2 Port List .. 27

5.2.3 Location List ... 29

5.2.4 Map Selection & Specific Tide Calculator .. 29

5.2.5 Tidal Data Display ... 31

5.3 TideCalculator ... 32

6 Results and Evaluation ... 34

6.1 Testing ... 34

6.1.1 Implementation vs. Specification Testing and Evaluation (Android Modules) 34

6.1.2 Does implementation perform what its intended to do (External Module Unit Testing) ... 37

6.2 Tide Calculator Performance .. 41

6.3 Evaluation / Conclusions ... 44

6.3.1 Project achievements ... 44

6.3.2 Successfulness of design .. 45

6.3.3 What worked well/less well ... 45

6.3.4 What I learnt from the project ... 46

7 Future Work ... 46

8 Conclusions .. 48

9 Bibliography ... 49

10 Appendices ... 49

Project Android ‘Tides’ Application 1315913

4

1 - Introduction

1.1 – Aims and Goals
The overall goal of this project are to create a comprehensible, readable and efficient Android

Application to channel a solution which will allow users to swiftly find tidal predictions on the

android platform. There are several ways that can determine which station the tidal data is sourced

from but the main aim of this project is to derive it automatically through the user’s location. Upon

port selection the user shall have all relevant data displayed including and up until a certain date

range providing a good degree of accuracy and correctness in retrieving these results to display in an

understandable manner.

There are very few tidal applications on the Playstore, all few of these offer very basic tidal

information and I believe there is room for improvement in the manner these applications present

and manipulate tidal data. The client application will be written for the Android platform solely.

Furthermore with this application a big Goal is to be able to predict a tide in between stations for a

more accurate result offered to users which, as my preliminary research suggests, would be a

completely unique feature offering very useful extra functionality.

1.2 – Project importance
The prediction service this assignment is going to offer, I believe fulfils a need for more coverage of

tidal data on the UK coastline. Despite offering 695 official locations along the coast, there are

actually many significantly large gaps between stations. This is not ideal for people who live near

these uncovered sites. Perhaps one of the uncovered sites is a fishing haven where information

about the tide would be paramount to locals and visitors. My preliminary research into the matter

suggests that there are several tidal applications, none of which provide this added (or much other)

functionality which performs such a service which I aim to provide. Thus I feel there is an actual need

to bridge the gap.

1.3 – Audience and potential beneficiaries
The audience for my project assumes that they can read tidal data in tabular and/or graphical

format, yet assumes no technical-aptitude or even moderately complex geographical domain

knowledge. My project is only available on the android platform and will require a working network

connection. I will also only be developing the application in English for obvious reasons (see the

scope below for more information).

In terms of actual audience, the target market is very wide encircling anybody of which tidal data can

be useful to. This includes a multitude of casual and professional enthusiasts ranging from fisherman

and casual sailors to professional fields of studies such as marine biologists. We can ensure that the

data source we are using (Admiralty Total Tide) is the United Kingdom Hydrographic Office standard.

Admiralty TT is ‘The world’s most comprehensive tidal prediction’ and ‘fast, accurate tidal height

predictions’. Partnered with the fact that it is fully automated, which reduces chance of user error,

the accuracy and integrity of the data can be guaranteed throughout.

The target audience has no age restriction as such but will generally the kind of activities tidal data is

used for assume a more mature audience from about 18 upwards. The general tone and layout of

the program is going to be formal as the main purpose of the application is informative as opposed

entertainment since the general purpose is meant to be informative.

Project Android ‘Tides’ Application 1315913

5

1.3 – Scope of the project and outcomes
The scope of this project limits the functionality of the features to locations within the United

Kingdom and ports that are available for selection will be geographically located within the UK. The

primary objective of the project is to provide extensive tidal information and provide current data.

The project needs to be able to do the following by the end:

 Allow user free selection of any port within the UK via a map

 Allow user selection of a port by way of using list of results (categorised by some criteria to

enable easier navigation)

 Use the user’s location to be able to determine the closest (potentially a list of the closest)

station to their current/last known location

 Display tidal data from the selected port in tabular format and in graphical format

To solve the problem that somebody quite far from a tidal station couldn’t get local enough tidal

data if there is a lack of a port, this application will have some advanced goals.

 Be able to select the nearest body of water to the users location to enable a location where

a prediction can be made

 Be able to give a reasonable estimation of Relative Tide Times / Tide height between two

stations given a point in the water

Given these goals I am going to make them measurable in that all retrieval of tidal data for existing

ports is to be obtained and processed in real time (dependent upon internet connection).

Furthermore interpolation of tides between two stations must be calculated and rendered within a

feasible amount of time, ensuring not to inconvenience the user.

Realistically regarding project scope and the time I have to develop it, a more intense focus will be

on the functionality as opposed to implementing and designing a massively user friendly

application. Due to the audience and beneficiaries there is less need for a fancy GUI and more need

for a formal, functional UI so this is not really an issue.

1.4 Approach
For my application’s development I’ve chose to adhere to the Waterfall model. This software

development cycle best suits my needs as I have pre-identified goals, I can be invested completely in

one stage at any given time ensuring quality work and the project is relatively short. Furthermore I

have familiarity with this procedural development. I have chosen Waterfall over other methods such

as Agile as the project will not be repeatedly changing and it’s important with an assignment like this

there is adequate planning. I also considered the Iterative method but disregarded it due to the fact

that the project isn’t that big, requirements are not always present up front which may cause design

issues later on down the line and it’s a rather costly model in the fact that rough products are

created at every iteration.

1.5 Assumptions
In developing this project there are a few assumptions I am obeying:

 As aforementioned the end-product will be a fully functional prototype so there will be more

focus on meeting the functional requirements rather than having a visually appealing

application.

Project Android ‘Tides’ Application 1315913

6

 The project’s locational scope is limited to the UK as research as we can use reliable data

from the official UK standard and there is limited port information elsewhere in the world

available to me.

 Assume that there is an active internet connection (Via Data or via Wi-Fi) on the user’s

android smartphone otherwise application will not be able to function correctly

 Assume user’s Android SDK is API 15: Android 4.0.3 (IceCreamSandwich) or above. This is

based on Android’s recommendation to not program to anything before this as over 97% of

Android users are running an API from or later than this. See picture below.

Figure 1 – Recommended device settings from Android

2. Background

2.1 Problem Identification and Context
As it stands UK tidal data is currently available on several well-known places on the web (BBC,

UKtidetimes, and Admiralty etc.) yet not one of these large providers have an application available

on the android market. Furthemore (See Below) if you lived in Happisburgh your two nearest

stations, Cromer and Winterton-On-Sea, are both roughly 17 miles away. So someone who would

need tidal data relevant to Happisburgh has to pick between these stations and use their tidal data

to estimate for their location. This could vary hugely between those stations therefore this

application hopes to provide an ‘Interpolation’ technique to create data from existing data.

Figure 2 - Happisburgh on google maps with distance between the closest two stations

Project Android ‘Tides’ Application 1315913

7

This project’s aim is to provide a more complete tidal coverage of the UK to provide people with a

suitable estimation of tide given their location.

2.2 Coastal Theory and Interpolation
The only complete way to observe the change in water levels is to actually have a huge backlog of

data from a constant point. From knowing the data, knowing the orbit of the Earth, Moon and Sun

(which are exactly known) means tides can be predicted in the future at the given point with great

accuracy. To make predictions of the tides height and times other factors such as lunar phases and

the periodic rotation of the Earth are factored in and as shown in the diagram below produced

trustworthy results. R4

Figure 3 - Predicted water level vs Observed Water Level

However accurate prediction is, trying to interpret and interpolate between known stations can be

problematic. If the known stations were in the middle of the ocean it would not be a problem but

because I am looking to predict tides on the UK, the tide can be heavily dependent upon the shape

of the coastline. Therefore I am seeking to provide a reasonable estimation with a certain degree of

accuracy.

2.3 Constraints to the approach
There are over 600 stations in the UK I have access to be able to retrieve tidal data. As

aforementioned there’s no scientifically verified, pre-existing, deterministic algorithm that I can

utilise in conjunction within my project to predict tides between these stations. This means I’m going

to have to determine a suitable geographical solution that can be automated and performed within

an Android application and smart-phone’s capability..

The application also requires the user to have an internet connection to be able to retrieve results.

The application also needs full permission and location services to be active when accessing location,

to be able to provide some of the intended features for the application.

Finally time could become a factor with needing to complete all parts of the report/project to an

acceptable standard in my opinion. Partnered with the fact I’m learning Android Programming,

explore several solutions to a problem (which will require some geographical research as well). Due

to not having access to any backlog of data for every single point on the UK coast there’s

Project Android ‘Tides’ Application 1315913

8

unfortunately no way I can feasibly gather data within the time frame. Not to mention the fact that I

have lack of access to tools or resources to be able to gather the data anyway.

2.4 Exploring existing solutions
There are several third-party applications that provide tidal information. Upon first inspection of the

two most popular of these applications it was immediately clear that they were lacking features

which I think could greatly enhance the application. The two applications I examined were ‘anyTide’

and ‘UK Tides’. Both of these applications take your last known location / your current location and

display the port(s) nearest to you (In the case of anyTide nearby Ports are shown on a map). They

were both lacking the selection of a port of anything other than your current location however, so

for example if you were going to travel to Newport but were currently situated in Cardiff, you

wouldn’t be able to obtain the information on the UK Tides application since you weren’t actually at

Newport. I want my application to offer several ways of selecting the port they want as I found not

only both of their solutions to be inadequate in terms of choices, but far-from intuitive as to what

each button performs which task on either of these apps.

AnyTide has a limited map selection of under 200 ports which can only be selected by Map. Besides

the search button which is a pretty good feature to search for a port (though mostly doesn’t return a

result) they are confusing and have no hints as to what each of them do.

UK Tides doesn’t even provide an alternative means for searching besides using your current

location. However it does provide a good feature to enable you to save your favourite ports for later

use. Furthermore if you have recent data it saves it rather than having to re-scrape the data from the

web which saves battery usage and data.

As suggested by my preliminary research, none of these have a solution to intermediate estimation

between tide stations. Besides the displayed Graphs, they both offer a very simplistic view. The

saving grace of these is that when a port’s data is actually obtained the initial date the data is very

easy to understand.

2.5 Methods and Tools for Solution
Whilst doing preliminary research into potential methods to aid in the project, there were a couple

of incredibly useful Java modules and interpolation methods. The first was a Google API which is

incredibly powerful tool in locational and geo-locational utility services. Secondly a lightweight web-

scraping module which is perfect for the limited processing power of a smart phone. Lastly I’ve

looked into producing some techniques involving triangulation. Partner that with investigation into

the tidal interpolation method that exists to see if a feasible, computational resolution can be made.

The first priority I had was to find and learn Android Programming, as well as find a good IDE to be

able to collate everything in a package as well as have good IDE functionality. Fortunately, Android

not only provides an official IDE with more extensive functionality and support than any other

Android IDE., but also they provide an online course from which it only took a few days to become

familiar with almost everything I needed. The Android Studio IDE for android development is a Java

IDE like Eclipse or Netbeans, both of which I am familiar with and are good for Java development and

have some Android support, but provides a vast amount more maintenance for resources, automatic

generation of necessary XML files and in-built libraries to help with designing the UI. Furthermore it

provides an emulator on which you can test your application as well as providing support for

managing all imports/external APIs with broad library management.

Google Maps API allows developers to integrate google maps into their project which is essential for

this project. With the need for location functions such as plotting points on a map, retrieving

Project Android ‘Tides’ Application 1315913

9

location and a user being able to select a point where tidal data can be estimated, this API provides

functionality that encompasses methods to be able to achieve this. Google offer this as a free for

non-commercial use license with limited requests (1000 per day). This shouldn’t be a problem as my

application won’t be available publicly. Google Maps API was chosen in place of the in-built Android

location modules. Google’s location API is recommended by Android themselves therefore I chose

this over the deprecated Android Location module.

There are many android-compatible web-scrapers, using a Web-View widget on Android could even

perform the necessary data acquisition. I chose Jsoup because it doesn’t need to waste time and

battery power to display all the elements as it just parses the HTML as a document. Furthermore its

compatibility with Android Development was a big factor for inclusion. HTMLUnit was considered

also for its added javascript-parse functionality but ultimately I didn’t need to process javascript so

was unnecessary.

Lastly I explored tidal data and prediction and found that there is a way tidal data can be estimated.

However upon further studying found out that the only way the complex interpolation algorithm can

be done is if you have a pre-existing backlog of data of at least 3 months at a certain point.

Considering the time frame of the project, lack of measuring instruments and resources this is not an

option I could carry on pursuing. However, using computed versions of trigonometry/triangulation

to estimate distances between ports and the angle of incident, I can achieve a better estimation of

tides. There are several Java libraries like the Path library or Math to help with triangular formulae.

Project Android ‘Tides’ Application 1315913

10

3. Specification

3.1 Application/Program Specification
The outcome of this project is to have a fully functional android application that provides at least all

of the features, in improved form, that existing applications provide. The application is going to

produce tidal information such as height, time and whether the tide is high/low in real-time along

with a comprehensive list of UK tidal stations. The application also aims to provide several ways of

being able to select which station to retrieve data from. Lastly, the application hopes to be able to

provide a good way of estimating tidal data between known stations through algorithmic

interpolation of pre-existing data given a user-defined location.

Given below are a list of essential and desirable requirements for the application side of the project.

Essential Requirements

1. Application should offer choice to display a map with UK tide ports charted from which user

can select the tide they wish by clicking on the marker

2. Application should offer choice to display a list of the UK tide ports by name

3. List of tides should be categorised geographically by region (I.e. Southwest, Northeast,

Scotland etc.)

4. Application should offer choice to display a some of the closest tides to the user’s last

known location

5. Application should display the Tide Height, Tide Time and Tide Type in a tabular format

after a port is selected, plus the name of the port that was selected

6. Application should plot said Data in requirement 5 in graphical format

7. Application should provide a way to estimate tidal data by the user selecting the 2 nearest

stations

8. The application should have a complete list of UK Tide Times concurrent with

tidetimes.org.uk

Justification:

Requirements 1, 2 and 4 are quintessential to the project as it addresses the problem that pre-

existing solutions have in that they don’t offer many ways to select a port. These 3 requirements

cover pretty much every way there is to select a port and will do so intuitively. Requirement 3 I have

selected the regional categories as opposed to selection by County which would produce too many

results and categorisation by country which is too general. Regional classification is well-known and

widely used within the UK so I’ve elected to choose this grouping. Requirement 5 denotes all the

information that is possible to retrieve for the user regarding tides and is the core functionality. The

web pages that display tidal data and all the applications I researched provide a graphical plot so I

will too as it would be what a user might come to expect. Requirement 7 is essentially what makes

the project unique. Given a map and an estimation of the user’s location (which the user can alter) it

should find the nearest two stations and offer a prediction of the tides between the locations. Lastly

requirement 8 is just a case of keeping an up-to-date list available to the application.

Desirable Requirements (Time-permitting requirements that would enhance the

application)

1. Application could store results along with the date the result was retrieved in the devices

memory

Project Android ‘Tides’ Application 1315913

11

2. Application could retrieve results from 6 days in advance as well as the current day

3. Application could provide a favourites feature to store their favourite ports

Justification:

For requirement 1 this reduces the usage of the internet and save battery life by storing the results

and the date in which it was obtained. If a user would try to access the data on the same given date

it could be swiftly retrieved without the need of an internet connection thus increasing functionality

and reducing the project’s dependency on the internet. Requirement 2 extends the generic

convention of applications and websites tending to show a week’s worth of data in advance. Lastly,

for faster retrieval and increased user-satisfaction, a ‘favourites’ option where a user could maintain

a list of ports they’d like to swiftly and frequently access.

3.2 User Interface Specification
As mentioned earlier there is going to be less concentration on building a user-friendly UI since it is a

formal, informative application. However the UI within this application still has to have a good base-

level to provide an intuitive and attractive interface. Therefore I’ve decided to include the following

requirements to help satisfy some design principles as recommended by android.

UI Requirements

1. The Main Menu (Home Page) will be accessible from every section of the application

2. Keep all phrases and textboxes as brief as possible without sacrificing the meaning of the

text

3. Conform to design trends set by pre-existing applications

4. Keep layout/colour scheme formal

5. Have error messages displayed in ‘toasts’

6. Have System-status visible to the user at all time by having title atop of the page depending

on section of the system

Justification:

Requirement 1 ensures the user can comfortably ‘resort’ to the main menu, where all main modules

will be accessed from, to ensure easy navigation. Requirement 2 comes from a recommendation

from Android that states for brevity; ‘people are likely to skip sentences if they’re long’. The

application’s prior intent is to provide information and the target audience aren’t seeking a

colourful, animated and cluttered interface. Despite taking extra care to ensure as much error

prevention as possible (more desirable by heuristic and usability standards), unpreventable error

cases need to be displayed attractively to show the user the nature of the error. R7 Android ‘toast’

widgets are a good tool to do this. Lastly, another heuristic principle of having the status of the

system known to the user will be adhered to by displaying the name of the section the user will be in

atop of the page.

* Note: I will generally try to adhere to all the ‘good’ Nielsen heuristic principles as referenced to try

and produce a good-quality application. R12

Project Android ‘Tides’ Application 1315913

12

4. Design

4.1 Android Modules

4.1.1 HCI
Main Menu (left)

From the main screen every major section of the

selection process within the application is available via

the four buttons. The name of the application along with

a tidal symbol image is displayed on the top in a text

view. The button ‘Get Tide by Map’ will access the Map

Selection screen, the button ‘Get Tide by List’ will access

the List Selection screen, the ‘Location Tide’ button will

access the Location Selection screen and finally the ‘Tide

Calc.’ will open the Specific Tide Location screen.

As you can see from the design, the menu is very minimal

in terms of design. The menu is essentially a bridge to

more complex parts of the project and by having large

buttons displayed in a list it follows the norm, it’s what

users come to expect from a menu. It’s very clear which

state the system is in and this page is easily recognisable

which is essential as the user is likely to navigate back to

this screen frequently.

Map Selection (left)

As Figure 5 below shows a map, provided from the

google Maps API, which will take up most of the screen.

The user selects a port by clicking on a marker within

the map, which then displays the name of the tide. The

button to confirm the port at the bottom will not work

unless a port is selected. If the user tries to click

‘Confirm Port’ without selecting a port via one of the

pre-plotted port markers on the map, a brief message

will be displayed informing the user that they need to

select a port to continue. This adheres to one of

Nielsen’s principles of error prevention as well as

visibility of system status.

Once a port is chosen you are able to select Confirm

Port and it will then navigate you to the Tide Data

screen.

Figure 5 – HCI – Map Selection

Figure 4 – HCI – Main Menu

Project Android ‘Tides’ Application 1315913

13

List Selection (left)

The dark grey list view on the left-hand side of the

screen will display the regions of the UK. After one of

these is selected, the list view on the right-hand side

of the screen will display all ports that are contained

within that region. After selecting a port from the

right-hand side of the list it will be displayed in the

text box below it. If the user tries to press ‘Confirm

Port’ without selecting a port from the right-hand

side, a message will be displayed informing the user

that they need to select a port to continue. This

adheres to one of Nielsen’s principles of error

prevention as well as visibility of system status.

The lists are categorised into regions as a recognisable

match between the real world and the system and

consistency. They are organised alphabetically also, all

of this reduces time taken to locate a tide and

improves the overall efficiency of use

Location Selection (left)

On entering this ‘activity’ the application will retrieve

the last known location and display it in the <Last

known location> box shown below. Then a list of the

closest ports to the user will be displayed. If the last-

known location is incorrect, by pressing the ‘Get

current location’ button the application will attempt

to listen for location updates. The newly updated list

of closest ports will be displayed following this. Once a

port is selected it’s displayed in a text box. The button

to confirm the port at the bottom will not work unless

a port is selected.

Figure 7 – HCI – Location Selection

Figure 6 – HCI – List Selection

Project Android ‘Tides’ Application 1315913

14

Tide Data

This activity is where the tidal data is displayed. The

port that the user selected is displayed on top of the

application. There are 7 days below this, the day is

highlighted when the application is displaying that

given day’s data. Below that is the tidal type, tidal time

and tidal height displayed in a table. At the bottom of

the page is a labelled and detailed graph based on the

ports data, displayed to the user.

Users are able to switch between days by swiping

left/right. I’ve chosen this method to switch between

the days as it’s the most intuitive for a smart-phone

user and the day being highlighted gives good system-

state visibility for the user.

Specific Tide Location

This activity uses google maps and a custom marker,

which can be dragged to required location, and then

selects and highlights the two nearest ports. The

activity will display the names of these two ports as

well as emphasising them on the map. The visual

response is vital to the user to see what is going on in

this activity and whether the selection is correct,

hence the live updates from the map which adheres

to visibility of system status in the heuristic principles.

After this, the button to confirm selection will

populate results on the Tide Data page and displayed

in the same fashion as any other selection keeping

consistency and standards.

Figure 8 – HCI – Tide Data

Figure 9 – HCI – Specific Tide Location

Project Android ‘Tides’ Application 1315913

15

4.1.2 Data types
Below are a couple of Data Types I’ve made due to frequent access within my application. The

datatypes provide a means of combining Port and Tidal data which is quintessential to the

application and are implemented like maps where corresponding data are stored in the same index

of different arrays.

Port Record

This is a java class to combine necessary data the application will need regarding a port. The name of

the port and the hyperlink to the page where data can be obtained about the port are stored as a

string. The Latitude and Longitude I could have stored in two long variables, but google provides a

LatLng class for added functionality and less conversion is needed when plotting map points this way

so I’ve elected that. Each variable can be accessed with its appropriate getter method.

 String Name: Name of the port

 String Ref: Hyperlink to the port’s data page

 LatLng latLng: Holds the latitude and longitude where the port is located

 Port(): Constructer which sets the Port’s Name, Ref and LatLng

 getName(): returns Name variable

 getRef(): returns Ref variable

 getLatLng(): returns LatLng variable

Tide Record

The ‘TideRecord’ class stores the Tide types (High/Low), the tide heights in metres and the tide

times, all as string arrays. The class stores one day’s worth of records, therefore the three String

arrays will all be of the same length. The length of these is stored as an integer in ‘RecordCount’ as it

will be frequently used and is less costly (in terms of time and memory) than constantly checking the

size of one of the arrays. Lastly, when the TideRecord is instantiated the date is retrieved and stored.

This is for potential use of storing records on the phone so that current data won’t have to be re-

obtained from the internet by checking if you already have today’s records. Again, once a day of

TideRecord is set, it cannot be changed but each variable can be accessed with its appropriate getter

method. I considered using an ‘enum’ type for the Tide Type since the values are constant (either

High or ‘Low) but keeping it as a string allows for more functionality and easier manipulation of data.

Project Android ‘Tides’ Application 1315913

16

 String PortName: Name of the port where record was retrieved from

 String tideType[]: Array of the day’s tide type (either ‘High’ or ‘Low’)

 String tideTime[]: Array of the day’s tide time (24 hour format)

 String tideHeight[]: Array of the day’s tide height (in metres)

 Date DateObtained: Hold’s the date in which record was retrieved

 Integer RecordCount: Hold’s the number of tuples in the record

 TideRecord(): Constructor which sets the three string arrays and the name of the Port

4.1.3 Back-Stack model
The diagram below depicts how each activity interacts when an item is added to the back stack.

When the user presses the Back button on Android the foreground activity is destroyed and the

activity previously that called it continues.

As shown below Main Menu is the original parent, from here only a selection task can be selected.

All of these selection screens can only lead to displaying tidal data. The selection activities include all

aforementioned screens of selection including Map selection, selection from list of Ports and

selection based on the users given location. When navigating back (as shown in the last step of this

back-stack model) the activity is destroyed and it would revert to the previous activity.

Figure 10 – Android Back-Stack model

Project Android ‘Tides’ Application 1315913

17

4.2 External Modules

4.2.1 Module Design (Static Architecture)
listLinkScraper

The listLinkScraper module essentially just obtains a list of every single port from tidetimes.org.uk

along with the hyperlink and Latitude and Longitude describing location of the port. Then the

module writes it to a .txt file which can be read into an array of ‘Port’ datatypes as described above

in 4.1.2. All results are retrieved as String, the portLoc string array which stores location strings are

all then converted into LatLng by the getLatLng function, which are then stored in portLatLng.

 String PortName[]: Array of all the Port Names

 String portRef[]: Array of all the hyperlinks of the Ports

 String portLoc[]: Array of the Ports latitude / longitude as a String

 String portLatLng[]: Array of the Ports location after it has been converted to LatLng

 listLinkScraper(): Constructor which populates all the private variables with the results from

https://www.tidetimes.org.uk/all which is a complete list of the tidal prediction locations

 writeToFile(): Method to output all of the corresponding portName, portRef and portLatLng

to a text file

 getLatLng(): Converts all results from portLoc array into LatLng variables

tideScraper

This module produces one weeks worth of tidal data stored in an instantiation of the class

‘TideRecord’ . This is obtained by calling getTide after the tideScraper has been instantiated. To

construct this class it takes a ‘Port’ data type which provides the hyperlink needed to web-scrape the

results. The TideRecord array will always be size 7 as I’m only providing data a week in advance

(Which is the normal for tidal prediction applications). The tideScraper will predominately be used in

the Android Module ‘Tide Data’ to retrieve the results via this module then display them.

 Port port: Holds the port from which the dater will be gathered

 String tideType[]: Array of the day’s tide type (either ‘High’ or ‘Low’)

https://www.tidetimes.org.uk/all

Project Android ‘Tides’ Application 1315913

18

 String tideTime[]: Array of the day’s tide time (24 hour format)

 String tideHeight[]: Array of the day’s tide height (in metres)

 TideRecord tideRecords[]: Array of TideRecord which is always size 7 for a week’s results

 tideScraper(): Constructor which sets the port variables

 TideRecord getTide(): Retrieves the data for the next 7 days of the selected port

4.2.2 Tide Calculation Algorithm
Since there is no pre-existing algorithm to determine tidal data between two locations, there are a

few ways I considered designing one. Firstly my original idea was to take an average of the data at

either point e.g. if location 1 had 10 metre tide height and location 2 had a 5 metre tide height then

the output of the user-defined location would be 7.5. However I quickly dismissed this as its far too

inaccurate and overall a cheap, poor solution.

Secondly it made more sense to split the difference based on distance from one port to another.

Essentially if you consider the 3 ports as a triangle, known ports and the location of a port without

data in between them. As the diagram below shows, if you take the angle at the unknown port and

dissect it in half, then produce a line that goes through this until it intersects the line between the

two known ports. If you consider that line almost as if a number line where the points range from

one number to another, the intersection point produces a far more accurate estimation of the

average tide/height between the two points. The diagram below illustrates this.

Figure 11 – Relative Distance Triangle Theory

Therefore as my second option I considered plotting the Latitude/Longitude of the ports as X,Y

coordinates on a graph and using a visual computing technique to dissect the angle, draw the

diagram and ultimately get the ratio between the two values of the known ports. However this

technique would require visual computing knowledge, would probably be too computationally

intensive for an android application and there are no Android-compatible Java libraries to perform

this.

Fortunately I endeavoured to discover that there was a purely mathematical solution which

essentially finds the point of intersection and what the value of this is. I have the following pseudo-

code which is a rough template and a visual diagram of a triangle to aid in labelling and

understanding of code.

Project Android ‘Tides’ Application 1315913

19

Figure 12 – Algorithm template triangle

For the following pseudocode, assume upperport is a known port located at point A, lowerport is

located is a known port at point C and the customport is at point B.

Calculate Side a
Calculate side b
Calculate side c
tideHeightA = A.getHeight
tideHeightC = C.getHeight
HeightDifference = Max(tideHeightA,tideHeightC) - Min(tideHeightA,tideHeightC)
UnitOfHeight = HeightDifference (side a + side c)
if Max(tideHeightA,tideHeightC) = tideHeightA
 tideHeightB = tideHeightA - (side c * UnitOfHeight)
else
 tideheightB = tideHeightA + (side c * UnitOfHeight)
TimeDifference = Max(tideTimeA,tideTimeC) - Min(tideHTimeA,tideTimeC)
UnitOfTime = TimeDifference (side a + side c)
if Max(tideHeightA,tideHeightC) = tideHeightA
 tideHeightB = tideHeightA - (side c * UnitOfHeight)
else
 tideheightB = tideHeightA + (side c * UnitOfHeight)
Add tideTypeA, tideheightB, tidetimeB to B

So what this algorithm does is first work out each side of the triangle. Then it retrieves the

height/time values at each port for a certain day. After that if you divide the difference of those

values by side A and side C you have a unit of increment along the line B. Then you determine

whether port A’s value is the largest or smallest value. If it’s the largest you need to take away the

unit of increment multiplied by side C. If not the largest, then you add the increment times side C.

This way you get a more accurate average of the value by taking relative distance to the closest ports

into account. This is an improvement on the second method as it eradicates the need for visual

computing and will therefore take a lot less time to compute. The diagram below highlights the point

of increments marked along the line and the one that would be selected.

Figure 13 – Triangle Unit measurement to calculate relative distance

Project Android ‘Tides’ Application 1315913

20

As you can see from the blue line of intersection above, it is what we would expect. If the height at

Port A was 10M at a given time and the height was 5M, as the point of intersection on Port the value

would be 8 since the ratio is 2:3. The incremental unit would be 1 as height Difference (5M) divided

by side C plus side A (5). Then because A is the largest value of height, you take away side C *

incremental unit, thus getting 8M.

Figure 14 – Reversed example of Triangle Unit Measurement to calculate relative distance

The diagram above shows the same correct result from the algorithm, however this time port A has

the smallest value of height. Therefore side C * Unit of increment is taken away, therefore making

the resulting value 7M.

tideCalculator

Tide Calculator is essentially the module which handles the prediction of tidal data between two

ports. It takes 3 ports into the constructor, upperport and lowerport are the two closest existing

ports either side of the customport. Since the algorithm (as detailed in a later section) uses a triangle

between the locations of these 3 ports, an explanation of how it works is detailed in the next section

 Port UpperPort: One of the ports for which data is known, considered the upper bound

 Port LowerPort: One of the ports for which data is known, considered the lower bound

 Port CustomPort: Port for which data is unknown and is to be calculated by this class

 Double sideA: Length of side A which is the opposite side of UpperPort’s location

Project Android ‘Tides’ Application 1315913

21

 Double sideB: Length of side B which is the opposite side of the CustomPort’s location

 Double sideC: Length of side C which is the opposite side of LowertPort’s location

 Double angle A: Value in degrees of the angle where side B and C meet at UpperPort

 Double angle B: Value in degrees of the angle where side A and C meet at CustomPort

 Double angle C: Value in degrees of the angle where side A and B meet at LowerPort

 TideRecord[] tRecordA: 1 Weeks’ worth of data scraped from Upper Port

 TideRecord[] tRecordB: 1 Weeks’ worth of data scraped from Lower Port

 TideRecord[] tRecordCustom[]: 1 Weeks’ worth of estimated data will be stored here

 TideCalculator(): Constructor which sets the port variables to their corresponding place in

the triangle, calculates their side length and their angles

 TideRecord[] calculateAverageTides: Method that performs the estimation algorithm and

returns the result in a TideRecord array with one weeks’ worth of estimation results

 String getTime(): Estimates the time given the index i, which determines the day position in

the records and at j which determines the tuple position in the records and returns value as

a String

 String getHeight(): Estimates the height given the index i, which determines the day position

in the records and at j which determines the tuple position in the records and returns value

as a String

 Double sideLength(): Determines the sideLength of a triangle given two coordinates

 Double getAngle(): Determines the angle of a point in a triangle given two coordinates

 Double getAngleOfImportance(): Returns the angle at the custom port, this method is

needed as it’s the way I’ll be categorising results from tests.

4.2.3 Tide Calculation Analysis Algorithm
As stated by the National Tidal and Sea Level Facility, tides are not the same around the entire coast

of Britain due to ‘Shape of coastline and bathymetry (water depth)’. ‘When tidal wave crosses onto

shelf seas the wave’s speed decreases and wave is refracted by the local bathymetry.’ R8

So assuming port B, the location at which the user wanted to find the tidal data, was either very far

away from the pre-existing ports or had a very steep angle at the joining lines from the existing port

this prediction is quite likely to be a larger way off. Theoretically, the closer the angle at B is to 180°

the closer it is to lying on the line from A to C which stands to reason the prediction is likely to be

more reliable. This is why there is a need to calculate and provide the erroneous bounds associate

with predicting the tides.

To find the error bounds I’ll perform the Tide Calculation Algorithm, passing into it 3 ports as usual.

However I’ll pass a known port, with retrievable records, as the custom port. This way I can compare

the estimated data with actual data to determine accuracy. As aforementioned the angle at which

the User-defined location meets the two known-ports immensely affects the precision of estimated

results. To allow consideration and adjustment for this I was going to categorise the results into

disjoint, contiguous buckets of numbers from 180 downwards with intervals of 5. The number to

determine what bucket the results are stored in would have been derived from the angle at the

bespoke port. This could be done by using the public ‘getAngleOfImportance’ method in the Tide

Calculator Module (Section 4.2.3).

I’ve elected for the results to be stored along with the angle, a record consisting of a maximum

difference value, a minimum distance value and an average deviation. Therefore as an improvement

Project Android ‘Tides’ Application 1315913

22

on the bucket, each grouping will be a record self-containing all results added into it. E.g. it will keep

an array of the difference between height/time values from the expected ones and upon having a

new value added will determine if it is the new ‘range’. Below is the record structure I plan to

implement for use in this algorithm.

TideCalculatorAnalyser will then print the results which I will keep a record of in Excel. This way I can

determine legitimacy of the algorithm’s precision. The 3 ports that are passed into the constructor

have their tide records retrieved from the internet. Then the ‘analysisPort’ will have records

estimated by the Tide Calculator and compared against the actual results from the third port as it

will be an existing port.

4.3 Considerations

4.3.1 Data acquisition
To acquire the relevant tidal data on the application, I deliberated of having a server perform the

web-scraping and necessary formatting of data for retrieval. The mobile app would then connect to

the server to get the weeks’ data via SSH. For example I was going to create a JavaScript web-scraper

to gather a weeks’ worth of results on the schools Apache server (given permission). This would then

parse the data and store it in a way that it could be easily retrieved I.E. an SQL database. This had

many benefits such as reducing the amount of data the users would have to retrieve and therefore

also help to conserve battery life; these are key considerations for this application. Plus I wasn’t sure

whether Android had the capability to even perform web-scraping within an application. However

after some research I found that due to the ever-increasing capabilities of computational power of

Android phones and amount of Wi-Fi coverage partnered with the minor difference it would make in

Data Usage that Web-scraping a page and parsing the data in a self-contained module would be

sufficient.

4.3.2 Visual computation of Coastline
As mentioned in the Background and research section, tides in the UK are heavily influenced by the

shape of the coastline. Further research suggested that the height of the coast (altitude) as well as

type of feature (Notches, headlands, bays etc.). Before I discovered the complexity and number of

unobtainable, unknown variables I considered a visual computing approach. Unfortunately due to

accessible variables and time constraints this solution is unfeasible for me to undertake, although I

do think it’s an interesting branch to explore given time. This path would also require a

geographical/geological expertise to work in cohesion.

Project Android ‘Tides’ Application 1315913

23

4.4 Static Architecture

Project Android ‘Tides’ Application 1315913

24

4.5 Data Flow

4.5.1 Project Data Flow

Figure 15 – Android and End User Data Flow Diagram

Project Android ‘Tides’ Application 1315913

25

4.5.2 Tide Calculation Data Flow

Figure 16 – Tide Calculation Data Flow Diagram

5 – Implementation

5.1 minMap
When designing my modules and necessary algorithms, I had an unforeseen problem that I would

need to be able to calculate a list of closest ports to a given location. The given location in question

would be supplied by user-location obtained through the Google Location APIs or a selected marker

on the Google Maps API. Hence I created a minMap module with the following UML design.

 Double[] smallestDistanceArray: Array of size 6 which holds the values of the smallest

distances in metres, in ascending order (smallest distance first)

 Double[] portIndex: Array of size 6 which holds the index of the closest ports (Closest first).

Position in array corresponds to the smallestDistanceArray

 Port[] portArrayList: ArrayList of type Port which contains a copy of the ports from the main

program

 minMap(ArrayList portList): Constructor which sets the portArrayList as a copy of portList

 getClosestPortIndexes(LatLng sourceLatLng): Returns a hashmap with 6 entries of the 6

closest port Indexes (as key) and their distance from SourceLatLng (as value).

Project Android ‘Tides’ Application 1315913

26

 Double distFrom(): calculates and returns the distance (in metres) from sourceLatLng to

destLatLng

minMap is instantiated by passing an arrayList of the ports from the main project into its

constructor. To retrieve a HashMap of the 6 closest locations getClosestPortIndexes is called. I chose

a Hashmap because being able to retrieve the port through the Index as well as supplying a user of

the relative distance is far more useful.

distFrom, due to a lack of software documentation, was originally difficult to implement a distance

determining algorithm. Firstly I would calculate straight-line distance using Pythagorean Theorem

which produced correct results in that it found the nearest ports but not any kind of unit for

distance. Secondly, I found a formula that took into account the Earth’s Radius and was an official

formula for calculating distances between points on a map [r13]. This worked perfectly but after

deeper delving into the Location class discovered a ‘distanceTo’ between 2 locations performed

exactly the same function so instead of reinventing the wheel as it were I settled on using this.

5.2 Screen by screen walkthrough (Android Implementation)
*Note: an ‘Activity’ in android is essentially a new window with a single focused content view.

5.2.1 Main Menu
When the user loads the application, the Main Menu in its

initial state displays an informative dialog, just once

throughout the lifetime of the program thanks to a Boolean

variable, to the user to remind them that the application

functions better with locational settings enabled. The Main

Menu, as the main parent activity means that while the

application is running the contents of this activity will still exist

in a device’s memory. To overcome the need of continuously

having to repopulate a list of the ports (which every activity

will need access to) or passing this list between activities, the

complete list of known ports is held in a globally visible

variable:

public static ArrayList<Port> portArray;

Main Menu, when created, reads the ‘portList.txt’ file which

was created by the listLinkScraper. Main Menu takes the

contents of this text file and converts each line into a port

Data Structure. Since the port is only read from, it’s also safe

to access from other activities as follows:

MainMenu.portArray
Figure 17 – Main Menu Activity Screen

Project Android ‘Tides’ Application 1315913

27

The dialog is dismissed by a simple click event displaying

the actual bulk of the Main Menu.

There are now 3 buttons instead of 4 as originally planned

in the HCI Design section. Since the proposed ‘specific tide

calculator’ and ‘map selection’ modules both utilised

google maps, feedback I received suggested I combine

them. Therefore the ‘Port Map’ loads an activity which

pools those two modules together.

The button’s create a new intent and begin a new activity.

In doing so the activities created as a result end up being

children of the Main Menu thus keeping good user-control

and consistency in the path you follow into the application.

This also ensures that the back-stack model as discussed in

the design stage is adhered to which is what the user

would typically expect from a mobile application when

navigating backwards and forwards between activities.

5.2.2 Port List
After deciding to categorise the Ports based on their

geographical location and regional situation, I had to find a

method to do this. I considered adding an extra variable to

the Port record which would hold the Region as a string

value. However I quickly rejected this as it would mean

there would be a lot of duplicate and redundant data

needlessly being stored. Secondly I found out that the

Google Maps API has a Polygon class which physically

draws a polygon on the map. It has a method which even

checks if a LatLng point sits within the shape. However I

would need to initialise a map which takes a little while to

do and was wholly less efficient than the method I decided

on.

The method I settled on is essentially the same method as

the Google Maps Polygonal method, except there is no

need to load the unnecessarily large and computationally

expensive map. I went on google maps in browser and

made a polygonal overlay according to a regional map

[R14]. From here I was able to extract the coordinates X

and Y positions, which I put in constant variables within

the List Activity. After this I searched the internet for a

mathematical way to determine whether a 2D point was

contained within a polygon given its bounds. After a while

of searching I found one and implemented it as follows:

Figure 18 – Main Menu post Notification
Dismissal

Figure 19 – List Selection Activity Screen

Project Android ‘Tides’ Application 1315913

28

private boolean contains(double x, double y, double xarr[], double yarr[]) {

 boolean oddNodes = false;

 int j = xarr.length - 1;

 for (int i = 0; i < xarr.length; i++) {

 if (yarr[i] < y && yarr[j] >= y || yarr[j] < y && yarr[i] >= y) {

 if (xarr[i] + (y - yarr[i]) / (yarr[j] - yarr[i]) * (xarr[j] - xarr[i])

< x) {

 oddNodes = !oddNodes;

 }

 }

 j = i;

 }

 return oddNodes;

}

The variable x denotes the latitude position of the Port being checked, the variable Y denotes the

longitude position of the Port being checked and the xarr and yarr are the values of the polygons

vertices. Below is an example of the xarr and yarr value for London to give an idea of how the

polygon is mathematically described. Each side of the polygon is compared to the longitude

coordinate of the point. Then a list of nodes is produced where each node crosses the Y threshold. If

there are an odd number of nodes either side of the given point then it is inside the polygon.

private final double irelandX[] = {55.7518494, 54.4317129, 53.26521290000001,

51.1517861, 51.6589266, 54.4955675, 55.3915936, 55.7518494};

private final double irelandY[] = {-7.9101569000000005, -10.2612318, -

11.447753899999999, -10.0415046, -6.328125700000001, -5.0976569, -6.0424805, -

7.9101569000000005};

All X and Y arrays must being and end with the same value to ensure that the polygon is closed

otherwise this causes huge problems. The first value in X array would correspond with the first value

in the Y array as Latitude and Longitude of the apexes respectively. The contains method is called

and the regions are assigned as follows using a simple if-else implementation of a case statement:

Thread popRegionThread = new Thread() {

 @Override

 public void run() {

 for (int i = 0; i < MainMenu.portArray.size(); i++) {

 double x = MainMenu.portArray.get(i).getLatLng().latitude;

 double y = MainMenu.portArray.get(i).getLatLng().longitude;

 if (contains(x, y, northEastX, northEastY)) {

 regionArray[i] = "North East";

 } else if (contains(x, y, northWestX, northWestY)) {

 regionArray[i] = "North West";

 } else if (contains(x, y, southWestX, southWestY)) {

 regionArray[i] = "South West";

 } else if (contains(x, y, southEastX, southEastY)) {

 regionArray[i] = "South East";

 } else if (contains(x, y, londonX, londonY)) {

 regionArray[i] = "London";

 } else if (contains(x, y, yorkshireX, yorkshireY)) {

 regionArray[i] = "Yorkshire";

 } else if (contains(x, y, westMidlandsX, westMidlandsY)) {

 regionArray[i] = "West Midlands";

 } else if (contains(x, y, scotlandX, scotlandY)) {

 regionArray[i] = "Scotland";

 } else if (contains(x, y, irelandX, irelandY)) {

 regionArray[i] = "Ireland";

 } else if (contains(x, y, easternX, easternY)) {

 regionArray[i] = "Eastern";

 } else if (contains(x, y, eastMidlandsX, eastMidlandsY)) {

 regionArray[i] = "East Midlands";

 } else if (contains(x, y, walesX, walesY)) {

 regionArray[i] = "Wales";

 } else regionArray[i] = "Other";

 }

Project Android ‘Tides’ Application 1315913

29

 }

 };

5.2.3 Location List
Location List was originally intended to just select the

closest port to the user, as is the case in the pre-existing

applications I researched. However, it seemed more

appealing to offer a small list of the closest ports so the user

has some input and interactivity with the matter.

When this activity is created, an attempt is made to connect

to the google location services. From this a last known

location value is retrieved and displayed at a locale level.

I.E. If I was in Cathays, Cardiff the location would only

display the city or Area the user was in (as image left

shows). To achieve this you have to convert between

several Google Data structures to get the functionality. The

Geocoder module provided by google allows retrieval of an

address, from which you can obtain postcode, locale,

country etc.

The reason I display the last known location on this screen is

because if it’s wrong I.E. you’re in Swansea but your last

known location is Cardiff, then you can press the Button

labelled Get Current Location. This will refresh the location

and get the users whereabouts. There are 2 accuracies

Google offer with locational services FINE location or

COARSE location. FINE location will retrieve a more pinpoint

location but use more resources, more battery power and potentially more internet power to do so.

COARSE provides a, still very reasonable, more vague location estimation which is more than

sufficient enough for this application, since it is highly, highly unlikely to affect the list of ports

retrieved and saves on unnecessary resource usage. The way the location is retrieved is based on a

broadcast system which when a location is found, is broadcast back to the current intent

(application) and displays a loading dialogue in the meantime. The application achieves this by using

the PendingIntent method of location retrieval since the app is granted the same permissions and

identity as the rest of the application. Specifying permission to access a user’s location is legally

obligatory so it is made known and stored in the application permissions, thus the need for its child

screen to know this has been allowed.

5.2.4 Map Selection & Specific Tide Calculator
Originally, retrieving a port via map selection and getting a tide at a custom point were separate

activities that both employed google Maps. However after a constructive discussion with my

supervisor we realised that the modules were executed in such similar ways it would be constructive

to merge the modules. This way it keeps the aesthetic to a minimal design as is recommended by

one of Nielsen’s heuristics.

Another factor in deciding to combine the activities is that I’ve discovered a more user-friendly way

to allow them to select a custom port by allowing them to place and move their own marker.

Wherever this marker is dropped, it highlights the closest ports giving real-time feedback and

enhanced visibility of the system status.

Figure 20 – Location Selection Activity Screen

Project Android ‘Tides’ Application 1315913

30

When the google maps API is created, the map is

populated with markers plotting each port in the Port

array. Users should intuitively know that by tapping one of

these markers they select a port, and in doing so the name

of the port they last clicked will be displayed below the

map.

Each marker is dynamically created, but to be able to

manipulate them and change them later on a HashMap

<String, Marker> holding a reference to each marker is

held in memory where the Key is the name of the port. The

hashmap is necessary as highlighting specific markers is

something that will be performed as shown by the next

state when a custom port is to be selected.

After clicking the green marker in the bottom-right hand

corner, a marker is dynamically created and placed in the

centre of the position on the map. A hashMap of the

closest ports is returned from a minMap class. Code in this

module then finds those ports and highlights them (blue).

By highlighting them it gives user confidence that the

application is working and better visibility of the system

status. Also a toast is displayed to provide help to the user

as the way you move the marker might not be that

instinctive.

Upon holding and dragging the marker, the old blue

markers where the closest ports were highlighted are

reverted back to normal marker colour. Wherever the new

marker ends up the new 6 closest will be emphasised. The

6 closest ports to the user’s custom marker are always held

in memory as they will be utilised later on in the program,

if the user has chosen to submit their custom port.

Since after selecting a custom port, to get an estimation

you need 2 ports either side to create data. As cited

previously, it makes sense that if you draw a triangle

between the 3 ports and obtain the angle at the bespoke

location; the closer that angle is to 180° then the closer it is

to lying on a perfect line and therefore the more accurate

the estimation. Hence to select the data I have created the

following algorithm to iterate through all possible pairs of

ports plus the custom port to select the Optimal ports to

achieve the best results:

Figure 21 – Map Selection/ Tide Calculator
Activity Screen

Figure 21 – Map Selection/Tide Calculator
Activity Screen with Custom Marker

Project Android ‘Tides’ Application 1315913

31

private int[] bestGuessPorts(Port customPort){

 int Ports[] = new int[2];

 int upperPort = 0;

 int lowerPort = 0;

 Double angle = Double.MIN_VALUE;

 for (Integer key : hMapClosest.keySet()){

 for (Integer secondKey: hMapClosest.keySet()){

 if (key != secondKey){

 TideCalculator t = new

TideCalculator(MainMenu.portArray.get(key),MainMenu.portArray.get(secondKey),custom

Port);

 if (t.getAngleOfImportance() > angle){

 upperPort = key;

 lowerPort = secondKey;

 angle = t.getAngleOfImportance();

 Log.e("angle",Double.toString(angle));

 }

 }

 }

 }

 Ports[0] = upperPort;

 Ports[1] = lowerPort;

 return Ports;

}

This algorithm performs exactly that, after iterating through every possible permutation of the

closest 6 ports (excluding duplicate pairings as a matrix would) to find the ‘fittest’ pairing. It will

choose the largest angle, the closer to 180° the better and return the indexes of the Port. This

method is called from the submit button method which is the same in all selection activities, except

this one will also send the two ports to the tide-data display activity. That activity will know how to

handle a custom port and its two bound ports as opposed to one that already exists.

5.2.5 Tidal Data Display
Tide selection is passed in either a Port Name as a string,

or a Custom port plus the indexes of the 2 most optimal

ports as calculated from the Maps/Custom location

screen. If a Port Name has been passed in then this

activity finds the corresponding name in the Port Array

and retrieves the port data so the data can be scraped

and displayed.

If a custom port was selected by the user, it retrieves the

two ports that have been selected by the two indexes

provided from the previous maps activity. From this a

TideCalculator class is instantiated and a weeks’ worth of

tidal data is estimated via the method. No matter which

way the tide records are retrieved, a loading box is

displayed throughout the duration as accessing internet

records could take time and it’s important to give

feedback to the user.

To switch between the days’ (in which the current day is

always highlighted in blue) table of data and days graph, I

made an onTouch event listener which detects when the

layout is pressed and when the layout is un-pressed. By

detecting the location on where the user has touched and

where the location of the touch is released, I was able to Figure 22 – Tide Data Activity Screen

Project Android ‘Tides’ Application 1315913

32

implement detecting a significant swipe from the user. Using this and being able to detect the

direction of the swipe from positive and negative X values; the way the user switches from day to

day is by swiping in the direction they wish. This creates a bridge between the real-world and the

application and is intuitive, both key features of Nielsen’s heuristics and essential to creating a

desirable informative application.

Lastly I used a free external API called AndroidPlot to create the graphs for each day. The time values

are put into an array of X values and the corresponding height values are put into an array of Y

values which are then mapped onto the graph. The graph then retrieves an extra result either side of

the current day’s data so a line of best-fit can be drawn across the points; a feature provided by all

tidal data providers which allows a user to get an approximation of the tide at a given time.

General Implementation

Throughout the android implementation there are coding sections that would need slightly more

computing power to complete than generic functions. Since Android’s main thread generally handles

the creation and employment of the User Interface objects, I’ve moved all intensive or large chunks

of work into background threads. The threads can be run while the UI is being updated allowing for

much better performance without halting the flow of the program. In using Asynchronous threads if

a section of code needs to be executed and potentially could consume time, before updating the UI,

I’ve displayed a loading screen informing the user of this while the program waits for execution to

end .

5.3 TideCalculator
The TideCalculator class performs the key, unique component of the project. It is able to provide an

educated approximation of tides between stations based on several fitness criteria. Firstly, using a

method that determines the angle of importance (angle at the selected custom location) the truest 2

ports out of the 6 closest ports are selected based on how close they are to 180° (A 180° angle would

mean the port was on an exact straight line therefore producing the best guess). After 2 ports are

selected, an algorithm as described in some detail in the Design phase using relative distances,

Pythagoras theorem and a form of triangulation manages to produce comparative values of the tide

time and tide height. However there was an unforeseen problem in my design, I assumed that all

ports had the same amount of tidal records. Unfortunately they don’t so I had to add some code:

public TideRecord[] calculateAverageTides () {

 tideScraper tScraperA = new tideScraper(UpperPort);

 tRecordA = tScraperA.getTide();

 tideScraper tScraperB = new tideScraper(LowerPort);

 tRecordB = tScraperB.getTide();

 tRecordCustom = new TideRecord[7];

 for (int i = 0; i < 7; i++) {

 ArrayList<String> aLTideType = new ArrayList<>();

 ArrayList<String> aLTideTime = new ArrayList<>();

 ArrayList<String> aLTideHeight = new ArrayList<>();

 if (tRecordA[i].getRecordCount() == tRecordB[i].getRecordCount()){

 for (int j = 0; j < tRecordA[i].getRecordCount(); j++) {

 if

(tRecordA[i].getTideType()[j].equals(tRecordB[i].getTideType()[j])) {

 String sHeight = getHeight(i, j);

 String sTime = getTime(i, j);

 aLTideType.add(tRecordA[i].getTideType()[j]);

 aLTideHeight.add(sHeight);

 aLTideTime.add(sTime);

 }

 }

 }else {

 TideRecord smallerRecord;

Project Android ‘Tides’ Application 1315913

33

 TideRecord largerRecord;

 SimpleDateFormat tideTimeParser = new SimpleDateFormat("HH.mm");

 Date dRecordSmall = new Date();

 Date dRecordLarge = new Date();

 if (Math.min(tRecordA[i].getRecordCount(),tRecordB[i].getRecordCount())

== tRecordA[i].getRecordCount()){

 smallerRecord = tRecordA[i];

 largerRecord = tRecordB[i];

 } else{

 smallerRecord = tRecordB[i];

 largerRecord = tRecordA[i];

 }

 for (int j = 0;j<smallerRecord.getRecordCount();j++){

 for (int q = 0;q<largerRecord.getRecordCount();q++){

 try {

 dRecordSmall =

tideTimeParser.parse(smallerRecord.getTideTime()[j]);

 dRecordLarge =

tideTimeParser.parse(largerRecord.getTideTime()[q]);

 } catch (ParseException e) {

 e.printStackTrace();

 }

 if (Math.max(dRecordSmall.getTime(),dRecordLarge.getTime()) -

Math.min(dRecordSmall.getTime(),dRecordLarge.getTime()) <= 40*60*1000){

 if (smallerRecord == tRecordA[i]) {

 String sHeight = getHeight(i, j,q);

 String sTime = getTime(i, j,q);

 aLTideType.add(tRecordA[i].getTideType()[j]);

 aLTideHeight.add(sHeight);

 aLTideTime.add(sTime);

 } else{

 String sHeight = getHeight(i, q,j);

 String sTime = getTime(i, q,j);

 aLTideType.add(tRecordA[i].getTideType()[q]);

 aLTideHeight.add(sHeight);

 aLTideTime.add(sTime);

 }

 }

 }

 }

 }

 String[] sATideType = aLTideType.toArray(new String[aLTideType.size()]);

 String[] sATideHeight = aLTideHeight.toArray(new

String[aLTideHeight.size()]);

 String[] sATideTime = aLTideTime.toArray(new String[aLTideTime.size()]);

 tRecordCustom[i] = new

TideRecord(CustomPort.getName(),sATideType,sATideTime,sATideHeight);

 }

 return tRecordCustom;

}

To combat this, the code highlighted in blue determined the port with the smaller amount of records

for that day. It then compares all of its records on that day with the records from the other port on

the same day by time. If the time is within 40 minutes of each other (as highlighted in yellow) then

those tidal records correspond and an estimation can be gathered from them. To provide methods

for getTime and getHeight where I needed to change the index to match different records, I created

duplicate methods with a 3rd variable for specific index of the 2 port records. This will always

produce as many records for that given day as the smallest amount of records. Before I implemented

this method, since the first technique only performed approximation if the amount of records were

the same – if the records differed it would return no results and show a blank table and produce an

error in the project. This way ensures there are no errors and that all possible records that can be

obtained, are.

Project Android ‘Tides’ Application 1315913

34

6 Results and Evaluation

6.1 Testing
Given the project’s nature I am unable to really test correctness via the method of unit-testing. I will

be testing my application vs. the specification as well as the HCI and every component within the

application to see that everything works as intended. My application should not produce any errors

or erroneous results at any point during its lifetime. As a side-note, extensive testing has taken place

throughout when adding any method to my application.

My external modules such as the tide calculation, web scraping modules and data structures

however can be unit tested – incredibly useful for finding out that the implementation works as

envisioned. They can be unit tested since I can feed in values and I know what the expected results

that the implementation should return.

Furthermore, my Tide Calculation needs to be tested for degree of accuracy and the results need to

be analysed and critiqued. This algorithm is completely bespoke and was designed from research

into the subject area. Results will be categorised by buckets of their values from which a range and

average to verify validity.

6.1.1 Implementation vs. Specification Testing and Evaluation (Android Modules)
To test whether my application has met the criteria it was designed to meet, I will consider the

original specification to the essential requirements and search for the specific part in my

employment that fulfils them. Some activities in the Android application may meet several of my

original requirements so I’ll combine them. The reason I’m testing every component within the

application and the data flow between activities is because an error in an Android application is very

unprofessional and could cause all sections that should work to fail. If there are any fails or partial

test failures they will be addressed in the evaluation section that follows.

Requirements testing

*For tests proving the following, see Appendix A – Android Requirement Testing

Requirement 1: Application should offer choice to display a map with UK tide ports charted from

which user can select the tide they wish by clicking on the marker

Requirement 8: Application should provide a way to estimate tidal data by the user selecting the 2

nearest stations

The Maps activity in android not only displays every single Port as a clickable marker, it allows the

user to drop and drag a custom marker from which the 2 fittest ports are automatically selected.

After the user has submitted it provides an estimation at the custom marker’s location thus meeting

both of these requirements. The components testable in the Maps screen are the markers, the

custom marker button which should plot a draggable custom marker at the center of the screen and

the port submission button.

The markers which are automatically populated from the list of ports when any clicked always

updates the text to display the name of the port at that marker thus correctly working. In terms of

testing, when the text from this is selected and passed into the activity to retrieve the port it never

returns (and will never return) an error as it was retrieved from the Port list in the first place. Thus

giving confidence of complete error prevention in selecting a known port from a marker.

The custom marker is draggable, upon clicking it the text displays ‘Custom Marker’ so the user

knows that this marker has been selected. Furthermore as added functionality, clicking the button

Project Android ‘Tides’ Application 1315913

35

that creates the custom marker if the marker has already been created centers the Map on

wherever the custom marker is situated. The custom marker was easily testable as wherever it was

dragged it highlighted the 6 nearest ports (see appendix B) which was its function.

Lastly the port Submission button has 3 possible states before it has been clicked. Firstly, if no port

has been selected it shouldn’t go to the next screen. Testing this confirms that not only does it not

navigate to the Tide Data screen (as no port has been selected) a small help Toast is displayed

informing the user that no Port has been selected. Secondly if an established Port is selected it

should pass the name of that port to the next Activity. Lastly if Custom port is selected it should

calculate the two ports with the steepest angle and pass the indexes of these to the next activity.

Selecting a known port such as Cardiff and passing it to the next activity works correctly as the data

from Cardiff’s port is displayed within the Tide data screen. Selecting a custom port between Cardiff

and Barry as shown in appendix B on the screen and within the Logs proves that this works correctly.

Requirement 2: Application should offer choice to display a list of the UK tide ports by name

Requirement 3: List of tides should be categorised geographically by region (I.e. Southwest,

Northeast, Scotland etc.)

The List selection activity displays all of the regions of the UK. After a region is selected, a list of all

the tide ports within that region are displayed. Both of these are in the form of scrollable, vertical

lists. This activity at its core was designed to fulfil both of these requirements, and does so efficiently

with absolutely no delay in populating each list. This module has been extensively tested both

throughout development and after development. Every single port is displayed and is contained in

one of the regions, and every region contains at least one value so these requirements are

extensively met.

The lists, despite the amount of data contained in them, are completely responsive due to the

‘recycling’ feature which is why I chose them. The list component I implemented dynamically

stores/retrieves the data via an adapter so only the number of values on screen (plus one above and

one below which are unseen) are loaded into memory and displayed. This saves the UI having to

load all values into memory, something that’s implausible with Smart Phones and has been taken

into consideration.

The only component that needs testing after both vertical lists is the submit button, which when no

port is selected tells the user to select a port in an informative toast. Once a port has been chosen, it

passes the name of that port into the next activity as intended.

Requirement 4: Application should offer choice to display some of the closest tides to the user’s

last known location

Since this was the core feature of every application I discovered in my preliminary research, and a

useful one at that, this was essential to the program. Hence it was covered in its own screen, the

location selection. It shows the closest 6 locations as well as their relative distances. Rigorous testing

with the location enabled on the Android phone proved that it populated the results based on the

devices last known location very swiftly. Also refreshing the location with the button produced

results quick enough that when the loading screen was displayed, the sole purpose of which was to

inform the user location was being retrieved as it can take a long time, was never displayed for more

than a third of a second.

Project Android ‘Tides’ Application 1315913

36

However testing this module with the location turned off in Android firstly produces no results for

last known location when the activity is created since it can’t access the locational services. If you

then try to populate the page with the closest ports via the Button to refresh location, an error is

displayed. The application recovers from this error but this screen fails its test when the Location is

disabled in the Android settings. Upon opening the application a dismissable Dialog informs the user

that “This application works better with Location settings enabled” in regards to this.

Requirement 5: Application should display the Tide Height, Tide Time and Tide Type in a tabular

format after a port is selected, plus the name of the port that was selected

Requirement 6: Application should plot said Data in requirement 5 in graphical format

Desirable Requirement 2: Application could retrieve results from 6 days in advance as well as the

current day 2

These 3 requirements all involve the displaying of tidal data. Ergo it makes sense that these are all

implemented within the Tide Table activity. As shown in appendix B the tidal data is not only

displayed in a tabular format, but also in a graph below it for each day. Furthermore one of my

desirable requirements of being able to display a week’s worth of data has been met. I decided this

was a desirable requirement with actually quite a lot of importance due to most other applications

and website displaying this data. There aren’t really any components that are testable within this

module since it’s mostly a display of information, although you have to swipe left and right between

day’s data.

On swiping right, the data should be of the next day and upon swiping left the data should be the

previous day. If it is the first day or last day then you can’t swipe left and right respectively since they

are the beginning and end. After switching the day via swipe, data is changed as well as highlighting

the current day which the records correspond to. Looking at appendix B you can see the behaviour is

as expected from the swipe motion.

Requirement 8: The application should have a complete list of UK Tide Times concurrent with

tidetimes.org.uk

As of the current date, 29/04/2016, I have a complete list of Tidal Stations concurrent with UK Tide

Times list. I can ensure that I have every single UK Port available form them as the listLinkScraper

module which automatically scrapes a list of every available port they have. This is done from a page

listing their Ports from a web page entitled ‘All Tide Prediction Locations’ consequently giving me

confidence in the fulfilment of Requirement 8.

Desirable Requirement 1: Application could store results along with the date the result was

retrieved in the devices memory

Unfortunately due to time constraints I was unable to begin thinking about implementing this

feature.

Desirable Requirement 3: Application could provide a favourites feature to store their favourite

ports 3

Unfortunately due to time constraints I was unable to begin thinking about implementing this

feature.

Project Android ‘Tides’ Application 1315913

37

General Evaluation

Overall I’ve managed to meet all of my essential requirements, however not quite perfectly. As

mentioned there was a slight flaw in requirement 4 where the activity does not behave as it should

in the event the Android Location setting isn’t enabled. Despite displaying a message when the

application begins advising the user to enable location settings, there is very minimal error handling

when on the Location screen in the event that it is disabled. Critiquing this case, I must say this is a

relatively large weakness within an otherwise structurally sound and error-free system. With

location settings enabled, all parts of the system are Strong and provide no errors anywhere

throughout the system. It was intended that the case of having location settings disabled would be

handled by the program but I found difficulty in finding a reasonable method of checking whether

the setting was allowed/ denying access until they were turned on.

Despite meeting all my crucial requirements, there are 2 optional ones I unfortunately didn’t have

time to implement. Firstly, desirable requirement 1 in which all data retrieved was stored along with

a date. Using this date and the name of the port the application could check if it exists in memory

before attempting to web-scrape it. The nature of which was to save battery-power, processing

power and potential data-usage by temporarily storing the results – a technique similar to caching.

Not being able to implement this feature does not really impact my application though so it’s not a

weakness as such.

Desirable requirement 3 to add a favourites was also not implemented due to time constraints.

Having favourites is quite useful in my type of application to allow a user ease of navigation to what

they want. I thought about implementing it, I would only need to save the port index to a text file

within the android device which could be retrieved and populated on screen in a list view. The main

reason I didn’t implement it was to ensure that all essential requirements were working correctly

first as a priority. Again I don’t think this has much impact on the final product and therefore not

convinced it’s much of a weakness.

6.1.2 Does implementation perform what its intended to do (External Module Unit Testing)
As important as the specifications testing, without the external modules producing the precise result

I anticipate it to the application would be useless. Fortunately the external modules are able to be

unit tested. The major benefit and strengths of this testing is that given we know the results that

should be produced as an outcome given input data. The unit testing is definitive which means I can

determine whether the module I’ve created works or doesn’t work. It’s not subjective so either the

test passes or fails which can prove to be more useful in determining the success of the deliverables

within this venture.

ListlinkScraper

The listLinkScraper module was intended to scrape the Name, hyperlink and latitude/longitude of all

ports from tidetimes.org.uk and store these in a text file for use in the project. I can prove this works

because the amount of lines in the text file is synonymous with the number of ports that the website

claims to provide. Furthermore comparing the start/end of the text file and the website list below

proves that all results have been gathered and formatted rightly.

First 3 results in the text file

Project Android ‘Tides’ Application 1315913

38

First 3 results from the ‘all Tide Prediction Location’ page

Last 3 results in the text file

Last 3 results from the ‘all Tide Prediction Location’ page

tideScraper

tideScraper is a module that returns a weeks’ worth of tide records from tidetimes.org.uk given a

Port data structure. Within the port data structure, the port’s name, hyperlink to the port’s page

(which is used by tideScraper to access and retrieve results) and the latitude/longitude location of

the port. For example if I provide the port with Cardiff as the name, the appropriate link to the

Cardiff page and its latitude/longitude values I should get the same results. As shown below, I

executed a method passing Cardiff’s port details in and am printing the results to the Console. From

here it’ll be easy to compare them with the websites Data. If they match, then tideScraper performs

its task correctly.

Testing Method (In the TideScraper class)

public static void main(String[] args) {

 Port cardiff = new Port("cardiff","/cardiff-tide-times",new LatLng(51.45,-

3.1667));

 tideScraper t = new tideScraper(cardiff);

 TideRecord[] tRecord = t.getTide();

 for (int i = 0;i < tRecord.length;i++){

 for (int j = 0;j<tRecord[i].getRecordCount();j++){

 System.out.println(tRecord[i].getTideType()[j] + " " +

tRecord[i].getTideTime()[j] + " " + tRecord[i].getTideHeight()[j]);

 }

 }

}

Project Android ‘Tides’ Application 1315913

39

As you can see from the above diagrams, the retrieved results match that of the actual results we

expected to receive. I also checked the data for every day between 30/04/2016 and 06/05/2016, all

existing records on the website are taken correctly therefore I can say with absolute confidence that

tideScraper executes as proposed.

TideCalculator

TideCalculator is the critical module for educated estimation of tides between two ports. In terms of

testing, if I supply it 2 known ports I.E. Cardiff and Barry and supply the third port as a custom Port

with its location set roughly halfway between them (at the international Sports Village Cardiff). For

testing there are results we know for sure; the amount of results should total 26 due to the amount

of tidal records per day each of those ports have that can be estimated. Given any tide time/tide

height on a given day, the corresponding value in the custom port has to lie somewhere between

the value of the time/height of Cardiff and Barry at the same record. I.E. Assuming the tide time was

18:00 at Barry with a height of 8M and the tide time was 18:30 at Cardiff with a height of 9M then

the time, T would be 18:00 <=T <=18:30 and height, H would be 8M <= H <= 9M. The easiest way to

compare this is check whether this formula is satisfied in an excel table (see below).

Table 1 – Testing Tide Calculator times

Tide Type Barry Tide Times Estimated Tide Time Cardiff Tide Times

High 01:37 01:46 01:47 TRUE

Low 07:46 08:01 08:03 TRUE

High 14:17 14:28 14:30 TRUE

Low 20:22 20:37 20:39 TRUE

High 02:58 03:13 03:15 TRUE

Low 09:12 09:29 09:32 TRUE

High 15:38 15:51 15:53 TRUE

Low 21:49 22:07 22:10 TRUE

High 04:14 04:27 04:29 TRUE

Low 10:26 10:45 10:48 TRUE

High 16:49 17:01 17:03 TRUE

Low 22:58 23:18 23:21 TRUE

High 05:20 05:31 05:33 TRUE

Cardiff’s tidal data for 30/04/2016 Console output of the Testing Mthod for 30/04/2016 – 06/05/2016

Project Android ‘Tides’ Application 1315913

40

Low 11:31 11:51 11:54 TRUE

High 17:49 18:01 18:03 TRUE

Low 23:59 N/A 00:22 FALSE

High 06:18 06:29 06:30 TRUE

Low 12:30 12:50 12:53 TRUE

High 18:43 18:54 18:56 TRUE

Low 00:57 01:15 01:18 TRUE

High 07:11 07:22 07:23 TRUE

Low 13:25 13:43 13:46 TRUE

High 19:34 19:45 19:46 TRUE

Low 01:50 02:08 02:11 TRUE

High 08:02 08:12 08:13 TRUE

Low 14:15 14:33 14:36 TRUE

High 20:22 20:32 20:33 TRUE
Table 2 – Testing Tide Calculator Heights

Tide Type Barry Tide Height Estimated Tide Height Cardiff Tide Height

High 9.17 9.54 9.61 TRUE

Low 3.2 3.32 3.34 TRUE

High 9.14 9.49 9.56 TRUE

Low 3.39 3.49 3.51 TRUE

High 9.42 9.82 9.9 TRUE

Low 2.89 2.97 2.99 TRUE

High 9.57 9.99 10.07 TRUE

Low 2.88 2.91 2.92 TRUE

High 10.04 10.52 10.61 TRUE

Low 2.32 2.3 2.3 TRUE

High 10.29 10.8 10.89 TRUE

Low 2.21 2.13 2.12 TRUE

High 10.8 11.34 11.44 TRUE

Low 1.7 1.6 1.58 TRUE

High 11.07 11.62 11.72 TRUE

Low 1.58 N/A 1.41 FALSE

High 11.53 12.06 12.16 TRUE

Low 1.16 1.01 0.98 TRUE

High 11.76 12.3 12.4 TRUE

Low 1.06 0.88 0.85 TRUE

High 12.11 12.62 12.71 TRUE

Low 0.75 0.56 0.53 TRUE

High 12.27 12.78 12.88 TRUE

Low 0.7 0.51 0.47 TRUE

High 12.49 12.95 13.04 TRUE

Low 0.51 0.31 0.27 TRUE

High 12.54 13.03 13.12 TRUE

Project Android ‘Tides’ Application 1315913

41

Before discussing the results further, the red highlighted rows above in each table shows a record

that hasn’t been estimated hence the N/A value. This is due to the way my algorithm compares and

stores Tidal Records. Records are held in an array of 7 tideRecords, each corresponding to a day.

Despite having a statement which checks whether the records are within 40 minutes of each other

(so that they match up), because they are technically on different days they aren’t checked within

the loops. This is a feature I could improve to yield extra results as this is a case that is likely to occur

relatively frequently. This is why I only expected 26 results produced as a result of the tideCalculator

despite Cardiff and Barry having 27 records in that period. This is something I could look to resolve in

the future by allowing the lower bound of one day to be checked with the upper bound with the

next day and vice versa as a final refinement in fixing this.

Besides the accounted for records, every single estimation meets the requirements for a correct

estimation. All results fall within the bounds as expected and shown by the True values generated by

the boolean testing method in excel. The number of records is also as expected.

Not only do the estimated results fall within the bounds, you can see with the height/times that they

are always a lot closer to the Cardiff results. This is due to the distance/triangulation part of the

algorithm and further validates the correctness of this algorithm. This is because the Custom Port we

input is considerably closer to Cardiff.

Testing Method:

public static void main(String[] args) {

 Port upper = new Port("cardiff","/cardiff-tide-times",new LatLng(51.45,-

3.1667));

 Port lower = new Port("barry","/barry-tide-times",new LatLng(51.3833,-3.2667));

 Port custom = new Port("custom","",new LatLng(51.449211,-3.186057));

 int recordCount = 0;

 TideCalculator t = new TideCalculator(upper,lower,custom);

 TideRecord[] tRecord = t.calculateAverageTides();

 for (int i = 0;i < tRecord.length;i++){

 for (int j = 0;j<tRecord[i].getRecordCount();j++){

 System.out.println(tRecord[i].getTideType()[j] + " " +

tRecord[i].getTideTime()[j] + " " + tRecord[i].getTideHeight()[j]);

 recordCount ++;

 }

 }

 System.out.println(recordCount);

 }

Excel formula for verification to check whether estimated results are within the correct bounds:

=IF(AND(D4>=MIN(C4,E4),D4<=MAX(C4,E4)),TRUE,FALSE)

6.2 Tide Calculator Performance
It has been discussed and speculated within this project that the angle meets the other two ports is

probably the most deterministic factor just behind absolute distance between the locations. This

section’s purpose is to produce results which compare 3 existing ports and aim to equate them with

the estimated results. I.e. the third port passed into the tideCalculator module actually exisst. The

records are taken from it and compared with the approximation created. The entire purpose of this

section is to gauge the accuracy and proficiency of the algorithm. From this I’m looking to find any

patterns or correlations which can demonstrate any strengths/weaknesses, from which I can build-

on in future work.

For this test I am be manually inputting close-distance triplets of Ports and running

tideCalculatorAnalyzer. That module keeps a record of the difference between the actual value and

estimated value of every record. It also holds the value of the highest time/height difference (the

Project Android ‘Tides’ Application 1315913

42

range of each), the angle at which the fake Custom port meets the other two and the average

deviation of height/time. Estimations are never going to be entirely accurate and considering there

are too many unobtainable variables which are unfeasible to require and factor in the test is looking

to quantify what degree of accuracy the estimation provides.

I’m going to store my results from this test in an excel table hoping to group values by the angle at

the port being tested. Not only is this be more readable, it’ll be easier to draw conclusions from

partnered with the fact that I could potentially generate a graph giving a visual representation of the

results to aid in the explanation of their meaning. If the estimations don’t deviate too far from the

actual values then the algorithm can be considered robust to a degree, the extent at which the

results differentiate can be made clear to the user if using the estimator.

Graph 1 – Range and Average difference vs Angle

The graph above was produced from 13 tests of the tideCalculatorAnalyzer. It’s interesting to note

that contradictory to the original hypothesis, the Angle at which the custom port meets the other

two ports doesn’t seem to have much of an influence. I reasoned that as the angle approaches 180°

it was more likely to lie on a consistent line and therefore have a better approximation of

time/height. As you can see there appears to be no strong correlation of any kind when it comes to

the average time and range of time. I think there’s no strong correlation with the steeper angles due

to the coastal shape playing such a large factor.

Something else to note is that the average Height and the height range is consistently considerably

very close to the actual result. Besides the one value at 139.53 degrees which you could potentially

consider an outlier, never exceeds half a metres difference from the genuine value. The actual

average height disparity is only 0.35 metres and the average range at only 0.47 metres. This is quite

a precise estimation and therefore in terms of predicting a tide’s height I would consider the

algorithm a strong success.

However as you can see with the Time Range and Average Time, the estimation is considerably

further off. The average time difference prediction is about 10 minutes from the true result. The

graph actually shows that the time can fluctuate heavily, seemingly with no dependence on the

angle. With the tide times I noticed that when picking the ports, the relative distance between the 3

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

130.64 137.02 139.53 143.89 153.42 163.61 167.55 169.74 171.90 171.94 174.56 175.26 173.80

V
al

u
e

D
if

fe
re

n
ce

Angle Of Importance

Range and Average Difference vs Angle

Height Range Height Average Time Range Time Average

Project Android ‘Tides’ Application 1315913

43

ports were a larger distance apart on ports with a bigger time disparity. After concluding that the

time estimation is a slight weakness of the algorithm (albeit much of a weakness since on average

the time is correct within 10 minutes), I think the more important and deterministic factor is the

distance between the 3 ports which could be up for further investigation.

Since the point of this test was a verification of accuracy, the test itself has been a success. From the

results we can produce a literal definition of the degree of accuracy. I can give the user ratification

that the data is likely to be correct within those bounds, the height is likely to be within 0.35 metres

of accuracy and the time is likely to be within 10 minutes correctly across all results generated from

tide calculator. The test’s other purpose was to try and draw a causal link between the angle of

incident and the ports. This test does create call for a different, new test however since I managed to

speculate that distance has more of an influence on the tide time than anything else. The table of

results is included in Appendix A:

Project Android ‘Tides’ Application 1315913

44

6.3 Evaluation / Conclusions

6.3.1 Project achievements
Overall as a project, I believe I’ve accomplished what I set out to achieve. First and foremost I believe

my application is an improvement on the pre-existing tidal applications. Not only does it provide

multiple ways of selection, which is a general problem in the leading applications, but also

implements a unique functionality of being able to estimation a tide at any given point. My project

met all essential requirements, but doesn’t have some of the niche desirable features I wanted to

implement had I had time due to ensuring there was a robust, complete system at the end.

The android application was set out to be informative, intuitive and offer the user complete freedom

in selecting a Tidal Port. By offering the end-user multiple ways they can use their preferred

methods to display the information. All aspects of the application function correctly with location

based settings on, thus I’m pleased that no discernible errors exist throughout all the testing. As

mentioned, having locational settings disabled causes one screen of the application to behave

incorrectly. This is a weakness in the system that can be fairly easily dealt with, method of which I

will discuss in the Future Work section. Besides this, the app achieves everything it set out to do

from the specification.

The Performance of all my algorithms in modules such as TideCalculator and TideCalculatorAnalyser

along with all the web-scraping modules, background-threads in the android activities and location

retrieving are all done in a feasible time, often real-time. While performing tidal estimation or tidal

scraping, which is often dependent upon internet speed, since the amount of data has been taken

care to be reduced results returned are almost always immediate. As a precaution, any of these that

might be more computationally intensive than the rest of the program a loading-screen with

information is displayed to the user adhering to visibility of system status, importance of which is

stressed in Nielsen’s heuristics. Thorough testing on mobile with WiFi and Mobile Data has proved

that the project demonstrates good efficiency in algorithmic performance and therefore can be

considered a strength of the project.

Evaluating the android application is mostly a triumph from a technological viewpoint, besides the

one minor glitch which I plan to fix, there is a second question to be answered: is it practical to

develop a solution to estimating tidal data between two ports? To answer this I have to look at my

solution. From the tests, I can say with some confidence that my solution in selecting the strongest

ports seemed to be very effective at predicting height with very low error range/average error

bound. However the slight downfall of the algorithm seemed to be that the accuracy of the time

wasn’t influenced by the Angle at which the port to be estimated met the other two. Considering I

noticed that larger time disparities were created with Ports that were a larger distance from each

other, it’s not unreasonable to investigate that further. The modules, which were able to be tested

Project Android ‘Tides’ Application 1315913

45

in binary (either they worked or they didn’t) all passed in achieving what I intended which is some

consideration.

In light of all the unobtainable variables, backlogs of data or lack of concrete prediction algorithm I

don’t think it’s practical to ever derive solution that provides an exact guess. As stated in my

background research the only way to confidently predict tidal data is to have months upon months

of data prior and derive lunar/ tidal data from this. This would require costly professional

equipment, constant maintenance and was infeasible to even consider for a project of this

magnitude. Hence the solution looked to be an approximation, never a substitution for actual data. I

believe with some success the algorithm meets this requirement. So long as the user knows the

room for potential error in both Time and Height (which aren’t very far from the actual results) then

this provides a means to that end. To relay this information to the user I could plot the error bounds

on the graph with the estimated data or display a note informing them before they use the function.

6.3.2 Successfulness of design
During the lifetime of this project, between the Design and implementation some minor things were

changed due to the addition of unforeseen difficulties or immediate improvement on the existing

solution. Yet the project never deviated from the template. I.E. all classes still interact in the same

way with each other and fulfil the purpose expected from them, but not necessarily in the way I

proposed. Adhering to the design for the most part provided me with a clear view of how parts of

the system interacted with each other. By specifying deliverables the success of the design could not

only be based on correctness of code, but also had time goals I could strive to meet.

An example of the only major change I’ve made from the design phase, is the combination of two of

my Android activities: Map Selection and Tide Calculator. Originally they were separate activities,

both employing google maps API as the foundation. After some discussion with a peer I decided to

combine them which I now believe to be a better option than the original design. Aberration from

the design in my project was always intended to benefit the application. The reason I haven’t

changed from the template I put forward in the design section is because it works. Referring to the

Data Flow Diagram in the Design section, if my module design was to change drastically I wouldn’t

have much idea of how data flowed throughout the system.

6.3.3 What worked well/less well
Going into this project with limited knowledge in both the geographical domain and no prior

knowledge of Android programming, this project would not have succeeded but for the sequential

style of the Waterfall system cycle. Given a project of this size and nature, with set deliverables and

known requirements this system allowed me to get the most out of the project.

Due to the geographical element, lack of readily accessible resources on the topic and difficulty of

the subject, my computational knowledge despite research could only get me so far on the

estimation. This put a bit of a limitation on the project. In retrospect I could have sought advice or

first-hand knowledge of tides from a Geographical, or more specifically, tidal expert to help give me

insight to a deep problem.

Since all the methods are performed almost instantaneous, the time complexity of the algorithms

were never a negative issue at any point. Considering the operations on data generally spanned all

possible ports in the UK I would say this was a strong point in the project. Not once was there a need

for further optimisation due to space/time complexities which is something very critical to consider

when programming for a phone with limited space and processing capabilities.

Project Android ‘Tides’ Application 1315913

46

Given more time and potentially more data from Ports outside the UK I’d like to carry out more

tests. The triplets of ports I selected are all representative of ports likely to be chosen by the user/

the algorithms, perhaps creating some sort of test program to test every combination of triplets

within a certain distance could be something to look to do. Essentially more rigorous testing

partnered with more quantity of results to get a more comprehensive approximation. Furthermore,

since the estimation was intended to be an improvement on just getting average results between 2

ports, it would work better.

The work plan I designed in the initial plan had specific, set deliverables for the end of each week

and fortunately the goals were realistic and were achieved on time throughout every stage. I think

this method worked well as it gave a gauge to whether I was on track or not. Having a time-pressure

situation forces you not only to complete it, but given any spare time before the next stage, improve

it.

Lastly I would also have liked a larger test-space given more time, a larger test space would hopefully

reinforce my results and instil confidence in the range/average range of accuracy which can be

relayed to the end-users.

6.3.4 What I learnt from the project
From this project I learnt that it is possible to create and provide a reasonably good projection of

estimated tidal data. In light of not being able to ever achieve exact results without months’ worth

of backlogs of data for a specific point. Considering I managed to achieve a prediction of height

within an average of 0.37M and an average time disparity of 10 minutes despite there allegedly

being no existing geographical algorithm at all to extrapolate this data I learnt that it’s possible to do

so with some confidence.

I also gained a lot a lot of insight into Android Programming, starting to use some of the more

advanced techniques and complicated routines to achieve desired effects. I feel like I expanded my

knowledge of OOP as a whole. By taking Androids course and applying what I learnt in each lesson to

my application straight away, I was able to grasp Android confidently in less than a week. Safe to say

I still have much to learn of their advanced techniques, but I have used many of the components to

create this application as well as experience on working on a good range of API libraries.

I’ve also learnt to produce something with a professional, quality finish to it. Unlike previous projects

or coursework tasks in previous years I feel as though I’ve fashioned (with a couple of tweaks) an

end product with competence is of a high standard. I also believe this is due to meticulous planning

when it comes to the Specification/Design stage of the cycle. I didn’t have to make any changes that

altered the Data Flow of the project, at most a difference between the Design and Implementation

would be the addition of methods to achieve the outcomes set by the Design. I discovered the

importance of this in the duration of the Android ‘Tides’ application.

Due to not being able to implement 2 of the optional requirements which would have only slightly

enhanced my Application, I have also come to agree that as in ‘Hofstadter’s Law’: everything takes

longer than you think.

7 Future Work
There are multiple sections of this project that could be built-upon with some effort in the future.

First and foremost I would hugely recommend implementing a way that forces the user to have

location settings switched on before accessing the ‘Location Selection’ screen. Currently, it behaves

Project Android ‘Tides’ Application 1315913

47

slightly unexpectedly with the locational settings disabled on Android which could is a fair weakness

in the context of the project.

There are 2 key sections where future work could prove useful and yield a higher quality Application,

or in the case of tidal estimation, higher quality research. Beginning with the Android app itself,

there are several features I’d have liked to implement had I had time and how I might go about

doing so:

 A favourites feature where a list of user ports could be efficiently stored and retrieved

o Store the integer indexes of the ports user favourites in a text file for retrieval.

Absolutely minimal on Memory Cost and maximum efficiency as the indexes are

easily fetched from ArrayList given Index.

 Application could store results along with the date the result was retrieved in the devices

memory

o Program already obtains the date that the tidal records were retrieved, all that

needs to be done is to write the contents of the record to the device memory which

can be checked if existing data for that port at that given date exists. If so, no need

to re-scrape results through web saving data and battery.

o Results also need to be recycled after they are outdated so every day an automated

internal Clean-up would need to be performed.

 Upgrade the User Interface to be more visually appealing

o Currently priority is responsivity which has been achieved, application is also

intended to have a formal tone, but might benefit from a good, consistent colour

scheme/ custom UI to increase user satisfaction.

 Consider setting up a central server to scrape results and give formatted data to user

o By moving the web-scraping/data formatting to a central server, the application

would have to retrieve about 95% less data because they wouldn’t have to retrieve

the whole page, they could just send a request to the server and only be sent the

key data post-format.

o This method could mean quicker reclamation of results if implemented correctly and

reducing data usage/battery power is always a key consideration on Android.

The second section which probably has a larger scope for investigation and would be more beneficial

to the project would be looking at developing the method I’ve created for tide estimation. Currently

it is based on relative distance, triangulation between ports and manages to determine what bounds

the tide can fall in. Being able to boast a more precise tidal approximation would be hugely

profitable in the context of the assignment. Hence I propose the following to consider for future

work:

 Further research into correlation between absolute distance and time difference

o While testing the estimation results and how they differe from actual results, the

height estimation was highly accurate being very close to the real result. Time didn’t

seem to depend much on the angle at the port, but I did notice that the length

between ports did therefore further investigation would be beneficial.

 Consider having a community-based project where people could collect and collate tidal

data at a point, from which predictions could be derived

o Think about implementing an experimental method where a user, locally only, could

gather the data for months at a given point from which the actual Tide Estimation,

from which the actual formula for predicting tides could be used.

Project Android ‘Tides’ Application 1315913

48

o Since the only concrete, confident way to predict the tides is with months of backlog

data, this project could be a user-driven way of potential estimation at a certain spot

using their own observed data.

 Exploration of a visual computation technique to detect the shape of coastline to be used in

combination with other techniques could be explored

o Google Maps also provides a way to detect altitude which could be used in

combination of Latitude/longitude. By looking at visual computation techniques to

detect patterns on the UK coast and detect coastal features such as inlets and coves,

a study could produce some results which really aid in the prediction process.

Aside from the things that could be implemented or researched to consider for the future, there are

things such as API Licenses or a license to be able to use the tidal data for commercial purposes to

consider. Currently I’m using a free license for Google Maps in which I get an allocated amount of

accesses. To allow unlimited access/commercial usage in the future a license would have to be

purchased. Tidetimes.org.uk would also have to be approached about using their data in a

marketable realm.

Last of all, it will be important to constantly consider that uktidetimes.org.uk may change their

website, the way in which their data is stored or even add/discontinue ports. In the name of

consistency and keeping true to Requirement 8: “The application should have a complete list of UK

Tide Times concurrent with tidetimes.org.uk” continuous checking of all changes made to the

website will need to be monitored. If changes are made, the web-scraping modules will need to be

altered accordingly. Fortunately, if any ports are added there is already a module, ListLinkScraper,

which if re-run by anyone in charge of application maintenance will re-populate the Port list with the

current list as given on their website. This unit was designed to keep that in mind and reduce the

complexity of the task at hand.

8 Further Reflections
From my study, I’ve been able to conclude that my initial method of tidal estimation is accurate

enough to be practically feasible. I’ve also set a good base ground for further research into the

matter and with access to more Data, or by using a different technique in conjunction with my

foundation, there is real scope for an improvement on the solution. I have learnt to appreciate the

quantity of work it takes to output a worthy project. Furthermore, I’ve learnt a great deal

throughout the process I.e. OOP, geographical knowledge and the incredibly useful/powerful tools

Android has to offer etc. I can hopefully continue to challenge myself in all these areas to improve

the application.

I also believe I’ve created an application more desirable than alternative tidal applications by

offering methods of tidal selection that users would find more intuitive. Where other applications

limit the user’s method to locational selection of tides which severely limits users looking for data

not nearby them, this application excels at that. Referring back to my initial Plan, the aim of the

project was to ‘design, develop and create an Android application to allow user to attain tide

predictions at different locations’. My end product does exactly this and more which I am happy

about. The features which those applications contain and mine does not are all realistically

achievable given a little further development in the future.

Project Android ‘Tides’ Application 1315913

49

9 Bibliography

ACM, C. of the (1998) 10 Heuristics for user interface design: Article by Jakob Nielsen.

Available at: https://www.nngroup.com/articles/ten-usability-heuristics/

Stack overflow (2016) Available at: http://stackoverflow.com

Calculate distance in meters when you know longitude and latitude in java (2016) Available

at: http://stackoverflow.com/questions/837872/calculate-distance-in-meters-when-you-know-

longitude-and-latitude-in-java

(No Date) Available at: http://www.naldic.org.uk/assets/ukmap.gif

Determining whether A point is inside A complex Polygon (1998) Available at:

http://alienryderflex.com/polygon/

Android design principles (no date) Available at: http://developer.android.com/design/get-

started/principles.html#simplify-my-life

Methods - Heuristic evaluation (2002) Available at: http://www.usabilityfirst.com/usability-

methods/heuristic-evaluation/

About tides – tides: Questions and answers (2016) Available at: http://www.ntslf.org/about-

tides/tides-faq

Web-scraping with java (no date) Available at:

http://www.geog.leeds.ac.uk/courses/other/programming/practicals/general/web/scraping-

intro/2.html

2016, C.C. (2016) EasyTide - on-line tidal predictions from the UKHO (Easytide). Available

at: http://www.ukho.gov.uk/Easytide

Ocean motion: Background: Observing and predicting tides (no date) Available at:

http://oceanmotion.org/html/background/tides-observing.htm

Tide predicting machines - NOAA tides & currents (2013) Available at:

https://tidesandcurrents.noaa.gov/predmach.html

HMKCode (2015) Available at: http://hmkcode.com/android-check-enable-location-service/

10 Appendices

Appendix A. Results Table

Appendix B. Android Requirement Testing

https://www.nngroup.com/articles/ten-usability-heuristics/
http://stackoverflow.com/
http://stackoverflow.com/questions/837872/calculate-distance-in-meters-when-you-know-longitude-and-latitude-in-java
http://stackoverflow.com/questions/837872/calculate-distance-in-meters-when-you-know-longitude-and-latitude-in-java
http://www.naldic.org.uk/assets/ukmap.gif
http://alienryderflex.com/polygon/
http://developer.android.com/design/get-started/principles.html#simplify-my-life
http://developer.android.com/design/get-started/principles.html#simplify-my-life
http://www.usabilityfirst.com/usability-methods/heuristic-evaluation/
http://www.usabilityfirst.com/usability-methods/heuristic-evaluation/
http://www.ntslf.org/about-tides/tides-faq
http://www.ntslf.org/about-tides/tides-faq
http://www.geog.leeds.ac.uk/courses/other/programming/practicals/general/web/scraping-intro/2.html
http://www.geog.leeds.ac.uk/courses/other/programming/practicals/general/web/scraping-intro/2.html
http://www.ukho.gov.uk/Easytide
http://oceanmotion.org/html/background/tides-observing.htm
https://tidesandcurrents.noaa.gov/predmach.html
http://hmkcode.com/android-check-enable-location-service/

