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Abstract

The use of Gaussian mixture models to discriminate between neutron- and

gamma ray-induced signals was investigated. Different feature sets were created

based on quantities used in traditional analogue and digital signal processing tech-

niques and used to inform a Gaussian clustering algorithm. Results of the clustering

algorithm were validated against standard metrics. Gamma sensitivity of the detec-

tor was approximately 1×10−4, two orders of magnitude above (worse) than tradi-

tional discrimination algorithms. Thermal neutron event selection proved however

to be more selective in its choice of events than traditional methods, by choosing

2.4% fewer events, which translates to an exclusion of unwanted fast neutron events.
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1 Introduction

The Science and Technology Facilities Council (STFC) is an non-departmental govern-

ment body responsible for directing public money in to a number of world-leading scien-

tific facilities around the UK[1]. Among these facilities are Daresbury Laboratory, home

to the Hartree Centre for high-performance computing; the UK Astronomy Technology

Centre, which designs and builds instruments for many of the world’s major telescopes;

and the Rutherford Appleton Laboratory (RAL), itself home to facilities such as the

Central Laser Facility, RAL Space, and the ISIS Neutron and Muon Source.

The ISIS Neutron and Muon Source, shown in figure 1, is a world-leading facility

for neutron and muon science[2]. Alongside muon science, the facility is dedicated to

performing neutron scattering, a non-destructive set of techniques which give insights to

the properties of materials on an atomic scale. Neutron beams are produced in a multi-

stage process delivered to instruments housed in two Target Stations, the layout of which

is seen in figure 2.

Figure 1: Aerial view of TS1 (yellow) and TS2 (green) with synchrotron mound and linac

(red).

Firstly, an ion source produces two bunches of protons which are accelerated to an

energy of 70MeV. The beam is then injected in to a synchrotron and resulting protons

are guided in to a circular path by ten dipole magnets. Quadrupole magnets keep the

beam focussed around the ring. After approximately 10,000 revolutions, the two proton

bunches are approximately 100ns wide in time. This entire process is repeated 50 times
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per second, resulting in an average beam current of 200µA. The beam is directed in to

two beamlines, one of which is delivered to each target station after undergoing further

focussing.

Figure 2: Layout of ISIS, showing ion source and linac (red line, top); synchrotron

(yellow and green ring, middle); and proton beamlines to TS1 (left) and TS2 (bottom);

with instruments positioned radially around the targets.

Neutrons are produced by spallation, during which the incoming protons physically

eject neutrons from the target material. In Target Station 1, the proton beam is impacted

on to a tantalum-clad tungsten target. Moderators slow down high-energy neutrons to

useful energies. These neutrons are called thermal neutrons, and are of the most inter-

est to neutron scattering experiments. However, the resulting energy distribution still

includes some higher energy, fast neutrons. In Target Station 2, the production of long-

wavelength neutrons is maximised for applications such as soft matter research. The

instruments on ISIS are open to users around the world for neutron scattering experi-
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ments[3]. Users can apply for beamtime on an instrument during one of the multiple user

cycles which run throughout the year.

2 Aim and Objectives

The aim of the project is to investigate the feasibility and performance of a machine

learning-based classifier for the purpose of classifying different types of signals from neu-

tron detectors, with the goal of outperforming traditional methods. Specific objectives

of the project include:

• Reviewing the current state of the art methods for utilising machine learning for

the purpose of electronic signal processing

• Reviewing existing techniques for performing discrimination

• Investigating the feasibility of using machine learning-based techniques for classify-

ing different types of electronic signals

• Comparing and contrasting the relative successes and failures of machine learning-

based techniques and traditional analogue electronic processes in the context of

signal processing

• Produce a deployable application which can be used by experimental scientists to

utilise the final machine learning models.

3 Background

3.1 Scintillation-based detectors

Detectors on ISIS instruments consist primarily of 3He-filled gas tubes or zinc sulphide-

based scintillation detectors[3]. While the fine detail of the scintillation process will not

be discussed, broadly speaking, scintillation-based detectors exploit the generation of

photons due to captured particles. The duration of the scintillation process is affected

by the type of particle that is absorbed: massive particles such as neutrons generate a

large amount of photons and continue to release photons for a relatively long time after

the particle has impacted the detector (afterglow). However, while gamma rays can be
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as energetic as neutrons, the release of photons due to an incident gamma ray dies away

very quickly after impact due to the physics of the scintillation material[4]. Scintillation

photos pass through optical fibres and are collected by a photomultiplier tube (PMT),

which produces an electrical signal proportional to the number of photons it receives.

A family of techniques, broadly known as Pulse Shape Discrimination (PSD), form the

basis for distinguishing between neutron- and gamma ray-induced pulses. These will be

described later.

ISIS and other facilities will soon generate higher neutron fluxes. When exposed to

these higher rates, current scintillator-based detectors do not have the ability to dis-

tinguish between events located this close to each other in time, due to afterglow[5].

However, lithium-loaded plastic scintillators, particularly Eljen Technologies’ EJ-270, a

sample of which is shown in figure 3, are being investigated for their ability to cope with

high fluxes due to their fast decay and PSD capabilities[6][7].

Figure 3: A sample of a lithium-loaded plastic scintillator emitting light due to incident

ambient light[8].

3.2 Content of dataset

The training dataset used in this project contains approximately 28,000 events, each

caused by either a neutron or gamma ray. The dataset was collected using a prototype

detector containing a sample of EJ-270 as its scintillating material on an Americium-

Beryllium source. Each event is a time series at 2ns intervals containing the amplitude of

the pulse. Due to the PMT, what is effectively being measured is the light output of the
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scintillator as a result of an impacting particle. There are 300 data points per pulse, cov-

ering a 150ns time period. Figure 4 shows an 80ns window, containing a typical neutron-

and gamma ray-induced pulse. Both have had a background subtraction performed and

are normalised to the peak in order to illustrate their different characteristics.

Figure 4: Typical neutron and gamma rays as they show up in the detector.

The gamma ray pulse was taken from a lower energy event, which explains why the

background is noisier. The region of approximately 20-60ns is termed the tail of the pulse.

The tail is not rigorously defined, but describes a general region of the pulse shortly after

the peak, during which the detector material is still scintillating. The afterglow caused

by the incident neutron is clearly visible in the region 30-50ns, whereas the signal has

already returned to background in the gamma ray pulse. This illustration shows that the

tail is a key distinguishing factor between neutron- and gamma ray-induced pulses. The

relative portion of the pulse contained within the tail can be encoded in the tail sum,

which is simply the sum of all data points within the tail. Figure 5 shows a scatter plot

containing each pulse represented by it’s peak amplitude (known from hereon as pulse

height) along the x-axis and tail sum along the y-axis.

Considering the figure, one can visually separate three different regions. The region

denoted A is the thermal neutron peak. The upper branch, denoted B, is the fast neutron

region. The lower branch, denoted C, is the gamma ray region. A key point, and a

problem which this study aims to address, is that not only are the boundaries between

the regions diffuse and not fully resolvable, but each region does not exclusively contain
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Figure 5: Each pulse in the dataset, represented by its height and tail sum

events of that type. For example, region A does not contain exclusively thermal neutron

events, but certainly includes fast neutron events, as it sits on top of the branch of region

B. Region A also likely contains some, but not many, gamma ray events.

This discrimination problem is part of a wider signal processing and data collection

routine at ISIS. Events output by discrimination algorithms are passed to the data collec-

tion programs running on ISIS instruments. This is the data used to form the scientific

analysis of experiments being performed by visiting scientists. As such, a key problem is

not only discriminating between neutron and gamma ray events, but making sure that

only thermal neutron events are selected, as opposed to fast neutron events. Tradition-

ally, a bounding box is drawn around region A, and every event inside the limits will be

classified as a thermal neutron. However, this results in many fast neutrons and gamma

rays being classified as neutrons, which may contaminate scientific analysis.

3.3 Existing discrimination techniques

Distinguishing between neutron and gamma ray-induced signal is done via a broad range

of techniques called Pulse Shape Discrimination (PSD). Methods belonging to this family

are examined on a technique-by-technique basis. The use of machine learning in neu-

tron/gamma ray discrimination is also surveyed, but on a study-by-study basis, because

the algorithms and techniques used are more intrinsically linked.
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3.3.1 Traditional analogue electronic discrimination

One of the most fundamental methods of PSD is the Charge Comparison Method (CCM).

The CCM is a measure of the portion of light emitted in the different components of

the scintillation process[9]. One way of implementing this method is to select two time

windows, and for each pulse sum the amplitude values within each window and compare

their relative areas. Values of the start and end point of these time windows, known from

now on as integration gates, are optimised to provide the best figure of merit[10][11]. It

has been established that the proportion of light released in the tail of the pulse is what

distinguishes pulses caused by neutrons from pulses caused by gamma rays, so choosing

time windows which are able to encode this difference is important.

Pulse Gradient Analysis (PGA) exploits fast and slow decay components of scintil-

lation, similar to CCM[12]. However, instead of using integration gates based on these

time intervals, the gradient of the pulse is taken at two points. D’Mellow used the peak

of the pulse as the first point, and another sample 20ns after the peak. However, it is

noted that properties of the experimental setup, such as type of scintillator and PMT

may affect the optimal choice of the second time point.

Fourier-based methods are also popular. Similar to PGA, Frequency Gradient Anal-

ysis (FGA) exploits the difference between different components of the Fourier transform

of pulses and has been shown to outperform PGA[13]. Rather than using raw pulse data,

pulses are modelled as the superposition of two or three exponential decay functions[14].

Fourier Area Analysis (FAA) examines the area under the Fourier transformed pulse in

order to perform discrimination and has been shown to outperform FGA and PGA[10].

In addition to the findings of this section, algorithms being investigated by Dr Sykora

use custom figures for the window used to define the tail sum, as well as start and end

points for long and short integration gates. These were used as starting points for features

which informed the machine learning portion of the study.

3.3.2 Machine learning-based classification

Kaplan[15] proposes a classifier which utlises pure gamma ray sources and mixed neu-

tron/gamma ray sources, similar to what is available at ISIS. Kaplan works with Tail-To-

Total (TTT) figures, separating the neutron and gamma regions using a scatter plot with

one axis containing the integral of the background-subtracted pulse and the other axis
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measuring the fraction of the signal energy that the tail of the pulse contains. This is re-

lated to the CCM. Kaplan’s classifier and the TTT method were tested on gold standard

labels provided by a Time of Flight (TOF) labelling, which measures the time taken for

the particle to arrive based on a trigger signal which activates when pulses of neutrons are

generated. Gamma rays, travelling at the speed of light, arrive almost instantly, whereas

slower, massive neutrons arrive afterwards. Pulse models were constructed based on a

mixture of normal distributions in order to encode the different factors which influence

the pulse shape. An Expectation-Maximisation algorithm is used to train the classifier,

which outputs parameters which represent the pulse shapes with the highest likelihood

for a pure and mixed source. In the testing phase, a score is generated for each pulse

based on the pulses generated by the normal distribution modelling, using the parameters

derived in the training phase. Findings from the study showed improved performance

over a standard TTT method.

Yu et al.[16] adopted a supervised learning method using Support Vector Machines

(SVMs). The CCM informs a figure of merit which is used to discriminate between

neutrons and gamma rays. Obtain a training set for the SVM was performed by selecting

regions of a scatter plot charting the energy of each event as a function of a figure of

merit. The scatter plot separated neutron and gamma ray events reasonably clearly

above a certain energy. Labels were assigned to these data points and used for training,

while the rest of the events were used for testing. A Moment Analysis Method, described

by Xie[17], is used to create feature vectors for each event. Only 3000 events of each

type were used for training, and based on a test set containing 6,613 neutron events and

36,922 gamma ray events, they report an error of 0% and 0.04% respectively. Xie notes

the advantage of the SVM method in that it can provide an accuracy score for each

classification.

3.4 Unsupervised learning

A number of machine learning paradigms exist, the appropriateness of which depends on

the problem at hand. In a supervised approach, a learner has access to the inputs and

correct outputs of the system it is trying to create a model for. For example, consider

task in which a learner which is required to determine whether or not a photo contains a

cat or a dog. The learner will be fed examples of images which are labelled as containing
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a cat or a dog. After a model is generated, based on this training data, it can be used

on new, unseen images (test data) to predict a label for it, that is, whether it contains a

cat or a dog. In contrast, unsupervised learning does not deal with training or test data.

Instead, the learner aims to produce a representation of that data by grouping it in to

useful subsets. The learner does not have access to what the correct outputs are[18].

Clustering is an unsupervised approach to machine learning which aims to identify

meaningful subsets of data based on the parameters which make up each data point.

Clustering algorithms use an iterative process, such Expectation-Maximisation[19] to

arrive at an optimised solution. Mixture models are a type of unsupervised clustering

concerned with resolving mixtures of distributions, which describe features of data[20]

and are suited well to this project, as the dataset can be considered to be made up of a

mixture of three distributions. A number of types of algorithm for performing clustering

exist. Linkage-based clustering algorithms start with each point its own cluster, and then

merges the closest clusters. Other algorithms, such as the k-means algorithm, define

a cost function, which is to be minimised. Spectral clustering encodes the relationship

between data points as nodes on a graph, connected by weights. The algorithm then seeks

a partition of the graph between groups which have low weights and high weights[21].

3.5 Approach

While Yu performed labelling based on which region of a scatter plot the event was

located in, this surely introduced contamination to the system due to the mixed nature

of the data. Additionally, only events above a certain energy were labelled, causing the

learning algorithm to only be exposed to a subset of the full range of possible neutron

and gamma ray events. Kaplan’s custom algorithm is a more sophisticated approach to

creating labelled data by using time-of-flight information. However, that information is

not available in this study. Additionally, Kaplan used a much more bespoke algorithm,

but creating something in a similar vein was infeasible given the timeframe of the project.

In order to avoid contaminating the training dataset by using a substandard labelling

approach, it was chosen to follow an unsupervised approach. A more bespoke approach

such as Kaplan’s may well have restricted the available feature sets, so a more generic,

out-of-the-box approach allowed the scope of the study to remain wide, while allowing

for a potential labelling, or other additions, later on.
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4 Experimental

4.1 Model selection

The sklearn.cluster package[22] was chosen to perform the core clustering algorithms.

It provides a number of different methods for clustering unlabelled data, including k-

means clustering, the DBSCAN algorithm and its generalised form OPTICS, hierarchical

clustering and Gaussian mixture models. Superficial exploratory analysis was performed

in order to determine which clustering algorithm to use. This was validated through use of

pulse height/tail sum plots such as in figure 5 as well as considering the mechanics of each

algorithm. This approach was sufficient because the difference between algorithms was

visible on a macroscopic scale, so thorough numeric validation was not deemed necessary.

k-Means clustering was ruled out as it aims to create clusters of equal variance, which

is not something that is desired nor does it reflect the physics at the heart of the problem.

The variance-equalising nature of k-means was clearly shown in a simple implementation,

whereby cluster boundaries were clearly attempting to divide the data equally between

clusters.The DBSCAN algorithm is able to discover clusters of arbitrary shape via initial

discovery of high-density areas[23]. Additionally, there was potential for the output of the

DBSCAN algorithm to contain a noise labelling. This was not desired, as noise reduction

had already been performed to a sufficient level: we were happy for any event in the

dataset to be labelled a thermal neutron, fast neutron or gamma ray. This can again

be seen in figure 5 whereby signals which contained a pulse height below approximately

4500 were rejected. Similar results were obtained using OPTICS.

By making the approximation that the dataset consisted of a mixture of Gaussian

distributions, the Gaussian mixture modelling algorithm suited well. Clusters formed

by this algorithm are ellipsoidal in shape, which makes it suitable for fitting eccentric

ellipsoids to both long arms of the fast neutron and gamma ray regions as well as the

more circular thermal neutron peak. In addition to the data that is provided to the

Gaussian clustering algorithm, a number of other parameters can be specified to the

model - of particular importance is the number of components that the algorithm needs

to create. Initially, both 2- and 3-component models were generated. The rationale

behind generating 3-component models is clear: one component for each region of the

pulse height/tail sum plot shown in figure 5. Searching for 2-component models was a
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first attempt at creating a model which successfully localised the thermal neutron peak

in one cluster, and “everything else” in the other - with the fast neutron and gamma ray

regions merged. It soon emerged that artificially increasing the number of components

to 4 provided interesting results. As will be demonstrated later, this forced the splitting

of the fast neutron and gamma ray regions in to three clusters, which proved to isolate

the thermal neutron peak from the upper end of the fast neutron branch better. Another

parameter which could be passed to the clustering algorithm was an initial guess for the

midpoint of each cluster. By selecting these to be roughly in the middle of each region,

it was hoped that the algorithm would converge to a solution consisting of two ellipsoidal

distributions capturing the fast neutron and gamma ray regions, and a more circular

distribution fitted to the thermal neutron peak. However, despite multiple attempts, it

was not possible to generate this result.

4.2 Feature creation and selection

One of the main tasks was selecting the information to pass to the clustering algorithm.

It was important to provide enough features to enable a good-quality discrimination,

but also to not overload the system with irrelevant data. The outcome of section 4.2.4

prompted returning to earlier feature sets to alter the way they were created. Different

bounds for the integration gates were selected based on a visual assessment of what the

normal distribution fits failed to capture. Additionally, a background subtraction was

also performed in order to make any integration-based figures more polarised. As figure 6

shows, the proportion of the red area relative to the whole pulse area (grey and red areas

combined) is a more representative when background subtraction has been performed.

4.2.1 Tail sums

As a first attempt at a clustering model, only two features were used - the pulse height and

tail sum. Since ultimately this study will be compared to the results of Dr Sykora’s work,

the region used for the tail sum was kept the same to start with. The original tail sum

was based on a value which maximised a figure of merit that was used in his approach,

however it became clear that this value might not be the best approach for the clustering

algorithm. 2, 3 and 4-component models were generated. In the 2-component model, it

was found that the cluster containing the thermal neutron peak tended to leak too far
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(a) With background subtraction. (b) Without background subtraction.

Figure 6: Results of running the clustering algorithm on different numbers of clusters

with the pulse height and tail sum as features.

in to the fast neutron region, shown in figure 7a. A common theme with the 3-cluster

approach was that it did not have the intended effect of separating the data in to one

distribution per region. Instead, one distribution was generated centred on the densest

area where the fast neutron and gamma ray branches merge. The second covered the less

dense areas of both branches, while the third captured the thermal neutron peak well.

By artificially increasing the number of clusters to 4, the fast neutron and gamma ray

branches were split in to three clusters and the thermal neutron peak was better isolated

from the fast neutron branch. This is achieving the intended effect of labelling neutrons

in the fast neutron branch as fast neutrons rather than being labelled thermal neutrons.

A modified tail window was also tested, based on a visual assessment of pulses, which led

to much less leakage of the thermal neutron cluster in to the fast neutron branch, even

in a 2-component model, as shown in figure 7b.

4.2.2 Tail-to-total

Kaplan’s tail-to-total figure was trialled instead of using the tail sum. The tail-to-total

values were obtained by dividing each pulse’s tail sum integration by the total pulse

integration. Since two values for the tail sum were investigated, this led to two versions

for the tail-to-total value. Observing the 3-cluster models this time, shown in figure 8,

the tail-total figures created using the original tail sum still leaked considerably in to the
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(a) Original tail sum values. (b) Modified tail sum values.

Figure 7: 2-component cluster modelling using both the original and modified tail sums.

fast neutron region, whereas the tail-to-total figures created using the modified tail sum

proved to isolate the thermal neutron peak exceptionally well.

(a) Tail-to-total values created using the origi-

nal tail sum region.

(b) Tail-to-total values created using the mod-

ified tail sum region.

Figure 8: 3-component cluster modelling using the pulse height and tail-to-total figures.

4.2.3 Integration gates

Findings from the survey of existing discrimination techniques showed that use of different

integration gates was a common way to characterise the pulse (the CCM). It has been

established that the length of short and long gates do not have rigid definitions, but are

a result of optimising a figure of merit. In order to reduce the risk of losing information
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by condensing these two values in to one, the raw values were used as features. While

the values for the start and end point for both of these gates could still be optimised,

this was not performed because the process would take up a not inconsiderable amount

of time and any improvements likely marginal. Both gates opened at 0ns to ensure that

the rise of the pulse was taken in to consideration. The short gate ran until 15ns, while

the long gate ran until 67.5ns. Figure 9 shows a model pulse generated using Marrone’s

model[14] along with an approximation of the integration gates.

Figure 9: Demonstration of different integration regions on a model pulse.

As an exploration of these features, models were generated using only the short and

long gate integration values as features. However, these exhibited a significant leakage of

the thermal neutron cluster (shown in figure 10a) down in to the gamma ray branch which

persisted in to 4-component models. Incorporating pulse height and the modified tail-to-

total values for each pulse in to the feature set significantly improved the clustering, as

shown in figure 10b.

Performance was comparable to the clustering obtained by using only the pulse height

and tail-to-total values. However, some leakage was still present outside of the thermal

neutron peak, particularly in to the fast neutron branch containing pulse heights of x >

40,000.
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(a) 2-cluster modelling using only short and

long gates.

(b) 4-cluster modelling incorporating the pulse

heights and modified tail-to-total values.

Figure 10: Incorporating the pulse height and tail-to-total values was necessary in order

to obtain a good clustering.

4.2.4 Normal distribution modelling of pulses

In order try and better encode the overall shape of the pulse, modelling each pulse as

the superposition of a number of normal distributions was explored. This was performed

using scipy.optimize.curve fit[24], a least-squares minimisation function, which takes

a template function whose parameters are to be optimised, and a set of data to fit it to.

The resulting parameters of these fits (amplitude, mean and standard deviation for each

distribution) formed the features which were passed to the model.

Considering the physical origins of scintillation, fitting a single distribution to each

component of the scintillation process should yield around 5 different distributions, which

was the initial number fitted. However, even when the parameters’ upper and lower

bounds were constrained, frequently the fit function would fit 4 distributions, but often

only 3. While good fits decompose the bulk of the pulse in to distinct distributions and

also fit to the background, they fail to capture the information in the tail. The poor

5-distribution fits often lacked any contribution for 2 out of its 5 fitted distributions. In

order to achieve a more consistent and reliable fitting outcome, it was decided to reduce

the number of distributions fitted to 3, plus a constant background as shown in figure 11.

A constant background was fitted as opposed to a Gaussian background because, since the

background and tail portions of the pulse are so shallow, the mean and standard deviation
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of these parameters varied considerably, too much for any meaningful contribution.

(a) Note how the tail is still not being fit. (b) A typical 3-distribution fit.

Figure 11: More consistent 3-Gaussian fits plus a uniform background.

After restricting the number of distributions to 3, ensuring that all distributions were

fitted in the same order for each pulse was imperative, otherwise the clustering algorithm

would be comparing different parts of the pulse from one pulse to the next. For example,

should this constraint not be kept, and the distributions were fit in a random order,

the clustering algorithm could be comparing the distribution fit to one pulse’s rise to the

distribution fit to the next pulse’s tail. In other words, for a fit comprising 3 distributions

with parameters (a1,m1, s1, a2,m2, s2, a3,m3, s3), we require that m1 < m2 < m3 for each

pulse. This was ensured, as much as it could be, by providing the fitting function with

an initial guess for each parameter, as well as upper and lower bounds. While the 3-

distribution method proved the most consistent and reliable, its ability to encode the

very shallow afterglow region of the tail was still limited.

Despite the effort recorded here, clustering results for this feature set were the worst

of all. The algorithm arrived at a solution placing the vast majority of events in one

cluster, and only a few fringe events in other clusters, shown in figure 12.

5 Results and discussion

As mentioned earlier, the neutron/gamma ray discrimination process is part of a wider

data analysis pipeline. Data output from detectors and their discrimination algorithms

goes on to be used in the experiment that is being performed on the instrument, so
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Figure 12: Clustering using Gaussian fits of pulses

ensuring each event is classified correctly is critical. The models’ performance were nu-

merically assessed by two metrics. The gamma sensitivity is the measure of the proportion

of gamma ray events are labelled as being caused by neutrons. Minimising this quantity

is important in order to reduce the number of gamma rays that go on to inform the

scientific analysis of the experiment, as they are simply noise, but labelled as useful data.

The second metric is relates to the discrimination between the thermal neutron peak and

the fast neutron and gamma ray branches. Not only is it important that gamma rays

are not labelled as thermal neutrons, but it is important that fast neutrons are not la-

belled as thermal neutrons either. This second metric measures the proportion of events

which the model labels as thermal neutrons, relative to the traditional method of thermal

neutron labelling. Minimising this quantity is also of interest, as this represents a more

selective model. Data from two feature sets were not numerically validated: the normal

distribution fits to each pulse and short and long integration gate models. Feature sets

in this section are referred to by an abbreviation according to table 1.

5.1 Gamma sensitivity

As has been established, the dataset was taken on a single source consisting of mixed

thermal neutrons, fast neutrons and gamma rays. While it was not possibly to obtain

pure neutron data, a pure gamma ray source exists which enables the gamma sensitivity
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Abbreviation Long name

PH Pulse height

TS Tail sum (original)

NTS Tail sum (new)

TTT Tail-to-total using TS

NTTT Tail-to-total using NTS

SGI Short gate integration

LGI Long gate integration

Table 1: Abbreviations of feature names.

to be validated. Gamma ray data was collected from a cobalt-60 source and passed

through the model, which enabled a label to be predicted to be made for each event.

Only gamma rays with a pulse height in the range 0 < x < 50, 000 were used in the

testing of the model. This is because the energy spectrum of the gamma ray source was

different to that of the source on which the training dataset was taken, and contained

events with larger pulse heights, which the model was not trained on. Figure 13 shows

the full gamma ray dataset, along with the cutoff point. Label predictions were only

made for events in the red region.

Table 2 shows the gamma sensitivity values for different component numbers and

feature sets. Out of the approximately 21,000 events which were able to test the gamma

sensitivity, the best results were achieved using a 3-component clustering and the feature

set consisting of the pulse heights, where only 2 events were labelled as neutrons. Data

from two features sets was not numerically validated: the normal distribution fits to

each pulse and short and long integration gate models. While there is not much variance

between the best results, it becomes clear that selecting fewer high-quality features is more

important than both the number of clusters that the model searches for and the number

of features. Even the 2-cluster model using the fundamental feature set [PH, TS] proved

create a better model than one which contain more features. The [PH, NTTT, SGI, LGI]

was known to contain good-quality features (as shown in the [PH, NTTT] results), and

the [SGI, LGI] feature sets produced acceptable results, but the combination of these two
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Figure 13: Each pulse in the pure gamma ray dataset, with the restricted area shown.

did not increase the quality of the clustering.

n PH, TS PH, NTS PH, TTT PH, NTTT SGI, LGI
PH, NTTT

SGI, LGI

2 6.69×10−4 1.00×10−3 6.69×10−4 3.34×10−4 2.02×10−2 3.19×10−1

3 6.69×10−4 1.43×10−3 6.69×10−4 9.55×10-5 8.83×10−3 3.20×10−3

4 2.44×10−3 1.43×10−3 2.39×10−3 4.78×10−4 2.34×10−3 2.34×10−3

Table 2: Gamma sensitivity of different feature sets for n clusters.

Key to improving the fitting is considering which gamma ray events were labelled

as neutrons. This is shown in figure 14. The event located at (28896,114264) contains

an anomalously large tail sum for a gamma ray of that pulse height. While there could

be a case for removing this event by classing it as an outlier, it is no doubt caused by

a gamma ray and therefore there is a possibility of observing more events like these in

the detector. In fact, gamma rays in this region which are classed as neutrons are the

most critical events to discriminate between, as these are gamma rays which the system

otherwise considers to be neutrons.

For each event mis-labelled as a neutron, the gamma sensitivity increases by 4.78 ×
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Figure 14: Caption

10−5. By approximating the uncertainty in the gamma sensitivity as the precision of the

measurement, this gives an error of ±50% for the best result. This is proportionally large

compared to the absolute value, but reducing this and obtaining more accurate values is

entirely possibly by using a larger test dataset.

5.2 Thermal neutron peak

The traditional method employed to select thermal neutron events is to simply create

a bounding box around the thermal neutron peak and label everything inside that a

thermal neutron. However, this causes fast neutron and likely some gamma ray events to

be labelled as thermal neutrons, which is not a desirable outcome. Gaussian clustering

presents a more selective approach as events within the thermal neutron peak can easily

be extracted from the model. Traditionally, any event with a pulse height between the

values of 28, 000 < x < 42, 000 and tail sum within 70, 000 < y < 135, 000, shown in

figure 15 would be labelled a neutron.

When assessing the number of neutrons that each model placed in the thermal neutron

peak, the bounding box was also applied such that an event was only considered a thermal

neutron if both the model placed it in the cluster which contains the thermal neutron

peak, and it lied in the region 28, 000 < x < 42, 000 and 70, 000 < y < 135, 000. This

enables comparison to the traditional method, as well as being necessitated by some 2-
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Figure 15: Bounding box for thermal neutron classification

component models’ whose thermal neutron cluster leaked too far in to the fast neutron

branch. Since we are looking for a more refined approach to thermal neutron selection,

the lower amount of thermal neutrons that a model selected, the better. While this means

more time is required to collect the same amount of data, slower run times but a higher

quality of thermal neutron discrimination are preferable to faster run times and poorer

discrimination. Table 3 shows the proportion of thermal neutrons that were labelled as

such by the model compared to the number of neutrons within the bounding box. A

value of 1 indicates that the model was no more selective than the bounding box method.

n PH, TS PH, NTS PH, TTT PH, NTTT
PH, NTTT

SGI, LGI

2 1.000 0.998 1.000 0.986 1.000

3 1.000 0.994 1.000 0.986 0.996

4 0.989 0.988 0.988 0.997 0.993

Table 3: Proportion of thermal neutrons labelled as such by the model.
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6 Conclusion and further work

An unsupervised learning approach has been successfully implemented to perform dis-

crimination between neutron- and gamma ray-induced pulses in a detector. While the

gamma sensitivity of the model is around two orders of magnitude higher than using

traditional methods, a larger test dataset may improve this value. Selection of thermal

neutron events has been shown to be 2.4% more selective than a traditional bounding

box approach.

Perhaps the biggest change which could be made to the study is to find a way to label

the data. There are a few options for this. Firstly, manually labelling each data point is

technically one option, but this would be extremely labour-intensive and distinguishing

between thermal and fast neutrons would be difficult and not entirely accurate. An

approach similar to Kaplan, using time-of-flight data seems like the best “fast” way to

generate labels. However, while ISIS does have time-of-flight data available, gamma rays

are generated by neutrons colliding with beamline equipment throughout their travel time

such that they are present throughout the neutron pulse’s arrival, not just concentrated

at the start when the neutron pulse is generated. Should a reliable (enough) labelling

method be found, this enables the possibility of more sophisticated supervised learning

techniques, such as SVMs.

The addition of different feature sets to the study is also of interest. Implementing

features based on PGA, FGA and FAA may be of interest. Also optimisation of the

different windows for the tail as well as long and short integration gates should be per-

formed. Another feature which Dr Sykora trialled in his algorithms was a “time to 10%”.

This also attempts to encode the tail in a value, and takes the time value at which the

signal has dropped from its peak, to 10% of its peak value. Additionally, based on the

failure of modelling pulses based on a mixture of normal distributions, modelling pulses

based on Marrone’s method may be worth trying.

Being able to bind the shape of the fitted clusters to the shape of the regions which

make up figure 5 would surely result in a fit which is both improved in terms of its

gamma sensitivity and thermal neutron classification. This may yet be possible with the

algorithm built in to sklearn, but a more custom approach may be required.

There is always the potential for using different feature sets in the algorithm. One op-

tion is utilising Marrone’s fitting approach to fit a number of exponential functions to each
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pulse and use the resulting parameters as features, similar to the Gaussian distribution

fitting approach.

It emerged that the possiblity of producing a standalone app was not possible. Not

only would this have required a significant amount of time which could be spent working

on the algorithms, but the algorithm itself requires improvement before moving on to the

next stages of implementing in standard detector development workflows.

7 Reflection

This project is a significant bridge between the world of applied physics and that of

machine learning. As such, knowledge of the workflow of each discipline is required and

can be difficult to reconcile. My background is in physics and during my degree I was

able to undertake a placement year at the ISIS facility. At this point I was aware of

the potential of the application of machine learning to this problem, so by the time

this project came about, I was already familiar with the problem, the physics and their

context.

Additionally, having not done a computer science degree, my coding practices are

not as polished and streamlined as someone who has. While I am comfortable enough

programming at this level, the project evolved in such a way that I began to regret

designing the codebase in the way I did, and some time was used to go back and refactor

code rather than working on improvements which would lead to better numeric results.

I would have liked to take a more bespoke approach to the creation of the clustering

routine, rather than simply using a pre-built routine such as the one provided by sklearn.

However, my knowledge of the mathematics of Gaussian mixture models is not sufficient.

The sklearn package was however extremely easy to work with and enabled maximum

time to be put in to trialling different feature sets rather than working on the minutae of

a custom algorithm.
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