

Project 88 Report

Laser Triangulation SLAM

Author Samuel Martin
Author ID C1319546
Module One Semester Individual Project
Module Code CM3203
Module Credits 40
Project Supervisor David Marshall

1

Abstract
By using a inexpensive laser triangulation scanner this project aims to create an
affordable robotic mapping solution suitable for building 3D models of interior
environments. This project covers the physical design and build of the robot as well as
the software implementation.

Figure 1: Artistic representation of captured scan data

2

Contents

1 - Introduction

2 - Background research

3 - System Overview
3.1 - Software Overview
3.2 - Hardware Overview:

4 - Hardware Implementation
4.1 - Mechanical Parts
4.2 - Electronic Parts

5 - Software Implementation
5.1 - Robot Module
5.2 - Scanner Module
5.3 - Point Cloud Module
5.4 - Voxel and Voxel Grid Modules
5.5 - A* Route planner & Navigation Module
5.6 - Motor Controller Modules
5.7 - Networking
5.8 - Intrinsic Parameter

6 - Test Results
6.1 - Module Tests
6.2 - Real world testing
6.3 - System Speed
6.4 - System Price

7 - Limitations
7.1 - Environmental factors
7.2 - Trade offs

8 - Future development

9 - Critical Reflection

10 - Conclusion

3

1 - Introduction

1.1 - Problem Overview
The overall objective is to create a robot which can safely navigate an environment
whilst building up a comprehensive 3D model of its surroundings. The scanner is
regularly the most expensive component when it comes to mobile robotics. Because of
this, the key objective of this project is to create a cheap 3D scanner which has a high
point density resolution to use to navigate an unknown environment safely.
LIDAR is the most commonly used scanner for small robotics platforms, however most
scanners are far outside of budget. Laser triangulation scanners are easy to build and
cheap making them an inexpensive substitute to LIDAR.
The second project objective was to analyse this sensor data and use it in conjunction
with route planning algorithms to explore an environment to build up a 3D model safely
and efficiently.

1.2 - Project Brief
The official success criteria from the Initial Plan[1] are as follows. These will form the
majority of the testing criteria.

1.2.1 - Accuracy
“The SLAM world model needs to be accurate enough to navigate around messy
environments. For example a desk covered in books and papers.”

1.2.2 - Adaptability
“The system should adapt to new environments automatically.”

1.2.3 - Speed
“The robotic platform should be able to scan an environment within a reasonable
amount of time. For example, one scan and one 30cm route plan traversal should take
no more than two minutes to complete.”

1.2.4 - Cost
“The entire system’s component value should be no more than £100”

4

1.3 - Technology Overview
The following chapter should give a concise overview of the technologies used in this
project.

1.3.1 - Laser Triangulation Scanning

Laser triangulation scanning works by firing a laser into a scene at an angle and
analysing the reflected beam shape with a sensor to determine depth information. This
is classically used in measuring known objects or scanning isolated objects. This is
done by mounting the object on a rotating or moving platform. However the same
methodology can be applied to interior environments if the scanner is placed on the
rotating platform instead of the object to be scanned.

1.3.2 - SLAM Methodology
SLAM stands for Simultaneous Location And Mapping. This is used regularly by mobile
robotics platforms to ascertain its surroundings. The first step of SLAM is to retrieve a
map of the local area using some form of scanner, be that lidar, sonar or structured
light. As the robot moves around it re-calculates its position by using a mixture of built in
odometry and localisation techniques. This step is where it matches its current world
model to previous world models to calculate its position. This relies on the environment
having enough interest points to match the two correctly.

1.3.3 - ICP Registration
ICP stands for Iterative Closest Point and is a registration algorithm used for matching
point clouds together. Registration will form a key step in the SLAM methodology
implemented in this project.

1.3.4 - Odometry Based Position Triangulation
ICP converges much faster if the two scans have a relatively accurate initial
transformation. This can be achieved by using the robot’s built in odometry to transform
the world models to match the traversal made by the robot before ICP. The built in
odometry is also key for maneuvering the robot around obstacles in the world.

5

2 - Background research
This chapter gives a brief overview of the background research required for this project.
This includes hardware and software research from academic and industrial sources.

2.1 - Scanner
Laser Triangulation scanning was first developed by the National Research Council of
Canada back in 1978 and has been used for many industrial measurement systems.[2]

These scanners have become widely available due to their drop in component price.
They can be fabricated cheaply with readily available parts. These provide a high
resolution depth map using infrared or visible light lasers combined with any form of
digital camera.

2.1.1 - Laser Triangulation Trigonometry Overview
Laser triangulation scanners use laser light to probe the environment. This is done by
mounting some form of light sensor a certain distance from the laser and as the laser
gets fired into the scene the sensor can measure where it falls within its field of view.

As long as the distance between the sensor and the laser is known as well as their
relative angles, we can form an angle-side-angle triangle as shown in Figure 2. A full
breakdown of these equations can be found later in this chapter.

Figure 2: Diagram of generic laser triangulation layout

6

Known
 Distance between sensor and lasera =
 Angle between laser and cameraL =
 Ref lected laser angle in relation to the sensorR =

Unknown

 Unknown distance between the laser and the environment objectd =

Relationship

 d = a(sin(R))
sin(180−L−R)

A 1D sensor and single dot laser can measure along a 1D intersection with the
environment. However a 2D sensor such as a camera and a line laser can capture a 2D
plane intersection with the environment. We can use the incoming horizontal pixel index
(iu) for each row of the camera to determine the angle . This assumes that the FOV ofR
the camera is known. Figure 3 shows how a camera can be utilised as the laser
detection sensor.

Figure 3: Diagrams showing change in environment distance

7

If we visualise this with a semi-complex primitive monkey head, we can visualise how
the laser would fall on it. Figure 4 shows how the laser intersects with its environment
from the third person view of the object and the scanner.

Figure 4: 3D Visualisation of Figure 3

Figure 5 shows how the laser intersects with its environment from the camera's point of
view.

Figure 5a: 3D Visualisation of the

camera view in Figure 4

Figure 5b: Image captured from a

real world example

8

As we need a 3D scan of the environment, we need to introduce a new dimension to
these one dimensional slices. We can do this by moving the scanner. This can be done
as a linear sweep or a rotation. For this project a turntable is more suitable as it
complies a panorama style scan which will give the robot 360 degree vision. Due to
mechanical constraints it is easier to mount the camera at the center of the turntable to
reduce unwanted camera motion between slice captures. As the scanner rotates, it
captures 2D intersecting slices of the environment.

Figure 6 shows an artistic representation of how these slices are captured from the
camera's point of view. This was created by overlaying multiple captures whilst rotating
the scanner. Each capture has been shifted by 6% so that each slice is identifiable.

Figure 6: Artistic representation of turntable scanning

9

2.1.2 - Alternative Scanning Solutions
Impact and sonar based mapping is the cheapest solution but has the lowest
resolution. This only provides a 2D map and is also susceptible to large amounts of drift.
As well as this it struggles to identify non-solid obstacles, oblique obstacles, low lying
surface changes and cliffs.

LIDAR is one of the best options for small robotic platforms. These modules usually
come in the form of small turntables which spin at around 1 - 3Hz[4] which provide a high
accuracy, dense 2d point cloud. However it is also the most expensive scanning
solution listed.

Camera motion has the simplest hardware implementation as all it requires is a
camera and a processor. However this method requires a fast processor to capture and
analyse data in real time. As well as this the platform has to be moving to build up a
map of its surroundings. This poses severe problems when the environment is initially
unknown.

Structured Light scanners such as the Microsoft Kinect provides an excellent real time
scanning solution. The main drawback with most off the shelf systems though is the
physical size and minimum scan distance. The Kinect has a minimum scan distance of
around 50cm[3]. Mounting this to a robotic platform would create a one meter dead zone
which would cause issues when navigating close-quarter obstacles.

10

2.2 - A* Route Planner
The A* route inspection algorithm was coined by Peter Hart, Nils Nilsson and Bertram
Raphael of Stanford Research Institute back in 1968. Originally this was an extension of
Dijkstra's algorithm.[5] To build an A* route inspection algorithm in 2D space, each
position needs to be classified as a node within a graph with weighted connections to
each adjacent area. This can then be searched until the path connects the source with
the target node.

Using a square grid is the most common way to convert a 2D
environment into a route inspection graph. However because
diagonal movements are longer than cartesian movements, the
edges connecting them are weighted slightly higher. A common
estimation of diagonal weighting is set to a factor of 1.4
The figure to the right shows a representation of this weighting
factor.

14 10 14

10 0 10

14 10 14

A* uses an iterative approach for determining which path to explore. It does so by
sorting each partial path by the cumulative path heuristic. The algorithm aims to
minimise the following equation:

Known
he last node on the pathn = T

(n) ost f rom source to ng = c
(n) euristic estimation of cost f rom n to targeth = h

Unknown
(n) inimisation functionf = m

Relationship
(n) (n) (n) f = g + h

The heuristic estimation is implementation specific. The most common heuristic used on
2D environment grids is the real world distance. This can be estimated using the
manhattan or euclidean distance.
On each iteration of the algorithm, it chooses the next reachable node with the lowest

 value and removes it from the open set. Once chosen, the neighbours and (x)f f g
values are updated and these neighbours are added to the open set. This is repeated
until the goal node is in the open set. This gives us the minimum distance from the
source to the goal.

To rebuild the path, the algorithm needs to be adjusted slightly to include node
parenting. Each node's parent is set to the node which it was put in the open set by.
This allows us to follow the nodes parents from the goal back to the source. Reversing
this path will give us the shortest path from source to target.

11

2.3 - SLAM

SLAM stands for Simultaneous Location And Mapping. It’s aim is to create a system to
adjust a robot’s position using landmarks in the real world[6]. This is to compensate for
error in the robots built in odometry. It was originally developed by Hugh Durrant-Whyte
and John J. Leonard based on earlier work by Smith, Self and Cheeseman[7]. The four
main steps to SLAM are landmark extraction, data association, state estimation and
state/landmark update. Once all these steps are complete, the robot has a new map of
its surroundings and a new adjusted position. These steps can then be repeated for
each new scan the robot takes.

2.3.1 - Landmark Extraction
Landmarks are physical attributes inside the environment which are easily identifiable
and distinguishable. These help the robot triangulate its position when traversing the
environment. These can be captured using scanners such as LIDAR, Sonar or impact
based scanning.

2.3.2 - Data Association
Data association is the process where the same landmarks are extracted multiple times
and therefore can be assumed to be the same physical point in the world. Ensuring that
the landmarks are unique is crucially important as matching two different landmarks
together will introduce error in the state update step. Other issues can be caused by
landmark occlusion where a landmark is seen once and never seen again or is only
seen sporadically.

2.3.3 - State Estimation
The state estimation formulates the robot's position using only the built in odometry of
the drive system. This is regularly inconsistent and very susceptible to drift. For instance
if the robot hit a small grain of sand and the heading changes by one degree, this would
result in huge error in the robot's final position after a long traversal.

2.3.4 - State and Landmark Update
The state and landmark update step takes the robot's state and the landmarks from the
landmark association steps and re-estimates the robot's state based on the landmark’s
relative position. This step is highly dependent on the Extended Kalman Mark's filter[28],
however to reduce development time of this project this will be substituted by an

12

Iterative Closest Point matching algorithm. This step also updates the landmark’s
positions to minimise any error in the data association and landmark extraction stages.

2.4 - Iterative Closest Point
Iterative closest point is an algorithm used to align misaligned rigid point clouds
together. The algorithm takes two point clouds, a source and a target. The target point
cloud stays in place and is used as reference for the source point cloud to align to. The
algorithm iteratively translates and rotates the source to minimise the difference
between the two scans. This is known as the error metric.[8]
The error metric is calculated by iterating through each point in the source point cloud
and measuring the distance to the nearest neighbor in the target point cloud. This also
forms a set of vectors which can be used to estimate the transformation or the entire
point cloud after filtering out statistical outliers. The output of the ICP algorithm is
usually a 4x4 homogeneous coordinate transformation which maps the source’s original
position to its new iteratively refined position.

Figure 7 shows two scans which have been purposely misaligned. The orange scan is
the source and the black scan is the target. We can see here how the ICP registration
corrects this.

Figure 7a: Before Registration

Figure 7b: After Registration

13

2.5 - Processor Choice
Processing solutions are usually a trade-off between price and computing power.
Other factors to consider include power consumption, availability and physical footprint.

Arduino[19] is a popular brand of microprocessor. It has a small footprint, inexpensive to
source and has a very low current draw. The main drawback of the Arduino is that it has
very limited processing power. This makes 3D transformation and image analysis very
slow. It also has limited connectivity lacking networking options and camera ports.

The Intel Galileo[20] has much better connectivity than the Arduino, however comes with
a heftier price tag. The processing power is much closer to what is needed and is a well
supported platform.

The Raspberry Pi[12] has great onboard connectivity with built in WiFi, bluetooth and
ethernet ports. The processor is powerful enough to deal with most image analysis
tasks and has a large support platform due to its popularity. It has a small footprint and
supports many off the shelf modules such as webcams, Raspberry Pi cameras and a
plethora of headers for the GPIO pins. However the Raspberry Pi doesn’t support many
real time and analogue operations such as pulse width modulation and sensor
communication. Coming in at around £30 the Raspberry Pi is the perfect affordable
processor of choice for this project.

Laptops can be built into these types of project, they provide excellent power and
connectivity but have a large physical footprint and a larger price tag. Using a laptop
would be suitable for robots navigating larger office spaces or exterior environments but
is unsuitable for smaller interior environments.

The final processing option is to pair any of the above solutions with a host machine
which could process the data then send it back to the platform. This would allow the
footprint and the price to be driven down. This would allow a desktop machine or server
to do the majority of the processing which would provide the maximum processing
power. However this would move the bottleneck to the communication between the
robotic platform and the host. This also introduces a reliance on a host machine which
might not be available in remote locations.

14

2.6 - Motor Choice
The following motors could be used in this project however considering these points the
stepper motor is the obvious choice for use with the Raspberry Pi.

DC motors need to be supplied with a constant current in order to rotate. Rough
odometry can be achieved by supplying the voltage over time however this can fluctuate
depending on the motor's load. If you want to change the speed you’ll also need a DC
motor driver to supply a constantly varying voltage supply.

Servo motors require a digital signal in order to rotate. They use a pulse where the
frequency determines the rotation angle or speed of the motor. However this requires
you to have some form of pulse width modulator.

Stepper motors[23] require a digital signal input over multiple channels. Each channel
controls a coil inside the motor known as the phase. By iterating through a set of on-off
steps you can rotate the motor to a high degree of accuracy depending on the number
of channels and poles.

15

2.7 - Language Choice and OO Reasoning
Most 3D vision systems run off fast, low level programming languages such as C, C++
or C#. However, due to the development time restraints of this project, a higher level
language is a better choice. Python is an excellent choice as development is fast and
efficient. It is also the primary coding language the Raspberry Pi was developed for.[11][12]
The main drawback is its low level processing speed. Therefore libraries and C
wrappers are required to do some of the more intensive processing. I chose an object
orientated approach to ensure each component of this project could be tested and
developed independently. This proved vital for utilising my time efficiently by juggling
development between modules.

2.8 - External Packages
The following packages provide functionality which Python commonly utilises for 3D
manipulation and visualisation.

PCL[10] is a stand alone point cloud library for 3D point cloud processing. This provides
ICP implementation as well as many other useful functionality such as statistical outlier
filters.

Cython[13] is an optimisation library which wraps useful C extensions in Python. This is
required for Python PCL.

Python PCL[14] is a Python wrapper for PCL. However this does require Cython and
PCL to be installed. Installing this on the Raspberry Pi requires alteration of the
Raspbian fstack protector, dphys swapfile and compilation pipeline.[15]

Numpy[16] is a scientific library which allows more advanced matrix calculations on
images inside of python. This is also required for extracting images from the Pi-Camera
quickly and efficiently using Pi Camera Array as it natively supports Numpy.

Pi-Camera[17] is a library that allows us to access the Raspberry Pi camera inside of
Python. This also relies on Numpy to quickly extract images without encoding.

PIL[18] is an image processing library used for saving and exporting graphical
representations of the world.

16

3 - System Overview
This chapter gives a brief overview of the entire system. Implementation of solutions
defined below can be found under the hardware and software implementation chapters.

3.1 - Software Overview
The robot's task is to build a complete 3D map of an interior environment. It does so by
compiling multiple scans at different locations within the environment.
These locations are chosen by scan voxelization. This allows volumetric areas of the
environment to be analysed independently to assess the optimal location of the next
scan.
Once this has been acquired, the robot uses the same voxelization analysis to safely
traverse the environment from its current position to the new scan location using an A*
route inspection algorithm. As soon as it cannot find a good location for the next scan it
exits the program and returns a full 3D point cloud map of the environment.

This exploration loop can be represented as flowchart in Figure 8.

17

Figure 8: Flowchart of System overview

18

3.2 - Hardware Overview:
The robot is made of 3 main components. The scanner, wheels and processor. Figure 9
and 10 show the three main topological views and key components of the robot.
Please note the power supplies pictured below are the secondary and tertiary supplies.
The primary supply was in the form of a LIon USB power bank on the underside of the
chassis, this powered the entire system. However, the LIon cells fulminated and
therefore have been supplemented with additional supplies for testing and debugging.

Figure 9a: Top view

Figure 9b: Front view Figure 9c: Side view

19

Figure 10: Top view with annotation

RPi - The Raspberry Pi forms the central processing unit for the robot.
RPi Camera - This is used to analyse the laser light emitted from the laser module and
acts as the only input for the robot.
Laser Module - This emits the laser light which is picked up by the RPi camera.
Motor Drivers - These allow the low current GPIO signals from the Raspberry Pi to
switch the high current 5v supply straight to the motors.
Stepper Motors - These are connected to the motor drivers and power the robot's
behavior.
Laser Boom - This component attaches the turntable to the laser and camera module

11.1v LiPo - Secondary Lithium Polymer power supply.
Voltage Monitor - Ensures that the cells voltage in the LiPo do not drop to too low.
5V UBEC - This converts the 11.1v supply provided by the secondary LiPo to a 5v
supply suitable for the Raspberry Pi and stepper motors.
3v Testing Pack - Tertiary debugging power supply for the laser module.

20

4 - Hardware Implementation
The entire hardware design is custom built for this project. It features an open-air design
to allow rapid prototyping and development.

4.1 - Mechanical Parts
The aim of the chassis is to provide a rigid base for the components to be mounted to.
High density foam board is an excellent choice for rapid prototyping as it can be milled
and machined easily whilst still being rigid enough to support the robot’s weight.

Figure 11: Corner view of chassis and motors

However 3D printing is a more suitable form of manufacture for more intricate parts
such as wheels, motor mounts and boom arms. Fused deposition modeling printing is
perfect for this application as it can print lightweight, rigid parts quickly which need very
little finishing unlike other forms of printing.

21

Figure 12: CAD model of wheel

4.1.1 - Boom Arm
The 3D printed boom arm was especially designed to ensure maximum rigidity could be
achieved at minimal weight and could not have been achieved with classical
manufacturing methods. The length of the arm and the angle of the laser has a direct
correlation to the range of the scanner and the horizontal FOV of the camera. This will
be explored further in the scanner chapter.

Figure 13: CAD model of boom arm

22

4.1.2 - Scanner Mount and Footprint
The footprint of the robot needed to be as small as possible to ensure it could navigate
tight spaces as well as allowing the scanner to have a large field of view.

The dead zone circle is the area under the robot that is assumed to be safe when
placed in a new environment. Mounting the scanner onto a raised platform increased
the scannable area leaving a smaller dead zone.

To minimise the dead zone the immediate floor needs to be at the minimum range of
the scanner. To calculate the optimal height of the scanner mount we run the following
equations.

Known
 Closest scan distancek =
 Camera vertical f ield of viewq v =

Unknown
 eight of the scanners centerh = H

Relationship

 k(tan())h = 2
q u

Figure 14: Diagram showing scan field of view

23

According to these equations and assuming the above boom is used, the optimal
scanner height is 12cm as seen in figure 14. This was increased to 13 cm in the final
build to accommodate for extra electronics and a slightly larger chassis; any lower than
this and the immediate floor would be too close for the scanner to detect, therefore
wasting scan field of view, any higher and the dead zone radius would increase.

4.1.3 - Wheels and Drivetrain
The movement mechanics are made using a simple built in gearing, 2 wheel and skid
approach, reducing the number of components connected to the drivetrain. This
increased the accuracy of the built in odometry as every part attached to the drivetrain
adds mechanical play which reduces accuracy. This also simplified the odometry
triangulation as the entire robot pivots around the center of the scanner. This is a very
simple solution and is not suitable for rough environments however gives the highest
motor odometry precision.

24

4.2 - Electronic Parts
Figure 15 shows a generic schematic of the entire electronics system. The single lines
represent data and the double lines represent power.

Figure 15: Schematic of electronics system

25

4.2.1 - Stepper Motors
Stepper motors require a digital signal input over multiple channels.[22] Each channel
controls a coil inside the motor known as the phase. By iterating through a set of on-off
steps you can rotate the motor to a high degree of accuracy depending on the number
of channels and poles. A Darlington transistor array is required such as the ULN2803
however these are cheap and easy to implement using the Raspberry Pi’s GPIO pins. It
is also key to note that most stepper motors have significantly more poles per phase
and usually have built in gearing. However the following examples assume a
non-geared stepper motor with 4 channels and 4 poles.

Full stepping
Figures 16 and 17 show full stepping which charges each pole independently to rotate
the motor.

Figure 16: Diagram of stepper motor workings © Copyright

pc-control.co.uk 2008[23]

26

fullstep =
[
[1,0,0,0],
[0,1,0,0],
[0,0,1,0],
[0,0,0,1]]

Figure 17: Graph and code snippet showing full stepping
Half Stepping
Compared to full stepping, we can double the resolution by using half stepping where
between each step we charge both poles of the adjacent coils to pull the core into a
diagonal position. This provides us with the highest accuracy using a digital IO input and
the stepping solution used in this project.

halfstep = [
[1,0,0,1],
[1,0,0,0],
[1,1,0,0],
[0,1,0,0],
[0,1,1,0],
[0,0,1,0],
[0,0,1,1],
[0,0,0,1]]

Figure 18: Graph and code snippet showing half stepping

27

Micro Stepping
To get an even higher resolution and if a semi-analogue output was available or a
dedicated motor driver was used, a smoother and more accurate rotation could be
achieved with micro stepping.

Figure 19: Graph showing stepper motor micro stepping

28

4.2.2 - Power Supply
Portable USB power packs are one of the most popular power supplies for Raspberry Pi
based projects. This provides a clean 5v power supply to all electronic modules in the
project. They are readily available and provide a self contained power system. Other
power options include LiPo/LIon/NimH cells. The drawback to these systems is that a
separate charging and switching circuit is required as most cells do not charge or
provide 5v natively.

4.2.3 - Laser Module
Class 3R / 3A laser modules are readily available and inexpensive as they are
commonly used for DIY levelling and pointing devices. However the main unique
restriction of this component is its safety rating. Class 3R classification by the UK
Government defines them as follows:
“The laser beams from these products exceed the maximum permissible exposure for
accidental viewing and can potentially cause eye injuries, although the risk of injury is
still low.”[24]

As this will be diffused using a line lens, this will reduce the risk of injury further and
allow accidental viewing to be permissible.

29

5 - Software Implementation
UML
Figure 20 shows a UML diagram of all the custom written classes used in this software.
The arrows represent a dependency. For instance the voxel grid class is dependent on
the point cloud and voxel classes.

Figure 20: UML Representation of software

30

5.1 - Robot Module
The robot module holds the main control loop for the system. The robot navigates and
explores with a set of commands which it iterates through until a stop condition is met.
This forms the control loop. In this case this is when there are no more areas which the
robot wants to explore. The only scan data that gets carried through each iteration is the
world point cloud. This stores the robot's knowledge of its surroundings. A rough
breakdown of the main control loop in Figure 21 is as follows:

● Scan the local environment
● Clean the scan to remove statistical outliers produced by noise
● Warp the local point cloud to the world pointcloud if the world pointcloud has data
● Add the warped local point cloud to the world environment.
● Convert the new world pointcloud to a voxel grid and analyse it
● Find an interest point in the voxel grid. If none exists exit out of the control loop.
● Otherwise navigate as close as possible to the interest point.

def startExploration(self):

world = pointcloud()

i = 0
while True:

local = self.scanner.scan()

local.clean()

world.warpTo(local)

world.join(local)

vox = voxGrid(world,self.navigator)

vox.analyse()
target = vox.getIntrest()

world.save("worldSave_%i.obj"%i)

if not target:

break

self.navigator.move(vox,target)
i += 1

Figure 21: Code Snippet from the main robot class

31

5.2 - Scanner Module

5.2.1 - Boom arm length and laser angle
The first challenge when developing the boom arm laser scanner is calculating the
physical attributes of the boom arm. This is because the values for , and thea L
camera's FOV shown in Figure 22 directly affect the scan range of the robot. To q u
calculate these values we need to input the maximum and minimum scan range j,)(k
into the below equations.

Figure 22: Diagram of Minimum/Maximum scan range

32

Known
 Furthest scan distancej =
 Closest scan distancek =
 Camera horizontal f ield of viewq u =

Unknown
 Angle of laserL =
 Length of boom arma =

Relationship

 j(tan(90) ot())a = − L − c 2
180 − q u

atan()L = j+k
(j−k)tan()2

180 − q u

If we input the Raspberry Pi camera horizontal FOV as 47° and the range as q u j,)(k
20 to 300 centimeter into these equations, the optimal and implemented boom design is
to place the laser at 65° on a 17.5 centimeter boom arm.
Figure 23 shows a vertical board 20 centimeters away from the camera. As we can see
the laser falls perfectly on the right most side of the image. This indicates that the above
equations are correct.

Figure 23: Image captured from the scanners camera

33

However these values must be conservative due to the inherent accuracy falloff. Figure
24 represents the loss in accuracy at longer distances. This is measured in centimeters
of error a one pixel offset from the camera would cause. This assumes a Raspberry Pi
camera with a horizontal resolution of 972 pixels is mounted to the above boom.

The two lines represent the accuracy of the x and y dimensions relative to the camera.
The minimum and maximum scan range must be adjusted to take this accuracy falloff
into account if a higher precision at longer ranges is needed.

Figure 24: Graph representing accuracy falloff

5.2.2 - Coordinate systems
The two main coordinate systems used in this project are camera and world
coordinates. Camera coordinates define a points position relative to the camera
whereas the world coordinates define a points position relative to the world.

I shall be defining 3D points in the camera space as and in the world space asx, ,)(y z

. Subscript will also be used in the scanner module for referring to positionsx , ,)(′ y′ z′ ,u v
on the 2D camera plane. This should not be confused with the voxel grid positioning
coordinates.

34

5.2.3 - Implementation of boom arm laser scanner
Figure 25 shows an overview on the process of converting the image captured by the
scanner into a set of points.

Figure 25: Flow chart of point cloud extraction from image data

35

The following equation is used to convert each image slice returned by the camera to
points in world space using basic trigonometry. As each horizontal row of the image
represents a single point this equation is applied every nth row depending on the point
cloud density required.

Figure 26: Trigonometry diagram for calculating R

To calculate the position of the environment object we first need to find R to ensure we
have a solvable angle-side-angle triangle.
To find we first need to convert into degrees. When analysing the image this will R i u
be returned as a pixel index and therefore needs to be divided by the horizontal FOV in
pixels . This will return a value between 0 (far left) and 1 (far right). To change this p u
to degrees we simply multiply it with the camera's horizontal FOV in degrees . Thisq u
forms the equation p u

i q u u
We can define the maximum value of as assuming that the camera is at a R 2

π + 2
q u

tangent to the laser. To find the value of simply subtract in degrees from theR i u
maximum response to form 2

π − p u
i q u u + 2

q u

36

Figure 27: Trigonometry diagram for calculating l

To calculate the position of the environment object we also need the distance .x,)(y l
This is calculated using the sine rule.
a

sin(A) = b
sin(B)

 can be calculated using the 180 triangle rule A R) A = π − (+ L

Therefore which can be simplified as and if we substitute in l

sin(L) = a
sin(A) l = sin(A)

a(sin(L)) A

l = a(sin(L))
sin(π−R−L)

37

Figure 28: Trigonometry diagram for calculating (x,y)

Calculating relies on the right angle triangle rule x,)(y in(θ) cos(θ) tan(θ)s = h

o = h
a = a

o
We can define and which can then be simplified toos(R) c = l

x in(R) s = l
y

 (cos(R))x = l
 (sin(R))y = l

38

To calculate we first need to calculate the angle in a similar way to .z i v i u

When analysing the image this will be returned as the vertical pixel index and i v
therefore needs to be divided by the vertical FOV in pixels . This will return a value q v
between 0 (top) and 1 (bottom). To change this to degrees we simply multiply it with the
camera's vertical FOV in degrees . This will return the angle of and can be q v i v
defined as p v

i q v v

To calculate we simply find the angle between the horizontal and the laser asz
 2
qv − p v

i q v v
Then use the rule to calculate an(θ) t = a

o y.tan()z = 2
q v − p v

i q v v

Figure 29: Diagram for calculating z

This gives us the coordinate in camera space. To convert this to world space wex, ,)(y z
can use a rotational matrix to include the turntable's rotation .θ

 x.cos(θ) .sin(θ) x′ = − y
 x.sin(θ) .cos(θ) z′ = − y

As we are rotating around the z axis, we only need to transform the x and y positions of
the point.

39

Combining all of these equations we get the following calculation:

Known
 orizontal index of pixel being analysed i u = h
 ertical index of pixel being analysed i v = v
 obot s x positions x = r ′
 obot s y position s y = r ′
 angle of turntableθ =
 robot s headingH = ′

 boom lengtha =
 laser angleL =
 amera horizontal FOV in pixels p u = c
 amera vertical FOV in pixels p v = c
 amera horizontal FOV in degrees q u = c
 amera vertical FOV in degrees q v = c

Unknown
x , ,) oint location world space(′ y′ z′ = p

Relationship

 R = 2
π − p u

i q u u + 2
q u

 l = a(sin(L))
sin(π−R−L)

 (cos(R)) x = − l

) (sin(R) y = l
 y.tan()z = 2

q v − p v
i q v v

 x.cos(θ) .sin(θ) x′ = + H − y + H + s x
 x.sin(θ) .cos(θ) y′ = + H − y + H + s y
 z z′ =

40

Figure 30 shows a code snippet from the slice processor in the scanner module. This is
an implementation of the above calculation.

def processSlice(self,i,red):

redSubsampled = red[:,::ip.stepSize]
maxIndexes = redSubsampled.argmax(axis=0)

for subsampled in range(0,len(maxIndexes)):

iu = maxIndexes[subsampled]

iv = subsampled*ip.stepSize

if redSubsampled[iu,subsampled] > ip.threshold:

theta = radians((i*360)/ip.numberOfSlices)+self.offsetHeading

R = pi/2 - (iu*ip.qu)/ip.pu + ip.qu/2
l = (ip.a*sin(ip.L))/sin(pi - (R+ip.L))

x = -l*cos(R)
y = l*sin(R)

z = -1*y*tan(ip.qv/2 - (iv*ip.qv)/ip.pv) # bit of a flip hack

xPrime = x*cos(theta) - y*sin(theta) + self.offsetX
yPrime = x*sin(theta) + y*cos(theta) + self.offsetY
zPrime = ip.zAdjuster(y,z)

point = (xPrime,yPrime,zPrime) #Saves full scan
#point = (xPrime,yPrime,z) #Saves un-adjusted z scan
#point = (x,y,z) #Saves camera space scan. Useful for calibration

self.pc.add(point)

Figure 30: Code snippet of the slice processor

41

5.2.4 - Camera resolution
The resolution of the camera is critical to the calculations and efficiency of the robot.
The Raspberry Pi Camera has a native resolution of up to 2592x1944[25] however the
resolution has a direct correlation with speed and sensitivity. If we define the scanner’s
real world accuracy to ~1mm, we can reduce the resolution drastically without affecting
the scan precision. If we reduce the resolution to half (1296×972) we can increase the
capture rate by a factor of 2.8. Even when rotating the camera into portrait to increase
vertical FOV qv the 972 levels of depth still gives us enough resolution.

We can also bin the pixels to improve the
camera's sensitivity in low light
conditions[26]. This process reduces the
resolution by averaging pixels in 2 by 2
bins instead of point sampling which
increases the sensitivity by a factor of 4.
This has a very low processing overhead
as binning is natively supported on the
RPi’s GPU.

 Bin ↴ Bin ↴

Bin
Average

←
Add

Bin
Average

←
Add

↑
Add

↖
Add

↑
Add

↖
Add

Bin
Average

←
Add

Bin
Average

←
Add

Figure 31: Pixel binning diagram

42

5.2.5 - Calibration and cleaning

Laser Twist
To ensure that the values of the intrinsic parameters are correct the scanner needs to
be calibrated. One key calibration step is to ensure the laser is vertical. To do this we
place the scanner in front of a flat wall and run a modified version of the scanner
module. This returns the lasers horizontal difference in pixels between the vertical
center and the quarter above. Figure 32 shows a capture from the scanner with an
un-calibrated laser.

Figure 32: Representation of twist

def getTwist(self,img):

r,g,b = img.split()
redData = list(r.getdata())
iv = int(ip.pv/2)
rowData = redData[iv*ip.pu:iv*ip.pu+ip.pu]
iu, value = max(enumerate(rowData), key=operator.itemgetter(1))
iv2 = int(ip.pv/2-ip.pv/4)
rowData = redData[iv2*ip.pu:iv2*ip.pu+ip.pu]
iu2, value2 = max(enumerate(rowData), key=operator.itemgetter(1))
if value2 > ip.threshold:

print("laser twist: %f"%(iu-iu2))

Figure 33: Code snippet of modified scanner class

43

FOV Adjustment
Other calibration includes adjusting the camera FOV to ensure that measurements are
accurate. Figure 34 shows a side view of points from a scan plotted in camera space.
The black point cloud is before calibration and the yellow point cloud is after. We can
see that the yellow scan data is much flatter and closer to the absolute truth. This shows
the importance of good vertical FOV calibration as it can affect the floor’s angle and
therefore its traversability.

Figure 34: Pointcloud side view showing before/after FOV calibration

44

Figure 35a and 35b show the importance of horizontal FOV adjustment. The black lines
here represent the absolute truth of the environment.

Figure 35a: Pointcloud showing horizontal FOV adjustment required in
cm

Figure 35b: Pointcloud top view showing before/after FOV calibration

45

Thresholding
As well as the intrinsic parameters such as the FOV, other variables need to be
adjusted such as the mean_k value in the statistical outlier filter and the brightness
threshold in the scanner. Figure 36 compares the vertex count of a scan versus the
minimum brightness threshold used by the scanner.

Figure 36: Graph of vertex count compared to brightness threshold

Floor snap
To assist in the voxel grid traversal algorithm we can also snap the floor response to
remove noise. Figure 37 shows a side view of a scan that defines any point with a z
value between two thresholds as floor and therefore snaps it to the average of the
thresholds. This does however remove low lying obstacles such as thin wires or coins
and therefore not ideal. This could be improved by creating an auto-calibrator which
levels the floor automatically to adjust for minute changes in the hardware.

Figure 37: Pointcloud side view demonstrating floor snapper function

46

5.3 - Point Cloud Module

This module forms the data structure for the points generated by the scanner. It is
instantiated for each point cloud the robot generates and also holds the world view point
cloud. The main function this module is to provide efficient registration between point
clouds. This contains modified Python Wrappers for the Point Cloud Library.

5.3.1 - Z axis lock
One key PCL function the point cloud module alters is that it locks all Z axis
transformation when generating registration transformation matrices. It does so as it is
assumed that the robot will only travel on a flat plane. Figure 38 shows an extreme
example of bad registration with no Z axis lock.

Figure 38: Extreme example of poor registration with no z axis lock

47

The Point Cloud Library ICP registration algorithm returns a homogenous
transformation matrix similar to the one in Figure 39.

Figure 39: Screenshot of 4x4 homogenous transformation matrix

To remove all Z axis transformation we nullify the first, second and fourth values in the
third row of the matrix. This ensures that each point’s Z value is locked and cannot be
transformed. This modified transformation matrix is then applied to the point cloud.

.707 .707 .00000015 .000000244

-.707 .707 .0000000434 2.83

.0000002.31 -.000000241 1.00 -.000000956

.000 .000 .000 1.00

Figure 40: Table of values in Figure 45 after z locking
Figure 41 shows a monkey head which has been rotated around the X, Y and Z axis. A
disk of points at the base of the object has then been added to demonstrate the Z axis
transformation lock.

Figure 41: Point cloud of transformed monkey head

48

This has been run through the registration algorithm in the point cloud module to try and
match it with the original un-transformed monkey head. As we can see in Figure 42 the
X, Y and Z rotation has been corrected as much as possible without altering each points
Z axis position. This is verified by the horizontal disk of points at the base of the monkey
which have been unaffected by the transformation.

Figure 42: Point cloud after transformation correction

def transform(self,transf):

print("Transforming pointcloud locking down the Z axis")
newPoints = []

transf[2] = [0,0,1,0]

for point in self.points:

homogenous = (point[0],point[1],point[2],1)
newPoints.append(np.dot(transf,homogenous)[:-1])

self.points = newPoints

Figure 43: Code snippet of Z locking function

49

5.3.2 - Registration convergence and fitness
However the point cloud only gets transformed if the registration converges and has a
high fitness value. If it fails to do so it will transform the point cloud by the rough
odometry returned by the navigation module only. This is to ensure that incorrect
registrations are disregarded. In the future this could be fed back into registration with a
higher iteration depth incurring a longer but more accurate registration step.

5.3.3 - ICP Non-commutative Complexity
The complexity of the ICP implementation by PCL is also non-commutative. Matching a
small point cloud to a large point cloud is much faster than the inverse. Therefore
another function of the point cloud module is to ensure that the most efficient
registration is being made regardless of point cloud size. If the registration target is
smaller than the source, it switches the target and source arguments of the ICP function
and inverts the homogenous transformation matrix returned. This converts the target to
source transformation to a source to target transformation.

if len(self.points) > len(target.points):

converged,transf,e,fitness = pcl.registration.gicp(target.obsPCL(),self.obsPCL(),20)
transf = np.linalg.inv(transf)

else:
converged,transf,e,fitness = pcl.registration.gicp(self.obsPCL(),target.obsPCL(),20)

if converged and fitness < 1000:

self.transform(transf)
else:

print("Scan has not converged. will not warp to target")

Figure 44: Code snippet of registration optimisation

50

5.4 - Voxel and Voxel Grid Modules
The point clouds generated by the scanner have a high amount of data but little usable
information about the world. To gain more information about the world we can reduce
the resolution of the scan binning together points into a 2D voxel grid. We can reduce
this as the robot only moves in 2 dimensions and therefore doesn’t require vertical data.
Figure 45 shows how the point data is binned.

Figure 45: Point cloud with voxel map overlay with perspective FOV

Each voxel holds 2 main datasets, state and attribute. State only gets updated when the
voxel has points added to it. It is an independent data set and only reliant on its own
points. In comparison, the attribute data set holds information about the voxel which is
reliant on external sources and therefore can only be updated by the voxel grid.

self.state = {"scanned":False,"occupied":False,"obstacle":False,"skewed":False}

self.attr = {"shadow":False,"explore":False,"safe":False,"reachable":False}

Figure 46: Code snippet from the voxel class

51

5.4.1 Voxel States
Figure 47 show some of the key voxel states.

Scanned
This states that the voxel contains any
amount of points. This is updated as soon
as a point is added.

Occupied
This states that the voxel contains enough
points to make a reliable decision. The
threshold is set as points per cm2 to
ensure that adjusting the voxel size does
not affect the state.

Obstacle
This states that the maximum difference in
point height is above the traversable
threshold. This threshold is also set as
change in height per cm.

Skewed
This states that the average position of all
points is too far from the center of the
voxel. This is to ensure that voxels with
only partial data such as cliff edges are
not set as safe or traversable.

Figure 48: Diagram representing

voxel skew threshold

Figure 47: Voxel map showing
voxel states

52

5.4.2 Voxel Attributes
Figure 49 shows all the main voxel attributes. A key voxel clump is the safe but
unreachable clump. This shows a flat area which the robot cannot explore as it cannot
fit between the obstacles to the left and right.

Figure 49: Voxel map showing voxel Attributes

53

Shadow
This states that the voxel is within a certain distance of an obstacle and therefore is not
safe to traverse. This also covers obstacle voxels.

Safe
This states that the voxel is occupied, not skewed and not a shadow voxel and therefore
safe to traverse. The only exception for this is the initial dead zone which forms under
the robot which is automatically set to safe.

Explore
This states that the voxel has been scanned but hasn’t got enough points to make a
decision on the voxel’s state. These voxels usually fall on the edges of scans where the
laser hasn’t got a high enough resolution or range to generate enough points. This
infers that there is more data beyond these voxels and therefore helps form the target
for the robot's next traversal. To ensure these targets are reachable, all exploration
voxels need to be adjacent to a voxel which is either another exploration voxel or
reachable.

Reachable
This states that the voxel is safe and reachable. It does this by taking the robot’s
position from the navigator and setting its corresponding voxel to reachable. Next it
iterates through the entire voxelgrid and sets all safe neighbours of reachable voxels to
reachable. It iterates through this process until no voxels have been updated. This is to
ensure that exploration voxels adjacent to flat areas out of reach are not targeted.

54

5.4.3 Voxel Grid Target finder
One of the key functions of this class is to find the next exploration target. After the point
cloud has been converted and the voxel grid has been analysed the get interest function
is run. This finds the largest contiguous clump of exploration voxels. It does so by
adding exploration voxels to a clump list recursively until all exploration voxels are in a
clump list.
It then sorts the clump list by length and returns the largest clump. Once the clump has
been found, the closest reachable voxel to the clumps centroid is set as the target for
the next traversal. This is then passed to the route inspection algorithm along with the
robot’s voxel position which is converted to a list of voxels which forms the route the
robot has to take to reach its target. If no exploration voxels exist and therefore no
clumps are found the control loop stops and the exploration is complete.

def getIntrest(self):

checkedVoxels = []
clumps = []
for voxel in self:

self.neighbourhood = []
if (voxel not in checkedVoxels) and voxel.attr["explore"]:

reachableGroup = False
for neighbour in self.getNeighbours(voxel):

if neighbour.attr["reachable"]:
reachableGroup = True
break

if reachableGroup:
self.checkNeighbours(voxel)
clumpSize = len(self.neighbourhood)
clumps.append((self.neighbourhood,clumpSize))
checkedVoxels += self.neighbourhood

return self.clumpsToTarget(clumps)

Figure 50: Code snippet of get interest function from Voxel Grid class
Figure 51 shows how the voxel grid evolves as the robot moves from point to point. The
last voxelgrid on the right has no reachable clumps and therefore has stopped
exploration.

Figure 51: Voxel map sequence over time

55

5.5 - A* Route planner & Navigation Module
This navigator’s task is to keep track of the robot's voxel position and heading. It also
coordinates the motor’s module to move the robot from voxel to voxel using the A* route
inspection module.

The route planner takes the voxelgrid, starting position and target position and creates a
safe path for the robot to traverse. This is done by implementing an A* route inspection
algorithm. This provides safe and guaranteed optimal route creation. For details on the
A* algorithm see Background Research.

def move(self,vox,target):

print("Calculating move")

routePlanner = aStar(vox)

source = vox.voxels[self.u][self.v]

path = routePlanner.getPath(source,target)

self.followPath(path)

self.motors.off()

Figure 52: Code snippet from Navigation class

56

5.6 - Motor Controller Modules
The motor modules control the motion of the robot using the estimated odometry of the
hardware.
Below we are defining as the wheel base width of the robot, as the number ofw m
steps required for a full rotation and as the wheel diameter.d

5.6.1 - Straight forward motion

Figure 53: Diagram of wheel diameter

For a straight forward motion we first need to calculate the wheel circumference as .dπ
This will give us the distance travelled in one full rotation. Dividing our straight forward
traversal distance by the wheel circumference will give us the fractional number oft
rotations required. We define this as .t 1

πd
Finally to get the number of steps we simply multiply the number of rotations required by
the number of steps per rotation . We can define this as m t mπd

57

Therefore the number of steps required for a straight forward traversal can be defined
as:

Known
 wheel base widthw =
 number of steps per motor rotationm =
 wheel diameterd =
 straight forward distancet =

Unknown
 steps required for straight forward motions =

Relationship

s = t mπd

5.6.2 - Turning in place
For turning in place we calculate the distance each wheel has to counter-rotate to turn
the robot and plug it into the equation above.°θ

58

Figure 54: Diagram for turning in place trigonometry

To do so we need to measure arc length which can be calculated as a fraction of as
whole circle. The circumference of the whole circle is and the fraction of a full turn iswπ

Therefore the arc length and if we plug this into the equation for a straightθ
360 wa = π θ

360
traversal above it will get us the number of steps required to counter-rotate each motor.
We can simplify this as: w π θ

360
m

π.d ≡ 360
πwθ m

π.d ≡ 360πd
πθwm ≡ 360d

θwm

Therefore we can define the number of counter-rotating steps as:

Known
 wheel base widthw =
 number of steps per motor rotationm =
 wheel diameterd =
 angle to turn in placeθ =

Unknown
 steps required for turning in places =

Relationship

s = 360.d
θ.w.m

59

5.7 - Networking
As we cannot guarantee that the robot's exploration area will provide a wifi connection
we need to set up an ad-hoc connection. As the Raspberry Pi has a wireless chip and
arial built in this is easily done and allows SSH access via a laptop within range of the
robot.[27]

5.8 - Intrinsic Parameter
All parameters referred to in this chapter such as camera FOV, size, wheel diameter,
GPIO ports, laser threshold and other variables are held in an intrinsic parameters file.
This is to ensure that the system is adjustable while calibrating. It also allows the
system to adapt to different hardware and different environments easily and efficiently.

from math import radians

#########
#Camera Parameters
#########

pu = 972 #camera horizontal FOV in pixels
pv = 1296 #camera vertical FOV in pixels

qv = radians(62.2) #camera vertical FOV in radians
qu = radians(47) #camera horizontal FOV in radians

#########
#Scanner Hardware Parameters
#########

a = 17.5 #Boom Length in cm

L = radians(90-25) #Laser Angle in radians

#########
#Odometry Hardware Parameters
#########

Figure 55: Code snippet from Intrinsic Parameters file.

60

6 - Test Results

6.1 - Module Tests
The following tests aim to verify the success of each module and therefore each part of
the robot independently.

6.1.1 - Motor Odometry
Accuracy
The robot's odometry records the robot’s position in real world space. To calculate this,
the robot needs to move around in real world coordinates. To calculate this we take
aspects such as the wheel radius and wheelbase and calculate the number of steps or
rotations the motors need to perform to travel that distance.
However, this cannot be 100% accurate as it relies on real world measurements which
can slip and change.

61

Figure 56 shows a graph showing the overshoot of the robot when instructed to move
along a straight line. As we can see there is a linear correlation which shows that the
overshoot is related to the distance travelled. This indicates that the error in the wheel
diameter. This is could be due to degradation of the rubber wheels and could easily be
corrected by adding 0.322mm onto the wheel diameter variable. However even at the
furthest traversal the odometry error is still below 0.482%. This is well within the
recommended 2% linear drift set out by Søren Riisgaard and Morten Rufus Blas.[6]

Figure 56: Graph of linear odometry drift

62

Figure 57 is a similar graph showing the drift as the robot turns on the spot. Again there
seems to be some linear correlation showing an error in either the wheel diameter or
wheelbase.However, at the maximum number of rotations the error is still below 0.723%
of the total rotations. This is well within the recommended 4.4% rotational drift set out by
Søren Riisgaard and Morten Rufus Blas.[6]

Figure 57: Graph of rotational odometry drift

Speed
The robots straight line movement speed is 4.75cm per second. This is limited by the
motors used. This could be increased slightly however any faster than this and the
stepper motor can skip causing a higher odometry drift. Another way to increase this
speed would be using higher geared motors or larger wheels. However both of these
would reduce the overall accuracy.

Adaptability
This module is highly adaptable as a change in chassis or wheel size can be quickly
updated through the parameters file which stores all the robot’s attributes

Obstacle traversal
Due to the rear skid the highest obstacle it can ride over is <2 mm as it is assumed this
robot will be used on flat, clean surfaces. This could be increased if a bogey wheel is
attached instead of the skid or rougher pneumatic tyres are used. However both of
these solutions would reduce accuracy.

63

6.1.2 - Scanner
Accuracy
The accuracy of the scanner highly depends on the level of calibration, the environment
and the robot's hardware. This could be improved with automatic calibration and
leveling functions, however this would have taken longer to develop.

Figure 58 shows a comparison between the real world and the point cloud. The point
cloud registers this distance as 82.95 cm which is well within 1 cm accuracy of the real
value and therefore accurate enough for the robot to traverse safely.

Figure 58a: Comparison showing scanner accuracy

Figure 58b: Comparison showing scanner accuracy

64

Figure 59 shows a top down scan of the same environment compared to the absolute
truth shown here as the black outlines. This shows not only the precision but also the
accuracy falloff at long distances. The wall on the left is around 3 meters away from the
robot's center and as you can see the point's distances have become more quantised.
This scan also shows the board it was placed on for calibration.

Figure 59a: Scan accuracy comparison with absolute truth (top view)

Figure 59b also shows a small amount of erroneous points to the right hand side. We
can see some points registering below the floor level. This is due to the reflective vinyl
surface however it does not affect the voxel state or registration algorithms. This will be
explored later in the black floor environment test.

Figure 59b: Scan accuracy comparison with absolute truth (iso view)

65

The main issue whilst testing was random capture failures. An example of this can be
seen below in Figure 60 where a clean environment produced an exceedingly noisy
scan. This was unexplored because of its sporadic nature. This is speculated to be
related to a hardware failure. The two main components which could cause this are the
camera and the laser module. During testing the laser module had to be replaced four
times as the brightness seemed to fall off over time. This was originally attributed to a
power issue but after replacing the main power supply and isolating the laser module
this was left unexplored.

Figure 60: Point clouds of failed scans

66

Scans can also be visualised as a panoramic RGB depth map. However these images
should only be used for visualisation as this data is quantised to 255 levels.

Colour Calculated by Represents

Green The maximum brightness of the row Certainty of the lasers position

Red The index of the brightest pixel in the
row

Reflected laser angle depth≈

Blue The cumulative pixel values of that row Sharpness of laser response

Black Any row where the maximum
brightness falls below threshold

Unknown area

Figure 61a shows a floor level scan with some errors introduced by an external light
source at the center of the scan. These form streaks as they form the brightest point for
multiple slices whilst inside the camera's field of view.

Figure 61a: RGB Depth map captured by scanner

Another notable point is the vertical
streaks of blue seen at the bottom of
the scan magnified in Figure 61b. This
is where the scanners turntable jumped
slightly whilst the capture was in
progress therefore introducing a small
amount of motion blur. This mechanical
issue could be rectified with a torsion
clock spring mounted to the arm to
dampen motion.

Figure 61b: Close up of Figure 61a

67

Figure 62 shows a desk level scan with similar artefacts as above.

Figure 62: RGB Depth map captured by scanner

The blue streaks were caused by
the turntables stepper motors. As
they were not designed for degree
level precision a small amount of
play was introduced. At its worst this
formed small amounts of motion blur
and clumping of points in the scan
which can be seen in Figure 63.

Figure 63: Point cloud clumping

68

Figure 64 shows a simplified representation of the inherent play marked in red in the
motor’s gear train. The commutative play equates to around 3 degrees of error in the
boom’s motion. The clumping comes from the boom’s inertia generated by the motor.
The first motion of the motor’s gear (blue) pulls all the gears together giving the boom
(yellow) a small amount of inertia.

Figure 64a: Diagram Showing initial gear locking

As the image capture starts and the motor stops, the booms inertia continues to turn the
cogs until they are all locked in the reverse direction.

Figure 64b: Diagram Showing inertia
As the gears are no longer locked in the correct direction, the next 3 degrees are spent
re-locking the cogs and therefore not moving the boom. As soon as they lock together
again the boom will be pulled round repeating the process.
This issue could be rectified mechanically with higher quality motors or a torsion clock
spring mounted to the arm to dampen motion. This could also be fixed in software by
modeling this error so it can be removed or threading the system to allow for a more
fluid motion. However twisting the CSI camera ribbon cable provided some resistance
minimising this artefact.

69

Speed
The scanner speed is the bottleneck of the system. Therefore it has been made as
efficient as possible. A full scan on average takes 43 seconds however this is highly
dependent on the number of successful points registered. As an example, a timed scan
has been broken down into the pie chart in Figure 65.

Figure 65: Chart of time spent scanning

As we can see the image capture takes the most time and could be improved further.
One option to speed up capture and exploration time is to introduce threading. This
could be used here to move the motor whilst analysing the previous image. This could
reduce the scan time by a maximum of 31.9%. However for this project threading would
have drastically increased development time.

70

Adaptability
The module is specially designed for the RPi camera so would be hard to adapt for a
different camera. If a new camera was used the scan and capture slice functions would
have to be changed to retrieve the image correctly. However the actual image
processing function is highly adaptable as it take a generic 2D numpy array along with
the camera parameters which are stored in the intrinsic parameters file.

Point density
The point density can be adjusted to ensure a critical balance between data gained and
run time. This is because the time taken during voxelization, registration and image
analysis directly correlates to the point density.

To reduce the point density, the images returned by the camera can be squashed
vertically and the number of turntable motor steps per slice can be increased. During
testing a squash factor of 8 and 12 turntable steps (≈1 degree) provided more than
enough data to make an accurate model of the environment. These parameters
provided up to 58,320 points however the average scan had around 40,000 points after
filtering and thresholding.

The highest possible number of points would be the number of steps per 360 degree
rotation of the motor multiplied for each pixel vertically. This would be 4104*1296 =
5,318,784 points before filtering

71

6.1.3 - Voxel Grid and Analyser

Accuracy
The main accuracy concern in this module is the target finder function. This finds the
largest clump of exploration voxels in the voxel grid. Figure 66 shows two blue
cross-hairs correctly identifying the closest voxel the robot can reach to scan the
reachable unexplored voxel clumps coloured in pink.

Figure 66: Voxel grid showing exploration clump centers

72

The second accuracy concern is setting each voxel to the correct state. Figure 67
shows the scan data being overlaid on the voxelgrid. This shows the voxelgrid correctly
setting each voxels state in a clean test environment.

Figure 67: Voxelgrid showing exploration clump centers

73

Speed
The actual speed of the voxelgrid analyser is highly dependent on the scan area, voxel
and point cloud size. Breaking a 40,000 point scan over 102 meters broken down into 5
cm voxels takes on average 1.6 seconds and analysis is complete in a further .5
seconds. Another function of the voxel grid is finding the target position for the next
scan. This highly un-optimised recursive function is one of the slowest and needs
further improvement, however it still only takes on average 2.9 seconds. Even after 7
compiled scans the exploration loop still falls within the 2 minute window. This could be
decreased by using Numpy arrays, PCL voxelization or kd trees in place of Python's
built in data structure for faster access.

Adaptability
Each voxel classification threshold is independent from other thresholds and voxel size.
The makes the module highly adaptable to new environments with different thresholds
and voxel sizes as shown in Figure 68.

Voxel size: 2.5 cm

Voxel size: 10 cm

Figure 68: Voxel grids with change in voxel size

74

6.1.4 - Route Inspection & Navigation

Accuracy and Speed
Figure 69 shows the A* algorithm generating a route through a real world voxel grid
which is represented as an array of voxels which have been coloured pink.

Figure 69a: Voxel map of route
planner path

Figure 69b: Voxel map of route
planner path with obstacle

The voxel grid in Figure 69b has had a section removed. As unknown area is neither
safe nor reachable, it is therefore avoided by the route planner. As seen here the route
is sub-optimal and therefore hasn’t been implemented correctly. This is probably due to
an error in the voxel update code. However as it still provides a safe path from source to
target it is therefore an admissible error.

75

To test this, we can run the following code in Figure 70 which generates the route in
Figure 71. As we can see it is sub-optimal, however still manages to create a safe route
through the environment.

import sys
import random

sys.path.append("modules")
from voxGrid import voxGrid
from aStar import aStar

grid = voxGrid(None,None)

for voxel in grid:

voxel.attr["safe"] = True

for voxel in grid:

if (30 < (voxel.u + voxel.v) < 40)
and (voxel.u > 10):

voxel.attr["safe"] = False

routePlanner = aStar(grid)

source = grid.voxels[1][1]
target =
grid.voxels[grid.voxCount-2][grid.voxCount
-2]

path = routePlanner.getPath(source,target)

for voxel in path:

grid.voxels[voxel.u][voxel.v].attr["temp"]
= True

grid.save("test.png")

Figure 70: Code snippet of route
planner test

Figure 71: Route planner test

output

Figure 72 shows a real world example of the robot traversing an environment
autonomously and safely using the Navigation module. This is made up of 6 scans and
5 traversals.

76

Figure 72: Real world navigation with path overlay

Figure 73 shows the point cloud formed by the above scans. Please note that the floor
here has been removed to aid in clarity.

Figure 73: Pointcloud navigation with path overlay

Adaptability
This algorithm works with any size 2D voxelgrid with any states as long as the target
and source voxels fall within this grid. The safe voxel traversal type is easily adjustable
and could be added to the intrinsic parameters file.

77

6.2 - Real world testing
The following criteria are pulled from the project brief in the initial plan.

“The SLAM world model needs to be accurate enough to navigate around messy
environments. For example a desk covered in books and papers.”
“The system should adapt to new environments automatically.”

As these attributes are highly dependent on the environment, they will be tested through
a selection of real world explorations below. These examples should show that the
system is accurate and dynamic enough to meet these criteria.

6.2.1 Bridge
This test included different surfaces, terrain and obstacles for the robot to overcome to
build up a scan of the environment. This included low lying obstacles such as the roll of
tape and overhangs that the robot would need to traverse under.
To successfully complete this task the voxel obstacle threshold needed to be increased
to allow it to ride over the small bump to get onto the bridge. This was done quickly and
efficiently through the intrinsic parameters file and shows how the system can be
adapted on the fly.
One error this scan did highlight is that the voxel grid does not apply a shadow to empty
space. This started to assign the edges of the bridge as exploration voxels even though
they are on the edge of a cliff face. However the A* route inspection chose the most
direct path straight over the bridge. This does need to be addressed in future work. The
surfaces here are covered in masking tape to ensure that the laser gets identified
correctly. Without this the dark shiny counter would be hard to accurately scan. This is
tested in the black floor test.

78

Figure 74 shows the layout of the real world test.

Figure 74: Photo of bridge test environment

Figure 75 shows the point cloud the robot returned after 4 consecutive scans.
Regardless of the masking tape giving a good floor response, this had a below average
number of points at 111,198 points over 4 scans. This is probably due to the sparse
close areas the robot could see.

Figure 75: Point cloud returned by bridge test

79

Figure 76 shows the range of the scanner being able to pick up distant objects on the
other side of the room such as door frames and walls. The furthest response being
around 2.5 meters which is comfortably below the theoretical 3m range of the scanner.

Figure 76: Above view of point cloud returned by bridge test

80

Figure 77 shows the majority of the voxels have the correct state. However there are a
few exploration voxels on the edge of the bridge which should have been set to unsafe
as the robot cannot determine whether it can safely occupy the surrounding voxels.

Figure 77: Voxel grid overlay of bridge test

Another interesting point about this scan is the level of detail the scanner can pick up.
For instance the power plug on the wall which is clearly visible in Figure 78 due to the
excellent registration between scans. Figure 78 is purposely blurred to make
identification easier.

Figure 78: Point cloud details

81

6.2.2 Black Floor
This test was to demonstrate some of the environmental limitations of the system. In
this test the robot was placed onto a dark shiny surface. It completed one scan and
returned instantly as no floor was detected and therefore no explorable area was set.

Figure 79: Photo of robot in black floor test environment

Figure 80 shows the sparse scan returned of the black floor test environment.

Figure 80: Point cloud of black floor test environment

82

An interesting point here is the points which get returned which are below the floor line.
This is due to the laser bouncing off the floor and hitting the obstacle essentially acting
as an optical and digital mirror. This effect has been visualised here in Figure 81. This
occurs when the surface is more than 50% specular.

Figure 81: Diagram showing result of reflective flooring

83

6.2.3 Corridor
This test was to push the number of scans to the limit by giving the robot an open
space. The robot completed 7 scans before stopping due to light pollution from one of
the windows. Each scan was highly detailed and registered correctly.

Figure 82: Photo showing robot in corridor test environment

84

Figure 83 shows the scans returned by this test with and without the floor response for
clarity. We can see the tight registration of objects such as the sloped roof, washbasket
and box edges.

Figure 83a: Point cloud of corridor test environment

Figure 83b: Point cloud of corridor test environment with floor removed

85

6.2.4 Small obstacles
This test was to ensure that the robot would exit correctly when all of the reachable
areas have been scanned. The obstacles have been placed apart as the robot won't try
to fit through gaps smaller than its own radius. This is depicted by the obstacle shadow
voxel state.

Figure 84: Photo of small obstacles test environment

86

Figure 85 shows the overlaid voxel grid on the point cloud data returned. The robot
completed scanning the test area after 5 scans.

Figure 85: Voxel overlay of small obstacles test environment

An interesting note is the light pollution being emitted by the freezer. This can be seen
on the right of the above diagram as a strip of red obstacle voxels. However this did not
affect the final traversal. This could also be removed by decreasing the pointcloud
cleaning threshold.

87

Figure 86 shows the evolution of the voxel grid as the robot tries to remove all yellow
exploration voxels.

Figure 86: Voxel grid over time of small obstacles test environment

Figure 87 shows the floor response identifying the minimal number of scans needed to
map the environment.

Figure 87: Point cloud of small obstacles test environment

88

6.2.5 Hallway
The main objective of this test was to test registration in a more sparse environment.
One of the most interesting points in this scan is the mirror which can be see on the
right of Figure 88.

Figure 88: Photo of robot in the hallway test environment

As we can see here on the right hand side of the scan in Figure 89 and Figure 90 the
mirror is rendered as a blank unknown area. This is because the light which was
reflected traveled too far and was therefore too dim to be picked up. Paired with the
black floor test this shows the dangers of reflective environments.

89

Figure 89 Pointcloud and voxel overlay of the corridor environment

Figure 90: Point cloud close up of mirror

90

6.2.6 Small space
An interesting point in this test is that the robot has mapped the underside of the bed
frame. This is obscured from a human's point of view and shows how the robot could be
used in small hard to reach environments. This robot also quit exploration successfully
as it had created a full map of the environment with no exploration voxels left which can
be seen in Figure 93.

Figure 91: Photo of small space test environment

Figure 92/93: Point cloud and vox grid of small space test environment

91

6.2.7 Exterior
The system is not designed for outdoor use, however to show how the system can
adapt it has been tested outside. Figure 94 shows the exterior environment test
environment. It has been placed on a rough concrete path which increased the error in
the built in odometry. Regardless of which, it still managed to take 4 scans before
exiting due to light pollution from neighbouring windows and the moon.

Figure 94: Photo of robot in exterior test environment

92

Figure 95 shows the effect of the rough terrain on the scanner. Regardless of the little
amount of data it captured, it still managed to traverse the environment safely and pick
out key details such as the leg of the fireplace.

Figure 95: Point cloud and detail of exterior test environment

93

6.3 - System Speed
“The robotic platform should be able to scan an environment within a reasonable
amount of time. For example, one scan and one 30cm route plan traversal should take
no more than two minutes to complete.”

This is highly dependent on the environment however throughout testing, a single
exploration loop takes anywhere between a minute and a minute and a half to complete.

As this is well inside the requirements, the scanner's resolution could be increased to
get a higher density point cloud or the total scanning area increased. Figure 96 shows
the timing breakdown of an average exploration loop.

Figure 96: Pie Chart showing exploration speed breakdown

94

6.4 - System Price
“The entire system’s component value should be no more than £100”

Figure 97 shows the price of the project in total. Some items are estimated as their cost
is unknown or unquantifiable. The total price falls below £100 and therefore satisfies the
price constraint of the project.

Item Quantity Price

Raspberry Pi 3 1 £34.00

Laser module 1 £2.73

USB power bank* 1 ~ £20.00

5-12v stepper motors 3 £2.50

Raspberry Pi Camera V2 1 £25.19

Printed parts, consumables, etc N/A ~ £10.00

Total £99.42

Figure 97: Table breakdown of cost

95

7 - Limitations
These limitations were gathered during testing.

7.1 - Environmental factors
The main environmental limitations of the system are as follows:

The environment needs to have enough interest points less than 1.5m apart. This is to
ensure correct registration between scans.

Surfaces should not be more than 50% transparent or specular. This is to ensure that
the laser’s first reflection is registered and not the transparent shadow ray or the
reflected ray.

Surfaces should be light enough to stay within the identification threshold. The darker
the environment the lower the laser identification threshold has to be set and the more
noise that gets introduced.

Environment should not change whilst mapping is in progress. This would not put the
robot at risk but it could either ruin registration or mark voxels as obstacles even after
the obstacles were moved.

The environment should be relatively clean as to not introduce obstacles which would
fall below thresholds and therefore get incorrectly identified. For instance rugs or
threads less than 5mm in diameter may not be registered correctly.

The environment cannot have any ambient light brighter than the laser. This is crucially
important as the current system measures red intensity only and therefore is susceptible
to external light sources. This could be rectified with a colour based laser identification
algorithm.

96

7.2 - Trade offs
Figure 98 shows the main three trade offs were price, run time and development time.
The project aim was to optimise the price and the development time sacrificing the run
time.

Figure 98: Diagram showing main trade offs

The main constraint for the run time versus the development time was the language
choice. Python’s objective is minimise development time. However to achieve this it
sacrifices run time. The main bottlenecks are accessing Python’s built in data
structures. Because of this some were replaced with faster 3rd party structures such as
Numpy. However if more time was available then more structures could be converted
resulting in a faster run time. In an extreme case the entire system could be re-written in
a lower level language such as C for unbeatable run time.

The hardware was mainly constrained by price. For instance smaller, more expensive
motors would have provided a higher resolution and would have targeted some of the
artefacts that the cheap stepper motors generated.

97

8 - Future development

8.1 Bug fixes
One of the main problems highlighted during testing was the inability to avoid cliffs. This
could be rectified by giving any unknown area shadow. However this would make
exploration voxels unreachable and therefore the target finder or the navigation module
would need to be changed. As well as this there are slight errors in the A* algorithm that
need to be addressed.

8.2 Upgrades
One of the main features this system needs is an automatic calibration tool. This is for
calibrating the scanner automatically so that any minor hardware changes are
accounted for. This could be done by placing the robot on a flat surface then comparing
the real world result with a flat plane. The difference between the two could be used to
drive the robot's parameters.

If the current software was kept, the first module that would need streamlining is the
voxel grid analyser which iterates through the voxel grid multiple times. This could be
converted to a single iterative operation which gets applied once to each voxel. The
route planner also needs to be fixed so that the routes being found are not only safe but
optimal too.

To make the system more resilient to external light sources, the laser identification step
in the scanner class could take the laser’s wavelength into account.

To ensure that the hardware errors are minimal, the chassis could be 3D printed as one
piece. This would remove play inherited from the temporary fittings used in the current
construction. A more customisable chassis could also accommodate a castor wheel in
place of the skid which would allow the robot to traverse over rougher environments.

The hardware could also be upgraded with more reliable batteries and lasers. This
might incur a slight increase in cost but would also increase the reliability and reduce
the weight of the system as a whole. The scanner system could be improved by adding
a torsion spring to reduce turntable play and identifying the laser by wavelength to
minimise external light source error.

98

8.3 New features
One key feature that might be useful in visualisation and analysis is a skinning tool
which would convert the point cloud data into either shells or solid objects by reducing
points and adding faces. This could drive content aware scanning through object
recognition aiding speed and accuracy.

A drastic change if starting this project from scratch would be to write it in C. This would
increase development time but decrease run time. This would also make the robot more
diverse as it could handle larger datasets without incurring as much of a time penalty
compared to Python.

Another interesting development would be to allow the robot to traverse non-flat
environments. For instance, the system could be mounted on an all terrain platform and
be used to explore exterior environments.This would require a new chassis, drivetrain
and power supply as well as modification to the voxelization and scanner modules to
correctly identify safe voxels.

99

9 - Critical Reflection
The main error I couldn’t debug was the sporadic hardware failure. This caused more
problems than expected when testing. This shows the importance of early debugging to
ensure reliability. In the future I plan to run modular tests throughout development and
store results for better reflection and debugging.

The research material I used throughout this project was found on an as-needed basis.
In hindsight, the system could have been improved dramatically by gathering up more
background material prior to the development stage. Striking a better balance between
development and research would have ensured that lots of problems could have been
avoided resulting in a more stable system.
This could also lead into using more packages earlier on in the project. This might have
avoided reinventing the wheel at certain stages such as the voxelization module could
have been substituted with the voxelization functionality inside PCL’s Python wrappers.

During testing, I found that the file transfer and visualization was quite slow. This
wouldn’t be a make or break issue if it weren’t for the large amounts of test data I had to
process. Therefore in hindsight I would have made this system more efficient by
implementing an auto-exporter to my desktop machine and therefore have a faster
testing turnaround time.

During the development stage I found the tangible milestones set out in meetings and in
the initial plan were invaluable for keeping track of progress. These helped me stay
motivated and utilise my time efficiently. Figure 99 from my initial plan shows an
excellent representation of how I could work on multiple problems simultaneously. This
kept the project interesting and dynamic.

100

Figure 99: Work Plan Dependency Graph

101

10 - Conclusion
In conclusion, the project successfully completed the objectives set out in the initial
plan. It exceeded expectations when it came to precision and adaptability. It also
managed to retrieve a remarkable amount of information about the environment whilst
still being affordable and easy to manufacture.

The solution outlined in this document is an original and unique approach to creating an
small, affordable SLAM system, and this report provides enough background research
and implementation notes to replicate this solution.

Figure 100: Test scan of desk environment

102

References
All references below are based on the IEEE referencing standard.

[1] S. Martin, "Laser Triangulation SLAM Initial Plan", Cardiff, 2017.

[2] R. Mayer, Scientific Canadian, 1st ed. Vancouver: Raincoast Books, 1999.

[3] "Kinect hardware", Developer.microsoft.com, 2017. [Online]. Available:
https://developer.microsoft.com/en-us/windows/kinect/hardware. [Accessed: 23-
Apr- 2017].

[4] "Sweep Product Specification", 2017. [Online]. Available:
https://s3.amazonaws.com/scanse/SWEEP_DATA_SHEET.pdf. [Accessed: 01-
May- 2017].

[5] P. E. Hart, N. J. Nilsson and B. Raphael, "A Formal Basis for the Heuristic
Determination of Minimum Cost Paths," in IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100-107, July 1968.

[6] S. Riisgaard and M. Rufus Blas, "SLAM for Dummies", 2017. [Online].
Available:
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-rob
otics-spring-2005/projects/1aslam_blas_repo.pdf. [Accessed: 01- May- 2017].

[7] Smith, Self, Cheesman: Estimating uncertain spatial relationships in robotics

[8] S. Rusinkiewicz and M. Levoy, "Efficient variants of the ICP algorithm,"
Proceedings Third International Conference on 3-D Digital Imaging and
Modeling, Quebec City, Que., 2001, pp. 145-152.

[9] R. Rusu and S. Cousins, "3D is here: Point Cloud Library (PCL)", IEEE
International Conference on Robotics and Automation (ICRA), 2011.

[10] "Point Cloud Library (PCL): PCL API Documentation", Docs.pointclouds.org,
2017. [Online]. Available: http://docs.pointclouds.org/1.7.2/. [Accessed: 23- Apr-
2017].

[11] J. Vilches, "Interview with Raspberry's Founder Eben Upton", TechSpot, 2017.
[Online]. Available: http://www.techspot.com/article/531-eben-upton-interview/.
[Accessed: 25- Apr- 2017].

[12] "Raspberry Pi Documentation", Raspberrypi.org, 2017. [Online]. Available:
https://www.raspberrypi.org/documentation/. [Accessed: 23- Apr- 2017].

103

[13] "Cython 0.21.2 : Python Package Index", Pypi.python.org, 2017. [Online].
Available: https://pypi.python.org/pypi/Cython/0.21.2. [Accessed: 23- Apr-
2017].

[14] "strawlab/python-pcl", GitHub, 2017. [Online]. Available:
https://github.com/strawlab/python-pcl. [Accessed: 23- Apr- 2017].

[15] "Installing PCL on Raspberry Pi", Gist, 2017. [Online]. Available:
https://gist.github.com/chatchavan/c758f1568d35bbf6dd75. [Accessed: 23- Apr-
2017].

[16] "Overview — NumPy v1.13.dev0 Manual", Docs.scipy.org, 2017. [Online].
Available: https://docs.scipy.org/doc/numpy-dev/. [Accessed: 23- Apr- 2017].

[17] "picamera — Picamera 1.13 Documentation", Picamera.readthedocs.io, 2017.
[Online]. Available: http://picamera.readthedocs.io. [Accessed: 23- Apr- 2017].

[18] "Python Imaging Library (PIL)", Pythonware.com, 2017. [Online]. Available:
http://www.pythonware.com/products/pil/. [Accessed: 23- Apr- 2017].

[19] "What is Arduino", Arduino.org, 2017. [Online]. Available:
http://www.arduino.org/learning/getting-started/what-is-arduino. [Accessed: 23-
Apr- 2017].

[20] "Intel® Galileo Board Documentation", Software.intel.com, 2017. [Online].
Available: https://software.intel.com/en-us/iot/hardware/galileo/documentation.
[Accessed: 23- Apr- 2017].

[21] D. Hodges, "Fundamental theory and applications", IEEE Transactions on
Circuits and Systems, vol. 46, no. 1, p. 102, 1999.

[22] S. Monk, "Overview | Adafruit's Raspberry Pi Lesson 10. Stepper Motors |
Adafruit Learning System", Learn.adafruit.com, 2017. [Online]. Available:
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-10-stepper-motors/.
[Accessed: 23- Apr- 2017].

[23] "Principles of operation of two phase stepper motors", Pc-control.co.uk, 2008.
[Online]. Available: https://www.pc-control.co.uk/step-motor.htm. [Accessed: 25-
Apr- 2017].

[24] "Laser radiation: safety advice - GOV.UK", Gov.uk, 2017. [Online]. Available:
https://www.gov.uk/government/publications/laser-radiation-safety-advice/laser-
radiation-safety-advice. [Accessed: 23- Apr- 2017].

104

[25] "Camera Module - Raspberry Pi Documentation", Raspberrypi.org, 2017.
[Online]. Available:
https://www.raspberrypi.org/documentation/hardware/camera/README.md.
[Accessed: 01- May- 2017].

[26] "New camera mode released - Raspberry Pi", Raspberry Pi, 2017. [Online].
Available: https://www.raspberrypi.org/blog/new-camera-mode-released/.
[Accessed: 23- Apr- 2017].

[27] "Ad Hoc setup in RPi 3", Raspberrypi.stackexchange.com, 2017. [Online].
Available: https://raspberrypi.stackexchange.com/a/49792. [Accessed: 23- Apr-
2017].

[28] J. A. Baltar, E. Delgado and A. Barreiro, "Mark-based vision for 3D vehicle
tracking using least-squares and kalman filter," Proceedings World Automation
Congress, 2004., Seville, 2004, pp. 313-318.

