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Abstract 
By using a inexpensive laser triangulation scanner this project aims to create an 
affordable robotic mapping solution suitable for building 3D models of interior 
environments. This project covers the physical design and build of the robot as well as 
the software implementation. 
 
 
 

 
Figure 1: Artistic representation of captured scan data  
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1 - Introduction 

1.1 - Problem Overview 
The overall objective is to create a robot which can safely navigate an environment 
whilst building up a comprehensive 3D model of its surroundings. The scanner is 
regularly the most expensive component when it comes to mobile robotics. Because of 
this, the key objective of this project is to create a cheap 3D scanner which has a high 
point density resolution to use to navigate an unknown environment safely.  
LIDAR is the most commonly used scanner for small robotics platforms, however most 
scanners are far outside of budget. Laser triangulation scanners are easy to build and 
cheap making them an inexpensive substitute to LIDAR. 
The second project objective was to analyse this sensor data and use it in conjunction 
with route planning algorithms to explore an environment to build up a 3D model safely 
and efficiently. 

1.2 - Project Brief 
The official success criteria from the Initial Plan[1] are as follows. These will form the 
majority of the testing criteria. 

1.2.1 - Accuracy 
“The SLAM world model needs to be accurate enough to navigate around messy 
environments. For example a desk covered in books and papers.” 

1.2.2 - Adaptability 
“The system should adapt to new environments automatically.” 

1.2.3 - Speed 
“The robotic platform should be able to scan an environment within a reasonable 
amount of time. For example, one scan and one 30cm route plan traversal should take 
no more than two minutes to complete.” 

1.2.4 - Cost 
“The entire system’s component value should be no more than £100” 
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1.3 - Technology Overview 
The following chapter should give a concise overview of the technologies used in this 
project. 

1.3.1 - Laser Triangulation Scanning 

Laser triangulation scanning works by firing a laser into a scene at an angle and 
analysing the reflected beam shape with a sensor to determine depth information. This 
is classically used in measuring known objects or scanning isolated objects. This is 
done by mounting the object on a rotating or moving platform. However the same 
methodology can be applied to interior environments if the scanner is placed on the 
rotating platform instead of the object to be scanned. 

1.3.2 - SLAM Methodology 
SLAM stands for Simultaneous Location And Mapping. This is used regularly by mobile 
robotics platforms to ascertain its surroundings. The first step of SLAM is to retrieve a 
map of the local area using some form of scanner, be that lidar, sonar or structured 
light. As the robot moves around it re-calculates its position by using a mixture of built in 
odometry and localisation techniques. This step is where it matches its current world 
model to previous world models to calculate its position. This relies on the environment 
having enough interest points to match the two correctly. 

1.3.3 - ICP Registration 
ICP stands for Iterative Closest Point and is a registration algorithm used for matching 
point clouds together. Registration will form a key step in the SLAM methodology 
implemented in this project.  

1.3.4 - Odometry Based Position Triangulation 
ICP converges much faster if the two scans have a relatively accurate initial 
transformation. This can be achieved by using the robot’s built in odometry to transform 
the world models to match the traversal made by the robot before ICP. The built in 
odometry is also key for maneuvering the robot around obstacles in the world. 
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2 - Background research 
This chapter gives a brief overview of the background research required for this project. 
This includes hardware and software research from academic and industrial sources. 

2.1 - Scanner 
Laser Triangulation scanning was first developed by the National Research Council of 
Canada back in 1978 and has been used for many industrial measurement systems.[2]  

These scanners have become widely available due to their drop in component price. 
They can be fabricated cheaply with readily available parts. These provide a high 
resolution depth map using infrared or visible light lasers combined with any form of 
digital camera. 

2.1.1 - Laser Triangulation Trigonometry Overview 
Laser triangulation scanners use laser light to probe the environment. This is done by 
mounting some form of light sensor a certain distance from the laser and as the laser 
gets fired into the scene the sensor can measure where it falls within its field of view.  
 
As long as the distance between the sensor and the laser is known as well as their 
relative angles, we can form an angle-side-angle triangle as shown in Figure 2. A full 
breakdown of these equations can be found later in this chapter. 
 

 
Figure 2: Diagram of generic laser triangulation layout 
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Known 
 Distance between sensor and lasera =   
 Angle between laser and cameraL =   
 Ref lected laser angle in relation to the sensorR =   

 
Unknown 

 Unknown distance between the laser and the environment objectd =   
 
Relationship 

 d =  a(sin(R))
sin(180−L−R)  

 
A 1D sensor and single dot laser can measure along a 1D intersection with the 
environment. However a 2D sensor such as a camera and a line laser can capture a 2D 
plane intersection with the environment. We can use the incoming horizontal pixel index 
(iu ) for each row of the camera to determine the angle . This assumes that the FOV ofR  
the camera is known. Figure 3 shows how a camera can be utilised as the laser 
detection sensor. 
 

 

  

 
Figure 3: Diagrams showing change in environment distance 
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If we visualise this with a semi-complex primitive monkey head, we can visualise how 
the laser would fall on it. Figure 4 shows how the laser intersects with its environment 
from the third person view of the object and the scanner. 

 
Figure 4: 3D Visualisation of Figure 3 

 
Figure 5 shows how the laser intersects with its environment from the camera's point of 
view. 

 
Figure 5a: 3D Visualisation of the 

camera view in Figure 4 

 
Figure 5b: Image captured from a 

real world example 
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As we need a 3D scan of the environment, we need to introduce a new dimension to 
these one dimensional slices. We can do this by moving the scanner. This can be done 
as a linear sweep or a rotation. For this project a turntable is more suitable as it 
complies a panorama style scan which will give the robot 360 degree vision. Due to 
mechanical constraints it is easier to mount the camera at the center of the turntable to 
reduce unwanted camera motion between slice captures. As the scanner rotates, it 
captures 2D intersecting slices of the environment. 
 
Figure 6 shows an artistic representation of how these slices are captured from the 
camera's point of view. This was created by overlaying multiple captures whilst rotating 
the scanner. Each capture has been shifted by 6% so that each slice is identifiable. 
 

 
Figure 6: Artistic representation of turntable scanning 
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2.1.2 - Alternative Scanning Solutions 
Impact and sonar based mapping is the cheapest solution but has the lowest 
resolution. This only provides a 2D map and is also susceptible to large amounts of drift. 
As well as this it struggles to identify non-solid obstacles, oblique obstacles, low lying 
surface changes and cliffs. 
 
LIDAR is one of the best options for small robotic platforms. These modules usually 
come in the form of small turntables which spin at around 1 - 3Hz[4] which provide a high 
accuracy, dense 2d point cloud. However it is also the most expensive scanning 
solution listed.  
 
Camera motion has the simplest hardware implementation as all it requires is a 
camera and a processor. However this method requires a fast processor to capture and 
analyse data in real time. As well as this the platform has to be moving to build up a 
map of its surroundings. This poses severe problems when the environment is initially 
unknown. 
 
Structured Light scanners such as the Microsoft Kinect provides an excellent real time 
scanning solution. The main drawback with most off the shelf systems though is the 
physical size and minimum scan distance. The Kinect has a minimum scan distance of 
around 50cm[3]. Mounting this to a robotic platform would create a one meter dead zone 
which would cause issues when navigating close-quarter obstacles. 
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2.2 - A* Route Planner 
The A* route inspection algorithm was coined by Peter Hart, Nils Nilsson and Bertram 
Raphael of Stanford Research Institute back in 1968. Originally this was an extension of 
Dijkstra's algorithm.[5] To build an A* route inspection algorithm in 2D space, each 
position needs to be classified as a node within a graph with weighted connections to 
each adjacent area. This can then be searched until the path connects the source with 
the target node. 

Using a square grid is the most common way to convert a 2D 
environment into a route inspection graph. However because 
diagonal movements are longer than cartesian movements, the 
edges connecting them are weighted slightly higher. A common 
estimation of diagonal weighting is set to a factor of 1.4 
The figure to the right shows a representation of this weighting 
factor. 

 
14 10 14 

10 0 10 

14 10 14 
 

A* uses an iterative approach for determining which path to explore. It does so by 
sorting each partial path by the cumulative path heuristic. The algorithm aims to 
minimise the following equation: 

Known 
he last node on the pathn = T  

(n) ost f rom source to ng = c  
(n) euristic estimation of  cost f rom n to targeth = h  

Unknown 
(n) inimisation functionf = m  

 

Relationship 
(n) (n) (n)  f = g + h  

The heuristic estimation is implementation specific. The most common heuristic used on 
2D environment grids is the real world distance. This can be estimated using the 
manhattan or euclidean distance.  
On each iteration of the algorithm, it chooses the next reachable node with the lowest 

 value and removes it from the open set. Once chosen, the neighbours  and (x)f f g
values are updated and these neighbours are added to the open set. This is repeated 
until the goal node is in the open set. This gives us the minimum distance from the 
source to the goal. 
 
To rebuild the path, the algorithm needs to be adjusted slightly to include node 
parenting. Each node's parent is set to the node which it was put in the open set by. 
This allows us to follow the nodes parents from the goal back to the source. Reversing 
this path will give us the shortest path from source to target. 
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2.3 - SLAM 

SLAM stands for Simultaneous Location And Mapping. It’s aim is to create a system to 
adjust a robot’s position using landmarks in the real world[6]. This is to compensate for 
error in the robots built in odometry. It was originally developed by Hugh Durrant-Whyte 
and John J. Leonard based on earlier work by Smith, Self and Cheeseman[7]. The four 
main steps to SLAM are landmark extraction, data association, state estimation and 
state/landmark update. Once all these steps are complete, the robot has a new map of 
its surroundings and a new adjusted position. These steps can then be repeated for 
each new scan the robot takes. 

2.3.1 - Landmark Extraction 
Landmarks are physical attributes inside the environment which are easily identifiable 
and distinguishable. These help the robot triangulate its position when traversing the 
environment. These can be captured using scanners such as LIDAR, Sonar or impact 
based scanning. 

2.3.2 - Data Association 
Data association is the process where the same landmarks are extracted multiple times 
and therefore can be assumed to be the same physical point in the world. Ensuring that 
the landmarks are unique is crucially important as matching two different landmarks 
together will introduce error in the state update step. Other issues can be caused by 
landmark occlusion where a landmark is seen once and never seen again or is only 
seen sporadically. 

2.3.3 - State Estimation 
The state estimation formulates the robot's position using only the built in odometry of 
the drive system. This is regularly inconsistent and very susceptible to drift. For instance 
if the robot hit a small grain of sand and the heading changes by one degree, this would 
result in huge error in the robot's final position after a long traversal. 

2.3.4 - State and Landmark Update  
The state and landmark update step takes the robot's state and the landmarks from the 
landmark association steps and re-estimates the robot's state based on the landmark’s 
relative position. This step is highly dependent on the Extended Kalman Mark's filter[28], 
however to reduce development time of this project this will be substituted by an 
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Iterative Closest Point matching algorithm. This step also updates the landmark’s 
positions to minimise any error in the data association and landmark extraction stages. 

 

2.4 - Iterative Closest Point 
Iterative closest point is an algorithm used to align misaligned rigid point clouds 
together. The algorithm takes two point clouds, a source and a target. The target point 
cloud stays in place and is used as reference for the source point cloud to align to. The 
algorithm iteratively translates and rotates the source to minimise the difference 
between the two scans. This is known as the error metric.[8] 
The error metric is calculated by iterating through each point in the source point cloud 
and measuring the distance to the nearest neighbor in the target point cloud. This also 
forms a set of vectors which can be used to estimate the transformation or the entire 
point cloud after filtering out statistical outliers. The output of the ICP algorithm is 
usually a 4x4 homogeneous coordinate transformation which maps the source’s original 
position to its new iteratively refined position. 
 
Figure 7 shows two scans which have been purposely misaligned. The orange scan is 
the source and the black scan is the target. We can see here how the ICP registration 
corrects this. 

 

Figure 7a: Before Registration 
 

Figure 7b: After Registration 
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2.5 - Processor Choice 
Processing solutions are usually a trade-off between price and computing power. 
Other factors to consider include power consumption, availability and physical footprint. 
 
Arduino[19] is a popular brand of microprocessor. It has a small footprint, inexpensive to 
source and has a very low current draw. The main drawback of the Arduino is that it has 
very limited processing power. This makes 3D transformation and image analysis very 
slow. It also has limited connectivity lacking networking options and camera ports. 
 
The Intel Galileo[20] has much better connectivity than the Arduino, however comes with 
a heftier price tag. The processing power is much closer to what is needed and is a well 
supported platform. 
 
The Raspberry Pi[12] has great onboard connectivity with built in WiFi, bluetooth and 
ethernet ports. The processor is powerful enough to deal with most image analysis 
tasks and has a large support platform due to its popularity. It has a small footprint and 
supports many off the shelf modules such as webcams, Raspberry Pi cameras and a 
plethora of headers for the GPIO pins.  However the Raspberry Pi doesn’t support many 
real time and analogue operations such as pulse width modulation and sensor 
communication. Coming in at around £30 the Raspberry Pi is the perfect affordable 
processor of choice for this project. 
 
Laptops can be built into these types of project, they provide excellent power and 
connectivity but have a large physical footprint and a larger price tag. Using a laptop 
would be suitable for robots navigating larger office spaces or exterior environments but 
is unsuitable for smaller interior environments. 
 
The final processing option is to pair any of the above solutions with a host machine 
which could process the data then send it back to the platform. This would allow the 
footprint and the price to be driven down. This would allow a desktop machine or server 
to do the majority of the processing which would provide the maximum processing 
power. However this would move the bottleneck to the communication between the 
robotic platform and the host. This also introduces a reliance on a host machine which 
might not be available in remote locations. 



14 

2.6 - Motor Choice 
The following motors could be used in this project however considering these points the 
stepper motor is the obvious choice for use with the Raspberry Pi. 
 
DC motors need to be supplied with a constant current in order to rotate. Rough 
odometry can be achieved by supplying the voltage over time however this can fluctuate 
depending on the motor's load. If you want to change the speed you’ll also need a DC 
motor driver to supply a constantly varying voltage supply. 
 
Servo motors require a digital signal in order to rotate. They use a pulse where the 
frequency determines the rotation angle or speed of the motor. However this requires 
you to have some form of pulse width modulator. 
 
Stepper motors[23] require a digital signal input over multiple channels. Each channel 
controls a coil inside the motor known as the phase. By iterating through a set of on-off 
steps you can rotate the motor to a high degree of accuracy depending on the number 
of channels and poles. 
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2.7 - Language Choice and OO Reasoning 
Most 3D vision systems run off fast, low level programming languages such as C, C++ 
or C#. However, due to the development time restraints of this project, a higher level 
language is a better choice. Python is an excellent choice as development is fast and 
efficient. It is also the primary coding language the Raspberry Pi was developed for.[11][12] 
The main drawback is its low level processing speed. Therefore libraries and C 
wrappers are required to do some of the more intensive processing. I chose an object 
orientated approach to ensure each component of this project could be tested and 
developed independently. This proved vital for utilising my time efficiently by juggling 
development between modules. 

2.8 - External Packages 
The following packages provide functionality which Python commonly utilises for 3D 
manipulation and visualisation. 
 
PCL[10] is a stand alone point cloud library for 3D point cloud processing. This provides 
ICP implementation as well as many other useful functionality such as statistical outlier 
filters. 
 
Cython[13] is an optimisation library which wraps useful C extensions in Python. This is 
required for Python PCL. 
 
Python PCL[14] is a Python wrapper for PCL. However this does require Cython and 
PCL to be installed. Installing this on the Raspberry Pi requires alteration of the 
Raspbian fstack protector, dphys swapfile and compilation pipeline.[15] 
 
Numpy[16] is a scientific library which allows more advanced matrix calculations on 
images inside of python. This is also required for extracting images from the Pi-Camera 
quickly and efficiently using Pi Camera Array as it natively supports Numpy. 
 
Pi-Camera[17] is a library that allows us to access the Raspberry Pi camera inside of 
Python. This also relies on Numpy to quickly extract images without encoding. 
 
PIL[18] is an image processing library used for saving and exporting graphical 
representations of the world. 
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3 - System Overview 
This chapter gives a brief overview of the entire system. Implementation of solutions 
defined below can be found under the hardware and software implementation chapters. 

3.1 - Software Overview 
The robot's task is to build a complete 3D map of an interior environment. It does so by 
compiling multiple scans at different locations within the environment. 
These locations are chosen by scan voxelization. This allows volumetric areas of the 
environment to be analysed independently to assess the optimal location of the next 
scan. 
Once this has been acquired, the robot uses the same voxelization analysis to safely 
traverse the environment from its current position to the new scan location using an A* 
route inspection algorithm. As soon as it cannot find a good location for the next scan it 
exits the program and returns a full 3D point cloud map of the environment. 
 
This exploration loop can be represented as flowchart in Figure 8. 
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Figure 8: Flowchart of System overview  
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3.2 - Hardware Overview: 
The robot is made of 3 main components. The scanner, wheels and processor. Figure 9 
and 10 show the three main topological views and key components of the robot.  
Please note the power supplies pictured below are the secondary and tertiary supplies. 
The primary supply was in the form of a LIon USB power bank on the underside of the 
chassis, this powered the entire system. However, the LIon cells fulminated and 
therefore have been supplemented with additional supplies for testing and debugging.  

 

Figure 9a: Top view 

 

Figure 9b: Front view Figure 9c: Side view 
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Figure 10: Top view with annotation 

RPi - The Raspberry Pi forms the central processing unit for the robot. 
RPi Camera - This is used to analyse the laser light emitted from the laser module and 
acts as the only input for the robot. 
Laser Module - This emits the laser light which is picked up by the RPi camera.  
Motor Drivers - These allow the low current GPIO signals from the Raspberry Pi to 
switch the high current 5v supply straight to the motors. 
Stepper Motors - These are connected to the motor drivers and power the robot's 
behavior. 
Laser Boom - This component attaches the turntable to the laser and camera module 
 
11.1v LiPo - Secondary Lithium Polymer power supply. 
Voltage Monitor - Ensures that the cells voltage in the LiPo do not drop to too low. 
5V UBEC - This converts the 11.1v supply provided by the secondary LiPo to a 5v 
supply suitable for the Raspberry Pi and stepper motors. 
3v Testing Pack - Tertiary debugging power supply for the laser module. 
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4 - Hardware Implementation 
The entire hardware design is custom built for this project. It features an open-air design 
to allow rapid prototyping and development. 

4.1 - Mechanical Parts 
The aim of the chassis is to provide a rigid base for the components to be mounted to. 
High density foam board is an excellent choice for rapid prototyping as it can be milled 
and machined easily whilst still being rigid enough to support the robot’s weight. 

 
Figure 11: Corner view of chassis and motors 

 
However 3D printing is a more suitable form of manufacture for more intricate parts 
such as wheels, motor mounts and boom arms. Fused deposition modeling printing is 
perfect for this application as it can print lightweight, rigid parts quickly which need  very 
little finishing unlike other forms of printing. 
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Figure 12: CAD model of wheel 

 

4.1.1 - Boom Arm 
The 3D printed boom arm was especially designed to ensure maximum rigidity could be 
achieved at minimal weight and could not have been achieved with classical 
manufacturing methods. The length of the arm and the angle of the laser has a direct 
correlation to the range of the scanner and the horizontal FOV of the camera. This will 
be explored further in the scanner chapter. 

 
Figure 13: CAD model of boom arm 
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4.1.2 - Scanner Mount and Footprint 
The footprint of the robot needed to be as small as possible to ensure it could navigate 
tight spaces as well as allowing the scanner to have a large field of view. 
 
The dead zone circle is the area under the robot that is assumed to be safe when 
placed in a new environment. Mounting the scanner onto a raised platform increased 
the scannable area leaving a smaller dead zone.  
 
To minimise the dead zone the immediate floor needs to be at the minimum range of 
the scanner. To calculate the optimal height of the scanner mount we run the following 
equations.  
 
 

Known 
 Closest scan distancek =   
  Camera vertical f ield of  viewq v =   

Unknown 
 eight of  the scanners centerh = H  

Relationship 

 k(tan( ))h =  2
q  u  

 

 
Figure 14: Diagram showing scan field of view 
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According to these equations and assuming the above boom is used, the optimal 
scanner height is 12cm as seen in figure 14. This was increased to 13 cm in the final 
build to accommodate for extra electronics and a slightly larger chassis; any lower than 
this and the immediate floor would be too close for the scanner to detect, therefore 
wasting scan field of view, any higher and the dead zone radius would increase. 

4.1.3 - Wheels and Drivetrain 
The movement mechanics are made using a simple built in gearing, 2 wheel and skid 
approach, reducing the number of components connected to the drivetrain. This 
increased the accuracy of the built in odometry as every part attached to the drivetrain 
adds mechanical play which reduces accuracy. This also simplified the odometry 
triangulation as the entire robot pivots around the center of the scanner. This is a very 
simple solution and is not suitable for rough environments however gives the highest 
motor odometry precision. 
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4.2 - Electronic Parts 
Figure 15 shows a generic schematic of the entire electronics system. The single lines 
represent data and the double lines represent power. 

 

Figure 15: Schematic of electronics system 
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4.2.1 - Stepper Motors 
Stepper motors require a digital signal input over multiple channels.[22] Each channel 
controls a coil inside the motor known as the phase. By iterating through a set of on-off 
steps you can rotate the motor to a high degree of accuracy depending on the number 
of channels and poles. A Darlington transistor array is required such as the ULN2803 
however these are cheap and easy to implement using the Raspberry Pi’s GPIO pins. It 
is also key to note that most stepper motors have significantly more poles per phase 
and usually have built in gearing. However the following examples assume a 
non-geared stepper motor with 4 channels and 4 poles. 
 
Full stepping 
Figures 16 and 17 show full stepping which charges each pole independently to rotate 
the motor.  
 

 
Figure 16: Diagram of stepper motor workings © Copyright 

pc-control.co.uk 2008[23] 
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fullstep = 
[  
[1,0,0,0], 
[0,1,0,0], 
[0,0,1,0], 
[0,0,0,1]] 

 

Figure 17: Graph and code snippet showing full stepping 
Half Stepping 
Compared to full stepping, we can double the resolution by using half stepping where 
between each step we charge both poles of the adjacent coils to pull the core into a 
diagonal position. This provides us with the highest accuracy using a digital IO input and 
the stepping solution used in this project. 

 

 
halfstep = [ 
[1,0,0,1], 
[1,0,0,0], 
[1,1,0,0], 
[0,1,0,0], 
[0,1,1,0], 
[0,0,1,0], 
[0,0,1,1], 
[0,0,0,1]] 

 

Figure 18: Graph and code snippet showing half stepping 
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Micro Stepping 
To get an even higher resolution and if a semi-analogue output was available or a 
dedicated motor driver was used, a smoother and more accurate rotation could be 
achieved with micro stepping. 

 
Figure 19: Graph showing stepper motor micro stepping 
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4.2.2 - Power Supply 
Portable USB power packs are one of the most popular power supplies for Raspberry Pi 
based projects. This provides a clean 5v power supply to all electronic modules in the 
project. They are readily available and provide a self contained power system. Other 
power options include LiPo/LIon/NimH cells. The drawback to these systems is that a 
separate charging and switching circuit is required as most cells do not charge or 
provide 5v natively. 

4.2.3 - Laser Module 
Class 3R / 3A laser modules are readily available and inexpensive as they are 
commonly used for DIY levelling and pointing devices. However the main unique 
restriction of this component is its safety rating. Class 3R classification by the UK 
Government defines them as follows: 
“The laser beams from these products exceed the maximum permissible exposure for 
accidental viewing and can potentially cause eye injuries, although the risk of injury is 
still low.”[24] 

As this will be diffused using a line lens, this will reduce the risk of injury further and 
allow accidental viewing to be permissible. 
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5 - Software Implementation 
UML 
Figure 20 shows a UML diagram of all the custom written classes used in this software. 
The arrows represent a dependency. For instance the voxel grid class is dependent on 
the point cloud and voxel classes. 

 
Figure 20: UML Representation of software 
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5.1 - Robot Module 
The robot module holds the main control loop for the system. The robot navigates and 
explores with a set of commands which it iterates through until a stop condition is met. 
This forms the control loop. In this case this is when there are no more areas which the 
robot wants to explore. The only scan data that gets carried through each iteration is the 
world point cloud. This stores the robot's knowledge of its surroundings. A rough 
breakdown of the main control loop in Figure 21 is as follows: 
 

● Scan the local environment 
● Clean the scan to remove statistical outliers produced by noise 
● Warp the local point cloud to the world pointcloud if the world pointcloud has data 
● Add the warped local point cloud to the world environment. 
● Convert the new world pointcloud to a voxel grid and analyse it 
● Find an interest point in the voxel grid. If none exists exit out of the control loop. 
● Otherwise navigate as close as possible to the interest point. 

 
def startExploration(self): 
 

world = pointcloud() 
 

i = 0 
while True: 

 
local = self.scanner.scan() 

 
local.clean() 
 
world.warpTo(local) 

 
world.join(local) 

 
vox = voxGrid(world,self.navigator) 

 
vox.analyse() 
target = vox.getIntrest() 

 
world.save("worldSave_%i.obj"%i) 

 
if not target: 

break 
 

self.navigator.move(vox,target) 
i += 1 

Figure 21: Code Snippet from the main robot class 
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5.2 - Scanner Module 

5.2.1 - Boom arm length and laser angle 
The first challenge when developing the boom arm laser scanner is calculating the 
physical attributes of the boom arm. This is because the values for ,  and thea L  
camera's FOV  shown in Figure 22 directly affect the scan range of the robot. To q u  
calculate these values we need to input the maximum and minimum scan range j, )( k  
into the below equations. 
 

 
Figure 22: Diagram of Minimum/Maximum scan range 
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Known 
 Furthest scan distancej =   
 Closest scan distancek =   
  Camera horizontal f ield of  viewq u =   

Unknown 
 Angle of  laserL =   
 Length of  boom arma =   

Relationship 

 j(tan(90 ) ot( ))a =  − L − c 2
180 − q u  

atan( )L =  j+k
(j−k)tan( )2

180 − q u

 

 
If we input the Raspberry Pi camera horizontal FOV as 47° and the range  as q u j, )( k  
20 to 300 centimeter into these equations, the optimal and implemented boom design is 
to place the laser at 65° on a 17.5 centimeter boom arm. 
Figure 23 shows a vertical board 20 centimeters away from the camera. As we can see 
the laser falls perfectly on the right most side of the image. This indicates that the above 
equations are correct. 
 

 
Figure 23: Image captured from the scanners camera 
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However these values must be conservative due to the inherent accuracy falloff. Figure 
24 represents the loss in accuracy at longer distances. This is measured in centimeters 
of error a one pixel offset from the camera would cause. This assumes a Raspberry Pi 
camera with a horizontal resolution of 972 pixels is mounted to the above boom. 
 
The two lines represent the accuracy of the x and y dimensions relative to the camera. 
The minimum and maximum scan range must be adjusted to take this accuracy falloff 
into account if a higher precision at longer ranges is needed. 

  
Figure 24: Graph representing accuracy falloff 

5.2.2 - Coordinate systems 
The two main coordinate systems used in this project are camera and world 
coordinates. Camera coordinates define a points position relative to the camera 
whereas the world coordinates define a points position relative to the world. 
 
I shall be defining 3D points in the camera space as  and in the world space asx, , )( y z  

. Subscript  will also be used in the scanner module for referring to positionsx , , )( ′ y′ z′ ,u v  
on the 2D camera plane. This should not be confused with the voxel grid positioning 
coordinates. 
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5.2.3 - Implementation of boom arm laser scanner 
Figure 25 shows an overview on the process of converting the image captured by the 
scanner into a set of points. 
 

 
Figure 25: Flow chart of point cloud extraction from image data 
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The following equation is used to convert each image slice returned by the camera to 
points in world space using basic trigonometry. As each horizontal row of the image 
represents a single point this equation is applied every nth row depending on the point 
cloud density required. 
 

 
Figure 26: Trigonometry diagram for calculating R 

To calculate the position of the environment object we first need to find R to ensure we 
have a solvable angle-side-angle triangle.  
To find we first need to convert  into degrees. When analysing the image this will R  i u  
be returned as a pixel index and therefore needs to be divided by the horizontal FOV in 
pixels . This will return a value between 0 (far left) and 1 (far right). To change this  p u  
to degrees we simply multiply it with the camera's horizontal FOV in degrees . Thisq  u  
forms the equation p u

i  q u u  
We can define the maximum value of as  assuming that the camera is at a R 2

π + 2
q u  

tangent to the laser. To find the value of  simply subtract  in degrees from theR  i u  
maximum response to form 2

π − p u
i  q u u + 2

q u  
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Figure 27: Trigonometry diagram for calculating l 

To calculate the  position of the environment object we also need the distance .x, )( y l  
This is calculated using the sine rule. 
a

sin(A) = b
sin(B)  

 
 can be calculated using the 180 triangle rule A  R )  A = π − ( + L  

 
Therefore which can be simplified as  and if we substitute in l

sin(L) = a
sin(A) l = sin(A)

a(sin(L)) A  

l = a(sin(L))
sin(π−R−L)  
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Figure 28: Trigonometry diagram for calculating (x,y) 

 
Calculating  relies on the right angle triangle rule x, )( y in(θ)   cos(θ)   tan(θ)s = h

o = h
a = a

o  
We can define and  which can then be simplified toos(R)  c = l

x in(R)  s = l
y  

 
 (cos(R))x = l  
 (sin(R))y = l  
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To calculate  we first need to calculate the angle  in a similar way to .z  i v  i u  
 
When analysing the image this will be returned as the vertical pixel index and i v  
therefore needs to be divided by the vertical FOV in pixels . This will return a value q v  
between 0 (top) and 1 (bottom). To change this to degrees we simply multiply it with the 
camera's vertical FOV in degrees . This will return the angle of  and can be q v  i v  
defined as p v

i  q v v  
 
To calculate  we simply find the angle between the horizontal and the laser asz  
 2
qv − p v

i  q v v  
Then use the  rule to calculate an(θ) t =  a

o  y.tan( )z =  2
q v − p v

i  q v v  
 

 
Figure 29: Diagram for calculating z 

 
This gives us the  coordinate in camera space. To convert this to world space wex, , )( y z  
can use a rotational matrix to include the turntable's rotation .θ   
 

 x.cos(θ) .sin(θ)  x′ =  − y  
 x.sin(θ) .cos(θ)  z′ =  − y  

 
As we are rotating around the z axis, we only need to transform the x and y positions of 
the point.  
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Combining all of these equations we get the following calculation: 
 

Known 
  orizontal index of  pixel being analysed i u = h  
  ertical index of  pixel being analysed i v = v  
  obot s x positions x = r ′  
  obot s y position s y = r ′  
 angle of  turntableθ =   
 robot s headingH =  ′  

 
 boom lengtha =   
 laser angleL =   
  amera horizontal FOV  in pixels p u = c  
  amera vertical FOV  in pixels p v = c  
  amera horizontal FOV  in degrees q u = c  
  amera vertical FOV  in degrees q v = c  

 

Unknown 
x , , ) oint location world space( ′ y′ z′ = p  

Relationship 

 R =  2
π − p u

i  q u u + 2
q u  

 l =  a(sin(L))
sin(π−R−L)  

 
 (cos(R))  x =  − l  

) (sin(R)  y = l  
 y.tan( )z =  2

q v − p v
i  q v v  

 
 x.cos(θ ) .sin(θ )   x′ =  + H − y + H + s x  
 x.sin(θ ) .cos(θ )   y′ =  + H − y + H + s y  
 z  z′ =   
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Figure 30 shows a code snippet from the slice processor in the scanner module. This is 
an implementation of the above calculation. 
 
def processSlice(self,i,red): 
 

redSubsampled = red[:,::ip.stepSize] 
maxIndexes = redSubsampled.argmax(axis=0) 

 
for subsampled in range(0,len(maxIndexes)): 

 
iu = maxIndexes[subsampled] 

 
iv = subsampled*ip.stepSize 

 
if redSubsampled[iu,subsampled] > ip.threshold: 

 
theta = radians((i*360)/ip.numberOfSlices)+self.offsetHeading 

 
R = pi/2 - (iu*ip.qu)/ip.pu + ip.qu/2 
l = (ip.a*sin(ip.L))/sin(pi - (R+ip.L)) 

 
x = -l*cos(R) 
y = l*sin(R) 

 
z = -1*y*tan(ip.qv/2 - (iv*ip.qv)/ip.pv) # bit of a flip hack 

 
xPrime = x*cos(theta) - y*sin(theta) + self.offsetX 
yPrime = x*sin(theta) + y*cos(theta) + self.offsetY 
zPrime = ip.zAdjuster(y,z) 

 
point = (xPrime,yPrime,zPrime) #Saves full scan 
#point = (xPrime,yPrime,z) #Saves un-adjusted z scan 
#point = (x,y,z) #Saves camera space scan. Useful for calibration 

 
self.pc.add(point) 

Figure 30: Code snippet of the slice processor 
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5.2.4 - Camera resolution 
The resolution of the camera is critical to the calculations and efficiency of the robot. 
The Raspberry Pi Camera has a native resolution of up to 2592x1944[25] however the 
resolution has a direct correlation with speed and sensitivity. If we define the scanner’s 
real world accuracy to ~1mm, we can reduce the resolution drastically without affecting 
the scan precision. If we reduce the resolution to half (1296×972) we can increase the 
capture rate by a factor of 2.8. Even when rotating the camera into portrait to increase 
vertical FOV qv the 972 levels of depth still gives us enough resolution. 
 
We can also bin the pixels to improve the 
camera's sensitivity in low light 
conditions[26]. This process reduces the 
resolution by averaging pixels in 2 by 2 
bins instead of point sampling which 
increases the sensitivity by a factor of 4. 
This has a very low processing overhead 
as binning is natively supported on the 
RPi’s GPU. 

 
         Bin ↴         Bin ↴ 

Bin 
Average 

← 
Add 

Bin 
Average 

← 
Add 

↑ 
Add 

↖ 
Add 

↑ 
Add 

↖ 
Add 

Bin 
Average 

← 
Add 

Bin 
Average 

← 
Add 

 

Figure 31: Pixel binning diagram 
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5.2.5 - Calibration and cleaning 
 
Laser Twist 
To ensure that the values of the intrinsic parameters are correct the scanner needs to 
be calibrated. One key calibration step is to ensure the laser is vertical. To do this we 
place the scanner in front of a flat wall and run a modified version of the scanner 
module. This returns the lasers horizontal difference in pixels between the vertical 
center and the quarter above. Figure 32 shows a capture from the scanner with an 
un-calibrated laser. 

 
Figure 32: Representation of twist 

def getTwist(self,img): 
 

r,g,b = img.split() 
redData = list(r.getdata()) 
iv = int(ip.pv/2) 
rowData = redData[iv*ip.pu:iv*ip.pu+ip.pu] 
iu, value = max(enumerate(rowData), key=operator.itemgetter(1)) 
iv2 = int(ip.pv/2-ip.pv/4) 
rowData = redData[iv2*ip.pu:iv2*ip.pu+ip.pu] 
iu2, value2 = max(enumerate(rowData), key=operator.itemgetter(1)) 
if value2 > ip.threshold: 

print("laser twist: %f"%(iu-iu2)) 

Figure 33: Code snippet of modified scanner class 
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FOV Adjustment 
Other calibration includes adjusting the camera FOV to ensure that measurements are 
accurate. Figure 34 shows a side view of points from a scan plotted in camera space. 
The black point cloud is before calibration and the yellow point cloud is after. We can 
see that the yellow scan data is much flatter and closer to the absolute truth. This shows 
the importance of good vertical FOV calibration as it can affect the floor’s angle and 
therefore its traversability.  
 

 
 

Figure 34: Pointcloud side view showing before/after FOV calibration 
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Figure 35a and 35b show the importance of horizontal FOV adjustment. The black lines 
here represent the absolute truth of the environment. 
 

 

Figure 35a: Pointcloud showing horizontal FOV adjustment required in 
cm 

 

Figure 35b: Pointcloud top view showing before/after FOV calibration 
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Thresholding 
As well as the intrinsic parameters such as the FOV, other variables need to be 
adjusted such as the mean_k value in the statistical outlier filter and the brightness 
threshold in the scanner. Figure 36 compares the vertex count of a scan versus the 
minimum brightness threshold used by the scanner. 

 
Figure 36: Graph of vertex count compared to brightness threshold 

Floor snap  
To assist in the voxel grid traversal algorithm we can also snap the floor response to 
remove noise. Figure 37 shows a side view of a scan that defines any point with a z 
value between two thresholds as floor and therefore snaps it to the average of the 
thresholds. This does however remove low lying obstacles such as thin wires or coins 
and therefore not ideal. This could be improved by creating an auto-calibrator which 
levels the floor automatically to adjust for minute changes in the hardware. 

 

Figure 37: Pointcloud side view demonstrating floor snapper function 
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5.3 - Point Cloud Module 
 
This module forms the data structure for the points generated by the scanner. It is 
instantiated for each point cloud the robot generates and also holds the world view point 
cloud. The main function this module is to provide efficient registration between point 
clouds. This contains modified Python Wrappers for the Point Cloud Library. 
 

5.3.1 - Z axis lock 
One key PCL function the point cloud module alters is that it locks all Z axis 
transformation when generating registration transformation matrices. It does so as it is 
assumed that the robot will only travel on a flat plane. Figure 38 shows an extreme 
example of bad registration with no Z axis lock. 

 

Figure 38: Extreme example of poor registration with no z axis lock 
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The Point Cloud Library ICP registration algorithm returns a homogenous 
transformation matrix similar to the one in Figure 39. 
 

 
Figure 39: Screenshot of 4x4 homogenous transformation matrix 

To remove all Z axis transformation we nullify the first, second and fourth values in the 
third row of the matrix. This ensures that each point’s Z value is locked and cannot be 
transformed. This modified transformation matrix is then applied to the point cloud. 
 

.707 .707 .00000015 .000000244 

-.707 .707 .0000000434 2.83 

.0000002.31 -.000000241 1.00 -.000000956 

.000 .000 .000 1.00 

Figure 40: Table of values in Figure 45 after z locking 
Figure 41 shows a monkey head which has been rotated around the X, Y and Z axis. A 
disk of points at the base of the object has then been added to demonstrate the Z axis 
transformation lock. 

 
Figure 41: Point cloud of transformed monkey head 
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This has been run through the registration algorithm in the point cloud module to try and 
match it with the original un-transformed monkey head. As we can see in Figure 42 the 
X, Y and Z rotation has been corrected as much as possible without altering each points 
Z axis position. This is verified by the horizontal disk of points at the base of the monkey 
which have been unaffected by the transformation. 
 

 
Figure 42: Point cloud after transformation correction 

 
def transform(self,transf): 

print("Transforming pointcloud locking down the Z axis") 
newPoints = [] 

 
transf[2] = [0,0,1,0] 

 
for point in self.points: 

homogenous = (point[0],point[1],point[2],1) 
newPoints.append(np.dot(transf,homogenous)[:-1]) 

 
self.points = newPoints 

Figure 43: Code snippet of Z locking function 
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5.3.2 - Registration convergence and fitness 
However the point cloud only gets transformed if the registration converges and has a 
high fitness value. If it fails to do so it will transform the point cloud by the rough 
odometry returned by the navigation module only. This is to ensure that incorrect 
registrations are disregarded. In the future this could be fed back into registration with a 
higher iteration depth incurring a longer but more accurate registration step. 
 

5.3.3 - ICP Non-commutative Complexity 
The complexity of the ICP implementation by PCL is also non-commutative. Matching a 
small point cloud to a large point cloud is much faster than the inverse. Therefore 
another function of the point cloud module is to ensure that the most efficient 
registration is being made regardless of point cloud size. If the registration target is 
smaller than the source, it switches the target and source arguments of the ICP function 
and inverts the homogenous transformation matrix returned. This converts the target to 
source transformation to a source to target transformation. 
 
if len(self.points) > len(target.points): 

converged,transf,e,fitness = pcl.registration.gicp(target.obsPCL(),self.obsPCL(),20) 
transf = np.linalg.inv(transf) 

else: 
converged,transf,e,fitness = pcl.registration.gicp(self.obsPCL(),target.obsPCL(),20) 

 
if converged and fitness < 1000: 

self.transform(transf) 
else: 

print("Scan has not converged. will not warp to target") 

Figure 44: Code snippet of registration optimisation 
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5.4 - Voxel and Voxel Grid Modules 
The point clouds generated by the scanner have a high amount of data but little usable 
information about the world. To gain more information about the world we can reduce 
the resolution of the scan binning together points into a 2D voxel grid. We can reduce 
this as the robot only moves in 2 dimensions and therefore doesn’t require vertical data. 
Figure 45 shows how the point data is binned. 
 

 
Figure 45: Point cloud with voxel map overlay with perspective FOV 

 
Each voxel holds 2 main datasets, state and attribute. State only gets updated when the 
voxel has points added to it. It is an independent data set and only reliant on its own 
points. In comparison, the attribute data set holds information about the voxel which is 
reliant on external sources and therefore can only be updated by the voxel grid. 
 
self.state = {"scanned":False,"occupied":False,"obstacle":False,"skewed":False} 

 
self.attr = {"shadow":False,"explore":False,"safe":False,"reachable":False} 

Figure 46: Code snippet from the voxel class 
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5.4.1 Voxel States 
Figure 47 show some of the key voxel states. 
 

Scanned 
This states that the voxel contains any 
amount of points. This is updated as soon 
as a point is added. 
 
Occupied 
This states that the voxel contains enough 
points to make a reliable decision. The 
threshold is set as points per cm2 to 
ensure that adjusting the voxel size does 
not affect the state. 
 
Obstacle 
This states that the maximum difference in 
point height is above the traversable 
threshold. This threshold is also set as 
change in height per cm. 
 
Skewed  
This states that the average position of all 
points is too far from the center of the 
voxel. This is to ensure that voxels with 
only partial data such as cliff edges are 
not set as safe or traversable. 

 
Figure 48: Diagram representing 

voxel skew threshold 

Figure 47: Voxel map showing 
voxel states 
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5.4.2 Voxel Attributes 
Figure 49 shows all the main voxel attributes. A key voxel clump is the safe but 
unreachable clump. This shows a flat area which the robot cannot explore as it cannot 
fit between the obstacles to the left and right.  
 

 
Figure 49: Voxel map showing voxel Attributes 
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Shadow 
This states that the voxel is within a certain distance of an obstacle and therefore is not 
safe to traverse. This also covers obstacle voxels. 
 
Safe 
This states that the voxel is occupied, not skewed and not a shadow voxel and therefore 
safe to traverse. The only exception for this is the initial dead zone which forms under 
the robot which is automatically set to safe. 
 
Explore 
This states that the voxel has been scanned but hasn’t got enough points to make a 
decision on the voxel’s state. These voxels usually fall on the edges of scans where the 
laser hasn’t got a high enough resolution or range to generate enough points. This 
infers that there is more data beyond these voxels and therefore helps form the target 
for the robot's next traversal. To ensure these targets are reachable, all exploration 
voxels need to be adjacent to a voxel which is either another exploration voxel or 
reachable. 
 
Reachable 
This states that the voxel is safe and reachable. It does this by taking the robot’s 
position from the navigator and setting its corresponding voxel to reachable. Next it 
iterates through the entire voxelgrid and sets all safe neighbours of reachable voxels to 
reachable. It iterates through this process until no voxels have been updated. This is to 
ensure that exploration voxels adjacent to flat areas out of reach are not targeted. 
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5.4.3 Voxel Grid Target finder 
One of the key functions of this class is to find the next exploration target. After the point 
cloud has been converted and the voxel grid has been analysed the get interest function 
is run. This finds the largest contiguous clump of exploration voxels. It does so by 
adding exploration voxels to a clump list recursively until all exploration voxels are in a 
clump list.  
It then sorts the clump list by length and returns the largest clump. Once the clump has 
been found, the closest reachable voxel to the clumps centroid is set as the target for 
the next traversal. This is then passed to the route inspection algorithm along with the 
robot’s voxel position which is converted to a list of voxels which forms the route the 
robot has to take to reach its target. If no exploration voxels exist and therefore no 
clumps are found the control loop stops and the exploration is complete. 
 
def getIntrest(self): 

checkedVoxels = [] 
clumps = [] 
for voxel in self: 

self.neighbourhood = [] 
if (voxel not in checkedVoxels) and voxel.attr["explore"]: 

reachableGroup = False 
for neighbour in self.getNeighbours(voxel): 

if neighbour.attr["reachable"]: 
reachableGroup = True 
break 

if reachableGroup: 
self.checkNeighbours(voxel) 
clumpSize = len(self.neighbourhood) 
clumps.append((self.neighbourhood,clumpSize)) 
checkedVoxels += self.neighbourhood 

return self.clumpsToTarget(clumps) 

Figure 50: Code snippet of get interest function from Voxel Grid class 
Figure 51 shows how the voxel grid evolves as the robot moves from point to point. The 
last voxelgrid on the right has no reachable clumps and therefore has stopped 
exploration.  

 
Figure 51: Voxel map sequence over time 
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5.5 - A* Route planner & Navigation Module 
This navigator’s task is to keep track of the robot's voxel position and heading. It also 
coordinates the motor’s module to move the robot from voxel to voxel using the A* route 
inspection module. 
 
The route planner takes the voxelgrid, starting position and target position and creates a 
safe path for the robot to traverse. This is done by implementing an A* route inspection 
algorithm. This provides safe and guaranteed optimal route creation. For details on the 
A* algorithm see Background Research. 
 
def move(self,vox,target): 

print("Calculating move") 
 

routePlanner = aStar(vox) 
 

source = vox.voxels[self.u][self.v] 
 

path = routePlanner.getPath(source,target) 
 

self.followPath(path) 
 

self.motors.off() 

Figure 52: Code snippet from Navigation class 
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5.6 - Motor Controller Modules 
The motor modules control the motion of the robot using the estimated odometry of the 
hardware.  
Below we are defining  as the wheel base width of the robot,  as the number ofw m  
steps required for a full rotation and  as the wheel diameter.d  

5.6.1 - Straight forward motion 

 
Figure 53: Diagram of wheel diameter 

 
 
For a straight forward motion we first need to calculate the wheel circumference as .dπ  
This will give us the distance travelled in one full rotation. Dividing our straight forward 
traversal distance  by the wheel circumference will give us the fractional number oft  
rotations required. We define this as .t 1

πd  
Finally to get the number of steps we simply multiply the number of rotations required by 
the number of steps per rotation . We can define this as m t mπd   
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Therefore the number of steps required for a straight forward traversal can be defined 
as: 

Known 
 wheel base widthw =   
 number of  steps per motor rotationm =   
 wheel diameterd =   
 straight forward distancet =   

Unknown 
 steps required for straight forward motions =   

Relationship 

s = t mπd  

 

5.6.2 - Turning in place 
For turning in place we calculate the distance each wheel has to counter-rotate to turn 
the robot and plug it into the equation above.°θ  
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Figure 54: Diagram for turning in place trigonometry 
 

To do so we need to measure arc length  which can be calculated as a fraction of as  
whole circle. The circumference of the whole circle is  and the fraction of a full turn iswπ  

Therefore the arc length  and if we plug this into the equation for a straightθ
360 wa = π θ

360  
traversal above it will get us the number of steps required to counter-rotate each motor. 
We can simplify this as: w     π θ

360
m

π.d ≡ 360
πwθ m

π.d ≡  360πd
πθwm ≡ 360d

θwm  
 
Therefore we can define the number of counter-rotating steps as: 

Known 
 wheel base widthw =   
 number of  steps per motor rotationm =   
 wheel diameterd =   
 angle to turn in placeθ =   

Unknown 
 steps required for turning in places =   

Relationship 

s =  360.d
θ.w.m  
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5.7 - Networking 
As we cannot guarantee that the robot's exploration area will provide a wifi connection 
we need to set up an ad-hoc connection. As the Raspberry Pi has a wireless chip and 
arial built in this is easily done and allows SSH access via a laptop within range of the 
robot.[27] 

5.8 - Intrinsic Parameter 
All parameters referred to in this chapter such as camera FOV, size, wheel diameter, 
GPIO ports, laser threshold and other variables are held in an intrinsic parameters file. 
This is to ensure that the system is adjustable while calibrating. It also allows the 
system to adapt to different hardware and different environments easily and efficiently. 
 
from math import radians 
 
######### 
#Camera Parameters 
######### 
 
pu = 972  #camera horizontal FOV in pixels 
pv = 1296 #camera vertical FOV in pixels 
 
 
qv = radians(62.2) #camera vertical FOV in radians 
qu = radians(47)   #camera horizontal FOV in radians 
 
######### 
#Scanner Hardware Parameters 
######### 
 
a = 17.5 #Boom Length in cm 
 
L = radians(90-25) #Laser Angle in radians 
 
######### 
#Odometry Hardware Parameters 
######### 

Figure 55: Code snippet from Intrinsic Parameters file. 
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6 - Test Results 

6.1 - Module Tests 
The following tests aim to verify the success of each module and therefore each part of 
the robot independently. 

6.1.1 - Motor Odometry 
Accuracy 
The robot's odometry records the robot’s position in real world space. To calculate this, 
the robot needs to move around in real world coordinates. To calculate this we take 
aspects such as the wheel radius and wheelbase and calculate the number of steps or 
rotations the motors need to perform to travel that distance. 
However, this cannot be 100% accurate as it relies on real world measurements which 
can slip and change. 
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Figure 56 shows a graph showing the overshoot of the robot when instructed to move 
along a straight line. As we can see there is a linear correlation which shows that the 
overshoot is related to the distance travelled. This indicates that the error in the wheel 
diameter. This is could be due to degradation of the rubber wheels and could easily be 
corrected by adding 0.322mm onto the wheel diameter variable. However even at the 
furthest traversal the odometry error is still below 0.482%. This is well within the 
recommended 2% linear drift set out by Søren Riisgaard and Morten Rufus Blas.[6] 

 

 
Figure 56: Graph of linear odometry drift 
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Figure 57 is a similar graph showing the drift as the robot turns on the spot. Again there 
seems to be some linear correlation showing an error in either the wheel diameter or 
wheelbase.However, at the maximum number of rotations the error is still below 0.723% 
of the total rotations. This is well within the recommended 4.4% rotational drift set out by 
Søren Riisgaard and Morten Rufus Blas.[6] 

 

 
Figure 57: Graph of rotational odometry drift 

Speed 
The robots straight line movement speed is 4.75cm per second. This is limited by the 
motors used. This could be increased slightly however any faster than this and the 
stepper motor can skip causing a higher odometry drift. Another way to increase this 
speed would be using higher geared motors or larger wheels. However both of these 
would reduce the overall accuracy. 
 
Adaptability  
This module is highly adaptable as a change in chassis or wheel size can be quickly 
updated through the parameters file which stores all the robot’s attributes 
 
Obstacle traversal 
Due to the rear skid the highest obstacle it can ride over is <2 mm as it is assumed this 
robot will be used on flat, clean surfaces. This could be increased if a bogey wheel is 
attached instead of the skid or rougher pneumatic tyres are used. However both of 
these solutions would reduce accuracy. 
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6.1.2 - Scanner 
Accuracy 
The accuracy of the scanner highly depends on the level of calibration, the environment 
and the robot's hardware. This could be improved with automatic calibration and 
leveling functions, however this would have taken longer to develop. 
 
Figure 58 shows a comparison between the real world and the point cloud. The point 
cloud registers this distance as 82.95 cm which is well within 1 cm accuracy of the real 
value and therefore accurate enough for the robot to traverse safely. 
 

 

Figure 58a: Comparison showing scanner accuracy 

 

Figure 58b: Comparison showing scanner accuracy 
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Figure 59 shows a top down scan of the same environment compared to the absolute 
truth shown here as the black outlines. This shows not only the precision but also the 
accuracy falloff at long distances. The wall on the left is around 3 meters away from the 
robot's center and as you can see the point's distances have become more quantised. 
This scan also shows the board it was placed on for calibration. 

 
Figure 59a: Scan accuracy comparison with absolute truth (top view) 

 
Figure 59b also shows a small amount of erroneous points to the right hand side. We 
can see some points registering below the floor level. This is due to the reflective vinyl 
surface however it does not affect the voxel state or registration algorithms. This will be 
explored later in the black floor environment test. 

 

Figure 59b: Scan accuracy comparison with absolute truth (iso view) 
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The main issue whilst testing was random capture failures. An example of this can be 
seen below in Figure 60 where a clean environment produced an exceedingly noisy 
scan. This was unexplored because of its sporadic nature. This is speculated to be 
related to a hardware failure. The two main components which could cause this are the 
camera and the laser module. During testing the laser module had to be replaced four 
times as the brightness seemed to fall off over time. This was originally attributed to a 
power issue but after replacing the main power supply and isolating the laser module 
this was left unexplored. 
 

 
 

Figure 60: Point clouds of failed scans 
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Scans can also be visualised as a panoramic RGB depth map. However these images 
should only be used for visualisation as this data is quantised to 255 levels. 
 

Colour Calculated by Represents 

Green The maximum brightness of the row Certainty of the lasers position 

Red The index of the brightest pixel in the 
row 

Reflected laser angle depth≈  

Blue The cumulative pixel values of that row Sharpness of laser response 

Black Any row where the maximum 
brightness falls below threshold 

Unknown area 

 
 
Figure 61a shows a floor level scan with some errors introduced by an external light 
source at the center of the scan. These form streaks as they form the brightest point for 
multiple slices whilst inside the camera's field of view. 
 

 
Figure 61a: RGB Depth map captured by scanner 

 

Another notable point is the vertical 
streaks of blue seen at the bottom of 
the scan magnified in Figure 61b. This 
is where the scanners turntable jumped 
slightly whilst the capture was in 
progress therefore introducing a small 
amount of motion blur. This mechanical 
issue could be rectified with a torsion 
clock spring mounted to the arm to 
dampen motion. 

 
Figure 61b: Close up of Figure 61a 
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Figure 62 shows a desk level scan with similar artefacts as above. 
 

 
Figure 62: RGB Depth map captured by scanner 

 

The blue streaks were caused by 
the turntables stepper motors. As 
they were not designed for degree 
level precision a small amount of 
play was introduced. At its worst this 
formed small amounts of motion blur 
and clumping of points in the scan 
which can be seen in Figure 63. 

 

Figure 63: Point cloud clumping 
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Figure 64 shows a simplified representation of the inherent play marked in red in the 
motor’s gear train. The commutative play equates to around 3 degrees of error in the 
boom’s motion. The clumping comes from the boom’s inertia generated by the motor. 
The first motion of the motor’s gear (blue) pulls all the gears together giving the boom 
(yellow) a small amount of inertia.  

 

Figure 64a: Diagram Showing initial gear locking 

As the image capture starts and the motor stops, the booms inertia continues to turn the 
cogs until they are all locked in the reverse direction. 

 

Figure 64b: Diagram Showing inertia  
As the gears are no longer locked in the correct direction, the next 3 degrees are spent 
re-locking the cogs and therefore not moving the boom. As soon as they lock together 
again the boom will be pulled round repeating the process. 
This issue could be rectified mechanically with higher quality motors or a torsion clock 
spring mounted to the arm to dampen motion. This could also be fixed in software by 
modeling this error so it can be removed or threading the system to allow for a more 
fluid motion. However twisting the CSI camera ribbon cable provided some resistance 
minimising this artefact. 
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Speed 
The scanner speed is the bottleneck of the system. Therefore it has been made as 
efficient as possible. A full scan on average takes 43 seconds however this is highly 
dependent on the number of successful points registered. As an example, a timed scan 
has been broken down into the pie chart in Figure 65. 
 

 
Figure 65: Chart of time spent scanning 

As we can see the image capture takes the most time and could be improved further. 
One option to speed up capture and exploration time is to introduce threading. This 
could be used here to move the motor whilst analysing the previous image. This could 
reduce the scan time by a maximum of 31.9%. However for this project threading would 
have drastically increased development time. 
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Adaptability 
The module is specially designed for the RPi camera so would be hard to adapt for a 
different camera. If a new camera was used the scan and capture slice functions would 
have to be changed to retrieve the image correctly. However the actual image 
processing function is highly adaptable as it take a generic 2D numpy array along with 
the camera parameters which are stored in the intrinsic parameters file. 
 
Point density 
The point density can be adjusted to ensure a critical balance between data gained and 
run time. This is because the time taken during voxelization, registration and image 
analysis directly correlates to the point density. 
 
To reduce the point density, the images returned by the camera can be squashed 
vertically and the number of turntable motor steps per slice can be increased. During 
testing a squash factor of 8 and 12 turntable steps (≈1 degree) provided more than 
enough data to make an accurate model of the environment. These parameters 
provided up to  58,320 points however the average scan had around 40,000 points after 
filtering and thresholding. 
 
The highest possible number of points would be the number of steps per 360 degree 
rotation of the motor multiplied for each pixel vertically. This would be 4104*1296 = 
5,318,784 points before filtering 
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6.1.3 - Voxel Grid and Analyser 
 
Accuracy 
The main accuracy concern in this module is the target finder function. This finds the 
largest clump of exploration voxels in the voxel grid. Figure 66 shows two blue 
cross-hairs correctly identifying the closest voxel the robot can reach to scan the 
reachable unexplored voxel clumps coloured in pink. 
 

 

Figure 66: Voxel grid showing exploration clump centers 
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The second accuracy concern is setting each voxel to the correct state. Figure 67 
shows the scan data being overlaid on the voxelgrid. This shows the voxelgrid correctly 
setting each voxels state in a clean test environment. 
 

 
Figure 67: Voxelgrid showing exploration clump centers 
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Speed 
The actual speed of the voxelgrid analyser is highly dependent on the scan area, voxel 
and point cloud size. Breaking a 40,000 point scan over 102 meters broken down into 5 
cm voxels takes on average 1.6 seconds and analysis is complete in a further .5 
seconds. Another function of the voxel grid is finding the target position for the next 
scan. This highly un-optimised recursive function is one of the slowest and needs 
further improvement, however it still only takes on average 2.9 seconds. Even after 7 
compiled scans the exploration loop still falls within the 2 minute window. This could be 
decreased by using Numpy arrays, PCL voxelization or kd trees in place of Python's 
built in data structure for faster access. 
 
Adaptability 
Each voxel classification threshold is independent from other thresholds and voxel size. 
The makes the module highly adaptable to new environments with different thresholds 
and voxel sizes as shown in Figure 68. 
 

 
Voxel size: 2.5 cm 

 
Voxel size: 10 cm 

Figure 68: Voxel grids with change in voxel size 
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6.1.4 - Route Inspection & Navigation 
 
Accuracy and Speed 
Figure 69 shows the A* algorithm generating a route through a real world voxel grid 
which is represented as an array of voxels which have been coloured pink. 
 

 

Figure 69a: Voxel map of route 
planner path 

 

Figure 69b: Voxel map of route 
planner path with obstacle 

 
The voxel grid in Figure 69b has had a section removed. As unknown area is neither 
safe nor reachable, it is therefore avoided by the route planner. As seen here the route 
is sub-optimal and therefore hasn’t been implemented correctly. This is probably due to 
an error in the voxel update code. However as it still provides a safe path from source to 
target it is therefore an admissible error. 
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To test this, we can run the following code in Figure 70 which generates the route in 
Figure 71. As we can see it is sub-optimal, however still manages to create a safe route 
through the environment. 

 
import sys 
import random 
 
sys.path.append("modules") 
from voxGrid import voxGrid 
from aStar import aStar 
 
grid = voxGrid(None,None) 
 
for voxel in grid: 

voxel.attr["safe"] = True 
 
for voxel in grid: 

if (30 < (voxel.u + voxel.v) < 40) 
and (voxel.u > 10): 

voxel.attr["safe"] = False 
 
routePlanner = aStar(grid) 
 
source = grid.voxels[1][1] 
target = 
grid.voxels[grid.voxCount-2][grid.voxCount
-2] 
 
path = routePlanner.getPath(source,target) 
 
for voxel in path: 

grid.voxels[voxel.u][voxel.v].attr["temp"] 
= True 
 
grid.save("test.png") 

Figure 70: Code snippet of route 
planner test 

 

 

 
Figure 71: Route planner test 

output 

Figure 72 shows a real world example of the robot traversing an environment 
autonomously and safely using the Navigation module. This is made up of  6 scans and 
5 traversals. 
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Figure 72: Real world navigation with path overlay 

Figure 73 shows the point cloud formed by the above scans. Please note that the floor 
here has been removed to aid in clarity. 

 

 
Figure 73: Pointcloud navigation with path overlay 

 
Adaptability 
This algorithm works with any size 2D voxelgrid with any states as long as the target 
and source voxels fall within this grid. The safe voxel traversal type is easily adjustable 
and could be added to the intrinsic parameters file. 
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6.2 - Real world testing 
The following criteria are pulled from the project brief in the initial plan. 
 
“The SLAM world model needs to be accurate enough to navigate around messy 
environments. For example a desk covered in books and papers.” 
“The system should adapt to new environments automatically.” 
 
As these attributes are highly dependent on the environment, they will be tested through 
a selection of real world explorations below. These examples should show that the 
system is accurate and dynamic enough to meet these criteria. 

6.2.1 Bridge 
This test included different surfaces, terrain and obstacles for the robot to overcome to 
build up a scan of the environment. This included low lying obstacles such as the roll of 
tape and overhangs that the robot would need to traverse under.  
To successfully complete this task the voxel obstacle threshold needed to be increased 
to allow it to ride over the small bump to get onto the bridge. This was done quickly and 
efficiently through the intrinsic parameters file and shows how the system can be 
adapted on the fly. 
One error this scan did highlight is that the voxel grid does not apply a shadow to empty 
space. This started to assign the edges of the bridge as exploration voxels even though 
they are on the edge of a cliff face. However the A* route inspection chose the most 
direct path straight over the bridge. This does need to be addressed in future work. The 
surfaces here are covered in masking tape to ensure that the laser gets identified 
correctly. Without this the dark shiny counter would be hard to accurately scan. This is 
tested in the black floor test. 
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Figure 74 shows the layout of the real world test. 
 

 
Figure 74: Photo of bridge test environment 

Figure 75 shows the point cloud the robot returned after 4 consecutive scans. 
Regardless of the masking tape giving a good floor response, this had a below average 
number of points at 111,198 points over 4 scans. This is probably due to the sparse 
close areas the robot could see.  
 

 
Figure 75: Point cloud returned by bridge test 
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Figure 76 shows the range of the scanner being able to pick up distant objects on the 
other side of the room such as door frames and walls. The furthest response being 
around 2.5 meters which is comfortably below the theoretical 3m range of the scanner. 

 
Figure 76: Above view of point cloud returned by bridge test  
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Figure 77 shows the majority of the voxels have the correct state. However there are a 
few exploration voxels on the edge of the bridge which should have been set to unsafe 
as the robot cannot determine whether it can safely occupy the surrounding voxels. 

 
Figure 77: Voxel grid overlay of bridge test  

Another interesting point about this scan is the level of detail the scanner can pick up. 
For instance the power plug on the wall which is clearly visible in Figure 78 due to the 
excellent registration between scans. Figure 78 is purposely blurred to make 
identification easier. 

 
Figure 78: Point cloud details 
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6.2.2 Black Floor 
This test was to demonstrate some of the environmental limitations of the system. In 
this test the robot was placed onto a dark shiny surface. It completed one scan and 
returned instantly as no floor was detected and therefore no explorable area was set. 

 
Figure 79: Photo of robot in black floor test environment 

Figure 80 shows the sparse scan returned of the black floor test environment.  

 
Figure 80: Point cloud of black floor test environment 

 



82 

An interesting point here is the points which get returned which are below the floor line. 
This is due to the laser bouncing off the floor and hitting the obstacle essentially acting 
as an optical and digital mirror. This effect has been visualised here in Figure 81. This 
occurs when the surface is more than 50% specular. 
 

 
Figure 81: Diagram showing result of reflective flooring 
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6.2.3 Corridor 
This test was to push the number of scans to the limit by giving the robot an open 
space. The robot completed 7 scans before stopping due to light pollution from one of 
the windows. Each scan was highly detailed and registered correctly. 

 
Figure 82: Photo showing robot in corridor test environment 
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Figure 83 shows the scans returned by this test with and without the floor response for 
clarity. We can see the tight registration of objects such as the sloped roof, washbasket 
and box edges. 
 

Figure 83a: Point cloud of corridor test environment  

Figure 83b: Point cloud of corridor test environment with floor removed 
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6.2.4 Small obstacles 
This test was to ensure that the robot would exit correctly when all of the reachable 
areas have been scanned. The obstacles have been placed apart as the robot won't try 
to fit through gaps smaller than its own radius. This is depicted by the obstacle shadow 
voxel state. 

 
Figure 84: Photo of small obstacles test environment 
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Figure 85 shows the overlaid voxel grid on the point cloud data returned. The robot 
completed scanning the test area after 5 scans.  
 

 
Figure 85: Voxel overlay of small obstacles test environment 

 
An interesting note is the light pollution being emitted by the freezer. This can be seen 
on the right of the above diagram as a strip of red obstacle voxels. However this did not 
affect the final traversal. This could also be removed by decreasing the pointcloud 
cleaning threshold.  
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Figure 86 shows the evolution of the voxel grid as the robot tries to remove all yellow 
exploration voxels. 

     
 

Figure 86: Voxel grid over time of small obstacles test environment 

Figure 87 shows the floor response identifying the minimal number of scans needed to 
map the environment. 
 

 
Figure 87: Point cloud of small obstacles test environment 

 



88 

6.2.5 Hallway 
The main objective of this test was to test registration in a more sparse environment. 
One of the most interesting points in this scan is the mirror which can be see on the 
right of Figure 88. 
 

 
Figure 88: Photo of robot in the hallway test environment 

As we can see here on the right hand side of the scan in Figure 89 and Figure 90 the 
mirror is rendered as a blank unknown area. This is because the light which was 
reflected traveled too far and was therefore too dim to be picked up. Paired with the 
black floor test this shows the dangers of reflective environments. 
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Figure 89 Pointcloud and voxel overlay of the corridor environment 

 
Figure 90: Point cloud close up of mirror 
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6.2.6 Small space 
An interesting point in this test is that the robot has mapped the underside of the bed 
frame. This is obscured from a human's point of view and shows how the robot could be 
used in small hard to reach environments. This robot also quit exploration successfully 
as it had created a full map of the environment with no exploration voxels left which can 
be seen in Figure 93. 

 
Figure 91: Photo of small space test environment 

 
Figure 92/93: Point cloud and vox grid of small space test environment 
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6.2.7 Exterior 
The system is not designed for outdoor use, however to show how the system can 
adapt it has been tested outside. Figure 94 shows the exterior environment test 
environment. It has been placed on a rough concrete path which increased the error in 
the built in odometry. Regardless of which, it still managed to take 4 scans before 
exiting due to light pollution from neighbouring windows and the moon. 
 

 
Figure 94: Photo of robot in exterior test environment 
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Figure 95 shows the effect of the rough terrain on the scanner. Regardless of the little 
amount of data it captured, it still managed to traverse the environment safely and pick 
out key details such as the leg of the fireplace. 

 
Figure 95: Point cloud and detail of exterior test environment 
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6.3 - System Speed 
“The robotic platform should be able to scan an environment within a reasonable 
amount of time. For example, one scan and one 30cm route plan traversal should take 
no more than two minutes to complete.” 
 
This is highly dependent on the environment however throughout testing, a single 
exploration loop takes anywhere between a minute and a minute and a half to complete.  
 
As this is well inside the requirements, the scanner's resolution could be increased to 
get a higher density point cloud or the total scanning area increased. Figure 96 shows 
the timing breakdown of an average exploration loop. 
 
 

 
Figure 96: Pie Chart showing exploration speed breakdown 
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6.4 - System Price 
“The entire system’s component value should be no more than £100” 
 
Figure 97 shows the price of the project in total. Some items are estimated as their cost 
is unknown or unquantifiable. The total price falls below £100 and therefore satisfies the 
price constraint of the project. 
 

Item Quantity Price 

Raspberry Pi 3 1 £34.00 

Laser module 1 £2.73 

USB power bank* 1 ~ £20.00 

5-12v stepper motors 3 £2.50 

Raspberry Pi Camera V2 1 £25.19 

Printed parts, consumables, etc N/A ~ £10.00 

Total £99.42 

Figure 97: Table breakdown of cost 
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7 - Limitations 
These limitations were gathered during testing. 

7.1 - Environmental factors 
The main environmental limitations of the system are as follows: 
 
The environment needs to have enough interest points less than 1.5m apart. This is to 
ensure correct registration between scans. 
 
Surfaces should not be more than 50% transparent or specular. This is to ensure that 
the laser’s first reflection is registered and not the transparent shadow ray or the 
reflected ray. 
 
Surfaces should be light enough to stay within the identification threshold. The darker 
the environment the lower the laser identification threshold has to be set and the more 
noise that gets introduced. 
 
Environment should not change whilst mapping is in progress. This would not put the 
robot at risk but it could either ruin registration or mark voxels as obstacles even after 
the obstacles were moved. 
 
The environment should be relatively clean as to not introduce obstacles which would 
fall below thresholds and therefore get incorrectly identified. For instance rugs or 
threads less than 5mm in diameter may not be registered correctly. 
 
The environment cannot have any ambient light brighter than the laser. This is crucially 
important as the current system measures red intensity only and therefore is susceptible 
to external light sources. This could be rectified with a colour based laser identification 
algorithm. 
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7.2 - Trade offs 
Figure 98 shows the main three trade offs were price, run time and development time. 
The project aim was to optimise the price and the development time sacrificing the run 
time.  
 

 
Figure 98: Diagram showing main trade offs 

 
The main constraint for the run time versus the development time was the language 
choice. Python’s objective is minimise development time. However to achieve this it 
sacrifices run time. The main bottlenecks are accessing Python’s built in data 
structures. Because of this some were replaced with faster 3rd party structures such as 
Numpy. However if more time was available then more structures could be converted 
resulting in a faster run time. In an extreme case the entire system could be re-written in 
a lower level language such as C for unbeatable run time. 
 
The hardware was mainly constrained by price. For instance smaller, more expensive 
motors would have provided a higher resolution and would have targeted some of the 
artefacts that the cheap stepper motors generated. 
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8 - Future development 

8.1 Bug fixes 
One of the main problems highlighted during testing was the inability to avoid cliffs. This 
could be rectified by giving any unknown area shadow. However this would make 
exploration voxels unreachable and therefore the target finder or the navigation module 
would need to be changed. As well as this there are slight errors in the A* algorithm that 
need to be addressed. 

8.2 Upgrades 
One of the main features this system needs is an automatic calibration tool. This is for 
calibrating the scanner automatically so that any minor hardware changes are 
accounted for. This could be done by placing the robot on a flat surface then comparing 
the real world result with a flat plane. The difference between the two could be used to 
drive the robot's parameters. 
 
If the current software was kept, the first module that would need streamlining is the 
voxel grid analyser which iterates through the voxel grid multiple times. This could be 
converted to a single iterative operation which gets applied once to each voxel. The 
route planner also needs to be fixed so that the routes being found are not only safe but 
optimal too. 
 
To make the system more resilient to external light sources, the laser identification step 
in the scanner class could take the laser’s wavelength into account.  
 
To ensure that the hardware errors are minimal, the chassis could be 3D printed as one 
piece. This would remove play inherited from the temporary fittings used in the current 
construction. A more customisable chassis could also accommodate a castor wheel in 
place of the skid which would allow the robot to traverse over rougher environments. 
 
The hardware could also be upgraded with more reliable batteries and lasers. This 
might incur a slight increase in cost but would also increase the reliability and reduce 
the weight of the system as a whole. The scanner system could be improved by adding 
a torsion spring to reduce turntable play and identifying the laser by wavelength to 
minimise external light source error. 
 



98 

 

8.3 New features 
One key feature that might be useful in visualisation and analysis is a skinning tool 
which would convert the point cloud data into either shells or solid objects by reducing 
points and adding faces. This could drive content aware scanning through object 
recognition aiding speed and accuracy. 
 
A drastic change if starting this project from scratch would be to write it in C. This would 
increase development time but decrease run time. This would also make the robot more 
diverse as it could handle larger datasets without incurring as much of a time penalty 
compared to Python. 
 
Another interesting development would be to allow the robot to traverse non-flat 
environments. For instance, the system could be mounted on an all terrain platform and 
be used to explore exterior environments.This would require a new chassis, drivetrain 
and power supply as well as modification to the voxelization and scanner modules to 
correctly identify safe voxels. 
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9 - Critical Reflection 
The main error I couldn’t debug was the sporadic hardware failure. This caused more 
problems than expected when testing. This shows the importance of early debugging to 
ensure reliability. In the future I plan to run modular tests throughout development and 
store results  for better reflection and debugging. 
 
The research material I used throughout this project was found on an as-needed basis. 
In hindsight, the system could have been improved dramatically by gathering up more 
background material prior to the development stage. Striking a better balance between 
development and research would have ensured that lots of problems could have been 
avoided resulting in a more stable system. 
This could also lead into using more packages earlier on in the project. This might have 
avoided reinventing the wheel at certain stages such as the voxelization module could 
have been substituted with the voxelization functionality inside PCL’s Python wrappers. 
 
During testing, I found that the file transfer and visualization was quite slow. This 
wouldn’t be a make or break issue if it weren’t for the large amounts of test data I had to 
process. Therefore in hindsight I would have made this system more efficient by 
implementing an auto-exporter to my desktop machine and therefore have a faster 
testing turnaround time. 
 
During the development stage I found the tangible milestones set out in meetings and in 
the initial plan were invaluable for keeping track of progress. These helped me stay 
motivated and utilise my time efficiently. Figure 99 from my initial plan shows an 
excellent representation of how I could work on multiple problems simultaneously. This 
kept the project interesting and dynamic. 
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Figure 99: Work Plan Dependency Graph 
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10 - Conclusion 
In conclusion, the project successfully completed the objectives set out in the initial 
plan. It exceeded expectations when it came to precision and adaptability. It also 
managed to retrieve a remarkable amount of information about the environment whilst 
still being affordable and easy to manufacture.  
 
The solution outlined in this document is an original and unique approach to creating an 
small, affordable SLAM system, and this report provides enough background research 
and implementation notes to replicate this solution. 
 
 
 

 

Figure 100: Test scan of desk environment  
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