CARDIFF

UNIVERSITY

PRIFYSGOL

(AFRDYY

Final Report
Information Retrieval System for Meeting
Minutes and Papers Gathered from Automated
Web-scraping

CMT400 - 60 credits

Author: Ivonna Prince
Supervisor: Padraig Corcoran
Moderator: Steven Arthur
Degree: MSc Artificial Intelligence

Institution: School of Computer Science and Informatics, Cardiff University

September 2020

Contents

Acknowledgement
Commercial Limitations
1 Introduction

2 Aim and Objectives
3 Background material

4 Problem

4.1 Previous Work Within the Organisation

4.2 Known Problems with Data Acquisition

4.3 Known Problems with Data Analysis

4.4 Benefits

5 Approach
5.1 Approaches considered

5.1.1 Programming Language

5.1.2 Web-scraping Frameworks

5.1.3 PDF Extraction

5.1.4 DOCX Extraction

5.1.5 Committee and Item Type Labelling Approaches

5.1.6 Date Extraction
5.1.7 Data Storage .

5.2 Evaluation

6 Application of the chosen approach

6.1 Scrapy Crawler for Automated Data Acquisition

6.1.1 Writing Spiders

10
13
14
15
17

18
18
18
18
18
19
19
20
20
21

6.1.2 Writing pipelines oL 25

6.1.3 Storingdata 26

6.2 ElasticSearch as a Search Engine 27
6.2.1 Document insertion into ESo 29

6.2.2 Building Vocabulary o000 29

6.2.3 Querying ES. 32

7 Products 32
7.1 TImplementation 32
7.1.1 Scrapy Crawler 32

7.1.2 Search Engine 39

7.2 Project managemento Lo 41

8 Analysis 43
9 Conclusions 47
9.1 Future Work 47

10 Reflection/Learning 50
References 54
A Appendix 56

Abstract

The automated web scraping has been around almost as long as the Internet itself.
It is been used to gather public and sometimes private data for information retrieval
systems and further analyses. Many such systems are widely used on a daily bases.
However, the surface web search engines often do not offer case-specific filtering systems.
This project aims to build an entire pipeline of document retrieval, storage, cleaning
and querying system to build a fully functional search engine specific for the needs
of Audit Wales. It is capable of scraping the modern web from a sample of public
body websites and extract and normalise the attributes of interest. It cleans and stores
data in cloud services or locally and provides a fast information retrieval system. It is
developed to be robust to small web changes, easily expansible and resilient to errors.
The search engine has a near real-time response rate and is built to expand user queries
to improve recall. Instead of using the Boolean word search approach, the search is

carried out on word embeddings.

Acknowledgements

I would like to thank Dr. Padraig Corcoran for the continued guidance throughout this
project, the AW Data Analytics team and Stephen Lisle for the support and advice.

Commercial Limitations

There are no commercial limitations on the use of the information contained in this disser-

tation.

1 Introduction

Audit Wales (AW) [1] is the public spending watchdog for Wales. They hold public bodies
to account for their spending and assure the people of Wales that the public money is being
spent well. One of the groups of staff is performance auditors. Performance auditors assess
whether public bodies have made proper arrangements for securing the economy and are
making wise use of public money. To make an assessment, a performance audit is carried
out. A performance audit can take up to 30 days of which 30% of the time will be spent on a
document review. The documents are not available in one place, auditors have to manually
visit many different public body websites. Often, the documents have not been uploaded or

are difficult to find. It can take up to a day to find a specific document.

This is a very time-consuming process that could be sped up by creating some tools to help
auditors gather the documents in one place. Such a tool should automatically gather relevant
documents from many public body websites in one, easily accessible place. It should also keep
a copy of the original document to prevent cases when documents get lost during a website
migration. To further improve the functionality, a search engine should be built to query
the gathered documents. It could bring out the relevant paragraphs of search queries from
otherwise 100s of pages long reports. Such tools would reduce the time spent on searching

public body websites as well as reduce the time spent on reading through documents that

might not be relevant.

The first 4 chapters of this report try to understand the problem and the need for the
products developed throughout this project. Chapter 2 defines the aims and objectives of
these tools. Chapter 3 reviews the relevant literature and literature that supports the design
and algorithm choices made when carrying out implementation. Chapter 4 aims to describe
the background of the originating problem, why is it difficult to solve it, what benefits a
successful project would hold, previous work within the organisation to attempt to solve the

defined problem and what existing problems are known.

Chapters 5 to 7 are going into software architecture and implementation. Chapter 5 explains
the intended approach, contrasts different candidate approaches and explains why others were
discarded. Chapter 6 states the functional requirements, design choices and the description
of intended implementation. It also breaks the project down into 2 separate tools that can
work together in the end. Chapter 7 focuses on describing the more interesting parts of the

code and how they work.

Chapters 8 to 10 are trying to assess the success of the project. Chapter 8 analyses the
performance of the tools. Chapter 9 summarises the achievements and the deficiencies of the
tools and proposes recommendations for future work. Chapter 10 discusses the skills learnt
throughout this project, the challenges encountered and the process of handing over the code

to AW.

2 Aim and Objectives

The aim of this project is to build a web crawling and information retrieval system that works
together. A web crawler that can crawl the public body websites defined later in section 6.1.1
should be implemented. It has to extract the desired attributes that auditors may want to
filter by the documents to help them find what they are looking for. Then store the item- an
object containing the extracted text and relevant attributes- in some storage space. Saving it

in a database can improve search speed and prevent data loss which may occur when public

bodies update their websites. When proposing a solution, the compatibility with Amazon
Web Services (AWS) has to be kept in mind as it is the cloud service provider used by AW. In
general, using cloud services is recommended. It can prevent data loss when local hardware

fails, it can be accessed from anywhere and it is easily scalable.

Currently, at the AW the required documents are manually found and read by the auditors.
The goal is to improve auditor productivity by building a solution that reduces the time
spent on looking for documents and searching them for relevant information. The solution
should acquire all documents in one searchable space as described in more detail in Section

4.4.

The Search Engine system has to return the relevant documents within 2 seconds and order
them by date. On top of that, only the relevant paragraphs of the document must be
returned. Filtering options to query for specific committee types or document types (agenda,
draft minutes, or final minutes) have to be provided. The querying should be done on
a database to improve speed by avoiding querying multiple body websites directly. The
documents should be acquired regularly and stored beforehand to be ready to be queried.
In this way, the information would be fast to find and it would be easy to determine the

presence or absence of important documents.

An intuitive front-end for this application should be built. The information should be dis-
played in a table-like manner, with URL to the original document, date and the relevant
paragraphs as shown in Figure 1. However, given the time for this project, the front-end

application will be left for future work.

3 Background material

Web scrapers have been around almost as long as the internet. The first web scraper then
called World Wide Web Wanderer was built in 1993 [2]. Since then the use of the internet
has become a necessity and the ways websites are built today have changed. The book

‘Web Scraping With Python’ [3] is a good introductory book on how the web crawlers work

Audi Wales Search Meetings

o C> x Q Ihttpszﬁuudit_wulesfsearch?query:quality%.‘-’lﬂgwerﬂ {q }

Qulaity Governance Q

01/09/2020

Commitiee type: | Any |« | ltem type: | Any = | Date range: | 01/01/2020

Documen URL Date Paragraph
hittp:/ f'www.cardifandvaleuhbwales|20/05/20 |To provide opportunities to identify

Workforce Governance Manager _.

https.//ewmtafmeorgannwgwales/.. H8/05/202 | Quality Governance Framework ..

Annual report of Quality and ...

http:/ ’'wwwwales.nhs.uk/sitesplus/ 16/03/202 Agenda Item Lead April ..

hittps.//cavuhb.nhs wales/.. 22/02/20 | Quality/Safety/Patient Experienc
Committee Date Status
v

P

Figure 1: Front-End Mock-Up

and how to build your own for a specific purpose. It explains how to parse HTML, how
to use XPaths, regular expressions and lambda functions to extract attributes from the
HTML. Then it covers the use of the Scrapy framework for crawling and storing the data. It
considers that often different types of documents are encountered such as PDFs and .docx
with different document encodings that still can be extracted but may present challenges.
Similarly, client-side languages such as JavaScript that make the web dynamic can make web
scraping more tricky. For example, the next set of results might be loaded on a scroll event.
On top of that, web scrapers might be asked to be throttled or otherwise, the agent might get
banned from the website. There are other books, such as ‘Python Web Scraping Cookbook’
[4] that considers similar issues as well as considers how to make the scraper as a service
using ElasticSearch. Many of these issues apply to our project. Specifically, text extraction
from documents was found to be tricky. To prevent the scrapers from getting banned, they
had to be throttled to 2 requests per minute. To make the scraper compatible with AWS
a set of middlewares had to be installed. These and other issues will be described in more
detail in section 4.2. Currently, there are no commercial products available specific to the

auditor’s needs.

The book ‘Introduction to Information Retrieval’ [5] covers a multitude of challenges asso-
ciated with information retrieval (IR). It covers building indexes and vocabularies, Boolean
searches, ranked searches, evaluation of IR, query expansion, web search basics and other
topics. It concludes that ranked unigram Boolean search models in most uses cases are a
good solution. It highlights the importance of having a good indexing method to achieve fast

response time.

When building a ranked IR system, the weighting algorithm has high importance. Many
books and papers such as ‘The Probabilistic Relevance Framework: BM25 and Beyond’ (S
Robertson, H Zaragoza, 2009), ‘Field-Weighted XML Retrieval Based on BM25’ (MacFar-
lane, A., Lu, W. and Robertson, S. E., 2006), ‘A simple approach to optimize XML Retrieval’
(T.Wichaiwong and C.Jaruskulchai, 2010) consider the probabilistic model of Okapi BM25

that have been around since the 1970’s. This model is sensitive to term frequency and

document length which is important when searching public body documents. These papers
evaluate the BM25 model and offer other versions of it such as BM25F and BM25E that
improve performance in the right context. Thus, when choosing a ranking algorithm BM25
was chosen. It proved to return better results than Universal Sentence Encoder (USE) due

to the consideration of document length.

In the context of e-commerce the paper ‘When users don’t say what they mean: BM25 vs
Deep Learning for product search’ (2017) and Manning et al. (2008) highlights the impor-
tance of query expansion. Often the user does not include the exact words they are searching
for. Expanding queries to improve results is necessary. The feedback on the proposed search

approaches confirmed that the best approach was the one using query expansion.

The Crawling system that will be introduced will be uniquely tailored for the websites that
AW is interested in. It will use word embeddings to help identify and normalise desired
attribute fields. To reduce the time needed to build and maintain the indexing method,
ElasticSearch will be used for the IR system. To improve the results, query expansion via
cosine similarity will be used. This will be achieved by using word vectors stored in ES.
This approach was decided upon reviewing the relevant literature and taking into account

technology widely used at the moment.

4 Problem

Performance audit is a term used to encompass a range of different functions carried out by
public audit bodies, such as Audit Wales (AW). Performance auditors assess whether public
bodies have made proper arrangements for securing economy, efficiency and effectiveness in
their use of resources. AW has the power to make recommendations if they determine that
there are opportunities to improve the current arrangements they audit. For example, one
such public body could be Cardiff University. Cardiff University receives large amounts of
grants and funding for research and therefore it is likely to be audited to determine whether

the funds are being spent efficiently and effectively.

10

As part of these assessments, audit staff will undertake a range of activities including docu-
ment reviews. Document reviews can be very labour intensive. A typical performance audit
lasts around 25 to 30 days, of which 7 to 9 days can be spent searching for, retrieving and
reading multiple documents from the websites of each public body (subject to audit). Some
documents are difficult to find on the public body’s website due to the lack of consistency
in web-page structure, poorly designed and badly documented websites. Due to these incon-
sistencies, auditors indicated that it can sometimes take more than a day to find a specific
document. It is even more challenging when most of these websites have poor quality search
engines on the public body’s website and user interfaces that are not intuitive and difficult

to navigate.

Audit staff will attempt to search for these documents using specific keywords. Not all audit
staff have experience in document searches or the training to fully utilise the functionality of
popular search engines. This means that the website search engines might be able to return
the information the auditor is looking for but they do not have the knowledge of how to use

it to its full potential.

A risk assessment report is produced as a result of an audit. There are 5 thematic areas
that are covered in these reports; Well Led & Well Governed, Strategic Planning, Use of
Financial Resources, Workforce Management and Performance. These areas cover a range of

sub-topics, for example, ‘well led and well governed’ cover such topics as:
e Board and committee effectiveness
— Quoracy
— Decision logs
— Public meetings

Terms of reference

Standing orders

e Risk management

11

— Risk strategy
— Board assurance framework

— Risk register

Risk appetite
— Risk management policies and procedures
e Board assurance
e Performance management
e Quality governance
— Clinical audit
— Complaints and incidents (patients, staff or visitors)
— Patient experience

Patient outcomes

Health and care standards

— Patient and staff stories

Quality improvement
e Management information
e Reporting and scrutiny
e Organisational structures
For the full list of topics for each theme see Figure 27 in the Appendix.

To reduce the scope of this project, it was decided to focus on one area, specifically on Quality

Governance.

12

This project is broken down into two parts: 1) data acquisition and 2) data analysis. The
goal is to offer a web scraping system and an information retrieval system that is quicker and
less prone to error than manual reading and searching relevant documents. It aims to improve

the user’s productivity and help to inform audit judgements and recommendations.

4.1 Previous Work Within the Organisation

The organisation has built two applications with a similar purpose already. The Assembly
Watch application scrapes papers, using a web crawler, from the Senedd Cymru website and
provides some automated analysis of the data. The application’s back end uses Python and
Selenium, whilst the front-end is implemented with R Shiny. However, the web scrape is
limited to documents found on the Senedd Cymru Records website and is only performed
after the user selects a date range. This results in several issues. Firstly, the crawl is
terminated early if the user refreshes the page, limiting the robustness and user experience of
the application. Secondly, the documents crawled are not stored in a database for repeated
access. As a consequence, choosing a date range that has been selected previously will require
another crawl, which is an inefficient use of time and processing. Finally, the documents need
to be downloaded before analysis can be performed, which can leave the user waiting quite
a long time depending on the date range. For example, a 6 month search range can take
up to 20 minutes to be collected. In order to improve the performance, a proposed solution
that can scrape multiple websites regularly, extract relevant metadata and store the retrieved
information in a database will be introduced. This will remove the need for redundant crawls

and speed up the information retrieval greatly.

The second application is a Document Search Engine built in R Shiny. The app performs a
keyword search in the corpus of documents that are stored on the user’s local machine. The
app extracts exact term and phrase matches and returns all the sentences where the search
terms appear. The limitations of this app include a lack of robustness to spelling errors,
absence of sentence scoring to determine the best matching results (not a ranked IR system)

and no consideration for the semantic meaning of the search phrase. Proposed is a ranked

13

IR system that considers synonymous words as search terms. Additionally, it is resilient
to language differences (e.g. ‘color’ and ‘colour’ will be treated as matching) and spelling

errors.

4.2 Known Problems with Data Acquisition

Websites are continuously changing, and thus scraping them automatically can be challeng-
ing. Web scrapers that can follow all links within a given domain and crawl the entire website
are easy to build, but it would be time and resource inefficient. AW is only interested in
specific committee papers. To reduce the crawling space, rules that the crawler can interpret
and obey can be defined. To define accurate rules to determine which papers the user is
interested in, the website must have a consistent structure. Unfortunately, in most cases,
there is no consistency, which makes it challenging to find rules that are not too specific nor
too generic. More specific rules are likely to stop working upon small website changes, and

the more generic rules are likely to scrape irrelevant documents.

The papers of interest of AW are available in either PDF or Microsoft Word formats. PDF is a
reliable format that will look the same to all users independently of their machine’s operating
system, browser etc. PDF documents consist of a stream of instructions describing how to
‘draw’ on a page, with even text being rendered like an image. This can make extracting
text and paragraphs difficult since this content isn’t clear from the document format and
all the content semantics are lost [6]. To help understand how the machine scrapes a PDF
document, it is useful to view the scraped format of a .pdf file. This can be done by opening
a .pdf document, selecting all the content and copy-pasting it into a blank Word document.
The result will be a chunk of text without any tables, images, or text formatting and often

with no paragraphs or line breaks either.

It is possible to extract tables to preserve the added value of matching row and column names,
however, the current table extraction packages are slow and still are unable to recognise

merged cells and column sub-headers.

14

Another problem is that documents have no meaningful mark-up, i.e. there is no mark-up
equivalent to HTML meta tags such as property="og:datePublished”. Whilst for a human it
is easy to look at the document and determine when the meeting was held, for a machine it
is difficult without a specific tag or a rule to look for. If the paper mentions multiple dates,
there would be no mark-up tag to determine which is the correct date of when the meeting
was held. This means that often the attributes for the documents that AW is interested in
have to be extracted from the website itself. Reasonably reliable data can be gathered to later

determine what committee type the document is or what date the meeting was held.

4.3 Known Problems with Data Analysis

To build a good quality Natural Language Processing (NLP) search engine is difficult. To
achieve good results a large, clean, noise free and labelled training corpus is needed. When
the data is being extracted from documents, it will be messy and noisy. Under the current
circumstances, the data also is unlabelled. Cleaning the scraped data and reconstructing

paragraphs is a challenge within itself that remains an open research area.

Scalability and quick response time also have to be considered. There will be more meetings
held and more data added continuously for the foreseeable future. This means that our IR
engine has to be indexed correctly or use an appropriate solution that will stay fast despite

the increase in data.

On top of that, the semantic meaning of what the user really is looking for must be considered
despite none of the search words nor their synonyms appearing in the search query. For
example, when looking for ‘quality governance’, the expected output should cover clinical
audit, staff and patient complaints and incidents, patient experience and outcomes. However,

none of the two search words appear in any of the subtopics of interest.

Another known challenge is different spelling and variations of the same word. Different
people might spell certain words in a different way, but it does not change the meaning of the

word and therefore should not be treated as a different search term. To give a few examples

15

British English | American English

analyse analyze
neighbour neighbor
travelled traveled

Table 1: Different Spelling in British and American English

of how British spelling differs from American spelling, consider words ending with ‘yse’. They
are spelled with ‘yze’ in the American English; British English words ending with ‘our’ are
spelled with just ‘or’ ; verbs ending with a vowel and ‘1’ are doubled in the past tense whilst

in American English it is not [7], see Table 1.

Understanding has to be formed of how the user intends to interact with the tool before
implementing the final solution depending on whether the user is more likely to search for
exact word matches or phrases. For example, if the user is likely to look for terms, it is
beneficial to remove stop words that hold no valuable meaning in the returned results. Stop
words are extremely common words that hold very little value. Such words are ‘a’; ‘the’,
‘but’, ‘is’ etc. However, if they are more likely to search for phrases, stop words can increase
accuracy and return more meaningful documents. A good example is given by Manning et
al. (2008) [5]. They considered the search phrase 'President of the United States’. If stop
words are removed and search results matching ‘President” and ‘United States’ are returned,

the results will have higher recall but low precision.

Furthermore, a decision has to be made on how to pre-process the scraped documents. When
training machine learning models, all punctuation is often removed as it usually improves the
performance. However, in IR systems the punctuation might add meaningful value. For ex-
ample, IP addresses, email addresses, website URLs and specific terms, such as programming
languages (C#, C++) would lose their meaning if all punctuation were removed. Particularly
relevant to our case is hyphenation. If phrases ‘Co-located health and social care teams’ and
‘The funding is a loan and non-recurring money’ are considered, depending how we decide

to pre-process the hyphenated word, different tokens are extracted: ‘co-located’, ‘colocated’

16

or ‘co located’, ‘non-recurring’, ‘nonrecurring’ or ‘non recurring’ which then can lead to good
or bad matches depending on which approach is chosen. Here, it seems that leaving the
hyphen or joining the hyphenated words together is necessary but if a hyphenated word say-
ing is encountered such as ‘follow-the-leader practice’, it seems that the hyphens should be

disregard.

Finally, how duplicate documents are being ranked has to be considered. Often, very similar
if not identical documents will be uploaded. When a user sees the information for the first
time, it holds high value, but none if they have to view the same document again. It is tricky
as duplicate documents can have different end points making it seem like unique documents
to the machine. Further, in the context of meetings, if both final and draft minutes have been
uploaded, they are likely to have very similar content. However, the documents of interest

would only be the final minutes in such a case.

4.4 Benefits

There are a number of benefits that a successful project would hold. Firstly, all the documents
from multiple bodies would be kept in one, easily accessible and searchable space. This would
greatly reduce the time when the document content would need to be retrieved for metadata
aggregation or query searches. It would free up the auditors time to do other useful things
and improve their productivity. Secondly, it prevents data loss. Having a local copy ensures
that users do not have to rely on third party websites to keep the information public and
available. No more time will be spent on searching for documents that once existed but are
no longer available. Finally, an IR system that is suited to the auditors needs can be tailored.
They have full control over it which allows further research and improvements. The data can
be used for other purposes to retrieve statistics on metadata, such as ‘How many meetings a
year has a specific committee held?’; “What is the longest amount of time between the date

of the meeting and last modified for a specific committee?’

17

5 Approach

This section explains the intended approach to addressing the problem and contrasts different

candidate approaches.

5.1 Approaches considered

5.1.1 Programming Language

To develop the project, Python was chosen as a programming language as it is easy to use

and it has many already built-in libraries and good documentation.

5.1.2 Web-scraping Frameworks

In Python, there are 3 well-known scraping libraries available: Scarpy, Beautiful Soup and
Selenium. Scrapy is asynchronous, has built-in XML and CSS extraction tools, supports all
OS, is easily extensible via pipelines and middlewares and has good community support. The
main advantage of Beautiful Soup is that it is easy to learn, but it is slower than Scrapy and
needs external libraries to work. Selenium is primarily designed to test web applications and
therefore, can load JavaScript and Ajax produced HTML which Scrapy on its own cannot.
The main disadvantage is that Selenium is slow. The websites that have to be scraped for
this project do not contain any links loaded by JavaScript, thus Scrapy framework was chosen

to implement the web crawler.

5.1.3 PDF Extraction

To extract PDFs, Apache Tika was chosen. It provides Tika REST Server that can be
easily integrated into the crawling project and allows to extract text from a byte stream.
Alternatives would be PyMuPDF and PyPDF2. All 3 text extractors produced output that had
99.95% similarity to text that would be copy-pasted from the original document. However,

the other two libraries could only read in a local document and could not be integrated into

18

the crawlers pipeline. The only disadvantage is that for Tika to run, Java 7+ has to be

installed on a machine.

5.1.4 DOCX Extraction

To extract DOCX documents Zipfile and XML libraries were used. Similarly to PDF extrac-
tion, the already existing libraries such as python-docx, docx2txt and docx2python could
not be integrated within a byte stream. As Word documents are XML formats, thus this

library was able to extract the text.

5.1.5 Committee and Item Type Labelling Approaches

When crawling the web, to determine committee type and item type, different HTML fields
that potentially contain the desired information have to be recorded. These fields are often
fuzzy due to inconsistencies through websites. Sometimes, the committees are named dif-
ferently across different websites too. An example can be seen in Figure 2. To solve this
problem I tested 3 approaches: hard coding, fuzzy set matching and using word embeddings.
Hard coding all possible mentions and spellings of committee types is very tedious and would
require continuous maintenance. Fuzzy set matching using token_set_ratio from Fuzzy Wuzzy
package calculates standard Levenshtein distance similarity ratio between two sequences [§].
Given the phrase, ‘mental health and learning disabilities committee’, the package will cor-
rectly label the string as ‘mental health act committee’ with 92% confidence. It tokenises,
pre-processes and then alphabetically sorts tokens and measures pairwise similarity between
the intersection of both strings and intersection + first string and intersection + second string.
The higher the intersection, the higher the score. In this way, there is no need to identify
all possible committee spellings as keywords usually stay the same across all body websites.
However, it falls short when synonym words have been used. For example, the string ‘ap-
proved minutes’ are equally likely to be assigned labels ‘final minutes’ and ‘draft minutes’ as
seen in Figure 3a. Using word embeddings can solve this issue. Similar meaning words will

have similar vectors and therefore, can measure word vector similarity by using spaCy and

19

Labels Aneurin Bevan | ~ |Betsi C: ~ |Cardiff and Vale | ~ |Cwm Taf ~ |Hywel Dda ~ |Powys ~ |Swansea Bay

Audit Committees Audit Committee Audit Committee Audit Committee Audit and Risk Committee | Audit and Risk Assurance Committee |Audit Risk and Assurance CommitAudit Committee Papers

Digital and Information Information Digital and Information |Digital Health Digital & Data Committee Information Management,

Management Committees Governance Governance Committee |Intelligence Technology and Governance
Committee Committee Committee

Figure 2: Different Namings of the Same Committee Across Bodies

>>> fuzz.token set_ratio('final minutes', ‘approved minutes') Ws>> nlp('final minutes').similarity(nlp('approved minutes'))
70 0.8210549793958809

>>> fuzz.token set ratio('draft minutes', 'approved minutes') J>>> nlp('draft minutes').similarity(nlp('approved minutes'))
70 0.7931806897074939

(a) FuzzyWuzzy Package (b) FastText Wikipedia Word Embeddings

FastText pre-trained word vectors, achieving the results shown in Figure 3b. It shows that

"approved minutes” are more similar to ”final minutes” than ”draft minutes”.

5.1.6 Date Extraction

For date extraction, a regex expression was written as it gives full control of the formats
that are expected to be extracted. An already existing fuzzy date extractor from dateutil
package exists that could not perform well in our context. For strings, such as ‘> 2015/16
Workforce & Organisational Development Committee Agenda - 30 June 2015°, where more
than one potential date format appears, the package throws an error shown in Appendix 22.
In some cases it also does not recognise the correct date format (as shown in Figure 23 in

the Appendix).

5.1.7 Data Storage

Elastic Search (ES) was chosen for our data storage for the IR System. Elastic Search is
built on Lucene. It is faster than MySQL database and other relational databases when the
corpus is very large as ES queries can operate in-memory [9]. It is designed for time-sensitive
full-text search and can offer near real-time response [10]. It is distributed allowing to handle
petabytes of data easily. On top of that, it has built-in a large amount of functionality to
support data analyses. The main reasons for choosing ES is that as a NoSQL database, it
has a dynamic schema that can handle unstructured data, it is resilient, fast and scalable as

well as supported by AWS. A SQL database would not have been a good choice for our use

20

case mainly due to fixed schema, lack of support for unstructured data and scalability since
the space requirements are unknown for this task. It also does not have a built-in ranked

querying system that ES has.

For the Search Engine algorithm, 3 approaches were considered:
1. Okapi BM25
2. Okapi BM25 with added synonym queries
3. Universal Sentence Encoder (USE)

BM25 is a ranking algorithm that considers TF-IDF and document length when scoring doc-
ument relevance. It is the default search algorithm in ES. Whilst this algorithm is known
to perform well on search queries, it only matches the exact words and it is not considering
synonym words. To improve the algorithm, query expansion with synonym words was intro-
duced. This approach is still not resilient to spelling errors nor it is looking for the semantic
meaning of search query. Rather than matching each individual term, USE is proposing a
different way of measuring similarity by looking at the semantic meaning of the entire sen-
tence. USE capabilities can be demonstrated by looking at the most well-known example, the
sentence ‘How old are you?’. If we look for similar sentences, the highest-scoring sentence
after an exact match, will be the sentence ‘What is your age?’. None of the exact words

appear in both sentences, yet they have very high similarity.

5.2 Evaluation

As there is no labelled data to help evaluate the approaches, a Performance Auditor was
invited to label the returned documents on some sample queries as relevant or irrelevant.
They were given an Excel spreadsheet that contained the URLs to the top 10 documents
returned for 3 different approaches run on the 3 given queries along with the extracted
relevant paragraph of that document. The sample queries were ‘Fraud’; ‘Quality Governance’
and ‘Patient Incident” and they were run on a corpus of little over 3200 documents that were

obtained from a sample scrape from the 7 selected websites. As the queries are looking

21

for the most relevant paragraphs, it sometimes would return multiple paragraphs for the
same URL. The auditor then visited the given URLs to determine if the documents are
relevant to the queries and labelled them as relevant or irrelevant. The fully labelled data
can be viewed in the Appendix 28, 29 and 30. As the corpus also was unlabelled, recall
could not be measured. Recall is the fraction of relevant documents retrieved. As it is not
known how many documents of the corpus are relevant to the queries, a score cannot be
calculated. Similarly, accuracy also cannot be calculated as it is not known which documents
were relevant and were not retrieved and which documents were not relevant and were not
retrieved. Instead, Table 3 shows the unique URL count. More unique URLs indicate a
larger variety of documents. The chosen approach was based on precision and the expert’s

opinion.

The auditor was also provided with a set of paragraphs for each approach run on queries of
their choice, such as ‘Staff and Patient Complaints’ run on 2 specific documents. Then they
would read through the paragraphs returned and would form an opinion of which paragraph
set matches the closest to their expectations. This process is entirely subjective and cannot
be measured by a score of success but it helped them to choose an approach as discussed

later.
To measure precision, the duplicated URLs of the now labelled data were removed and the
following formula was used

. relevant_unique_docs
Precision =

all_unique_docs

The results can be seen in Table 2 where blue highlights the highest precision score for the
query. Precision is the fraction of documents that are relevant. The maximum obtainable
score is 1 which would indicate that all documents that were returned are relevant. The
highest precision on average of the 3 queries was 0.8 which was obtained for USE. The
highest average unique document count of 11 was returned for BM25. However, the data
shows that the query has returned more results than originally requested, which was fixed in

the final implementation.

22

Despite the result suggesting that USE approach is the most accurate, the expert decided
that the BM25 with added synonym queries was the most suited for their needs. The data
provided to the expert also included the relevant paragraphs which suggest that despite
document relevance, the paragraphs returned for this approach were more informative than
the other approaches. One noticeable thing for results of USE, was the sentence length. When
using USE approach statistically more relevant documents were returned, but the returned
paragraphs were often no longer than a word and too short to be informative. Hence, the

BM25 approach with added synonym queries was chosen.

Query BM25 | BM25 | USE Query BM25 | BM25| USE
- -
Synonyms Synonyms
Fraud 0.5 0.7 1 Fraud 12 10 6
Quality Governance | 0.636 | 0.636 0.9 Quality Governance 11 11 10
Patient Incident 0.9 0.5 0.5 Patient Incident 10 10 6
Table 2: Accuracy of Queries Table 3: Unique Document Count

6 Application of the chosen approach

In this section the requirements and high-level design choices will be discussed. The imple-

mentation will be discussed later in Section 7.1.

6.1 Scrapy Crawler for Automated Data Acquisition

To implement a good web crawler the main functional requirements must be determined.

The requirements are as follows:

1. Compatibility with AWS. Currently, AW is extensively using Amazon Web Services,
thus the proposed implantation will have to be compatible and easy to deploy on AWS.

2. Expansible. To keep the project small, the software must be able to successfully crawl

23

the 7 given websites. Additionally, the software has to be easy to expand to crawl many

more websites.

3. Metadata extraction. The crawler must be able to extract and record predetermined
useful attributes which should also be easy to expand upon change of requirements.
The required attributes upon completion of this project include public bodies website
name, document url, document content, date of the meeting, date the document was

last modified, committee type and document type.

4. PDF and DOCX extraction. The crawler has to be able to extract text from .pdf and

.docx extension documents.

5. Saving documents. The software must be able to save documents locally or in an
external storage unit (such as a database or S3 bucket). It should have a data structure

easy to change to suit any desired format for saving.

6. Persistence. The software has to have an option to keep track of websites crawled to

rule out redundant crawling.

Currently the auditors can spend up to 30% of their time on looking for the desired documents
according to the Performance Auditor. As determined earlier in section 4.4, crawling the
web regularly and storing all desired results in one searchable space would hold a number of

benefits and would increase their productivity.

It is known that the auditors have a private website to access more documents, but this part
will be left for future work due to access limitations. The proposed solution can be used to
authenticate using Scrapy framework directly or by incorporating Selenium, thus allowing to

crawl private websites too.

Now, that the need and benefits for a web crawling system are specified, a design of such a

system can be specified.

24

6.1.1 Writing Spiders

Firstly, the focus will be on writing spiders. A spider is “a program or automated script
which browses the World Wide Web in a methodical, automated manner” [11]. As each

website has a different architecture, a separate spider for each website will be written.

The websites of the 7 local health boards in Wales will be crawled, namely, Aneurin Bevan,
Betsi Cadwaladr, Cardiff and Vale, Cwm Taf Morgannwg, Hywel Dda, Powys and Swansea
Bay.

The general structure of a simple spider can be seen in Figure 4. A Start URL is provided
which will be the top-level starting point of a spider. Then, based on XPaths, the spider
is allowed (or denied) to follow the URLs encountered on that page. A callback function is
specified which can be either called recursively or will call another function, depending on
the complexity of the crawl. Similarly, in the callback function XPaths that the spider is
allowed to follow until the goal document is reached are specified. The intermediate functions
are needed to extract useful information from the HTML of pages encountered before the
document. In most websites, the type of committee, item type or date, will be mentioned in
one of the previous pages. With these functions, the according fields can be extracted and
the item with extra attributes can be yielded. After the final document has been reached,

the document object is yielded to then be further processed in the pipelines.

The depth refers to how many sub-requests the spider is allowed to make before terminating
a thread. This is an attribute that can be specified in the settings file to prevent spiders from

wandering off from the relevant documents.

6.1.2 Writing pipelines

An item pipeline in this context is a “Python class that implements a simple method”. It
receives the item and processes it as well as decides whether the item should be dropped and

no longer processed [12].

Some spider specific pipelines have been written, to extract helper attributes that help in

25

Create requests to

Create requests to

Create request to the

Yield Document ltem

L L H L
Start URL » extracted sub-urls » desired document » to further preprocess
(depth 0) (depth 1 to n) (depth n-1) in pipelines
T
i A
\ 4 :
'
Extract and record
metadata
Figure 4: General Spider Design
D Spiders
Spider Specific Pipeline
| Pipeline For All Spiders
Scra Cardiff Cwm Taf Hywel Dda o Swansea Item Committee Date Json
Spider Vel Mordaning Pipeline Pipeline 2y Type Type Pipeline ined
P! Pipeline Pipeline P P Pipeline Pipeline Pipeline P! Pipeline
Eg HywelDda Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4 Pipeline 5 Pipeline 6 Pipeline 7 Pipeline 8 Pipeline 9

Initiate a spider of Check if spider Check if spider Check if spider Check if spider Check if spider Analyze helper Analyze helper Analyze url path Converts object to
the choice. It will name matches name matches name matches name matches name matches item types and committee types and helper date a json format and
create requests to | 'CardiffVale ' 'CwmTafMorgannw | | 'HywelDda" 'Powys' 'SwanseaBay' assigns the label and assigns the to find a date of the| | writes .pdf and
the start page with highest score label with highest meeting .doc documents
defined in the Returns False Returns False Returns True Returns False Returns False score. If score not to json files
spider and continues and continues and extracts helper| | and continues and continues high enough, drops

attributes

item

Figure 5: Pipeline of the Web Crawler

the later pipelines to extract attributes that are mandatory. Other pipelines apply to all

spiders, namely the Item Type pipeline, Committee Type pipeline, Date pipeline and Write

pipeline.

The entire crawler project architecture with a follow through example can be seen in Figure

5. Upon invocation of a selected spider, first, it will go through the process shown in Figure

4, then it will go through each defined pipeline shown in Figure 5. The pipelines that are

highlighted in yellow, only process the specific site spider. The pipelines highlighted in blue,

affect all spiders as they are extracting and recording required metadata.

6.1.3 Storing dat

a

As a proof of concept, it is enough to store data locally. To consider a centralised solution

compatible with AWS two packages were found. To store data in an Amazon S3 bucket or

26

directly in ES, the user can install scrapy-s3pipeline or ScrapyElasticSearch packages

and configure the settings in the settings file. Before inserting the data in ES, data needs

to be cleaned and pre-processed. This will be done in the second part of the project, thus

leaving the document insertion in the ES for later.

6.2

ElasticSearch as a Search Engine

The functional requirements for an IR system are as follows:

1.

Compatibility with AWS. As mentioned earlier, the solution has to be able to run with
AWS.

Speed. The response time has to be fast.
Expansibility. The search queries have to cover synonym words.

Filter attributes. The query can be modified to be filtered for date ranges, specific

committee and item types.

Order. The search engine must order the returned top n results by most recent first.

. Relevance. The returned results must only contain the relevant paragraphs to the query

of the document.

To keep the project short, front-end implementation will be left for future work. The main

focus is on returning a JSON object with all the required attributes and in the correct

order.

The process of implementing IR System is broken down into three parts. Firstly, the data

acquired from crawls is pre-processed separately and independently from the actual Search

Engine. This means, after each crawl, the documents have to be inserted in ES. This is a

step that could be implemented within the Scrapy pipeline, but to keep the project loosely

coupled, this stage will be carried out independently at the time being.

Secondly, a vocabulary of n-grams has to be built. The vocabulary will act as a synonym

27

1 Split documents into
: Paragraphs

Insert documents into
ES

2 Preprocess
. docuemnts

Find ngrams

Train Word2Vec

—> —>»{Insert ngrams into ES

vectors

i A
\ 4)

Lemmatize words

i A
\ 4 I

Remove stop words

: A
\ 4 :
Remove digits and
punctuation

3 Query ES to find
. relevant documents

I:I Document Insertion into ES

I:I Build Vocabulary

|:| IR System

Figure 6: Three Stages of Building Information Retrieval System

dictionary for search queries. To measure the similarity between words, Word2Vec vectors

will be used. Word vectors group similar words close to each other in a vector space, making

it easy to measure the similarity between words. To create the dictionary, a large corpus

of data is needed to train phrases (to find bigrams and trigrams) and to train Word2Vec

representations of these grams. This step is time-consuming and not necessary to be carried

out every time a new document is crawled. However, it would be beneficial to update the

dictionary once in a while to ensure the newest terms are being added.

Finally, the implementation of the actual Search Engine is built. This will be a query to

search for the documents stored in ES. A general design diagram of this process can be seen

in Figure 6.

28

1 Introduction 1

This report has been prepared to advise the Board of activities
and issues of interest within the Directorate of Primary,
Community and Mental Health Services. 2

2 Key Issues 3

2.1 Primary and Community Services Strategic Delivery
Programme: In September 2008, the Minister for Health and
Social Services, asked Dr C.D.V.Jones CBE (now Chairman of
Cwm Taf Health Board) to lead the development of a Primary
and Community Services Strategic Delivery Programme. In 4
taking forward development of the Programme Dr Jones has
developed a paper “Creating the Vision” which describes an
integrated model of care as the basis of the vision for the new

Figure 7: Sections Recognised as Paragraphs

6.2.1 Document insertion into ES

The main challenge in this step is to split paragraphs correctly. There is no package nor
clear rules on how to split noisy text with many trailing blank lines and white spaces into
paragraphs. Usually, the paragraphs are split on ‘\n\n’. This works reasonably well but
is not always accurate. It may not give informative paragraphs. For example, when a
title is encountered, it is treated as a paragraph but it is not long enough to hold valuable
information. Figure 7 shows a fragment of a document and count each part that will be

counted as a paragraph.

To reduce overhead documents are inserted into ES in bulk. The python Elasticsearch package

has a built-in function streaming bulk that is utilised.

6.2.2 Building Vocabulary

To ensure query expansion, a way how to determine synonyms has to be introduced. One
such way is to measure the cosine similarity of word vectors. It would be possible to use
py-thesaurus package but upon testing it, it did not have synonyms for basic words such
as ‘health’” which could be because that it was stopped maintaining since 2018. The creators
suggest using Oxford Dictionaries API instead, however, it is not open source. Building our

vocabulary was the chosen approach.

29

To reduce the size of vocabulary, pre-processing is done to lowercase and lemmatize words,

remove punctuation and words with numbers. Words with numbers were removed as mean-

ingless strings were added into the vocabulary as shown in Table 4.

Numbers and Letters

Letters Only

After Adding New Docs

health health health
health_wellbeing heath heath

harr primary_secondary healthcare

cd7s2w wellbeing primary _secondary
irrance coordinated coordinated
health_service acting_collaboration childrens

nighttime integrating wellbeing

serve rural occupational_health
irrancadavies social integrate
exploitation seamless social

Table 4: Top 10 Most Similar Results for ‘health’” in Different Vocabularies

As the corpus is small, to see if more relevant synonyms would be returned, a scrape from

a ‘health and safety committee’ was carried out to acquire 82 new documents. As Table 4

shows, more relevant words are returned. This means that the vocabulary should be trained

on a sufficiently large corpus to ensure good results.

As the training corpus is small, we considered using pretrained word2vec-GoogleNews-vectors.

These vectors are trained on news articles and contain 3 million words. However, they are

not specific enough to our case.

If we look for the top 20 bigrams in our entire corpus

in the pretrained vectors, only 2 out of 20 words are found in the vocabulary. Figure 24

in the Appendix shows that if we train our own model, 14 out of 20 can be found in the

vocabulary.

An easier to understand visualisation can be seen in Figure 8. If Principal Component

30

WholeCa e\szadis\gn- cardiff_nighttime
L]
2_wks_Vac
- T e primary_secondary
L]
wellness health_care integrate
° healthcare © health ot coordinated,
heath_cate .
healthcare
Health ¢
L]
health. childrens
L]
heat!hﬁ Ibei
helath. " emsgo.(\a\
occupat\onal_health. (]
(a) Google-300 Word2Vec model (b) Own Word2Vec model

Figure 8: Top 10 Similar Words Visualised Using PCA Method

Analysis (PCA) method to reduce the dimensionality of the word vectors from 512 dimensions
to just 2 is used, such visualisation can be created. As the Figure shows, our own model is
smaller but offers more diverse n-grams. If the model was trained on more data, the quality

of n-grams would be only improved.

To find bigrams, Gensim Phrases model is used. Bigrams are found from the pre-processed
text. Then, to find vector representations of grams, leammatized sentences where bigrams
have been replaced with the new phrase representation (‘health board’ -> ‘health_board’)

are used.

Finally, the vocabulary is inserted in ES. Before inserting the vocabulary, a new index has to
be created. While all fields in ES are dynamically configured, if dense vectors are inserted,
their dimensions have to be specified in the _mapping beforehand. The reason behind using
dense vectors is to use ES built-in script field that can calculate the cosine similarity of
inserted vectors. An important thing to note is that the ES script field currently does not

support negative integers, thus the Word2Vec vectors have to be normalised before insertion.

31

Then 1.0 can be added to all numbers when calculating similarity without breaking ES.

6.2.3 Querying ES

This is the final part of building the search engine. A nested query has to be written to
return the relevant paragraphs. The paragraphs have to be specified of type nested as then
they can be queried independently of each other. The functionality of filtering date range,

committee and item types is also inserted here.

Before executing the query, the vocabulary index is queried to find similar words to the search
phrase. Currently, the top 5 most similar words are returned to expand the query. Finally,

the query is executed and results are returned.

7 Products

7.1 Implementation

In this section, a detailed account of implementation will be described of the most critical

parts.

7.1.1 Scrapy Crawler

In the previous section, it was determined that the starting point of the web crawler imple-
mentation was a spider. It has different callback functions and XPath rules to extract relevant
fields. To understand the implementation better, further explanations will be provided for

the Betsi Cadwaladr spider shown in Figure 9.

After defining the spider name and domain that the spider is allowed to crawl, the start_requests
function is defined. In this case, there are two starting URLs; one for the board meetings
and the other for the committees. For each, a different callback function is defined. This is
because when crawling the committees URL, a helper_committee_type has to be recorded.

helper _committee_type is an attribute that records an HTML field where the committee

32

eetings—-and-me

range (len (urls)) :

Re

html (

item['

item['

item['helper

item['

Figure 9: Betsi Cadwaladr Spider

33

type is mentioned. It is not a mandatory attribute to have as not all websites will have the
committee type mentioned beforehand, in some cases, it can be found in the document URL.
In this case, all committees have been listed in the start URL in a table. Recording the
names of these fields will be more accurate as it is known that these are the committee types

for this website.

The most generic rule that still extracts these fields has been written:
response.xpath(‘//table//strong/text()’) .getall(). The double forward slashes mean
that any element can be before and after the <table> tag as long as there is a tag
as its descendant. In a similar manner the URLs are extracted. On this website however, not
always one link is given per committee. Due to inconsistencies of HTML, sometimes there
are 2 of the same URL. To solve the issue, duplicate URLs are filtered. Then, the extracted

URL is re-yielded with an additional helper_committee_type.

The parse_html function extracts the helper_item type from the HTML in the same manner
as previously by using XPath. If this function is called directly as a callback from the
start_requests, it is known that the committee type will be ‘board meeting’. Otherwise
this function is being called after parse function. The newly extracted URLs are re-yielded

with both with helper committee type and helper_item type.

Finally, the parse_item function is called. This function creates an Item object which is

then further modified in the pipelines. All the required attributes are recorded.

Now, the item is passed through every pipeline shown in Figure 4. The order of the pipelines
the item is passed through is defined in the settings.py file. The item travels through
spider specific pipelines until it encounters the Betsi Cadwaladr Pipeline defined as shown in
Figure 10. Here, it uses the referer_html attribute to extract helper_date. This tag will

be used in the date extraction pipeline.

Next, the item is processed in the item_type_pipeline. This pipeline uses the extracted
helper_item type to assign a label to the item. The 4 available labels are defined. The

helper_item type is usually an extraction from HTML tag. It can be one or many words.

34

Betsi Cadwaladr website sometimes has helper_item type as an empty string as <a> tag
where it is extracted from sometimes does not have /text(). At the time being, this is
an issue only when the item type is an agenda. To make the solution less specific than
hard coding, the item URL is used as the item type is usually mentioned there too. Upon
testing, it got determined that in cases where the helper_item type is long, the confidence
score would be very low. As the longest label is a bigram, splitting helper_item type
into unigrams and bigrams and then measuring similarity between the n-grams and labels
improved the confidence scores. To measure the similarity between the pre-defined labels and
helper_item_type n-gram word vectors, fastText pre-trained word vectors are loaded and
then a Pandas data frame is created. Using Pandas data frame built-in function df . apply ()
is a lot faster than using a for loop to measure the similarity between each label and each
n-gram. Then the label with the highest score is selected. If the confidence score is less
than 0.65, then a generic label of ‘papers’ is assigned. The cut-off score was determined by
recording a sample of helper_item types, predicted labels and confidence scores and then

manually labelling whether the prediction was correct.

The next pipeline the item goes through is committee_type_pipeline. Using a similar
method as before, the committee type is determined. There are two differences. One differ-
ence is that there is no way of measuring similarity between the label ‘other’ for papers of
interest that do not fall under the other specific labels. These committees had to be hard-
coded as the cut-off score, in this case, is used to determine which committee papers AW
is not interested in. If the score is lower than 0.65, the item is dropped and not processed
further. The other difference is that the helper_committee_type is not split into n-grams
of maximum length of a label. Sets of labels are used instead as a few websites mention
the committee type in the breadcrumbs menu. However, due to inconsistencies, the level of
mention will change as shown in Figures 11 and 12. Thus, a range of breadcrumb levels is
recorded and a similarity score is found between each recorded level and a label. The snippet

of the code can be seen in Figure 13.

Now, the item is processed in the date pipeline. First, the date extraction regex function has

35

etree.HTMLParser())

'.join (date)

Figure 10: Betsi Cadwaladr Pipeline

Home > Your Health Board > Statutory Committees of the Board > Audit and Risk Assurance Committee (ARAC) > ARAC Meetings 2020

Figure 11: Committee Type Mentioned in Level 4

Home > Integrated Governance Committee Meeting 27 January 2015

Figure 12: Committee Type Mentioned in Level 2

been defined as shown in Figure 14. This function matches all date formats of the following

patterns: dd_mm_yy, dd_mm_yyyy, yy.mm_dd, yyyy mm_dd, mm_dd_yyyy. The {0} syntax
is left to format for all possible date separators which are ., -, / and a blank space. It is
ensured that the same separator is used to avoid matching the wrong date in some cases.
For example, if string ‘QPSC Board Book V3 04.04.19.pdf’ is processed, to avoid matching
‘3 04.04’ first, the . separator has to be specified.

The helper_date is used to extract the date. After the date is extracted, the date format is

normalised to yyyy/mm/dd. The full code can be seen in Figure 15.

Finally, the item goes through the write pipeline. In this pipeline, content type is deter-
mined. Depending on whether the content is a PDF or DOCX, different methods are used
to extract the text content of the response object. Then, the item object is converted into a

JSON format and saved locally where the file name is a hash of the URL.

36

label.int

n['committe

item

Figure 13: Committee Type Pipeline

37

Figure 14: Regex Expression for Date Extraction

Figure 15: Date Extraction Pipeline

38

7.1.2 Search Engine

The first step is to create indexes in the ES. This can be done via Kibana - a front-end appli-
cation providing search and data visualisation capabilities for data indexed in Elasticsearch
[13], a PUT request through Postman or an ElasticSearch client for most programming lan-
guages including Java, Python, c#, PHP and others. It is a one-time process, similar to that
of creating a relational database. Two indexes have to be created, one to store the vocabulary
and the second, to store and query the documents. The vocabulary index, as mentioned in
section 6.2.1, has to be predefined as dense _vector of size 300. For the documents index,
the type nested has to be predefined. By default, ES will assume that the files are not nested
which will result in returning the entire document. To prevent it, the type nested is prede-
fined. The shards execute one thread at a time. Thus, to improve the speed, multiple shards
are defined and the amount desired is specified in the mapping. To create the indexes the

mapping is shown in Figure 16.

PUT documents

PUT vocabulary ["settings" : {

i . "index" : {
“mappings”: { "number_of_shards" : 5,
"properties™: { "number_of replicas" : 2
"vector": { }
"type": "dense_vector”, Jh
"dims": 3e@ "mappings": {
k. "properties": {
"word" : { "paragraphs": {
"type" : "keyword" "type": "nested”
\ }
} }
}
; }
} =
(a) Vocabulary Index (b) Documents Index

Figure 16: Indexes for IR System

Once this is done, the vocabulary can be created. This is done by looping through all

the crawled documents and preprocessing them by removing punctuation, numbers, stop-

39

words and lemmatizing and lower-casing words. Then the gensim Phraser is used to build
bigrams. After, a Word2vec model is trained on the phrases model. This returns a vocabulary
consisting of word and vector pairs. The vectors are 300 dimensions long and by default not
normalised. Before inserting the vocabulary, the vectors have to be normalised. In the code,
some lines save the intermediate models into files. Doing this ensures that when new data
comes, the previous model can be loaded and the training can be restarted without the need
to retrain the vocabulary on the previous data. The vocabulary is inserted in bulk via ES

Python client. The full source code can be seen in Figure 25 in the Appendix.

The next part is to write search functions. The first search function is used to return the top
n most similar words of the search query. This is done by returning the word vectors for each
queried word and then finding the mean vector between all the searched words. After, the
vocabulary index is queried to find the most similar words based on cosine similarity between
the averaged word vector and all other vocabulary vectors. A sample query executed in the
Kibana can be seen in Figure 17. Here a word vector for the word ‘health’ is provided and

the returned results are the top 10 most similar words to the word ‘health’.

Our own script has to be specified as follows:
cosineSimilarity(params.queryVector, ‘vector’) + 1.0

As ES does not support negative numbers when measuring cosine similarity, 1 has to be added
to all numbers as Word2Vec vectors have negative floats. Now, the maximum similarity score
instead of 1.0 will be 2.0 indicating an exact match. As seen in Figure 17 before, as the
vocabulary contains the word ‘health’ as well, it is returned as the most similar word with a
similarity score of 2.0 as it is an exact match. The next most similar word is ‘heath’ with a

similarity score of 1.476.

The other search function is more advanced. First, the search query is expanded with the
words returned from the previous query. The most important part is to use ‘more_like_this’
query with nested fields to only return the relevant paragraphs of the document instead of

all paragraphs if at least one is relevant. Then, optional parameters to filter by date range,

40

GET vocabulary/_search

"size": 10,
"query”: {
“script_score™: {
“query”: {

"match_all": {}

cosineSimilarity(params.queryVector, ‘vector')+1.8”,

"queryVecto

DR

[-8.25849771e-02, 5.95979620e-02, 1.49585065e-02, 1.95588432e-02, -1.05841383e-01, 9.21246633e-02, 3.71427462e-02, -1.02691345¢-01, 5
, -7.67221749e-62, -3.

77740823e-02, -4.06978931e-03, 6.90349638e-02, 2.899071022-02, -7

: , 2. P o =a
.82314911e-02, -7.87479430e-02, -5.58606982e-02, 7.30793253e-02, 3.43826562e-02, -8.27084482e-02, 1.20211039-02, 5.40566631e-02, 6.17019180-03, 7

.85011873¢-02, 3.09438426e-02,
.23316269¢-02, 4.66888994e-02,

3.60987633e-02, -8.87315050-02, 7.09208101e-03, 1.
.18463603¢-03, 4.414827752-02, -4.11860347e-02, 3.134342280-02, 1.03808761e-01, -2.27793232e-02, -2.51823496e-02, 2

12424888e-01, -5.06773591e-62, -1.31111383e-01, 1.03551537e-01, -3

.53576506e-02, 1.02411229e-02, -4.76727635e-02, 4.49744537e-02, 2.41372749e-04, -6.37736358e-03, -6.83027282-02, -4.76495810e-02, 1.12603167e-62, -7

57468864

, .

4074e-02, -2. , -2.3 , -3.26477662¢-02, -4.89288568¢-02, 3.
.72729174e-03, -1.72286276e-62, 2.67792083e-02, 2.94333752e-02, 1.29848067e-62, -1.

1, 4.7 , -5.45328930e-02, -1.05971145¢-02, -9.

81806871e-03, -2.96342317e-02, 3.03134415¢-02, 3.23055461e-02, -7
760118040-02, 6.07440211e-02, 1.95200201e-02, -1.12705857e-01, -6
15109403e-02, 3.94802447e-03, -8.05146247e-02, 1.53396546e-03, 1

.46987379¢-01, 7.02436119e-02, -8.39080811e-02, -1.69272982e-02, 2.22081020e-02, -3.88147542e-03, 2.11968310e-02, -4.82168943e-02, 4.40734737e-02, -3

.27447504e-02, -9.29068599e-04, 2.95695700e-02, -4.91333567e-02, -3.84421535e-62, 3.
1

.02843219e-02, 1.66009031e-02, -2.14756895¢-02, 3.02379169-02, - s

32005974e-03, 5.21020666e-02, -7.12209046-02, 3.82762961e-02, -3

1.86732113e-02, 8.78713503e-02, -5.51650375e-02, 6.91645145e-02, 5.76047637e-62, 1.42190784e-01, 7

.02518779¢-02, 3.04393321e-62, 9.38809961e-02, 1.10023413e-02, 3.81272435¢-02, -1

=2 , 1.02434037e-62, -1.50200561e-01, -9
o 6e-02, 2. b 02, 5 3

.64455245¢-02, -2.98298579e-02, 2.36106310e-02, -3.96312550e-02, -4.66032475e-02, 6.
.83896595e-02, -5.48372678e-02, -4.11906018e-04, -8.17019679-03, -3.97097319-02, -8.

.05096435€-02, 4. , -3
.69126117e-02, -1.73387397e-02,

72431961e-02, 1.36621580e-01, -1.48358811e-02, 8.742108200-02, 7
72626752e-02, -1.15305660e-02, 4.06091250e-02, -9.58039463e-02, 2

, -8, , 6. , 3.74370762e-62, 1.10574238e-01, -1.04229979-01, -3.60867530e-02, 7
1.89791026e-03, -6.48578554e-02, 4.07277979e-02, 1.52289733-@1, -4.76372093-02, 6.064669042-02, -1.21352762e-01, -2
.10221633¢-02, 3.04603577e-02, -1.47724608e-02, -4.52562887e-03, -6.84229285e-02, 4.

17861752e-02, -1.10822683e-02, 5.64333759e-02, -1.13204075¢-02, -3

.63688506e-02, 8.15052465e-02, 4.83787470e-62, -1.15894517e-02, 1.03623487e-01, -2.83003040e-02, 5.87812215e-02, -1.96210183e-02, -2.72458196e-02, -1

5 Go

o Y 268e-02, -2.18229257¢-02, -8.83061439e-02, -1.49717713e-02, 8.05942416e-02, -5.15726507¢-02, -6.05044365¢-02, 7
.76871527e-03, -5.28232902¢-02, 4.007662650-03, -6.43902738e-03, -1.23375189e-02, 2.

65671257202, -9.83030908e-03, -8.20322800-03, -2.93485001e-02, 6

.630615892-02, -6.73638961e-02, 5.40448762e-62, 1.38883647e-02, 1.18586369e-01, 1.89314988e-02, -1.27623677e-01, 1.77717064e-02, 9.32341591e-02, -1
4 6.4 4

. s 5. 5 -4 3 3
.98532318e-03, -1.668095400-02, -5.63221797e-02, 4.32486981e-02, 1.05698191e-01, -3.

5.32201200e-04, -9.

87973809e-02, 9.522882200-03, 6.41543120e-02, -5.06701432e-02, 4
46961506e-02, -5.62121943e-02, -4.13068011e-03, -2.07069945¢-02, 6

.55559450e-03, 9.58647765e-03, 8.21693167e-02, -4.86293063e-02, 1.89188477e-02, 4.24055718e-02, 2.94546168e-02, -9.75948106e-03, 9.22045782-62, 4
.66176905¢-02, -1.80848613e-02, 2.02687997e-02, 3.132544092-02, 6.08639931e-03, 8.37837986e-04, -1.18934289e-01, -3.93658616e-02, -2.29125991e-02, -6
.73703477e-02, 7.01420084e-02, 7.41525181e-03, 7.07031414e-02, -2.44856998e-02, -2.74451785e-02, 3.62356380e-02, 4.18082299e-03, -7.44684367-03, 2
.23198105e-02, 4.87765223e-02, 4.38759699e-02, -4.350410400-02, -2.87212953e-02, -5.56698069¢-02, -6.69026524e-02, -1.62946619e-02, 2.69789677e-02, 1

.02699269¢-02, -8.20183087¢-02, 5.15684541e-02, -8.50822330e-02, -9.16399527e-03, 8.

828362820-02, 4.74080406e-02, 1.00871727e-01, 3.67038436e-02, -

.81065460e-02, 9.54571962e-02, -1.10632278e-01, 4.38690595-02, 9.24006552e-02, 1.51522249e-01, -3.12767513e-02, -2.67613418e-62, -6.72517121e-02, -

.49546874e-02, 2.33185827e-04, -4.35534380e-02, 1.94961037e-02, -6.28803000e-02, -1.

2
2
14432342e-01, 2.07331982e-02, -2.74291877e-02, 9.07322466e-02, -1
1

.08965933e-01, 3.53043069e-05, -6.39801323e-02, -7.41723105e-02, -1.00322217e-02, -2.76323836e-02, -4.39711474e-02, -1.25777274e-01, -1.61895361e-02, -

.074497702-01, -7.74767622¢-02, -1.89952273e-02, 2.07551699%-02]

Figure 17: Query and Results for Word ‘health’

committee and item types has to be defined. The fields that we want to be returned have to
be specified unless we want to return all fields. To improve the speed, the fields of interest are
specified: ‘date’, ‘url’, ‘committee_type’ and ‘item_type’. Helper attributes and full responses

are not needed. The results are ordered in descending date order. It will query for the top

: "vocabulary”,

: " _doc”,
555b8344cacafeoba2f55e185526d8" ,

72452d15F78aec5878C1559a1Fbb5383"
1.3740021,

10 most similar documents and then rearrange the order depending on the date.

The search queries in Python are defined the same as in Kibana in a JSON like format. The
source code for this function can be seen in Figure 18. The full code of the ElasticSearch

functions can be found in the zip folder in the SearchEngine sub-folder submitted with this

report.

7.2 Project management

The project was managed in agile like manner. There were no sprints as such but there were
weekly meetings with university and AW supervisors to determine what was done in the
previous week, what will be done the next week and whether any issues were encountered.

This approach worked well in terms of managing time and determining what will be feasible

to achieve by the end of the project.

41

Figure 18: ElasticSearch Querying Function

42

U1

AUTHA WNR R R

core.engine] INFO: Spider opened
gstats] INFO: Crawled 0 pages (at @ pages/min), raped 0 items (at @ items/min)
1net] INFO: Teln console listening on 127.0 4
), logstats] INFO: Crawled 98 pages (at 5880 pag min), scraped @ items (at @ items/min)
apy .extensions.logstats

INFO: Crawled 172 pages (at 4440 pages/min)
INFO: Crawled 253 pages (at 4860 pages/min
scrapy.extensions.logstats Crawled 367 pages (at hR40 pages/min

.extensions.logstats C d 471 s (at 6240 pages/min

1
])
])
1 e)
gstats] 0: 577 pag (at es/min)
1)
1)
1)
])
C

, scraped 0 items (at items/min)
scrapy.extensions.logstats , scraped 0 items 9 items/min)
, scraped O items t 0 items/min)
, scraped @ items t © items/min)
, scraped © items 0 items/min)
, scraped items (at © items/min

5
5
5

logstats 658 p s (at 5 /min)
ped @ items (at @ items/min)
)
)

2020-09-03 : y.extensions.logstats 764 pages (at J pa /min

2020-09- OJ :07: scrapy.extensions.logstats Crawled 855 pages (at 54 pages/min

2020-09 :07:0 scrapy.extensions.logstats ¢ Crawled 952 pages (at 5820 pages/min
: scrapy.core.engine] INFO: Closing spider (closespider_timeout)

scraped 0 items (a items/min
scraped 0 items 0 items/min

2020-09-03 scrapy.extensions.logstats
scrapy.extensions.logstats

scrapy.extensions.logstats

[] INFO: Crawled 2 pages (at 2 pages/min), scraped © items (at © items/min)
[1 INFO: Crawled 2 pages (at © pages/min), scraped © items (at © items/min)
[] INFO: Crawled 2 pages (at © pages/min), scraped © items (at @ items/min)
[scrapy.extensions.logstats] INFO: Crawled 2 pages (at © pages/min), scraped @ items (at @ items/min)
[scrapy.extensions.logstats] INFO: Crawled 6 pages (at pages/min), scraped 4 items (at 4 items/min)
[scrapy.extensions.logstats] INFO: Crawled 10 pages (at 4 pages/min), scraped 8 items (at 4 items/min)
[scrapy.extensions.logstats] INFO: Crawled 13 pages (at 3 pages/min), scraped 10 items (at 2 items/min
[scrapy.extensions.logstats] INFO: Crawled pages (at 3 pages/min), scraped 14 items (at 4 items/min
[scrapy.extensions.logstats] INFO: awled pages (at 3 pages/min), scraped 15 items (at 1 items/min
[scrapy.extensions.logstats] INFO: Crawled 19 pages (at @ pages/min), scraped 15 items (at @ items/min

Figure 20: Benchmarking Throttled Crawl Output

8 Analysis

Scrapy framework has its benchmarking suite. It creates its local HT'TP server and crawls
it at the maximum speed [14]. These stats can give an idea of how Scrapy would perform
on the given hardware. The output can be seen in Figure 19. If the results are averaged, it
shows that Scrapy can crawl about 5712 pages per minute on a machine with 6 cores and
16GB of RAM. However, due to most websites requesting the spiders to be throttled to 2
requests per minute, the crawl speed in the run-time will be approximately that as shown
in Figure 20. Many 0 pages/min are caused by redirection requests. It is possible to tell
Scrapy to disobey robots.txt - a file that tells crawlers how to crawl their website. However,
disobeying the rules may result in the bot getting banned as many requests can appear as a
DDoS attack. It can be avoided by using Proxy rotators but it is not entirely clear if this is
ethical.

To test the performance of the committee and item type labelling, a random sample of 100

43

documents was selected. The committee and item types were labelled by the pipelines and
then manually checked. It was determined that 86 out of 100 documents had the correct
committee type label giving 86% accuracy. Upon further inspection, the incorrectly labelled
committee types are originating from the helper committee type where the true label falls
under the category ‘other’. To give an example, when helper_committee_type is 'Integrated
Governance Committee Meeting 28 April 2015’ we know that the committee type should be
Integrated Governance Committee’ which should be labelled as 'other’. However, because
all the labels of type ’other’ are hard-coded, and the string does not match exactly due to the
added date, it will label the committee incorrectly. The item_type pipeline gave accuracy
of 98%. Figure 31 in the Appendix shows the results. The only incorrectly labelled results
were when the keywords are very wide apart. For example, when the helper_item type is
‘Approved Corporate Safeguarding Annual Report’ it will get labelled as papers. Due to
splitting the string into bigrams, the score of matching it to ‘final minutes” will be too low,

thus labelling the report as papers.

Evaluating date extraction manually would be labour intensive. To give a rough idea, the
only performance metric acquired to measure this was how many documents had a date
extracted. Out of 100 sample documents, 87 of them had a date. In cases when the date is
not extracted, the last modified date could be used. However, inspecting the dates extracted
and last modified often would differ by years. For example, the extracted date from a board
meeting was ‘21/10/2009” which was confirmed to be the correct meeting date. The last
modified date for the same document was ‘14/11/2015’. The dates differ by 6 years which
means that assigning the last modified date would be very inaccurate. As the date extraction
has very high importance, it should be improved in the future. It should also be noted that
there will always be an error. As most documents are human-made, upon developing the
project, many misspelt words were encountered. This can cause an error when extracting
date as the regex expression will not match the string ‘17th Novmeber, 2019’ due to the

misspelled word ‘November’.

ES Rally is a tool used to benchmark ElasticSearch. The machine this project was devel-

44

oped on has Windows OS. ES Rally, however, is only developed for Unix systems. The
benchmarking was run on a server that has Debian OS via SSHing. ES Rally has built-in
benchmarking datasets with different challenges. The project uses ES version 7.9.0 thus the
testing was done on the said version with a challenge to measure the performance of nested
queries. The dataset is called Nested and the challenge nested-search-challenge. This dataset
contains questions and answers of Stackoverflow of the totalling size of 3.4GB of data and
implements a similar nested structure to the ‘documents’ index created for this project. In
table 5 it is shown that the median throughput of queries is 18 ops/s (which is how many
operations have been sent a second but should be interpreted as how many documents per
second). If we look at the 50th and 100th percentile latency, it is shown that on average it
takes 63.8 milliseconds to return results for a nested query and at most 197ms. If the queries
are executed on larger documents, the latency on average is 126ms and at most 378.1ms.
The results of all tests are shown in Figure 32 in the Appendix. To get a better performance
measure on our specific case, where 2 queries are executed, one to acquire synonyms and
second to query for similar documents, a query is executed 10 times of the documents index
which contains 3241 documents. Then the average execution time is recorded. The average
response time was 0.538 seconds. The goal was to return the top 10 most similar documents

in less than 2 seconds which means the goal was achieved.

The most time-consuming process in this project is to build the vocabulary. The random
crawled sample is a little over 3000 documents and to extract bigrams from that on a 16GB
RAM machine takes 529.7 seconds. Then, to create the Word2vec model takes 503.4 seconds.
To speed the process up, a machine with more RAM would be needed. As this process takes
so long and is not necessary to be run every time a crawl has been done, it is recommended

to create it as a separate service.

Originally, the Search Engine tool was meant to be an automatic text summarization tool.
Upon research on automatic text summarization, two approaches were determined: extractive
and abstractive. Extractive text approach ranks sentences by importance and then selects the

highest-ranked sentences as the summary. The abstractive approach generates new, unseen

45

Metric Task Value
Min Throughput randomized-nested-queries-with-inner-hits_default 17.97 ops/s
Median Throughput randomized-nested-queries-with-inner-hits_default 18 ops/s
Max Throughput randomized-nested-queries-with-inner-hits_default 18.01 ops/s

50th percentile latency

randomized-nested-queries-with-inner-hits_default

63.81577131 ms

100th percentile latency

randomized-nested-queries-with-inner-hits_default

197.0269746 ms

Min Throughput randomized-nested-queries-with-inner-hits_default_big_size 15.96 ops/s
Median Throughput randomized-nested-queries-with-inner-hits_default_big_size 15.99 ops/s
Max Throughput randomized-nested-queries-with-inner-hits_default_big_size 16 ops/s

50th percentile latency

randomized-nested-queries-with-inner-hits_default_big_size

126.5732895ms

100th percentile latency

randomized-nested-queries-with-inner-hits_default_big_size

378.18228 ms

Table 5: Nested ES Rally Challenge

sentences to better summarize the text. To start with, a simple text rank algorithm was
implemented to summarize meeting minutes. However, it was quickly discovered that the
tool was intended to be used only on annual reports that is a summary of everything done
throughout the year. These reports can be more than 500 pages long and cover 100s of topics.
It would be impossible to write a summary of a summary in 10 sentences when the report
covers many more topics than the amount of the desired summary sentences. Therefore, the

project got changed to build an IR System instead.

The final two products are ready to be deployed as commercial products. The crawling system
can reliably crawl all the desired websites, can be integrated with AWS, is easily expansible,
extracts the desired metadata, extracts text from PDFs and DOCX documents, saves the
documents, and offers the option to crawl documents once (persistence). The search engine
system also is compatible with AWS, takes less than a second to return results for a search
query, expands search query by adding synonym words, offers the option to filter by date,
item, and committee types, orders the results in date descending order and only returns the

relevant paragraphs of the document.

46

9 Conclusions

In conclusion, the project has been a successful prototype of both crawling and IR systems
which can be implemented as a commercial tool. The crawling project is fully working and
can be integrated with AWS. It is extracting the desired attributes and text as well as has
a sufficiently large example of web-scrapers for future expansion to other websites. The
search engine is also fully working. It returns the top 10 documents in less than a second
and has filtering options available. There are some flaws that will be addressed in the next

section.

The project is also a success according to the performance auditor who would be using the
tool. It would decrease the workload by automating the process of document retrieval and
building an IR system. To give a specific example, the auditor mentioned that recently they
went through 5 years worth of documents from many different public body websites to find a
document that’d fit their needs. In the end, no such document was found. They mentioned
that a tool that is built now, would have reduced the time greatly as all the documents would

be collected in one space and would be easy to search.

Throughout the project, there were no major issues encountered. Most problems were re-
solved quickly via looking up tutorials on TowardsDataScience website [15] and searching
Stackoverflow. It is recognised that as the project specification was only describing the de-
sired end product, a lot of things were left up to the implementer on how to arrive at the final
project. This includes making decisions on the programming language used or architectures
implemented. The code is up to coding standards with PEPS, with the only exception to
line lengths.

9.1 Future Work

Due to the lack of time, there are a few things that could improve the project that have not

been addressed yet.

47

Firstly, there is no auto-correct in the IR system. When a user misspells a word, there is
no spell check that would make sure that it is an actual English word. Similarly, the words
inserted in the vocabulary also can be any letter string that might not be a meaningful
word. There exist libraries for Python such as PyEnchant that can check if the word exists
and suggest a corrected version of the word. In the future, such a spell check would be

beneficial.

Another flaw is that currently the vocabulary is built only from unigrams and bigrams. To
build trigrams, the Phraser model would need to be run twice. This means the first time
it has to be run to build bigrams and the second time to build trigrams from the bigrams.
As this process is time-consuming and the data sample is very small, adding trigrams in the
vocabulary would not have added any value. However, if the project is used commercially

with a lot more data, the vocabulary should also contain trigrams.

A nice feature to have would be to return not only the relevant paragraphs but also the para-
graph before and/or after the relevant paragraph. To do this, the indexes of the paragraphs
have to be recorded and then a query request for paragraphs at index 4+ 1 or index — 1 can
be executed to return the paragraph before or after. This feature would only be useful when

the front-end is implemented. This brings up the next point.

Whilst the back-end functionality is implemented, there was not enough time to build a user
interface (UI). Ul is very important for the end-user as it is not easy to understand and
interpret the output of ES in the console. A mock-up of the proposed front-end was shown

in the Section 2 in Figure 1.

It is recognised that only a limited amount of ranked similarity algorithms was tested. The
choices were made based on the amount of supporting literature. However, there are also
other algorithms such as Divergence From Randomness (DFR), Divergence From Indepen-
dence (DFI), Information Based (IB), LM Dirichlet and many other similarity models that
could be tested.

For the crawlers project, as mentioned earlier, the date extractor has very high importance,

48

Whilst it gives a high accuracy of 0.86, it would be advised to improve it as much as possible

as the filtering option and date sorting option is relying on this extracted date.

It was mentioned that Scrapy has an option to record the fingerprints of websites to crawl
them only once to improve efficiency. However, it was not mentioned what to do in cases,
when the documents are very similar but are not identical nor have the same URL. For
example, when a draft minute document has been revisited to make it into a final minute
document but the changes are insignificant. If both are recorded, then upon querying, the user
might find themselves looking at the same results repeated but under two unique document
IDs. This is very a dupe filter that would add value to the project. One proposed method
could be using ES and their built-in similarity modules in a similar manner the query search
is working. However, this is not efficient as a full-text comparison will be executed. Another,
more elegant solution would be to use Sim-Hash. Sim-hash is a hashing function that hashes
similar text inputs into similar hashes [16]. The more similar texts have been given as input,
the smaller the Hamming distance of their hashes. Comparing hashes would be faster than
comparing full texts. To reduce the load of ElasticSearch or to use a cheaper alternative
another database can be used. For example, Figure 21 shows the price in Europe (Ireland)
for the most basic instances for ElasticSearch and Redis. The smallest instance in Redis cost
0.018 $/h whilst ES costs 0.2 $/h at the time of the completion of this project. It might
seem like the difference is not significant, but it is worth considering the size of the instance
needed and the time they will be used as the price will go up.

eeeeeeeeeeeeee - Current Generation vepy Memory (6iB) Instance Storage (GB) Price Perhour Standard Cache Nodes - Current Generation

(a) Pricing for ES (b) Pricing for Redis

Figure 21: Pricing of AWS Services in Europe (Ireland)

Another useful tool that would bring great value to the production code would be using
DataDog [17] or similar software. DataDog is a monitoring service for cloud applications. It

can be used to monitor data from servers, databases, containers and other services including

49

Scrapy framework. It can be added as simply as a middleware. Then it can be configured
to send desired metrics such as items scraped count and HTTP status codes to monitor the
performance of the crawler as well as easily detect if the crawler stops working if web-pages
are timing out, redirecting too often or do not exist anymore. All the data is displayed in

easy to understand dashboards.

As a good industry standard, both projects need unit tests to detect changes that might
break the current design. Unit tests are encapsulated and do not use external resources.
This can come in handy when detecting whether there is a bug in the code or with the
infrastructure of how the code is getting deployed. In the later stages of a project, this can
be used as a part of continuous development where unit tests are used before auto-deploying

newly merged changes onto a live system.

10 Reflection/Learning

This project allowed me to develop a set of new skills as well as utilise already acquired

skills.

The project was delivered to AW as a zip file of source code. The handover involved a series
of demos of the project to the entire DA team and the performance auditor as well as a

walkthrough of the code to the selected people of the DA team.

As T had developed a crawling project while working in an industry, I had a prior knowledge of
existing technologies and integration methods used when developing web-scraping projects.
However, the spiders I had written before were a lot more simple. They usually were using
website sitemaps or built-in searches to return the desired results. The websites I was working
with during this project required a lot more complex manipulation. I had to learn how to
re-yield the HTTP requests whilst keeping the extracted attributes and how to accurately
use XPaths.

When deciding on how to reliably and robustly develop an item and committee type detection

20

pipelines, I did not know which method would be the best. Researching and comparing
different methods is a time-consuming process. It requires a lot of patience. However, it has
high importance as different methods are better in different scenarios. It is important to

critically evaluate possible solutions to choose the best fitting one.

Similarly, the research on document extraction was helpful. In the end, the solutions that
could be integrated within the pipeline were chosen. However, other solutions, specifically
for DOCX documents could have been improved. As word documents are based on XML,
it would have been possible to extract titles and recognise bullet-points. For PDF's, it also
would have been possible to extract tables. However, the table extraction libraries were very
time consuming (can take 10s of seconds for a single document) as well as not very precise,
when dealing with merged cells. I felt like I did not have enough knowledge of document
extraction to write something better as most existing libraries were not able to capture a lot
of the text structure. Based on research, it would not be easy and would require a lot more

knowledge than I had so it was no implemented in the solution.

I have used ES before but I had never built an IR system. Reading the relevant books
I learned how to build one. I also did not know that ElasticSearch is supporting vectors
and has been expanded to include a built-in Cosine similarity function. This project was

refreshing as well as expanding my knowledge of ES.

I have used ES before but I had never built an IR system. Reading the relevant books I
learnt how to build one. I also did not know that ElasticSearch is supporting vectors and has
been expanded to include built-in Cosine similarity function. This project was refreshing as

well expanding my knowledge of ES.

This project proved that I can independently carry out a project. Usually, when working in
a professional environment, there are many people with different roles that ensure that big
tasks are broken down into small, concise units such as tickets in a Kanban board. There is
also an architect who has a clear idea on how everything will work together and often which

technologies should be used. However, the planning and choices of the design were left all

o1

to me. I successfully managed to plan my time to complete the project on time. Of course,
if more time was given there would be many things to improve. This means that I had to
learn how to prioritise the most important parts of the project to make it functional even
if not fully finished. I think this experience improved my leadership and problem-solving

skills.

The biggest struggle I found during this project was my lack of knowledge of already exist-
ing libraries, solutions and frameworks. Whilst I can find solutions that work and can be
integrated, often, I find myself questioning if these are the best solutions and what other
undiscovered options have I missed. Or whether there are ways of how to improve the speed
and performance of the tools that I have made. To try to address this issue, I tried to do
thorough research in combination with my prior knowledge of working in industry. I found
that the best source of information was asking people who have done something similar. They
were able to recommend research papers and books. The second best source of material was
the Cardiff University’s Library search. It has many good books and papers available to read
online. The best way how to deal with bugs or errors within the code was Google searches

and Stackoverflow.

The other struggle I often have is poor time management. Usually, I find myself coding
the project until a week before the deadline and then rushing the report. This time I tried
to allocate half of the given time for coding and the other half for writing to ensure that
both parts of the project are completed. The weekly meetings with university and placement
supervisors were useful to assure that I am managing my time well. The demos throughout
the project with the data analytics team were useful to give feedback on the project to assure

it is going in the right direction. In the end, I think I managed my time well.

Having to carry out the project fully remotely definitely improved my communication skills.
Due to the lock-down, the supervisor, DA team meetings and the meetings with the end-user
were all over Skype or MS Teams. To get the most value out of these meetings, all parties
had to know beforehand what the meeting was about and what was the desired outcome

of the meetings. When working in an office, it is easy to walk up and clarify small things.

52

Now, everything had to be thought through a little better and communicated in a clear

manner.

In conclusion, 1 feel like this project was a good project to demonstrate my existing techni-
cal skills in combination with learning many new things. I improved my time management,
communication and problem-solving skills which will come in handy when working in indus-

try.

23

References

1]

[10]

“Publication scheme — audit wales.” https://www.audit.wales/openness-and-

transparency/publication-scheme. (Accessed on 09/14/2020).

“World wide web wanderer (complete history).” https://history-
computer.com/Internet /Conquering/Wanderer.html. (Accessed on 08/28/2020).

R. Mitchell, Web Scraping with Python: Collecting More Data from the Modern Web.
Sebastopol: O’Reilly Media, Incorporated, 2018.

M. Heydt, Python web scraping cookbook: over 90 proven recipes to get you scraping
with Python, microservices, Docker, and AWS. Birmingham: PACKT Publishing, 1st
ed. ed., 2018.

C. D. Manning, P. Raghavan, and H. Schiitze, Introduction to Information Retrieval.
Cambridge, UK: Cambridge University Press, 2008.

“What’s so hard about pdf text extraction? .” https://filingdb.com/b/pdf-text-
extraction. (Accessed on 07/27/2020).

“The differences in british and american spelling — oxford international en-

29

glish schools.” https://www.oxfordinternationalenglish.com/differences-in-british-and-

american-spelling/: :text=The (Accessed on 08/18/2020).
seatgeek, “Fuzzywuzzy.” https://github.com/seatgeek /fuzzywuzzy, 2011.

“One billion data from mysql imported into elasticsearch, how es performance - elas-
tic stack / elasticsearch - discuss the elastic stack.” https://discuss.elastic.co/t/one-
billion-data-from-mysql-imported-into-elasticsearch-how-es-performance /22461 /2. (Ac-

cessed on 08/24/2020).

“What is elasticsearch? — elastic.” https://www.elastic.co/what-is/elasticsearch. (Ac-

cessed on 08,/20/2020).

o4

[17]

“Web crawler.” https://www.sciencedaily.com/terms/web_crawler.htm. (Accessed on

08,/12,/2020).

“Ttem pipeline — scrapy 2.3.0 documentation.” https://docs.scrapy.org/en/latest /topics/item-
pipeline.html. (Accessed on 08/13/2020).

“What is kibana? — elastic.” https://www.elastic.co/what-is/kibana. (Accessed on

09,/02,/2020).

“Benchmarking — scrapy 2.3.0 documentation.” https://docs.scrapy.org/en/latest /topics/benchmarki
(Accessed on 09/03/2020).

“Towards data science.” https://towardsdatascience.com/. (Accessed on 09/17/2020).

“Sim-hash: Detection of duplicate texts — by saurav omar — medium.”
https://medium.com/@sauravomar01/sim-hash-detection-of-duplicate-texts-

d5dc2ce2538a. (Accessed on 09/08/2020).

“Cloud monitoring as a service — datadog.” https://www.datadoghq.com/. (Accessed

on 09/14/2020).

95

A Appendix

y=True)

C:\Users\ivonn\.virtualenv py", line 1374, in parse

return DEFAULTPARSER.parse(tim
File " Js 0 . ua v i io py", line 649, in parse

onal Development Committee Agenda -

Figure 22: Dateparser Returns Errors When String Contains Only Year

>>> for date in dates:
print('{0:25} {1}'.format(str(dparser.parse(date,fuzzy=True)), date))

2010-05-26 00:00:00 Public Board Meeting 26th May 2010
2018-12-06 00:00:00 Thursday 6th December 2018
2010-11-24 00:00:00 Public Board Meeting 24th November 2010
2015-05-26 00:00:00 Audit Committee - 26 May 2015
2015-06-16 00:00:00 Quality Safety and Experience Committee - 16 June 2015
2013-10-15 00:00:00 Quality Safety & Experience Committee - 15 October 2013
2013-03-05 00:00:00 Quality and Safety Committee - 5 March 2013
2013-12-10 00:00:00 Quality Safety and Experience Committee - 10 December 2013
2020-02-26 00:00:00 26 February 2020
2014-02-18 00:00:00 Quality, Safety and Experience Committee - 18 February 2014
2020-05-28 00:00:00 28th May 2020
2019-08-15 00:00:00 15 August 2019
2014-08-12 00:00:00 Audit Committee - 12 August 2014
20:20:00 Quality, Safety and Risk Committee / 10 MARCH ©4 2020 /
00:00:00 Charitable Funds Committee / 28 November 2019 /
00:00:00 Finance, Performance and Workforce Committee / 012 January 2020 /
2014-07-12 20:20:00 Quality, Safety and Risk Committee / 12 JULY 14 2020 /[
2004-03-10 20:20:00 Quality, Safety and Risk Committee / 10 MARCH 04 2020 /
2017-08-08 00:00:00 8 August 2017 UPB Meeting
2015-04-20 00:00:00 Strategy & Planning Committee Meeting 20 April 2015
2014-10-16 00:00:00 Strategy and Planning Committee Meeting 16 October 2014
2015-11-16 00:00:00 16 November 2015 UPB Meeting
2014-10-16 00:00:00 Strategy and Planning Committee Meeting 16 October 2014
2015-01-27 00:00:00 Integrated Governance Committee Meeting 27 January 2015
2015-11-16 00:00:00 16 November 2015 UPB Meeting
2015-04-20 00:00:00 Strategy & Planning Committee Meeting 20 April 2015

Figure 23: Incorrectly Determined Date by Dateparser

o6

health_board
quality safety
mental health
primary care
cwm_taf
welsh_government
univeristy health
saftety risk
nhs_wales
action_plan
performance_workforce
executive director
internal audit

risk _committee
agenda_item
health_safety
health_care
finance_performance
patient safety
aneurin_bevan

health_board

primary_ care
cwm_taft
welsh_government
univeristy health
safety risk
nhs_wales

action plan
performance_workforce
executive director
internal audit

risk _committee
agenda_item

health safety
health_care
tinance_performance
patient safety
aneurin_bevan

(a) Bigrams in (b) Bigrams in our own pretrained Word2Vec

Google-300 model

Figure 24: Top 20 bigrams of the corpus

27

Figure 25: Create Vocabulary Source Code

o8

ff:_ré

Risk Assessment 2019-20 WALES AUDIT OFFICE

SWYDDFA ARCHWILIO CYMRU

XXXX Health Board

Risks that the organisation’s arrangements do not support good governance or
efficient, effective and economical use of resources.

The Code of Audit Practice [CoAP] requires auditors to develop an annual programme of
work, based on an assessment of risks of the body not making proper arrangements for
securing effective use of resources. Auditor General Guidance XC18 (November 2019):
‘Proper Arrangements in the Use of Resources’ sets out requirements in further detail.

Auditors should use the risk assessment tool set out in this document to record audit risks
identified from work undertaken and included in the 2019 Annual Audit Report. This MUST
include the risks identified through Structured Assessment. Auditors should also consider:

o the following' audit findings and results (as relevant to arrangements for securing
value for money):

o audit of financial statements, review of the annual governance statement and
any correspondence regarding the audited body;

o other audit work, including recent audit reviews and vfm examinations /
studies (where relevant), the progress the audited body has made in
responding to recommendations and the use of data matching exercises; and

o the work of internal audit and of external review bodies where appropriate.
e wider intelligence and information gained through Board / Committee [attendance,

document and data review]; and engagement with key officers as part of the risk
assessment and local audit planning process.

The risk assessment tool (Appendix 1) is grouped by theme, reflecting areas considered as
part of Structured Assessment and as included in the CoAP.

Within each theme, auditors should record:
e the specific risk[s] identified, including:
o the rationale [and root cause where known]; and
o implications for economy, efficiency and effectiveness; and
o implications for WFG and the SD Principle;

"Includes the work set out in the Code of Audit Practice to be considered in reaching a value for
money conclusion

e the evidence source?;

e any mitigating actions being taken by the audited body to lessen or address the risk;

e a RAG rating of the [post-mitigation] residual risk, by theme; and

e proposed actions for the Wales Audit Office engagement team to consider as part of
audit planning?.

The RAG ratings for each thematic area should be used to inform an overall assessment of
risks and prioritisation of audit work to be considered for 2020. The ratings should reflect the
level of audit risk after mitigations by the audited body.

RAG descriptors are:

No significant risks or concerns.

The organisation is aware of the risks identified and has well developed and appropriate
plans in progress to address issues.

The organisation recognises the risks identified but plans to address these are not well
developed or not progressing with sufficient pace.

There are significant risks, with little or no awareness and / or no plans to address the
issues.

2 Evidence sources may include structured assessment, other performance/financial audit, vfm
studies, NFI, internal audit or other regulatory reviews

3 Options could include full review, monitoring, follow-up or light-touch review; or raising with internal
audit or other inspectorate/review body/WAO team.

Figure 26: Risk Assessment Tool Guidelines

1. Well led, well governed (corporate governance)

e Board and committee effectiveness (quoracy, decision logs, public meetings, terms of reference,
Standing Orders)

e Risk management - risk strategy, board assurance framework, risk register, risk appetite, risk
management policies and procedures

e Board assurance

e Performance management

e Quality governance, including clinical audit, complaints and incidents (patients, staff or visitors),

patient experience, patient outcomes, Health & Care Standards, patient/staff stories, quality

improvement

Management information

Reporting and scrutiny

Organisational structures

Strategic planning

N e o o

Organisational strategy and strategic objectives

Alignment with WFG and implementing SD principles
Clinical services plan

Integrated medium-term plan (IMTP) development / approval
Planning capacity

Strategic planning approach

Public / partner engagement

Monitoring and scrutiny of plan delivery

Programme and change management capacity

Use of financial resources

W(e e o o o o o o o

Financial planning

Financial controls (Schemes of Delegation, Registers of Interest, Standing Financial Instructions)
Preventing fraud and financial loss

Budget setting

Financial costing

Financial efficiencies

Cost improvements

Procurement including Single Tender Action (STA)/Single Quotation Action (SQA)

Contract management

Asset management

Performance

H|e o o o 0o 0 0 0o o o

productivity

efficiency

targets

performance trajectory

Workforce management

i |e o o o

Workforce planning

Workforce strategy

Workforce productivity e.g. sickness absence rates
Temporary staff — bank, agency, locum

Appraisal and performance and development reviews (PADR)
Medical revalidation

Consultant job planning

Recruitment, retention

Safe staffing levels

Staff engagement and wellbeing

Training and development

Figure 27: Thematic Areas of Risk Assessment Tool

£H Seawes - Uen3RY aNvy4 ¥ILNNOD 8 [EPIEEA R LNy

JUBA|Y TIPNE/Iap|0J-51UsWNI0P-AaY /SN-IN0qe/Sa[em sUU qUNqs//:Sany
JueAR|3Y T5-AIOSIAPE-pUB-S8aNIWW09/5N-1N0Ge/Sa[em syu qunaq//:sany
JUBAB[3Y IBWUNI0P/SN[ASalIS /SN SUU Sa[eM qUNa[BAPUBHJIPIED MMM//-011Y
RULICEN] 5 (ino0p /5n[dSa115 /5N SUU Sa[eM qUNSBAPUBIJIPIED MMM,

RIEISIENY 15 WN50p/SN[dsa1is /AN S|U Sa[eM UNS[eAPUBIPIED MMM,

PULICTENI G 7T /Sjuawinoop/sn)

pULICTEN]

JUBAR|RY Z%EBPUI8Y/998/SIUaWiNIop/sn|dsalis/HN syu’sajem MMM,
pULINEINL>/ 41518507 %) 7 %A END /5200 /S0|EM BMUUBEIOWSBI WMD),
FOEINEINY 5 UN50p/5SN[d5115 /5N S U S9[eM qUNa[eAPUEJIPIE MMM,

S0
JUBA3|3Y T3WNI0P/SN[ASa1IS /5N SUUSI[EM (UNS[EAPUBIJIPIEY MMM,

JUBAB|2.1J| ISWIND0P/SN|dSaYIS /AN SYUS[EM (UNS|EAPUEBLIPIED MMM,
JUeA3|3.| TSWNI0P/SN[dSa3IS /N SUU Sa[eM qUNa[BAPUEBIJIPIED MMM,

pULTETEN]

RUEIEIEIY IS (UNo0p/SN[dsais /)N SYU Sa[em qUNa[eAPUBIPIEd MMM,

[A£ RN MTNDIEER 41053315 A" SYUSS[eM qUNS[BAPUBLIPIBI MMM,
224 e ing z T uononponu; T
JUBA3IRY) g preld ‘sanueingas) TT

[R BT E NI N5 0 /SN[dS931S /N SUU'SS[BM UISAMO T MMM,
6T4 SV 1 pue pneug jeuoneN 2y @ [SERYSUCEEN S INVVEEI NG [FFELYYCl VIV
JUBA3|3Y »d Buipsedas suiaduod Auy
9T4 SV | pue pnesy jeuonen ayL @
9T4 Se eyyeay Asuow oy ajep

€T4 SB pnesj sauno) [e207 $T°6 :NASANSHN'SYU'SI[EM GUNI|BAPUBHIPIED MMM/
€T S8 43y yum s19aw 5477 2y "N[ASANS/NN SYU'SS[EM (UNS[EAPUBLIPIE MMM//:011Y P SWes Inq - JueAs|ay
JUBAB|RY ujwop spieog yyea ayy N|ASSISSN SYUS3[EM GUNB[BAPUBHIPIEY MMM//:d11Y 1q 8A0qe ZTD S awes
01 p awes Inq - JueAs|Ry

JUBA3|3Y WIWIO) dSSMN JueAR|
pULYCTEN]
JueA3|3y Adljod pneud JaIuno) M GUNS[BAPUBLIPIEY MMM/ JUBAIISY odas wea] pneid Ja3uno) 11] 3Y1 310U) JUBA3|DL|

VTR X EERENINplen] M GUNS|EAPUBHIDIEI MMM/ /2 JUBA3|2Y 11107 pue pnesy sa3uno) - 7998/SIUSWNI0P/SN[ASIIS SN SYUSS[BM MMM, FULIETCHIEESSMMeT] £ 2 PUS5Y/998/SIUSWNI0P/SN[ASaNIS/AN SYUSI[EM MMM,
pULTETEN] pneu4 12120 v P E NI ELLY/A RULZC N R PI e EREeee . 5 7 %4111 eND /520 1/53 M BMUUBTIO W BIUMD, FULTLE CNEE P DPEILILY 797 e pUs5Y/998/51UsWNo0p/SN[d5931S /5N SUU SO [eM MMM,
YHSe anvyd ONILDAL3A [P IEESTEN R YY/A R C TR LR U IR EEWERIY 65 7 %A1 eND /520 /53 [EM SMUUBTIOW BRI WM //- Juensjay
YH S8 aNvy4 ONILNIAIYG [P REESTENIEEY/8 UBA[3.U 4 3jqissod Inoge suiaou0) Z30IAZ BT C RS RISIEEIEy: ¥ 1 pne /15| 0J-51Ua WNJ0P-A9% /SN-IN0qe/Sa[em syu-qunas
eAd3Y aNvyd ONIYYILIA [SCEREEICIE T EERIV/A RULAVERR TR R UL EEERIIRY: 1| AS91IS /5 N°SYU S [EM qUNS|BAPURHIPIRI MMM // RULAEI PRI PULLEIIERIIERY 19 LLIND 0P /SN|dSa)IS AN"SyUS3|eM qUNa|BAPUBHIPIEI MMM,

ERITTETEN] esed ?ouens|ay eued aduens|ay esed 1n

asn SpJoMmJejiwis pappeTszwq szwq
pneuy

Expert Labelled Data for ‘Fraud’

Figure 28

uen3jay G-U3EaL/s1aq| PUE-S3 PIe0q-Geay q 4uqynaq//-sany
JueAdIRY AIaJEsA] TApE-p SYUQUNaG//5aTg
JUBA3|2Y TEOGOZ%aMIWLIOI0L %1PNY/998, T QU SI[em MMM/ 7-a0Y
eA3|a.| TI0Z%I0J0%ANI0d0C%60C%C/998 I qUrSS[em MMM //anY
JUBAB[RY THEPAUS/ELTT/SIUSINIGP, qu TpIeS AT
ueAD|2Y TEWIOJI5d0Z%PUB0CY%?: qusle rany
JueAa|aY TOTETIa-GEay = Ge/SaTem SUUqUNGS//-Sany
JUBADIRY AOZ%PUE0C% TOJ13d0¢%)¢ %dUeU13/590G/Sa[e ANy
UBA3I2Y DZ%ISTHOC%PUB0L%AIBIES0L %L % IBNO/5300/SIe! ANy
A3y 7 bTT, qu IPIES MMM /-GN
9EIEIEIETD
JuBAQ|RY STBET-SATIIW0D- Ao, Ge/sal sany

JueAQ|oY ST0ED-

UBN3I3Y 0T ISIHOL%PUE0Z%AIESOT%IT
JuenajRY
ueafaL|

uensYy

9EIEIEIEY'D
1uendjay ssaded I Ko, qe/sajem'syu sd.
1ueA3j2Y siaded-2a31WILOd-YpNe, Koy, yuqynas//:sdny
RN IMOZ%E E/EVTT/! 15/4N°syusajem I -
wenajay 1402%P UB0T%A124BS0Z%DZ%AMEND/5200/s3lem :sd

JUBABIPY OTISIHOTIPUBOTAIRIESOZ%IT%ANIEND/520a/53lem SmuueSIouelwmd//:sdny
JUBAIRY OT%ASIHOZHPUBOZI6AIRIESOT%ITHAUIEND/520a /S0 lem BmuUeBIOWRILIMI//:SdTY

ueA3jaLl S 02%P3(e3S0Z%T "Ly ! yu'sajem d

JUBABJRLI| 1MOT%Y T/EPTT/! 1 yu I d

JUBAS[3LI] IAIBAOQT 1 1 yusajem d

UBA3IRY d102%6 T/EVTT/S 1 yursajem 1 d

JUBAIIRY |d102%6 T/EVTT/! I Yu'sajem I d:
Y p pNe; -RS3/SM-INOGE/SaeMSYUQUNGS//SaY 22D SV 5130ed-531 B A, GE/S3[eM SYU qUNGS//-Sany
220 sv 1udy pea? way epuady HPNE; ZEy) qu SANU 77D S ¢ pean way epusBy /SIaded- Ro3/sn-Inoge/salem sy)
JUeAS9Y 11END J0 Lioda [enuuy P =Er) U GUNGS//5073] JUBA3JRY 1D 4o 1odas enuuy SI5dEd-337T =) qu]
61057 1 P -, GUQUNGS//SaRY 6TI SV ST5ded-5an =2 qe/Saem syu Sany
6T SV 1udy peat way epuady P 56p-Ao GUGUNGS//SANY 61D SY v pea way epusdy S1aded 557 R qe/Salem SqUqUnGs//50mY

JUBA3|3Y [END 4O 1I0dal enuuy. ququng ql

ueA3JaY 1D Jo 1400, fenuuy STBAEA-SATIIWOITIPNE,

I EIAIETE

1 sV JawsBeuey OVM/MIH J2%60/35HILILI0I0Z34TSTH0LJP UBOZ N IBIES 02 %D LB 530 SIem

Y12 5V e 11270 79560/ S0ZASTHOL P UE0L T TRIESOL T IC e O/ 5900/ Sa[e M B UUEHIOWE M/ /S0R]
TTD S £24 8ueusan09 Aujend

T sy

"BMUUEEIOWETWMD,
"BMUUEEIOWFETWMD,

jueAa|ay d
19 sy 23ueusanon Aujenty
TIOsY

uenajay hed/Mjes/AulenD

JueAa[a.L] BUSSasSY (U

JueAB[RY Mnssy AjenD GE/SBIEA SU-GUNIT,
JueAB[RY 155e Aufenb « GE/SEATSU-GYNIT,
JUBAD[RY 195 Jo AujenD /TS SA[EM MMAY
JUBAB[DLI] IIWYOD IHL IS/ YU SB["any
1 3PNJIX8 10 3PNJOUI 0} JUBLINIOP 3y} 38 40| 0F P33U PINOM NOA ING JUBA[B 4O }OS 53SSY AN[eND TA[EAPUEJPIET AT/

['A\0Z%b ¢/€7 T T/53UaWN20p/5N|dSa1IS/AN SUU S3|BM GUNG|BAPUEBLIPIED MMM,
08/SIUSWINI0P/SN[ASaMNS /AN SYU SO[eM MMM /]

6C%C8LH0LHMIINIINO0L %S OMUINOL
6C%8

6T%IBCR0L TMOINIONO0L %SINUTNOZ % T 0% /998/SIUBMINI0p/Sn[dSaIs/om INTUMVZEST] uenajaL| A I3AO0Z%SoINUNNOZ% L02%V/998/STUsWNI0p/SdSails /5 SyU Sa[em Mmm /]

2ouenajay n souenajey
Spiom™Je|jwis pappe”szwq sewq
2dueusanos Ayjenb

Expert Labelled Data for ‘Quality Governance’

Figure 29

50
ueA3j2LI| TFTT qu
SRS /S0Tg
uerdjaLl
JUBABJBL| SHTT/SIUSUNDOP/SN|dSBYIS 5N SUU'SaleM qUNaJeAPUBLIPIEY MMM//:013Y
s0
ueRdjal T,
050
uendfay 1 P 1
uenaey 5/ Squ ST
uend[DY ZPUEOCHAIRIESOZ%ITIMIEND/5900/5 sany
uenajay 1107 GUS3 d

uenalPy FIT qUSa]
uenappl 107 qusa] g

520 v 91eq aeyrey E8/vT 35D 10D HY-D ZHEE C/ERTT o
STQ'SY ewe L ssnasip 1 ueBio oD JZE T/ETTT QUS|
JTHEET[EVTT U
22Q sy put Aueunion papwes ureidwod 1 ETATAT
220 S 4 Ut piaydn Juieidwios woneBnsanul AT ¥
wensjaul umespum ureidwod EugzEs

JUBAB[DLI| BRI Yy SSTISIp [UeBIOW a1,

610 S 290 Aisnoimaid sey Suyauia polIRIaP Y 10Z30°C; UBA3[@Y dosd Bunoj pue vaspILp S pAs, qu
610y 92 WaLI vaNIDY 1029 T/EVTT, QoS UBA3[2Y WaNed 3¢AL LNIQDNI ‘8 5 o T
Juenaey 7 W3l vaN3Ov (07%9°C g JuBA3[RY Wi Aiajes waned e sup s 5 Zo) o
Juenaey 7 enaEy sem {507 PR
UBA3[2Y 41 Mol paanb e aul /AU
ueA32Y 150 343 pauaNb e UL S/ASqu
UBA3[2Y 1ONI IINVINYOH3d A3 GPUEOCIAIBIESOLHIT a/53e sany

ueA3jaY 9 (eI Sunioddns g 7

enapEl swaned » $3II00%:

wenappy 4 qUqqny g g enapEy

695V waned :msoH [ERNTE 6asy uenajay uepnu auo ‘6107 Buling
69 SY waned -, MSIH [TV 605V JUBA|RY) 341 J0 UOREBNSAAUL YL THTT/SIUSWNIOP/SN|ASaIIS /N SYU SA[eM GUNaJEADUELIPIE MAMM//:G11Y
Juenajey waned © MSIH uenaey wensjay * A qeio] 21 ZPUBOZIAISIESOTR: e g
895y Qwaneq [ELES eA[RY 1D P T
Juenajay 505V 1T € () swapous snowas Jo Jaquiny edpY b 249 qUSa]
99 5| Q'S 50T () swappu; snowas jo saquin UBA3(PY HIS LNVISNYHL TYNZ T oSy
29UeUI2A08 AYlenb O 0JuI JUEABJa) NG JUIPIUI JuaNed 21 JUBA3IRLI JUBABIDY T TE (1) s1appu snowas jo sequinn JuenafaLl - 107 sl g
Juenajaul| Tepr g 7 T UEA3ID.] SEIR 0 UONUMDIQ UORESIUIIA Z56¢ T /€L L/51UWN20p/snidsauis in susalem aunalenpuesyipaea mv//-any uenaroy |
aouenajy exed Jin 2auenajay exed Jin 23uenajey eied jn
asn Spiom™sejis pappeszwg szwq

Juappul uaned

Expert Labelled Data for ‘Patient Incident’

Figure 30

url
http://ww le

committee_type
board meeting

nhs.uk/sitesplus,

http://www.wales.nh: board meeting

http://www. wales.nh: health and safety committee
http://www.c: wales.nh: de audit i
http://www.wales.nh: 2, strategy
http://www.wales.nh: 2/Age finance and
http://www.wales.nh: 2, health and safety committee
http://www.wales.nh: finance and performance committee
https://bcuhb.nh: d-advi health and safety committee
ht buhb.nhs.wales/abs key folde mental health act committee
http://www.c: wales.nh: audit i
https://bcuhb.nhs.wales/ab: d-advi quality and safety committee
https://beuhb.nh about-u -and-advi health p i forum
http://www.wales.nh: Iten health and safety committee
http://www.wales.nh: 2/Attz strategy
http://www.wales.nh: board meeting
http://www.wales.nh: 2, health and safety committee
http://www.wales.nh: ge board meeting
http://www.powysthb.wales.nh: ument digital and i

ht hb. d-advi local p: ip forum
http://www.c: wales.nh: audit
http://www.powysthb.wales.nhs ument digital and i

ht hb.nh files/board-and- quality and safety committee
https://sbuhb.nhs.wales/abr key folde mental health act committee
http://www.wales.nh: 2, finance and
http://www.wales.nh s Attz finance and
http://www.wales.nh: i PPV other

ht buhb.nhs.wales/ab K folde audit

y
https://cavuhb.nhs.wales/files/board-and-committees/q quality and safety committee

item_type
None agenda
None agenda
['Home', ' > Health and Safety Committee'] papers
['Home', ' > Audit Committee - 24 February 2015'] ~ papers

[' > Strategy and Planning Committee Meeting 16 O agenda
[' > Integrated Governance Committee Meeting 9 V agenda

['>", "Your Health Board'] agenda
Finance and Performance Committee agenda
Strategy, Partnerships and Population Health Comn agenda
['sbuhb.nhs.wales', 'about-us', 'key fold agenda
['Home', ' > Audit Committee'] papers
Quality, Safety and Experience Committee final minutes
Healthcare Professionals Forum (HPF) final minutes
['>", "Your Health Board'] papers

[' > Strategy and Planning Committee Meeting 16 O papers

None agenda
['>","Your Health Board'] agenda
None agenda
['>","The Board's Committees, Partnership Boards papers

Local Partnership Forum (LPF)
['Home', " > Audit Committee'] papers
['>","The Board's Committees, Partnership Boards papers
quality-safety-and-experience-committee agenda
['sbuhb.nhs.wales', "about-us', 'key-documents-fold papers
[' > Integrated Governance Committee Meeting 27 | agenda
['> Integrated Governance Committee Meeting 19 | papers
Public Partnerships and Wellbeing Committee agenda

['sbuhb.nhs.wales', 'about-us', 'key-documents-fold papers

lity-safety-and:

q perience- papers
http://www. wales.nh: audit ['Home', ' > Archived Audit Committee Papers'] papers
http://www.wales.nh: 2/Iten health and safety committee ['>", 'Your Health Board'] papers
http://www.wales.nh: IGC' digital and information management committee Information Governance Committee agenda
https://bcuhb.nh: d-advi audit i Audit Committee agenda
http://www.wales.nh: IGC! digital and information Governance Committ agenda
http://www.wales.nh: 2 health and safety committee ['>", 'Your Health Board'] final minutes
ht buhb.nhs.wales/about-us/key- ~folde mental health act committee ['sbuhb.nhs.wales', 'about-us', 'key-documents-fold agenda
https://cavuhb.nh board-and q quality and safety committee quality-safe d-experience- i papers
hittp://www. wales.nh: audit ['Home', ' > Audit Committee - 22 October 2013'] papers
http://www.c: wales.nh: dc health and safety committee ['Home', ' > Health and Safety Committee'] papers
ht buhb.nhs.wales/ab: key folde health and safety committee ['sbuhb.nhs.wales', 'about-us’, 'key fold papers
http://www.powysthb.wales.nh i ument digital and i i ['>", "The Board's Committees, Partnership Boards papers
http://www.wales.nh: board meeting None agenda
https://bcuhb.nh: d-advi quality and safety committee Quality, Safety and Experience Committee final minutes
http://www.c: wales.nh: de audit ['Home', ' > Audit Committee - 26 May 2015'] papers
http://www.powysthb.wales.nh: digital and ['>", "The Board's Committees, Partnership Boards papers
http://www.powysthb.wales.nh: ument digital and il ['>", "The Board's Committees, Partnership Boards papers
http://www.wales.nh: 2/Iten health and safety committee ['>", "Your Health Board'] papers
http://www.wales.nh: 2/Iten health and safety committee ['>", 'Your Health Board'] papers,
https://sbuhb.nhs.wales/ab key folde audit i ['sbuhb.nhs.wales', 'about-us', 'key-documents-fold agenda
ht buhb.nhs.wales/ab: key folde health and safety committee ['sbuhb.nhs.wales', 'about-us’, 'key fold papers
https://bcuhb.nh: d-advi quality and safety committee Quality, Safety and Experience Committee agenda
http://www. ales.nh: ‘dc audit ['Home', ' > Audit Committee - 24 February 2015'] papers
http://www.powysthb.wales.nh: i ument workforce ['>", "The Board's Committees, Partnership Boards papers
http://www.wales.nh: Age strategy [' > Strategy and Planning Committee Meeting 23 Ju agenda
http://www.powysthb.wales.nh: workforce ['>", "The Board's Committees, Partnership Boards papers
http://www.wales.nh: board meeting None agenda
http://www.wales.nh: board meeting None agenda
http://www.powysthb.wales.nh: ument digital and il ['>", "The Board's Committees, Partnership Boards papers
https://bcuhb.nh: d-advi health and safety committee Strategy, Partnerships and Population Health Comn final minutes
http://www.wales.nh: 2/Attz strategy [> Strategy and Planning Committee Meeting 16 O papers
http://www.wales.nh: board meeting None agenda
https://bcuhb.nhs.wales/ab d-advi health and safety committee Strategy, Partnerships and Population Health Comn draft minutes
http://www. wales.nh: audit i ['Home', ' > Audit Committee - 24 February 2015'] papers
http://www.wales.nh: Age health and safety committee ['>", Your Health Board'] agenda
https://bcuhb.nh d-advi health p ionals forum Healthcare Professionals Forum (HPF) agenda
http://www.c wales.nh: audit ['Home', ' > Audit Committee - 12 August 2014') papers
http://www.wales.nh: board meeting None agenda
http://www.wales.nh: mental health act committee Mental Health and Learning Disabilities Committee agenda
https://sbuhb.nh: les/ab key folde health and safety committee ['sbuhb.nhs.wales', 'about-us', 'key-documents-fold draft minutes
ht buhb.nh: I b key folde audit ['sbuhb.nhs.wales', 'about-us', 'key fold papers
http://www.wales.nh: 2/Iten health and safety committee ['>", 'Your Health Board'] final minutes
https://sbuhb.nhs.wales/ab key folde health and safety committee ['sbuhb.nhs.wales', 'about-us’, 'key fold papers
ht buhb.nhs.wales/ab: key folde health and safety committee ['sbuhb.nhs.wales', 'about-us', 'key-documents-fold papers
https://sbuhb.nhs.wales/ab key folde audit ['sbuhb.nhs.wales', 'about-us', 'key-documents-fold agenda
https://bcuhb.nh: les/about-u: -and-advi quality and safety committee Quality, Safety and Experience Committee papers
ht buhb.nhs.wales/about-us/key- ~folde mental health act committee ['sbuhb.nhs.wales', 'about-us', 'key-documents-fold papers
https://cavuhb.nh board-and q quality and safety committee quality-safe d-experience- i papers
https://bcuhb.nh: d-advi local p: ip forum Local Partnership Forum (LPF) final minutes
http://www.c: wales.nh: dc audit ['Home', ' > Audit Committee - Confirmed Minutes'] final minutes
http://www.powysthb.wales.nh: digital and ['>", "The Board's Committees, Partnership Boards papers
http://www.wales.nh: board meeting None agenda
http://www.wales.nh: 2/Iten health and safety committee ['>", "Your Health Board'] papers
hittp://www. wales.nh: audit ['Home', ' > Audit Committee - 22 October 2013'] papers
http://www.wales.nh: Attz strategy [' > Strategy and Planning Committee Meeting 16 O papers

buhb.nh

fold:

htf

y
http://www.powysthb.wales.nhs.uk/sitesplus/document

mental health act committee
board meeting

http://www. ales.nh: ‘dc audit

ht buhb.nhs.wales/ab: key folde health and safety committee
http://www.wales.nh: board meeting
http://www.wales.nh: board meeting
http://www.wales.nh: 2/Atte strategy
http://www.wales.nh: 2/Attz finance and
http://www.wales.nh: ge board meeting
http://www.powysthb.wales.nh: ument digital and i

ht hb.nh board-and: quality and safety committee
http://www.c: wales.nh: audit

http: buhb.nh: les/ab: key folde mental health act committee
ht buhb.nhs.wales/ab: key folde health and safety committee
https://sbuhb.nhs.wales/ab key folde health and safety committee
hittp://www. wales.nh: audit

['sbuhb.nhs.wales', 'about-us', 'key fold papers
['>", 'Board Meetings', ' >, "Archived Board Papers agenda
['Home', ' > Audit Committee - 24 February 2015'] papers
['sbuhb.nhs.wales', 'about-us', 'key-documents-fold papers
None agenda
Public Board Meetings 2019 agenda
[' > Strategy and Planning Committee Meeting 16 O papers
[' > Integrated Governance Committee Meeting 28 / papers
None agenda

['>","The Board's Committees, Partnership Boards papers
quali d-experi i agenda
['Home', " > Audit Committee - 14 April 2015'] papers
['sbuhb.nhs.wales', ‘about-us’, 'key fold papers

['sbuhb.nhs.wales', 'about-us', 'key-documents-fold papers
['sbuhb.nhs.wales', ‘about-us', 'key-documents-fold papers
['Home', ' > Audit Committee - 14 April 2015'] papers

final minutes

Agenda Item 3.3 Inter
Agenda Item 1.6 Ratifi
papers

papers

Agenda Special Strate;
Agenda Integrated Go
Agenda Primary Care s
Agenda and Papers
agenda-3-9-19

0. Agenda - May 201§
papers

Approved Minutes
Approved minutes
Item 07a University Pz
Attachment F Paediat
Agenda Item 3.7 Discr
Agenda Primary Care s
Agenda Item 5.1 Finar
WOD_ltem_1.3_Chair
Approved minutes
papers
WOD_item_2.2_WOD
https://cavuhb.nhs.wi
4.4 Appendix 3.pdf (
Agenda Integrated Go
Attachment 8i - Confir
Agenda and Papers
2e. Appendix B Exterr
https://cavuhb.nhs.wi
Archived Audit Comm
Item 18 Community Pl
Agenda and Papers
agenda-bundle-audit-
Agenda and Papers
Approved PCAC Minut
0. Agenda - 8th Febru
https://cavuhb.nhs.wi
papers

papers

1.6 Health and Safety
WOD_ltem_1.5_Comr
Agenda Item 2.6 Healt
Approved Minutes
papers
WOD_ltem_1.5_Comr
WOD_ltem_3.4_2018.
Item 2.5 Remote Pulm
Item 05 Table of Actio
0. May Audit Commit
4.2 Singleton Hospita
agenda-bundle-gse-1;
papers
W&OD_ltem_2.4_Org
Agenda Strategy and
WF&OD_1.6_Commit!
Agenda Item 3.1 Comi
Agenda ltem 2.11a -
WOD_ltem_2.1_Healt
Approved minutes
Attachment A Paediat
Agenda Item 6.3a Prin
Draft minutes 5.3.20
papers

Agenda University Par
agenda-for-hpf-13-3-2
papers

Agenda Item 2.3 Tran:
Agenda and Papers
2.3 Appendix 6 - Drafi
1e. Action Log.pdf (
Item 4 Primary Care A
4b. Planning for the A
4.1 Manual Handling
0. Agenda - 19th Apri
Approved Corporate §
7a. CAMHS Convener
https://cavuhb.nhs.wi
Approved minutes
Audit Committee - Cor
WOD_ltem_2.3_WOD
Agenda Item 4.4 Fund
Item 17 D Snape Dent
papers

Attachment | Paediatr
2.1 Mental Health Leg
Agenda_ltem_2.1b_A|
papers

2.5 Lockdown Proced
Agenda Item 7.1 Struc
Agenda and Papers
Attachment B Paediat
Attachment 4 - Table «
Agenda Item 2.4 - Ortl
WOD_ltem_3.7_Oper:
https://cavuhb.nhs.wi
papers

1.4 Mental Capacity #
2.11 Health and Safet
2.11 Health and Safet
papers

Figure 31: Correctly labelled committee and item types.

Metric Task Value Unit

Cumulative indexing time of primary shards 2833218 min
Min cumulative indexing time across primary shards 28.33218 min
i indexing time across 28.33218 min
Max cumulative indexing time across primary shards 28.33218 min
Cumulative indexing throttle time of primary shards. 0 min
Min cumulative indexing throttle time across primary shards 0 min
Median cumulative indexing throttle time across primary shards 0 min
It 0 min
Cumulative merge time of primary shards 9.80015 min
Cumulative merge count of primary shards. 2
Min cumulative merge time across primary shards 9.80015 min
Median cumulative merge time across primary shards 9.80015 min
Max cumulative merge time across primary shards 9.80015 min
Cumulative merge throttle time of primary shards 3.924783 min
Min cumulative merge throttle time across primary shards 3.924783 min
Median cumulative merge throttle time across primary shards 3.924783 min
Max cumulative merge throttle time across primary shards 3.924783 min
Cumulative refresh time of primary shards 0187167 min
Cumulative refresh count of primary shards 2
Min cumulative refresh time across primary shards 0187167 min
refresh time across primary 0187167 min
Max cumulative refresh time across primary shards 0187167 min
Cumulative flush time of primary shards 0.469233 min
Cumulative flush count of primary shards 9
Min cumulative flush time across primary shards 0469233 min
Median cumulative flush time across primary shards 0469233 min
Max cumulative flush time across primary shards 0469233 min
Total Young Gen GC time 18.265 s
Total Young Gen GC count 1622
Total Old Gen GC time. 2815
Total Old Gen GC count 6
Store size 3372252 GB
Translog size 512608 GB
Heap used for segments 0082645 MB
Heap used for doc values. 0008587 MB
Heap used for terms 0042023 M8
Heap used for norms 0.001648 MB
Heap used for points M8
Heap used for stored fields 0030388 M8
Segment count
Min Throughput index-append 22699.82 docs/s
Median Throughput index-append 23812.61 docs/s
Max Throughput index-append 2396077 docs/s
50th percentile latency index-append 734.3545 ms
90th percentile latency index-append 836.6826 ms
99th percentile latency index-append 2675.141 ms
99.9th percentile latency index-append 3071174 ms
100th percentile latency index-append 32117 ms
50th percentile service time index-append 7343545 ms.
90th percentile service time index-append 8366826 ms
99th percentile service time index-append 2675.141 ms
99.9th percentile service time index-append 3071174 ms
100t percentile service time index-append 32117 ms
error rate index-append
Min Throughput randomized-nested-queries 19.97 ops/s
Median Throughput randomized-nested-queries 20 ops/s
Max Throughput randomized-nested-queries 2001 ops/s
50th percentile latency randomized-nested-queries 6158833 ms
90th percentile latency randomized-nested-queries 1242629 ms
99th percentile latency randomized-nested-queries 1611374 ms
99.9th percentile latency randomized-nested-queries 174.9623 ms
100th percentile latency randomized-nested-queries 186.8907 ms
50th percentile service time randomized-nested-queries 55.7832 ms
90th percentie service time randomized-nested-queries 116.8102 ms
99th percentile service time randomized-nested-queries 134.874 ms
99.9th percentile service time randomized-nested-queries 1435715 ms
100th percentile service time randomized-nested-queries 158.4357 ms
error rate randomized-nested-queries
Min Throughput randomized-term-queries 25.02 ops/s
Median Throughput randomized-term-queries 25.02 ops/s
Max Throughput randomized-term-queries 25.02 ops/s
50th percentile latency randomized-term-queries 4806757 ms
90th percentile latency randomized-term-queries 5271623 ms
99th percentile latency randomized-term-queries 5.689158 ms
100th percentile latency randomized-term-queries 13.37233 ms
50th percentile service time randomized-term-queries 3760047 ms
90th percentile service time randomized-term-queries 4075883 ms
99th percentile service time randomized-term-queries 4442302 ms
100th percentile service time randomized-term-queries 12.08564 ms
error rate randomized-term-queries 0%
Min Throughput randomized-sorted-term-queries 13.88 ops/s
Median Throughput randomized-sorted-term-queries 13.93 ops/s
Max Throughput randomized-sorted-term-queries 14.02 ops/s
50th percentile latency randomized-sorted-term-queries 11065.97 ms
90th percentile latency randomized-sorted-term-queries 12869.43 ms
99th percentile latency randomized-sorted-term-queries 1328064 ms
100th percentile latency randomized-sorted-term-queries 133641 ms
50th percentile service time randomized-sorted-term-queries 1317176 ms
90th percentile service time randomized-sorted-term-queries 2386923 ms.
99th percentile service time randomized-sorted-term-queries 260.9358 ms.
100th percentile service time randomized-sorted-term-queries 276.2287 ms
error rate randomized-sorted-term-queries
Min Throughput match-all 5 ops/s
Median Throughput match-all 5 ops/s
Max Throughput match-all 5 ops/s
50th percentile latency match-all 4149556 ms
90th percentile latency match-all 4527419 ms
99th percentile latency match-all 6349226 ms
100th percentile latency match-all 18.5085 ms
50th percentile service time match-all 2774015 ms
90th percentile service time match-all 2930397 ms
99th percentile service time match-all 4895581 ms
100th percentile service time match-all 16.75208 ms
error rate match-all
Min Throughput nested-date-histo 072 ops/s
Median Throughput nested-date-histo 0.73 ops/s
Max Throughput nested-date-histo 073 ops/s
50th percentile latency nested-date-histo 1530361 ms
90th percentile latency nested-date-histo 211797.8 ms
99th percentile latency nested-date-histo 2251242 ms
100th percentile latency nested-date-histo 226579.8 ms
50th percentile service time nested-date-histo 2725.309 ms
90th percentile service time nested-date-histo 2811.345 ms
99th percentile service time nested-date-histo 2868.206 ms
100th percentile service time nested-date-histo 2953.442 ms
error rate nested-date-histo 0%
Min Throughput randomized-nested-queries-with-inner-hits default 17.97 ops/s
Median Throughput randomized-nested-queries-with-inner-hits default 18 ops/s
Max Throughput randomized-nested-queries-with-inner-hitsdefault 18.01 ops/s
50th percentile latency randomized-nested-queries-with-inner-hits_default 63.81577 ms
90th percentile latency randomized-nested-queries-with-inner-hits_default 132.5787 ms
99th percentile latency randomized-nested-queries-with-inner-hits_default 170.5586 ms
99.9th percentile latency randomized-nested-queries-with-inner-hits_default 193.5492 ms
100th percentile latency randomized-nested-queries-with-inner-hits_default 197.027 ms
50th percentie service time randomized-nested-queries-with-inner-hits_default 57.9447 ms
90th percentile service time randomized-nested-queries-with-inner-hits_default 124.1478 ms
99th percentile service time randomized-nested-queries-with-inner-hits default 145.9454 ms
99.9th percentile service time randomized-nested-queries-with-inner-hits default 154.1659 ms
100th percentile service time randomized-nested-queries-with-inner-hitsdefault 157.7219 ms
error rate randomized-nested-queries-with-inner-hits_default 0%
Min Throughput randomized-nested-queries-with-inner-hits_default_big siz 15.96 ops/s
Median Throughput randomized-nested-queries-with-inner-hits_default_big siz 15.99 ops/s
Max Throughput randomized-nested-queries-with-inner-hits_default_big_siz: 16 ops/s
50th percentile latency randomized-nested-queries-with-inner-hits_default_big_siz. 126.5733 ms
90th percentile latency randomized-nested-queries-with-inner-hits_default_big_siz' 227.3218 ms
99th percentile latency randomized-nested-queries-with-inner-hits_default_big_siz' 314.1484 ms
99.9th percentile latency randomized-nested-queries-with-inner-hits default big sizi 360.6439 ms
100th percentile latency randomized-nested-queries-with-inner-hits default big siz 378.1823 ms
50th percentile service time randomized-nested-queries-with-inner-hits default big siz 98.03558 ms
90th percentile service time randomized-nested-queries-with-inner-hits_default_big siz 163.1654 ms
99th percentile service time randomized-nested-queries-with-inner-hits_default_big siz 190.4598 ms
99.9th percentile service time randomized-nested-queries-with-inner-hits_default_big_sizi 201.1779 ms
100th percentile service time randomized-nested-queries-with-inner-hits_default_big_siz 222.7104 ms
error rate randomized-nested-queries-with-inner-hits_default_big_siz:

Figure 32: Es Rally Nested Challenge.

