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Abstract 
 

Timetabling is an essential task undertaken by every educational institution around 
the world. Most of these institutions still create their timetables for each semester 
by hand, draining staff time and therefore the institutions money. In this project, I 
present a genetic algorithm to automatically generate timetabling solutions for 
university course timetabling problems, thus allowing universities to free up staff 
time by automating their timetable generation. 
 
The final algorithm presented can efficiently and quickly solve a real-world 
scenario that occurred for a previous semester in the school of computer science at 
Cardiff university. It also shows the potential to solve very complex scenarios, 
given more development time.  
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1 –	Introduction	
 
1.1	–	Introducing	the	problem	and	project	motivation	
Every educational institution all over the world faces a very similar problem regarding how they 
organize when and where their students are taught over a set period of time (normally on a week 
by week basis). This is named the Timetabling problem and was defined by Wren (1996)[1] in the 
following way: “Timetabling is the allocation, subject to constraints, of given resources to 
objects being placed in space time, in such a way as to satisfy as nearly as possible a set of 
desirable objectives.” The Timetabling problem encompasses the assignment of many resources 
(including teaching spaces, teaching staff and student availability) over a set period, in such a 
way that no clashes occur. A clash is considered to occur when one resource has been assigned 
more than once in the same time slot, for example when one room has been assigned to have two 
separate classes being taught in it, at the exact same time. 
 
Most small institutions can solve this problem relatively simply by hand through a trial and error 
type approach. Their ability to do this is due to the lack of complexity of their timetabling 
problem. The issue starts to arise when the institutions increase in size and inherently also 
increase in complexity. There comes a point where the increase of complexity causes trial and 
error approaches to become very costly in terms of manpower whilst often causing the solution 
to be far from optimal. Despite this being the case, many educational institutions around the 
world still must set aside a large amount of manpower annually to produce the year’s timetables, 
when it could be avoided by tasking the problem to a computer. 
 
With the previous in mind, I have created an algorithm to solve the timetabling problem that 
universities face regarding their weekly scheduling (not examinations), with the goal of allowing 
implementation in these educational institutions. The benefits of implementing this kind of 
automated solution are numerous, with the main ones being a much more optimal timetabling 
solution and the ability to free up a large chunk of staff manpower annually (which in turn causes 
economic benefits).  
 
One important note is my use of the word ‘commitments’ in this report.  A commitment refers to 
a teaching session, be it either a lecture, a tutorial or a lab etc. Another important note to make is 
my use of the terms: ‘hard constraint’ and ‘soft constraint’ in this report. A hard constraint is a 
constraint, which if not satisfied, would render the timetable invalid, and impossible to 
implement. Examples of such violations could be: one lecturer being assigned to instruct two 
modules in two different rooms in one timeslot i.e. a lecturer clash. A soft constraint is used to 
test how optimal a timetable solution is. They represent features that would be preferable to 
have, but which are not necessary for a valid timetable. An example of a soft constraint could be 
not assigning any commitment to start before 10am, allowing students and lecturers a later start 
to the day. The validity of a timetable is judged on its fitness score which is assigned by a fitness 
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function. In this report, I have designed a fitness function that tests constraint violations and 
assigns a weighted score, with hard constraint violations being given a more impactful penalty to 
their fitness score than soft constraint violations. 
 
1.2	–	Project	goals	
Taking the aforementioned into account, the overall purpose of this project is to create an 
algorithm which provides a way to automate the generation of university timetables. I have 
decided to implement the main algorithm as a genetic approach and will discuss my reasoning 
later in the report. I also have created alternative algorithms which have different genetic 
operators and one that implements a hybrid of genetic and local search methods. The testing 
sections shows the optimal algorithm parameter and feature combination that is used for the final 
algorithm. 
 
The final application will allow users to input details of their specific timetabling problem such 
as available rooms, lecturers and the modules they instruct, modules, students enrolled on each 
module and amount of commitments necessary for each module. It then generates and outputs a 
human readable timetable. This timetable will aim to violate zero hard constraints (or else it will 
not be valid), and as few soft constraints as possible. 
 
The main goal of this project is to create an algorithm that efficiently solves real world university 
course timetabling problems, creating a solution that is as optimal as possible given the time 
frame to run the algorithm. Furthermore, the following provides a more detailed breakdown of 
my aims/goals for this project. 
 

- The application must aim to output a timetable violating zero hard constraints and as few 
soft constraints as possible 

- Output timetable is human readable 
- Timetable should be generated in a practical time frame (under two hours) 
- The application should be easy to use. A minimal amount of training should be needed to 

teach a user the input configuration file syntax, allowing them to provide input into the 
application. This ensures that it could be used in real world scenarios. 

- The application should be able to solve problems of a realistic complexity. 
 
1.3	–	Intended	stakeholders	and	project	scope	
The stakeholders in this project mostly exist in university settings. These are the stakeholders 
that I have identified: Myself, university administration staff, people affected by the result of the 
algorithm (lecturers, students etc.) and other computer scientists that can use aspects of this 
report to influence their own Genetic algorithm/Timetabler. The audience of this report is very 
similar to the stakeholders, although could include other people generally interested in the 
concepts used in this paper (genetic algorithms, local search techniques).  
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The main scope of the project extends to all higher education institutions that require a timetable 
to be developed for their provided courses. This could even be extended to different types of 
institutions that require timetabling for other, yet similar types of situations e.g. for schools or 
colleges. 
 
1.4	–	Approach	
After comparison of the main methods used to solve timetabling problems, I decided on using an 
evolutionary approach, and more specifically a genetic algorithm. I provide a more detailed 
explanation of genetic algorithms in section 2 of this report, but in general terms, a genetic 
approach uses the model of evolution found in nature to create generations of timetable solutions 
that merge towards local and global optima. Individuals of each generation act as a possible 
solution to a problem and are represented using genes (a set of data defining the details of the 
solution). These individuals are then modified through a combination of genetic operations, 
creating a new generation that should contain more optimal solutions than the previous. This 
incremental improvement of the average quality of individuals in each generation leads to the 
convergence on an optimal solution. 
 
Initially, I am creating a basic algorithm which implements basic genetic operations, more 
specifically a basic form of genetic crossover and a random mutation. I am then incrementally 
changing operator parameters and adding new operators to this basic algorithm, testing the 
observed change in performance after each modification so that I can create the optimal final 
algorithm. Such additional operators and parameter values include a form of local search, a novel 
feature I am calling mutation ramping, different mutation and crossover rates and different 
implementations of the crossover and mutation operators. I am then testing the final algorithm 
against a previous scenario taken from the school of computer science at Cardiff university to 
gauge the algorithms effectiveness at solving it. Finally, I am testing how the algorithms resource 
consumption (memory, CPU usage) scales with problem complexity. 
 
1.5	–	Assumptions	
I am making assumptions based on the nature of the problem I am solving. I am specifically 
solving university course timetabling problems, and therefore I have a set of constraints that 
apply to this problem that does not include other constraints that apply to different timetabling 
problems. These constraints include: no room clashes, lecturers aren’t assigned to multiple 
commitments at the same time, students aren’t assigned to multiple commitments at the same 
time etc. I am also assuming that the algorithm will be run on a standard power computer. I am 
not specifying any exact software/hardware requirements but assuming that it will not be run on 
an extremely powerful computer such as a large cluster of computers. I am also assuming that a 
correct input is given to the algorithm in order for it to work correctly. In the interest of saving 
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time, and to allow further development of the algorithm, I have not implemented many user error 
mitigation elements to the application. 
 
1.6	–	Project	Overview	and	Achievements	
This report documents the theory, implementation methods and testing results of a 
predominantly genetic based approach to the University course timetabling problem. Different 
optimisation methods are documented and tested, with the final and best performing algorithm 
consisting of a genetic algorithm with specialized genetic operators and a potentially original 
feature that, to my knowledge, is not mentioned in any of the scientific papers I could find on the 
subject. 
 
The final algorithm can solve a timetabling problem taken from a previous academic term for the 
school of computer science at Cardiff university. Not only is it able to solve this problem, it does 
so in under two minutes, which makes it extremely more efficient than performing timetabling 
by hand (human generated) in terms of time and money (due to saved staff time). The final 
algorithms ability to scale with complexity is also explored, resulting in memory and CPU 
efficient results and proving that it has the potential to scale up to solving high complexity 
scenarios posed by large higher education institutions. 
 
 

	
	
	
	
	
	
	
	
	
	
	
	

	



 5 

2	–	Background	
 
2.1	–	Approaches	to	the	Timetabling	problem	
The Timetabling problem which I am referring to in this report is more specifically called an 
educational timetabling problem, distinguishing it from other slight variants of the timetabling 
problem. Even more specifically, it can be further narrowed down to a course timetabling 
problem, as defined by Schaerf (1999)[2] who classified educational timetabling into three main 
groups i.e. course timetabling, school timetabling and examination timetabling. Although these 
three groups can be separated by some minor differences in the constraints placed upon them, 
they are similar enough as to allow a well-made timetabling application, that allows user inputted 
constraints, to be able to solve a scenario that falls into any of the three categories. 
 
Timetabling problems define a class of hard-to-solve constrained optimisation problems of 
combinatorial nature. A constrained optimisation problem is defined as[3] “the process of 
optimising an objective function with respect to some variables in the presence of constraints on 
those variables”. Such problems are mainly classified as constraint satisfaction problems [4], 
where the goal is to satisfy as many of the constraints as possible, as opposed to optimising a set 
of objectives. At present, an exhaustive search is the only method to guarantee the optimal 
solution for every timetabling problem, but due to the complexity of most problems, an 
exhaustive search approach is impractical for most real-world problems. Many different 
approaches to the timetabling problem have been suggested and researched to date and can be 
split into four categories:  
 

1. Constraint-based methods [4] 
2. Cluster methods [5] 
3. Sequential methods [6] 
4. Meta-heuristic methods[7] 

 
All these different approaches have scenarios in which they perform best. With this in mind I 
will describe a select few who are best suited to solving course timetabling problems below. 
 
2.1.1	–	Genetic	Algorithms	
Genetic algorithms are first referenced in academic literature by John H.Holland in a book[8] 
called “Adaptation in Natural and Artificial Systems” and have since been more accurately 
defined as metaheuristic optimisation algorithms. They are part of a set of algorithms that fall 
under the umbrella term of an “Evolutionary algorithm”. Evolutionary algorithms use 
mechanisms taken from the process of evolution found in nature, the main one being the idea of 
survival of the fittest, where a “fitter” member of a population has an increased chance of 
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reproducing and passing on its genes. The fitness of the individuals in a generation is represented 
by a fitness score, which is generated by a fitness function. A fitness function is a type of 
objective function that allocates a score to a solution in order to represent, with a single number, 
how optimal the solution is. For this project, the fitness function will allocate a score based on 
the number of hard and soft constraints violated. 
 
Evolutionary algorithms work in an iterative manner, in which a population of candidate 
solutions (which I will refer to as individuals) is created on each iteration. Each individual in a 
given population can be viewed as a possible solution to the given timetable problem and is 
represented by its “genes”, which is normally a binary string. Although a binary string is 
normally used to represents genes, for many situations (including this project), a different 
representation may be needed. 
 
Individuals of a new generation are created by applying genetic operations to members of the 
previous generation. The most common genetic operators are Selection, Crossover and Mutation 
(normally applied in that order). 
 

- Selection 
In order for individuals to be created to populate a new generation, there has to be a way 
of selecting “parent” individuals to provide the new individuals genes. There are different 
methods to select these parent individuals, but most of them work through a fitness-based 
selection process, where fitter solutions have a higher probability of being selected. The 
type of selection and the way in which a selection method is implemented is important to 
the effectiveness of the whole algorithm. If a selection method has too high a bias on 
selecting fitter individuals then we see a faster convergence which can lead to portions of 
the search space being lost, and as a result, a local optimum being reached instead of the 
global optimum. On the other hand, if lower fitness individuals are given too high a 
probability of being selected then we may see a very slow convergence, or none at all. 
This is called selection pressure, with a high fitness individual bias being said to have a 
high selection pressure and when lower fitness individuals have a higher chance of being 
selected it is said to have a lower selection pressure. Selection pressure is one main 
characteristics that separates selection methods. Below are some of the most relevant 
selection methods to our timetabling problem[9]. 
 

- Fitness proportionate (Roulette wheel) selection 
Fitness proportionate selection selects individuals by associating every individual 
fitness score in a generation with a probability of being selected, e.g. an individual 
with a better fitness score than another has higher chance of being selected. This 
method of selection is the most commonly used, due to its bias towards better 
solutions whilst still allowing a chance for worse fitness individuals to be 
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selected, giving it a medium selection pressure. Fitness proportionate selection 
requires fitness score to be normalised (modified to be within the range of 0 and 
1) and will only work for minimising fitness functions (function scores that are 
better the closer to 0 they are). 

 
 

Figure 1[19] 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 shows an example of how individuals are selected. Individual three has 
the best fitness score and therefore has the highest chance of being selected by the 
“spinner”, due to its largest percentage of the spinner. 

 
- Tournament selection 

Tournament selection is a method of selection that involves running several 
“tournaments” between several randomly chosen individuals from a generation. 
The winner of each tournament is the individual with the best fitness score, who 
then goes on to be selected for breeding. The number of individuals (n) randomly 
selected for each tournament has a large impact on how this selection process 
works e.g. if n = 1 then tournament selection becomes a simple random selection. 
On the other hand, if n becomes too large a percentage of the total population 
size, then its selection pressure is probably too high, leading to fast convergence. 
Tournament selection is more efficient than the other selection methods as only a 
few individual’s fitness values need to be processed, as opposed to every 
individual in a generation. It also allows for the selection pressure to be easily 
adjusted; a useful and rare characteristic. 
 

- Stochastic Universal sampling 
Stochastic universal sampling (SUS) was a sampling technique introduced by[10] 

James Baker in 1987 aimed at reducing the inefficiency and bias in selection 
methods. SUS is a development of the aforementioned fitness proportionate 
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selection, but instead of using repeated random sampling, SUS uses just one 
random value in order to sample all the solutions by choosing them at evenly 
spaced intervals. 
 
 
Figure 2[20] 
 
 

 
Above, figure 2 shows an example of how the one random value is used to sample 
at evenly spaced intervals (diamond icons at the bottom denote when the random 
value occurs and, by looking above the icon, the individual selected). 

 
- Crossover 

The crossover genetic operation is used to combine the genes of selected parents in some 
way. This operation is modelled on the split of genes that a child receives from its mother 
and father, as observed from reproduction in nature. Differences in Crossover methods 
stem from the number of parents used to make up the child’s genes, and the point in the 
genes at which the split occurs. Here a few examples of different crossover methods:  
 

 Two-point crossover (figure 3)[21] 

 

 
 
 

Uniform crossover (figure 4)[22] 
 

With a probability of 0.5, the child 
has 50% of the genes from the first 
parent and 50% from the second 
parent, even with randomly chosen 
crossover points. 
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- Mutation 
Mutation is normally the last genetic operation performed. Its purpose is to add the 
element of random mutation that is found in nature, and in turn to maintain genetic 
diversity from one generation to another. This genetic diversity helps prevent a saturation 
of one high fitness individual in separate generations.  
 
The mutation operation is very simple and involves randomly selecting individuals and 
changing some parts of their genes. Different mutation methods vary in the way the 
individuals are selected (e.g. randomly and uniformly) and in the way that the genes of 
the individual are modified. Here are some of the most common gene changes carried out 
by mutation operations: 

- Boundary: Replaces the genome with either the lower or upper bound randomly. 
Only works for genomes with integer values (binary/integer string genes). 

- Flip bit: Inverts a genomes binary value. Only works for genes encoded as binary 
strings. 

- Uniform: Replaces the chosen genome with a random value between a given 
upper and lower bound. 

 
 
Figure 5 – Advantages/Disadvantages of genetic algorithms 
 

Advantages Disadvantages 

Genetic algorithms always produce some kind 
of answer, and the answer that’s produced 
only improves over time. 

Repeated fitness function evaluation for 
individuals (for selection purposes) can be 
very expensive and lead to slow algorithm 
speeds if not designed efficiently. 

They are very easy to distribute, making 
implementation in parallel computing very 
easy. 

Genetic algorithms can converge to local 
optimum without any way of identifying 
whether it is a local or global optimum. 

The mutation operation causes the solutions in 
each generation to constantly change slightly, 
making them more diverse and giving genetic 
algorithms the ability to prevent becoming 
stuck in a plateau. 

Genetic algorithms can’t solve problems 
where the fitness value is either a true or false 
value because differentiation between two 
individuals with true values to find the 
optimum is impossible. 

Genetic algorithms are very flexible and allow 
for a high level of heuristic customization and 
tweaking, leading to a very specific algorithm 
for a distinct type of problem. 

Genetic algorithms don’t scale in terms of 
time well with complexity, making them 
unsuitable for solving very complex problems. 
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2.1.2	–	Tabu	Search	
The idea of Tabu search was first proposed in a journal by Fred Glover in 1986[11], where he 
defined Tabu search as: “A meta-heuristic that guides a local heuristic search procedure to 
explore the solution space beyond local optimality”. Tabu search is an improvement to a 
previously existing search method called Local search. Local search is an iterative process which 
starts with a potential problem solution and then checks other solutions that have minor 
differences (its neighbours). It then iteratively selects the best neighbour and checks all of its 
neighbours. Local search has a strong tendency to plateau in areas of the search space where all 
neighbours have very similar/equal fitness scores due to falling into a loop were the same 
neighbours keep being selected. 
 
Tabu search is designed to overcome this tendency to plateau by relaxing the rule of selecting 
only the best neighbour and by “tracking” previously explored areas of the search space. Firstly, 
Tabu search allows for worse neighbours to be explored if there are no better alternatives, thus 
preventing the issue of plateauing at similar fitness areas of a search space. Secondly, and the 
reason for the name “Tabu”, Tabu search implements a feature called the “Tabu list” which 
consists of a set of rules present in three types of memory structures: short-term, intermediate-
term and long-term. Short term memory structures are designed to store rules to ban the inverse 
of a recent, previous move. The idea behind this being that storing the inverse of a previous 
move as a banned move prevents the immediate inverse of a move and encourages the search to 
move away from that area of the search space. Short-term memory structures only store a 
minimal number of moves, preventing it becoming too large and because, after a few moves, a 
banned move becomes redundant. Intermediate-term memory structures are used to store rules 
that are designed to “intensify” the search and direct it to other, more promising areas of the 
search space. Long-term memory structures are used to store diversification rules, which have 
the purpose of forcefully driving the search to new regions of the search space. These 
diversification rules are normally used when a search becomes stuck in a plateau. In practice, all 
three types of rules overlap and are used in conjunction.  
 
Figure 6 

Advantages Disadvantages 

Is effective when used with other methods such as 
Genetic algorithms. Can be used to speed up 
convergence to local optima. 

A large of solutions fitness scores must be 
calculated, due to each 10isualiz having to be 
calculated on each iteration. This can become very 
costly if the fitness function is complex. 

Improves massively on aspects of basic local 
search approaches. 

Can be timely to implement. 

Can be very efficient if fitness scores are fast to 
calculate.  

When used in conjunction with another method, 
there is no guaranteed speed increase.  
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2.1.3	-		Backtracking	
Backtracking algorithms, as explained by Gurari and Eitan[12], are mainly used to solve 
constraint satisfaction problems. They are depth-first search algorithms; a method used to 
traverse problems represented in a tree structure. The search starts from the root of a tree graph, 
and traverses down each leaf node, starting from the very left and working its way right as the 
search progresses. Backtracking only works for problems which allow for the concept of a 
“partially correct” solution, and that allow for a test to determine that fact, making it a viable 
method for solving timetabling problems. 
 
Partial solutions are represented in a tree, where parent nodes are partial candidates that differ 
from the child nodes by a single step, and leaf nodes are partial solutions that cannot be altered in 
any way that would make it different to all its parents. The backtracking algorithm begins a 
depth first search and checks each node to see if it can be “completed” (changed in a way to 
make the solution valid). If it cannot be completed then the node’s entire sub-tree (all of its 
children nodes) are pruned. If, however, a node is found that can be completed, then every child 
node in the sub-tree is tested and the best solution is returned as the located solution. The 
“backtrack” element of the algorithm comes from the ability to jump back to a previous parent 
node if a dead end is reached (a candidate is found that can’t be completed).   
 
Although possible to use for timetabling problems, it is not an ideal method when trying to find 
the most optimal timetable. Due to the nature of the algorithm, as soon as one valid solution is 
discovered, it is returned. This makes it very good for problems where a valid solution is the only 
requirement e.g. for solving a Sudoku puzzle. However, for our particular timetabling problem 
with the presence of soft constraints, it is a very ineffective method as the minimization of soft 
constraint violations is not considered. 
 
Figure 7 

Advantages Disadvantages 

Can be extremely fast if only a valid solution is 
required. 

Search can take a large amount of time searching 
sections of the tree containing no possible 
solutions, with no mechanism to detect such 
situations. 

Can be used in combination with other algorithms, 
such as Tabu search, in order to further 
streamline/prune the search tree. 

It is extremely unlikely to return the best possible 
solution if a problem factors in soft constraints. 

It can be found to discover all possible solutions if 
allowed to search the entirety of the tree, however, 
this is normally very costly. 

The size of the tree does not scale well with the 
complexity of the problem, causing extremely 
costly search times. 
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2.1.4	-		Ant-colony	Optimisation	
The ant colony optimisation algorithm is inspired by the ant’s ability to locate food. In nature, 
ant colonies require their worker ants to leave the nest and locate food to sustain the queen and 
the rest of the colony. Ants move randomly to find food and always leave a track of pheromones 
behind them which can be detected by other worker ants. When an ant finds a pheromone track it 
follows it and if it leads to food, then the ant returns to the nest, leaving its own pheromone track 
alongside the initial one. Over time less favourable pheromone tracks evaporate and become less 
travelled, causing tracks that lead to food to be more potent and the most attractive ones for other 
ants to follow. 
 
Marco Dorigo first proposed the use of this natural phenomena in 1992[13], categorising it with 
other swarm intelligence methods. Originally the idea was limited to finding an optimal path in a 
graph but has since been developed allowing its application to other problems, with one such 
problem being timetabling. The algorithm works using traversal through a tree structure. An ant 
is given a probability of moving from a node I to a node j with a certain probability. The 
probability is calculated for each node using an equation which relates the “pheromone level” of 
the edge between the nodes, some constants and the “desirability” of the edge. After each move, 
the pheromone levels of each edge are recalculated accordingly. This process continues 
iteratively until the best path through the tree is found. 
 
The Max-min extension[14] to the ant-colony optimisation algorithm was developed by Hoos and 
Stüzle in 1996 and is the most effective extension when addressing a timetabling problem, due to 
its ability to distinguish paths according to a maximum and minimum. This allows a for soft 
constraint optimisation, making it a good method for solving our timetabling problem.  
 
 
Figure 8 

Advantages Disadvantages 

Can be run very effectively in parallel. Can become quite complex to develop and 
debug. 

Can be used for dynamic problems (adapts to 
new changes to the problem). 

Aspects based on randomness (although each 
random decision is not independent) 

Positive feedback accounts for fast discovery 
of viable solutions. 

Time to converge on a solution is completely 
unpredictable and can be very long. 
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2.1.5	–	Genetic	algorithm	choice	justification	
After comparing the aforementioned optimisation algorithms, I made the decision to use a 
genetic approach as the basis of my main algorithm. This is mostly due to its nature of reaching 
the global optima far more often than other optimisation methods (given enough time) due to its 
large coverage of the search space, but also because there are many ways to improve and 
optimise a genetic algorithm. Genetic algorithms work very effectively in conjunction with 
aspects of other methods e.g. Local search methods. Being able to combine the best of other 
solutions in order to streamline my genetic algorithm will allow for a large portion of the search 
space to be explored whilst also guaranteeing an optimal solution (or even the global optimum). 
 
One of the main advantages that the other methods have over a genetic method is the speed in 
which they return a viable solution. In most areas of computer science this would indeed be a 
huge advantage, but due to the nature of the course timetabling problem, and its real-world 
applications, is not so much of an advantage. University timetables are only generated a small 
number of times per year. This means that having a slower algorithm becomes much less of a 
problem as time is not a limiting factor, and in fact, time is not a factor at all because the 
algorithm can be started a long time before its resultant solution is required. Genetic algorithms 
are also relatively easy to implement, which gives me time to make my algorithm more advanced 
with the additions of other methods, and more time to improve aspects of the genetic algorithm 
such as the fitness function, and the efficiency of the code.  
 
2.2	–	Previous	solutions	to	course	timetabling	solutions	
Solutions	to	the	timetabling	problem,	and	more	specifically	the	course	timetabling	problem	
have	been	discussed	 for	over	20	years,	with	a	vast	amount	of	different	approaches	being	
attempted.	 I	will	only	mention	variants	 that	have	used	a	genetic	algorithm	as	 the	base	of	
the	 approach,	 although	most	 high	 performing	 algorithms	 are	 a	 hybrid	 between	 different	
search	techniques.	Although	I	only	mention	a	few	examples	 in	this	section,	 I	am	aware	of	
many	other	papers	addressing	 this	 topic.	 Some	of	which	are	present	 in	my	bibliography,	
and	 others	 including	 examples	 given	 by	 the	 Cardiff	 University	 mathematics	
department[26][27].	 I	 don’t	 go	 into	 more	 detail	 on	 the	 Cardiff	 papers	 due	 to	 their	 highly	
theoretical	 nature,	 which	 does	 not	 aid	 this	 project	 much.	 I	 have	 chosen	 the	 following	
examples	because	 they	either	demonstrate	 a	novel	 approach	 to	 the	problem,	or	 they	are	
specifically	 aimed	 at	 a	 genetic	 approach.	 They	 also	 are	 very	 detailed,	 covering	 most	
fundamental	material	found	in	other	papers	that	I	have	read,	making	the	reference	to	other	
papers	redundant	unless	seeking	very	specialized	information.	
	
2.2.1	–	Spyros	Kazarlis,	Pavlina	Fragkou	and	Vassilios	Petridis	
This paper[15] presented a method for solving university timetabling problems using a genetic 
algorithm that had a heuristic local search element. In the testing section of the paper, a large 
number of different hill climb operators are tested to determine which resulted in the most 
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efficient algorithm. The final version of the algorithm which is presented at the end of this paper 
used a MicroGA Combinatorial Hill Climb operator[16] set with a probability equal to one. 
 
This paper is interesting and presents a wide array of different operators that can be applied to 
genetic algorithms. It also gives me a benchmark as to the difficulty that I set my test cases at. 
 
 
2.2.2	–	Enzhe	Yu	and	Ki-Seok	Sung	
This paper[17] presents a rare approach, using a sector-based genetic algorithm to solve university 
course timetabling. Again, this testing element of this paper is very useful and gives insight 
about the kind of benchmark I should be setting my test cases at. The paper also presents an 
interesting method of decreasing the search space to a feasible size by implementing a “check-
and-repair” routine to ensure that each solution in a population does not violate any hard 
constraints. Although the paper is short, and the tests presented in conclusion were only 
preliminary, it shows the use of a technique (check-and-repair) that I had not considered until 
reading the paper. 
 
2.2.3	–	E.	K.	Burke,	J.	P.	Newall	and	R.	F.	Weare	
In this paper[18] it is explained that genetic algorithms are one of the best methods to approach 
course timetabling problems due to the algorithm’s ability for optimisation. It goes on however 
to state that algorithms which combine genetic and local search techniques normally produce 
better results than just a genetic algorithm, concreting my belief that a combination of techniques 
will work better than just a genetic approach on its own.  
	
2.2.4	–	Problems	with	previous	solutions	
There have been many different algorithms created to solve university timetabling problems, 
with some of the earlier attempts being made over thirty years ago. Most of these problems have 
been created for a Master’s, PHD thesis or for a scientific journal. Taking that into account, I 
believe that the time limit placed on this one-term project alone rules out the goal of trying to 
improve on these past algorithms, especially considering the amount of time that can be spent 
writing a PHD thesis. With that in mind, I will attempt to create an efficient algorithm that can 
solve real world problems. 
 
Due to ageing nature of many previous solutions to this problem, I will be able to explore the use 
of new techniques that had not be developed at the time of these older solutions. I will also be 
able to use more complex test cases, pushing the algorithm to perform at a new scale due to the 
power increase of computing hardware/software. 
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2.3	–	Cardiff	Universities	current	timetabling	method	
To understand the current approaches to timetabling currently practiced by universities, I 
requested a brief overview of the current process used by the school of Computer science and 
Informatics in Cardiff University. The timetabling officer (Helen Williams) sent me an overview 
of the current process that they currently use.  
 
Firstly, it should be noted that everything listed here is done by hand, taking up staff time to the 
extent where a job role has been created to manage the task (although timetabling isn’t her only 
role). Below is a brief overview of their current approach: 
 

1. Information	is	collected	for	the	next	academic	year	
a. Module	 list,	 staff	 delivering	 each	 module,	 	 whether	 the	 module	 is	 core	 or	

optional,	 each	 modules	 lecture,	 lab	 (hardware),	 tutorial	 requirements	 and	
expected	number	of	students.	

b. Collect	specific	constraints	(e.g.	staff	availability,	university	imposed	free	periods	
etc.).	

c. Lecture,	lab	(hardware)	and	tutorial	requirements	for	each	module.	
d. Room	list	with	capacities.	

2. Start	timetabling	with	the	most	constrained	programs	first.	
3. For	year	1	allocate	lectures	and	support	sessions	for	Computational	thinking	weeks	(1-4)	
4. Continue	with	second	and	final	year	students,	checking	for	clashes.	
5. Timetables	then	circulated	to	all	teaching	staff	for	checking,	and	then	adjustments	made	

as	required.	
6. Work	with	the	Universities	central	timetabling	team	to	upload	and	check	timetable	data.	
7. Adjustments	made	throughout	semester	as	required.	

 
This method, whilst effective, is very resource inefficient. All teaching staff are required to 
individually check the timetable to check for issues personal to themselves. This, alongside the 
need for a central timetabling team and a specific timetabling officer, demands a huge amount of 
staff time. Implementation of my final algorithm would allow Cardiff university to task stages 2 
through 5 to my automated algorithm, saving huge amounts of staff time. I also notice that there 
is no optimisation stage, where different variations are compared for soft constraints to maximize 
staff/student convenience. This would be something that automatically occurs in the generation 
of timetables if my final algorithm was to be implemented. 
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3	–	Problem	Statement	and	Basic	Algorithm	
	
3.1	–	Problem	statement	
As already stated, the algorithm I am creating is designed to solve university course timetabling 
problems. As such, there are a set of constraints and problem variables that define the type of 
solvable problems, and how these problems are “solved”. 
 
Due to the time constraint of this one-term project, I have decided to focus solely on the main 
algorithm, and pay minimal attention to developing a user-friendly application. Due to this, I will 
“hard-code” in the constraints that are used to evaluate the target function of a given timetable, 
as opposed to allowing users to input their own hard and soft constraints. I selected these 
constraints to reflect the basic constraints normally implemented into university course 
timetables. Below are all the hard and soft constraints that I will be using this algorithm. 
 
 Hard 

- There can be no student clashes, e.g. one student cannot be assigned to two commitments 
in the same time slot. 

- There can be no lecturer clashes, e.g. one lecturer cannot be assigned to teach two 
commitments in the same time slot. 

- The same room cannot be allocated to two different teaching commitments in the same 
time slot. 

- Teaching commitments should not be assigned to time slots not specified to be in the 
working day. 

- Every teaching commitment for every module should be allocated in its own 
timeslot/room combination. 

 
Soft 

- There should be no lectures assigned to 9 am slots. 
- Lectures should be grouped into blocks and not spread out throughout the day. The 

specific constraint is that no two adjacent slots for a student should be more than four-
time slots apart. 

 
 
Problem variables 
There are four types of problem variables that I have designed the program to work with: 

- Commitments 
- Timeslots 
- Modules 
- Rooms 

 
Each of these variables allows the input timetable problem to be expressed. The commitments 
are a set of variables that express each individual teaching commitment and the lecturer required 
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to instruct it that must be present in the final timetable, e.g. one module may have a set of ten 
commitments that are required per week to deliver the module to the students. Rooms are a set of 
variables that express how many rooms are available for use. The timeslots are a set of variables 
that express each slot in which a commitment can be placed. Therefore, the total amount of 
possible allocations for the commitments is equal to (rooms x timeslots), because for every 
timeslot a commitment can be allocated to each room. Finally, the modules are a set of variables 
that express all the modules, and all the lecturers that assigned to each module.  
 
I have designed the variables in this way as I believe it is the most intuitive way. It allows for the 
user input configuration file to be relatively easy to create whilst modelling the problem in a way 
which is easy to understand, regardless of increasing complexity. 
 
3.2	–	Representing	the	problem	
The basis of any genetic algorithm is having a population of individual solutions, each having a 
set of genes that defines it. I have decided to stray away from the normally used binary string 
gene representation, and instead, use a class-based representation. The main reason I have made 
this design choice is for simplicity. I wanted to be able to easily visualize the problem, and avoid 
having code that worked on a very long binary string which was difficult to understand, 
especially with increasing problem complexity. Each individual solution in a population is an 
object of the solution class. This solution class contains different getter and setter methods, but 
most importantly contains a list of slot objects. Each slot object contains a mapping from a given 
commitment, to a room and a timeslot. So, the genes of an individual are made up of a group of 
slot objects, where there is one slot object for every given commitment. 

Figure	9	
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3.3	–	Basic	algorithm		
The basic algorithm that I have designed is a genetic algorithm with tournament selection for the 
parent selection, and crossover and mutation operators for the child population generation. This 
basic algorithm provides the base genetic operations of most genetic algorithms and provides a 
baseline to gauge the value of additional, more advanced features. There are five main methods 
in the timetable class that are used in the basic genetic algorithm, these are: 
 

1. newGeneration() – Used every iteration to create the new generation. 
2. createChild() – Takes two parent solutions as arguments, and returns a child solution. 
3. crossover() – Takes two solutions as arguments, and returns a child solution that is a 

result of performing a crossover operation on the two parents. 
4. mutateChildOld() – Takes a child solution as an argument, and mutates it. 
5. tournamentSelection() – Randomly selects a number of individuals from the population, 

and returns the index of the individual with the best (lowest) fitness score. 
 
The newGeneration() method is called at the start of every iteration of the algorithm, and it’s 
responsible for enacting each part of the main genetic algorithm. Below is the program flow for 
each iteration of the basic algorithm, all of which occurs from inside the newGeneration() 
method. 

Figure 10 
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When designing each section of the algorithm I have aimed to keep the time complexity as small 
as possible, with only two methods: one constraint check and the hill climbing operator added 
later in this report having a time complexity of O(n2). Every other method has a time complexity 
of O(log(n)n) or better. I have done this to allow the algorithm to scale with problem size and not 
becoming impractical to run. 
 
Below I will describe in more detail the three main aspects of the basic genetic algorithm: 
tournament selection, genetic crossover and mutation. 
 
Tournament selection 
I use the selection method of tournament selection in this basic algorithm. The reasoning behind 
this is due to the use of a minimising fitness function. The main alternative to tournament 
selection is roulette wheel selection, but this can be difficult to implement for a minimising target 
function. Implementation would involve normalisation and further modification to each solutions 
fitness score, which would add more complexity to the algorithm design. I do however 
implement roulette wheel selection later in the testing section of this report, and provide a 
comparison of the two methods. Additionally, tournament selection allows me to control the 
selection pressure; a feature that roulette wheel selection doesn’t allow. I have decided to use 
three contestants per round for preliminary testing of the basic algorithm. This is because I 
believe 2 contestants would cause too weak of a selection pressure, resulting in a very slow 
convergence, and 4 or more contestants would result in too high of a selection pressure resulting 
in too fast of a convergence and a saturation of similar solutions, cutting out large sections of the 
search space. Below is pseudo code for the tournament selection function.  
 

 
 
Crossover 
Genetic crossover is a fundamental genetic operation used in every genetic algorithm. For the 
basic algorithm, I will use random midpoint selection; a method which selects a random mid-
point and selects the first parent’s genes from in front of the mid-point, and the second parent’s 
genes from after the mid-point. I am using this because it is the standard implementation and the 
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most often used; however, I test different implementations in the testing section of this report. 
Below is the pseudo code for the random point crossover operation. 
 
 

 
 
Mutation 
Mutation is another essential operator in genetic algorithms. Its purpose is the add the element of 
random mutation that is found in nature, in turn maintaing genetic diversity from one generation 
to another. This genetic diversity helps prevent a saturation of one high fitness individual in 
separate generations. When testing the basic algorithm, I will mutate 20% of the child population 
(although each individual has a 20% chance of being mutated, so the 20% of the whole 
population is an estimate and subject to random chance). I will then mutate 5% of the selected 
solutions slots. The selection of these values has no basis in testing, but purely on what I believe 
to be reasonable values, however, the optimal values for the final algorithm are tested for in the 
testing section. It is impossible to have a set mutation rate that works for every possible genetic 
algorithm, therefore the only real way to find the optimal value is through trial and error testing, 
which is something performed later in this report. Below is pseudo code for the mutation 
operator used in the basic algorithm.	
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3.4	–	Algorithm	support	code	
Alongside the main algorithm, there are elements of the program which the algorithm requires to 
function. These elements are all located in the timetable class and will never change for the rest 
of this project, even when the main algorithm changes later in the testing section. These are: 
 

- Reading in the input file 
- Outputting the final timetable 
- First population initialization 
- Checking stop condition every iteration 
- Calculating the fitness score for an individual in a population 

 
Reading in the input file 
This section of code reads the problem variables from the input configuration file and saves it in 
memory for use by the algorithm. It scans the input file line by line and looks for tags (much like 
HTML syntax), with a tag indicating what the following lines of input are. This part of the 
program is very simple and doesn’t require any in-depth explanation. The code itself is contained 
in a method called readInput(), which takes the input filename as an argument. The specific 
usage and syntax of the input file are explained later in this report. 
 
Outputting the final timetable 
After the algorithm has finished running, and a suitable timetable has been generated, it is 
outputted in a human readable format. This is handled by a method called outputTimetable(). It 
scans each commitment allocation in the final solution timetable, and outputs it to a text file 
called “outputTimetable.txt”.  
 
First population initialization 
For the genetic algorithm to have a starting point, an initial population must be created. It is 
important for this population to be random so that there is as much of the search space covered as 
possible. If there are large gaps in the search space not covered by the initial population, then 
there will be lost solutions, one of which may be the global optimum. I have therefore created the 
individuals of the initial population using a pseudo-random number generator. A pseudo-random 
number generator will ensure that there is a good coverage of the search space due to way the 
way in which pseudo random generators behave. Instead of a true random number sequence, 
pseudo random sequences tend to be more evenly spread. The final coverage will be determined 
by the population size (a larger population will result in a better coverage). This is handled by a 
method called initialPop(). InitialPop() generates each individual in the initial population with 
random timeslot and room value for every commitment. Not only does this ensure a good 
coverage of the search space, but it also ensures that every commitment is being assigned, and 
being assigned only once. Below is pseudo code for the function initialPop(). 



 22 

Stop condition check 
At the end of each iteration, when the new population has been created and the previous best 
solution has been updated, a stop condition is checked before the start of the next iteration. This 
stop condition is when the previous generations best solution has a fitness score of 0 (violates no 
constraints), or if a maximum number of generations has been reached. The maximum number of 
generations is set by the instance variable “maxGenerations”. This check is performed in a for 
loop, inside the constructor method of the timetable class. 
 
Fitness score calculation 
Calculating the fitness score for a timetable solution is arguably the most important element of 
every genetic algorithm. The fitness score must accurately portray how optimal a solution is, 
whilst allowing for a large range of values for solutions to be compared easily (e.g. a binary 
value of 0 or 1 is a very bad range for a fitness function as it is impossible to differentiate 
between all the solutions with a 0 value, or all the solutions with a 1 value). 
 
The fitness function I have created for the algorithm is a minimising target function (meaning 
that the best possible fitness score is 0). For every hard constraint violated, a score of 10000 is 
added to the total fitness score. For every soft constraint violated a score of 10 is added to the 
total fitness score. This clearly biases hard constraints to have far more of a negative impact on 
the fitness score if violated. The purpose of doing this is to ensure that an invalid solution is 
never picked over a valid solution (breaks 0 hard constraints), despite however many soft 
constraints each solution violates. The purpose of the drastically smaller value of 10 being 
assigned to soft constraint violations is to allow valid solutions to be optimised (a valid solution 
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with less soft constraint violations will be picked over another valid solution with more 
violations). 
 
Calculating a fitness score for a solution is handled by the calcFitnessScore() method. This 
method contains checks for all the constraints and awards an appropriate score based on the 
violations. 
 
Instance variables 
There are many instance variables inside the timetable class, most of which are used to control 
different aspects of the main algorithm. I won’t go into detail here because they are mainly used 
for testing purposes, however, I have made comments in the code to explain them. 

3.5	–	Input	file	syntax	 
I have allowed my algorithm to take an input configuration file for users to input the details of 
their specific problem. The file is a plain text .txt file and its file path should be included as the 
first command line argument. The file consists of a set of tags which denote the beginning and 
end of a group of variables, much like the tag system used in hypertext languages such as 
HTML. In-between these tags are each individual variable input, as either a string or a tuple of 
integers and strings. Below is a list of each possible tag: 

 
1. ::start::  - (This must be in the first line of every input file) 
2. ::ts::  - (This denotes the section defining each timeslot) 
3. ::c::  - (This section defines each academic commitment) 
4. ::m::  - (This section defines each module) 
5. ::r::  - (This section defines each room available room) 
6. ::end::  - (This denotes the end of the file) 

 
 
1. The start and end tag must be present in a valid input file.  
2. Entries in the ::ts:: section allow each timeslot to be specified in the form of a tuple where 

index 0 is an integer indicating the day a slot is in, and index 1 is a string indicating the start 
time of each slot.  
For example, [1, 09:00] is an input specifying the timeslot is on the first day and starts at 
09:00. 

3. Entries in the ::c:: section allows for each educational commitment to be specified in the 
form of a tuple. Index 0 of the tuple is a string indicating the name of the module being 
taught in that commitment, and index 1 is another string indicating the name of the lecturer 
assigned to teach that specific commitment. Each individual input indicates one commitment 
for that module. Therefore, there may be many duplicate entries in this section if there are a 
lot of commitments for one module, all taught by the same lecturer. 
For example, [cm0000, ACJ] is an input specifying the commitment is for a module cm0000 
and the lecturer assigned to it has the intials ACJ. 
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4. Entries in the ::m:: section allows for each module to be specified in the form of a tuple. 
Index 0 of the tuple is a string indicating the name of the module, and index 1 is another 
string indicating the name of the lecturer assigned to teach that module. Multiple entries for 
one module is necessary if more than one lecturer is allocated to teach it. 
For example, [cm0000, ACJ] is an input specifying the module is named cm0000 and the 
lecturer assigned to it has the initials ACJ. 

5. Entries in the ::r:: section allows for each room to be stated in the form of a single string 
denoting the name of the room. 
For example, room1 would denote that there is a room named “room1”. 

 
Simple example file 
 
::start:: 
::ts:: 
[1,09:00] 
::ts:: 
::c:: 
[cm0000,1422447] 
::c:: 
::m:: 
[cm0000,1422447] 
::m:: 
::r:: 
room1 
::r:: 
::end:: 
 
I intend for my algorithm to only solve on a weekly basis, however, it is possible to design the 
inputted configuration file in a way that can create timetables for longer periods i.e. for a whole 
academic term. To do this, just add extra weeks by incrementing the days for each consecutive 
week e.g. week 2, day 1 would be day 6 if we are working with a 5-day week. 
	
3.6	–	Output	timetable	format	
After the algorithm has generated a suitable solution timetable, a text file is generated in the 
directory where the run.java file is located. This text file contains the solution timetable in a 
human readable form and a breakdown of the number of hard and soft constraint violations for 
the timetable. For the purposes of testing it also includes the best fitness score and the generation 
on which it was achieved, the maximum allocated heap memory and the total time taken to 
complete. Below is a very simple example of the file format. 
 
Figure 11 
-------------- Fitness Score / Generation -------------- 
Fitness score of: 0, achieved on generation: 67 
-------------- Maximum JVM memory usage -------------- 
Maximum memory = 1864192KB 
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-------------- Time taken to run -------------- 
Time taken = 50878ms 
-------------- Violated Constraints -------------- 
Fitness Score = 0 
Hard constraints: 0 
Soft constraints: 0 
 
-------------- Timetable -------------- 
-------- Day 1 -------- 
Time: 10:00, Room: room1, Module: cm0000, Lecturer: l1 
Time: 11:00, Room: room1, Module: cm9000, Lecturer: l3 
Time: 12:00, Room: room1, Module: cm0000, Lecturer: l1 
Time: 13:00, Room: room1, Module: cm0000, Lecturer: l1 
Time: 14:00, Room: room1, Module: cm0300, Lecturer: l1 
Time: 15:00, Room: room1, Module: cm9000, Lecturer: l3 
Time: 16:00, Room: room1, Module: cm0300, Lecturer: l1 
Time: 17:00, Room: room1, Module: cm0040, Lecturer: l2 
-------- Day 2 -------- 
Time: 10:00, Room: room1, Module: cm9000, Lecturer: l3 
Time: 11:00, Room: room1, Module: cm2000, Lecturer: l2 
Time: 12:00, Room: room1, Module: cm0040, Lecturer: l2 
 
3.7	–	Using	the	application	
I have decided to develop the application in Java. I had the choice between four languages that I 
have experience with: Java, Python, C++ or Matlab. Python has by far the slowest performance 
of the four so I didn’t want to use it. C++ or Matlab would have been the best in terms of speed, 
however, I am unfamiliar in Matlab and have been told that it is easy to write very inefficient 
Matlab code, and I am also not confident enough in C++ to avoid memory leaks and inefficient 
code. Therefore, I have decided to use Java as it has better performance than scripting languages 
like Python, and Java is my most comfortable language to develop in.	As I’m writing the main 
program for this project in Java, it makes sense to design it in an object-oriented manner. 
Therefore, the final program consists of four java class files: run.java, timetable.java, slot.java 
and solution.java.	
 
Run.java 
This class file contains the main method which is required by java to run programs, and this is its 
only function. The main method creates a new instance of a timetable object, which in turns runs 
the constructor method of a new timetable object, causing the main algorithm to run. 
Timetable.java 
This class file contains all the methods and instance variables for running the main program. 
Creating an instance of the timetable class causes its constructor to run, which in turn runs the 
main program. 
Slot.java 
This class file is used to create slot objects. A slot object represents the genes for a specific 
timeslot/room/commitment combination. A list of slot objects contained in a solution object 
defines that solution “genes”. Each slot object contains three instance variables used to save the 
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timeslot, room and commitment. It also contains a setGenes() and copy() method, which are used 
to set the genes and copy itself in the form of a new slot object respectively. 
Solution.java 
This class file is used to make solution objects. Each separate individual in a population is a 
unique timetable solution, which is represented as a solution object. It contains a list of slot 
objects, the solutions last calculated fitness score and several setter and getter methods for these 
instance variables. 
 
Once all the above .java files have been compiled, the program can be run using the command: 
 

java run config.txt 
 

The run element refers to the run class file, and the config.txt element refers to the name of the 
input text file. It is important that all the class files and the configuration file are in the same 
directory. 
 
3.8	–	Implementation	Issues	
During the development process, two major issues arose. The first issue was a coding mistake 
that caused the genes for every individual in a population to change at seemingly random times, 
even when not being explicitly modified in the code. This issue was caused by the way I was 
copying objects between different generations. There were two points in my code (a getter in the 
solution class and an operation in my mutation class) that were passing references when they 
should have been copying the objects contents and returning a new object. This was causing 
multiple individuals in a population to all contain a reference to the same group of slot objects, 
effectively making them the same individual. This mistake set me back over two weeks, but also 
forced me to learn more in depth debugging techniques, such as the use of the debugger module 
in the IntelliJIDEA IDE. I discovered the bug after stepping through a call to the solution object 
and noticing multiple identical instances stored in memory, this made me think about what could 
possibly cause that scenario, with the obvious answer being that references were being passed 
somewhere that they shouldn’t. 
 
The second major implementation issue was a bug in my room feature code. I had initially 
planned to include room features (room size, room type etc.) into my algorithm, however after 
fixing the aforementioned reference bug, another bug appeared that was causing the room 
constraint checks to either not work (didn’t register a room feature clash), or it did work but 
almost doubled the run time. After attempting to debug it with no success, I decided to just 
remove the functionality due to the lack of time to complete the project. Given more time, a fix 
of this bug would be the first addition I would make to the algorithm. 
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4	–	Algorithm	improvements	
	
4.1	–	Hill	climb	operators	
Hill climbing[23] is an optimisation technique which belongs to the local search family. I will use 
it to locally optimise a specific individual solution or set of solutions. Instead of the normal local 
search method of exploring neighbouring solutions and selecting the best, a hill climb search 
incrementally changes a single element of the solution and evaluates the solutions fitness score 
after each change. If the fitness score has improved (got lower), then the change is saved. 
Normally, this process continues until a better solution cannot be found, making it a full hill 
climb search.  
 
I will be implementing two separate hill climb operators, one for each of the two changeable 
parts of the solutions genes: the room and the time slot. I will implement the hill climbing 
operators in four different ways: on the best solution in the population, on the best N solutions in 
a population, on every solution in the population and on a random selection from the population. 
This section of the algorithm has one of the highest costs to run, with a time complexity of O(n2). 
This will make it time consuming to run on a high number of solutions, meaning that I will be 
restricted to the percentage of the population I can run it on. I have tried my best to find a more 
efficient method of designing this method, but due to time constraints I have had to settle with 
this time complexity. 
 
I aim for the implementation of a hill climb operator to give the genetic algorithm a “push” 
towards a more valid population. Small improvements to individuals in each generation should 
have the effect of narrowing down the search space search to areas with more promising 
solutions by allowing a slight increase in convergence speed. This should have the effect of 
increasing the fitness score of the final solution. 
 
I am testing each implementation to conclude on the best method. Instead of completing a full 
hill climb search, I will be stopping after the first improvement has been made. I have decided to 
do this for two reasons: firstly, completing a full hill climb search will be extremely expensive, 
especially when there is a high complexity timetable problem that has many possible time 
slots/room combinations. Secondly, completing a full hill climb search would prematurely 
converge the whole population (when hill climbing the best solutions in a population) as a small 
number of individuals would coverage on a local optimum too rapidly. This would result in a 
population saturation of non-global optima solutions and cause large amounts of gene loss.  
 
Below is pseudo code for my implementation of both operators. 
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4.2	–	Mutation	rate	ramping	
This is a feature that I have designed and implemented myself, and after searching have 
subsequently not been able to find mention of a similar technique being used before in any of the 
scientific papers that I have found. This feature waits until a fitness score plateau is detected (a 
better fitness score has not been found in many consecutive generations), and begins to steadily 
increase the rate of mutation, hence why I have called it “Mutation ramping”. After running for 
many generations (plateau has existed for a very large amount of generations), mutation rates 
reach 100% and has the effect of transforming the last generations into a random search. The 
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idea behind implementing this kind of feature came when I noticed that after a long plateau, a 
very large percentage of the population had the exact same genes. As a result, any further 
generations of individuals would take too long to improve as the default mutation rate clearly 
wasn’t causing an increase in fitness scores. Therefore, by incrementally increasing the mutation 
rates, there is a higher chance that a solution is found which allows the plateau to be broken. 
After a better solution is found, the mutation rates revert to their default values and the algorithm 
continues as normal. I hope that mutation ramping will provide a way of speeding up the escape 
from plateaus observed in test cases of large complexity. 
 
I am testing the effectiveness of this technique in section 5 of this report. I have no basis 
regarding what to expect as I couldn’t find a previous approach which has included a similar 
technique. Therefore, it is possible that this functionality has no effect or decreases the chance of 
breaking out of a plateau. I will be testing different settings for the mutation ramping, including 
the number of consecutive generations of similar fitness scores required to begin ramping the 
mutation rates and the amount by which the mutation rate is increasing each time. Below is 
pseudo code for my implementation of “Mutation ramping”. 
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4.3	–	Roulette	wheel	selection	
As described in section 2.1.1, roulette wheel selection is an alternative to tournament selection. I 
have implemented it in a way that enables it to be used with a minimising target function. I have 
compared the two methods of selection in section 5. Below is pseudo code for how I have 
implemented roulette wheel selection. 

 
	

As seen above in line 4, the inverted score is calculated by subtracting the individual’s fitness 
score from the largest present in the population. To prevent individuals who have the largest 
score from getting a score of 0 and becoming impossible to select, I add 10 to every solution so 
that individuals no longer have inverted scores of 0, but of 10. 
	
4.4	–	Types	of	crossover	
There are many different methods of implementing a crossover operation into a genetic 
algorithm, many of which were mentioned in section 2.1.1. To improve the basic algorithm, I 
will be testing four different types of crossover implementation: 
 

- Fixed mid-point 
- Random point 
- Random two point 
- Uniform 

 
The first three are common implementations, where I expect the fixed mid-point to perform the 
worst. This is because having a fixed mid-point increases the speed of which individuals in a 
population become the same due to the crossover operator mixing the exact same halves of genes 
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every time. Random and Random two-point should perform better than the fixed mid-point 
because the same halves of genes aren’t being crossed over every generation, leading to the 
likelihood of two individuals becoming identical being reduced. Uniform crossover has 
interesting advantages such as helping to prevent premature convergence by providing the most 
mix of genes. I believe that these advantages, coupled with the most random split of genes 
possible, will mean that this operator performs the best out of the four. Below is pseudo code for 
my implementation of Uniform crossover.	
	

	
	
4.5	–	Variations	in	operator/genetic	parameter	values	
In	 addition	 to	 all	 the	 new	 functionality,	 it	 is	 possible	 to	 improve	 the	 basic	 algorithm	 by	
changing	the	values	for	which	all	the	operators	and	other	evolutionary	variables	use.	I	am	
modifying	the	values	of	the	following	when	testing	in	section	5:	
	

- Population	size	
- Number	of	contestants	used	in	tournament	selection	
- Percentage	of	each	generation	mutated	
- Percentage	of	slots	mutated	for	each	selected	individual	
- Number	and	type	of	individuals	subjected	to	the	hill	climb	operators	
- Mutation	ramping	variables	

o Number	of	consecutive	unchanging	generations	to	trigger	mutation	ramping	
o Amount	of	increase	in	the	percentage	of	population	mutation	
o Amount	of	increase	in	the	percentage	of	slots	for	a	selected	individual	
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5 –	Results	and	Evaluation	
	

With genetic algorithms, it is difficult to calculate the best parameter values theoretically. As a 
result, we must find the best combination of values and additional functionality through a trial 
and error form of testing. In this section I display how the final algorithm parameters and 
operators were settled on, and demonstrate the capabilities of my final algorithm in terms of its 
ability to solve real world timetabling problems and its performance on more complex test cases. 
 
I have performed all the testing on the same machine, with the only non-necessary process being 
the algorithm. Below is the Hardware and software specifications for the machine used. 
 
Hardware 

• Model:	iMac	(21.5-inch,	Late	2013) 
• Processor:	2.9 GHz Intel Core i5 

o Speed:	2.9GHz	
o Number	of	Processors:	1	
o Number	of	cores:	4	

• Memory	(RAM):	2	x	4GB	1600	MHz	DDR3	(8GB	total) 
• Graphics:	NVIDIA	GeForce	GT	750M 
• L3	Cache:	6MB 

 
Software 

• Operating	System:	OS	X	El	Capitan	(Version	10.12.4) 
• Kernel	Version:	Darwin	16.6.0 
• JVM: Java HotSpotI 64-Bit Server VM (25.101-b13, mixed mode) 
• Java: version 1.8.0_101, vendor Oracle Corporation 

	
5.1	–	Testing	goals	and	methodology		
My test experiments will be split into two sections. Firstly, I will perform experiments to 
determine the best parameter values / additional functionality for the following: 
 

- Mutation	rates	
- Crossover	methods	
- Selection	methods	
- Mutation	ramping	
- Hill	climb	operator	

 
Secondly, I will “stress test” the final algorithm by running it with a large, high complexity test 
case. I will additionally determine its ability for solving real-world problems by running it on a 
previous year’s scenario that occurred in the computer science department of Cardiff university. 
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5.1.1	–	Test	cases	
A vital part of my testing is the test cases I will be using, and how they are created. Different 
features of the algorithm can use test cases of different size and complexity, and this is necessary 
due to the time constraints of this project. Ideally, I would like to test each feature on a 
large/complex test case and run it for a long-time period. However, if I can determine the 
difference in feature values by using a simpler test case and running it for a shorter time, than 
this is clearly beneficial when under working under the time constraint of this project. Shorter 
test cases will also allow me to run each experiment multiple time and calculate an average 
score, something which I consider more of an advantage then testing on larger test cases, 
especially with the element of randomness present in my algorithm (mutation, initial population 
generation etc.). For that reason, I will use three different types of test cases: small, medium and 
large, each with the following parameter values. 
Figure 12 

Test cases Number of 
students 

Number of 
modules 

Year 
groups 

Total 
commitments 

for all 
modules 

Number of 
rooms 

Number of 
lecturers 

Small 80 20 4 100 5 20 
Medium 300 20 5 200 6 30 

Large 600 60 6 10 15 40 
 
The difference between the size of the test cases is due to their complexity. I have increased the 
complexity in the following ways. 

- Increasing	the	number	of	students	and	modules	
- Increasing	the	number	of	year	groups,	causing	the	potential	 for	more	student/lecturer	

clashes	
- Increasing	 the	 total	 commitments	 more	 than	 the	 increase	 in	 the	 number	 of	 rooms,	

causing	 there	 to	 be	 less	 potential	ways	 to	 formulate	 a	 valid	 solution.	 I	 have	 however	
increased	the	number	of	rooms	in	a	bid	to	maintain	valid	solutions.	

- Increasing	the	number	of	lecturers	
 
 I aimed to design the values of each test case so that they would be like real world solutions. For 
example, the medium and large test cases rely on an increase in rooms to manage the complexity 
when increasing the amount of commitments. Fewer rooms is a much more likely scenario than 
each module having a large amount of commitments per week. Ultimately, I settled on the above 
values after some calculations and trial and error. I did research benchmarks and test cases used 
in previous university course timetabling solution attempts documented in other scientific papers, 
however many of the previous solutions are very outdated, causing their benchmarks to also be 
outdated. They were based on the limitations of the hardware of their time and don’t translate 
well to the specifications of modern hardware. Therefore, I concluded to design my own test 
cases.  
 



 34 

Due to nature of my input file syntax, and the size of the medium and large test cases, it would 
be impractical to create each test cases by hand. Therefore, I wrote a python script to 
automatically generate a test case based on each parameter given in the above table. This script 
will be included in the appendix. I require multiple of the same sized test cases, so therefore 
require each test case to be generated in a random way, allowing for variety in the same sized 
test case whilst still aiming for the test case to be solvable. This is a challenge that I have 
struggled with as it is impossible to determine if the algorithm is returning a poor score because 
of its design or because of a poorly constructed test case. I manage to overcome this uncertainty 
to an extent by mathematically approximating the difficulty of the test cases based on its values, 
and by controlling the randomness to values within a range which should result in more viable 
test cases. For example: 
 
Small test case 

- Possible	allocations	=	time	slots	*	rooms	
- Allocation	and	commitment	overlap	=	possible	allocations	–	commitments	
- If	the	overlap	is	positive	then	there	are	enough	ways	to	allocate	the	commitments.	If	it	is	

negative	then	the	test	case	is	impossible.	
There are other factors that also need to be considered, such as lecturer to module ratio. This will 
not impact as much on the small test cases, but on the medium and large it is a major determiner 
of complexity. The medium and large test cases rely on more rooms to decrease the complexity 
to realistic levels. However, this becomes a problem if the module to lecturer ratio is too low. It 
leads to more lecturer clashes as there are many different modules occurring in the same time 
slots due to many rooms being available.  
 
Some test cases may still be unsolvable, and there is no way of knowing whether this is the case. 
However, this is not an issue for the first stage of testing as a difference in fitness score is still 
possible to be observed, and the validity of results is unchanged. The python script aims to 
introduce randomness into the test case generation whilst still aiming for solvable solutions using 
the following method: 
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5.2	–	First	testing	stage:	finding	the	optimum	algorithm	
The overall goal of the first stage of testing is to optimize the algorithm to generate time tables 
with the lowest fitness score possible. The algorithm will be optimized by identifying the best 
parameter values and combination of additional functionalities. One way of constructing 
experiments to achieve this goal is by doing an exhaustive test which compares every possible 
combination of algorithm. This is impractical due to the amount of variation that my algorithm 
could have. Therefore, I am testing the algorithm in an iterative manner, one feature at a time. 
For example, I start with the mutation feature; testing all its parameters (percentage of population 
mutated each generation, percentage of slots mutated for each selected individual) and 
determining the best parameter values based on the results. I then take the best value found for 
mutation, and test the next feature: crossover method. Using this method, by the end of testing 
the final feature (hill climbing operator), I will be left with the optimal algorithm and can go on 
to test it as the final version. 
 
When testing the features: Mutation, Crossover and selection, I test each dataset five times and 
record the best achieved fitness score (lowest score) and the average of the five achieved fitness 
scores. I do this because, when using small test sets in combination with a relatively low 
maximum generation, only taking one result per test set would be unreliable. The low number of 
max generations (necessary because of the projects time constraints) causes a fluctuating score 
for the same algorithm because not enough time is given to allow it to properly converge on an 
optimum. I am only testing the final fitness score for these three features because of the low 
complexity of the test case. Recording time for use in comparisons is unreliable due to 
randomness in the convergence rate, and other non-related factors such as other background 
processes running on the testing computer. In addition, time taken is not a major factor when 
determining how optimal a university course timetable solver is, due to the lack of importance of 
the time taken to run the algorithm (as aforementioned in the report). 
 
When testing the final two features: mutation ramping and hill climbing, I changed the method of 
testing slightly. I decided to test these features against the medium sized test cases because at this 
stage of testing the small size test cases became too easy to solve, and didn’t show enough fitness 
score variation for comparative analysis. As I required more complex test cases, it became 
infeasible to test each one five times and take the average score from the five results. Therefore, I 
increased the max generations to account for any randomness in the convergence rate and 
recorded the final fitness score and the generation at which this score was found (where the 
algorithm reached a plateau). This was useful for comparing the convergence rate of different 
variants of the algorithm, and helped me decide on which variant was the best when the scores 
achieved were similar. 
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5.2.1–	Mutation	
I initially tested mutation rates. I began with mutation rates because it is (alongside crossover and 
selection) the most fundamental aspect of any genetic algorithm. To test mutation rates, I created 
five different variations of the basic algorithm, each with a differing value of a mutation rate of 
some kind. 
 

Variant Percentage of population 
mutated (%) 

Percentage of slots 
mutated (%) 

M1 5 5 
M2 10 5 
M3 20 5 
M4 10 10 
M5 10 20 

 
 I then tested each variation on five different small size test cases, with each test case being 
tested five times and the average fitness score being recorded. Below are the details of the 
testing, and the results achieved: 
	
Algorithm parameter values 
 

 Crossover Selection Max 
generations 

Population 
Size 

Mutation 
ramping 

Hill 
climbing  

Feature 
values 

Random 1 
point 

Tournament: 
3 

contestants 
100 1000 OFF OFF 

 
These percentage mutation rates have been chosen to cover a sensible range of values, whilst 
allowing a large enough gap in between the different variants to demonstrate a difference in their 
results. I believe that any mutation rate higher than 20% of the population is too high, leading to 
a potential loss of optima and a significant slow in convergence. Therefore, 20% will be the 
maximum value tested. 
	
Results – Figure 13 
Data in bold identifies it as the best of its type for that test case 
 

Test case 
M1 M2 M3 

Best Average Best Average Best Average 

Small1 80 14066 50 22068 10070 18064 

Small2 20090 34084 10110 24076 20100 28086 
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Small3 30060 38082 10050 20084 70 30076 

Small4 80 12072 10060 24062 40 10072 

Small5 10050 32052 100 26084 10090 28074 

	
	

Test case 
M2 M4 M5 

Best Average Best Average Best Average 

Small1 50 22068 70 28072 90 22088 

Small2 10110 24076 10030 30070 10100 26082 

Small3 10050 20084 10070 20084 20030 32048 

Small4 10060 24062 10090 26076 70 14080 

Small5 100 26084 10080 26080 10060 30070 

	
Analysis and conclusions 
Variant M2 achieves the most best and average scores over the five test cases. M2 performs the 
best in the first half of testing (M1, M2, M3), and performs the best in the second half of 
testing(M2,M4,M5). Therefore, I will be using the parameter values of M2 in the algorithm that I 
progress with to further stages of testing. 
 
5.2.2	–	Crossover	
The crossover operation is another essential operation of most genetic algorithms. For this 
reason, I tested it before any of the more niche algorithm features. To test the crossover 
operation, I created four different algorithms variants, each with a different method of 
performing the crossover operation.  
 

Variant Type of crossover 
C1 Random one point 
C2 Random two point 
C3 Fixed mid-point 
C4 Uniform point 

 
I tested each variant against the five small test cases used to test mutation rates, with each test 
case being tested five times, and the best and average score being recorded for these five runs. 
 
 



 38 

Algorithm parameter values 
 

 Mutation Selection Max 
generations 

Population 
Size 

Mutation 
ramping 

Hill 
climbing  

Feature 
values 

10% of 
pop, 5% 
of slots 

Tournament: 
3 

contestants 
100 1000 OFF OFF 

 
Results – Figure 14 
Data in bold identifies it as the best of its type for that test case 
	

Test case 
C1 C2 C3 C4 

Best Average Best Average Best Average Best Average 

Small1 50 22068 30 46 170130 198106 0 24 

Small2 10110 24076 40 52 190120 202120 0 18 

Small3 10050 20084 30 4048 190110 208096 0 32 

Small4 10060 24062 40 4052 200110 210116 10 20 

Small5 100 26084 30 2056 180120 212106 20 30 
	
Analysis and conclusions 
Firstly, variant C4 (Uniform point crossover) performed the best for all the test cases. I expected 
Uniform crossover to perform the best out of all the methods, but was surprised as to the extent 
of performance increases found. Uniform crossover is known for helping to control premature 
convergence, so I assumed that it would perform better, but would also take a lot longer to 
convergence to an answer. This hypothesis proved true, but not to the extent that I expected. 
Variant C1, C2 and C3 converged to their best scores around the 50th generation, whereas C4 
(uniform crossover) converges on average at generation 90. This shows its capability in 
preventing premature convergence. However, this is a significant increase in time taken to 
produce a solution, but I believe that the improvement in fitness score, and the control over 
premature convergence that uniform crossover provides for more complex test cases outweighs 
the time increase. Therefore, I am selecting uniform crossover to take further as my crossover 
method of choice. 
	
5.2.3	–	Selection	
Selection is another fundamental part of any genetic algorithm. Although I am only testing two 
different methods (roulette and tournament), there are many different possible values for the 
number of contestants used in tournament selection. Therefore, I am testing four values in the 
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range of two and eight contestants. Any more than eight contestants will create too high of a 
selection pressure, and will lead to premature convergence and a loss of gene variation. 
 

Variant Type of selection 
S1 Roulette 
S2 Tournament – 2 
S3 Tournament – 3 
S4 Tournament – 5 
S5 Tournament – 8 

 
 I am testing each algorithm variant on the same five small test cases as used in mutation and 
crossover testing. I am testing each variant on a test case five times, and will record the best and 
average fitness scores. The first results didn’t provide enough of a difference, so I extended the 
testing to a further medium sized test case, where there was only one run with the fitness score 
and plateau generation being recorded. 
 
Algorithm parameter values 
 

 Mutation Crossover Max 
generations 

Population 
Size 

Mutation 
ramping 

Hill 
climbing  

Initial 
test 

10% of 
pop, 5% 
of slots 

Uniform 
point 100 1000 OFF OFF 

Second 
test 

10% of 
pop, 5% 
of slots 

Uniform 
point 400 1000 OFF OFF 

 
Results – Figure 15 
Data in bold identifies it as the best of its type for that test case 
 

Initial 

Test case 
S1 S2 S3 S4 S5 

Best Average Best Average Best Average Best Average Best Average 

Small1 180110 186100 70100 84084 10 20 0 6 0 14 

Small2 160100 172120 40080 86092 30 40 0 18 10 16 

Small3 180130 192108 80110 90112 20 34 10 20 10 20 

Small4 150140 170122 70080 84096 20 26 0 6 10 20 

Small5 180100 190110 90110 110100 20 30 0 14 10 22 
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Second test 

Test case 
S3 S4 S5 

Best Plateau 
generation Best Plateau 

generation Best Plateau 
generation 

Medium1 180170 140 190160 95 190180 57 

 
 
Analysis and conclusions 
After the results obtained from the first part of the testing, it was clear that tournament selection 
performed much better than roulette selection. However, a distinction couldn’t be made between 
the tournament values due to the similarity in results, as well as the higher contestant variants 
having an advantage as they could converge faster due to a higher selection pressure. Therefore, 
I tested S3, S4 and S5 on a medium sized test case to further differentiate between the different 
values. I also increased the maximum generation to 400 to remove any convergence speed 
advantage. The results from the second test showed that there was not much of a difference in the 
fitness score achieved, but a clear correlation between tournament contestants and convergence 
speed emerged. Therefore, I have decided to select variant S3 (three contestants) as the selection 
method to take forward into my final algorithm. This is due to a marginally better fitness score 
being achieved, but also because it reached a plateau much later than the other variants. This will 
be an advantage when used with more complex test cases as any control over premature 
convergence will be advantageous in exploring more of the search space, which will become 
very large. 
	
5.2.4	–	Mutation	ramping	
Mutation ramping is the first feature being tested that is not a typical element in genetic 
algorithms. As aforementioned, this was a concept that I have implemented myself and which I 
could not find evidence of in any existing literature that I have found. Therefore, I am unsure as 
to what to expect. I predict that this feature will be useful for complex cases to speed up the 
escape from plateaus. To test mutation ramping I will be testing five different variants, each with 
a differing mutation rate increases interval. 
 

Variant Rate interval 
R1 0 (No ramping) 
R2 5 
R3 10 
R4 15 
R5 20 

 
The rate values were chosen to show improvement between a more frequent ramping, and a less 
frequent. I did not test a rate higher than 20 due to the max generation cap of 300. Any higher 
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than 20 would make the mutation ramping to occur too slowly and any escape from a plateau 
may not be the result of the mutation ramping. There are three changeable parameters for 
mutation ramping: Rate interval (amount of generations of identical fitness scores in a row), 
Population mutation percentage increase and Slots percentage increase. I am, however, only 
changing the rate interval parameter. This is because changing this parameter has the same effect 
as changing the other two (e.g. decreasing the rate interval has the same effect as increasing the 
mutation rate increases because the increases occur more often). I am testing each variant on 
three different medium sized test cases, and recording the best score achieved and the generation 
at which the algorithm plateaued. 
 
Algorithm parameter values 
 

 Mutation Crossover Selection Max 
generations 

Population 
Size 

Hill 
climbing  

Feature 
values 

10% of 
pop, 5% 
of slots 

Uniform 
point 

Tournament: 
3 contestants 300 1000 OFF 

 
Results – Figure 16 
Data in bold identifies it as the best of its type for that test case 

Test case 
R1 R2 R3 R4 R5 

Best Plateau 
gen Best Plateau 

gen Best Plateau 
gen Best Plateau 

gen Best Plateau 
gen 

Medium1 190170 150 190180 142 180180 142 200180 143 190170 125 

Medium 
2 90200 162 80180 152 100160 153 80180 152 80160 144 

Medium 
3 150150 149 150190 146 170170 136 160160 155 150120 151 

	
Analysis and conclusions 
The results are similar and don’t show much on the surface. However, the purpose of mutation 
ramping was to speed up the escape from plateaus, and this seems to have been the case. The 
plateau generation for R1 (no ramping) was higher than that of the variants with mutation 
ramping on. This shows that mutation ramping had a positive effect, by decreasing the amount of 
generations needed to achieve the same score, which in turn shows that plateaus were escaped 
faster. However, I observed that as plateaus were hit, and mutation rates began to ramp, the 
generations were taking progressively longer to complete. This is most likely due to the increase 
in individuals being mutated, causing the mutation algorithm having to be run on more 
individuals for each successive ramp. Although this increase in time was observed, it was not 
large enough to record and give evidence on, and was nowhere near the time saved by reaching 
the final fitness score in fewer generations. 
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I have concluded that variant R5 will be carried on as my mutation ramping variant. This is 
because, on average, it reached its final fitness score in the fewest generations, whilst still 
attaining some of the highest final scores.  
	
5.2.5	–	Hill	climb	operator	
The hill climb operator is the last feature that I will be testing. I expect that adding hill climb in 
any variant will have a positive impact on the final fitness score due to the guaranteed 
improvement made each generation. However, I also expect to see a much faster convergence 
(especially in methods that work on the best individuals) due to the improvement of individuals, 
causing lower fitness score solutions to emerge a lot faster than if the genetic algorithm was 
running without the help of the hill climb search operator. I am testing five different algorithm 
variations: 
 

Variant Hill climb type 
H1 No hill climbing 
H2 Best solution 
H3 Best 5 solutions 
H4 Random 10 solutions 
H5 Whole population 

 
The value of five for the H3 variant was decided on as to show a difference between the other 
best solution variant H2, but without increasing the time taken to run the algorithm by too much. 
The value of ten for H4 was decided on to be high enough so that a difference emerges with the 
small maximum generation cap, but not so high that it takes too long to complete each test. 
 
I am splitting this section into three individual tests. I will initially test each variant on a small 
test case, measuring the final fitness score achieved and the generation this score was achieved. 
This will show a brief comparison to determine whether adding the hill climb operator improves 
on the algorithm with no hill climb element. Secondly, I will test each variant on two medium 
sized test cases. Thirdly, after analysing the result data, I decided to alter the algorithm to only 
have a small, random amount of an individual’s slots subjected to hill climbing (in contrast to 
performing the hill climb search on every slot of an individual). This change in algorithm will be 
denoted as V2 (with the original being V1). I will explain the reasoning for this in the conclusion 
section of this test section. Additionally, I decided to leave mutation ramping turned off to test 
the hill climb operators. I did this because I wanted any improvement to be solely a result of the 
change in hill climb operator, and not by the potential random search scenario caused by 
mutation ramping.  
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Algorithm parameter values 
 

 Mutation Crossover Selection Population 
Size 

Mutation 
ramping 

Feature 
values 

10% of 
pop, 5% 
of slots 

Uniform 
point 

Tournament: 
3 contestants 1000 OFF 

 
Test case Max generations Hill climb V1/V2 
Small1 100 V1 

Medium1 200 V1 
Medium2 V1 200 V1 
Medium2 V2 500 V2 

 
Results – Figure 17 
Data in bold identifies it as the best of its type for that test case 

Test case 
H1 H2 H3 H4 H5 

Best Plateau 
gen  Best Plateau 

gen  Best Plateau 
gen  Best Plateau 

gen  Best Plateau 
gen  

Small1 10 96 0 3 0 3 0 7 0 2 

Medium1 180180 136 180100 4 180040 3 210120 52 170140 3 

Medium2 
V1 90200 170 80160 6 70280 5 110230 23 70240 7 

Medium2 
V2 80180 161 70240 98 70150 108 20310 215 70100 68 

	
Analysis and conclusions 
Firstly, it is clear that adding any form of hill climb operator results in a large improvement in 
fitness score. I expected to see an improvement, but the speed (small amount of generations 
required) in which H2-H5 found a perfect solution to the small1 test case was extremely 
significant. It is important to note that the results for the small test case we produced by the V1 
version of the hill climb algorithm. The V1 algorithm version performed the hill climb operation 
on every slot of an individual, and this would explain the rapid convergence noticed. Although 
this rapid convergence is desirable, we can observe that it doesn’t yield a better fitness score for 
the test cases: Medium1 and Medium2 v1. This rapid convergence is the result of the hill 
climbing operator taking over and effectively making the genetic algorithm redundant. The 
reason that no improvement to fitness score can be seen in the medium1 and medium2 v1 test 
cases if because the hill climb operator converged too fast, and converged on a local optimum 
and not a global one. 
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The V2 algorithm was created to test this hypothesis. When tested again on the medium2 test 
case, we see an overall improvement in final fitness score, and a much slower convergence (took 
longer to reach its plateau generation). This hypothesis is confirmed true when we observe the 
results for the algorithm H4 when tested using the V2 algorithm. Previously no result in any test 
section for the medium2 test case has broken the 70000 threshold, meaning that this is probably a 
local optimum with no other better local optimum near it in the search space. However, the 
fitness score of 20310 achieved shows that when the convergence caused by the hill climb is 
limited, and random solutions are selected to be hill climbed (not the best solutions), new 
optimum can be discovered in previously ignored areas of the search space. When hill climbing 
the whole population, it would be expected that a very good population score should be 
observed. However, it is likely this wasn’t the case in the test results because the same 70000 
local optima was converged on too quickly (because the best solutions were being hill climbed 
every generation), not allowing the worse solutions to find the same (likely global) optimum 
found by H4. 
 
Finally, I have concluded that I keep the V2 algorithm changes, and implement the hill climb 
method in H4 (random individuals). This is because they both, when used in conjunction, 
achieved by far the best fitness score. After testing I realized that a static number of random 
individuals to select each generation does not scale with population size. Therefore, for the final 
algorithm, I have changed the algorithm to select a random percentage of the population. In the 
testing, I selected 10 individuals out of a population size of 1000. This means that I was selecting 
1% of the population. So, this parameter value of 1% will be used in the final algorithm. 
	
5.2.6	–	First	stage	of	testing	conclusion	
Each stage of my first testing section has accumulatively resulted in my final algorithm having 
the most optimal combination of features and parameter values. Below are the details of my final 
algorithm: 

Figure 18 

 Mutation Crossover Selection Mutation 
ramping 

Hill 
climbing  

Feature 
values 

10% of 
pop, 5% 
of slots 

Uniform 
point 

Tournament: 
3 

contestants 

- Rate	
interval:	20 

- Slot	 %	
increase:	5 

- Population 
% increase: 
10 

Random 
1% of 

population, 
with the 

V2 
algorithm 
changes 

 
The improvement when comparing the first basic algorithm to the final algorithm is large. When 
testing the small1 test case in the first test (mutation testing), the best score observed was 50 (out 
of five runs) and the best average score observed was 14066. When comparing this to the final 
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stage of testing (hill climb operator testing), where a perfect score of zero was observed after 
only seven generations, the improvement is obvious. 
 
5.3	–	Second	testing	stage	–	analysing	the	final	algorithm	
Because of the first stage of testing, I have concluded on the variation that will be used for my 
final algorithm. In this stage of testing I have multiple aims, the most interesting being an 
analysis into how the final algorithm performs when solving a real-world test case, which has 
been taken from previous year at Cardiff university. I also aim to push my algorithm to see how 
it performs on very large/complex test cases, while testing the maximum heap memory used and 
the time taken to reach a solution. I will only be testing the heap memory because this is the 
section that the JVM (java virtual machine) uses to store objects and any increase in memory will 
be due to an increase in the number of objects being created and stored (e.g. solution and slot 
objects). These test results will then be used to indicate how the algorithm will scale, in terms of 
speed and memory usage, to much larger problems of a scale that would be impractical to 
implement given the time frame of this project. I will also analyse various aspects of the final 
algorithm e.g. convergence rate, time taken to complete one generation with respect to 
population size and the effect population size has on the final fitness score. 
 
5.3.1	–	Testing	against	real-world	example	
The main goal of this project was to design and build an algorithm that could solve university 
course timetabling problems on a scale that is present in the average university school. 
Therefore, I will be largely gauging the success of the project on the next element of testing. 
 
To test the above, I requested a previous year’s timetables for years: 1, 2 and 3 for BSC 
computer science and variants, along with available rooms and the number of students enrolled 
on each module from the school of computer science at Cardiff University. I received timetables 
for years 1, 2 and 3 for week 1 of the Autumn Semester 2016/2017. This was the most detailed 
information that I had access to, as any further details e.g. which students were enrolled in what 
module etc. not only presented ethical and confidentiality issues, but also would require the 
timetabling officer for computer science having to spend a large amount of time finding and 
consolidating all the extra information not present in the already compiled previous years’ 
timetables. The timetables that I received (and have included in the appendix) had to be 
converted into a test case in the syntax of my input configuration file. Due to issues that I 
experienced whilst adding functionality to define room features (size and type), I have had to 
make the test case harder than it actually is by only using rooms with a large enough capacity to 
hold all of the modules. Additionally, I am only timetabling lectures (as opposed to lectures, labs 
and tutorials), however, this will not decrease the difficulty of the test case because labs and 
tutorials are held in different types of rooms to the ones I’m using. This effectively means that 
my algorithm could still be used in its current state to create a timetable for lectures, labs and 
tutorials, they would just have to be done as three separate timetables and then combined. It 
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should also be noted that because I wasn’t given the details of which students were enrolled on 
each module, I had to assign them myself, with the estimate that each student was enrolled in 
each year group was enrolled in a maximum of five modules (because this was the most modules 
that I have been enrolled in for one term). Below are the parameter values of the test case that I 
created from the timetable documents sent by Cardiff University: 

Figure 19 

Years Total number of 
students 

Total number of 
modules 

Total number of 
commitments 

for all modules 
1 166 1 12 
2 134 8 19 
3 102 10 29 

 
As I am creating a timetable for a specific university school, it is important that I copy all their 
hard constraints as to avoid a timetable which would be unusable for that school. In the case of 
Cardiff university, all schools are required to incorporate the following two additional hard 
constraints: there must be no commitments after 13:00 on a Wednesday and the 13:00 – 14:00 
timeslot on a Friday should be left free to accommodate students requiring quiet time. Therefore, 
I have added these two temporary hard constraints for this section of testing to ensure realistic 
test conditions and so any outputted timetable would be valid for real world use.   
 
The test was performed on the same machine as in the first section of testing, and with the only 
running process being the algorithm. This allowed the algorithm to use up to 100% of the CPU 
and have maximum possible use of RAM for its heap memory. The population size was set at 
1000. 
 
Results and analysis – Figure 20 
 

 Fitness score Generations 
taken Time taken (ms) 

Maximum heap 
memory used 

(kb) 
Results 0 62 89814 932352 

 
As can be seen from the results, a perfect timetable was generated which violated no soft or hard 
constraints. The timetable was generated in 89.8s, a time that is extremely practical and much 
faster than the stated goal of completing in under two hours. The maximum RAM used to store 
the heap data of the java virtual machine was 932.4mb. This value shows that it can be executed 
on any average machine, as most machines built in the last decade have at least 1GB of RAM. 
Given more time for the project to fix the bugs I was having with room features, this algorithm 
could easily be implemented to generate the timetables for the school of computer science at 
Cardiff University. 
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Measuring the quality of a timetable based on its constraint violations is effective, but it relies on 
the quality of the constraint design. Comparing the timetable generated by my algorithm and the 
original which was generated by a human will show the weaknesses and strengths of my 
constraint design. The original timetable and my generated timetable are both included in the 
appendix. Comparing the two shows that my timetable contained no 09:00am lectures, and 
ensured that students and lecturers had their commitments for the day grouped together, and not 
spread over the whole day. As discussed earlier in the report, no such soft constraints are taken 
into consideration when Cardiff university designs their timetables and this shows when the two 
timetables are compared in respect to the convenience of students and lectures. 
 
In conclusion, the final algorithm handled the Cardiff test case easily by taking under two 
minutes to produce a perfect solution, even with the added complexity of having to use a small 
number of the actual available rooms (due to no room features functionality). If given more time 
to implement functionality allowing user inputted constraints, and room feature functionality, it 
is realistic to state that my algorithm could be used to increase timetable quality for Cardiff 
university, whilst additionally freeing up staff man power. 
 
5.3.2	–	Resource	demands	and	scalability	
The only parameter that has remained unchanged is the population size. The population size has 
a direct impact on the way in which the algorithm runs, not only in terms of the fitness score of 
the outputted solution but also in terms of the hardware resource usage and time taken to arrive 
at a final solution. In this section I test three different population sizes on the real-world Cardiff 
test case, and measure the CPU usage over time, the Heap memory usage over time and the 
number of different instances requiring the biggest percentage of that heap memory. I aim to 
show a correlation between resource usage increases and population size increase, ultimately 
allowing me to determine how the algorithms performance differs with changes in population 
size. 

Figure 21 

Population Fitness score Generations 
taken Time taken (s) 

100 20 80 22 
1000 0 60 79 

10000 0 134 180 
 
These results show two things: firstly, that an increase in population size results in a slow in the 
algorithm and secondly that a decrease in population size can result in a worse outputted 
solution. The slow caused by an increase in population size can be attributed to the increase in 
the number of individuals to process every generation. Additionally, because we are now hill 
climbing a percentage of the given population, a tenfold increase in population leads to a tenfold 
increase in the number of individuals being subjected to a hill climb in every generation. 
Therefore, because the hill climb algorithm implemented in my algorithm has a time complexity 
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of O(n2), an increase in the amount of times its run will have a significant impact on the time 
increase observed in the testing. The worse score of 20 observed in the 100-population test is a 
result of a much smaller search space sampling. The 100-population algorithm will cover an area 
of only 10% the size of the search space covered by the 1000 population algorithm, and only 1% 
of the search space covered by the 10000-population algorithm. This reduced search area 
explains a loss of possible solutions, which in the case of the 100-population algorithm included 
a solution that had a better fitness score than 20. 
 
To analyse how the population size effects memory usage, I need more detailed information than 
just the maximum heap memory that was allocated to the Java virtual machine. This is because 
on startup, the Java virtual machine is allocated a set maximum heap size which doesn’t vary 
much with the amount of the heap memory actually used by the individual java process. This 
heap size can increase when needed up to a default of ¼ of the maximum RAM for that machine. 
Therefore, I have used an application called “VisualVM” [24] to record how the used heap 
memory and CPU usage changes over time for each of the three population sizes. 
 
Population of size 100 – Figures 22 

	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



 49 

	
	
	

 
 
Population of size 1000 – Figures 23 
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Population of size 10000 – Figures 24 
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Results conclusion 
As could be predicted, an increase in population size results in an increase of memory usage. 
However, even though there was an increase in memory, the memory used for the largest 
population size of 10000 never exceeded 800mb, a value which is practical for most modern 
computers. The spikes that can be seen in the heap memory graphs are caused by the java 
garbage collector “cleaning” up old objects (mainly slots objects). The CPU usage also never 
peaked beyond 26%, indicating that a speed increase will be observed if more CPU is allocated 
to the process. By far the largest use of the heap memory is the slot class, with the solution class 
averaging (2 * population size) number of instances (child and parent population). Although the 
slot class had a large number of instances (especially for the 10000 population algorithm), they 
still only used 32.5mb of Heap memory which is a fraction of the available 800mb. 
 
These test results have shown that the algorithm scales very well regarding memory usage with 
an increase in population size, so therefore will also scale well with an increase in test case size. 
The increase in population size causes an increase in the number of slot instances, which is the 
same effect that an increase in a test cases total number of commitments would have. Therefore, 
we can assume that any average modern computer would have the hardware capabilities to deal 
with any practical test case, even with a larger population size being implemented to achieve a 
more optimal final timetable solution.  
 
In conclusion, an increase in test case complexity or population size doesn’t cause the algorithms 
hardware usage to scale very much at all, meaning that a realistic sized input case would not 
cause excessive RAM or CPU usage. However, the increase in complexity or population size 
would cause the algorithm to run more slowly. This is not a major issue due to the nature of the 
university course timetabling problem not normally being under any form of time constraint. 
However, even if time became an issue to the user, they could simply just allocate more CPU 
usage to the JVM, allowing the algorithm to run a lot faster. 
	
5.3.3	–	Large	test	case	performance	
For the final tests, I aim to see how my algorithm performs on an exceedingly large/complex test 
case. The goal of this experiment is to establish how well my final algorithm performs when 
having to traverse a very large search space, and to determine, given more time, if it would be 
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possible to solve this type of complex test case. To cater for the large increase in complexity, I 
will not be implementing the Cardiff specific hard constraint used in the previous experiment. I 
generated this large test case using my python script using the following parameters: 
 

 Number of 
students 

Number of 
modules 

Year 
groups 

Total 
commitments 

for all 
modules 

Number of 
rooms 

Number of 
lecturers 

Test case 1200 60 6 600 675 50 
 
I decided on these numbers to make the test case still possible in theory, but incredibly 
constraining in terms of student and lecturer clashes. To make the test case more feasible, I 
would decrease the number of rooms and the number of commitments so there is less 
opportunity for student and lecturer clashes to occur. I couldn’t make the test case any more 
complex than this due to time constraints for the project deadline, however this would be 
something that I would like to do if given more time. I ran this experiment with the following 
algorithm parameters (same as the final algorithm variation): 
 

 Mutation Crossover Selection Mutation 
ramping 

Hill 
climbing  

Feature 
values 

10% of 
pop, 5% 
of slots 

Uniform 
point 

Tournament: 
3 

contestants 

- Rate	
interval:	20 

- Slot	 %	
increase:	5 

- Population 
% increase: 
10 

Random 
1% of 

population, 
with the 

V2 
algorithm 
changes 

 
Ideally for a test case this complex a very large population size would be used so that an 
adequate portion of the search space is covered, however, due to the time constraints of this 
project, I was only able to use a population size of 10000. Using this smaller value of population 
size allowed me to run the experiment for more generations, allowing the fitness score to 
converge a lot faster than if I was to use a population size of 100000. I didn’t cap this experiment 
at a maximum number of generations, but at a time limit of ten hours. It turns out that by this 
time limit the algorithm had plateaued at a fitness score and hadn’t changed in over 100 
generations, so I don’t believe letting it run longer would have increased the final fitness score. 
Although, letting it run longer, and giving it a larger population size would have the potential to 
increase the final fitness score. 
 
For this experiment, I am recording the fitness score of the best solution present in the initial 
population and the fitness score of the final solution. This will give me an indication as to how 
well my algorithm performs, and the improvements made to from the first to last populations. 
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Results – Figure 25 
 

 Initial Generation Final generation 
 Generation Best score Generation Best score 

Results 1 5310630 877 250270 
 

Analysis and conclusion 
The initial score of 5310630 observed was very large, translating to 531 hard constraint 
violations and 63 soft constraint violations. This score was improved significantly to the final 
score of 250270 which translates to 25 hard constraint violations and 27 soft constraint 
violations. Although a valid solution could not be found, I attribute this to a small population size 
and a restricted run time. If a user had multiple days to run the algorithm, a better and potentially 
valid solution could have been found. If given more time I would have liked to run further 
experiments with increasingly complex test cases to establish at one point the algorithm fails to 
be practical (i.e. takes weeks to complete). 
	
5.4	–	Testing	conclusion	
Through testing I have been able establish the combination of algorithm features and parameters 
to produce the lowest fitness score solutions. This combination was then taken as my final 
algorithm and improved upon the initial basic algorithm considerably. My final algorithm then 
easily solved a real-world timetabling scenario taken from Cardiff university, showing that is 
was easily capable of performing timetable task for universities. Next, my algorithm showed that 
it scales in terms of hardware resource usage very well with population size and test case 
complexity. However, the speed of the algorithm doesn’t scale as well, but this is not a 
significant issue due to the lack of time constraints placed upon real world timetabling scenarios. 
Finally, my algorithm was tested with an abnormally large test case and, although not reaching a 
perfect solution, still managed to reach a comparatively low score. Therefore, I believe that I 
have achieved the goal of solving real world problems set out at the beginning of this project, 
and have additionally created an algorithm that has the potential to solve extremely hard real 
world test cases, if given enough time. 
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6	–	Future	Work	
	

As the process of this project has moved on, I have reassessed and reworked sections of the 
project, as-well as focusing on the algorithm performance instead of producing a user-friendly 
GUI application. I have learnt a huge amount about genetic algorithms and now have even more 
ideas for improvements and extra functionality. There are large areas for improvement that I 
have identified, and other smaller changes that I would have liked to implement. 
 
Firstly, I believe that the final algorithm performed at a level for use in most university settings. 
However, there are aspects of the final application that make it not user-friendly. The first major 
work that I would do is the addition of the room feature functionality that I was forced to remove 
due to experiencing bugs. For my algorithm to be used for practical applications, it is vital that it 
has the functionality for attaching features such as room size and room type to potential rooms. It 
is also important for the application to have a GUI not only to run the main algorithm, but also to 
create the input text files. This would allow staff use with minimal training, and would make it a 
practical alternative to creating timetables by hand. Additionally, I would change the format of 
the input text file from the syntax that I created, to XML. Doing this would create a more 
structured configuration file, and allow for universities to create functionality allowing them to 
automatically generate the configuration files from their internal systems. Additionally, the 
functionality for user inputted constraints, and for custom constraint weightings would also be 
necessary for real world use. This could be easily achieved by defining a constraint input format, 
allowing user submitted constraint and using a parser to create constraint tests from the users 
input which effect the fitness scores assigned to the individuals by the fitness function. 
 
There are also improvements I would like to make regarding the algorithms performance and 
design. Firstly, it would be more efficient to re-code the algorithm in a language such as C++. 
Doing this would allow me to take more control of the codes optimization, instead of tasking this 
to the Java compiler. I would also put more time into making the inefficient sections of the code 
(e.g. the hill climb operator) run with a smaller time complexity, ideally O(n) or better. These 
speed increases would reduce the time impact caused by larger population sizes, resulting in 
more optimal timetable solutions. Genetic algorithms have the scope for numerous 
improvements, of which I’ve only included a few in my final algorithm. New functionality such 
as a Tabu search feature for improving the quality of the initial population, or more specialized 
data structures designed specifically for genetic algorithms like the MEM data structure [25] 
would improve the speed and quality of the output solutions. 
 
Lastly, given more time, I would conduct more thorough experiments concerning how well the 
final algorithm performs for very large test cases. I would increase population size to 100000 and 
run each experiment for 3 days. This would give me more of an insight into the maximum 
potential of my final algorithm. More time would also allow for additional expansions of 
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functionality, e.g. having the ability to solve university exam timetables problems, a feature 
which would not take a large amount of effort to implement. These functionality expansions, 
with all the further changes mentioned above, give the application commercial potential due to 
the real opportunities for time and economic saving for universities. 

	
7	–	Conclusions	

 
The aim of this project was to create an algorithm to solve real world university course timetabling 
problems. The definition of a timetable that would be deemed to “solve” this real-world problem is 
one that didn’t violate any of the hard constraints placed upon it, and ideally violate as few of soft 
constraints as possible. I also aimed for the algorithm to produce an output in a practical time frame 
of under two hours, and for the output to be in a human readable format. 
 
I researched and compared various optimisation techniques including Tabu search, Backtracking 
algorithms and Ant colony optimisation algorithms. However, I decided to implement a form of 
evolutionary algorithms called a genetic algorithm due its potential for problem specific 
customizations, as well as its large search space coverage. It was also noted that genetic algorithms 
normally take more time to converge on an answer, but due to the nature of the timetabling problem, 
time taken to converge was not an important factor. Although it was decided that the main algorithms 
method should be a genetic approach, additional methods such as a form of local search called hill 
climbing were added to improve the quality of the algorithms population. The initial stage of testing 
proved these additions to greatly increase the quality of the output solution, making the final 
algorithm solve given timetable problems faster and to a higher quality than just a normal genetic 
approach. The final algorithm was then tested against a real-world scenario taken from a previous 
academic year at the school of computer science at Cardiff university. This scenario was for the 
lectures of years one, two and three of student on BSC Computer science and variants. The algorithm 
could generate a perfect timetable (no hard or soft constraint violations) in under two minutes, a time 
that was quicker than the two hours set out in the initial aims. These experiments showed that the 
final algorithm can solve real-world problems, therefore achieving the main aim of this project. I then 
tested the final algorithm against a very complex test case, and although a valid solution was not 
found, a promising effort was made, with the final solution being a drastic improvement on the best 
solution of the original population. However, for the final algorithm to be able to solve test cases of a 
similar complexity the algorithm must be allocated a larger population size and longer to run. 
Additionally, improvements need to be made to slower parts of the algorithm, and further measures 
need to be taken to control premature convergence.  
 
In conclusion, I have achieved what I had initially aimed to achieve at the start of this project. 
However, as I have progressed through the project, it is clear that there are many things left to 
improve upon to allow the algorithm to become an application which could actually be used by 
universities for real world applications.  
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8	–	Reflection	on	Learning 

	
Beginning this project, I did not know much about optimisation techniques, and had never built 
an algorithm this complex or wrote a report of this detail. Throughout the whole process, I have 
learnt many new concepts and now have a grasp on numerous different methods for solving 
optimisation problems. Having to specifically redesign sections of my code to increase efficiency 
is also a problem that I haven’t ever needed to tackle before. Having such a focus on speed has 
taught me new ways of designing code to solve problems, whilst not comprising on efficiency or 
correct practices. 
 
Apart from the developments mentioned above, I will mainly focus on attempting to identify 
areas of success and areas of improvements surrounding development methods and planning, an 
approach to self-development called double-loop learning. In this section I will not only aim to 
identify what aspects of my approach worked well so that I can apply them again to future 
projects, but will also analyse my approach for aspects that could be improved upon. 
 
Firstly, there are many techniques for time and task management that I have been forced to learn 
to complete this project for the deadline. One of the most useful techniques was the use of a “To-
Do” list to keep track of what tasks needed completing and in what order. Creating this list of 
tasks helped me break the initially daunting tasks into smaller chunks, making it easier to see 
what needed to be done and kept me motivated by having smaller milestones. Another useful 
technique that helped with problem solving was the use of mind-maps for solving the larger 
theoretical challenges (e.g. the logic behind each stage of the genetic algorithm). Having a mind 
map allowed me to view the problem with more clarity, whilst allowing me to have reference to 
my current method, allowing me to implement changes without causing future confusion. 
 
Due to the bugs that I experienced in this project, and the complexity of the algorithm, I have had 
to improve my approach to debugging. Initially I have debugged very simply by writing system 
output code into the code and using this output to narrow down to what is the root of the bug. For 
this project, I was forced to use debugging tools, such as the one in my IDE (IntellijIDEA). This 
tool allowed me to step through the problem areas of code using breakpoints, and view what was 
happening to the variables causing the bug. This allowed me to notice that they were changing 
when not being explicitly referenced in the code, leaving the only explanation being that 
references were being passed instead of the variables contents. This new understanding of 
debugging techniques will certainly help me in every future coding project, and will save me 
huge amounts of time.  
 
One major skill that I have improved upon through this project is my ability to conduct proper 
research. Before this project, I have never had the need to research a subject in depth by 
consulting numerous scientific resources. The value of knowledge that can be obtained through 
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the study of a scientific paper on a subject is huge, and is something that I will do much more 
when an interest in a specific topic arises.  
 
With hindsight, I would change the initial stages of the project development. Due to my keenest 
to begin coding, I began development without conducting thorough back ground research. This 
led to me having to redesign sections of code, with the most drastic case being a complete 
redesign of the method used to represent an individual. This cost me a lot of time, which I could 
have used in much more productive ways. Therefore, in the future I will ensure that I have a very 
strong theoretical basis before I begin any form of actual development, and will make sure my 
development plan is in line with the background research. 
 
Again, with hindsight, I could have managed my time more efficiently. I believe that I spent too 
much time on unnecessary diversions and non-critical areas of the application. For example, a 
disproportionate amount of time was spent on formatting the output timetable. In future projects 
I will clearly lay-out which are the crucial areas of development that warrant the most 
development time, and only focus on less important areas once these crucial parts have been 
completed. 
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10. Appendix 
 

For convenience and ease of access, I have included all elements of interest in .zip files 
submitted with this report. Below is a list of the .zip files names and an explanation of their 
contents. 
 
code.zip 

- run.java	 :	 The	run	java	class	used	to	run	the	main	algorithm	
- timetable.java	:	 The	timetable	class	containing	the	main	algorithm	methods	
- solution.java	 :	 The	solution	class	used	to	create	solution	objects	
- slot.java	 :	 The	slot	class	used	to	create	slot	instances	

 
testFiles.zip 

- gentest.py	 :	 The	python	script	used	to	generate	the	test	cases	in	section	5	
- info.txt		 :	 Text	file	explaining	how	to	use	the	python	script	
- testResults1	 :	 Folder	containing	all	the	timetables	from	the	first	stage	of	testing	
- testRaw1	 :	 Folder	containing	spreadsheets	of	the	first	stage	raw	test	data	
- realInput.txt	 :	 Input	configuration	file	for	the	real-world	Cardiff	test	case	
- realOutput.txt	:	 Output	timetable	file	from	the	real-world	Cardiff	test	
- large.txt	 :	 Input	configuration	file	for	section	5.3.3	(large	test	case	scaling)	
- realOriginal	 :	 Folder	containing	the	original	real	world	timetables	


