

Final Report

Project 117: Mobile Car Messaging System

By Alex Hutchings 1412529

CM3203 One Semester Individual Project, 40 Credits

Supervisor: George Theodorakopoulos

Moderator: David Walker

Alex Hutchings 1412529: Car Messaging System.

1

Table of Contents
1.Introduction ... 3

2.Background .. 4

2.1. Applications that I will use throughout the project .. 5

2.2. Libraries and modules .. 6

2.3 Current Solutions .. 7

2.2 Constraints .. 10

2.3 Potential Stakeholders .. 10

3. Specification and Design ... 11

3.1 Aims and Objectives .. 11

3.2 System Design ... 14

3.4 Database Design ... 20

3.5 Use Case Diagrams .. 21

3.6 System Flow Chart .. 22

4. Implementation .. 24

4.1 Changes from the initial plan .. 24

4.2 Execution of the Approach .. 25

4.3 Implementation concerns ... 38

5. Evaluation ... 40

5.1 Testing .. 40

5.2 Evaluation of the Implementation .. 44

5.3 Next Steps ... 48

5.4 Device Performance .. 49

6.Reflection ... 51

6.1 Self-Evaluation .. 52

7. Conclusion... 53

8. References .. 54

9. Appendix ... 56

9.1 User interface designs ... 56

9.2 Test Case Screenshots ... 60

Alex Hutchings 1412529: Car Messaging System.

2

Table of Figures
FIGURE 1.0– ANDROID MARKET SHARE COMPARED TO OTHER PLATFORMS 5
FIGURE 2.1 – ANDROID APPLICATION STRUCTURE 7
FIGURE 3.1– THE LOGIN SCREEN DESIGN 14
FIGURE 3.2 – THE CREATE ACCOUNT DESIGN 15
FIGURE 3.3 – THE MAIN MENU SCREEN DESIGN 16
FIGURE 3.4 – THE INBOX SCREEN DESIGN 17
FIGURE 3.5 – THE SEND MESSAGE SCREEN DESIGN 18
FIGURE 3.6 – THE REPORT ACCIDENT SCREEN DESIGN 19
FIGURE 3.7 – THE TRAFFIC INFORMATION SCREEN DESIGN 20
FIGURE 3.8 – DIAGRAM OF THE DATABASE TABLES AND THEIR FIELDS 21
FIGURE 3.9 – USE CASE DIAGRAM OF THE INTENDED SEND MESSAGE ACTIVITY 21
FIGURE 3.10 – INTENDED INBOX ACTIVITY USE CASE DIAGRAM 22
FIGURE 3.11 – FLOW CHART OF THE INTENDED APPLICATION 23
FIGURE 4.1 – CLIENT ACTIVITY CODE 25
FIGURE 4.2 – IMPLEMENTATION OF CLIENT ACTIVITY 26
FIGURE 4.3- SERVER ACTIVITY CODE 26
FIGURE 4.4 – SERVER ACTIVITY IMPLEMENTATION 27
FIGURE 4.5 - DATABASE ADAPTER METHODS 28
FIGURE 4.6 - BUTTON LISTENER METHODS: (ONE FOR EACH IMAGE BUTTON ON THE FORM) 29
FIGURE 4.7 – THE SEND MESSAGE ACTIVITY IMPLEMENTATION 30
FIGURE 4.8 – ENCRYPTION FUNCTION 30
FIGURE 4.9 – THE ENCRYPTION AND DECRYPTION FUNCTIONS THAT HAVE BEEN IMPLEMENTED. 31
FIGURE 4.10 – DECRYPTION FUNCTION 31
FIGURE 4.11 – SECRET KEY GENERATOR FUNCTION 32
FIGURE 4.12 – INBOX ACTIVITY FUNCTION 32
FIGURE 4.13 – INBOX DIALOG FUNCTION 33
FIGURE 4.14 – THE INBOX ACTIVITY IMPLEMENTATION 33
FIGURE 4.15 – HOMESCREEN LOGINBUTTON FUNCTION 34
FIGURE 4.16 – THE HOME ACTIVITY IMPLEMENTATION 35
FIGURE 4.17 – TRAFFIC INFORMATION POPULATE ACCIDENTS FUNCTION 35
FIGURE 4.18 – TRAFFIC INFORMATION ACTIVITY IMPLEMENTATION 36
FIGURE 4.19 – REPORT ACCIDENT PERMISSION AND MAP LOADER FUNCTIONS 36
FIGURE 4.2 – THE REPORT ACCIDENT ACTIVITY IMPLEMENTATION 37
FIGURE 4.21 – ACTION BAR FUNCTIONS AND XML 38
FIGURE 4.22 – THE ACTION BAR IMPLEMENTATION 38
FIGURE 5.1 – FLOW OF EVENTS FOR SENDING A MESSAGE IN THE IMPLEMENTED SOLUTION 45
FIGURE 5.2 – FUTURE ENCRYPTION USE CASE 47
FIGURE 5.3 – FUTURE DECRYPTION USE CASE DIAGRAM 48
FIGURE 5.4 – TRAFFIC INFORMATION ACTIVITY AND ITS MONITOR LEVELS 49
FIGURE 5.5 – REPORT ACCIDENT ACTIVITY AND ITS MONITOR LEVELS. 50

Alex Hutchings 1412529: Car Messaging System.

3

1.Introduction

Have you ever had a brake light that has stopped working, but you haven’t spotted it for several

weeks? Have you ever noticed another driver’s headlights not on, and thought they could cause an

accident if they didn’t turn them on? Have you ever seen another vehicle’s brake lights not working?

If you answered yes to any of these questions, then you are not alone. These are common problems

that happen every day for a driver. Personally, I see multiple cars with problems on a day to day basis,

and always think to myself, if only I could contact them and let them know there is a problem, they

can go ahead and fix it.

This project is about creating an application that allows drivers to communicate with each other

regarding the status of their respective vehicles. The application will be designed specifically for

Android mobile devices and will allow users to create, send and read messages regarding the fault of

either their car or another driver’s car respectively. A mobile application is the ideal solution for

providing drivers and other car-users the ability to actively communicate these issues to one another.

Mobile phones are ideal because they allow for fast real time communication on the move.

The motivation for this project stems from new cars being deployed with built-in error reporting

functionality that notifies drivers of issues with their vehicle, for example, brake lights not working,

flat tyres and headlights out. This creates a gap as generations of older cars do not have any indicator

that alerts the driver to faults with their car. Therefore, drivers of these older cars lack the technology

that could help identify and bring the drivers attention to these types of issues. Creating a mobile

application that allows drivers to communicate would bridge that gap by allowing other road-users

who spot these issues to report them directly to the vehicle’s driver. An application of this ilk would

allow drivers to communicate in a safe and simple way, making the unaware, aware of their issues,

and ultimately helping them to avoid penalties and fines from law enforcement agencies.

Alex Hutchings 1412529: Car Messaging System.

4

2.Background
Overview

There are many vehicles on the street that have minor faults with their components, whether that is

a faulty reverse light, brake light, or their headlights are not switched on or a tyre that is very flat etc.

These faults could potentially cause an accident or get a driver fined for an issue that they are not

aware of. The problem that needs to be solved, is the inability to communicate between drivers, telling

them that there is a fault within the other person’s car. The only way to currently notify a driver of a

fault is to physically get out of your car and tell them. The application that I am proposing would solve

the issue of alerting other driver’s to a problem with their vehicle as you could send a simple message

between mobile devices.

Modern vehicles have built in technologies that provide status updates on issues within the vehicle

and alert the driver to them. This project will focus on cars that are built on a low-cost budget, or older

vehicles that do not contain this technology.

“36.5 million vehicles licensed for use on the roads in Great Britain. The average car licensed for use on

the road was 8 years old.” [1] (Vehicle Licensing Statistics 2015). This statistic shows the magnitude of

vehicles that potentially have no access to this technology in the UK. Therefore, the potential use for

the rest of the world is astronomical, if an application like the one proposed was readily available in a

safe environment for drivers to communicate with each other.

The project being proposed is different to those that are currently available or that are being

developed, as discussed in section 2.3. The solution will be an application that can be used by any

person inside the vehicle. It does not have to be the driver that spots a fault within another driver’s

vehicle, it could be the passenger, or someone in the back seat. The available solutions all focus on

the driver being the main target for their ideas. This project also focusses on the driver being the main

user of the application, but they are not limited to being the sole user.

The project is going to be used for Android mobile devices only. In the future, there could be other

implementations designed for wearable technology, tablets and eventually IOS devices but for this

project Android is the only developing platform that will be used. This is because of the market share

of Android users compared to IOS users. Figure 1.0, taken from businessInsider.com, [3], shows

Android is clearly the more popular choice for users across the globe and has been increasingly so over

the last decade since its release which helped influence the motivation of using Android. Other factors

include owning an Android device and that the programming language for Android development is

very similar to Java, which I have had experience with at university. Android itself is an open-source

operating system that was introduced by Google and is considered the World’s most popular mobile

operating system. [2] For this project, the application created will be developed within the Android

Studio Development package. The package has many different libraries and API’s that can be called

and used within the project. The aim is to integrate many of these libraries along with new code to

create an application that gives drivers the ability to communicate with each other in order to find

faults within their respective vehicles.

Alex Hutchings 1412529: Car Messaging System.

5

Figure 1.0– Android Market Share compared to other platforms [3]

2.1. Applications that I will use throughout the project
Android SDK justification

The Android Studio Development Kit software program is the dedicated platform for android

application developments. It is constantly being updated by the Google Android team and provides

the latest packages ready to use for any developers. It is now the official Integrated Development

Environment (IDE), providing lots of support, tutorials and videos which can provide detailed

documentation and help for someone developing applications in the software. It also provides the

ability to plug in your own android devices to test current builds of your application and to test

functionalities directly rather than using an emulator. The programming language that will be used is

the Android programming language. This language is very similar to Java and incorporates its syntax

and structure into its language, with the added functionality of working on an Android device. The

studio provides an in-depth IDE that allows developers to create user interface elements in XML or by

dragging and dropping components on to the screen, accommodating for both novice and expert

users, this will help in the development of the solution to the problem being solved.

This is in direct contrast to the Eclipse IDE. Eclipse is no longer receiving support for Android developer

tools which would be vital for maintaining and developing an active application within the market.

Eclipse will not be receiving the latest updates from the Google team as they are directly working with

Android Studio instead. This was the main reason for choosing to use Android Studio over Eclipse as

there are more benefits for Android Studio over Eclipse in the current working environment.

Alex Hutchings 1412529: Car Messaging System.

6

SQLite Justification

In this project, I will be making use of a database that can act as the verification and storage for user

accounts and the messages sent between users. I have opted to use SQLite because it has many built

in functionalities for development within Android Studio itself. There are many tutorials on the

Android Studio website that can be used should the need arise to familiarise myself with the package.

It also provides numerous classes and instances that can be used as a starting point, for example,

establishing connections from the application to the database, rather than having to create the code

from scratch. It uses the SQL language which I am familiar with from experience at university. The

program also comes with a downloadable application that has a very user-friendly interface that you

can use instead of having to create tables and records within the command shell.

2.2. Libraries and modules
Android and Java Libraries

The Android Developer website provides lots of Application Programming Interfaces (API) and

frameworks, with complete classes and methods, that will be very useful for developing an Android

application. This will be helpful during the project as I am new to programming for Android and mobile

development. Below are some of the main frameworks and APIs that will be the most useful

throughout the project.

A library that can be used for this project is the Java.Security module which has many classes and

functions that will provide the security framework of the application. As discovered during research,

the current Vehicle to Vehicle (V2V) communication standards use public key cryptography security

methods to encrypt vehicle communications. Therefore, by using this framework in the Java language

classes such as “KeyPairGenerator” offer the ability to create a key pair that can be used to send

encrypted messages over the server. There are multitudes of other useful classes and functions within

the Java.Security framework that could be used throughout this project.

Another library that could be used is the Android WiFi Peer-to-Peer API. This API contains magnitudes

of methods and listeners that will allow development of an application that uses fast connections over

Wi-Fi to connect to the internet, for example, when connecting to the database or to the server. This

API has multiple classes that could be useful, i.e. the “WifiP2pManager” class that provides methods

that would effectively allow the connection of devices. This is important for the application if I take

the approach that will allow users to directly send messages to each other through Wi-Fi direct or

similar methodology, rather than directly going through the server.

Figure 2.1 below shows the typical layout of an Android application. These applications are not just

comprised of your typical “code files”, they include resource files and a manifest file as well. Resource

files dictate how your application is laid out, what menu options are available etc. Android manifest

files include a number of options for the application such as permissions, any third party libraries that

need to be used and a list of all your activities within the application. The application will follow the

typical Android application layout in the style of this diagram.

Alex Hutchings 1412529: Car Messaging System.

7

An Android Application takes the following format:

Figure 2.1 – Android Application Structure [4]

2.3 Current Solutions
There are a limited number of solutions in practice today that are implemented using a device within

a vehicle allowing you to communicate with other drivers. There is a large focus on providing

communication within vehicles to relay traffic information and important updates such as accidents

and maintenance, but only one solution that actually looked to communicate between drivers

themselves. This solution is called The Bump Network.[5]

The Bump Network is similar to the project proposed as it tries to solve the lack of status updates from

your car to the driver in older vehicles. Bump uses an application to scan a registration plate, which

forms a unique address with an email address you use to sign up to the network, therefore, allowing

drivers to contact other drivers via text, email or voice messaging. Both users would have to be signed

up to the network to make use of the application. This solution is different to the idea that I am

proposing as this allows free communication between the drivers, literally so that they can send

anything they want. The solution being implemented will aim to provide ready to use statements that

will prohibit offensive comments and messages being sent, something that Bump does not seem to

restrict.

Bump provides location specific details that relate to the location of your vehicle which allows friends

or family to monitor your location. This is something that this project will not consider because that

data is private and the application that provides that data could become quite sinister if people can

access your location without your knowledge. Bump is currently only available within the USA which

is different to the solution proposed as it aims to be implemented within the UK. Bump is a great idea

as it offers a way of communicating between drivers. The idea of the photo application to scan the

registration plate is a very good idea and something that could possibly be adapted for this solution.

Usage in regards to the photo aspect of the Bump network was unclear during research as it did not

Alex Hutchings 1412529: Car Messaging System.

8

specify, whether it is through a mobile device or through a camera on the vehicle itself. If it is through

a mobile application, then there are clearly safety risks that need to be addressed that were not

publicly available. There seems to be very little update on the project after 2013 which leads to

speculation that the company is still trying to implement their solution, focusing on driverless cars or

that the company no longer exists.

Another solution that aims to implement vehicle to vehicle communication is the Car 2 Car

Consortium. This is a non-profit industry driven organisation that is supported by many vehicle

manufacturers, equipment suppliers and researchers. They are supported by vehicle manufacturers

such as Land Rover, Audi, Honda and BMW. However, they are more focussed on increasing road

safety and efficiency by introducing Co-operative Intelligent Transport Systems (C-ITS) throughout

Europe, with the overall objective of introducing validation processes for vehicle to vehicle

communication systems. This company has a lot of international backing and could pave the way for

solutions like the application proposed to become readily available in a safe environment for drivers

and citizens alike. As the Car 2 Car Consortium is an globally recognised company, they will be able to

gain international backing and increase the probability of legislation being created and passed that

will allow for vehicle to vehicle communication systems. They are not currently implementing any way

for drivers to communicate with each other, but are more focussed on legislation allowing

communication between vehicles. [6]

There was some consideration into whether a server would be the best way to send messages

between drivers for the intended application. Roadside Units(RSU) and adhoc vehicle networks are a

possibility for creating the communication hubs that relay information between drivers and the server.

A research paper, written by Andre B. Reis et al, a Computer Communications and Computer Security

researcher, that I considered provided some clear issues with using such methods.

“When a vehicular network is formed, the low density of vehicles under such conditions leads

to network sparsity.” (Reis et al. 2014) [7]

This quote suggests that if a low number of vehicles are using the networked RSUs at any one time,

then the messages between them could lead to delays in communication. The paper does go on to

discuss benefits of using connected networks of RSUs and how that can have a great improvement on

the delay time caused between sending messages between nodes on a highway. This could be

implemented in the future, with the application taking advantage of RSUs, instead of the server acting

on behalf of an agency like the DVLA. The RSUs would form the backbone of the server and directly

connect to the DVLA servers, allowing them to communicate messages to drivers based on their travel

location rather than directly contacting their account on the system. This would be based on RSUs

being built along every road, so it is unrealistic for the foreseeable future because of the expense to

do so, as stated by Reis et al. 2014 [8],

“the cost of deploying and supporting RSUs in vehicular environments can be very high.”

Currently, using a server fits the aim of the proposed solution and does not have to factor in potential

delays in message communication because the application will be mainly focussed on issues that are

not life-threatening for example, a brake light being broken.

Vehicular Ad-Hoc Networks (VANETs) seem to be increasing in popularity and more and more research

is being done into this field to try and build up towards implementing Vehicle to Vehicle (V2V)

Alex Hutchings 1412529: Car Messaging System.

9

communication systems. Using vehicles as nodes for Wi-Fi networks is definitely something that could

be considered in years to come, however for this project it is not currently viable, therefore, using a

server to act as a database is the best approach.

Transportation Technology and Mobility Editor, Pete Biglow, sets the scene in his blog for the future

implementation of V2V communication, [9]

in Washington, D.C., federal Department of Transportation (DOT) officials unveiled a long-

awaited notice of proposed rulemaking. If a final rule reaches fruition, it will mandate that all

new vehicles contain equipment that permits vehicle-to-vehicle (V2V) communications.

Regulators say this connected-car technology could one day prevent thousands of deaths and

tens of thousands of crashes every year by offering drivers real-time alerts of imminent

dangers ahead.

The blog article certainly paints an image of possible implementations in the future that could be used

to build on existing solutions like, The Bump Network and Car2Car Consortium. Current solutions make

use of the public key security method in their V2V communication systems. This practice will be taken

forward in this project and be implemented as the communication system with the use of certificates

to authenticate the messages between drivers.

Car manufacturers are already implementing high-tech dashboard and display units within their latest

car models. These display units allow drivers to see lots of information regarding the vehicle’s faults,

i.e. broken lighting systems, flat tyres, software updates required for latest onboard technologies like

Bluetooth etc. The latest Ford Focus has an array of technology features that helps detect all sorts of

problems, that the proposed application could not hope to implement at this stage of the project.

“Ford SYNC 2 with Voice Control and Touchscreen takes the existing infotainment system a

step further with the addition of an optional 8” coloured touchscreen. This high-resolution

display gives intuitive control of several key functions including phone, audio, climate control

and optional navigation via voice or touch.” [10]

The display units demonstrated by Ford are a vital step forward to the future of V2V communication

as they could allow for applications like the one proposed to be situated within, to allow drivers to

communicate with each other. However, these new technologies and systems in modern cars also

present a problem regarding the electronics and how a single fault in the system could cause these

features to stop working entirely. Where as if there was an application, like the one being proposed,

that operates without relying on the features of the car working correctly then there is always that

chance of receiving updates regarding the status of your car from other drivers who notice issues with

said vehicle. A challenge to overcome with the proposed solution and the solutions developed is how

to implement communication features in a safe environment without distracting the driver. Having an

8” screen will be great and help drivers to find errors within their vehicles but it is a big distraction

that takes the driver’s focus away from the road and their fellow drivers. There are still safety risks to

be resolved within the newest technologies that are being implemented by car manufacturers. The

benefit of what the intended solution and the Bump Network set out to achieve is communication

between drivers and not just communication between the vehicle and yourself, the driver.

Alex Hutchings 1412529: Car Messaging System.

10

2.2 Constraints
There are a few constraints that must be considered with this project. The application that will be

created is targeting vehicle owners and mainly their drivers. As it is a mobile phone application that

will simulate potential use for the application to sit inside a car’s technological capabilities, it is not

possible to undergo a testing period in an actual car. This is due to the safety risks it could entail with

the driver and their fellow road users. Not to mention the possible consequences for a road user who

is testing the application should they encounter law enforcement agencies. With the prohibition of

mobile phone use in vehicles, the project will opt to use mobile phones as “vehicles”, simulating the

real application functionality. The application will be tested vigorously in an environment suitable to

the project, i.e. using a number of instance applications that will be “vehicles” for testing purposes.

2.3 Potential Stakeholders
There are many potential stakeholders within this project’s scope. For example, drivers who drive

everyday through traffic filled streets with lots of cars on the road. These drivers can provide lots of

information to other drivers regarding the status of their cars, as well as being informed about the

status of their own vehicle. This could result in multitudes of information being passed from driver to

driver, providing fixes to minor issues within their vehicles. The alternative being that they find the

problem themselves after someone points it out to them, i.e. a family member informs them or they

are pulled over and made aware of the issue by a member of law enforcement. The latter being the

worst-case scenario, if they were then given a penalty or a fine rather than a caution.

Other stakeholders include organisations like the DVLA or Police Force who can use the application to

potentially deal with unlawful drivers. For example, if someone fails to fix a brake light after being

warned by another driver after a certain time-period passes, then that vehicle owner could be fined.

This would take the application in a different direction than intended, but could be considered in the

future.

Another stakeholder could be vehicle manufacturers as they can incorporate the application into

future car models. The application could sit within their own car based systems that would allow their

drivers to pass on messages to other vehicle owners who have older cars.

Alex Hutchings 1412529: Car Messaging System.

11

3. Specification and Design
This section of the report will detail the intended user interface of the application at a high level as

well as system diagrams such as flow charts, database designs and why these options have been

considered. Most importantly it will document the projects specification, aims and objectives and how

the project will set about achieving those aims.

3.1 Aims and Objectives
The objectives of this project have been thoughtfully considered and aim to provide the best working

solution to the problem that is being solved. The original objectives described in the initial plan have

changed slightly but the overall objective of achieving driver to driver communication over mobile

devices remains the same. The main changes from the initial plan will be discussed in the

Implementation section of this report and all reasons for making those changes will be justified there.

To re-iterate the problem in more detail. The problem is that there is no way for drivers to

communicate with each other if they spot a fault or a distraction that may help another driver. For

example, if there is a vehicle with both brake lights that are not working, a driver can send that

message to the recipient’s application who can then do something about that problem. Similarly, if a

driver reports an accident that they are currently stuck in traffic because of, they can alert other

drivers to these accidents so that less congestion builds up. This is a problem that many motorists see

every day, with many drivers assumingly unaware of the faults within their vehicles. The ability to

communicate between drivers, would seemingly solve this problem.

Below are the aims and objectives of this project. Broken down and described in detail so that the

project’s goals are clear. These aims and objectives are the criteria that will be used to solve the

problem at hand.

1. Provide a complete application that provides users with a fully functional car messaging

system.

2. Allow users to send messages from one device to another device regarding the status of their

respective vehicles.

3. Provide a simple and easy interface for drivers to communicate with each other.

4. Store all data used within the application securely and in a way that does not compromise

the performance of the application itself.

Aim 1 – Provide a complete application that provides users with a fully functional car messaging

system.

This is an important aim of the project as it will shape the entire functionality of the application by

giving users the features that they would expect with the given solution. For example, the project aims

to provide users with the ability to send messages between drivers, to view their own messages within

the application and to report and monitor traffic incidents. This functionality is important for the

application because it allows drivers to communicate with each other, which is the fundamental aim

of the project. Reporting and monitoring traffic incidents would allow drivers to change their desired

route if they discover a problem on the road they were going to take because of an accident, instead

of sitting in traffic because of that issue.

Aim 2 – Allow users to send messages from one device to another device regarding the status of their

respective vehicles.

This objective is the main function of the application. If this is achieved in the implementation then

the project could be deemed a success because of how important it is. The way this project will set

Alex Hutchings 1412529: Car Messaging System.

12

about achieving this objective is by implementing a server with the ability to pass on messages from

one device to another device. The idea for this objective is that one user sees another driver’s vehicle

fault and reports it by sending a message, using the application to select a fault and input the

registration number of the other vehicle. When they send the message, they will connect to the other

phone through the server and the message will be displayed for the other user, notifying them of the

fault within their vehicle.

Aim 3 – Provide a simple and easy interface for drivers to communicate with each other.

If the interface is not easy to use, then drivers will not use the application. The interface must be

simple, so that users can use the application without previously experiencing the application. A good

interface should have clear labels and text, useful hints where appropriate and its functions should be

self-explanatory. For example, if a button says, “send new message” then that button should be

related to sending a message. If it is not then it will confuse users and that will fail this objective. The

application will follow several design heuristics that will maintain a clear and simple user interface.

These heuristics are adapted from Rosa Yáñez Gómez et al, a Researcher from the University of Sevilla,

[11]

• User control and Freedom

o Users that choose a function within the system may get lost, there should be adequate

ways for them to return to previous screens, undo or redo the last action.

o E.g. a user entered the wrong form when they meant to click the send message form.

This should be easily reversible.

• Help users recover, diagnose and recover from errors

o A helpful error message should be displayed to inform the user how to correct their

mistake. Whether it was a system fault or the user fault should also be displayed.

o E.g. Check user enters a registration number while sending a message, and if not then

display a notification telling them that they must include this field to successfully send

a message.

• Aesthetic and minimalist design

o Only information that is relevant to the screen that the user is on should be displayed

for the user. There is no need to display irrelevant information that could confuse the

user, or takes away the focus of the relevant information.

o E.g. For sending a message, there should be no mention of how to read your

messages, the form should focus on how to send a message only.

• Consistency and standards

o Platform standards should be followed to achieve consistency and standards of the

application. Different words, or actions should not be used as they could cause

ambiguity and confuse the user.

o E.g. Does “Send Message” mean the same as “Create Message” or “New Message”

and if they are, then one phrase should be used throughout.

• Match between the system and the real world.

o Familiarity is important in the application so that words and phrases are similar to

those that are used in real world situations.

o E.g. Registration number should be used rather than License plate as the application

is based in the UK. Information should be displayed in a logical and natural order so

that users can follow it easily.

These heuristics will be followed to ensure that the application meets this objective.

Alex Hutchings 1412529: Car Messaging System.

13

Aim 4 - Store all data used within the application securely and in a way that does not compromise the

performance of the application itself.

The application will be storing some sensitive data such as registration numbers and surnames. That

makes it vital to that there are adequate security measures in place within the application to prevent

data being stolen or apprehended during transfers between users and the database. To complete this

objective, encryption and decryption measures, for example, the Java.Security API, AES and padding

will be used to protect data during transmission from users to the database and from user to user.

This will look to stop eavesdropping attempts and unauthorised access to the data. Passwords will

also need to be stored securely to avoid unauthorised access to the application itself.

Non-functional requirements of the project are required to ensure that the application runs to the

standard that users expect on their devices, without overloading current device specifications,

therefore, keeping the device running smoothly. The non-functional requirements that I hope to

achieve in the project are:

1. Performance

2. Security

3. Reliability

Performance will be measured by the CPU, Memory and Network usage that the application requires

to run effectively. Android Studio provides a monitoring system for connected devices that check

these statistics to show the current levels being exuberated by the application on the device. I can

monitor the hardware usages to ensure that standards are maintained and these parameters are not

overly high and cause issues for the user and their device.

Storing the data securely and protecting the data being transferred between users is a vital aspect of

this project. As well as ensuring devices are protected from other devices accessing their data through

the client to server connections that can be formed. For example, if I implement client to server

architecture for sending messages between users on different devices, the user sending the message

from their client device to the server device should not be able to access any components on the

server device and vice versa. The connection should be terminated after the initial message has been

sent from one device to the other.

Reliability is an important feature for the application. It is important that the application is consistently

available for the users and does not contain errors or bugs that cause the software to function

incorrectly. The functionality of the software should be responsive and available to the user

throughout their experience. And if for some reason it is not, then appropriate messages should be

displayed to the users detailing why they cannot access a specific feature.

Alex Hutchings 1412529: Car Messaging System.

14

3.2 System Design
The user interface has been designed using software called Balsamiq. The software allowed me to
create a number of interface diagrams that used a real mobile device template to show a realistic
interface for the application itself.

Figure 3.1– The Login screen design

This design for the login activity is a classic example of login screens seen across multiple applications

and websites. The username and password approach is the most familiar method in which users will

log into applications, therefore, making it a suitable design choice. The credentials required on this

activity will be set by the user in the create account activity. Both of these fields will be stored in the

database and will correspond to a user when they log into the system. The password field will be

hashed out when a user types in their word, as is typical with many password textboxes across

websites and applications, for example, password would be ********. The username field will be

automatically generated on the create account activity, which is discussed in the next design and the

reasoning behind this approach.

Alex Hutchings 1412529: Car Messaging System.

15

Figure 3.2 – The Create account design

The create account activity is an approach that follows the login screen design provided in Figure 3.2

as it asks users to fill in the necessary fields. As stated in the side note for Figure 3.2, the registration

number is a necessary requirement as it will be required to link users to their cars. A field that will also

be required on this form is the Surname field. This field is vital in the generation of the UniqueID field,

which is a combination of the registration number and the surname. The uniqueID field will be used

to log into the application. The choice of including this UniqueID that is generated by the system rather

than the user is purely for reasoning of making unique usernames that are relevant to the user. It

would make it easier to remember and is not seen by other users so it won’t be deemed giving away

sensitive data. For example, a UniqueID formed from the surname Hutchings and AB11CDE would be

Hutchings-AB11CDE. This is easy to remember for users as it is just their surname and their registration

number.

Alex Hutchings 1412529: Car Messaging System.

16

Figure 3.3 – The Main menu screen design

As stated in Figure 3.3’s side note, the project aims to implement a very simple interface and menu

screen that allows users to go to the activity they want quickly and without having to wonder how to

navigate to a certain screen. The boxes are informative and tell users exactly what happens by clicking

on them and provides a clear way of navigating the application, following the design heuristics

discussed in section 3.1. The buttons use phrases that would be expected by the users, containing

information that is relevant to the users displayed on the form and the consistency is kept between

the text size and box size on the form. The consistency is evident from the logo and the title header

that is on show at the top of the activity.

Alex Hutchings 1412529: Car Messaging System.

17

Figure 3.4 – The Inbox screen design

The Inbox design is based on Google’s Gmail account setup, as stated in Figure 3.4’s side note. The

simple design provides an effective layout of the activity and creates an easy reading experience for

the user. As the messages are all pre-set and can be displayed on a single line. The message will include

the problem with the car, the registration number and the time and date the message was sent. These

are important for the user to be able to diagnose the problem with their car and work out when it was

from, as they may have already fixed it by this point.

Alex Hutchings 1412529: Car Messaging System.

18

Figure 3.5 – The send message screen design

This is the new message screen that will be created within Android Studio for the application. It is an

image of a car where users will be able to select parts of the car that are not working, for example

selecting the front left plus icon image, automatically setting the message to be “Front Left headlight

is faulty”. This gives users pre-set messages that they can select to send about another car. The

reasoning for this design choice is that, when creating the application, the option to allow users to

write their own messages seemed like a bad idea because it can quickly become a messaging service

that supports abusive messages, spam messages or any kind of inappropriate messaging. This way it

restricts users to the options provided and limits their choices to focus on the problem. This is different

to the Bump Network’s approach (see Background section 2.3) because they allow for a user to send

any kind of message that they want, which allows for rude or abusive comments. This method would

eliminate any kind of abusive messaging. This design also provides the simplest and most effective

way for users to actually select a fault. It means that permutations of the selected fault do not become

too ambiguous or vague, for example, “Headlight not working” or “Left light broken”, etc. It provides

a uniform approach to sending an informative message and lets users relay the message quickly. The

only challenge with this approach, is providing enough options for users to report the faults they see.

This can be overcome by providing logical faults that a user is likely to be able to see.

Alex Hutchings 1412529: Car Messaging System.

19

Figure 3.6 – The Report Accident screen design

The Report Accident design shows how the application will implement the use of Google Maps so that

users can insert their own markers showing other drivers, where accidents have occurred. The design

for this activity was selected to provide users with a familiar looking screen helping to make the

application more user friendly and increasing ease of use. By providing a Google Maps interface, users

will not have to learn how to interact with this activity, they can use previous experience gained with

the Google application. The user will be able to easily tap where they saw the accident and a marker

will appear at that location. This is a simple and effective design that makes use of APIs available within

the Android Mobile development platform. The design will make use of the user’s location if they

provide that permission. This way the user’s location can be pinpointed by the application rather than

them having to find themselves on the map, further increasing ease of use and reducing interaction

by the user which could cause distractions.

Alex Hutchings 1412529: Car Messaging System.

20

Figure 3.7 – the Traffic Information screen design

The Traffic Information activity design demonstrates how the users will be able to see the reported

accidents or traffic information from the Report Accident activity. Each marker will be shown with an

information panel above that shows the road name, the problem and the date and time that the issue

occurred. The design is simple and informative as it is just a display feature for users to view.

3.4 Database Design
The database design consists of three main tables that will be used throughout the application. The

Identifier table which will store all the user’s information, the Messages table which will store all the

messages received from users and the AccidentInformation table which will store all information

about reported accidents.

Alex Hutchings 1412529: Car Messaging System.

21

Figure 3.8 – Diagram of the Database tables and their fields

The Identifiers table will have a one-to-many entity relationship because a single user can have many

messages at any given time. Users could also have zero messages hence why it is an “optional many”

rather than a mandatory one. The RegistrationNumber and Surname fields make the UniqueID field

which is a requirement in that table as it is the primary key.

The AccidentInformation table requires latitude and longitude coordinates to pinpoint the location of

the accident reported by a user, and the location and time will be for reference to other drivers so

that they can see the exact timings and area where the accident will have taken place.

Similarly, with the Messages table, the message sent to the user will have to include a message field

which will describe the issue with the car that has been reported, the date of the message that has

been sent so that the user has an idea of the relevance of the message, and the RecipientRegNo is

required to identify the car that has the fault. These three tables will be created in an SQLite database

that can be accessed through the Android Studio software and will provide a direct link to the

application. Please see Figure 3.8 for further database structure.

3.5 Use Case Diagrams
The use case diagrams in this report look at the main functions of the intended user interaction within

the application.

Figure 3.9 – Use case diagram of the intended Send Message Activity

Alex Hutchings 1412529: Car Messaging System.

22

The send message use case in Figure 3.9, illustrates the main functionality of the application and how

the solution intends to work. The user will send the message, which is stored in the database

regardless of whether the server user accepts to receive the message or not. This message will be

available in the server user’s inbox even if they do not accept the connection. This approach will allow

for a driver to view the message at a more convenient time for them without distracting them from

the road. When the client user connects to the server user, they will connect via a WiFi-direct peer-2-

peer connection that is formed from nearby devices. These devices appear on the list of available

devices for the client to make the connection. Once that connection is established, the user’s message

will be delivered to the server user who will view the message that has been sent.

 Figure 3.10 – Intended Inbox Activity use case diagram

The inbox use case, in Figure 3.10, demonstrates how the user will retrieve their messages from the

database. The messages are stored in the database from the other users who send messages to this

client user. The client will check their Inbox in the application to find a list of all the available messages

that they can view. The messages will be displayed for the user so that they can see what faults their

vehicle has.

3.6 System Flow Chart
The flow chart (Figure 3.11) gives a high-level overview of the intended solution and the processes
that can be carried out. The user will always start in the Login Activity and from there will be able to
navigate to the two screens that branch from it. The flow chart covers all possible interactions for the
user and how each activity will be linked together, presenting the possible outcomes of implementing
a complete Car Messaging application, discussed in Aim-1 in the Approach section. The complete
application would have these extra functionalities such as the Reporting Accidents and viewing traffic
information activities.
The flow chart demonstrates a typical experience for the user. They must log in successfully to be able
to access the features of the application. The login activity will check the user-input against the
credentials stored in the database to ensure that they are an authorised user. If not authorised, the
user cannot log into the system. From the main menu, users have a choice as to what functionality
they want to carry out while logged in. They can check their inbox for new messages, send a new
message, report an accident or check for traffic information. The send message and inbox activities
are directly linked because of their relationship. New messages are sent to the database and to the
user directly, by checking the inbox, any new messages will be displayed. Similarly, the Report Accident
and Traffic Information activities are linked as all new accidents will be displayed in the traffic
information screen. The server activity correlates with the send message activity, because the server
activity is where a user will listen for messages from other users. If a user is trying to connect to the
server activity to send a message directly to the user then the other user needs to be in the server
activity.

Figure 3.11 – Flow chart of the Intended Application

Yes

No

Alex Hutchings 1412529: Car Messaging System.

24

4. Implementation
This section of the report describes the execution of the approach and methodologies used to solve

the problem. The main aspects of the code that I produced will be detailed in this section, with

reference to why some parts of the approach were not created and reasons why they were omitted.

4.1 Changes from the initial plan
The changes from the initial project plan and the design phase are listed in the table below, with a

quick summary of what has been implemented in their place.

Initial Plan Objective Approach Objective What has been implemented

Develop a functioning mobile
application which allows users
to create, send and receive
messages regarding the status
of their vehicle

Allow users to send messages
from one device to another
device regarding the status of
their respective vehicles.

Functionality within the
application that uses client-to-
server architecture to send
messages between devices

Create a server that will create
certificates for registered
drivers, and relay messages
between drivers.

The server is created within the
application on the device, and
is used to listen for incoming
messages.

A function within the server
that allows an agency or
“Governing Body” to send
traffic updates and
maintenance schedules to
drivers on the road.

Provide a complete application
that provides users with a fully
functional car messaging
system.

Functionality within the
application that allows users to
check for traffic information
and accidents that have
occurred on a Google Maps
activity.

Allow non-driver registered
users to send messages
regarding the status of other
vehicles on the road but not to
receive messages.

This initial objective has not
been included in the final
implementation, because it
was not relevant to the
problem aforementioned.

Create a feedback function that
allows drivers to rate how
helpful the message they
received from another driver
was.

This has been implemented in
the way of dialog boxes that
appear when a user clicks on a
message and they can then fill
out a star rating bar and leave a
comment with their feedback.

Third party information that
can be used by drivers to fix any
problems with their vehicles.
E.g. A link to a garage or high-
street shop like Halfords that
sells parts for a fault that has
been raised.

This initial objective has not
been included in the final
implementation.

 Provide a simple and easy
interface for drivers to
communicate with each other.

The entire application is very
minimalistic, everything that
the user needs to input is
explained and only the relevant
information is displayed on the
screen for them.

 Store all data used within the
application securely and in a

The data is not encrypted but
there is a security activity that

Alex Hutchings 1412529: Car Messaging System.

25

way that does not compromise
the performance of the
application itself.

shows a possible route for
encrypting data in the future.

The passer-by camera optional objective from the initial plan was not implemented because the whole

application is dependent on a user’s registration number and being able to log in to identify that user.

This could be changed in the future to allow for the passer-by camera screen but in the current

implementation it does not fit and makes no contribution to solving the problem.

The other objective from the initial plan that was not implemented was the third-party information

that is provided to users based on problems found within their car. This would have been a useful

addition to the project but did not correlate with the main objectives of the project.

4.2 Execution of the Approach
An important feature that was overlooked during the implementation stage of the project was that

SQLite is only a local database that is stored on the device or emulator that you use to run your

application. This was realised late on in the implementation stage and that I wouldn’t have time to

recreate the database in a software package that allowed for the database storage to be across

multiple devices such as MYSQL or phpMyAdmin. The impact of this flaw was large and affected how

I could spend the rest of the implementation cycle because the device to device communication was

a priority rather than implement a new database and change the methods that had the database

functionality. A more suitable database software package that allowed communication to all users

across the application rather than local device storage could have been chosen. This would mean that

I could have used python and php scripts to connect the database to the Android Studio project like I

mentioned in the approach, instead of taking the different approach that I did.

Client Activity Code:

Figure 4.1 – Client Activity Code

The Client Activity is one of the most important features of the application that has been created. It

allows users to send a message from their device to a server device that is listening for commands. It

was a challenge to implement because I had originally planned to use the WiFi P2P communication

method, in which you connect to other devices in the local area through Wi-Fi direct. However, using

the Genymotion emulator software prevented me from carrying out this technique successfully. The

devices I created to use as emulators were not Wi-Fi direct compatible and the devices would not find

any other compatible device on the network. Therefore, the decision to implement socket

programming using a client and server device respectively to forward messages between the users

Alex Hutchings 1412529: Car Messaging System.

26

was chosen. Having to learn and understand about socket programming from scratch was a

challenging experience because I had no prior knowledge of how socket programming worked and

had not implemented anything of the sort before. The code in Figure 4.1 is a client thread that is run

in the background of the application as a service. It checks that the inputted IP address matches a

listening server device and if it does, it posts the message that the user sent from the client device

onto the server device and stores the message in the server’s database. (Adapted from code taken

from thinkAndroid, “Incorporating Socket Programming into your Applications.” [12])

Figure 4.2 – Implementation of client activity

Server Activity Code:

Figure 4.3- Server Activity Code

Similar to the Client activity code, the Server code shown in Figure 4.3, waits for the connection to

come in from the client device and then creates the connection between the devices. While they are

connected, the server takes the command from the client device, which is the message, and posts it

Alex Hutchings 1412529: Car Messaging System.

27

to the screen of the server device displaying the message to the user. This was an area of difficulty

because I had to get the message that was sent from the client device to be stored in the server devices

local database, effectively synching the two databases after the new message had been sent. In

reference to the SQLite problem discussed, this would not have been so difficult to implement if the

database had capabilities to store data across multiple devices rather than just locally. An alternative

approach would have been to use a database that would store the message on the client’s side of the

communication and then use socket programming to display the message to the server user, rather

than having to store the message on both ends to synchronise the database. Socket programming in

Java and Android was challenging to understand as it is not class knowledge that was taught at

university, which meant learning how the sockets worked was difficult, and was required before the

code from ThinkAndroid [13] could be adapted to meet the project requirements.

Figure 4.4 – Server activity implementation

Alex Hutchings 1412529: Car Messaging System.

28

DB Adapter Activity

Figure 4.5 - (Database Adapter methods)

The DB Adapter activity, shown in Figure 4.5, is important for the functionality of the application that

was created. The DBAdapter controls the application’s interactions with the SQLite database stored

on the phone. These methods were used to get the messages for the specific user logged into the

application making sure only their messages appeared in the inbox. Because of how the database

tables were created, i.e. the Messages table was separate from the CarIdentifiers table, there needed

to be a way to link the two so that the specific messages for that user who was logged in could be

retrieved. The getRegNo method is used first in the application to match the uniqueID with the

registration number of that user. The query retrieves the registration number of the user and returns

that registration number, using that to query the Messages table with. The method, getAllRows(), gets

all the messages for the specific registration number that is passed as the parameter, which is returned

from the getRegNo method. This took some time to implement correctly because the tables were not

connected in anyway by a foreign key. Once the correct queries were set up to pull the required data

from the database, the functionality of this class was complete.

Alex Hutchings 1412529: Car Messaging System.

29

Send Message Activity:

This activity is one of the fundamental objectives for the system. It is the main function of the

implementation as it allows users to send messages about other user’s vehicles to a database, based

on a fault that they have spotted within the other user’s vehicle.

Figure 4.6 - Button Listener Methods: (One for each image button on the form)

For each image button that is used on the SendMessage activity, an onclick listener method had to be

created for each because they needed to be manipulated by the user. Figure 4.6 is an example of the

listener that provides the detail in which the user can select what fault is wrong with the car they are

reporting about. When one of these images is clicked, the image resources of all the other images are

returned to their default image state. This default image state is defined in the XML file

imageStates.xml. The message that is sent to the intended recipient is set on the listener, as seen on

line 65 in figure 4.6.

 These listener methods were difficult to implement because I had numerous issues when trying to

set the image states on each button without the other image buttons being in the wrong state. For

example, during implementation if one image was clicked, then it turned to the pressed state only for

a split second before returning to the original default state. I overcame this issue by introducing the

code above with the integer “icon” object that could be manipulated to the pressed image state when

it was clicked by a user. Having done that, I had to implement the reset for all the other buttons to

ensure that they were not displaying the same image state as the pressed button after a new button

was selected. I used code from StackOverflow [14] to help develop the image states file.

Alex Hutchings 1412529: Car Messaging System.

30

Figure 4.7 – The send message activity implemented

Security Activity Code:

This activity is an extra feature that I implemented to show the kinds of encryption and decryption

methods that could be implemented in future versions of the application. This activity has been added

to show the type of encryption that would be carried out when adding sensitive data or retrieving

sensitive data from the database. There needed to be some demonstration of the techniques that

would be carried out to meet the objective of Aim4 discussed in the approach.

Encryption Function:

Figure 4.8 – Encryption Function

The function shown in Figure 4.8 is the encryption method that has been used to encrypt a message

inputted by a user into a text box. The method takes a string and a secret key that is generated as

parameters and encrypts the string that is input by the user. The method uses the built-in Android

Cipher class and its functions to create an AES encryption standard that can be used to encrypt the

message together with the secret key provided in figure 4.7. A byte array is created to store the

message in bytes rather than as a string because the Android Cipher decryption method takes a byte

as its input parameter, meaning it is important to return a byte rather than a string. The string is

converted into bytes using the Cipher.doFinal method.

Alex Hutchings 1412529: Car Messaging System.

31

Decryption Function:

Figu

Figure 4.9 – The encryption and decryption functions that have been implemented.

Figure 4.10 – Decryption Function

The decryption function shown in Figure 4.10 works by taking a byte that is returned from the

encryptMsg method, and a secret key that is generated in the generateKey method and returns the

decrypted version of the encrypted message. Again, this function relies on the Android Cipher class

and uses its Cipher.DECRYPT_MODE to decrypt the bytes from the input parameter.

Secret Key Generator:

Alex Hutchings 1412529: Car Messaging System.

32

Figure 4.11 – Secret Key Generator Function

generateKey() method uses a KeyGenerator object from the Android KeyGenerator class. It takes an

AES encryption method to produce the key. The SecretKeySpec object is then generated to get the

encoded version of the key which is then used for encryption and decryption. The key is used in both

the encryption and decryption methods as the input parameter to either encrypt or decrypt the

message that is input by the user.

Inbox Activity

Figure 4.12 – Inbox Activity Function

The method displayed in Figure 4.12 is the main functionality of the Inbox activity. This is where the

DB Adapter directly interacts with the activity to retrieve the data from the database and display it for

the user. This was difficult to implement because it makes use of a list view object, which can be

manipulated with a custom layout, which is what has been done here, in the

layout.custom_resource_layout file. It was challenging because the code here makes use of lots of

different components, there are CursorAdapters, Cursors, String arrays and list views. Each of these

components had to be working together to achieve the functionality wanted for the activity. These

components can seem complex at first sight but after reading the documentation and tutorials, the

methodology behind them seemed easier to understand. Once the understanding of these

components was there, they could be adapted to fit the requirements of the application.

Alex Hutchings 1412529: Car Messaging System.

33

Figure 4.13 – Inbox Dialog function

The code displayed in Figure 4.13 shows the dialog box that is used specifically for the custom

feedback on the messages in the inbox activity. The difficult part of implementing this feature was

that a custom dialog interface(custom_dialog_star_rating.xml) needed to be created to display the

star rating and the comment section that was needed rather than using the default dialog objects that

can be created in Android. The custom dialog was a new aspect to coding that was not yet

implemented within the project. Learning and researching about dialog interfaces online helped to

understand how they worked, and how custom dialogs were different to the default dialog boxes that

you could use. The custom layouts provide a customisable design that can include an array of features

rather than just the basic ones that can be generated in Android.

Figure 4.14 – The inbox activity implementation

Alex Hutchings 1412529: Car Messaging System.

34

HomeScreenActivity

Figure 4.15 – HomeScreen loginButton function

The code in Figure 4.15 has many different features that had to be moulded together. It made use of

the onClick listener methods, database interactions and the shared preferences methods. The shared

preferences method was used because it allowed for storing the user’s uniqueID in their preferences

file which is stored on the phone itself. This method was like using sessions in PHP which is a more

familiar process. Being able to adapt this approach to keep track of the user logged in, was similar to

that of using sessions in PHP, which helped create the functionality. The shared preferences function

allowed the use of the uniqueID across the entire application for that user, which helped a lot in the

case of retrieving a user’s messages as the system knew exactly who was logged into the application

through the preferences file.

Alex Hutchings 1412529: Car Messaging System.

35

Figure 4.16 – The Home activity implementation

Traffic Information Activity

Figure 4.17 – Traffic Information Populate Accidents function

The populateAccidents method shown in Figure 4.17, is important for displaying the markers from the

database onto the TrafficInformation activity demonstrating that other users can then see the new

markers, which “simulate” accidents that have occurred. It is important to note that this method

makes use of the getMarkers function in the DBAdapter class. This is important because it retrieves

the markers from the database table allowing them to be used to populate the map displayed in the

TrafficInformation activity. The method here was complex to create because it makes use of a Marker

Object class created for this solution, which contains setters and getters to make an object, “Marker”,

which contained the necessary information which could correlate with the database table that houses

the data about each marker.

Alex Hutchings 1412529: Car Messaging System.

36

 Figure 4.18 – Traffic information activity implementation

Report Accident Activity

Figure 4.19 – Report Accident Permission and map loader functions

Alex Hutchings 1412529: Car Messaging System.

37

Figure 4.19 demonstrates the Report Accident activity’s method that checks to see whether a user has

enabled their location to be used by the application. The code here makes use of the Google Map API

and the Android Manifest file within the application. Installing Google Play services on the Genymotion

emulator devices was quite difficult as the default emulators that are created do not come with pre-

installed versions of Google Play Store and its other dependencies. To install that on the devices I

wanted to use, I had to transfer zip files from my laptop to the emulator devices, set up a Google

account and then update the play store on the device itself.

The method shown in Figure 4.19, prepares the activity for the user and is dependent on whether they

have selected for the application to use their location or not. The activity carried out is the same task

regardless of whether the location is provided or not, if the location is provided the user is directed to

that location, otherwise, the user is directed to a pre-determined location. The location permissions

must be given in the Application manifest file to enable the request permission method to work. This

is an important aspect of the application because it integrates the Google API with the functionality

of reporting accidents within the application. The activity gives users the opportunity to report

accidents directly on to a Google Map which stores the markers that they put down into the database,

so the other users can see them.

Figure 4.2 – The Report Accident activity implementation

Alex Hutchings 1412529: Car Messaging System.

38

Action Menu XML and Java Code

Figure 4.21 – Action Bar functions and XML

The code displayed in Figure 4.21 presents the action menu bar that was created for this application.

There are three actions that a user can take from the icons displayed in the menu, Send Message,

Home or Logout. These are the main areas of the application that a user will need access to, referring

to the design heuristic regarding user control and freedom, providing a user with free-flowing

movement around the application as well as increasing ease of use. Having the action bar provides

users with the opportunity to get out of any activity that they did not intend to click on, or if they

wanted to jump straight to writing a new message from another activity, they have that option as well.

It was not difficult to implement but it is an important feature of the application that corresponds

directly to the design heuristics.

Figure 4.22 – The action bar implementation

4.3 Implementation concerns
During the implementation phase of the project there were many hurdles that had to be overcome.

Firstly, the choice of what to implement. At the first stage of implementation I lost sight of the original

aims and objectives of the project and began creating a fully functional In-Car system with lots of

functionality, rather than what I originally set out to do. I created the “sending a message” aspect of

the project quite early on, but neglected to fully complete this functionality by making it device to

device communication rather than sending a message to the database from one user and then

checking the inbox for that message on another user’s application. This oversight, led to the

assumption that the database could be used for multiple devices rather than just a local file stored on

the single device which, aforementioned, caused changes to the scope of the project and the

implementation schedule. Having not fully implemented device to device functionality yet, I needed

to focus on that aspect rather than making changes to the database. During the final weeks of

implementation, the major functionalities of the application were working and minor improvements

were being made throughout the system, for example debugging and fine-tuning. The socket

programming technique used to create device-to-device communication functionality was an

alternative method to the original method planned. Regardless of the technique being an alternative

method, it was a success and achieved the objective set out.

Alex Hutchings 1412529: Car Messaging System.

39

A challenged experienced while implementing the solution was Android Studio itself. At the beginning

of the project the version of Android Studio used was 2.1.2, and the most recent version today is 2.3.1.

This created some issues because a lot of the online tutorials or developer help was using updated API

versions and the new features. For example, when creating the security code and looking for possible

ways to encrypt or decrypt the data using built-in Android methods, the latest solutions all used

methods that were not available in the version of Android Studio being used, methods had been

changed slightly and the new updated code was not available in the libraries in the project. Updating

Android Studio to the latest version of the software to try and include some of these methods caused

the entire application to stop building correctly. This led to the manifest files becoming corrupted

which led to reverting to the older version to continue working on the solution. I ran into problems

with the built-in emulator on Android Studio as well. Not only was it very slow at starting up and

running the emulated programs, it stopped working during the seventh week of implementation. As

expected, this caused some delays in the implementation cycle as I then had to diagnose the issue

with the emulator software and when I couldn’t find any legitimate reason for the crashes and the

timeouts that were occurring I decided to switch to the Genymotion software emulators which were

a lot faster and more user-friendly than the previously used emulator. The only difficulty with

Genymotion was as I mentioned already, the setting up of the Google Services on the device.

Emulators were used to simulate the application due to the high-level API of the android devices

available. The only device available was a Samsung Galaxy S7 which has the latest operating system

and Android Developer API level, (API level 24) which was not compatible with the version of Android

Studio being used and although the application runs on the Samsung Galaxy S7, I could not root the

device to pass the database file allowing access to the features of the application. This was another

problem of using SQLite instead of using another database program, because if I had an online

database that was available like phpMyAdmin then the S7 would be able to communicate with it via

the internet rather than the file stored locally on the device. Coming back to Android Studio, when I

created my project and the first application version, I selected the minimum Software Development

Kit(SDK) level of 15 and the maximum at 23, which was the current version at the time of creation.

The SDK level stated that 95% of devices in the Android market would run the application if I used

those SDK levels, but if I changed it to the latest version SDK only, then only 3% of the devices would

run it, therefore, the majority of devices could install and run the application.

Alex Hutchings 1412529: Car Messaging System.

40

5. Evaluation
The evaluation of the project focusses on how well the solution meets the overall aims and objectives

of the problem and if the application created “solves” the problem that it was built to solve. As well

as next steps that would be taken to improve the solution and how different approaches could have

been taken. This section will also detail the testing strategy and testing that was carried out for the

application.

5.1 Testing
Test Strategy

Throughout development of the solution, I have carried out numerous testing and debugging sessions

to fix bugs and errors that have been prevalent within the application. The ongoing testing of the

solution was important to ensure that the original aims and objectives were met and that if they were

not, then a valid reason has been provided. This section details the test cases that I have created to

test the final implementation of the solution against the aims and objectives to decide how well the

implemented system stands up to the system designed. The results show how successful the

implementation has been. The test cases themselves have been chosen to demonstrate the main

functionality of the system and the performance on a mobile device.

Test Cases

Test Pre—conditions Expected Outcome Actual Outcome

1: Can a user create
an account

None A user will be able to
create an account by
filling in the form on
the application. Their
details will be stored
in the database.

The user created an
account with the
credentials:
Hutchings, EN11BXH,
password. These
details were stored
successfully.

2: Log into the system. Must have completed
test 1, or use
previously stored
credentials to log in.

User enters their
uniqueID and their
password and can log
in to the system. A
message saying that
they have been logged
in should appear.

The user Hutchings-
EN11BXH with the
password, “password”
was successfully
logged into the
system.

3: Log into the system
with details that are
not stored in the
database.

None There will be an error
message saying that
incorrect credentials
have been entered
and the user will not
be able to log in.

The user was not able
to log in using
incorrect credentials
and an error message
was shown saying.
“incorrect uniqueID”.

4: Create an account
with an invalid
registration plate.

None User will not be able
to create an account
with a number plate
that does not follow
the format XX11XXX.

The user could not
create an account as
the registration
number was invalid
and a message was
displayed to the user
saying this.

5: Send a message Must be logged in to
the application.

User will send a
message selecting the

The message was sent
successfully and a

Alex Hutchings 1412529: Car Messaging System.

41

front left tyre as the
problem, and the
registration number as
EN11BXH. Should be
sent successfully and
the user will be told
this. Message should
also be stored in the
database.

message told the user
“message sent
successfully”. The
message was also
stored in the
database.

6: Send a message
without the
registration number
entered.

Must be logged in to
the application

The message will not
be sent successfully
and a message will tell
the user they need to
input a registration
number.

The message was not
sent and a popup
message told the user
to enter a registration
number.

7: Check user
messages within the
application.

Must be logged in to
the application

The user’s messages
are displayed in a list-
view on the form.
Displaying all the
available messages
that have been sent to
that user.

The user’s messages
were displayed on the
form and they were
able to select a
message to give
feedback on them.

8: Report an accident
with the street name
(location) written as
TestNumber8 and the
marker click on West
Gate Street in Cardiff
City Centre.

Must be logged in to
the application
Must give permission
for the application to
use your location.

User enters a location
name where the
accident takes place
and then adds a
marker to the map.

A marker was added
on the map where the
user selected the
accident took place,
visually showing the
marker on the map.

9: Check that the
accident reported on
WestGate Street in
test 8 is displayed in
the Traffic Information
activity.

Must be logged in to
the application
Must have completed
Test 8.

All markers from the
database are
displayed on the map.
When the user clicks
on the marker, the
title and street name
should appear.

The marker for
WestGate Street was
shown on the map
where the accident
was reported.

10: Give feedback on a
message received in a
user’s inbox.

Must be logged in to
the application.
Must have messages
in the user’s inbox.

Select a message in
the user’s inbox and a
dialog box should
appear. Select 3 stars
and write a comment.
Click submit when
done. Feedback
submitted should be
displayed.

When the user clicked
submit feedback, a
message was
displayed with the
number of stars given
and the comment that
they wrote.

11: Give feedback on
an accident reported.

Must be logged in to
the application.
Must be at least one
accident reported.

Clicking on a marker
will display a dialog
box. The dialog box
allows users to enter a
comment and submit
a star rating. Feedback

User was able to
successfully add
feedback from the
form. A message box
was displayed with

Alex Hutchings 1412529: Car Messaging System.

42

successfully submitted
message should be
displayed.

the star rating and the
comment.

12: Encrypt a message Must be logged in to
the application

In the EditText box on
the security form,
enter the phrase,
“Hello, this is test 12”.
The message is then
encrypted and
displayed in the
textbox below.

The message “Hello
this is test 12” was
encrypted to the
following:
[B@8525ffb.

13: Decrypt a message
that has been written
by the user.

Must be logged in to
the application
Must have entered a
phrase or message to
be encrypted, like in
Test12.

User is shown the
decrypted version of
the message.

The message “Hello
this is test 13” was
decrypted
successfully.

14: Measure CPU
performance of
application on the
emulator

Using the Android
Studio monitoring
system while the
application is running.

To see some activities
that are more intense
than others running at
higher CPU rates.

There were many
“spikes” shown in the
screenshots in the
appendix. The spikes
were mainly when the
CPU had to carry out
an intense task like
loading the Google API
libraries for the report
accident activity.

15: Measure Memory
usage of application
on the emulated
phone

Using the Android
Studio monitoring
system while the
application is running.

To see some activities
that are more intense
than others running at
higher memory usage.

The memory usage
was consistent
throughout the
application usage.

16: Send a message
using your own
registration number.

Must be logged in to
the application.

User enters their own
registration number
and selects back left
tyre as the issue. Add
successful should be
displayed.

The message was sent
successfully and that
was displayed to the
user by saying,
“message sent
successfully”. In the
inbox, the message is
displayed as well.

17: Logout of the
system

Must be logged in to
the application

User is logged out of
the system and taken
back to the
HomeScreen activity.

User is taken back to
the HomeScreen
activity and pressing
back on the android
device doesn’t take
them back to the
previous activity.

18: Test action bar
new message button

Must be logged in to
the application

Clicking the + icon in
the action bar will
take a user to the new
message form.

The user was taken to
the send message
form where they
could send a new
message.

Alex Hutchings 1412529: Car Messaging System.

43

19: Test action bar
home button.

Must be logged in to
the application

Clicking the button on
the action bar will
take users to the main
menu form.

The user was taken
back to the main
menu form.

20: Allow the
application to use
your location on the
Report Accident
activity

Must be logged in to
the application.
Must be the first time
accessing the Report
Accident page in that
session.

The user’s location is
turned on and the
map is zoomed in to
their location.

The camera does not
find the user location,
and pans to the pre-
determined location,
that was set up in the
code.

21: Deny the
application use of
your location data.

Must be logged in to
the application.

The user’s location
will not be turned on
and they will not have
the find location
button enabled. They
should still be able to
report accidents.

The user is shown a
message saying that
the application cannot
use their location
data. The find location
button is also
disabled. Users are
still able to report
accidents.

22: Click the find
location button on the
Report Accident
activity.

Must be logged in to
the application.

The device should
reposition to the
user’s location and
find them on the map.

The location button
does not find the user
on the map because
the current user
location cannot be
found by the
application, so it
defaults to the
hardcoded pre-set
location that I have
added.

23: Send a Message
via the client-server
relationship

Must be logged into
the application.
Must be running the
application on two
devices.
Must know the
devices IP address

The user follows the
send message activity
by entering a fault and
a registration number.
They are then taken to
the new screen where
they can connect to
the device they want
to send that message
to, where they are
able to send their
message to the user.

The user sends the
message which is
stored in the local
database for
reference. The user is
taken to the client
page, where they
input the server
address for the phone
they want to message
and that phone
receives the new
message from the
client device.

24: Set up a client-
server connection

Must be logged into
the application.
Must have two
devices running the
application.
Must know the two
devices IP addresses.

The client phone
connects to the server
phone by inputting
the server phones IP
address. The server
phone is listening for

The client sets up the
connection to the
server phone
successfully by
inputting the IP
address: 192.168.0.27
which is the address

Alex Hutchings 1412529: Car Messaging System.

44

commands sent by the
client phone.

for the device
connected to my
home network.

Evidence of test case scenarios being implemented and tested can be found in Appendix section 9.2.

5.2 Evaluation of the Implementation
The implemented solution that I have created needs to be evaluated against the aims and objectives

that are described in the approach section of this report.

Provide a complete application that provides users with a fully functional car messaging system.

This objective has been completed to a high standard because of the features that have been

implemented. Users can communicate with other drivers via their devices, they can view messages in

their inbox, check for accidents along their route and report any accidents that they see on their

journey. These features give the application good overall functionality and allow users to have a

complete application rather than a single featured one. A way this objective could be improved is to

extend the database scope from local to global, ensuring that all the features including Reporting

Accidents are available across devices rather than only on the local device. An alternative database

approach would extend the capabilities of the application across multiple devices, rather than to a

single device. The functionality works in the same way as it would with an extension of the scope,

allowing transmission of data through the internet rather than local storage, meaning the features are

still programmatically correct and working as intended, only the Report Accident is affected by the

locality of the database.

Allow users to send messages from one device to another device regarding the status of their

respective vehicles.

This objective has been achieved, by using the technique of socket programming to communicate

messages between devices. Evidence of this can be seen in Figure 5.1, which demonstrates a message

being sent from one device to another. These messages are sent from one client device to a server

device, which is actively listening for messages. The client device can form a connection to the server

device, by inputting the IP address of said device. A connection was formed which was used to transmit

the message between devices, therefore, displaying successful evidence of this part of the project.

The messages that can be sent contain the fault with the respective vehicle in question, and their

registration number, so that the user receiving the message knows the fault with their vehicle.

Building on this objective, a static IP address could be implemented to remove the ground work for

the users. The static IP address would be connected to a server device that does not belong to another

user, but is used to forward messages between the devices rather than having to input an IP address

manually.

Figure 5.1 shows the implemented solution to the objective of communication between devices. As

aforementioned, the user must input the IP address of the server device which must be listening for

commands from a user. The message that gets sent from the client device gets stored in the server

device’s database so that user can then see that message in their inbox. This is important for the

communication between devices aspect, as drivers do not have to check their messages immediately

because they are able to check their inbox at a more convenient time.

Alex Hutchings 1412529: Car Messaging System.

45

Figure 5.1 – Flow of events for sending a message in the implemented solution

The Left image shows the send message screen where a user will input a registration number and then select a fault with the car and click send message.
From that screen, the user is taken to the second image, where they must enter the server device’s IP address. From there they connect to the server device,
like that in the third image. The third image shows the message being sent from the client device to the server device and how that message is displayed once
received.

Client Device Client Device

Server Device – TRY in

this case is the

registration number of

a user account.

Alex Hutchings 1412529: Car Messaging System.

46

Provide a simple and easy interface for drivers to communicate with each other.

The user interface that has been created is simple and provides the user with an aesthetically

pleasing interface within the application. The following heuristics I mentioned in the approach,

have been achieved and examples of that have been provided in the implementation section of

this report:

• User control and Freedom

o An action menu that allows users to return to the main menu from any form they are

on. The same menu also allows users to log out and go directly to the SendMessage

activity.

• Help users recover, diagnose and recover from errors

o An error handler activity that diagnoses errors in a separate activity rather than

crashing the system to the device’s home. The error handler posts a user-appropriate

message rather than the stack trace callback to find the error.

o On-screen pop-up messages that detail when a user may have forgotten to input text

into textboxes, or if they are missing some component of the activity to continue. For

example, when a user adds an incorrect registration number on the Create Account

activity, they are told this.

• Aesthetic and minimalist design

o The minimum for each activity is detailed on the screens. Allowing users to carry out

their task without facing cluttered screens.

o Hints and labels are all implemented with the user in mind, detailing what is expected

in each place and an error message if the wrong type of input is entered.

• Consistency and standards

o The same style text, buttons, logos used throughout the application.

• Match between the system and the real world.

o Registration numbers are expected to be in the real UK fashion e.g. AB11 CDE

o Logical ordering of elements on the activity screen has been followed to ensure users

can follow them in a natural sequence.

Having carried out these heuristics throughout the application, I can say with some confidence that

this objective has been achieved, and any future development should follow in the same direction to

maintain those standards.

Store all data used within the application securely and in a way that does not compromise the

performance of the application itself.

I have mentioned in the implementation section of this report that I was unable to implement security

features in a way that maintained the security of the user’s data when sending and receiving messages

or when setting up their accounts. I did implement a security activity that demonstrates the

functionality that I hoped to create through the application, however I faced major challenges trying

to combine the different elements of the security within Android programming to work in the way

that I wanted. The following diagram details, the intended security protection I hoped to implement:

Alex Hutchings 1412529: Car Messaging System.

47

Figure 5.2 – Future Encryption use case

The way that the encryption should have been carried out in the application can be seen from Figure

5.2. It demonstrates an AES encryption method that would use Android’s Key Store class to securely

hold the keys generated with the key generator method used in the security activity. From the Figure,

even if an attacker was listening in on the transmission from the user’s application to the database,

then they would only see encrypted traffic. The only key that would be able to decrypt that

information would be stored on the user’s device, protecting their data stored. The key would be

secure within that device only. The implemented solution does contain some workings of this type of

encryption and is demonstrated in the implementation section of this report in Figure 4.5.

As demonstrated in Figure 5.3, the user would be able to log in with the same username and password

that they provided in the create account activity even though the credentials stored in the database

would be encrypted. The same key that was used to create an account would be taken from the user’s

device to decrypt the data received from the database and to ensure that the user can successfully

log in to the application. The two methods shown in Figures 5.2 and 5.3 would also be carried out in

the send message activity where users transmit another user’s registration number as that can be

classed as sensitive information.

Alex Hutchings 1412529: Car Messaging System.

48

Figure 5.3 – Future Decryption use case diagram

The decryption would work by retrieving the key stored in the device’s key store and then combining

that with the AES decryption function within Android to decipher the encrypted data retrieved from

the database.

Overall the solution solves the problem identified at the start of the project. The solution

demonstrates that driver-to-driver communication can been achieved via the method of socket

programming. The additional functionality of the application provides drivers with a complete

software package that enables them to carry out extra tasks within one application rather than

multiple. The solution provides an effective way of communicating between drivers and in the

identification of faults within their respective vehicles.

5.3 Next Steps
A more suitable software package that would allow for more than local storage on the user’s device

would be a good change that would benefit the application. This is the main implementation feature

that I would change to make the application more user-compatible. The reason for doing this has been

mentioned throughout this report, and it would allow me to ensure that the application features are

available across multiple devices from different users in synchronisation, rather than just for users

using the same device and switching between users.

Another feature I would like to continue working on that has been discussed during this report, are

the security aspects of the solution that were not fully implemented. I would like to implement

functionality shown in Figures 5.2 and 5.3 as that would be the ideal scenario where user data is secure

and protected from any unauthorised users. Effectively completing that aim of the project to ensure

that user data is protected and secure.

A feature I would like to adapt in future versions of the development cycle would be the socket

programming technique used to carry out device to device communication. Adding Wi-Fi direct

capabilities to the application would benefit the users as more devices become readily equipped with

Wi-Fi direct functionality. This would ensure the application keeps up to date with current market

standards and provides the best way to communicate between drivers.

Another addition to make would be to add notifications because it adds extra functionality to the

application. Notifications would add a new dynamic to the application and allow for drivers to be made

aware that they have new messages which in turn would make them aware of any problems with their

Alex Hutchings 1412529: Car Messaging System.

49

vehicle, regardless if they were running the application or not. It would also present an opportunity

to alert drivers to new accidents that may have occurred on the course of their journey. For example,

using their location data to track their journey and then alerting them to an accident on the same road

that they are currently driving on, so that they can alter their course.

5.4 Device Performance
The application is not resource heavy for the devices used. The device that I ran these tests on was a

Google Nexus 5X model, which uses a 1.8GHz hexa-core 64 bit Adreno 418 GPU and has 2GB RAM,

specifications which had no issues running the application smoothly, showing no signs of struggle.

Figure 5.4 shows a large spike in the network usage of the application when it loads a Google Map, as

it is the first time the application runs any activity that requires internet access and it has to load a

map pointing to the location of the user. Similarly, in Figure 5.4 there is a slight increase in the CPU

usage of the application because of the increase in activity of loading the markers from the database,

and loading the Google Map from the library itself.

Figure 5.4 – Traffic Information Activity and its monitor levels

Figure 5.5 is the most intense level that the CPU spiked to during the running of the application. This

is mostly down to the loading of the Google Map, and finding the user location with the device. The

CPU usage at this point did not slow the application down and it ran smoothly during the spike in the

usage. There is also very little network activity during this activity, because it only had to briefly load

the map from a very zoomed in and precise location, whereas, compared with Figure 5.4 the map level

is very far out and requires more of the UK to be loaded in, which would explain the network usage.

Alex Hutchings 1412529: Car Messaging System.

50

Figure 5.5 – Report Accident Activity and its monitor levels.

Evidence of further tests carried out on the applications use of resources can be found in the Appendix,

in section 9.2. There are no strenuous features that are carried out within the application apart from

the two activities that load Google Maps. These activities require the most computing power to load

all the necessary components from the Google Libraries within the application which are not stored

locally. As this project uses a laptop to simulate the connection between two drivers that are

communicating, the resources used by the emulators on the laptop may be down to processing power

of the laptop rather than the actual application. Further testing could be carried out on a mobile phone

to gain further insight of the resources used by the application.

Alex Hutchings 1412529: Car Messaging System.

51

6.Reflection
This project has been a very good test of my skills and has proven that the original problem that I set

out to achieve is very much achievable, in the fashion of the application that has been created to solve

this problem. The project was a very good test of character, because it is a large project that has

required lots of problem-solving techniques, to overcome challenges along the way, it has required

good time management and project management skills to ensure that I stuck to a schedule to provide

adequate functionality and features for the application within the time frame provided. These skills

have given me an opportunity to complete this project in a way that I feel is successful and has met

the goals that I set out to achieve.

The project itself was marred with issues mostly concerning Android Studio and its emulators. As I

have mentioned there was a period in the implementation cycle where my project was updated but

all the files became corrupted and filled with errors so I had to revert to the previous versions. I had

trouble with the program itself, constantly crashing if the emulator didn’t finish updating the latest

gradle builds, not to mention that the program ran very slowly while the emulators were running as

well so it was frustrating at times trying to debug a program with a very limited amount of processing

power and RAM available. However, I think my choice for picking Android Studio to carry out the

development of the application outweighs the problems I faced, and if I was to re-create the entire

application, I would opt to use Android Studio again but instead of using emulators to test and

demonstrate the working application, I would use real devices instead. This would allow for less

reliance on the laptop that I was developing on, it would be more realistic for using devices that were

available in every-day situations rather than devices that may not be as common as others.

For a period of the project I was very focussed on developing an application that had a multitude of

features rather than maintaining a clear vision of the main aims and objectives of the project which

were to create an application with driver-to-driver communication functionality. I was focussing on

producing a complete application with lots of important features for drivers, and during this time I lost

sight of the critical objective of achieving driver to driver communication, which caused me to change

direction, realigning my focus on the original aim of the project.

Throughout the project, I called upon knowledge from my studies at university. I used my

understanding of user interfaces that was taught during the Human Computer Interaction module,

where I gained knowledge of using heuristics to assess an interface based on certain criteria, which

would ensure a balanced and user-friendly interface. This knowledge helped me when it came to

assessing the applications design and coming up with the heuristics that I could use, to ensure a good

interface was developed. I made use of knowledge from the Database Systems module studied at

university as well. This knowledge was used in writing queries for the database and interacting with

the database in the code that I developed. Specifically, writing SQL queries for inserting and selecting

data within the database.

The application that has been developed achieves the overall aims of the project and I would consider

it to be a success. This is based on the evidence I have provided throughout the report, like the test

cases and the implementation section of the report that detail the objective specifics of the application

that have been accomplished. There are still some considerations that mean an application like this

could be challenging to implement as you would have to use mobile phones while driving which brings

into question the safety of the road-user. Full voice control and ability to follow instructions based on

natural language techniques or with a virtual assistant that could capture user communications to

Alex Hutchings 1412529: Car Messaging System.

52

relay these messages, could be a technique of deploying this application without the use of a mobile

phone.

6.1 Self-Evaluation
I am pleased with the outcome of the project as I have created an application that could be very useful

in the future of communication between drivers. My time-management during the project has been

effective and allowed me to maintain the schedule proposed at the start of the project. By setting

weekly targets and goals with deliverables I was able to track the progress I was making over the

course of the project. The application created achieves the problem that I wanted to solve in an

effective manner, that I would like to continue developing.

Looking back at the project and the implemented solution that I have created, there are aspects to my

own learning and methods that I would change for next time. For example, when learning the Android

programming language, I jumped straight into it without looking through sample applications provided

in Android Studio or looking through some books to get a basic understanding of the fundamentals of

the language. Next time I would go about learning the language in a more methodical approach, trying

to learn the basics of the language by following some tutorials to understand the layouts and objects

to use in certain situations. A prime example of this was the action bar menu that I included in the

activities of the application. I implemented this feature very late on during implementation because I

had assumed it was not an important aspect to the application because users could use the emulators

back buttons to return to the previous screen. Having looked through some other applications and

tutorials online trying to fix another issue, I discovered that the action bar would be very useful from

a user perspective to help navigate successfully around the application. Not only that, it would help

with the user preferences that I had used to retrieve the user’s inbox messages based on who was

logged in to the application on that device. I feel that if I had looked at basic sample applications first,

then I would have noticed how fundamental the action bar would be in my application and implement

that sooner within development because it is so useful when navigating around the program.

Another aspect of my learning throughout the project was that I faced some challenges understanding

the Android language. Although it is like Java, which I have used previously. I haven’t had to use Java

in the same capacity as I did for Android and that is what I found difficult. Learning and understanding

all the different aspects of the language to be able to make use of the complex parts of Android was

challenging because they are slightly different to the Java versions of the language, or they might use

the same methods yet return different parameters, so each time I was using new methods I had to

ensure that I checked for any changes in the developer’s guide online to keep in touch with what I was

doing.

I think I handled big decisions well throughout the project. I had to make key decisions during the

development of the application, for example, if I would use a server or not, and whether it would be

easier to use a local web server or an online server. I came to the decision that I would use a database

because it would be the best way of making sure that messages reached user’s inboxes and that all

the accidents reported were available to be seen by other users. It was good to learn a new aspect of

programming for a different audience than I have done in the past. I enjoyed learning about each

component of the language and how mobile developers have to take other factors into consideration

like resources and what permissions are needed in order to access content or part of the user’s device.

All these aspects were new to me as when developing programs within any programming language I

have experience in, I have never had to consider the implications of why I would access a user’s

location or even need to add that feature. Within this project, I was required to access the location to

locate the user for the Google Maps activity, making it necessary to request that user’s permission

Alex Hutchings 1412529: Car Messaging System.

53

prior to accessing it. An interesting aspect of the Android language which I found different to other

languages is that, you cannot implement certain methods if there is no corresponding link in the

application’s manifest file explicitly stating a certain permission has been used. For example, the

permissions aspect of the application must be explicitly stated in the manifest file for you to be able

to implement the methods that utilise a user’s location or other permission related methodology

within the application.

I made some assumptions when I was developing the application, which I had overlooked during this

stage of the project. For example, when it came to implementing the client-to-server communication

between devices. I spent a couple of weeks trying different methodology until I found the socket

programming technique which was successful. Overall I think these assumptions cost me some time

and resources while developing, and that next time I would ensure that the main functionality was

implemented fully before trying to create the entire application as then I could focus on additional

features with whatever time was left to spare, rather than working on the main functionality right up

until I had no time left to continue development.

7. Conclusion
To conclude, this report has described in detail the methodology and approach I have taken to solve

the problem of drivers not being able to communicate with each other, regarding their vehicles. The

problem has been solved by the implementation of an application that has the functionality to carry

out communication between drivers among a host of other features that are considered useful to a

driver, such as traffic and accident information.

The application created is a success because of its overall functionalities and its ability to solve the

problem of communicating between drivers. The communication aspect is an achievement because it

takes the project goals slightly further than what I intended to initially implement, and it is a big step

in the industry as it looks at the possibilities of driver-to-driver messaging services that could be

implemented. If I can make an application that takes this idea to a good standard and does allow

drivers to communicate in a respectful manner, then car manufacturers with multi-million dollar

industries can consider developing something similar on a much larger scale and within an

environment that allows safe testing and development.

The projects achievements are that the application allows drivers to communicate with each other

regarding the status of their vehicles. This is important in regard to maintaining a fully law abiding

vehicle that has no issues that could give law enforcement agencies an excuse for giving out a fine or

penalty. The application has the option for users to report accidents which is a useful feature for those

who inevitably end up in a traffic jam that causes delays. Reporting accidents is easy to do within the

application and can help other drivers a lot as they reduce the chance of getting caught up in the traffic

as well. Alongside the reporting accidents feature, there is the traffic information functionality that

lets drivers see the accidents reported and other important traffic information. These features have

created a successful application that could be used by drivers around the country to enhance their

road experience.

There are some issues with the application I have developed, but it has been a successful project

overall and has taught me many things about the language and its components, that I can take into

any other development or projects I am part of in the future.

Alex Hutchings 1412529: Car Messaging System.

54

8. References
1. Department for Transport, Statistics Relating to licensed vehicles and new vehicle registrations

for 2015, 14/04/2016, https://www.gov.uk/government/statistics/vehicle-licensing-statistics-

2015 - [Accessed 30/01/2017]

2. Cory Schmidt, What is Android? Here is a Complete Guide for Beginners, July 2016,

https://www.androidpit.com/what-is-android – [Accessed 10/04/2017]

3. Jeff Dunn, There’s no hope of anyone catching up to Android and IOS, 22/08/2016

http://uk.businessinsider.com/smartphone-market-share-android-ios-windows-blackberry-

2016-8?r=US&IR=T -[Accessed 10/04/2017]

4. Liam Turner, Mobile_Android Slide 27, Learning Central, Emerging Technologies, Cardiff
University- Accessed [11/04/2017]

5. http://www.bump.com/ -[Accessed 30/01/2017]

6. Co-operative Road Traffic: Foresight, Safety, and Comfort: Car2carConsortium: Newsletter,

November 2015, https://www.car-2-car.org/index.php?id=5 – [Accessed 31/01/2017]

7. Reis et al.2014: Deploying Roadside Units in Sparse Vehicular Networks: What Really Works and

What Does Not. IEEE Transactions on Vehicular Technology, Vol.63, No.6, July 2014 [Accessed

31/01/17]

8. Reis et al.2014: Deploying Roadside Units in Sparse Vehicular Networks: What Really Works and

What Does Not. IEEE Transactions on Vehicular Technology, Vol.63, No.6, July 2014 [Accessed

31/01/17]

9. Pete Bigelow, Feds want V2V Communication in New Cars Starting in 2021, 15/12/2016,

http://blog.caranddriver.com/feds-want-v2v-communication-in-new-cars-starting-in-2021/

[Accessed 01/02/2017]

10. Ford, http://www.ford.co.uk/Cars/Focus/Features - [Accessed 01/02/2017]

11. Rosa Yanez Gomez, Daniel Cascado Cabellero, and Jose-Luis Sevillano, Heuristic Evaluation on

Mobile Interfaces: A New Checklist, The Scientific World Journal, 01/06/2014,

https://www.hindawi.com/journals/tswj/2014/434326/ [Accessed 11/04/2017]

12. Jason Wei, Incorporating Socket Programming into your Applications, 27/03/2010,

https://thinkandroid.wordpress.com/2010/03/27/incorporating-socket-programming-into-your-

applications/ Accessed [01/04/2017]

13. Jason Wei, Incorporating Socket Programming into your Applications, 27/03/2010,

https://thinkandroid.wordpress.com/2010/03/27/incorporating-socket-programming-into-your-

applications/ Accessed [01/04/2017]

14. Change Button Background on Touch, 12/2012,

http://stackoverflow.com/questions/8132384/change-button-background-on-

touch/8132500#8132500 Accessed [10/03/2017]

The following references are all code related. Either I have used them in some capacity in order to

create my own code or have used the methods provided in their API package.

15. https://developer.android.com/reference/java/security/package-summary.html [Accessed

30/01/2017]

16. Java Security, https://developer.android.com/guide/topics/connectivity/wifip2p.html [Accessed

31/07/2017]

17. Dark Blue Racing Car (Top View) Image, Created by user qubodup, 20/01/2014,

https://openclipart.org/detail/190177/dark-blue-racing-car-top-view car image used in my

SendMessage Activity - [Accessed 06/02/17]

https://www.gov.uk/government/statistics/vehicle-licensing-statistics-2015
https://www.gov.uk/government/statistics/vehicle-licensing-statistics-2015
https://www.androidpit.com/what-is-android
http://uk.businessinsider.com/smartphone-market-share-android-ios-windows-blackberry-2016-8?r=US&IR=T
http://uk.businessinsider.com/smartphone-market-share-android-ios-windows-blackberry-2016-8?r=US&IR=T
http://www.bump.com/
https://www.car-2-car.org/index.php?id=5
http://blog.caranddriver.com/feds-want-v2v-communication-in-new-cars-starting-in-2021/
http://www.ford.co.uk/Cars/Focus/Features
https://www.hindawi.com/journals/tswj/2014/434326/
https://thinkandroid.wordpress.com/2010/03/27/incorporating-socket-programming-into-your-applications/
https://thinkandroid.wordpress.com/2010/03/27/incorporating-socket-programming-into-your-applications/
https://thinkandroid.wordpress.com/2010/03/27/incorporating-socket-programming-into-your-applications/
https://thinkandroid.wordpress.com/2010/03/27/incorporating-socket-programming-into-your-applications/
http://stackoverflow.com/questions/8132384/change-button-background-on-touch/8132500#8132500
http://stackoverflow.com/questions/8132384/change-button-background-on-touch/8132500#8132500
https://developer.android.com/reference/java/security/package-summary.html
https://developer.android.com/guide/topics/connectivity/wifip2p.html
https://openclipart.org/detail/190177/dark-blue-racing-car-top-view

Alex Hutchings 1412529: Car Messaging System.

55

18. Hardik Trivedi, How to Avoid Force Close Error in Android, 20/08/2011,

https://trivedihardik.wordpress.com/2011/08/20/how-to-avoid-force-close-error-in-android/ -

used for my error handler activity, [Accessed 20/03/2017]

19. Daniel Bradley, Regular Expression to Validate UK Number Plates,

https://gist.github.com/danielrbradley/7567269 - [Accessed 20/03/2017]

20. Ravi Tamada, Android Working with Action Bar, 11/2013,

http://www.androidhive.info/2013/11/android-working-with-action-bar/ - Helped me to

develop my own action bar menu, [Accessed 25/03/2017]

21. Smruti Ranjan, Android Login Screen with SQLite Database Example, 13/03/2013,

http://techblogon.com/android-login-registration-screen-with-sqlite-database-example/ -

[Accessed 10/02/2017]

22. Thread With Handlers, Android Review, http://androidexample.com/Thread_With_Handlers_-

_Android_Example/index.php?view=article_discription&aid=58 – [Accessed 23/04/2017]

https://trivedihardik.wordpress.com/2011/08/20/how-to-avoid-force-close-error-in-android/
https://gist.github.com/danielrbradley/7567269
http://www.androidhive.info/2013/11/android-working-with-action-bar/
http://techblogon.com/android-login-registration-screen-with-sqlite-database-example/
http://androidexample.com/Thread_With_Handlers_-_Android_Example/index.php?view=article_discription&aid=58
http://androidexample.com/Thread_With_Handlers_-_Android_Example/index.php?view=article_discription&aid=58

Alex Hutchings 1412529: Car Messaging System.

56

9. Appendix

9.1 User interface designs

Alex Hutchings 1412529: Car Messaging System.

57

Alex Hutchings 1412529: Car Messaging System.

58

Alex Hutchings 1412529: Car Messaging System.

59

Alex Hutchings 1412529: Car Messaging System.

60

9.2 Test Case Screenshots

Test 1

Alex Hutchings 1412529: Car Messaging System.

61

Test 2

Alex Hutchings 1412529: Car Messaging System.

62

Test 3

Alex Hutchings 1412529: Car Messaging System.

63

Test 4

Alex Hutchings 1412529: Car Messaging System.

64

Test 5

Alex Hutchings 1412529: Car Messaging System.

65

Test 6

Test 7

Alex Hutchings 1412529: Car Messaging System.

66

Test 8

Alex Hutchings 1412529: Car Messaging System.

67

Test 9

Test 10

Alex Hutchings 1412529: Car Messaging System.

68

Alex Hutchings 1412529: Car Messaging System.

69

Test 11

Alex Hutchings 1412529: Car Messaging System.

70

Test 12

Test 13

Alex Hutchings 1412529: Car Messaging System.

71

Test Cases 14 and 15

Alex Hutchings 1412529: Car Messaging System.

72

Alex Hutchings 1412529: Car Messaging System.

73

Test 16

Alex Hutchings 1412529: Car Messaging System.

74

Test 17

Alex Hutchings 1412529: Car Messaging System.

75

Test 18

Alex Hutchings 1412529: Car Messaging System.

76

Test 19

Alex Hutchings 1412529: Car Messaging System.

77

Test 20

Alex Hutchings 1412529: Car Messaging System.

78

Test 21

Alex Hutchings 1412529: Car Messaging System.

79

Test 22

Test 23

Alex Hutchings 1412529: Car Messaging System.

80

Test 24

Alex Hutchings 1412529: Car Messaging System.

81

Alex Hutchings 1412529: Car Messaging System.

82

Alex Hutchings 1412529: Car Messaging System.

83

