

CROWD FUNDING OF
CIVIC PROJECTS

by Andrei Hodorog

Student number: c1332008

CM3203 – One Semester Individual Project

Module credits: 40

Supervisor: Prof. Dr. Omer Rana

Moderator: Prof. Dr. Jing Wu

Cardiff School of Computer Science and Informatics

Cardiff University

May 2017

CM2303 - One Semester Individual Project (student number: c1332008)

Table of contents
Table of contents 2

Abstract 6

Acknowledgements 7

Introduction 8
1.1. Personal Involvement 8
1.2. Aims and Objectives 8
1.3. Beneficiaries 9
1.4. Scope and Constraints 9
1.5. Approach 10
1.6. Assumptions 11
1.7. Summary of methodology 11
1.8. Key Challenges 12
1.9. Summary of main outcomes 13

2. Background 14
2.1. Theory associated with the problem area 14
2.2. Solutions relevant to the problem area 15

3. Specification and Design 17
3.1. Requirements specification 17

3.1.1. Mandatory functional requirements specification 17
3.1.2. Optional functional requirements specification 18

3.2. Business logic 18
3.2.1. The Users entity 18
3.2.2. The Campaigns, Donations and Likes entities 19
3.2.3. The process of adding a campaign 20
3.2.4. Compliance with 3NF 21

3.3. Technical application architecture 23
3.3.1. General overview 23
3.3.2. Justification for the use of two separate microservices 25

3.3.2.1. General reasoning 25
3.3.2.2. The use of a REST API 26

3.4. An overview of the system workflow depending on user type 27
3.5. Graphical and User Interface Design 31

3.5.1. Design introduction 31
3.5.2. Overall structure 32

3.5.2.1. First page 32
3.5.2.2. Selected project 34
3.5.2.3. Category selection and search 36

3.5.3. Design patterns, colour, typography and animations 36
3.5.3.1. Design patterns 36
3.5.3.2. Colours 38

2

CM2303 - One Semester Individual Project (student number: c1332008)

3.5.3.3. Typography 39
3.5.3.4. Animation 39

3.6. Project management, versioning and issue tracking 40
3.7. Specification and Design conclusions 40

4. Implementation 41
4.1. Front end implementation technical specifications 42

4.1.1. A general description of the technologies used and structure of the front end 42
4.1.1.1. NodeJS and Javascript 43
4.1.1.2. Express JS 45
4.1.1.3. The Jade (Pug) templating engine 45
4.1.1.4. The Sass transpiler 46
4.1.1.5. Gulp as a build tool 47
4.1.1.6. The Bootstrap framework 49

4.1.2. The Javascript modules pattern 49
4.1.3. Critical external Javascript libraries used and their role in project development 50

4.1.3.1. Moment JS 50
4.1.3.2. D3 JS 50

4.1.4. Node modules used and their role in the project development and management
51

4.1.4.1. SourceMaps 51
4.1.4.2. Nodemon 51
4.1.4.3. Browsersync 51
4.1.4.4. JsHint 52
4.1.4.5. Bower 52

4.1.5. Optimisation techniques used in the front end 52
4.1.5.1. Automated minification of CSS and Javascript files at the deployment
stage 52
4.1.5.2. Automated concatenation of CSS and Javascript files 53
4.1.5.3. Automated optimisation of images and fonts 53

4.1.6. Issues and difficulties encountered during front end development 54
4.2. Back end implementation technical specification 55

4.2.1. Brief justification of technologies used 57
4.2.1.1. Java 57
4.2.1.2. MongoDB 57
4.2.1.3. Spring Framework 59
4.2.1.4. HATEOAS 61
4.2.1.5. Hibernate 63

4.2.2. Issues and difficulties encountered during back end development 64
4.2.2.1. Moving from user defined controllers to HATEOAS generated controllers64
4.2.2.2. Event handlers 64
4.2.2.3. Loading mock data (the description of the crawler / loadMockData module
/ activityGenerator module) 65
4.2.2.4. DBrefs (linking entities) 66
4.2.2.5. Special fields and views for User / Campaign to make retrieval faster 66
4.2.2.6. Tuning the statistics system 67

3

CM2303 - One Semester Individual Project (student number: c1332008)

4.2.2.7. Embedding entity links to statistics 68
4.2.3. Critical sections 68

4.2.3.1. Startup 68
4.2.3.2. Data Flow 71

4.2.4. Conclusions 73

5. Testing and evaluation 73
5.1. Front end usability and attractiveness evaluation 73

5.1.1. Part 1: User Interface 74
5.1.2. Part 2: Trust 77

5.2. Questionnaire demographics 79
5.3. Back end performance and scalability testing 80

5.3.1. Introduction 80
5.3.2. Database 80
5.3.3. HTTP Requests 82
5.3.4. Testing the load balancer 83
5.3.5. Testing using JMeter 83

5.3.5.1. Writing a test plan 84
5.3.5.2. Emulation of 10 Users (44 ms average) 86
5.3.5.3. Emulation of 100 Users (144ms average) 87
5.3.5.4. Emulation of 1000 Users (795 ms) 88

5.3.6. Conclusions 89
5.4. Back end jUnit testing 90

5.4.1. Testing if the REST Controllers were generated 90
5.4.2. Repository testing 91
5.4.3. Handlers testing 92

5.5. Conclusions on testing and evaluation 93

6. Future work 94
6.1. Additional features 94

6.1.1. Authentication and authorisation system 94
6.1.2. Campaign recommendations 94
6.1.3. Campaign advanced search 95
6.1.4. Campaign sponsorship 95
6.1.5. Heatmaps for user behavior analysis 95

6.2. Integration with external services 96
6.3. Future-proof scalability with REDIS 96
6.4. Conclusions of future work 97

7. Conclusions 97

8. Reflection on Learning 99
8.1. Complexity estimation 99
8.2. Continuous integration vs. sequential development of the microservices 100
8.3. Time and effort allocation 100
8.4. The consideration of commercial platforms 100
8.5. Requirements prioritisation and problem-solving 100

4

CM2303 - One Semester Individual Project (student number: c1332008)

8.6. Full software development lifecycle exposure 101
8.7. Enhancing my skills and employability 101
8.8. Reflection conclusions 101

9. Appendices 102
Appendix 1: Full back end UML entities diagram 102
Appendix 2: Questionnaire for the evaluation the front end interface design, attractiveness,
trust and demographics of the target audience 104
Appendix 3: Regulatory compliance of crowdfunding platforms in the UK 107

10. References 110
10.1. Introduction 110
10.2. Background 110
10.3. Specification and design 110
10.4. Front end implementation 111
10.5. Back end implementation 113
10.6. Testing and evaluation 113
10.7. Regulatory compliance 114

5

CM2303 - One Semester Individual Project (student number: c1332008)

Abstract
The aim of the project is to develop a working prototype for a crowdfunding platform
for Civic Projects and individuals with great business ideas that promotes
micro-financing, peer reviews of the ideas and gathers statistics in the background.

The key outcome of the project consists of a working prototype that meets the
mandatory requirements specifications mentioned in Section 3.1.1 and a part of the
optional functional requirements criteria mentioned in Section 3.1.2, leaving a more
extended set of functionalities for later stages, mentioned in Section 6. The end
prototype should also meet the non-functional requirement of being a horizontally
scalable platform that supports growth over time and stores that of users in a secure
manner. The developed application should overcome some of the key limitations of
the existing similar crowdfunding platforms.

The approach used to achieve this was to design and implement front end with a
graphical user interface for the users and admins where the projects can be posted,
viewed and moderated and a back end in which all the data related to users and
campaigns is stored and processed. A dashboard back office has also been
developed that contains all the statistics and is only visible to the members of the
admin committee. The back end is linked to a non-relational database designed to be
scalable and efficient for the storage, retrieval and persistence of new data. The two
concerns were separated and the communication between them has been done using
a REST API acting as the connective interface, through which the data circulates.

The key outcomes of the end prototype have been achieved and tests for the
evaluation of both the front end and the back end have been conducted. The front end
attractiveness and usability was verified through a survey targeting a sample of
millennial potential respondents, the back end performance and scalability was tested
using a configuration of multiple application instances. The results of these tests
supported the proposed functions and the non-functional requirement for horizontal
scalability for the prototype of XpressStarter, a crowdfunding platform for civic
projects.

6

CM2303 - One Semester Individual Project (student number: c1332008)

Acknowledgements
I would like to express my sincere thanks to my project supervisor, Prof. Dr. Omer
Rana for his continuous help, support and encouragement which he has provided me
throughout the course of this project and his constant trust in my abilities to complete
this project successfully. He has always replied promptly to my queries when I needed
advice. In addition to academic support, the meetings with him were always
entertaining and enjoyable, enhancing the overall project experience.

I would also like to express my thanks to Mr Akmal Hanuk, chief executive of the
Cardiff-based Islamic Banking and Finance Centre for his insight into the project
objectives and advice from a commercial perspective.

I place on record, my sincere thank you to Professor Stuart Allen, the head of school
of Computer Science, for his continuous encouragement, patience and promptitude of
addressing my queries regarding marks, rules, regulations and other academic
matters.

I would also like to express my thanks to Prof. Dr Walter Colombo, Prof. Dr. Pete
Burnap, Prof. Dr Ioan Petri and Prof. Dr. Thomas Beach for giving me the opportunity
to get involved in research projects which have provided me with a lot of valuable
knowledge that has also been used as a complementary aid to this project.

I am also very grateful to my girlfriend, miss Elena-Andreea Mut, and my mother, miss
Diana Hodorog for their continuous encouragement and moral support offered
throughout the development of this project.

I would also like to take this opportunity to express my gratitude to all the members of
the Computer Science department for their help and support.

7

CM2303 - One Semester Individual Project (student number: c1332008)

1. Introduction
The world of entrepreneurship is constantly generating business ideas, from initiatives
that aim to generate profit to the ones that support civic causes. The online
environment has made it easier for the promoters of such ideas to connect with
potential benefactors via dedicated websites or platforms that enable the functioning
of what is known as “crowd funding” - the process where funding for a business idea is
not gathered via the traditional routes (banks) but through a community of people that
offer financial support in exchange for a benefit offered at a later stage. A number of
such sites have emerged over recent years but they fail to differentiate between
potentially successful and unsuitable initiatives, allowing potential investors to invest
blindly. Once funded, many ideas often fail or are unsuitably put into practice, in a way
that is completely different to the one initially advertised to the benefactors.

This report will outline the design decisions made during the system design and
implementation process of the XpressStarter, a web platform that matches founders of
civic business initiatives with potential benefactors and also presents an extra element
of transparency and quality assurance, that aims to address the problems outlined
above. This is achieved by a team of administrators that ensure that only the
submitted ideas that satisfy certain standards are published and become active. The
report will also discuss the challenges faced during the development process of
XpressStarter.

1.1. Personal Involvement
Having myself been involved in the world of entrepreneurship (running a limited
company in the UK that provides web design, web development and online marketing
services to other entrepreneurs), I have come to experience first hand the difficulties
of securing funding, as well as the gaps in the process of successfully identifying
worthwhile business ideas, from an investor’s perspective. In the case of social
causes in particular, having a platform that promotes ideas in a transparent way and
funding represents both a social and technical issue of great importance for me.

1.2. Aims and Objectives
The aims of the projects are to:

● identify key features and limitations of existing crowdfunding platforms (credit

unions, crowd funding, peer to peer lending, micro-finance based sites) and
embed these findings into the system design and development of XpressStarter;

● highlight key areas of their Customer Relationship Management (CRM) and Risk
Management tools;

● develop a front end and design a visual user interface that ensures enough
information is presented in an appropriate style to attract donors and maintain
their “loyalty” (e.g. recurring visits and funding);

● develop a front end that ensures all the HCI and UX / UI principles are met; an
appropriate combination of colours, animations and visual effects are used; the
website is displayed appropriately across all screen sizes / resolutions;

● implement a back end system (e.g. a database, an API) that enables donor and
campaign information to be kept in a secure manner and ensure scalability and
growth over time.

8

CM2303 - One Semester Individual Project (student number: c1332008)

The end outcome was tested using the following methods:

● A questionnaire based on the SUS (Simple Usability Scale) method: the usability

and attractiveness of the designed Graphical User Interface and front end
implementation was tested through distributing the Questionnaire in Appendix 2 to
potential users. This had a strong focus on the perception of the user of the colour
schemes and types of layout chosen, as well as exploring the idea of user trust in
crowdfunding platforms, and whether the design correlates to their perception.
The questionnaire was distributed via social media platforms and was aimed at
socially active millennials with a potential interest in startups and business ideas.
The front end evaluation and its results are described in detail in Section 5.1 . A
description of the evaluation of the demographics of the questionnaire
respondents can be found in Section 5.2 .

● Simultaneous requests emulation to a load balancer using JMeter: the back end
performance and scalability has been tested through the emulation of the activity
of multiple users (groups of 10, 100 and 1000 users) using JMeter. This test also
aimed to verify whether the platform is horizontally scalable. Using the OpenStack
account provided by Cardiff University, a basic environment of 2 application
servers and a load balancer was set up. The back end performance and
scalability testing and its results are outlined in detail in Section 5.3 .

● jUnit tests: these tests that are programmatically set up to check the output of
various portions of code in order to make sure that they do not affect the output of
other independent features. A complete description of these tests and a complete
outline of the output can be found in Section 5.4 .

1.3. Beneficiaries

The platform creates a peer-review-type system of identifying viable business ideas
through a community rating system and a network of intermediaries whose job it is to
keep a high standard of the business ideas submitted and to ensure goal completion
after funding. Correspondingly, the audience for this project is split into three main
groups:

● “Funding beneficiaries”: social entrepreneurs searching for funding that are

unwilling to use banks;
● “Benefactors”: individuals who wish to donate in social business ideas in

exchange of either a pre-ordered product or some other kind of benefit. Equity is
usually not part of the benefit package;

● “Administrators”: admin committees will have the responsibility to identify the
unviable business ideas hosted on the website in order to ensure a high standard
of idea submission. They will also be in charge with ensuring the commitments of
the beneficiaries to the benefactors are being met after their idea is funded. This
is seen as the unique selling point of the platform, allowing an added level of
quality control which is not offered in similar platforms.

1.4. Scope and Constraints

The broad scope of this project is comprised of creating a crowdfunding platform that
is compatible across different devices and platforms and is focused on civic projects
and trust. The main technical constraint is represented by the fact that this project is
web-based and must be accessible from a web browser. However, despite this, the

9

CM2303 - One Semester Individual Project (student number: c1332008)

foundations for developing a mobile app in the future have been set during the
development of the platform. Through the use of a REST API, integrating the back
end in third party apps has been made simple, as they this would only rewire the front
end code implementing the API specifications. If the wish to develop a mobile
application (Android / iOS / Windows Mobile) would arise in the future, the back end
would not need any modifications. Based on the final outcome, an app can easily be
developed should this be required. A full description of the concept related to the fact
that a future-proof back end has been developed through the design choice of splitting
the application in 2 separate micro services and the use of a REST API is outlined in
full in Section 3.3.2 .

A significant constraint was the limitation of time, which has made me prioritise the set
of functionalities to implement at the prototype stage. The functionalities selected to
be implemented are:

1. The system must be able to handle 3 types of users: benefactors, beneficiaries

and admin committees;
2. The benefactors must be able to view campaigns proposed by different

beneficiaries, split into different categories;
3. The campaigns proposed by the beneficiaries must clearly show their description,

the category they belong to, the amount pledged by the benefactors, the target
donation amount and the progress percentage towards the donation goal;

4. The benefactors must be able to express their interest in campaigns proposed by
potential beneficiaries that have not yet been approved by a member of the admin
committee;

5. The beneficiaries must be able propose new campaigns;
6. The benefactors must be able to pledge amounts towards the goal of a campaign;
7. The admin committee members must be able to approve or reject the campaigns

proposed by the potential beneficiaries.

All the functionalities listed above are part of the mandatory requirements outlined in
Section 3.1.1. The plan to implement the functionalities related to the optional
requirements in Section 3.1.2 is described in detail in Section 6. Future work .

Another constraint of this project is that the User Interface needs to be kept similar to
other similar existing solutions, in order to encourage users to transition from other
crowdfunding platforms to ours, that promotes XpressStarter, where civic causes are
promoted apart from profitable business ideas. Nevertheless, this constraint should
not impede improvements to the user interface as compared to other platforms or
impede the integration of original ideas that attract and encourage both beneficiaries
to post their business ideas and benefactors to invest.

If XpressStarter were to be deployed in a real world scenario and available to the
general public, several regulatory constraints will need to be taken into account. Some
of them are closely related to the implementation, such as the payments processing. A
full outline of the regulatory constraints under which XpressStarter might fall can be
found in Appendix 3: Regulatory compliance of crowdfunding platforms in the UK.

1.5. Approach
The XpressStarter platform will be comprised of a front end (GUI) and a back end in
which all the data related to users and campaigns will be stored and processed. The

10

CM2303 - One Semester Individual Project (student number: c1332008)

system is therefore split between a user interface, a back end database and the
connective interface between the two. The front end for the users and admins is
where the projects can be posted, viewed and moderated. A dashboard back office
will contain all the statistics and will only be visible to the members of the admin
committee. The back end will contain a non-relational database designed to be
scalable and efficient for the storage, retrieval and persistentance of new data. The
data will be retrieved by the front end in the JSON format through a REST API.

My initial research into the crowdfunding environment revealed that trust is an
important requirement for both potential benefactors and idea submitters. I have taken
this knowledge into the development of the platform, by introducing a system of
administrators whose main task is the quality assurance of business ideas. The
platform will therefore have three types of users: benefactors, beneficiaries and
administrators. The administrators will have the right to review and disapprove (if
necessary) the proposals from the beneficiaries if they do not demonstrate sufficient
experience and expertise in the field of the industry their proposal is related to. The
beneficiaries will have the opportunity to demonstrate this on their personal profile,
which will have a structure similar to a CV. The beneficiaries will also have the
opportunity to show interest in multiple projects without donating, through liking the
projects and stating the reasons for interest in the dedicated comments area of each
campaign. This extra function of community approval is linked to present trends of
involving users into the review of products and services and ultimately leading to
customer empowerment in the digital age ([1] Hunter and Garnefeld, 2008).

1.6. Assumptions
In order to construct the system, a number of assumptions were made in order to aid
the design of the platform.

Community approval as quality assurance - the modern product is no longer sold
through intense “spotless” ads, but rather through community acceptance and
authentic user content. The economy is now embedding authenticity and user reviews
in every part of commercial life. A similar principle was applied for this social funding
platform. Instead of simply advertising a business idea and waiting for potential
benefactors, the content is letting admin assessments speak for the product.

Community roles - the platform assumes the users are split into three main categories:
beneficiaries or founders, benefactor or donors and administrators. The level of
access will differ according to these groups, with admin members able to see a
front-end dashboard with relevant stats. The community roles levels of access are
crucial to the functioning of the platform.

Trust as a channel for risk reduction - community trust acts as the main guarantee for
users within the platform. A delegated team of admins is using a data-driven approach
to identify the most likely and the least likely projects to succeed, therefore giving a
more quantifiable view to the act of funding a business idea and so reducing the
inherent risk in doing so.

1.7. Summary of methodology
The concept behind XpressStarter has been informed by research into the latest
design trends, as well as the key positive traits of the platforms presented in section 2.

11

CM2303 - One Semester Individual Project (student number: c1332008)

Background. An initial questionnaire (fully outlined in Appendix 1: Questionnaire for
the evaluation of front end design, attractiveness demographics) was launched in
order to inform the design of the platform and gain insight into any relevant user
attitudes. The questionnaire was split in 3 main sections: Design, Trust and
Demographics, each collecting quantifiable data on areas crucial for the development
of the platform.

The Design section contained a selection of screenshots from the proof of concept
and enquired user perceptions on the layout and structure presented. This informed
changes and supported the design choices made later on in the project.

The Trust section looked at user perceptions of current platforms in contrast with the
offering due to be launched by XpressStarter, where admin staff will be dedicated to
filtering down to the most interesting of business ideas and ensuring quality along and
beyond the funding process.

Finally, the Demographics section collected data on questionnaire respondents that
will inform later stages of the website development and a more in-depth user
segmentation.

The results of the Design and Trust sections of the questionnaire are outlined in
Section 5.1 and the results of the Demographics section are outlined Section 5.2 .

1.8. Key Challenges
The main challenges faced throughout the project are mainly related to prioritising of
work and learning new technologies in order to deliver a robust prototype.

The key challenges faced are outlined below:

Requirements prioritisation
Time constraints and the need to manage sponsor expectations meant I needed to
implement a series of requirements at prototype stage while developing the platform in
a way that allows for future additions and increased functionality. Having used
open-source technologies, this proved to be not always easy to do. I opted to
implement the minimum requirements as well as a part of the optional requirements
outlined in Section 3.1 following that a more extended set of requirements will be
implemented later on.

Choice of technologies
With the abundance of front end and back end technologies I needed to select the
suitable set of programmes that match the scope of XpressStarter. For the front end, I
opted for open-source frameworks, which offered me a wide enough spectrum of
functionalities while also being a growing segment (Developer.telerik.com, 2017).

Balancing waterfall and agile ways of working
The nature of the work on this project involved responding dynamically to challenges
both concerning the development process and the wider overall project scope. This,
combined with the time limitations around submitting a working prototype, meant I
ultimately needed to operate in an agile way, despite only having a limited number of
iterations, due to supervisor availability and the regulations of project work. This

12

CM2303 - One Semester Individual Project (student number: c1332008)

meant I needed to adapt to both methodologies and take elements from each in a way
that guaranteed the completion of the project.

Front end and back end integration
A similar point impacted by the time limitation was integrating the front and back end,
having in mind the tight deadline for creating a mock design after having presented
the requirements. This was challenging at times, as any change needed to be
reflected in both front end and back end.

New front end technology
Having had experience with certain front end technologies during my placement year,
I have initially planned to use those I was familiar with. However, after researching the
benefits of a number of other channels, I came to the conclusion that Express JS
offered some useful functionality that could further build on those offered by the
technologies I was already familiar with. This meant that while developing the working
prototype I also needed to learn this new technology. Ultimately, this contributed to my
development, as outlined in Section 8. Reflection on learning

Achieving scalability and performance
Since the design and specification phase of this project, scalability and performance
had to be taken into account. The project needs to be robust and scalable enough to
meet loads ranging from tens of users to thousands of users, while providing a
responsive enough service to ensure high client satisfaction;

Making the implementation future-proof
The technologies used in the project needed to be modern but mature at the same
time, ensuring that the tools and libraries that are in use are maintained by the
open-source community throughout the lifecycle of the project.

Standardisation of data flows and interface contracts
A standardised API (that follows certain design patterns widely used in the industry)
was needed in order to be able to design a robust front end and easy integration with
third party systems;

Picking the right frameworks, tools and libraries
Frameworks allows writing high level code, helping to have a short path from concept
(design) to implementation, whilst also retaining a choice of vendors at any point.
Using the right tools allows the platform to be agile in the event of architecture
change.

1.9. Summary of main outcomes

● A data-driven system of identifying the business ideas that have a high potential
for success;

● A system of different permission levels for the platform users; allowing admin
members to see a dashboard with insight into the ideas with the greatest potential
to succeed;

● Allowing for business ideas that have not been backed by the members of the
admin committee to still be featured on the platform if supported by general
platform users;

● Ensuring an effective process for verifying the successful implementation of the
business goals, post-funding.

13

CM2303 - One Semester Individual Project (student number: c1332008)

2. Background

A business idea will inevitably need a financial basis in order to go to market.
Traditionally, this has been achieved either via personal savings, help from family or
friends or, more typically, through an investment from a bank. This has long been the
channel of choice for entrepreneurs at the beginning of their journey. However, the
funding landscape has seen a shift from banks and other financial institutions being
viewed as main funding sources, to including a more open ecosystem of potential
benefactors ([3] Aldrich, 2014). Instead of the regulated environment offered by the
bank, an open community is seen as a better, more flexible source of financial
support. While this unmediated approach of crown funding channels offers more
flexibility, it often lacks the necessary expertise to differentiate between projects likely
to succeed and projects unlikely to do so. Additionally, the platforms are often not
involved in the steps post full funding, where the benefactors are offered the benefit
packages they acquired through their donation. The XpressStarter platform aims to
solve these issues by using a community of administrators to maintain a high standard
of idea submissions. This level of transparency will support good business ideas and
help to isolate and identify the ones less likely to succeed.

The second problem that this project aims to solve is the lack of structured,
data-based channels of civic projects. Traditionally, civic projects are less likely to
receive the same amounts of funding as for-profit business ideas, mainly because of
the view that there is no real later gratification for the benefactors (Hollow, 2013).
However, the overall benefits of funding such ideas is undisputable when it comes to
the impact on society and a correlation is starting to form between these civic
initiatives and increasing funding amounts ([4] Harding, 2004). On Kickstarter, a
popular crowdfunding platform, projects labeled “civic” were fully funded 81% of the
time ([5] FastCompany, 2014). Having identified this gap, XpressStarter aims to be a
platform that identifies and promotes the best of civic business initiatives, in a
transparent and risk-reduced environment.

2.1. Theory associated with the problem area
In a broader commercial setting, consumers are becoming less and less sensitive to
generic advertisements and sales pitches. Instead, they are seeking product advice
and proof of use from a wider community, calling not only friends but a wider network
of users to help them ([6] Matsuo and Yamamoto, 2009). This is an indication of a shift
in the mentality of the consumer from a general trust towards the brand to an
inclination to seek out authentic content produced by real buyers or service users, as
well as an overall tendency towards customer empowerment in the ‘digital age’.

This idea of the community acceptance economy is applicable not only in a
commercial setting. In areas other than the strictly commercial one, the user is
increasingly having a consumer mentality. By creating a platform where good
business ideas are filtered from within, the success rate of business funding can
increase, ultimately creating a more streamlined experience for both founders and
benefactors. The overall expertise of the community will come together to ensure
transparency and a better understanding for the person wishing to donate money.

14

CM2303 - One Semester Individual Project (student number: c1332008)

2.2. Solutions relevant to the problem area
There are a number of crowdfunding platforms that deal exclusively with civic projects,
or have civic projects as a category within a broader offering. This section gives a brief
overview of these, while identifying key strengths and weaknesses that were later
used in developing the concept behind XpressStarter.

Kickstarters offers an attractive user interface and design, and a view targeted at
each type of user. It is split into 3 options ‘Discover, Start a project, About us’ - aimed
at donors, creators and people seeking to find out more about the platform. Projects
can get over-funded (past target), which is not necessarily a positive aspect from the
perspective of those seeking the fair distribution of donations, and the website
operates on a basis of deeming an idea unsuccessful and returning the money if the
full amount is not reached in due time.

Bright colours are used extensively throughout the site, which seems to be an integral
part of the site’s branding. Creators and their projects are displayed front and centre.
They are the first thing a user sees when they land on the page. Kickstarter is
effective at placing Call to Action links directly into the header of the site, so
encouraging users to sign up or start a project themselves. While this approach is
suitable for Kickstarters, XpressStarter will aim to focus on emphasizing the available
business ideas on the website through the interface and not use that space as a way
to attract users.

The significant problem that civic projects would likely face when using Kickstarter is
that it is a rewards based platform. This means that for every pledge that is made
there usually tends to be an associated reward (e.g. an early version of a product, a
thank you t-shirt, etc.); essentially meaning the benefactor is an early customer of the
company.

As civic projects will not offer any direct rewards such as the ones described above,
they are not well suited to this specific model of crowdfunding. However, that is not to
say that Kickstarter is of no use, as there are certain aspects that would lend
themselves very well to such an application. With that in mind, an alternative method
that lists the final outcome as the effective reward would be well suited.

Spacehive has a similar model to Kickstarter. However, Spacehive is tailored to cater
for civic projects it and it does so by having a vetting system in place. Projects listed
on Spacehive must show the impact they would have for the benefit of the community.
This idea will be used in the development of XpressStarter, but the assessment will
not only be made subjectively by the proposer of the business idea but also through
community approval and admin assessment.

Spacehive places a large focus on community. They highlight a partner account on
Spacehive who are behind a number of projects. By aggregating the projects in a
community page potential backers can follow the community and receive targeted
updates. Community pages are intentionally made to feel like those of a social media
platform, something XpressStarter will also aim to integrate. Potential backers on
Spacehive are encouraged to follow community pages, in a similar fashion to Twitter,
to receive updates.

15

CM2303 - One Semester Individual Project (student number: c1332008)

Project pages are clear and well structured. Each project shows the title towards the
top of the page, where the creator, location and development stage of the project are
also highlighted. This is useful as it gives an overview of the project in around 10
words.

Akhuwat is another popular choice for civic projects funding with an interesting
investment model. In order to fund projects, Akhuwat accepts relatively large
donations from backers and then provides these as part of an interest free loan. The
key difference between Akhuwat and the two micro-financing solutions mentioned
above is that the investment is returned in this case, allowing it to be reinvested within
the community and more importantly, amongst its people. However, such a solution
may not be viable for larger civic projects.

Whereas modern micro-financing solutions focus heavily on online, on-demand
project financing, Akhuwat caters to an audience who may not have an internet
connected device readily available to them; thus its approach is more traditional in the
sense that they use spiritual locations and volunteers to spread their message. A key
objective proposed by the team is to convert borrowers into donors, which is perhaps
the opposite of what Kickstarter hopes to achieve - turning backers into creators.

Akhuwat provides a simple and clear overview of the currently active projects. Each
listing features the project title, its location, a short description and its funding goals.

In terms of platform design, the page is however not to a particularly high standard.
There are instances of overlapping texts and unaligned elements throughout the page.

JustGiving

JustGiving is the final example of a crowdfunding platform whose functionality was
used in the development of XpressStarter. The platform offers an option specifically
targeted at undecided users, whereby money can be donated not directly to a specific
project but rather to a “pot” dedicated to the overall platform. This is a unique concept
in the online crowdfunding landscape and something aimed to be developed in later
stages for XpressStarter.

In addition to the platforms above, a number of other similar websites were identified.
There however were targeted at individual, mostly ad-hoc civic ideas that generally do
not aim to become an actual business. Examples for these websites include
GoFundMe.com and FundingCircle.com.

16

CM2303 - One Semester Individual Project (student number: c1332008)

3. Specification and Design
This section is going to present the requirements of the project agreed with the project
supervisor and the client. This is followed by an overview of the business logic of the
application and the database design that correlates with that business logic. An
overview of the technical application architecture together with a brief description of
the data flow is also presented. The final part of the section outlines the Graphical and
User Interface Design specifications. In this section, the design choices made for this
project are presented at a high level. The lower level details are presented in the next
chapter, Chapter 4: Implementation.

3.1. Requirements specification
The requirements specification was agreed with the project supervisor, Prof. Omer
Rana and briefly outlined in the initial plan. These requirements were also reviewed
from a commercial perspective by Mr Akmal Hanuk, the chief executive of the
Cardiff-based Islamic Banking and Finance Centre. He is considered to be the client
at the heart of the system and the primary beneficiary.

The first step of the design process was to arrange a meeting with the parties
mentioned above and to have an open ended discussion about what the system I was
going to develop was expected to achieve. This was a great opportunity for me to ask
questions and gain a deeper insight into their wishes and vision of the problem. It was
agreed that I would take the outcome from this discussion and formulate it into a
formal system specification, which would be reviewed at another meeting by both
parties, and changes could be made to these before they were carried forward into the
final version of the system specification. It was also agreed that these requirements
were subject to change in the future, which could be accommodated since I was going
to implement the system by following a mix of the Waterfall and Agile methodologies.

3.1.1. Mandatory functional requirements specification
These requirements are considered to be a core part of the system and should be
given priority in implementation.

1. The system must be able to handle 3 types of users: benefactors, beneficiaries

and admin committees;
2. The benefactors must be able to view campaigns proposed by different

beneficiaries, split into different categories;
3. The campaigns proposed by the beneficiaries must clearly show their description,

the category they belong to, the amount pledged by the benefactors, the target
donation amount and the progress percentage towards the donation goal;

4. The benefactors must be able to express their interest in campaigns proposed by
potential beneficiaries that have not yet been approved by a member of the admin
committee;

5. The beneficiaries must be able propose new campaigns;
6. The benefactors must be able to pledge amounts towards the goal of a campaign;
7. The admin committee members must be able to approve or reject the campaigns

proposed by the potential beneficiaries.

17

CM2303 - One Semester Individual Project (student number: c1332008)

3.1.2. Optional functional requirements specification
The following optional specifications were decided as being classed as features which
would be make a useful addition to the project, but were not a core part of the system
and could be added at a later stage if desired (after the mandatory requirements have
been fully implemented and tested).

1. The users should be able to register and authenticate using third-party social

services, such as Facebook and Google through the oAuth protocol;
2. The users should be able to provide feedback and comment on the existing

campaigns using a dedicated comments system, either natively implemented or
through an instance of the Disqus API;

3. The users should be able to pledge amounts towards the goal of a campaign using
an integrated payments system, such as PayPal;

4. The system should be able to determine similar campaigns to the selected
campaign using an algorithm based on keywords / tags;

5. The users should be able to perform advanced searches of campaigns, based on
criteria associated with any field of a campaign, such as the target amount, the
date created and / or filter them based on certain tags.

3.2. Business logic

3.2.1. The Users entity
The users of the application were split into beneficiaries and benefactors. This
enables splitting project organisers from people who are willing to help. A beneficiary
has the ability to add campaigns and extend them. A committee of admin users
decides if a campaign should be allowed to gather funds. Campaigns are split by
categories such as Food, Arts, Infrastructure, etc. A system for ‘likes’ has been
implemented to allow us to track the interest in different campaigns and different types
of campaigns. This is an element of utmost importance in our system, since it allows
the administrators to see what are the campaigns in which the users expressed
interest but has not yet been approved.

A user may register as a beneficiary and launch a campaign with an initial duration
(e.g. 30 days). Once it is approved by a member of an admin committee, users
(benefactors) are allowed to donate (pledge). A pending campaign can receive likes.
The likes system was implemented in order to enable users (potential benefactors) to
express interest towards a campaign and the admin committees to identify the
campaigns that receive a certain amount of interest, but which have not yet been
approved.

Fig. 3.2.1.1: Entity-relationship diagram between entities: Campaigns, User (benefactor or beneficiary),
Admin

18

CM2303 - One Semester Individual Project (student number: c1332008)

3.2.2. The Campaigns, Donations and Likes entities
Each donation and each like is treated as a transaction. Therefore, an object called
Like was created, that stores the user that gave the like, the campaign that was liked
and also the time when the like was given.

Fig. 3.2.2.1: Entity-relationship diagram between entities: Campaigns, Users and Likes

Fig. 3.2.2.2: Entity-relationship diagram between entities: Users, Donations, Campaigns

As it can be observed from the Entity-relationship diagrams above, the relation
between Donation, Users and Campaigns is a one-to-one relationship. Therefore,
through using these the following 4 classes, a CRUD (Create-Read-Update-Delete)
model was achieved, which supports our business model. All these four operations
can be performed with all the objects in our business model: Users, Campaigns,

19

CM2303 - One Semester Individual Project (student number: c1332008)

Donations and Likes. All the campaigns can also be sorted (both in ascending and
descending order) based on any of the fields illustrated in the diagram above (most
popularly, by targetSum, the pledge target, currentlyDonated, the currently
pledged amount, startDate, endDate and likeCount).

The UML diagram corresponding to the entities described above and that also
corresponds to the back end implementation is presented in Appendix 2.

3.2.3. The process of adding a campaign
An abstraction of the process of adding a campaign is illustrated below:

Fig. 3.2.3.1: Abstraction of the process of adding a campaign

This was the initial design. The need for a gallery of images for campaigns and a
profile picture for the users was noticed at a later stage and the necessary
corresponding fields were subsequently added to the objects.

Another feature that was planned to be implemented was the ability of a user to login
with his / her Facebook or Google account (through the OAuth protocol). The enabling
mechanism of this feature is illustrated below:

Fig. 3.2.3.2: Abstraction of the OAuth protocol with a Facebook or Google account

20

CM2303 - One Semester Individual Project (student number: c1332008)

3.2.4. Compliance with 3NF
In order to ensure that the data is stored in the most efficient manner possible, both
for retrieval and for modification, the database design needed to be compliant with
3NF (the third normal form), matching the business logic at the same time. This way,
the system is better understandable, more scalable and more consistent.

MongoDB allows storing an object in the database while keeping its structure close to
the structure of the same object described (defined) in the application back end
source code. As this is a NoSQL database, it does not have the constraint of needing
a table with columns, allowing the storage of the object in its original form, without
splitting it into multiple tables.

MongoDB provides the DBRef annotation, which allows establishing a relationship
between objects. For each relationship that is established, the related collection and
ID of the related object are specified. Below there is a snippet from the MongoDB
database that describes how DBRef is used:

{
 "_id" : ObjectId("58dfbf820a96a5493d4a2195"),
 "_class" : "com.xpressstarter.entity.Donation",
 "amount" : 100.0,
 "donatedOn" : ISODate("2017-04-01T14:56:02.966Z"),
 "status" : "OK",
 "user" : {
 "$ref" : "user",
 "$id" : ObjectId("58dfbf820a96a5493d4a2032") // THE REFERENCED USER OBJECT
 },
 "campaign" : {
 "$ref" : "campaign",
 "$id" : ObjectId("58dfbf820a96a5493d4a2194") // THE REFERENCED CAMPAIGN OBJECT
 }
}

Although MongoDB is not a type of relational database, the structure of our designed
schema complies with the 3NF (third normal form) requirements ([7] E. Codd,
Wikipedia, 2017):

● All of the non-prime attributes (User, Campaign) are handled via the fields of _id

/ references. As a Campaign can have multiple Likes or Donations and so can a
User, the mapping in the Like and Donation objects is done via the _id field.
Therefore, our design complies with 1NF (first normal form) as there are no
repeating elements or group of elements;

● Likes and Donations are stored separately and use IDs for Users and Campaigns
that are unique and generated by MongoDB following the UUID specification.
Moreover, Users and Campaigns do not depend on the Donations / Like objects.
Therefore, our design complies with 2NF (second normal form) as it complies with
1NF and there are no partial dependencies on a concatenated key (formed by the
_id of a User and the _id of a Campaign);

● All the non-key attributes (all the attributes of the objects that are not _id - that
are not references to other objects or to itself) have no meaning (cannot exist)
outside of their object. Therefore, our design complies with the 3NF, as it
complies with both 1NF and 2NF and there are no dependencies on the non-key
attributes. Below there is a snippet of the User object that demonstrates this
statement:

21

http://www.acm.org/classics/nov95/

CM2303 - One Semester Individual Project (student number: c1332008)

{
 "_id" : ObjectId("58dfbf800a96a5493d4a1daa"),
 "_class" : "com.xpressstarter.entity.User",
 "firstname" : "Andrei",
 "lastname" : "Hodorog",
 "email" : "andrei@test.com",
 "passwordHash" : "ewjiqoe1oji12310931je10jewqle",
 "wantsToReceiveEmail" : false,
 "memberSince" : ISODate("2017-04-01T14:56:00.725Z"),
 "role" : "ADMIN",
 "totalDonated" : 0.0
}

The 3NF allows the database schema to be efficient by not storing duplicate data and
ensuring that the integrity is maintained when updating objects. Since _id references
are used to link the objects, updating an object triggers the update of all the objects
that use that reference.

Further insight into the database design can be seen in the entity-relationship
diagrams provided in this chapter, in Section 3.2.

22

CM2303 - One Semester Individual Project (student number: c1332008)

3.3. Technical application architecture
This section presents an overview of the technical application architecture, the flow of
data in the system and an outlined of the presented components.

3.3.1. General overview

Fig. 3.3.3.1: General application architecture

23

CM2303 - One Semester Individual Project (student number: c1332008)

XpressStarter, like many other modern web applications, has the concerns generically
separated into two main components: the back end and the front end. This technique
is called Separation of Concerns and involves the split of the application into different
layers that have different purposes for the functionality. The back end is providing a
way to handle the logic in our platform with background operations that include
authentication, fetching the data for the campaign feed, fetching the highest rated
campaigns, persisting a new campaign in the database and all the CRUD (Create,
Rename, Update, Delete) operations with our entities. On the front end, the main
focus is on the user interaction with all these operations: how they are triggered, how
the data is rendered and displayed, how the switch from one context to another is
made. The diagram above clearly explains the architectural plan for our crowdfunding
platform, as well as the processes of communication between each module.
The data flow starts and ends with our back end microservice. Everything is built
around the back end. This is where the state of the application is handled, the state of
the current campaigns is processed and subsequently persisted to the database. The
backend is mainly composed by the Spring Framework that runs on top of Java,
querying a the MongoDB database through the Spring Interfaces. The back end
implementation and the flow of the data through its components in it is described in
detail in Section 4.2 and briefly in Section 3.4.
The data is being forwarded to the front end on top of the REST (Representational
State Transfer) Architecture. For security and scalability reasons, the REST
architecture is currently considered as the primary option for developing web services,
being used by 69% of the web applications ([8] RestCase, 2015). Allowing a client to
query a database directly is not only a technological drawback, but it could also lead
to potentially destructive security breaches. Through using REST architecture, the
control of our application is maintained by defining the application logic. Our clients
must follow the imposed predefined rules that are designed when the API is
implemented. A full justification for the use of the REST API can be found in Section
3.3.2.2.
The data flow continues on the front end on another web application framework,
Express JS, which creates an abstraction layer that intermediates the communication
with the back end microservices individually. This abstraction layer has two primary
roles:
1) It translates the URLs from the format handled by HATEOAS into a friendly format
for the user. For example, a request initiated from the front end to
/campaigns/search/test-campaign is translated into the HATEOAS specific
format to
/api/v1/search/findCampaignByNameEqualIgnoreCase?query=test-cam
paign. This technique helps to encapsulate the logic of the back end and to not
expose the HATEOAS URIs to the user. Moreover, this helps the application to
expose SEO (Search Engine Optimisation) friendly URLs to the public and facilitates
the easy identification of resources. For example, a user who bookmarks an URL
ending in /campaigns/arts is more likely to remember what page it is associated
with rather than a URI ending in
/api/v1/search/findCampaignByCategory?query=arts

2) It merges multiple requests to the back end microservice into a single request that
needs to be executed from the front end. For example, on the home page, there are
two requests that need to be made to the back end, one to retrieve the most recently
added campaigns and one to retrieve the top campaigns sorted by the number of

24

CM2303 - One Semester Individual Project (student number: c1332008)

likes. When a request is triggered by the client to fetch the content of the home page,
the two associated requests needed to fetch the information are executed
automatically by the Express JS abstraction layer in the background. The abstraction
layer also merges the two JSON objects that are returned by the requests into a single
JSON object that is rendered in the template.
The body of the request associated with any CRUD (GET, POST, UPDATE, DELETE)
operation that is triggered on the front end is being forwarded to the corresponding
microservice. The Express JS uses namespaces and routes that make implementing
meaningful, intuitive, and ensures that the API routes are consistent regardless of the
back end microservice that is used.
With Express JS, the HTTP responses from our microservices are synchronised and
the data that they return is unified and used in the data flow. The data is bound with
Jade, the templating engine integrated with Express. The data is presented to the end
users as Jade templates which will are instantly converted into markup, alongside
Javascript libraries such as D3.JS and Moment.JS when a page is requested.
On the front end, the dynamically generated components are styled with CSS, which
is generated by our Sass source files. End users are able to continue the data flow by
triggering new actions through AJAX calls that are forwarded to the Express JS
instance. Finally, the actions triggered (requests) arrive back to the back end
microservices, right where the data flow had initially started.
From our Express Server to the front end, there are a number of steps that are
executed. In development mode, there are a number of Node modules added on top
of Node for better productivity (nodemon, browsersync, sourcemaps, jshint). All these
modules are described in greater detail in Section 4.1.4. In production mode, no
debugging overlay is added and all code code (HTML, CSS and Javascript), images,
fonts and icons are minified in order to minimise the load time of the page. All the
optimisation techniques implemented on the front end are outlined and explained in
Section 4.1.5.

3.3.2. Justification for the use of two separate microservices

3.3.2.1. General reasoning
Separation of concerns
This approach allows delegating separate responsibilities between the two
microservices, simplifying the code and making the replacement of individual modules
easier. If a new technology emerged for the front end and it would be convenient to
migrate to it and the back end would not need to be recompiled or refactored.

Code maintainability
This approach improves maintainability as a developer working on one piece of the
application does not need to be aware of the functionality of the other piece. This
leads to loosely-coupled code. Two separate teams could work on this project (one on
the back end and one on the front end) and only communicate via release notes and
feature requests as different iterations of the API would come out. The URI for the API
is versioned (e.g. /api/v1), in order to ensure backwards compatibility.
Scalability
When the platform reaches a significantly large audience, scalability would represent
the primary concern. Using microservices allows the scaling of each microservice
independently. MongoDB has been selected for this project due to its ability to run in a

25

CM2303 - One Semester Individual Project (student number: c1332008)

sharded cluster configuration, allowing the database to be scalable. Since the REST
API uses HTTP, it can be scaled over multiple machines distributing requests between
them.
Fault tolerance
Even though there is a high demand for Infrastructure as a Service (IAAS) , no
company / provider can guarantee 100% uptime. Even major providers can
experience unexpected downtimes, as it occurred last year with Amazon ([9] Time Inc,
2017). If a specific service becomes unavailable, or a specific data center from a
region is affected, the uptime of the whole platform will be maintained. As the
application is scalable, the downtime of one of the services can be compensated by
running multiple instances of each microservice.
Programming environment independence
Even though the back end microservice is written in Java and the front end is mainly
written in Javascript, the only part that needs to maintain its consistency for the
system to function properly is the format of the REST API. The back end or the front
end could be replaced by a different microservice written in a different language
without affecting functionality, therefore making our application language agnostic.

3.3.2.2. The use of a REST API
Using an API means that a contract is established between front end and back end, a
protocol for communicating between the two. This means that integrating in third party
apps could also be made simple, as they only need to implement the API
specifications. If the need of a mobile application would arise (Android / iOS /
Windows), the back end would not need any modifications.

REST stands for Representational State Transfer and allows web resources
manipulation through an uniform and predefined set of stateless operations in a
textual representation. It is used in conjunction with the HTTP protocol, using HTTP
verbs (GET, POST, PUT, DELETE) to interact with resources.

The popularity of REST APIs has increased steadily within the last 10 years ([8]
RestCase, 2015). This is the reason why the majority of the libraries on the market are
designed for seamless integration with the REST API.

The most popular format for the data used with a REST API is JSON, which stands for
JavaScript Object Notation. This is easily readable for humans and easily parseable
for systems, machines and services. Moreover, it is a widely accepted standard by the
majority of services in the industry ([10] Webber R., 2013), due to its easy
consumption / integration by JavaScript.

Through the use of a REST API, the scalability of the back end in ensured, since it
demands the use of the HTTP protocol. A proxy configured on a load balancer could
be used at a later stage to split the requests to multiple back end instances. A proof of
concept of this technique is outlined in Section 5.3: back end performance and
scalability evaluation.

26

CM2303 - One Semester Individual Project (student number: c1332008)

3.4. An overview of the system workflow depending on user type
The diagram below illustrates an overview of the steps that a user of a particular type
(benefactor, beneficiary or admin committee) would take while using the systems. The
directional arrows indicates the next possible step, as well as the possibility to return
to a previous step.

Fig. 3.4.1: An overview of the system workflow

27

CM2303 - One Semester Individual Project (student number: c1332008)

The system contains four main component types: components that fetch data (GET
requests), components that add data (POST requests), components that modify data
(PUT requests) and components that delete data (DELETE requests).

Fetching data from the system is performed by the following actions outlined in Fig
3.4.1 above: Finds campaigns, Views campaign, Views started campaigns and Views
statistics. For these actions, the front end initiates a GET request to the back end to
retrieve data. The following actions are performed when a GET request is executed:

1. The front end executes a request that is translated to the following URI in

HATEOAS format: /api/v1/<<entity>>/[id], where <<entity>> takes the
value of the entity name request that can be Campaigns, Users, Likes, Donations,
Statistics;

2. The Controller requests from the Hibernate instance the object of entity type
requested (Campaign, Donation, User, Like, Statistics) with the ID from the URI;

3. The Hibernate instance executes a query that retrieves the data from the database
and then deserializes the results into memory objects and then returns them to the
Controller;

4. The Controller uses the ObjectMapper instance and serializes them into JSON
format;

5. The Controller returns the objects back to the client in JSON format.

Adding data to the system is performed by the following actions outlined in Fig 3.4.1
above: Likes campaign, Makes a donation, Creates new campaign. Modifying data is
performed by the following actions outlined in Fig 3.4.1 above: Approves a campaign,
Makes Campaign inactive, Extends / Changes / Ends campaign.

For all the actions that add data, a POST request is sent to the back end and for all
the actions that modify data a PUT request is sent to the back end.

The POST requests are executed to URIs taking the format of
/api/v1/<<entity>>
The PUT request is executed to URIs taking the format of
/api/v1/<<entity>>/<<id>>, because a PUT request can only be executed on
a web resource that is identified by the <<id>> field and is of <<entity>> type.

The following actions are performed when a POST or PUT request is executed:

1. A POST or PUT request is made to the server that encapsulates the entity
object in the body of the request;

2. If a PUT request is made to a non-existent URI and returns a response code of
404 (Not found);

3. The ObjectMapper deserializes the JSON object into a memory object and
checks if the entity is valid according to the constraints defined (the size of a
string, the donation amount needs to be positive). If this is valid, the data is
passed to the controller. Otherwise, a 400 (Bad request) response code is
returned, with the erroneous fields mentioned in the response body.

4. The request is received in the Controller. If a handler exists for the entity, the
object is passed to that handler;

5. In the handler, the object is passed to one of the sets of methods with the
following annotations that are executed before and after the persistence in the
database (described in detail in Section 4.2.3. Critical sections):

28

CM2303 - One Semester Individual Project (student number: c1332008)

a. for POST: @beforeCreate and @afterCreated;
b. for PUT: @beforeSave and @afterSave.

6. If none of the above methods throw any error (exception), the object is passed
to the Hibernate instance that persist the data in the database;

7. The newly created (in the case of a POST request) / modified (in the case of a
PUT request) object is returned to the controller;

8. The Controller uses the ObjectMapper instance and serializes it into JSON;
9. The Controller returns the object back to the client in JSON format and returns

one of the following response code:
a. 201 (Created) code for POST;
b. 200 (OK) code for PUT.

Removing data from the system is performed by the following actions outlined in Fig
3.4.1 above: Unlikes campaigns (the reverse of the Likes campaign operation) and
Deletes campaign.

The following actions are performed when a POST or PUT request is executed:

1. The client executes a DELETE request to an URI taking the format
/api/v1/<<entity>>/<<id>>

2. If the ID is invalid, a 404 (Not found) code is returned;
3. The Controller uses the ObjectMapper to deserialize the object into memory;
4. The Controller requests the Hibernate instance to delete the entity with the ID

provided;
5. If Hibernate is successful, the Controller returns a 204 (No content)

response.

The operation of retrieving statistics (View statistics) runs a query on the database
that retrieves and aggregates data based on different criteria:

1. In order to retrieve top X campaigns, a GET request is executed to an URI
taking the format of
/api/v1/statistics/getTopCampaigns?type=x&number=y, where X
can take one of the following values:

a. 1 for top Y campaigns based on activity (number of likes and donations);
b. 2 for top Y campaigns based on donation count;
c. 3 for top Y campaigns based on the total pledged amount.

2. In order to retrieve the top X nearly funded campaigns (campaigns that have
almost reached their goal), a GET request is executed to an URI taking the
format of /api/v1/statistics/getNearlyFunded?number=X (where X
can take any integer value between 1 and the total number of campaigns
present in the system);

3. In order to retrieve the average donation amount per campaign category, a
GET request is executed to an URI having the suffix of
/api/v1/statistics/avgDonation;

4. In order to retrieve the top X donating users (the top of users that have pledged
the highest amounts), a GET request is executed to an URI having the suffix of
/api/v1/statistics/topdonatingusers?number=X (where X can take
any integer value between 1 and the total number of users present in the
system).

29

CM2303 - One Semester Individual Project (student number: c1332008)

When adding and modifying data, some intermediary actions need to take place
before and after persisting the data to the system. These actions are defined in
Handlers for each entity and specify which methods should be called before the
persisting happens and which methods should be called after persisting takes place.

This section outlines a brief description of these handlers, that are described in more
detail in Section 4.2. Backend implementation technical specification.

The following diagram presents a general overview of the handlers that are included in
the system:

Fig. 3.4.2: An overview of the back end system architecture

Donation handler:
When a donation is triggered (a POST request is created), the time of donation is
initialised (donatedOn) that synchronises with the time of the server. If a request is
forged (the time from the body of the POST request is changed to the past or the
future), the time overwrites with the current date of the server. This happens before
the entity is persisted to the database. After the Donation entity is persisted, the total
amount donated for campaign and user are recomputed.

Like handler:
When a Like is posted, before being persisted to the database, the value of the field
givenOn is set with the server time and then the system checks if the like have not
been already given (posted). If the request proves to be correct, it is persisted to the
database. If not, an exception is thrown. After the Like entity is persisted, likeCount
is recomputed for the respective campaign.

30

CM2303 - One Semester Individual Project (student number: c1332008)

User handler:
Before being persisted to the database, the memberSince field is overwritten with the
server time and then the email address is checked if it already exists in the system. If
there is, an exception is thrown. Otherwise, the entity is persisted.

3.5. Graphical and User Interface Design

3.5.1. Design introduction

The foundation for the design process was set by deciding on the key quality criteria
for a high quality user experience. The first step was researching a range of
fundraising websites (most notably: JustGiving, KickStarter, GoFundMe) and
analysing the strengths and weaknesses of their design choices. The focus of
interaction on such a crowdfunding website was deemed to be the main page, the
search and category selection tools and the project presentation pages. Therefore, my
analysis focused on these three key destinations in the user’s online interaction.

As a first step, the main page of the leading fundraising websites was analysed. A
primary discovery was that most platforms use their header space to promote their
business itself, as well as to encourage visitors to promote their own project. The main
body usually contains the projects overview as well as an overview of the overall
project categories. Normally campaigns would be presented in different categories on
the page, according to popularity or other filtering criteria. Other areas of the page
would traditionally be used as advertising space for uploading a new project.

In terms of individual project overview, selected projects are presented by an image
and title, typically next to an overview of the fundraiser’s status (financial goal,
supporters as well as remaining time). Underneath the title, the potential benefactor
can read a description, created by the project creator, as well as a table of rewards for
supporting said project. Most fundraising platforms also make donation- and
sharing-buttons permanently visible while scrolling, so as to encourage visitors to

31

CM2303 - One Semester Individual Project (student number: c1332008)

engage with the projects.

Project can usually be accessed either via the search function or by exploring the
different project categories. As a norm, filtering options are expected on these
platforms. Some websites (such as kickstarter.com) would still separate the projects
by popularity, recommendations and such.

The next step was researching common design patterns in the styles used. This has
proven to be more difficult than expected, as most websites retain a large part of their
appeal purely based on their appearance. Kickstarter for example uses a modern style
across their website, underlined by sharp corners, narrow lines, strong colours and a
modern font style. By contrast, GoFundMe uses a lot of rounded elements and
gradients less pronounced colours, reminiscent of the skeumorphic design era ([11]
Tony Thomas, 2012) The main common design element found in most fundraising
websites was the use of “card”-styled boxes for the projects, rather than a vertical list
or other display method.

Lastly, the implemented tools were examined. Most websites have proven to use the
same functionality: user created content, separating interesting content from other
(popular and featured projects), enabling social promoting (sharing on Facebook and
Twitter), a rewards-system and community features (such as comments and likes).

3.5.2. Overall structure
The next step was deciding which ideas to be integrated into my own project, as well
as deciding which elements would be structured differently, all while fulfilling the
technical requirements for the project. Following is a description focused on those
main parts of the platform.

3.5.2.1. First page

Fig. 3.5.2.1.1: Menu and featured projects

The final decision was to use the header space for promoting recommended projects
rather than promoting the idea of inserting a new project. Most users of fundraising

32

CM2303 - One Semester Individual Project (student number: c1332008)

platforms are aware of the possibility of promoting an own project (the button on the
menu “Create” would still highlight this option), but rather choose to support the
projects. The reasoning behind this thought is that in order to have a functioning
platform there have to be more benefactors than creators. By placing the most
interesting projects right at the top of the page potential supporters would directly have
access to the most interesting campaigns, therefore streamlining the fundraising
process.
Above the featured projects the user finds the most relevant navigation tools: The logo
acting as a direct link to the first page, the creation link, browse option, an about us
section as well as search and login/register-tools. The menu keeps in line with the rest
of the page by using a white body which floats above the featured content
(implementation of a drop shadow).

Fig. 3.5.2.1.2: Category selection

Streamlining was the main focus of placing the category selection underneath the
highlighted projects. A user that simply browses the website is more likely to be
scrolling down than a user who already knows what he wants to finance. This is also
the reason for not hiding the category selection behind a menu button or on the side.

Fig. 3.5.2.1.3: Main space of the first page with campaign-cards

The main space of the first page is inspired by other platforms, having a separated
popular projects and new projects section. The platform offers therefore three different
types of projects on the first page (incl. the recommended-section in the header).
Campaigns are displayed by using playing-cards looking boxes, giving an added
element of gamification that is likely to encourage user engagement. Depending on
the funding stage of the campaign card displayed, successful projects will incorporate
a "Success" indicator and failed ones will have greyed out images. This style is a clear
indication for a potential benefactor regarding which projects can still be supported
and which do not, while still retaining a clean aesthetic.

33

CM2303 - One Semester Individual Project (student number: c1332008)

Fig. 3.5.2.1.4: Section “top contributors”

An aspect usually overlooked by other fundraising platforms is the focus on the project
creators. Given that the project focuses on civic campaigns, the people that stand
behind those ideas were highlighted, as they are likely to have an impact on lives and
communities across the world. Underneath the main body, a new section dedicated to
those people was created. The persons displayed are selected by their overall
contribution to the community (campaigns created and money donated). This is likely
to inspire trust to platform users, by offering a more personal touch to the
crowdfunding community.

3.5.2.2. Selected project

Fig. 3.5.2.2.1: Menu and header for a selected project

The page for a selected project is, in terms of body structure, similar to other platforms
for crowdfunding. The header part is showing a representative image of the campaign,
partly covered by a content box (title, category, location and creator). Any project
selected is thereby instantly unique and recognisable.

34

CM2303 - One Semester Individual Project (student number: c1332008)

Fig. 3.5.2.2.2: Content in a selected project

The main body of the project page is split in three sections: main data, description with
rewards and recommended projects. The main data displays the supporters, the
funding status, time left as well as interaction options (share, love and comment) next
to a highlighted contribution-button. Placing these elements directly under the image
aids the idea of streamlining the experience. The description of the project contains
three font types: title, regular as well as a stylized rendering of the creators’ names
(highlighting, again, the importance of the people behind the campaigns). The rewards
section contains boxes in similar style to the campaign boxes. Although room for
individuality was attempted to be found, this structure, inspired by other popular
fundraising platforms was found to fulfill the requirements set by modern web design.

Fig. 3.5.2.2.3: Similar projects being displayed after a project presentation

35

CM2303 - One Semester Individual Project (student number: c1332008)

Similar projects are being displayed on a dark background by using
playing-card-boxes identical to the ones on the first page. Underneath, the user has
direct access to the categories section, thereby aiding website retention times.

3.5.2.3. Category selection and search

Fig. 3.5.2.3.8: A selected category being displayed

By selecting a category or using the search tool the website displays relevant results.
The category selection and search results still highlight featured projects that met the
selected criteria. Underneath, the category selector is still displayed when selecting a
category, through changing the selected category into a “show all” button. When using
a search tool the category selector is hidden as it would visually disrupt the search
action and the results. Following the category selector (or, in case of the search page
the search term indicator) the user can select the number of campaigns being
displayed per page as well as sort them by different criteria (such as popularity, age or
relevance when using the search tool). Underneath those tools results are being
displayed in play-card-boxes, introduced by the title of the selection in the
corresponding colour. The page ends by displaying a page navigation tool.
This design is still reminiscent of other websites as there is no room for individuality in
displaying search results. The platform, however, still keeps its individuality by
displaying featured projects and categories.

3.5.3. Design patterns, colour, typography and animations

After preparing the basic structure of the website the design patterns were developed
and adapted the typography to the functionality of the website. Research also went
into choosing the use of colours and integrating modern animations.

3.5.3.1. Design patterns

The development of the design followed multiple steps.

36

CM2303 - One Semester Individual Project (student number: c1332008)

Fig. 3.5.3.1.1: Campaign-boxes (without and with mouseover effect)

Firstly, a decision was made on the basic shapes of the elements. The first decision
taken was to use rounded elements rather than sharp ones for a more approachable
and vibrant feel ([12] Keith Bryant, 2012). Some of the main examples for this style
are the campaign-boxes. Choosing a rounded look, those playing-card inspired boxes
are much more pronounced. This is further aided using a soft drop shadow, which
gives the campaigns the impression of “floating” above the main body. This effect not
only aids the user in recognising the intractability of the elements (clicking on them
gets you to the project), but much more separates the campaigns clearly from the rest
of the page, underlining their essential status as the base of the fundraising platform.

Fig. 3.5.3.1.2: Data for a selected project

Using rounded elements also creates the impression of “play” and “fun”, which can be
also exemplified in the page for a selected project. Underneath the presentation image
there are three main status indicators: supporters, financial and time left. Those
perfectly round elements are being surrounded by initially incomplete rings which,
depending on the evolution of the project, fill up. This element, inspired by the success
of the fitness-rings used in the UI of the Apple Watch, not only give a clear and fast
indication of the project (it is faster to see the half ring filled rather than that a £15.000
project needs a further £7.500 to be fully funded) but gives the website an own and, in
the fundraising-market, unique approach. Other examples of rounded objects are: the
love-icon in the campaign-card, the images for the users, buttons (contribute and
mouse over).

37

CM2303 - One Semester Individual Project (student number: c1332008)

Fig. 3.5.3.1.3: Description box for a featured project.

The decision was made, however, to also use some strategically placed sharp
objects. On the main page, the description for the recommended projects are placed
in a razor cut box in order to attract more attention by being a clear separation from
the background image. The main body elements are also clearly separated: from the
featured image to the category selector down to the different types of projects there is
always a visual “cut” (no shadow underneath the featured image, a full width line
between other elements). This style is also used when the user accesses a campaign,
as underneath the description and rewards section the box for other similar projects is
being highlighted with a darkened background, a visual “break” from the usual white
body style.

Another aspect of the design pattern is the use of full width elements (e.g. featured
projects, category selection). By doing so, it enables the website to develop over time
following a modular architecture, as new ideas or functionality can be placed between
other already existing elements, eliminating the need for resourceful redesigns.

3.5.3.2. Colours
Colours have also been a key subject in the development of this platform. This
included researching the colour trends for this year as well as deciding on the use of
mixed colours (such as in gradients). 2015 and 2016 were dominated by the use of
vibrant, almost neon looking, colours, most notably the major redesign of TheVerge
([13] Carrie Cousins, 2016). This trend, aided by Google’s Material Design release,
could however end in 2017, replaced by more natural or neutral tones ([14] Carrie
Cousins, 2017). As this would signify a great departure from the bold colour evolution
of the last two years, this new evolution is doubtful, especially considering that laptop
and mobile phone screens are capable of displaying an ever increasing amount of
colours (e.g. the use of P3-capable screens on the newest Apple products) that
encourages the use of vibrant colours. In the context of the fundraising world,
especially in the environment, a need for bold and bright colour is considered
necessary, as those not only sustain the feeling of “wellbeing”, but can also be used
for greatly separating different aspects of the website. Following this train of thought, a
mostly vibrant colour pallet for the different categories of uploaded campaigns (e.g.
Sports & Play is baby blue, Parks & Gardens neon green, etc.). This colour identity is
transferred to the titles of the featured projects, the category selector, the border of the
campaigns and in the category selection page. To support the use of vibrant colours,

38

CM2303 - One Semester Individual Project (student number: c1332008)

a decision was made to retain the background in plain white. This decision also
enables the use of other soft elements, such as drop shadows. All in all, by choosing
such a colour style, the platform has a clean, rounded and friendly look, an image is
strongly believed to aid the caritative aspect of the website.

3.5.3.3. Typography

Fig. 3.5.3.3.1: Assortment of type-elements used on the platform

Typography usually revolves around two question: the right font type (e.g. Serif or
sans serif) and the right colour. Choosing the font type to Helvetica Neue was a
comparatively easy decision: Sans Serif fonts can be read much easier on low dpi –
displays ([15] Stacey Kole, 2013) and Helvetica Neue is a generally well regarded
modern font that is recognisable and therefore familiar to most users.
The general colour of the font is dark grey (#1f1f1f), as it still contrasts well on the
perfect white body while still being easy on the eye while reading long texts, such as
the descriptions for the campaigns. Some text is however in colour (e.g. The category
selection for maintaining the identity-structure of the campaigns) or in light grey (as
those options are not generally as important).
Another aspect is the use of bold and all capitals in a number of elements (such as the
campaign titles or the different content types (“What are you looking for?”; “Projects
people loves”). This approach was followed as bold text immediately highlights
important information to the user and therefore makes the navigation process more
streamlined and easier, all while giving the website a modern look. Furthermore, some
elements do not contain bold but retain all capitals. Those elements (such as the
category titles and the name of contributors) are generally more important than plain
text, but not as important as the bold elements, which is why the medium-highlighted
style was used.
The project also extensively uses different font sizes to highlight or hide certain text,
depending on their importance for the user experience.

3.5.3.4. Animation
Animations were also an important part of the development process. I chose to
generally enable smaller and less intrusive animations in line with modern web design
developments ([16] Karol K., 2015). By doing so, the user isn’t distracted by the
animations, still being able to focus on the important content. Meanwhile the
experience is enhanced by giving the website the impression of a “living and
breathing” entity. Examples for using experience enhancing effects are:
● featured campaigns are displayed using a parallax effect while scrolling;
● the drop shadow of selected campaign cards increases on mouse over to sustain

the impression of “floating”;
● when opening a project the information rings fill up to their current status;
● mouse over on the heart-icon on a campaign card reveals sharing options.

39

CM2303 - One Semester Individual Project (student number: c1332008)

3.6. Project management, versioning and issue tracking
In order to adjust the code more efficiently, a versioning system was used (Git). This
allowed for the tracking of all the changes made to the codebase during the
development of the project and for reverting to previous versions of the code in the
event of failures hindering the functionality of the application or the development
process. All the important changes to the codebase, such as those marking the
achievement of a milestone or the finishing of an important feature being implemented
or an important issue being fixed were marked by code commits.

Furthermore, separate branches could be used for the development of certain
features, so that they can be developed independently from the codebase of other
features and integrated into the main codebase (the master branch) at a later stage.
When the application will expand, this process could also allow other developers to
review the code pushed before merging, through the use of pull requests.

Git was used in conjunction with Github (external cloud service providing the hosting
of Git repositories), which allowed issue tracking and prioritisation through the use of
coloured labels. Github could also facilitate easy collaboration with other developers in
the future.

3.7. Specification and Design conclusions

XpressStarter was designed to be a crowdfunding web platform where users
(benefactors and beneficiaries) are able to raise money for various civic projects. The
technologies used in creating the platform needed to enable it to be scalable and
future-proof. Since the projected user base would be high, the data flow, the
application architecture and the database design need to be efficient in processing
and storing the data.

Users will be split between benefactors, beneficiaries and admin committees.
Beneficiaries will have the ability to add (propose) campaigns and manage them once
they are approved. Benefactors will have the ability to show interest through the
system of Likes in the campaigns and pledge amounts towards the goal of that
campaign through Donations. Admin committees will have the responsibility to verify a
campaign and approve it once it meets the eligibility criteria.

Users (benefactors) will have the ability to express interest both in the campaigns that
have been approved and the campaigns that have been proposed but are not active.
If a campaign that is not considered relevant enough by a member of the admin
committee to approve it, the admin committee might decide to approve it based on the
number of Likes.

A design choice was made to split the back end and the front end in order to allow
scalability, fault tolerance and programming environment independence. The HTTP
was selected as the protocol for communication between these two microsystems.
The REST architecture enables the integration with third party systems. The JSON
format for the exchanged data allows easy consumption and integration with
JavaScript. Using the REST API in conjunction with the HTTP protocol enables the
web platform to be scalable. Specifically, the back end could be scaled to meet future

40

CM2303 - One Semester Individual Project (student number: c1332008)

needs of third party systems (such as crowd funding review websites that aggregate
data) and other activity / request generating systems (another version of the front end
architecture using different technologies or a mobile phone application).

MongoDB was selected to be used as the database system, since it allows the
storage of the object using a structure of the object close to the one described in the
code base. It can also be used in the clustering use case, meeting the requirements
for scalability and future proofing.

The database system was structured to be compliant with 3NF (the third normal form),
in order to make the retrieval and storage of data as efficient as possible and to make
sure that data integrity is preserved.

The front end was designed in order to meet the most modern design patterns, be
adaptable to mobile devices and attract potential investors to donate in the project
showcased on the web platform.

Versioning and issue tracking was used in order to handle the complexity of the
project given by the use of so many technologies that had to be integrated together.
Given the design choice of using 2 separate, independent microservices, separate
repositories were created for the front end and the back end respectively.

4. Implementation
The implementation chapter below provides a finer level of details regarding the
system architecture and design, down to the code level. Since the decision was made
to split the system into two separate microservices (decision previously justified in
Section 3.3.2), the implementation chapter was split into two main subchapters: 4.1 for
the technical specifications of the front end and 4.2 for the technical specifications of
the back end. Each of these subchapters is further split into a justification of the
technologies used, issues and difficulties encountered during the implementation
process and a description of the critical sections of each microservice.

41

CM2303 - One Semester Individual Project (student number: c1332008)

4.1. Front end implementation technical specifications
This section starts with a general overview of the client side application architecture
and the data flow in the front end. A detailed description of the components follow: the
core technologies used, the client side dependencies and the server side
dependencies. The section ends with the presentation of the optimisation techniques
applied and the issues encountered during the process of front end development and
how they were overcome.

4.1.1. A general description of the technologies used and structure of the
front end
A general overview of the Frontend architecture and the technologies used is outlined
in the figure below:

Fig. 4.1.1: A general overview of the front end architecture

The flow of data in the front end is started by the client when a request is executed to
render a specific page (e.g. the Arts category page, that is associated with the URI in

42

CM2303 - One Semester Individual Project (student number: c1332008)

user-friendly format ending in /campaigns/arts). The request is intercepted by the
NodeJS server, that forwards it to the Express Router (which is part of the Express JS
web application framework that runs on top of NodeJS).

The Express Router translates the API route into a format that can be handled by
HATEOAS (in our example,
/campaigns/search/findCampaignByCategory?query=arts) then forwards
the request to the translated route in the back end.

When the back end replies with a response in JSON format, it is intercepted by the
Express JS namespace associated with the set of views from which the request was
initiated (in our example, the Campaigns namespace). This processes the JSON
response in a format that is suitable for rendering on the front end, through stripping
the unnecessary overhead caused by the HATEOAS format and matching it to the
custom object structure defined in the template. The processed JSON object is then
passed to the renderer that renders it into the appropriate Jade template.

The Jade template is instantly rendered into HTML on the server side (by NodeJS)
and delivered back to the client in a format readable in the browser used by the end
user. The rendered template is linked to the static resources files (static images, CSS
stylesheets, custom Javascript files, external Javascript libraries) that are bundled
together from the source (src) folder into the build folder (build) through Gulp. This
has custom tasks defined that concatenate and minify all the static resources files,
compiling the Sass code into CSS at the same time. In the production environment,
this process is done only once when the application is deployed. In the development
environment, this process is done every time one of the source files changes.

4.1.1.1. NodeJS and Javascript
NodeJS and Javascript are currently two of the most popular runtimes that can be
used to create dynamic and robust web applications in conjunction with frameworks
such as HAPI or Express JS ([17] NewStack, 2016). The interesting aspect is related
to the fact that it is a relatively new concept, compared with classic frameworks written
in C#, Java, Ruby or Python. Javascript, from ECMA family of scripting languages,
was intended initially to run inside browsers (on the client side).
In the early days of web programming, running server-side Javascript was considered
a naive approach. However, it succeeded very quickly to be used in large technology
companies in production environments, producing impressive results ([18]
RisingStack, 2016).
NodeJS is not only extremely popular, but it is also supported by the largest open
source community. At this moment, there are at least 450,000 packages (libraries)
available for Node on The Node Package Manager ([19] NPM Inc., 2017).
The primarily goal of NodeJS is to empower developers to write highly scalable web
applications in a very simple way. In order to achieve that, Node is distinguished from
traditional servers (like Apache) by achieving concurrency in a reactive manner. By
that means, everything should be non blocking.

43

CM2303 - One Semester Individual Project (student number: c1332008)

The original NodeJS author, explains the difference that NodeJS brings from the
traditional threading model ([20] Ryan Dahl, 2012): the traditional web server model
involves creating new threads for each incoming request. The downside of this
approach is that after a considerably large number of concurrent connections, the
response time drops significantly. Context switching between threads are very
expensive operations, there is no surprise that tasks will be significantly slower to
completed as the number of concurrent connections increases.
Another main problem is thread blocking ([21] NodeJS Foundation, 2017). Database
queries are widely used in developing any kind of web application. When a database
query is run, in the traditional model, the thread blocks until a response is given. This
is a huge waste of resources. There are a number of multithreading paradigms in
which performance can be increased, but they are significantly difficult to work with,
and productivity drops drastically.
In a reactive approach, not only the query to the database is passed, but also a
callback function, a function that will be called automatically when the blocking
operation is completed. The internal event loop in NodeJS addresses this aspect.
The principle is simple: there is a main thread where all the operations are executed in
a non-blocking manner and a thread pool which executes the asynchronous callbacks
in an efficient manner. Falling under this category, tasks like file I/O and querying an
external service are done in a reactive manner.
Below there are two code snippets that illustrate the difference between the blocking
and non-blocking thread execution.
Traditional approach (thread blocking execution):
var result = connection.query('SELECT * FROM USERS');

console.log(query); // THREAD BLOCKS

Optimised approach (non-blocking):
var query = connection.query('SELECT * FROM USERS', function (result) {

console.log(result);

}); // EXECUTION FLOW CONTINUES
Despite the fact that this is not a new paradigm, the Javascript community is familiar
with this model, and the same model is used in most of the modern browsers.
In the current ecosystem, Javascript is the only language that has a large array of
asynchronous libraries that support operations like database queries, file I/O, event
handling ([22] Mozilla Developer Network, 2017).
In summary, the main reasons for using Javascript on top of NodeJS as the primary
development technologies for the front end are:
● Javascript has no threads, the task parallelization is done automatically by an

internal thread pool;
● It is highly scalable, supports a large number of concurrent connections;
● It is easy to get started, as making an HTTP Server requires just a few lines of

code;
● V8, the Javascript engine developed by Google which runs in Chrome has

improved drastically.

44

CM2303 - One Semester Individual Project (student number: c1332008)

4.1.1.2. Express JS

Express JS appears to be the most popular web application framework based on
NodeJS. It is very well documented, tested, and it has a large community behind it. It
is now at the 4th major iteration. The API provided by Express is very well appreciated
by the open source community. Even frameworks from other languages and
environments are using Express conventions to make their API intuitive ([23]
StrongLoop, IBM, 2017).
With Express, significantly increased productivity and code maintainability is achieved
by putting together the application microservices into a common model, followed by
passing the data in a structured way to Jade, the templating engine. Following this
approach, Express creates an abstraction layer which aggregates all the data
received from the back end microservice, processes it, and then forwards the data to
the Jade templates in a format that is easily rendered through custom defined objects
in the template.
Express handles routing in an intuitive way. The logic is separated in different files,
depending of the context needed, called namespaces. Each set of views has its own
namespaces allocated (for example, all the pages related to Campaigns have the
Campaigns namespace allocated) In the app.js file the controllers are registered
and each controller is further described in its own separate file.
In this way, a true MVC application is achieved, by managing routes with Express,
unifying the model from the micro services, and rendering the data with Jade. Express
is considered to be appropriate for the use in this application, since it brings clear
separation between Model, View and Controller, which makes the project modular and
maintainable. The developer has a radically friendlier experience, as the process of
passing data between Model-View-Controller is handled by Express.
It is worth mentioning that the same logic separation is achieved through using Jade
views. Express integrates a list of view engines by default, Jade being the most
popular one.
4.1.1.3. Transpilers
Another key aspect in improving the productivity of the front end application
development workflow, is extending the core functionality of HTML and CSS with
transpilers: Jade for HTML, and SASS for CSS.
4.1.1.3. The Jade (Pug) templating engine

Jade engine brings us the ability to extend the HTML markup with some key features
([24] The official Jade Documentation):

● variables, conditional statements, loops: In Jade, the data in JSON format sent
by the server (in our case, the Express JS server) is rendered. Jades provides
the ability to implement any procedural logic for the generated markup, just like
any other regular programming language, by using statements including: if,
else, for / while loops;

● automatic markup generation of duplicate components: in basic HTML, the
components need to be manually re-written every time they are used. With
Jade, repetitive work can be avoided through the use of mixins that can also
receive parameters. In the current application, 5 important mixins can be
distinguished: campaign, categories, pagination, section-title, and
site-navigation;

45

CM2303 - One Semester Individual Project (student number: c1332008)

● partial views, shared layouts: Code maintainability of our views is assured by
the use of the Jade Shared Layout. New views can be created by importing the
existing shared layout, and then specific content can be added for that view;

● clean Syntax based on whitespaces: The source code is significantly reduced
and the syntax is equivalent with standard indented syntax from languages like
Python;

● Integration with Express: All the variables are passed as Models to the View
from the corresponding controller. This pipeline is done automatically in
Express, following the configuration in the app.js file.

With all these features, the integration of Jade and Express opens new ways of
extending the application by reusing the existing code, and adding new content with
minimal intervention. Another key aspect is performance. All the previously mentioned
features do not cause a decrease in performance, as the Jade files are translated to
standard HTML code very efficiently, through instant server-side rendering, instantly
when the page is loaded.
4.1.1.4. The Sass transpiler

CSS3 is a powerful tool in styling web application of all categories. In the last decade,
Web Applications quickly became extremely complex. The initial design of CSS is now
considered a major drawback in developing complex web applications. “When writing
HTML you've probably noticed that it has a clear nested and visual hierarchy. CSS, on
the other hand, doesn't.” ([25] Hampton C., Natalie W., Chris E., 2017)
Nesting:
“Sass will let you nest your CSS selectors in a way that follows the same visual
hierarchy of your HTML. Be aware that overly nested rules will result in over-qualified
CSS that could prove hard to maintain and is generally considered bad practice.” ([25]
Hampton C., Natalie W., Chris E., 2017)
Variables, conditional statements and loops:
Data can be stored and replaced all over the codebase through the use of variables.
An example of using the map object for defining the colour of the different campaign
categories in XpressStarter is illustrated below:
$color-sports: #3b97d3

$color-parks: #4fdf33

$color-arts: #b42dc4

$color-buildings: #dd9334

$color-food: #2ba342

$color-infrastructure: #cd5e5e

$categoryMap: (SPORTS: $color-sports, PARKS: $color-parks, ARTS: $color-arts, BUILDINGS:
$color-buildings, FOOD: $color-food, INFRASTRUCTURE: $color-infrastructure)

.site-section--title

text-align: center

text-transform: uppercase

@each $category in $categories

 &.#{$category}

 color: map-get($categoryMap, $category)

.mdi

 @each $category in $categories

 &.#{$category}

46

CM2303 - One Semester Individual Project (student number: c1332008)

 color: map-get($categoryMap, $category)

Partials and Imports
In Sass, the style sheets can be separated in smaller chunks, and then imported into
the application wherever they are needed. The drawback of @import in CSS is that it
creates an additional HTTP request. Sass on the other hand, collects and merges the
existing code and the result is delivered through a single request.
As an example, the main page is intuitively styled by separate independent
components and the code is very self descriptive.
In summary, the reasons for Sass being a suitable option for the use in XpressStarter
are:

● SASS converts into pure CSS;
● SASS Cache keeps track of compilation status at every step, so there is no

need to recompile the whole project every single time, it only compiles the
modified section;

● SASS allows bundling all the separate files into one single file that is loaded
with a single HTTP Request.

4.1.1.5. Gulp as a build tool

As mentioned above, repetition in programming is considered a bad practice. Jade,
Sass are used in order to avoid repetitive tasks and automate unnecessary work. The
same problem applies to build tools. In order to develop and run the project of our
modern web application, a number of tasks need to be performed:

● Transpile Sass into CSS;
● Transpile Jade Views into plan HTML;
● Bundle Javascript, CSS, Images and fonts;
● Minify Javascript, and CSS files;
● Watch for code changes;
● Reload the NodeJS server when code changes are detected;
● Refresh the webpage when code changes are detected.

If a single line of code is changed, all these tasks are required in order to apply the
desired effect. This is not only time consuming in terms of resources, but it produces
difficulties for the developers. Luckily, the workflow can be optimised. The problem of
task repetition and waiting for completion can be solved through using a task runner.
For the XpressStarter platform, Gulp seems to be the best choice considering its
features and principles.
The workflow can be automated through Gulp in the following ways

● tasks are defined to run in a particular order;
● for each task, the specific files are loaded into Gulp stream in order to be

processed;
● at the end of a task the output to is sent to a destination (which could be

another task).
Before diving into specific modules used for workflow of our web application, there are
a couple of reasons that should encourage the use of Gulp as the primary option for a
contender build tool and task runner. Below there is a comparison between Gulp and
another popular build tool, Grunt:

47

CM2303 - One Semester Individual Project (student number: c1332008)

● Gulp is the most popular build tool among Javascript developers, counting so
far at least 40% of open source Javascript projects ([26] Ashley Nolan, 2015);

● Not only that is extremely popular and has a large community, but it is very well
documented, on the official website, and on a large variety of technical blogs
([27] Github, 2017. The official Gulp Documentation);

● Gulp is focusing on code over configuration, whilst Grunt is mainly focusing on
configuration over code. Instead of writing large configuration files, with Gulp is
based on Javascript code;

● Gulp has more built-in modules;
● Better logic separation than Grunt: each module is designed to do only one

task;
● Gulp is loading all the files into memory and pipes them from a task to another.

In Gulp there is no need for additional writing in the intermediate steps. So,
there is no need to create temporary files either. For this reason, Gulp is
significantly faster than Grunt, especially as the number of pipes is larger.

On top of the built-in functionalities, the following list of modules is used with their
Gulp integration in order to achieve better productivity:

● SourceMaps (described in Section 4.1.4.1);
● Nodemon (described in Section 4.1.4.2);
● BrowserSync (described in Section 4.1.4.3);
● JsHint (described in Section 4.1.4.4);
● Bower (described in Section 4.1.4.5).

Our Gulp workflow consists of two parallel branches: development and production.
For both branches there is a list of common processes that are executed from the very
beginning:

● Jade is transpiled into HTML;
● Sass is transpiled into CSS and bundled into a single file;
● all Javascript source files are concatenated into a bundle file with Gulp-Concat.

For development workflow, the following additional tasks are executed on the
development branch:

● The SourceMaps module is added in order to be able to debug easier in
browser;

● Jshint is run in order to check common mistakes (e.g. syntax errors) in the file
changed before effectively running (deploying) the entire application;

● Nodemon is launched, that watches the files and reruns the application
whenever code changes are detected;

● Browsersync to refreshes all the browser connected to the browsersync proxy
address.

On the production branch only the following tasks are performed:
● The JavaScript and CSS files are bundled together and minified;
● The images are compressed in a lossless manner in order to achieve a smaller

image size without decreasing the quality.
No debugging overlay is added, since modules like Nodemon, Jshint, Browsersync
are not relevant for the end user. In production, code changes monitoring is not
needed. Therefore, the revision on the production branch is updated with a specific
Gulp command that does not consume additional CPU and disk resources. As one of
the objectives of our platform is to provide the end user with the best possible
experience, all the Gulp tasks try to minimise the response time for our server as

48

CM2303 - One Semester Individual Project (student number: c1332008)

much as possible. Therefore, minification of source files and images is crucial to
decrease the loading time for dependencies and deliver the same outcome in terms of
functionality.
4.1.1.6. The Bootstrap framework
Bootstrap is the most popular mobile-first, responsive front end development
framework that was created by two developers at Twitter. At the current time is
counting over 850 contributors and is one of the highest rated open source project on
Github ([28] Github, 2017. The official Bootstrap repository).
Bootstrap contains a number of features that speed up the development for a
responsive website. The design principle of developing responsive websites with
Bootstrap involves splitting the webpage into a grid made up by 12 columns. ([29]
Mark Otto, 2017. The official Bootstrap Documentation)
Each component in our HTML will inherit a Bootstrap class, in order to take a specific
width in the 12 column grid. Bootstrap adjusts the sizes automatically depending of
the class that is used on different screen sizes.
Following the mobile first approach is essential for the front end design of a modern
web application. Mobile devices use was predicted to account for 75% of the Internet
usage in 2017 ([30] Search Engine Journal, 2016). The most problematic part is that
mobile phones and tablets can have very different screen ratios and screen sizes. On
desktop, the problem is easier to solve. Screen monitors ratios are standardised,
however their actual screen sizes can vary. This can be particularly problematic when
encapsulating fonts and images into the design of a website. Bootstrap is addressing
these issues through providing standard breakpoints that match most of the screen
sizes.
In order to make the markup more meaningful, the Sass format for Bootstrap can be
imported. This can facilitate the extension of the CSS rules applied on the application
components using Sass specific inheritance. This way, the long sequences of
Bootstrap CSS class names are avoided and encapsulation is achieved avoiding code
repetition and naturalising the process of styling of the application.

4.1.2. The Javascript modules pattern
The primary goal of Javascript is to run as a lightweight programming environment
inside the browsers. Code separation in Javascript was traditionally done by having a
global namespace and separating our source files. In the source files every variable
and function is being added to the global namespace. As the web application become
more complex, and server side Javascript became popular, the pollution of the global
namespace was becoming a serious problem in the Javascript ecosystem. This has
led to an increased level of difficulty in applying the traditional code reusability
techniques. Mozilla was the first organization to publicly make an initiative to solve this
issue with Common JS. Later on, NodeJS was released and it contained a module
system based on Common JS principles. Nowadays, NodeJS modules are being used
in the whole industry and therefore, Common JS became almost obsolete, as the
creator of NPM states. ([31] Schlueter, Isaac Z., 2013)
For the front end of XpressStarter, the logic was separated, keeping our namespace
clean by using the same principles that Node modules are using underneath the hood.
The front end Javascript code for our platform is divided into five main modules:
● formatters: a module for date formatting and time calculations;

49

CM2303 - One Semester Individual Project (student number: c1332008)

● helpers: Module for working with regular expressions which are used to apply
transformation in our URL for each page;

● init: entry point module for charts;
● request handlers: module for binding events for our search functionality;
● statistics: module for defining our rules for the objects rendered into D3 charts.
Below there is the code snippet from the formatters module that converts the dates
retrieved by the backend in ISO format into a friendly format:
var formatters = (function() {

 var module = {};

 module.formatDates = function() {

$('[data-type="iso-date"]').each(function() {

 if($(this).data('item') === 'campaign-date') {

 var isoDate = $(this).data('original-date');

 $(this).text(moment(isoDate).format('ddd MMM YY hh:mm'));

 }

 });

 };

 return module;

})();

This module can be called from any point in the system using the following pattern:
formatters.formatDates();

The code of the module patterns is approximately isomorphic, rendering the code
more maintainable, reusable and preponderantly following the same object oriented
structure both on the front end and on the back end. The only notable difference is
embedding our browser code in an anonymous closure, process that is also
performed internally by Node modules.

4.1.3. Critical external Javascript libraries used and their role in project
development
In order to enhance the functionality of the front end of our system in a standardised
way without ‘reinventing the wheel’, two major external libraries were used, that are
also two very well maintained npm packages by the open source community.
4.1.3.1. Moment JS
Moment JS is a Javascript library for parsing, validating, manipulating dates and times
([32] Gregor Martynus, 2017). In the context of the web application, Moment JS
providing reliable functionality needed for a crowdfunding platform. Moment JS
powers the core calculation for the time that . Secondly, Moment Js is especially
useful when internationalization becomes an issue. Moment JS has built in date
formats and conventions available all over the globe.
4.1.3.2. D3 JS
D3 JS is the most influential open source project over the last year in addressing the
problem of interactive data visualisation ([33] Github, 2017. The official D3
Documentation). D3 Js is written mostly in Javascript, but it also uses browser’s
features like Canvas component and SVG icons to increase the performance and
diminuate the resource consumption. Being extremely popular, is assures at least two
important strengths: the large documentation and the open source community. The D3

50

CM2303 - One Semester Individual Project (student number: c1332008)

API is perhaps one of the top reasons that leads D3 to its popularity. D3 API is
simple, intuitive and yet extensible. In our example, on the statistics module, our
columns are defined together with their “position values”. By choosing configuration
over code approach, a perfectly functional chart can be generated only by following a
comprehensive definition of the example JSON configurations. However, the charts
can become interactive, it’s API is open for any major code addition.

4.1.4. Node modules used and their role in the project development and
management
All the node modules described in this section: Bower, Nodemon, Browsersync,
Sourcemaps are managed by NPM and integrated together with Gulp. All their usage
is automated by Gulp and their interoperability and logic is maintained by through
Gulp Pipes.
4.1.4.1. SourceMaps
When debugging the application, the browser's built in DOM inspector to used to
check analyse the DOM hierarchy and the properties of the elements updated at
runtime. When the computed stylesheets are analysed, the most common problem
that is encountered is related to the fact that the compiled (“transpiled”) code in CSS
does not necessarily match the original Sass source files. This renders the debugging
of computed stylesheets particularly difficult. In order to prevent that, a module called
SourceMaps is used. With Sourcemaps, the computed style is checked and mapped
to the original lines of code written in Sass ([34] HTML5Rocks, 2012).
To optimise the development process, the SourceMap tool is run automatically with
Gulp every time a code change occurs. Since this process is adding a significant
processing overhead, it is only executed in the development branch (as explained in
Section 4.1.1.5), being absent in the production environment.
4.1.4.2. Nodemon
Another important module for increasing the speed of the development workflow is
Nodemon ([35] Official Nodemon website). It stands for Node Monitor and has the
goal to rerun the node server of the front end microservice every time a code change
to the source files on the server side is detected. Nodemon continuously watches for
changes in the Express application.
4.1.4.3. Browsersync

Every time a CSS change is made, the browser windows need to be refreshed in
order to preview the changes. Fortunately, there is a tool that automates this process
called BrowserSync ([36] The official Browsersync Documentation). This module
creates a proxy server on the same host where the node application runs, but on a
different port and automatically forwards the new version of the web application to all
the open browser windows when a code change is detected. It does not only allow for
a single computer, but is useful for testing the application on multiple screens or
multiple computers. It is especially useful during the development of functionality
implies checking cross-browser compatibility (e.g. sensitive CSS code). This feature is
not only useful when it comes to standalone testing, but it also facilitates the
cooperation in teams, being an important piece that insures the scalability of the
project for future developments.

51

CM2303 - One Semester Individual Project (student number: c1332008)

4.1.4.4. JsHint

Making a change in the source code requires a series of many processes that are
executed when Javascript is interpreted. Being an interpreted language, any error of
syntax will be triggered at runtime (when usually the impact of errors on functionality
can already be experienced by the end users). In order to prevent common syntax
errors, the code is firstly checked with the JsHint module.
JsHint will firstly check for syntax errors, and then run multiple checks to ensure that
the front end of the application follow a set of standard coding conventions ([37] Anton
Kovalyov, 2017). The first feature helps the developer to save a significant amount of
time through checking for possible errors before relaunching the Node application.
The second feature, coding standard checking, is particularly useful in keeping a clean
and consistent code on the entire application. This is especially useful in the
Javascript ecosystem, where there are multiple paradigms used: functional,
procedural and object-oriented. In large teams, with developers come from different
backgrounds, following a code standard is a key element for productivity and code
maintainability.
4.1.4.5. Bower

The Node Package Manager (NPM) is used in the project to manage the server side
dependencies of the front end microservice (the node modules that aid in the
development and manage the communication with the backend, described in Section
4.1.4). However, to manage the client side dependencies (described in Section 4.1.3),
another dependencies manager is used, Bower, a tool developed by Twitter ([38]
Twitter, 2017). There are various reasons that make Bower a better option for the
client side libraries that only have the role to manipulate the DOM objects rendered in
the browser to achieve certain functional requirements:
● there is a clear separation between the node modules and the bower modules;
● NPM choses stability over performance. NPM has a dependency tree, each

module having its own dependencies. If two or more modules require the same
dependence but with a different version, NPM installs both versions of that
particular dependency. Bower uses a flat dependency tree, assuring that browsers
will use the same dependency twice and avoiding the unnecessary overload of the
application;

● Bower delivers all the modules in their minified version without the need to use
another minification tool for them.

4.1.5. Optimisation techniques used in the front end
4.1.5.1. Automated minification of CSS and Javascript files at the deployment stage
Minification of Javascript and CSS is an optimisation technique that became a must in
the recent years ([39] Microsoft, 2012). Converting source files into their smaller size
equivalent (that generally accounts to 40% of the original size) brings at least five
major advantages to the web application:
● The page loads faster for the end user since less data needs to be downloaded;
● The bandwidth cost for the infrastructure is lower;
● There are fewer resources required for the server in order to deliver the content.

Therefore, fewer HTTP requests are needed to be initiated before the page can be
rendered;

● Mobile users are consuming less bandwidth, preserving more of their mobile data
allowance;

52

CM2303 - One Semester Individual Project (student number: c1332008)

● A major factor that Google Takes into account when ranking the web pages is
speed. Therefore, page loading time optimisation would bring benefits for the SEO.

Source files minification is achieved through running the following processes in
sequential order:
● Elimination of the blank characters, blank lines, tabs, and newline characters;
● Elimination unnecessary curly brackets for statements wherever is possible;
● Renaming of the the variables with letters or short combination of letters.
4.1.5.2. Automated concatenation of CSS and Javascript files
In order to minimise the response time for the pages of our web application, every
sources is bundled into four big files (). It is favorable for the browser to load all the
scripts and styles at once, since minify and compress better our sources. Also, the
fact that the resources are loaded asynchronously, the script and styles can’t apply
directly until every download is completed.
In order to achieve the smallest file sizes for the application in the production
environment, the following steps are taken:

● all the external Javascript libraries are bundled into the libraries.js file;
● the custom Javascript source files are bundled into a file called app-scripts.js;
● the CSS of the external libraries is bundled into the libraries.css file;
● the Sass source files are compiled into CSS and bundled into app-styles.css;
● all the files mentioned above are minified.

It is worth mentioning that on top of the minification task run by Gulp, lossless
compression is used with GZIP over HTTP.

4.1.5.3. Automated optimisation of images and fonts
After minifying and concatenating the Javascript and CSS sources, it remains to
implement optimisation for images and fonts. For the images, a task Gulp called
ImageMin is run, which creates new equivalent images with smaller sizes and no
quality loss. When working with fonts and icons, they are stored in vectorial format
(SVG). The vectorial format implies describing the shapes with mathematical functions
and then scaling them at the desired size. By using this approach, both the
responsiveness and the loading time issues are addressed. Icons and fonts
appropriated for the end user screen size are generated at load time and. The size of
the data transferred is also reduced compared to the traditional approach, where the
icons are sent as images.

From the programming perspective, there is the advantage of having access to the
icons and fonts in Jade and Sass. The icons in font format allows managing the icons
in the same way as the CSS properties. Each icon has a CSS class associated with it
and with Jade integration code duplication can be avoided and the process of
attaching icons to the web components is naturalised.

A meaningful example of using font icons can be observed in the process of
generating of the categories of the menu dynamically. The class name associated with
each icon is declared as a value of the ‘icon’ property of the object associated with
each category:

 - categories['sports-and-play'] = { 'cssClass': 'SPORTS', 'title' : 'Sports & Play',
'icon' : 'mdi-bike' }

53

CM2303 - One Semester Individual Project (student number: c1332008)

 - categories['parks-and-gardens'] = { 'cssClass': 'PARKS', 'title' : 'Parks &
Gardens', 'icon' : 'mdi-leaf' }
 - categories['arts-and-culture'] = { 'cssClass': 'ARTS', 'title' : 'Arts & Culture',
'icon' : 'mdi-brush' }
 - categories['buildings'] = { 'cssClass': 'BUILDINGS', 'title' : 'Buildings', 'icon' :
'mdi-home' }
 - categories['food'] = { 'cssClass': 'FOOD', 'title' : 'Food & Farming', 'icon' :
'mdi-food-apple' }
 - categories['infrastructure'] = { 'cssClass': 'INFRASTRUCTURE', 'title' :
'Insfrastructure', 'icon' : 'mdi-car' }

The classes defined in the object are subsequently used to generate the menu that
includes the icons:

for item, path in categories
 a.item(class=item.cssClass, href="/campaigns/" + path)
 span.mdi(class=item.icon)
 | !{item.title}

To summarise, using class icons presents two major advantages. Firstly, the
generation for the dynamic menu is requiring only 4 lines of code. Secondly, any
changes in the structure of the categories object will require a minimal amount of
changes. There is only one line of code required to add a new category that will be
automatically rendered.

Another important optimisation technique that has been implemented is the avoidance
of render blocking. In order to provide the best possible user experience, the actual
content of the pages need to be loaded first, while the Javascript files used for
interactive elements are loaded in the background. As the browsers parse the
rendered HTML documents from top to bottom when attempting to load the external
resources, the references to the Javascript files are declared at the bottom, just before
the end of the <body> tag. This way, the browser follows the HTML hierarchy,
loading the static markup and the stylesheets first and processes the bundled
Javascript files only after the rendering of the page is completed, preventing the user
from unnecessarily waiting for the Javascript to load and process before they begin to
see the actual content.

4.1.6. Issues and difficulties encountered during front end development
XpressStarter is an ambitious project, consisting of a platform that is expected to
handle a heavy load of concurrent users. The architectural complexity increases at the
same time with the technical complexity. There are two principal categories of
difficulties that were encountered during front end development: code difficulties and
configuration difficulties.
Problems related to code implementation occurred in the following scenarios:
Syncing the two async microservices in Express JS
Node does not encourage performing simultaneous requests that are normally
synchronous. This is the reason why it was imperative to use an external module
(Async) in order to be able to synchronise two asynchronous requests and return the
merged results. This was applied on the homepage, where both the latest added
campaigns and the campaigns with the greatest number of likes needed to be
displayed. Fetching these two sets of data involved initiating two simultaneous
synchronous requests simultaneously (in an asynchronous way).
Writing Gulp tasks

54

CM2303 - One Semester Individual Project (student number: c1332008)

Writing Gulp tasks is a tedious process, as the order of execution for each task needs
to be established before proceeding to the actual code. Redirecting the stream of
tasks with pipes (similarly to the UNIX environment) can also become problematic at
the beginning, as this is not a very intuitive process.
Making the URLs user friendly and processing the JSON response
Making URLs intuitive for the user is particularly problematic and unexpectedly
complex for a relatively simple task. The solution was to use the router provided by
Express and allocate a namespace for each view. The router translates the requests
initiated to user friendly routes into the HATEOAS specific format needed by the
backend. After the request is forwarded to the backend, the backend replies with the
associated response in JSON format. This is later processed by the Express
namespaces and rendered into the Jade templates.
Problems related to configuration occurred multiples time in separating the workflow of
the development and production instances. The design choice of using transpilers and
interpreted environments (Node and Javascript) required the configuration of
additional development tools:
Nodemon:
Since Node applications do not apply code changes automatically, an external module
was needed to watch on the source code and relaunch the application automatically.
Browsersync:
After the server applies the new changes, the browser is still unaware of them. In
order to avoid the need of refreshing the browser windows manually, browsersync
was needed to be added.
SourceMaps:
Since Sass is compiled (“transpiled”) into CSS, the original source code behind the
CSS rendered by the browser could not be easily debugged initially. The developer is
not aware of which line in the original Sass source code produced a particular
erroneous rule of CSS. To address this issue, Sourcemaps was added, a module that
allows the developer to see the equivalent line of Sass when debugging CSS in the
browser.

4.2. Back end implementation technical specification
This section provides an overview of the implementation process for the back end of
the application. A brief justification of the core technologies that have been used is
presented, followed by an overview of the main issues and difficulties encountered
during the design and development process of the back end and how they have been
overcome. This section finalises with a description of the critical sections of the back
end system.

55

CM2303 - One Semester Individual Project (student number: c1332008)

Fig. 4.2.1: An overview of the back end system architecture

The diagram above exposes the structure and the main components involved in the
back end implementation. Hibernate and HATEOAS are two of the main modules
used by the Spring framework.

The Hibernate ORM (Object-Relational Mapping) framework (described in detail in
Section 4.2.1.5) communicates with MongoDB, storing and retrieving data. It also
encapsulates a high-level API that translates all the requests into a SQL dialect set in
the application.preferences file (in our case, the MongoDB dialect).

HATEOAS (described in detail in Section 4.2.1.4) communicates with the clients
through a REST API. Since the HATEOAS module generates the controllers based on
the repositories, handlers must be implemented to apply the business logic. These
process the data, before or after persisting it (e.g.: when storing a like, a check is
made before persisting it to make sure the like does not already exist).

When retrieving data, HATEOAS goes directly to the repositories. Entities (described
in detail in Section 4.2.1.3) have annotations that describe what the constraints
associated with them are in order for data to be valid. If the data submitted is not valid,
an error message is sent back through HATEOAS to the client.

For loading of mock data and generating statistics, custom controllers are used.
Firstly, MockDataController reads the two JSON files provided
(mock_campaigns.json and mock_users.json). Secondly, the Users and
Campaigns entities generated from the json files are persisted in the database.
Thirdly, an ActivityGeneratorRunner is created for each of the users to generate

56

CM2303 - One Semester Individual Project (student number: c1332008)

activity consisting of mock donations and likes. Multiple threads are used to speed up
the process.

The StatisticsController relies on the statistics service to process data and
retrieve statistics. To improve the speed of processing, the statistics service uses
StatisticsInMemoryStorage, eliminating the need to deserialize the objects into
memory. Once the requested data is retrieved, it is firstly aggregated and sorted
based on the criteria set by the client, and secondly based on the number of objects
the client requested. Afterwards, the sorted and aggregated data limited to the number
of objects requested is sent to the client.

4.2.1. Brief justification of technologies used
For this project, the decision was made to use Java as the programming language,
together with Spring Framework. In order to persist the data in the system, MongoDB
was selected as the database system. The back end offers a REST API that supports
a CRUD system for entities. For the API , HATEOAS was used for the format of the
requests and responses. Spring framework provides a lot of boilerplate code, reducing
the time needed from the design phase to the prototype stage.

4.2.1.1. Java
Java is a programming language that has quite a heritage for enterprise web
applications ([40] TheServerSide, Kurt Marko, 2017). The language is mature, being
constantly developed since it was released in 1995 by Sun Microsystems. All the
updates of the language have been focused on retaining backwards compatibility. The
ability to upgrade the Java package on the server without having to refactor code
might not seem a major advantage, but in a real world scenario, the lack of time and
resources allocated on refactoring code to work with the latest versions is important. A
popular choice for web applications, the PHP language has many known issues when
upgrading between major versions ([41] The PHP Group, 2017).

Another reason why Java is a good choice for the application is multithreading
support. Built-in collections, classes and helper classes that aid in concurrent
programming make it a viable choice in comparison with languages such as Python or
PHP. PHP has no native support for threads, while Python has a constraint called GIL
(Global Interpreter Lock) that only allows one thread to run at a given time.

Another advantage of Java is that is cross-platform. The slogan of Sun Microsystems
is ‘Write once, run everywhere’ ([43] Boyarsky J, Selikoff S.). This is due to the fact
that Java is an interpreted language. When compiling the code, it is converted into
bytecode that is executed inside the JVM (Java Virtual Machine), allowing
standardisation between platforms. This means that the back end of the platform
could be hosted on a server that runs on any platform, since it only needs to have the
JRE (Java Runtime Environment) installed.

To summarise, Java has good concurrency support, is cross platform compatible and
a mature language with heritage in the development of enterprise web applications. All
these arguments make Java a truly viable option for the use in this project.

4.2.1.2. MongoDB
MongoDB is a NoSQL database program. It has a document-oriented model that
instead of tables and rows, stores data as documents. This allows the stored data to

57

CM2303 - One Semester Individual Project (student number: c1332008)

resemble the object and it allows handling the constraints in the code, offering more
flexibility. It is also cross-platform compatible and uses JSON both as the response
format and as a format to store the objects.

Another option for the persistence layer could have been MySQL that stores data in
tables in rows and objects usually spread across multiple tables. A query to return a
full object would have been much more complex, involving multiple joins or it would
have required joined tables that increase the number of queries needed. This is an
area in which the document-oriented model of MongoDB excels, by allowing the
retrieval of the object in a single query.

Another reason why MongoDB was used is that it is lightweight and fast compared to
MySQL. Predicting a user base of potentially hundreds of thousands of users for the
web application, a scalable setup is needed. MongoDB supports sharding natively,
meaning that it can spread data over multiple servers to increase performance. This is
called horizontal scaling. When a boost of performance is needed, more machines
could be added easily. MySQL does not handle sharding natively, making a
distributed database setup hard to achieve. The only way to boost the performance of
a MySQL server is by running it on a more performant server. This is called vertical
scaling.

Sometimes, it is necessary to store files inside a database. For example, if the need
arises where multiple back end servers are load-balanced, getting a resource like a
profile picture or a binary file can be quite expensive, needing a shared storage
between servers. While MySQL handles BLOBs, the way in which is stores them is
inefficient. MongoDB handles big chunks of data through a system called Grid File
System or GridFS for short. GridFS splits large files in chunks of 256KB and allows
storing metadata together with the file and running queries on the metadata. The
reverse transformation, from chunks into a single file is done client side.

Therefore, with MongoDB allows using both a distributed database and a distributed
file system at the same time. Different replication settings can be configured to ensure
the cluster is resilient against failures.

Distributed systems are subject to Brewer’s CAP theorem ([42] Brewer E., 2000),
which states that distributed systems have a maximum two out of the three properties,
Consistency, Availability and Partition-Tolerance. Consistency means that each read
is guaranteed to receive the latest write or an error, Availability means that a read
receives a non-error response that may or may not be the latest write. Partition
Tolerance means that the system continues to function even if a number of packets
are dropped or delayed by the network. MongoDB is a CP distributed system. This
means that a non-error answer may not always be received to a request if a
component is unavailable (does not provide permanent availability). However, the
advantages of the other two components (Consistency and Partition Tolerance) are
given by MongoDB. The drawback generated by the lack of availability can be
compensated through the use of a sharded configuration comprised of multiple
replicas, query resolvers and configuration servers. This approach ensures that if a
component fails, the service is not affected. A proof of concept of this approach
deployed at a small scale is outlined in Section 5.3.

58

CM2303 - One Semester Individual Project (student number: c1332008)

Fig . 4.2.1.2.1: The CAP properties of different distributed systems (taken from
http://wbzyl.inf.ug.edu.pl/nosql/images/cap.png)

To summarise, MongoDB was a design choice due to being a fast and lightweight
database program, with an integrated distributed file system, that stores data in a
document oriented way, allowing deserialization of data to be achieved much easier
than building objects from result sets generated by MySQL.

4.2.1.3. Spring Framework
Spring Framework is the most popular Java web application framework as of March
2017 ([44] Simon Maple, 2017).

While Java has a heritage of web applications, it is split between Java SE (Standard
Edition) that usually does not handle servlets and web services, and Java EE
(Enterprise Edition), that offer a lot of functionality like JMS (Java Messaging Service)
and JPA (Java Persistence API). Java EE would bring a lot of unnecessary complexity
to this application. Therefore, something lightweight was needed. This is where Spring
can help. It is built on top of Java SE, but provides the same functionality, while being
modular. This means that the required modules can be used without needing to import
extra functionality.

Spring Framework has a flavour called Spring Boot. It reduces the boilerplate code
needed even further and allows a very short time between design and implementation.
It also includes an embedded HTTP server, so the application can be launched by
running the jar file rather than uploading the code to an application server like Tomcat
or Glassfish. For this project, Maven is used as a dependency manager that allows
building the project by downloading dependencies from a repository.

59

http://wbzyl.inf.ug.edu.pl/nosql/images/cap.png

CM2303 - One Semester Individual Project (student number: c1332008)

A notable feature shared between Java EE and Spring is dependency injection. This
allows keeping some objects in a bean registry and inject them in different parts of the
code. This decouples code and accomplishes a IoC (Inversion of Control) design that
decouples the classes and generally renders the code more maintainable and
understandable.

To enable the persistence layer with MongoDB, the
spring-boot-starter-data-mongodb package was imported, that was
configured with the default settings for connecting to the database server, assuming it
runs on the local machine with the default port and security settings. These can be
configured in the application.preferences file. The repositories are defined by
extending an interface, CRUDRepository for basic CRUD, MongoRepository for
MongoDB extra features and PagingAndSortingRepository for pagination and
sorting of results. To add different queries, a named query can be defined or a special
syntax can be used that allows Spring to build it. For example, in the event of needing
to fetch the users filtered by their email address, a method called User
findByEmailAddress (String email) could be implemented, and as long as
the entity User has a field called emailAddress, a custom query will be created for
it.

After defining entities and a way to persist them, a logic was needed for the front end
to interact with the back end. To setup a REST API with the HATEOAS format, two
modules were needed to be added in the Maven manifest. Through Java reflection,
Spring Framework creates an endpoint for each repository handling CRUD operations
over HTTP (POST, GET, PUT, DELETE). It also allows the client to use the special
queries defined in the repository through the API. For example the method called
findByEmailAddress is exposed to the endpoint associated with the User entity.

Another important aspect to mention is that the format of the requests and responses
are serialized based on the format negociation with the client. The default format used
by Spring is JSON, but if the client agrees to use XML as the prefered format for
communication, this can be done automatically by Spring.

Once the back end was able to communicate with the front end, validating the input
from it was the next step. Spring offers standard validators associated with
annotations such as @NotNull, @Size(min=,max=), @Email, etc. The
validation system offered also throws back an error through the REST API in a
consistent manner, where it could be easily interpreted by the front end.

The lack of controllers and services for these entities introduced a new problem
related to the implementation of custom logic for adding / deleting / modifying entries.
Spring offers addresses this issue elegantly by allowing the use of handlers where
methods can be called before or after an event occurs (the @beforeCreate and
@afterCreate annotations). Spring Framework uses AOP (Aspect Oriented
Programming) to allow for more loosely-coupled code. The approach uses handlers
that intercept operations, catching events and allowing to implement generic code that
is injected in the class and runs before, during or after a method is called. The use of
event handlers in our application is sumary described in Section 3.4 and described in
detail in Sections 4.2.2.2 and 4.2.3.

60

CM2303 - One Semester Individual Project (student number: c1332008)

Another concern is security, that Spring also addresses. By including the security
module, the REST API can be protected through different techniques such as using
the BasicAuth protocol, form logins, etc. Being supported by a thriving community
Spring offers a module called Spring Social which allows users to register and log in
using social media accounts such as Facebook, Google, Twitter, etc. By setting a
property to true in the application.preferences file, as well as API credentials
for the social service used, a special controller called Connect is enabled and logging
in with Facebook becomes as simple as redirecting the user to
/connect/facebook.

4.2.1.4. HATEOAS
HATEOAS is a format for REST APIs that stands for Hypermedia As The Engine Of
Application State. It allows the client to discover possible actions through hyperlinks
and requires no prior knowledge of the structure of the API. This means that each
entity has a dynamically generated unique link that points to it. The entity response
also has all the links to the other entities that are part of it embedded in. For example,
a campaign object retrieved from the API contains a link to itself, a link to the user who
is the beneficiary and a link to the admin user that approved it (if the campaign has
been approved).

HATEOAS is rated at the maximum level of maturity for a REST API as defined by
Leonard Richardson, which is level 3 ([45] Martin Fowler, 2010). The levels start from
level 0, which is basic remote procedure invocation through HTTP where a single
endpoint and exchange messages that trigger remote procedures are present. Level 1
APIs use multiple resources such as an endpoint for getting some data that is
required, and another endpoint to interact with the desired resource. Level 2 assures
that HTTP verbs such as GET, POST and PUT are implemented as closely as
possible to their original intent (e.g. GET is a safe operation, so it must not change
any data). Level 2 also makes use of the HTTP error codes to signal different
situations. Level 3 requires no prior knowledge of the API, guiding the client to the
desired operation through hypermedia controls.

Fig. 4.2.1.4.1: The Richardson Maturity Model ([45] Martin Fowler, 2010)

Using HATEOAS, by accessing the root path (/api/v1), a list with all the repositories
can be observed, as well as an URI to /api/v1/profile.

61

CM2303 - One Semester Individual Project (student number: c1332008)

Below there is an extract of the response that can be observed by accessing the URI
at /api/v1/. All the entities present in the system (users, likes, donations,
campaigns) are present in the extract below:
{
 "_links": {
 "users": {
 "href": "http://www.xpressweb.site:8080/api/v1/users{?page,size,sort}",
 "templated": true
 },
 "likes": {
 "href": "http://www.xpressweb.site:8080/api/v1/likes{?page,size,sort,projection}",
 "templated": true
 },
 "donations": {
 "href": "http://www.xpressweb.site:8080/api/v1/donations{?page,size,sort,projection}",
 "templated": true
 },
 "campaigns": {
 "href": "http://www.xpressweb.site:8080/api/v1/campaigns{?page,size,sort}",
 "templated": true
 },
 "profile": {
 "href": "http://www.xpressweb.site:8080/api/v1/profile"
 }
 }
}

By accessing the URI at /api/v1/profile, the links describing the structure of
each entity can be seen, as well as the associated constraints.
{
 "_links": {
 "self": {
 "href": "http://www.xpressweb.site:8080/api/v1/profile"
 },
 "users": {
 "href": "http://www.xpressweb.site:8080/api/v1/profile/users"
 },
 "likes": {
 "href": "http://www.xpressweb.site:8080/api/v1/profile/likes"
 },
 "donations": {
 "href": "http://www.xpressweb.site:8080/api/v1/profile/donations"
 },
 "campaigns": {
 "href": "http://www.xpressweb.site:8080/api/v1/profile/campaigns"
 }
 }
}

By accessing the URI for any of the repositories with the /api/v1/profile/ prefix,
the structure of an entity of that repository can be explored. Below there is a snippet
describing the structure of a Donation entity:

{
 "alps": {
 "version": "1.0",
 "descriptors": [
 {
 "id": "donation-representation",
 "href": "http://www.xpressweb.site:8080/api/v1/profile/donations",
 "descriptors": [
 {
 "name": "amount",
 "type": "SEMANTIC"
 },
 {
 "name": "donatedOn",
 "type": "SEMANTIC"

62

CM2303 - One Semester Individual Project (student number: c1332008)

 },
 {
 "name": "status",
 "doc": {
 "value": "PENDING, OK, REVOKED",
 "format": "TEXT"
 },
 "type": "SEMANTIC"
 },
 {
 "name": "user",
 "type": "SAFE",

"rt":
"http://www.xpressweb.site:8080/api/v1/profile/users#user-representation"
 },
 {
 "name": "campaign",
 "type": "SAFE",

"rt":
"http://www.xpressweb.site:8080/api/v1/profile/campaigns#campaign-representation"
 }
]
 }

To summarise, HATEOAS allowed the back end REST API to be more discoverable
and self documenting.

4.2.1.5. Hibernate
Hibernate is a popular ORM (Object-Relational Mapping) framework that allows the
quick persistence and retrieval of objects from a database. In this project, it is used by
Spring Framework as the default ORM system to translate high level operations into
low level commands for the database.

Hibernate allows an abstraction layer between the high level logic and the low level
implementation by interacting with the database with methods that take and return
objects. It uses different dialects to persist objects in different database languages.
This facilitates the change of storage systems, as the code only interacts with abstract
methods. The task of converting objects to queries and back is offloaded to this
module instead of being handled by the developer. Another feature of Hibernate is
that it can create schemas based on the entities. If it is ever required for the system to
switch to MySQL, the only requirement for the developer would be to replace the
module in the Maven manifest, and it would automatically create a database and
tables. This provides a lot of mobility since the requirements might change over time.

Once the repositories are setup, the controllers can simply be injected in them and
used together as if they were concrete classes. This injection is done via the
@Autowired annotation. To store entities in the MongoDB database, the repository
offers a simple method called save(Object object). To retrieve an object by its
id a method called find(String id) is used. Deleting an object can also be done
easily through a method called delete(String id).

The triviality of retrieving an object can be observed from the code snippet pasted
below, that uses only one custom defined method:
…
@AutoWired
LikeRepository lRep;
Like check =
lRep.findByUserIdAndCampaignId(like.getUser().getId(),like.getCampaign().getId());

63

CM2303 - One Semester Individual Project (student number: c1332008)

The same is the case for the operation of persisting an object, that can be observed in
the snippet pasted below:
cRep.save(campaign);

Hibernate uses Java reflection in order to perform operations (analyse an entity and
create tables, add data to a table, etc.). Therefore, the action of persisting data is
much more abstract and leads to a more decoupled architecture. In the event of the
need to switch the database servers that back the persisting system, the process is
easy, as Hibernate supports different dialects for different programs (MySQL,
PostgreSQL, MongoDB, etc.).

The way Hibernate works is by setting annotations on the fields of an entity to signal
the type of data they store and the method by which it is stored in the database. The
annotations also mark what fields are to be indexed and which of these will be used
as an equivalent of a primary key. Joins between entities can be specified using
annotations, ensuring the database representation is accurate.

To optimise this process, it uses proxy objects to represent the data retrieved, so only
when a method on an entity is called, the actual entity is retrieved from the database.
This method is called lazy loading.

The main advantage brought to the project is that it allows to define the way in which
the entities in the application interact with the other entities without the need to define
or design the schema first. Once the entities are set up, this module can create
schemas based on the definitions and relations between them.

4.2.2. Issues and difficulties encountered during back end development
During the back end development of this application a few challenges were
encountered, including refactoring code to simplify it, using different modules more
efficiently, and addressing design flaws that were not apparent during the design
phase.

4.2.2.1. Moving from user defined controllers to HATEOAS generated controllers
Firstly, the services and controllers were written and set out for each entity, ensuring
that the API for each one was the same. At least 4 methods were needed to be
defined for the HTTP verbs to accept GET, POST, PUT, DELETE requests, as well as
special requests for retrieving paginated results. This concluded to the creation of a
CRUD interface for the clients. Since controllers should not contain any business
logic, these methods were delegated to services.

The project was getting quite complex and started to feel unmaintainable. Since
Spring offered so much from the modules that were already implemented, a promising
research into a better way to manage the data flow was conducted. The HATEOAS
module was discovered, which uses Java reflection to get all the repositories and
creates endpoints for each one. Another great feature that HATEOAS offers is that for
all the custom queries defined, it created links that enables to search through the
repository without the need to write the code for them. This unified and simplified the
design and reduced the effort needed to add new entities as the endpoints were
generated dynamically.

64

CM2303 - One Semester Individual Project (student number: c1332008)

4.2.2.2. Event handlers
After migrating to dynamically generated controllers, another issue became apparent:
the lack of a suitable place to implement the custom business logic when executing
operations such as additions and deletions. After reading the documentation, a
decision was made to implement the custom handler to intercept the requests and
execute the business logic. This has been done using Spring’s AOP (Aspect Oriented
Programming) principles.

A handler had to be defined for each repository in order to intercept certain events
before or after an operation takes place (beforeSave, beforeCreate, afterSave,
afterCreate). These allowed setting dates on entities in order for the backend to
rely on client side validation to make sure the date created was correct.

This method also allowed for the code to be packaged in a structured, easy to
interpret way in order to facilitate potential future changes to the code.

4.2.2.3. Loading mock data (the description of the crawler / loadMockData module /
activityGenerator module)
Having developed a fully functional CRUD API, a way was needed to test it with the
front end and make sure it was performing as expected. Since manually triggered
inserts and changes would not be enough, some mock data to test was needed. A list
of generic template names was created (e.g.: “Save the <<name>>”,”<<name>>
needs our help”, etc.). This way, a list of 100 campaigns with generic names was
created. Having such few campaigns, it was still not enough test data. As seen in the
initial investigation, SpaceHive was a similar application with real life data. A good way
to test the system was to fetch their data and simulate a real workload. A crawler was
written that parsed all the campaign names and descriptions from SpaceHive. The
source code of this crawler will be attached alongside with the application code.

Having real campaigns, a way to generate activity to test the statistics system was still
needed. A website called Mockaroo provided a list of 1000 people from which users
were created. Campaigns were created with the start date associated with a random
number of days ranging from 0 to 100 before the current date. The
activityGenerator class is then used. It takes each user and for each day, it
looks up what campaigns were active on that day, and generates a random number of
likes and a random number of donations with random pledged amount.

Having to repeat this operation for 100 users, for 50 days on average, for over 200
campaigns was a time consuming process. A better way of achieving this was to
initiate concurrent threads. For each user, an ActivityGenerator was created and
enqueued in an ExecutorService that ran as many threads in parallel as the processor
would allow. This reduced the execution time from approximately 30 minutes to under
10 minutes.

After a close inspection of the code it was noticed that for each thread, all the
campaigns had to be deserialized from the database into objects in memory. This
operation involved increasing the workload of the database up to the point where the
application is slowed down considerably. Since the list was only needed to be
retrieved once (at startup), the reference to that list of campaigns was passed to all
the threads and they were let to iterate and find which campaigns were active during a

65

CM2303 - One Semester Individual Project (student number: c1332008)

certain day, reducing the execution time to 1 minute. For testing purposes, this
duration was considered as being acceptable.

Since the mock data loader was not part of the API, a different path was needed,
/loadMockData being chosen. Calling this loads the data from two JSON files
(mock_campaigns.json and mock_users.json), one for users and one for
campaigns then generates the activity for all of the users.

4.2.2.4. DBrefs (linking entities)
A challenge was also represented by linking entities (e.g. linking donations to their
corresponding campaign). Given the way MongoDB works, Many-To-One
relationships were not permitted. After reading the documentation for Spring
MongoDB modules, the fact that it has an annotation called DBref was discovered,
that serializes that member object as the collection name and the id, therefore
allowing to maintain the relationships in the code rather than in the database program.

Due to the way HATEOAS works, using DBRef means that the entities are
represented by links rather than embedding the actual data which means cleaner
code on the front end.

4.2.2.5. Special fields and views for User / Campaign to make retrieval faster
Once activity was generated, another issue was noticed: getting the value for the
current pledges of a campaign. This meant that getting the campaign from the API
was needed, followed by a search for all the donations associated with that campaign
id. The same was applying for the pairs of data consisting of Campaigns and Like
count, and Users and Donation count.

Fortunately, the custom handlers could be used to specify some logic after an entity
was persisted. This involved calculating the values above each time a Donation or
Like was persisted to the database. In order to make the retrieval of objects easier,
the inline views were used.

Below there is a snippet of the a Like object in the response generated by the URI of
/api/v1/likes/search/findByCampaignId before adding the inline view:

like: {

givenOn: "2017-04-01T20:49:00",
_links: {

self: {
href:

"http://xpressweb.site:8080/api/v1/likes/58ff9c62a6842211b66c4cc0" },
like: {

href:
"http://xpressweb.site:8080/api/v1/likes/58ff9c62a6842211b66c4cc0{?projection}",

templated: true
},
user: {

href:
"http://xpressweb.site:8080/api/v1/likes/58ff9c62a6842211b66c4cc0/user"

},
campaign: {

href:
"http://xpressweb.site:8080/api/v1/likes/58ff9c62a6842211b66c4cc0/campaign"

}
}

}

66

CM2303 - One Semester Individual Project (student number: c1332008)

To speed up the data retrieval, the user metadata was embedded into the Like via an
inline view:

 like: {

givenOn: "2017-04-01T20:49:00",
user: {

firstname: "Melissa",
lastname: "Bowman",
email: "mbowmanb@google.ru",
wantsToReceiveEmail: false,
memberSince: "2017-02-02T20:49:00",
role: "BENEFACTOR",
profilePicture: null,
totalDonated: 3713

},
_links: {

self: {
href:

"http://xpressweb.site:8080/api/v1/likes/58ff9c62a6842211b66c4cc0" },
like: {

href:
"http://xpressweb.site:8080/api/v1/likes/58ff9c62a6842211b66c4cc0{?projection}",

templated: true
},
user: {

href:
"http://xpressweb.site:8080/api/v1/likes/58ff9c62a6842211b66c4cc0/user"

},
campaign: {

href:
"http://xpressweb.site:8080/api/v1/likes/58ff9c62a6842211b66c4cc0/campaign"

}
}

}

Without this modification being made in the back end, the front end would have
needed to initiate a separate request to the back end for each Like of a Campaign in
order to determine the name of the user that gave it. This would have resulted in a
significantly higher amount of requests to the back end, hindering the performance of
the web application, especially in a scenario of multiple users being online at the same
time. For example, for a campaign having 1000 likes, the front end would have
needed to make 1000 requests to retrieve the details of the associated users. On a
page with 8 campaigns displayed, the front end would have needed to make 8 x 1000
= 8000 requests for each client using the application.

Another issue that was noticed during the implementation of statistics was that
because each resource was represented by a link, another request was needed to be
initiated for each item to get the data about that entity. Spring allows setting a view for
each entity. This allowed specifying some key values along with the link to the
resource. Using this approach, when displaying statistics some information can be
included about the Campaigns involved, including the link to each campaigns that
allows taking the end user to the page containing detailed information about that
campaign.

4.2.2.6. Tuning the statistics system
An issue that was noticed with the statistics system is that it would take a lot of time to
display them, and waiting 10 seconds or more for a response is not acceptable.
Therefore, an investigation was done into the cause of the high response time. For
each request to an endpoint from the statistics category, for each of the entities,
objects are created in memory that store the data retrieved from the database. This is

67

mailto:mbowmanb@google.ru

CM2303 - One Semester Individual Project (student number: c1332008)

an expensive process, since it requires allocating memory for each entity. Using the
mockDataLoader and the activityGenerator, since there are 1000 users, each
giving 10 donations per day for 1000 days, that would equate to 1,000 x 1,000 =
1,000,000 donation objects. Each donation object is stored using the double data
type, which stores the donated amount and the date when it was donated on. Knowing
that a double data type is represented in memory using 8 bytes and assuming the
date is stored using 24 bytes, a donation object needs 8 + 24 = 32 bytes. This means
that each request to a statistics endpoint that retrieves the average donations per
user, 32 x 10^6 bytes = 32 MB are retrieved from the database and stored in memory.
After the response to the request is sent, the application needs to clean the memory.
This type of heavy workload triggers the garbage collector to run more frequently,
causing a degrade in performance.

The Spring framework offers a service similar to the cron jobs in Linux, that enables a
method to run at a set interval. By using this, an in-memory storage for statistics was
created for the data retrieved from MongoDB, which refreshes at a preset interval.
This allowed the statistics to run on objects that were already stored in memory
without the need to create them. As they were not being created, the most time
consuming piece of code handling statistics could be eliminated. The response time
dropped from a couple of seconds to a couple of milliseconds and significantly
increased the overall performance.

In the future a ”refresh now” button could be implemented (in the back office of the
admin committee) that triggers the refresh, rather than waiting for the automatic
refresh to occur.

4.2.2.7. Embedding entity links to statistics
One issue that was noticed when working on the statistics service was that it was only
setting the names of the users or campaigns that were being displayed in the graphs
and the link to the underlying entity was missing. Since HATEOAS provides an
EntityLinks Bean, that service could be injected that allows fetching the link for
each of the entities. This approach optimised the way in which the JSON response is
structured for the front end in order to make the rendering of the entities easier.

4.2.3. Critical sections
In order to understand the critical sections of the system, the data flow through the
system needs to be presented first, together with the processes that are triggered
when application is started.

4.2.3.1. Startup
During the startup of the application, an instance of Apache Tomcat is launched:

2017-04-23 10:54:22.840 INFO 9804 --- [main] s.b.c.e.t.TomcatEmbeddedServletContainer :
Tomcat initialized with port(s): 8080 (http)
2017-04-23 10:54:22.854 INFO 9804 --- [main] o.apache.catalina.core.StandardService :
Starting service Tomcat
2017-04-23 10:54:22.855 INFO 9804 --- [main] org.apache.catalina.core.StandardEngine :
Starting Servlet Engine: Apache Tomcat/8.5.11
2017-04-23 10:54:22.989 INFO 9804 --- [ost-startStop-1] o.a.c.c.C.[Tomcat].[localhost].[/]
: Initializing Spring embedded WebApplicationContext
2017-04-23 10:54:22.990 INFO 9804 --- [ost-startStop-1] o.s.web.context.ContextLoader
: Root WebApplicationContext: initialization completed in 2452 ms
2017-04-23 10:54:23.239 INFO 9804 --- [ost-startStop-1]
o.s.b.w.servlet.ServletRegistrationBean : Mapping servlet: 'dispatcherServlet' to [/]

68

CM2303 - One Semester Individual Project (student number: c1332008)

2017-04-23 10:54:23.246 INFO 9804 --- [ost-startStop-1]
o.s.b.w.servlet.FilterRegistrationBean : Mapping filter: 'characterEncodingFilter' to:
[/*]
2017-04-23 10:54:23.256 INFO 9804 --- [ost-startStop-1]
o.s.b.w.servlet.FilterRegistrationBean : Mapping filter: 'hiddenHttpMethodFilter' to: [/*]
2017-04-23 10:54:23.257 INFO 9804 --- [ost-startStop-1]
o.s.b.w.servlet.FilterRegistrationBean : Mapping filter: 'httpPutFormContentFilter' to:
[/*]
2017-04-23 10:54:23.257 INFO 9804 --- [ost-startStop-1]
o.s.b.w.servlet.FilterRegistrationBean : Mapping filter: 'requestContextFilter' to: [/*]

After starting, the instance loads the application onto the embedded Tomcat server
and loads up the filters for the URLs. The HTTP server is the most critical part of the
application, as communicating with clients is a core part of the functionality. The next
step is loading the Persistence Layer. Since Spring manages the connections to the
database system, starting and configuring the driver are done automatically. It firstly
connects to the MongoDB instance and then determines the type of setup (if it is
clustered or not). This is especially helpful when working with a cluster, as the
topology is discoverable, which means that only one server from that topology needs
to be known, as it offers details about the rest of the cluster. A proof of concept for a
cluster configuration is illustrated in Section 5.3.

2017-04-23 10:54:23.869 INFO 9804 --- [main] org.mongodb.driver.cluster :
Cluster created with settings {hosts=[localhost:27017], mode=MULTIPLE,
requiredClusterType=UNKNOWN, serverSelectionTimeout='30000 ms', maxWaitQueueSize=500}
2017-04-23 10:54:23.869 INFO 9804 --- [main] org.mongodb.driver.cluster :
Adding discovered server localhost:27017 to client view of cluster
2017-04-23 10:54:23.991 INFO 9804 --- [localhost:27017] org.mongodb.driver.connection
: Opened connection [connectionId{localValue:1, serverValue:1}] to localhost:27017
2017-04-23 10:54:23.994 INFO 9804 --- [localhost:27017] org.mongodb.driver.cluster
: Monitor thread successfully connected to server with description
ServerDescription{address=localhost:27017, type=STANDALONE, state=CONNECTED, ok=true,
version=ServerVersion{versionList=[3, 4, 1]}, minWireVersion=0, maxWireVersion=5,
maxDocumentSize=16777216, roundTripTimeNanos=966826}
2017-04-23 10:54:23.995 INFO 9804 --- [localhost:27017] org.mongodb.driver.cluster
: Discovered cluster type of STANDALONE
2017-04-23 10:54:24.407 INFO 9804 --- [main] org.mongodb.driver.connection :
Opened connection [connectionId{localValue:2, serverValue:2}] to localhost:27017

The next step in the startup process is the loading of the in-memory statistics cache.
As stated above, this involves getting all the objects from the database and storing
them into memory to be processed by statistics requests.

2017-04-23 10:54:24.623 INFO 9804 --- [main] c.x.s.StatisticsInMemoryStorage :
Warming up statistics cache
2017-04-23 10:56:44.988 INFO 9804 --- [main] c.x.s.StatisticsInMemoryStorage :
Statistics have been refreshed!

Once all the core services are loaded up, a scanning for controllers is started. The
user-defined controllers are loaded first, followed by another scan of the repository for
custom entities. Other repositories for these entities are then generated.

2017-04-23 10:56:46.228 INFO 9804 --- [main] s.w.s.m.m.a.RequestMappingHandlerMapping :
Mapped "{[/loadMockData]}" onto public void
com.xpressstarter.controller.MockDataController.loadMockData()
2017-04-23 10:56:46.233 INFO 9804 --- [main] s.w.s.m.m.a.RequestMappingHandlerMapping :
Mapped "{[/api/v1/statistics/avgdonation],methods=[GET]}" onto public
java.util.List<com.xpressstarter.statistics.Statistical>
com.xpressstarter.controller.StatisticsController.getAverageDonationPerCategory()
2017-04-23 10:56:46.234 INFO 9804 --- [main] s.w.s.m.m.a.RequestMappingHandlerMapping :
Mapped "{[/api/v1/statistics/topdonatingusers],methods=[GET]}" onto public
java.util.List<com.xpressstarter.statistics.Statistical>
com.xpressstarter.controller.StatisticsController.getTopDonatingUsers(int)

69

CM2303 - One Semester Individual Project (student number: c1332008)

2017-04-23 10:56:46.234 INFO 9804 --- [main] s.w.s.m.m.a.RequestMappingHandlerMapping :
Mapped "{[/api/v1/statistics/getnearlyfunded],methods=[GET]}" onto public
java.util.List<com.xpressstarter.statistics.Statistical>
com.xpressstarter.controller.StatisticsController.getNearlyFundedCampaigns(int) throws
java.io.IOException
2017-04-23 10:56:46.235 INFO 9804 --- [main] s.w.s.m.m.a.RequestMappingHandlerMapping :
Mapped "{[/api/v1/statistics/gettopcampaigns],methods=[GET]}" onto public
java.util.List<com.xpressstarter.statistics.Statistical>
com.xpressstarter.controller.StatisticsController.getTopCampaigns(int,int) throws
java.io.IOException
2017-04-23 10:56:46.236 INFO 9804 --- [main] s.w.s.m.m.a.RequestMappingHandlerMapping :
Mapped "{[/getBeans],methods=[GET]}" onto public java.lang.String[]
com.xpressstarter.controller.TestController.getBeans()
2017-04-23 10:56:46.237 INFO 9804 --- [main] s.w.s.m.m.a.RequestMappingHandlerMapping :
Mapped "{[/getLinks],methods=[GET]}" onto public org.springframework.hateoas.Link
com.xpressstarter.controller.TestController.getLink()
2017-04-23 10:56:46.237 INFO 9804 --- [main] s.w.s.m.m.a.RequestMappingHandlerMapping :
Mapped "{[/getFBPrincipal],methods=[GET]}" onto public byte[]
com.xpressstarter.controller.TestController.getPrincipal()
2017-04-23 10:56:46.239 INFO 9804 --- [main] s.w.s.m.m.a.RequestMappingHandlerMapping :
Mapped "{[/error]}" onto public
org.springframework.http.ResponseEntity<java.util.Map<java.lang.String, java.lang.Object>>
org.springframework.boot.autoconfigure.web.BasicErrorController.error(javax.servlet.http.Htt
pServletRequest)
2017-04-23 10:56:46.240 INFO 9804 --- [main] s.w.s.m.m.a.RequestMappingHandlerMapping :
Mapped "{[/error],produces=[text/html]}" onto public
org.springframework.web.servlet.ModelAndView
org.springframework.boot.autoconfigure.web.BasicErrorController.errorHtml(javax.servlet.http
.HttpServletRequest,javax.servlet.http.HttpServletResponse)

Now, for Spring Social and Spring HATEOAS it reads the configuration files, and
generates the endpoints:

2017-04-23 10:56:46.258 INFO 9804 --- [main] s.w.s.m.m.a.RequestMappingHandlerMapping :
Mapped "{[/connect/{providerId}],methods=[POST]}" onto public
org.springframework.web.servlet.view.RedirectView
org.springframework.social.connect.web.ConnectController.connect(java.lang.String,org.spring
framework.web.context.request.NativeWebRequest)
2017-04-23 10:56:46.259 INFO 9804 --- [main] s.w.s.m.m.a.RequestMappingHandlerMapping :
Mapped "{[/connect/{providerId}],methods=[GET],params=[oauth_token]}" onto public
org.springframework.web.servlet.view.RedirectView
org.springframework.social.connect.web.ConnectController.oauth1Callback(java.lang.String,org
.springframework.web.context.request.NativeWebRequest)
2017-04-23 10:56:46.259 INFO 9804 --- [main] s.w.s.m.m.a.RequestMappingHandlerMapping :
Mapped "{[/connect/{providerId}],methods=[GET]}" onto public java.lang.String
org.springframework.social.connect.web.ConnectController.connectionStatus(java.lang.String,o
rg.springframework.web.context.request.NativeWebRequest,org.springframework.ui.Model)
2017-04-23 10:56:46.260 INFO 9804 --- [main] s.w.s.m.m.a.RequestMappingHandlerMapping :
Mapped "{[/connect],methods=[GET]}" onto public java.lang.String
org.springframework.social.connect.web.ConnectController.connectionStatus(org.springframewor
k.web.context.request.NativeWebRequest,org.springframework.ui.Model)
2017-04-23 10:56:46.260 INFO 9804 --- [main] s.w.s.m.m.a.RequestMappingHandlerMapping :
Mapped "{[/connect/{providerId}],methods=[GET],params=[code]}" onto public
org.springframework.web.servlet.view.RedirectView
org.springframework.social.connect.web.ConnectController.oauth2Callback(java.lang.String,org
.springframework.web.context.request.NativeWebRequest)

2017-04-23 10:56:46.830 INFO 9804 --- [main] o.s.d.r.w.RepositoryRestHandlerMapping :
Mapped "{[/api/v1/{repository}/{id}],methods=[GET],produces=[application/hal+json ||
application/json || application/*+json;charset=UTF-8]}" onto public
org.springframework.http.ResponseEntity<org.springframework.hateoas.Resource<?>>
org.springframework.data.rest.webmvc.RepositoryEntityController.getItemResource(org.springfr
amework.data.rest.webmvc.RootResourceInformation,java.io.Serializable,org.springframework.da
ta.rest.webmvc.PersistentEntityResourceAssembler,org.springframework.http.HttpHeaders)
throws org.springframework.web.HttpRequestMethodNotSupportedException
2017-04-23 10:56:46.831 INFO 9804 --- [main] o.s.d.r.w.RepositoryRestHandlerMapping :
Mapped "{[/api/v1/{repository}/{id}],methods=[PUT],produces=[application/hal+json ||
application/json || application/*+json;charset=UTF-8]}" onto public
org.springframework.http.ResponseEntity<? extends
org.springframework.hateoas.ResourceSupport>

70

CM2303 - One Semester Individual Project (student number: c1332008)

org.springframework.data.rest.webmvc.RepositoryEntityController.putItemResource(org.springfr
amework.data.rest.webmvc.RootResourceInformation,org.springframework.data.rest.webmvc.Persis
tentEntityResource,java.io.Serializable,org.springframework.data.rest.webmvc.PersistentEntit
yResourceAssembler,org.springframework.data.rest.webmvc.support.ETag,java.lang.String)
throws org.springframework.web.HttpRequestMethodNotSupportedException
2017-04-23 10:56:46.832 INFO 9804 --- [main] o.s.d.r.w.RepositoryRestHandlerMapping :
Mapped "{[/api/v1/{repository}/{id}],methods=[HEAD],produces=[application/hal+json ||
application/json || application/*+json;charset=UTF-8]}" onto public
org.springframework.http.ResponseEntity<?>
org.springframework.data.rest.webmvc.RepositoryEntityController.headForItemResource(org.spri
ngframework.data.rest.webmvc.RootResourceInformation,java.io.Serializable,org.springframewor
k.data.rest.webmvc.PersistentEntityResourceAssembler) throws
org.springframework.web.HttpRequestMethodNotSupportedException
2017-04-23 10:56:46.834 INFO 9804 --- [main] o.s.d.r.w.RepositoryRestHandlerMapping :
Mapped "{[/api/v1/{repository}],methods=[POST],produces=[application/hal+json ||
application/json || application/*+json;charset=UTF-8]}" onto public
org.springframework.http.ResponseEntity<org.springframework.hateoas.ResourceSupport>
org.springframework.data.rest.webmvc.RepositoryEntityController.postCollectionResource(org.s
pringframework.data.rest.webmvc.RootResourceInformation,org.springframework.data.rest.webmvc
.PersistentEntityResource,org.springframework.data.rest.webmvc.PersistentEntityResourceAssem
bler,java.lang.String) throws org.springframework.web.HttpRequestMethodNotSupportedException
2017-04-23 10:56:46.835 INFO 9804 --- [main] o.s.d.r.w.RepositoryRestHandlerMapping :
Mapped
"{[/api/v1/{repository}],methods=[GET],produces=[application/x-spring-data-compact+json ||
text/uri-list]}" onto public org.springframework.hateoas.Resources<?>
org.springframework.data.rest.webmvc.RepositoryEntityController.getCollectionResourceCompact
(org.springframework.data.rest.webmvc.RootResourceInformation,org.springframework.data.rest.
webmvc.support.DefaultedPageable,org.springframework.data.domain.Sort,org.springframework.da
ta.rest.webmvc.PersistentEntityResourceAssembler) throws
org.springframework.data.rest.webmvc.ResourceNotFoundException,org.springframework.web.HttpR
equestMethodNotSupportedException
2017-04-23 10:56:46.843 INFO 9804 --- [main] o.s.d.r.w.RepositoryRestHandlerMapping :
Mapped "{[/api/v1/{repository}],methods=[OPTIONS],produces=[application/hal+json ||
application/json || application/*+json;charset=UTF-8]}" onto public
org.springframework.http.ResponseEntity<?>
org.springframework.data.rest.webmvc.RepositoryEntityController.optionsForCollectionResource
(org.springframework.data.rest.webmvc.RootResourceInformation)

While these components are not user defined and come bundled with Spring, they are
still crucial to the application. After all the steps illustrated above are completed, the
application is loaded and can start to receive requests.

4.2.3.2. Data Flow

71

CM2303 - One Semester Individual Project (student number: c1332008)

Fig. 4.2.3.2.1: Data flow in the back end of the application

Once a request is made, the associated controller is called. If the request is a POST
or a PUT, the entity is deserialized and sent to the persistence layer to be stored in
the database. Here is where the validator intercepts the requests and checks if all the
member variables of the entity follow the constraints that are defined. An example of
this can be observed in the Donation entity class, where beside the Hibernate
annotations for persistence, validator annotations can be found, such as NotNull or
Min. If one of these constraints is violated, an error message is sent back and the
entity is not persisted.

In the example below, a constraint is defined for every field that states that it cannot
be null (except for the donatedOn field which is set via the handler) and that the
donation amount must always be positive. This is applied to all the actions that create
or change an entity:

public class Donation {

@Id
private String id;
@Indexed
@DBRef
@NotNull
private User user;
@NotNull
@Min(value=0L)
private Double amount;
private LocalDateTime donatedOn;
@Indexed
@DBRef
@NotNull
private Campaign campaign;
@NotNull
private DonationStatus status;
…

}

72

CM2303 - One Semester Individual Project (student number: c1332008)

A snippet of the donation handler is copied below:

@HandleBeforeCreate
public void validateAndCreate(Donation donation){

donation.setDonatedOn(LocalDateTime.now());
}

The HandleBeforeCreate annotation dispatches to the handler the instruction to
run the code illustrated below before the entity is persisted:

@HandleAfterCreate
@HandleAfterSave
public void recalculatePledges(Donation donation){

Campaign campaign = donation.getCampaign();
List<Donation> campaignDonations = dRep.findByCampaignId(campaign.getId());
campaign.setCurrent(campaignDonations.stream().mapToDouble(x ->x.getAmount()).sum());
List<Donation> userDonations = dRep.findByUserId(donation.getUser().getId());
User user=donation.getUser();
user.setTotalDonated(userDonations.stream().mapToDouble(x -> x.getAmount()).sum());

uRep.save(user);
cRep.save(campaign);

}

In this scenario, the code illustrated above recalculates the values for the amounts
pledged per User and per Campaign after a Donation is added or modified.

4.2.4. Conclusions
Using the tools and technologies described above, a completely functional prototype
for a crowdfunding web platform was developed. The back end allows for CRUD
operations validating data and running statistics. Since MongoDB can be used as a
distributed database, it allows the platform to be scalable. Standardising the REST
API through HATEOAS allows integration with third party services and makes the front
end development platform-independent. Using Hibernate as an ORM framework
makes the platform future-proof. Because the persistence layer is developed with
high-level APIs, the database system could be replaced at any time with any other
newer, “state of the art”, more performant solution such as CassandraDB that offers
an API closer to MySQL and is also used in high activity environments. The Spring
Framework is supported and continuously developed by an active open-source
community which further enables the platform to be future-proof through the ability to
add all the newly implemented features that will always be backwards compatible with
our implementation.

5. Testing and evaluation
This chapter describes how the system was evaluated in order to check if it met the
key objectives outlined in Section 1.2 and the functional requirements set in Section
3.1 . The usability and attractiveness of the front end microservice was evaluated
using SUS (Simple User Survey), the back end performance and scalability was
evaluated using JMeter and the functionality (correctness of the CRUD operations as
well as data manipulation) of the back end was evaluated using unit tests. After the
front end usability and attractiveness evaluation, this chapter also contains brief
statistics of the demographics of the respondents to the survey.

73

CM2303 - One Semester Individual Project (student number: c1332008)

5.1. Front end usability and attractiveness evaluation
The usability and attractiveness of the designed Graphical User Interface and front
end implementation was tested through distributing the Questionnaire in Appendix 2 to
potential users.

The survey respondents were selected to confirm with the chosen positioning of the
platform among socially responsible conscious millennials with a potential interest in
startups and business ideas. For this reason, the survey was distributed via social
media channels where the primarily users are university students. The sampling
method used was convenience sampling. The following channels were used to reach
respondents:
● social media groups for students;
● web development forums.

74

CM2303 - One Semester Individual Project (student number: c1332008)

5.1.1. Part 1: User Interface
Question 1:

Fig. 5.1.1.1: Question 1 of front end evaluation questionnaire

The analysis indicates that an overall low usage score for crowdfunding platforms. A
substantial number of respondents (67%) admitted they never used a crowdfunding
platform. When considering the demographic data (illustrated in Fig. 5.1.1.1), it looks
like the young population that is only now starting to discover crowdfunding platforms
for civic projects.

Question 2:

Fig. 5.1.1.2: Question 2 of front end evaluation questionnaire

This question aimed to identify simple associations made with the proposed design of
the platform. Around half of the respondents consider the page has a relaxing effect
(45.6%), it is informative (43.7%), and engaging (30.1%). On the other hand, less than
a fifth of the respondents think the page is logical (17.5%) and less than a quarter said
the page is overall unclear (23.3%) – which may indicate the structure of the page and
the content could be modified to be more accessible and comprehensible. This, in
turn, may make the page look more trustworthy, as for now only 25.2% of respondents
consider it as such.

75

CM2303 - One Semester Individual Project (student number: c1332008)

Question 3:

Fig. 5.1.1.3: Question 3 of front end evaluation questionnaire

In the figure illustrated above, 1 corresponds to the response Very Unclear and 5
corresponds to the response Very Clear.

Having a clear and slick user experience is a crucial requirement for the civic
crowdfunding platform I proposed. My analysis of the current scene of crowdfunding
websites indicates that the way projects are presented is not always clear and
consistent. Thus, crucial information on business ideas can be lost in the process. My
main target is to ensure a smooth experience for the end user and provide an
objective overview of the advertised projects.

Question 4:

Fig. 5.1.1.4: Question 1 of front end evaluation questionnaire

This question looks at the potential for user conversion. A high percentage of
respondents, over 75%, admitted to potentially wanting to invest in a business idea
presented on the platform. The question emphasized the end user experience of the
platform as a factor for deciding to invest, rather than the content in the business idea
presented. This question does not look at the reasons why the respondents opted to
potentially invest. However, the results from the other questions indicate that

76

CM2303 - One Semester Individual Project (student number: c1332008)

respondents’ willingness to invest may be related to the clear interface and a relaxed
tone of the overall platform. Also, the fact that each project idea has a clear overview
of its stage, as well as its community support is likely to make sceptical users to
convert.

Question 5: Please let us know any other thoughts regarding the User Interface

In this question, respondents submitted their own comments about any other areas of
the overall interface and their user experience.

Positive feedback included:

● "more info" - It looks like some respondents would like more detailed
information on each project. However, the data provided for each business idea
was limited in the questionnaire. Once the actual platform is in place, users will
be able to see more information as well as other type of particular insights that
will only be generated once a higher number of business ideas are submitted;

● "clear interface/ very clear, condensed information"- a significant number of
respondents agreed on the clear layout of the interface and the availability of
information. This confirms and informs my design going forward in the project.

Other responses included:

● "Works fine on mobile too";
● "on point, intuitive";
● "Good and structured way to give a brief overview of the projects and their

status.";
● "Catchy images";
● "I find this interface very user friendly and clear";
● "They seem engaging, especially since they have children in the main picture,

they raise your interest more.".

Negative feedback included:

● "The key information does not seem to have been highlighted.";
● "Would look better in a simplified version".

Overall, this question confirmed the interface design choices and allowed gathering
constructive feedback from the survey respondents. The general iterations based on
this question will be minor, and later the changes made as a result of this will be
specified.

77

CM2303 - One Semester Individual Project (student number: c1332008)

5.1.2. Part 2: Trust
Question 6:

Fig. 5.1.2.1: Question 5 of front end evaluation questionnaire

The first question from the trust section looked at user trust levels towards
crowdfunding platforms in general (not specific to our platform), by enquiring about
their belief in the platform’s ability to only showcase legit business ideas. The survey
respondents were almost equally split for this question, equalling to 48.5% not trusting
these platforms to showcase good ideas, and 51.5% putting their trust into them. This
divide may be a beneficial factor for the current platform - XPressStarter, as a
significant proportion of the less trusting audience may switch to a platform that
ensures they are only shown the best and brightest civic project ideas.

78

CM2303 - One Semester Individual Project (student number: c1332008)

Question 7:

Fig. 5.1.2.2: Question 6 of front end evaluation questionnaire

The options presented in this question are categories already planned to be part of the
civic platform. Particularly, arts and culture seems to be the most popular theme
among the respondents, with 57.4% of respondents interested in this, closely followed
by Food & Farm with another 43.6%. These results will help in prioritising the
exposure of various categories of projects within the website, potentially using the
main page to highlight the projects from the Arts area better.
Then, parks & gardens, sports & play, and infrastructure seem to attract almost an
equal amount of respondents’ interest – 35.6%, 34.7%, and respectively 32.7% of
people showing interest in these areas. The least amount of interest was shown in the
buildings theme, with less than a fifth of respondents choosing this option.

Question 8:

Fig. 5.1.2.3: Question 6 of front end evaluation questionnaire

In the figure illustrated above, 1 corresponds to the response Very Unlikely and 5
corresponds to the response Very Likely.

The results collected for question 8 indicate a higher likelihood of recommending the
platform to friends and family if a network administrator was in place. While this

79

CM2303 - One Semester Individual Project (student number: c1332008)

question is not necessarily linked to the direct user design, it nonetheless confirms the
assumption that the admin offering would encourage more users to join the platform
as either founders or benefactors.

5.2. Questionnaire demographics
A series of demographic questions were included in the Questionnaire in Appendix 2
to portray the degree to which the platform is matching the expectations of the target
audience. This section presents a selection of those, prioritizing on those that meet
the segmentation process for the platform best.

As XpressStarter is primarily targeting young individuals with a desire to do something
for overall social benefit, it was unsurprising to see the majority of respondents are in
the 18-24 age category. This is correlated with the results from the next question,
which looks at occupations.

Fig. 5.2.1: The age of the questionnaire audience

A large proportion of respondents were students, since the survey was distributed on
student forums and social media. While students are less likely to have the disposable
income to invest in civic business ideas, they could be potential founders. Targeting
this audience via the survey indicates that there is a pool of talent that is eager to
engage in a new type of civic platform.

Fig. 5.2.2: The work status of the questionnaire audience

80

CM2303 - One Semester Individual Project (student number: c1332008)

5.3. Back end performance and scalability testing

5.3.1. Introduction
The purpose of this test was to see if the application is horizontally scalable. Using the
OpenStack account provided, a basic environment of 2 application servers was set
up: xpstarter and xpstarter2 and a load balancer, named load-balancer.
The summary setup in OpenStack of these instances is shown in the image below.

Fig. 5.3.1.1: The OpenStack instances of the application

To demonstrate that the application is horizontally scalable, two instances were
needed to show that they can receive simultaneous requests, ensuring high
availability (reliability) and increased performance, as the processing power doubles
through allowing the instances to split the requests among them using the load
balancer.

The load balancer runs an nginx server that balances the load between the application
servers, proxying the requests to them at the same time. Both instances needed to
connect to the same database in order to ensure that they retrieve the same data.

5.3.2. Database
If more than one back end server is used, a way to make sure both servers can
access the same data was needed. MongoDB offers the possibility of using a
distributed database system and configure it as a cluster, this ensuring the horizontal
scaling of the application.

The full reasoning behind using MongoDB as the back end database is outlined in
4.2.1.2: Brief justification of technologies used - MongoDB .

MongoDB clusters require a Configuration Server, a Query Resolver and at least one
Shard Server. The Configuration Server stores metadata related to the data stored in
the database. As the information is stored into clusters, this is needed map the data to
its location in the cluster. The Query Resolver uses the Configuration Server to act as
an interface between clients and the cluster, routing queries to where the data is
located. The data sent through the Query Resolver is stored on the Shard Server,
which splits the actual data. The following diagram illustrates the components that are
part of the MongoDB cluster:

81

CM2303 - One Semester Individual Project (student number: c1332008)

Fig. 5.3.2.1: The components of a MongoDB cluster

A MongoDB cluster configuration can handle multiple instances of its components
(Configuration Servers, Query Resolvers and Shard Servers) to make the application
scalable, ensuring that there is no single point of failure. Metadata is replicated
between Configuration Servers, allowing different Query Resolvers to use different
Configuration Servers, increasing performance and reliability. This way, if a
Configuration Server becomes unavailable, another one can be used.

In the particular scenario of our test, each application server contains a Sharding
server, and the Query Resolver and Configuration Server were setup on the
load-balancer machine. The cluster creation process followed the guidelines of the
official MongoDB documentation ([46] MongoDB Documentation). The output of the
sh.status() command, that outputs the status of the MongoDB sharded cluster is
shown below:

--- Sharding Status ---
 sharding version: {

"_id" : 1,
"minCompatibleVersion" : 5,
"currentVersion" : 6,
"clusterId" : ObjectId("58eff1c78b1c93f722f19a29")

}
 shards:

{ "_id" : "shard0000", "host" : "192.168.0.9:27017" }
{ "_id" : "shard0001", "host" : "192.168.0.5:27017" }

 active mongoses:
"3.2.11" : 1

 balancer:
Currently enabled: yes
Currently running: no
Failed balancer rounds in last 5 attempts: 0
Migration Results for the last 24 hours:

No recent migrations
 databases:

{ "_id" : "XpressStarter", "primary" : "shard0000", "partitioned" : false }

In the configuration files of the back end application the Load Balancer was used as
the MongoDB server, which meant that both servers were using the Query Resolver.

82

CM2303 - One Semester Individual Project (student number: c1332008)

As it can seen in the output of the command sh.status(), the database is stored
on shard0000, which is one of the servers. Partitioning the database over the servers
falls outside the scope of this test, so it was considered safe to be left in its current
state. In a production environment the database would be partitioned and with a
replica set. Fortunately, Hibernate knows how to work with MongoDB Cluster, so no
code had to be written for it to work. As it can be observed from the output below
generated through running our back end application jar file on xpstarter1, the
sharded cluster was successfully discovered by Java and used by our back end
application, pointing to the IP address of the instance where the query resolver
resides (192.168.0.10):

2017-04-25 20:51:15.671 INFO 6505 --- [192.168.0.10:27017] org.mongodb.driver.cluster
:Monitor thread successfully connected to server with description
ServerDescription{address=192.168.0.10:27017, type=SHARD_ROUTER, state=CONNECT
ED, ok=true, version=ServerVersion{versionList=[3, 2, 11]}, minWireVersion=0,
maxWireVersion=4, maxDocumentSize=16777216, roundTripTimeNanos=365896}

2017-04-25 20:51:15.672 INFO 6505 --- [192.168.0.10:27017] org.mongodb.driver.cluster
:Discovered cluster type of SHARDED

As outlined in the highlighted sections of the output above, our application has
detected that it has connected to a Query Resolver and discovered that the cluster is
of type SHARDED and not a single instance as an ordinary MongoDB connection.

5.3.3. HTTP Requests
Having a shared database, a way to split requests between the web servers was
needed. Using nginx,a weighted load-balancer was configured between the two
application servers. Since xpstarter2 was holding the database, it would receive all
the reads, so I needed to make sure it receives half as much requests as the other
server, to evenly spread the load. Nginx had to listen on both ports (80 - the port on
which the front end runs and 8080 - the port on which the back end runs). A list of
upstream servers was configured using weights in order to distribute the requests in a
way such that for each 3 requests the xpstarter1 receives 2 requests and
xpstarter2 receives 1 request.

The front end load-balancer configuration is outlined below:

debian@load-balancer:~$ cat /etc/nginx/conf.d/load-balancer.conf
Define which servers to include in the load balancing scheme.
It's best to use the servers' private IPs for better performance and security.
You can find the private IPs at your UpCloud Control Panel Network section.

upstream front end {
 server 192.168.0.5 weight=2;
 server 192.168.0.9 weight=1;
}

This server accepts all traffic to port 80 and passes it to the upstream.
Notice that the upstream name and the proxy_pass need to match.

server {
 listen 80;
 location / {
 proxy_pass http://front end;
 }
}

The back end load-balancer configuration is outlined below:

83

CM2303 - One Semester Individual Project (student number: c1332008)

debian@load-balancer:~$ cat /etc/nginx/conf.d/back end-load-balancer.conf
Define which servers to include in the load balancing scheme.
It's best to use the servers' private IPs for better performance and security.
You can find the private IPs at your UpCloud Control Panel Network section.

upstream back end {
 server 192.168.0.5:8080 weight=2;
 server 192.168.0.9:8080 weight=1;
}

This server accepts all traffic to port 80 and passes it to the upstream.
Notice that the upstream name and the proxy_pass need to match.

server {
 listen 8080;
 location / {
 proxy_pass http://back end;
 }
}

The configuration files pasted above show the weights of the upstream servers used
in the load balancing process (weight 2 for xpstarter1 and weight 1 for
xpstarter2). In both configuration files, nginx is configured to listen on ports 80 and
8080 respectively and then proxy the requests to one of the 2 upstream servers
(xpstarter1 or xpstarter2).

5.3.4. Testing the load balancer
First thing after configuring the load balancer, some testing is required. For a simple
test I just issued a wget command to make sure I was reaching the front end:

debian@load-balancer:~$ wget http://localhost
--2017-04-25 20:42:04-- http://localhost/
Resolving localhost (localhost)... 127.0.0.1
Connecting to localhost (localhost)|127.0.0.1|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 15530 (15K) [text/html]
Saving to: 'index.html.1'
index.html.1 100%[===================>] 15.17K --.-KB/s in 0s
2017-04-25 20:42:05 (443 MB/s) - 'index.html.1' saved [15530/15530]

The output of the wget command shown above demonstrates that it was executed
successfully and proves that the index.html file from the front end can be retrieved
from the load balancer, therefore proving that the requests are reaching one of the
application servers.

Everything is setup. Now a JMeter test plan was set up to make sure that the server
can handle a theoretical load. I used the htop utility to see the resource usage on the
three servers. It has a nice and colorful interface as opposed to the top utility.

5.3.5. Testing using JMeter
JMeter uses test plans that it applies for a number of threads (users).

84

CM2303 - One Semester Individual Project (student number: c1332008)

Fig. 5.3.5.1: JMeter timer configuration

The test plan is comprised of different actions and actions used in the test. For this
test the back end was queried for campaigns. I started with 10,100,1000 users with a
second between requests (this time is applied per thread).

5.3.5.1. Writing a test plan
In order to test how the back end would respond to a certain number of users, a test
plan was created that initiates a request that displays the first 5 campaigns. This link
would be accessed by a user who accesses the web platform and checks the list of
active campaigns. A thread group has been created. The default options (headers) for
an HTTP request were configured and the HTTP request was added in the thread
group.

Below there is a screenshot that shows how the HTTP requests for the thread were
configured:

Fig. 5.3.5.1.1: HTTP Requests configuration

85

CM2303 - One Semester Individual Project (student number: c1332008)

Below there is a screenshot that shows the thread group, with the setup of threads
that loop forever until the test is stopped.

Fig. 5.3.5.1.2: JMeter thread group

In order to see the results of our tests, 3 different views were added that can help us
to see the results in different formats. After conducting the tests, the summary report
view was considered the most appropriate, as it shows an average response time per
request, as well as a minimum and a maximum response time.

The screenshot below shows the table header for the summary report.

Fig. 5.3.5.1.3: JMeter summary report

86

CM2303 - One Semester Individual Project (student number: c1332008)

5.3.5.2. Emulation of 10 Users (44 ms average)

Fig. 5.3.5.2: HTOP utility output - JMeter Emulation of 10 users and HTOP statistics

As it can be observed from the figures above, for the activity generated by 10 users,
both on server 1 (SRV1) and server 2 (SRV2), the load per cores varies between 30%
and 40%. The servers are not overloaded with this amount of users. The fact that on

87

CM2303 - One Semester Individual Project (student number: c1332008)

the load balancer the load is 70% can be observed (please note that the load balancer
has only one core). From the summary report generated by JMeter, after 14770
requests, the average response time is 44 milliseconds.

5.3.5.3. Emulation of 100 Users (144ms average)

Fig. 5.3.5.3: HTOP utility output - JMeter Emulation of 100 users and HTOP statistics

88

CM2303 - One Semester Individual Project (student number: c1332008)

As it can be observed from the figures above, for the activity generated by 100 users,
both on server 1 (SRV1) and server 2 (SRV2), the load per cores varies between 75%
and 80%. Such a load is ideal, as a typical load of a server handling traffic efficiently
needs to average at 70% ([47] Ben Yemini, 2014), as the resources of a server need
to be used efficiently, while leaving room for surges in activity. The fact that on the
load balancer the load is 85% can be observed. From the summary report generated
by JMeter, after 26087 requests, the average response time is 144 milliseconds,
which still acceptable, as any response time under 200 milliseconds, which is
considered to be “instant” and does not impact the user experience in any way ([48]
Klaus Enzenhofer, 2016).

5.3.5.4. Emulation of 1000 Users (795 ms)

89

CM2303 - One Semester Individual Project (student number: c1332008)

Fig. 5.3.5.4: HTOP utility output - JMeter Emulation of 1000 users and HTOP statistics

As it can be observed from the figures above, for the activity generated by 1000 users,
both on server 1 (SRV1) and server 2 (SRV2), the load per cores varies between 43%
and 52%. The servers are not overloaded with this amount of users. The fact that the
load balancer experiences surges between 70% and 100% can be observed.

The undervolted processor in my laptop was having a hard time running 1000 threads,
so in the upper right corner of the JMeter screen it can be seen that only 450 threads
are running. The rest of the threads crashed. This is the reason why an error
percentage is present, but as the test ran, the percent was going down. It can be seen
that for 517 Threads, accessing the link continuously, an average time of 795 ms was
achieved.

Since the load on the servers is below what it was with 100 users, the data generated
should not be considered an accurate representation of an activity of 1000
simultaneous users.

5.3.6. Conclusions
The reason of this test was to prove that the application is horizontally scalable. For
the database scalability was achieved through clustering and sharding. MongoDB was
easy to configure as a cluster and the application recognized the cluster setup. The
back end and front end services were installed on two servers to simulate a
multi-server setup. Using nginx as a loadbalancer split the requests between the
servers. Running test with JMeter showed that the load on the server hosting nginx
and MongoDB query resolver was manageable as it handled 10/100/1000 requests
per second without needing more than 1 core. For safety reasons in a production
environment, a more capable machine should be used. Once the system was load
balanced some tests with jMeter needed to be run to see what would the load be like
on the servers. The test was in three stages, 10 Users, 100 Users, 1000 Users. The
test plan did not include a delay, so it was simulating users constantly refreshing the
page. The 10 users test averaged around 44ms response time, which is quite good.
As it can be observed from the screen shots, the load was around 30%. With 100
users, the average time rose to around 144ms and the load on the servers reached
around 70%. Simulating 1000 users was hard to do because jMeter would not keep
the 1000 threads alive. The average request took around 700ms with some errors.
Looking at the servers, the load is around 40% on each server. Since the load was
higher with 100 users, an issue might be jMeter itself not being able to keep threads
alive or the lack of processing power of my laptop. It can be seen in the snapshots
that the thread count was 571/1000. This result may be ignored as it does not offer
any insight. An average response time of 144ms for 100 users on a two server setup
with 2 cores and 4GB RAM (which is acceptable). Since the simulated users were
constantly refreshing, this load could be produced by more than 100 users, but it is
advisable to take into account the worst case scenario, which was demonstrated with

90

CM2303 - One Semester Individual Project (student number: c1332008)

jMeter. To sum up, the application and services are horizontally scalable and the
current setup of a single core load balancer and 2 dual-core application servers is fit
for 100 very active users.

5.4. Back end jUnit testing
jUnit is a testing framework for Java. It allows testing of various portions of code to
make sure that any changes made do not affect other features. The same with
performance there are micro-tests, where testing can be done at method level,
meso-tests where an entire class is tested or macro tests, where the whole system is
tested. It relies on a known output for the given input, and if the known output does not
match the output retrieved, the test fails and warns the user.

This framework is usually used with Mockito and Hamcrest, two other frameworks that
extend the functionality of jUnit. Mockito allows the mocking of different components
while Hamcrest offers some syntactical sugar to make the code more readable.

Tests need to be carefully crafted to ensure that the code coverage is high, reducing
the possibility that crucial parts are compromised by a change without the user
noticing. They are also the basis for a software development technique called
test-driven development. It implies that test are written before the code. This offers
some insight into design flaws even before beginning writing code. If code is hard to
test, it is usually badly written, as writing tests beforehand forces the developer to split
the software into testable modules, leading to loosely-coupled code.

Using jUnit with Spring framework offers some challenges, as the application needs to
be fully loaded to test all the features. Spring’s dependency and context injection only
works when the whole application is loaded. Fortunately the annotation
@SpringBootTest tells jUnit how to run the tests for this scenario.

To properly test the features of the back end, making HTTP calls was necessary and
using MockMvc, allowed executing requests to the REST controllers.

On the scale of Richardson Maturity Level, the REST API uses HTTP verbs to specify
various actions (GET for retrieval, POST for addition, PUT for modification, DELETE
for deletion). In a less mature REST API level, these actions would have different
URIs (/api/v1/campaigns/<id>/delete). Since the main role of the back end is
to provide the data through the REST API, in the following sections, all the tests
involve requests to the REST API routes to test all the components.

5.4.1. Testing if the REST Controllers were generated

A basic test that was needed was to check if the REST controllers are created and
accessible. This is helpful as it can signal errors in configuration.

@Test
public void verifyIfAllRestControllersAreGenerated() throws Exception {
mockMvc.perform(MockMvcRequestBuilders.get("/api/v1/campaigns").accept(MediaType.APPLICATION
_JSON))

.andExpect(status().is(200));

mockMvc.perform(MockMvcRequestBuilders.get("/api/v1/likes").accept(MediaType.APPLICATION_JSO
N))

.andExpect(status().is(200));

91

CM2303 - One Semester Individual Project (student number: c1332008)

mockMvc.perform(MockMvcRequestBuilders.get("/api/v1/donations").accept(MediaType.APPLICATION
_JSON))

.andExpect(status().is(200));

mockMvc.perform(MockMvcRequestBuilders.get("/api/v1/users").accept(MediaType.APPLICATION_JSO
N))

.andExpect(status().is(200));
}

Testing this involved doing a GET request to each of the endpoints URIs (Campaigns,
Likes, Donations, Users) and checking that the return code is 200 OK . MockMVC
performs a request built by the MockMvcRequestBuilder class and then expects a
200 return code.

5.4.2. Repository testing
Another test that had to be done, was persisting an entity via the REST API. In order
to test the addition of a user to the database through a POST request, a mock user
was created, then serialized as JSON using the Spring provided ObjectMapper .
MockMvc performs a POST request and sends the serialized object. The type of data
must be specified in the contentType header value. A HTTP return code of 201
CREATED is expected and if not received the test fails. The user object is then
searched in the repository and deleted after it is found.

@Test
public void verifyUserPost() throws Exception {

User testUser = new User("Test","User","testUserPost@test.com"
,"ksdhfisd",false,LocalDateTime.now(),Role.ADMIN);

mockMvc.perform(MockMvcRequestBuilders.post("/api/v1/users").contentType(MediaType.AP
PLICATION_JSON)

 .content(om.writeValueAsString(testUser))
.accept(MediaType.APPLICATION_JSON))
.andExpect(status().is(201));

uRep.delete(uRep.findByEmail("testUserPost@test.com"));
}

The same test had to be performed for campaigns as well. A challenge was providing
the links to the user objects, as HATEOAS requires them instead of serialized
versions. First the user object is created and saved in the repository, then a campaign
object is created. Before posting, the serialized object in JSON format is stripped of
two fields, specifically the beneficiary and approvedBy fields and then added again
with links to the user resource. To get the link, the EntityLinks class provided by
Spring is used. It generates the dynamical link to the resource. A POST request the
same as before is executed with the campaign object as payload. Again a 201
CREATED return code is expected. After that a cleanup of the object used is performed.

@Test

public void verifyCampaignPost() throws Exception {
User testUser = new

User("Test","User","testCampaignPost@test.com","ksdhfisd",false,LocalDateTime.now(),Role.ADM
IN);

testUser=uRep.save(testUser);
Campaign testCampaign = new Campaign("TestCampaign", "This is a test

Campaign", testUser, 250.0, 125.5,
 LocalDateTime.now(), LocalDateTime.now().plusDays(50), CampaignCategory.ARTS,
true, testUser);

testUser=uRep.findByEmail("test@test.com");
testCampaign.setLikeCount(0);
testCampaign.setIsApproved(true);
String content=om.writeValueAsString(testCampaign);
JSONObject jobj = new JSONObject(content);

92

mailto:testUserPost@test.com

CM2303 - One Semester Individual Project (student number: c1332008)

jobj.remove("beneficiary");
jobj.remove("approvedBy");
jobj.put("beneficiary",

links.linkToSingleResource(User.class,testUser.getId()).getHref());
jobj.put("approvedBy",

links.linkToSingleResource(User.class,testUser.getId()).getHref());
content=jobj.toString();

mockMvc.perform(MockMvcRequestBuilders.post("/api/v1/campaigns").contentType(MediaType.APPLI
CATION_JSON)

 .content(content)
.accept(MediaType.APPLICATION_JSON))
.andExpect(status().is(201));

cRep.delete(cRep.findByName("TestCampaign"));
uRep.delete(testUser);

}

The same was done for Donations. This time a mock user and a mock campaign were
used, and after the test removed.

@Test
public void verifyDonationPost() throws Exception {

User testUser = new User("Test","User","testDonationPost@test.com"
,"ksdhfisd",false,LocalDateTime.now(),Role.ADMIN);

testUser=uRep.save(testUser);
Campaign testCampaign = new Campaign("TestCampaignD", "This is a test

Campaign", testUser, 250.0, 125.5,
 LocalDateTime.now(), LocalDateTime.now().plusDays(50),
CampaignCategory.ARTS, true, testUser);

testCampaign.setApprovedBy(testUser);
testCampaign.setBeneficiary(testUser);
testCampaign.setLikeCount(0);
testCampaign.setIsApproved(true);
testCampaign=cRep.save(testCampaign);
Donation testDonation=new Donation();
testDonation.setAmount(100.0);
testDonation.setStatusOK();
String content=om.writeValueAsString(testDonation);
JSONObject jobj = new JSONObject(content);
jobj.remove("user");
jobj.remove("campaign");
jobj.put("user",

links.linkToSingleResource(User.class,testUser.getId()).getHref());
jobj.put("campaign",

links.linkToSingleResource(Campaign.class,testCampaign.getId()).getHref());
content=jobj.toString();

mockMvc.perform(MockMvcRequestBuilders.post("/api/v1/donations").contentType(MediaType.APPLI
CATION_JSON)

 .content(content)
.accept(MediaType.APPLICATION_JSON))
.andExpect(status().is(201));

cRep.delete(cRep.findByName("TestCampaignD"));
uRep.delete(testUser);
dRep.delete(dRep.findByUserIdAndCampaignId(testUser.getId(),

testCampaign.getId()));
}

5.4.3. Handlers testing
Another crucial part of the back end is the handlers. The user handler makes sure that
when a user is created the memberSince date is set to the current time on the server
and not the value that was submitted. This is to make sure that data is consistent, and
not dependent on client side code. A mock user is created with a member since date
that is not today. The test then executes a POST command on the API and then
retrieves the user Object. Then it compares the date set in the user object with the
actual value set in the object. If they are the same the test fails.

93

mailto:testDonationPost@test.com

CM2303 - One Semester Individual Project (student number: c1332008)

Another important functionality of the handler is making sure duplicate users are not
allowed. It is based on the email address as the unique element. Adding the same
user again should result in a 400 response code. If the code is anything other than
400, the test fails.

@Test
public void testUserHandler() throws Exception{

LocalDateTime sentTime=LocalDateTime.of(2017,03,21,21,18);
User testUser=new

User("Test","User","testUserHandler@test.com","ksdhfisd",false,LocalDateTime.of(2017,03,21,2
1,18),Role.ADMIN);

String content=om.writeValueAsString(testUser);

mockMvc.perform(MockMvcRequestBuilders.post("/api/v1/users").contentType(MediaType.APPLICATI
ON_JSON)

 .content(content)
.accept(MediaType.APPLICATION_JSON))
.andExpect(status().is(201));

//test if memberSince is changed to the current date rather than the one provided
assertNotEquals(uRep.findByEmail("testUserHandler@test.com").getMemberSince(),sentTime);

//test if an error is returned when adding the same user
mockMvc.perform(MockMvcRequestBuilders.post("/api/v1/users").contentType(MediaType.APPLICATI
ON_JSON)

 .content(content)
.accept(MediaType.APPLICATION_JSON))
.andExpect(status().is(400));

uRep.delete(uRep.findByEmail("testUserHandler@test.com"));

5.5. Conclusions on testing and evaluation
The front end evaluation conducted through the method of Simple Usability Scale
proves the fact that, subject to minor adjustments that could easily be performed, the
front end of the prototype meets the non-functional requirement of being attractive for
potential investors and presents the key information about the campaigns posted in a
clear and concise way. The target audience of the distributed questionnaire was
mainly represented by the young generation eager to engage in this new type of civic
platform.

The web platform was tested using JMeter, two application servers and a load
balancer. All these instances were configured using the OpenStack account provided
by Cardiff University. The application was tested with 10, 100 and 1000 users. The
medium response time was the metric used to measure performance.

To share data between the two application servers, MongoDB was configured in
cluster mode that shards the data between two servers. This configuration requires a
dedicated Configuration Server and Query Resolver. Using this mode, both servers
were able to read and write the same data, at the same time from the cluster.

Due to the limited resources of the OpenStack, only 5 cores and 10 GB of RAM were
allowed to be used. Therefore, the Query Resolver and the Configuration Server
needed to be run on the same machine as the Load Balancer. Having only 5 cores,
they were distributed in a way such that each application server made use of 2 cores
and the load balancer was allocated only one core.

For the Load Balancer, the decision was made to use nginx as a proxy server to
forward requests to both application servers. The tests revealed that even when using

94

mailto:testUserHandler@test.com

CM2303 - One Semester Individual Project (student number: c1332008)

a single core, the load balancer performed at an acceptable level. During the test that
involved 100 users, the load was at 80%.

An important part of testing is integrated unit tests, for which jUnit was used. This
allows testing the new code before deploying it into production (to the servers),
ensuring that the existing functionality is not broken by the newly added code
(features).

These tests demonstrated the fact that the web platform is horizontally scalable and
performed as expected even under heavy load.

6. Future work
The needs of end users are constantly changing and the systems already available on
the market are continuously expanding through introducing new features and applying
optimisation techniques to enhance the user experience. In order to enhance the
project functionality and make it more suitable for the use in a real world scenario, a
set improvements that match the optional specifications outlined in Section 3.1.2 could
be made. The application needs to constantly evolve and meet user expectations, as
well as integrated with popular external, third party services.

6.1. Additional features

6.1.1. Authentication and authorisation system
Since the implemented system is currently in a prototype stage of the development,
the primary focus of the development was on the project viability and scalability. In
order to showcase the core features (related to the mandatory functional requirements
outlined in Section 3.1.1) and demonstrate the proof of concept of the application, a
mock authentication system was used.

The tools that were chosen as well as the design choices made allow the
implementation of an authentication and authorisation system at a later stage of the
development process.

This system will rely on tokens that are generated by the back end every time a user
authenticates successfully. The token will be included in every request sent from the
front end on behalf of the user. This would allow the back end to identify which user
executes the request, by storing a map of the tokens and the username in the
database that updates every time a new token for that user is generated. This token
will also allow to authorise different permissions depending on the user type (for
example, only admin committees will be allowed to approve campaigns).

6.1.2. Campaign recommendations
To help campaigns to reach their target audience, a data mining algorithm could be
implemented to recommend similar campaigns to users who have already liked /
pledged amounts to other campaigns. A system of tags / keywords could be
implemented to assign different tags to campaigns in order to better categorise them
based on their content and desired purpose. A clustering algorithm could be used to

95

CM2303 - One Semester Individual Project (student number: c1332008)

group similar campaigns based on keywords / tags. When a user accesses a
campaigns, a recommended list would appear as well. Currently, that list is
constructed solely based on campaigns in the same category sorted by the number of
Likes.

Another recommendation that could be made to the users visualising a campaign
would be represented by other campaigns campaigns that were pledged the users
who donated on that particular campaign. This could be accomplished by the use of
A-Priori algorithm to mine association rules between campaigns.

6.1.3. Campaign advanced search
A more refined search could be implemented, allowing users to select different filters
based on more fields of the Campaign object. Examples of search could include:
campaigns initiated by a particular beneficiary, campaigns initiated in a particular
location, campaigns that have a particular percentage of money pledged towards the
reach of the target amount. This would allow users to be more specific about the
campaigns they chose. The filters applied could also be saved in the local storage of
the client browers for guest users and in session storage for logged in users, in order
to persist their search preferences.

6.1.4. Campaign sponsorship
A system could be implemented to allow beneficiaries to make certain campaigns
more visible through the payment of a fee that allows the campaign to be more visible
in a “featured” section of the web platform. This “featured” status would be limited to a
preset time period (such as 7 or 30 days) and could be applied on the newly added
campaigns, as well as the campaigns that are already active and have already
reached their target amount partially. This would allow beneficiaries to increase their
chances of reaching the target goal within the planned timeframe.

6.1.5. Heatmaps for user behavior analysis
The activity of the visitors of the XpressStarter platform (especially mouse movements
and how much time they spend looking at a particular area of the Graphcal User
Interface) could be analysed through the use of Heatmaps. In the background,
Javascript is used to associate the coordinates of the cursor on the screen and
timestamps to generate graphical traces of mouse movements.

This way, the administrators of the platforms would be able to see which are the areas
of the Graphical User Interface that represent a particular interest for the visitors of the
website and make some approximate deductions both of the areas that represent a
particular interest for the users and the areas that they tend to avoid, so that they
could be improved visually. The use of this approach could significantly improve the
conversion rate of visitors into investors.

There are both commercial and open source solutions available on the market that
allow the integration of Heatmaps as a tool for user behaviour analysis. One of the
most popular dedicated usability analysis tools is UsabilityTools
(http://www.usabilitytools.com). HotJar (http://www.hotjar.com) is another more
comprehensive, all-in-one solution, that offers advanced tools such as real-time

96

http://www.hotjar.com/
http://usabilitytools.com/

CM2303 - One Semester Individual Project (student number: c1332008)

recordings of user sessions and conversion funnels. A well known open-source
alternative that would offer basic functionality is Heatmaps.js
(https://www.patrick-wied.at/static/heatmapjs). I have personally contributed to a
similar project (called iTrackr) as part of a Hackathon in 2013:
https://github.com/sabinmarcu/iTrackr.

6.2. Integration with external services
On top of the additional implemented features, there could still be added a couple of
integrations that may gather additional potential users for XpressStarter project.
When it comes to crowdfunding, the first problem that the initiators of the projects are
likely to face is publicity. The key for successfully completing a crowdfunding
campaign is by having a large exposure on the Internet. The backers represent only a
small subset of campaign’s visitors. Getting a large number of visitors is the number
one priority.
The fastest and the most efficient way to promote a campaign is through social media.
If a campaign presents original and interesting ideas, the shares count can bring a
significant amount of new visitors. To encourage the visitors to share their favourite
campaigns, the inclusion of social features like authentication and sharing using social
media accounts is planned.
In order to reduce the burden of creating a new user account on the XpressStarter
web platform, authentication with social media accounts using the oAuth protocol
provided by Facebook / Twitter / Google’s API could be implemented. This would
require the user to grant permisssions to XpressStarter to access their public profile
information and their email address, gathering the key information necessary to create
a profile on our web platform.
One step further, in order to encourage backers to contribute instantly, a payment
method widely available in the world needed to be integrated. Paypal is the most
popular and accessible service, which supports a wide variety of credit cards.

6.3. Future-proof scalability with REDIS
In the future, when the number of concurrent visitors for XpressStarter will increase,
an additional in memory caching layer can be added. REDIS and Memcached are the
main in-memory databases that perform predictable caching in a distributed cluster.
The memory caching server is strictly related to the database queries performed on
the back end.

REDIS is a database stored in the memory of a system that offers very high speeds of
reading and writing. It differentiates from the conventional databases through being a
non-relational database, just like MongoDB and Memcached, falling into the category
of NoSQL databases. It offers 5 main different types of data structures to manipulate
data: Strings, Hashes, Lists, Sets, Sorted sets, in which data from MongoDB could be
translated and stored with the purpose of caching metadata used for statistics. This
would represent a significant improvement to the performance of the application, since
deserializing objects from the database into memory is an expensive operation and
should only be done when the whole object is necessary. Caching metadata or
responses in REDIS would decrease load times and reduce load on the application
servers.

97

https://github.com/sabinmarcu/iTrackr
https://www.patrick-wied.at/static/heatmapjs/

CM2303 - One Semester Individual Project (student number: c1332008)

REDIS for high traffic web services is not running as a standalone instance, but the
different instances of REDIS are connected in a cluster. When planning a caching
service, the goal is to develop a distributed caching service with REDIS.

REDIS uses two models to achieve distributed environments, Sentinel and Cluster.
Sentinel needs at least three machines and another at least two for the actual data.
The sentinels monitor the REDIS servers and by using a quorum-based system they
vote if they can see the active master. If the number of sentinels that do not see the
server as active are above the quorum threshold, the standby server is promoted to
active.

Cluster mode also works in groups of 3, splitting the keyspace between the active
servers, also known as masters. An equal number of servers is then assigned as read
slaves, that are read-only and replicate one of the masters. They are known as
replicas. Should one of the masters go down, the replica is promoted to master and
the cluster is functional. When the server comes back up, it is demoted to a slave, and
replicates the new master. The cluster setup also works with a quorum. Our hosting /
infrastructure provider cannot be expected to have 100% uptime for all the machines.
In case of a 0.01% chance of failure, the setup must be able to redirect our traffic to
the rest of our up and running servers and then replicate the data when the servers
become available again.

Through storing the metadata of the entities in REDIS, the data retrieval would be
much faster than it would be if it were to be retrieved from MongoDB. Another way
REDIS could be integrated with our microservice would be through storing data that
does not change frequently (such as the highest rated campaigns), eliminating the
need of extracting that information from MongoDB.

6.4. Conclusions of future work
All the future work elements listed above are achievable through the design choices of
the application that allows meeting user expectations and providing a reliable service
through constant development and feature implementation.

7. Conclusions
In conclusion, a fully working prototype of a modern crowdfunding platform was
developed. The implementation is clean, the code is human readable, reusable and
new functionalities can be added over time with minimal code additions.
Every process that could be automatized was automated and the tools used do not
add a complexity overhead for the production, so that end users and developers do
not suffer any drawback.
As open source libraries have been used that benefit from a high level of popularity,
that are actively maintained by the community, the fact that the application is both
modern and future-proof is assured. Moreover, through the design choices made the
platform is also horizontally scalable, which means that in the event that more
processing power is needed, more machines can be added to support the additional
load and increase performance.

98

CM2303 - One Semester Individual Project (student number: c1332008)

Several challenges were faced when designing the database, in order to ensure that
is stores the data in the most efficient and safe manner. This resulted in a 3NF
compliant data structure.
The application is composed by two separate microservices, which will allow us to
scale the platform more predictably, allowing both the back end and the front end to
be platform independent, as a benefit for the developer. To allow the code to be
loosely-coupled, a general standardised API was used. The most popular way to
achieve this is by using a REST API over HTTP. In order to facilitate the integration
with third party services, HATEOAS was used, that offers a standardised way to
present the API routes, that are self-documented.
The front end is built using modern technologies, ensuring a modern look and
responsive feel by being designed in a mobile-first manner. The front end resources
were optimised by bundling and minimising all our source code and even fonts and
images, so no matter what device the end user owns, the website is fully functional in
all circumstances. The development workflow is straightforward to follow, Gulp and its
integrated modules allow any change in code to take effect automatically. On the
production, the new changes can be deployed with a single command in Terminal.
For the back end implementation, the Spring framework was selected due. It is highly
popular because of its modularity, allowing new features to be added simply by adding
modules and configuring them. Using a framework enabled the code to be more
readable, as it makes it easier for the developer to follow certain coding conventions.
Using the HATEOAS module allowed us to have generated endpoints for the entities.
Testing was done to prove that the application was scalable and to validate my design
choices. The tests were done using JMeter emulating parallel requests to a “high
availability” configuration of the application that was set up together with a load
balancer on the OpenStack account provided by Cardiff University. Unit tests were
setup to ensure that all the new features developed during the implementation
process were not affecting the functionality of the features that were already
implemented.
All of the requirements listed in the mandatory specification in Section 3.1.1 have
already been implemented and the requirements listed in the optional specification in
Section 3.1.2 are currently under ongoing development. The priorities are represented
by the integration with social platforms such as Facebook and Google. The
development process for this features has already started and the concept is outlined
in Section 3.2.2.
Since efficiency and performance represent concerns of utmost importance for us,
new technologies are being researched to improve the performance of the scalability
of our application beyond what has already been achieved. Technologies like REDIS
could improve our caching mechanism and user experience through minimising load
times.
Another important concern is represented by user experience and providing users with
the ability to express themselves. A system of Likes has already been implemented.
To help the users to interact with the platform in a more active way, a system that
allows the user to comment on campaigns is being researched. It is believed so far
that the Disqus API would represent the best option, since it also offers integration
with the most popular social platforms natively.
Through the design choices made, the prototype is efficient in handling user requests
and storing user data. Adding new features is facilitated through the modular structure

99

CM2303 - One Semester Individual Project (student number: c1332008)

of the application. The front end usability and attractiveness evaluation outlined in
Section 5.1 proves the fact that the Graphical User Interface is modern, responsive
and cross-platform compatible, attractive enough to attract potential investors and
emanates a feeling of trustworthiness.
When the project initially started, my experience in the process of designing and
developing an application was narrowly focused on implementing features and
gathering requirements from the clients. In earlier, smaller projects that I have been
involved in, I tended to neglect important steps in the software development lifecycle
such as application design and thoroughly testing. During the development of this
platform, I encountered challenges that are briefly outlined in Section 3.1, and detailed
in sections 4.1.4 and 4.2.2 that I overcame through a comprehensive process of
research and testing.
In my opinion, all the key objectives highlighted in Section 1.2 have been met. Being
scalable and modern through the design choices made, the project has the potential
to fulfill all the optional specifications highlighted in Section 3.1.2 and perform in a real
life scenario. Bespoke features beyond the optional specifications that the client might
wish to be implemented or pilot them in the future could be easily added at a later
stage on top of the existing architecture.
As a developer, this project continues to represent an enriching experience, as it has
given me insight into all the stages of the software development lifecycle, as well as
time management, as I had to carefully prioritise all the requirements and make
design decisions quickly and carefully at the same time in order to deliver a quality
prototype in time.

8. Reflection on Learning
In reflection to the project, I consider that I have successfully achieved the core
objectives that I have established at the start and also commenced the
implementation of optional specifications. However, there are certain areas in which I
could have performed better. Although the suitability of the design choices made for
the project usability, performance and scalability were confirmed by the testing and
evaluation performed in Section 5, a more thorough research could have been done,
as well as a SWOT analysis with the alternatives.

8.1. Complexity estimation
Given my limited experience with Java and the fact that Java SE is not geared
towards web development, I expected the back end implementation to be more
tedious that it actually proved to be. The choice of the Spring Framework helped me
through the generation of boilerplate code and facilitated feature implementation
through modules. For example, in the Campaign object, when serializing the data to
JSON, adding a percentage of pledged amount vs. total amount required without
storing the data in memory was achieved through
@JSONProperty(“Percentage”).

When the HATEOAS module was applied, it generated dynamic controllers based on
repositories. I initially thought that adding custom business logic when data is created
or modified (by a client initiating a POST or PUT request) would be simple, but it later
proved to be more difficult, as it needed custom handlers built for each entity, as well
as carefully crafted data flow.

100

CM2303 - One Semester Individual Project (student number: c1332008)

Once the back end had been developed up to a state where it could start to be
integrated with the front end, I initially thought that the complexity of the remaining
tasks, given my extensive experience on front end implementation was going to be
trivial. However, I realised the fact that the structure of some JSON objects returned
by the back end in the default format of HATEOAS was not optimal for rendering on
the front end. Therefore, I needed to integrate the Express JS library that could
pre-process the JSON data returned by the back end and also translate the API
routes being called in a more user-friendly format.

8.2. Continuous integration vs. sequential development of the
microservices
The process of developing the back end before the front end has lead to some
technical challenges that became evident only after the start of the front end
development. The issue described in Section 4.2.2.5 is a typical example of an
integration problem that could have been prevented. Developing the 2 microservices
at the same time could have offered a better insight into the requirements (both in
terms of functionality and API design) and performance of the application.

8.3. Time and effort allocation
While I generally felt comfortable with the technical elements of the project, I also
needed to spend a significant period of time doing research that justified my design
and technology choices. This has occupied a large portion of my available time.
Reflecting back on this, I believe I could have better focused my research on the
specific areas that concerned the scope of my prototype and leave the research into
the later functionalities for later stages.

8.4. The consideration of commercial platforms
After having used a series of popular open-source platforms for the development of
my project, I now consider that I could have also done more research into the
commercial platforms available on the market that could have offered features,
libraries or modules beneficial for my project that the open source platforms do not
have built in. Due to the financial constraints given by the need of purchasing a
license for some of them, such as Oracle or JBoss Enterprise (a commercial
application server alternative to the open-source Tomcat), the decision was made to
use open source software for implementation, eliminating the need for additional
costs.

8.5. Requirements prioritisation and problem-solving
Linking with the points discussed in Section 1.8. Key Challenges, being able to
prioritise the main requirements needing to be implemented was a main challenge for
me. I needed to firstly evaluate the criteria without which the platform could not
function in the desired state. Similarly, I gained important problem-solving skills by
responding to any issues coming up in the development of the platform and the
expansion of the agreed requirements.

101

CM2303 - One Semester Individual Project (student number: c1332008)

8.6. Full software development lifecycle exposure
Having a background as a professional web developer, stepping into areas of the
design stage of the software development lifecycle has been a truly beneficial learning
experience for me. Only having been involved in the implementation stage until
recently, this project gave me the opportunity to go through the entire software
development lifecycle, following a Waterfall methodology with certain Agile insertions.
Therefore, I went through all stages of requirements gathering, design,
implementation and testing. I have also gained an understanding of the need to create
a scalable product from the start, and the discipline required in selecting the
appropriate technologies that will support this aim later on.

8.7. Enhancing my skills and employability
Being exposed to technologies covering the full stack of software development (both
back end and front end), as well as managing the project myself, increases my
prowess as a developer and enables me to pursue a career as a full stack developer
and later as a lead developer and / or project or product manager.

My project management skills have also been enhanced through the extensive use of
tools such as Git and Github, as described in Section 3.5. However, I realised the fact
that the feedback process could have been enhanced by offering the client access to
the Github issue tracker. This would have enabled him to provide me with real time
feedback regarding issues / errors discovered, feature requests and enhancements
that could be applied to the system.

8.8. Reflection conclusions
Reflecting on all the previously mentioned concerns, I believe that the reflection
process has helped me become a more reflective practitioner in future projects, both
in my academic and in my professional life that will enhance the quality of my
workmanship.

102

CM2303 - One Semester Individual Project (student number: c1332008)

9. Appendices

Appendix 1: Full back end UML entities diagram

Fig. 9.1: Full back end UML entities diagram - Part 1

103

CM2303 - One Semester Individual Project (student number: c1332008)

Fig. 9.1: Full back end UML entities diagram - Part 2

104

CM2303 - One Semester Individual Project (student number: c1332008)

Appendix 2: Questionnaire for the evaluation the front end
interface design, attractiveness, trust and demographics of the
target audience
The following questionnaire was presented to potential users (both beneficiaries and
benefactors) for the evaluation of the front end interface design, attractiveness, trust
and demographics of the target audience. This was split into 3 parts: Design, Trust
and Demographics. The instructions given to the users are highlighted in Italics and
the answer options are highlighted in bold and separated by hyphen (–). The Analysis
justification was not provided to the users in order not to overload them or bias the
responses.

1. Have you ever used a crowdfunding platform such as Kickstarters?

Yes – No

The following questions will walk you through a platform aimed at promoting civic
projects and matching creators with potential donors. The data collected in this
questionnaire will only be used in the evaluation of the front end for my final year
project, for academic purposes, and will not be shared with any other third parties. As
you go through the questions, please think of how usable and easy to navigate this
site is for you.

Part 1. Design

2. Looking at the home page shown here (also at the following address:
http://www.xpressweb.site/ , which of the words below come to mind? (More than one
option can be selected)

Relaxed – Trustworthy – Unclear – Informative – Crowded – Logical – Engaging

Analysis justification: This question will be used for sentiment analysis, looking at the
associations made by potential users on the platform. I aim to present the results as a
diagram of overall user perception

105

http://www.xpressweb.site/

CM2303 - One Semester Individual Project (student number: c1332008)

3. By looking at the example civic projects below, how clear is it to you at what stage
each project is in terms of funding, time remaining until cut-off and target amount?

Clear – Relatively clear – Relatively unclear – Unclear

Analysis justification: This question will provide insight on the effectiveness of the
structure proposed. An overall “Clear” score for this question is aimed, otherwise this
may indicate an ineffective layout.

4. As someone willing to invest in a business idea, would the view of an interface such
as the one shown below encourage you to invest?

Yes – No – Maybe

Analysis justification: This question will give me insight into the correlation between
website layout and actual user engagement. A high score on this will justify further

106

CM2303 - One Semester Individual Project (student number: c1332008)

developments and going beyond the Proof of Concept stage

Part 2. Trust

5. Do you trust online crowdfunding platform to only feature promising business ideas
of a high standard?

Yes – No

Analysis justification: This question is building on my project positioning, filling the gap
of trustworthy crowdfunding websites that only advertise legit business ideas. I aim to
use the data collected for this question in my product positioning later on and flag the
importance of coming up with a website that is valuing high quality content.

6. Which of the civic project areas below are you likely to be interested in
investing/submitting project ideas?

Sports & Play – Parks & Gardens – Arts & Culture – Buildings – Food &
Farming – Infrastructure

Analysis justification: This question has all the current proposed project categories as
answer options. The data behind this will inform perhaps a later focus of the website
on a specific category, as well as giving me a better indication of the categories that
are likely to attract more business ideas/more funding.

7. If a crowdfunding platform would have administrators in place to filter the robust
business ideas from the ones that do not have a clear direction, as well as checking
that the founder has met their obligations towards donors after the business idea has
been fully funded, how likely are you to recommend this platform to friends?

Extremely likely – Relatively likely – Relatively unlikely – Extremely unlikely

107

CM2303 - One Semester Individual Project (student number: c1332008)

Appendix 3: Regulatory compliance of crowdfunding platforms in
the UK
XpressStarter is a crowdfunding platform (later referred to as CFP) which falls under
the category of donation-based crowdfunding, a structure that is dedicated for social
benevolent enterprises where investors pledge money relying on trust, without
necessarily expecting a material return, but a return in the form of benefit for the
society or local community they live in. As with any type of CFP, there are a number of
regulatory and other legal issues that need to be considered to run the platform in a
real world environment. The laws governing these regulations have a high degree of
complexity. This section outlines just the key (and minimum) areas in which a CFP
needs to be compliant in order to function legally.

Compliance with the code of conduct of UKCFA

Firstly, all CFPs running in the UK should be aware of the existence of the UK
Crowdfunding Association (UKCFA), which is the self-regulatory body made up of
leading crowdfunding businesses that has the aim to provide clarity and consumer
protection for the whole industry. A Code of Conduct has been released ([49] UKFCA,
2017) that aims to protect the growing number of investors and fundraisers in the UK.

Financial regulations

There are two key issues that need to be considered in relation to XpressStarter
complying with the financial services regulation: whether it requires authorisation and
whether the financial promotion regime applies.

Since XpressStarter is a donation-based platform, it normally falls outside the scope of
FCA (Financial Conduct Authority) authorisation. However, issues might arise
depending on how payments are processed (please see the Payment Processing
section below) or if any reward that is offered to the benefactors may be considered a
return on investment (for example, a profit share from a successful creative
enterprise).

If the beneficiaries that post their campaign pitches on XpressStarter give a
background to their business and/or project, this might be classed as a financial
promotion (an invitation or inducement to engage in investment activity, such as
subscribing for shares). If this definition were to be taken into account strictly, all the
beneficiaries posting campaigns on XpressStarter must either fall within an exemption
(including communication to certain sophisticated investors or high net worth
individuals) or have the pitching content of the campaigns they post approved by an
authorised person. In most of the cases, XpressStarter will need to act as the
authorising entity. This would lead again to the need of XpressStarter to be FCA
authorised. However, strict FCA rules govern the content of these promotions to
ensure they are clear, fair and not misleading. This means that the benefits of

108

CM2303 - One Semester Individual Project (student number: c1332008)

investing must be carefully considered along with the risks, and the content should be
appropriate for the expected target audience of the promotion. This can be
particularly challenging for social media channels that restrict the number of available
characters (such as Twitter). However, some guidance published by FCA reaffirms
that the regulatory requirements are media neutral. XpressStarter should also be
careful that any campaign listed on the platform does not take the shape of investment
advice. FCA GC 14/6 ([50] Financial Conduct Authority, 2017) list some examples of
good practice in this area.

Payments processing

Another key consideration for a CFP such as XpressStarter is related to how the
processing of payments made by the benefactors will take place. The Payment
Services Regulations 2009 (PSR), set out a number of 'payment services' that require
an entity to be FCA authorised. A common issue is where investments / donations /
payments come through the own bank accounts of the CFPs as this could be deemed
to be a money remittance service under the PSR. There are exemptions, including
where a platform acts as a commercial agent for either payer or payee to conclude or
negotiate the sale or purchase of goods or services. However, this is not a
comfortable fit given that CFPs are rarely involved in the sale or purchase of actual
'goods or services'.

In order to avoid all the issues that might arise from falling under the restrictions of
PSR and the need to be FCA authorised, XpressStarter should use third party online
processing providers (like WePay, PayPal and Stripe) to process payments on its
behalf. This is listed as an optional functional requirement in Section 3.1.2.

Data protection law compliance

Since XpressStarter is a CFP that processes personal data of users (names and
addresses, phone numbers, email addresses), it has statutory obligations in regards
to the way it collects, uses, stores and shares this data. Since it will need to comply
with Data Protection Act 1998 (DPA) and other legislation, XpressStarter will need to
(among other aspects):
● register with the Information Commissioner's Office (ICO). A CFP processing

personal data will almost certainly be a "data controller" under the DPA, in which
case it will need to register with ICO. Failure to do so is a criminal offence;

● establish and maintain a robust privacy and cookies policy, and make sure that the
policy is easily accessible on one of the pages of XpressStarter;

● if any third party processes data on XpressStarter’s behalf (acting as the "data
processor"), XpressStarted needs to enter into an agreement to ensure that the
third party is contractually obliged to process the data in accordance with the
statutory requirements;

● ensure that no personal data is transferred outside the EEA unless certain
preconditions are satisfied. This rule applies to personal data held on servers

109

CM2303 - One Semester Individual Project (student number: c1332008)

outside the EEA, so care must be taken when selecting any cloud providers or
other data processors;

● put in place adequate security measures to mitigate the risk of users' data being
accidentally or deliberately compromised;

● comply with cookie legislation by giving clear information about the purpose of
cookies used on the platform (a simple reference to cookies in the privacy policy is
not sufficient) and obtaining users' consent before cookies are placed on their
machines. Market practice in the UK is to obtain implied consent through a
prominent cookie notice on the website.

The full Data Protection legislation applied in the UK falling under DPA 1998 can be
found on the UK Government website ([51] The UK Government).

Final thought on regulatory compliance

While all the laws and regulations that may apply to XpressStarter might seem
overwhelming, potential pitfalls can be avoided by seeking professional advice during
the early stages of the setup. It is important to note that it is a criminal offence for a
CFP to act without all the required authorisations, punishable by a prison term of up to
two years, unlimited fines and potentially a liability to compensate for investor losses.
Therefore, all the regulatory compliance will need to be ensured before launching the
system live to the general public.

110

CM2303 - One Semester Individual Project (student number: c1332008)

10. References

10.1. Introduction

[1] Hunter, G.L. and Garnefeld, I., 2008. When does consumer empowerment lead to
satisfied customers? Some mediating and moderating effects of the
empowerment-satisfaction link. Journal of Research for Consumers, (15), p.1.

[2] Telerik Developer Network, 2017. Javascript In 2017 - Libraries And Frameworks.
[ONLINE] Available at:
http://developer.telerik.com/topics/web-development/javascript-2017-libraries-framewo
rks/. [Accessed 20 March 2017]

10.2. Background

[3] Aldrich, H.E., 2014, August. The democratization of entrepreneurship? Hackers,
makerspaces, and crowdfunding. In Presentation for Academy of Management Annual
Meeting, Philadelphia, PA.

[4] Harding, R., 2004. Social enterprise: the new economic engine?. Business
Strategy Review, 15(4), pp.39-43.

[5] Fast Company, 2014. Pay For Your City: Crowdfunding For Civic Projects Is
Unusually Successful [ONLINE] Available at:
https://www.fastcompany.com/3031412/pay-for-your-city-crowdfunding-for-civic-projec
ts-is-unusually-successful [Accessed 31 January 2017]

[6] Matsuo, Y. and Yamamoto, H., 2009, April. Community gravity: measuring
bidirectional effects by trust and rating on online social networks. In Proceedings of
the 18th international conference on World wide web (pp. 751-760). ACM.

10.3. Specification and design
[7] E. Codd, Wikipedia, 2017. Third normal form [ONLINE] Available at:
https://en.wikipedia.org/wiki/Third_normal_form [Accessed 5 May 2017]

[8] RestCase, 2015. REST APIs and their Gain Added Importance on the Rise in
Application Integration Design [ONLINE] Available at:
http://blog.restcase.com/rest-apis-and-their-gain-added-importance-on-the-rise-in-appl
ication-integration-design/ [Accessed 4 Apr. 2017].

[9] Time Inc, 2017. Here’s why Amazon’s cloud suffered a meltdown this week.
[ONLINE] Available at: http://fortune.com/2017/03/02/amazon-cloud-outage/

[10] Webber R., 2013. Analysis of JSON use cases compared to XML. [ONLINE]
Available at: https://blogs.oracle.com/xmlorb/entry/analysis_of_json_use_cases
[Accessed 4 Apr. 2017].

111

http://blog.restcase.com/rest-apis-and-their-gain-added-importance-on-the-rise-in-application-integration-design/
http://fortune.com/2017/03/02/amazon-cloud-outage/
http://developer.telerik.com/topics/web-development/javascript-2017-libraries-frameworks/
https://www.fastcompany.com/3031412/pay-for-your-city-crowdfunding-for-civic-projects-is-unusually-successful
https://blogs.oracle.com/xmlorb/entry/analysis_of_json_use_cases
https://www.fastcompany.com/3031412/pay-for-your-city-crowdfunding-for-civic-projects-is-unusually-successful
https://en.wikipedia.org/wiki/Third_normal_form
http://developer.telerik.com/topics/web-development/javascript-2017-libraries-frameworks/
http://blog.restcase.com/rest-apis-and-their-gain-added-importance-on-the-rise-in-application-integration-design/

CM2303 - One Semester Individual Project (student number: c1332008)

[11] Tony Thomas, 2012. Medialoot - Skeuomorphic Design: What it is, Who uses it,
and Why You Need to Know. [ONLINE] Available
at: https://medialoot.com/blog/skeuomorphic-design/. [Accessed 2 April 2017].

[12] Keith Bryant, 2012. designmodo – Rounded Corners and Why They Are Here to
Stay. [ONLINE] Available at: https://designmodo.com/rounded-corners/. [Accessed 2
April 2017].

[13] Carrie Cousins, 2016. designmodo - 11 Web Design Trends for 2016. [ONLINE]
Available at: https://designmodo.com/web-design-trends-2016/. [Accessed 2 April
2017].

[14] Carrie Cousins, 2017. design shack - 7 Web Design Trends to Watch Out for in
2017. [ONLINE] Available
at: https://designshack.net/articles/inspiration/web-design-trends-2017/. [Accessed 2
April 2017].

[15] Stacey Kole, 2013. Webdesignerdepot - Serif vs. Sans: the final battle. [ONLINE]
Available at: http://www.webdesignerdepot.com/2013/03/serif-vs-sans-the-final-battle/.
[Accessed 2 April 2017].

[16] Karol K., 2015. Adobe - Motion in Web Design the Smart Way. [ONLINE]
Available
at: https://blogs.adobe.com/creativecloud/motion-in-web-design-the-smart-way/.
[Accessed 2 April 2017].

10.4. Front end implementation
[17] NewStack, 2016. JavaScript Popularity Surpasses Java, PHP in the Stack
Overflow Developer Survey [ONLINE] Available at:
https://thenewstack.io/javascript-popularity-surpasses-java-php-stack-overflow-develo
per-survey/ [Accessed 4 Apr. 2017].

[18] RisingStack, 2016. Node.js Examples - What Companies Use Node for in 2016
[ONLINE] Available at:
https://blog.risingstack.com/node-js-examples-what-companies-use-node-for/.
[Accessed 4 Apr. 2017].

[19] NPM Inc., 2017. The Node Package Manager [ONLINE] Available at:
https://www.npmjs.com/. [Accessed 4 Apr. 2017].

[20] Ryan Dahl, 2012. Original Presentation on NodeJS. [ONLINE] Available at:
https://www.youtube.com/watch?v=ztspvPYybIY. [Accessed 4 Apr. 2017].

[21] NodeJS Foundation, 2017. NodeJS API Documentation. [ONLINE] Available at:
https://nodejs.org/api/. [Accessed 4 Apr. 2017].

[22] Mozilla Developer Network, 2017. Javascript Reference. [ONLINE] Available at:
https://developer.mozilla.org/en-US/docs/ [Accessed 4 Apr. 2017].

112

https://thenewstack.io/javascript-popularity-surpasses-java-php-stack-overflow-developer-survey/
https://designmodo.com/rounded-corners/
https://blogs.adobe.com/creativecloud/motion-in-web-design-the-smart-way/
https://www.npmjs.com/
https://nodejs.org/api/
https://designmodo.com/web-design-trends-2016/
http://www.webdesignerdepot.com/2013/03/serif-vs-sans-the-final-battle/
https://medialoot.com/blog/skeuomorphic-design/
https://designshack.net/articles/inspiration/web-design-trends-2017/
https://blog.risingstack.com/node-js-examples-what-companies-use-node-for/
https://developer.mozilla.org/en-US/docs/
https://www.youtube.com/watch?v=ztspvPYybIY
https://thenewstack.io/javascript-popularity-surpasses-java-php-stack-overflow-developer-survey/

CM2303 - One Semester Individual Project (student number: c1332008)

[23] StrongLoop, IBM, 2017. Express - Node.js web application framework [ONLINE]
Available at: https://expressjs.com/. [Accessed 4 Apr. 2017].

[24] The official Jade Documentation. [ONLINE] Available at:
https://pugjs.org/api/reference.html [Accessed 6 Apr. 2017].

[25] Hampton C., Natalie W., Chris E., 2017. The official Sass Documentation.
[ONLINE] Available at: http://sass-lang.com/guide [Accessed 5 Apr. 2017].

[26] Ashley Nolan, 2015. The State of Front-End Tooling – 2015 [ONLINE] Available
at: https://ashleynolan.co.uk/blog/frontend-tooling-survey-2015-results. [Accessed 4
May 2017].

[27] Github, 2017. The official Gulp Documentation. [ONLINE] Available at:
https://github.com/gulpjs/gulp/blob/master/docs/API.md [Accessed 5 Apr. 2017].

[28] Github, 2017. The official Bootstrap repository [ONLINE] Available at:
https://github.com/twbs/bootstrap [Accessed 5 May 2017].

[29] Mark Otto, 2017. The official Bootstrap Documentation. [ONLINE] Available at:
https://v4-alpha.getbootstrap.com/getting-started/ [Accessed 6 Apr. 2017].

[30] Search Engine Journal, 2016. 75% of Internet Use Will Be Mobile in 2017.
[ONLINE] Available at:
https://www.searchenginejournal.com/75-internet-use-will-mobile-2017-report/177433/
[Accessed 6 Apr. 2017].

[31] Schlueter, Isaac Z., 2013. Forget CommonJS. It's dead. We are server side
JavaScript. [ONLINE] Available at:
https://github.com/nodejs/node-v0.x-archive/issues/5132#issuecomment-15432598
[Accessed 5 May 2017].

[32] Gregor Martynus, 2017. The official Moment JS Documentation. [ONLINE]
Available at: https://momentjs.com/docs/ [Accessed 4 Apr. 2017].

[33] Github, 2017. The official D3 Documentation. [ONLINE] Available at:
https://github.com/d3/d3/wiki [Accessed 5 Apr. 2017].

[34] HTML5Rocks, 2012. Introduction to Javascript SourceMaps. [ONLINE] Available
at: https://www.html5rocks.com/en/tutorials/developertools/sourcemaps/ [Accessed 5
Apr. 2017].

[35] Official Nodemon website. [ONLINE] Available at: https://nodemon.io/ [Accessed
5 Apr. 2017].

[36] The official Browsersync Documentation. [ONLINE] Available at:
https://www.browsersync.io/docs [Accessed 6 Apr. 2017].

[37] Anton Kovalyov, 2017. The official JsHint documentation. [ONLINE] Available at:
http://jshint.com/docs/ [Accessed 5 Apr. 2017].

113

https://v4-alpha.getbootstrap.com/getting-started/
https://github.com/gulpjs/gulp/blob/master/docs/API.md
https://nodemon.io/
https://github.com/twbs/bootstrap
https://expressjs.com/
https://github.com/nodejs/node-v0.x-archive/issues/5132#issuecomment-15432598
http://sass-lang.com/guide
https://www.searchenginejournal.com/75-internet-use-will-mobile-2017-report/177433/
https://ashleynolan.co.uk/blog/frontend-tooling-survey-2015-results
https://www.browsersync.io/docs
https://momentjs.com/docs/
http://jshint.com/docs/
https://github.com/d3/d3/wiki
https://pugjs.org/api/reference.html
https://www.html5rocks.com/en/tutorials/developertools/sourcemaps/

CM2303 - One Semester Individual Project (student number: c1332008)

[38] Twitter, 2017. The official Bower Documentation. [ONLINE] Available at:
https://bower.io/ [Accessed 5 Apr. 2017].

[39] Microsoft, 2012. Performance Implications of Bundling and Minification on Web
Browsing. [ONLINE] Available at:
https://blogs.msdn.microsoft.com/henrikn/2012/06/16/performance-implications-of-bun
dling-and-minification-on-web-browsing/.

10.5. Back end implementation
[40] TheServerSide, Kurt Marko, 2017. Best programming languages for enterprise
development. [ONLINE] Available at:
http://www.theserverside.com/feature/Best-programming-languages-for-enterprise-dev
elopment [Accessed 4 Apr. 2017].

[41] The PHP Group, 2017. PHP: Backward Incompatible Changes. [ONLINE]
Available at: http://php.net/manual/en/migration54.incompatible.php [Accessed 4 Apr.
2017].

[42] Brewer E., 2000. Towards Robust Distributed System. Symposium on Principles
of Distributed Computing (PODC)

[43] Boyarsky J, Selikoff S., 2015. OCA: Oracle Certified Associate Java SE 8
Programmer I Study Guide: Exam 1Z0-808 (pp 40)

[44] Simon Maple, 2017. Java Web Frameworks Index: March 2017. [ONLINE]
Available at:
https://zeroturnaround.com/rebellabs/java-web-frameworks-index-march-2017/
[Accessed 4 May 2017].

[45] Martin Fowler, 2010. The Richardson Maturity Model. [ONLINE] Available at:
https://martinfowler.com/articles/richardsonMaturityModel.html [Accessed 4 May
2017].

10.6. Testing and evaluation
[46] MongoDB Documentation, 2017. Sharded Cluster Components. [ONLINE]
Available at: https://docs.mongodb.com/manual/core/sharded-cluster-components/
[Accessed 4 May 2017].

[47] Ben Yemini, 2014. Is there an optimal CPU utilisation? [ONLINE] Available at:
https://turbonomic.com/blog/on-turbonomic/optimal-cpu-utilization-depends/
[Accessed 4 May 2017].

[48] Klaus Enzenhofer, 2016. What is the expected response time to deliver good user
experience? [ONLINE] Available at:
https://www.dynatrace.com/blog/what-is-the-expected-response-time-for-a-good-user-
experience/ [Accessed 4 May 2017].

114

https://bower.io/
https://zeroturnaround.com/rebellabs/java-web-frameworks-index-march-2017/
https://blogs.msdn.microsoft.com/henrikn/2012/06/16/performance-implications-of-bundling-and-minification-on-web-browsing/
https://blogs.msdn.microsoft.com/henrikn/2012/06/16/performance-implications-of-bundling-and-minification-on-web-browsing/
https://turbonomic.com/blog/on-turbonomic/optimal-cpu-utilization-depends/
https://www.dynatrace.com/blog/what-is-the-expected-response-time-for-a-good-user-experience/
http://php.net/manual/en/migration54.incompatible.php
https://martinfowler.com/articles/richardsonMaturityModel.html
http://www.theserverside.com/feature/Best-programming-languages-for-enterprise-development
http://www.theserverside.com/feature/Best-programming-languages-for-enterprise-development
https://www.dynatrace.com/blog/what-is-the-expected-response-time-for-a-good-user-experience/
https://docs.mongodb.com/manual/core/sharded-cluster-components/

CM2303 - One Semester Individual Project (student number: c1332008)

10.7. Regulatory compliance
[49] UKFCA, 2017. Code of conduct. [ONLINE] Available at:
http://www.ukcfa.org.uk/code-of-practice-2 [Accessed 4 May 2017].

[50] Financial Conduct Authority, 2017. GC14/6 Social media and customer
communications: The FCA’s supervisory approach to financial promotions in social
media [ONLINE] Available at:
https://www.fca.org.uk/publications/guidance-consultations/gc14-6-social-media-and-c
ustomer-communications-fca%E2%80%99s [Accessed 4 May 2017].

[51] The UK Government, 1998. The Data Protection Act [ONLINE] Available at:
http://www.legislation.gov.uk/ukpga/1998/29/contents [Accessed 4 May 2017].

115

http://www.ukcfa.org.uk/code-of-practice-2
https://www.fca.org.uk/publications/guidance-consultations/gc14-6-social-media-and-customer-communications-fca%E2%80%99s
http://www.legislation.gov.uk/ukpga/1998/29/contents
https://www.fca.org.uk/publications/guidance-consultations/gc14-6-social-media-and-customer-communications-fca%E2%80%99s

