
Cardiff University

Final year project

Improving the Responsiveness of
Autoscaling Systems

Gregory Nichols - C1304478

supervised by
Omer Rana

moderated by
Hantao Liu

May 5, 2017

Acknowledgements

I would like to thank Blurrt for kindly letting me do this project with their blessing and use their
hosting resources.

I would also like to thank my supervisor Omer Rana for providing me helpful feedback and
advice throughout my project.

1 Introduction

1.1 What is Blurrt

Blurrt is a social media analytics company which specialises in the sentiment and emotional analysis
of social media posts, with a specific focus on Twitter. It is capable of scoring posts for their positive
or negative sentiment, their emotion based on one of 8 possible emotions and the gender of the
person posting as well as other characteristics such as ”Blurrt Score” a combination of both volume
and sentiment. Collected posts are then displayed on the web front-end in a dashboard with charts,
maps and other graphics making the data interactive and easily accessible.

This project has been done in affiliation with Blurrt, who have the existing system which I aim
to improve on.

1.2 Utility of the Project

In the Blurrt back-end there is a simple monitoring system which monitors the size of a queue
of objects waiting to be parsed and as its size reaches above a threshold a request is triggered
to the hosting company to create a new virtual machine running several parsing processes. Once
the queue has reduced in size the system recognises that there is less demand and downscales the
number of virtual machines accordingly, in order to not waste money unnecessarily. This system,
while functional, was very slow to scale up and down, it was also very difficult to upgrade and
patch and it was rather costly to run as the server hosting company (Rackspace) is not very cheap.

This is important because Blurrt relies heavily on being a real time social media analytics
company and any delay to data being visible to clients is directly impacting one of the core selling
points of the product. Currently if a large collection is created on a very popular topic, such as
X Factor, the queues can become backlogged with several thousand messages and it can take a
considerable amount of time to scale up to the necessary size. This delay can get so considerable
at times that one of the developers has to manually create new parsing servers because the scaling
system is not fast enough to keep up with the increased demand placed upon it.

It is also important because the lack of automation and difficulty of patching has led to patches
not being implemented for the parsers as regularly as they should be and in some cases forgotten
about by accident, leading to data being incorrectly parsed as their codebase is not up to date
with the rest of the system.

1.3 Aims of this Project and Report

This project aims to research and implement an improved system of automatic scaling for a con-
tinuous parsing process which has a varying level of demand placed upon it. I shall to create a
system which scales faster, improves the ease of implementing updates, improves the monitoring
system and if possible reduces the cost of running the servers.

This will therefore aim to improve the system in a number of ways. Firstly, to alleviate the time
taken to create the parsing processes, making the system more responsive to increased demand
and keep our delay for real-time analytics as low as possible. Secondly, to increase the granularity
of the scaling by reducing the amount of processing power added by scaling the smallest amount,
this will help to prevent ’sawtoothing’ and reduce wasted resources. Thirdly, aim reduce the costs
associated with running the parsers by reducing the amount of resources required over time and
through cheaper hosting solutions. Fourthly, to implement a system which is easier to deploy
updated code onto.

In order to demonstrate the achievement of the stated aims this project will:

• Identify potential hosting and software solutions.

• Analyse the options and pick what I believe to be the best one to form the basis for my
implementation.

• Migrate the existing parsers to the chosen system, implementing any technologies required
to make the parsers work on the new system.

• Develop an improved monitoring system that uses a predictive algorithm and can be more
easily updated and extended in the future.

1

• Then analyse the difference in performance in terms of parser creation and destruction com-
pared to the old system, the cost of running the new system compared to the old system and
the time taken to perform a certain amount of work on the new system compared to the old
system.

Through my report I shall clearly explain the current architecture of the system and how it
functions. I will analyse potential technologies, software solutions and hosting solutions to solve
these problems I’ve identified. I shall then explain why I chose what I believe to be the best of these
potential solutions; a Docker for AWS based architecture. I shall then implement a comprehensive
scaling management system which is capable of polling and triggering scaling events based on queue
size. I will perform a performance analysis of the original system demonstrating the performance
in terms of; speed of scaling up and scaling down, speed to process a set number of messages from
one queue to the other and the costs for running the system. I shall then compare and contrast
that to the performance provided by the new system I have implemented.

1.4 Important Outcomes

I implemented a cohesive and comprehensive scaling and monitoring system for Docker for AWS
in node.js which is capable of monitoring the size of queues, analyse the monitored queue size
through a rules based scaling approach and trigger scaling events. The triggered scaling events then
gracefully scale both the number of instances and the containers on those instances to account for
the increased computing power available to the Docker swarm, while also avoiding any unexpected
exiting of containers due to lack of resources. This can be caused either by failure to wait to scale
up until after the addition of new instances or for not scaling the number of containers down before
the destruction of instances.

I was also able to re-architecture the existing virtual machine based parsing system into a
containerised solution using docker for AWS. I was also able implement additions to the parser
codebase to allow for the parsers to make use of a new queuing system Amazon’s Simple Queue
Service instead of the previous system RabbitMQ. From this I was able to demonstrate a reduction
in time taken to scale by 59% as well as reducing the costs, barring the very worst case scenarios,
while also leaving the potential for at least 39% reductions through changing the instance type
used. I was also able to increase the speed of parsing by 58% from a combination of switching to
AWS from Rackspace and upgrading to a newer version of PHP. This was due to the container
based architecture allowing for the software of different aspects of the system to be at separate
versions.

2 Background

2.1 System Architecture Introduction

The focus of this project shall be the back-end of the system, with a specific focus on the parsers
as that is currently the part of the system which has autoscaling in place and it is also the part
which lends itself most to the benefits that come from autoscaling. The back-end of the Blurrt
system consists of a data collection system with 3 main components. Firstly, a collector which
takes a stream of objects from the chosen social media platform and places it onto a parsing queue,
next there are a number of parsers which take an object off the parsing queue, normalises it, scores
it and then places it onto the storage queue, then a batching process takes groups of objects and
places them into the database, which is an Elastic cluster, in one go. There is a monitoring process
which monitors the parsing queue every minute and if it reaches above or below certain thresholds
it creates a new parsing VM running several parsing processes.

This scaling system is being used in order to prevent large build ups of messages on the queue
which were occurring before when the automated scaling system was not in place, this was due to
the increased demand we were getting from certain clients. In order to account for the work of a
large client which wished to collect on an TV show, for example X Factor which has high demand
irregularly, we needed a system in place which would scale up when the queue got too large without
the developers having to manually create and destroy servers to account for the demand.

2

2.2 Technologies Overview

2.2.1 Collectors and GNIP

Blurrt collects data from many different social media platforms, all of them have their own collector
which is able to access the data API from that specific platform, process the data and place it onto
a parsing queue. There are collectors and parsing queues for twitch, youtube, facebook, instagram
and multiple twitter APIs.

In this project I will focus on GNIP as the data source, this is the private data API from
Twitter which is Blurrt’s main data source, you send off specific rules in the form of keywords with
booleans and it provides you all tweets which match those rules in real time. I decided to focus
on GNIP in this project as this is where the vast majority of Blurrt’s data comes from and so has
the greatest need to scale with incoming demand.

2.2.2 Json

Javascript object notation or json is a common data format similar to CSV. It is human readable
text consisting of attribute-value pairs to form a data object.

2.2.3 Parsers

The parsers are the main workhorse of the back-end of the Blurrt system, they are responsible for
taking messages off the parsing Queue, normalising the format of the message so messages from all
platforms are in the same format and scoring them for 8 different emotions (happiness, sadness,
anger, disgust, fear, love, thankfulness and confusion). It also scores whether the tweet is overall
positive or negative as well as whether the creator of the tweet was male or female and several other
metrics. The detailed methodology of how this is done is a company secret and is not necessary
for the purposes of this project, what I can say is that the tweet object is given as a parameter
to the natural language processing system. This NLP system is a collection of algorithms which
score the tweet based on analysis of the text content and append to the tweet json our emotion
and sentiment scores as well as Blurrt’s other enrichments such as gender. After it has finished
parsing a message it marks it as completed so that no other parser can take it and then the parsed
json objects are placed onto the storage queue.

There are different parsers for different collection sources however the GNIP parsing process is
written in PHP and runs on PHP 5 on the servers, this is because it needs to be able to run on the
same server as the front-end which uses a framework only compatible with PHP 5. Each parsing
process runs continuously as they are essentially a never ending while loop.

2.2.4 RabbitMQ

RabbitMQ is an open source queuing system which handles messages being stored and taken off
either individually or in batches. These messages can be of any data type as the queue itself is
completely opaque to the data type being placed on it, it uses the AMQP protocol which states
that messages will not be permanently removed from the queue unless it is marked as processed
when it has been finished with. RabbitMQ itself can run in either a clustered mode which consists
of multiple servers with load balancing (which automatically distributes demand) to handle high
message throughput or a standalone mode, which is how it is run at Blurrt. The Blurrt system
has many different queues all running on this standalone server, each collection source has its own
parsing queue assigned to it where messages which come from the collector are placed. There are
also multiple storage queues where the parsers place messages onto to be stored in the database
by the batchers, these storage queues are not collection source dependent and are instead based
on which database we wish to store the data in as we have multiple Elastic clusters.

2.2.5 Batchers

The batchers exist to take messages off of the storage queue and group them together into bundles
of up to 100 messages or the number of messages placed on the queue within 30 seconds and
put them into the specific database they are assigned to. This system was implemented because
without it we were placing messages into the database one by one which was causing stress on it,
these batchers act as a buffer to keep down the number of storage operations.

3

2.2.6 Elastic

Elastic, formerly known as Elasticsearch is a distributed database written in Java optimised for
speed of querying and retrieval, all data stored in it is in json format and you query it through a
REST API. It is ran as a cluster with master nodes and worker nodes or as a standalone single
node cluster, we use it in clustered mode in order to increase speed.

At Blurrt we have several different Elastic clusters one for development, one for ordinary pro-
duction data and one for high performance production data for high paying clients. This is not
directly relevant to our project as the parsers do not interact with this in any way however it is
important to understand the system.

2.2.7 Cron

Cron is the unix method of scheduling commands to be executed at regular intervals and is normally
used for system maintenance or administration. At Blurrt a bash script executed minutely via cron
is used to check the queue size and send off the requests to scale up or down, which while simple
is not a recommended way of using cron as it is making calls to other servers. It also makes the
monitoring script hard to update as the cron system and its configuration file, known as a crontab
are not version controlled.

2.2.8 Monitoring Script

This is the bash (unix command line) script executed via cron on a minutely basis, the code for
which you can see in appendix A. This gets the current CPU usage, the current tweet collection
rate and the current tweets not parsed by sending a request to rabbit queues (running on the
localhost) querying the queue size. It then sends the results of those queries to the server stats
server, which is the graphite server used for creating graphs of resource usage and other system
information. The last 7 lines of the script are responsible for taking the tweets not parsed value
and if it’s greater than a threshold, which is currently set to 2000, send a request to scale up and
if it is less than 500 send a request to scale down.

2.2.9 Graphite

Graphite is a method for graphing time series data in real time, you send requests containing the
a metric name of your choice and the current value for that metric and it plots that data as real
time data on a graph viewable via a web frontend. It is used at Blurrt in order to monitor the
health of the system with metrics such as CPU usage of servers, queue sizes and elastic cluster
size, these are all collected from the servers in question via cron script.

2.2.10 Rackspace

Rackspace is the hosting platform used at Blurrt, it allows for the creation of virtual machines from
vanilla linux distribution images or from premade images based on running servers. It then allows
you to choose the server’s specifications based on a choice of predefined general purpose images.
Another feature is the ability to create autoscaling configurations based on selected a server image
and provides custom URLs to use as web hooks. Rackspace also allows for the creation of remote
storage drives and load balancers as well as other typical cloud hosting provider features.

Creating an autoscaling group provides individual autoscaling hooks which are URLs to either
scale up or scale down for that group. The Rackspace autoscaling groups also manage the maximum
and minimum numbers of servers for each group, the image to be used for each group and the
cooldown periods which prevent multiple scalings happening within that time.

2.2.11 AWS

Amazon Web Services or AWS is the hosting platform I ended up choosing to use and it has a
wide variety of different products available, the most important for this project is the EC2 instance
service which allows for the creation of cloud virtual machines it refers to as instances. You can
choose the operating system on the instance as well as the specifications of the instance from an
available selection configured either for burst or sustained processing. The configuration settings
for instances allows for the creation of autoscaling groups much like Rackspace but they do not

4

use web hooks in order to scale, you have to either use the AWS software development kit or use
their metric scaling based on things such as CPU utilisation on the instance or of another of their
services. Another technology used during this project provided by AWS is ECR which stands for
EC2 container registry, this is Amazon’s own container repository can be used as private remote
container storage that machines running docker can access in order to quickly download container
images instead of using the more public official container repository Docker Hub. It was used in
this project as, due to secrecy reasons, Blurrt did not wish to place their codebase on a remote
server out of their direct control.

2.2.12 Docker

Docker is a common method to simplify interacting with and running software containers, providing
tools to create, manage and execute them. Containers are ”a lightweight, stand-alone, executable
package of a piece of software that includes everything needed to run it: code, runtime, system
tools, system libraries, settings. Available for both Linux and Windows based apps, containerised
software will always run the same, regardless of the environment.” [13].

Docker is often run in swarm mode, a swarm is a collection of nodes which are used to run
services as opposed to individual containers, ”when you run Docker without using swarm mode,
you execute container commands. When you run the Docker in swarm mode, you orchestrate
services.” [14]. Nodes are machines running Docker which are participating in a swarm, there can
be either manager nodes, which both send tasks to worker nodes and execute tasks, or worker nodes
which merely execute tasks. A service is the definition of the tasks to execute on the nodes, it is
the primary root way of executing commands on the swarm system. When a service is created you
specify the container image and the commands you wish to run inside the container. In order to
execute multiple containers across the swarm you use services in replicated mode, when this occurs
the swarm manager distributes a the specified number containers with the specified command
across the nodes based upon the number of containers you wish to have [14].

2.3 Technical System Architecture Overview

In figure 1 you can see a diagram outlining the architecture of the current system. At the start the
collection feed, in the case of this project from GNIP, comes into the system and the tweet objects
which are in json format are placed onto the parsing RabbitMQ queue.

Figure 1: The Architecture

The parsers take the tweet objects off the parsing queue and parse them before placing them
onto the storage queue. At all times there are minimum of 3 parsing VMs for the GNIP parsers
set by the autoscaling group, each containing 8 parsing processes. These parsing VMs are created
using the 8 GB General Purpose v1 virtual server on Rackspace which has 8 vCPUs, 8GB of
RAM, 160GB of diskspace and 1.6Gb/s disk network. There is a hard limit set to the autoscaling

5

group these are part of with a maximum of 15 of these servers allocable for GNIP parsing. These
parsing VMs are created with a specialised parsing image (which is an Ubuntu 14.04 image with
the minimum software required to execute the parsing process). This image is created using the
Rackspace web portal’s ”image creation from running server” feature manually every patch.

The monitoring system monitors the parsing queue and if it exceeds the sizes mentioned in
section 2.2.8 of above 2000 and below 500 it sends a request to an autoscaling webhook URL which
contains an API key corresponding to one of the autoscaling groups that has been created. Each
webhook has a separate cooldown and there is a 3 minute cooldown to scale up and a 10 minute
cooldown to scale down.

Parsed messages are placed onto another queue, this time for storage, which is monitored by a
separate monitoring system running on cron on the storage queue server. This does not impact the
scaling of the parsers in any way it is simply so we can be aware if there is a backlog for storage.

The batcher then takes messages off the storage queue and places them into the elastic cluster
in groups in order to prevent I/O load on the cluster.

2.4 Existing Material

Virtual machines and cloud computing are very important technologies for web applications in
order to provide easy hosting without requiring managing the hardware and operating systems
yourself. Because of their popularity there have been several papers written on improving the
deployment time of virtual machines, Risto et al [20] worked on the transfer of images to virtual
machines and increasing the speed using different transfer methods such as multicast or BitTorrent,
this relies on having access to empty virtual machine hosts without an image attached to them.
Another paper by Gaochao et al [15] which proposes a rapid virtual machine deployment strategy
using compression and multicast, this relies on being the owner of the hosting service in order
to implement the required improvements in infrastructure. There have also been management
algorithms proposed such as CloudFlex [18], which proposes a way to manage virtual machine
images in autoscaling across many different cloud providers and reduce costs by not deleting images
until the end of the hourly charge period. There have also been systems proposed using machine
learning in order to predict when incoming demand will occur and scale up in advance to offset
the delay in creating virtual machines such as the paper by Sadeka Islam et al [17], this is a
very interesting idea and relevant to the work I am doing on my project in terms of improving
autoscaling speeds. In terms of comparing different hosting services there has been little work
done directly comparing their scaling speeds for example this paper by Mehran et al [16] compares
the architectures of autoscaling on several hosting services but not the time taken to scale, rather
it proposes a general purpose model for these scaling actions. I was able to find information in
a 2010 paper [19] on just Microsoft’s Azure hosting service which stated that there was about a
10 minute delay when creating virtual machines from specific images, this data may now be out
of date as the infrastructure Azure is based off of is likely to have improved substantially in the 7
years since that paper was written.

There has not been, from my research, any work done on how to re-architect a system in order
to reduce the initial deployment time in an autoscaling system from the client side rather than the
hosting side, which shall be the focus for this project. This is important because many start-ups
or other small companies cannot afford the time or cost required to host their own servers, which
would allow them to implement a hosting side solutions and instead want a way to implement
faster autoscaling with the existing hosting companies and software solutions available. Some of
the papers such as Sadeka Islam et al [17] have useful concepts and others such as Hill et al [19]
have useful data for my project.

3 Specification & Design

3.1 Hosting Technologies

I researched several different hosting and software solutions before settling on using a container
based architecture in order to solve my problem. The initial choice was whether to continue down
the path of pre-created virtual machine images, implement some form of start-up script which is
ran when the new virtual machine is created or implement a container based system.

6

3.1.1 Custom Virtual Machine Images

This solution would involve keeping the idea of manually creating virtual machine images and
manually creating the image each patch. This would go against my aim of improving the ease
of implementing updates and isn’t ideal as it has on multiple occasions been forgotten that these
images need to be updated. Also it would not solve the inefficiency in that the servers have
to already be running parsing processes when the image is created in order for them to parse.
Furthermore the performance gains that come from this would only then only come from cutting
down the image by reducing the required amount of data on the disk, switching to a smaller
version of Linux which takes up less disk space such as Alpine [1] or from the underlying improved
infrastructure from switching to the new service compared to Rackspace. I decided this would not
be a suitable way of improving the performance as it would not implement enough of the required
aims of my project.

3.1.2 Provisioning System

The other option would be to spool up blank servers and then run a script on them using a tool
such as chef, ansible or puppet, which are responsible for managing the automatic deployment of
software. These are able to run the configuration required on the server after the sever has been
created and then start the parsing processes. This would definitely meet the aims to improve the
ease of deployment, as it would be relatively easy to write a script which would work automatically
for each new release as all of the software is version controlled, this would also make it very easy
to create up many servers as required. However these system can be very slow to run, with ansible
potentially taking as long as 20 minutes to execute on some systems while smaller configurations
can take between 5 and 8 minutes. I decided this was unacceptable as it would not meet my
deployment speed aims.

3.1.3 Container Based Solutions

The other option would be a container based solution using something such as Docker swarm or
Kubernetes, this would allow for easy deployment as it would be a case of creating and pushing
the image to a Docker repository (which could potentially be automated with a CI system) and
then having the swarm pull from it when the size increases. It is also very fast as creating new
containers is done in a matter of seconds rather than minutes [21] taken for normal virtual servers.
This is not without its drawbacks however, in order to scale up the computing power of the docker
cluster you would have to add virtual machines to it which would require either setting up a system
which automates the adding of the new virtual machines to the cluster or using a solution which
manages this. There are several docker based hosting solutions such as Carina from Rackspace [7],
Google Container Engine [3] and Docker for AWS [4] which all aim to simplify the creation and
management of swarms meaning less time is required to set up the swarm.

3.1.4 Platform as a Service Solutions

Platform as a service (commonly known as PaaS) was invented in 2005 but was popularised by
Google in 2008. PaaS takes the idea of infrastructure away from the development process by
handling the hosting, deployment and scaling all for you, this responsibility it given to the company
you choose as your PaaS provider. This would have the advantage of meaning that I would have
to focus only on the re-architecture required to set it up on the new system and simplifying the
deployment process, as it would remove a lot of the development required in terms of setting up the
new infrastructure correctly. There are several popular PaaS providers such as Amazon’s Elastic
Beanstalk [6], Google’s App Engine [2] or Heroku [9].

3.1.5 Hosting Choice

This project went away from using custom built virtual machine images as I believed this was not
substantially differentiated from the existing architecture and as such would not bring about any
improvements in terms of architecture except from potential improvements brought from switching
to a different hosting provider. It also does not solve the problem of updates and migration in any
way.

7

I also chose to move away from using a provisioning system as I did not believe there would be
substantially increase in speed compared to a simple virtual machine image. This is because these
systems are not set up for speed but rather for ensuring that you can create correctly configured
servers from identical starting point, as such I did not think it would meet my aim of reducing the
start up time of the parsers.

I chose not to use a platform as a service solution because whilst it would be a way of solving the
problem, due to the fact I wish to demonstrate I have improved the current monitoring and scaling
system and the speed of deployment in response to this monitoring and PaaS is responsible for doing
this it would not demonstrate enough work for this project. Placing it on a PaaS solution would
take away the handling of the scaling from me and places it in the hands of the provider. Also I am
doubtful whether the re-architecture required to place the system, which requires several hundred
megabytes of various libraries in order to achieve the required functionality, would be conceivable
in the time frame as PaaS solutions focus on small applications in the tens of megabytes.

It was chosen instead to use a container based solution, this was because containers are much
faster to deploy than virtual machines and are able to handle deployment management through
the use of a repository. There has also been little to no work done on getting autoscaling working
within a swarm which combines both scaling the number of containers and the underlying number
of nodes within the swarm in one go. As such this will be a research topic of interest even if
there are no scaling speed gains yielded and I will still get the advantage of having an improved
deployment architecture.

When it came to assessing the available container based solutions I chose to go with Docker for
AWS. This was because ,while the company currently uses Rackspace and as such would prefer to
keep their infrastructure on the same platform for simplicity sake, Carina is currently in beta and
as such it is not suitable for any production ready solution as it can be taken down at any time and
service is not guaranteed, indeed as of the 18th of April this service is currently down as the beta
has ended. Another option was Google Container Engine, this is Google’s hosted solution using
it’s Docker container management system Kubernetes. This differs from another popular way of
managing groups of containers Docker Swarm by not using the normal Docker CLI or API but by
instead creating its own interface and concepts [10]. After discussing this with my supervisor at
Blurrt and with my project supervisor I decided it would be best to make use of Docker Swarm as it
is a simpler framework and is officially supported by Docker themselves, it is also considered easier
to set up compared to Kubernetes so making personal clusters to test would be easier. Another
reason that factored into this decision was my supervisor at Blurrt was more willing to use AWS
as a hosting solution than Google Container Engine as it is more widely used. This lended itself
to Docker Swarm as Docker swarm is recommended for use on AWS and is best supported there
whereas Kubernetes is best supported on Google Container Engine.

3.2 Scaling System Design

With the hosting and architecture being chosen my focus shifts towards how scaling would work
in this system. The Docker for AWS set up template [4] creates autoscaling groups for both the
Manager nodes (those nodes in a swarm responsible for controlling the other worker nodes and from
which commands are executed) and the worker nodes. These scaling groups are responsible for
scaling the number of underlying EC2 virtual machine instances which are part of the swarm, they
are also responsible for the cooldown period between which the scaling operations are allowed to
occur, which prevents multiple scaling operations from occurring within the time period specified.

In my design I would wish to have a system which gracefully scales up the size of the swarm
and then scales up the size of the service afterwards, this would prevent containers being created
prematurely and causing container crashes due to lack of resources. It would also want to scale
down the service before scaling the size of the swarm down in order to prevent the same problem
occurring when the swarm recreates destroyed containers on the remaining instances. I also would
wish to have a scaling down cooldown period which is longer than the scaling up cooldown period.
This would be so that it is capable of scaling up quickly and then scaling down slowly in order
to ensure that if the queue does empty and cause the machines to scale down it doesn’t do so
too rapidly causing the queue to fill up again. AWS as a hosting service does not allow for
separate upscaling and downscaling cooldowns, unlike Rackspace and as such this would need to
be implemented manually in the monitoring process. Also due to the way on-demand pricing
works, which would be most suitable pricing for an application which wishes to scale up and down

8

as demand increases, in an ideal system it would be beneficial to prevent destruction of servers
until the hour long period is over in about to end. This would be to prevent being charged extra if
you were to scale up again within the hour. Instead you could simply scale the size of the service
in order to reduce the number of containers that would normally sit on the swarm and leave the
EC2 instances up until the end of the the hourly allocation at that point you could either delete
them or reuse them if the demand had increased by scaling the service size back up.

3.3 Monitoring Design

There is currently a bash script which runs by cron used for monitoring, which is hard to maintain
and update. Instead I wish to move this to another system of my creation which has greater
control over when to scale, how to scale and is capable of keeping a record of the previous queue
size values. I would also like to be able to send other data to the graphite server such as the node
count, which is done via the AWS sdk available for many programming languages but not bash as
it’s a scripting language and if I wished to do so would require replicating the functionality myself.
There are several programming languages I could use in order to implement this, the main ones
which are used at Blurrt would be PHP which I am relatively fluent in or node which I am less
so. I decided to go with node despite having less experience in it as there are other monitoring
scripts such as the slack bot, which displays the API status, that are written in node and so it
would make sense from an architectural standpoint to have these in the same language.

Initially when I was first researching how I would go about implementing the monitoring system
in order to see if there was a web hook system similar to that of Rackspace I could not find such a
system. What I found were AWS’ built in autoscaling configurations which only scale off of metrics
of the server itself, so for example if CPU usage is high for a given period of time e.g ”add an extra
server when CPU utilisation is over 80% for 300 seconds.”. This would have made it awkward as
you are only able to impact it through the metrics such as CPU usage which obviously depend on
the number of containers running and not the queue as the queue acts as a buffer for increased
demand. I did not believe that it would be impossible to make use of this with docker however, as
increasing the number of containers on the swarm will increase the utilisation of resources of the
servers running it, therefore leading to an increase in the number of servers in total. While not
ideal, as if there is too much RAM utilisation on the server the container exits, this was my initial
idea of how to potentially solve the scaling problem.

Further research led me to find a better potential way, using Amazon’s Simple Queue Service,
which while not the same as RabbitMQ we use currently could be used in a similar way. Amazon
allows their built in autoscaling to make use of the size of the SQS queue which would be roughly
analogous to the way the existing system worked, in that it monitored queue size and sent a request
to scale up based on size. In order to do this you would need to use one of AWS Lambda hooks
which trigger based off events. This is not without it’s own problems however, as now increasing
the number of instances is not linked in any way to the number of containers. If it was poorly
implemented and I tried to create a system which monitored the queue size manually using the
SDK it’s possible that scaling of the instances could get out of line with the number of containers.
For example if the time the service scaling system happens to poll is the exact time the queue goes
above a scaling threshold but Amazon’s built SQS scaling trigger does not poll at that moment
and it then drops below the threshold again it could lead to either there being too many containers
causing them to exit early or too few meaning money is wasted. Another way of implementing the
service scaling which I realised would potentially be better is to implement a system which polls at
regular intervals the number of nodes and then changes the service size in line with that. However,
this would cause problems when scaling down as it would not be able to preempt the removal of
the node and as such parsers will be recreated on the remaining nodes, leading to them running
out of memory on the node and exiting until the polling system interval comes around and notices
a node has been removed.

Later I realised when I was implementing the SQS system’s Lambda hooks that it was possible
to change the size of the scaling group using the AWS sdk. Using the SDK and changing the
value of the autoscaling group’s desired size property you are able to scale the size of the group
to whichever size you choose in the API call, this causes new instances to be created or destroyed
on demand. This enabled me to implement a more unified and coherent monitoring system where
both the size of the swarm and Docker service are scaled by the same system in order to prevent
polling differences causing them to become out of sync.

9

3.4 Initial System Design Diagrams

Before I realised that I was directly able to change the size of the autoscaling group through AWS
lambda function I created diagrams explaining how I envisioned the system would work. These
were then updated and changed when I realised the superior way of implementing the system.

3.4.1 Class Diagram

While Node doesn’t strictly use classes I believed it would be beneficial to design a class diagram
to give me a clear design from which I can work on and develop my project. In this diagram
the classes represent the 2 different node files which would need to be written to get my project
working.

Figure 2: Class Diagram of the Initial Layout of the Monitoring and Scaling System

In this diagram you can see the 2 parts of my design of the monitoring system with the scaling
lambda function file which is responsible for scaling the number of EC2 instances and the service
scaling function file which is responsible for scaling the size of the service on the swarm.

The scaling lambda function file would trigger from a lambda hook based on the size of an SQS
queue, so for example greater than 2000 would trigger it causing it to scale up and less than 500
would cause it to scale down. The file contains the attributes autoScalingGroupNames in the form
of an object to allow for multiple configurations which reference either development or production
scaling groups in the future. This is needed to pass to the methods describeAutoScalingGroups and
updateDesiredCapacity in order to information about and scale the group. The IAM credentials are
also stored as an object as the AWS sdk needs both ID and secret in order to allow for access to the
autoscaling methods it provides. As for the functions it provides it has describeAutoScalingGroup
which allows you to get the current size of the autoscaling group, needed in order to calculate what
the new size will be. Then there is the updateDesiredCapacity method which takes the chosen
group name and desired capacity and uses the autoscaling SDK to alter the size of the autoscaling
group.

For the service scaling file I decided to go with the method which would require consistent
polling of the swarm size discussed in 3.3 rather than the method that would that would look at
the queue size as this would prevent the 2 from ever getting out of sync. The service scaling function
file also contains the IAM credentials attribute, this time for the ECR container repository, this
allows you to retrieve an access token allowing the swarm to download the container image to the
new instances when it scales. It also contains 3 methods, the first is to waitForScalingToComplete
which requires no arguments and would consist of a loop polling the size of the swarm, in order
to do this it would need to sign into the manager node server by use of the filesystem reading
library to read a private key stored on the service scaling function server and the SSH library to
use that key to SSH into the server, once on there it would check the size using the ”docker node
ls” command and compare it to the value in PreviousNodeValue. Once the number of nodes has
changed from what it was previously it would then trigger the next method getAuthorizationToken.
GetAuthorizationToken makes a request using the AWS SDK to get a login for the ECR repository
and returns it, this is then passed to scaleSwarmService. ScaleSwarmService would SSH in using
the same manner as the first method and then execute a swarm scale command through the
command line based on the parameter passed into it.

10

3.4.2 Component Diagram

I also created a component diagram (figure 3) to display more clearly the parts of the system. It
would also show how the parts which I would not be writing code for such as AWS interact with
the system. I also believe this diagram shows quite clearly how the instance, docker swarm, parser
hierarchy will work in reality and which components of the system will interact with which aspect
of this hierarchy.

Figure 3: Component Diagram of the Initial Layout of the Monitoring and Scaling System

3.5 Final System Design Diagrams

When I realised I was able to implement the system without the use of lambda functions I decided
it would be best to re-architecture the system. I created a state diagram because as I now have
greater control over each step of the scaling process the states would need to be more clearly
defined and follow on from each other. After I completed the project I updated the existing class
diagrams and component diagrams to better reflect the finished product.

3.5.1 State Diagram

This figure 4 was created in order to envision how I thought the flow of the system would occur
every time the system checks the queue size.

Figure 4: State Diagram of Monitoring System

I started by envisioning a polling system which checks the queue size at regular intervals, as
querying queue size requires making an API call. I then would need to compare the queue size value

11

to the rules I have created, based on the outcome from those rules there would be 1 of 3 outcomes;
scale up, scale down or do nothing. Because of the event driven programming architecture of node
while the requests to scale up are taking place it is possible to execute storing the current queue size
value and send the data to graphite so that a graph of the number of nodes can be plotted. When
both of these have finished executing it then continues to wait until the wait period is expired and
the next polling of the queue size is required.

3.5.2 Updated Class Diagram

Figure 5: Class Diagram of the Updated Layout of the Monitoring and Scaling System

The main changes between the original class diagram and the final design is the movement
of all of the scaling operations into the Scaling Manager file and the addition of the new file the
Queue Handler. The scaling manager is able to scale the autoscaling group, wait for it to complete
then scale up the swarm. This queue manager contains a start method which creates a timer, this
timer at regular intervals then checks the queue size and sends scaling requests. I also chose to
implement a graphite library so I could plot the performance of my code in terms of queue size
and node count. The queue handler orchestrates scaling through calling the scaleProcess function
directly from the checkQueueSizeRules function.

3.5.3 Updated Component Diagram

Figure 6: Component Diagram of the Updated Layout of the Monitoring and Scaling System

The were only a few changes in the component diagram from the original to updated version.
The most significant changes were the removal of the service scaling function, as it was rolled into
the scaling manager along with the functionality of the scaling lambda function and the removal of
AWS as the trigger for the scaling which was replaced by the queue handler. This together formed
a new component which was a combination of the queue handler and scaling manager which acts
as one to form the scaling and monitoring system. This updated design is much more streamlined
and easier to understand, making it easier to extend and develop further while also being less
difficult for other potential developers to understand.

12

4 The Implementation

4.1 Implementing Docker Swarm

4.1.1 Overview of Docker Swarm Implementation

Using the template for Docker Community Edition (CE) for AWS (stable) [4] (which at the time
of implementation was merely called Docker for AWS but has since been rebranded as Docker
has brought in Docker Enterprise edition). I created up a Docker swarm with 1 manager node
and 2 worker nodes, with t2.small as the the instance type. I set the SSH key on the cluster as
a new RSA key I created without out any password protection, I left the rest of the settings as
default. This gave me a working swarm cluster onto which I could then use the key I created to
programmatically access the manager nodes from the scaling manager later.

While the choice of t2.small is good for proof of concept and very tuned scaling levels it might
not be the best way to implement the system in production as t2.small instances are limited from
consistent usage by their CPU credits model, which means by default it has performance equal
to 20% of a CPU core and allows for burst above that through spending credits it accrues every
hour. These credits allow for a minute of burst usage, in the case of the small it accrues 12 credits
an hour meaning 12 minutes of burst usage, any extra work CPU is done at the 20% rate baseline
rate. As such in production it might be better to implement this with another instance such as
c4.large, their compute instance, or m4.large their general purpose instance.

4.1.2 How the Docker Swarm Was Implemented

At first in order to get myself accustomed to using Docker, before I had access to an AWS account
at the start of the project (I had to get it approved by my manager at Blurrt and the accounting
department), I familiarised myself by setting up simple docker swarm with 1 manager node and 2
worker nodes on Rackspace. This was relatively simple to do following the guide from the docker
website I simply set up 3 Ubuntu virtual servers on Rackspace and then installed docker and
configured each of them for swarm mode with 1 manager and 3 parsers.

After AWS access was approved and I was given the credentials to log in I was able to set up
a docker for AWS swarm through the following steps:

1. Using the template for Docker for AWS I specified 1 manager node and 2 worker nodes and
the instance type as t2.small the rest of the settings as default. I created a new RSA key,
separate to my personal RSA without any password protection and enabled that as the key
to log in to the manager nodes. This meant I was able to ssh into the server and also use it
for programmatic access via the scaling manager later.

2. I then went through the process in section 4.3.2 and got the docker images on the manager
node, at that point I attempted to create a Docker service with 3 replicas one for each node.

3. In order to do this I ran the command ”docker service create –with-registry-auth –replicas 3 –
name parsingprocess [repository url]/[repository name]:[repository image] php parse blurrts.php
gp tweets” into the shell on the manager node. Where ”php parse blurrts.php gp tweets”
are the commands to execute a GNIP parser.

This demonstrated that I had a working system to create orchestrated containers across the Docker
Swarm from my prebuilt images.

I also realised that the IP addresses of the manager nodes were not set and would change if
a node exited and then automatically started again, preventing the scaling system from working.
I researched the way to set a static IP on AWS and found the best way to do it would be with
AWS elastic IP, which I created and assigned it to the manager node to help prevent unforeseen
circumstances occurring.

I did encounter a few problems during this implementation, firstly when I tried to run the
docker service in step 3 I found that while the containers on the manager node had been created
the containers on the worker nodes had not. Upon further research about the error I discovered
that you need to pass the with-registry-auth flag in order to pass the login authorisation to the
other nodes as well as just the node you execute the command on.

Another problem I found during this implementation was when I specified t2.micro as my
instance type containers were regularly exiting every few seconds with the error code 137, which

13

corresponds to out of memory exception [11] which suggested to me I needed to increase the size
of the the node memory. Upon inspection the default size of instance was a t2.micro which only
has 1 gb of available memory, I ran a parsing process on the development server I created and
found it uses 700mb on average and I expect if that was to spike it could potentially exceed the
memory limit when combined with the overhead of running the operating system as well. I then
went into the set up of the Docker for AWS template and changed the instance size for all nodes
from t2.micro to t2.small, which changed the memory limit to 2gb rather than just one, from my
testing after that I was able to consistently maintain 2 parsers on it at all times. I chose t2.small
as it allowed for the smallest granular scaling as it has the lowest resources available (with 1 CPU
and 2GB of RAM) which was also capable of supporting a parser.

4.2 Implementation of Containerised Parsers

4.2.1 Overview of Containerised Parser Implementation

In order to take existing code and turn it into a Docker container I created a Dockerfile, which is
Docker’s configuration for building an image, this Dockerfile contains the bash install instructions
required to set up the bare minimum resources required to run my code. It installs PHP, all neces-
sary PHP modules and then transfers the existing parser codebase on the server I am building the
image on, into the container. This codebase had already had composer (a dependency management
system for PHP) pull the dependencies into it so it contained all the necessary files. The base of
the container image was Ubuntu, this is because it is what the production servers use, if I wished
to get the size of the image down significantly I could use a smaller distribution like Alpine but
I did not implement this during my project. I created Dockerfiles for both PHP 5 and PHP 7 in
order to test the performance of both.

4.2.2 How the Parser Containerisation Was Implemented

The first step was to work out what was required to get the parsers working natively on an Ubuntu
virtual machine with the minimum amount of required packages, as unnecessary packages would
increase the size of the container image. Setting up an Ubuntu virtual machine in this way would
give me the same steps to set up a container image based on ubuntu with these packages.

I followed the below steps to get working parsers on the virtual machine:

• I cloned the git repo for the parsers into a directory on the virtual server, for simplicity I
chose ˜/Parsers.

• Installed php5.6, the version used in production for the parsers.

• I then installed composer via their recommended install method the steps of which are here
[8]

• I then ran composer install on the root directory of the parser’s directory, I encountered
a problem whereby I was unable to pull from the private github repository with composer
(changing over to github was relatively recent). I fixed this issue by creating a github au-
thorisation token on my account and adding it to the git URLs to pull from within the
composer.json configuration file.

• I then attempted to run the parsers and found that I was missing certain PHP modules which
have to be installed separately, after installing the bcmath, mbstring, xml, curl and mysql
PHP modules the parsers would run correctly.

After that I created a Dockerfile to set up an image based on this install process I had created,
it starts with ”FROM ubuntu” which specifies to use ubuntu as the base image for the container.
The next command in the Dockerfile was to install php and all of the required modules, I did this
all on one line as it prevents adding extra layers to the container image. I then used the ADD
command to add the codebase I had pulled the dependencies into with composer into the container.
I chose to put it into the ”/var/blurrt/miles/blurrt-phirehose/” folder as that is the folder used
for the parsers currently. I then set that folder as the working directory so when commands are
executed on the virtual server they are executed from that folder by default.

During this installation I made the mistake of trying to install the tools to clone the repository
with git inside the container rather than specifying the directory to copy over from the server you

14

are building the image on via the add command. This goes against the underlying ethos of Docker
containers doing one thing only. After realising this seemed like a poor way of doing things I found
out about how you transfer the contents of a chosen directory into Docker with add.

After testing the container was working and I was confident I had a working docker parser,
I created a docker container with PHP 7, which was configured almost identically but I had to
change the install instructions in the dockerfile to refer to the PHP 7 versions of the modules and
had to rerun composer on the build server changing the composer configuration slightly so that it
pulled the PHP 7 version of a module rather than the PHP 5 one.

4.3 Implementation of the Container Repository

4.3.1 Overview of Container Repository Implementation

I created an EC2 container registry, this allows for the pushing and storage of containers into a
private repository. Setting this up was very simple. I had to name it and clicking OK however the
process leading up to it was very time consuming and I shall outline this in section 4.3.2 below.
The ordinary way to implement a container repository would be to simply upload it to the Docker
hub [5] however after discussing this with my manager he did not want me to do this for secrecy
reasons as it would involve placing the entire Blurrt parsing codebase on another remote server
which we have little control over compared to our own virtual instances.

4.3.2 How the Container Repository Was Implemented

In section 4.1.2, after I had created my swarm and was trying to test the swarm with my container
image, I realised I had no way to get the container image onto the manager node. My initial
thought was I could FTP across and build the container but I then realised this was not possible
as the manager does not support FTP. Also doing so would not be desirable for multiple reasons:

• Firstly, if I was able to implement FTP on the manager node in order to get the codebase
across manager nodes can scale and if they were to scale up and down the manager node
containing FTP configuration could potentially be destroyed.

• If you were to FTP across the codebase you would have to do so on every single node, including
the worker nodes (which in Docker for AWS do not have a documented way to login) and
build the image on each node this is because the manager node itself cannot transfer the
images across through ”docker service create” command when using local images.

This made me realise there must be a better way of doing this, I researched if there was a private
way to store and download container images. I looked into if it was possible to host a private docker
repository on a virtual server we had administration of and discovered it was possible [12]. When
trying to implement this I discovered to do so you have to have https enabled, which we did not
have a valid certificate for, so I looked into the potential of self signing a certificate and placing that
on the docker manager which would work provided the manager instance remains up. However
this would not be suitable if we wished to potentially scale the manager instances or the manager
instance went down. After further research found amazon has their own docker repository service
ECR, which is an AWS Docker container repository, I set up this docker container repository and
an IAM policy user (the AWS method of controlling access to services) with programmatic access
to ECR services.

I then tried to push to the ECR repository with the docker push commands given in the AWS
web portal, but was unable to so without first logging in to the repository. When I looked up
how to do this I discovered I needed to get a special login command from AWS from the AWS
command line interface, I installed the AWS command line interface on the server I wish to create
the container images on and ran AWS configure which asked for an access key, secret key and the
region I provided the user ID and secret key for the IAM user I created before and the region as
the same region with the docker cluster on. I then ran the command on the container creation
server ”aws ecr get-login” which gave me a login in command to use in the format ”docker login
-u AWS -p [password] -e none [repository url]” which when executed granted me login rights for
the ECR for 12 hours, which is a security measure.

Then I was able to push container images by first ensuring the image is built, tagging the image
so it has an easily descriptive name from which to pull on the other side, then push the image to
the repository.

15

From there I was then able to pull down on the Docker for AWS manager node side by running
”aws ecr get-login”, I then encountered a problem where the password token it gave me was too
large to copy paste into the shell, which was not bash but a minimal shell which had a buffer length
less than the password length, so I entered a proper bash shell and entered the command there
before exiting the bash session. After that I was authenticated and able to pull with a Docker pull
command in the same way I used a docker push command before.

4.4 Implementation of the SQSObjectCache

4.4.1 Overview of the SQSObjectCache

I implemented an extension to the PostedObjectCache interface, the code for which is section B
of the appendix, which is part of the parser codebase and was created as a way to allow for the
implementation of a new queuing system instead of RabbitMQ. Provided it followed this interface
any queuing system could be used. Implementing the SQSObjectCache allowed me to make use of
Simple Queue Service (SQS) with the parsers, enabling me to use the queue size triggers I believed
I would need to use to implement the lambda function. In the end I used it as a simple queue
which would be isolated for the rest of the Blurrt system.

It has 4 important methods which needed to be implemented from the interface, and one less
so; getDataBatch, save, markDataBatchProcessed, markDataBatchUnprocessed and addToQueue.
Every time a data batch is taken the message tags are added to the currentMessageTags array which
was responsible for holding the IDs that need to be sent in the markDataBatchProcessed method
in order to have them deleted off the queue. MarkDataBatchUnprocessed was interesting with
SQS because it handles that for you, you don’t need to send a request to the queue for this it
simply re-adds it if it hasn’t been marked as processed, this meant all I had to do was clear out the
currentMessageTags array in order to ensure this worked correctly when something is unprocessed
otherwise it would be deleted with the next getDataBatch.

4.4.2 How the SQSObjectCache Was Implemented

The implementation of SQSObject cache was straight forward I simply implemented the methods
required in the interface and referred to the RabbitObjectCache if I was unsure what was needed
for a certain method.

The most notable problem I encountered during the implementation of this was that you don’t
mark data batches as unprocessed, anything that isn’t marked as processed, which is done through
deletion off the queue, is re-added after a set period of time (which defaults to 3 minutes) after it
has first been taken off the queue, that meant initially I believed I could just leave the mark data
batch unprocessed method blank but I was finding I was accidentally marking too large batches
processed because I forgot to clear my record of what has been processed Once I had remedied
this by ensuring markDataBatchUnprocessed cleared this array of previously processed values SQS
worked as expected.

4.5 Implementation of the Scaling System

4.5.1 Overview of the Scaling System

The scaling system which is implemented in the file scaling-manager.js is the system responsible
for performing scaling operations, it has 5 important methods scaleSwarmService, getAuthoriza-
tionToken, waitForScalingToComplete, updateDesiredCapacity and describeAutoScalingGroups.
There is also a method scaleProcess which takes as arguments whether we want to scale up or
down and the magnitude of that scaling, it then triggers off those 5 methods in the correct order,
this method forms the way to trigger the scaling from the monitoring system. Essentially this
scaling system performs the following steps:

1. Ssh into the server.

2. Perform a docker login command to ensure that the token hasn’t expired from the previous
time it was scaled.

3. If scaling up check whether the new node has been added to the swarm yet if it’s scaling
down skip to 5.

16

4. If it hadn’t been added wait a time period and then check again.

5. Scale the size of the swarm to the size requested using a docker swarm scale command.

6. Disconnect from the server.

One of the most complicated methods for this is waitForScalingToComplete. This is a loop
which, if the system is scaling up, performs an ssh operation onto the manager node and then checks
the number of nodes on the system, if it matches up with the number that would have been expected
from the updateDesiredCapacity operation it then stops looping and calls the scaleSwarmService
function. It only performs this waiting if it is scaling up as if it did this when scaling down the
swarm service would automatically recreate the parsing containers (which were destroyed from the
destruction of the instance) on the remaining instances to maintain the service size, this would
then cause the memory on the instance to be exceeded. This meant it would be preferable to scale
down the size of the swarm instantly, I placed a condition into the code which said if it was scaling
down to not wait for the swarm to scale before scaling the service.

The other complicated method is scaleSwarmService which is the function directly responsible
for altering the amount of parsers. It performs an ssh operation into the manager node and then
scales the swarm size by performing a ”docker service scale parsingprocess=[desired service size]”
command, where the desired service size is passed as a method to the function, it then disconnects
from the server.

4.5.2 How the Scaling System Was Implemented

After node was set up I had to install the AWS sdk, this is done through node package manager
(npm) and the configuration file package.json, which I created a small one of for my project, I then
performed npm install within the folder installing the sdk. I also needed some way to get onto the
server to perform the scaling operation via ssh, this was done via another package from npm called
ssh2.

When I first started writing the scaling code I was unaware of the proper coding conventions for
node, I created my code as many nested callbacks which quickly became unreadable, after further
research I found it was possible to use promises. This did a few things I was finding very difficult
to do with nested callbacks and made my code much more readable. This required me rewriting
a fair chunk of the scaling system so it all used them however I believe this paid off in the end as
my code is now more readable and extensible for anyone who wishes to alter or work on my code
in the future.

Another problem I encountered when I initially began implementing this was when I believed
it would be in the form of a lambda function which triggered via the queue size, my plan being to
have the built in Amazon SQS triggers available for lambda to fire off my lambda function when the
queue size got above or below the monitoring queue size thresholds I set via the AWS web portal
and it would then perform the scaling on the docker swarm for me. During the implementation
of the scaling function I realised the methods I was using to try and change the size of the queue
were simply AWS methods available in the SDK and I could simply implement it by using npm to
install the SDK without needing to use the lambda function as an extra step.

4.6 Implementation of the Monitoring System

4.6.1 Overview of the Monitoring System

The final part of the system which was implemented was the queue handling system, this was a
separate file called queue-handler.js which required the scaling manager file. This file ran as a
continuous process with a loop every 30 seconds to examine the queue size and apply my scaling
rules in order to trigger the scaling process through the scaling manager’s scaleProcess method. It
contains 5 main functions, examineQueueSize responsible for returning the queue size, checkQueue-
SizeRules responsible for triggering the scaling operations based on the queue size, addDataValue-
ToPreviousArray responsible for documenting the previous values which is used by one of the rules,
sendGraphiteRequest which sends a request to the graphite monitoring server and sendGraphite-
GroupSizeRequest which sends a graphite request specifically with the group size. There is also the
start method which sets up a timer every 30 seconds to trigger another method, checkAndUpda-
teOperation, which pulls together all of the aforementioned methods together and executes them
in the correct order.

17

The most important method is checkQueueSizeRules, this method either scales up by 2 instances
if the queue size is above 4000 or scales up by 1 instance if it is above 2000, this is important as
it is able to account for if a very dramatic increase in queue size of over 2000 was able to occur
since the previous check which would require dramatic scaling to keep up with. If the queue size is
less than 500 it scales down by 1 instance, this doesn’t scale down as dramatically as it scales up
deliberately in order to prevent downscaling too quickly and having to then scale up again. The
last rule in this function is a rule which looks at the result from the previous 5 queue size checks
and if each one is greater than the previous scales up, this rule is in place to prevent a creeping
effect where the queue could be consistently going up, leading to a constant backlog of a minute
in parsing time or so, but not by enough to scale for a considerable amount of time. The number
of previous queue size checks to look at are handled by a variable hard-coded at the top of the file
previousValuesLength which can be altered as you wish but needs to be small enough to have a
tangible chance of triggering with the number of messages difference between the scaling up and
scaling down thresholds. This array containing the previous queue size values is handled by the
addDataValueToPreviousArray method which creates a rolling queue of the size specified at the
top, filling it up until it reaches the desired length and then repeatedly deleting the oldest value
to add the newest value at the end of the array.

Another notable method is sendGraphiteRequest this allows for sending to the server monitoring
system the value of the number of nodes in swarm and the size of the queue. In the implementation
of sending the number of nodes in the swarm I hardcoded the manager node count to be 1 for the
sake of simplicity but this could implemented dynamically by querying the size of the manager
scaling group as well as the worker scaling group.

4.6.2 How the Monitoring System Was Implemented

This file makes use of the AWS sdk also used by the scaling manager as well as a new npm package
graphite, this allows for easy communication with the graphite server and prevented me having to
implement the UDP request manually in javascript, which would have been time consuming and
less extensible.

The only significant issue I had during implementing the queue-handler was this graphite mod-
ule, which was simple to use once I worked out the correct way to formulate requests however I
found very little documentation for it online and there was little in the way of a readme on the
github page which meant that I had to work out its functionality mostly on my own.

5 Results and Evaluation

5.1 System Demonstration

In figure 7 you can see the graphite graph of the data sent from the monitoring script over a 40
minute period, it starts with an empty queue and a one node cluster running 2 parsing operations
and I then add 9000 tweet json objects to the queue in 1000 tweet chunks. I chose to use the PHP
5 iteration of the parser to demonstrate this as it parses slightly slower and as such would give a
larger peak on the queue size graph and take longer to go down.

The system responded to increased demand as soon as the queue reached above the 2000 size
threshold and as expected scaled up by 1 node, the 3 minute cooldown was then in place to prevent
many scaling operations from occurring before the system has finished scaling. It appears from
the chart that this operation took less than the 3 minutes I specified, this is on Amazon’s end
as they are in control of when the cooldown period actually gets acted upon. After this period
was over the system looked again at queue size and found it was still above threshold this time
over the 4000 size threshold and so scaled up by 2 nodes rather than just one, after this operation
was completed there was a total cluster size of 4 nodes running 8 parsing processes. Up until the
peak at 15:29 you can see the increase in size of the queue is starting to be brought down by the
increased number of parsing processes, at 15:29 the 9000 messages have been completely added
and the queue only starts to go down. When the cooldown is completed at 15:32 the queue is
still above the 4000 tweet threshold and so scales up again despite the fact no more messages are
actually being added. The cooldown for this operation seems to have taken 5 minutes at Amazon’s
end as the system refused to scale down before 15:38 even though several requests to scale down
had been made during this period. After 15:36 the queue had been completely emptied but the

18

Figure 7: Graph Showing Increase in Deployment Speed Between Docker and Rackspace

system still needed to scale down, all of these subsequent scaling operations took 4 minutes to be
allowed to cooldown on Amazon’s end.

5.2 Performance Analysis

5.3 Parser Deployment Speed Testing

5.3.1 Justification of Parser Deployment Speed Testing

The first and main aim I wished to show through my performance analysis was an increase in the
speed of the deployment of the parsers. In order to test the speed of the existing parser deployment
I created a small script by editing the existing deployment script in appendix A so that it always
scaled when called and display the exact time when executed, I then edited the existing parsing
image and added a print statement inside the parsing method to display the date every time it
goes through the parsing loop, which is logged in the log files. I then created a new image from
this edited code and created a new autoscaling group and assigned the new image I had created to
it. I am then able ssh into the server and view the log to see when the earliest print statement is
in the log files and from that I can work out quite accurately when the parsing process began by
subtracting the time taken between the time shown from the altered scaling script which creates
the server to the time shown in the log files, accounting for any difference in the system time on
the machines after running the date command at the same time on both.

In order to test the speed of the Docker development server I created a script by editing the
scaling-manager code so that it would execute on demand and ran it through the command line
prepending ”date &&” to the command this gave me the time it started and appending ”&& date”
as it would exit when the scaling is completed. I then noted the the 2 times down and calculated
the difference.

5.3.2 Results of Parser Deployment Speed Testing

From figure 8 you can see a reduction in parser creation speed of approximately 200 seconds,
which is a dramatic improvement to the original deployment speed, part of this is likely due
to improvements in architecture compared from AWS to Rackspace. I also think a substantial
proportion of the deployment speed improvement is due to the instances themselves needing a very
minimal base image to set up docker and the inherent speed of deployment of docker containers
on top of that.

19

Figure 8: Graph Showing Increase in Deployment Speed Between Docker and Rackspace

Table 1: Parser Deployment Speed Results (Seconds)

Test Number Rackspace Docker
1 419 146
2 336 142
3 280 141
4 353 141
5 285 121

Average 334.25 137.25

5.4 Throughput Testing

5.4.1 Justification for Throughput Testing

The next test I did was to see if there was a increase of reduction in the throughput of the parser,
both in terms of switching from Rackspace in order to do this I measured the rate at which 1
parser parses 1000 tweets when comparing Rackspace hosting to Docker on AWS because whilst
the parser deployment speed looks promising it is not useful if that then leads to a significant drop
in the actual speed of the parsing itself. On the flip side if the change from switching to a Docker
or a different hosting service can actually lead to performance gains it has the potential to save
money as less parsing processes are required to parse the same throughput of tweets.

These tests were done on t2.small instances which is relevant to this test as t2 instances have
a CPU credit system meaning that they have an amount of ”tokens” allocated to them allowing
for burst CPU usage but after that has been used up their CPU usage is throttled, this is an issue
for parsing because it is something which tends to run continuously and it could potentially lead
to a situation where the server runs out of credits and is not able to get rid of the queue sizes as
fast as this testing shows. If that was the case I could look into changing the instance type from a
t2 small to one of the compute instances c4.large or m4.large. This test should therefore be seen
as a view of the throughput of these instances when running at their highest capacity possible.

In order to get fair timings of the parsing speed I had to ensure the docker images required
to do this testing were already in place on the nodes before executing the command to start the
parser, if I did not do this it would take around 5 to 10 seconds to download the image which
would adversely affect the validity of the results. I did this by creating a docker service across all
nodes to ensure each has the image on it already meaning when I execute the test none of them
would need to download the image. In order to ensure I had a fixed testing benchmark I made use
of a modified version of the SQSObjectCache.php with the following additions which are available
for view in appendix C.5.

While this was not a perfect test as I could not easily replicate 1000 different tweet objects that
also happen to be realistic, I could however replicate 1000 very similar tweet objects, which is what

20

I did here. This ensured that while I might not necessarily have a completely accurate picture
of what the parsing speed of the parser would be in reality, as the very similar objects might by
chance be very quick or very slow compared to other objects, I could perform a good comparison
between the different hosting systems on the same objects which is what I did here. In an ideal
test I would have 1000 different real tweet objects and have each parser go through them and time
that for speed.

Another important thing to note about my results is that the Dockerised parser on Rackspace
and non-dockerised parsers were on different servers, one of which has 8GB of RAM and 8CPUs
and the other 2GB of RAM and 2 CPUs, while the process itself does not use 2GB of RAM and
is only single threaded this may still impact the results if other processes are running and need
to use the CPU while the process is running or the individual CPUs are better on either virtual
machine.

5.4.2 Results of Throughput Testing

Figure 9: Speed of Parsing 1000 Tweets (Seconds)

From the results you can see in Figure 9 it shows some interesting conclusions such as running
a Dockerised parser is slightly slower than a non dockerised parser on Rackspace it is only slower
by around 30 seconds which may partly be down to the less powerful server but you most likely
would expect a slight overhead from running it on Docker. Docker on AWS is significantly faster
by around 60 seconds which suggests that the infrastructure on Amazon is using significantly more
powerful CPUs than Rackspace are. Another reason for the increase may be that the more minimal
instances running the docker cluster on AWS are causing it take up less CPU cycles when it is not
executing the parsing process compared to Ubuntu on Rackspace. In terms of PHP 7 compared
to PHP 5 it is significantly faster, with the time taken to run being over a minute less than PHP
5 on AWS and nearly 3 minutes on Rackspace. The most interesting thing about the results from
this being that both Rackspace and AWS have very similar execution times on for Dockerised
PHP 7 even though when comparing the exact same machines the only difference being PHP 5 the
performance on AWS is several magnitudes better. If I had more time I would wish to do further
tests to see if these trends continue or if there just happened to be some anomalous work on the
server which was causing the slow down.

5.5 Cost Analysis

5.5.1 Justification of Cost Analysis

The final test I did was an analysis of the costs of running the servers over a month long period
compared to the existing Rackspace system. In order to do this I calculated the costs of the AWS
and Rackspace servers per month and made use of the throughput testing results to work out
what the relative cost would be to get the same parsing processing power, I then projected these
results onto 2 other potential instance types, c4 and m4 in order to see what the potential costs
could be for running this system if the t2 instance regularly exceeds all the allotted credits. In
order to simplify the numbers for the equivalent number of parsers I chose to use 0.4 as the parser
speed ratio rather than the more slightly accurate value of 0.42, simply as this makes it much more
easy to understand how one Rackspace virtual machine on Rackspace equates to one instance on
AWS. This value is calculated through the percentage of time taken to parse 1000 tweets on AWS
compared to Rackspace using the values in figure 9:

100

238
× 100 = 42.02 (1)

21

Another important thing to note is that while the Rackspace server has 8 CPUs for 8 parsing
processes on AWS I placed twice the number of processes compared to the number of CPUs, this
was due to AWS instances tend to have RAM GB values twice the number of CPUs, this could
lead to a reduction in parsing speed on all 3 of the instances. However at the worst case scenario
the performance would be twice as slow as the best case, increasing the costs by two times, in
reality it is more likely to be between the two as while 2 processes competing for 1 CPU would
over-utilise the resources the time taken to wait on the response of requests to the queuing system
would be able to be utilised by the greater number of parsing processes.

5.5.2 Results of Cost Analysis

Figure 10: Chart showing the relative costs of running servers on AWS and rackspace

In figure 10 you can see the calculation of the relative cost of running the system on AWS as
opposed to rackspace. All servers show an improvement over the the costs on rackspace however
the very low cost of running the t2 instance is deceptive as if it exceeds the number of instance
credits the CPU power will drop to 20% of what is shown here, which is reflected in the value of
relative cost if all parsing credits are exceeded. Even in the very worst case scenario I am still
able to demonstrate a reduction in costs with c4 and m4 instances. At best case scenario with a
t2 instance not utilising all the credits the cost reduction would be around 87% however on worst
case this could be an increase of 33% which would not be ideal. The other instances are always
superior however, with c4 and m4 at worst showing a reduction of 39% and 35% respectively.

5.6 Comparison to Initial Design

In section 3.5 I include my final component and class diagrams and discuss some of the improve-
ments I made to my design. In this section I wish to expand on more detail some things which
aren’t apparent from those finished system diagrams as they were things which came up during
the implementation of the new design. The most notable change was that after the conversion to
using a scaling manager to scale both the swarm and the service I initially only had one method
which was responsible for scaling both the swarm and afterwards the service, this quickly became
unmaintainable as the complexity of it increased. By splitting these up into the functions you can
see in the class diagram in figure 5 it makes it much simpler and more object oriented.

5.7 Meeting the Aims

I have been able to demonstrate meeting my aims in terms of improving the speed of creation of
parsers by reducing time taken to create parsers by up to 60%, the system I have created is also
easier to implement patches and updates for as it is very conceivable that the creation of a docker
image can be easily automated although I didn’t have time to do this in this project. In regards
to increasing the granularity of deployment I can definitely say that has been achieved as I have
moved from scaling up in 8 parser instances on Rackspace to 2 parser instances on AWS, while the
”sawtoothing” is still present and unlikely to be removed completely until the implementation of
throughput measuring and predictive algorithm has been achieved the problem has been improved
substantially. In terms of costs I cannot conclusively say that the costs have been reduced without
running the server for a sustained period of time and documenting how much it cost. In terms of
cost analysis however the current system could potentially at the very worst cost slightly more to
run than the original system or at the best significantly less, however from the analysis I have done

22

I am able to demonstrate that if I haven’t managed to reduce the costs with the current instance
type I have the potential to through changing the instance type to a larger one which handles
consistent CPU throughput better such as c4 or m4.

Overall I believe from this that my project was on the whole successful. While there are
still a lot of ways I would like to expand this project further, especially in terms of predicting
throughput and performing proper analysis on what the most cost effective instances to run would
be, it achieved the main goal of creating a more responsive autoscaling system. In terms of the
strengths of my project I believe the system I have created takes advantages of the best aspects
of my chosen architecture such as fast container creation while helping alleviate the poorer parts
of the architecture such as the disconnect between the instances themselves and the containers
running on the instances making the system quite resilient. In terms of weaknesses I would liked
to have been able to show a more substantial improvement in terms of the costs of running the
system and I would also have liked to be able to implement scaling rules based off of throughput
rather than just the existing threshold based ones. I would also have liked to have implemented
some form of predictive algorithm to calculate trends in demand and scale up in advance but I did
not have time, I have done the performance analysis required in order to potentially implement
this in the future however.

I believe the choice of technologies was mostly appropriate, I feel if I had used Kubernetes
instead of Docker Swarm there would have been the potential for some of the work I had to do in
terms of scaling up in groups being done for me via pods rather than them have to be implemented
by hard-coding in the number of processes I wished to have on each node myself. I believe node,
my choice of programming language, was not the necessarily best choice for this project as it made
setting timed loops rather difficult and the the event driven programming could be complicated to
work with at times. With that in mind I think python could have been a better overall language
to use for this project. Node did have a lot of benefits however, it fits in well with the software
stack at Blurrt, where it is being used already and python is not. It also has a large number of
modules available and easy to include in the project which made interacting with other systems
very simple through modules such as the ssh and graphite ones I used.

6 Future Work

I did not have time to achieve everything I would have liked to have done during my project and
there are several areas I would liked to have improved on in order of decreasing importance:

• Implement proper throughput calculation within the queue handler and implement scaling
rules based off of tested parser throughput values, this would require doing more testing on
throughput of parsers and potentially future work to update this rate each patch based on
alterations to parser code.

• Find or create a way to perform throughput tests with an accurate number of messages per
minute input in order to better demonstrate the workings of the system over time.

• Test other instance sizes to work out which would be the most cost effective for running the
parsers and the correct number of parsers to number of CPUs ratio to run on them.

• Implement the cooldown periods myself within the queue size handler to avoid the inconsis-
tent cooldown periods provided by Amazon and allow for longer downscaling cooldowns to
implement a ”fast upscale slow downscale” architecture.

• Implement a system which instead of immediately scaling down nodes from the swarm waits
until the end of the hour long billing period is about to come to an end to do so and in the
meantime scales only the service instead. Then implement a system which checks if there is
a greater number of nodes available than there are containers to utilise the resources when it
comes to scaling up and if so only scales up the service not the swarm itself. This will mean
that if a the size of the swarm were to go down and then go up within an hour the scaling
up will be essentially free for the remaining time until the hour billing period as the node
is already paid for as opposed to creating a new one, this will lead to almost instantaneous
scaling of the size of the service as the majority of scaling time is creating the instance and
adding it to the swarm whereas creating containers on existing nodes takes less than 10
seconds.

23

• Research which AWS instance would be the most suitable to use as the nodes of the swarm.
This would be based on analysis of how heavily the parsers utilise the CPU and the cost of
each instance relative to the number of parsers that could run on it, accounting for the fact
that we wish to keep the number of parsers per instance relatively low to avoid over scaling.

• Allow for altering the size of the manager nodes and remove the hard coded values which
refer to there being 1 manager node from the code which was done for simplicity.

• Create a system to automate the patching process through use of a continuous integration
system or some other method.

• Clear up some of the command line output display from running the queue-handler which
can sometimes show poorly formatted.

7 Conclusions

This project’s aim was to see if it was possible to implement a more responsive autoscaling system
which was able to scale more rapidly to meet demand while also improving the granularity of the
scaling to prevent sawtoothing as well as aiming to reduce the running costs. After selecting Docker
for AWS as the underlying infrastructure I then designed and implemented a comprehensive scaling
strategy capable of gracefully scaling the underlying node count and the size of the service running
on it. Through my performance analysis I have managed to demonstrate significant improvements
in parser deployment speed with 59% improvements compared to the original system. Further
analysis of the processing performance yielded 58% improvement in terms of time taken to perform
a parsing task. While I was not able to conclusively prove the system in its current state has cost
benefits I have demonstrated the potential for significant cost savings by altering the choice of
instance the swarm uses for its nodes with at the bare minimum a 39% reduction in running costs.
This project makes a respectable contribution into the area of end user autoscaling deployment
responsiveness an area which there has been little to no other research on so far and provides a
reasonable starting point for anyone wishing to look further into the matter. Further continuation
of this research could lead to improvements in scaling rules and the potential for more complex
scaling management systems which take into account aspects such as the hosting platform’s billing
model to gain cost reductions and scaling speed improvements.

8 Reflections

Although during this project I was working on a system I already some understanding of, having
worked at the company during my placement year last year, when I started working on this project
I did not have a deep understanding of the intricacies of the existing system or the technologies
I would be using to implement this project. As such may have overestimated the time I had to
implement the system to reduce sawtoothing through some form of predictive algorithm. From
looking at my initial plan and gantt chart I exceeded the amount of time required to implement
the scaling system by 2 weeks and as such had very little time to implement new rules for the
scaling system, this backs up my belief that I overestimated my ability to implement the system
when there were so many different parts I needed to get working I had no prior knowledge of.

Another aspect I found challenging in the project was implementing meaningful performance
analyses, were I to go back and do the project again I would plan out my performance analyses
earlier on in the project instead of waiting until the end of the project as I believe it would make
it easier to demonstrate significant improvements in the software. Had I planned out in advance
the cost analysis I would have realised that while the t2 instance is great for simple development
its properties make it very difficult to demonstrate a significant cost improvement.

In terms of the implementation of the software I was very satisfied with the eventual end
product. While during my initial designs using lambda I was concerned that I wouldn’t be able to
get everything working as smoothly as I would have liked when I realised that I could implement
a system without using lambda the design became much more streamlined. Aspects of the system
which were previously quite complicated to orchestrate became much simpler when everything was
directly controlled from one queue handling system.

24

In terms of the report I believe I would have benefited greatly from starting my write up aspect
earlier, while I documented the work I did as I went through in notes it would have been much
easier to write it up formally when it was fresh in my mind. This was a prioritisation issue on my
part as I prioritised working on the implementation than the report itself as I believed that was the
most important aspect. It would also have been beneficial me to get feedback from my supervisor
on my report contents much earlier. Through writing the report I have learnt a lot about the
process and motivation required to write very long texts, not just a report, which is something I
had previously not done during my schooling or university.

Overall I think the project went well especially in regards to the finished product which while
not having every feature I would have liked, has the work in place to expand upon and implement
further extensions. The skills I have learnt in taking a concept and idea and implementing an
entire functioning working system is something I will be able to take with me into future work not
just in computer science but any other field I put my mind to.

25

A
update blurrt stats.sh

1 #!/ bin / sh
2
3 HOSTNAME=$ (hostname)
4 CPU USAGE=$ (top −b −n2 | grep ”Cpu(s) ” | t a i l −n 1 | awk ’{ pr in t $2 + $4

↪→ } ’)
5 TWEET COLLECTION RATE=$ (c u r l −s −u user : password −H ”Content−Type :

↪→ a p p l i c a t i o n / j son ” l o c a l h o s t :15672/ api / queues | python −c ’ import
↪→ j son , sys ; obj=j son . load (sys . s td in) ; p r i n t obj [6] [” mes sage s ta t s
↪→ ”] [” p u b l i s h d e t a i l s ”] [” r a t e ”]∗6 0 ’)

6 TWEETS NOT PARSED=$ (c u r l −s −u user : password −H ”Content−Type :
↪→ a p p l i c a t i o n / j son ” l o c a l h o s t :15672/ api / queues | python −c ’ import
↪→ j son , sys ; obj=j son . load (sys . s td in) ; p r i n t obj [6] [” messages ”] ’)

7
8 PARSERS=$ (ps aux | grep p a r s e b l u r r t s . php | grep gp tweets | wc − l)
9 echo ” b l u r r t . gn ippa r s e r s . ${HOSTNAME} ${PARSERS} ‘ date +%s ‘ ” | nc −q0

↪→ s e r v e r s t a t s . b l u r r t . co . uk 2003
10
11 echo ” b l u r r t . ${HOSTNAME} . dbspace used ${DBSPACE USED} ‘ date +%s ‘ ” | nc

↪→ −q0 s e r v e r s t a t s . b l u r r t . co . uk 2003
12 echo ” b l u r r t . ${HOSTNAME} . cpu usage ${CPU USAGE} ‘ date +%s ‘ ” | nc −q0

↪→ s e r v e r s t a t s . b l u r r t . co . uk 2003
13
14
15 echo ” b l u r r t . ${HOSTNAME} . t w e e t g p c o l l e c t i o n r a t e ${

↪→ TWEET COLLECTION RATE} ‘ date +%s ‘ ” | nc −q0 s e r v e r s t a t s . b l u r r t .
↪→ co . uk 2003

16 echo ” b l u r r t . ${HOSTNAME} . unparsed gp tweets ${TWEETS NOT PARSED} ‘ date
↪→ +%s ‘ ” | nc −q0 s e r v e r s t a t s . b l u r r t . co . uk 2003

17
18
19 i f [”$TWEETS NOT PARSED” −gt ”2000”] ; then
20 c u r l −s https : // lon . a u t o s c a l e . ap i . rackspacec loud . com/v1 .0/ execute /1/7

↪→ a88dc397443f1028e6d462ce629395f353a68ef497007750dc821757b48663a
↪→ / −X ’POST’ −d ’{” auth ” :{” passwordCredent ia l s ” :{” username ” :”
↪→ user ” , ”password ” :” password ”}}} ’ −H ”Content−Type :
↪→ a p p l i c a t i o n / j son ” ;

21 f i
22
23 i f [”$TWEETS NOT PARSED” − l t ”500”] ; then
24 c u r l −s https : // lon . a u t o s c a l e . ap i . rackspacec loud . com/v1 .0/ execute

↪→ /1/314
↪→ b19ce819173945d4beb4748746fbbed48a55e6d5a534ecdc61c3bed38eb07 /
↪→ −X ’POST’ −d ’{” auth ” :{” passwordCredent ia l s ” :{” username ” :”
↪→ user ” , ”password ” :” password ”}}} ’ −H ”Content−Type :
↪→ a p p l i c a t i o n / j son ” ;

25 f i

B
PostedObjectCache.php

1 <?php
2 abs t r a c t c l a s s PostedObjectCache

26

3 {
4 var $defaultBatchCount = 100 ;
5
6 abs t r a c t pro tec ted func t i on addToQueue ($data) ;
7 ab s t r a c t pro tec ted func t i on getDataBatch () ;
8 ab s t r a c t pro tec ted func t i on markDataBatchProcessed () ;
9 ab s t r a c t pro tec ted func t i on markDataBatchUnprocessed () ;

10
11 pub l i c func t i on debugMessage ($message)
12 {
13 p r i n t r ($message) ;
14 p r i n t r (”\n”) ;
15 }
16 }
17 ?>

C
Full Code Listings

C.1 queue-handler.js

1 ’ use s t r i c t ’ ;
2
3 const AWS = r e q u i r e (” aws−sdk ”) ;
4 const g r a p h i t e = r e q u i r e (’ graphite ’) ;
5 const c l i e n t = g r a p h i t e . c r e a t e C l i e n t (’ p l a i n t e x t : // s e r v e r s t a t s . b l u r r t

↪→ . co . uk :2003/ ’) ;
6
7 const s c a l i n g P r o c e s s = r e q u i r e (’ . / s c a l i n g−manager . j s ’) ;
8
9 const sqs = new AWS. SQS({

10 // sq su s e r
11 accessKeyId : ’AKIAJEPTNRHRDNIY2KDA’ ,
12 secretAccessKey : ’ password ’ ,
13 r eg i on : ’ eu−west−2’
14 }) ;
15
16 const aws queue ur l s =
17 {
18 dev : {
19 gnip : ’ https : // sqs . eu−west−2.amazonaws . com/697738154271/

↪→ GnipParsingQueueTest ’ ,
20 parsed : ’ https : // sqs . eu−west−2.amazonaws . com/697738154271/

↪→ ParsedQueueTest ’
21 } ,
22 } ;
23
24 var prev iousValues = [] ;
25 var previousValuesLength = 5 ;
26
27 func t i on examineQueueSize () {
28 return new Promise (func t i on (r e so l v e , r e j e c t) {
29 var params = {
30 QueueUrl : aws queue ur l s . dev . gnip ,
31 AttributeNames : [’ All ’]
32 } ;

27

33 sqs . getQueueAttr ibutes (params , func t i on (err , data) {
34 i f (e r r) {
35 conso l e . l og (err , e r r . s tack) ; // an e r r o r occurred
36 r e j e c t (e r r) ;
37 re turn ;
38 }// an e r r o r occurred
39 e l s e {
40 conso l e . l og (data) ;
41 r e s o l v e (data) ;
42 }
43 }) ;
44 }) ;
45 }
46
47 func t i on checkQueueSizeRules (data) {
48 i f (data . At t r ibute s . ApproximateNumberOfMessages > 4000) {
49 conso l e . l og (” c a l l i n g to s c a l e with up 2”) ;
50 s c a l i n g P r o c e s s . s c a l e P r o c e s s (’ up ’ , 2) ;
51 }
52 e l s e i f (data . At t r ibute s . ApproximateNumberOfMessages > 2000) {
53 conso l e . l og (” c a l l i n g to s c a l e with up”) ;
54 s c a l i n g P r o c e s s . s c a l e P r o c e s s (’ up ’) ;
55 }
56 e l s e i f (data . At t r ibute s . ApproximateNumberOfMessages < 500) {
57 conso l e . l og (” c a l l i n g to s c a l e with down”) ;
58 s c a l i n g P r o c e s s . s c a l e P r o c e s s (’ down ’) ;
59 }
60 e l s e {
61 var scaleUpCount = 0 ;
62 // f o r every value in the prev ious va lue s array
63 f o r (var i = 1 ; i < previousValuesLength −1; i++){
64 // i f i t ’ s l a r g e r than the prev ious one
65 i f (prev iousValues [i]>prev iousValues [i −1]){
66 // increment the counter
67 scaleUpCount += 1 ;
68 }
69 }
70 // i f they are a l l l a r g e r than the prev ious one s c a l e up
71 i f (scaleUpCount==previousValuesLength −1){
72 conso l e . l og (” c a l l i n g to s c a l e with up”) ;
73 s c a l i n g P r o c e s s . s c a l e P r o c e s s (’ up ’) ;
74 }
75 e l s e {
76 conso l e . l og (”we aren ’ t doing anything ”) ;
77 }
78 }
79
80 addDataValueToPreviousArray (data . At t r ibute s .

↪→ ApproximateNumberOfMessages) ;
81 sendGraphiteGroupSizeRequest () ;
82 sendGraphiteRequest (’ b l u r r t . sqs . unparsed messages . dev ’ , data .

↪→ Att r ibut e s . ApproximateNumberOfMessages) ;
83 re turn ;
84 }
85
86 func t i on addDataValueToPreviousArray (numberOfMessages) {
87 i f (prev iousValues . length>=previousValuesLength) {
88 //5 i s newest 0 i s o l d e s t

28

89 var newArray = []
90 f o r (var i = 1 ; i < previousValuesLength ; i++){
91 newArray [i −1] = prev iousValues [i] ;
92 }
93 newArray [previousValuesLength −1] = numberOfMessages ;
94 prev iousValues = newArray ;
95 conso l e . l og (prev iousValues) ;
96 }
97 e l s e {
98 prev iousValues . push (numberOfMessages) ;
99 conso l e . l og (prev iousValues) ;

100 }
101 }
102
103 func t i on sendGraphiteRequest (metric , va lue) {
104 var metr i c s = {} ;
105 metr i c s [metr ic] = value ;
106 conso l e . l og (met r i c s) ;
107
108 c l i e n t . wr i t e (metr ics , f unc t i on (e r r)
109 {
110 i f (e r r)
111 re turn conso l e . e r r o r (’ Error sending s t a t s to g raph i t e : ’ , e r r) ;
112
113 conso l e . l og (’ S ta t s sent to Graphite : ’ , met r i c s) ;
114 }) ;
115 }
116
117 func t i on sendGraphiteGroupSizeRequest () {
118 // conso l e . l og (” i n s i d e group s i z e r eques t ”) ;
119 s c a l i n g P r o c e s s . descr ibeAutoScal ingGroups ({
120 AutoScalingGroupNames : [
121 ”DockerDevelopment−NodeAsg−10ARXIFYRZIED”
122]
123 }) . then (func t i on (data) {
124 // s i z e o f node group p lus 1 manager node , shouldn ’ t be hardcoded
125 sendGraphiteRequest (’ b l u r r t . docker . t o ta l node count . dev ’ , data .

↪→ AutoScalingGroups [0] . I n s t ance s . l ength + 1)
126 }) ;
127 }
128
129 func t i on checkAndUpdateOperation () {
130 examineQueueSize ()
131 . then (checkQueueSizeRules) ;
132 }
133
134 func t i on s t a r t () {
135 var t imer = s e t I n t e r v a l (func t i on () {
136 checkAndUpdateOperation () ;
137 } , 30000) ;
138 }
139 s t a r t () ;

C.2 scaling-manager.js

1 ’ use s t r i c t ’ ;
2

29

3 const AWS = r e q u i r e (” aws−sdk ”) ;
4 const C l i en t = r e q u i r e (’ ssh2 ’) . C l i en t ;
5 const f s = r e q u i r e (’ f s ’) ;
6
7 // the user which has a c c e s s to lambda and a u t o s c a l i n g pe rmi s s i ons
8 // lambda not needed any more
9 const a u t o s c a l i n g = new AWS. AutoScal ing ({

10 // lambdauser
11 accessKeyId : ’AKIAIR6UXIYL3VEG5GOA’ ,
12 secretAccessKey : ’ password ’ ,
13 r eg i on : ’ eu−west−2’
14 }) ;
15
16 const ec r = new AWS.ECR({
17 // dockeruser
18 accessKeyId : ’AKIAI5W32RTG55UOR2RA’ ,
19 secretAccessKey : ’ password ’ ,
20 r eg i on : ’ eu−west−2’
21 }) ;
22
23 const managerNodes = {
24 dev : ’ 5 2 . 5 6 . 1 5 8 . 2 0 3 ’ ,
25 prod : ’ ’
26
27 } ;
28
29 var GroupNames = {
30 AutoScalingGroupNames : [
31 ”DockerDevelopment−NodeAsg−10ARXIFYRZIED”
32]
33 } ;
34
35 var mode = ”” ;
36 var magnitude = 1 ;
37
38 func t i on descr ibeAutoScal ingGroups (groupNames) {
39 return new Promise (func t i on (r e so l v e , r e j e c t)
40 {
41 a u t o s c a l i n g . descr ibeAutoSca l ingGroups (groupNames , f unc t i on (err ,

↪→ groups)
42 {
43 i f (e r r) {
44 conso l e . l og (err , e r r . s tack) ;
45 r e j e c t (e r r) ;
46 re turn ;
47 }
48
49 r e s o l v e (groups) ;
50 }) ;
51 }) ;
52 }
53
54 func t i on updateDesiredCapacity (input) {
55
56 var params = {
57 AutoScalingGroupName : ”DockerDevelopment−NodeAsg−10ARXIFYRZIED

↪→ ” ,
58 HonorCooldown : t rue

30

59 } ;
60
61 i f (mode==’up ’) {
62 params . Des iredCapacity = input . AutoScalingGroups [0] . Des i redCapacity

↪→ + magnitude ;
63 }
64 e l s e {
65 params . Des iredCapacity = input . AutoScalingGroups [0] . Des i redCapacity

↪→ − magnitude ;
66 }
67
68 return new Promise (func t i on (r e so l v e , r e j e c t) {
69 a u t o s c a l i n g . s e tDes i r edCapac i ty (params , func t i on (err , data) {
70 i f (e r r) {
71 i f (e r r . code == ’ Sca l i ngAct i v i t y InProg r e s s ’) {
72 conso l e . l og (” Already s c a l i n g ”) ;
73 }
74 e l s e i f (e r r . code == ’ Val idat ionError ’ && e r r . message == ’New

↪→ SetDes i redCapac i ty value −1 i s negat ive . ’) {
75 //do nothing i f i t ’ s below d e s i r e d capac i ty
76 }
77 e l s e {
78 conso l e . l og (err , e r r . s tack) ; // an e r r o r occurred
79 }
80
81 return ;
82 }
83 conso l e . l og (’ s u c c e s s f u l l y updated ’) ;
84 r e s o l v e (params) ;
85 }) ;
86 }) ;
87
88 }
89
90 func t i on waitForScalingToComplete (params) {
91 return new Promise (func t i on (r e so l v e , r e j e c t) {
92 // i f s c a l i n g down don ’ t bother wai t ing s c a l e down in advance and

↪→ l e t the nodes be reba lanced by docker
93 i f (mode==’up ’) {
94 var conn = new Cl i en t () ;
95 conn . on (’ ready ’ , f unc t i on () {
96 var t imer = s e t I n t e r v a l (func t i on (params) {
97 // view cur rent node s t a t u s
98 conn . exec (’ docker node l s ’ , f unc t i on (err , stream) {
99 i f (e r r) throw e r r ;

100 stream . on (’ c l o s e ’ , f unc t i on (code , s i g n a l) {
101 // ending the connect ion here was caus ing i s s u e s , moved

↪→ i n t o on data
102 //conn . end () ;
103
104 }) . on (’ data ’ , f unc t i on (data) {
105 conso l e . l og (’STDOUT: ’ + data) ;
106 data = data . t oS t r i ng () . s p l i t (”\n”) ;
107 var dataCount = 0
108 // check number o f ready nodes
109 f o r (var i = 0 ; i < data . l ength ; i++){
110 i f (data [i] . i n c l u d e s (’ Ready ’)) {
111 dataCount += 1 ;

31

112 }
113 }
114 conso l e . l og (dataCount) ;
115 i f (data . l ength − 2 == params . managerNodes+params .

↪→ workerNodes) {
116 conso l e . l og (”Swarm has s c a l e d ”) ;
117 conn . end () ;
118 c l e a r I n t e r v a l (t imer) ;
119 r e s o l v e (params) ;
120 }
121
122 }) . s t d e r r . on (’ data ’ , f unc t i on (data) {
123 conso l e . l og (’STDERR: ’ + data) ;
124 r e j e c t (params) ;
125 }) ;
126 }) ;
127
128 } , 20000 , params) ;
129 }) . connect ({
130 host : managerNodes . dev ,
131 port : 22 ,
132 username : ’ docker ’ ,
133 privateKey : f s . r eadFi l eSync (’/ home/ greg / Parser s2 /Node/

↪→ keys / i d r s a ’)
134 }) ;
135 }
136 e l s e {
137 r e s o l v e (params) ;
138 }
139 }) ;
140 }
141
142
143 func t i on getAuthor izat ionToken (params) {
144 //can ’ t pass params as r e f e r e n c e have to d e f i n e new v a r i a b l e here
145 var input = params ;
146 re turn new Promise (func t i on (r e so l v e , r e j e c t) {
147 ec r . getAuthor izat ionToken ({} , f unc t i on (err , data) {
148 i f (e r r) {
149 conso l e . l og (err , e r r . s tack) ; // an e r r o r occurred
150 r e j e c t (e r r) ;
151 re turn ;
152 }
153 e l s e {
154
155 var authToken = Buf f e r . from (data . author i zat ionData [0] .

↪→ author izat ionToken , ’ base64 ’) . t oS t r i ng (’ a s c i i ’) .
↪→ s ub s t r i n g (4) ;

156 var connectSt r ing =’ docker l o g i n −u AWS −p ’+ authToken +’ −e
↪→ none https ://697738154271 . dkr . e c r . eu−west−2.amazonaws .
↪→ com ’ ;

157 var params = {
158 authStr ing : connectStr ing ,
159 containersPerNode : 2 ,
160 workerNodes : input . DesiredCapacity ,
161 managerNodes : 1
162 } ;
163

32

164 r e s o l v e (params) ;
165 }
166 }) ;
167 }) ;
168 }
169
170 func t i on sca leSwarmService (params)
171 {
172 return new Promise (func t i on (r e so l v e , r e j e c t) {
173 var swarmSize = params . containersPerNode ∗(params . managerNodes+

↪→ params . workerNodes) ;
174
175 var conn = new Cl i en t () ;
176 conn . on (’ ready ’ , f unc t i on () {
177 conn . exec (params . authStr ing , f unc t i on (err , stream) {
178 i f (e r r) throw e r r ;
179 stream . on (’ c l o s e ’ , f unc t i on (code , s i g n a l) {
180 conso l e . l og (’ Stream : : c l o s e : : code : ’ + code + ’ ,

↪→ s i g n a l : ’ + s i g n a l) ;
181 conn . exec (’ docker s e r v i c e s c a l e p a r s i n g p r o c e s s=’+swarmSize ,

↪→ f unc t i on (err , stream) {
182 i f (e r r) throw e r r ;
183 stream . on (’ c l o s e ’ , f unc t i on (code , s i g n a l) {
184
185 conn . end () ;
186
187 }) . on (’ data ’ , f unc t i on (data) {
188 conso l e . l og (’STDOUT: ’ + data) ;
189 conn . end () ;
190 r e s o l v e (data) ;
191
192 }) . s t d e r r . on (’ data ’ , f unc t i on (data) {
193 conso l e . l og (’STDERR: ’ + data) ;
194 conn . end () ;
195 r e j e c t (data) ;
196
197 }) ;
198 }) ;
199
200 }) . on (’ data ’ , f unc t i on (data) {
201 conso l e . l og (’STDOUT: ’ + data) ;
202
203 }) . s t d e r r . on (’ data ’ , f unc t i on (data) {
204 conso l e . l og (’STDERR: ’ + data) ;
205
206 }) ;
207 }) ;
208 }) . connect ({
209 host : managerNodes . dev ,
210 port : 22 ,
211 username : ’ docker ’ ,
212 // change t h i s to the l o c a t i o n o f your r sa key
213 privateKey : f s . r eadFi l eSync (’/ home/ greg / Parser s2 /Node/ keys / i d r s a

↪→ ’)
214 }) ;
215 }) ;
216 }
217

33

218 func t i on s c a l e P r o c e s s (modeInput , magnitudeInput) {
219 //by d e f a u l t s c a l e up i f no parameters g iven
220 i f (modeInput==n u l l) {
221 mode = ’up ’
222 }
223 // throw e r r o r i f bad parameter passed
224 e l s e i f (modeInput != ’up’&&modeInput != ’down ’) {
225 throw new Error (’Unknown parameter ’) ;
226 }
227 e l s e {
228 mode = modeInput
229 }
230
231 i f (magnitudeInput==n u l l) {
232 magnitude = 1 ;
233 }
234 // throw e r r o r i f bad parameter passed
235 e l s e i f (isNaN (magnitudeInput)) {
236 throw new Error (’ magnitude value i s not a number ’) ;
237 }
238 e l s e {
239 magnitude = magnitudeInput
240 }
241
242 conso l e . l og (’ S ca l i ng ’+mode) ;
243 descr ibeAutoSca l ingGroups (GroupNames)
244 . then (updateDesiredCapacity)
245 . then (getAuthor izat ionToken)
246 . then (waitForScalingToComplete)
247 . then (sca leSwarmService) ;
248
249 }
250
251 module . export s = {
252 s c a l e P r o c e s s : s c a l e P r o c e s s ,
253 descr ibeAutoSca l ingGroups : descr ibeAutoScal ingGroups
254 }

C.3 package.json

1 {
2 ”name ” : ” DockerScalingManager ” ,
3 ” ve r s i o n ” : ” 1 . 0 . 0 ” ,
4 ” d e s c r i p t i o n ” : ”” ,
5 ”main ” : ” index . j s ” ,
6 ” author ” : ”Greg Nicho l s ” ,
7 ” l i c e n s e ” : ”ISC ” ,
8 ” dependenc ies ” : {
9 ”aws−sdk ” : ” ˆ 2 . 3 6 . 0 ” ,

10 ” ssh2 ” : ” ˆ 0 . 5 . 4 ” ,
11 ” graph i t e ” : ”ˆ0 . 0 . 7 ”
12 }
13 }

C.4 SqsObjectCache.php

34

1 <?php
2
3 r e q u i r e o n c e (’ d b l i b . php ’) ;
4 r e q u i r e o n c e (’ PostedObjectCache . php ’) ;
5 r e q u i r e o n c e (’ . . / vendor / auto load . php ’) ;
6
7 use Aws\Sqs\ SqsCl i ent ;
8
9 c l a s s SqsObjectCache extends PostedObjectCache

10 {
11 p r i v a t e $environment ;
12 pub l i c $ sq sC l i en t ;
13 p r i v a t e $outputQueue ;
14 p r i v a t e $inputQueue ;
15
16
17 var $currentMessageTags = [] ;
18
19 p r i v a t e s t a t i c $AWS CREDENTIALS =
20 [
21 ’ dev ’ =>
22 [
23 ’ reg ion ’ => ’ eu−west−2 ’ ,
24 ’ ver s ion ’ => ’ l a t e s t ’ ,
25 ’ c r e d e n t i a l s ’ =>
26 [
27 //SQSuser c r e d e n t i a l s , a user s p e c i f i c a l l y s e t up only

↪→ f o r SQS
28 ’ key ’ => ’AKIAJEPTNRHRDNIY2KDA’ ,
29 ’ s e c r e t ’ => ’ password ’
30]
31] ,
32 ’ prod ’ =>
33 [
34]
35] ;
36 // these aren ’ t complete , space in p lace to put product ion queues
37 p r i v a t e s t a t i c $AWS QUEUE URLS =
38 [
39 ’ dev ’ =>
40 [
41 ’ gnip ’ => ’ ht tps : // sqs . eu−west−2.amazonaws . com

↪→ /697738154271/ GnipParsingQueueTest ’ ,
42 ’ parsed ’ => ’ ht tps : // sqs . eu−west−2.amazonaws . com

↪→ /697738154271/ ParsedQueueTest ’
43] ,
44 ’ prod ’ =>
45 [
46]
47] ;
48
49 func t i on c o n s t r u c t ($postType=”tweets ” , $targetDb=” e l a s t i c ” ,

↪→ $dbWrapper=nul l , $environment=nul l , $ErrorLogger=n u l l) {
50 $th i s−>environment = $environment ;
51 $ c r e d e n t i a l s = s e l f : : $AWS CREDENTIALS[$environment] ;
52 // t h i s i d e a l l y shouldn ’ t be hardcoded here
53 $th i s−>inputQueue = s e l f : : $AWS QUEUE URLS[$th i s−>environment] [’

↪→ gnip ’] ;

35

54 $th i s−>outputQueue = s e l f : : $AWS QUEUE URLS[$th i s−>environment
↪→] [’ parsed ’] ;

55
56 $th i s−>s q s C l i e n t = SqsCl i ent : : f a c t o r y ($ c r e d e n t i a l s) ;
57
58 }
59 // c u r r e n t l y unused in b l u r r t parser , u s e f u l to put raw data onto

↪→ queue d i r e c t l y
60 // c u r r e n t l y hardcoded to p lace onto the output queue
61 pub l i c f unc t i on addToQueue ($data) {
62 $th i s−>sq sC l i ent−>sendMessage (array (
63 ’ QueueUrl ’ => $th i s−>outputQueue ,
64 // ’ QueueUrl ’ => $th i s−>inputQueue ,
65 ’ MessageBody ’ => $data
66)) ;
67 }
68
69 pub l i c f unc t i on save ($Blurr t) {
70 $data = json encode ($Blurrt−>getPayload ()) ;
71
72 $th i s−>sq sC l i ent−>sendMessage (array (
73 ’ QueueUrl ’ => $th i s−>outputQueue ,
74 ’ MessageBody ’ => $data
75)) ;
76 }
77
78 pub l i c f unc t i on getDataBatch ($batchS ize =10, $ s t r i c t B a t c h S i z e=f a l s e)

↪→ {
79
80 $output = $th i s−>sq sC l i ent−>rece iveMessage (
81 array (
82 ’ QueueUrl ’ => $th i s−>inputQueue ,
83 ’ MaxNumberOfMessages ’ => $batchS ize
84)) ;
85
86 $outputArray = array () ;
87 f o r each ($output [’ Messages ’] as $messages) {
88 $th i s−>currentMessageTags [] = [’ Id ’=> $messages [’ MessageId

↪→ ’] , ’ ReceiptHandle ’=>$messages [’ ReceiptHandle ’]] ;
89 $outputArray [] = [’ json ’ => $messages [’ Body ’]] ;
90 }
91 // p r i n t r ($ th i s−>currentMessageTags) ;
92
93 re turn $outputArray ;
94 }
95 //Amazon SQS has a timeout system , i f a message i sn ’ t de l e t ed i t

↪→ can be pu l l ed in again a f t e r the timeout
96 // t h i s method t h e r e f o r e d e l e t e s the returned message from g e t t i n g

↪→ the data batch
97 // input = array o f a r rays conta in id , key p a i r s
98 pub l i c f unc t i on markDataBatchProcessed () {
99 i f (count ($th i s−>currentMessageTags)>0){

100 $output = $th i s−>sq sC l i ent−>deleteMessageBatch ([
101 ’ Entr ie s ’ => $th i s−>currentMessageTags ,
102 ’ QueueUrl ’ => $th i s−>inputQueue
103]) ;
104 }
105 $th i s−>currentMessageTags = [] ;

36

106 }
107 //SQS doesn ’ t need marking as unprocessed because i t does that

↪→ automat i ca l l y
108 // I f the databatch isn ’ t marked at proce s s ed i t ’ s requeued
109 pub l i c f unc t i on markDataBatchUnProcessed () {
110 $th i s−>currentMessageTags = [] ;
111 }
112
113 pub l i c f unc t i on ge tAt t r ibute ($queue) {
114 return $th i s−>sq sC l i ent−>getQueueAttr ibutes ([
115 ’ QueueUrl ’ => s e l f : : $AWS QUEUE URLS[$th i s−>environment] [

↪→ $queue] ,
116 ’ AttributeNames ’ => [’ All ’]
117]) [’ Attr ibutes ’] ;
118 }
119
120 }

C.5 SqsObjectCacheAdd.php

Used to add tweet objects to the queue to be parsed for testing, the only difference between this
and SqsObjectCache being lines 63, 64 and 124 onwards.

1 <?php
2
3 r e q u i r e o n c e (’ d b l i b . php ’) ;
4 r e q u i r e o n c e (’ PostedObjectCache . php ’) ;
5 r e q u i r e o n c e (’ . . / vendor / auto load . php ’) ;
6
7 use Aws\Sqs\ SqsCl i ent ;
8
9 c l a s s SqsObjectCache extends PostedObjectCache

10 {
11 p r i v a t e $environment ;
12 pub l i c $ sq sC l i en t ;
13 p r i v a t e $outputQueue ;
14 p r i v a t e $inputQueue ;
15
16
17 var $currentMessageTags = [] ;
18
19 p r i v a t e s t a t i c $AWS CREDENTIALS =
20 [
21 ’ dev ’ =>
22 [
23 ’ reg ion ’ => ’ eu−west−2 ’ ,
24 ’ ver s ion ’ => ’ l a t e s t ’ ,
25 ’ c r e d e n t i a l s ’ =>
26 [
27 //SQSuser c r e d e n t i a l s , a user s p e c i f i c a l l y s e t up only

↪→ f o r SQS
28 ’ key ’ => ’AKIAJEPTNRHRDNIY2KDA’ ,
29 ’ s e c r e t ’ => ’ password ’
30]
31] ,
32 ’ prod ’ =>
33 [
34]

37

35] ;
36 // these aren ’ t complete , space in p lace to put product ion queues
37 p r i v a t e s t a t i c $AWS QUEUE URLS =
38 [
39 ’ dev ’ =>
40 [
41 ’ gnip ’ => ’ ht tps : // sqs . eu−west−2.amazonaws . com

↪→ /697738154271/ GnipParsingQueueTest ’ ,
42 ’ parsed ’ => ’ ht tps : // sqs . eu−west−2.amazonaws . com

↪→ /697738154271/ ParsedQueueTest ’
43] ,
44 ’ prod ’ =>
45 [
46]
47] ;
48
49 func t i on c o n s t r u c t ($postType=”tweets ” , $targetDb=” e l a s t i c ” ,

↪→ $dbWrapper=nul l , $environment=nul l , $ErrorLogger=n u l l) {
50 $th i s−>environment = $environment ;
51 $ c r e d e n t i a l s = s e l f : : $AWS CREDENTIALS[$environment] ;
52 // t h i s i d e a l l y shouldn ’ t be hardcoded here
53 $th i s−>inputQueue = s e l f : : $AWS QUEUE URLS[$th i s−>environment] [’

↪→ gnip ’] ;
54 $th i s−>outputQueue = s e l f : : $AWS QUEUE URLS[$th i s−>environment

↪→] [’ parsed ’] ;
55
56 $th i s−>s q s C l i e n t = SqsCl i ent : : f a c t o r y ($ c r e d e n t i a l s) ;
57
58 }
59 // c u r r e n t l y unused in b l u r r t parser , u s e f u l to put raw data onto

↪→ queue d i r e c t l y
60 // c u r r e n t l y hardcoded to p lace onto the output queue
61 pub l i c f unc t i on addToQueue ($data) {
62 $th i s−>sq sC l i ent−>sendMessage (array (
63 // ’ QueueUrl ’ => $th i s−>outputQueue ,
64 ’ QueueUrl ’ => $th i s−>inputQueue ,
65 ’ MessageBody ’ => $data
66)) ;
67 }
68
69 pub l i c f unc t i on save ($Blurr t) {
70 $data = json encode ($Blurrt−>getPayload ()) ;
71
72 $th i s−>sq sC l i ent−>sendMessage (array (
73 ’ QueueUrl ’ => $th i s−>outputQueue ,
74 ’ MessageBody ’ => $data
75)) ;
76 }
77
78 pub l i c f unc t i on getDataBatch ($batchS ize =10, $ s t r i c t B a t c h S i z e=f a l s e)

↪→ {
79
80 $output = $th i s−>sq sC l i ent−>rece iveMessage (
81 array (
82 ’ QueueUrl ’ => $th i s−>inputQueue ,
83 ’ MaxNumberOfMessages ’ => $batchS ize
84)) ;
85

38

86 $outputArray = array () ;
87 f o r each ($output [’ Messages ’] as $messages) {
88 $th i s−>currentMessageTags [] = [’ Id ’=> $messages [’ MessageId

↪→ ’] , ’ ReceiptHandle ’=>$messages [’ ReceiptHandle ’]] ;
89 $outputArray [] = [’ json ’ => $messages [’ Body ’]] ;
90 }
91 // p r i n t r ($ th i s−>currentMessageTags) ;
92
93 re turn $outputArray ;
94 }
95 //Amazon SQS has a timeout system , i f a message i sn ’ t de l e t ed i t

↪→ can be pu l l ed in again a f t e r the timeout
96 // t h i s method t h e r e f o r e d e l e t e s the returned message from g e t t i n g

↪→ the data batch
97 // input = array o f a r rays conta in id , key p a i r s
98 pub l i c f unc t i on markDataBatchProcessed () {
99 i f (count ($th i s−>currentMessageTags)>0){

100 $output = $th i s−>sq sC l i ent−>deleteMessageBatch ([
101 ’ Entr ie s ’ => $th i s−>currentMessageTags ,
102 ’ QueueUrl ’ => $th i s−>inputQueue
103]) ;
104 }
105 $th i s−>currentMessageTags = [] ;
106 }
107 //SQS doesn ’ t need marking as unprocessed because i t does that

↪→ automat i ca l l y
108 // I f the databatch isn ’ t marked at proce s s ed i t ’ s requeued
109 pub l i c f unc t i on markDataBatchUnProcessed () {
110 $th i s−>currentMessageTags = [] ;
111 }
112
113 pub l i c f unc t i on ge tAt t r ibute ($queue) {
114 return $th i s−>sq sC l i ent−>getQueueAttr ibutes ([
115 ’ QueueUrl ’ => s e l f : : $AWS QUEUE URLS[$th i s−>environment] [

↪→ $queue] ,
116 ’ AttributeNames ’ => [’ All ’]
117]) [’ Attr ibutes ’] ;
118 }
119
120 }
121
122
123
124 $asd f = new SqsObjectCache (nu l l , nu l l , nu l l , ’ dev ’) ;
125
126 f o r ($ i =0; $i <1000; $ i++){
127 $asdf−>addToQueue (’{” c r e a t e d a t ” :”Thu Mar 23 1 7 : 08 : 09 +0000 2017” ,”

↪→ id ” : ’ . (S t r ing) (844958961069547500+ $ i) . ’ , ” i d s t r
↪→ ”:”844958961069547521” ,” t ext ”:”#MotoGP fo l l owed by #F1
↪→ from now t i l ’ . date (’ c ’) . ’ Sunday # DoNotDisturb
↪→ ” ,” source ”:”<a h r e f =\”http :// t w i t t e r . com\” r e l =\”no fo l l ow\”>
↪→ Twitter Web Cl ient ”,” truncated ” : f a l s e , ”
↪→ i n r e p l y t o s t a t u s i d ” : nu l l , ” i n r e p l y t o s t a t u s i d s t r ” : nu l l
↪→ , ” i n r e p l y t o u s e r i d ” : nu l l , ” i n r e p l y t o u s e r i d s t r ” : nu l l , ”
↪→ i n r e p l y t o s c r e e n n a m e ” : nu l l , ” user ” :{” id ” :16704454 ,” i d s t r
↪→ ”:”16704454” ,”name ” :” b imb l e l a s s /Karen ” ,” screen name ” :”
↪→ b imb l e l a s s ” ,” l o c a t i o n ” :” Leigh NW England ” ,” u r l ” : nu l l , ”
↪→ d e s c r i p t i o n ” :”1 l i f e l o t s o f l o v e s − my fami ly and pet

39

↪→ pooches ; @MCFC (ST block137) ; #F1− #LH;#McLaren;#MotoGP−#VR/
↪→ CC/NH/BS . S p i r i t u a l . ” , ” t r a n s l a t o r t y p e ” :” none ” ,” protec ted ” :
↪→ f a l s e , ” v e r i f i e d ” : f a l s e , ” f o l l o w e r s c o u n t ” :1402 ,” f r i e n d s c o u n t
↪→ ” :1090 ,” l i s t e d c o u n t ” :63 ,” f a v o u r i t e s c o u n t ” :13540 ,”
↪→ s t a t u s e s c o u n t ” :19092 ,” c r e a t e d a t ” :” Sun Oct 12 0 4 : 23 : 24
↪→ +0000 2008” ,” u t c o f f s e t ” : 0 , ” t ime zone ” :” London ” ,” geo enabled
↪→ ” : true , ” lang ” :” en ” ,” c o n t r i b u t o r s e n a b l e d ” : f a l s e , ”
↪→ i s t r a n s l a t o r ” : f a l s e , ” p r o f i l e b a c k g r o u n d c o l o r ” :”642D8B” ,”
↪→ p r o f i l e b a c k g r o u n d i m a g e u r l ” : ” http :// pbs . twimg . com/
↪→ pro f i l e backg round image s /434651370835030016/RqQQO6Cv. jpeg
↪→ ” ,” p r o f i l e b a c k g r o u n d i m a g e u r l h t t p s ” :” https : // pbs . twimg .
↪→ com/ pro f i l e backg round image s /434651370835030016/RqQQO6Cv.
↪→ jpeg ” ,” p r o f i l e b a c k g r o u n d t i l e ” : true , ” p r o f i l e l i n k c o l o r
↪→ ” :”89C9FA” ,” p r o f i l e s i d e b a r b o r d e r c o l o r ” : ”FFFFFF” ,”
↪→ p r o f i l e s i d e b a r f i l l c o l o r ” :”7AC3EE” ,” p r o f i l e t e x t c o l o r ” :”3
↪→ D1957 ” ,” p ro f i l e u s e backg round image ” : true , ”
↪→ p r o f i l e i m a g e u r l ” : ” http :// pbs . twimg . com/ p r o f i l e i m a g e s
↪→ /802900218220003328/ pamMwZi normal . jpg ” ,”
↪→ p r o f i l e i m a g e u r l h t t p s ” :” https : // pbs . twimg . com/
↪→ p r o f i l e i m a g e s /802900218220003328/ pamMwZi normal . jpg ” ,”
↪→ p r o f i l e b a n n e r u r l ” : ” https : // pbs . twimg . com/ p r o f i l e b a n n e r s
↪→ /16704454/1398280620” ,” d e f a u l t p r o f i l e ” : f a l s e , ”
↪→ d e f a u l t p r o f i l e i m a g e ” : f a l s e , ” f o l l o w i n g ” : nu l l , ”
↪→ f o l l o w r e q u e s t s e n t ” : nu l l , ” n o t i f i c a t i o n s ” : n u l l } ,” geo ” : nu l l , ”
↪→ coo rd ina t e s ” : nu l l , ” p lace ” : nu l l , ” c o n t r i b u t o r s ” : nu l l , ”
↪→ i s q u o t e s t a t u s ” : f a l s e , ” quote count ” : 0 , ” r ep ly count ” : 0 , ”
↪→ r e tweet count ” : 0 , ” f a v o r i t e c o u n t ” : 0 , ” e n t i t i e s ” :{” hashtags
↪→ ” : [{ ” text ” :”MotoGP” ,” i n d i c e s ” : [0 , 7] } , { ” text ” : ” F1” ,” i n d i c e s
↪→ ” : [2 0 , 2 3] } , { ” text ” :” DoNotDisturb ” ,” i n d i c e s ” : [5 5 , 6 8] }] , ” u r l s
↪→ ” : [] , ” user ment ions ” : [] , ” symbols ” : [] } , ” f a v o r i t e d ” : f a l s e , ”
↪→ retweeted ” : f a l s e , ” f i l t e r l e v e l ” : ” low ” ,” lang ” :” en ” ,”
↪→ timestamp ms ”:”1490288889554” ,” match ing ru l e s ” : [{ ” tag
↪→ ”:”3333673” ,” id ” :843762953522499600}]} ’) ;

128 }
129 p r i n t r (” done\n”) ;

C.6 Dockerfile (PHP 5)

1 FROM ubuntu
2 LABEL Desc r ip t i on=”This image i s used f o r the GNIP p a r s e r s f o r php5”

↪→ Vendor=”Blurr t ” Vers ion =”0.1”
3
4 RUN apt−get update && apt−get i n s t a l l −y software−prope r t i e s−common &&

↪→ add−apt−r e p o s i t o r y ppa : ondre j /php && apt−get update && apt−get
↪→ i n s t a l l −y −−al low−unauthent icated php5 . 6 php5.6−mysql php5.6−
↪→ bcmath php5.6−mbstring php5.6− c u r l php5.6−xml && mkdir −p / var /
↪→ b l u r r t / mi l e s / b lu r r t−ph i r ehose /

5
6 ADD Codebase/ b lur r t−ph i r ehose / var / b l u r r t / mi l e s / b lu r r t−ph i r ehose
7 WORKDIR / var / b l u r r t / mi l e s / b lu r r t−ph i r ehose / s r c

C.7 Dockerfile (PHP 7)

1 FROM ubuntu
2 LABEL Desc r ip t i on=”This image i s used f o r the GNIP p a r s e r s f o r php7”

↪→ Vendor=”Blurr t ” Vers ion =”0.1”

40

3
4 RUN apt−get update && apt−get i n s t a l l −y software−prope r t i e s−common &&

↪→ add−apt−r e p o s i t o r y ppa : ondre j /php && apt−get update && apt−get
↪→ i n s t a l l −y −−al low−unauthent icated php php−mysql php−bcmath php−
↪→ mbstring php−c u r l php−xml && mkdir −p / var / b l u r r t / mi l e s / b lu r r t−
↪→ ph i r ehose /

5
6 ADD Codebase/ b lur r t−ph i r ehose / var / b l u r r t / mi l e s / b lu r r t−ph i r ehose
7 WORKDIR / var / b l u r r t / mi l e s / b lu r r t−ph i r ehose / s r c

References

[1] Alpine linux. URL https://www.alpinelinux.org/.

[2] Google app engine. URL https://cloud.google.com/appengine/.

[3] Container engine. URL https://cloud.google.com/container-engine/.

[4] Docker for aws setup & prerequisites, . URL https://docs.docker.com/docker-for-aws/

#docker-community-edition-ce-for-aws.

[5] Docker hub, . URL https://hub.docker.com.

[6] Aws elastic beanstalk. URL https://aws.amazon.com/elasticbeanstalk/.

[7] Carina by rackspace, . URL https://app.getcarina.com/.

[8] Download composer, . URL https://getcomposer.org/download/.

[9] Heroku. URL https://www.heroku.com/.

[10] Swarm v. fleet v. kubernetes v. mesos, comparing different orchestration tools. URL
https://www.oreilly.com/ideas/swarm-v-fleet-v-kubernetes-v-mesos.

[11] Container crashes with code 137 when given high load. URL
https://github.com/moby/moby/issues/22211.

[12] Docker. Deploying a registry server, . URL https://docs.docker.com/registry/deploying/.

[13] Docker. What is a container, . URL https://www.docker.com/what-container.

[14] Docker. Swarm mode key concepts, . URL https://docs.docker.com/engine/swarm/key-concepts/.

[15] G. X. et al. Rapid virtual machine deployment approach on cloud platform.
Journal of Computational Information Systems, 9(18):7381–7388, 2013. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.412.5103&rep=rep1&type=pdf.

[16] M. N. A. H. K. et al. Modeling the autoscaling operations in cloud with
time series data. Reliable Distributed Systems Workshop, 34, 2015. URL
http://ieeexplore.ieee.org/document/7371434/.

[17] S. I. et al. Empirical prediction models for adaptive resource provisioning in
the cloud. Future Generation Computer Systems, 28(1):155–162, 2011. URL
http://ieeexplore.ieee.org/document/5935022/.

[18] Y. S. et al. Cloudflex: Seamless scaling of enterprise applications into the cloud. INFOCOM,
2011 Proceedings IEEE, 2011. URL http://ieeexplore.ieee.org/document/5935022/.

[19] Z. H. et al. Early observations on the performance of windows azure.
Department of Computer Science, University of Virginia, 2010. URL
https://www.cs.virginia.edu/~humphrey/papers/EarlyObservationsPerformanceWindowsAzure.pdf.

[20] R. Laurikainen. Improving the efficiency of deploying virtual machines in a cloud environment.
2012. URL http://lib.tkk.fi/Dipl/2012/urn100558.pdf.

[21] E. Mills. Improve speed and reduce overhead with containers in windows server 2016. URL
https://channel9.msdn.com/Shows/OEMTV/OEM1754.

41

