
Initial Plan Improving responsiveness of autoscaling systems

By Gregory Nichols

Supervised by Omer Rana

CM3203 One Semester Individual Project, 40 credits

Project Description
Problem
At a company I am affiliated with there is a system implemented which manages the 
parsing jobs, mostly consisting of tweets to be analysed based on emotion. The system 
monitors the parsing queues and when the queue reaches above a certain threshold of 
messages the system automatically sends a request to the hosting company to create a 
new virtual machine based upon a specialised parsing image (which is an Ubuntu 14.04 
image with the minimum resources to execute the parsing process). This image is 
manually created and uploaded to the hosting companies system every new patch. Once 
the queue has reduced in size the system recognises that there is less demand and 
downscales the computing power accordingly in order to reduce running costs.
While this system does indeed work it has several drawbacks;

• It is slow, there is a noticeable delay between the parsing queues reaching above 
the threshold and the parsers being created.

• It is inefficient as often the scaled up server will have too much computing power, 
leading to a sawtooth effect when it downscales.

• It is costly as creating a whole new server just for parsing has extra costs 
associated with it and the resources it requires to do so aren't used optimally.

Ideally any solution aims to alleviate these three issues as much as possible.

Context
The company I am doing this project for (Blurrt) is a social media analytics company, 
collecting social media posts from various sources (primarily twitter) and storing them 
appending them with scores based on their sentiment and emotion. The architecture 
consists of a collection system which offloads to a parsing queue, a parsing system which 
offloads to a storage queue and a storage system which stores data into an elastic cluster. 
There is a monitoring system which monitors the status of both queues. The front-end of 
the system pulls data as required through our API from the Elastic database to populate 
the web page.

1



Diagram showing the architecture of the system from the incoming feed from collectors to
the Elastic database

Overall Aims
The overall aims for this project will be to try and alleviate most if not all of the issues 
involved with the current system parsing system and put forward a new, quicker, less 
resource intensive and more scalable solution. My eventual solution should improve the 
deployment model in terms of reactivity, granularity and termination speed through better 
up and downscaling. It should also save the company money in running costs as well as 
be easier to patch. Another significant improvement I would like to implement would be a 
predictive algorithm/system in order to anticipate potential incoming workload on the 
system and scale up in advance in order to prevent the backlog ever getting too large. 
Finally as a potential extension if I wished to expand on these objectives further I could 
use the architectural improvements from upgrading the auto-scaling system across bottle 
necks in other areas such as API scaling on the front end.

Project Aims and Objectives

• Implement a system which is more reactive to backlogs of messages, meaning it is 
faster in terms of the speed it takes to scale up and scale down the parsing 
processes.

• Perform an analysis on the speed increase in time to create and destroy new 
parsers.

• Implement a system which is able to scale more granularly to prevent sawtoothing 
of the parsing queues.

• Implement a system which is easier to maintain, patching and installing updates are
faster than the current system

• Implement a system which is cheaper to run over time than the current system, this 
may simply be due to there being less resources required or potentially from 
preventing there being wasted parsing resources when the queue is emptied.

• Implement a predictive algorithm to anticipate when there will be an incoming influx 
of tweets and account for it, scaling up accordingly to prevent backlogs occurring

• Apply this algorithm to try and predict when the demand is likely to drop and scale 
down accordingly to prevent extra resource usage.

2



Work Plan
1 2 3 4 5 6 7 8 9 10 11 12

Write up detailed analysis of current
system architecture X X
Researching potential solutions for 
architecture (containers, scaling 
virtual machines)

X X X

Research and write up a description
of the current monitoring system 
and aspects which will need 
improving

X X X

Research whether existing hosting 
solution will work with containers or 
scaling virtual machines & whether I
will need alternative hosting

X X X

Creating a detailed plan of the new 
system architecture X X
Performing a performance analysis 
of the parser creation and 
destruction speed of the initial 
system

X X X

Researching potential predictive 
algorithms X X X
Implementing the software solution X X X X X X X
Implementing the predictive 
algorithm X X X X X



Perform a performance analysis of 
the parser creation and destruction 
speed of the final system

X X

Write-up of results/Report X X X
Self Evaluation/Reflection X
Supervisor meetings X X X



Personal Milestones & Deliverables for final report

By the end of the second week I aim to have written an in-depth description and analysis 
of the current system’s workings, making clear I properly understand of all aspects of the 
auto-scaling system.
By end of third week I aim to have researched potential technologies for the solution and 
write an analysis of how the current monitoring system works. I will also aim to write up 
what my new intended architecture will be and which technologies and hosting I will be 
using.
By the end of forth week I aim to have completed a performance analysis of the auto-
scaling system writing up the current parser creation and destruction speed and 
documenting results, from which I can form comparisons later.
By the end of fifth week I aim to have researched potential predictive algorithms discussing
in my meeting that week and in more detail during my longer meeting the week after which
would be the best potential algorithm to choose.
By the end of week 9 I aim to have a demonstrable system working with the new 
architecture and a predictive algorithm working to monitor current status of the parsing 
queue.
By the end of week 10 I aim to have done a performance analysis of the new auto-scaling 
system, writing up the results of the parser creation and destruction speed and performing 
an in-depth comparison between that and the performance analysis of the original system.
By the end of week 11 I aim to have written up my report which will have been contributed 
to through the deliverables I created as part of my milestones as well as the 
documentation of work I do to further my goal. I also aim to complete my self evaluation 
and reflection discussing what I felt went well and what I have learnt from it and will take 
forward in future projects.

5


	Project Aims and Objectives

