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Abstract

Extempore is a live coding environment designed for procedural generation of real-time 

audio-visual experiences, where the programmer’s code itself – written in Scheme and 

the Extempore-specific XTLang – is the user interface (Sorensen, 2018). In this project, 

the author experiments with using physical MIDI keyboard with Extempore, implementing 

behaviours such as MIDI arpeggiation, recording, sequencing and looping. An overview of 

the process of implementation is given followed by detailed analysis of correctness and 

performance, particularly as pertains to MIDI latency. Having become experienced in 

Extempore’s use, design and philosophy through conducting the project, the author 

finishes with a discussion regarding and critique of Extempore as a development 

environment, concluding with some suggestions regarding further development – both of 

the MIDI functionality developed herein and for determining Extempore’s long-term 

prognosis within the live-programming milieu. 
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1. Introducion

This research project experiments with implementing MIDI interaction within the 

Extempore live-coding environment, allowing physical input – such as traditional Western 

diatonic note input via an external MIDI keyboard – to control and interact with real-time, 

procedural music generation.

The first aim of the project is to build upon Extempore’s existing, low-level MIDI 

implementations in order to provide a flexible, high-level interface supporting multiple 

concurrent MIDI devices and communication via virtual ports. Given this foundation, 

various potential applications of MIDI input are developed, with an eye to their smooth 

integration with the existing Extempore ecosystem.

Live arpeggiation – the playing of a broken chord, or set of notes, often in a set pattern – 

is implemented, utilising Extempore’s built-in pattern language to allow live, run-time 

control over the algorithm. The ability to record notes and concomitant timing information, 

optionally playing back the resultant recording in a loop in the style of a guitar loop pedal 

(see Rudrich, 2017) is developed and demonstrated, as is more nuanced interaction with 

physical MIDI devices – such as using MIDI control change events and controller pad 

buttons to dynamically interact with executing programs and performances. Sequencing 

MIDI notes into time-quantised streams, able to be used in lieu of physical keyboard 

input, is implemented, as is an algorithm to convert recorded note events into the 

standard Extempore pattern language format in recognition of the primacy of code itself 

as the platform’s user interface. 

The project serves to provide a means to demonstrate a broad range of software 

development skills, across paradigms – from writing low-level, imperative code to 

interface with native system C libraries to producing high-level abstractions utilising 

higher-order functions and procedurally generated code in a dynamic, garbage collected 

and runtime modifiable language. Thought is given to the efficiency analysis of key 

algorithms in use, appropriate data structures are discussed and implemented and the 

end results of the project are subjected to testing of correctness and performance. 

Significant analysis is given to the issue of MIDI round-trip latency due to its effects on 

instrument playability (Dahl and Bresin, 2001), leading to insight into a poorly-performing 

aspect of the Extempore infrastructure and significant performance gains post-

optimisation after refactoring the code to reduce its impact; ultimately, very low MIDI 
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round trip times were achieved comparable with the lower limits achievable on the 

hardware in use.

Extempore is itself an experimental project with a unique approach to the problem of live 

coded audio-visual experiences – other than its use of Scheme, the key differentiating 

factor is that of XTLang, Sorensen’s (2018) attempt to produce a low-level Scheme-like 

programming language capable of general purpose systems programming and interfacing 

with foreign C code in a run-time modifiable way. Sitting on this foundation, this project 

serves as a sounding board for the evaluating Extempore itself – both as a development 

environment and target and in rationale; does Extempore’s design and implementation 

justify its raison d’etre of being a true “full-stack” live-programming environment? 

Particular focus is given to the necessity for XTLang, Extempore’s major differentiating 

factor from previous systems (Sorensen, 2018). 

The report concludes with a reflection on the learning and issues encountered by the 

author whilst undertaking this project.
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2. Background

2.1 Live programming

Live programming – also referred to as “live coding”, “just-in-time programming”, “cyber-

physical” or “on-the-fly” programming – refers to a programming paradigm featuring the 

central tenet that a program’s source code is the user interface of the system (Sorensen, 

2013, p.23). Liveness, as described by Tanimoto (1990), describes the responsiveness of 

the system as its code – or graph, in the case of visual languages – changes; systems 

with a high degree of liveness feature programs which continue executing through source 

code modification, with committed changes immediately being reflected in altered 

execution.

Live programming as a concept is not new – programming Lisp through one of the 

standard interfaces provided by a Lisp interpreter, known as the Read Evaluate Print Loop 

(henceforth REPL), has been around since the implementation by John McCarthy of Lisp 

interpreters during the late 1950s and 1960s (McCarthy, 1978). A canonical example of 

its usefulness is provided by the story of the Remote Agent bug present on the Deep 

Space 1 mission of NASA’s New Millennium program, where a race condition, unforeseen 

in pre-flight testing, occurred whilst in space; it was fixed and debugged remotely using a 

Lisp REPL executing on the spacecraft (Garrett, 2002).

Sorensen (2018) differentiates between half-stack and full-stack live coding systems, 

reflecting the overall reach of the dynamically-programmable, run-time modifiable aspect 

of the system. For instance, the Impromptu audio-visual environment consists of a 

Scheme runtime – the interpreter for which serving as the infrastructure for any “live” 

programming – sitting atop a native C/C++ layer which is responsible for the real 

business of generating oscillator waveforms and interacting with audio hardware 

(Sorensen, 2018). This split is common throughout interpreted languages – for instance, 

consider Python, the reference implementation of which, CPython, outsources routines 

requiring high performance or involving system hardware access or I/O to native C library 

code – there is no way to implement this behaviour in Python itself (Python Software 

Foundation, 2020). R provides a further example of an interactive, live – but slow to 

execute – interpreted scripting language sitting atop a non-runtime modifiable but more 

performant C and FORTRAN foundation (Wickham, 2019).
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Extempore is Sorensen’s (2018) attempt to formulate a full-stack, live programming 

environment – that is, an environment able to span the divide from low-level hardware 

and system programming to high-level, dynamic and memory managed co-ordination (via 

Scheme), all in a run-time modifiable way. It is discussed in detail below.

A significant community in the present day concerned with the use of live programming is 

that built around live coded music. Several live coding platforms exist with audio-visual 

creativity in mind – such as Impromptu, Extempore’s precursor (Sorensen, 2005), ChucK 

(Wang et al., 2015) and SuperCollider (McCartney, 2002), the server-side of which serves 

as a back-end for myriad other environments, such as Sonic Pi (Aaron S., 2016), based on 

Ruby and Overtone (Aaron and Blackwell, 2013), a library for Clojure. Procedurally 

generated music, coded on-the-fly, is presented at live coding concerts to an audience, 

generally involving the projection of the programmer-musician’s screen (Brown and 

Sorensen, 2007); as an art form, the aesthetic impact is that of witnessing the creative 

construction of a musical piece given the restrictions of the medium – having to specify 

the algorithms in use on-the-fly, in functional code, whilst remaining within the time 

constraints needed to produce a pleasing performance for the audience (Cox et al., 

2001).

2.2 MIDI

The Musical Instrument Digital Interface (MIDI) is a standard for communication between 

musical devices – primarily keyboards with digital synthesizers, but since adopted for use 

for a variety of uses, such as control of lighting and effects equipment – the first version 

of which was made public in 1983 (Rothstein, 1995). Roughly based on the existent idea 

of local area networks in computer networking, MIDI messages are traditionally passed 

through MIDI cables between non-hierarchically organised devices, many of which may be 

chained together. 

MIDI messages are generally three bytes long, consisting of a status byte and two data 

bytes. For identification, the most significant bit of the status byte is a one and the most 

significant bits of the data bytes are zero; this leaves seven bits per byte available for 

carriage of useful information. After the status byte’s initial one, the next three most-

significant bits denote the message type (for instance, note on, note off or control 

change). The remaining four bits encode the channel, giving a maximum sixteen 

channels. The idea is that devices can be configured to listen to only events occurring on 
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specific channels, allowing a simple, multi-cast network architecture – messages may be 

sent to all devices in the network and devices will disregard those not addressed to them 

in a way similar to how MAC addresses are used in non-switched Ethernet networks 

(Rothstein, 1995).

For use in simple musical messaging, the 

convention is to use the first data byte as 

the note value.

Notes therefore span from zero to 127, 

with middle C of a piano lying in the centre 

of the range at value 60.

The second data byte is used to encode 

velocity values, which may again range 

from zero to 127, with 127 representing 

maximum loudness (Rothstein, 1995).

A full breakdown of the various MIDI 

status messages can be seen as listed per 

the MIDI Manufacturer’s Association 

(2020). 
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Figure 1: Structure of a typical MIDI 
message. Note that there are not always 
two data bytes; some status codes are 
followed by only a single data byte.



2.3 Linux MIDI infrastructure

Since Linux kernel 2.6, the default sound system in Linux has been that of the Advanced 

Linux Sound Architecture (hereafter ALSA), which provides raw audio input and output 

support for most audio interfaces from consumer to professional level; it also provides the 

ability to manage virtual (software) MIDI ports and their connections, routing both 

hardware- or software-generated events as desired through the virtual MIDI network 

(Phillips, 2005). 

JACK – a self-recursive acronym standing for JACK Audio Connection Kit – is a software 

layer providing low-latency audio and MIDI routing between applications; it is concerned 

solely with connection and depends on other software for actual audio input and output. 

A variety of back-ends are available – but generally ALSA is used (Phillips, 2005). JACK is 

an established part of the professional audio Linux landscape (Letz et al., 2004); there 

are, however, ports of the JACK server to MacOS and Windows, allowing it to serve as a 

cross-platform means of routing MIDI and audio streams between compatible 

applications. 
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Figure 2: A demonstration of viewing raw MIDI events as they occur - 
in this case, the notes of a C Major chord - via ALSA.



A variety of utility software exists on Linux for interaction with and configuration of JACK, 

such as Catia, used for management of the audio and MIDI routing graph (KXStudio, 

2020).

2.4 Scheme

Extempore’s high-level control language is Scheme, a dialect of Lisp (Dybvig, 2009). 

Common to other languages in the Lisp family, it uses a simple, consistent syntax for 

expressions – known as S-expressions.

S-expressions take the form of either atoms – symbols, strings, procedures or other 

primitive data types – or composite structures denoted in parentheses in the form of 

(A . B), where A and B are both S-expressions (McCarthy and Levin, 1985). The basic 

operation cons is used to form a new S-expression by conjoining two others, such that 

cons(A,B) produces the pair (A . B). By repeating this process, large, composite 

linked lists can be produced, which are represented in code using the shorthand of 

parenthesised lists – for instance, the list (+ 3 2 1) is equivalent to (cons + (cons 3 
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Figure 3: Catia, an open-source tool for managing the JACK audio and MIDI 
connection graph.



(cons 2 (cons 1 ‘()))). Lisp implementations generally use the cons cell as a 

fundamental data structure, used to store such pairs in memory; the linked lists formed 

by chaining these cells – by convention terminated with the empty list, in Scheme 

denoted by () – together  are used to represent both code and data. This simple, uniform 

syntax allows Lisp programs to manipulate code as data in a way impossible in languages 

which have arbitrary syntax (McCarthy and Levin, 1985), a feature which shall be 

discussed further below. 

A Scheme parser interprets the first element of an S-expression as an operator or 

procedure to be applied and the remaining elements as the arguments to apply to the 

procedure (Abelson et al, 1996). Before application, each of the elements are first 

evaluated, which may also involve procedure application if they represent nested S-

expressions.

For instance, entering (+ 3 2 1) in a Scheme interpreter will return the value 6. First, 

each element, +, 3, 2 and 1 are evaluated; + refers to a built-in procedure for summation 

and 3, 2 and 1 represent primitive integers, so each evaluates to itself. Then, the 

procedure referenced by the first element, +, has the arguments 3, 2 and 1 applied to it, 

resulting in the value 6.

This process is referred to as the “eval-apply” cycle (Abelson et al., 1996, p.365). The 

piece of the puzzle yet to be elaborated here is that of the environment, which incidentally 

are first-class objects in Scheme (Dybvig, 2009). Environments contain variable bindings 

and may be nested; in this way Scheme achieves lexical scoping for variables. When a 

12
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symbol is evaluated, its binding is looked up from the current reference frame outward, 

until the top-most binding frame is reached. This allows variable bindings to be shadowed 

– for the same symbolic names to refer to different values in different contexts – not 

unlike how variables in C-like languages may be bound in a block-specific way.

Scheme is a simple language with a minimal standard library and few built-in procedures 

yet, due to the rigorous and uniform syntax and first-class continuations, able to be 

adapted and expanded in a very fluid way to meet domain-specific needs (Dybvig, 2009). 

Key procedures include cons, car and cdr, which create a cons cell and retrieve the first 

element and second element respectively, list, used to create linked lists of cons cells, 

operations to mutate data – such as set!, set-car!, set-cdr! - and let and define, 

used to establish variable bindings. Procedures are defined using the lambda calculus 

inspired lambda, which creates an anonymous function. Branching is possible using the 

basic operator if and iteration is accomplished using tail recursion – where a procedure 

calls itself (or another procedure) as a tail call, defined semantically as a call having the 

same continuation as the continuation passed to the procedure containing the call. 

Implementations generally optimise tail calls into jmp instructions, thereby avoiding the 

stack growth often associated with recursion using procedure calls (Dybvig, 2009).

Continuations themselves – representing pending computations awaiting the result of a 

procedure application – are first-class objects in Scheme, accessed using the built-in 

procedure call-with-current-continuation, often abbreviated to the more concise 

call/cc. Access to continuations allows programmers to implement advanced control 

structures in pure Scheme, such as backtracking and non-local exits; in this way, it is 

similar to the goto mechanism in C, with the advantage that continuations take 

execution back to a previous, internally-consistent program state, which is not always the 

case with goto (Madore, 2002).

Scheme’s use of S-expressions for representing both code and data makes it relatively 

trivial – compared to languages with arbitrary syntax – to write code which transforms 

other representations of code. The macro system in Scheme – accessed through the 

built-in define-macro or more powerful syntax-rules mechanisms can be used to 

transform domain-specific languages (hereafter DSL) into valid Scheme and are widely 

used by Scheme programmers to provide higher-level abstractions – and therefore 

shorter, more succinct code – than would otherwise be possible. Such transformations 
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are used in Extempore’s pattern language, for instance, which is an example of a DSL for 

the repetitive, rhythmic playing of a musical note sequence.
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2.5 Extempore

Extempore is the result of Sorensen’s (2018) PhD research into producing a full-stack live 

coding environment – a live coding environment equally suited to low-level systems 

programming as it is to high-level scripting and co-ordination.

Given the use case – executing code as it is typed and sent from an editor – the 

interpreter uses a server-client architecture whereby plain-text commands (in Scheme or 

XTLang, which will be described further below) are received, compiled (in the case of 

XTLang) or interpreted (in the case of Scheme) and thereby executed. This serves to de-

couple the interpreter interface from the user’s specific choice of editor; plugins are 

available for Visual Studio Code, Vim and Emacs.

Interaction with Extempore is done through two programming languages. Scheme is used 

for high-level control and co-ordination – and ultimately all executable code must be 

triggered by a top-level Scheme interpreter. Scheme, however, is a garbage-collected, 

dynamically typed language; not a natural fit for interacting with systems-level processes 

which are often heavily reliant on the C ABI, expecting manual memory management and 

the ability to specify explicit data structures. Sorensen’s (2018) answer is to introduce a 

new language, XTLang, which is a Scheme/C hybrid. It is discussed further below – but it 

is essentially an explicitly-typed, manually memory-managed Scheme dialect, compiled 

on-the-fly into native code via Extempore’s LLVM back-end.

It is XTLang – and the infrastructure used to compile it – which is Extempore’s unique 

contribution toward the problem of developing a full-stack environment; using XTLang one 

can use system calls, call into native C libraries and develop performant, imperative 

algorithms in the style of C, when direct memory management and access is 

advantageous.

The boundary between XTLang and Scheme can pose problems in development, however, 

as experienced during this project. XTLang code, for instance, has no access to Scheme 

data or functions; there is no means to call a Scheme procedure from XTLang – the flow 

is strictly for Scheme to invoke pre-compiled (albeit just ahead of time) XTLang functions 

and not vice versa. The system does, however, succeed in enabling liveness of changes in 

systems-level XTLang code; functions can be re-compiled and the new versions will be 

executed on the next call – with the proviso that Extempore’s scheduler is appropriately 

invoked by the function call.
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2.5.1 Time in Extempore

Scheduling and time are important issues in the design of Extempore. Extempore’s key 

use cases -  live, dynamic audio-visual experiences and other interactive displays – 

impose demanding, near real-time time constraints. As reflected by Sorensen (2018), 

missing deadlines in live coded audio performances can result in not only 

embarrassment – a distorted signal or missed beat – but potentially aural damage, in the 

case of high decibel concerts.

The Extempore scheduler is at the heart of time management. When programming with 

Extempore, events are scheduled to occur at a time in the very near future using a global 

callback mechanism which registers events with a scheduler – implemented as part of 

the native, C++ infrastructure of the interpreter. In order to allow executing code greater 

certainty over the time at which statements will be executed, Sorensen (2018) decided to 

opt for a co-operative multi-tasking model. The scheduler forms the basis for this. Each 

Scheme interpreter process is independent and does not share state – they 

communicate, if at all, by message passing; each has its own scheduler queue. Code 

executing has free reign of the Extempore thread in which it is running, blocking execution 

of any other registered callbacks until completion. When the current procedure ends, 

control is implicitly yielded to the scheduler, which executes the next task in the queue at 

the appropriate time (measured in audio samples – Extempore uses the audio device as 

a high-resolution clock).

Both XTLang and Scheme code can utilise the scheduler to register future callbacks. 

Much utility is made in Extempore – particularly for audio-visual applications – of so-

called temporal recursion, a name for the process by which a procedure recursively 

schedules its own future callback (Sorensen, 2013); in such a way can regular, rhythmic 

processes be programmed. Passing symbolic names for functions to the Extempore 

scheduler (rather than function addresses, for instance) is what allows the run-time 

modification (“live coding”) of Extempore programs; function re-definitions will therefore 

take force when the scheduler next evaluates a given function name symbol.

2.5.2 XTLang

Sorensen’s (2018) purpose for the creation of Extempore was to achieve the goal of a 

“full-stack” live programming environment – an environment, as discussed above, 

whereby one may dynamically define and re-define procedures ranging the full gamut 

from low-level systems programming to high-level scripting and co-ordination. XTLang is 

16



Sorensen’s (2018) attempt to bridge the gap between interpreted languages like Scheme 

and compiled, manually memory-manged languages like C – it is essentially a C/Scheme 

hybrid, featuring syntax akin to S-expressions but with type annotations and unmanaged, 

direct memory access. 

A primary motivation for the development of 

XTLang was performance (Sorensen, 2018). 

XTLang code, unlike Scheme code in Extempore, 

is compiled ahead-of-time (just ahead-of-time in 

the case of code sent at run-time to the 

interpreter) using an LLVM-based – LLVM is an 

open-source project providing modular compiler 

technologies (Lattner, 2000) – back-end into 

native machine code. Extempore’s Scheme 

interpreter, as admitted by Sorensen (2016b), is 

very slow – he cites an example where XTLang 

performs approximately 300 times faster for a numerical benchmark calculating the 

highest-common-factor of a set of integers – and therein lies much of the justification for 

introducing XTLang into Extempore. The division of labour is such that XTLang is to be 

used for systems programming – and high-performance computation – while Scheme is 

to be used as a control language for triggering events (Sorensen, 2016b).

XTLang’s static typing, mirroring C, allows relatively easy – at least in theory; see further 

discussion below – interfacing with native C dynamic libraries. Libraries can be bound at 

run-time using the bind-dylib and bind-lib forms, which auto-generate Scheme 

wrappers for C functions, provided their typing information can be correctly specified in 

advance (Sorensen, 2016c). Extempore’s standard library is in large part based around 

this use of XTLang’s foreign function interface (hereafter FFI) – the shipped MIDI 

functionality, for instance, is built around XTLang bindings to the C libraries for Portmidi 

and RtMidi, two open-source MIDI libraries. 

2.5.3 The patern language

Since it is a key part of the high-level musical infrastructure of Extempore (Sorensen, 

2020) and used as part of the demonstration of MIDI interaction herein, the pattern 

language in Extempore is briefly expounded here. 
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Figure 5: Adding two integers 
together in XTLang. Note the 
requirement for type annotations (a 
and b are 64-bit integers) but 
otherwise the similarity to Scheme. 
Source: Sorensen, 2016a.



The pattern language is a domain-specific language, implemented as set of Scheme 

macros, used to abstract the process of rhythmically triggering a procedure given a set of 

timings in beat counts and a list of note values.

Patterns are defined and started with the :> macro. A breakdown of the form is shown 

below:

The :> macro is invoked with the name of the pattern, here infinity-saxophone, the 

amount of beats over which to play it (here 20) and the amount of beats to offset the 

pattern, here 0. It then takes an expression; this expression is evaluated rhythmically on 

each metronome beat – Extempore has a global metronome object responsible for 

keeping track of time, accessible and adjustable via the *metro* closure – with each 

successive element of the final list(s) substituted for @1, @2, …, @n. In this example, only 

one list is supplied – a list of note values and special symbols – and hence only @1 will be 

defined when the supplied expression (mplay midi-out @1 120 dur 3) is evaluated.

Two special symbols are permitted within lists of notes, | and _, corresponding to musical 

ties, representing an extension for another beat of the previous note, and pauses, 

representing a beat of silence, respectively. The symbol dur is bound prior to evaluating 

the user-supplied play expression to the calculated duration of the present note. Multiple 

notes per beat can be played by recursively nesting lists of notes – such as duplets, e.g. 

(… (60 62) …) or triplets, e.g. (… (60 62 60) …).

The standard library macro mplay is worth mentioning briefly here since it is used 

extensively in the demonstration code of this project. It takes as arguments a reference to 

the output MIDI device, the note value to play, the volume (a 7-bit integer, as per the MIDI 

standard, ranging from 0 to 127), the duration in audio samples to play the note and, 

finally, the MIDI channel upon which to send the message.
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Figure 6: An example of a pattern playing a sequence of musical notes in Extempore.

 ;; A demonstration pattern
                                                         
(:> infinity-saxophone 20 0 (mplay midi-out @1 120 dur 3)                
    `(c5 d5 eb5 | | | | _ c5 d5 | | | | _ d5 | | | | _ bb4 c5 | | | | _))



3. Problem statement

Extempore lacks well-rounded MIDI support. Basic wrappers for two C libraries – rtmidi 

and portmidi – are included which provide a rudimentary, but limited interface; there is 

no support for routing via JACK, for opening virtual (software) ports, or for manipulating 

more than one input or output MIDI port at a time. All events are handled in a single, 

global event loop, calling predefined callback functions. 

It would be of benefit to have an extensible, high-level MIDI interface abstracting over the 

underlying low-level back-ends, optionally with the ability to choose between back-ends 

but otherwise falling back on JACK as a cross-platform, low-latency routing solution.

Given this base layer of abstraction, it would be worthwhile to develop higher-level library 

functions to abstract commonly-used functionality such as live generation of arpeggiation, 

recording and looping abilities, as well as demonstrate using non-note controls (such as 

control change events and MIDI controller pad buttons) to interact with and influence live-

coded algorithms and data in Extempore.

Once implemented, it would be desirable to evaluate Extempore as a platform for 

provision of such capability, including an evaluation of the success of the XTLang/Scheme 

split design in achieving Extempore’s aim of being a “full-stack” live coding environment. 

The necessity of XTLang would be of interest, in particular, with regard to minimising MIDI 

latency and improving code performance; it is an open question as to whether adopting 

an alternative, more performant Scheme implementation may render the XTLang 

infrastructure – the defining feature of Extempore over its predecessor, Impromptu 

(Sorensen, 2016b) – unnecessary.
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4. Approach

After developing a basic understanding of the underlying framework – Extempore itself, 

as well as its particular subset of Scheme and XTLang – the author’s first concern was to 

find a way to gather notes entered from a hardware MIDI device and represent them as a 

list within Scheme for further manipulation. Given such a list, demonstrating live, run-time 

modifiable arpeggiation becomes trivial owing to Extempore’s built-in pattern language – 

it can simply be substituted as the note list parameter of the :> macro.

This early work is represented by the code listing of midi-held-notes.xtm, which 

demonstrates using the built-in portmidi wrapper (written by Sorensen) to gather the list 

of notes currently held down on a specified MIDI input port.

This implementation draws attention to some of the deficits in the Extempore-provided 

MIDI library. To begin with, it is very heavy on global state. Interaction with the MIDI 

scheduler provided as part of the Extempore portmidi library requires overriding two 

global XTLang functions, midi_note_on and midi_note_off, which here are used to 

update an XTLang array. XTLang declarations are global across Scheme interpreter 

“processes” (which are actually implemented as threads) and are therefore not thread-

safe. There is also no way to listen to more than one MIDI input simultaneously. 

 

Note how XTLang is more verbose than Scheme – type annotations are required and each 

of these functions must explicitly return void in order to allow the compiler to compute 

their return type ahead of time. It is also required to manually allocate the memory for 
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Figure 7: Updating a global, 128-bit array to store information on the currently-held MIDI 
notes using the built-in callbacks.

; Allocate 128 bits for keeping track of held note state
(bind-val notes_down |128,i1|* (alloc))

; Override xtlang handlers to update notes_down array
(bind-func midi_note_on
  (λ (timestamp:i32 pitch:i32 volume:i32 channel:i32)
    (aset! notes_down pitch 1)
    void))

(bind-func midi_note_off
  (λ (timestamp:i32 pitch:i32 volume:i32 channel:i32)
    (aset! notes_down pitch 0)
    void))



the notes_down array synonymously to allocating dynamic memory on the heap in C with 

malloc(). 

This suffices for dynamically populating the notes_down array with boolean data. 

Passing this information back across the XTLang → Scheme divide is not intuitive, 

however. There is no way to access Scheme objects from XTLang – nor any way to 

generate Scheme objects in XTLang code, nor trigger evaluation of Scheme expressions 

in XTLang; XTLang must be triggered by the top-level Scheme interpreter in a 

unidirectional way (Sorensen, 2016b).

 

Converting the notes_down array into a Scheme list therefore involves repeatedly calling 

a Scheme function which triggers an XTLang closure which walks through the array, 

returning each non-zero element sequentially.

Other than being inelegant, this is not a thread-safe solution and involves iteration 

through the entire 128-element array using Extempore’s slow Scheme interpreter for 

every call to midi-held-notes – which is likely to be multiple times per beat in the case 

of use for arpeggiation – as seen in the code listing below. 
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Figure 8: Scheme and XTLang inter-operability runs in 
one direction only, from the Scheme interpreter to 
XTLang code.



Ideally, it would be possible to manipulate the incoming notes directly in Scheme – doing 

such polling per-event rather than multiple times per beat, which is likely to be 

significantly less frequent. For managing such events in a way appropriate for polling 

several devices simultaneously, without involving global state, streams – delayed lists, in 

the style of Abelson et al. (1996) – are suggested as a well-fitting high-level abstraction, 

allowing applications to monitor specific streams for events, asynchronously, as well as 

easily utilise standard higher-order functions (map, filter, reduce, etc.) to pre-process 

such streams for their unique needs. This would also allow for many different use cases 

to derive from one device event stream – rather than forcing the user-programmer to 

manually composite functions into a global XTLang callback.
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Figure 9: Working around the limitation that only primitives can be returned by XTLang 
by iterating through the array using a Scheme wrapper.

; Provide a means to read the notes_down array from Scheme
; midi_get_notes_down can be called in a loop to retrieve each held note 
in turn
; returns -1 when list complete - N.B: not thread safe
(bind-func midi_get_next_note_down
  (let ((index:i8 -1))
    (λ ()
      (set! index (+ 1 index))
      (if (< index 0:i8)
        (set! index -1:i8)
        (if (= (aref notes_down index) 0:i1)
          (midi_get_next_note_down)
          index)))))

; Scheme wrapper function allowing Scheme code to get a list of held notes
; Not thread safe since midi_get_next_note_down is not thread safe
(define (midi-held-notes)
  (let ((note (midi_get_next_note_down)))
    (if (= note -1)
      ‘() ; finished
      (cons note (midi-held-notes))))) ; otherwise continue building list



5. Implementaion

5.1 Low-level MIDI interfacing

This project leveraged partial implementation of RtMidi support, written by Ben Swift, the 

second major contributor to Extempore after Andrew Sorensen. Swift’s incomplete RtMidi 

bindings were taken as a starting point for iteratively building upon the MIDI interface of 

Extempore with more flexible, high-level abstractions in mind.

RtMidi is a cross-platform library designed to abstract common functionality over its 

supported platforms – Windows via the Windows Multimedia Library, MacOSX using 

CoreMIDI or JACK and Linux using ALSA or JACK (Scavone, 2019). For this project, the 

author utilised RtMidi’s JACK support – a performant, cross-platform solution for MIDI 

routing with support for virtual (software) ports – although an ALSA fallback is available if 

JACK support isn’t detected in the system’s shared RtMidi library.

5.2 Virtual ports

Opening virtual ports was implemented trivially by using XTLang’s C FFI to call native entry 

points in librtmidi, as shown below:

Virtual ports have the advantage that users do not need to know system MIDI ports in 

advance of starting an application – not the case with the built-in MIDI library – with 

routing able to be dynamically modified at run-time using utility software for JACK, as 

demonstrated above.
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Figure 10: Using librtmidi's C API via XTLang's FFI. rtmidi_in_create and 

rtmidi_out_create are trivially bound to the external shared C library using XTLang's 

FFI wrappers defined in libs/contrib/rtmidi.xtm.

; Helpers to open virtual ports
(bind-func make-rtmidi-in-port
  (λ (portname api)
    (let ((in (rtmidi_in_create api portname 128)))
      (rtmidi_open_virtual_port in "MIDI Input")
      in)))

(bind-func make-rtmidi-out-port
  (λ (portname api)                               
    (let ((out (rtmidi_out_create api portname))) 
      (rtmidi_open_virtual_port out "MIDI Output")
      out)))



This behaviour is abstracted in a more idiomatic Scheme wrapper allowing input and 

output virtual ports, more suitable as the end-user interface (bearing in mind that the 

interface of the live-coding system is code itself): 

Since this procedure returns opaque pointers to RtMidi devices, sending messages over 

an output port is trivially implemented with aliasing:

Before discussing polling for events and processing input, here follows a discussion of the 

streams paradigm chosen to represent flows of incoming data.

5.3 Asynchronous streams

The streams paradigm expounded by Abelson et al. (1996) provides a way of producing 

lazily-evaluated lists of indefinite length, implemented in Scheme by replacing the default 

behaviour of cons with a procedure that delays its second argument – by wrapping it in 

an anonymous procedure or thunk, only to be evaluated when execution of other code 

depends upon its value. 

This approach was taken as the inspiration for the handling of incoming MIDI messages. 

An approach was required which could handle registration of multiple callbacks of user-

written code for each actively-polled MIDI input device yet provide a level of abstraction 

similar to that available when manipulating basic lists in Scheme – such as the ability to 

write idiomatic Scheme by utilising such higher-order functions as map, filter and for-

each to pre-process data in a modular way – and ideally be able to be written in a simple, 
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Figure 11: Idiomatic scheme wrapper for creation of virtual MIDI ports. Falls back to 
ALSA if JACK support is unavailable. Definition of rtmidi-jack-support? omitted for 

brevity – see tom/rtmidi-stream.xtm.

(define (midi:create-port direction portname)
  ((if (eq? direction ’in)
     make-rtmidi-in-port 
     make-rtmidi-out-port) portname (if rtmidi-jack-support?     
                                         RTMIDI_API_UNIX_JACK             
                                         RTMIDI_API_LINUX_ALSA)))

Figure 12: Two Scheme aliases for the dynamically bound, external rtmidi_send. The 

former is for compatibility with existing standard library functionality which uses the 
hyphenated naming convention.

(define midi-send rtmidi_send)
(define midi:send midi-send)



synchronous style yet without blocking the entire Scheme interpreter by actively waiting 

for events. 

Building lists in the style of Abelson et al. (1996), however, would have posed a memory 

burden given the large amount of MIDI events generated by physical devices (turning a 

rotary control is sufficient to generate hundreds of control change events) and was not a 

natural fit for dealing with real-time input; when dealing with incoming MIDI events, one 

rarely cares in practice about historical events occurring in the stream (although building 

a list manually, as in the recording functionality described later, is trivial given the stream 

abstraction).

5.3.1 Closures

The streams abstraction was implemented instead as a closure holding state consisting 

of a list of callbacks, triggered on each new event, taking advantage of Extempore’s built-

in scheduler queue to schedule user-provided procedures for execution, as per the 

general non-preemptive, single-threaded design.

Use of closures – stream:new is a function which returns an anonymous function, 

encapsulated with some additional state – in this manner is a Scheme idiom which 
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Figure 13: The closure returned by stream:new maintains a list of callback procedures 

as local state.

(define (stream:new)                            
  (let ((callbacks ‘()))
    (λ (command . args)
      (cond ((eq? command ’send)
             (for-each (λ (callback-fn)
                           (apply callback (now)
                                  (if (symbol? callback-fn)
                                    (eval callback-fn)
                                    callback-fn) args))
                       callbacks))
            ((eq? command ’register-callback!)
             (set! callbacks (cons (car args) callbacks)))
            ((eq? command ’remove-callback!)
             (set! callbacks (filter (λ (callback-fn)
                                       (not (eq? callback-fn (car args))))
                                     callbacks)))
            ((eq? command ’purge-callbacks!)
             (set! callbacks ’()))
            ((eq? command ’get-callbacks)
             callbacks)
            (else
              (println ’stream:new: ’unknown ’command: command))))))



enables data encapsulation analogously to the object-oriented paradigm (Abelson et al,, 

1996).  Callbacks may be registered by adding them to the beginning of the list (using the 

beginning, with cons, takes constant time; appending to the end of the list would be of 

O(n) complexity since list traversal would be required) or removed, by filtering them out. 

When data is sent, the Extempore scheduler is invoked using the built-in procedure 

callback and fed each registered callback function with the incoming data providing the 

parameters for execution as soon as possible – (now), which returns the current time in 

audio samples. 

Further wrappers are provided to abstract the closure’s internal commands (register-

callback!, remove-callback!, etc.) with procedures for ease of use and debugging. 

Undefined procedure names will generate an error – but specifying the wrong internal 

command to the closure lambda will not and may easily go unnoticed. 

5.3.2 Higher-order funcions

Some higher-order functions are provided for manipulating streams of data. By using 

these functions, internal management of callbacks is hidden in such a way as to allow  

declarative programming with streams – as if writing synchronous code – without the 

cognitive burden (see Leger and Fukuda, 2016)  of managing many layers of nested, 

potentially inter-dependent callbacks.

The definitions of stream:for-each, stream:map, stream:filter and 

stream:merge are shown in the code listing below:
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Figure 14: Wrapper procedures to hide implementation details - a common pattern 
when passing around closures in Scheme.

(define (stream:send stream . data)
  (apply stream ’send data))
(define (stream:register-callback! stream fn)
  (stream ’register-callback! fn))                       
(define (stream:remove-callback! stream fn)              
  (stream ’remove-callback! fn))                       
(define (stream:purge-callbacks! stream)               
  (stream ’purge-callbacks!))      



For-each is trivially implemented as registering the procedure to be called on each 

incoming datum as a stream callback. Mapping, filtering and merging streams are 

accomplished by creating a new stream and forwarding events – transformed as specified 

in the case of stream:map – as required to new, output streams, the references to which 

being returned by each procedure. 

5.3.3 Asynchronous waiing

One final example is provided of how this approach to creating asynchronous streams 

meshes well with Extempore’s scheduler queue and the utility of first-class continuations 

in Scheme for achieving custom control structures. Several languages have an 

async/await syntax, such as ES6 Javascript (see e.g. Kantor, 2020), whereby 

asynchronous code may be written in synchronous style using special syntactic forms. In 

Extempore, this behaviour can be accomplished in a minimal amount of pure Scheme, as 

seen in the implementation of stream:await – a function which skips execution of the 

remainder of its parent procedure, waits for the next stream event and then re-starts 

execution, seemingly returning the value of the event thus received – all without blocking 

execution of any other scheduled code.
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Figure 15: Implementation of some standard higher-order functions for asynchronous 
(callback-based) streams.

(define (stream:for-each fn stream)                 
  (stream:register-callback! stream fn))            

(define (stream:map fn stream)
  (let ((output-stream (stream:new)))
    (stream:register-callback! stream (λ data
                                        (stream:send output-stream
                                                     (apply fn data))))
    output-stream))

(define (stream:filter predicate stream)
  (let ((output-stream (stream:new)))
    (stream:for-each (λ data
                       (if (apply predicate data)
                         (apply stream:send output-stream data)))
                     stream)
    output-stream))

(define (stream:merge . streams)
  (let ((output-stream (stream:new)))
    (for-each (λ (stream)
                (stream:for-each (λ data
                                   (apply stream:send output-stream data))))
              streams)
    output-stream))



The procedure stream:await simply registers a stream callback which, when invoked, 

de-registers itself and then passes on the stream data received to the parent 

continuation – the procedure waiting for a value from stream:await. Here, 

*sys:toplevel-continuation* refers to a continuation representing the top-level 

state in the interpreter’s REPL; calling it effectively jettisons the current execution context 

with a non-local exit and is used to prevent the rest of the parent procedure from 

executing until a stream event is received. 

For context, below is an example showing how this allows programming iteration in a 

straightforward, synchronous style. This snippet collects the next ten events from input-

stream into the list events – without blocking the REPL or any other scheduled 

procedures. 
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Figure 16: Using first-class continuations and callbacks in Scheme to implement 
asynchronous waiting behaviour.

(define (stream:await stream)                              
  (call/cc (λ (current-continuation)        
    (letrec ((callback-fn (λ args
                           (stream:remove-callback! stream callback-fn)
                           (apply current-continuation args))))
      (stream:register-callback! stream callback-fn)
      (*sys:toplevel-continuation* ’awaiting)))))   

Figure 17: A demonstration of stream:await.

(define events ’())                                              
(dotimes ((i 10))                                                
  (set! events (append events (stream:await input-stream))))  



5.4 Processing MIDI Input into streams

Given the above, providing a stream-based interface to MIDI input requires forming a 

stream closure, polling the MIDI device for events and forwarding these events through 

the stream with stream:send. 

5.4.3 Polling for MIDI events

RtMidi provides two mechanisms for obtaining events – active polling or providing a 

callback function for incoming events. Unfortunately, registering a callback function would 

be of no advantage; Extempore is designed such that XTLang cannot call Scheme code, 

and the callback function would of necessity have to be implemented in XTLang (due to 

its C ABI interoperability), hence all ensuing user code would be limited to being written in 

XTLang. Given, as noted repeatedly, that the user interface is code, it would be desirable 

to keep this at the highest achievable level of abstraction – which means providing our 

user-accessible functionality as a Scheme rather than XTLang library.

A Scheme polling loop is therefore required, actively polling for events and forwarding 

them as required to our stream closures – and thereafter downstream user code.

The design of this was slightly convoluted due to limitations of Extempore’s threading and 

inter-process communication functionality. It was decided to implement active polling in a 

separate thread in order to allow high-frequency polling of multiple devices concurrently 

without choking the Scheme scheduler in the main interpreter thread. Extempore refuses 

to serialise opaque pointers for inter-”process” (Scheme interpreter process, that is – 

which are implemented as OS threads) communication (hereafter IPC), meaning that a 

workaround involving passing global data through XTLang constructs has to be used 

instead. XTLang has direct memory access to the entire process memory space, making it 

suitable for this purpose, provided mutual exclusion is used appropriately (Sorensen, 

2016c).
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Figure 18: Using XTLang to pass data across the divide between Scheme processes - a 
mutex, a global opaque pointer and accessor functions.

;; XTLang values / procedures used for passing data across the IPC divide
;; (since Extempore won&apos;t serialise pointers)                                
                  
(bind-val midi_current_device_mutex i8* (mutex_create))                       
(bind-val midi_current_device_ptr i8* 0)                                      
(bind-func set_midi_current_device_ptr (λ (value)
                                         (set! midi_current_device_ptr value)))   
(bind-func get_midi_current_device_ptr (λ () midi_current_device_ptr))



Extempore also will not serialise closures across the IPC divide. This means that we 

cannot directly pass stream objects to the foreign (polling) thread for direct use on 

incoming events; an array is therefore maintained of stream closures, with their 

respective indices into the array serving as an IPC-serialisable means of identification. 

Scheme features a vector data type – contiguous elements in memory, akin to C arrays – 

but it is of static size; an array-list abstraction inspired by Java’s dynamic ArrayList (see 

Oracle, 2020) was developed for use in this scenario to support indefinitely large 

amounts of devices and associated streams. The implementation of the array-list 

structure is omitted here for brevity – see the code listing of tom/arraylist.xtm for details.

The poll loop itself is depicted in the following listing. It uses the XTLang bindings to 

rtmidi_get_msg to get the length of the next pending message, which is thereafter 

stored in a global XTLang binding, accessible in Scheme through calling the wrapper 

function rtmidi_get_message_global. No mutual exclusion locking is required for this 

section despite the use of global XTLang state since this function is only called from 

within the poll loop thread, which processes each device sequentially. 

The only other non-intuitive part of this code listing is the need to handle de-registration 

notices, a means by which polling for a given device can be stopped (such as if we wish to 

pause polling – or if the device is deleted and its memory freed); this is done via keeping 

track of messages (passed in from the primary thread) in a deregistration-notices 

list and checking this before proceeding with each iteration.
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Figure 19: Scheme polling loop for MIDI events - this runs continuously in the polling thread.

(define (rtmidi-scheme-poll-loop device callback-fn)
  (if (null? deregistration-notices)
    (let ((len (rtmidi_get_msg device))
          (msg (rtmidi_get_message_global)))
      (if (= len 0)
        (callback (+ (now) 48) rtmidi-scheme-poll-loop device callback-fn)  ;; Check 
for events every 1ms (48000 Hz / 1000)
        (let ((type (msg_type msg))
              (chan (msg_chan msg))
              (a (msg_a msg))
              (b (msg_b msg)))
          (callback (now) callback-fn type chan a b)
          (rtmidi-scheme-poll-loop device callback-fn))))
    (if (not (member device deregistration-notices))
      (callback (now) rtmidi-scheme-poll-loop device callback-fn))))                  
      ;; Let other devices be processed until deregistration is handled



The helper functions msg_type, msg_chan, msg_a and msg_b read the appropriate parts 

of a pointer to a MIDI message using bit-wise logic, given the message structure given 

above:

We can now create a new Scheme process responsible for executing the polling loop. The 

following listing demonstrates the set-up of the polling process in Extempore, defining 

foreign functions via IPC and ensuring Scheme wrappers for the required XTLang 

functions are generated in the foreign process:

As seen above, the polling thread uses IPC to inform the primary (REPL) thread of the 

stream ID and details of incoming events as they are found. The primary thread forwards 

these events on after looking up the stream matching the index provided:
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Figure 20: XTLang bitwise logic to extract information from MIDI messages.

(bind-func msg_type:[i8,i8*]*
  (λ (msg:i8*) (>> (pref msg 0) 4)))
(bind-func msg_chan:[i8,i8*]*
  (λ (msg:i8*) (& (pref msg 0) 15)))
(bind-func msg_a:[i8,i8*]*
  (λ (msg:i8*) (pref msg 1)))
(bind-func msg_b:[i8,i8*]*
  (λ (msg:i8*) (pref msg 2)))

Figure 21: Setting up the polling loop functionality in a separate Scheme process and 
handling new device registrations in the polling thread – each new registration triggers 
starting a new polling loop, with the stream id state encapsulated in the callback closure. 

; Start midi event polling thread on port 1337
(ipc:new "midi-poller" 1337)

;; Define Scheme callback function in polling thread
(ipc:define "midi-poller" ’rtmidi-scheme-poll-loop rtmidi-scheme-poll-loop)

;; Define xtlang-Scheme wrappers in polling process
(for-each (λ (name) (ipc:bind-func "midi-poller" name))
          (list ’get_midi_current_device_ptr ’rtmidi_get_message_global             
                ’rtmidi_get_msg ’msg_type ’msg_chan ’msg_a ’msg_b))

;; Define message-handling functions for polling thread
;; NB. Device pointer passed through xtlang as cannot serialise cptrs
(ipc:define "midi-poller" ’register-device
            (λ (stream-id)
              (rtmidi-scheme-poll-loop (get_midi_current_device_ptr)
                                       (λ (type chan a b)
                                         ;; Phone home with event details
                                         (ipc:call-async "primary" ’midi:handle-
event stream-id type chan a b)))))



The final major piece of the polling implementation is midi:input-port→stream, the 

public interface, which returns a stream given an input RtMidi device pointer:
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Figure 23: The user interface to this functionality - obtaining an actively-polled stream 
from an input port reference.

(define midi:stream-refs (array-list:new 16))

(define (midi:input-port->stream input-port)
  (let*
    ((output-stream (stream:new))
     (stream-ref (array-list:add! midi:stream-refs output-stream)))
    ;; Guard XTLang IPC with a mutex for thread safety
    ($ (mutex_lock midi_current_device_mutex))
    (set_midi_current_device_ptr input-port)
    (ipc:call "midi-poller" ‘register-device stream-ref)
    ($ (mutex_unlock midi_current_device_mutex))
    output-stream))

Figure 22: Handling incoming event-received messages in the primary thread.

;; Define handler for incoming events from polling thread
(define (midi:handle-event stream-id type chan a b)
  (stream:send (array-list:get midi:stream-refs stream-id) type chan a b))



5.5 Implemented behaviours

5.5.1 Arpeggiaion

Arpeggiation can be implemented easily in Extempore using the built-in pattern language, 

which takes a procedure – used as the algorithm for playing the pattern – and a list of 

notes to play, as discussed above.

Converting a stream of MIDI events into a list of currently-held notes is implemented with 

the holder abstraction, implemented in tom/recording.xtm. Holder closures, created with 

holder:new, register a simple stream callback which maintains local state concerning 

which notes in a stream are currently depressed. Note that in the below, the returned list 

is built backwards so that constant-time cons operations can be used without having to 

reverse the list (at otherwise O(n) time and memory cost) upon completion.

An example of this behaviour in use is demonstrated below. Using this framework, a 

simple arpeggiator can be created in just a few lines of Scheme:
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Figure 24: Holder closures provide a means of obtaining a list of currently-held notes 
given a MIDI event stream. The implementation uses Scheme vectors for constant-time 
access and reference – converting this data to a list is performed by holder:get-

notes, which calls the internal procedure note-vector→list.

(define (holder:new . input-stream)    
  (let* ((held-notes (make-vector 128))
         (stream #f)                                  
         (callback-fn (λ (type channel note velocity) 
                        (cond ((= type *midi-note-on*)
                               (vector-set! held-notes note velocity))
                              ((= type *midi-note-off*)
                               (vector-set! held-notes note ‘())))))
         (note-vector->list (λ (notes-vector)   
                              (let loop ((i 127)
                                         (notes-list ‘()))
                                (if (< i 0)    
                                  notes-list   
                                  (loop (- i 1)
                                        (if (null? (vector-ref notes-vector i))
                                          notes-list
                                          (cons i notes-list))))))))
    ;; Rest of code (accessors, wrappers etc.) omitted for brevity



Since the pattern language can utilise any valid Extempore expression – and the list 

returned by (holder:get-notes keyboard-holder) is a standard, Scheme list of 

notes – the user has complete flexibility over the arpeggiation algorithm. Notes may be 

mapped to other notes, scaled, or otherwise modified procedurally in a run-time 

modifiable way. The following is an example of a slightly more complex expression in use 

– this plays an arpeggio over two octaves, running up and down the notes currently held 

on the MIDI keyboard stream:

Here, the utility function take defined in tom/utils.xtm is used in order to obtain a set 

amount of elements from the list, repeating the list where necessary. This is to circumvent 

the pattern language’s default scaling up or down of note durations as per the length of 

the note list, which otherwise causes the rhythm to undesirably slow or hasten depending 

on the amount of keys depressed. 

5.5.2 Interacing with MIDI controls and non-note butons

Two helper functions, midi:on-cc and midi:on-keypress are implemented to aid in 

using midi control change events – such as are generated by physical rotary dials – and 

midi pads, which generally function in the same way as keyboard keys but are frequently 

used as triggers rather than for musical input (Rothstein, 1995).
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Figure 25: Minimal arpeggiation example using pattern language, streams and holders.

;; Create a virtual MIDI input port and get access to a stream of events
(define keyboard-stream (midi:input-port->stream
                          (midi:create-port ‘in "Keyboard Input")))
(define midi-out (midi:create-port ‘out "Extempore MIDI Output"))

;; Create a “holder” to keep state regarding keys currently depressed
(define keyboard-holder (holder:new keyboard-stream))
                                                                    
;; Simplest possible arpeggiated pattern - plays notes in low-to-high order     
(:> simple-arppegiator 0 0 (mplay midi-out @1 80 dur 0)                     
    (holder:get-notes keyboard-holder))  

Figure 26: Demonstrating a more elaborate pre-processing of the retrieved notes list; 
arpeggiating up and down over two octaves.

(:> octave-up-down-arp 4 0 (mplay midi-out @1 80 (* 2 dur) 0)                 
    (let* ((held-notes (take (holder:get-notes keyboard-holder) 4))           
           (held-notes^12 (map (λ (x) (+ x 12)) held-notes)))
      `(,@held-notes                                                   
         ,@held-notes^12                                               
         ,@(reverse held-notes^12)                                     
         ,@(reverse held-notes))))    



The definition of midi:on-keypress is shown below; midi:on-cc is very similar in 

implementation.

This is an example of code generation using Extempore’s provision of the Scheme syntax 

define-macro. A function is generated and defined in the top level environment, with 

boilerplate conditional checks – ensuring the procedure is only invoked on a specified key 

and channel – automatically  included before the user-specified code. This allows for 

succinct bindings of Scheme expressions to key presses – triggering events, for example 

– as is seen demonstrated in the recording and looping functionality discussed below.

The following code listing is an example of combining midi control change callbacks with 

the minimal pattern-language arpeggiator demonstrated above. Manipulating the rotary 

dial on the controller has the effect of shortening or prolonging each note duration for a 

simple trancegate-like effect – each note duration is scaled by @1 + 1 (the implicit new 

value of the controller plus one – ranging therefore from 1 to 128 – Extempore will not 

accept zero duration values) divided by 64, hence from 1/64 to two. The symbol @1 is 

defined within the midi:on-cc macro as a succinct means of accessing the new value of 

the controller within the specified trigger expression:
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Figure 27: A macro to enable quick binding of control code to button presses - suitable for 
using with MIDI controller pads.

(define-macro (midi:on-keypress input-stream channel note . function-expr)
  (let ((fn_name (string->symbol (string-append "key_callback_" (number->string 
channel) "_" (number->string note)))))
    `(begin
       (stream:remove-callback! ,input-stream (quote ,fn_name))
       (define ,fn_name (λ (type chan a b)
                          (if (and (= type *midi-note-on*)
                                   (= chan ,channel)
                                   (= a ,note))
                            (begin ,@function-expr))))
       (stream:register-callback! ,input-stream (quote ,fn_name)))))

Figure 28: Using midi control change events to dynamically influence arpeggiation - in this  
case, note duration.

(define duration-scale-factor 1.0)
(midi:on-cc keyboard-stream 0 0 (set! duration-scale-factor (/ @1 64)))    

(:> duration-arp 2 0 (mplay midi-out @1 80 (* dur duration-scale factor) 0)  
    (holder:get-notes keyboard-holder))    



5.5.3 Recording

Recording and sequencing MIDI input is ubiquitous across digital audio software – being 

one of the foundations of digital audio workstation software such as Cubase (Steinberg 

2020) and Ableton Live (Ableton, 2020). Approaching this problem in Extempore began 

with implementing a means to record and re-play MIDI streams, encapsulated in the 

recorder closure, created via recorder:new, defined in tom/recording.xtm. Since 

recording is implemented here by building lists of stream events, a utility data structure, 

list-builder, was first implemented which allows constant-time appending to Scheme 

lists by keeping track of the final element in the linked list and mutating it upon each 

list-builder:append! operation. The implementation details are omitted here for 

brevity but may be seen in tom/utils.xtm. The code listing below shows the majority of the 

logic of the recording functionality:
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Figure 29: Recording functionality defined as part of the recorder:new closure.

define (recorder:new)
  (let* ((events-list (list-builder:new))
         (stream #f)
         (quantisation-precision 1/16)
         (playback-active #f)
         (callback-fn (λ midi-event
                        (let ((quantised-time (time-quantise (now) quantisation-precision)))
                          (list-builder:append! events-list (list (cons quantised-time midi-
event))))))
         (normalize-times (λ ()
                            (let ((first-time (caar (list-builder:head events-list))))
                              (list-builder:map! (λ (event)
                                                   (cons (- (car event) first-time)
                                                         (cdr event)))
                                                 events-list))))
         (playback-stream (stream:new)))
    ;; NB. playback-function schedules relative to prev absolute time in samples, instead of 
using (now) - see Extempore temporal recursion docs/notes - this avoids execution time 
pushing the pattern out of sync as it accumulates
    (letrec ((playback-function (λ (start-time remaining-events)
                                  (if playback-active
                                    (let* ((event (car remaining-events))
                                           (event-details (cdr event))
                                           (event-time (car event)))
                                      (apply stream:send playback-stream event-details)
                                      (if (null? (cdr remaining-events))
                                        (let ((next-beat (get-next-beat-time)))
                                          (callback next-beat playback-function next-beat 
(list-builder:head events-list)))
                                        (callback (+ start-time (caadr remaining-events)) 
playback-function start-time (cdr remaining-events))))))))

      (λ (command . args)
         ;; Rest of function – accessors, etc., omitted for brevity



In essence, the recorder closure maintains a local list of events and registers a callback 

function with a given input stream which saves each event and the time it occurred – 

although this time is quantized to the Extempore metronome’s beat beforehand, 

discussed further below – to this local list. A playback stream is created; when playback is 

triggered using recorder:play!, the saved events are sent through this stream, 

repeated indefinitely and maintaining the appropriate timing intervals between events. 

The Scheme letrec form defines a binding able to recursively reference itself – the 

playback-function binding, for instance, needs to be able to reference itself to 

establish a temporal recursion. 

Two commands accepted by the closure are detailed in the following code listing due to 

their importance in achieving the recorder’s behaviour; they are triggered by 

recorder:start-recording! and recorder:stop-recording! respectively: 

When a recording is played, the recording is always scheduled to occur on the Extempore 

metronome’s beat – this decision was taken to ensure that pattern language constructs 

and recordings stay synchronised over time. In order to preserve event timings, a dummy 

event – which does nothing, consisting of all zero data fields – is inserted at the 

beginning of the recording, timed with the previous beat. Similarly, a null event is inserted 

a the end of the stream on the beat following the last event – this ensures that the next 

repetition of playback will occur on-beat, ensuring the timing does not drift away from that 

of the metronome.
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Figure 30: Code responsible for starting and stopping the recording process – keeping the  
pattern in synchrony with the metronome.

             ((eq? Command ’start-recording!)
               (set! events-list (list-builder:new))
               (stream:register-callback! stream callback-fn))
              ((eq? command ’stop-recording!)
               (stream:remove-callback! stream callback-fn)
               ;; Add "dummy events" to generate correct spacing between last + first 
recorded events. First dummy event is synchronized with beat prior to start of pattern - 
this ensures that first event’s timing is preserved 
               (let ((dummy-event ‘(0 0 0 0)))
                 (list-builder:append-head! events-list (cons (get-first-beat-before (caar 
(list-builder:head events-list)))
                                                                dummy-event))
                 (list-builder:append! events-list (list (cons (get-next-beat-time)          
                                                                dummy-event))))
               ;; Now normalize the recorded times so they start at zero
               (normalize-times))



5.5.3.1 Time quantisation

The functions utilised above which quantise event times relative to the metronome are 

defined in tom/quantise.xtm. Time quantisation was implemented in order to keep 

recordings in synchrony with the Extempore beat – as well as being a first step towards 

implementation of sequencing behaviour. 

The key function is time-quantise, which takes a time (in audio samples) and a 

precision, generally specified as a fractional value. As seen above, the default for the 

recorder closure is 1/16 – this is modifiable using the recorder:set-precision! 

accessor function. The denominator of the precision determines how many times by 

which to subdivide each beat. A smaller denominator means that events will be 

increasingly beat-aligned but suffer a greater loss of timing precision. With a precision of 

1, for instance, all events will occur on-beat; with a precision of 1/3, triplets are possible. 

It is worth noting that the Extempore *metro* closure, when invoked with a single 

argument – representing the beat number – returns the time in audio samples that this 

beat is scheduled to occur upon. The inverse operation, obtaining the beat at a given time 

in samples, is obtained by passing in the ‘beat-at-time command. The ability to 

customise the quantisation precision is due to the utility function round-to-closest, 

which rounds the first argument to the nearest multiple of the second; its definition is 

omitted here for brevity.
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Figure 31: Quantising sample times relative to the Extempore metronome.

;; time-quantise: sample-time precision -> adjusted-sample-time
;; Given a time in samples and a precision,
;; return a new adjusted sample-time quantised to occur at a    
;; multiple in beats of precision
;; e.g. assuming sample rate of 48kHz
;; (time-quantise 49233 1/4) -> 54000.00
;; The new value is certain to take place on a quarter beat per *metro*
    
(define (time-quantise sample-time precision)
  (let* ((beat-at-sample-time (*metro* ’beat-at-time sample-time))
         (sample-adjustment (*metro* (- (round-to-closest beat-at-sample-time 
precision) beat-at-sample-time))))
    (+ sample-time sample-adjustment)))



5.5.4 Looping

Looping – playing the same musical sequence in an indefinite, repetitive loop – is often 

used for performance purposes utilising such devices as guitar loop pedals, where music 

can be built up in a series of sequentially-recorded loops overlaid upon each other for 

aesthetic effect (Rudrich, 2017). The looping functionality implemented here is relatively 

trivially – given the existent time-quantisation – implemented on top of the recording 

functionality discussed above.

The following code listing shows the full implementation of the looper closure:
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Figure 32: The looper closure handles automatic recording and looped playback.

 (define (looper:new input-stream output-stream output-channel)
  (let ((recorder (recorder:new))
        (holder (holder:new))
        (status ’empty)    
        (passthrough (λ (type chan a b)
                       (stream:send output-stream type output-channel a b))))
    ;; Set up recorder & holder closures
    (recorder:set-input-stream! recorder input-stream)
    (stream:register-callback! (recorder:get-playback-stream recorder) passthrough)
    ;; Return dispatcher lambda
    (λ (command . args)
      (cond ((eq? command ’trigger)
             ; On trigger, the looper is started if stopped or stopped if started...
             (cond ((eq? status ’empty)
                    (set! status ’recording)            
                    (holder:set-input-stream! holder input-stream)
                    (stream:register-callback! input-stream passthrough)
                    (recorder:start-recording! recorder))
                   ((eq? status ’recording)             
                    ;; Recording finished                          
                    (if (null? (recorder:get-events recorder))      
                      (set! status ’empty)                         
                      (begin                                       
                        (set! status ’playing)             
                        (stream:remove-callback! input-stream passthrough)
                        (holder:set-input-stream! holder (recorder:get-playback-stream 
recorder))
                        (recorder:stop-recording! recorder)        
                        (recorder:play! recorder))))               
                   ((eq? status ’playing)                          
                    ;; Stop playback                               
                    (set! status ’stopped)                         
                    (recorder:stop! recorder)                    
                    ;; Clear notes from holder - useful when used with arpeggiators/pattern 
lang. etc.
                    (holder:purge-notes! holder))                  
                   ((eq? status ’stopped)                          
                    (set! status ’playing)                         
                    (recorder:play! recorder))))                   
            ((eq? command ’get-recorder) recorder)                 
            ((eq? command ’get-stream) output-stream)              
            ((eq? command ’get-held-notes) (holder:get-notes holder))   
            ((eq? command ’status) status)                       
            (else (println ’looper:create/lambda: ’unknown ’command command))))))



The looper construct is implemented as a simple finite state machine dependent upon 

the internal variable binding status; it handles setting up a recorder and has one main 

interface – the command ‘trigger – which toggles its state as appropriate from 

recording to playback to halting playback.

It is worth noting that the looper closure contains within it a holder closure, allowing code 

to query which notes are currently depressed in the recorded loop at a given instant in 

time. This was implemented in order to facilitate use of loopers for control of arpeggiation 

– for instance, using a looped recording to seed the notes for a pattern language 

arpeggiator; the procedure looper:get-held-notes returns a list of currently 

depressed notes.

5.5.4.1 Using a MIDI controller as a looper interface

The design of the looper closure was such that it would be appropriate to use with a MIDI 

controller’s pad buttons, as seen on the author’s Akai APC Key 25, featuring forty MIDI 

pad buttons, as pictured below. 

A looper object could be created 

and have its trigger command 

bound to one of the MIDI pad 

buttons, for instance, allowing 

simple recording and looping 

functionality to be available 

without looking away from the MIDI 

controller; the state of the looper 

closure could further be 

communicated to the user using 

the controller’s programmable LED 

lights which lie beneath each of 

the translucent pad buttons.

This involved first defining some useful, keyboard-specific constants and procedures. 

Utilising the LEDs on the keyboard is accomplished by sending MIDI note on messages 

with specific note and velocity values – see the code listing of tom/apckey25.xtm for full 

details – which were obtained by observing which note values the keyboard itself sent 

using ALSA’s aseqdump utility when each pad was pressed. 
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Figure 33: The author’s Akai APC Key 25 MIDI 
controller, featuring minature piano keys, rotary 
dials and pad buttons.



Registering key presses is trivial given the existing stream architecture – a simple wrapper 

is included to encapsulate that the keyboard’s non-note outputs always occur on channel 

zero:

Given this, setting up loops attached to the keyboard’s pad buttons can be accomplished 

with minimal user code by invoking the macro apc25:setup-looper, which, given a note 

reference, input and output streams and output channel, handles the process of creating 

the looper closure, binding the looper:trigger command to the appropriate key press event 

and adjusting the pad’s LED lighting based on the new status of the looper closure:

41

Figure 34: A function to set the programmable lights on the APC Key 25. Loading 
tom/apckey25.xtm executes the line creating the virtual output port which must be linked 
to the keyboard’s input port via JACK.

(define *apc-output* (midi:create-port ’out "Extempore APC25 Control"))

; Helper functions for use with lights
(define (apc25:set-light! button-id colour)
  (midi:send *apc-output* *midi-note-on* 0 button-id colour))

(define-macro (apc25:on-keypress midi-stream note expr)
  `(midi:on-keypress ,midi-stream 0 ,note ,expr))

Figure 35: A macro for quickly setting up loopers attached to MIDI controller pads.

;; Helper for quickly setting up loops attached to APC25 pads
(define-macro (apc25:setup-looper key input-stream output-stream output-channel)
  (let ((looper-name (string->symbol (string-append "looper_key_" (number->string key)))))
  `(begin
     (define ,looper-name (looper:new (stream:filter (λ (type chan a b)
                                                          (not (and (= chan 0)
                                                                    (not (= type *midi-
cc*)))))
                                                        ,input-stream)
                                         ,output-stream ,output-channel))
     (apc25:on-keypress ,input-stream ,key
                        (begin
                          (looper:trigger ,looper-name)
                          (let ((status (looper:status ,looper-name)))
                            (cond ((eq? status ’stopped)
                                   (apc25:set-light! ,key *apc-amber-solid*))
                                  ((eq? status ’recording)
                                   (apc25:set-light! ,key *apc-red-solid*))
                                  ((eq? status ’playing)
                                   (apc25:set-light! ,key *apc-green-solid*))))))
     ;; Start light as amber, flashing, signalling looper in empty state
     (apc25:set-light! ,key *apc-amber-blink*)
     ,looper-name)))



5.5.5 Sequencing to patern language

Given the primacy of code in the live-coding paradigm embraced by Extempore, it would 

be desirable to provide a means of returning code itself as an end-product of a MIDI 

recording in a form amenable to direct, user-programmer modification at runtime. 

Sequencing a recording of MIDI stream events to an Extempore pattern language S-

expression – the usual, de facto way of playing rhythmic note sequences in modern 

Extempore (Sorensen, 2020) – was the author’s attempt to achieve this. 

The process is accomplished in stages. Note that the recorder closure described above 

stores events in the form of (time . data) pairs, where time refers to the time in audio 

samples at which a given event occurs and data is a list of the form (type chan a b), 

corresponding to each part of the MIDI message recorded. The first step in the 

sequencing process is to transform this list into a list containing data in the format of 

(start-time note duration), with one such entry for each note played, where 

duration and start-time are measured in audio samples:
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Figure 36: Converting the recorder's representation of events into a sequence of notes 
and their durations (in sample-time).

(define (event-list->note-duration-list event-list)
  (define note-type-pairs (map (λ (event)
                                 (let ((event-time (car event))
                                       (event-type (cadr event))
                                       (event-note (cadddr event)))
                                   (if (or (= event-type *midi-note-on*)
                                           (= event-type *midi-note-off*))
                                     (cons event-note (cons event-type event-time))
                                     ‘()))) event-list))
  (set! note-type-pairs (filter (λ (pair)
                                  (not (null? pair))) note-type-pairs)) ;; Remove control 
change events etc.
  (let loop ((remaining-events note-type-pairs)
             (return-list ’()))
    (if (null? remaining-events)
      (reverse return-list)
      (let* ((event (car remaining-events))
             (note (car event))
             (event-type (cadr event))
             (event-time (cddr event)))
          (let ((release-event (assoc note (cdr remaining-events))))
            (loop (cdr remaining-events)
                  (if (= event-type *midi-note-on*) ;; If it’s a note-on event, append 
details...
                    (cons (cons event-time (cons note (- (cddr (if release-event
                                                                 release-event
                                                                 (tail remaining-events))) 
event-time)))
                          return-list)
                    return-list)))))))  ;; Otherwise just loop & ignore



The list of note and sample-time duration pairs thus obtained is then converted into a list 

containing data in the format of (start-time note duration) – but with the start-time and 

duration specified in terms of beats:

Possessing such a list of beats and their durations is then sufficient to generate the 

pattern list. The idea encapsulated in the following code listing, which performs the whole 

conversion from the events-list format (obtained from the recorder closure) into a pattern 

language note sequence, is to sequentially step through the note-beat-duration pair list 

(generated using the functions above) and generate a list consisting of each note followed 

by sufficient ties (|) to produce the correct duration – or the maximum possible duration 

before the next note begins (the pattern language conversion implemented here is 

monophonic).

Gaps between notes are identified by the lack of overlap in adjacent beat-durations and 

start-times and an appropriate amount of _ symbols are inserted to preserve timing; the 

end of the sequence is further padded with silence to ensure that the total amount of 

beats is integer-divisible by the quantisation precision factor, required since the pattern 

language expression demands an integer amount of beats to be specified for the total-

pattern playback time. 
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Figure 37: Converting absolute time values (in samples) into beat duration values.

;; Helper function to convert output of above function into sub-beat times and durations
;; (from absolute time values)

(define (time-note-duration->beat-note-pair event-list quantisation-factor)
  (define initial-beat (*metro* ’beat-at-time (caar event-list)))
  (map (λ (event)
         (list (real->integer (* quantisation-factor (- (*metro* ’beat-at-time (car event)) 
initial-beat)))
               (cadr event)
               (real->integer (* quantisation-factor (*metro* ’beat-at-time (cddr 
event))))))
       event-list))



Tying up the loose ends and providing a cleaner programmer-user interface, we conclude 

this functionality with recorder→pattern-expr, which takes a recorder closure and 

generates a full pattern expression:
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Figure 38: Building the full pattern language note expression given a list of pairs in the 
format (time . (type chan a b)), such as are obtained from a recorder closure.

;; Put it all together - produce a pattern-list expression given a recorder-generated list 
of MIDI events
(define (event-list->pattern-list event-list quantisation-factor)
  (define beat-note-pairs (time-note-duration->beat-note-pair                                
           
                            (event-list->note-duration-list event-list) quantisation-
factor))
  (define pattern-list ’())  
  ;; Need to look for "gaps" and insert silences appropriately (_s)
  (let loop ((remaining-events beat-note-pairs))
    (let* ((event (car remaining-events)) 
           (note (cadr event)) 
           (note-start-beat (car event))
           (note-duration (caddr event))
           (event-finish-beat (+ note-start-beat note-duration)))
      (if (null? (cdr remaining-events))                       
        (set! pattern-list (append pattern-list     ;; Reached end of list -> will return 
pattern-list 
                                   (cons note (nof (- note-duration 1) ’|))))
        (let* ((next-event (cadr remaining-events)) 
               (next-event-start-beat (car next-event))
               (beats-til-next-note (- next-event-start-beat note-start-beat))
               (spacing-length (- next-event-start-beat event-finish-beat)))                 
     
          (set! pattern-list (append pattern-list  
                                     (cons note (nof (- (min note-duration beats-til-next-
note) 1) ’|))))
          (if (> spacing-length 0)      
            ;; Need to insert silence(s)                                      
            (set! pattern-list (append pattern-list (nof spacing-length ’_))))
          (loop (cdr remaining-events))))))                                                  
  
  ;; Pad the produced pattern list so that it ends on a complete beat                        
  
  ;; i.e. total sub-beat count should be divisible by quantisation-factor without remainder  
  
  (let ((padding-required (- (closest-multiple-above (length pattern-list) quantisation-
factor)
                             (length pattern-list))))                    
    (set! pattern-list (append pattern-list (nof padding-required ’_)))))



To demonstrate the output produced, this procedure was applied to a recorder closure 

containing note data, generating the following output – a valid Extempore pattern 

language expression, able to be evaluated as-is:
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Figure 39: The public interface for this functionality - given a recorder, it returns a fully-
formed pattern language expression.

(define (recorder->pattern-expr rec)                             
  (define quantisation-factor (/ 1 (recorder:get-precision rec)))                            
   
  (define pattern-list (event-list->pattern-list (recorder:get-events rec) quantisation-
factor))
  `(:> _pattern_name_ ,(real->integer (/ (length pattern-list) quantisation-factor)) 0
       (mplay midi-out @1 80 dur 0)
       (quote ,pattern-list)))

Figure 40: A demonstration pattern language construct returned by recorder→ 

pattern-expr.

(:> _pattern_name_ 8 0 (mplay midi-out @1 80 dur 0) (quote (60 | | | | _ _ _ 60 | | 
| | _ _ _ _ 57 | | | | _ _ 64 | | | | _ _ _ _ 62 | | | | | _ _ _ _ _ _ _ _ _ 59 | | 
| | | _ _ _ _ _ _ _ _ _ _ 60 | | | | _ _ _ 60 | | | | _ _ _ 57 | | | _ _ _ _ 64 | | 
| | _ _ _ 62 | | | | _ _ _ _ _ _ _ _ _ 60 | | | | | _ _ _ _ _ _ _ _ _ _ _ _)))



6. Analysis

The analysis herein first examines the correctness of the behaviour of the code produced 

during this project – through using unit testing, including some discussion of how such 

unit tests were implemented. This is followed by discussion of a key non-functional 

requirement given the live coding, live performance domain – latency, and therefore 

implicitly, execution performance.

Extempore as a development target and environment is evaluated – and alternative 

approaches to providing a Scheme-based, live coding environment with MIDI control are 

considered, with particular focus on evaluating whether Extempore’s split-language 

design is strictly necessary or rather a consequence of Extempore’s slow Scheme 

interpreter. 

6.1 Tesing

6.1.1 Correctness of data structures

6.1.1.1 A Scheme tesing language

There are limited means to test code shipped with Extempore. Unit testing for XTLang 

code is accomplished through the xtmtest macro and a Cmake script (Sorensen, 2016d) 

– but this is not suitable for testing Scheme procedures. A testing DSL was therefore 

implemented using a Scheme macro for use in quickly defining unit tests for the utility 

functions and data structures upon which this project depends.

The testing language features two operators, → and ←, being used for testing and 

assignment, respectively. Temporary variables can be bound using ← and expressions 

tested against expected values using →. An example test definition is shown below:

In this test for list-group, a procedure to group lists into groups of up to n elements, the 

temporary variable binding lst is first created and assigned the value of a list of integers 
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Drawing 1: Unit testing the list-group function from utils.xtm.

(tests:define-tests ’list-group
                    lst <- ’(1 2 3 4 5 6)
                    (list-group lst 1) -> ‘((1) (2) (3) (4) (5) (6))
                    (list-group lst 2) -> ‘((1 2) (3 4) (5 6))
                    (list-group lst 4) -> ‘((1 2 3 4) (5 6)))



from one to six. Various expression tests then follow, checking that the list is suitably 

partitioned into appropriately sized sub-lists per the parameter n. Each of these will be 

checked separately and any errors highlighted in the Extempore terminal output. 

Interleaving variable bindings with test expressions allows testing in an imperative-style 

code block, allowing unit testing of closures holding internal state, as in the case of the 

array-list functionality.

Variable assignment to a dummy variable _ is used in the below excerpt in order to allow 

execution of code statements which influence internal state, which in turn are followed by 

test expressions to validate the state change:

Tests are therefore defined ahead of time with test:define-tests, which takes a 

descriptive name for the test sequence; to execute a set of tests, test:run-tests is 

invoked with the names of the test sets to use. After running the above code listing, 

running (test:run-tests ‘array-list) results in the following terminal output:
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Drawing 2: Using the testing DSL to cause and validate internal state change within an 
array-list closure.

(test:define-tests
  ’array-list
  array-list <- (array-list:new 64)
  (array-list:empty? array-list) -> #t
  (array-list:full? array-list) -> #f
  (array-list:length array-list) -> 64
  (array-list:get array-list 0) -> ‘()
  _ <- (array-list:set! array-list 3 42)
  (array-list:get array-list 3) -> 42
  (array-list:add! array-list 1) -> 0
  (array-list:get array-list 0) -> 1
  (array-list:write-position array-list) -> 1
  _ <- (array-list:remove! array-list 3)
  (length (array-list:holes array-list)) -> 1
  (array-list:get array-list 3) -> ‘()
  _ <- (array-list:add! array-list 64)
  (array-list:get array-list 3) -> 64
  _ <- (array-list:set-write-position! array-list (array-list:length array-list))
  ; Check array list expands appropriately
  _ <- (array-list:add! array-list 1337)
  (> (array-list:length array-list) 64) -> #t)



As can be seen, each test expression is printed and reported as passed or failed, followed 

by a count of successful versus total tests executed – useful when executing several test 

sets at once for identifying when issues have arisen.

The testing DSL was implemented using a macro which, given a list of expressions, first 

groups them into groups of three elements – as per the X → Y or X ← Y syntax. The type 

of the second element, → or ← is checked and assignment (using define) or checking 

of test expressions (via eval) is performed as appropriate, with additional code handling 

counting the successful versus unsuccessful test count. The key functionality is handled 

by the interplay of the macro test:define-tests and a utility function, define-

tests-helper, which handles the logic of processing each expression group.

The procedure test:get-fn-from-name generates what will become the global binding 

name for a thunk – an anonymous procedure of no arguments – representing pending 

sets of tests by prepending a suitably long string before the test set name in order to 

avoid global namespace conflicts; Extempore lacks Scheme gensym support.
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Drawing 3: Terminal output after successfully testing the array-list functionality.

Running tests for array-list
(array-list:empty? array-list) -> #t :  PASSED
(array-list:full? array-list) -> #f :  PASSED
(array-list:length array-list) -> 64 :  PASSED
(array-list:get array-list 0) -> (quote NIL) :  PASSED
(array-list:get array-list 3) -> 42 :  PASSED
(array-list:add! array-list 1) -> 0 :  PASSED
(array-list:get array-list 0) -> 1 :  PASSED
(array-list:write-position array-list) -> 1 :  PASSED
(length (array-list:holes array-list)) -> 1 :  PASSED
(array-list:get array-list 3) -> (quote NIL) :  PASSED
(array-list:get array-list 3) -> 64 :  PASSED
(> (array-list:length array-list) 64) -> #t :  PASSED

Testing complete

12 out of 12 successful



This simple testing DSL is easily applied to each of the other utility functions and 

structures used within the project; details are omitted here for brevity but can be viewed 

within each appropriate code listing – see arraylist.xtm, quantise.xtm, and utils-test.xtm 

and async-streams.xtm for details.

6.1.2 Correctness of behaviour: asynchronous streams

Testing the correctness of the asynchronous stream behaviour – other important factors 

in usability, such as latency and performance, are examined below – is possible with the 

above testing framework; it is detailed briefly here owing to its implementation in the 

given testing syntax being non-intuitive at first owing to the time dependency of stream 

events and callbacks.
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Figure 41: The macro test:define-tests parses the test-specific syntax.

(define (test:get-fn-from-name name)
  (string->symbol (string-append "test:macrogen:" (symbol->string name))))

(define-macro (test:define-tests . args)
  (let ((title (car args))
        (grouped-exprs (list-group (cdr args) 3)))
    `(define ,(test:get-fn-from-name (cadr title))
       (λ ()
         (let ((total-tests 0)
               (tests-passed 0))
           (print-with-colors ’yellow ’default #t (println ’Running ’tests 
’for ,title))
           ,(cons ’begin (map define-tests-helper grouped-exprs))
           (println)
           (cons total-tests tests-passed))))))

Figure 42: The helper procedure define-tests-helper processes the parsed syntax as 
appropriate - either creating variable bindings or evaluating test expressions.

define (define-tests-helper group)
  ;; Group consists of (expr direction expr)
  (let ((first (car group))
        (direction (cadr group))
        (last (caddr group)))
    (cond ((eq? direction ’<-)
           `(define ,first ,last))
          ((eq? direction ’->)
           `(let ((passed? (equal? (eval ,first) (eval ,last))))
              (set! total-tests (+ 1 total-tests))
              (if passed? (set! tests-passed (+ 1 tests-passed)))
              (print (quote ,first) ’-> (quote ,last) ’: " ")
              (print-with-colors (if passed? ’green ’red) ’default #t
                                 (println (if passed? ’PASSED ’FAILED)))))
          (else ’unknown-direction))))



The solution to achieving concise but expressive test cases for the asynchronous stream 

framework came from combining Extempore’s scheduler with the aforementioned 

stream:await procedure, which allows asynchronous waiting to be written in a 

synchronous, blocking style. First, some helper procedures are defined to serve as 

shorthand for scheduling sending data through a stream at a future time:

Given this, a test case can be written for the procedure stream:await by creating a 

stream, scheduling data to be sent through it in the near future and finally by checking 

that awaited events match the data sent, in the correct time order:

Each of the stream procedures is thereafter tested for correctness using a similar 

approach. For one final example, showing a more elaborate expression as part of the test 

definition, the following is the test case for stream:filter, which passes through only 

events meeting a predicate from the input to an output stream. The built-in macro 

dotimes is used to send 0, 1, 2, 3, and 4 in sequence through the input stream; only 0, 2 

and 4 are expected to be sent through the filtered stream.
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Figure 43: Utility procedures for scheduling sending events via streams in the future.

(define (stream:send-at time stream . data)
  (callback time (λ () (apply stream:send stream data))))

;; Wrapper for the above for using millisecond delays
(define (stream:send-after-ms ms stream . data)
  (apply stream:send-at (+ (now) (* (/ *second* 1000) ms)) stream data))

Figure 44: Unit test for stream:await.

(test:define-tests
  ’stream:await
  stream <- (stream:new)
  _ <- (stream:send-after-ms 0 stream 42)
  _ <- (stream:send-after-ms 100 stream 100)
  (stream:await stream) -> 42
  (stream:await stream) -> 100)

Figure 45: Terminal output after running the tests for stream:await.

Running tests for stream:await

(stream:await stream) -> 42 :  PASSED
(stream:await stream) -> 100 :  PASSED

Testing complete

2 out of 2 successful



See async-stream.xtm for the unit tests for each of the other stream procedures. 

6.1.3 Correctness of behaviour: holders and recorders

The holder abstraction – which provides a means of viewing which keys are depressed at 

a given instant in a given MIDI stream – depends only on stream behaviour rather than 

time-based MIDI input and is readily testable using the testing DSL. A means of faking 

MIDI events in streams is first required:

The following snippet demonstrates the approach used for testing the internal state of the 

holder object; the remainder of the unit test is omitted for brevity:
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Figure 46: Unit test for stream:filter.

(test:define-tests                                 
  ’stream:filter                                   
  stream <- (stream:new)                           
  evens <- (stream:filter even? stream)            
  _ <- (dotimes (i 5) (stream:send-after-ms (* i 50) stream i))
  (stream:await evens) -> 0                        
  (stream:await evens) -> 2                        
  (stream:await evens) -> 4)   

Figure 47: Terminal output after running the tests for stream:filter.

Running tests for stream:filter

(stream:await evens) -> 0 :  PASSED
(stream:await evens) -> 2 :  PASSED
(stream:await evens) -> 4 :  PASSED

Testing complete

3 out of 3 successful

Figure 48: Utility functions for faking MIDI events on a given input stream.

(define (send-midi-notes stream type . notes)                                       
  (for-each (λ (note)                                                               
              (stream:send stream type 0 note 127))                                 
            notes))                                                                 
                                                                                    
(define (depress-notes stream . notes)                                              
  (apply send-midi-notes stream *midi-note-on* notes))                              
(define (release-notes stream . notes)                                              
  (apply send-midi-notes stream *midi-note-off* notes))     



Similarly, recorders are dependent only upon stream callbacks and not on raw MIDI input 

or timing. The recorder unit test, present in recording.xtm, feeds a recorder closure 

dummy events and checks for the correct sequence of events to be sent through an 

output stream upon triggering playback. 
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Figure 49: Demonstrating unit testing the holder abstraction.

(test:define-tests                                                         
  ’holder                          
  input-stream <- (stream:new)          
  holder <- (holder:new input-stream)   
  (holder:get-notes holder) -> ‘()   
  _ <- (depress-notes input-stream 60 62 65)
  (holder:get-notes holder) -> ‘(60 62 65) 
  _ <- (depress-notes input-stream 65 62 60) 
  (holder:get-notes holder) -> ‘(60 62 65)   ; Check for duplication errors    
  _ <- (depress-notes input-stream 42)
  (holder:get-notes holder) -> ‘(42 60 62 65)  
  _ <- (release-notes input-stream 60 62 65)                               
  (holder:get-notes holder) -> ‘(42)
  ; Rest of test omitted for brevity



6.1.4. Correctness of behaviour: MIDI input and output

The low-level MIDI functionality cannot be unit tested with the above DSL since the 

desired behaviour of its procedures – such as opening virtual ports, sending and 

receiving MIDI messages – consist of side effects, measurable only using other system 

tools. Since the infrastructure which allows this to happen – such as the JACK daemon – 

are out of our control, the only available approach is that of black box testing – where 

inputs are passed to the system and we check to see if the desired outputs, or side-

effects, take place (Jorgensen, 2014).

6.1.4.1 Virtual ports

Opening virtual ports is accomplished using (midi:open-port direction 

portname) where direction may be ‘in for an input or ‘out for an output port; 

portname specifies a human-readable name which will be displayed by the connection 

graph manager. Black-box testing this functionality involves observing whether the 

appropriate input and output ports are created in the JACK graph post-execution. 

Checking the JACK graph after sending these lines to the interpreter shows that the ports 

have successfully been registered with the JACK daemon:
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Figure 50: Loading the MIDI library and creating an input and output port.



6.1.4.2 Sending and receiving MIDI messages

Sending and receiving MIDI messages is dependent upon the underlying system 

software, such as JACK. Black box testing of this functionality (see screenshot below) 

involves setting up a minimal example – in this case, creating two ports and sending a 

message between them. This requires user intervention as librtmidi provides no means of 

linking connections together programatically; Catia or another tool needs to be used to 

link the input and output port prior to executing the midi:send expression.

54

Figure 51: JACK connection graph via showing successful port creation.

Figure 52: Black box testing MIDI transit across virtual ports. The console output 
demonstrates that the message was successfully sent and received.  



6.2 Latency and performance

As reviewed by McPherson et al. (2016), latency – the delay between input and output, 

such as between a keyboard key being depressed and the corresponding audio signal 

being produced by a software synthesizer – is of critical importance for the playability 

aesthetic of a digital instrument. High latency results in the loss of transparency of the 

digital instrument’s internal processing, drawing attention away from the act of playing 

itself and causing difficulty with rhythmic timing – the latter being especially an issue 

where there is significant variation in latency, a phenomenon termed jitter (Travis and 

Lesso, 2004). 

Estimates for acceptable upper limits on latency vary within the literature from between 

6ms to 30ms, depending on instrumentation (McPherson et al., 2016), with percussive 

instruments – presumably, where rhythmic timing is more prominent – being on the lower 

end of the spectrum and those involving gesticulation – such as playing the Theremin – 

being on the upper end. Dahl and Bresin (2001), in an experimental study manipulating 

drum signals by introducing artificial latency in the range of 1 – 127ms, noted that 

players would unconsciously start playing their beats earlier than the beat in order to 

compensate for the delay – but that this behaviour only persisted until a break-point of 

around 55ms, after which only one of out of their four, musically-trained subjects was 

able to stay synchronised with the metronome. The lowest levels of jitter perceptible in the 

literature for a 100ms rhythmic sequence are reported by Brandt and Dannenberg (1998) 

to lie somewhere between 1ms to 5ms; Friberg and Sundberg (1995) report an 

experimental lower bound, just noticeable difference threshold in timing variation of 6ms 

for all monotonic, rhythmic sequences tested. 

Wang et al. (2010) found that typical latency achievable using digital audio workstation 

(DAW) software across a selection of consumer audio equipment had high variation, from 

1.68ms through to an upper limit of 399ms, dependent upon operating system and audio 

API, with ALSA on Linux and CoreAudio on MacOSX generally achieving audio latency in 

the range of 2 – 30ms on their hardware.

For this project, we are concerned with MIDI latency rather than that of generation of 

audio signals; the minimal case of MIDI passthrough is studied here. Further 

consideration is then given to identifying parts of the system contributing most to the 

latency, with a particular focus on whether the asynchronous streams framework causes 

issues given Extempore’s relatively slow (Sorensen, 2016b) Scheme interpreter.
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6.2.1 System coniguraion and baseline performance

The following tests and latency benchmarks were conducted using the author’s 

consumer-grade laptop. The hardware in use consisted of an Intel Core i5-8528U CPU 

with a base clock of 1.60GHz, 8GB LDDR3 RAM and integrated, Realtek ALC295 audio 

interface. The software platform consisted of Arch Linux, running Linux kernel 5.8.5 with 

the Zen patchset, threadirqs kernel parameter and 1000 Hz kernel timer, running JACK 

version 1.9.14 and Extempore version 0.8.7 with a user in the realtime group and JACK 

configured to have realtime scheduling privileges. 

The JACK daemon was configured to output to the ALC295 audio interface via ALSA, with 

48 kHz sample rate, a block size of 256 and a periods-per-block count of 4 – the lowest-

latency settings that the author was able to configure on this hardware without incurring 

significant amounts of buffer under-runs.
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Figure 53: JACK settings: 48 kHz sampling with 256 samples per buffer giving a block 
latency of 5.3ms.



As calculated by Catia above, the block latency given this configuration is 256 / 48000 s-1 

= 5.3 ms. Note that this is input latency only – audio latency for input and output is likely 

to exceed twice this value in practice (PreSonus Audio Electronics, 2020).

Utilising the C utility jack_midi_test (see Gareus, 2013), it was experimentally verified that 

the minimum MIDI latency under JACK corresponds to the block latency. The utility 

measures MIDI round trip time between two virtual ports; connecting these ports together 

directly provides a minimum limit as to the time taken for MIDI transport using JACK.

A minimum round-trip latency of 5.3ms is therefore established as a lower limit and point 

of reference for the ensuing discussion and benchmarking of the Extempore MIDI project.

6.2.2 Timing using Extempore

Extempore exposes the Scheme function clock:clock, which is a FFI wrapper to get the 

OS’ underlying high-precision real time clock information – on Linux, it calls 

clock_gettime with the CLOCK_REALTIME parameter – which is returned with 

nanosecond precision. 
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Figure 54: Testing minimal MIDI round-trip time between two JACK virtual ports. 

Figure 55: A procedure to measure the run-time of the expression expr, expressed in 

milliseconds.

;; Return execution time of (eval expr) in ms
(define (time expr)
  (let ((start-time (clock:clock)))
    (eval expr)                                                       
    (* 1000 (- (clock:clock) start-time))))  



Timing the evaluation of a Scheme primitive – zero – using the above function was 

repeated 10,000 times using the following snippet and the average execution time 

measured in order to give an estimate of clock precision and a lower-bound time taken for 

invocation of eval within the Scheme interpreter:

This returned the value 0.000888, corresponding to 888 nanoseconds and thereby 

demonstrating sub-microsecond precision of the system timer – more than adequate for 

the present purpose of dealing with time values of millisecond order of magnitude. 

6.2.3 MIDI round-trip ime in Extempore

The following code was used to benchmark minimum round-trip time using the above 

Extempore framework:

This establishes two virtual ports – one input, one output – which were connected to 

each other by the author using JACK. Ten thousand MIDI events are thereafter sent 

58

Figure 56: Determining the lower-bound on Scheme execution time.

(let ((test-count 10000))                                              
  (/ (foldl + 0 (map (λ () (time ’0)) (range test-count)))        
     test-count)) 

Figure 57: Round-trip-time for MIDI messages using this project's Extempore framework. 

(define input (midi:create-port ’in "Extempore benchmark input"))
(define output (midi:create-port ’out "Extempore benchmark output"))
(define start-time 0)
(define input-stream (midi:input-port->stream input))
(define round-trip-times ‘())
(define benchmark-times 10000)

(stream:for-each (λ event
                   (let ((runtime (- (clock:clock) start-time)))
                     (set! round-trip-times (cons runtime round-trip-times))
                     (callback (now) run-benchmark)))
                 input-stream)
                 
(define (run-benchmark)
  (if (>= (length round-trip-times) benchmark-times)
    (for-each (λ (time)                                    
                (display time)                                  
                (display ",")) round-trip-times)                
    (begin                                                      
      (set! start-time (clock:clock))
      (midi:send output 1 2 3 4))))
                                                         
(with-output-to-file "benchmark.csv" run-benchmark)  



between the ports, measuring the time between sending and receiving each event; the 

details are saved in comma separated values format to an external file for analysis.

These results are plotted below. The range of observed latency values was from 11.35ms 

through to 23.23ms; the median time was 15.68ms.

 

Given the minimal jack_midi_latency tool – which uses the JACK C API directly – 

achieves round-trip latencies of 5.3 ms, this implies a median overhead of approximately 

10 ms from using Extempore and this project’s asynchronous stream interface for 

receiving events. This is a significant amount – the Extempore round-trip latencies 

pictured above already significantly exceed the literature’s conventional figure of 10 ms 

as an upper threshold for latency (McPherson et al., 2016) – although not so high as to 

make a live MIDI instrument unplayable.

6.3.4 MIDI round-trip ime using pure XTLang and librtmidi

In the interest of determining the cause of this latency, a benchmark was conducted of 

the latency achievable in Extempore using a pure XTLang interface into librtmidi. This was 

achieved using the following code, which uses only XTLang functions to send and receive 

MIDI messages by registering a librtmidi callback function, calculating the time difference 

using the same logic as in the previous example.
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Figure 58: A graph of round-trip times in milliseconds for a minimal Extempore MIDI 
streams example featuring 10,000 samples.



Since using callback within the rtmidi_callback function in order to trigger sending 

the next MIDI event in a way analogous to the previous Scheme example caused 

segmentation faults – and, alas, there are minimal effective ways of debugging XTLang 

code, a point revisited later – the logic was re-structured so as to use start-time as a way 

of keeping track when it was safe to send another event; it is cleared to zero when the 

last event has been received. 

The results show that the direct librtmidi callback interface, accessed through XTLang in 

Extempore, achieves very good, low round-trip latency values. Below is a plot of 10,000 

round trip time samples, obtained using the above code listing.
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Figure 59: Benchmarking librtmidi round trip time latency when used directly with XTLang 
in Extempore.

(bind-val start_time double 0.0)
(bind-val midi_in RtMidiOutPtr (make-rtmidi-in-port "Benchmark" 
RTMIDI_API_UNIX_JACK))
(bind-val midi_out RtMidiInPtr (make-rtmidi-out-port "Benchmark" 
RTMIDI_API_UNIX_JACK))

(bind-func benchmark_send
  (λ ()
    (set! start_time (clock_clock))
    (rtmidi_send midi_out 9 0 60 127)
    void))

(bind-func rtmidi_callback:RtMidiCCallback
  (λ (time:double message:i8* message_size:i64 user_data:i8*)
    (printf "%f\n" (* 1000.0 (- (clock_clock) start_time)))
    (set! start_time 0.0) 
    void))                
                          
($ (rtmidi_in_set_callback midi_in (cast (get_native_fptr rtmidi_callback) 
RtMidiCCallback) 0:i8*))             
                           
(let loop ((n 0))                      
  (if (<= n 10000)                      
    (if (= 0.0 ($ start_time))          
      (begin
        ($ (benchmark_send))             
        (loop (+ n 1)))
      (callback (+ (now) 100) loop n))))



As is immediately apparent, the latencies are much lower than in the asynchronous 

streams interface example – the range here is from a suspiciously low 0.02 ms through to 

a maximum of 5.95 ms. The median round trip time was a respectable 2.78 ms; the 

distribution throughout the range was relatively even, as can been seen from the graph. It 

is not clear to the author why this benchmark is able to achieve latencies lower than the 

jack_midi_latency; this would be worth further investigation as both appear to 

internally use the JACK API’s jack_set_process_callback to trigger a callback 

function on receipt of data from JACK.

6.3.5 Scheduler performance in Extempore

This poses the question of from where the additional latency encountered with the 

asynchronous streams MIDI interface arises.

One possible culprit is the Extempore scheduler, which is invoked in the Scheme but not 

XTLang example. As noted above, the Extempore scheduler is written in native C++ and is 

part of the Extempore interpreter infrastructure, not amenable to modification from user 

code – a gap in the “full-stack” justification for Extempore, although it does appear that 

an XTLang replacement is under development. 
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Figure 60: A scatter graph of round-trip times in milliseconds obtained using the above 
code listing.



A simple benchmark was executed to generate statistics regarding the minimum 

execution delay encountered from scheduling events. A series of events were scheduled 

as soon as possible – by passing (now) as the time to execute parameter – and the delay 

between scheduling events and their execution measured. 

Plotting the latencies (after conversion to milliseconds) captured in the scheduler-

latencies list results in the graph below:

The minimum observed value – although this was only one data point – was 0.0026ms. 

The maximum observed value – again, a sole outlier – was 12.15ms. The median delay 

incurred while waiting for the scheduler to execute a piece of code was 5.28 ms – 

representing approximately double the median MIDI round trip time measured in the 
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Drawing 4: Taking 10,000 samples of Extempore scheduler delay.

(define scheduler-latencies ’())

(define (benchmark-scheduler start-time)
  (set! scheduler-latencies (cons (- (clock:clock) start-time) scheduler-
latencies))
  (if (< (length scheduler-latencies) 10000)  
    (callback (now) ’benchmark-scheduler (clock:clock))
    ’finished))                             
                                            
(benchmark-scheduler (clock:clock))  

Figure 61: Benchmarking execution delay caused by Extempore's scheduler.



XTLang librtmidi example without actually having performed any useful processing of 

events.

6.3.6. Opimising Scheme MIDI round-trip-ime

It is unclear why the scheduler performs so poorly given Extempore’s real-time common 

use cases – the production of live audio-visual experiences, where a 5 millisecond delay 

can be significant. Given project time constraints, such investigation is considered in the 

further work section below. Nevertheless, given this knowledge, this project’s 

asynchronous streams and MIDI interface were re-worked to eliminate calls to callback 

– the Scheme function to add an item to the Extempore scheduler queue – so far as is 

possible and benchmarked for round-trip-time latency again, post-optimisation.

Modification of the rtmidi-stream.xtm code listing to remove unnecessary uses of 

callback – such as by refactoring the callback function in the polling loop so as to call 

ipc:async-call directly rather than through a closure – and re-running the benchmark 

on a further 10,000 sample set resulted in obtaining a median round trip time of 10.02 

ms, an improvement of around 5 ms, corresponding to the approximate median 

scheduling delay. 

Searching for further invocations of callback in time-critical code within the project drew 

attention to the streams API utilising the scheduler as a means to queue callbacks for 

execution. Stripping this out was simple – stream callbacks could simply be executed 

during the callback processing loop rather than scheduled for future execution. The 
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Figure 62: The optimised version of the polling loop - use of the scheduler has been 
eliminated for callbacks but is still required for triggering the next poll.

(define (rtmidi-scheme-poll-loop device stream-id)
  (if (null? deregistration-notices)   
    (let ((len (rtmidi_get_msg device))
          (msg (rtmidi_get_message_global)))
      (if (= len 0)
        (callback (now) rtmidi-scheme-poll-loop device stream-id)  ;; Check for 
events ASAP
        (let ((type (msg_type msg))
              (chan (msg_chan msg))
              (a (msg_a msg)) 
              (b (msg_b msg)))
          (ipc:call-async "primary" ’midi:handle-event stream-id type chan a b)
          (rtmidi-scheme-poll-loop device stream-id))))
    (if (not (member device deregistration-notices))
      (callback (now) rtmidi-scheme-poll-loop device stream-id)))) ;; Let other 
devices be processed until deregistration is handled



downside to this change, however, was that any code utilising continuations for non-local 

exits within callbacks would likely break the execution of the callback processing loop, 

preventing other callbacks in the list from being reached and applied. One key application 

of continuations in this way is the use of stream:await – utilised heavily in the unit 

testing code. Fortunately, the issue can be side-stepped by utilising the scheduler for 

asynchronous execution in the callback itself, rather than in the callback handler – as per 

the new definition of stream:await below:

Once these changes had been made, the initial benchmark – sending and receiving 

10,000 MIDI events and measuring the round-trip latency – was again performed.  The 

results are plotted below:
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Figure 63: Using continuations within stream callbacks now requires wrapping the 
continuation application in an Extempore scheduler callback.

(define (stream:await stream)
  (call/cc (λ (current-continuation)              
    (letrec ((callback-fn (λ args                 
                            (callback (now)           
                                      (λ ()      
                                        (stream:remove-callback! stream callback-fn)
                                        (apply current-continuation args))))))
      (stream:register-callback! stream callback-fn)
      (*sys:toplevel-continuation* ’awaiting)))))

Figure 64: Benchmark results for optimised asynchronous streams interface.



The minimum round-trip time with the optimised Scheme, asynchronous streams 

interface was measured at 2.18 ms (compared to 11.35 ms before removing the 

scheduler invocations – a reduction of 80.8%) and a maximum round-trip time of 13.22 

ms (compared to 23.23 ms previously) – although these values represent a very small 

percentage of outliers at the far edge of the distribution. The median round trip time was 

down to 5.34 ms – compared to 15.68 ms previously – a net reduction of 66% and 

thereby bringing the ball-park latency target of 10 ms discussed by McPherson et al. 

(2016) for a complete MIDI input, processing and audio output system into the realm of 

achievability.

The distribution of the round trip times seen on the graph is strikingly similar to the 

distribution obtained for the benchmarking of the Extempore scheduler itself – as is the 

median latency, 5.28 ms for the scheduler versus 5.34 ms for MIDI round trip time using 

the Scheme framework. The scheduler’s execution delay time now appears to be the 

determining factor for the MIDI round-trip latency. This is thus the lowest achievable limit 

without modification of the Extempore code base to allow faster scheduled task 

execution; the scheduler is required in order to periodically execute the poll loop. Without 

this – for instance, if the polling loop recurs using tail recursion rather than (immediate) 

temporal recursion using the scheduler – the polling code can only listen to one device at 

a time and is ultimately killed by the Extempore interpreter for taking too long to execute. 

6.3.7 Asynchronous stream overhead

Having achieved acceptable levels of latency using the MIDI framework, one final 

benchmark is conducted pertaining to the asynchronous streams framework – since in 

practice stream callbacks may be nested several layers deep as part of a processing 

pipeline for incoming MIDI events, as is seen with the holding and recording abstractions 

defined in recording.xtm.

A synthetic benchmark of nesting eight stream callbacks is tested for total execution time, 

obtaining 5,000 samples. This is primarily a test of the speed of the Extempore Scheme 

interpreter as it does not depend upon MIDI transport – but gives a ballpark figure for 

how additional Scheme processing may affect latency. A pair was passed through a 

sequence of eight, nested steam callbacks , each performing a fundamental 

mathematical operation (see benchmark-asyncstream.xtm for details).
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The median execution time is 45 microseconds – as can be seen on the graph, the 

distribution is tightly clustered around this value. There is, however, a row of delayed 

execution times – peaking at a significant 6.23 ms – all with a similar, approximately six 

millisecond delay.

These results are generally re-assuring from a MIDI latency perspective – stream 

processing of data is unlikely to have a significant effect on latency on average, although 

very occasionally significant latency of approximately six milliseconds is introduced. It is 

unclear why this is the case – more in-depth analysis of Extempore’s performance is out 

of the scope of the present project – one explanation could be that these delays 

correspond to stop-the-world garbage collection events.
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Figure 65: Measuring the overhead incurred passing data through 8 levels of stream 
callbacks in Scheme.



6.4 Evaluaing Extempore

6.4.1 Scheme and XTLang

In this section, an evaluation of Extempore as a development environment – and target – 

is elaborated, particularly focusing on Extempore’s raison d’etre and particular 

contribution to the live coding software environment niche: the combination of low-level 

XTLang and high-level Scheme to produce a full-stack live coding language.

As discussed by Sorensen (2016b), the XTLang and Scheme split is almost entirely driven 

by performance considerations; a numerical benchmark is cited whereby the XTLang 

example performs some 300 times faster than the equivalent example using Extempore’s 

Scheme interpreter. This is ostensibly due to XTLang’s ahead-of-time compilation into 

native code using the Extempore compiler, utilising the significant optimisation 

capabilities of the underlying LLVM framework. The Scheme interpreter, on the other 

hand, is admittedly relatively slow (Sorensen, 2016b), adapted from Sorensen’s previous 

project of Impromptu and, before that, loosely adapted from TinyScheme; code is 

interpreted and no effort is made regarding ahead-of-time compilation of Scheme 

procedures.

It is an open question as to whether a more performant Scheme interpreter would be able 

to reduce the need for XTLang and the extent to which this displacement would be 

possible. The recently open-sourced Chez Scheme, for instance, features an optimising 

ahead-of-time compiler which compiles Scheme expressions to native code prior to 

execution (Cisco Systems, 2020) and performs very well on Scheme performance 

benchmarks; the Racket project, for instance, is in the process of abandoning its purpose-

built, optimised Scheme interpreter and adopting Chez in lieu (Flatt, 2020). At least one 

project – Prokopchuk’s (2017) ad libitum – appears to be successfully using Chez 

Scheme to write Extempore-style digital sound processing (DSP) callbacks, something 

which is an XTLang-specific niche in Extempore owing to performance considerations.

Re-implementation in a more performant Scheme would also not sacrifice the “live 

coding” principles of Extempore, provided that a similar non-premptive scheduler 

mechanism was implemented – as can be seen in ad libitum – in order to provide the 

dynamic lookup facility for scheduled symbols at run-time. Following this approach would 

limit the role for XTLang to two areas: direct system calls and other necessarily low-level 

system programming and its use as a foreign function interface (FFI). 
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6.4.2 XTLang for systems programming

While XTLang code is hot swappable – as per Sorensen’s (2018) ambition – provided 

that the Extempore scheduler is invoked on each function-call which requires dynamic 

look-up, the author did not find it a convenient language during the course of this project 

for systems programming. Compared to a mature language like C, tooling for XTLang is 

essentially non-existent. One frequent frustration encountered when attempting to 

implement behaviour using pure XTLang concerned the lack of debugging facilities. Error 

messages are often cryptic, providing no line numbers nor stack trace – or may not 

happen at all, as mentioned in the previous section; attempting to set up a basic callback 

using the Extempore scheduler in XTLang resulted in a segmentation fault and no means 

to more deeply investigate the issue. While such issues can occur in C, well-established 

tools such as the GNU Project Debugger (GNU Project, 2020) provide the ability to 

introspect running C code, trace execution, probe variables and memory and even inject 

code mid-execution. Given the small size of the project, such tools will likely never exist for 

XTLang – one is limited to liberal use of printf for debugging. It is telling that 

Extempore’s standard library itself largely uses XTLang for FFI rather than for behaviour.

6.4.3 XTLang as a foreign funcion interface

In practice, XTLang is largely used for its ability to serve as an FFI. System dynamic 

libraries may be loaded using XTLang and XTLang wrappers for library functions 

generated by using the syntactic forms bind-dylib and bind-lib respectively, as seen 

below.
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Figure 66: XTLang as FFI: an extract from Sorensen's portmidi wrapper.

;; set up the current dylib name and path (for AOT compilation)
(bind-dylib libportmidi
  (cond ((string=? (sys:platform) "OSX")
         "libportmidi.dylib")
        ((string=? (sys:platform) "Linux")
         "libportmidi.so")
        ((string=? (sys:platform) "Windows")
         "portmidi.dll"))
  "xtmportmidi")

(bind-lib libportmidi Pm_Initialize [PmError]*)

;; /**
;;     Pm_Terminate() is the library termination function - call this after
;;     using the library.
;; */
(bind-lib libportmidi Pm_Terminate [PmError]*)



All that is required is passing in an appropriate XTLang type reference for the function 

signature – specifying its parameters and return type (Sorsensen, 2016c). For examples 

such as the above, this works well. It becomes difficult, however, when the C library 

requires passing structs as arguments which consist of many elements. XTLang has no 

support for defining struct types – using them, instead, requires specifying each and 

every struct element manually, in sequence. The following example – the author 

attempting to implement a basic wrapper around libwebsockets, a C library – 

demonstrates that this can easily lead to confusion and error without a means of naming 

or otherwise keeping track of constituent parts:

If we are in the position of only needing XTLang for FFI – such is the case for this, MIDI-

specific project – it may be worth considering the options available in other Scheme 

environments. Chez Scheme, for instance, features a fully-powered C FFI with support for 

named records, equivalent to C structs, allowing similar dynamic binding to external 

libraries – but also has the additional advantage of allowing compatible C code to 

interface with Scheme objects (Cisco Systems, 2020), something not possible across the 

XTLang/Scheme divide despite their tighter coupling in Extempore.

6.4.4 Non-preempible XTLang

One consideration against the total elimination of XTLang – or a similar low-level 

language – concerns garbage collection, major, stop-the-world events being one potential 

cause for the up to 6 ms spikes in latency witnessed in the Extempore Scheme callbacks 

benchmark above.

XTLang code, while executing, has free reign of the processor core; it will not be pre-

empted by any other mechanism within Extempore, and this is explicitly stated as part of 

the design justification for Extempore in Sorensen’s (2018) thesis, who viewed this ability 

as key for production of a workable real-time system.
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Figure 67: Working with large compound types in XTLang quickly becomes unworkable.

bind-type lws_context_creation_info   
<i64,i8*,lws_protocols*,lws_extension*,i64,i8*,i8*,i8*,i8*,i8*,i8*,i64,i64,i64,i64,
i64,i64,i64,i64,i16,i16,i64,i64,i64,i64,i8*,i8*,i8*,lws_protocol_vhost_options,i64,
i8*,lws_http_mount*,i8*,i64,i64,i64,i64,i64,i64,i64,i8*,i8*,i8*,i64,i8*,i64,i64,i8*
,i64,i64,i8*,i64,i64,i8*,i64,i64,i64,i64,i16,i16,i32,i8*,i8*,i64,i64,i64,i64,i64,i6
4,i64,i64,i64,i8*,i8*,i8*,i8*,lws_protocols*,i64,i64,i64,i64,i64,i64,i64,i8*,i8*,i8
*,i64,i64,i8*,i64,i64,i8,i8,i64,i64>)



It is an open question – although outside the scope of this project – as to whether a re-

implementation of the Extempore stack, such as ad libitum, would be significantly 

affected by garbage collection pauses. If so, this may be most noticeable during 

continuous audio playback generated by a pure Scheme DSP callback function – 

monitoring for audio buffer under-runs compared to an equivalent Extempore/XTLang or C 

example could be an effective benchmark.
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8. Future work

As noted above, further research into whether the Extempore architecture could be 

replaced with a re-implementation in the more performant Chez Scheme environment 

would be worthwhile – particularly in order to allow for more objective evaluation as to the 

utility of a language such as XTLang and the niche into which it falls. Prokopchuk’s (2017) 

ad libitum could serve as a foundation for this.

Given more time, there are several elements of this project which could be developed 

further. Of particular interest to the author – given the primacy of code in the live coding 

paradigm represented by Extempore’s design – would be a mechanism to allow 

interoperability between Extempore and a code editor. This could be achieved using an 

editor plugin, for instance, which communicates via message passing with the Extempore 

interpreter in order to allow Extempore code to modify the contents of the user’s editor 

buffer. The MIDI abstractions developed herein provide much of their functionality 

“behind the scenes”, as black boxes unavailable for real-time modification in the way 

that, for instance, a pattern language sequence in one’s code editor could be. Having this 

functionality would allow this behaviour to become more visible and directly modifiable. 

Having recorded and sequenced a note pattern, for instance, editor interoperability would 

allow the generated Scheme pattern-language sequence to be output into the user’s 

editor buffer where it would be immediately amenable to modification and use.

Further work may be useful on the pattern language sequencer’s algorithm in order to 

bring it in line with some changes made later on in the project to the recorder’s timing 

algorithm; in particular, the sequencer currently ignores pauses prior to the first note, 

always starting a sequence on the beat. It is possible that MIDI timestamp information, 

available via librtmidi but presently ignored, could also be incorporated in order to provide 

more precise MIDI event timings, accommodating for the time the events have spent in 

the system queue. This may marginally improve the accuracy of the recorder’s time 

quantisation for notes. 

One minor improvement would also be to provide a new, low-level JACK wrapper in XTLang 

built around the libjack C API. At present, librtmidi spawns a new JACK process name for 

each new virtual port created, cluttering the JACK connection graph; using JACK directly 

would allow Extempore to have one unified entry in the JACK graph with all Extempore-

owned virtual ports visible in one location. 
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9. Conclusion

This project has explored an approach for interfacing with MIDI equipment in Extempore 

for the purpose of achieving common digital music goals – arpeggiation, sequencing, 

recording and looping. A flexible Scheme-based set of abstractions was developed in 

order to handle multiple MIDI devices and provide the above functionality, with an 

overview of implementation, justification thereof and discussion of some of the issues 

raised by – and benefits of – programming with Extempore’s unique approach to the 

domain of live, procedural audio generation. Unit testing was utilised as a means of 

showing correctness of behaviour so far as possible; detailed performance analysis of the 

underlying framework demonstrated areas in need of optimisation and resulted in the 

Scheme MIDI interface achieving acceptable MIDI latencies in the realm of five 

milliseconds.

With Extempore and XTLang, Sorensen (2018) has set out to produce a live coding 

environment with reach from low-level systems programming to high-level command and 

control; as demonstrated by his own myriad examples, a goal largely achieved. Questions 

remain, however, as to the utility for XTLang – and indeed its long-term sustainability – 

given its present immaturity, poor developer tooling and the potential that a more efficient 

Scheme interpreter could render much of its present use cases unnecessary. Further 

research into replicating the Extempore stack within the recently open-sourced Chez 

Scheme would be illuminating in this regard to provide an objective basis for evaluating 

the proper niche of XTLang – and hence Extempore – within the modern programming 

languages ecosystem. 
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Relecion

This is a reflection on the process of completing this project, structured using the model 

of Driscoll (1994). 

What?

This project, as selected on PATS, was titled “Real-time Music Programming with 

Extempore”. I chose the project after watching Sorensen’s OS Convention speech, 

featured on the Extempore documentation website – Extempore’s code-first philosophy 

intrigued me; I had not previously been involved with anything within the “live coding” 

domain. Being based in Scheme was an advantage also – I’ve been intrigued by Lisp-

family languages for some time, in particular for the code-generation and functional-style 

reliance on higher order functions and first-class procedures, but had yet had reason to 

engage in a more substantial project using one. 

On discussion with my supervisor, Prof. David Marshall, it was decided to go down the 

route of MIDI interfacing. Preliminary suggestions were to develop arpeggiation 

functionality, perhaps followed by some kind of recording or looping functionality, as time 

allowed and I was able, giving that this was an unusual platform and would take some 

time to learn to use effectively. I proceeded iteratively, developing first a minimal 

arpeggiation example using Extempore’s built-in portmidi MIDI wrapper and the pattern 

language, learning Extempore’s standard library and syntax as I proceeded using the 

online documentation. 

Once I felt like I had a reasonable understanding of Extempore, I decided that the built-in 

MIDI interface was inflexible and would not scale well – it would be neater to build 

another layer on top, using the partial rtmidi support available in the standard library, in 

order to provide a unified Scheme way of interacting with MIDI devices through virtual 

ports. Constructing this platform thus came second; once established, the other 

abstractions described above were implemented essentially in the order that they are 

described above. 

Writing the report took a significant amount of time, perhaps underestimated initially 

whilst the focus was on creating a functional implementation. The analysis section in 

particular required some planning regarding the content; many of the unit tests required 

some thought to implement so as to avoid reducing the entire testing section to that of 
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black box testing, as may be tempting given the situation where the inputs are key 

presses and the output that of audible noise. 

So what?

Choosing to use Extempore meant intentionally choosing to devote some weeks to 

developing using what may be considered an archaic language, Scheme, within the 

relatively obscure niche of live audio-visual programming. I was not new to Scheme or 

Lisp, having previously been working through The Structure and Interpretation of 

Computer Programs (SICP), a classic computer science textbook using the language, prior 

to starting the MSc. Nevertheless, working with Scheme – which traditionally has a 

minimal to non-existent standard library – provided an excellent opportunity to develop 

skills in algorithmic thinking, forcing one to focus, as it does, on implementing many of 

the otherwise taken-for-granted routines of other, bulkier languages. This can be seen, for 

instance, with the need to implement array-list and array-builder-like abstractions in the 

report above prior to their use in the project. Scheme also provides great flexibility for 

design – between its excellent (due to the consistency of its syntax) macro system and 

such features as first-class continuations, one has essentially free reign over producing 

what may be considered, in the spirit of SICP, new, domain-specific languages, a point 

which came to mind repeatedly while completing the project.

Working with the other aspect of Extempore – XTLang – provided some interesting insight 

into C-interoperability with other languages; I would certainly be more confident in the 

future attempting to write C library wrappers and linking these with other, dynamic 

programming languages – as well as being more aware of the breadth of C libraries out 

there for use. Given that XTLang is a new language with unique syntax, there was also the 

experience of climbing its learning curve and overcoming the challenges always 

associated with learning to see problems from a new perspective – all the more 

pronounced, in this case, due to its poor tooling and limited documentation (as discussed 

in the report).

Completing the analysis part of the project allowed practising benchmarking an 

application and trying to locate the source of performance issues; identifying that the 

Extempore scheduler was the cause and therein significantly speeding up the streams 

and polling loop interface was a pleasing achievement.
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Outside of the technical domain, the project naturally demanded planning, organisational 

and time management skills. While considered at the beginning, I ultimately did not use 

any time-planning tools such as GANNT charts. Such a chart, in retrospect, may have 

been helpful, at least at the level of granularity of specifying when I should start to devote 

my time to report writing versus attempting to implement more functionality. Since this 

was a research project, however, anything more specific may have been more of a 

hindrance – the project was developed iteratively out of necessity, with goals changing at 

the end of each iteration, rather than from a set of strict requirements. Such an approach 

is a miniature form of the agile process often utilised within modern software engineering 

teams and may serve as a personal foretaste of this.

Now what?

Moving forward, I will aim to take many of the skills developed further through completing 

this prolonged piece of personal work – such the aforementioned computational thinking 

and insight into iterative development – into my future software development career.

It is difficult to know at this stage what I would have done differently regarding this project 

given the benefit of hindsight. I would perhaps suggest utilising some kind of time 

management tool – perhaps GANNT charts – in order to provide more psychological 

assurance that I am on track with the workload remaining, although in practice this was, 

as noted, a relatively vague notion.

Perhaps a useful thing to do would have been to more thoroughly investigate the 

environment of the project’s subject – other competing systems, other approaches – 

before I commenced planning or designing my ideas for the project. While I did ultimately 

investigate, to a surface degree, many of Extempore’s competing live coding 

environments, this was relatively late on in the project, after I had started writing the 

report. For future projects, I would probably do this first – not only to provide guidance as 

to what is possible, but to gauge what has already been done and how my contribution 

can make the most of any available niche.
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