

Base Station Selection in Mobile Networks
Adam Whitter-Jones

0924607
Supervisor: Prof. Steve Hurley

For the Qualification of:

BSc Computer Science with Distributed and Mobile Networks
At:

Cardiff University School of Computer Science and Informatics

28th April 2012

Acknowledgements
I would like to thank my personal tutor Steve Hurley for doing his utmost and helping me,
whilst providing me with answers to all the questions that I have asked. I would also like to
thank Matthew Morgan for helping me stay focused and showing me that there is support
at the University in stressful situations. Finally, I would like to thank Richard Falconer for
talking me through the logic of my coding problems and Rachel Sansom for tirelessly proof
reading this document.

Abstract

This report has been written to document the design and implementation of a simulated
annealing (SA) algorithm to aid the design of a mobile network. The algorithm is
designed to choose the best sites to be on or off to maximise coverage, whilst reducing
the cost of having many sites on. Default initial power is assigned when the application
is first loaded, but these can be changed either to random power for random sites,
uniform power for all sites or all sites can be turned off. The application presents a
visualisation of the network and algorithm results so that coverage can be identified.
The implementation was successful with the results of the algorithm detailed towards
the end of this report.

Table of Contents
1.0 Introduction ... 1

1.1 Assumptions Made ... 3

1.2.0 Algorithm Research ... 3

1.2.1 Hill Climbing ... 3

1.2.2 Tabu Search ... 4

1.2.3 Simulated Annealing .. 4

1.3 Algorithm Choice .. 5

2.0 Background ... 6

2.1 Overview .. 8

2.2.0 Insights .. 8

2.2.1 Picture Box ... 9

2.2.2 PLM .. 9

2.2.3 RTP/TTP ... 9

2.2.4 Threads .. 10

3.0 Design ... 11

3.1 GUI .. 11

3.2 Data Flow .. 13

3.3 Data Structures ... 13

3.4 Algorithm .. 14

4.0 Implementation ... 16

4.1 Reading Files ... 16

4.2 Visualising Network .. 18

4.3 Checking Coverage/Iterating list .. 20

4.4.0 Algorithm ... 21

4.4.1 Simulated Annealing Pseudo Code ... 22

4.5 Threading.. 24

4.6 Data Structures ... 25

5.0 Results .. 26

5.1 Performance: Loading PLM .. 26

5.2 Coverage Results: Uniform Power 25 .. 27

5.3 Coverage Results: Random Power ... 28

5.4 Algorithm Results: Fixed Sites Uniform Power 25 ... 29

Attempt 1 .. 29

Attempt 2 .. 30

Attempt 3 .. 30

5.5.0 Algorithm Results: Random Sites & Powers ... 31

Attempt 1 .. 31

Attempt 2 .. 32

Attempt 3 .. 32

Attempt 4 .. 33

Attempt 5 .. 33

6.0 Future Work ... 35

6.1 RTP/TTP .. 35

6.2 Efficiency .. 35

6.3 Interface ... 36

6.3.1 Customisation & Accessibility .. 36

6.4 Exporting Data .. 37

6.5 Programming Language ... 37

7.0 Conclusions .. 38

7.1 GUI .. 38

7.2 Algorithm .. 38

8.0 Reflection on Learning ... 40

Appendices .. I

Appendix A .. I

Code Attempt 1 ... I

Code Attempt 2 ... III

Appendix B ...V

Appendix C ...VII

Appendix D ..VIII

Glossary ... IX

Table of Abbreviations .. XI

Bibliography ... XII

Base Station Selection in Mobile Networks

Page 1 of 40

1.0 Introduction
The introduction of this report aims to discuss the reason for which the project has been

undertaken whilst discussing the beneficiaries of the work completed. In addition to this, the

information held in the data files that are used is explained with its relevance to mobile

networks explained diagrammatically. Important expected outcomes, assumptions and

research are also detailed here.

This project has been undertaken in order to aid and, hopefully improve, the planning

process to decide the most appropriate combination of active and inactive Base Station

Transceivers (BSTs) when deploying a mobile phone network. BSTs are one of the key

components required in a mobile phone network and permit end users to connect via their

mobile telephone to other resources or people around the world. The issue that is

encountered when planning these networks is both an issue of cost and also of signal

propagation. Simply, the key question asked which will be solved by an algorithm is how can

we place the minimum number of telephone masts (BSTs) and serve the maximum number

of customers?

Through creating this application, the beneficiaries are both network providers and the

customers that use their networks. Enabling a network service provider to plan and deploy a

network that is as efficient as possible reduces time and cost. This would, hopefully, reduce

corporate expenditure on some of the most costly operations that would filter down to the

users of the network, potentially reducing the charges incurred for using the services

provided. In addition to this reduction in cost, effective planning of a network is essential to

serve as much of the population as possible and provide the fastest speeds (3). As we can

see from several recent news articles, the digital age is creating fragmentation between

urban and rural areas (6) (4). Communication and the internet are key factors in enabling

businesses to grow and develop.

As well as these main beneficiaries, through taking the application away from a business

perspective, it is possible to identify two additional beneficiaries:

1. The author – the act of creating this application and having to understand its nature

has helped to develop an understanding for the way in which mobile networks

operate and optimisation algorithms that can be used within network design and

management. Additionally, the use of VB.Net for the project has helped to develop

programming techniques and enhanced previous knowledge of the language.

2. Students – The author hopes that anyone researching mobile network planning will

be able to see this report and the accompanying application so that they too can

begin to understand the way in which mobile networks are planned and the

methods that have been used to show this.

Base Station Selection in Mobile Networks

Page 2 of 40

To assess and, hopefully, assist this issue, raw data relating to these BSTs has been obtained.

We have several different plain text files from network operator Vodafone. These are as

follows:

1. Reception Test Points (RTP) listed by their (x,y) coordinates.

2. Propagation Losses Matrix (PLM) which contains propagation losses (in dB) from

each potential site to every RTP.

3. Service Test Points (STP) to which a known service is required (dBm) listed by their

(x,y) coordinates.

4. Traffic Test Points (TTP) in which traffic demand is known (in Erlangs) and is listed by

their (x,y) coordinates.

5. Mobile and Base Station Antenna Information (NET) in which the names and

locations of sites are specified.

The data in the PLM is representative of Effective Isotropic Radiated Power (EIRP) associated

with our masts and coordinates. EIRP is the amount of loss or gain a signal has taking in to

account certain factors.

Figure 1 Example of EIRP (13)

The most important outcomes that have been completed are as follows:

 The need to carry out the simulated annealing algorithm efficiently.

 Hence, produce accurate results that can be viewed.

 Furthermore, allow user to interact with data and manipulate it as they wish, so that

they can learn and understand the effects that different properties have on the

network.

Base Station Selection in Mobile Networks

Page 3 of 40

The report is structured in a way that includes insights discussed as a sub sections following

this introductory information and interim report. The insights sub section details issues

encountered and decisions that have since been made to rectify or resolve problems that

have arisen since the interim report. Following from this is the design section that gives a

high level overview of the application, its structure and the way data flows and is

partitioned throughout the system. The section succeeding this is implementation; the aim

of this section of the report is to expand and discusses the points raised in the previous

design section from a more detailed low level perspective. After the sections discussing the

theory and practical aspects of the application, the results of the algorithms are listed and

evaluated as is information relating to performance enhancements achieved throughout the

coding process.

Due to the limit on the amount of time available to write this application, there is also a

section at the end of the document detailing future work that the author feels would be

beneficial to the application. This is extended by a conclusions section and further text

detailing the author’s reflection on the project as a whole and what has been learnt.

1.1 Assumptions Made
 Hard coded data; i.e. files must be in root dir.

 User must be running Windows.

1.2.0 Algorithm Research
The aim of this project is to find an optimal solution of a pre-defined network whilst being

able to provide this resolution within a reasonable amount of time. As a result, research on

multiple different optimisation algorithms has been completed. A brief summary of each of

these algorithms is detailed below.

1.2.1 Hill Climbing

Hill Climbing (HC) is an iterative algorithm that starts with a random solution to the problem

in question. From this arbitrary solution, attempts are made to find better solution(s) by

incrementing single elements within the solution. If this increment provides a better

solution than the previous one, the incremental solution becomes the new solution and this

process is repeated until no improvements can be made.

Hill climbing is effective for finding a local optimum but not necessarily the best possible

solution, also known as a global optimum. A local optimum is a solution that cannot be

improved by considering a neighbouring configuration. A characteristic of HC is that only

local optima are guaranteed. This can be cured through using repeated local searches (or

restarts) or alternatively more complex schemes based on iterations such as iterated local

Base Station Selection in Mobile Networks

Page 4 of 40

search, tabu search and on memory-less stochastic modifications such as simulated

annealing.

The simplicity of the algorithm has made it a popular choice amongst the many different

optimisation algorithms. HC is widely used in artificial intelligence as it can reach a goal state

from any starting node although according to an article online (14), “more advanced

algorithms such as simulated annealing or tabu search may give better results, in some

situations hill climbing works just as well.” HC can often produce better results than those

found in other algorithms, for example when the time available to perform the calculations

is limited, as in real time systems. As HC is an “anytime algorithm” it can provide a solution

even if it is stopped before it was specified to end.

1.2.2 Tabu Search

Tabu Search (TS) utilises a local/neighbourhood search procedure to move from solution A,

to a better solution, B, iteratively within the search space until a stopping criterion (such as

maximum attempt limit or minimum score threshold) has been met.

The downfall of TS is that local search procedures often become stuck in poor scoring areas

or an area within the search space where scores plateau. To avoid this and enable the

algorithm to explore other areas of the search space that would otherwise be ignored, TS

explores the neighbourhood of each solution throughout its progress. The solutions of the

new neighbourhood are determined through memory structures that are referred to as the

“tabu list”. This list contains information on banned solutions such as solutions that have

been visited in the past. The list is usually short term, for example only holding information

relating to n-iterations ago. N is called the tabu tenure; this is the number of previous

solutions to be stored.

“Current applications of TS span the realms of resource planning, telecommunications, VLSI
design, financial analysis, scheduling, space planning, energy distribution, molecular
engineering, logistics, pattern classification, flexible manufacturing, waste management,
mineral exploration, biomedical analysis, environmental conservation and scores of others.”
(9)

1.2.3 Simulated Annealing

Simulated Annealing (SA) is a probabilistic meta-heuristic for the global optimisation

problem of discovering an effective approximation to the global optimum of a given

function in a large search space. “For certain problems, simulated annealing may be more

efficient than exhaustive enumeration — provided that the goal is merely to find an

acceptably good solution in a fixed amount of time, rather than the best possible solution.”

Base Station Selection in Mobile Networks

Page 5 of 40

Through each of the iterations in the SA heuristic, a neighbouring state of the current state

is considered. These neighbour states are produced through altering the current state in a

particular way, similar to HC; this action is called a move. The aim of the move is to produce

minimal iterations to the current solution. As a result, different moves produce different

neighbours. The searching of these neighbours is the critical part for optimisation as the

final solution will only come from a tour of the successive neighbours generated from

moves. Many simple heuristics move by finding the best neighbour from each successive

move and stop when a solution is generated with no better neighbours. The issue with this

approach is that the neighbours of a state have no guarantee that they contain better

solutions. Hence failure to find a better solution does not guarantee that no better solution

exists. As a result, the solution that the SA generates is called a local optimum whereas the

best possible solution is referred to as the global optimum. “Meta-heuristics use the

neighbours of a state as a way to explore the solutions space and can accept worse solutions

in their search in order to accomplish that. This means that the search will not get stuck to a

local optimum and if the algorithm is run for an infinite amount of time, the global optimum

will be found.” (17)

 If the new solution is better than the existing solution, it is accepted and becomes the

current solution. If the new solution is worse than the current solution, it is probabilistically

decided whether or not to move to the new state; this can lead the heuristic to move to

solutions that are worse than the current solution. These steps are repeated until the

system reaches a state that is good enough for the application or until the computation

budget has been depleted.

1.3 Algorithm Choice
Many of the research papers listed indicate that SA produces the best results in a set

amount of time comparative to HC and TS. This decision, combined with the fact that both

SA and TS are extensions of HC have led to the decision for the application to incorporate a

SA annealing algorithm both in terms of educational opportunity and the efficiency of

generating results.

Base Station Selection in Mobile Networks

Page 6 of 40

2.0 Background
The background section of this report aims to give a general overview about the way in

which mobile networks work and the need for effective network planning. The data sets

that have been used in this project will be discussed as will any insights that have been

made since the interim report.

Recently we have seen a global increase in the technology and subscribers of wireless

technology. Mobile network providers have realised the necessity of efficient design and

planning of these networks and the importance of a stable and reliable service. Therefore,

support offered to assist in this planning and development of said networks has increased.

As the use of wireless technology grows year on year, the necessity for efficiency is

something network providers continually strive for.

A key component of mobile networks is the Base Station Transceiver (BST). The purpose of

the BST is to relay information from the network to a user’s mobile device, or alternatively,

from the user’s mobile device back to the base station controller (BSC) to be sent across the

home network to another user or it is passed from the BSC to the mobile switching centre

(MSC) to be sent across the internet in the instance where the recipient is on a different

mobile network.

Figure 2 Graphic representation of a mobile network (15)

Every BST generates a cell of coverage that can be obtained from mobile devices within

range. Depending on the type of cell and location, different amounts of coverage can be

received as detailed below:

Base Station Selection in Mobile Networks

Page 7 of 40

 Mega – tens of kilometres

 Macro – hundreds of meters to a few kilometres

 Micro – around two kilometres

 Pico – 200 metres or less

 Femto (Home-Cell) – around 10 metres

Figure 3 Graphic representation of mobile cell coverage (16)

To get optimum levels of coverage, the cells should overlap.

Theoretical Coverage Optimum Coverage Actual Coverage

Figure 4 A graphic representations of theoretical, optimum and actual cell coverage.

The problem that we face is that if we turn on every BST, although this would provide us

with maximum coverage, we would also encounter a large cost associated with having every

BST on. Furthermore, providing a large power to any BST is said to results in a large emission

Base Station Selection in Mobile Networks

Page 8 of 40

of electromagnetic radiation affecting peoples’ health (1), although these facts are disputed

(2) (8).

To help provide an optimum solution in relation to which sites are on and off with haste,

developing an algorithm to calculate and predict these results will help us to visualise the

required information during the planning stage. This permits for a reduction in costs for

mobile network providers whilst providing minimum disruption for service users.

2.1 Overview
The data set that I am using relates to 250 real sites, which is a fraction of the true amount

(25k+) masts that exist in the United Kingdom. The site information I am working with is

two dimensional and is plotted on a simple grid within Visual Basic .NET that spans to the

maximum size of the dataset. The maximum size of the grid I am working with is

determined by reading the RTP file and calculating the highest and lowest values from the

data. Within the grid, BSTs, STPs and TTPs are plotted relative to the chosen grid size,

currently 750 pixels. Taking the real life (x,y) coordinates of the BST, STP and TTP data, I

have then manipulated these through the calculations:

x = ((x - BaseStation.minimumX) / (BaseStation.maximumX - BaseStation.minimumX))
y = ((y - BaseStation.minimumY) / (BaseStation.maximumY - BaseStation.minimumY))

Figure 5 Code to calculate the (x,y) values relative to the screen size

Where x and y relate to the location of the sites in pixels, x and y are the (x,y) real world

coordinates of the sites read from the RTP file and minimum/maximum x/y are the real

world (x,y) coordinates calculated from the RTP file.

It is important to realise at this stage that plotting the data in a two dimensional plane may

be slightly unrealistic in that the lack of visualisation of terrain and physical objects in the x

plane does not help us to determine any factors that may be reducing the strength of signal

and coverage area of a specific BST.

2.2.0 Insights
This section provides an overview of issues that have been encountered during the coding

stages of the application. As a result of these issues, executive decisions have been made on

how to rectify them; either through changing the code that has been written or through

amending the files that contain the data (mainly the PLM) that were provided at the start of

the project.

Base Station Selection in Mobile Networks

Page 9 of 40

2.2.1 Picture Box

During the first few weeks creating the application, one of the main performance issues
which resulted in a reduced user experience was the time that it took to draw the network
and any calculations such as the path loss for each site on the grid. As this performance
issue severely impinged the operability of the application, an investigation commends to
find the most effective way to improve the performance. The result was to draw the image
in a picture box control; this control already has the performance adaptations required to
draw efficiently as it is a Windows common control. To determine the amount of time
saved, a Date = Now variable was included to check at the start and end of routines and
calculated the difference to find out the time taken. This check has been included in many
subsequent functions and subroutines to get an accurate reflection of the affect the
changes made to the code have on the performance time. As a result, the image now
renders almost immediately compared to the 12 seconds that were recorded previously.

2.2.2 PLM

It has been decided since the interim report that we would reduce the number of sites used

in the path loss matrix. This decision was made due to the amount of time it took to read

the initial PLM file, especially over multiple debugging sessions. To eliminate the fact that it

might be Visual Basic .NET that was slowing the performance down, I decided to create a

separate application to read the files in C++ (Appendix A), however, this still suffered similar

performance issues. Further to this, I wrote three separate methods to read the file in

VB.Net. Two methods used a StreamReader and one method used a ByteReader to read the

files in to the application. Despite MSDN (Microsoft Developer Network) stating that the

StreamReader was faster, I decided to do my own tests; as results varied on each occasion, I

took an average of three and came to the conclusion that StreamReader was indeed faster

than ByteReader, but this did not increase my performance. From these results, it was

apparent that the multiple string operations in use to read the text could be a main factor in

the performance deficiency. As a result, I decided to test the difference between using a

SubString and StringArray functions. As the SubString function needs to create a StringArray

for each SubString call, the most efficient way to carry out the comparisons was through

using the StringArray function (Appendix B). Although this increased performance

somewhat, the difference was not major; hence, reducing the sites to a tenth of their

original size was the only option. Although this is less than desirable, the ability to have the

complete list of sites is not far removed; through editing a few lines of code it could be

included again in the application, however, it takes the loading time to over five minutes.

2.2.3 RTP/TTP

Due to limitations on the amount of time provided and the lack of progress that had been

made towards the start of the project, detailed in the interim report, two pieces of data

provided for use in the application (traffic test points and reception test points) are not used

Base Station Selection in Mobile Networks

Page 10 of 40

at all in any of the calculations within the application. The author feels that the most

important aspect to be demonstrated through the application is the affect that turning sites

on or off, or amending the site power, has on the overall network coverage. Although

utilising all of the data read in the application was the most desirable outcome, prioritising

the TTP or RTP data over the STP data would have meant that calculations on the capacity of

the network would have been possible but this would have jeopardised the ability to

implement the algorithms to calculate the best solution for network coverage.

Relating back to the interim report, the initial calculation for the Network Performance

Measure (NPM) cannot be referred to as expected. The calculation specified is as follows:

NPM = % coverage (max) + %traffic/service (max) + cost (# of sites) [min]

Figure 6 Preferred calculation used to determine the NPM

Although the application currently maximises coverage and minimises the sites through the

simulated annealing algorithm, the %traffic/service part of the calculation is currently

omitted. Hence, the goal of providing an optimum solution given the above formula is not

possible. Instead, the application aims to provide an optimum solution for minimising site

cost and maximising coverage based on a reviewed formula of:

NPM = % coverage (max) + cost (# of sites) [min]

Figure 7 Actual calculation used to determine the NPM

This result is displayed on the main window of the application after the algorithms and

calculations have been completed.

Coverage is determined by sites served/total sites and the cost of sites is determined by

(total sites – active sites)/total sites. This produces a number between one and two.

2.2.4 Threads

Creating this application demonstrates the importance of using threads. Without using

threads, the interface turns white when loading the large data files and does not provide

any indication of what is happening. Additionally, when performing calculations on the main

window, the window would often freeze and the task manager would ask the user if they

wish to exit the application because it was not responding. The ability for the user to still

interact with certain parts of the application whilst other important calculations are being

completed in the background is paramount to ensuring the user’s experience is pleasant.

Building on these user centric issues, the use of threading also permits for the application to

utilise parallel processing instead of sequential processing. Parallel processing assigns a

single thread to each task in the loop, resulting in significant performance improvements

when iterating through multi-dimensional lists.

Base Station Selection in Mobile Networks

Page 11 of 40

3.0 Design
The design section of this report will give a general overview of how the application looks

and is intended to work, whilst also discussing the way in which data flows through the

system. Additionally, a high level explanation of the way in which the data is stored and the

algorithms chosen to achieve the desired results will be given towards the end of this section.

As detailed in the abstract section of the interim report, the aim of this piece of software is
to “help with planning and testing the positioning of telephone masts, referred to as BSTs
within the telecommunications industry.” After working on this project, it seems logical to
deduce that the application is not efficient or powerful enough to manipulate the vast
amounts of data in a live network and is therefore not suitable for planning a mobile
network. Conversely, the application could instead be viewed as a teaching utility to
understand the concepts of network design and performance algorithms associated with
this industry.

From this specification, the current software that is in place meets these requirements in

that the interface allows user interaction to assess the impact on signal propagation by

activating different sites and assigning new powers. Further, the application also shows the

user the most efficient sites to have on or off to provide maximum coverage by using the

least sites.

Overall, this application is designed as more of a diagrammatic tool than a definitive

network planning application. The ultimate aim was to demonstrate to the user the affect

that different powers have on a site’s signal and to show how an algorithm can be used

effectively; to show the most efficient way to serve the most people whilst using the least

sites. The application successfully visualises on the grid the effect of changing site powers or

turning the site on or off.

3.1 GUI

The user interface as it stands is relatively simple, maintaining the generic look and feel of

Windows form controls. It seemed an unnecessary waste of resources, given the time

constraints of the project, to concentrate on the aesthetics of the program; however, there

are enhancements to the initial plan that have been included in the application. One feature

that was not detailed in the interim report was the incorporation of a splash screen. The

author felt this was important for when the application was starting due to the amount of

data that needs to be loaded. To provide some user feedback and reassurance, a timer and

progress bar have been included on the splash screen to feed back to the user how much of

the PLM has been read. The timer tickets every 500ms and checks a global variable to

update the progress bar. Without this, the program appeared unresponsive on the initial

loading of the required files.

Base Station Selection in Mobile Networks

Page 12 of 40

Figure 8 Initial Splash Screen

On the main screen there are several options included to try and help the user’s experience.

These are simple options to allow for more effective interaction with the application such as

showing the active site names, turning the grid on or off and adding check boxes for active

sites. Further, the incorporation of the combo box detailing the sites in the PLM allows the

user to scroll through and see the resulting signal propagation on the grid. There is also the

option on this screen to set all sites to on or off, to designate a uniform power to all sites

and also to randomize the power at each site.

Figure 9 Main Screen

Figure 10 Tabbed Control to Adjust all Sites

Base Station Selection in Mobile Networks

Page 13 of 40

3.2 Data Flow

There are many different sub routines within the application. To begin, the application loads

the splash screen and enters the thread to load the files via the modFiles module. These

files are read, and the data is stored into the lists through the modData module. The

structure of lists defined in the modData module is done so in relation to their classes. For

example, the BST structure is detailed in clsBST. Once these files are read in to memory and

the initial thread has been completed, the main form is loaded and the data is painted in to

the picture box that contains the grid. To draw the data on the screen many of the relevant

lists are iterated through the results that are drawn to the picture box. The options for

interaction on this form mostly call the modCalc module to complete necessary algorithms

and the values and results are either redrawn on the grid or detailed in the list boxes.

Within the modCalc module, specifically the simulated annealing algorithm, it is essential

that the best solution found is recorded. Although the best solution when comparing old

and new was being recorded, the overall best solution was not detailed or recorded

correctly. Through adding a variable to record the best solution found so far, it was possible

to determine whether the new solution was better than the overall best solution, and not

just the previous solution. If this was the case, the current network structure needed to be

recorded. At first, this seemed relatively simple through utilising a built in list function.

However after further investigation it became apparent this was not the most appropriate

route to follow. As a result, different methods had to be incorporated to the application to

make copies of each list object.

3.3 Data Structures

The most important data type used in this application is a list container. This container is

easier to work with and offers performance enhancements when compared to a multi-

dimensional array (11). In addition to this the majority of the data types used are long, this

is due to efficiency (5). The most efficient data type to use in VB.NET is Integer, followed by

Long, Short, Byte (in order of efficiency). However, as decimal numbers are also required,

for example with (x,y) coordinates, the double data type has been utilised. This has been

chosen “because the floating-point processors of current platforms perform all operations

in double precision.” Therefore, this data type is more efficient than data types Single and

Decimal. Building on this efficiency, for variables where a Boolean could be used, a byte was

often used instead. This is due to the fact that a byte only takes up one byte of storage

whereas a Boolean takes up four bytes (10); this is a significant difference and where 0 and

1 could be used on a byte variable to determine where it was true/false or on/off.

Base Station Selection in Mobile Networks

Page 14 of 40

3.4 Algorithm

As decided in the interim report, the algorithm chosen to determine the most effective

solutions to our problem is simulated annealing. This algorithm initially started as a greedy

algorithm, however, through adding the probability check and finding a reasonable start and

end temperature, it was possible to use the simulated annealing method. Through the

development lifecycle of the application, it became apparent that it should be more

oriented around user interaction and experience, rather than solving the problem to the

best of its ability. Overall, it seemed that the simulated annealing would be more suitable as

it is able to find an acceptably good solution in a defined amount of time rather than

completing an exhaustive search to find the best solution. As it stands, the algorithm is

completed relatively quickly and the results are displayed. If the algorithm chosen tried to

find the best solution possible, such as hill climbing, there would have been a detrimental

affect on system resources and, consequently, the user experience would be impeded. An

additional disadvantage of using an algorithm such as hill climbing is that there would be no

definitive time relating to how long it would take to successfully complete the algorithm and

whether or not a solution to the problem would be found. As a result, this uncertainty

would make feeding back the results of the algorithm to the user a lot more difficult as

there would be no easy method to decide how long the algorithm had left before

completion. Conversely, the fixed iterations in relating to the starting temperature and

cooling factor of the SA algorithm can give some logical education towards estimating the

length of time taken to complete the calculation(s).

Initially, when the application contained significantly less lines of code, all the code was

detailed in the main form. As the length of the code began to increase, the main form class

became significantly more congested; it seemed logical at this time to make it more

manageable through partitioning the code in-to separate modules and classes. The code

itself is split in-to both separate classes and modules. The data structures for BST, RTP, STP,

TTP and PLM has been categorised in-to separate class modules. Additionally, code has been

split into separate modules depending on its functionality. For example, the code written to

read the data from the text files is in the modFiles.vb module. Extending from this, there is a

module created to assign the values read to the data structures within the application.

These subroutines are detailed in the modData.vb module. The final module, modCalc.vb

has the code written for the calculations carried out in the simulated annealing and path

loss calculations.

Within the application, timers have been used in order to update interface objects, primarily

progress bars, in real time. As these timers are invisible to the user and tick continuously,

they provide a simple way to update the GUI as seamlessly as possible. As the information

relating to the value of the progress bars is determined in different threads, a most

appropriate way to deduce the progress bar value would be to use a

Base Station Selection in Mobile Networks

Page 15 of 40

BackGroundWorker_ProgressChanged method instead. However, due to time constrains it

was not possible to implement this method.

Base Station Selection in Mobile Networks

Page 16 of 40

4.0 Implementation
This implementation section provides a lower level explanation of many of the details

covered in the design section. Multiple data types and the structure in which data is stored

will be discussed whilst comparing snippets of code that have been written. Further

information relating to the use of threads, parallel processing and its resultant benefits are

documented along with an explanation of the simulated annealing algorithm. Any

technological terminology will be detailed towards the end of this document in the glossary.

As I felt that I was stronger at Visual Basic .NET than I was at Java, I have from the outset

isolated myself in some ways through not being able to seek advice on my code or structure

due to the lack of knowledge of VB.NET at University as it is not a language that is taught.

Although I am not able to seek advice from faculty staff that I know of, the MSDN library

provides a plethora of information that is sufficient for my needs. Further, the autocomplete

IntelliSense feature that is incorporated in to the Visual Studio environment makes it easy to

know the methods available when they are displayed to you as you type.

4.1 Reading Files
The structure of each file listed previously requires a different method of reading to be

completed. For example, the structure of the NET file has information at the start of the

document that is not necessary for the purpose of the document. As a result, lines have to

be checked to ensure that they match the data that we are looking for.

Figure 11 Sample Data from NET File

Base Station Selection in Mobile Networks

Page 17 of 40

Figure 12 Sample Code for Reading NET File

A similar issue arises when we attempt to read the data held within the PLM file. For

efficiency, a regular expression is used to filter out the lines that match the pattern for site

information.

If Regex.IsMatch(line, "^[0-9]+$") Then

Figure 13 Sample Code for Filtering PLM File

The code written to read the data files utilises the StreamReader, as detailed in the design

section. This stream reader returns each line read as a string. As a result, string operations

need to be carried out to extract the information (SiteName, Xcoordinate, Ycoordinate,

PathLoss) from the string. To do this, I tested two separate ways.

1. SubString – the first method chosen in an attempt to extract the data from the file

was through using SubString(startIndex, endIndex) on each line. The SubString

method is used to create a separate string given the start and end index specified.

This method had to be carried out for each of the four variables that needed to be

read.

2. StrArray – the second method tried was using StrArray. This method takes the initial

string and turns it in to an array where each complete word is assigned an index in

the array. By using this method, it is possible to skip directly to a position in the array

where a known item is. I.e., it is known that position 0 would contain the site

number, 1 would contain the Xcoordinate, 2 would contain the Ycoordinate and 3

would contain the PathLoss. As the size and use of the array is defined as soon as the

line is read, the resulting cost is four times less than that of the SubString method.

Base Station Selection in Mobile Networks

Page 18 of 40

To ensure that this way of reading the PLM was as efficient as possible, code was also

written to test if a byteReader would provide more optimum results. The difference with

the byteReader is that data is read in bytes, rather than line by line. Due to this, the size of

each property needed to be defined in order for the reader to know how many bytes to

read at a time. For example, SiteName is five bytes comprising of four digits and a space.

Issues were encountered when the loss of a site, found at the end of each line, was only two

digits compared to the majority of sites that had three digits. Hence, the data had to be

changed to bypass this quickly before finalising the decision to use a byteReader and

implementing it. After changing the structure slightly of the PLM file, the byteReader was

used to read it. The resulting times taken to read this were of little difference to that of the

StreamReader; so the idea was discarded.

4.2 Visualising Network
A key deliverable as defined in the interim report is the ability to visualise the data that is

read from the relevant data files and display this information on screen. As detailed in the

insights section, the visualisation is done in a picture box. To begin, the paint method for the

picture box calculates the aspect ratio to draw the image based on the maximum (x,y)

coordinates that have been read from the RTP file. Taking this information, a calculation is

performed to determine what the coordinates specified would be in relation to the pixel

location within the picture box. This is determined as follows:

ratioY = (maximumY - minimumY) / (maximumX - minimumX) * 150

Figure 14 Code to calculate the Y ratio

Without this calculation, the data was originally stretched much larger than was required, as

can be seen on the following page.

Base Station Selection in Mobile Networks

Page 19 of 40

Figure 15 Previous Visualisation Figure 16 Current

Visualisation

From using the simple equation to calculate the ratio, it was then possible to plot the data

that had been read from the appropriate files inside the picture box. The lines of the grid

within the picture box are spaced 25 pixels apart. To visualise the coverage at service test

points from a specified site, certain colours are given which are dependent on the received

signal strength. The closer the received strength is to zero, the stronger the signal.

Therefore, the following colouring scheme has been used:

 If the signal is greater than -80, the colour used to depict the signal is green. This is

to indicate that there is strong signal at these points.

 If the signal is greater than -88 but less than -80, the colour used to depict the signal

is yellow. This is to indicate that there is medium signal received at these points.

 If the signal is greater than -90 but less than -88, the signal used to depict the signal

is red. This is to indicate that there is poor signal received at these points.

 If the signal is less than -90, no colour is drawn. This is to remove congestion from

the visualisation and indicates that there is no signal.

Base Station Selection in Mobile Networks

Page 20 of 40

Figure 17 Sample of Signal Strength Visualisation Code

These points are only drawn if the user assigns a power to a site or actives it using the

“Assign Power” button.

Code has also been written to show active sites as a light blue and inactive sites as dark

blue. The site that is currently selected from the combo box is highlighted with a magenta

circle so the user is able to see where the current selected site is located within the

visualisation.

4.3 Checking Coverage/Iterating list
One of the essential functions of the application is the ability to check which sites within the

STP list have sufficient coverage, given their path loss and input power compared against

the STP permitted threshold. To complete this calculation originally, the function iterated

through each item in the STP list, for each item in the STP list the function also iterated

through every item in the PLM list. This results in a maximum of

4114500*29954=123245733000 iterations. If the coordinates of the item in the PLM list

matched the item in the STP list, it proceeded to check and update the values for the loss

for each of the 25 sites that the information is required for. After reviewing this code, the

author decided to attempt to implement the List.FindAll method to reduce the lines of code

written and, hopefully, optimise performance.

The findAll method is implemented so that for each of the items in the STP list, the findAll

method creates a list of all the entries within the PLM list that have matching X coordinates.

From this, the findAll method is called again to refine the list to all the entries that have

matching Y coordinates. Of this, there should always be 25 results. For these 25 results, they

are read and added to a class instance of stpServer, which, in turn, is added to the servers

list within the STP list (Appendix D). If these servers already exist, for example from a

Base Station Selection in Mobile Networks

Page 21 of 40

previous calculation, the list is cleared, the values are calculated again and the items are

added.

Once the 25 servers have been added to each item in the STP list, the number of sites that

have coverage is checked by determining which STP items have a server that is not equal to

zero. The total of these is then divided by the total number of sites. This returns a number

between 0 and 1. As this is the result that we want to maximise, the closer the result is to 1,

the better the coverage and resulting solution.

Coverage = stpCovered / stpCount

4.4.0 Algorithm
The choice to use simulated annealing was the result of research that shows that other

optimisation algorithms, such as hill climbing, run the risk of getting stuck in local minima or

maxima. The simulated annealing resolves this issue by allowing worse solutions to be

accepted some of the time. This allows the algorithm to take some uphill steps so that it can

escape local minima. Unlike hill climbing, simulated annealing selects a move at random

from the neighbourhood whereas hill climbing chooses the best move from those available.

If the newest solution is better than the current solution, it is always accepted. The

difference lies in that with the simulated annealing algorithm if the next solution is worse,

then it will be accepted based on some probability.

The algorithm is implemented in the application as follows. To begin, the current coverage is

determined as detailed above. Once this is determined, the current number of sites that are

on is calculated. The algorithm then calls another function that picks a random site and

toggles it on or off. Once this is completed, the coverage calculation similar to the one

detailed in the previous section is run to determine the coverage that the new solution

generates. This coverage, combined with the siteCost is returned to the initial subroutine

that called the toggle function.

Site Cost = (totalSites – sitesOn) / totalSites

The site cost calculation produces a result between 0 and 1. As this is a calculation that we

want to minimise, the closer the solution is to zero, the more effective the resultant

solution. This result, combined with the coverage result will produce a number anywhere

between 0 and 2; the closer this number is to 1 the better the solution.

If the returned result is better than the existing result, this new solution is accepted. If the

new solution produces a worse result than that already known, it is checked against some

probability.

Probability = If Rnd() * 1 < Math.E ^ ((sNew - sOld) / t) Then
Figure 18 Calculation to determine probability of accepting solution

Base Station Selection in Mobile Networks

Page 22 of 40

If the solution is better than the probability, it is accepted as the new solution. At this stage,
it essential that the best solution found is recorded; the initial algorithm only made a
comparison between the new and old solutions. Hence, an extra variable sBest was added.
After the probability check has been completed, the new solution is compared to the best
solution. If the new solution exceeds the best solution, sBest becomes the most recently
calculated solution. This is demonstrated in the pseudo code below:

4.4.1 Simulated Annealing Pseudo Code

Sub Anneal()

set sOld to (25-sitesOn)/25
set sOld to sOld + Coverage
set tStart to 10
set sBest to sOld

Clear list tmpChangeSTP
Copy list minSTP to tmpChangeSTP

 While tStart > 0.01

Set sNew to function calculateChange()

 If sNew > sOld Then

Set sOld to the value of sNew

 Else

 Randomize()

Set g to random*1
Set f to Math.E^((sNew - sOld) / t)

 If g < f Then
Set sOld to the value of sNew
 End If
 End If

 If sOld > sBest Then

Set sBest to the value of sOld

Clear list tmpChangeSTP
Copy list changeSTP to tmpChangeSTP

Clear list plmTmpIndexList
Copy list plmIndexList to plmTmpIndexList

 End If

Next
 t = 0.8 * tStart

End Sub

Base Station Selection in Mobile Networks

Page 23 of 40

Pseudo code of the simulated annealing algorithm

Function calculateChange() As Double

reCalculate: Set x to random * the size of plmIndexList

if x < 0 then set x to 0
if x > 24 then set x to 24

If x = tmpSite Then GoTo reCalculate

Set tmpSite to x; Set tmpSitesOn to 0

For each plm entry in the list plmIndexList

if plm.serves = 0 then set plm.active to 0
if plm.active = 1 then add 1 to tmpSitesOn

Next entry

if item X in plmIndexList is inactive (0) then

set item X in plmIndexList to 0
set userLossGain to minus plmIndexList(x).serves

If tmpSitesOn>0 then subtract 1 from tmpSitesOn
Else
if item X in plmIndexList is inactive (1) then

set userLossGain to plus plmIndexList(x).serves
If tmpSitesOn<25 then add 1 to tmpSitesOn

End If
For each stp entry in the list ChangeSTP
if the stp.SelectedServer = plmIndexList(x).site then

If plmIndexList(x).active = inactive(0) Then
Set stp.SelectedStrength to -999
Set stp.SelectedServer to 0

End If
End If

Loop as i from 0 to the size of stp.Servers
 If stp.Servers(i).serverName = plmIndeXList(x).Site Then

Set stp.Servers(i).active to the value of plmIndexList(x).active
 End If
If stp.servers(i).active = active(1) Then

if stp.servers(i).signalStrength is greater than stp.Threshold
if stp.servers(i).signalStrength is greater than the current strength

Set stp.selectedStrength to stp.servers(i).signalStrength
if stp.SelectedServer is different to the stp.Servers(i).ServerName then

set stp.SelectedServer to stp.servers(i).serverName

For each plmIndex entry in the list plmIndexList

If plmIndex.site = stp.Servers(i).serverName Then
add one to plm.Index.serves

next item
End If
End If
End If
End If
next i

set SiteCost to (25-totalSitesOn) / 25
set Coverage to number of STP above threshold/size of changeSTP
 Return siteCost + Coverage
End Function

Figure 19 Pseudo Code of the calculateChange function

Base Station Selection in Mobile Networks

Page 24 of 40

In addition to recording what the best result of the coverage and sites on is, the algorithm

also needs to make an exact copy of the network structure that produced the best solution.

As the network structure is stored in a series of list, the most obvious way to create a copy

was to use the list.AddRange method. Although this created a copy of the best list of sites

that were on or off, this copy was only a copy of the references to the values from the

underlying parent class. Subsequently, as the actual values were never copied, if the values

of any property in the underlying class changed so did the items within the wrapper. As a

result, extra code had to be written to manually add the items one by one, iterating through

the list until the end.

Another option to resolve this was to implement the ICloneable interface in the class

definition. Through implement ICloneable, code can be written to complete shallow and

deep copies of the list. A deep copy of the object means that the object itself would be

copied as would all the objects that it points to. A shallow copy of the class would mean that

the references to the objects are copied but the objects themselves are not, similar to the

AddRange function. Thus, as the semantic of ICloneable is not inherently clear and it

requires slightly more code, the simpler option of iterating and adding each item (as

detailed previously) has been used.

4.5 Threading
Threading is an essential part of ensuring that the application stays responsive whilst

carrying out the calculations on data structures than contain up to 4 million entries. One

issue that I encountered when using threads was the difficulty between updating the user

interface from a separate thread. To get around this, I initially added timers to the

application that could run every 500ms to check if any of the variables in the application

have changed and update the user interface accordingly. After further research, it was

decided that this method is not the most effective way to do update the interface. Rather,

the threading method that was used – BackgroundWorker - incorporates a method

ProgressChanged which allows the thread to report its progress in order for the user

interface to be updated. Additionally, the BackgroundWorker method also has the method

CancelAsync. This method is important in that if the user accidentally clicks a button more

than once, multiple threads may be created to carry out the exact same operation. Adding

in a simple check, such as if thread.IsBusy then thread.CancelAsync, ensures that if a

resource intensive operation is being carried out it can be cancelled before the next

operation begins.

Base Station Selection in Mobile Networks

Page 25 of 40

4.6 Data Structures
Once the data has been read from the appropriate files in to the application, it is stored in

several different lists that contain properties relevant to the associated class. For example,

the bstList has the properties bst.ID, bst.Site, bst.X, etc. The properties and variables of each

class are defined in separate class files. The decision to use lists enables the items to be

quickly sorted, searched and filtered, whilst offering an easy to work with list of methods to

achieve the required outcomes. The list type is a dynamic and automatically resizing array;

this removes the necessity to include ReDim Preserve which is “used at procedure level to

reallocate storage space for an array variable of fixed size” (12). Furthermore, the use of lists

was preferable over the ArrayList data type as ArrayLists suffer from boxing and are

significantly larger on a 64bit machine because references essentially must reference more

memory; in practise, the need to reference more memory results in more pointers (18).

It was previously stated in this report that the decision had been reached to use a PLM a

tenth of its original size. Although this offered some performance improvements due to the

reduced amount of data that needed to be read, issues still arose when having to compare

the data held in the service test point list with that in the path loss matrix. For example,

when the button is clicked to calculate the coverage of the service test points against the

data held in the path loss matrix, the calculation has to first iterate through each item in the

service test point list. For each item in the service test point list, it then must loop through

the items in the path loss matrix list to determine the path loss of each point. Hence,

checking the last value in the service test point list against the last value in the path loss

matrix requires extra calculations to be completed. As discussed previously, this involves at

most 123245733000 calculations to be completed on the records in the list. Consequently,

the selection of data used for the service test point list has a step of 250 to increase the

speed at which calculations can be completed for demonstrative purposes. This means that

once the first item is taken from the list of service test points, the next item to be read

would be the 251st as opposed to the 2nd.

In addition to this, the STP structure has a sub-list (Appendix C) relating to the loss

associated to each site from the PLM. This is then used to decide which site in the sub-list

provides the strongest signal.

Base Station Selection in Mobile Networks

Page 26 of 40

5.0 Results
The results and evaluation section of this document includes results from the implemented

algorithm along with results of attempted optimisations made to the code. The main drive

for improvement was in relation to file loading, visualising the network and the efficiency of

the algorithm. These results will then be critically evaluated.

5.1 Performance: Loading PLM
Attempt Time (ms) in PLM method 1 Time (ms) in PLM method 2

1 742 921

2 689 948

3 692 897

Figure 20 Graph Showing Time Difference when Reading PLM

These results indicate the time difference between the two methods that were written for
reading the PLM file. Method one is used in the application. Method two can be found in
appendix B. The results clearly show in each of the three attempts that method two takes
significantly more time than method one. From these results it seemed logical to go with
method one for reading the PLM file to save time.

0 500 1000 1500 2000

1

2

3

Time (ms)

A
tt

e
tm

p
t

Time in PLM method 1

Time in PLM method 2

Base Station Selection in Mobile Networks

Page 27 of 40

5.2 Coverage Results: Uniform Power 25
Attempt Time Taken (ms) Sites On Coverage (%) Performance (%)

1 656 16 7 21

2 498 15 12 26

3 441 11 7 31

Figure 21 Visualisation of Coverage

The above results show the time taken on multiple attempts to calculate the coverage,

given a set of sites with uniform power.

Base Station Selection in Mobile Networks

Page 28 of 40

5.3 Coverage Results: Random Power
Attempt Time Taken (ms) Sites On Coverage (%) Performance (%)

1 409 9 35 50

2 428 9 28 42

3 542 11 25 40

Figure 22 Visualisation of Coverage

The above results show the time taken on multiple attempts to calculate the coverage,

given a set of sites with random power.

Base Station Selection in Mobile Networks

Page 29 of 40

5.4 Algorithm Results: Fixed Sites Uniform Power 25
Attempt Time

Taken

Starting

Sites On

Starting

Coverage/

Performance

(%)

Final

Sites

On

Final

Coverage/

Performance

(%)

1 102 15 18 29 3 13 51

2 98 3 13 51 3 13 51

3 107 3 13 51 3 13 51

Attempt 1

Figure 23 Visualisation of Attempt 1 Coverage Results

Figure 24 Visualisation of Attempt 1 Annealing Results

Base Station Selection in Mobile Networks

Page 30 of 40

Attempt 2

Figure 25 Visualisation of Attempt 2 Coverage Results

Figure 26 Visualisation of Attempt 2 Annealing Results

Attempt 3

Figure 27 Visualisation of Attempt 3 Coverage Results

Figure 28 Visualisation of Attempt 3 Annealing Results

Base Station Selection in Mobile Networks

Page 31 of 40

The above results show the time taken on multiple attempts to complete the simulated

annealing algorithm, given a set of sites with uniform power of 25. After the first attempt,

the results cannot be improved upon anymore. This is validated after the third attempt.

5.5.0 Algorithm Results: Random Sites & Powers
Attempt Time

Taken

Starting

Sites On

Starting

Coverage/

Performance (%)

Final Sites On Final

Coverage/

Performance

(%)

1 117 15 63 52 4 23 54

2 98 4 23 54 6 53 65

3 119 6 53 65 8 63 66

4 143 8 63 66 8 65 66

5 108 8 65 66 7 63 68

Attempt 1

Figure 29 Visualisation of Attempt 1 Coverage Results

Figure 30 Visualisation of Attempt 1 Annealing Results

Base Station Selection in Mobile Networks

Page 32 of 40

Attempt 2

Figure 31 Visualisation of Attempt 2 Coverage Results

Figure 32 Visualisation of Attempt 2 Annealing Results

Attempt 3

Figure 33 Visualisation of Attempt 3 Coverage Results

Figure 34 Visualisation of Attempt 3 Annealing Results

Base Station Selection in Mobile Networks

Page 33 of 40

Attempt 4

Figure 35 Visualisation of Attempt 4 Coverage Results

Figure 36 Visualisation of Attempt 4 Annealing Results

Attempt 5

Figure 37 Visualisation of Attempt 5 Coverage Results

Figure 38 Visualisation of Attempt 5 Annealing Results

Base Station Selection in Mobile Networks

Page 34 of 40

The above results show the time taken on multiple attempts to complete the simulated
annealing algorithm given a set of sites with random power. The results are indicative that
the algorithm runs successfully. After the fifth attempt on the above results, the
performance cannot be increased further. This can be seen when attempting to run the
algorithm several times more.

Base Station Selection in Mobile Networks

Page 35 of 40

6.0 Future Work
This section of the report details aspects that the author wanted to include in the application

and insights that have been researched nearing the end of development. The research done

produced important results in relation to increasing performance and enhancing the

efficiency of the code, however there was not enough time left in the project to implement

these results. Additionally, non-performance related aspects, such as providing a more

interactive user interface and more user customisation are discussed here. All future work

detailed below is done so in order of importance, from the author’s viewpoint.

6.1 RTP/TTP
The initial aim of the application was to use all of the data provided to find optimum

network solutions. As detailed previously, this was not possible due to the time constraints

and initial lack of progress. To ensure that the application meets the goals originally laid out,

including the data held in the RTP and TTP structures, it is essential to ensure that the

algorithm can return the best possible solution. As the TTP structure contains critical

information in relation to the capacity of each site, omitting this is detrimental to the end

result in that the current solution provided may minimise the total number of sites on but it

may also turn off sites that serve significantly more users than others.

6.2 Efficiency
An underlying issue preventing the effectiveness of the application is its performance issues

in relation to loading files and carrying out calculations on the large data sets. In some

aspects these performance impingements are determined by the hardware of the

computer; a more powerful processor, for example, may allow for much quicker operations.

Conversely, it may be possible to make the application much more efficient using the same

architecture that it was developed on. One way that this may be achievable, primarily in

relation to the PLM file, would be to have multiple threads reading defined segments of the

file. This could either be done using a byteReader, to read a set amount of bytes per thread,

or, alternatively, using the more efficient StreamReader to read a defined amount of lines.

If these threads could run concurrently, it could reduce the loading time.

Furthermore, the efficiency of the application in relation to its data structures is something

that could definitely be improved upon, primarily in the PLM which is the most inefficiency

file and data structure. The application could be coded in a way that, instead of entering

each line of the matrix as a new item in the list, each (x,y) coordinate would have one entry

so there were no duplicates. Expanding from this, the coordinates would have a sub list

which defines which sites cover the coordinates and the resulting loss. This would make the

initial iterative search through the list more efficient as the list would be shorter.

Base Station Selection in Mobile Networks

Page 36 of 40

Expanding on this, the List (Of T) data structure used has a function FindAll(Predicate(of T)).

This function scans the list and can return the found values to a sub list, including the

indexes. If this method had been initially utilised, it would have vastly reduced the amount

of code written and may have led to performance enhancements.

6.3 Interface
The interface of the application could be enhanced so that the grid in which the network

data is drawn can be clicked on. For example, the picture box could be divided in to clickable

regions (Appendix C). Clicking on a region would bring up the test points and base stations in

that area. Clicking on the test points within each region would then allow the user to see the

information relating to the test point such as:

 Which BST serves it

 Received signal strength

Clicking on a BST within the region would display information such as:

 BST Name/ID

 Input Power

 Whether the site is active or not

 Number of test points served by the BST

o ID of test point(s) served.

o Received strength at test point(s)

The author feels that making this aspect of the interface more interactive and illustrative

would heighten interest in the overall purpose of the application, make the information

more readily accessible and easier to understand and, finally, make it look and feel more

professional.

6.3.1 Customisation & Accessibility

As the application currently stands, many aspects that should and could be defined by the

user are hard coded. The most important aspects that should be defined by the user is the

location of the data files; at present, the location of the data files is hard coded so that they

must be in the root directory of the executable. Giving the user a simple file dialog to specify

where the files are located could provide a better user experience.

Base Station Selection in Mobile Networks

Page 37 of 40

Additionally, one aspect that should be included is the option to specify the colours of the

controls and grid drawing on the screen and its accessibility relating to font sizes and

language. Colours are an important factor that should be considered on the application as

using strong contrast, such as the black font on a white background proves difficult for

dyslexic people to process (7). Conversely, colour blind people prefer a strong contrast and

find the use of pastel colours difficult to process. Although many of the controls’ colours on

the application are defined by the operating system, the grid that displays the mobile user

data has colours that are not customisable and means that the visualisation of the network

performance may be completely unnoticeable for some users.

6.4 Exporting Data
To build on the results generated by the algorithm, one aspect that could be incorporated in

to the application for evaluating the algorithm is the option to export the results to a text

file. Once exported, these results could be read in to a different application that could

assess the effectiveness of the SA algorithm. This facility could also benefit the user in that

they would be more readily able to assess the effect that assigning different powers has to

different sites and the overall network performance.

Additionally, the author feels an essential aspect that has been omitted from the application

is the ability to export errors from try/catch blocks to an external error log. As the

application stands, any errors that occur are in some ways invisible to the user with no clear

feedback of what has gone wrong or where. Therefore, having the option to log these errors

outside the application and further detailing the events that caused them would be

invaluable to the developer to create a stable application. Building on this, a further option

to “contact developer” and attach the error log would make error reporting quick and easy

for the user whilst providing real time issues that can be rectified throughout the software

life cycle. This could be added through importing System.Net.Mail and declaring a mail class

as SMTPClient in to the application.

6.5 Programming Language
Although utilising VB.NET to create the program initially seemed a good idea due to the

author’s familiarity with the environment, the platform dependence and lack of knowledge

from those who the author went to for support was detrimental to the overall

development. As a result, with the knowledge of what the application is meant to do and

the flexibility and power of other languages, it may be more effective to attempt rewriting

the application in a different language.

Base Station Selection in Mobile Networks

Page 38 of 40

7.0 Conclusions
The conclusions section of this report draws on the implementation and results section to

deduce any positive and negative aspects of the project, whilst also raising points which

could change the results obtained.

The outset of the project presented two main goals, to visualise the network within a GUI

and to further implement a simulated annealing algorithm to optimise the network, both of

which have been completed successfully.

7.1 GUI
The GUI provides a simple way to interact with the data and allows the user to interact and

amend certain properties of the network whilst showing the results of such actions. The

main downfall of the application is the reduced size of the area in which the network is

visualised; this could be resolved by simply changing code. This would allow for a more

detailed look at the network through reducing the congestion that results from producing a

small image. In comparison to the start of the project, the visualisation of the network is

completed much quicker and shows no noticeable lag.

Apart from the visualisation, the controls of the application also respond intelligently. For

example, the user cannot press the coverage button multiple times. If no data has been

changed, certain methods will not run as they have no need to.

7.2 Algorithm
The development of the algorithm has been successful in that results are optimised

between each attempt at running the SA algorithm. After each attempt in the algorithm, the

network performance measure always increases, even if it is to the detriment of the

coverage. This is due to the fact that it may be cheaper to loose service to an area

comparative to the cost of supplying power to the site. In addition to this, the algorithm is

quite simple as it only takes in to account the loss of users covered as opposed to the initial

goal of also allowing for the loss of capacity on the network from the TTP file. It would also

be essential in a real scenario to include a contingency if sites were to fail.

In order to optimise the network further, other algorithms could be used to determine the

location of sites as opposed to which ones were on or off. This could be successfully

incorporated through a genetic algorithm. In addition to this, there are two types of

antenna that can be used in BSTs. It is assumed from the data set that the masts in use are

omnidirectional. Through using directional antenna, radiation could be focussed in a certain

direction to optimise the network and improve coverage.

Base Station Selection in Mobile Networks

Page 39 of 40

An important note to be made is that if the user is looking to design a network with a small

number of base stations, higher powers yield better results but the cost and associated

health risks are often a deterrent. Conversely, using low power for sites will permit for more

base stations which will introduce a contingency for base station failure.

The data shows that in terms of cost to the network operator, it may be more effective to

distribute fewer sites but distribute higher power. Using a uniform power of 25 produced a

performance measure of 51. Using random powers produced a performance measure of 68.

As a simple data set has been used, it is not possible to critically evaluate the results - given

the initial large data set provided - but it is fair to deduce that the algorithm works as

expected. To incorporate the larger data set, creating the application in a more powerful

language, such as Java, may have been beneficial.

Base Station Selection in Mobile Networks

Page 40 of 40

8.0 Reflection on Learning
Throughout my education at Cardiff University I have had the opportunity to enhance my

understanding and further my interest in mobile telecommunications that was first

encountered under my employment with Vodafone. I have developed an understanding of

the mathematics that is inherent in many important aspects of computer science,

particularly in artificial intelligence and optimisation algorithms.

I have had the opportunity to learn the most widely used programming language, Java and

develop a firm understanding of its underlying principles whilst having the responsibility and

option to build on my previous experience within VB.NET. I have learned from this that,

whilst I find the IDE of Visual Studio (and hence VB.NET) easy to work with, the performance

of the background code that is automatically written from the drag and drop environment is

not as powerful and potentially not as efficient as could be found in other programming

languages. This has led me to the conclusion that whilst VB.NET makes it easy to work with

controls and containers, the rationale for using VB.NET for this project was flawed. The

amount of data that is read in to the application combined with the amount of calculations

required has a detrimental effect on the performance of the application. This could be due

to poor coding practise but could also be due to the inefficiency of the language having a

depredation on performance. In addition to this, the advantage of Java’s WORA (Write One

Run Anywhere) does not apply to VB.NET and, hence, constrains the application to only be

run in a Windows environment. It is now apparent that writing the application in Java would

have been preferable.

One of the strengths of VB.NET is the accessibility of parallel processing and threads.

Although taught the concepts and benefits of threads in previous modules, this project has

been demonstrative of the necessity of threads in any application to keep the interface

responsive to user interaction. Furthermore, the power of parallel processing is something

that I had not encountered in previous language modules and I feel this provides me with

invaluable experience that I can take forward to future employment.

Away from the coding aspect of this application, the project has required me to research

and understand particular algorithms that have been in question, such as Tabu, Hill Search

and Simulated Annealing and also helped me discover the use of a Genetic Algorithm that

could be used if the aim of the project was to calculate the optimum locations of base

stations within the network rather than the best combination of on/off given the fixed

locations of these sites.

This project has also been a huge test of my time management. Working whilst at University

poses a real strain on the amount of time that one is able to assign to university work. Far

from having a negative impact, working and studying has forced me to prioritise

requirements whilst working more efficiently to accomplish the goals that I set.

Base Station Selection in Mobile Networks

I

Appendices

Appendix A
The two pieces of code below are methods that have been written in C++ to attempt to read
the PLM file in order to compare performance differences. The difference in time taken to
read this large file was negligible.

Code Attempt 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

#include iostream

#include fstream

#include vector

#include cstdlib

int main(int argc, char* argv[]) {

 if (argc!=3) {

 std::cout"Usage: parser.exe source_path

output_path"std::endl;

 return 1;

 }

 //Parse arguments

 std::string path = argv[1];

 std::string output = argv[2];

 //Open input file

 std::vectorchar data;

 {

 std::fstream infile(path.c_str(), std::fstream::in);

 std::istreambuf_iteratorchar start(infile);

 std::istreambuf_iteratorchar end;

 if (!infile.is_open()) {

 std::cout path.c_str() " failed to open. ";

 return 1;

 }

 if (!infile.good()) {

Base Station Selection in Mobile Networks

II

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

 std::cout path.c_str() " did not become

ready for I/O operations. ";

 return 1;

 }

 //Populate vector from stream buffers

 data = std::vectorchar(start, end);

 infile.close();

 }

 std::cout "File reading finished, parsing..." std::endl;

 //Erase very first space

 data.erase(data.begin());

 for (std::vectorchar::iterator c = data.begin();

c!=data.end(); ++c) {

 //Strip leading spaces

 if ((*c == '\n')) {

 int count=0;

 while (*(c+1+count)==' ') count++;

 data.erase(c+1,c+1+count);

 }

 //Strip silly lines

 //

 //Replace spaces with commas

 if (*c == ' ') *c=',';

 }

 //Write out to new file

 std::ofstream ofile(output.c_str(), std::ofstream::binary);

 ofile.write(&data[0],data.size());

 ofile.close();

Base Station Selection in Mobile Networks

III

62 return 0;

}

Code Attempt 2

#include iostream

#include fstream

#include vector

#include cstdlib

int main(int argc, char* argv[]) {

 if (argc!=3) {

 std::cout"Usage: parser.exe source_path

output_path"std::endl;

 return 1;

 }

 //Parse arguments

 std::string path = argv[1];

 std::string output = argv[2];

 //Open file I/O

 std::fstream infile(path.c_str(), std::fstream::in);

 //std::istreambuf_iteratorchar start(infile);

 //std::istreambuf_iteratorchar end;

 if (!infile.is_open()) {

 std::cout path.c_str() " failed to open. ";

 return 1;

 }

 if (!infile.good()) {

 std::cout path.c_str() " did not become ready for I/O

operations. ";

 return 1;

 }

Base Station Selection in Mobile Networks

IV

 std::ofstream ofile(output.c_str());

 if (!ofstream.is_open()) {

 std::cout output.c_str() " failed to open. ";

 return 1;

 }

 if (!ofstream.good()) {

 std::cout output.c_str() " did not become ready for I/O

operations. ";

 return 1;

 }

 infile.getline(&data[0],3);

 std::coutdata[1]std::endl;

 infile.close();

 ofile.close();

 return 0;

}

Base Station Selection in Mobile Networks

V

Appendix B
The code below was written in VB.NET in attempt to get the PLM file to read quicker. The

method below was discarded in favour of the one that is present in the source package.

Public Sub readPLM()
 Dim i As Integer = 0
 Dim startTime As Date = Now
 Dim site, loss As Long
 Dim x, y As Long
 Try
 Dim reader As New BinaryReader(New
FileStream(System.AppDomain.CurrentDomain.BaseDirectory & "net1_0_25sites.txt",
FileMode.Open))
 Dim buffer() As Byte
 Dim lineSize As Byte = 0
 Dim bytesRead As Long
 Const SITE_BLOCK As Byte = 5 ' Read blocks of 1,024 bytes.
 Const X_BLOCK As Byte = 7
 Const Y_BLOCK As Byte = 8
 Const LOSS_BLOCK As Byte = 2

 Do While bytesRead reader.BaseStream.Length
 buffer = reader.ReadBytes(SITE_BLOCK)

 'Console.WriteLine(Encoding.Default.GetString(buffer))
 site = CLng(Encoding.Default.GetString(buffer))
 bytesRead += SITE_BLOCK
 buffer = reader.ReadBytes(X_BLOCK)
 'Console.WriteLine(Encoding.Default.GetString(buffer))
 x = CLng(Encoding.Default.GetString(buffer))
 bytesRead += X_BLOCK
 buffer = reader.ReadBytes(Y_BLOCK)
 'Console.WriteLine(Encoding.Default.GetString(buffer))
 y = CLng(Encoding.Default.GetString(buffer))
 bytesRead += Y_BLOCK
 buffer = reader.ReadBytes(LOSS_BLOCK)
 'Console.WriteLine(Encoding.Default.GetString(buffer))
 loss = CLng(Encoding.Default.GetString(buffer))
 bytesRead += LOSS_BLOCK
 Console.WriteLine(reader.PeekChar.ToString)
 If Not reader.PeekChar = 13 Then
 buffer = reader.ReadBytes(1)
 loss = loss & CLng(Encoding.Default.GetString(buffer))
 bytesRead += 1
 Else
 reader.ReadByte()
 End If
 reader.ReadByte()

 'buffer = reader.ReadBytes(2)
 'bytesRead = bytesRead + buffer.Length
 i += 1
 addPLM(i, site, loss, x, y)
 Loop
 reader.Close()

Base Station Selection in Mobile Networks

VI

 Catch E As Exception
 ' Let the user know what went wrong.
 Console.WriteLine("The PLM file could not be read at line " & i & ":")
 Console.WriteLine(E.Message)
 End Try

 Dim runLength As Global.System.TimeSpan = Now.Subtract(startTime)
 Dim millisecs As Integer = runLength.Milliseconds
 Console.WriteLine("Time taken in new PLM: " & millisecs)

 End Sub

Base Station Selection in Mobile Networks

VII

Appendix C

The below illustration is an example of how the interactive map would appear. Clicking on a

grid reference in the main map (A) would then load up a zoomed image with more detailed

coverage colouring (B). Clicking on a site within this zoomed image would then present the

site information (C)

Base Station Selection in Mobile Networks

VIII

Appendix D

The below code details the structure of the STP class and also its sub-list; servers.

Imports Microsoft.VisualBasic

Public Class stpServer
 Public Property serverName As Long
 Public Property signalStrength As Long
 Public Property active As Byte
End Class

Public Class serviceThreshold
 Public Property ID As Long
 Public Property X As Double
 Public Property Y As Double
 Public Property threshold As Double
 Public Property servers As New List(Of stpServer)
 Public Property selectedServer As Long
 Public Property selectedStrength As Long
End Class

Base Station Selection in Mobile Networks

IX

Glossary

Algorithm - a process or set of rules to be followed in calculations or other problem-solving
operations.

Base Station Controller - the part of a mobile telephone network that handles allocation of
radio channels, receives measurements from mobile phones, controls handovers from one
base station transceiver (BST) to another, and stores database information for all sites.

Base Station Transceiver - equipment to assist wireless communication between a mobile
network and user equipment, such as a mobile telephone.

ByteReader – A class within VB.NET that implements a file reader that reads data from a file
a byte at a time.

dBm - power ratio in decibels (dB) of the measured power referenced to one milliwatt
(mW).

Decibel - the unit used to measure the intensity of sound or the power level of electrical
signals through comparing it with a given level on a logarithmic scale.

EIRP - equivalent isotropic radiated power. This is the power that would have to be emitted
in all directions to produce a particular intensity and so takes account of the transmitter
power plus the characteristics of the antenna.

Erlangs - a unit of traffic intensity in a telephone system.

Mobile Switching Centre - The mobile switching centre is the primary service delivery node
in the network, responsible for routing voice calls and text messaging, as well as other
services (such as conference calls, FAX and circuit switched data). The MSC sets up and
releases the end-to-end connection, handles mobility and hand-over requirements during
the call and takes care of charging and real time pre-paid account monitoring.

Microsoft Developer Network – this is the portion of Microsoft responsible for managing the
firm's relationship with developers and testers.

Propagation - the travel of an electrical signal through a medium such as air or free space.

Regular Expressions - a method to describe how to match a text string to a pattern. Some
regular expressions can look rather complex (and some are) but this gives them great
abilities.

Simulated Annealing - an optimization algorithm that makes random changes to data, in
order to improve a specific criterion.

StreamReader – A class within VB.NET that implements a text reader that reads characters
from a byte stream in a particular encoding.

Base Station Selection in Mobile Networks

X

Visual Basic 6 – Visual Basic 6 is an object-oriented computer programming language that
creates applications designed to run within an Windows environment.

Visual Basic .NET - Visual Basic .NET (VB.NET) is an object-oriented computer programming
language that can be viewed as an evolution of Microsoft's Visual Basic (VB) which is
generally implemented on the Microsoft .NET Framework.

Visual Studio - an integrated development environment (IDE) from Microsoft; it is used to
develop console and graphical user interface applications along with Windows Forms
applications, web sites, web applications, and web services in both native code together
with managed code for all platforms supported by Microsoft Windows, Windows Mobile,
Windows CE, .NET Framework, .NET Compact Framework and Microsoft Silverlight.

Vodafone – a mobile network provider in the United Kingdom.

Base Station Selection in Mobile Networks

XI

Table of Abbreviations

BSC – base station controller

BST – base station transceiver

dB – decibels.

EIRP – effective isotropic radiated power.

GUI – graphical user interface

HC – hill climbing

IDE – integrated development environment

MS – millisecond(s)

MSC – mobile switching centre

MSDN – Microsoft developer network

NET – mobile and base station antenna information

NPM – network performance measure

PLM – propagation loss matrix

RTP – reception test point.

SA – simulated annealing

STP – service test point

TS – tabu search

TTP – traffic test point

VB – Visual Basic

WORDA – Write Once Run Anywhere

Base Station Selection in Mobile Networks

XII

Bibliography

1. BBC NEWS. 2004. Phone Masts - A Health Risk? [online]. [Accessed 25 April 2012].

Available from World Wide Web:

http://www.bbc.co.uk/insideout/westmidlands/series6/phone_masts.shtml

2. BBC NEWS. 2006. 'No evidence' of mast health risk. [online]. [Accessed 24 March 2012].

Available from World Wide Web: http://news.bbc.co.uk/1/hi/health/4771080.stm

3. BBC NEWS. 2011. O2 begins '4G' LTE mobile data trial in London. [online]. [Accessed 8

April 2012]. Available from World Wide Web: http://www.bbc.co.uk/news/technology-

15717913

4. BBC NEWS. 2011. UK faces superfast digital divide say network providers. [online].

[Accessed 4 April 2012]. Available from World Wide Web:

http://www.bbc.co.uk/news/technology-15679101

5. BROWN, Gordon. 2002. Performance Optimization in Visual Basic.NET. [online].

[Accessed 31 January 2012]. Available from World Wide Web:

http://msdn.microsoft.com/en-us/library/aa289513(v=vs.71).aspx

6. CELLAN-JONES, Rory. 2011. Our 4G future. [online]. [Accessed 4 April 2012]. Available

from World Wide Web: http://www.bbc.co.uk/news/technology-15854582

7. COLOUR BLIND AWARENESS. Teachers. [online]. [Accessed 20 April 2012]. Available from

World Wide Web: http://www.colourblindawareness.org/teachers/

8. FLEMING, Nic. 2007. Mobile phone masts 'do not damage health'. [online]. [Accessed 25

March 2012]. Available from World Wide Web:

http://www.telegraph.co.uk/news/uknews/1558441/Mobile-phone-masts-do-not-

damage-health.html

9. FRED GLOVER, Manuel Laguna. Tabu Search. [online]. [Accessed 25 April 2012]. Available

from World Wide Web:

http://www.dei.unipd.it/~fisch/ricop/tabu_search_glover_laguna.pdf

10. KURNIAWAN, Budi. 2001. VB.NET Data Types. [online]. [Accessed 1 February 2012].

Available from World Wide Web:

http://ondotnet.com/pub/a/dotnet/2001/07/30/vb7.html

11. MICROSOFT. List(Of T) Class. [online]. [Accessed 1 February 2012]. Available from World

Wide Web: http://msdn.microsoft.com/en-us/library/6sh2ey19.aspx

12. MICROSOFT. ReDim Statement. [online]. [Accessed 13 March 2012]. Available from

World Wide Web: http://msdn.microsoft.com/en-us/library/w8k3cys2(v=vs.71).aspx

http://www.bbc.co.uk/insideout/westmidlands/series6/phone_masts.shtml
http://news.bbc.co.uk/1/hi/health/4771080.stm
http://www.bbc.co.uk/news/technology-15717913
http://www.bbc.co.uk/news/technology-15717913
http://www.bbc.co.uk/news/technology-15679101
http://msdn.microsoft.com/en-us/library/aa289513(v=vs.71).aspx
http://www.bbc.co.uk/news/technology-15854582
http://www.colourblindawareness.org/teachers/
http://www.telegraph.co.uk/news/uknews/1558441/Mobile-phone-masts-do-not-damage-health.html
http://www.telegraph.co.uk/news/uknews/1558441/Mobile-phone-masts-do-not-damage-health.html
http://www.dei.unipd.it/~fisch/ricop/tabu_search_glover_laguna.pdf
http://ondotnet.com/pub/a/dotnet/2001/07/30/vb7.html
http://msdn.microsoft.com/en-us/library/6sh2ey19.aspx
http://msdn.microsoft.com/en-us/library/w8k3cys2(v=vs.71).aspx

Base Station Selection in Mobile Networks

XIII

13. SCHOOL OF ENGINEERING, UNIVERSITY OF GREENWICH AT MEDWAY. EIRP. [online].

[Accessed 12 March 2012]. Available from World Wide Web:

http://engweb.info/courses/wdt/lecture06/eirp.GIF

14. SCRIBD. Hill Climbing Methods. [online]. [Accessed 5 April 2012]. Available from World

Wide Web: http://www.scribd.com/doc/7290255/Hill-Climbing-Methods

15. TECHVIRAL.COM. BST. [online]. [Accessed 5 March 2012]. Available from World Wide

Web: http://www.techviral.com/wp-content/uploads/2012/01/telephonie-mobile-

images-reseau-cellulaire.png

16. THE ITU ASSOCIATION OF JAPAN. Chapter 7. W-CDMA Technology. [online]. [Accessed

14 April 2012]. Available from World Wide Web:

http://www.ituaj.jp/06_ic/training/cellular/04/chap07_01.pdf

17. WIKIPEDIA. Simulated Annealing. [online]. [Accessed 18 March 2012]. Available from

World Wide Web: http://en.wikipedia.org/wiki/Simulated_annealing

18. WIL, Josh. 2004. ArrayList’s vs. generic List for primitive types and 64-bits. [online].

[Accessed 14 April 2012]. Available from World Wide Web:

http://blogs.msdn.com/b/joshwil/archive/2004/04/13/112598.aspx

http://engweb.info/courses/wdt/lecture06/eirp.GIF
http://www.scribd.com/doc/7290255/Hill-Climbing-Methods
http://www.techviral.com/wp-content/uploads/2012/01/telephonie-mobile-images-reseau-cellulaire.png
http://www.techviral.com/wp-content/uploads/2012/01/telephonie-mobile-images-reseau-cellulaire.png
http://www.ituaj.jp/06_ic/training/cellular/04/chap07_01.pdf
http://en.wikipedia.org/wiki/Simulated_annealing
http://blogs.msdn.com/b/joshwil/archive/2004/04/13/112598.aspx

