
i

Creating a virtual

reality classroom to

gamify education

Aaron O’Hagan

Dr Yukun Lai & Dr Jing Wu

BSc Computer Science

School of Computer Science and Informatics

Cardiff University

May 2018

ii

Abstract

The main goal of this project is to create a virtual reality learning tool

that simulates a classroom, in order to make education more engaging.

It is targeted towards primary and post-primary students and as such

the content is tailored towards children of those ages. The content

includes a virtual science laboratory, complete with two experiments

commonly found in a post-primary curriculum and a virtual

representation of a given place in the world that can be explored fully.

The program is made in the Unity engine and involved the use of many

SDKs, custom-made 3D models and dynamic interactable world

objects.

Research was done on current education-based virtual reality

applications and methodologies; features and ideas were adapted from

these to create a unique tool that could stand in its own right as a

fully-fledged program.

The approach was modular in nature, grouping the created content on

a case-by-case bases, dependent on their shared functionalities,

although the basic systems and functionalities were present throughout

the whole program.

Implementation involved the creation of dynamic particle systems and

water shaders, the adaptation of assets from the Virtual Reality

ToolKit and the inclusion of the WRLD SDK to create high-quality 3D

maps of real-world locations.

The project was successful, proving that virtual reality can be used for

education with the creation of a tool that can be expanded upon for

many content areas.

Acknowledgements
For their help and support with this project, these people/organizations/tools deserve

thanks:

• My supervisor, Dr Yukun Lai, for technical support and guidance as well as

organization assistance

• My friends and family, both for their assistance in testing the program and

their moral support during the project

• Unity Technologies, for developing the Unity Engine, without which this

project would’ve taken a wildly different path and may not even have been

possible. The Unity Post-Processing Asset Pack was also used for some basic

particle effects in the scenes.

iii

• The developers of the Virtual Reality ToolKit, this toolkit streamlined

development and allowed more robust and complex features to be

implemented in the short timeframe

• The developers of WRLD, the SDK enhanced the virtual travel section of the

application massively, making it so much more interesting and impressive

than initially planned

Table of Contents
Acknowledgements ... ii

Table of Contents .. iii

Table of Figures .. iv

Introduction .. 1

Background .. 2

Virtual Reality in Education ... 2

Target Audience .. 3

The Unity Engine .. 3

Virtual Reality Software for Education ... 4

Virtual Reality Development in Unity .. 5

Research Questions ... 6

Specification & Design .. 7

Requirements of the Software ... 7

Functional Requirements ... 7

Non-Functional Requirements .. 7

Architecture of the Software ... 8

Constraints and their Effect on the Project .. 9

UI & UX Design for VR .. 9

Implementation ... 10

The Implementation of Virtual Reality .. 10

Dynamic Particle Systems .. 12

Dynamic Shaders .. 14

Use of the VRTK Suite .. 15

Use of the WRLD SDK .. 17

Evaluation ... 18

iv

The Success of the Software ... 18

Outcomes of Project Decisions ... 19

Future Work.. 20

Conclusion & Reflection .. 21

References .. 22

Appendices .. 24

Table of Figures

Figure 1: Entity Diagram Example .. 8

Figure 2: Camera Object in Unity ... 10

Figure 3: VR Checkbox in Unity ... 11

Figure 4: An Example of Ray Casting (Unity Technologies, 2013) 11

Figure 5: Acid Particle System Parameters (left) and the Particle System in Action

(right) .. 12

Figure 6: Coroutine Code .. 12

Figure 7: Examples of Varying Colour Particle System ... 13

Figure 8: Example of Colour Code .. 13

Figure 9: The Flame Particle System OnTriggerEnter and Update 13

Figure 10: Shader Parameters ... 14

Figure 11: Shader Access and Modification Code .. 14

Figure 12: VRTK Controller Events .. 15

Figure 13: VRTK UI Pointer ... 16

Figure 14: Molecule Tooltip ... 16

Figure 15: Tooltip Manager Code .. 16

Figure 16: London Rendered in Unity with WRLD ... 17

Figure 17: WRLD Settings .. 18

file:///D:/My%20Documents/CS/Dissertation.docx%23_Toc513514637

1

Introduction
The aim of this project is to develop a virtual reality application that acts as a

classroom simulation, allowing teachers and the students to carry out VR-assisted

experiments and lessons.

The intended audience is primary and post-primary students, their teachers and any

relevant auxiliary teaching staff. However, the software can be applied to the

education of any group of people with different content applied on top of the same

virtual reality framework.

The scope of the project would be wide but shallow. The intention is to create

multiple content sections on top of the basic VR framework, one for each study area

of the intended audience. These areas will be representations of some, not all, content

that falls within the umbrella of the subject matter, e.g. a post-primary science

section could include chemistry experiments, physics simulations and biological

models.

The main focus of the project is the application of virtual reality to education; thus,

the specific content areas are a secondary focus.

Many, if not all, current virtual reality applications are created using an engine such

as Unity (Unity Technologies, 2018) or Unreal (Epic Games, 2018). This is likely

since virtual reality is, currently, being applied heavily to the video game industry

and, because of this, the engines used to create games have a great deal of VR

support. Thus, this software would be best created using an engine too. I established,

after researching multiple engines, that Unity would be the best choice for this

project as its VR support is more than adequate for the project’s needs and I have

previous experience with said engine.

The approach to content development is modular in nature. Each section of content

will be self-contained, with their own functionalities, world objects and “in-world”

areas. These content modules would be applied on top of the VR framework,

consisting of the camera, menus and interactions.

One main assumption, however, for this software to be successful, is the fact that

any education center would have access to VR equipment, both the headset and the

controllers. The program could, hypothetically, be adapted to not require VR

equipment but I believe that the effectiveness and “soul” of the application would be

greatly diminished. Thus, the possession of VR equipment is of utmost importance.

This software is not all encompassing, it will not be a sole replacement for normal

education techniques. It is intended to be an additional tool for an educator to

enhance a lesson by allowing for a more dynamic and interesting environment. Pre-

existing lesson material must have already been created before use of this teaching

2

aid.

Also, though virtual reality equipment is fairly intuitive, some training may be

required for any teachers who wish to use this tool in their lessons. Some may not be

familiar with the equipment involved and, as they need to instruct and guide their

students through using the equipment and the tool, the assumption that VR training

has already been carried out or, in the very least, such schemes should be already

put in place.

The most important outcome for this project would be the creation of a virtual

reality framework that allows for user movement, interactions with the environment

and world-space information display. Ideally, this framework could be easily

expanded upon via the addition of more features to allow for more complex

interactions or even multiple concurrent users.

Secondly, demonstrable proof that the framework detailed above can be applied to

education on application of the correct content through the creation of exemplar

content directed towards the target demographic of primary and post-primary

schoolchildren and their teachers.

Finally, the program should be intuitive and easy to use, whilst also giving the user

enough control over the relevant actions they wish to perform. For example, if the

framework should be applied to medical education, the control system should allow

for precise and accurate movements. Adaptability and flexibility are two main goals

of the software.

Background
This section will:

• explore the uses of virtual reality, specifically in the education sector.

• reiterate the main audience for this program, explaining how and why the

program would be tailored towards this audience.

• explain the Unity Engine, why it was chosen for this project and detail any

constraints that the engine introduces.

• show what elements of current VR software are desirable/undesirable for this

project and why certain VR applications, for the purposes of education,

succeed or fail.

Virtual Reality in Education

Virtual reality technologies are advancing exponentially, but, currently, the main

application of the platform seems to be entertainment. Videogames, film and even

TV have made use of the technology to great effect but the belief with this project is

that the technology has been developed to a point to where it is versatile enough to

be applied to different sectors. Education has been improved massively in the past

3

few decades through other technologies that have been filtered down via other sectors

such as entertainment or infrastructure. Small single-board devices, such as, Arduino

controllers (Arduino, 2018) and Raspberry Pi (Raspberry Pi Foundation, 2018)

computers have allowed for easier, enhanced teaching of computing in schools

whereas digital versions of pre-existing tools such as whiteboards, exercise books and

marking systems have added some much-needed permanency to documents created

during, and used for, education (Hill, 2017) (Bernard, 2017). VR is yet another

emerging technology that has clear applications to learning.

In the world where videogames dominate a great deal of young people’s time, it is

imperative that education must become more entertaining to keep young people

engaged. Gamifying education is the most logical step in the path to increase

engagement, the students would be familiar with the base mechanics of how a game

works, picking up a controller should feel natural to them. If parallels can be drawn

between their hobbies and their education, then student engagement should increase.

Virtual reality equipment and the nature of the programs developed for the various

VR platforms allow for a lot of user-world interaction and experimentation with the

world objects, this gives the user freedom within the application; with this, a lesson

enhanced by a tool such as this one, that is guided by a teacher should be more “fun”

that a standard lesson without the VR tool. Also, virtual reality headsets and

controllers are quite expensive, many students could simply not afford to have their

own equipment at home. Thus, the fact that they have access to VR equipment at

school with specially developed tools would be a novelty to them, incentivizing them

to come to school and participate more often in lessons, especially those that utilize

the equipment and tools. (Huang & Soman, 2013) (Kapp, 2012)

Target Audience

For demonstration of the application, the decision was made to create content

relevant to post-primary education due to the reasons presented above, so the

primary audience for this software would be educators. Also, creators of educational

content i.e. textbook creators could expand the software by creating content for the

program, yet another potential audience for the application.

However, as this tool could, in theory, be modified to be more specialized to fit sub-

sections of education, such as medicine or architecture, upon creation of relevant

content. As such, anyone involved in education should find use of this application.

The Unity Engine

Unity is a game engine developed by Unity Technologies, used by both hobbyist and

professional developers to create 3D and 2D games for a multitude of platforms. The

engine is written in C++ and uses it during runtime, however, through the Unity

API, user scripting is done with C# or JavaScript (Unity Technologies, 2018). The

engine will be used, in this project, to create a simulation with game-like elements

rather than a typical video game.

4

All scripting for this project will be done in C# as JavaScript support is being slowly

deprecated with new version releases, causing some newer libraries and methods to

be absent for applications written using JavaScript (Fine, 2017). This engine was

chosen due to its familiarity and its large amount of VR support. The in-built VR

support, such as the automatic rendering to a head-mounted display, automatic head

tracking and support for most platforms with SDK compatibility and controller

compatibility is great for VR projects (Unity Technologies, 2018). In addition to this,

on the Unity Asset Store, there exists an uncountable amount of 3rd party support,

such as custom SDKs, custom player controller classes and 3D models that could

easily be used to create a more exciting or useful environment for the project.

Unity is being constantly updated, new major versions release every year with

regular small updates to those versions releasing relatively frequently. This could

prove to be troubling for the project as some features at the beginning of the project

could be removed as the engine gets updated. Deciding on a version to use for the

entire project without updating was the biggest priority before even attempting

specification, design or implementation. The decision was made to use Unity 5.6.5 as

it is the latest release of Unity 5. In Unity 2017, the version that came after Unity 5,

the virtual reality support systems were reworked to incorporate augmented reality

(AR), a feature that was not required for the project (Unity Technologies, 2018).

Also, Unity 2017 was, at time project start, quite new and thus undiscovered bugs

could arise, causing more problems for the project. In addition, most VR-ready assets

on the Unity Asset Store have not been updated to be compatible with Unity 2017.

Due to these reasons, Unity 5 was the best version choice for this project.

Virtual Reality Software for Education

Virtual reality software, created for the purposes of education, does already exist.

Most current applications of this nature have been developed with a VR-compatible

mobile platform in mind e.g. the Google Cardboard SDK (Google, 2017). These

applications are usually quite simple with a small, specific subject matter and with

less user interaction, due to the lower performance capabilities and lack of viable

controller options that befalls mobile VR.

StarChart VR (Escape Velocity Limited, 2018) is one such application, it is a “real-

time simulation of the visible stars and planets” including 3D models of the solar

system and all the constellations. This is a very narrow subject matter, astronomy is

taught very little in schools currently and the elements of it that are taught are not

as deep as displayed in StarChart. This program is more suited for special interest

users, people who wish to learn more about astronomy in their free time rather than

students in VR-assisted lessons that are guided by a teacher.

Others, such as Cleanopolis VR (Groupe EDF, 2015) and InMind VR (Nival, 2017)

are VR games that happen to involve some educational content, in this case, about

the environment and the human brain respectively. These have more game-like

5

mechanics, there are scores to build, missions/goals to complete and cartoonish

presentations. Whilst these applications do gamify education in a way, they stray too

far from the educational aspect. The intent of this project is to create something

more robust, something that can be used in a classroom with structured lesson

content whilst still also increasing student engagement by presenting things in an

interesting manner.

Not all educative VR software is developed solely for mobile platforms, Unimersiv

(Unimersiv, 2018) create virtual reality experiences, for all VR platforms intended to

be used for education. Their Dinos (Unimersiv, 2017) and Journey into the Human

Brain (Unimersiv, 2017) experiences are guided tours through a set exhibit, much

like a museum. The provided guidance is contained within the application itself with

a rigid path throughout the program rather than providing a free space for

experimentation with guidance provided by a third party. An application like those

developed by Unimersiv does not fulfill the objectives set out in this project, as,

again, the intention is to provide a 3D workspace of sorts; one with experiments and

exhibits to try out, but with the support of a moderator, such as a teacher.

Virtual reality is starting to become accepted in the education sphere. EON Reality,

a company dedicated to developing VR and AR training tools for enterprise (EON

Reality, 2018), have collaborated with Oral Roberts University in Tulsa, Oklahoma

(Oral Roberts University, 2018) to create the Global Learning Center. The center

has a dedicated VR learning space that employs the learning library of EON Reality

along with a VR curriculum developed by teachers at the university. This is already

having a positive impact on the students that utilize this new space, adding some

weight to the argument that virtual reality and other emerging technologies can

enhance education. (Singletary, 2017)

The idea with this project is to emulate the work done by EON Reality and Oral

Roberts University, to a smaller scale, and to bring a similar learning experience to a

different audience.

Virtual Reality Development in Unity

C# is the language used for scripting in Unity, as such, the project will naturally be

object-oriented.

Classes are written to achieve functionalities when the script is attached to a

GameObject within Unity. A GameObject is simply an object within the scene (the

in-program world space), models, scripts, textures and other components can be

added to these GameObjects to achieve the desired functionality. The scripts are

then executed at runtime, their respective functions are called depending on their

place within the pre-defined execution order (Unity Technologies, 2018).

The Unity execution order is as follows (Unity Technologies, 2018):

6

• First Scene Load

o These functions get called when a scene starts

• Before First Frame Update

o This function (Start) is called before the first frame “tick”

• In Between Frames

o This is only called if the application is paused.

• Update

o FixedUpdate is called on fixed intervals and can be called more than

once each frame.

o Update is called once per frame.

o LateUpdate is called once per frame also, but after Update has been

called

• Rendering

• Coroutines

o A coroutine is a function that can hold its execution until a pre-

specified state is met.

• Object Destruction

o This function is only called if an object ever needs to be removed at

runtime.

• Quitting

o These functions are called upon quitting of the application

For the Unity engine, some tools exist to streamline VR development and to provide

additional VR-related features not included in Unity as a baseline.

The Virtual Reality Toolkit (VRTK) is a collection of scripts and assets that assist

in the development of a VR project in Unity; it supports locomotion within the

virtual space, controller-to-object interaction and body physics simulation (VRTK,

2018). VRTK will be used along with self-created scripts and assets to ensure that a

more comprehensive experience will be built in the small amount of time scheduled

for the project. VRTK supports all major VR formats, such as Oculus and SteamVR

so porting an application from one to the other is made extremely simple, this will

allow the program to be multi-platform from the start of development.

Research Questions

In order to develop a piece of VR software the meets the aforementioned

requirements, that has the intended features, this project will:

• Identify existing virtual reality software and ascertain what aspects of the

applications make them engaging and successful

• Design an appropriate world-space for virtual reality navigation

• Incorporate, and iterate upon, relevant interactions for this software

7

• Develop appropriate content sections that make sense, both in-program and

in the wider field of education

• Implement the above in an easy-to-use, intuitive and interesting software

package

Specification & Design
This section will:

• Detail the functional and non-functional requirements of the application.

• Describe the intended architecture of the program, with justifications for

inclusion/omission of certain functionalities.

• Discuss the implications of the constraints facing the project, evaluate their

effect on the project and how to minimize said effects.

• Present hypothetical user interface/user experience approaches and evaluate

their strengths and weaknesses.

Requirements of the Software

Functional Requirements

• The software must provide a VR framework complete with head tracking and

controller tracking.

• The software must include interactable world objects that provide relevant

user feedback (visual/haptic feedback)

• A fully navigable 3D environment must be present.

• Some exemplar content must be provided to demonstrate the educational

aspects of the software.

• Movement between levels/scenes/areas must be included.

• Users must be able to freely move through the content/worldspace at their

own leisure.

• Guided VR experiments must be present, for example, a flame colour test

and/or modifiable physics simulations.

• The flame test experiment must include a particle system that can change

colour at runtime when special conditions are met.

• Tooltips must be present to provide information to the user in an intuitive,

readable manner.

• A 3D molecule viewer must show various chemical molecules, which the user

can interact with.

• An example city/landmark environment must be rendered and be navigable.

Non-Functional Requirements

• The objects and textures should be simple and recognizable.

8

• The user interface must not be intrusive, whilst also providing the required

information and functionality.

• Load times for initial program load and scene transitions must be minimized.

• Though VR is fairly resource intensive, steps should be taken to ensure

software runs on specifications that are as low as possible.

• The software should run on as many VR platforms (Vive/Oculus etc.) as

possible.

Architecture of the Software

The architecture of the software will be heavily influenced by the Unity engine itself.

The editor is used to build “scenes” which are composed of objects placed by the

user, these objects can have components attached to them. Scripts are an example of

one type of component. Thus, any diagram created to model the architecture of a

program built within Unity would be more suited to detail a scene, the objects within

that scene, the components attached to them, and, if those components happen to be

scripts, the nature of those scripts can be described also.

Figure 1: Entity Diagram Example

(See Appendix 1 for full diagram)

The diagram above describes the “Main” scene, the entry point of the program. The

functionalities of the program at this stage are quite limited because this scene is

9

intended to introduce users to the program, thus there are very little objects for the

user to interact with. The objects that are present in the scene have simple

interactions associated with them, most don’t have any additional scripts added to

them to provide functionalities beyond basic pick-up and grab actions. The UI, which

will be used for navigation between scenes, will also be quite basic and will not need

many complex components added to it.

The other planned scene, the Science Lab, will have more complex interactions,

where components of different objects will need to interact with each other. Also, the

user will be able to carry out more involved actions upon the objects within the

scene, thus the architecture diagram of this scene (see Appendix 1) is more complex.

Constraints and their Effect on the Project

Many constraints were identified during the planning and design phases of the

project. The principal constraint, and the one that had the largest effect on the

project, was the time allotted for the project itself, from start to finish.

Approximately twelve weeks were scheduled for planning, design, development and

testing, this meant that the scope of the project had to be revised on multiple

occasions to ensure completion of the project within these twelve weeks. Some

features that were in the initial plan had to be cut completely; the language-learning

chatbots, an “in-world” teacher AI and multiplayer functionality were the main

features that had to be omitted from the final version due to time constraints.

The omission of multiplayer was also influenced by the amount of hardware available

for the project. There was little to no access to a set of virtual reality equipment,

much less multiple sets. Testing and the final implementation were affected by this

lack of appropriate hardware as well; testing had to be done solely through the VR

simulator provided within the VRTK plugin package and some in-program

interactions were removed due to ambiguity about the accuracy of this simulator

versus a real VR headset.

As the project was developed in Unity 5, rather than the current version of Unity,

the implementation had to be simplified, or modified, at certain points in

development. For example, shaders were used for one of the experiment tables in the

Science Lab, albeit briefly, but they did not benefit from the overhaul to in-editor

shader modification that is in the latest version of Unity and thus development

involving shaders was affected.

UI & UX Design for VR

User interface design, for virtual reality applications, requires a different approach

than a standard application. As the display is much closer to the user, a standard

screen-space user interface would be either too distorted, preventing any information

from being easily discerned; a screen-space user interface is one in which all the UI

10

elements are directly overlaid on the camera. To prevent any distortion, all UI

elements must be present within the scene, this is known as a world space UI. World

space UI design is more involved than standard screen-space UI design, all elements

must be effectively considered as 3D objects. The elements either need to be created

in such a way that they can be correctly viewed from all angles or placed so that the

user is forced to view them from one angle. In this project, most UI elements were

placed against walls so that they can only be viewed from the front side. For the

heads-up display (HUD), a similar approach was taken. The user is forced to view

the elements from the front as the menu follows the camera.

Even though steps can be taken to maximize readability, virtual reality UIs must be

keep relatively simple. To ensure that this doesn’t take away from the user

experience, other feedback mechanisms can be put in place, such as haptics, object

highlighting and object tooltips. VRTK has all of these features built-in; all

interactable objects are highlighted by default and haptics can be included as part of

the controller objects within the scene.

Some dynamic object tooltips will also be implemented that the user can manipulate

through the in-game objects.

Implementation
This section will:

• Present and evaluate the various approaches taken to the implementation of

VR throughout development.

• Analyze the implementation of the dynamic particle systems and shaders

found in the project.

• Explain how and why certain features of the VRTK plugin were used.

• Discuss the implementation of the various exhibits and world objects.

The Implementation of Virtual Reality

One can take many distinct routes to

implementing a virtual reality camera

within Unity; the approaches tested for this

project included development of a VR

camera by adapting the basic camera

included with Unity and the use of the

camera rigs included within VRTK.

The first approach was the adaptation of

the stock Unity camera. Setting up a VR

camera in Unity requires the inclusion of a

camera game object, then simply ticking the

“Virtual Reality Supported” checkbox found

Figure 2: Camera Object in Unity

11

in the Player Settings. This enables camera movement via the head tracking through

a VR headset.

Figure 3: VR Checkbox in Unity

To enable interactivity with this camera, a process known as ray casting is required.

Ray casting involves “casting” a ray of pre-defined length from an object, in this case

the VR camera, in a certain direction. This ray can collide with the collider objects

in a scene and return the objects hit. If this object is specified as being interactable,

it can be determined whether the user is looking/not looking at the object and thus a

method can be called via this ray collision trigger.

Figure 4: An Example of Ray Casting (Unity Technologies, 2013)

This approach is quite simple in nature, it only allows for interactivity via the user’s

gaze. This severely reduces the amount of actions the user can take as well as

reducing the avenues in which feedback can be returned to the user. This project

requires more interaction options, controller support is essential in order to facilitate

the more complex interactions.

The other approach, implementing the camera rigs included in Virtual Reality

ToolKit, suits this program much better as it has native controller support contained

within their pre-built camera rigs and, upon inclusion of the corresponding SDK, has

support for almost all VR platforms. The platform that the program is built for can

be switched easily, allowing for more versatility throughout development. Also,

VRTK also has a VR “simulator” included that replicates head tracking and

controller movement with a mouse and keyboard. This allowed for easy and constant

testing throughout development, as VR equipment wasn’t required, bugs could be

found and eliminated quickly whilst also giving a strong representation of true VR.

12

Due to these reasons, the VRTK camera rigs were used for development, but, given

more time, a self-created camera could allow for more flexibility upon the addition of

separate controller support.

Dynamic Particle Systems
“A Particle System component simulates fluid entities such as liquids, clouds and flames

by generating and animating large numbers of small 2D images in the scene.” (Unity

Technologies, 2018).

These were used in the implementations of the flame test experiment and the acid

test experiment in the Science Lab section of the application. The particle system in

the acid experiment is a simple one, it simply simulates the drops of acid/alkali

falling into the water, allowing for the colour change in the water to trigger.

Figure 5: Acid Particle System Parameters (left) and the Particle System in Action (right)

This particle system is only active in the scene for one second after the relevant

button press, this is done through the use of a coroutine.

“A coroutine is like a function that has the ability to pause execution and return control

to Unity but then to continue where it left off on the following frame” (Unity

Technologies, 2018).

Figure 6: Coroutine Code

13

For the flame experiment, a more dynamic particle system was required. Due to the

nature of the experiment, different metals causing different flame colours, the flame

particle system needed to be able to change colour, at runtime, on the trigger of

objects representing the metals meeting the flame.

Figure 7: Examples of Varying Colour Particle System

To achieve these runtime colour changes, the appropriate colours were created in

code, then gradients of each of these colours, with fading opacity, were set.

Figure 8: Example of Colour Code

Using an OnTriggerEnter method to return the collision of a metal block object with

the flame, the name of the block object was checked and used as the parameter for a

triggered switch statement. The switch statement switches the colour gradient of the

particle system to the corresponding, pre-defined, colour gradient.

The Update function then updates the colour of the particle system in the scene.

Figure 9: The Flame Particle System OnTriggerEnter and Update

14

Dynamic Shaders

For the other interactable experiment in the Science Lab scene, the acid test

experiment, a water simulation was required and the colour of the water needed to

be able to change at runtime to represent the colour change noted during pH

measurements. To achieve this, modification of the water asset’s shader was

required.

“Shaders are assets that contain code and instructions for the graphics card to

execute. Materials reference shaders, and setup their parameters (textures,

colors and so on).” (Unity Technologies, 2018)

The parameter of the shader that changes, in this case, is the refraction colour.

Changing this resulted in the biggest change in the overall colour of the water

shader.

Figure 10: Shader Parameters

An array of colours, corresponding to the colours observed during pH measurements

was created, on a button press, the acid particle system triggers and the water

shader’s refraction colour changes to the corresponding index of the array of colours.

Figure 11: Shader Access and Modification Code

15

The shader is instantiated upon scene load, this ensures that the original shader can

remain unmodified and the instance of the shader is the one that is being modified at

run time. On every frame, the refraction colour of the shader is then set to the colour

in the array that corresponds with the value of the slider shown in-world.

Use of the VRTK Suite

The suite of assets, plugins and scripts, known as the Virtual Reality ToolKit, or

VRTK, proved to be invaluable for this project (VRTK, 2018). In addition to adding

the camera rig frameworks that were used in the final implementation, it also

provided scripts that streamlined controller interaction.

The most important of these provided scripts was the VRTK_ControllerEvents

script, this provided a system that enabled “listeners” on the representations of the

controller within the scenes. These listeners wait for an event to happen, such as a

button press or movement in an axis, then provide opportunities for methods to be

subscribed to these events, i.e. the methods are called once the trigger of that event

occurs. In this application, some of the methods that were subscribed to these events

enabled functionalities such as the headset menu that followed the user’s gaze and

the in-world button presses on the Molecule Viewer in the Science Lab.

Figure 12: VRTK Controller Events

With its various pointer options, VRTK also allowed for controllers that can

transition seamlessly between interacting with world-space UI elements and the

world objects contained within each scene. These pointers display a line from the

representation of the controller within the scene to the object that the user is

pointing at with said controller, enabling long-range interaction with objects upon

button press. The addition of a VRTK UI_Pointer script allowed this pointer to

interact with the world-space UI elements such as the headset menu and the menus

in the Science Lab, enabling simpler approaches to the more complex interactions

within the application.

16

Figure 13: VRTK UI Pointer

Also, with the addition of the self-created TooltipManager script, the VR tooltip

assets provided by VRTK were used to provide dynamic tooltips on the Molecule

Viewer.

Figure 14: Molecule Tooltip

These tooltips display the name of the molecule currently displayed in the Molecule

Viewer, these tooltips change on the same button press that triggers the change in

the 3D model. This is done via the TooltipManager script.

Figure 15: Tooltip Manager Code

17

This is a simple switch statement that takes in the MoleculeIndex variable as a

parameter, then the tooltip is updated with the corresponding text on every frame

update.

These tooltips are set to always face the user as they move around the room,

ensuring that they can be seem from any angle.

Use of the WRLD SDK

One of the main features detailed in the initial plan was the ability to provide

“virtual travel” to historic sites or places with geographic importance. Initially, the

approach that was taken to achieve this involved 3D modelling one such site, as a

proof of concept, that the user could walk around with some interactivity. This

proved to require too much time and resources to achieve something that reasonably

represented the site with some degree of accuracy. It also was too rigid of an

approach, it didn’t fully represent the ability to travel anywhere in the world,

virtually; it only allowed virtual travel to the one site specified.

The next approach proved to be much more promising, the WRLD SDK for Unity is

an API that generates high-quality 3D maps using real geographic data (Wrld3D,

2018). This allowed for generation of an entire city, with any landmarks being

represented with accurate hand-created models, that could be explored in virtual

reality.

Implementation of WRLD involves the use of two cameras in the scene, the main

camera, in this case the VR camera, and the streaming camera. This streaming

camera is what the renderer uses to place the objects in the scene correctly. The

WRLD map script then takes in a real-world latitude and longitude and renders the

specified location, to scale, in the Unity scene.

Figure 16: London Rendered in Unity with WRLD

18

Options exist to enable terrain, road and building collision, this ensures that the

experience of travelling around this virtual representation of a real-world location can

feel as “real” as possible.

Figure 17: WRLD Settings

The WRLD SDK, using these settings, combined with an adaptation of the headset

collision feature provided by VRTK, provided a reasonable representation of a real-

world location, achieving the intended functionality to a higher degree of accuracy

than the initial approach.

Evaluation

The Success of the Software

In its current state, the program achieves the initial goal of providing a VR

framework that can be used for educational purposes. It is a flexible system that

allows for a great deal of user interaction whilst also being compact enough to allow

guided “tours” or lessons. The provided exemplar content gives an insight into the

intended target audience, young students and their teachers, and how they might use

the program to enhance their learning. The program is daunting at first for new

users, especially those who are unfamiliar with virtual reality, but after some time

with the system and some external help, people that tested this application were able

to navigate the scenes easily and they fully understand the level of interaction

available to them. These tests involved people who had little to no prior knowledge

of the project and giving them some time with the system, asking them to achieve

certain goals e.g. change the colour of the flame in the flame experiment, bring up

the menu to teleport to a different scene or pick up an object and carry it to the

other end of the room. The head tracking was picked up immediately, the testers

intuitively looked around and realized that looking around manipulated their camera

view. They found the controller manipulation a bit more difficult, understanding

what button brought up the pointer, what button allowed them to grab objects and

other such functionalities took either some time experimenting with every button or

19

required some outside assistance so that they could progress with the set of goals

they had been given. Once they had learned these parts of the system, they began to

make use of all the functionalities available to them, even suggesting new ways to

carry out the provided experiments.

I do believe that initially requiring some external help to manipulate the system is a

fault that could have been easily avoided. The system seems intuitive and the control

schemes are relatively simple, however, there is no tutorial system or any help

provided within the program. Users are simply left to roam through the scenes, left

to discover what button initiates each functionality. The idea was to have teachers

initially teach their students the system and then use the system to teach lessons

enhanced by the system. This meant that in-application system help was, initially,

not a huge priority as, ideally, the teachers would have prior training in virtual

reality assisted teaching. However, the fact that there is no in-application tutorials or

guidance makes learning the system, for the first time, quite a daunting task; this is

the antithesis of what the system was intended to be, users shouldn’t get bogged

down by the system, the system should be as user-friendly as possible to facilitate

the content.

Outcomes of Project Decisions

The decisions made in the planning phase of this project dictated the entire

development cycle; development went relatively smoothly because of the outcomes of

these decisions.

The main decision was to use the Unity engine as a development platform, which, in

turn, caused C# to be the primary programming language for the project. Unity, in

the end, was a good choice as it allowed for all the planned functionalities of the

program. The VR support proved to be deep but also broad; the native support

combined with VRTK created the basis of a robust and effective virtual reality

framework.

The decision to tailor the example content towards primary and post-primary

education also ensured that the content could sit within various sub-categories. This

allowed for a wide array of content, showing that the framework could be used in

many ways whilst also ensuring that any specialized content did not detract from the

framework; the focus of this project was always the virtual reality education tool, not

the content being taught via the tool.

20

Future Work
Whilst this project is in a usable state and each experience and exhibit is complete,

the application could be expanded or improved in multiple ways. There were many

features that were considered before and during development that could not be

implemented, due to the aforementioned constraints.

One feature that was in the initial proposal, and one that could have added some

unique, interesting functionalities, was the implementation of a simple artificial

intelligence that would assist with language learning. This would have been used in

tandem with the WRLD SDK, giving a student a learning experience of a country’s

language, culture and history simultaneously.

The AI would have shown little chat bubbles on the screen, simulating a

conversation between locals in the country the user is exploring or translating the

word for the object or building on screen into a chosen language.

Unfortunately, the time and resources required for developing such an AI would’ve

been far beyond the scope of this project and, perhaps, could have been an entire

project on its own. Nevertheless, this would be on a shortlist of features to add if this

project was to be revisited.

Another feature that would require less time and resources to implement would be

allowing for multiple users in the same time, interacting with the same scene. With

Unity, this would have echoed building a multiplayer game in the engine. The main

reason this was not implemented was the limited access to VR equipment for testing,

running multiple instances of the program on the same machine, for testing purposes,

was deemed to be infeasible. However, if access to more VR equipment, more testing

resources and more time presented itself, implementing this multi-user functionality

would be of high priority.

The user movement within the world could be more sophisticated, currently, it is a

simple point-to-teleport system. Whilst this method of movement is simple to use, it

does feel more detached than other movement options for virtual reality applications.

In the future, adding a more immersive movement option, like a “move-in-place”

option may be a better decision. “Move-in-place” simulates real-world walking by

allowing the user to move around by swinging their arms with the VR controllers,

the system then translates this to walking, in the direction of the headset view.

VRTK has a script for move-in-place so it could also be added fairly easily, if VRTK

would still be used in future iterations.

One of the main issues with the program was the lack of in-application user help or

the absence of a tutorial, explaining the controls to the user. Adding these features

would be of high priority, if this project was to be revisited in the future. This could

be done through the use of in-world guide videos, demonstrating the basic systems

21

and the buttons that trigger the various functionalities. This could be done via the

Unity video player object, which dynamically changes the material of another model

to a pre-defined video.

Conclusion & Reflection
Overall, the project succeeded in achieving what had been outlined in the brief and

implementing what had been planned in the design phases of the project created a

robust and interesting virtual reality system. The application demonstrated its

ability to be used for education well; the example content proved that virtual reality

can enhance primary and post-primary learning but it could have been made more

user-friendly to fall in line with the target audience. The VR framework allowed for a

wide breadth of complex interactions with the world objects, this was the main aim

of the project, and in that aspect, the project exceeded expectations. Development

for virtual reality involves a different way of thinking than development of non-VR

applications, but I found it both challenging and engaging. Virtual reality is an area

that I would like to develop for again, in the future, perhaps in a different context.

The entertainment industries, especially the video game industry, are getting more

involved in virtual reality with every passing year, so developing a piece of software

for one of those industries would be quite fascinating and the experience gained from

this project should prove to be useful for that project as well.

Whilst the scope of the project changed multiple times during development, the

changes were not drastic, development stayed on the same path throughout the

project. Any large-scale decisions made during planning proved to be positive for

development, for example, the decision to choose the Unity engine made development

both interesting and quick. Having to cut some of the planned content was

unfortunate but the remaining areas of the project were much stronger due to the

increased availability of development time and resources.

The modular development paradigm worked well as the content fit this development

style greatly, and it will be a style that shall be used in the future for future projects,

especially those that involve Unity.

The increased experience with Unity and C# should be useful for future projects,

even those done in other similar engines or object-oriented programming languages.

Object-oriented development is my preferred method of development as the

encapsulation and class-to-object style suits my programming style, so having more

experience in that area should further enhance my programming abilities.

All in all, I believe the project could have been better, especially on the user

experience front, but most, if not all, of the initial project aims were met. The

program succeeded in providing a virtual reality framework that could be used for

education and the exemplar content proved that the range of interaction available to

the user could indeed make a guided VR learning experience fun and engaging.

22

References
Arduino, 2018. Arduino - Products. [Online]

Available at: https://www.arduino.cc/en/Main/Products

Bernard, Z., 2017. How technology is shaping the future of education. [Online]

Available at: http://uk.businessinsider.com/how-technology-is-shaping-the-future-of-

education-2017-12/#technology-is-providing-a-way-for-learning-models-to-become-

increasingly-personalized-1

[Accessed 2018].

EON Reality, 2018. Virtual Reality Software, Augmented Reality - EON Reality.

[Online]

Available at: https://www.eonreality.com/

[Accessed 2018].

Epic Games, 2018. What is Unreal Engine 4?. [Online]

Available at: https://www.unrealengine.com/en-US/what-is-unreal-engine-4

Escape Velocity Limited, 2018. Star Chart VR on the App Store. [Online]

Available at: https://itunes.apple.com/us/app/star-chart-vr/id1083945479?mt=8

[Accessed 2018].

Fine, R., 2017. UnityScript's long ride off into the sunset. [Online]

Available at: https://blogs.unity3d.com/2017/08/11/unityscripts-long-ride-off-into-

the-sunset/

[Accessed 2018].

Google, 2017. Cardboard | Google VR | Google Developers. [Online]

Available at: https://developers.google.com/vr/discover/cardboard

[Accessed 2018].

Groupe EDF, 2015. Cleanopolis VR - Apps on Google Play. [Online]

Available at:

https://play.google.com/store/apps/details?id=com.bulkypix.cleanopolis&hl=en

[Accessed 2018].

Hill, A., 2017. How technology will shape the future of education. [Online]

Available at: https://edtechnology.co.uk/Article/how-technology-will-shape-the-

future-of-education

[Accessed 2018].

Huang, W. H.-Y. & Soman, D., 2013. A Practitioner's Guide to Gamification of

Education, Toronto: Rotman School of Management, University of Toronto.

23

Kapp, K., 2012. The Gamification of Learning and Instruction: Game-based Methods

and Strategies for Training and Education. s.l.:Wiley & Sons.

Nival, 2017. InMind VR (Cardboard) - Apps on Google Play. [Online]

Available at:

https://play.google.com/store/apps/details?id=com.nivalvr.inmind&hl=en

[Accessed 2018].

Oral Roberts University, 2018. Oral Roberts University. [Online]

Available at: http://www.oru.edu/

[Accessed 2018].

Raspberry Pi Foundation, 2018. Education - Training, resources, programmes and

events. [Online]

Available at: https://www.raspberrypi.org/education/

Singletary, C., 2017. EON Reality and ORU Open Dedicated AR/VR Learning

Facility. [Online]

Available at: https://uploadvr.com/eon-reality-oru-open-dedicated-ar-vr-learning-

facility/

[Accessed 2018].

Unimersiv, 2017. Explore the Human Brain in VR with "A Journey into the Brain"

from Unimersiv. [Online]

Available at: https://unimersiv.com/will-soon-able-explore-human-brain-vr/

[Accessed 2018].

Unimersiv, 2017. Learn about your favorite Dinosours in Virtual Reality. [Online]

Available at: https://unimersiv.com/dinosaurs-virtual-reality/

[Accessed 2018].

Unimersiv, 2018. VR Training // Virtual Reality Education. [Online]

Available at: https://unimersiv.com/

[Accessed 2018].

Unity Technologies, 2013. Raycasting - Official Unity Tutorials. [Online]

Available at: https://www.youtube.com/watch?v=EINgIoTG8D4

[Accessed 2018].

Unity Technologies, 2018. Asset Store. [Online]

Available at: https://assetstore.unity.com/

[Accessed 2018].

Unity Technologies, 2018. Unity. [Online]

Available at: https://unity3d.com/

24

Unity Technologies, 2018. Unity - Manual: Execution Order of Event Function.

[Online]

Available at: https://docs.unity3d.com/Manual/ExecutionOrder.html

[Accessed 2018].

Unity Technologies, 2018. Unity - Manual: GameObject. [Online]

Available at: https://docs.unity3d.com/Manual/class-GameObject.html

[Accessed 2018].

Unity Technologies, 2018. Unity - Manual: Particle System. [Online]

Available at: https://docs.unity3d.com/Manual/class-ParticleSystem.html

[Accessed 2018].

Unity Technologies, 2018. Unity - Manual: VR Overview. [Online]

Available at: https://docs.unity3d.com/Manual/VROverview.html

[Accessed 2018].

Unity Technologies, 2018. Unity for Mobile AR | Unity. [Online]

Available at: https://unity.com/solutions/mobile-ar

[Accessed 2018].

VRTK, 2018. VRTK - Virtual Reality Toolkit. [Online]

Available at: https://vrtoolkit.readme.io/

[Accessed 2018].

Appendices
1. Entity Diagram for Main Scene and Science Lab Scene

