

Web Interface for FlexiTerm

Adedamola Agbonyin
May, 2018

Supervisor: Irena Spasic´

Moderator: Jing Wu

CM3203: One Semester Individual Project
40 credits

School of Computer Science and Informatics
Cardiff University

Adedamola Agbonyin - C1466169

Acknowledgement
I would like to use this medium to express gratitude to family, friends and fellow students who have
supported me throughout this project. Special thanks to the Cardiff University IT service desk for
their kind assistance towards the technical issues I faced, and my supervisor, Dr. Irena Spasić for her
guidance and constructive feedback.

1

Adedamola Agbonyin - C1466169

Abstract
This report documents the work done towards developing a web interface for the FlexiTerm Java
application. The current method of accessing FlexiTerm requires the user to download the source
files and follow a list of instructions to run the program. The aim of this project is therefore to
provide an online demo app through which users can directly interact with FlexiTerm.

The outcome of this project is a web application which maintains the functionality of FlexiTerm and
provides a web-based user interface through which users can enter input in different formats, view
and download output files. The requirements documented in Section 2.1 were converted into a
design following in the steps of existing online term recognition tools. After development and
comprehensive testing with test cases, usability testing was conducted among a group of users to
assess user satisfaction.

The results of the usability testing show that the FlexiTerm web app has higher perceived usability
than 70% of existing systems, thus demonstrating that an online demo is not only feasible, but can
provide an alternative, more accessible method of using the FlexiTerm tool.

The FlexiTerm web demo can be accessed online at users.cs.cf.ac.uk/AgbonyinAT/demo.html

2

https://users.cs.cf.ac.uk/AgbonyinAT/demo.html

Adedamola Agbonyin - C1466169

Table of Contents

1.0 Introduction 7
1.1 Defining the Problem 7
1.2 Similar Tools 8

1.2.1 Termine 8
1.2.2 Terminology Extraction 10

1.3 Target Users and Beneficiaries 12
1.4 Project Scope 12
1.5 Approach 12
1.6 Assumptions 14
1.7 Outcomes 14

2.0 Specification and Design 15
2.1 Requirements Definition and Analysis 15

2.1.1 Functional Requirements 16
2.1.2 Non-functional Requirements 17

2.2 Design 18
2.2.1 System Architecture 18
2.2.2 Database Design (Relevant Tables) 20
2.2.3 Interface Design 21

3.0 Methodology 28
3.1 Development Tools and Languages 28

3.1.1 Client Side 28
3.1.2 Server Side 30

3.2. Project Management 30
3.3. Version Control 31

4.0 Risk Assessment 33

5.0 Implementation 35
5.1 Summary of Features 35
5.2 Features 37

5.2.1 Homepage and User Input 37
5.2.2 Input Validation 38
5.2.3 Input processing 39
5.2.4 Results Page 43

3

Adedamola Agbonyin - C1466169

5.2.5 Coding Standards 46
5.2.6 Browser Compatibility 47

6.0 Testing and Evaluation 48
6.1 Functional & Non-functional Testing 48

6.1.1 Functional Testing 49
6.1.2 Non-functional Requirements 50

6.2 Usability Testing 51
6.3 Evaluation 54

7.0 Conclusion 57

8.0 Future Work 58

9.0 Learning and Reflection 59

10.0 References 61

Appendix A 63

Appendix B 68

4

Adedamola Agbonyin - C1466169

Table of Figures
Figure 1: Successful run of FlexiTerm from the command line 5
Figure 2: Flexiterm Output files 8
Figure 3: Termine web demo with input 9
Figure 4: Termine output - HTML Format 9
Figure 5: Termine output - Plain text format 10
Figure 6: Termine output - table format 10
Figure 7: Termine output - term details 10
Figure 8: Termine output - term variants for TNF-alpha 10
Figure 9: Terminology Extraction demo with input 11
Figure 10: Terminology Extraction output 11
Figure 11: Waterfall Model 13
Figure 12: Agile Model 13
Figure 13: Waterfall-Agile Hybrid Model 14
Figure 14: Client-server model 18
Figure 15: Single-tier Application 19
Figure 16: Table term_normalised 20
Figure 17: Table term_phrase 20
Figure 18: Table term_termhood 21
Figure 19: Table data_document 21
Figure 20: Table output_table 21
Figure 21: Demo home page wireframe 22
Figure 22: HTML table wireframe 22
Figure 23: Table tab wireframe 23
Figure 24: Download tab wireframe 23
Figure 25: Activity diagram - enter input 25
Figure 26: Activity Diagram - view output 26
Figure 27: Activity Diagram - download output 27
Figure 28: Plain HTML Table 29
Figure 29: DataTable data table 29
Figure 30: Trello Weekly Board 31
Figure 31: GitLab Version Control 32
Figure 32: GitLab milestones 32
Figure 33: Location of demo in homepage menu 37
Figure 34: Demo Homepage 37
Figure 35: File upload - wrong format error 38
Figure 36: File upload - too large file error 38
Figure 37: Text input - input greater than limit error 39
Figure 38: Url input - invalid format 39
Figure 39: Input form - No input 39
Figure 40: Flex.php - semaphore file 30

5

Adedamola Agbonyin - C1466169

Figure 41: Server is busy 41
Figure 42: Flex.php - processInput() function 41
Figure 43: Flex.php - saveResultsToSession() function 42
Figure 44: Flex.php - copyOutputFiles() function 42
Figure 45: CORS error 43
Figure 46: PHP CORS headers 43
Figure 47: Results.php - Default view 44
Figure 48: Expanded table row 45
Figure 49: Extracted terms in context 45
Figure 50: Downloads tab 46
Figure 51: Browser market share 47
Figure 52: Diminishing Returns for usability testing 53

6

Adedamola Agbonyin - C1466169

1.0 Introduction

1.1 Defining the Problem

Term recognition is a method of extracting technical terms that are relevant to a particular domain
or corpus from texts. In this context, a term is a word or set of words used to express a concept in a
domain or branch of study e.g. biomedicine. Term recognition can be automated with computer
programs, and one of such programs is FlexiTerm.

FlexiTerm is a command-line Java application for automatic recognition of multiword terms in texts
such as medical journals and research papers. It works by first performing linguistic filtering to select
term candidates, followed by a “frequency-based measure (…) to qualify a candidate as a term”
[Spasić et al., 2013, p.1]. One key feature of FlexiTerm is that it is built to allow for term variants,
which is suitable for “less formal texts such as patient blogs or medical notes” [Spasić et al., 2013, p.1].
The web page http://users.cs.cf.ac.uk/I.Spasic/flexiterm/ contains details about FlexiTerm including
relevant publications and download links.

To run the application, the user will have to do the following:

1. Download the FlexiTerm source files at https://sourceforge.net/projects/flexiterm/ - about
63.7mb zipped and 286.8mb unzipped.

2. Install Java locally.
3. Put plain text input files in a folder.
4. Run the start script. This can either be FlexiTerm.sh or FlexiTerm.bat depending on the user’s

operating system. If run successfully, output files output.html, output.txt, output.mixup and
output.csv are created in the same folder.

5. Click each output file to view it.

Figure 1: Successful run of FlexiTerm from the command line

7

http://users.cs.cf.ac.uk/I.Spasic/flexiterm/
https://sourceforge.net/projects/flexiterm/

Adedamola Agbonyin - C1466169

Figure 2: Flexiterm Output files

This is a relatively long process and can be complicated for some users. For example, one may not
know whether/how to run the FlexiTerm.sh or the FlexiTerm.bat script, or may be wary of
downloading software files off the internet. Regardless, it is beneficial to provide a simpler
alternative through which users can make use of FlexiTerm, in addition to having the option to
download and run it locally if they wish.

Thus, the aim of this project is to include a web demo in the FlexiTerm homepage at
http://users.cs.cf.ac.uk/I.Spasic/flexiterm/ which will combine the above list of steps into a simple
and easy process: users will simply enter their input in one of three formats, submit it and
view/download the output, without having to download or run any code.

1.2 Similar Tools

In order to get a clear vision of how the FlexiTerm demo would look and behave, I researched
existing online term extraction tools: Termine by NaCTeM [Nactem, 2012] and the Terminology
Extraction demo by Translated Labs [Translated, n.d].

1.2.1 Termine

Termine is an automatic term recognition tool developed by the National Centre for Text Mining
(NaCTeM), which is operated by the University of Manchester.

8

http://users.cs.cf.ac.uk/I.Spasic/flexiterm/

Adedamola Agbonyin - C1466169

Figure 3: Termine web demo with input

How Termine Web Demonstration works:

1. The user enters input in any of three formats: plain text, file upload or url linking.
Alternatively the user can run the demo using sample input provided with options “Try
(MEDLINE sample)” and “Try (NaCTeM sample)”.

2. The user selects a POS tagger (optional).
3. The user presses the “Analyze” button and the demo page is redirected to a results page

where results can be displayed in three formats: Html, plain text and table formats.

Output

Figure 4: Termine output - HTML Format

9

Adedamola Agbonyin - C1466169

Figure 5: Termine output - Plain text format

Figure 6: Termine output - table format

As seen in Figures 4, 5 and 6, Termine output is displayed in three views: HTML, plain text and table
respectively. The HTML view is the default and shows the original input text as entered by the user,
with the words and phrases identified as terms highlighted in pink. Hovering over any of these terms
shows its c-value or termhood score and rank [Figure 7]. Term ranks are determined by the
termhood score; terms with the same score are given the same rank. Words with multiple variants,
such as abbreviations, are highlighted in green and hovering over them displays a list of “possible
expanded forms” [Figure 8].

Figure 7: Termine output - term details

Figure 8: Termine output - term variants for TNF-alpha

The plain text and table views are similar to each other. They both contain the list of extracted terms
and their termhood scores, ordered by rank in descending order

1.2.2 Terminology Extraction

This is a term extraction tool developed by Translated Labs.

How Terminology Extraction Works:
Enter input in the text box and click “Terminology Extraction” to submit.

10

Adedamola Agbonyin - C1466169

Figure 9: Terminology Extraction demo with input

Output:

Figure 10: Terminology Extraction output

The output for Terminology Extraction is displayed similarly to Termine. The top 20 terms are
ranked according to their scores and also highlighted in the context of the original input text.

With these tools in mind, it was much easier to understand the requirements for the FlexiTerm web
demo’s functionality and design the user interface accordingly. I decided to adopt the Termine
feature which allows users to enter input in url, file upload and plain text formats, single-colour term
highlighting in context, and term variants if applicable. I also adopted the ranking system of
Terminology Extraction where terms with the same scores will not have the same rank; rank is
incremented instead. This appears to be more readable and less confusing for the user.

11

Adedamola Agbonyin - C1466169

1.3 Target Users and Beneficiaries

An application is only successful if it brings value to its users. One way of identifying potential users
is to draw from a general understanding based on the purpose and functionality of FlexiTerm.
FlexiTerm is a term recognition tool, so it is expected that the potential users of the demo will likely
consist of data scientists, researchers, linguists, or generally anyone in need of a text
mining/recognition tool.

1.4 Project Scope

The scope of this project was limited to only providing an interface for FlexiTerm, with no changes
to the underlying Java program. It includes the following:

1. Design and implement a full-stack web application to demonstrate the functionality of
FlexiTerm.

2. Users can enter their desired input to be processed by the FlexiTerm application.
3. Output will be displayed in a variety of formats.
4. Output files can be downloaded.

Due to time and feasibility constraints, other features of FlexiTerm such as allowing the user to edit
the list of stop words are declared out of scope and have instead been added to future work.

1.5 Approach

To approach this software project, I considered two development methodologies: Agile Methodology
and Waterfall Methodology. With Waterfall, progress cascades downwards like a waterfall from
requirements analysis, design, implementation, testing and finally, maintenance. The advantage of
Waterfall is that it is simple to understand and implement. There is emphasis on clear milestones
and the phases do not overlap, so each phase must be fully completed and reviewed before moving on
to the next.

Figure 11: Waterfall Model

12

Adedamola Agbonyin - C1466169

Waterfall is best-suited to small projects such as this, but which have clearly defined requirements
that are not expected to change down the line. As planning is thorough, it ensures that the
requirements and system design are feasible before any development takes place. The main
disadvantage of Waterfall is that it is not very flexible [Lonergan, 2016]. All requirements are defined
at the initial stage and cannot be revisited; this may make it difficult to make changes to the
application if testing - particularly usability testing at the end of the project- reveals poor usability,
incomplete implementation of requirements or any serious unhandled errors.
Agile, on the other hand, is a lot more flexible in comparison [Lonergan, 2016]. Progress is iterative
such that design, development, implementation and testing take place in short sprints, with client
feedback at the end of each sprint. This makes it easier to adapt to any requirement changes and
identify and fix bugs early on.

Figure 12: Agile Model

Although my intention was to use Agile as described in my initial report, I eventually went with a
different approach. Having had experience with both methodologies, I decided that rather than use
either pure Agile or pure Waterfall, to combine the strengths of the two into an
iterative-incremental hybrid methodology [Inflectra, 2018]. This combines the rigid incremental
feature of Waterfall with the flexible iterative feature of Agile. In this method, the traditional
Waterfall approach of initial planning, requirements gathering and design are first followed. Then
the development process is carried out in Agile form, with short (1 - 2 week) sprints of development,
testing and receiving client feedback. Changes are made according to the feedback and the next
sprint starts for the next functionality to be implemented. After all requirements have been
implemented, final integration testing is performed and the application is deployed.

13

Adedamola Agbonyin - C1466169

Figure 13: Waterfall-Agile Hybrid Model

1.6 Assumptions

The following assumptions are made regarding this project:
1. Although this is quite unlikely, the FlexiTerm web app is designed to handle more than one

user at a time. One user at a time is the typical case as the FlexiTerm Java app utilises a
SQLite database file which does not support concurrent write requests.

2. User input is in plain text format regardless of input method. This is to enable easier
processing by FlexiTerm.

3. The user is connected to the internet and has Javascript enabled.
4. The server the app is to be hosted on is live.
5. The app is accessed with a desktop computer (as opposed to mobile). To save time, only

desktop view was considered. Mobile optimisation will be included in future work.
6. The finished app is to be hosted on the Cardiff University Users web server for public access

and integrated into the FlexiTerm homepage at http://users.cs.cf.ac.uk/I.Spasic/flexiterm/.

1.7 Outcomes

The main outcomes of this project are:
1. A web application with the functionality of FlexiTerm. FlexiTerm is an open source tool

[Spasić et al., 2013, p.3], so it is important to ensure that the demo code is functional,
readable, and can easily be maintained and extended by other developers in the future.

2. Documentation of the finished project with this report, including full code base, design and
implementation process, complete list of requirements, functionality and usability testing
results, and other essential information.

14

http://users.cs.cf.ac.uk/I.Spasic/flexiterm/

Adedamola Agbonyin - C1466169

2.0 Specification and Design
To accomplish the purpose of this project which is to develop a web interface for FlexiTerm, the first
step is to define the system’s needs.

2.1 Requirements Definition and Analysis

In software engineering, this is the first stage and one of the most important aspects; the
requirements are first defined, then analysed and categorised as functional or non-functional.

“Requirements definition is the process during which the needs of the customer are translated into a
clear, detailed specification of what the system must do” [Landis et al., 1992]. Requirements analysis
takes place after the initial specifications have been agreed upon. In this stage, the developer assesses
the requirements “for completeness and feasibility” [Landis et al., 1992]. The requirements must be
relevant to the project and also specific, realistic, actionable and measurable. Adopting Agile
test-driven development is to ensure that the requirements are written to be “individually testable”
so user acceptance tests (UATs) are also written during this phase. The finished product will then be
tested against the client’s requirements to ensure that they have been correctly implemented and are
deemed “accepted” [Marsic, 2012].

One way of documenting system requirements is the use of IEEE 830 statements, a.k.a. “The system
shall…” sentences. An alternative is Agile user stories wherein the requirements are expressed as a
description of a piece of functionality from the perspective of the user [Cohn, 2004]. An example of a
user story is: “as a user, I can enter my input in three formats: plain text, url and file upload”. User
stories are much lighter than other methods of requirements recording which makes it an ideal
method for situations where requirements are expected to change frequently [Hayward, 2013].

In this case however, statement requirements are more appropriate as I already have a clear example
of what the end product should look and behave (Termine), so rather than having to hold several
client/stakeholder meetings to write user stories, I simply reverse-engineered the requirement
definitions from the existing Termine demo instead, which is much more efficient. This way, I
already have the main advantage of user stories - having a vision of the finished product and
understanding requirements from a user perspective - but with the thoroughness of statement
requirements. The defined requirements were then discussed with the client to ensure that all
essential features were covered, and then eventually revised into functional and non-functional
requirements.

15

Adedamola Agbonyin - C1466169

2.1.1 Functional Requirements

Functional requirements are “detailed statements of the project’s desired capabilities” (Stephens,
2015). They define what the system will do when interacting with a user that may or may not be
visible to the user. Below are the functional requirements for this application.

Table 1: Functional requirements

ID Requirement Acceptance Criteria Priority

F1 The demo page should be integrated
into and accessible from the FlexiTerm
homepage.

A link to the demo page should be inserted
into the FlexiTerm homepage navigation
menu.

High

F2 The application must allow the user to
enter input in three formats: url, plain
text and file upload.

On the demo page, there should be a form with
fields to allow one of three inputs: a url field, a
plain text field and a file upload button.

High

F3 The user’s input should first be
validated on the client side to ensure it
can be processed by the FlexiTerm back
end.

1. The user must select one input format and
provide an input for the chosen format (no
empty text fields or empty uploads).

2. The user must insert input in acceptable
format such e.g. word count <= 500 words
for text box or only .txt files for upload.

If the above are not adhered to, an error
message will be displayed and submission
attempts will be unsuccessful.

Mediu
m

F4 The application must provide a means
for the user to send input to the server.

The demo page should contain a submit button
to submit user input.

High

F5 The user's input must be processed
successfully by the existing FlexiTerm
Java application with no changes made
to the code.

The back end should return a success message
upon successful processing of the input.

Low

F6 The user must be able to view the
results produced by FlexiTerm.

Upon successful submission and processing, the
user should be redirected to a results page
where the output generated by FlexiTerm can
be viewed in html, plain text and table formats.

High

F7 The application must provide the user
with options to download the output
files generated by the FlexiTerm back
end.

The results page should also contain a list of
links to download the output.txt, output.html,
output.mixup and output.csv files generated by
FlexiTerm.

High

16

Adedamola Agbonyin - C1466169

2.1.2 Non-functional Requirements

Non-functional requirements are no less important than functional requirements. They describe how
the system will behave or operate. Below are the non-functional requirements for this application.

Table 2: Non functional requirements

ID Category Requirements Acceptance Criteria Priority

NF 1 Security The application should be
secure from external attacks.

1. In all modern browsers, the
entire FlexiTerm page must be
HTTPS secure - no external
links should be HTTP.

2. No personal information such as
username or password of the
User server account the app is
hosted on should be revealed in
the code.

Low

NF 2 Reliability The application must run as
intended, any user actions
must not break the
performance of the apps.

The system must be fault-tolerant
and catch and handle errors so that
the application remains live.

High

NF 3 Maintainability As mentioned earlier,
FlexiTerm is an open source
application that would likely
be updated regularly for the
foreseeable future. The web
application code must
therefore be maintainable in
event of future updates.

As this is a straightforward
application, the lines of code in
each file (relevant to this
application) must not exceed 1000
lines each.

Low

NF 5 Performance Nielsen states that “webpages
have to be designed with
speed in mind” [Nielsen,
1997]. To ensure maximum
user satisfaction, response
times should be kept to a
minimum.

Demo and results page should load
within 10 seconds, as this is around
the limit for keeping the user’s
attention . Any longer, and the user
may think an error has occurred.

Low

NF 6 Consistency The application design must
be consistent with the rest of
the FlexiTerm homepage.

The existing CSS files used for the
FlexiTerm homepage must also be
used for the demo page.

Medium

NF 7 Usability The application must be easy
to use, learnable and overall,
user-friendly.

1. The application must adhere
strictly to Jakob Nielsen’s 10
heuristics for user interface

Medium

17

Adedamola Agbonyin - C1466169

design [Nielsen, 1995].
2. The application must score an

above average score in usability
testing

NF 8 Compatibility The application must be
compatible with most, if not
all modern browsers.

Application should maintain
functionality and look when run on
5 of the most commonly used
browsers.

Medium

2.2 Design

Following requirements analysis, the next step is to transform these requirements into a high-level
design. As mentioned earlier, this application is not concerned with how FlexiTerm works, but
simply with passing input to FlexiTerm and making use of the output.

2.2.1 System Architecture

This system architecture of a web application defines the interaction between its components. The
two main structural components of a typical web application are the client and server sides which
run concurrently [Yaskevich, 2017]. When a user requests a web page such as the FlexiTerm demo
page from a web browser, the client sends a response through the browser. If the request is
successful, the page will be displayed on the user’s browser.

The client side is the functionality that a user interacts with. It lives on the user’s web browser and is
developed in HTML for layout, JavaScript for functionality and CSS for styling. The server side lives
on the server and responds to HTTP requests. It can store user data but cannot be seen by the user.
It is developed with any of the following languages: PHP, Python, Java, Ruby on Rails, .NET or
Node.js /JavaScript [Stringfellow, 2017].

The client-server model is used in this application: the client accepts user input and sends it to the
server which then processes the input with FlexiTerm and sends the output back to the client.

Figure 14: Client-server model

18

Adedamola Agbonyin - C1466169

The SQLite database file FlexiTerm.sqlite is hosted directly on the server, rather than communicating
with an externally hosted database, so all of the code is hosted on one server. This is called a
single-tier architecture: front end and back end exist on the same server.

Figure 15: Single-tier Application

An alternative to single-tier architecture is multi-tier architecture where the database or back end
and the application or front end live on different servers. A single-tier architecture is ideal for this
application being a simple, low-traffic app and because a database file is used to hold data rather
than an external database server. However, the disadvantage of this is that if the server is down, the
entire FlexiTerm site, including the demo, will not be accessible.

There are two main types of client side architecture for web applications: Single page and Multi
page models. A single page application “is an app that works inside a browser and does not require
page reloading during use” [Neoteric, 2016]. It is a single web page which loads additional content
using JavaScript. Examples of SPAs are Gmail, Facebook, Twitter etc. SPAs aim to improve user
experience by eliminating page reloads and wait time [Neoteric, 2016]. JavaScript-based SPA
frameworks include AngularJS, Ember.js, Meteor.js, Knockout.js, React.js, Vue.js. A multi page
application is the traditional web application. Each change e.g. submitting data back to the server
requests and renders a new page from the server to the browser. Nowadays, however, the use of Ajax
or Asynchronous JavaScript eliminates the need to send large amounts of data back and forth
between browser and client - only the relevant parts of the application are refreshed.

19

Adedamola Agbonyin - C1466169

From past experience building both single and multi page applications with React.js, a multi page
model is easier to set up and maintain for smaller projects. It allows the code base to be improved
and maintained by other developers without having to learn an SPA framework, some of which have
very steep learning curves [Naumovski, 2017]. In addition, the Users web server which is to host the
finished application does not support SPA frameworks and the app would have to be hosted
externally otherwise. As this goes against a fundamental requirement of the project, the MPA model
is more suitable in this case.

2.2.2 Database Design (Relevant Tables)

Within this demo app, data is not being stored on any database. Rather, data already stored in the
SQLite database by the FlexiTerm Java app is used. The FlexiTerm Java app utilises an SQLite
database of 22 tables, however, only the following four tables are used in the demo to obtain relevant
information and results:

Table 3: Relevant Database Tables

 Table Purpose Database Structure

1 term_normalised This is used to obtain the normalised
version, expanded, of each term.

Figure 16: Table term_normalised

2 term_phrase This is used to obtain the original term
(before normalisation), phrase, exactly as
extracted from the input text.

Figure 17: Table term_phrase

20

Adedamola Agbonyin - C1466169

3 term_termhood This is used to obtain the term hood score, c,
for each normalised term.

Figure 18: Table term_termhood

4 data_document This is used to obtain the entire input text,
document.

Figure 19: Table data_document

5 output_table This is used to obtain the rank and variant (if
applicable) of each term.

Figure 20: Table output_table

2.2.3 Interface Design

Following requirements analysis, I designed the wireframes for the user interface based on the
established requirements. Wireframes show the basic layout of the intended design, how the app will
work and what content it will have. They also help to catch feasibility and usability errors early on.
In addition, the design can be viewed by the client and revised according to any feedback. For this
project, Balsamiq Mockups 3 was used as the wireframing tool.
The FlexiTerm web demo, which is following in the steps of Termine, consists of two pages: the
demo home page where users enter input and the results page where users view and download input.

21

Adedamola Agbonyin - C1466169

Demo Home Page

Figure 21: Demo home page wireframe

On the main page, the user can enter input in one of three methods: by uploading a plain text file,
entering a url link to a text document or simply entering text in the text box. The ‘Clear’ button
allows the user to remove any entered input including uploaded files. The design is minimalistic with
only relevant information presented in simple language.

Results
The results page is a single-view page with the number of results at the top right corner and three
tabs: View as HTML page, View as Table and Download. In the HTML view, which is the default,
the extracted terms are highlighted in the context of the original input submitted by the user, similar
to Termine and Term Extraction. Hovering the mouse over any highlighted term will display a
tooltip containing details about it such as the the normalised version of the term or its termhood
score.

Figure 22: HTML table wireframe

22

Adedamola Agbonyin - C1466169

In the table view, results are displayed in a data table complete with search, filter and pagination
features. The wireframe uses a placeholder data table to represent this.

Figure 23: Table tab wireframe

The Downloads tab shows a list of links for downloading the output files produced by FlexiTerm:
Output.html, Output.mixup, Output.csv and Output.txt. Clicking any of the links prompts a download
dialog box.

Figure 24: Download tab wireframe

As evident by the above wireframes, this demo is designed to be similar to Termine and
Terminology Extraction in terms of functionality and user interface.

Use Cases

This section will describe possible interactions between a user and the system to achieve certain
goals. For all use cases, there is one actor role simply described as “FlexiTerm user”. This refers to
any member of the stakeholders or intended users.

23

Adedamola Agbonyin - C1466169

Use case 1

User case name: Enter input

User type: FlexiTerm user

Description: The user will enter input on the demo page and submit it

Pre-conditions: The user has accessed the FlexiTerm site and navigated to the demo page

Basic flow: 1. The user enters input in their desired format: plain text, file upload or
url

2. The user presses the Submit button

Exception flow 1: Description
User input is invalid e.g. empty text box, too large file size, invalid url
format

Termination outcome
An error message is displayed under the affected radio-selected input

Exception flow 2: Description
User does not select a radio button or enter any input at all

Termination outcome
An error message is displayed above the form prompting the user to select
and enter an input

Post-conditions: Input is successfully submitted for processing

Activity Diagram: Enter input

24

Adedamola Agbonyin - C1466169

Figure 25: Activity diagram - enter input

Use Case 2

User case name: View output

User type: FlexiTerm user

Description: The user will view the output produced by FlexiTerm

Pre-conditions: User input has been successfully submitted and processed by the
FlexiTerm back end

Basic flow: The results page is displayed, default view is DataTable view

Alternative flow 1: User clicks on the HTML page tab to view the HTML view

Alternative flow 2: The input produces no output so the results page is blank

Activity Diagram: View Output

25

Adedamola Agbonyin - C1466169

Figure 26: Activity Diagram - view output

Use Case 3

User case name: Download output

User type: FlexiTerm user

Description: The user will download the output produced by FlexiTerm

Pre-conditions: User input has been submitted and successfully processed by the
FlexiTerm back end and the results page has loaded

Basic flow: 1. The user clicks on the “Download” tab to view the Download links
2. The user clicks on the desired link (e.g output csv file)
3. A download prompt is displayed on the browser (or not, depending on

the browser)
4. The file is downloaded onto the user’s device.

Alternative flow 1: The input produces no output so the results page is blank

Activity Diagram: Download output

26

Adedamola Agbonyin - C1466169

Figure 27: Activity Diagram - download output

27

Adedamola Agbonyin - C1466169

3.0 Methodology

3.1 Development Tools and Languages

Having worked on numerous web development projects in the past, it was relatively easy for me to
identify what tools and languages would be most appropriate for this project. These were divided
into two categories: client side and server side.

3.1.1 Client Side

HTML/CSS
The front end of the application is designed using HTML5 to structure the web page and CSS to
style it. Rather than designing the CSS from scratch, the web pages written for the demo use the
existing CSS template file for the rest of the FlexiTerm homepage. This was a massive advantage as
the CSS template is already designed to be fully responsive and contains predefined styling for base
HTML elements such as paragraphs, buttons, navigation etc., thus allowing for consistency
throughout the homepage. The template is also customisable so I was able override or create new
styling for some HTML elements when the need arose.

JavaScript, AJAX and jQuery
JavaScript, jQuery and Ajax are used to add functionality to the HTML page e.g. causing actions to
occur when a user clicks a button. jQuery is a lightweight JavaScript library that makes it faster and
easier to manipulate HTML elements and CSS and make Ajax calls, compared to plain/vanilla
JavaScript.

Example: Selecting an HTML element with ID “paragraph”
Plain JS: document.getElementById(‘paragraph’)
jQuery: $(‘#paragraph’)’

jQuery also reduces the need to reinvent the wheel by writing custom scripts which may take time,
as these already exist in libraries. It provides the capability for creating plugins, which are useful
custom methods that are used to perform operations on an object, and is also excellent for
cross-browser support peradventure a recent enough version is used. Although jQuery can easily be
substituted for plain JavaScript in this project, it is required for the DataTables plugin, hence its
inclusion. The jQuery version used in the FlexiTerm demo is v3.3., released Jan 20, 2018.

28

Adedamola Agbonyin - C1466169

Ajax - or asynchronous JavaScript - is an asynchronous, speedy, client side script that allows
communication between the client and the server. The main feature of Ajax is that only necessary
data, such as user input, is passed to the server for processing, so there is no need to reload the entire
page when output is returned. The user input will need to be passed to and processed by the
FlexiTerm Java back end hence the need for Ajax.

DataTables
DataTables is a jQuery plugin that adds advanced functionality and responsive styling to HTML
tables. Based on the wireframe in Figure 23, the results are to be displayed in a table, but rather than
a simple table, it is more beneficial to allow the user to be able to sort, filter and display the tabular
results as they wish - these are the features a data table provides. Figures 11 and 12 below show the
difference between a data table and a plain HTML table.

Figure 28: Plain HTML Table

Figure 29: DataTable data table

Font Awesome
Font awesome is a free toolkit that provides a variety of icons for web projects. Some Font Awesome
icons were used to represent visuals in the application to aid user experience. I initially considered
using ASCII symbols, but certain browsers such as some versions of Internet Explorer and Google

29

Adedamola Agbonyin - C1466169

Chrome have issues rendering ASCII symbols, displaying a “☐” character or some variation instead.
Font Awesome is however guaranteed to have cross-browser support and is currently used on over
100 million websites across the world.

3.1.2 Server Side

PHP
For this application, the main function of the server side is to simply run the FlexiTerm Java app in
the background, extract information from the SQLite database and then display it on the browser.
Rather than having to learn new technologies, I only considered the back end technologies I had
previous experience with: Node.JS (server side Javascript) and PHP. The main advantage of Node.JS
compared to PHP for this application is to maintain only JavaScript as a single scripting language
across the application, thus making it more maintainable and easier to work with. PHP is another
excellent, rich language which is extremely portable.
However, Node.JS is currently not supported by the Users web server, and due to account quotas on
the server is not an effective solution as it requires large NPM modules to be installed during
environment set up in addition to the FlexiTerm source files which are already over 200mb large. I
selected PHP as the server side language because it is already installed on the server and meets the
requirements for this project.

SQLite
The FlexiTerm Java app stores its input and output data in a SQLite database file. SQLite is a piece
of software that provides a relational database stored in a single file e.g. FlexiTerm.sqlite. The SQLite
database behaves like any other relational database management software (RDBMS): it stores and
manages data, and processes queries. The application back end communicates with this database to
display output to the browser. When the Java application is run, the input files and the database is
wiped and replaced with the new data. However, this works best when it is being written to by one
user at a time so I needed to tackle the problem of multiple concurrent users.

SQLite Manager
This is a Database Management System (DBMS) tool for viewing, editing and managing SQLite files.
Being able to view what tables were contained in the database file was useful in identifying useful
data to extract and writing and testing queries to extract them.

3.2. Project Management

As with any other software project, effective project management is very important, even with a
project as seemingly straightforward as this. Trello was used as the main project management tool

30

Adedamola Agbonyin - C1466169

for this project; it is a project management tool that organises projects into Kanban boards, which
can be labelled however the user wishes. My weekly Trello boards were labelled as: “To Do”, “Doing”
and “Done” and tasks were created and rearranged as progress was made.

Figure 30: Trello Weekly Board

Following the Gantt Chart in the initial plan closely, work was divided on a weekly basis such that
each week resulted in a working version of the application with newly added features or changes
according to the weekly plan, following the Waterfall development method. I met with my
supervisor, Irena Spasić , who is also the main client of the project as well the developer of the
FlexiTerm tool to request feedback and provide updates on my progress following Agile standards.
Trello proved to be an incredibly useful tool with regards to maintaining a Waterfall-Agile
methodology and ensuring that the software project and the documentation of the final report was
completed in due time.

3.3. Version Control

As with any software development project, developing without having a code backup system in place
is risky. To mitigate this risk, I made use of a version control tool called Gitlab. GitLab is a
Git-repository manager, which is basically a version control system for maintaining code such that
changes are effectively managed over time. Any time a change is pushed, a new revision is made,
while still maintaining old versions of the code. This is a much better solution than creating several
multiple versions of the code anytime a change is made.

My private Cardiff University Gitlab account at gitlab.cs.cf.ac.uk was used to maintain the codebase
throughout this project. Following Agile standards, weekly milestones were set and corresponding

31

https://gitlab.cs.cf.ac.uk/

Adedamola Agbonyin - C1466169

branches were created for each one. When each milestone was finished, the code was pushed from
my computer to the Gitlab server and the milestone was marked complete on GitLab.

Figure 31: GitLab Version Control

Figure 32: GitLab milestones

Effective version control with tools like GitLab proved to be incredibly beneficial due to changing
requirements throughout the project; a few times, code snippets from older revisions were reused
and some code files were restored when a particular change could not be undone. In addition to
GitLab, I created a GitHub account to save fully-functional versions of the program weekly, in case
the GitLab server was down for maintenance. GitHub is a publicly available version of Gitlab.

32

Adedamola Agbonyin - C1466169

4.0 Risk Assessment
There is always an element of risk and uncertainty with any software development project. Risk
assessment is a process whereby possible risks that could affect the entire project are identified and
mitigated, ensuring that all goals defined initially are met as effectively as possible.

Table 4: Risk Assessment

Category Risk Severity Likelihoo
d

Action to mitigate risk

Technical
knowledge

Project may require
technical expertise beyond
my level.

Low Low Liaise with supervisor to
ensure that requirements for
this project are within my
technical expertise or can be
learned within a short time. If
not, compromise can be made
to change requirements.

Timing and
project
management

1. Initial plan may have
underestimated amount
of work to be done.

2. Changes to
requirements can delay
the project.

Medium Medium The use of Trello and regular
development milestones on
GitLab further breakdown
tasks to be completed so that
timing issues can be caught
early on.

Technical
requirements

Inadequate or incomplete
requirements analysis
resulting in certain
features being missing.

Medium Medium The Waterfall-Agile
methodology ensures that the
user is prepared to adapt to
any sudden changes to the
system.

Usability 1. Code may break during
use after final
deployment.

2. Issues from browser
incompatibility.

3. Poor feedback during
usability testing,
resulting in late-stage
changes.

Medium Medium 1. Ensure errors are properly
handled and do not break
the system

2. Thorough testing to ensure
cross-browser support.

3. Design UI according to
Jakob Nielsen’s usability
heuristics [Nielsen, 1995]

Server issues Server may crash or be
offline when users are
attempting to access the

High Medium Nothing to do in this case
except wait for the issue to be
fixed.

33

Adedamola Agbonyin - C1466169

app.

Data loss Code base may
accidentally deleted from
local computer.

Medium Low Code base will be maintained
on the cloud on GitLab and
GitHub in event of local data
loss.

Human factors Any personal extenuating
circumstances such as
illness which may delay the
project.

Low Low The initial plan allows enough
spare time in case any
unforeseen issues arise.

Maintainability Future changes to the
underlying FlexiTerm app
may break the demo code.

Low Low 1. The demo app is designed
to be independent of the
inner workings of
FlexiTerm and will
function correctly as long
as the SQLite database
structure is maintained.

2. Code should be
well-commented to allow
for readability.

Portability Difficulties may arise when
the app is eventually
deployed to the Users
server.

Medium Low UAT testing will be carried
out on the Project and Users
web servers prior to final
deployment.

34

Adedamola Agbonyin - C1466169

5.0 Implementation
This section will detail the execution of the initial plan using the methodology described in section
3.0, as well as issues encountered during development and how they were resolved.

5.1 Summary of Features

The initial plan of this project contained a list of main and additional features expected to be
implemented in the FlexiTerm web application. The table below will detail which of those features
have been implemented, which were exempted and additional details.

Table 5: Summary of Implemented features

Main Features

Description Implemented Exempted Details

The user must be able to input
their text file by pasting into a
textbox, drag and drop or
upload, or by URL.

✓ The demo home page contains an input
form through which users can enter their
input by uploading a file, entering a url
to a document or simply pasting or
entering text in a text box.

The user’s input must be
validated first, and then
processed by the FlexiTerm
back end.

✓ All three forms of user input are
validated before processing:
1. One input format must be selected -

value cannot be empty in all three
cases.

2. Uploaded files must be plain text
and no larger than 4kb in size.

3. Url must be valid and link to a plain
text document.

4. Text box cannot allow more than
600 words.

If input is invalid, the user is prompted
to enter a valid input.

The output must be returned in
a web page such that the
recognised terms are
highlighted, with the option to
also view in plain text, table
format, ranked according
to termhood scores.

✓ Output is returned in only two formats:
HTML view in which terms are
highlighted in context, and table view
ranked according to termhood scores.
The plain text view was deemed
redundant in the design stage and
exempted.

35

Adedamola Agbonyin - C1466169

The user must be able to
download the output in
appropriate formats, e.g. csv for
the table, plain text etc.

✓ Download links for the .mixup, .csv, .txt
and .html output files are made available
to the user.

Additional Features

The application should use
cookies such that when the
page is refreshed, the
data/output is not lost.

✓ In addition to default browser caching,
results from the database are saved in
user sessions on the server to allow
multiple users to access their respective
results.

The application should be able
to handle several users at the
same time.

✓ The FlexiTerm back end is designed to
process input once at a time due to
limitation on the SQLite database,
however, measures were put in place to
allow multiple users to view and
download results nonetheless.

The application should include
basic search engine
optimisation so that users can
easily find the FlexiTerm site
when searching for text
recognition tools.

 ✓ This feature was not discussed with the
client before-hand and was therefore
exempted during development.

The application should be
compatible with different
browser types and versions.

✓ The application was tested for browser
compatibility to ensure a satisfactory
result.

The application should be
lightweight enough to load
with little delay.

✓ One reason Input limits were put in place
is that processing time by the back end is
greatly reduced.

The web page should contain
additional details such as source
code, terms of use and a simple
quick start guide for new users.

 ✓ The FlexiTerm homepage already
contains details about the application
itself, therefore this feature was deemed
redundant and exempted.

The code should strictly adhere
to good coding standards that
can be easily reused or
expanded by others.

✓ A Linter plugin was installed in Sublime
Text 3 - the text editor used throughout
this project - in order to auto-format
code into correct syntax.

The user should be able to
adjust some FlexiTerm settings.

 ✓ Due to limitations of the SQLite database
to only allow one write at a time,
allowing users to change apart from input

36

Adedamola Agbonyin - C1466169

would have been quite difficult it
implement and could potentially break
the code. As this feature is not necessarily
fundamental to the functioning of
FlexiTerm, it was exempted.

The implemented features are described in further detail in section 5.2.

5.2 Features

5.2.1 Homepage and User Input

On the FlexiTerm homepage, a link to the demo page was inserted in the navigation menu (as seen
below) as the final item.

Figure 33: Location of demo in homepage menu Figure 34: Demo Homepage

The home page was designed following the wireframe closely [Figure 20], with some minor changes.
The page consists of a simple form with three radio buttons for selecting an input format, and three
corresponding form elements into which input is entered. The user can select their desired input
format by either clicking a radio button or simply entering input directly. A jQuery event listener
function automatically checks the corresponding radio button for whichever input the user selects,
so if the user enters input in the url textbox for example, the “Url” radio button is automatically
selected. If after entering input in one format the user enters input in another format e.g. file upload
after entering a url, the “Upload” radio button is then checked automatically instead. This way, upon
submission, only one input - for which a radio button is selected - is uploaded to the server.

The text box for entering plain text input has a word count on the bottom right corner that is
updated whenever any changes are made in the textbox e.g. when text is pasted, typed or erased. The

37

Adedamola Agbonyin - C1466169

validation function for the text box does not allow more than 600 characters so the visible word
count makes it easier for the user to erase some of the text to fit the limit.

The Clear button clears all input in case the user makes an error. It is styled using the default button
style class of the CSS template, which makes it less prominent than the coloured Submit button.
This is to prevent users from accidentally clearing their input instead of submitting it.

5.2.2 Input Validation

Validating user input is necessary to prevent the FlexiTerm code from breaking while processing
invalid data or having to process too large data. When developing a method for validating user input,
two ideas were considered: writing custom validation functions or using a form validation
framework called FormValidation.io.
The advantage of using a framework is that it typically utilises responsive design and already
contains feedback messages and icons. Initially the framework approach was used in an attempt to
save time, but styling features embedded within it clashed with the FlexiTerm CSS template,
resulting in a scattered design. Attempts made to reconcile the two templates proved futile, and
seeing as only three input elements were to be validated, the framework was scrapped in place of
custom functions. Eventually, writing custom functions did not take as long as expected, as some of
the code was reused for the three input formats. A different form validation function was written for
each of them:

1. Upload: The validation function for this input format only allows files less or equal to 4 kb in

size and plain text or .txt files for easy processing. Uploads are sent the the server if and only if
they meet these conditions.

Figure 35: File upload - wrong format error

Figure 36: File upload - too large file error

2. Textbox: Textbox values are validated against word length; it is invalid if the value is greater

than 600 words or empty. Similar to file upload, input greater than 635 words were truncated by
the server during processing so a limit was put in place on the client side as a work-around.

38

Adedamola Agbonyin - C1466169

Figure 37: Text input - input greater than limit error

3. Url: Url values are checked for a match against the following regular expression:
/^(http:\/\/www\.|https:\/\/www\.|http:\/\/|https:\/\/)?[a-z

0-9]+([\-\.]{1}[a-z0-9]+)*\.[a-z]{2,5}(:[0-9]{1,5})?(\/.*)?\

.txt$/. If the value is empty, not a valid url or the url links to a non-plain text file, an

error message is displayed.

Figure 38: Url input - invalid format

If no input is entered or selected at all, an error message is displayed above the form instructing the
user to enter an input.

Figure 39: Input form - No input

5.2.3 Input processing

When input is successfully submitted, three outcomes are possible:
- An error occurs on the server
- The server is busy
- The POST request is successful

An error occurs on the server if for any reason invalid input slipped through client side validation. If
there is no text, url or file input, the server returns an error message. The server is busy if another
user’s input is currently being processed and returns a Busy message to the client. The POST request

39

Adedamola Agbonyin - C1466169

is successful if the server is not busy and the input is valid. If this is the case, the input is saved as a
sample.txt file in the Text folder within the FlexiTerm source folder.

Sessions and Handling Multiple Users
As mentioned, FlexiTerm uses a SQLite database file which can only allow one write request at a
time. This means that if two users submit their input a few milliseconds apart for example, the
results for the first user are overwritten by the second user’s results. Therefore, there was need to
handle this scenario, however unlikely.
To ensure that only one input set is processed at a time, a semaphore file is used to lock the server
while input is being processed. Upon input submission, the server checks to see if a semaphore.txt file
exists in the source files folder. If not, the file is created in that folder and the processInput() function
is called to run FlexiTerm on the sample.txt input and a Success response is sent to the client. If the
file exists, however, the server responds with a Busy message instead. If an error occurs due to invalid
input, the semaphore file is deleted to allow another user and the server sends an error response to
that client.

Figure 40: Flex.php - semaphore file

40

Adedamola Agbonyin - C1466169

On the client, side, the ajax function does not only send data to the server, but receives a response as
well. If a Busy response is received, the user is alerted on the homepage.

Figure 41: Server is busy

If a success response is received by the client, the demo page is automatically redirected to the results
page. The processInput() function executes the FlexiTerm start script FlexiTerm.sh. If an error occurs
for any reason, the semaphore file is deleted and an error response is sent to the client. Otherwise, to
ensure that results are still maintained even after being overwritten in the database, results are saved
to the user session. Upon input submission, a new session is created - if not already- and assigned a
session id. In PHP, a session is a way to store information on the server for a particular user, and the
information can be retrieved and used across multiple pages.
After the FlexiTerm start script has been run successfully, the saveResultsToSession() and
copyOutputFiles() functions are called.

Figure 42: Flex.php - processInput() function

41

Adedamola Agbonyin - C1466169

The saveResultsToSession() function runs a set of queries on the database to extract relevant
information for the results page, and save them in session variables.

Figure 43: Flex.php - saveResultsToSession() function

The copyOutputFiles() function preserves the output files produced by FlexiTerm by copying them to
a new folder and naming them after the session id for that user. For example, if the session id is
12345, the output.html file is saved as 12345_output.html. Multiple output files for different users can
therefore exist on the server rather than being overwritten.

42

Adedamola Agbonyin - C1466169

Figure 44: Flex.php - copyOutputFiles() function

Issues with CORS

Cross-Origin Resource Sharing CORS is a mechanism that allows a client to access server resources
from a different domain. “A user agent makes a cross-origin HTTP request when it requests a
resource from a different domain, protocol, or port than the one from which the current document
originated” [MDN Web Docs, n.d.].

After validation on the client side, all input is passed to the Flex.php endpoint for processing. For
security purposes, most browsers such as Google Chrome and Mozilla Firefox among others, prevent
cross-origin HTTP requests initiated from scripts such as the FlexiTerm client side script Flex.js and
an error similar to that in Figure 42 is displayed in the browser console.

Figure 45: CORS error

One way to circumvent this in PHP is to use CORS preflight requests in form of headers ahead of
the actual request to inform the server that the client request is safe.

Figure 46: PHP CORS headers

43

Adedamola Agbonyin - C1466169

5.2.4 Results Page

The results page results.php is automatically loaded in the same browser tab as soon as user input is
successfully submitted, processed and saved to a session in Flex.php.

Figure 47: Results.php - Default view

The Results page contains the number of results on the top right corner and a reset button on the
top left corner. The Reset button redirects the page to the demo page for the user to enter new
input. Below these is a container with three tabs: View as table (default view), View as Html page
and Download.

When the page loads, the session is continued and the semaphore.txt file is first deleted to allow any
other users to make use of the application as the results have already been read from the database file
and can now be freely overwritten. The session variables, which contain the list of results, table data,
original input text and list of variants, are used to dynamically create the HTML and table views. As
the results are being read from the session variables, a regex string is also dynamically created from
the list of phrases identified by Flexiterm as possible terms from the original input text. This regex
string is used to highlight terms in the HTML view.

Table Tab

The table tab contains a data table of the extracted terms, their ranks and termhood (c-value) scores.
The data table is searchable and sortable (default is by rank in ascending order), and the number of

44

Adedamola Agbonyin - C1466169

results per page can be increased or decreased. This gives the user more freedom than a plain HTML
table.
About halfway through development, a new version of FlexiTerm was released and the demo had to
be updated to reflect this. This was a relatively easy transition to make as the demo was written to be
independent of the FlexiTerm Java app, and the format of the output files and database tables which
were used in the demo were maintained. The main difference between the old and new versions is
that the new version produces term variants as part of the output. The old table tab simply
contained a data table with rank, term and score columns but I had to make changes to the table
view to display the term variants after replacing the FlexiTerm Java app. Not all terms have term
variants; in fact, usually a very small number of terms in the input texts used in testing produced
term variants as part of the output. So rather than including a column that would be blank majority
of the time, I figured it was more appropriate to hide the additional data, but provide the user with
an option to view it if they want.

To achieve this, I made use of the child row feature of the DataTables plugin. Each table row
contains additional data hidden in child rows. The user can click the “+” symbol on each row to
display the child row which contains both the normalised version of the term and the list of term
variants.

Figure 48: Expanded table row

Html Tab

The HTML view shows the original input as entered by the user, with the extracted terms
highlighted within the text. Upon hovering a mouse over any of the highlighted terms, a tooltip
appears below showing the termhood score with the rank in brackets, the normalised version of the
term and the list of variants, similar to the tabular view.

45

Adedamola Agbonyin - C1466169

Figure 49: Extracted terms in context

The term-highlighting feature is performed by adding a span of class “highlight” around every word
that matches the regex string - which consists of every phrase from which a term is extracted. Then, a
JavaScript function is used to dynamically create a string of the variants of that phrase (e.g. the term
CFF can have a variant of Cystic Fibrosis Foundation) combined with the normalised version of the
term. A tooltip element is then added to each of the words with the “highlight” class containing the
string, which has been punctuated with styling elements to format it in a visually appealing way.

Download Tab
The download tab contains a list of four links for each output file. Clicking any of the links will
prompt a download dialog box (or not, depending on the browser) with which to download the
respective files.

Figure 50: Downloads tab

46

Adedamola Agbonyin - C1466169

As mentioned in Section 5.2.3, the output files are named based on the session ID of each user, so
rather than being overwritten each time a different user uses the app, the output files remain intact
and accessible for the duration of the session.

5.2.5 Coding Standards

After all coding and initial debugging was finished, the client side JavaScript code was refactored to
follow JavaScript coding standards using the Airbnb JavaScript style guide
[github.com/airbnb/javascript]. A linter was installed in the text editor used to write the code
(Sublime Text 3) for automatic formatting. A linter is a tool that analyses code to identify syntax
errors, bugs and programming errors. The linter used in this project is Standard JS [standardjs.com].
The JavaScript and CSS files were correctly formatted using Dirty Markup [dirtymarkup.com].

PHP code was completed last but could not be formatted using a linter as there were some
difficulties setting it up. To save time, the formatting was done by hand, with unnecessary spaces,
redundant/repetitive code removed and variables appropriately named. After formatting and bug
fixing, the demo app was deployed onto the Users web server for UAT testing.

Issues with Deployment
As expected during Risk Assessment [Section 4.0], there was an issue with account quotas on the
Users Web Server. File quotas were set to about 60mb, but the total FlexiTerm source files and the
demo code was about 281mb, several times over the limit. I contacted the IT service desk about this
issue and was eventually able to get an increase on my account quota to 360mb. This issue delayed
deployment and testing by about three days. However, this delay was quite minor as the
development process took several days shorter than expected, so there was enough time to spare.

5.2.6 Browser Compatibility

The HTML5+CSS template FlexiTerm uses is designed to be fully responsive, giving the advantage of
cross-browser compatibility. The 5 most popularly used desktop browsers are Google Chrome, Apple
Safari, Mozilla Firefox, Microsoft Internet Explorer and Edge [StatCounter, 2018].

47

https://github.com/airbnb/javascript
https://standardjs.com/
https://www.10bestdesign.com/dirtymarkup/

Adedamola Agbonyin - C1466169

Figure 51: Browser market share [Netmarketshare, 2018]

The demo home and results pages were therefore tested for compatibility with these five browsers
only. As seen in Appendix A, all modern browsers except IE 7 are fully compatible with the demo
home and results pages. In IE7, the functionality is unaffected but the menu icon on the top left
corner on the page is absent. A compromise has to be made in this regard by ignoring browsers older
than IE version 10. This is justified by the statistic that only 2.63% of the browser market share is IE11
[Statista, 2018], so we can safely assume that the number of users using older versions - especially
versions as old as version 7 - is insignificant.
The FlexiTerm demo app is fully compatible with modern browsers; this highlights the benefit of
using responsive design when creating web pages.

6.0 Testing and Evaluation
With regards to the Agile-Waterfall methodology applied to this project, testing was performed
after each new feature was implemented to ensure no existing functionality is broken by new
changes. This also reduces the burden of final integration testing after all features have been
implemented. During integration testing, three types of testing were performed to evaluate this
application: functional testing, non-functional testing and usability testing.

Functional testing is used to verify the functionality of the application against the functional
requirements. It can be automated or done manually. For this application, functional testing was
done manually with test cases. An alternative to this is unit testing in which sections of code are
tested for correctness. However, unit tests will need to cover as much of the code as possible in
order to be effective, so to save time writing and running possibly hundreds of unit tests, test cases
were used instead. Non-functional testing on the other hand, is used to test non-functional
requirements. In both testing methods, the acceptance criteria as documented in Section 2.1 are used
to decide whether or not a test fails or passes.

48

Adedamola Agbonyin - C1466169

Usability testing is a method of evaluating how user-friendly and effective a user interface is. For this
application, usability testing is conducted using user testing where a group of users were given
sample input and asked to perform tasks with the application. After testing the application, they
were then provided a questionnaire with which to provide feedback.

6.1 Functional & Non-functional Testing

In order to perform functional/non-functional testing, the following steps are followed [Bartlett,
2015]:

1. Identify test input if applicable
2. Complete the expected outcomes with the test input if applicable
3. Execute test cases
4. Compare expected and actual outcomes

The purpose of using test cases is to test the implemented features rather than the requirements
defined at the beginning of the project. Although test cases should ideally be derived from
requirements, this is not always possible as it is often difficult to document all the client’s
expectations into requirements, so the requirement set is often incomplete. Test cases are written
after the system has undergone some progress so they can be more specific and detailed and
therefore not alway traceable to initial requirements.

6.1.1 Functional Testing

Summary of Test Case Results
Table 6: Functional Test Cases

ID Name Acceptance Criteria Actual Outcome PASS
/FAIL

F1 Access demo from
FlexiTerm
homepage

A link to the demo page should be
inserted into the FlexiTerm
homepage navigation menu.

A link to the demo is present in
the FlexiTerm homepage menu
(see Figure 33).

PASS

F2 Enter input On the demo page, there should be
a form with fields to allow one of
three inputs: a url field, a plain text
field and a file upload button.

The demo has a form through
which users can enter input in
file upload, text and url formats
(see Figure 34).

PASS

F3 Validate input 1. The user must select one input
format and provide an input
for the chosen format (no

Input is validated to ensure it
meets certain criteria. Invalid
input prompts an error message

PASS

49

Adedamola Agbonyin - C1466169

empty text fields or empty
uploads).

2. The user must insert input in
acceptable format such e.g.
word count <= 500 words for
text box or only .txt files for
upload.

If the above are not adhered to, an
error message will be displayed and
submission attempts will be
unsuccessful.

(see Section 5.2.2)

F4 Submit input The demo page should contain a
submit button to submit user
input.

The demo page contains a
submit button for input
submission (see figure 34).

PASS

F5 Process input The back end should return a
success message upon successful
processing of the input.

The processInput() function
returns a “Success” message if
input has been successfully
submitted (see figure 41).

PASS

F6 View results Upon successful submission and
processing, the user should be
redirected to a results page where
the output generated by FlexiTerm
can be viewed in html, plain text
and table formats.

The results page is loaded after
input is successfully processed.
This page displays data in html,
plain text and table formats in
different tabs (see figure 46).

PASS

F7 Download Results The results page should also
contain a list of links to download
the output.txt, output.html,
output.mixup and output.csv files
generated by FlexiTerm.

The downloads tab contains a
list of links to downloads
output files (see figure 49).

PASS

In this case, it was possible to trace test cases directly to initial requirements, thus showing that by
reverse-engineering existing systems, we are able to form a close-t0-complete set of requirements as
opposed to having to visualise the user’s requirements only. We can see from the results summary
that the functionality works as expected.

50

Adedamola Agbonyin - C1466169

6.1.2 Non-functional Requirements

The Non-functional requirements in Section 2.1.2 will be tested based on the acceptance criteria
which have already been written in a quantifiable way, rather than using test cases as user actions are
not involved.

Table 7: Non-functional test cases

ID Category Acceptance Criteria Actual Outcome PASS
/FAI
L

NF1

Security In all modern browsers, the
entire FlexiTerm page must be
HTTPS secure - no external
links should be HTTP.

Browser console was used to identify
all occurrences of mixed content
(HTTP + HTTPS). All external links
such as and web tracking links are
HTTPS.

PASS

No personal information such as
username or password of the
User server account the app is
hosted on should be revealed in
the code.

No usernames or passwords or any
valuable information are saved in the
code.

PASS

NF2 Reliability The system must be
fault-tolerant and catch and
handle errors so that the
application remains live.

The system is designed to not only
catch errors on the client side, but to
simply return 0 results if any errors
occur on the server side rather than
crashing the application.

PASS

NF3 Maintainability As this is a straightforward
application, the lines of code in
each file (relevant to this
application) must not exceed
1000 lines each.

All code written with regards to this
application are < 300 lines each.
Demo.html - 136 lines
Flex.php - 116 lines
Results.php - 279 lines

PASS

NF5 Performance Demo and results page should
load within 10 seconds, as this is
around the limit for keeping the
user’s attention . Any longer,
and the user may think an error
has occurred.

The demo app loads for as long as it
takes for FlexiTerm to process the
user input. Average processing time
is 7.048. Seconds [Appendix B],
which is less than the 10 second
limit.

PASS

NF6 Consistency The existing css files used for
the
FlexiTerm homepage must also
be used for the demo page.

The CSS and HTML template was
maintained throughout this project,
as well as custom css in a separate
file - secondary.css.

PASS

51

Adedamola Agbonyin - C1466169

NF7 Usability The application must adhere
strictly to Jakob Nielsen’s 10
Heuristics for User Interface
design [Nielsen, 1995]

Details are documented in Section
6.2

PASS

The application must score an
above average score in usability
testing

PASS

NF8 Compatibility Application should maintain
functionality and look when run
on 5 of the most commonly used
browsers

Details are documented in Appendix
A

PASS

The above table shows that all non-functional requirements have been successfully implemented.

6.2 Usability Testing

It is often not enough to only assess the functionality of the system against initial requirements. To
assess the quality and usability of a system, we employ usability testing. This can be done using
standardised satisfaction questionnaires administered after the usability test session. It measures the
user’s impression of how easy it was to use the system in question [Mifsud, 2015]. Four different
questionnaires can be used:

1. SUS: System Usability Scale (10 questions)
2. SUPR-Q: Standardized User Experience Percentile Rank Questionnaire (13 questions)
3. CSUQ: Computer System Usability Questionnaire (19 questions)
4. QUIS: Questionnaire For User Interaction Satisfaction (24 questions)
5. SUMI: Software Usability Measurement Inventory (50 questions)

To determine what questionnaire to use, we consider if there is enough budget, and how important
satisfaction is. If the measurement of user satisfaction is important but there is not a large allocated
budget, SUS is most appropriate [Mifsud, 2015]. SUS has become an “industry standard with
references in over 1300 articles and publications” [Mifsud, 2015]. It consists of a short, simple scale
that is easy to administer to participants, making it ideal for a small set of testers. In fact, As this is
the case for this project, SUS was chosen as the questionnaire format for testing usability
.

52

Adedamola Agbonyin - C1466169

When an SUS is used after a testing session, participants are asked to rate the system based on the
following 10 questions with 5-point Likert scale ranging from “Strongly disagree” to “Strongly agree”.
[Usability, n.d.].
1. I think that I would like to use this system frequently.
2. I found the system unnecessarily complex.
3. I thought the system was easy to use.
4. I think that I would need the support of a technical person to be able to use this system.
5. I found the various functions in this system were well integrated.
6. I thought there was too much inconsistency in this system.
7. I would imagine that most people would learn to use this system very quickly.
8. I found the system very cumbersome to use.
9. I felt very confident using the system.
10. I needed to learn a lot of things before I could get going with this system.

For this application, five participants were selected. This number was selected based on Nielsen’s
user testing research that found that if a system is tested with up to 5 users, new observations are
made, with some repetitions but more than 5 users is unnecessary as only repetitions of past
observations will abound [Nielsen, 2000].

Figure 52: Diminishing Returns for usability testing [Nielsen, 2000]

The above graph shows diminishing returns for usability testing as more users are added. The curve
starts to bend round 5 users - which is the recommended number of participants [Nielsen, 2000].
The participants were then asked to test the main functions of FlexiTerm: enter and submit input,
and view and download output. After testing, they accessed the questionnaire and answered the
questions as objectively as possible. The usability score is then calculated as follows [Usability, n.d.]:
For each odd number question, subtract 1 from score

1. For each even number question, subtract score from 5

53

Adedamola Agbonyin - C1466169

2. Sum all 10 numbers up and multiply by 2.5 to convert to a scale of 0 - 100, from the original
0-100

Out of a total of 100, a SUS score greater than 68 would be considered above average and anything
below 68 is below average [Usability, n.d.].

The results for the FlexiTerm usability test are as follows:
Tester 1

Question 1 2 3 4 5 6 7 8 9 10

Score 3 1 5 2 5 2 5 1 5 2

Converted score 2 4 4 3 4 3 4 4 4 3

Total 31 * 2.5 = 77/100

Tester 2

Question 1 2 3 4 5 6 7 8 9 10

Score 5 2 4 1 4 2 5 1 5 1

Converted score 4 3 3 4 3 3 4 4 4 4

Total 32 * 2.5 = 80/100

Tester 3

Question 1 2 3 4 5 6 7 8 9 10

Score 2 2 4 1 4 1 4 3 3 2

Converted score 1 3 3 4 3 4 3 2 2 3

Total 28 * 2.5 = 70/100

Tester 4

Question 1 2 3 4 5 6 7 8 9 10

Score 4 1 4 1 4 1 4 1 4 3

Converted score 3 4 3 4 3 4 3 4 3 2

Total 33 * 2.5 = 82/100

Tester 5

54

Adedamola Agbonyin - C1466169

Question 1 2 3 4 5 6 7 8 9 10

Score 4 4 4 2 4 2 4 3 4 2

Converted score 3 1 3 3 3 3 3 2 3 2

Total 26 * 2.5 = 65/100

Average

User 1 2 3 4 5

Score 77 80 70 82 65

Total 74.8

Full survey results available at: www.surveymonkey.com/results/SM-YLLDJW27L/

6.3 Evaluation

The usability score for this application is calculated as 74.8/100. This is an above-average score,
indicating that this application is of good usability. One issue with this score is that the system was
tested by up to 4 users at the same time. FlexiTerm can only handle 1 user at once, meaning other
users were alerted that the server was busy and kept waiting, while FlexiTerm was processing
another user's input. Another issue is that there was a bug with loading results from sessions which
lead to no results, even for valid input. This has now been corrected in the final version of the demo
app.

Another issue with the results is the potential factor of bias. It was made clear to the participants to
answer as objectively as possible but due to the implications of too-low scores, it is possible the users
scored it higher than they would have intended to.

Evaluation Against Nielsen’s Heuristics

Table 8: Evaluation Against Nielsen’s Heuristics

 Heuristic Description Evaluation

1 Visibility of system status The application must provide
informative feedback to the user.

1. When the server is busy, an
alert message is displayed to
the user informing them.

2. When input is being

55

http://www.surveymonkey.com/results/SM-YLLDJW27L/

Adedamola Agbonyin - C1466169

processed, a loading bar is
displayed for the duration.

2 Match between the system
and the real world

The application must use real
world
language, or, language that can be
easily understood by its users.

Even though this demo app is
aimed at academics, the language
used throughout is simple English

3 User control and freedom The system must be fault-tolerant
and allow users to reverse actions if
need be.

1. The Clear button on the input
form allows users to remove
entered input

2. The Reset button on the results
page allows users to reset the
output and run the application
again

4 Consistency and standards The application must use identical
formatting and terminology
throughout and the application;
layout should be consistent for the
entire webpage including the
FlexiTerm home page.

The same CSS template is used
throughout the entire site.

5 Recognition rather than
recall

Where appropriate, the application
must have important information
and options visible at all times so
that the user does not have to
memorise anything.

There are no hidden features or
information through the demo
app. On the results page, the
intuitive “+” icon is clearly visible
for users who want to view
additional data.

6 Flexibility and efficiency of
use

Where appropriate, the system
should be able to cater to users of
all skill level.

The demo is designed to be as
simple and straightforward as
possible so that it is user-friendly
to users of all skill level.

7 Error recovery The app must display clear error
messages that can help the user
rectify their error.

When the user enters invalid
input, they are prompted to enter
valid input.

8 Error prevention The app must have measures in
place to ensure that errors are
preventable

User input is validated against
carefully chosen criteria to
prevent errors in the back end.

9 Aesthetic and minimalist
design

As this is a demo aimed primarily
at scientists and researchers, only
relevant information should be
present and design should be kept

The demo page keeps strictly to
requirements and no unnecessary
features or information are added.

56

Adedamola Agbonyin - C1466169

to a minimum.

10 Help and documentation Any relevant information
regarding FlexiTerm should be
made available to the user.

This is already available on the
FlexiTerm homepage.

Following usability testing, the system was evaluated against Nielsen’s Usability Heuristics to ensure
they were adhered to. Table 8 shows that all 10 heuristics were applied to the application. The above
average usability score even with the limitations of the application demonstrates that following
usability guidelines when designing and developing a system was a smart choice.

7.0 Conclusion
The aim of this project was to develop a means for users to process their text with FlexiTerm
through their browsers. I believe I have achieved this to the best of my ability given the time and
feasibility constraints.

Nearly all the features described in the initial plan were eventually implemented in the application,
and those that were not have been added to future plans instead. The project was carried out using a
combination of Agile and Waterfall methodologies in which initial planning, requirements analysis
and user interface design were first completed, then development was carried out in short sprints.

The application maintains the functionality of FlexiTerm while making it more accessible and easier
to use. It is a full stack web application consisting of a server and client side. The application simply
provides a web interface through which users can pass input to FlexiTerm for processing and view
the output in an appealing, readable format. The output files produced can also be downloaded by
the users. User friendliness was kept in mind throughout development, with Nielsen’s heuristics used
as a guideline. Testing was carried out against the functional and nonfunctional requirements to
ensure they were all implemented. Usability testing was also performed and the results showed a
score of 74.2, indicating the system is of good usability, according to the System Usability Scale.

In conclusion, even with the minor issues encountered, this application has fulfilled its main
requirements as described in the project brief.

The FlexiTerm web demo can be accessed online at users.cs.cf.ac.uk/AgbonyinAT/demo.html

57

https://users.cs.cf.ac.uk/AgbonyinAT/demo.html

Adedamola Agbonyin - C1466169

8.0 Future Work

Table 9: Future Work

 Feature Description

1 Sample data As with Termine, sample data should be provided for users
who simply want to try out FlexiTerm without having to search
for possible sample data which may not always produce any
results.

2 Allow html and pdf inputs Currently, the demo only allows plain text inputs in all three
input types (url, upload and text box). Future versions should
be flexible enough so users can enter different file formats
which can be converted to ASCII behind the scenes to be used
by FlexiTerm.

3 Allow more input and multiple file
uploads

The demo currently only allows short text input and one file
upload per use due to server truncation issues. This can be
improved upon in future work allowing multiple file uploads to
demonstrate the full capabilities of FlexiTerm.

3 Allow users to customise FlexiTerm.
Users should be able to do the
following:
- edit stoplist
- edit distance threshold
- edit minimum term candidate

frequency
- edit minimum (implicit)

acronym frequency
- edit acronym recognition mode

(explicit/implicit)

The demo should possess all the features of the back end
application so users should be able to calibrate FlexiTerm
according to their preference. This could not be implemented
in this version because only one version of Flexiterm and
consequently only one SQLite database file serves all users, and
this can potentially cause more serious errors if the inner
workings of flexiterm are being changed by several users at
once.

4 Use a full SQL-enabled database

Rather than simply using an SQLite database file, Flexiterm
data should be uploaded to a database hosted on an external
server. This will be able to handle several users at a time for
multiple concurrent writes, and increase the amount of input
data acceptable by FlexiTerm.

58

Adedamola Agbonyin - C1466169

9.0 Learning and Reflection
Project Management
Throughout this project, it was my duty to manage my time and tasks as effectively as possible. To
aid this, I created a Gantt chart in my initial plan to schedule and organise the software development
part of the project, as well as the report writing. In the early stages of development, however, I found
that the Gantt chart was not very granular as it was written before the requirements and designs of
the project were documented. So rather than containing details of specific tasks, it simply consisted
of high level descriptions such as “complete front end” and this was not very useful to me. I prefer to
use to-do lists in my everyday life, so I attempted to apply them to this project as well, but rather
than using paper lists, I decided to try a different method: Kanban boards.
Despite only using Gantt charts for academic software projects, I have also used JIRA Kanban boards
in the workplace and it has proved to be very useful and effective for me. JIRA is a paid tool, so I
researched free Kanban board tools and decided upon Trello. The main advantage of Trello is that it
is accessible online and locally on my desktop and mobile devices so I could keep track of my tasks
wherever and whenever. For each week in the Gantt chart, I created a “To Do” board in Trello
containing the list of tasks to be accomplished that week. This made it a lot easier to track my
progress as I moved items from the To Do board to the “Doing” and “Done” boards. The use of Trello
Kanban boards proved successful for this project and I will continue to use it in future projects,
rather than only Gantt charts. This shows me that it is more realistic to tailor project management
methods to my needs and preferences and the particular project I am working on, rather than going
with a single default option each time.

Version Control
In the past, I have only used Tortoise SVN - a Windows desktop tool - for version control in my
software projects. Git is widely used among development teams, so it is a valuable skill for any
developer to have. Although my previous attempts to learn Git had proved unsuccessful, I saw this
as another opportunity for me to attempt learning it once again. I discovered the Cardiff University
GitLab and followed multiple online guides to learn how to use it. Although it was initially difficult,
I was able to grasp it quickly enough and make full use of it for this project. I am working towards a
career in software development so this eventually proved an enormous advantage as I am now able to
include Git in my current repertoire of technologies.

Development and Deployment
As mentioned earlier, I was able to apply my past experience to this project, cutting down time that
would have been otherwise spent learning new languages and technologies. This led to some amount
of over-confidence. I did not spend as much time as was necessary planning out the project because I

59

Adedamola Agbonyin - C1466169

wanted to start coding as soon as possible and this led to a few issues along the way. One mistake I
made early in development was attempting to use too many frameworks at a time. For example, a fair
amount of time was wasted attempting to apply FormValidation.io to validate the input forms and
Bootstrap styling, rather than to simply write my own custom CSS and code. I should have also made
test deployments to the Users server rather than simply running it locally. When I was about to start
user acceptance testing, I attempted to deploy the app to the Users server only to run into several
upload failures. Only after several failed attempts did I realise the error was due to 60mb limits on
each user account on the server. If I had run mock deployments, I would have noticed this issue
earlier. Fortunately, this was resolved on time. In the future, I will aim to properly plan my projects
to prevent future problems.

Communication Skills
I made sure to attend the weekly meetings with my supervisor/client as often as I could in order to
ensure that I was on the right track. When I was unavailable for a meeting, I emailed my supervisor
with updates on my progress. The meetings enabled me to not only consult my supervisor - who is
also the project client - but to liaise with other students during round-the-table meetings. In fact,
usability testing for the FlexiTerm demo was conducted in one of these meetings.
As I was fairly confident in my abilities with regards to this project based on prior experience, I did
not need to arrange personal meetings so the weekly meetings were sufficient. One thing I could
have done differently was ask as many questions as possible to ensure the client’s requirements were
met early on. This may have prevented the issue of requirements changing in the later stages of
development.

60

Adedamola Agbonyin - C1466169

10.0 References
Bartlett, J. (2015). What is Functional Testing? - TestLodge Blog. [online] TestLodge Blog. Available at:
https://blog.testlodge.com/what-is-functional-testing [Accessed 10 Apr. 2018].

Cohn, M. (2004). Project Advantages of User Stories as Requirements. [online] Mountain Goat Software. Available
at: https://www.mountaingoatsoftware.com/articles/advantages-of-user-stories-for-requirements [Accessed 12
Apr. 2018].

Hayward, A. (2013). When to use User Stories, Use Cases and IEEE 830 Part 1. [online] BA Times. Available at:
https://www.batimes.com/articles/when-to-use-user-stories-use-cases-and-ieee-830-part-1.html [Accessed 12
Apr. 2018].

Inflectra.com. (2018). What is Waterfall & Hybrid Development?. [online] Available at:
https://www.inflectra.com/methodologies/waterfall.aspx [Accessed 12 Apr. 2018].

Landis, L., Waligora, S., Mcgarry, F., Pajerski, R., Stark, M., Johnson, K. and Cover, D. (1992). Recommended
Approach to Software Development, Revision 3. Software Engineering Laboratory Series. [online] Maryland:
National Aeronautics and Space Administration, pp.6-7. Available at:
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930009672.pdf [Accessed 20 Apr. 2018].

Lonergan, K. (2016). The Pros and Cons of Agile and Waterfall. [online] Pmis-consulting.com. Available at:
https://www.pmis-consulting.com/agile-versus-waterfall [Accessed 13 Apr. 2018].

Marsic, I. (2012). Software Engineering. New Brunswick, New Jersey: Rutgers University, p.70.

MDN Web Docs. (n.d.). Cross-Origin Resource Sharing (CORS). [online] Available at:
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS [Accessed 20 Apr. 2018].

Mifsud, J. (2015). Usability Metrics – A Guide To Quantify The Usability Of Any System. [online] Usability Geek.
Available at: https://usabilitygeek.com/usability-metrics-a-guide-to-quantify-system-usability [Accessed 2 May
2018].

Nactem.ac.uk. (2012). Termine Web Demonstrator. [online] Available at:
http://www.nactem.ac.uk/software/termine [Accessed 8 Apr. 2018].

Naumovski, A. (2017). Straightening out the React/Redux learning curve part 1 - Intro to React. [online] The
Practical Dev. Available at:
https://dev.to/andrejnaumovski/straightening-out-the-reactredux-learning-curve-part-1---intro-to-react-18b
[Accessed 20 Apr. 2018].

Neoteric. (2016). Single-Page Application vs. Multiple-Page Application - Neoteric. [online] Available at:
https://neoteric.eu/single-page-application-vs-multiple-page-application [Accessed 26 Apr. 2018].

Netmarketshare (2018). Browser market share. [online] Available at:
https://netmarketshare.com/browser-market-share.aspx [Accessed 1 May 2018].

61

https://blog.testlodge.com/what-is-functional-testing
https://www.mountaingoatsoftware.com/articles/advantages-of-user-stories-for-requirements
https://www.batimes.com/articles/when-to-use-user-stories-use-cases-and-ieee-830-part-1.html
https://www.inflectra.com/methodologies/waterfall.aspx
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930009672.pdf
https://www.pmis-consulting.com/agile-versus-waterfall
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://usabilitygeek.com/usability-metrics-a-guide-to-quantify-system-usability
http://www.nactem.ac.uk/software/termine
https://dev.to/andrejnaumovski/straightening-out-the-reactredux-learning-curve-part-1---intro-to-react-18b
https://neoteric.eu/single-page-application-vs-multiple-page-application
https://netmarketshare.com/browser-market-share.aspx

Adedamola Agbonyin - C1466169

Nielsen, J. (1995). 10 Heuristics for User Interface Design: Article by Jakob Nielsen. [online] Nielsen Norman Group.
Available at: https://www.nngroup.com/articles/ten-usability-heuristics [Accessed 1 May. 2018].

Nielsen, J. (1997). The Need for Speed. [online] Nielsen Norman Group. Available at:
https://www.nngroup.com/articles/the-need-for-speed [Accessed 26 Apr. 2018].

Nielsen, J. (2000). Why You Only Need to Test with 5 Users. [online] Nielsen Norman Group. Available at:
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users [Accessed 2 May 2018].

Spasić, I., Greenwood, M., Preece, A., Francis, N. and Elwyn, G. (2013). FlexiTerm: a flexible term recognition
method. Journal of Biomedical Semantics, [online] 4(1), p.27. Available at:
https://jbiomedsem.biomedcentral.com/articles/10.1186/2041-1480-4-27 [Accessed 25 Apr. 2018].

StatCounter Global Stats. (2018). Desktop Browser Market Share United Kingdom | StatCounter Global Stats.
[online] Available at: http://gs.statcounter.com/browser-market-share/desktop/united-kingdom [Accessed 3
May 2018].

Statista. (2018). Most popular internet browser versions 2018 | Statistic. [online] Available at:
https://www.statista.com/statistics/268299/most-popular-internet-browsers [Accessed 3 May 2018].

Stephens, R. (2015). Beginning software engineering. Indianapolis, Indiana: John Wiley & Sons, Inc., p.63.

Stringfellow, A. (2017). What is Web Application Architecture? How It Works, Trends, Best Practices and More.
[online] stackify.com. Available at: https://stackify.com/web-application-architecture[Accessed 26 Apr. 2018].

Translated Labs (n.d). Terminology Extraction. [online] Available at:
https://labs.translated.net/terminology-extraction [Accessed 8 Apr. 2018].

Usability.gov. (n.d.). System Usability Scale (SUS) | Usability.gov. [online] Available at:
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html [Accessed 4 May 2018].

Yaskevich, A. (2017). Web application architecture: Components, models and types. [online] Scnsoft.com. Available
at: https://www.scnsoft.com/blog/web-application-architecture [Accessed 26 Apr. 2018].

62

https://www.nngroup.com/articles/ten-usability-heuristics
https://www.nngroup.com/articles/the-need-for-speed
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users
https://jbiomedsem.biomedcentral.com/articles/10.1186/2041-1480-4-27
http://gs.statcounter.com/browser-market-share/desktop/united-kingdom
https://www.statista.com/statistics/268299/most-popular-internet-browsers/
https://stackify.com/web-application-architecture/
https://labs.translated.net/terminology-extraction/
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.scnsoft.com/blog/web-application-architecture

Adedamola Agbonyin - C1466169

Appendix A
Browser Compatibility

Figure 27: Demo homepage - Chrome

Figure 28: Demo homepage - Firefox

Figure 29: Demo homepage - IE11

Figure 30: Demo homepage - Edge

Figure 31: Demo homepage - IE7

63

Adedamola Agbonyin - C1466169

Results View

IE7: Menu icon is absent but everything else displays as expected.

Figure 32: Table Results - IE7

 Figure 33: HTML Results - IE7

Figure 34: Download Links - IE7

IE11:

Figure 35: Table results - IE7

Figure 36: HTML results - IE7

64

Adedamola Agbonyin - C1466169

Figure 37: Download Links - IE7

Google Chrome:

Figure 35: Table results - IE7

Figure 36: HTML results - IE7

Figure 37: Download Links - IE7

Firefox:

65

Adedamola Agbonyin - C1466169

Figure 35: Table results - IE7

Figure 36: HTML results - IE7

Figure 37: Download Links - IE7

Edge:

Figure 35: Table results - IE7

Figure 36: HTML results - IE7

66

Adedamola Agbonyin - C1466169

Figure 37: Download Links - IE7

67

Adedamola Agbonyin - C1466169

Appendix B
The average input processing time for 5 runs of the FlexiTerm demo is calculated below:

Run Speed (s)

1 7.13

2 7.02

3 7.22

4 6.79

5 7.08

Average 34.24 /5 = 7.048 . seconds

68

