
Alfie Edwards

CM3203: One Semester Individual Project

Supervised by Dr Richard Booth

Final Report

Training Pairs of Communicating Machine Learning
Agents to Complete Cooperative Tasks Requiring

Information Exchange

May 11, 2018

Contents

1 Abstract 3

2 Introduction 3

3 Starting Point 3

3.1 Preliminary Research . 3

3.2 Initial Ideas . 5

3.3 Initial Goals . 6

4 Games 8

4.1 Definitions . 8

4.2 XOR . 8

4.3 Pathfinding . 9

4.4 Number Matching . 12

4.5 Alignment Game . 13

4.6 Implementation . 15

5 Q-Learning 17

5.1 Implementation Details . 17

5.2 Experiments and Evaluation . 25

5.3 Conclusions . 36

6 Genetic Algorithm 37

1

6.1 NEAT . 37

6.2 CCGA . 43

6.3 Evaluating Fitness . 45

6.4 Experiments and Evaluation . 45

6.5 Conclusions . 47

7 Final Thoughts 49

7.1 Conclusions . 49

7.2 Suggestions for Further Exploration 49

7.3 Reflection . 51

2

1 Abstract

In this paper, I present my methods and findings after exploring the practicality of

connecting the two neural networks with a communication link, and training the

system as a single unit. I created two systems using different approaches, which

I tested using games designed to require communication between the players to

achieve success.

2 Introduction

A machine learning system can optimise a black box to approximate some func-

tion. Can this black box be extended further to cover multiple machine learning

agents and the way they exchange information? In this paper, I explore the idea

of connecting multiple machine learning agents using a general communication

channel, and training them as if they were a single system. I do this by adapting

the machine learning techniques of Q-Learning [2], NeuroEvolution of Augmenting

Toplogies [4], and Cooperative Coevolutionary Genetic Algorithms [3] to work with

the idea of multiple communicating agents.

3 Starting Point

I started with the idea of having machine learning agents develop their own pro-

tocol for information exchange within the context of a larger task. In other words,

information exchange would be included within the black-box of the machine-

learning algorithm, and would be optimised through standard training techniques.

I wanted to test the viability of this idea, and any benefits it could bring.

3.1 Preliminary Research

Before beginning any planning work, I carried out initial research.

Existing Application of Multiple Agents

I first looked into the existing instances of utilising multiple agents to solve prob-

lems, looking for inspiration. I came across an interesting paper [5] describing

multi-agent systems, or MAS for short.

3

Some problems can be split into multiple, much simpler, problems such that the

combined complexity of the smaller problems is less than that of the original

problem. In these cases, it can be faster to train multiple machine learning agents

to complete the smaller sub-problems, then combining their outputs in a fixed way

to form a complete solution. This is the basis of multi-agent systems. The paper

explores these systems with a focus on machine learning, but the concept can be

applied to any sort of system with multiple components.

MAS can also be applied when there is a forced division of information between

agents, for example a distributed sensor network. In these domains, each agent

only has immediate access to its own information, and as such, it is useful if each

agent can work towards a meta-task by performing processing on only its subset

of the total information.

Reinforcement Learning

One of the main potential benefits I was interested in was the ability to create a

system that can be applied to a wide range of problems. To expand upon this

I also decided to investigate reinforcement learning. It is common in machine

learning to generate a model based upon a list of known inputs and outputs called

the training data. You can take an existing model (for example an experienced

human), then record the behaviour of them model, then use that data to train a

machine learning agent that can emulate that model. Using this technique, the

effectiveness of your machine learning agent is limited to the effectiveness of the

model form which you generated your training data. Another downside is that an

existing model is required at all.

Reinforcement learning entails a different approach. The training data is gener-

ated as you train your model. Effectively, your model learns from experience,

focusing on or avoiding behaviours based on some metric to measure the quality

of an outcome. This means you do not require any prior knowledge about how

to achieve a desirable outcome from given inputs, and instead only require a way

to evaluate outcomes. This general family of techniques is commonly seen in ma-

chine learning applications based around games, as typically it is not possible to

generate perfect training data, and human-generated examples are both limited

by human knowledge, and difficult to collect in large quantities.

4

Machine Learning Framework

Use of frameworks is very common in machine learning applications. Frameworks

allow simple implementation of well-known techniques, and can facilitate both ef-

ficiency and code simplicity. A framework was perfect for this project as my focus

was on the effectiveness of higher-level techniques. As part of my preliminary

research, I investigated popular machine learning frameworks. I chose to use Ten-

sorFlow, mainly because of the wealth of related material available online, such as

tutorials and questions. I also found it was capable of modelling unconventional

neural network structures, a key requirement for the project.

3.2 Initial Ideas

I chose to stick closely to the idea posed as my starting point, and incorperate

ideas from my research.. I planned to extend the idea of multi-agent systems to

include communication links between the agents. I could then train the entire

system as if it was one agent, using standard machine learning techniques.

Asymmetric Information

I planned to create design problems for the system such that they you not perform

well without information exchange taking place. To do this I would need to inten-

tionally withhold data from some agents, so they they must acquire it through a

communication channel.

Neural Networks

I chose to focus specifically on using neural networks, as I understood how they

worked, and they seem to be the dominant model in machine learning at the

moment. This would also make it easy to implement a communication link between

the two agents, as it could be modelled using standard neural network nodes and

edges.

Games

I wanted to frame any problems I worked on as games. Games can serve as abstract,

clinical environments which can be easily adjusted to suit your needs. I also

believed that the game paradigm can make complex problems more immediately

5

understandable, bringing with it intuitive concepts such as strategies and score. A

multi-agent system with division of information could be framed as a cooperative

game, where the players are given asymmetric information.

Two-Agents

I decided that I would focus on creating two agent systems. This put a good limit

on the scope of the project, and helped ground my ideas.

Flexibility

Ideally I wanted to create systems that can be applied to a wide range of games with

minimal need for domain-specific parameters. The minimum possible parameters

would be the state size and the number of possible moves, since these can vary

between games. These values are necessary for a neural-network based system to

ensure that data can flow into and out-of the network.

3.3 Initial Goals

From my initial ideas, I created a set of goals. Some are concrete, while some are

more qualitative. These goals represent the practical things I hoped to achieve,

based on my initial ideas.

One-Player and Two-Player

I wanted my implementations to work with both One-Player and Two-Player

games. This would allow me to make comparisons between the performance of

each.

Graphical Displays

The game paradigm frames problems in an intuitive way. This can be amplified by

the use of graphical displays to provide visual representations of systems. The more

intuitive a system, the easier it is interpret and present results from experimenting

with that system. Because of this, I decided I would create graphical interfaces

for all non-trivial games I experimented with.

6

Successful Implementation

My biggest goal coming into this project is to create at least one successful imple-

mentation of my ideas. I want to successfully train a two-agent system to play a

cooperative game that requires information exchange in order to succeed.

Multiple Implementations

I wanted to test more than one technique. A wide range of machine learning

techniques exist, and I wanted to avoid focusing too heavily on a single one. This

way I could create a simple system to test viability, then also experiment with a

more unusual system.

Reinforcement Learning

I aimed to base my implementation on reinforcement learning, in order to achieve a

good level of flexibility. This would eliminate the need pre-prepared training data

as an input, and make it much easier to test my systems with multiple different

games.

7

4 Games

I created a total for four games test my systems with. Each game has two versions,

one-player and two-player.

4.1 Definitions

• Games

I use the word game to refer to a system with a state which evolves over one

or more time-steps, starting at some initial state (not necessarily the same

each time). At each time-step, one action from a set of possible actions must

be taken. The current state, and the action taken decide the state at the

next time step. A score is presented at each time-step based on the state and

the actions previously taken. A higher score represents a more favourable

state for the player. Finally, some states are termination states. From these

states, no other action can be taken, and so the score is finalised.

• Two-Player

In this report, whenever the term two-player game is used, it is referring

to something more specific than a game with two players. The two-player

games in this project are cooperative games, in which information exchange

is required to achieve an adequate score. In a two-player game, a single score

is given to both players, meaning they are intrinsically dependant on each

other.

4.2 XOR

A common basic test for a machine learning system is to learn the XOR function.

XOR has a very small domain and range, but is an example of a non-linear function.

Learning it should be trivial for any well-functioning machine learning system. I

have framed the XOR function as a game where the state is a pair of 2 numbers,

each 0 or 1. There are two available actions, 0, and 1. Performing the action

corresponding to the XOR of the numbers in the state yields a score increase.

Performing the other action yields no score increase. The game terminates after 1

turn. To perform well in the game, you must be able to perform an XOR operation

on the two numbers in the state, so you can pick the action will increase your score.

8

Adapting for Two Players

To adapt this game for two players, I created a simple division of information.

Each player plays its own separate game, however the second values in their states

are swapped. This forces the layers to communicate this value to each other before

they can reliably calculate the best action to take.

For example, say player 1 was given the state (1, 0), and player 2 was given the

state (1, 1). For one-player XOR, the best actions would be 1, and 0 respectively.

In two-player XOR however, the second values in their states have been swapped.

Player 1 needs to XOR the first value from their state with the second value from

player 2’s state to calculate the best action. This gives 1 XOR 1 = 0. Player two

must do the same with the first value from their state, and the second value from

player 1’s state, giving 1 XOR 0 = 1.

4.3 Pathfinding

This is much more recognisable as a traditional game. I have created a graphical

display for the game which displays the state and updates as the state changes.

The game consists of a grid of tiles, called the board. Each tile is either a wall or

a floor. The player starts on a floor tile and moves one grid tile each turn, in one

of 4 cardinal directions (→, ↑,←, ↓). The player can only move into floor tiles. To

increase the score and terminate the game, the player must reach a goal position,

which will be a floor tile to ensure it is reachable.

Scoring

The player starts with a score of zero. Every move the player makes decreases its

score by 1 point. Trying to move into a wall decreases the players score by 5 points,

in addition to the one point lost from making a move. Once the player reaches

the goal position, their score is increased by 100 points, and the game terminates.

Because the score does not increase until the game ends, machine players must

reach the goal position before they can learn a strategy to achieve a good score.

9

Game Variants

The way the game board is generated, and the placement of the player and goal

positions, can greatly affect the nature of the game. I have used two different

configurations which require different types of strategy with varying levels of com-

plexity. For both variants, I have fixed the goal position in a single location at the

bottom right tile of the board.

• Single Path

This is the more simple variant of the game, in which a single path twists

randomly around the board from the player’s start position, to the goal

position. The path never touches or intersects its self.

Figure 1: Graphical interface for pathfinding game (single-path variant)

• Tree-Maze

In this variant, the map is generated as a complete maze with a tree-

structure, meaning there is only one path between any two points in the

maze.

10

Figure 2: Graphical interface for pathfinding game (tree-maze variant)

The player starts in a random position in the maze. This variant requires

a much more complex strategy than in the single path variant as the player

needs to distinguish the single correct path out of potentially similar options.

It also takes significantly longer to reach the goal by making random moves

than in the single path variant. This slows down the training process.

Adapting for Two Players

I adapted this game for two players by assigning each agent its own game to play,

but swapping their controls. This means the players are required to exchange in-

formation about each other’s game states, or desirable moves. Note that swapping

controls is exactly the same as swapping game states, since the players share a

single score.

Configuration

For my experiments, I use a 7x7 board for both game variants. For the single-path

variant, the player always starts in the top-left tile of the board, and the goal

position is always in the opposite corner. The games terminate when the player

11

reaches the goal position.

4.4 Number Matching

I designed this game specifically for two players. In this game, each player is

presented with a set of numbers. Every turn, each player must toggle the activation

state of one of these numbers (on/off). The best score can be achieved if the players

reach a state where their active numbers sum to the same non-zero value. The

numbers are generated such that there is only one state where this is possible.

I did not create a graphical interface with this game because of its numeric nature.

A graphic interface would end up consisting mostly of numbers.

Scoring

The score is given out of 100, and is calculated using the binary representations

of the sums of each players active numbers. The score represents the percentage

of 1 bits in the two sums that are common to both. It is calculated by taking

the number of bit positions where both sums contain a 1, divided by the average

number of 1 bits between the two sums. This gives a value between zero and one,

which is then multiplied by 100 to calculate the score. In the case where both

sums are zero then the score is also zero.

Adapting for One Player

I adapted this game for one player by simply allowing the single player to take the

roll of both players. The player can toggle a single number each turn. This number

may be from either set. Scoring is calculated the same way as in the two-player

version.

Configuration

For my experiments, I set the game to use 5 numbers for each player. The solution

state always has 3 numbers on from each player. The games terminate when a

score of 100 reached.

12

4.5 Alignment Game

This game was also designed specifically for two players. The setting of this game

is an infinite track with multiple lanes. This forms a grid of tiles, where each lane

is a row in the grid, and columns in the grid represent discrete steps along the

infinite track. Walls are placed along the track at regular intervals. Each wall

occupies and blocks an entire column except for one lane, where there is a hole in

the wall. The position of the hole is random for each wall.

Figure 3: Graphical interface for alignment game

A single character is controlled by both players. The character advances one

column along the track each turn, and additionally the players may move the

character one lane up or down each turn. If the player advances into a wall tile,

the game terminates, however they may pass freely through the hole in each wall.

Each wall tile can only be seen by one of the two players. This is chosen randomly

for each wall tile. The players must combine their knowledge in order to identify

where the real hole is located.

Each player has two possible actions they can take each turn. One player can move

the character up into the lane above, or do nothing. The other player can move the

13

character down into the lane below, or do nothing. If both players attempt to move

the character, or if both players do nothing, the character will remain stationary.

This means that both players must agree on where the character should move to

ensure they both get the outcome they wanted.

Graphical interface

I create a graphical interface for this game, and a simple system for human control.

The interface shows the game state, and updates each time the player makes an

action. It also displays the current score in the top-right corner.

Figure 4: Graphical interface for alignment game

The red and blue wall tiles represent the sections of the wall seen by each player.

The yellow circle is the character.

Scoring

The players start with a score of zero. Each time a wall is passed without dying,

the players gain one point.

14

Adapting for One Player

I adapted this game for one player by giving the single player the information and

actions of both players. The player has three actions to choose from instead of

two. They can move up, move down, or do nothing. The player still needs to

combine the two sets of information to determine the locations of holes.

Configuration

For my experiments, I set the game to use 5 tracks, and to place 6 spaces between

each wall. The player can see the column they are in, and the 4 columns ahead of

them in the track.

4.6 Implementation

For my implementation, I created a general-purpose interface for games. I im-

plemented some games before I created this interface. For those games I created

adapter classes which allow them to be interacted with through the interface, even

though their underlying interface is different.

The interface is implemented in Python as an abstract class using the ABC

standard-module, as Python does not support interfaces. Because Python is dy-

namically typed, any object matching the interface would work with my code, even

if it does not explicitly extend the abstract class I have provided. The interface

consists of 5 methods:

• do action(action)

Carry out the action specified in the action parameter. In two-player games,

the action parameter should contain two values, representing the chosen

actions of each player.

• get state()

Returns the current state of the game. The value returned is not necessarily

the entire state, but rather a front-end, equivalent to a graphical display.

Some parts of the state can be intentionally not exposed as part of a game.

In two-player games, two states are returned, one for each player. The states

could contain different information.

15

• get score()

Returns the current score. In two-player games, a single score is still used.

• is terminated()

Returns a boolean value representing whether the current state is a termi-

nation state. In two-player games, two values are returned.

• reset()

This is a utility function, used to reset the game back to its initial state.

This is often more efficient than creating a new game instance.

Additionally, all games can be cloned, using a method built-into the abstract class.

Cloning creates an exact copy of it, with the same state and score.

16

5 Q-Learning

One of the most famous examples of reinforcement learning is the research carried

out by DeepMind technologies into creating a general purpose algorithm which can

learn to play Atari games, using only the score value and the pixels of the screen

as inputs. In 2013, DeepMind technologies published the article [2] detailing their

techniques. Their implementation was based off of a technique called Q-Learning.

Q-Learning systems maintain a table of (state, action) → result mappings called

the Q-Matrix. This table is added to every time the system makes a move and

observes its outcome. The outcomes are numbers representing the desirability of

the resulting state relative to the previous state, based on some scoring system.

The table is initially populated by taking random moves, then a model is trained to

approximate outcomes based on random samples from the table. The system goes

through cycles of randomly trying moves, and training the model with samples

from the table. Once the model is accurate enough, it can be used to focus the

random move choice onto favourable moves. This cycle is repeated until a desired

prediction accuracy is reached for the model.

Rationale

One of the most notable things about the 2013 study is that a single algorithm was

able to master a variety of different games, with the only game specific parameter

being how the score was extracted. This sort of flexibility was one of my goals for

this project. Furthermore the study already focused on games, so the techniques

translated well into the context of the project.

5.1 Implementation Details

My implementation of Q-Learning comes in the form of a Python module. The

module contains logic for playing through and learning one-player and two-player

games, and facilitates communication in two-player games. The system interacts

with games through a general-purpose interface [Implementation] meaning almost any

game can be adapted to work with the system.

17

5.1.1 States and Actions

In the DeepMind technlologies study [2], the pixels of the screen from several frames

are used to represent game states. Additionally, they used a fixed set of possible

moves for all games, representing the inputs on an Atari 2600 controller. This

meant that all games presented states in the same format, and all games accepted

the same inputs.

In my implementation, there is no fixed format for game states. Instead, games

use the most appropriate format. There is also no fixed set of inputs (actions),

since the control schemes of the games are vary varied. Doing this smaller and

generally faster models. Supporting different state-sizes and sets of actions makes

the system more flexible.

5.1.2 Neural Networks

The underlying machine learning models in the module are neural networks.

TensorFlow

For the implementation, I used the TensorFlow Python library to model the neural

networks. I used built-in TensorFlow functionality to calculate loss for the models,

and gradients to train the network[Cross Entropy].

TensorFlow is the main reason I created my implementation in Python. While it

supports other languages, Python is considered the primary language of Tensor-

Flow. Since TensorFlow handles all of the demanding computations, the perfor-

mance of python was not an issue.

Predictions

Like in the DeepMind study [2], my model takes a state as input, and produces a

predicted q-value for each possible action. The other architecture I considered was

to use a (state, action) pair as input, and to output a single Q-Value for the given

action in the given state.

This alternative architecture would have more flexibility for actions. Specifically,

it would be much simpler to represent games in which the available actions vary

depending on the game state, such as chess. It would however be less efficient to

18

predict Q-Values for every available action in order to find the best. I suspect it

would also be more difficult to train, as the internal model would need to perform

drastically different calculations based on which move was input.

Cross Entropy

In my system, I use cross entropy to measure the loss during training. This value

is minimised in order to maximise the accuracy of the system. Cross entropy

is an unintuitive value in its raw form, however it makes a good loss value for

classification problems [1].

It takes two sets of values, y and ŷ, where y represents actual values and ŷ rep-

resents predicted values from a model. If both sets are considered as probability

distributions for the same set of events, then cross entropy is the average number

of bits needed to represent an event from y, if you use a coding strategy which is

optimised for probabilities in ŷ.

For a given y, the maximum achievable cross entropy for y, ŷ is achieved when the

two distributions are equal. This maximum value is equal to the average number

of bits needed to represent an event from in y, given the optimal encoding coding

strategy. This means that in games with more possible actions, and where expected

values for actions are closer together, the minimum achievable loss is higher than

in simple games such as the XOR game.

The values in y usually reflect real-life uncertainty in classification training data,

and so the minimum uncertainty achievable by the model is equal to that present in

the original data. It actually functions similarly for q-values however. My training

data comes from the q-matrix which is built from observations. This process is

inherently random. The values in the q-matrix actually represent the estimated

future-payoff of a given action. If two expected payoffs are similar in size, then

there is uncertainty present in the system, regarding which is better.

If we have the prior knowledge about a game that there is no randomness, and the

state space has already been fully explored, then we know that the highest q-value

is actually 100% likely to correspond to the best action. The system however,

cannot know that the state space is fully explored, or that there is no randomness

present in the game. As a probability distribution, q-values represent the likelihood

that a given action is the best available action.

19

Additionally, on a more basic level, cross-entropy uses the differences between

numbers rather than their absolute values. This is beneficial, since the system only

needs to predict the relative merits of different actions. Removing an unnecessary

constraint from the desired output leads to faster training.

Another benefit is that it is fairly simple to train with partially explored states

(where not all actions have been explored). In my system, I pass in a binary mask

along with my training data, where each value represents whether an action has

been explored. I multiply (element-wise) the mask with my training data and

predictions before calculating the loss. Setting both values to zero increases the

minimum possible cross entropy, but it does not change the values required for

that minimum. This means the zeros are effectively invisible to the optimiser,

and the system will still converge exactly the same way. This is also true for loss

calculations such as RMS, but I chose to mention it because it is an important

feature for my system.

I use TensorFlow’s in-built implementation of the adam optimiser to optimise the

networks. I set up the optimiser to minimise the cross-entropy loss value.

Architectures

I have encapsulated the underlying neural networks as Python classes called ’Agents’.

The module defines two types of agent, FeedForward and Convolutional. These

represent two different underlying neural network structures.

• FeedForward

Feedforward agents use a simple layer-based architecture, where each layer

is the result of a matrix multiplication with the previous layer. The number

of layers and the size of each layer can be configured.

Intermediate nodes use the Tanh activation function, while input and output

nodes use linear activation. The Tanh function is commonly used in neural

networks. It maps all values into the -1 to 1 range. Linear activation means

each value is mapped to its self.

For all games, I used 4 intermediate layers with 2x, 3x, 4x, and 5x nodes

respectively, where x is the number of nodes in the input layer, and also the

number of values in the game state of the game being played.

20

• Convolutional

Convolutional agents are based on convolutional neural networks, the type

used in the DeepMind study [2]. The agents are comprised of a series of filter

layers, followed by a series of fully-connected layers. These are all standard

features of convolution neural networks. The size of filters, and the number

and size of the fully connected layers can be configured.

The fully connected layers use the RELU activation function, and the input

and output nodes use linear activation. RELU (Rectified Linear Unit) is a

simple function that maps values greater than zero to themselves, and all

other values to zero.

For the pathfinding game and the alignment game, a 5x5 filter layer is used,

followed by 3x3 filter layer. The XOR game and number matching game

have smaller game states, so they both use a single 2x1 filter layer. The

outputs are then flattened to feed into the fully-connected layers.

The alignment game and the number matching game use 4 fully connected

layers with 2y, 3y, 4y, and 5y nodes respectively, where y is the number of

nodes output from the last filter layer. The last two layers are excluded in

the XOR game, as in rare cases they dramatically slowed down training. For

the pathfinding game, only 2 fully connected layers are used, with y, and 2y

nodes respectively. This was to ensure the network would fit in the memory

of my GPU.

• Double Variants

Each agent type also has a double variant, for two-player games. These vari-

ants have two separate underlying neural networks with a communication

link connecting them. On each network, a series of standard feedforward

layers are added, branching off from the main structure. These layers are

dedicated for communication, with the last layer representing the communi-

cation output to the other agent. This last layer uses linear activation, while

the other layers use the same activation function as the intermediate nodes

of the agent.

The incoming communication nodes from the other agent are concatenated

with the layer from which the communications branched off, and the network

continues as normal from that point.

21

On each agent type, the number and size of the communication layers can be

configured. For the feedforward agent, the layers before and after the com-

munication link can be individually configured, meaning the communication

layer can branch off from any desired layer in the network. For the con-

volutional agent, the communication layer is always located after the filter

layers.

For double feedforward agents, 3 pre-communication layers are used, with

x, 2x, and 3x nodes. Next, 3 communication layers are used (excluding the

communication output layer), with 3x, 4x, and 5x nodes. Finally, 3 post-

communication layers are used with 3x, 4x, and 5x nodes. For the XOR

game, the first pre-communication layer, the last communication layer, and

the last post-communication layer were all excluded as they dramatically

slowed down training in rare cases. The last communication layer and post

communication layer are also excluded for the pathfinding game because they

made the networks too big fit in my GPU memory.

Double convolutional agents use the same filter layers and fully-connected

layers for each game as their single counterparts. For all games, 2 commu-

nication layers were used (excluding the communication output layer), with

2y, and 3y nodes respectively. The pathfinding game was the exception to

this, using only y and 2y nodes instead. Again, this was to limit the memory

footprint of the network.

5.1.3 Communication Bandwidth

My module allows me to vary the number of values communicated between agents

at each step. I call this the communication bandwidth. Different games may have

different requirements for communication bandwidth. For example, the XOR game

only requires a bandwidth of one value to achieve its peak accuracy. A bandwidth

of zero would result in the system being unable to train past 50% accuracy, while

increasing the bandwidth above 1 would result in no improvements.

A communication bandwidth of 4 was used for the pathfinding game, one for each

possible move. 5 was used for the alignment game, as there are 5 tracks. 5 was

also used for the number watching game, as each player has 5 number options. I

picked these values, as I believed they would be sufficiently large for each game.

22

5.1.4 Exploration and Training

This part of the system has a major impact on training time. Because of this, I

did a lot of experimenting to find a good balance between random and prediction-

guided exploration.

Scheme

Exploration and training are two separate processes in my implementation. It is

possible to interleave the two in a way that is tailored to a specific game. This

is useful for testing, however to maximise flexibility I wanted to settle on a fixed

pattern that worked for all games. I did not succeed at this goal. There are several

exceptions required for specific games.

The system always rotates between playing through ten games, and then training

on 100 samples from the Q-Matrix. One sample consists of every observed outcome

for a single state. This is repeated until a desired prediction accuracy is reached.

If there are not 100 samples in the Q-Matrix, then the program uses all of the

available entries from the Q-Matrix to get as close to 100 samples as possible.

This occurs in the first few rounds for most games. If a game has less than 100

possible states, for example the XOR game, then this will be the case for all rounds.

Simultaneous Games

Using TensorFlow allows me to run neural networks on my GPU. The highly par-

allel nature of GPUs meant that I could gain a lot of efficiency by passing multiple

states into my network at the same time, and generating multiple predictions.

The flipside of doing this is that the model gets updated less frequently. In gen-

eral, the larger the branching factor for possible states, the more beneficial it is

to run through multiple games before training. If the state space is small, then

the games are less likely generate new and useful experience. In these cases, it is

better to maximise training to improve the quality of predictions and unlock new

possibilities.

Focusing Exploration

The biggest problem I ran into was caused by prediction-guided moves in the

pathfinding game. To gain any useful experience playing through the pathfinding

23

game, the agent must reach the goal location. To do this, the agent has to follow

the single available path to the exit. If this path contains any states for which

the agent does not predict the correct action, it can become unable to continue

down the path, which halts the whole training session. The standard approach is

to introduce a fixed chance to make a random move at every step. This makes

it technically possible to escape these situations, however the expected time to

overcome sequences of these states still increases exponentially with the length of

the sequence.

The best solution I found was to start the exploration with some base chance to use

a prediction, and the to decrease this chance by a factor every time a prediction is

used. In games which are taking a large amount of turns, the exploration becomes

almost entirely random. This means that more random moves are made in states

that the model is not yet suited to.

To further this effect, I used the average accuracy of recent predictions to deter-

mine the decrease-factor. If recent predictions were 90% accurate, then the chance

will decay by 10% for every move taken based on predictions. This brings about

another benefit. In many games, the space of possible states increases exponen-

tially with each move. The certainty of predictions can decrease over time as it is

becomes likely that the player will encounter a new situation. The higher the ac-

curacy of the model, the further into the game it should be able to make accurate

predictions. Focusing on predictions in the earlier moves, means that exploration

becomes focused in the areas where prediction accuracy is lowest. As the predic-

tion accuracy increases, the focus shift towards later states, and away from earlier

states that have already been fullt grasped.

I used this approach for the pathfinding, and the number matching game, but

it was not suited to the other two games. For the XOR game, rules that span

multiple turns were not applicable, so I stuck with fully random exploration. This

was sufficient because the number of possible states is so small that they can

all be explored with no issues. For the alignment game, the scheme was too

random. Wrong moves have a high chance of causing the player to hit a wall,

terminating the game. I could have decreased the decay rate, and the initial

random chance, however I found that using a fixed 20% random move chance

was sufficient. Additionally, I implemented a turn-limit into the learning system,

specifically to prevent the alignment game from running on too long, when the

model became sufficiently accurate.

24

5.2 Experiments and Evaluation

Accuracy Metric

As stated before, I use cross entropy to measure loss for my predictions [Cross Entropy].

Recall that cross entropy can be described using y as the actual expected values for

each action, and ŷ as the predicted values for each action. y and ŷ can be thought

of of probability distributions, where each value represents the probability that

the corresponding action is the best available action in the current state. The

minimum achievable loss represents the uncertainty in the y.

A more immediately understandable accuracy value can be derived from cross

entropy, using the following formula:

accuracy = e−cross entropy

This equation gives an accuracy value between 0 and 1. An accuracy of exactly

1 represents zero loss, which means y and ŷ contain only one value, while values

close to 1 can be achieved if y generally contains a single large value for each game

state. An accuracy of close to zero means that loss is extremely high, and so either

y as a probability distribution is very uncertain, or y is very badly approximated

by ŷ. If a model outputs uniformly distributed random values, it would achieve

an average accuracy of 1
n

where n is the number of values in y (also the number

of possible actions).

Note that the maximum achievable accuracy is still limited, in the same way

that the minimum achievable cross entropy is limited. This limit represents the

certainty that the highest value in y is the best available action. The system

inherently cannot be 100% sure about which is the best action, because it cannot

know if games have a random element, or if all possibilities have been explored.

Uncertainty is naturally always higher in games with a large number of possible

actions, and games where many of the best actions have similar payoffs.

This means that often, the system will report a fairly low accuracy, when in-fact

it has learned to make the correct move in 100% of cases. It is more important

then, to look at when peak accuracy is reached, rather than the actual value of the

peak accuracy. In two-player games, accuracy is averaged between the two agents,

and each agent still has the same set of actions as in the one-player equivalent

25

(excluding the alignment game). This means that the relative uncertainty of moves

between the two versions of a game can be accurately judged by comparing the

peak achievable accuracies.

Finally, the accuracy formula behaves unintuitively when it is used for two-player

games. Since loss is averaged between the two agents before accuracy is calculated,

the accuracy value appears at the logarithmic midpoint between the two accuracy

values, rather than the true midpoint. This means that when both agents are not

achieving similar accuracy levels, the overall reported accuracy is slightly lower

than expected. This does not affect training, but it occasionally shows up on the

graphs in this section. I have pointed it out wherever necessary.

26

5.2.1 XOR

The XOR game mainly functions as a control to compare other games to, as well

as a sanity check to prove the system is properly functioning. As expected, the

Q-Learning system quickly learns the XOR function. This means that the ideal

models could be represented within all agent types, and that the training system

effectively converged on those representations.

The graph below shows accuracy over the course of 5000 training rounds on one-

player and two-player XOR games for both agent types.

Figure 5: Combined XOR results

The first thing to note is that every agent started the session at 50% accuracy.

This is because if you randomly guess actions for the XOR game, you have a 50%

chance of guessing the best action each time, because there are only two options.

Achieving below 50% would mean that the models were optimising in the wrong

direction.

On the graph, you can see that in the one-player version of the game, both agent

types achieved near-perfect accuracy. In the two-player version, both agent types

plateaued at around 0.96. The reason for this is that in the two-player version, the

27

expected values of the best actions are lower, because of uncertainty introduced

by the other player’s inputs. This increases the minimum uncertainty within the

q-matrix, since it never assumes it has fully explored every possibility. Therefore,

the maximum achievable accuracy is capped. All models still correctly predicted

the best move for all possible states.

Both of the convolutional agents reached their peak accuracies at almost the same

time. The change from one-player to two-player seems to have had little effect

on the optimisation speed. The opposite is true for the feedforward agents. The

two-player feedforward agent took significantly longer to reach its peak thank its

one-player counterpart. I am not sure why the performance varied in this way

between the two network types, but it is clear that convolutional networks are

better suited for two-player games.

For both the one-player and the two-player versions, the feedforward agents took

longer to reach peak accuracy than their convolutional counterparts. The con-

volutional agent has two benefits over the feedforward agent. First of all, filter

layers can take advantage of correlation between spatially close inputs. This is not

important for the XOR game, but it is for some other games. Second, the con-

volutional agents use much bigger networks than the feedforward agents, because

filter layers result in a large amount of nodes. This could mean that some optima

have larger neighbourhoods of possible similar representations, and therefor can

be reached more directly through optimisation.

The final notable feature is the temporary plateau reached mid-way through train-

ing by the two-player feedforward agent. The underlying loss value of the step is

approximately half way between the minimum and peak values, but this is ad-

justed into exponential space for accuracy so it does not appear exactly in the

middle. At this point in the training, one agent had learned to correctly pick the

best actions based on communications, but the other had not, so their true aver-

age accuracy was closer to 0.725. Once the other side of the communication was

correctly learned, the agent overcame the plateau.

Communication Bandwidth

For the XOR game, I also tested the communication bandwidth. I did this to illus-

trate the importance of the communication link. For every game-type, I picked a

bandwidth that I knew would be sufficient, based intuition about successful strate-

28

gies for each game. I did not attempt to find minimum required communication

bandwidth for any other game types, as the focus of the project was the viability

of the agents, rather than identifying specific information about the games

Figure 6: Two-player XOR game using convolutional agent with varying commu-

nication bandwidth

As expected, the agent remained stuck with effectively random guesses, when

given a communication bandwidth of 0. A communication bandwidth of 1 was

sufficient to communicate all critical information. It is clear from the graph that

once this threshold is reached, performance remains constant. This differs between

game types, and depends on the amount of critical information which needs to be

exchanged each time step.

29

5.2.2 Pathfinding

The graph below shows accuracy over 5000 rounds of training for all four agent

types, each playing the single-path variation of the pathfinding game. Both agent

types were able to quickly reach near-perfect accuracy in the single-player version

of the game, but similar to XOR, they were noticeably limited in the two-player

version.

Figure 7: Combined pathfingind game results (single-path variant)

The next graph shows accuracy over 5000 rounds of training for all four agent

types, each playing the tree-maze variation of the pathfinding game. Similar to

the previous graph, both agent types excelled in the single-player version of the

game, but had slightly limited accuracy in the two-player version.

30

Figure 8: Combined pathfinding game results (tree-maze variant)

The two graphs are very similar. The most notable difference between them is

that each agent-type took slightly more rounds to reach peak accuracy in the tree-

maze variant, as if their lines had been stretched slightly along the x-axis. This is

expected because the game-states are much more complex in the tree-maze variant,

as they have additional paths that do not lead to the goal position.

Accuracy Troughs

The two-player versions in both graphs feature occasional accuracy troughs of

significant size. Not only are they present in both graphs, but many of them

appear similar in shape and location between the two graphs. The troughs are

noticeably smaller for the tree-maze variant however. I cannot figure out exactly

why these troughs occur, though I expect it is something to do with the adam

optimiser used for the training. It is possible they represent discrete pivot points

between strategies for the game, and the optimiser is naturally leading the networks

between different the strategies.

31

Noise in Two-Player Games

The most striking feature of the graphs is that the accuracies for the two-player

versions of the game were extremely noisy compared with the one-player versions.

I expect that this is due to increased noise in the q-matrix because of the value of

an action is affected by the action the other player takes.

Accuracy vs. Real-World Performance

The high accuracy of the one-player agents in both graphs is not completely re-

flected in their practical success rate. Due to the nature of the game, even small

levels of inaccuracy can totally prevent the player from reaching the goal tile. In

both variants of the game there is only a single path to the goal tile. This can

be though of as a sequence of states the player must be in before they can reach

the goal. If the player takes the wrong action in any of these states, then they are

totally prevented from progressing further down the chain of states to the goal, as

they will always make the same mistake again.

To frame it another way, say an agent reaches 99% accuracy, and the average

distance from the starting point to the goal is 15 tiles. The average chance of the

agent making the correct move every step is 0.9915 = 0.86 That means the agent

would still fail to reach the goal in 14% of games.

In reality, any mistakes by the agents are very minor in terms of the actual relative

payoffs predicted for each action. I expect that introducing a small amount of noise

into the inputs would allow them to overcome the majority of these mistakes after

a few turns.

In contrast to the one-player results, the two-player agent’s practical performance

is more in line with their reported accuracy. I believe this is because the commu-

nication channel acts as a form of noise between the two players. If one becomes

stuck along its path to the goal while the other is still making progress, the differ-

ent inputs coming through the communication channel introduce a small random

element to the predictions at each time step. This frequently allows the players to

overcome obstacles they would otherwise be stuck on. You can see this in action

when the agents play through a game. They alternate between having players

stuck at points along their paths, but only rarely do they both get stuck at the

same time.

32

5.2.3 Alignment Game

The graph below shows accuracy over 5000 training rounds on one-player and

two-player versions of the alignment game.

Figure 9: Combined alignment game results

It is immediately clear from the graphs that the Q-Learning system achieved a

very poor accuracy in this game, for all agent types. In the one-player version, ac-

curacies of around 37% were achieved, where the agents had three possible actions

each turn. In the two-player version, an accuracy of around 52% was achieved,

where each agent had only two possible actions to choose from. Interestingly how-

ever, the real-world performance of the agents is extremely good in all cases. This

suggests that the game has a lot of innate uncertainty. This is likely true, as the

game has a heavy random element in where the hole is generated in each wall.

Additionally, in the configuration I used, there is some breathing room between

walls, in which the agent’s actions are relatively unimportant. This leads to a

large number of actions with similar expected payoffs, and so a large uncertainty

in which action is the best choice.

The biggest takeaway from this is that the innate uncertainty in the Q-Learning

method is not a hindrance. Instead, the system is able to converge on correct

33

values, even when random elements are present in the game. This graph, along

with the models practical performance, illustrates that the system can observe

noisy, uncertain data, and find underlying patterns to converge on an effective

strategy.

5.2.4 Number Matching

The graph below shows accuracy over 5000 training rounds on one-player and

two-player versions of the number matching game.

Figure 10: Combined number matching game results

It is clear from the graph that results in this game were by far-the worst out of all

of the games.

Highly Connected State Space

All versions of the game suffer from the opposite problem as the pathgame. The

state space is too highly connected. There are many different paths to reach

the optimal state, with many having no overlap in intermediate states at all.

Furthermore, there is a second local optimum present in the state space, in the

34

exact opposite state (all options inverted) to the global optimum. All of this

amounts to too much uncertainty for any sort of reliable prediction. This problem

could potentially be alleviated by training many separate agents, then taking a

consensus opinion on the best action.

The openness of the state space also causes the majority of agents to become stuck

in cycles of sub-optimal states. Furthermore, this also occurs in the two-player

game, unlike in the pathfinding game, where players are less likely to get stuck

in the two-player version. Normally, I would suggest introducing some noise into

the system, however when the uncertainty is so high already, this could push the

system towards total randomness. Technically, this still would be more effective

strategy than getting stuck in cycles, as the agents currently do, because you do

eventually reach the optimum state by random chance.

One-Player Performance

This is the only game where agents performed worse at the one-player version.

I think this is mainly due to the way I adapted the game. I gave the roles of

both players to a single player, however I only allowed the player to toggle one

number option each turn. In the two-player version, two options get toggled each

turn, one by each player. This means a lot of new possible states are introduced

in the one-player version of the the game. This also means the chain of actions

required to reach a perfect score is twice as long. Additionally, the player has twice

as many actions to choose from each turn, because they can toggle both sets of

number options. This all adds up to significantly higher uncertainty than in the

two-player version.

The peak accuracy for the one-player convolutional agent is more indicative of

the minimum uncertainty level than the line of the one-player feedforward agent.

It is worth noting that the one-player convolutional agent consistently place a

high value on the best actions, but the amount of noise was too high to achieve

reliable predictions. Additionally, it appears that its accuracy was still gradually

improving, even in the final training rounds.

It appears that the one-player feedforward agent was not able to find any patterns

in the noisy data. It failed to reach an accuracy far above 0.1, which is the random-

strategy accuracy for this game, since the agents had 10 actions to choose from

each round.

35

Two-Player Performance

Another notable result is that the two-player feedforward agent actually performed

better than its convolutional counterpart. I expect this is because the convolutional

agent assumes some correlation between spatially adjacent values in the game state.

There is no such correlation in this game. It may be that the game has high enough

uncertainty, that the additional noise added by this false assumption has a visible

impact on the gradient calculation.

Both agents for the two-player version of the game achieved their peak accuracies

relatively quickly, however both suffered from extremely poor real-world perfor-

mance, as every agent did. I expect that with enough rounds of exploration, the

signal-to-noise ratio in the Q-Matrix would increase, and the agents would find

valid gradients. A training scheme more focused on exploration would have been

much better suited for this all versions of this game. I can only conclude that

using the same training scheme for such a variety of games is counterproductive,

despite my want for a one size fits all system.

5.3 Conclusions

It is clear that joining two agents via a communication link, and training them as

one unit, is a viable technique. It could potentially remove unnecessary complexity

in systems by removing the need for hand-picked exchange protocols or data coding

schemes, and centralising training into one place.

Two-agent systems pair well with Q-Learning, however some system specific con-

siderations should be made to avoid performance issues. Combining agents in-

creases uncertainty in classification problems, however Q-Learning still manages

to offer good real-world performance.

36

6 Genetic Algorithm

Rationale

For my second implementation, I decided to try an approach based on genetic al-

gorithms. One reason for this is that evolution-based optimisation is significantly

different from the gradient descent optimisation used in my Q-Learning implemen-

tation. One of the benefits of genetic algorithms is that you do not need to use

any gradient calculations to determine how to tune your models.

For this system, I wanted to focus on flexibility. In general, genetic algorithms are

known for being effective at solving complex problems, but being computationally

intensive compared to other optimisation techniques.

6.1 NEAT

I chose to base my implementation on a genetic-algorithm system called NEAT de-

scribed in this paper Evolving Neural Networks through Augmenting Topologies [4]

from 2002. The title feature of NEAT is growing neural network structures over

time, starting from a set of minimal networks. The network structures are ran-

domly augmented each generation, and the best augmentations are kept by a

process of fitness-based selection. Each network is represented as an individual

in the population, and each generation, the new population is generated by ap-

plying a variety of genetic operators [Genetic Operators] to members of the previous

population. My implementation closely follows the system described in the NEAT

paper.

6.1.1 Networks

Networks consist of nodes and edges. Every network contains the same number of

input nodes, and the same number of output nodes, specified while initialising the

system. Additionally, every network has a single fixed input node with the value

of 1. This replaces the bias value on edges in a typical neural network, as edges

from this node will add a fixed amount to the value of their end-node, based on

the weight of the edge. Every network in the initial population has the same fully

connected structure, with edges from every input node to every output node.

37

6.1.2 Edges

Edges are represented globally by an index. Each networks holds two values for

each edge it contains: the weight of the edge; and whether the edge is disabled

(called the disabled value).

If an edge is disabled, it is excluded from the network, but it is still remembered

(including its weight value). A disabled edge can no longer have its weight mutated,

and is no longer used for fitness evaluation. It can still however affect speciation,

and offspring created with the cross operator.

6.1.3 Nodes

Nodes are represented globally with their own index system, separate from edge

indices. No network-specific information is tied to nodes, as it is for edges. The

nodes contained in a network can be inferred from the edges, however for practically

each network still maintains a list of the nodes it contains.

Nodes are arranged into a global list called the dependency order. This is the

order in which the values of nodes are resolved when data is being fed through

networks. Naturally, the input nodes are always at the start of the list, and the

output nodes are always at the end. A node may not have incoming edges from

any nodes after it in the dependency order. This feature is not an integral part of

NEAT, and is more of an implementation detail to prevent cycles in the graphs.

6.1.4 Mutation Indexing

As previously mentioned, each time a new network feature (a node or an edge) is

randomly mutated, it is assigned a global numerical index. In the NEAT paper,

these are referred to as innovation numbers. If the same feature is independently

mutated multiple times, the same index will be assigned. This is achieved by

keeping a record containing the structural definition for each index.

Keeping track of mutations makes it easy to find common features between two

networks. This makes it easy to perform speciation, and enables the cross genetic

operator [Cross].

38

6.1.5 Genetic Operators

Genetic operators are applied to individuals or groups in a population, in order to

generate offspring. The goal of genetic operators is to create individuals similar to

the parents, but with minor differences. All of the specific values in this section

were taken from the NEAT paper [4], with the exception of the random normal

values which I determined experimentally.

• Carry Forward

This is the simplest operator. It copies the individual without applying any

other genetic operators. Any species with more than 5 members has its

fittest member carried forward into the next generation. This protects the

best graph features from being randomly discarded, and is a common feature

of genetic algorithm systems.

• Weight Mutation

This operator randomly mutates the weight values of edges. For each edge,

a random normal value is generated with a mean of zero and a standard de-

viation of 0.5. For 90% of edges, their weight is offset by their corresponding

value. For the other 10%, the value replaces their weight.

The magnitude and chance of weight mutations are chosen as a compro-

mise between two effects. The higher the values, the more quickly weights

globally converge on optima, but the more erratic individual weight values

become. More erratic weight values makes it less likely for optimal combi-

nations of values across multiple edges to occur, as less of the edges which

are at optimum values, maintain those values.

Offspring have an 80% chance to be affected by the weight mutation operator.

Weights are only mutated for non-disabled edges.

• Add Edge

This operator adds a new edge to the offspring individual between two nodes

that were not previously connected. The end node of a new edge is always

later in the dependency order than the start node, to prevent cycles in the

networks. The weight of a new edge is a random normal value with a mean

of zero and a standard deviation of 0.5.

Offspring have a 5% chance to be affected by the new edge operator.

39

Figure 11: Add edge genetic operator (original from NEAT paper [4])

• Add Node

This operator adds a new node to the offspring network. A new node is

inserted by choosing an edge in the network, and replacing it with two new

edges and a node, as shown in the diagram below. The weights of the new

edges are random normal values with a mean of zero and a standard deviation

of 0.5. The edge being replaced is not removed from the graph. Instead, its

disabled value [Edges] is set to true.

Figure 12: Add node genetic operator (original from NEAT paper [4])

The new node is placed into the dependency order at the midpoint between

the start and end nodes of the original edge. This gives a roughly equal

chance on average for nodes to be inserted before or after a new node. Other

placements would cause new nodes to tend towards one end of the graph.

Offspring have a 3% chance to be affected by the new node operator.

40

• Cross

Genome crossing is a common operator used in genetic algorithms where you

combine two individuals to create one or more offspring individuals, each of

which is some mixture of the two parents.

Figure 13: Cross node genetic operator (original from NEAT paper [4])

In NEAT, the two parents are almost always chosen from the same species.

In 0.1% of cases, the parents are chosen from different species. The fitter

parent is used as a baseline, then each edge common to both parents has a

50% chance to inherit its weight from the other parent. Next, all edges in

the offspring have a 75% change to be disabled if they are disabled in either

41

parent. This means that edges that do not positively affect fitness are likely

to become disabled over time.

Offspring have a 75% of being created using the cross operator. The offspring

created using the cross operator are still subject to other operators.

6.1.6 Speciation

Speciation is used in neat to separate groups of significantly different networks

within a population. If networks are too different, crossing them will not yield

any benefit as only common features can be exchanged. These features could

have different purposes in individuals with significantly different structures. If

speciation is too fine however, features which could be beneficially combined may

kept separate, and species could suffer from having too few members to reliably

improve each generation.

A species is defined by a single representative individual called the holotype. All

members of a species have a compatibility distance [Compatibility Distance] below a

certain value with the holotype of that species. To determine which species a

new individual is in, it is compared with the holotypes of all existing species,

in age order (oldest species first). It is placed in the first species for which the

compatibility distance fall below the threshold value. If the compatibility distance

is too high for all existing species, a new species is created with the individual as

the holotype. Finally, each generation, a new holotype is picked for each surviving

species. It is chosen at randomly from previous generation members of that species.

This ensures that species are always roughly represented by their holotype. If

this was not done, species would periodically be re-labelled as they outgrew their

generations-old holotypes.

Species are also used to artificially favour new graph structures. The fitness of each

individual is divided by the size of its species, meaning species sizes tend towards

being proportional to their relative fitnesses. If fitness values were not adjusted like

this, new species with a small population and a below-average fitness would have

all of their members culled. This is not desirable because new species represent

significantly different network structures. It is better to give new structures more

individuals and time to optimise and reach their potential before comparing them

to existing long-lived species.

42

Figure 14: Edge lineup (original from NEAT paper [4])

6.1.7 Compatibility Distance

Compatibility distance can be calculated between any two individuals to determine

how similar they are. The edges of the two individuals can be lined up, as shown

in the figure above. From this arrangement, we split the edges into three classes:

common, disjoint, and excess.

compatibility distance = c1E
N

+ c2D
N

+ c3 ·W [4]

In the above equation, E represents the number of excess edges, D represents the

number of disjoint edges, and W represents the mean absolute difference between

the weights of edges common to both individuals. This includes disabled edges.

c1, c2, and c3 are constants used to control the priority of each term. I use the

values 1, 1, and 0.4 respectively in my implementation. I used a compatibility

distance threshold of 3 to determine speciation. These values were all taken from

the NEAT paper [4].

6.2 CCGA

On top of the neat evolution system, I built a layer to support two-player games. I

used an approach called coevolution, an extension to standard genetic algorithms

to support two inter-dependant populations. The 1994 paper, A Cooperative Co-

evolutionary Approach to Function Optimization [3], by Potter and De Jong, de-

scribes a coevolution system for function optimisation called CCGA. In CCGA,

the function being learned is split into multiple sub-functions which are handled

by separate populations. Members from all populations are combined in-order to

evaluate fitness, meaning no additional fitness metrics need to be developed for

the sub-tasks.

The system works by evaluating fitness and creating offspring, one sub-population

43

at a time, in a round-robin fashion. Note that the paper refers to these sub-

populations as species, however I will continue using the NEAT definition of

species, meaning groups of similar individuals within a population. I adapted

this for two-player games by assigning a sub-population for each player, and using

NEAT for the underlying genetic operators.

6.2.1 CCGA-2

I specifically chose to utilise the CCGA-2 variant of CCGA in which the fitness

of individuals within one sub-population is calculated using a combination of the

fittest individuals from the other sub-populations, along with a random selection

of individuals. The best resulting fitness value is taken for each individual.

Standard CCGA-1 only uses the fittest individual from each population, and does

not include random selection. Using CCGA-2 makes it less likely that a high-

fitness combination of networks will be culled because they never get evaluated

together. As stated in the CCGA paper [3], CCGA-2 improves performance when

sub-functions have inter-dependant variables, with the Rosenbrock function given

as an example.

6.2.2 Communication

I took a different approach to communication than in my Q-Learning implemen-

tation. Maintaining communication nodes mid-way through the networks would

have required a lot of additional logic, especially because only networks for two-

player games would require them. Instead, I took inspiration from recurrent neural

networks and persisted the values outside of the networks.

Each network generated for two-player game s has additional input and output

nodes for communication. Between each game turn, the values from the commu-

nication output nodes are copied into the communication input nodes of the other

player. This means there is a 1-turn latency on communications, however the

method was simple and elegant to implement, as it required no additional logic in

lower layers of the system.

44

6.3 Evaluating Fitness

To evaluate fitness, I created algorithms to take a network, feed values through it,

and return the outputs. I created models on top of this to pass data between game

instances and the networks. Additionally, these models handle the persistence and

transfer of communications between players for two-player games, and can enforce

turn-limits on games.

For each fitness evaluation, multiple game instances can be played through before

calculating a fitness score. This improves the consistency of fitness scores in games

with random elements, and also reduces the requirement for smooth score-gradients

in games. In my implementation, 10 games are played each round.

For one-player games, the average score is taken across all game instances played.

For two-player games, the average scores are taken across all game for each part-

ner from the other population, and the highest value is used as the fitness, in

accordance with CCGA-2.

6.4 Experiments and Evaluation

My standard NEAT implementation for a single population worked reasonably

well. My coevolution implementation on the other hand suffered from catastroph-

ically bad performance. This meant that for standard NEAT, I used a population

of 150, as suggested in the NEAT paper [4], however, I was forced down to a pop-

ulation size of only 25 for my coevolution implementation.

45

6.4.1 XOR

Again, I have used the XOR game as a benchmark, and sanity check. In this

case however, the check failed. My coevolution implementation failed to reach any

reasonable performance level.

Figure 15: Accuracy in NEAT learning the XOR game

The one-player XOR game was learned by single population NEAT in 65 gener-

ations. The mean accuracy of the population does not appear to improve sig-

nificantly past generation 100. My implementation closely matches that used in

the NEAT paper [4]. In the paper, it is stated that their implementation takes

an average of 32 generations to learn the XOR function. I am not sure why my

implementation performs worse.

The two-player performance was very bad, considering XOR is such a simple func-

tion. One thing to note about two-player version of the game is that both players

must choose the correct answer to achieve any score. This was not a problem for

Q-Learning because it deals with expected values, but fitness here was based upon

raw score. This is why the one-player mean value hovers around 50%, while the

two-player mean sits at only 30%.

46

6.4.2 Other Games

I was not able to reasonably test coevolution with any other games. I was unable

with the pathdfinding game because of the innate large size of the game states. In

the alignment game, and the number matching game, the accuracy never signifi-

cantly improved. The single-population NEAT implementation is able to perform

adequately at the alignment game, but performs poorly in the pathfinding game,

and number matching game. I have not included measurements, because the pur-

pose of this project was to test systems of multiple communicating agents. Data

for standalone single-agent performance is not relevant to the project.

6.5 Conclusions

It is hard for me to draw conclusions about the viability of genetic algorithms for

communicating multi-agent systems. The methods I employed definitely proved to

be unsustainable. That said, I do not think this entirely rules out the combination

of the two ideas. Coevolution has already be shown to be a viable technique [3].

The issues I encountered were mainly related to efficiency, though my ability to

evaluate other parts of the system was limited because of those issues. If efficiency

could be improved, such a system may become more practical.

Efficiency

The efficiency issues I encountered mainly stemmed from the fact that each indi-

vidual required many evaluations to judge its efficiency. It could instead be more

viable to treat pairs as individuals, and use more traditional genetic algorithms

with a single population. Alternatively, it could be more stick to single-round

tasks, and implement some sort of mid-network communication, rather than the

delayed persistent communication I used.

The tools I used in my approach were poorly suited to the problem. Using a library

other than TensorFlow could possibly yield a huge performance increase. Since

TensorFlow does not have good support for mutability, it was a very bad match

for NEAT. Ideally, the genetic model and the execution model would be merged,

such that each individual would exist only as a functioning neural network model,

with no other representations to manage.

The inadequacy of TensorFlow meant it performed similarly to standard python

47

maths, eventually leading me to switch to a python implementation to model the

neural networks. Because of this, just implementing the system in a lower level

language could have made a lot of difference.

Challenges for Evolution

The main road-block for the evolution process seemed to be score gradient. Many

games offer score increases in discrete chunks. Sometimes, a lot of complex be-

haviour needs to be randomly developed before any increase in fitness can be seen.

This was successfully alleviated to some degree by averaging the score over multiple

plays, this is not a perfect solution however. Another way to alleviate this would

be to increase the population size. This would be a sustainable solution, if there

are sufficient computational resources available. In general, I think my system

suffered most because of the small population size forced by poor performance.

48

7 Final Thoughts

7.1 Conclusions

To recap, I first implemented four games, each with a two-player version requiring

communication between the players for success. I implemented the Q-Learning

system, and tested it’s ability for all game types, contrasting one-player and two-

player performance. Finally, I implemented the NEAT genetic algorithm system,

and a CCGA layer on top of it to support two-player games. I tested this system

on the XOR game as a test, and the CCGA implementation failed to perform

adequately.

I have successfully shown that it is feasible to link up two machine learning agents

via a communication channel, and train them as a single system. I have demon-

strated Q-Learning as an effective partner for such a system. This is because it is

particularly effective at revealing gradient in systems with a lot of noise, and with

random elements.

There are a lot more pitfalls to be overcome when using a genetic-algorithm based

approach with communicating multi-agent systems, however I still believe that

this approach has a lot of promise, if attacked carefully.

7.2 Suggestions for Further Exploration

In this project, I have demonstrated the feasibility of communicating multi-agent

systems, but I have not practically explored any of the possible benefits or appli-

cations of such systems. I would be interested to be a physical implementation,

using the techniques explored in this project. I would especially like to see an

implementation where the agents exist on physically separated machines.

Communication Protocol Optimisation

In a system of multiple neural networks which must exchange information, it could

be possible to automatically optimise the data exchange for desirable properties.

For example, you could train a system to minimise communication bandwidth

requirements, without needing to manually designing data-specific compression

schemes. You could also optimise for data integrity on a communication channel

49

prone to data-loss. This could allow for data integrity schemes tailored to specific

communication channels, or even dynamically adapting to new conditions.

Encoding and Exchanging Knowledge

The same principles of black-boxing data transfer could also be applied to data

storage. An agent could be trained to store information, and use it later to com-

plete tasks. The data storage scheme could be completely determined by the agent.

You could even have agents exchange knowledge using black-boxed communication

as explored in this project. This would also allow for multi-step communication

where information communicated at a previous time-step could be used in a later

calculation. This could allow for much more complex communication behaviour

to develop.

Indirect Communication

In this project, all communication between agents has taken place through channels

hard-coded into the structure of the agents. It would be interesting to instead

experiment with less direct forms of communication. For example, agents could

communicate by making observable changes to some world state such as a game

board. This behaviour could come about naturally, so long as the agents benefit

in some way by exchanging information.

Further Investigation of Genetic Algorithms

My genetic algorithm implementation was largely lacking in efficiency. A similar

system could be built including functionality to freely mutate neural networks.

This would mean genetic operators could be applied directly to neural networks.

An implementation like this may be able to support a larger populations for co-

evolution.

Systems of More than Two Players

In this project, I only explored the feasibility of two-agent systems. It would

be interesting to investigate more general models for n-agent systems, and how

efficiency of would be impacted by the number of agents.

50

I may even be possible to create a network of individual devices which can be

optimised as a single system. The network could even feature a multitude of

device types, with different roles in the meta-system.

Communication Bandwidth Requirements

It would be possible to test how well a communicating agent system can compress

information by testing minimum communication bandwidth requirements against

existing compression methods.

7.3 Reflection

Overall I view this project as a success. I gained a lot of experience with machine

learning tool and techniques. That was one of my main personal goals for the

project. Additionally, this is the longest-term project of this nature I have ever

undertaken. It has given me a much better sense of the kind of work involved in

undertaking a large personal code project. Finally, the project was very research

heavy. I spent more time reading and researching for this project then I ever have

before. Part of the reason was that I started the project with very little machine

learning experience.

Implementation-wise, my Q-Learning implementation is everything I planned for it

to be. It effectively allowed me to meet my goals for the project, and provided some

interesting data. I wish that I could have started again with my genetic algorithm

implementation. I came into it with the tools which I chose for Q-Learning, only

to find them not suited to the job. I still learned a lot from experimenting with

the system, but overall it did not provide much towards the project.

51

References

[1] A friendly introduction to cross-entropy loss. https://rdipietro.github.

io/friendly-intro-to-cross-entropy-loss/. Accessed: 2018-05-10.

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep re-

inforcement learning, 2013. cite arxiv:1312.5602Comment: NIPS Deep Learn-

ing Workshop 2013.

[3] Mitchell A. Potter and Kenneth A. De Jong. A cooperative coevolutionary

approach to function optimization. In Proceedings of the International Confer-

ence on Evolutionary Computation. The Third Conference on Parallel Problem

Solving from Nature: Parallel Problem Solving from Nature, PPSN III, pages

249–257, London, UK, UK, 1994. Springer-Verlag.

[4] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through

augmenting topologies. Evolutionary Computation, 10(2):99–127, 2002.

[5] Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine

learning perspective. Autonomous Robots, 8(3):345–383, Jun 2000.

52

https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/

	Abstract
	Introduction
	Starting Point
	Preliminary Research
	Initial Ideas
	Initial Goals

	Games
	Definitions
	XOR
	Pathfinding
	Number Matching
	Alignment Game
	Implementation

	Q-Learning
	Implementation Details
	Experiments and Evaluation
	Conclusions

	Genetic Algorithm
	NEAT
	CCGA
	Evaluating Fitness
	Experiments and Evaluation
	Conclusions

	Final Thoughts
	Conclusions
	Suggestions for Further Exploration
	Reflection

