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ABSTRACT 

The aim of this paper is to investigate the application of Machine Learning in Automated Essay 

Marking. After a thorough background of Machine Learning, Artificial and Convolutional 

Neural Networks and fundamental word-to-vector representations, six of the main approaches of 

an Automated Essay Marking system using Convolutional Neural Networks are presented. The 

approaches differ about the word-to-vector representation, the essay representation and the 

network structure they are using. The approaches are then implemented to different software 

versions and their implementation is fully explained. The results of the various versions are first 

presented and then evaluated using six different evaluation metrics such as Accuracy, Confusion 

Matrix, Loss Graph etc. The results are very encouraging with some of the versions classifying 

testing examples with an Accuracy of more than 50%, but most importantly capturing the 

dataset’s ordinal class structure. After evaluating the models and their results, the following 

outcomes were reached. The essay representation, as 1-dimensional or 2-dimensional, is 

insignificant given that the feature extraction part of the classification is performed with similar 

parameters. The word-to-vector representation is directly affecting the size of the essay and 

dimensions of the word-vector. As a result, a simpler word-to-vector representation can 

outperform a more complex word-to-vector representation, if the complex word-to-vector 

representation is not combined by a deep neural network that can “handle” its size.  
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1. INTRODUCTION 

 The aim of this project is to thoroughly investigate the application of Machine Learning in 

Automated Essay Marking. The reason Automated Essay Marking is a very important and 

interesting subject to investigate under the light of Machine Learning is because it gives us the 

chance to philosophically but also scientifically question whether a machine is able to capture 

patterns so obscure and complex such the patterns of essays in relation to their grades. 

The combination of Machine Learning and Natural Language Processing in Automated Essay 

Marking will hopefully give us these answers. A human essay marker does not only assess an 

essay grammatically and/or syntactically, but also assesses the arguments made, and even more 

importantly, the support of the arguments made. So, this project will investigate whether a 

Machine Learning model can extract those features and classify the essays using them.  

The dataset used originates from Kaggle and its purpose was “The Hewlett Foundation: 

Automated Essay Scoring” competition (Kaggle, 2012). It’s a set of 1750 essays together with a 

grade from 2 to 12. All essays were written by students ranging from grade 7 to grade 10. Each 

essay was marked by two raters, who then agreed to an average, which is the mark that will be 

used for the classification.   

This report includes 6 of the main Artificial Neural Network approaches, which were 

implemented and trained to 6 main versions. Through these different approaches/versions, I 

investigated the effect of three different factors of essay classification. First, the effect of the 

different representation of words as the essays are inserted into the Artificial Neural Network, 

implementing two completely opposite approaches and evaluating their performance. Second, 

the effect of the essay representation as the essays are inserted into the Artificial Neural 

Network, implementing 1-dimensional and 2-dimensional essay representation. Third, the effect 

of the depth or size of the Artificial Neural Network, by experimenting with various different 

model depths. Last but not least, I also investigated the dependency between those three factors 

by combining them in different ways.  

The results were more than satisfactory.  Four out of six models classified the essays with high 

accuracy showing signs of capturing the order of the grades and the natural structure of the data. 
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Most importantly, the three factors were fully examined and resulted to very important outcomes 

that will be vital in the next step of the project.  

Both word representations, and thus the project, are based on the assumption that the order of the 

words in the essay is insignificant and that specific words will lead to a class regardless their 

position in the text.  

The intended audience of this project is the research community. Although the results show that 

the produced models can be used as supplementary marking guides, if not as sole marking 

systems, the outcomes of this projects regarding the three factors effect in the classification can 

result to a highly accurate Automated Essay Marking in the very near future.  

The approach used to carry out was a modified Agile methodology (Beck, et al., 2001). The first 

step of the methodology is to decide the approach. The initial model approach must be as simple 

as possible, in order to avoid building a model unnecessarily big or even worse overfitted on the 

training set which will be unable to successful predict new (or testing) examples. More 

information about model overfit will be provided later. The second step of the approach is to 

implement the approach and then the third step is to test it. The fourth and final step is to 

evaluate the results of the model. Using the results and the evaluation of the results from the 

fourth step, the first step is repeated by reconsidering or extending the approach. Since the 

intended audience is the research community, the version created by every cycle is stored and 

referenced to justify the new approach. 

 

Figure 1: Software Development Cycle 
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2. BACKGROUND 

2.1. MACHINE LEARNING 

2.1.1. INTRODUCTION TO MACHINE LEARNING 

Machine Learning is the notion of a machine progressively changing its structure, program, or 

data (based on its inputs or in response to external information) in such a manner that its 

expected future performance improves (Nilson, 1998). In other words, a Machine learns when it 

adapts to the new data and information.  

Machine Learning tasks can be divided into two broad categories; Supervised and Unsupervised 

Learning, which differentiate based on their inputs and outputs. In Supervised Learning, for each 

observation there is an associated response measurement/class (James, et al., 2013). The most 

common Supervised Learning method is Classification, where the model is trained by the 

instance-class pairs of already classified examples (the training set) and can be then used to map 

other instances to the already existing classes. Taking for example the insurance industry, an 

example of a classification task could be to classify a number of instances of people with specific 

income, age, industry of employment, marital status and expected retirement age to two classes, 

one for insurance offer and one for insurance rejection. The inputs of the classification model 

will be the instances’ information (specific income, age, industry of employment, marital status 

and expected retirement), whereas the output would be whether that person should or should not 

be offered an insurance plan. The model will be first trained by examined offer or rejection cases 

and can be then used to examine new cases. On the other hand, in Unsupervised Learning, the 

model is used to draw conclusions about a set of instances without an associated response/label 

(James, et al., 2013). The most common Unsupervised Learning method is Clustering, where the 

model is used to find possible grouping patterns of similar instances. Taking for example an 

online e-shop, Clustering could be used to find groups/clusters of similar products, so that after a 

costumer has viewed a specific product, the e-shop can recommend other products from the same 

cluster. The inputs of the Clustering model could be the products’ information, such as price, 

sales, buyers’ id, buyers’ location and product category, whereas there are no set output options. 

There are also subcategories/special cases of Supervised Learning, which are Semi-Supervised 

Learning, Active Learning and Reinforcement Learning. The field of Machine Learning and the 
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general notion of a machine “learning” by progressively improving its performance in a specific 

task (Mitra, et al., 2018) is one of the most trending fields of computer science at the moment. In 

the last decade, scientists and engineers have tested its applications in various problems such as 

Medicine, Gaming, Insurance, Marketing, Fraud Detection and many other. So far, Machine 

Learning has achieved great results and is used more and more every day.  

2.2. ARTIFICIAL NEURAL NETWORKS 

2.2.1. INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks is a Machine Learning approach inspired by the biological neural 

networks which can be found in the human brain (Schalkoff, 1997). The human brain is able to 

capture complex information as patterns and then compare any new instance to the previously 

stored patterns in order to understand and classify it. For example, after a human has seen an 

elephant at least once, he is able to identify any new elephants as “elephant” by comparing it to 

the pattern of the previously seen elephant(s). Although Artificial Neural Networks are 

groundbreaking in Science’s attempt to digitize the human brain, it is questionable whether the 

research community is any close to achieving that. The very mechanism of the human brain is a 

mystery (and an ongoing research) let alone the way to digitize this mechanism. 

 

2.2.2. ARTIFICIAL NEURAL NETWORK vs OTHER MACHINE LEARNING 

APPROACHES 

In comparison to some of the other Machine Learning approaches, such as regression models, 

Artificial Neural Networks can be used to capture very complex non-linear relationships. If we 

wanted to find the relationship between word count and the grade of the essay we could construct 

a simple regression model. However, the relationship between (the context of) an essay and the 

grade of the essay, which is the aim of this project, is far too complex to be described by a 

regression model. Thus, what an Artificial Neural Network is doing is divide a complex task, like 

the one investigated in this project, into several (maybe in the hundreds or thousands) smaller 

tasks and solve each one of those subtasks independently. In a classification task, for example, 

the task is to find a function f , which will satisfy ( )f x y , so that this function f is able to 

map an instance x to its class y. Artificial Neural Networks instead of attempting to find the 
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function f , are attempting to find a family of functions F , where 1 2 3, , ,..., nf f f f F  and 

1 3 2 1(f (...( ( ( ( ))))...)) ( )n nf f f f x f x y   , thus achieving the same goal (Goodfellow, et al., 2016). 

Those function 1 2 3, , ,..., nf f f f are connected in a chain in order to achieve the task of f . This can 

be seen from the structure of Artificial Neural Networks. 

 

2.2.3. BASIC STRUCTURE OF AN ARTIFICIAL NEURAL NETWORK 

As said, Artificial Neural Networks are inspired by the Human Neural Network and so is their 

basic structure. Neural Networks are organized in layers. The layers of an Artificial Neural 

Network compose the Artificial Neural Network in the exact same way that 1 2 3, , ,..., nf f f f

compose f . Each layer takes a value from the previous layer as an input, modifies it and then 

passes on the output to the next layer. As the task undertaken by the Artificial Neural Network 

gets more complex and demanding, more functions are required in order to divide the task. The 

number of layers in an Artificial Neural Network are also referred to as the depth of the Network. 

The Artificial Neural Network’s layers, in turn, consist of a number of interconnected (connected 

to the nodes of the previous and following layer) nodes called neurons (D.T. Pham, 1995). In 

summary, the neuron’s function is to take an input from one or more neurons in the previous 

layer which are connected to it and pass on an output to the neuron or neurons in the next layer 

which the neuron is connected to. The actual function of the neuron depends on some parameters 

which are set by the Artificial Neural Network’s architect. A weight is multiplied to the value of 

each connected neuron from the previous layer.   

The first parameter is the “way” in which the inputs of the neuron from the previous neurons are 

combined. The simplest way is a weighted sum of their values, or in other words a sum of the 

neuron’s input values iv  (output values of the neurons in the previous layer connected to this 

neuron) each of them calculated with a weight iw . 

0
i i

i

w v




  

Equation 1: Artificial Neuron: Weighted Sum of Input values 
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where N is the number of neurons from the previous layer connected to the neuron. 

The second parameter is set for the second phase of the neuron’s function which is to input this 

sum in an Activation function f . This Activation function can be chosen from a number of 

different ones such as sigmoid, tanh, Rectified Linear Unit or ReLU to name some of the most 

important one. The purpose of the Activation function is to map the sum of weighted values to a 

value whose range corresponds to the range of the Activation function in order to normalize it. A 

table summarizing the properties of the main Activation function options is provided below.  

Name Equation Range 

Identity Function (x)f x  ( )  

Binary Step 0 0
1 0(x) { for x

for xf 
  

{0,1}  

Rectified Linear Unit (ReLU) 0 0
0(x) { for x

x for xf 
  

[0,  

Sigmoid 1
( )

1 x
f x

e


 
(0,1)  

Arctan (Inverse Tangent) 1( ) tanf x x  ,
2 2

   
 

 

Tanh (Hyperbolic Tangent) 

2

2
( ) tanh(x) 1

1 x
f x

e  


 
( 1,1)  

Gaussian Distribution 2

( ) xf x e  
(0,1]  

Table 1: Artificial Neuron: Activation Functions 
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Thus, the aggregate function of a neuron can be expressed by the following equation: 

0

( )i i
i

f w v




  

Equation 2: Artificial Neuron: Aggregate Function 

where f is the Activation function 

 

An importance notice to be made is that there are N neurons in the previous layer connected to 

the neuron, but there are N+1 values starting from 0 to N. The zeroth value 0v  is usually +1 and 

when calculated with its weight 0w  will give the bias input  0 0 0 0       +1b w v w since v is   . 

The weights and the bias are very important concepts in Artificial Neural Networks and the 

concept of a machine “learning” and will be explained in depth later. To summarize, a neuron 

connected to N neurons from the previous layer will receive a sum of N+1 values, each 

multiplied by a weight out of a total of N+1 weights. The neuron will then apply an activation 

function to that sum and pass on the output to the next neurons to which it is connected to.   

The mathematical model of the Artificial Neuron, described above, also known as the 

McCulloch-Pitts neuron was proposed by Warren McCullock and Walter Pitts in 1943 

(Mcculloch & Pitts, 1943) and it is based on the theoretical point of view of creating a complex 

model out of very basic components, like the neuron.  Much progress has been done in the field 

of Artificial Neural Networks but this model still remains the fundamental model of the Artificial 

Neuron. However, other models of the Artificial Neuron have also been introduced such as the 

Fourier-like IN/OUT function (Silvescu, 2000).  
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The following figure summarizes the function of the Artificial Neuron. 

 

The most basic Artificial Neural Network consists of an input layer, an output layer and 

(between the input and output) one hidden layer. However, most Artificial Neural Networks 

consist of more than one hidden layer and depending on their task and the type/size of input 

could have hundreds of hidden layers. Figure 2 graphically represents the structure of the basic 

Artificial Neural Network, which was just described.   

 

Figure 3:  Basic Artificial Neural Network Structure (Fauske, 2006) 

Figure 2: The Artificial Neuron 



9 
 

The Artificial Neural Network in figure 1 is an example of an Artificial Neural Network that 

could be used for a regression task. An example of this regression task could be predicting the 

GDP (Gross Domestic Product) of a country based on its population, percentage of population 

between 18 and 65, literacy rate and number of hospitals per citizen. So, the Artificial Neural 

Network would take in as input those four properties and produce an estimation for the GDP. 

The number of neurons in the input layer depends on the number of parameters/inputs needed to 

produce the estimation, in this case four. The number of neurons in the output layer depends on 

the type of output. In regression, the number of neurons in the output layer would be one as there 

can be only on dependent variable, whereas in classification (like in this project), the number of 

neurons in the output layer would equal to the number of possible classes.   

Let’s say for example that we want to classify a number of short 10-word movie or book reviews 

as positive or negative using an Artificial Neural Network. Each word is considered a parameter 

input, so there would be 10 neurons in the input layer, whereas there would be 2 neurons in the 

output layer, one for each of the different classes (positive or negative).   

Then the basic structure necessary to perform this task would be the following: 

 

Figure 4: Basic Artificial Neural Network Structure for Text Classification 
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This is an oversimplified illustration as the input would not be a list of words but a list of vectors 

representing the words. The reason is that Artificial Neural Networks cannot process words. 

More information about Word Embedding in general and the Word Embeddings used in this 

project is provided later. Another reason the illustration above is a simplification of the Artificial 

Neural Network is that an Artificial Neural Network of this size (only one hidden layer) is 

unlikely to successfully carry out a task like this with adequate results. Instead, there should be 

some hidden layers before the hidden layer in the illustration that are responsible for extracting 

the features necessary for the classification.  

 

2.2.4. TYPES OF ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks can be categorized based on various properties. Probably, the most 

unclear categorization is between (“Non-Deep”) Neural Networks and Deep Neural Networks, 

where Neural Networks are classified based on the number of their hidden layers. The minimum 

number of hidden layers required for a Neural Network to be characterized as “Deep” is 

controversial topic. Part of the scientific community states that more than one hidden layers 

constitute a Deep Neural Network, whereas the other states that there needs to be a considerable 

number of hidden layers.  

Another very important ground of classification is the type of connection between the neurons. 

In feed-forward neural networks, each neuron is only connected to other neurons in the next 

layers. On the contrary, in recurrent neural networks, there are connections called feedback 

which connect a neuron to itself and the output of the neuron is fed back to the neuron as a 

feedback.  

 

2.2.5. ARTIFICIAL NEURAL NETWORKS OPTIMIZATION 

As already mentioned, Machine Learning is achieved when the system’s behavior is 

progressively improved in a certain task until it reaches a point where it can effectively and 

successfully perform this task. The measure, which is used to assess the performance of the 

Artificial Neural Network is called loss or cost. Thus, the objective of an Artificial Neural 

Network is to minimize the loss measure.  
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An Artificial Neural Network takes in the input in batches (e.g. the default batch size is 128 

inputs, in our case, essays). Initially, the Neural Network assigns random values of weights w

and biases b. After a batch has gone through the Artificial Neural Network, the loss is calculated 

by comparing the prediction calculated by the Artificial Neural Network to the actual label which 

was input. After the Artificial Neural Network calculates the loss, it reassigns the values of 

weight w and bias b of the neurons, modifying their output, so that loss is minimized. This 

procedure is repeated thousands of times. 

 

LOSS CALCULATION 

In order to develop a basic Artificial Neural Network, it may be deemed enough to know that the 

smaller the loss the better. However, in order to really understand how the Artificial Neural 

Network works it is vital to understand how the loss is calculated.   

There are various loss calculation functions depending on the task. Cross-Entropy loss is one of 

the most popular and is highly recommended in multiclass classification tasks (classification 

tasks where there are more than 2 classes) such as this task. Cross-entropy loss, also called log 

entropy (because of the presence of the natural log in the formula) is calculated for each instance 

(prediction-label pair) and the sum of the Cross-Entropy loss for all instances gives us the total 

Cross-Entropy loss of the model. Cross-Entropy for multiclass classification is calculated for 

each instance using the following formula: 

, ,
1

1
log(P )

M

ins ins cl ins cl
cl

L y
M 

   

Equation 3: Cross Entropy Loss (Deep Learning Course Wiki, n.d.)  

where  - M is the total number of classes, 

- ins  is the index of the instance,  

- cl is the index of the class, 

- ,ins cly  is a binary indicator (range = {0,1}) indicating whether an instance belongs to a 

class, e.g. if instance 3ins   belongs to the class 2cl   then 3,2 1y   and -

3,1 3,3 3,4 0y y y   , 

- ,(P )ins cl is the probability given from the classifier that instance ins belongs to class cl  
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Suppose a batch of 4 training examples have gone through the Artificial Neural Network, which 

classifies the examples to 3 different classes, and calculates the following prediction probabilities 

[[0.9, 0.05, 0.05], [0.6, 0.4, 0.0], [0.51, 0.39, 0.1], [0.3, 0.2, 0.5]]. The labels of the training 

examples will first be converted to one-hot encoding. In one-hot encoding, each label is 

converted to a format which can be more easily compared with the prediction probabilities. If the 

labels of the 4 training examples are [1,2,2,3], then the one-hot encoding of those labels will be  

[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]].  

 

Calculating for the 1st instance: 

first instance prediction probabilities = [0.9, 0.05, 0.05] 

first instance one-hot encoding of label = [1.0, 0.0, 0.0] 

1 , ,
1

1,1 1,1 1,2 1,2 1,3 1,3

1
log(P )

1
( log(P ) log(P ) log(P ))

1
(1 log(0.9) 0 log(0.05) 0 log(0.05)

3
0.0351

M

ins cl ins cl
cl

L y
M

y y y
M



  

   

       





 

The correct labels was predicted with an accuracy of 0.9 or 90%, as a result the loss calculated is 

very low.  

 

Calculating total loss: 

1 2 3 4

0.0351 0.3054 0.3139 0.2311

0.8855

totalL L L L L    
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LOSS MINIMIZATION (OPTIMIZATION) 

As stated before, each neuron receives an input from the previous N neurons connected to it and 

applies weights to the values resulting to a sum in the form of 
0

i i
i

w v




 . It then applies an 

activation function, such as sigmoid, and passes this value to the next neuron(s) connected to it. 

The recalibration of the Artificial Neural Network in order to minimize the loss is achieved by 

changing the weights w  and so the biases b . As stated before, the aim of the Artificial Neural 

Network is to find the function f  which will satisfy ( )f x y . This is achieved by finding the 

functions 1 2,  ,  ,  nf f f F   which will satisfy     2 1..nf f f x y   and thus compose the function 

f . Thus, the task of the Artificial Neural Network layer n  is to find the respective function nf .  

Suppose a neuron with the identity function  f x y   is connected to one neuron from the 

previous layer with output value x . A weight 1w is multiplied with this value and bias 1b  is also 

added, resulting to the value 1 1  y w x b  . The plot of the value y for every x will be a straight 

line of gradient 1w  intercepting the y-axis at  10,b  and the x-axis at 1

1

,0
b

w

 
 
 


.  

By changing the weight and bias, thus changing the gradient and intercepts of the function, the 

Artificial Neural Network can form an infinite number of linear functions until it finds the 

function that satisfies the aforementioned conditions and each input x  is mapped to a correct. 

The effect of different weights w and biases b can be seen in the plot of 5 different 

  1 1 1f x w x b   functions with different weight 1w  and bias 1b  provided bellow. 
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Figure 5: Effect of Weight and Bias using the Identity function as Activation function 

 

When the correct weight 1w and bias 1b  are found so that every x is mapped to the correct y , the 

loss will be minimum. So the loss can be thought as a function ( , )L w b which reaches a global 

minimum for a weight w and bias b . At the global minimum (as well as all local minimums), as 

we know from calculus, the derivative of the loss function '( , )L w b  at that particular point will 

be 0.  

The weights w  and biases b  that will minimize the loss are calculated by optimization 

algorithms. Feed forward networks, like Convolutional Neural Networks which are used in this 

project, use an optimization algorithm called Backpropagation, short for “backwards propagation 

of errors”. During training, the input will start from the input layer and propagating through the 

hidden layers will reach the output layer and the Artificial Neural Network will produce an 

output. This is called a forward propagation as the information flows from the start to the end of 

the network. Using this output to calculate the loss, the network will then start from the end of 

the network and using the loss calculated, will compute the gradient of the loss '( , )L w b .The 

information of loss flows backwards from the end of the network to the start to compute the 

gradient. Thus, the name back-propagation (in contrast to forward propagation). The Back-

propagation algorithm was introduced by Rumelhart et al. at their paper “Learning representation 



15 
 

by back-propagating errors” (Rumelhart, et al., 1986). This is done by applying very small 

increments to weights w and biases b . 

It is important to notice that Back-propagation is only responsible of finding the gradient of the 

loss function and not the recalibrating the weights and biases to minimize it. Most Artificial 

Neural Networks use a gradient descent algorithm to calculate the new weight. As we said, the 

Loss function ( , )L w b  is minimum at the point where '( , ) 0L w b  . Applying the back-

propagation algorithm and getting the gradient of ( , )L w b at a particular point, the gradient 

descent algorithm then changes weights towards the negative gradient or gradient descent in 

order to minimize the loss function ( , )L w b until it reaches a global or local minimum where 

'( , ) 0L w b  . 

The optimization algorithm that was used in this project is called Stochastic Gradient Descent 

and will be explained in depth in the “Approach” section.  

2.2.6. SAMPLES REPRESENTATION IN ARTIFICIAL NEURAL NETWORKS 

The samples that are inserted in an Artificial Neural Network have a very specific representation 

dictated by their type.  

Starting from images, the representation of an image depends on its color model. A 9x9 image 

for example (height=9, width=9) would be of the form 9x9x3 if it was in rgb color model (red, 

green, yellow) or 9x9x1 if it was in greyscale model. This third value after height and width, in 

Artificial Neural Networks, is called channels.  It can be confusing that although it is a 2-

dimensional sample, an image, it is composed by three different values. However, considering 

how computers conceive images it is absolutely understandable. In greyscale, there is only one 

channel, where each of the 9x9=81 pixels is a value from 0 to 1 (including 0 and 1) representing 

the intensity of black. A white pixel would have the value 0, a black pixel would have the value 

1 and a grey pixel would have a value somewhere in between 0 and 1. In RGB, however, there 

are three different and independent channels, each consisting of 81 pixels that describe the 

intensity of the channel’s color. There is one channel for each of the three colors (Red, Green, 

Blue).  

Text samples are not that different. A 25-word sample can be either inserted in the Artificial 

Neural Network in the form 25x3 or it can be inserted in the form 5x5x3. Both forms have been 
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investigated in this project. The channels, however, in this case do not represent the intensity of a 

color, but a specific characteristic of the word. It can be either practical, such as the frequency of 

the word in the essay (or sentence etc.) or the index in a word dictionary, or it be a semantic 

characteristic of the word, such as whether this word has a political meaning or a scientific 

meaning. For example, the value of the word “Democracy” would have a high value in the 

political meaning channel and a low value in the scientific meaning channel, whereas “Cross-

Entropy” would the opposite. 

 

2.3. CONVOLUTIONAL NEURAL NETWORKS 

The neural network I am using is a Convolutional Neural Network. Although the main use of 

Convolutional Neural Networks is Image and Video (objects’) recognition, it has also been 

applied to Natural Language Processing tasks, such as Text Classification and Prediction, and 

has shown great results. One of the most popular examples of Text Classification with CNNs is 

“Convolutional Neural Networks for Sentence Classification” (Kim, 2014). Other examples are: 

- “A Convolutional Neural Network for Modelling Sentences” (Kalchbrenner, et al., 2014),  

- “A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for 

Sentence Classification” (Zhang & Wallace, 2015) and 

- “Multichannel Variable-Size Convolution for Sentence Classification” (Yin & Schütze, 2016) 

The reason Artificial Neural Networks with Convolutional (and Pooling) Layers are successful in 

text classification is because they are able to detect strong local word/indicators that will lead to 

a class without taking into consideration their position in the input text (Goldberg, 2016). 

Suppose an Artificial Neural Network with Convolutional Layers has been trained to classify and 

mark 100 essays with the topic “The Applications of Machine Learning in Business 

Management”. Words and phrases like “decision-making” or “perfect information” which would 

be good arguments will probably be strong indicators that will point out to a good grade.  
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2.3.1. BASIC STRUCTURE OF A CONVOLUTIONAL NEURAL NETWORK 

Convolutional Neural Network is a type of feed-forward network. Its name is attributed to the 

presence of at least one Convolutional Layer (followed by one or more down-sampling layers) in 

it. The first layer of a Convolutional Neural Network is always a Convolutional Layer.  

 

2.3.2. CONVOLUTIONAL LAYER 

Convolution can be summarized as a number of filters containing weights “sliding” over an input 

sample. However, the actual function of a Convolutional Layer is a lot more complicated. In 

Convolution, a 1-dimensional or 2-dimensional filter, consisting of a number of weights goes 

over its input performing a series of calculations similar to the ones we described in the Artificial 

Neural Network.  

The function of the Convolutional Layer is determined by a number of parameters, such as 

kernel size, stride, number of filters and activation function.  

The exact function of a Convolutional Layer can be better described using an example and such 

is provided below. In the Samples Representation section, we analyzed the different Samples 

representation and the importance of channels. Let a text sample of the form 8x3. This would be 

an 8-word sample where each word is described by 3 different features. 

 

                      CONVOLUTION INPUT     FILTER(S) 

  

 

 

 

   

 

 

Figure 6: Convolution Illustration - Filter 

Figure 7: Convolution Illustration - Input 
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The parameters of the above convolution are kernel size = 3, filters = 15, activation function= 

sigmoid and stride=1. The first two parameters can be identified in the above figure 4 since each 

of the kernels (or filter) is consisted of 3 values and there is a total of 15 filters. The other two 

parameters are explained during the demonstration of the example. 

When we introduced the Artificial Neuron, we mentioned the weights that are multiplied to the 

neuron. The filters that “slide” over the input sample are nothing more and nothing less than a 

“group” of weights. So the above Convolutional Layer is consisted of (3(each filter) times 

15(number of filters)) 45 weights. 

 

STEP NUMBER 1 

In the first step of convolution in the above example, the first filter will be “applied” on the 

input. Since the filter size is 3, the filter will be applied on the first 3 values (values 1 to 3) of the 

input. The sum of the three values will then be inserted to the activation function (in this case 

sigmoid,
1

( )
1 x

f x
e


) and will give the first value.  

 

  

0.078 0.132 0.038  0.248    

 
0.248

1
0.561(0.248

1
) 7f

e 


  

   

 

 

  

Figure 8: Convolution Illustration - Step 1 
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STEP NUMBER 2 

The stride parameter mentioned before determines the next step of the convolution. In this case 

(stride=1), the filter will “slide” one position below (values 2 to 4) and will perform the same 

operation again.  

   

0.033 0.076 0.188  0.295    

0.295

1
0.573(0.295

1
) 2f

e 


  

 

       

 

STEPS NUMBER 3-6 

The procedure described in steps 1 and 2 is repeated for 3, 4, 5 and 6. Every time the filter 

“slides” one position below. In Step 6, the filter performs the operation on values 6 to 8, so the 

filter has sled over the entire first channel of the input channels. The output is shown in figure 8: 

 

Figure 10: Convolution Illustration - Output from Steps 1-6 

 

  

Figure 9: Convolution Illustration - Step 2 
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STEPS NUMBER 7-18 

After the first filter has “sled” over the entire first channel of the input sample, then the second 

filter will do the same with the second channel and the third filter will do the same with the third 

and final channel of the input sample, each adding one more channel to the output.  

 

STEPS NUMBER 18-90 

After the three input channels have been convoluted by the first three filters, then the same 

procedure will be repeated between the three input channels and the second three filters. So, the 

first input layer will be convoluted by the fourth filter, the second with the fifth etc.  Thus, in the 

end the three input channels will be convoluted by all the filters in the same way. So, the output, 

also called the feature map, will have the size of the output in Step 6 and the number of channels 

of the output will be determined by the number of filters (15 filters), resulting in a 6x15 output. 

 

Figure 11: Convolution Illustration - Output 
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2.3.3. POOLING LAYER 

Several successive Convolutional Layers may result in an output, the size of which makes the 

training of the model (especially in the fully connected layers) inefficient. In the previous 

example, the Convolutional Layer’s input is a 8x3 sample, thus consisting of (8x3=)24 values, 

whereas the Convolutional Layer’s output is a 6x15 sample, thus consisting of (6x15=)90 values. 

This may be deemed as an insignificant difference which will not affect the efficiency of the 

model. However, it causes a very significant chain affect, especially if there are several 

successive Convolutional Layers. The bigger the samples, the bigger the layers in order to 

process the samples and the bigger the layers, the more the weights and biases, which will have 

to be optimized by the optimization function in order to minimize the loss function. For that 

reason, it is very common for Convolutional Layers to be succeeded by Pooling Layers which 

aim to the down-sampling of the sample.  

There are various types of Pooling Layers such as Max-Pooling, Min-Pooling and Average-

Pooling etc. Suppose that we wanted to down-sample the output of the Convolutional layer 

which was used as an example in the previous section (shown in figure 11). We could use a 

Max-Pooling layer using pooling filters of size 2 and stride 1.  

 

Figure 12: Pooling Illustration - Input 
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STEP NUMBER 1 

Since we are using pooling filters of size 2, the first two values of the first channel will be 

combined by keeping the maximum of the two. So the first value of the output will be 

max(0.5617,0.5732)=0.5732. 

 

Figure 13: Pooling Illustration - Step 1 

STEP NUMBER 2 

Since the stride is one, the pooling filter will slide one position and thus the second and the third 

values will be combined by keeping the maximum of the two. So the second value of the output 

will be max(0.5732,0.6238)=0.6238. 

 

Figure 14: Pooling Illustration - Step 2 
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STEPS NUMBER 3-5 

The above procedure will be continued for the third and fourth, the fourth and fifth, the fifth and 

sixth values respectively and combine the values of the first channel by keeping the maximum of 

the two. The result of the Pooling Layer on the first channel of its input and thus the first channel 

of the output is the following. 

 

Figure 15: Pooling Illustration - Steps 3-5 

 

STEPS NUMBER 6-75 

Steps 1-5 will be repeated for the second, the third, the fourth and so on channels until it is 

repeated for the fifteenth and last channel. The output of the Pooling Layer is the following. 

 

Figure 16: Pooling Illustration - Output 
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The output of the Pooling Layer does not look a lot different from the input and it is not. The 

parameters (filter size and stride) used were the minimum which resulted in a very slight down-

sampling. The Pooling Layer’s input was of size 6 and 15 channels, for a total of 90 values, 

whereas the Pooling Layer’s output was of size 5 with 15 channels for a total of 75 values.  

 

2.3.4. CONVOLUTIONAL AND POOLING LAYER PARAMETERS EFFECT 

Designing a basic Artificial Neural Network is not very difficult. However, when designing an 

Artificial Neural Network, it is essential to understand the exact effect of the parameters, which 

is very challenging. Going back to the Pooling Layer illustration, if we were to use the same 

input (6, 15 channels, total 90 values) but increase the Pooling Layer’s filter size from 2 to 3 and 

the stride from 1 to 3, then the output of the Pooling Layer would be of size 2 with 15 channels 

for a total of 30 values. So, a slight change of the filter size and stride resulted to an output less 

than half the initial.  

For both Convolutional and Pooling layers, a bigger stride parameter will result to a smaller 

output. The same is true for the filters’ size as a bigger filter parameter will result to a smaller 

output. Last but not least, the number of filters used by the Convolutional layer will not affect the 

size of the output, but its channels, as the output has the same number of channels as the number 

of filters used by the Convolutional layer.  

2.4. WORD-TO-VECTOR REPRESENTATION 

One of the many challenges when undertaking a Machine Learning project where the input is in 

Natural Language is that there needs to be a conversion of the text to a machine-understandable 

form. This is usually in the form of vectors. However, the methods of converting a word to a 

vector are various.  

2.4.1. BAG-OF-WORDS (B-O-W) MODEL 

The standard representation of a document is called Bag-of-Words. In Bag-of-Words, each word 

is represented by a vector of identifiers. These identifiers can be a dictionary index, the 

frequency of the word in the text or others. The Bag-of-Words model is based on the assumption 

that the order of the words in the text is unimportant and thus the text can be represented as a bag 

of words (Manning, et al., 2009). An alternation of the Bag-of-Words model is the n-gram model 
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where instead of splitting the text to single words and each word being represented by a vector, 

the text is split in groups of n words, where each word is converted to a vector with the n next 

words (in order) in the text. The difference between the models can be better illustrated with the 

following example. 

Let the sentence be: “I am Angelos and I am studying Computer Science”. The Bag-of-Words 

model would disregard the order of the words and the sentence could be split in the following 

way, [“angelos”, “computer”, “science”, “i”, “studying”, “am”, “and”]. The exact order of the 

words depend on the identifiers and could be, for example, in ascending dictionary index. On the 

contrary, the split of the sentence in the 3-gram representation of the sentence could be  

[“I am studying”, “studying Computer Science”, “and I am”, “am Angelos and” ...]. Thus, n-

gram in comparison to bag-of-words achieved some preservation of the words’ order in the 

sentence, which may be very useful, but may also be utterly useless depending on the task in 

question.  

2.4.2. CONTINUOUS BAG-OF-WORDS (B-O-W) vs CONTINUOUS SKIP-GRAM 

MODEL 

In 2013, a researching team led by Tomas Mikolov introduced word2vec (Mikolov, et al., 2013) 

and revolutionized word-to-vector representation. They introduced two different model 

architectures for computing the vector representation called Continuous Bag-of-Words model (or 

C-B-o-W) and continuous Skip-gram model. Both models were tested in word similarity tasks 

and demonstrated greater accuracy than previous techniques.  

The difference between the two models lies on their inputs and outputs. In Continuous Bag-of-

Words, the input of the model is the context of the word and the output is the word. Let the word 

be tw , then its context would be the words before it, 2tw   and 1tw   and the words after it 1tw  and 

2tw  . So, the input of the model would be 2tw  , 1tw  , 1tw  , 2tw   and the output would be tw . 

Hence, the continuous bag-of-words model can be thought as predicting the meaning (thus its 

vector representation) of a word based on its context. 

In Continuous Skip-gram, the procedure is exactly the opposite. The input of the model is the 

word and the output is the context of the word. So, considering the example for bag-of-words, 
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the input of the model would be tw and the output would be 2tw  , 1tw  , 1tw  , 2tw  . Hence, the 

Skip-gram model can be though as predicting the context of a word based on the word.  

In both models, the size of the context of the word (either that is the output or the input of the 

model) is set as its window size. In the example above, the window size is 2 (two words before 

and two words after). 

     

  

2.5. RELATED WORD: MACHINE LEARNING IN EDUCATION AND 

AUTOMATED ESSAY MARKING 

As mentioned, Machine Learning is one of the important and interesting field which has not been 

adequately investigated is Automated Essay Marking in order to produce a trustworthy system. 

There have been a few attempts, which however have not been widely put to work in the 

Education System. The first research made on Automated Essay Scoring dates back to 1967 

when Ellis Batten Page, known as the father of Automated Essay Scoring, published his research 

with the title “"Statistical and linguistic strategies in the computer grading of essays” (Page, 

1967) and later the same year he, also, published "The imminence of grading essays by 

computer". He, then, went on to publish “The analysis of essays by computer” and “The Use of 

the Computer in Analyzing Student Essays”. Although his work was revolutionary, it was not 

developed until the 1990s, because of the high cost and low performance of (even high-

Figure 17: Continuous Bag-of-Words model vs Continuous Skip Gram model 
(Mikolov, et al., 2013) 
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performance) computers at that time. His work was purchased by Measurement Incorporated in 

2002.  

Measurement Incorporated’s current Project Essay Grade ((PEG), n.d.) is one of the market’s 

most popular solutions and the only one that is used as a sole scoring system by one state in the 

US. It is on the other hand, only used by one state in the US. PEG has been also introduced by 

three other but only as a counseling assessment tool and essays are also marked by human raters, 

in comparison to be used as the sole assessment tool. In 2011, more than 7000 students were 

incorrectly graded by Measurement Incorporated’s PEF on the standardized test required for 

admission to most New York City private schools (Nir, 2011). Thus, it is obvious that the status 

quo is far from a widely-used sole assessment solution to Automated Essay Marking.   

Other attempts which are used by the general public are eRater (eRater, n.d.), Intellimetric 

(Intellimetric, n.d.) and PaperRater (PaperRater, n.d.). For obvious, copyright and intellectual 

property, reasons, all four are quite vague or not willing to disclose their exact methods of 

assessment. However, they mention some of the features they use such as “fluency, diction, 

grammar and construction” ((PEG), n.d.) or “content analysis based on vocabulary measures, 

lexical complexity/diction, proportion of grammar errors, proportion of usage errors, proportion 

of mechanics errors, proportion of style comments, organization and development scores, 

features rewarding idiomatic phraseology” (eRater, n.d.). However, the most interesting 

disclaimer is the one from PaperRater which was obtained when I attempted to mark part of this 

section, “Grade: 92 A. The grade above is NOT complete! We do not actually use a crystal ball 

to generate your grade. Instead, this grafde takes into account spelling, grammar, word choice, 

style, vocabulary, and more; but it does NOT examine the meaning of your words, how your 

ideas are structured, or how well your arguments are supported. We should also mention that our 

automated grader does not always get things right. So, please consider this grade to be one facet 

of your paper's overall grade.” It can be deduced from the above disclaimers that all commonly 

used Automated Essay Marking software solutions limit their function to classifying essays 

based on features that are, in my opinion, secondary. An essay, in any school grade, is assessed 

primarily based on the arguments made and their support, and secondarily based on their 

grammatical and syntactical performance. As a result, the existing solutions to Automated Essay 

Marking are inadequate and do not effectively address the problem.    
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What differentiates this project to other related attempts is that it does not specify the exact 

features to be investigated (such as word count, large-words count, technical words count, 

grammatical and syntactical mistakes). It is using small to medium-sized neural networks with 

some parameter tuning and attempts to classify the essays using local indicators that will map an 

essay to a class/grade membership. 
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3. APPROACH 

As already mentioned in the “Introduction”, the aim of the project is to investigate whether a 

Machine Learning approach and more specifically an Artificial Neural Network is able to 

classify a set of essays after being trained by a subset of them. In this section, I will be discussing 

the design of the Convolutional Neural Network, as well as the design of the preparation of data 

and the word-to-vector conversion before it is inserted to the network.   

 

3.1. BUSINESS MODEL OF THE SOFTWARE 

Before deciding the approach to take, it is vital to think about the aims of the project. In the first 

place, this project has been developed for the purposes of Scientific Research. It is not destined 

for commercial use or profit, so a user-friendly graphic user interface (GUI) was not a priority. 

For the same reason, the project consists of different software versions, whose differences 

together with their performance evaluation will be vital in evaluating the project and determining 

the project’s next step or future work. The short time frame and other “adverse conditions”, 

which will be discussed in the “Conclusions”, make the primary aim of this project to conduct an 

investigation and a satisfactory starting point rather than a complete and successful software. 

Although it has not been developed for commercial use, it has been developed so that a user with 

minimum developing knowledge can train it and evaluate it.  

 

3.2. GENERAL STRUCTURE OF THE SYSTEM-DATA FLOW 

Although, we can summarize the software as a Convolutional Neural Network that performs text 

classification, it consists of various components and subcomponents out of which only one is the 

Convolutional Neural Network. The data flows through the components from the 1st to the 2nd 

until it reaches the 3rd and final component and is outputted to the user. The aggregate input of 

the system is a tsv file containing the essays and the labels in a very simple form whereas the 

aggregate output of the system is the set of probabilities that each instance belongs to each class 

together with some evaluation metrics of the training such as Accuracy. 
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Even the Convolutional Neural Network component of the system can be thought of as a 

component which consists of two smaller subcomponents. A list of the general structure of the 

software is provided below: 

- 1st Component: Training/Evaluation Set Preprocessing 

- 2nd Component: Word To Word Embedding (Word Vectors) Conversion  

- 3rd Component: Convolutional Neural Network 

- 1st Sub-Component: Feature Extraction (Convolutional and Pooling Layers) 

- 2nd Sub-Component: Classification (Fully Connected Layers) 

 

3.2.1. 1st COMPONENT: DATASET PREPROCESSING 

This first component is responsible for preprocessing the dataset. It is a program coded in 

Python. The input of the program is the tsv file containing the full dataset and the output of the 

program is three python lists containing the essays (one for the training, one for the testing set 

and one for both training and testing) and two python lists containing the labels/grades of each 

essay (one for the training and one for the testing set). After running the training set on a various 

different Convolutional Neural Networks of different depths, I came to the realization that 

regardless the depth of the Network, the classifier was mapping/classifying all essays of the 

testing set to grade 8. After investigating the dataset in depth, I realized that the training set was 

consisted of a very high number of essays graded/labeled as 8. Although it is expected for the 

grades to follow a normal distribution, the frequency of essays classified as 8 were clearly 

distorting the grades distribution. More specifically, about 39% of the essays in the training set 

were classified as 8 as can be seen in the tables below. As a measure of comparison, the second 

most frequent grade/label was 10 with 18%.  

FULL DATASET 

GRADE NUMBER OF 
INSTANCES 

FREQUENCY 

2 9 0.514% 

3 1 0.057% 

4 17 0.971% 

5 15 0.857% 

6 110 6.286% 

7 133 7.600% 

TRAINING SET 

GRADE NUMBER OF 
INSTANCES 

FREQUENCY 

2 5 0.571% 

3 1 0.114% 

4 7 0.800% 

5 9 1.029% 

6 60 6.857% 

7 73 8.343% 
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8 675 38.571% 

9 329 18.800% 

10 308 17.600% 

11 108 6.171% 

12 45 2.571% 
 

8 338 38.629% 

9 149 17.029% 

10 156 17.829% 

11 52 5.943% 

12 25 2.857% 
 

 

Initially, I decided to implement a threshold (maximum number of instances with each grade at 

the training set) mechanism so that the training set would consist of roughly the same number of 

instances for each grade/label. However, in order for grade 8 to have a comparable number of 

instances with grade 2 or 3, the threshold should be as low as 70 instances. Thus, similarly to 

economics and maximum prices, this would lead to training set “shortage” as the training set 

would no longer be large enough to train the model.  

So, I decided to modify the grading system of the dataset, group instances with close grades 

increasing their aggregate number of instances and then apply a threshold, resulting to the dataset 

below. 

FULL DATASET 

GRADE NUMBER OF 
INSTANCES 

FREQUENCY 

2,3,4,5 42 2.40% 

6,7 243 13.89% 

8 675 38.57% 

9 329 18.80% 

10 308 17.60% 

11,12 153 8.74% 
 

TRAINING SET 

GRADE NUMBER OF 
INSTANCES 

FREQUENCY 

2,3,4,5 35 4.90% 

6,7 150 20.98% 

8 150 20.98% 

9 150 20.98% 

10 150 20.98% 

11,12 80 11.19% 
 

 

The results of the above dataset modification were more than satisfactory and will be analyzed 

thoroughly in “Results and Evaluation”.  

 

3.2.2. 2nd COMPONENT: WORD TO WORD EMBEDDING (WORD VECTORS) 

CONVERSION 

This second component is responsible for converting the lists of essays “transferred” from the 

first component to a list of vectors. The input of this component is the five Python lists from the 

first component file containing the essays and the labels/grades. The output of this file is the 
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word embeddings (word vectors). Although, the input is the same for all versions of the software, 

the output is different as two different word-to-vector representations have been implemented. 

More information about the two different word-to-vector representations are provided in the 

“Word-To-Vector” section which follows.  

 

3.2.3. 3rd COMPONENT: CONVOLUTIONAL NEURAL NETWORK 

The third and final component of the software is the Convolutional Neural Network. It is Python 

file but it also imports Tensorflow among others. More information about Tensorflow is 

provided in the “Implementation” section. The input of this component is two numpys arrays of 

the word embeddings (one numpy array containing the training set and one numpy array 

containing the test set) and two numpy arrays containing the grades/labels (one numpy array 

containing the grades/labels of the training set and one numpy array containing the grades/labels 

of the test set). This component is also different between the versions, since different 

Convolutional Neural Networks were constructed, trained and tested in order to evaluate their 

performance.  

Although this component is one file and can be considered as one Artificial Neural Network, for 

the purposes of this components’ analysis, it is wiser to further divide this component into two 

smaller subcomponents. 

1st SUBCOMPONENT: FEATURE EXTRACTION 

Feature Extraction is achieved by a series of Convolutional and Pooling Layers, whose 

purpose is to extract the necessary features for the classification. So, the subcomponent’s 

input is the NumPy arrays and the output is a modified tensor, whose size and 

modification varies depending on the version.  

2nd SUBCOMPONENT: CLASSIFICATION 

Classification is achieved by two fully connected layers. So, the subcomponent’s input is 

the tensor from the first subcomponent and the output is a tensor containing the 

probabilities of the training or testing example being in each of the classes. This 

subcomponent is the same in all versions. 
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3.3. WORD-TO-VECTOR 

The aim of word-to-vector is to take as input the set of 1750 essays and convert them to 

something that can then be inserted to the neural network. In other words, we are trying to 

achieve Semantic Parsing, which is “the task of mapping natural language sentences to formal 

representations of their underlying meaning” (Grefenstette, et al., 2014).  

We are going to do so by splitting the essays to words and then converting the words to vectors. 

The vectors will then be padded to have the same size. The vector representation can be done in 

many different ways depending on the objective of the neural network. The elements that 

compose the vector represent features of the word. When the essay is inserted in the Artificial 

Neural Network either as a training or testing example, the elements of the vectors (or features of 

the words) are the channels which were described in the “Samples Representation” section in the 

“Background”. 

In this project, I have implemented two different vector representations, the results of which are 

going to be analyzed in the “Results and Evaluation” section. 

 

3.3.1. FIRST WORD-TO-VECTOR REPRESENTATION 

The first representation describes each word by two features/indicators and so converts each 

word into a two-dimensional vector. After collecting all distinct words from all essays with 

frequency more than 2, a dictionary of the words is constructed. The reason there is a minimum 

frequency of 2 required is that a word which exists only once in one essay has no use as it cannot 

be used as a class indicator (as it cannot be used as a similarity instance of two essays).  So, the 

first dimension of the vector is the index of the word in the dictionary. The second dimension of 

the vector is the frequency of the word in the essay. If the vector representation of the word 

“network” is [7,3], this indicates that the index of the word “network” in the word dictionary is 7 

(in other words, the word “network” is the 7th word in the dictionary) and that the word 

“network” is repeated 3 times in the essay. The exact implementation will be analyzed in the 

section “Implementation”. 
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3.3.2. SECOND WORD-TO-VECTOR REPRESENTATION 

The second representation describes each word by 300 features/indicators and so converts each 

word into a 300-dimensional vector. For this representation, I used the pre-trained Google News 

corpus, which can be download from GitHub (Miháltz, 2016). It is word-to-vector model which 

consists of 3 billion words and phrases was trained on a vast Google News training dataset using 

the Continuous Bag-of-Words which was described in the “Word-To-Vector Representation” 

section in the “Background”. 

 

3.3.3. COMPARISON OF THE TWO WORD-TO-VECTOR REPRESENTATIONS 

Those two different vector representations allow us to investigate two extreme solutions of the 

same problem. In the first representation, the input of the Convolutional Neural Network is the 

simplest representation possible. A major drawback of the first representation is that it does not 

consider the similarity of the words or their meaning, as the dictionary is sorted alphabetically 

and two similar or even synonym words may have entirely different dictionary indexes. On the 

second representation, the input of the Convolutional Neural Network is a lot more complex. The 

300 features for each word may not be enough to completely capture the meaning of the word. 

However, they capture the meaning of the words a lot more effectively than the two features in 

the first representation. Another difference between the two word-to-vector representations is 

that since the second word-to-vector captures the correlation between two non-equal words, it 

doesn’t use a minimum frequency of words as two similar words, but not equal, can be used as 

class indicators. So, in the second word-to-vector representation, the bag-of-words representation 

of the essays is larger. It is, thus, obvious that they allow us to see the effect of the vector 

representation of the words to the classification by comparing their performance results.  

 

3.4. ARTIFICIAL NEURAL NETWORK APPROACH 

Different tasks require different Convolutional Neural Network structures. However, the required 

structure is only discovered after the Convolutional Neural Network has been implemented and 

trained. Other than the task, the amount of data available for training is also a factor that affects 

the required structure. A demanding task will require a large number of training data, but also an 
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Convolutional Neural Network deep enough in order to adequately describe the patterns in the 

training data.  

The following figure graphically illustrates three different models for describing the same time-

series (a plot of a value against time). 

 

Figure 18: Model Underfitting/Overfitting (edited) (Bhande, 2018) 

Starting from left to right, in the first case, the model is not deep enough in order to adequately 

represent the training data and capture the underlying pattern of the data. In the second case, the 

model is too deep for the size of the training data, which results to the model being too closely 

correlated with it. In the third case, the model is deep enough to adequately represent the patterns 

of the data but not too deep to fit the data too closely. It is important to notice that model 

overfitting may seem “harmless” but an overfitted model will fail to predict the testing data even 

if it obeys the pattern. The objective of any Machine Learning approach is to achieve the third fit 

by attaining a balance between model overfitting and underfitting.  

 

3.4.1. ARTIFICIAL NEURAL NETWORKS STRUCTURE 

Although the exact Convolutional Neural Network structure differentiates between the versions, 

the general layers’ structure is constant. As already mentioned, the Artificial Neural Network 

implemented can be divided to two different, independent, chain-connected components; the 

feature extraction component and the classification component. Their layers’ structures are 

provided bellow.  
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3.4.1.1. FEATURE EXTRACTION COMPONENT 

 

Figure 19: Artificial Neural Network's Feature Extraction Component 

 

The Feature Extraction component succeeds the Input layer and precedes the Classification 

component. The Feature Extraction component is consisted of two Convolutional layers, each 

succeeded by a Pooling layer. The Convolutional and Pooling layers’ function was described in 

the “Convolutional Neural Network” in the “Background”. Each training sample is first 

convoluted by the first Convolutional layer, then down-sampled by the first Pooling layer, then 

convoluted by the second Convolutional layer and finally down-sampled by the second Pooling 

layer. Depending on the version, the Convolutional layer may use 1-dimensional or 2-

dimensional filters and so will the Pooling layer. The samples are in 1-dimensional or 2-

dimensional form, but since there are multiple channels, they can be considered 2-dimensional or 
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3-dimensional respectively. However, the Classification component can only process and 

classify 1-dimensional samples. Thus, before the sample is transferred to the Classification 

component, it is modified by a flattening “layer”, which flattens the sample, by converting it 

from 2-dimensional or 3-dimensional form to 1-dimensional, by adding up their dimensions and 

channels. For example, a 3-dimensional sample of 10 6x6 channels will be converted to 1-

dimensional with 1 (10x6x6) 360 values channel. However, this is not an actual Artificial Neural 

Network layer and thus has not been included in the above graph.     

 

3.4.1.2. CLASSIFICATION COMPONENT 

 

Figure 20: Artificial Neural Network's Classification Component 

The Classification component’s structure is identical in all Versions of the software. However, 

the number of neurons in each layer vary. After the necessary features have been extracted by the 

Feature Extraction component, they are transferred to the Classification component which will 

use them to classify the sample. Fully Connected layers are simple Artificial Neural Network 

layers, whose name is due to the fact that all neurons of the previous layer are connected to each 

neuron of the Fully Connected layer. The first Fully Connected layer is consisted of 1024 or 

2048 neurons, each of which is connected to the 6 neurons of the second Fully Connected layer. 

So, after the Feature Extraction component has extracted the necessary features, those features 
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will then be weighted and accumulated to 1024 or 2048 neurons of the first Fully Connected 

layer, which will in turn be accumulated to 6 neurons of the Fully Connected layer. The number 

of neurons in the first Fully Connected layers are adjustable and subject to judgment. However, 

the number of neurons in the second Fully Connect layers are unmodifiable and must be equal to 

the number of classes (thus, 6). The second Fully Connected layer contains an unnormalized set 

of probabilities of the instance to be in each class. The reason there is a layer afterwards, the 

output layer, is that the set of probabilities must be normalized using an activation function 

(predominantly the SoftMax function) in order to map the unnormalized set of probabilities with 

range from minus infinite to infinite to a normalized set of probabilities with range from 0 to 1. 

    

3.4.2. ARTIFICIAL NEURAL NETWORKS LOSS-OPTIMIZATION 

As stated in the “Artificial Neural Network Optimization” section in the “Background”, the 

Artificial Neural Network calculates a loss after training or evaluating a batch of examples. The 

Artificial Neural Network’s optimization function will then recalculate the weights and biases in 

order to recalibrate the model and minimize the loss. The exact loss and optimization functions 

to be used depend on various parameters, the most important of which is the classification task.  

The loss function used is called Cross-Entropy Loss or Log Loss and was fully explained in the 

“Artificial Neural Network Optimization” section in the “Background”. The main motivation of 

using it is that the classification task of this project is a multiclass classification, as there is a total 

of 6 grades from A to F, and Cross-Entropy is the typical loss function for multiclass 

classifications.  

The optimization function used is called Stochastic Gradient Descent (or SGD). Stochastic 

Gradient Descent is a stochastic approximation of the batch Gradient Descent algorithm of the 

Gradient Descent algorithms family which we described in the “Artificial Neural Networks 

Optimization” section in the “Background”. Batch Gradient Descent sums the gradients '( , )L w b

of the Loss function ( , )L w b  for the entire batch of training examples and then makes an update 

to optimize the loss. On the contrary, Stochastic Gradient Descent uses the gradient '( , )L w b of 

the Loss function ( , )L w b for one training example and updates the weights. As a result, 

Stochastic Gradient Descent is a lot faster and requires less memory as it does not store the entire 
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gradients for the entire batch (Renals, 2016). The Stochastic Gradient Descent’s efficiency 

advantage was the main motivation of using it as the memory capabilities were limited. The 

pseudocode of the Stochastic Gradient Descent or SGD is provided below. 

 

Figure 21: Stochastic Gradient Descent Pseudocode (Renals, 2016) 

The Stochastic Gradient Descent algorithm will first assign random small numbers for weights 

w (and thus biases b , since ( 1)k kb w   ). Then it will slowly change the weights until loss 

converges to zero. The rate of change of the weights is called the learning rate and is the variable 

 of the above pseudocode. The higher the learning rate the bigger the change of the weights w

after each iteration. The learning rate used was 0.001.  

 

3.5. VERSION-SPECIFIC APPROACH 

Artificial Neural Networks are generally easy to develop. However, their parameter tuning is 

very challenging. Given a version and its results, only (calculated) speculations can be made to 

deduce what went wrong or what went right. The only way to be absolutely sure that a version 

can be improved in one way or another is to implement and test both ways. For the purposes of 

this project, more than one hundred models were implemented. However, many of the models 

implemented were not trained as the GPU capacity of both the Linux lab machines and the 

insista@cs.cf.ac.uk server machines were inadequate. The following 6 versions are some of the 

most important models implemented, trained and evaluated. Some of them had great results, 

while the results of other were discouraging. However, all of them were instrumental in the 

general approach as they gave invaluable feedback about the next step. The “Version-Specific 
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Results”, which have been used and referred to at this section can be found at the “Results and 

Evaluation” section. Figures depicting the exact Artificial Neural Network structure as well as 

the input and output of each layer used in each version can be found in the “Version-Specific 

Artificial Neural Network Structure Figures”, which follows. 

 

3.5.1. VERSION 1.0 

As word to word embeddings method, Version 1.0 used the first word-to-vector representation in 

which each word is represented by a 2-dimensional vector, where the first dimension is the 

dictionary index of the word and the second dimension is the frequency of the word in the essay.  

The essays are inserted into the network and then converted to a 2-dimensional representation. 

More specifically, each 363-word essay (all essays have the same size as a result of the padding) 

is converted to a 33x11 tensor (matrix). The reason is that, since Convolutional Neural Networks 

are mostly used for image classification which are 2-dimensional, it will allow us to see how the 

Convolutional Neural Network will perform treating the essays as images.  

The feature extraction component of the Artificial Neural Network is consisted by two 2-

dimensional convolutional layers. The first convolutional layer uses 64 3x3 filters, whereas the 

second uses 128 3x3 filters. Both convolutional layers are using sigmoid as the activation 

function and padding in order the output of the convolutional layers to have the same size as the 

input. Stride has not been manually set, thus it has been automatically set to the default value 1. 

The two 2-dimensional convolutional layers are each followed by a 2-dimensional pooling layer. 

Both pooling layer use 2x2 filters with stride 2. The output of the second pooling layer with size 

8x2 and 128 channels is flattened by a flattening “layer” to a (8x2x128=) 1-dimensional tensor of 

size 2048. 

The classification component is consisted by two fully connected layers. The first layer is 

consisted by 1024 nodes and is using sigmoid as activation function. The second and last layer is 

consisted by 6 nodes, as it is dictated by the number of classes.  
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3.5.2. VERSION 2.0 

The results of version 1.0 were more than encouraging. As a result, I decided to use the first 

word-to-vector representation again. However, this time, the essays will not be converted to 2-

dimensional representation. In order to effectively compare the two essay representations, we are 

going to use similar parameters in feature extraction, whereas classification will be identical.  

The feature extraction component of the Artificial Neural Network is consisted by two 1-

dimensional convolutional layers. Both convolutional layers are using filters of size 9 (again 64 

and 128 filters respectively), sigmoid as the activation function and stride 1. Again, the two 1-

dimensional convolutional layers are each followed by a 1-dimensional pooling layer. The first 

pooling layer uses filters of size 12 with stride 4 and the second pooling layer used filters of size 

12 with stride 5. The output of the second pooling layer with size 16 and 128 channels is 

flattened by a flattening “layer” to a (16x128=) 1-dimensional tensor of size 2048. Thus, the 

feature extraction component in Version 1.0 and Version 2.0 both outputs a 1-dimensional tensor 

of size 2048.  

As mentioned, the classification component was the same as Version 1.0. 

 

3.5.3. VERSION 3.0 

Both Version 1.0 and 2.0 has great results but it is doubtful that the first word-to-vector 

representation where each word is represented by a 2-dimensional vector can perform even 

better. As a result, Version 3.0 is using the second word-to-vector representation where each 

word is represented by a 300-dimensional vector. Although Version 2.0 had only slightly better 

results than 1.0, the 1-dimensional representation of word has been used like in Version 2.0.  

As mentioned in the comparison of the two word-to-vector representations in the “Comparison 

of the two word-to-vector representations” section, since the second word-to-vector considers the 

correlation of words, it doesn’t use minimum word frequency. As a result, the maximum size and 

as a result of the padding, all essays’ size in the second word-to-vector representation is 676 

(about twice the size of the essays in the first word-to-vector).  
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Like in Version 2.0, the feature extraction component of the Artificial Neural Network is 

consisted by two 1-dimensional convolutional layers, each followed by a pooling layer. 

However, as a result of the essays’ size (about twice the size) and the word-vectors’ dimensions 

(300 instead of 2), both convolutional and pooling layers need to be a lot “bigger”. Both 

convolutional layers are using 300 filters of size 16, sigmoid as the activation function and stride 

1. The first pooling layer uses filters of size 12 with stride 6 and the second pooling layer used 

filters of size 18 with stride 9. The output of the second pooling layer with size 11 and 300 

channels is flattened by a flattening “layer” to a (11x300=) 3300-sized 1-dimensional tensor. 

Thus, the feature extraction component in Version 3.0 outputs a 3300-sized, compared to the 

2048-sized 1-dimensional tensor output from the feature extraction component in Version 1.0 

and Version 2.0. 

The classification component is the same as in Version 1.0 and 2.0. 

 

3.5.4. VERSION 4.0 

On the one hand, the results from Version 3.0 were disappointing. On the other, it provided 

invaluable feedback for the next step, as it showed that the model was not big enough to 

successfully manipulate the input. This is clear by comparing Versions 1.0 and 2.0 to Version 

3.0. In Version 1.0 and 2.0, the input of the feature extraction component is 363 2-dimensional 

vectors and the output is a 2048 1-dimensional tensor. In Version 3.0, the input of the feature 

extraction is 676 300-dimensional vectors and the output is a 3300 1-dimensional tensor. So, 

during this “compression” in the feature extraction, many features are mistreated and the 

classification component is unable to classify the essays effectively. Version 3.0 was designed on 

the false assumption that the 300 filters in the convolutional layers are enough and that the 

significant down-sampling by the pooling layers will not affect important features. As a result, 

Version 4.0 used the second word-to-vector representation, but also applied a combination of 

considerably bigger convolutional layers and considerably smaller pooling layers in the feature 

extraction part.  

Like in Versions 2.0 and 3.0, the feature extraction component of the Artificial Neural Network 

is consisted by two 1-dimensional convolutional layers, each followed by a pooling layer. The 
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first convolutional layer is using 300 filters of size 3, sigmoid as the activation function and 

stride 1. The second convolutional layer is using 600 filters of size 3. Both pooling layers are 

using filter of size 5 and stride 2. The output of the second pooling layer with size 166 and 600 

channels is flattened by a flattening “layer” to a (166x600=) 99600-sized 1-dimensional tensor. 

Thus, the feature extraction component in Version 4.0 outputs a 99600-sized, compared to the 

3300-sized 1-dimensional tensor output from the feature extraction component in Version 3.0. 

The classification component is the same as in Versions 1.0 to 3.0. 

 

3.5.5. VERSION 5.0 

The justification for the unsatisfactory results of Version 3.0 and thus the hypothesis for 

improvement in Version 4.0 proved valid. As a result, I decided to even more increase the size of 

the feature extraction part. Many attempts were made to increase the convolutional layers’ size 

and also add a third one without, however, adding a third pooling layer which would reduce the 

size of the inputs (but not the channels). However, the GPU memory capacity of the Linux labs 

computers and the insista@cs.cf.ac.uk server provided by my supervisor was not enough to 

undertake a task like this. Thus, adding a third pooling layer but also increasing the existing 

pooling layers was the only way to add a third convolutional layer and see the effect of it.  

Thus, the feature extraction part in Version 5.0 is consisted by three convolutional layers each 

followed by a pooling layer. The first convolutional layer is using 300 filters of size 3, sigmoid 

as the activation function and stride 1. The second convolutional layer is using 600 filters of size 

3 and the third convolutional layer is using 1200 filters of size 3. The first pooling layer is using 

a filter of size 8 with stride 2, the second pooling layer is using a filter of size 12 with stride 2 

and the third pooling layer is using a filter of size 16 with stride 4. The output of the third 

pooling layer with size 37 and 1200 channels is flattened by a flattening “layer” to a (37x1200=) 

44400-sized 1-dimensional tensor. As expected, because of the third convolutional layer, the 

output has double the channels, but because of the addition third pooling layer and the increase 

of the other two, the output has significantly smaller size.  

The classification component is the same as in Version 1.0 to 4.0. 
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3.5.6. VERSION 6.0 

The results of Version 5.0 were disappointing but expected, as in order to increase the 

dimension/channels of the features the size of the features was decreased to a point that feature 

extraction became unsuccessful. As a result, I decided to reuse the feature extraction part of 

Version 4.0 which proved successful, but this time increasing the classification part instead of 

the feature extraction part. In Version 4.0, the output of the feature extraction part is of size 

99600. This output is then propagated to the first fully connected layer which consists of 1024 

neurons. It is possible than during this condensation, many important features are condensed 

excessively. Thus, I have increased the first fully connected layer from 1024 neuron to 2048.  

 

3.5.7. VERSION 7.0 

The improvement of Version 6.0 compared to Version 5.0 was triggered by making the first fully 

connected layer (classification part) bigger. Each of the neuron in the fully connected layer is 

connected to all the neurons of the last feature extraction layer consisting of 99600 neurons. As a 

result, adding 1024 neurons in the first fully connected weights results to (1024*99600=) more 

than 100 million extra weights to be optimized. However, 2048 neurons may still not be enough. 

Doubling the neurons to 4096 would still not solve the problem as the condensation from the first 

fully connected layer (consisting of 4096 neurons) to the second fully connected layer 

(consisting of 6 neurons) would make a successful classification impossible. The only way to 

successfully classify the 99600 features extracted from the feature extraction part (which seems 

to be successful) is to add a third fully connected layer. Adding a third fully connected layer 

would make the condensation of the 99600 features from the feature extraction more stable by 

dividing the condensation in two layers. The first fully connected layer would consist of 4092 

neurons, the second fully connected layer would consist of 512 and the third and final fully 

connected layer would consist of 6. Version 7.0 has been implemented but could not be trained 

as the significant memory requirements of the model could not be satisfied by the limited 

memory capabilities available.  
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3.6. VERSION-SPECIFIC ARTIFICIAL NEURAL NETWORK 

STRUCTURE FIGURES 

 

VERSION 1.0 VERSION 2.0 

Figure 22: Version 1.0 Artificial Neural Network Structure Figure 23: Version 2.0 Artificial Neural Network Structure 
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VERSION 3.0 VERSION 4.0 

Figure 24: Version 3.0 Artificial Neural Network Structure Figure 25: : Version 4.0 Artificial Neural Network Structure 
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VERSION 5.0 VERSION 6.0 

 
Figure 26: Version 5.0 Artificial Neural Network Structure 

 

Figure 27: Version 6.0 Artificial Neural Network Structure 
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4. IMPLEMENTATION 

Most of the models’ implementation as well as the models’ training and evaluation were 

performed on my laptop (main specifications using DirectX Diagnostic Tool: System 

Manufacturer: Dell Inc., System Model: Inspiron 7548, Processor: Intel(R) Core(TM) i7-5500U 

CPU @ 2.40GHz (4 CPUs), ~2.4GHz, Memory: 16384MB RAM, Card name: AMD Radeon R7 

M270, Dedicated Memory: 4075 MB, full specifications attached in the Appendix). I also used 

the Linux Lab machines and the insista@cf.cs.ac.uk server.  

 

4.1. GENERAL IMPLEMENTATION  

4.1.1. 1st COMPONENT: DATASET PREPROCESSING 

The first component was implemented in Python, also importing the csv and itertools modules. 

Although, the csv module is mostly used for csv (comma-separate variable) files, it can be also 

used for tsv (tab-separated variable) files such as the dataset used. One of the challenged faced 

was to extract the necessary elements of the dataset which are the essays and their grades. The 

dataset consists of a line containing the columns (elements of each essay) and the rest of the 

essays occupy one line each. The itertools module was used in order to separate the various parts 

of the dataset and create lists containing the necessary elements without any unnecessary 

symbols such as quotation marks (“”) or slashes (/) attached to the elements that would be a 

burden and cause problems over the next steps. An example of these problems would be the 

same word having two different dictionary indexes as a result of an unnecessary symbol attached 

to one of them. 

 

Figure 28: Dataset Preprocessing: Essays/Labels Extraction 
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Figure 28 displays the essays/labels extraction from the dataset. After the text is divided to its 
columns and essays parts, a for loop goes through the essays part and stores each essay in a list. 
A second for loop removes all the unnecessary elements of the essays (grade given by each rater, 
essay set, essay number etc.) and only the essay text (index 2) and the grade agreed between the 
raters (index 6) are kept. A third for loop then makes two different lists, one for the essays and 
one for the grades.  

The dataset grouping, which was mentioned in the “1st Component: Training Set Preprocessing” 
section in the Approach was implemented using the code in figure 29. 

The “groups” list contains all the necessary information/configurations of the grouping. For each 
group, the first element is a list of the grades to be grouped together, the second element is the 
threshold of the group’s training data and the third is the new group grade. The “groups” list 
minimized the hardcoding as it is limited to the list and no hardcoding was required in the rest of 
dataset grouping implementation.  

 

4.1.2. 2nd COMPONENT: WORD TO WORD EMBEDDING (WORD VECTORS) 

CONVERSION 

The second component was also implemented in python, also importing NumPy, corpora from 

gensim or just gensim (depending on the version), defaultdic from collections and the python file 

Figure 29: Dataset Preprocessing: Dataset Grouping 
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from the 1st component. NumPy is “the fundamental package for scientific computing with 

python” (NumPy, 2018). The reason NumPy was imported is that it includes NumPy array, 

which is the default array input for Tensorflow which was used for the construction of the 

Convolutional Neural Network and is explained later. According to its website, “gensim is […] 

the most robust, efficient and hassle-free piece of software to realize unsupervised semantic 

modelling from plain text” (Řehůřek, 2009). Gensim is one of the most popular free Python 

libraries specialized in vector space modelling (Řehůřek, 2009), which is an algebraic model for 

representing texts documents as vector of identifiers, such as index terms. Gensim can be used 

both for training vector space models, as well as using already trained ones.  As said in the 

Approach section, the aim of this Component is exactly that; to convert the essays to their vector 

representation using their identifiers. Since this project implements two different word-to-vector 

representations as was explained in the “Word-To-Vector” section in the approach, it was 

considered more suitable to fully describe their implementation in the versions they were used, 

since they use different features and modules of gensim. Last but not least, defaultdic 

(defaultdict, 2018) from collection was used to calculate the frequency of each word in the essay, 

by creating a dictionary-like object containing word-frequency pairs. A comparison of the two 

word-to-vector representations is provided in the “Results and Evaluation” section. 

 

4.1.2.1. FIRST WORD-TO-VECTOR REPRESENTATION  

The implementation of this component was coded in Python importing Gensim using the 

“Corpora and Vector Spaces” (Řehůřek, 2009) tutorial. The second component imports five 

python libraries from the first component. It imports a list containing the training essays, a list 

containing the testing essays, but also a list containing both training and testing essays. The 

reason it imports both lies on the fact that the dictionary which will later be used to generate the 

indexes is consisted by both the training and testing examples. The python method 

“wordlist_to_vectorlist” in figure 30 takes as input the list of both training and testing examples 

and returns the dictionary of words with frequency more than 1, which will be later used for the 

index generation.   
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The python method “new_wordlist_to_vectorlist” in figure 31 will then take the dictionary and 

each essay from the training data and the testing data and convert it to vector representation.   

 

Figure 31: First Word2Vector - Essay to Bag-of-Words 

 

Previous versions of the second component were only using the first method 

“wordlist_to_vectorlist” shown in figure 30 and created a dictionary and corpus containing the 

vector representation of both training and testing essays. The corpus was then divided to training 

and testing essays in word-to-vector . However, after implementing the dataset grouping, this 

division was made on the first component. If we were to use the same method and put in the list 

of training and testing essays separately, the vector representations would use two different 

dictionaries. As a result, the index of a word in an essay in the training set and the index of the 

same word in the testing set would be different making the word index completely useless. Thus, 

there was a need for a second method which would take as input an essay and produce its bag-of-

words representation using an existing dictionary consisting of both training and testing essays. 

Figure 30: First Word2Vector -  Dictionary creation 
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After the definition of the methods, there is a for loop, which iterates through the training set, 

converts each essay to its Bag-of-Words representation and saves the Bag-of-Words list in a list 

of lists containing all the essays of the training set. A second for loop follows, which performs 

the exact same procedure for the testing essays. The two for loops can be seen in figure 4.  

 

Figure 32: First Word2Vector - for loops creating a list of the training and a list of testing essays of the in Bag-of-Words form 

 

Artificial Neural Networks require all training and testing examples to have the same size. As a 

result, there needs to be a padding which will pad all essays to have the same size. This padding 

is achieved by the for loops in figure 33.  

 

Figure 33: First Word2Vector - padding 

A for loop first iterates through the training essays in order to calculate the maximum essay size 

and a second for loop then iterates through the training essays and pads them, so that all essays 

have the same length. Two more for loops performs the exact same procedure for the testing 

essays. 

Last but not least, as already mentioned, numpy was imported in order to convert the lists to 

numpy arrays which are the default arrays input for Tensorflow. The conversion can be shown in 

figure 6. 
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Figure 34: First Word2Vector - Lists to Numpy arrays conversion 

The default datatype for training and testing examples is float32 bit (single precision float: sign 

bit, 8 bits exponent, 23 bits mantissa), whereas the default datatype for training and testing 

labels/classes is int32 (an integer from -2147483648 to 2147483647)) (NumPy, 2018).  

 

4.1.2.2. SECOND WORD-TO-VECTOR REPRESENTATION  

The second representation converts each word into a 300-dimensional vector. For this 

representation, I used the word2vec model pre-trained on the Google News corpus using the 

Continuous Bag of Words model, which was described in the “Background”. It is word-to-vector 

model which consists of 3 billion words and phrases in word-to-vector form. This component is 

coded in Python using Gensim and its Keyed Vectors module.  

 

Figure 35: Second Word2Vector - word2vec pre-trained import 

The word2vec pre-trained model is first imported using the Keyed Vectors gensim module. 

  

Figure 36: Second Word2Vector - split_list_of_essays function 

The split_list_of_essays function takes as an input a list of essays (either training or evaluation) 

and, using a for loop, iterates through the list of essays and splits the essays into words creating a 

new list of essays (where each essay is a list of words). 
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Figure 37: Second Word2Vector - list_of_essays_to_bow function 

The function list_of_essays_to_bow takes in as input a list of essays and converts it to bag-of-

words format (explained in the “Word-to-Vector” section of the “Background”). This is done by 

a series of nested for loops which call the split_list_of_essays, scan through the words of the new 

list and “remove” any punctuation marks that got “attached” to the words during splitting. Then, 

it checks if the scanned word is in the 3 billion words and phrases of the pre-trained model and if 

it is it adds the word to the new list containing the essays in bag-of-words format. Last but not 

least, they call the padding function. 

 

Figure 38: Second Word2Vector - padding function 

The padding function calculates the size of the biggest (in word count) essay in bag of words 

format and then pads all the essays (adding vectors of 300 0s) in order all of them to have the 

same size. If they don’t have the same size they cannot be converted to a NumPy array which is 

the required type of input in Tensorflow. 

 

Figure 39: Second Word2Vector - list_of_essays_to_bow function call and list to numpy array conversions 
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The lists of essays are first converted to lists of “bags of words” by calling the 

list_of_essays_to_bow and then converted to NumPy arrays like in the first word-to-vector 

representation.  

4.1.3. 3rd COMPONENT: ARTIFICIAL NEURAL NETWORK 

The implementation of this component was coded in Python importing Tensorflow using the 

tutorial on handwriting classification using the MNIST dataset (TensorFlow, 2018). A distinction 

between the two subcomponents of the 3rd components has not been made here, in contrast to the 

Approach section. The reason this distinction is unnecessary lies on the fact that the general 

implementation is the same between the versions in both components, but differentiates on the 

exact Artificial Neural Network process which will be analyzed at the respective versions. 

All Artificial Neural Networks were implemented in Python using Tensorflow (TensorFlow, 

2015). Tensorflow is an open-source Python framework, which can be used for various Machine 

Learning approaches. Its name, Tensorflow, is due to the multidimensional arrays used for the 

Artificial Neural Network operations called Tensors. Some of the advantages of Tensorflow is a 

fairly adequate documentation and Tensorboard, which can be used for model debugging and 

evaluation, such as the Cross-Entropy Loss to Global Steps graph which was used in the “Results 

& Evaluation”. Some of the most popular current uses of Tensorflow are Deep Neural Networks 

used for Speech and Image Recognition and Classification by organizations such as Google, 

Mozilla, Snapchat, eBay, DeepMind and many more.  

The 3rd component programs are consisted by three parts. The first is the model, both Feature 

Extraction and Classification components, the second is the modes and the last is the main 

function which sets some basic parameters and the inputs. Although the model is the most 

important part of the Tensorflow and the part which is mostly modified from version to version, 

the model cannot stand alone, which makes the other parts of the program equally important. It is 

understandably too confusing for someone with minimum Tensorflow or generally Machine 

Learning experience to understand those different parts, thus they will be explained thoroughly. 

As said, each of the different versions implemented and tested uses a different Convolutional 

Neural Network. However, the general implementation remains the same. Version 1.0 of the 

software has been used for the purposes of the general implementation analysis. Some lines of 

code have been repeated in order to avoid large figures as well as referring to other figures. 



56 
 

PART 1: The Model 

The Artificial Neural Network model is the part of the Artificial Neural Network implementation 

which is subject to the most changes from version to version as it incorporates the most 

parameters and thus effects the classification more than the rest of the parts. The model part of 

the Artificial Neural Network implementation is a model function which is then called by the 

main function (Part 3) to create the Tensorflow estimator object. The model function definition is 

displayed in Figure 16.  

 

Figure 40: Artificial Neural Network Model -Model function Definition 

The first layer of the model is the input layer. 

 

Figure 41: Artificial Neural Network Model - Input Layer 

 The input layer’s function is to reshape the input to a desirable form. In the above input layer 

(Version 1.0), the input essays (features[“x”]) of size/word count 363 and 2-dimensional vectors 

for each word are converted to 2-dimensional representation with height 33, width 11 and 2 

channels (1 for each word representation). The -1 before the dimensions is the batch size. It can 

be either set to be the actual bath size or it can be -1 and the batch size is set in the Main function 

(Part 3).  

 

Figure 42: Artificial Neural Network Model – First Convolutional Layer 

As mentioned in the “Background”, the first layer of a Convolutional Neural Network is always 

a Convolutional layer. The first Convolutional layer takes as input the output of the input layer 

and then performs convolution using 64 filters of size 3x3. It uses sigmoid as the activation 

function and pads the output of the convolutional layer (by adding 0s) in order for it to have the 

same size as the input. Stride is not set, so it is automatically set to 1 which is the default value.  
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Figure 43: Artificial Neural Network Model – First Pooling Layer 

The first pooling layer takes the output of the Convolutional layer as input and performs 

pooling/down-sampling using filter of size 2x2 with stride 2.  

The implementation of the second Convolutional layer and the second Pooling layer are the 

same.  

 

Figure 44: Artificial Neural Network Model – Second Convolutional Layer 

 

Figure 45: Artificial Neural Network Model – Second Pooling Layer 

The second Convolutional layer takes in as input the output of the first Pooling layer and 

performs convolution but this time with 128 filters.  The second Pooling layer takes in as input 

the output of the second Convolutional layer and performs exactly the same operation as the first 

Pooling layer.  

 

Figure 46: Artificial Neural Network Model – Flatenning Layer 

The second Pooling layer is followed by a flattening “layer” which uses the reshape function 

(like the input layer) and flattens the output of the second Pooling layer of size 8x2 and 128 

channels and outputs a 1-dimensional tensor with size (8x2x128=) 2048. 

 

Figure 47: Artificial Neural Network Model – First Fully Connected Layer 

The flattened output of the feature extraction part is then propagated to the first fully connected 

layer with sigmoid as the activation function and consisted by 1024 neurons. 
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Figure 48: Artificial Neural Network Model – Second Fully Connected / Logits Layer 

The output of the first fully connected layer is then transferred to the second and last fully 

connected layer consisted of 6 neurons (same as the number of classes). After the example has 

been propagated from the input layer through the hidden layers (Convolutional-Pooling-

Convolutional-Pooling-Dense) each neuron in the logits layer will output a probability that the 

example is in the respective class. However, it is important to notice that those probabilities will 

range from minus infinity to plus infinity. Thus the predictions in the logits layer will have to 

inputted into a SoftMax (Bishop, 2006) function in order to get the probabilities with range from 

0 to 1.  

 

PART 2: The Modes 

The Modes part of the Artificial Neural Network is the part where the specific modes and their 

operations are set. There are three Artificial Neural Network modes; the training, the evaluation 

and the prediction mode.  

 

Figure 49: Artificial Neural Network Modes: Training Mode 

Figure 49 displays the training mode setting. The loss has been calculated using the logits layer 

(after applying a SoftMax function), containing the model prediction probabilities, from the 

Artificial Neural Network model and the labels input in one hot label representation. The training 

mode setting sets the optimizer to be the stochastic gradient descent algorithm with learning rate 

equal to 0.001 and then sets the optimizer to minimize the loss function. When the Artificial 

Neural Network finishes training, it will return the final loss and global steps.  
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Figure 50: Artificial Neural Network Modes: Evaluation Mode 

Figure 50 displays the evaluation mode setting. After the model has been trained using the 

training set, it is evaluated using the testing set. After each testing example has been input into 

the network and propagated through the hidden (feature extraction and classification) layers it 

reaches the output layer where it produces a predicted class. This class is compared to the actual 

label of the testing example in order to calculate the accuracy of the estimator model (total 

matches over total number of instances). It is important to notice that the Accuracy is comparing 

prediction class to label, whereas Loss was comparing prediction probabilities to label (in one 

hot format). When the Artificial Neural Network finishes evaluating, it will return the Loss and 

the evaluation metrics (in this case Accuracy).    

 

 

Figure 51: Artificial Neural Network Modes: Prediction Mode 

Figure 51 displays the prediction mode setting. After the model has been trained by training 

examples’ instance-class pairs and evaluated by testing examples’ instance-class pairs to assess 

its performance, it can be used to classify unlabeled/unclassified examples. When in prediction 

mode, the model will return the predictions dictionary containing the probabilities of each 

instance to be in each class. 
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PART 3: The Main Function 

The main function starts by importing the training/evaluation essays and labels.  

 

Figure 52: Artificial Neural Network Main Function– Training/Testing Essays/Grades Import 

The name change is only used for convenience and separating the output of the Word 

Embeddings (2nd) component to the input of the Artificial Neural Network (3rd) component 

(although they are the same).  

 

Figure 53: Artificial Neural Network Main Function – Estimator Creation 

 The main function then creates an estimator using the model created by Part 1 and Part 2 and a 

directory to save the model’s checkpoints and other data. 

 

Figure 54: Artificial Neural Network Main Function: Training Mode Activation 

The main function then activates the training mode from Part 2. This is done in two steps. First it 

sets the input of the estimator’s training mode to be the training essays and labels and also sets 

some parameters to define the way that the training set is manipulated. The number of epochs is 

the number of times that the entire dataset will go through the network. It is set to none, since the 

training examples will be divided and go through the network in batches. When the number of 

batches is not explicitly set, like in this case, it is automatically set by Tensorflow to the default 

value which is 128. Shuffle is set to true as shuffling the training set will make sure that there 

aren’t any batches consisted mainly by essays of the same grade. Ideally, we want each batch to 
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accurately represent the entire training set. A batch consisted by essays of the same grade would 

distract the loss function and the optimization algorithm.  

The actual activation of the training mode is achieved on the second step (seen in figure 54) 

using “project_classifier.train”. The input of this function is the input parameters set by the 

previous step, the number of global steps and the logging hook. The number of global steps is the 

number of times a batch will go through the network and is set to 20000, which means that the 

model will predict, calculate the loss and optimize until 20000 batches of 128 training examples 

have been through the network. The logging hook is a method of returning results such as loss 

and predictions while the network is training and its parameters were set but are not explained as 

the logging hook is optional and insignificant.  

 

After the model has been trained using the training set, it is time to be evaluated using the testing 

set. The evaluation mode activation is very similar to the training mode activation and is again 

done in two steps.  First it sets the input of the estimator’s evaluation mode to be the evaluation 

essays and labels. The evaluation set goes through the network in batches, too (again number of 

batches is set to default value). However, in contract to the training mode, in evaluation mode, 

the number of epoch is set to 1, as we want evaluation to stop as soon as the entire evaluation set 

is through the network and predicted, but only once. Last but not least, shuffle is set to false, as 

there is no need to shuffle the evaluations set as the network is no longer optimizing and thus, the 

loss function is not affected.  

Figure 55: Artificial Neural Network Main Function - Evaluation Mode Activation 
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Figure 56: Artificial Neural Network Main Function - Prediction Mode Activation 

After the model has been trained, evaluated and assessed that it performs adequately, it can be 

used to predict unlabeled instances. The prediction mode activation, similarly to training and 

evaluation mode activation, is done in two steps. First it sets the input of the estimator’s 

prediction mode to be the prediction essays. Obviously, there are no prediction input labels as the 

prediction examples are unlabeled. The prediction input was set to be the evaluation examples in 

order to get the confusion matrix. However, replacing eval_data by the prediction data will 

produce the predictions for the prediction data.   

 

Figure 57: Artificial Neural Network Main Function - Confusion Matrix Implementation 

Figure 51 displays the method used to obtain the confusion matrix. The confusion matrix can be 

also outputted as an evaluation metric (like Accuracy) but Tensorflow does not provide 

confusion matrix as an evaluation metric for multiclass classifications. Thus, this was overridden 

by predicting the class of the evaluation data and then comparing it to the labels of the evaluation 

data.  
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5. RESULTS AND EVALUATION 

5.1. ANALYSIS OF THE EVALUATION METRICS AND METHODS 

USED 

There is a vast number of different metrics that are being used to evaluate the Artificial Neural 

Networks and other Machine Learning approaches. However, without underestimating the 

significance of the rest, the six evaluation metrics that were used to evaluate the performance of 

the Artificial Neural Network are enough to fully assess them.  

The first evaluation metric that was used is Accuracy. Accuracy is calculated as the number of 

matches between labels (actual grades) and predictions (predicted grades output from the 

Artificial Neural Network) over the total number of instances. In simpler words, Accuracy is the 

percentage of the essays that were correctly classified by the Artificial Neural Network.  

The second evaluation metric that was used is the Confusion matrix. The Confusion matrix is an 

xn n  matrix where n  is the number of possible classes. It is a comparison between the predicted 

class and actual class of the evaluation examples. The table below is an example of a Confusion 

Matrix as a result of the evaluation of a model classifying a number of images of animals as 

Mammal, Fish, Bird and Reptile.  

 

PREDICTED CLASS 

A
C

T
U

A
L

 C
L

A
SS

  MAMMAL FISH BIRD REPTILE 

MAMMAL 103 2 5 7 

FISH 6 89 2 8 

BIRD 9 3 29 6 

REPTILE 11 2 12 33 
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The total number of classes is 4 and as a result the Confusion Matrix is a 4x4 matrix. Interpreting 

the Confusion Matrix is very easy. Each cell of the Confusion Matrix contains the number of 

instances with a specific predicted class and actual class. For each cell the predicted class is its 

column and the actual class is its row. For example, looking at the Confusion Matrix above, one 

can understand that 12 images were classified as Bird although they contain Reptiles. The cells 

on the diagonal of the Confusion Matrix is the number of instances for each class that were 

classified correctly since in each of them the Predicted and the Actual class match. As a result, in 

a perfect model, all cells other than the cells on the diagonal would be zero.  

It is important to notice that the Accuracy can also be calculated from the Confusion Matrix by 

dividing the sum of the cells in the diagonal by the sum of all cells, in other words dividing the 

correctly classified instances by the total number of instances. However, having Accuracy as a 

separate evaluation metric is recommended for convenience.  

The table below is an example of a second Confusion Matrix as a result of the evaluation of 

classifying a number of costumer reviews as very satisfied, satisfied, unsatisfied and very 

unsatisfied.  

 

PREDICTED CLASS 

A
C

T
U

A
L

 C
L

A
SS

 

 
very 

satisfied 
satisfied unsatisfied 

very 

unsatisfied 

very 

satisfied 
103 2 5 7 

satisfied 6 89 2 8 

unsatisfied 9 3 29 6 

very 

unsatisfied 
11 2 12 33 
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When studying the Confusion Matrix, it is important to consider the type of the classes. The 

classification of the second Confusion Matrix is very similar to the classification of this project. 

Not only because they both classify text, but more importantly because they have the same type 

of classes. Comparing the classes from the first Confusion Matrix (Mammal, Fish, Bird and 

Reptile) and the classes from the second Confusion Matrix (very satisfied, satisfied, unsatisfied 

and very unsatisfied), it is important to notice that the first set of classes is unordered (or 

categorical) data, whereas the second set of classes is ordered (or ordinal) data. The difference 

between the two class sets, is that the animal types do not have an implicit or natural order, 

whereas the satisfaction index classes do. The “mistake” of the classifier when classifying a Bird 

as a Reptile compared to a Bird as a Mammal is exactly the same. However, the “mistake” of the 

classifier if it classifies a review with (actual) class “very unsatisfied” to have a (predicted) class 

“very satisfied” is a lot bigger than if it classifies the same review as “unsatisfied” (although it 

still did not predict the class correctly). As said, the type of classes in this investigation are 

ordinal, since there is an order of the data from grades A to F.  

As a result, the two Confusion Matrix should be studied differently. Thus, we are also going to 

use a fourth evaluation metric, which will be called Accuracy±1 and will calculate the number 

of instances where the predicted and the actual grade are considered matched if they are the same 

or they have a deviation of 1 class/grade. Since the grades are ordinal classes and they follow a 

natural order, this evaluation metric will be vital in assessing the extend of which the model is 

able not only to capture the characteristics of each class but also the ordinal nature of the classes. 

The metric can be calculated from the Confusion Matrix if we sum the instances on the diagonal 

but also add to that sum the instances next to the diagonal and then divide by the total number of 

instances.  

The fifth evaluation metric that was used for the purposes of Results and Evaluation is a table 

showing the Accuracy and Accuracy±1 per class and then the average of those values. Before 

the data grouping, the Accuracy of the model was 38.17% which was exactly the percentage of 

essays with grades 8 in the evaluation set. The “congestion” of essays with grades 8 caused the 

model to over-focus on grade 8 and thus classified all essays of the evaluation set as grade 8. A 

model with a 30% Accuracy which classifies the essays in all classes is more preferable than a 
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model with 40% Accuracy which classifies all essays in all class. Thus, it is also important to see 

how the Accuracy and the Accuracy±1 fluctuates from one class to another.  

The sixth evaluation metric that was used is Loss. The function and importance of the Loss 

function (or Cost function) in Artificial Neural Networks was fully explained in the “Artificial 

Neural Networks Optimization” in the “Background”. Tensorboard allows us to visualize the 

function of the Stochastic Gradient Descent optimizer which was used to minimize loss, by 

plotting a graph of “Loss vs Global Steps”. After a Global Step has been completed, the 

optimizer calculates weights and biases again to minimize Loss. As a result, Loss is expected to 

decrease as Global Steps increase. However, as the Loss is decreasing, it is more difficult for the 

optimizer to decrease it even more. So, it is also expected to decrease in a decreasing manner.    

 

ACCURACY vs LOSS  

In a first glance, it is understandable to confuse the function of the loss and the accuracy 

measure. They both describe the performance of the Artificial Neural Network and thus they are 

inversely proportional. As the Artificial Neural Network improves, its loss decreases reaching a 

minimum at 0 and its accuracy increases reaching a maximum at 1. However, those two metrics 

are completely different regarding their calculation and meaning. The basic difference is that loss 

is using the probabilities of the predicted instances to be in each class and contrasts them to the 

labels, whereas accuracy is using the predicted classes and contrast them to the labels. This 

means that there can be a loss even if the classifier classifies an instance correctly. Let, for 

example, that an Artificial Neural Network is evaluated by classifying a test set of 10 instances 

and it performs brilliantly classifying all of the 10 instances correctly. So comparing predicted 

classes to the labels will give us an accuracy of 1, whereas comparing probabilities of the 

predicted instances to be in each class to the labels will give us a low loss but most likely not 0. 

The only case an Artificial Neural Network will have loss equal to 0 is if it achieves not only to 

correctly classify all instances but to assign a probability of 1 to all instances to belong to the 

correct class and thus a probability of 0 to all instances to belong to the rest of the classes.  
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5.2. VERSION-SPECIFIC RESULTS 

5.2.1. VERSION 1.0 

Version 1.0 was trained on the training examples and then classified the evaluation examples 

with a 0.5004831 or 50.05% Accuracy and the Confusion matrix following.  

 

 

988
0.9546

1035
1Accuracy    

So the Accuracy±1 of the model in version 1.0, is 0.9546 or 95.46%.  

ACCURACY AND ACCURACY±1 FOR EACH CLASS OF VERSION 1.0 

Actual Grade/Label Accuracy Accuracy±1 
F 85.7 100.0 
E 76.3 98.9 
D 45.9 95.8 
C 44.1 94.9 
B 54.4 91.8 
A 47.9 95.9 

Average of Classes 59.05 96.22 
 

PREDICTED GRADE/LABEL 

A
C

T
U

A
L

 G
R

A
D

E
/L

A
B

E
L

  F E D C B A 

F 6 1 0 0 0 0 

E 0 71 21 1 0 0 

D 0 125 241 137 22 0 

C 0 4 46 79 46 4 

B 0 0 13 44 86 15 

A 0 0 0 3 35 35 
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LOSS TO GLOBAL STEPS GRAPH OF VERSION 1.0 

 

ANALYSIS OF THE RESULTS OF VERSION 1.0 
The Accuracy of the model in classifying the evaluation set is, without a doubt, admirable, 

considering the simplicity of the Word-To-Vector representation. Both the Accuracy±1 value 

and the Confusion Matrix show that the model not only classifies half of the examples correctly 

but also successfully captures the ordinal structure of the data. All essays with grade A are not 

classified with a lower grade than C, all essays with grade F are not classified with a higher 

grade than E and all essays with grade D are classified between grade E and B. The loss can be 

seen declining and reaching a minimum of 1 at around 18000 steps. Loss of 1 is considered a 

very low value for this task. The important, though, is that the loss is steadily declining and is not 

at any point increasing. This means that during training, the model is improving as more batches 

are used for training. To summarize, the model in Version 1.0 is successfully capturing the 

ordinal structure of the data classifying the essays with an Accuracy of 50.05% and a 

Accuracy±1 of 95.46%. 

 

ACCUMULATED RESULTS OF VERSION 1 

Metric Value 
Accuracy 50.05 
Accuracy±1 95.46 
Average Accuracy of Classes 59.05 
Average Accuracy±1 of Classes 96.22 

 

 

Figure 58: Results and Evaluation - Version 1.0 - Loss to Global Steps Graph 
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5.2.2. VERSION 2.0 

Version 2.0 was trained on the training examples and then classified the evaluation examples 

with a 0.50821257 or 50.82% Accuracy and the Confusion matrix following.  

  

 

994
0.9603

1035
1Accuracy    

So the Accuracy±1 of the model in version 2.0, is 0.9603 or 96.03%. 

ACCURACY AND ACCURACY±1 FOR EACH CLASS OF VERSION 2.0 

Actual Grade/Label Accuracy Accuracy±1 
F 85.7 100.0 
E 74.2 98.9 
D 47.2 95.8 
C 53.6 94.9 
B 45.6 91.8 
A 48.0 95.9 

Average of Classes 59.05 96.22 
 

  

PREDICTED GRADE/LABEL 
A

C
T

U
A

L
 G

R
A

D
E

/L
A

B
E

L
  F E D C B A 

F 6 1 0 0 0 0 

E 0 69 22 1 0 0 

D 0 117 248 145 15 0 

C 0 5 43 96 31 4 

B 0 0 12 59 72 15 

A 0 0 0 4 34 35 
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LOSS TO GLOBAL STEPS GRAPH OF VERSION 2.0 

 

Figure 59: Results and Evaluation - Version 2.0 - Loss to Global Steps Graph 

 

ANALYSIS OF THE RESULTS OF VERSION 2.0 

The results of Version 2.0 are very similar to those of Version 1.0. Both versions classify the 

testing examples with a similar Accuracy of 50.82 % (compared to 50.05%) and Accuracy±1 of 

96.03 (compared to 96.22%). Comparing their Average Accuracies, both versions have the exact 

same values. Comparing their loss graphs, Version 2.0 seems to reach a lower value of loss of 

about 0.97 at around 16000 steps but then stops declining and stabilizes at around 1. 

So to summarize, Version 2.0, like Version 1.0, achieves not only to classify half of the essays 

correctly but also to capture the ordinal structure of the essays and classifies all of the essays 

with a very small divergence from the real class. The loss graph of both models seems to reach a 

satisfactory low, but then stabilize and the model seems unable to reach a lower loss. This is 

caused by the simplistic word to vector representation. No matter how good the models are, it is 

impossible to extract features and then use them to classify the examples if the features are not 

there in the first place.  

 

ACCUMULATED RESULTS OF VERSION 2.0 

Metric Value 
Accuracy 50.82 
Accuracy±1 96.03 
Average Accuracy of Classes 59.05 
Average Accuracy±1 of Classes 96.22 
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5.2.3. VERSION 3.0 

Version 3.0 was trained on the training examples after they were converted to bag-of-words 

using the second word to vector representation and then classified the evaluation examples with a 

0.2415 or 24.15% Accuracy and the Confusion matrix following.  

 

 

 

936
0.904347

1035
1Accuracy     

So the Accuracy±1 of the model in version 3.0, is 0.904347826 or 90.43%. 

 

ACCURACY AND ACCURACY±1 FOR EACH CLASS OF VERSION 3.0 

Actual Grade/Label Accuracy Accuracy±1 
F 0 100 
E 90.32 90.32 
D 0 100 
C 92.75 92.74 
B 0 97.47 
A 0 0 

Average of Classes 30.51 80.09 
 

PREDICTED GRADE/LABEL 

A
C

T
U

A
L

 G
R

A
D

E
/L

A
B

E
L

  F E D C B A 

F 0 7 0 0 0 0 

E 0 84 0 9 0 0 

D 0 186 0 339 0 0 

C 0 13 0 166 0 0 

B 0 4 0 154 0 0 

A 0 0 0 73 0 0 
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LOSS TO GLOBAL STEPS GRAPH OF VERSION 3.0 

 

Figure 60: Results and Evaluation - Version 3.0 - Loss to Global Steps Graph 

 
ANALYSIS OF THE RESULTS OF VERSION 3.0 
The results of Version 3.0 are disappointing. The Accuracy of the model is less than half the 

Accuracy achieved by the models in Version 1.0 and 2.0. Although, the Accuracy±1 is not very 

declined, the Confusion Matrix is a very clear indicator of the model’s failure. As can be seen 

from the Confusion Matrix and the Accuracy for each class table, none of the essays were 

classified as A, B, D or F (0% Accuracy in those classes) although the actual class of 763 classes 

of the testing set (73.7% of the testing set) is A, B, D or F. Another indicator of the model’s 

failure is its loss graph, as the loss doesn’t seem to follow a downward trajectory. On the first 

2000 steps it reaches a local minimum of about 1.7 and then fluctuates around this value 

reaching a minimum of around 1.65 at around 19000 steps, which comparing to the minimum of 

the loss function in Version 1.0 and 2.0 (less than 1) is very high. As said in the Approach, the 

reason of these results is the insufficient feature extraction part which is not big enough to 

manipulate the input and provide the necessary features for the classification.  

 

ACCUMULATED RESULTS OF VERSION 3.0 

Metric Value 
Accuracy 24.15 
Accuracy±1 90.43 
Average Accuracy of Classes 30.51 
Average Accuracy±1 of Classes 80.09 
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5.2.4. VERSION 4.0 

Version 4.0 was trained on the training examples and then classified the evaluation examples 

with a 0.5342995 or 53.43% Accuracy and the Confusion matrix following.   

 

 

 

 

 

 

 

 

 

 

 

So the Accuracy±1 of the model in version 4.0, is 0.852173913 or 85.22%. 

 

ACCURACY AND ACCURACY±1 FOR EACH CLASS OF VERSION 4.0 

Actual Grade/Label Accuracy Accuracy±1 
F 0 100 
E 60.22 100 
D 74.1 82.48 
C 0 98.88 
B 68.35 68.35 
A 0 87.67 

Average of Classes 33.78 89.56 
 

  

PREDICTED GRADE/LABEL 
A

C
T

U
A

L
 G

R
A

D
E

/L
A

B
E

L
  F E D C B A 

F 0 7 0 0 0 0 

E 0 56 37 0 0 0 

D 0 44 389 0 92 0 

C 0 0 95 0 82 0 

B 0 0 50 0 108 0 

A 0 0 9 0 64 0 
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LOSS TO GLOBAL STEPS GRAPH OF VERSION 4.0 

 

Figure 61: Results and Evaluation - Version 4.0 - Loss to Global Steps Graph 

 

ANALYSIS OF THE RESULTS OF VERSION 4.0 

The results of Version 4.0 are clearly improved compared to Version 3.0, as the Accuracy is 

more than doubled (53.43% to 24.14%). This improvement can be also seen by The Loss to 

Global Steps graph, where the loss seems to be steadily declining and reaching a minimum of 

about 1.47 at around 20000 steps (compared to 1.65 in Version 3.0). If Version 4.0 was to be 

trained for more steps, the loss could be even less. However, there are still significant deficits. 

Similarly, to Version 3.0, none of the testing examples were classified to classes A, B and F, 

whereas only 1 essay was classified to class E. This can be seen by both the Confusion Matrix 

and the Accuracy for each class, where the average Accuracy is 33.78%. However, it is unclear 

whether the feature extraction should be even bigger or it is already to big for the classification, 

thus there should be more or bigger (or both more and bigger) layers in the classification part.  

 

ACCUMULATED RESULTS OF VERSION 4.0 

Metric Value 
Accuracy 53.43 
Accuracy±1 85.22 
Average Accuracy of Classes 33.78 
Average Accuracy±1 of Classes 89.56 
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5.2.5. VERSION 5.0 

Version 5.0 was trained on the training examples and then classified the evaluation examples 

with a 0.297584541 or 29.76% Accuracy and the Confusion matrix following.   

 

 

 

 

 

 

 

 

 

 

 

So the Accuracy±1 of the model in version 5.0, is 0.896618357 or 89.66%. 

 

ACCURACY AND ACCURACY±1 FOR EACH CLASS OF VERSION 5.0 

Actual Grade/Label Accuracy Accuracy±1 
F 0 14.29 
E 0 75.27 
D 26.67 100 
C 93.85 100 
B 0 96.84 
A 0 0 

Average of Classes 20.09 64.40 
 

  

PREDICTED GRADE/LABEL 
A

C
T

U
A

L
 G

R
A

D
E

/L
A

B
E

L
  F E D C B A 

F 0 1 2 4 0 0 

E 0 0 70 23 0 0 

D 0 0 140 385 0 0 

C 0 0 11 168 0 0 

B 0 0 5 153 0 0 

A 0 0 0 73 0 0 
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LOSS TO GLOBAL STEPS GRAPH OF VERSION 5.0 

 

Figure 62: Results and Evaluation - Version 5.0 - Loss to Global Steps Graph 

 

ANALYSIS OF THE RESULTS OF VERSION 5.0 

The results of Version 5.0 are very disappointing. Starting from the Accuracy, only 29.76% of 

the testing examples were classified correctly. Accuracy±1 is reasonably high but it does not 

reflect the Confusion Matrix, where all of the essays but one were predicted to be either C or D 

and since most of the essays in the testing set are either C or D, the Accuracy and Accuracy±1 

are lifted and do not reflect the actual model’s performance. This can shown by the Average 

Accuracy and Average Accuracy±1, which compared to Accuracy and Accuracy±1, are both 

reduced. The Loss to Global Steps graph also confirms that the estimator is unable to classify the 

essays as the cross-entropy loss is fluctuating over and under around 1.71 without showing any 

decline. 

  

ACCUMULATED RESULTS OF VERSION 5.0 

Metric Value 
Accuracy 29.76 
Accuracy±1 89.66 
Average Accuracy of Classes 20.09 
Average Accuracy±1 of Classes 64.40 

 

  



77 
 

5.2.6. VERSION 6.0 

Version 6.0 was trained on the training examples and then classified the evaluation examples 

with a 0.48019323 or 48.02% Accuracy and the Confusion matrix following.   

 

 

 

 

 

 

 

 

 

 

 

So the Accuracy±1 of the model in version 5.0, is 0.870531401 or 87.05%. 

 

ACCURACY AND ACCURACY±1 FOR EACH CLASS OF VERSION 6.0 

Actual Grade/Label Accuracy Accuracy±1 
F 71.43 100 
E 69.89 96.77 
D 52.38 81.14 
C 17.88 97.21 
B 68.35 87.34 
A 16.44 90.41 

Average of Classes 49.4 92.15 
 

  

PREDICTED GRADE/LABEL 
A

C
T

U
A

L
 G

R
A

D
E

/L
A

B
E

L
  F E D C B A 

F 5 2 0 0 0 0 

E 1 65 24 3 0 0 

D 1 77 275 74 98 0 

C 0 5 47 32 95 0 

B 0 1 19 21 108 9 

A 0 0 1 6 54 12 
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LOSS TO GLOBAL STEPS GRAPH OF VERSION 6.0 

 

Figure 63: Results and Evaluation - Version 6.0 - Loss to Global Steps Graph 

 

ANALYSIS OF THE RESULTS OF VERSION 6.0 

The results of Version 6.0 are very encouraging. Starting from the Accuracy, more than 48% of 

the testing examples were classified correctly. Taking into consideration, the Confusion Matrix 

and the Average Accuracies per class, the model seems to capture both the general pattern as 

well as the pattern of essays of the same grade. In comparison to the previous versions using the 

second word-to-vector representation (Versions 3.0 to 5.0), the model classifies essays in all 

grade classes as can be seen from the Confusion Matrix. This can be also seen from the Average 

Accuracies per class table, where both the Accuracy and Accuracy±1 in all classes does not have 

a significant difference from the Average Accuracy and Accuracy±1 per class respectively. Last 

but not least, the Loss to Global Steps graph also reflects the success of the model. Loss seems to 

steadily decline and at specific points even reaching below 1 (unsmoothed curve).  

 

 

ACCUMULATED RESULTS OF VERSION 6.0 

Metric Value 
Accuracy 48.02 
Accuracy±1 87.05 
Average Accuracy of Classes 49.40 
Average Accuracy±1 of Classes 92.15 
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5.3. ACCUMULATED RESULTS OF ALL VERSIONS 

VERSION ACCU ACCU±1 AVG ACCU AVG ACCU±1 
 

1.0 50.05 95.46 59.05 96.22 

2.0 50.82 96.03 59.05 96.22 

3.0 24.15 90.43 30.51 80.09 

4.0 53.43 85.22 33.78 89.56 

5.0 29.76 89.66 20.09 64.40 

6.0 48.02 87.05 49.40 92.15 

 

5.4. EVALUATION OF THE DIFFERENT FACTORS CONSIDERED  

The investigation emphasized in three important factors of the classification. The first factor was 

the word-to-vector representation as the essays are inserted into the Convolutional Neural 

Network. The second factor was the essay representation as the essays are inserted into the 

Convolutional Neural Network and the third factor was the depth or size of the Convolutional 

Neural Network. 

5.4.1. WORD TO VECTOR REPRESENTATION 

Versions 1.0 and 2.0 implemented the first word-to-vector representation where each word is 

represented by a 2-dimensional vector where the first dimension is the words’ dictionary index 

and the second dimension is the frequency of the word in the example. Versions 3.0 to 6.0 

implemented the second word-to-vector representation where each word is represented by a 300-

dimensional vector extracted from the pre-trained Google model using the Continuous-Bag-of-

Words word2vec model architecture. The versions which implemented the first representation 

prevailed those the versions which implemented the second representation in all evaluation 

metrics. However, this certainly does not reflect that the first word-to-vector representation itself 

is more suitable as the word-to-vector representation for Automated Essay Marking or text 

classification is general. On the contrary, the model implemented for the first word-to-vector 

representation may be smaller, but taking into consideration the size of the input in the first and 

second word-to-vector representation, they are relatively larger. Unfortunately, this assumption 
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cannot be validated by a model (such as Version 7.0) as the memory capabilities at my disposal 

during the project did not allow training a model of this size.  

5.4.2. ESSAY REPRESENTATION 

Version 1.0 and 2.0 both implemented the first word-to-vector representation. As a result, their 

inputs were exactly the same and their parameters were set in order their extraction feature part 

to produce the same output. Their classification part structure was, again, exactly the same and 

taking into consideration that the examples are flattened to 1-dimensional representation before 

entering the classification part, their classification as a whole was exactly the same. Their only 

difference is that Version 1.0 converted the 363-vectors essay/input to a 2-dimensional form of 

height 33 and width 11, whereas Version 2.0 kept the input in 1-dimensional form with size 363.  

Both models were structured this way in order to compare their performance in a “ceteris 

paribus1” environment. Their results were very much alike with Version 2.0 results being slightly 

better and thus the conclusion of this comparison is that the essay representation, does not affect 

the feature extraction and thus the classification.  

5.4.3. ARTIFICIAL NEURAL NETWORK DEPTH 

There is no correct answer for the Artificial Neural Network’s depth to construct an accurate 

Automated Essay Marking system. The reason is that it depends on the size of the input. The 

same deep Artificial Neural Network is very likely to be overfitted if it is trained on a simple 

word-to-vector training set and at the same time it is very likely to be inadequate and underfitted 

if it is trained on a complex word-to-vector training set.   

                                                 
1 Other things equal 
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6. FUTURE WORK 

The project was completed with success. However, there are is variety of improvements that can 

be and have been planned to be made in the future.  

6.1. VERSION 7.0 

The “Version-Specific Approach” section described the approaches taken in each version and the 

reason for taking them. The approach in Version 7.0 described an Artificial Neural Network 

structure, which could result to a high accuracy classification using the second word-to-vector 

representation. Although Version 7.0 was implemented, the limited computing power in disposal 

made its training impossible. Training Version 7.0 could produce very important outcomes since, 

compared to the rest of the versions using the second word-to-vector (Versions 3.0 to 6.0), it is 

the only Artificial Neural Network, which is deep enough in order to extract the features from 

the high dimensional input vectors of the second word-to-vector representation and deep enough 

to then classify the essays using them. Training Version 7.0 could take weeks, but it is the first 

priority of the future work. 

 

6.2. LINGUISTIC ANALYSIS 

Text classification of this kind requires a highly qualified team of researchers from various 

disciplines such as linguistics. Linguistics could be very helpful in determining words that should 

be dropped before the essays are converted into word vectors and they are inserted into the 

Artificial Neural Network. Words like “a”, “the”, “of”, “that” are most likely to appear in all 

essays, regardless their class/grade. Such words and other that do not or should not affect the 

classification of an essay is better to be removed from the essays. Removing unnecessary words 

will also reduce the size of the essays keeping only important local indicators that can lead to a 

class membership.  

 

6.3. RECURRENT NEURAL NETWORKS  

Recurrent Neural Networks have also been used to perform complex text classifications. The 

assumption we made and led us to using Convolutional Neural Networks is that the order of the 
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words in the essay is insignificant and that local indicators will lead to the correct class 

regardless of their position in the text. The assumption of Recurrent Neural Networks is exactly 

the opposite. Recurrent Neural Networks have been proven to outperform Convolutional Neural 

Networks when the order of the words in the text affects their class membership, whereas 

Convolutional Neural Networks have been proven to outperform Convolutional Neural Networks 

when it does not (Yin, et al., 2017). Although, there are no indicators that our hypothesis is 

invalid, there is no proof that it is not until using Recurrent Neural Networks and comparing their 

performance to the existing models.  

 

6.4. ARTIFICIAL NEURAL NETWORK OPTIMIZATION 

As mentioned before, the choice of Stochastic Gradient Descent was mainly because of its 

computational efficiency since it changes the weights after each training example in comparison 

to Batch Gradient Descent or Minibatch Gradient Descent, which change the weights after an 

entire batch or part of the batch respectively. Stochastic Gradient Descent was forced by the 

limited memory capabilities of the machines used (or available to be used). However, Stochastic 

Gradient Descent is normally used with very large datasets (unlike the dataset used). A larger 

dataset would need a larger batch size so that each batch can adequately represent the dataset. So, 

since the Batch Gradient Descent’s run time increases exponentially in relation to the batch size, 

the Stochastic Gradient Descent is used instead. Since the dataset used for the text classification 

is limited, it is very likely that a Batch Gradient Descent will perform better, given that we have 

the memory capabilities to utilize it. Decreasing the learning rate and increasing the global steps, 

so that the model learns more slowly for a larger number of steps, was tried repeatedly but in 

vain for the same reason. Another option for the optimization algorithm is to use a cyclical 

learning rate, starting from a high learning rate and monotonically decreasing. The cyclical 

learning rate has been implemented in various classification models with great results (Smith, 

2017).  
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7. CONCLUSIONS 

After completing an investigation, it is vital to evaluate the general outcomes. The aim of this 

report was to investigate the application of Machine Learning in Automated Essay Marking. 

Although there were many obstacles, this aim was completed with success. Automated Essay 

Marking is long from being widely implemented in the Education System. However, the results 

of this project proved that an accurate Automated Essay Marking system is not only possible but 

“inevitable” if the existing software is improved by implementing the future work described. The 

existing software may not be a solution to the problem but it is a significant attempt towards a 

solution. However, the most important accomplishment of this project is that the report in 

combination with the source code is a thorough guide to someone that wants to get involved with 

Automated Essay Marking with Artificial Neural Networks, or even Artificial Neural Networks 

in general. 

The models designed, implemented, trained, tested and evaluated, produced a number of very 

important outcomes in regard to the significance of the Artificial Neural Network architecture, 

the essay 1-dimensional and 2-dimensional representation and the word-to-vector representation. 

In summary, after investigation, the outcome was reached that the essay representation is 

unimportant, in comparison to the word-to-vector representation, where a complex word-to-

vector representation can produce better results as long as the model’s depth can support its size. 

If the model’s depth cannot support the size of the complex word-to-vector representation, then a 

simple word-to-vector representation will produce far better results and perform a more accurate 

classification. 

The biggest challenge about Artificial Neural Networks is that the evaluation metrics help 

assessing the performance about the Artificial Neural Networks, but they provide limited 

information about what went wrong and what the next step should be. No matter how 

experienced one is with Artificial Neural Network, the only thing you can do is speculate and 

test. On the other hand, there is a limited number of speculations I could make taking into 

consideration the short time frame and limited memory capabilities. The development of a fine-

tuned Deep Neural Network that can carry out demanding tasks such as text classification require 

a combination of time and computing power of which I had none.  
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Probably the major drawback of the software developed for the purposes of this project is that it 

must be both trained and evaluated on a set of essays with the same topic. Thus, it is unlikely that 

it will be able to successfully work and predict a grade with some success and accuracy for a 

different set of essays with a different topic. The reason lies on the way the models work, which 

is finding the local indicators/word that are able to point to a specific class membership. 

Considering, however, the task for which the software was made makes this drawback absolutely 

normal and was expected from the beginning.  

The investigation of the underlying technology required for an Automated Essay Marking system 

also gave me a lot of food for thought. When I started this project, I was puzzled by the fact that 

education and automated essay marking systems have not been affected by the technological 

improvement. However, after carefully studying the field of Machine Learning and Artificial 

Neural Networks, I reconsidered. Undoubtedly, a successful Automated Essay Marking system 

could save both time and resources by automating the marking process. Essays could be 

converted to bag of words and inserted into a model, which could classify the essays based on 

local indicator. But are essays just bag of words? Are local indicators enough to classify an 

essay? Are we willing to sacrifice creativity to achieve efficiency? The objective of this project 

was to investigate whether Machine Learning and Artificial Neural Networks could be used to 

make an Automated Essay Marking which can classify essays with high accuracy. This objective 

has been, in my opinion, completed. The software developed with some modifications and 

improvement which were described in the “Future Work” section could and probably will lead to 

an Automated Essay Marking with great accuracy, which can be used in schools. But should it? 
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8. REFLECTION ON LEARNING 

The final year dissertation is without a doubt a lot different to any of the other projects 

undertaken. It requires a lot of commitment and dedication to conduct a successful investigation 

and a thorough report. Thus, the learning outcomes are also different to the learning outcomes of 

any other project.  

First of all, I chose this dissertation topic because I am intrigued by Machine Learning and 

planning to continue my studies in that field. When I started the project, my knowledge in 

Machine Learning was limited and I had no idea what Artificial Neural Networks are. Less than 

four months later, I achieved studying and understanding Machine Learning and Artificial 

Neural Networks down to the detail, becoming very familiar with two different libraries, Gensim 

and Tensorflow which are used for Machine Learning applications, constructing close to 100 

models using the libraries, training many of them, evaluating and changing them, and finally 

constructing a thorough report of the entire investigation. Thus, I acquired technical knowledge 

that I hope to use in my later career. 

The dissertation is the first project without a safety net. In contrast to the rest of the projects, 

which are made to be doable, the investigation is very likely to fail. Until the approach and 

implementation part of the project is over and the results are evaluated, there are no indications 

about the success of the project. In that respect, the dissertation is very similar to the real 

professional projects that we will undertake in our future careers and thus provide us with 

important learning outcomes and prepare us for our professional career.  

The design of a successful Artificial Neural Network requires tremendous patience and 

concentration. In the projects I undertook before the dissertation I was able to make mistakes 

without a “cost”. I was able to see my mistakes and run the program again. The time required to 

train an Artificial Neural Network, which can be days or an entire week, multiplies the “cost” of 

every mistake. So, working on a Machine Learning project requires cautiousness and diligence, 

which I have gained after this project. 

Last but not least, this was the first project, which other than time management also required 

resources management. The limited memory capabilities of my laptop and the machines of the 

Linux labs forced me to look for alternatives, such as the insista@cs.cf.ac.uk server provided by 
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my supervisor. Due to my lack of experience in working on a remote server, I faced a lot of 

difficulties working with the ssh protocol necessary. After a lot of struggle, I overcame them, 

which helped me perform the trainings faster, but also helped acquire useful technical knowledge 

in working on remote servers. However, even the remote server had limited capabilities. So the 

models designed and implemented had to be big enough to perform the required task but at the 

same time relatively small to be trained by the server. This added an extra constraint to the 

developing process, which made the process more difficult, but also provided me with important 

learning outcomes for my later career.  
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