
i

SCHOOL OF COMPUTER SCIENCE AND INFORMATICS

CARDIFF UNIVERSITY

CM3203 - ONE SEMESTER INDIVIDUAL PROJECT

Automated Essay Marking with Machine Learning and Artificial

Neural Networks

Angelos Charitidis

Supervisor: Dr. Frank C Langbein

Moderator: Dr. Jing Wu

Date of Submission: 11/05/2018

ii

ABSTRACT

The aim of this paper is to investigate the application of Machine Learning in Automated Essay

Marking. After a thorough background of Machine Learning, Artificial and Convolutional

Neural Networks and fundamental word-to-vector representations, six of the main approaches of

an Automated Essay Marking system using Convolutional Neural Networks are presented. The

approaches differ about the word-to-vector representation, the essay representation and the

network structure they are using. The approaches are then implemented to different software

versions and their implementation is fully explained. The results of the various versions are first

presented and then evaluated using six different evaluation metrics such as Accuracy, Confusion

Matrix, Loss Graph etc. The results are very encouraging with some of the versions classifying

testing examples with an Accuracy of more than 50%, but most importantly capturing the

dataset’s ordinal class structure. After evaluating the models and their results, the following

outcomes were reached. The essay representation, as 1-dimensional or 2-dimensional, is

insignificant given that the feature extraction part of the classification is performed with similar

parameters. The word-to-vector representation is directly affecting the size of the essay and

dimensions of the word-vector. As a result, a simpler word-to-vector representation can

outperform a more complex word-to-vector representation, if the complex word-to-vector

representation is not combined by a deep neural network that can “handle” its size.

iii

ACKNOWLEDGEMENTS

This project would never happen without the invaluable advice and help by my

supervisor, Dr. Frank Langbein.

I would like to dedicate this to my family who I dearly miss.

iv

TABLE OF CONTENTS

1. INTRODUCTION 1

2. BACKGROUND 3

2.1. MACHINE LEARNING 3

2.1.1. INTRODUCTION TO MACHINE LEARNING 3

2.2. ARTIFICIAL NEURAL NETWORKS 4

2.2.1. INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS 4

2.2.2. ARTIFICIAL NEURAL NETWORK VS OTHER MACHINE LEARNING APPROACHES 4

2.2.3. BASIC STRUCTURE OF AN ARTIFICIAL NEURAL NETWORK 5

2.2.4. TYPES OF ARTIFICIAL NEURAL NETWORKS 10

2.2.5. ARTIFICIAL NEURAL NETWORKS OPTIMIZATION 10

2.2.6. SAMPLES REPRESENTATION IN ARTIFICIAL NEURAL NETWORKS 15

2.3. CONVOLUTIONAL NEURAL NETWORKS 16

2.3.1. BASIC STRUCTURE OF A CONVOLUTIONAL NEURAL NETWORK 17

2.3.2. CONVOLUTIONAL LAYER 17

2.3.3. POOLING LAYER 21

2.3.4. CONVOLUTIONAL AND POOLING LAYER PARAMETERS EFFECT 24

2.4. WORD-TO-VECTOR REPRESENTATION 24

2.4.1. BAG-OF-WORDS (B-O-W) MODEL 24

2.4.2. CONTINUOUS BAG-OF-WORDS (B-O-W) VS CONTINUOUS SKIP-GRAM MODEL 25

2.5. RELATED WORD: MACHINE LEARNING IN EDUCATION AND AUTOMATED ESSAY MARKING 26

3. APPROACH 29

3.1. BUSINESS MODEL OF THE SOFTWARE 29

3.2. GENERAL STRUCTURE OF THE SYSTEM-DATA FLOW 29

3.2.1. 1ST COMPONENT: DATASET PREPROCESSING 30

3.2.2. 2ND COMPONENT: WORD TO WORD EMBEDDING (WORD VECTORS) CONVERSION 31

3.2.3. 3RD COMPONENT: CONVOLUTIONAL NEURAL NETWORK 32

v

3.3. WORD-TO-VECTOR 33

3.3.1. FIRST WORD-TO-VECTOR REPRESENTATION 33

3.3.2. SECOND WORD-TO-VECTOR REPRESENTATION 34

3.3.3. COMPARISON OF THE TWO WORD-TO-VECTOR REPRESENTATIONS 34

3.4. ARTIFICIAL NEURAL NETWORK APPROACH 34

3.4.1. ARTIFICIAL NEURAL NETWORKS STRUCTURE 35

3.4.1.1. FEATURE EXTRACTION COMPONENT 36

3.4.1.2. CLASSIFICATION COMPONENT 37

3.4.2. ARTIFICIAL NEURAL NETWORKS LOSS-OPTIMIZATION 38

3.5. VERSION-SPECIFIC APPROACH 39

3.5.1. VERSION 1.0 40

3.5.2. VERSION 2.0 41

3.5.3. VERSION 3.0 41

3.5.4. VERSION 4.0 42

3.5.5. VERSION 5.0 43

3.5.6. VERSION 6.0 44

3.5.7. VERSION 7.0 44

3.6. VERSION-SPECIFIC ARTIFICIAL NEURAL NETWORK STRUCTURE FIGURES 45

4. IMPLEMENTATION 48

4.1. GENERAL IMPLEMENTATION 48

4.1.1. 1ST COMPONENT: DATASET PREPROCESSING 48

4.1.2. 2ND COMPONENT: WORD TO WORD EMBEDDING (WORD VECTORS) CONVERSION 49

4.1.2.1. FIRST WORD-TO-VECTOR REPRESENTATION 50

4.1.2.2. SECOND WORD-TO-VECTOR REPRESENTATION 53

4.1.3. 3RD COMPONENT: ARTIFICIAL NEURAL NETWORK 55

5. RESULTS AND EVALUATION 63

5.1. ANALYSIS OF THE EVALUATION METRICS AND METHODS USED 63

5.2. VERSION-SPECIFIC RESULTS 67

vi

5.2.1. VERSION 1.0 67

5.2.2. VERSION 2.0 69

5.2.3. VERSION 3.0 71

5.2.4. VERSION 4.0 73

5.2.5. VERSION 5.0 75

5.2.6. VERSION 6.0 77

5.3. ACCUMULATED RESULTS OF ALL VERSIONS 79

5.4. EVALUATION OF THE DIFFERENT FACTORS CONSIDERED 79

5.4.1. WORD TO VECTOR REPRESENTATION 79

5.4.2. ESSAY REPRESENTATION 80

5.4.3. ARTIFICIAL NEURAL NETWORK DEPTH 80

6. FUTURE WORK 81

6.1. VERSION 7.0 81

6.2. LINGUISTIC ANALYSIS 81

6.3. RECURRENT NEURAL NETWORKS 81

6.4. ARTIFICIAL NEURAL NETWORK OPTIMIZATION 82

7. CONCLUSIONS 83

8. REFLECTION ON LEARNING 85

vii

TABLE OF FIGURES

Figure 1: Software Development Cycle .. 2

Figure 2: The Artificial Neuron .. 8

Figure 3: Basic Artificial Neural Network Structure (Fauske, 2006) .. 8

Figure 4: Basic Artificial Neural Network Structure for Text Classification 9

Figure 5: Effect of Weight and Bias using the Identity function as Activation function 14

Figure 6: Convolution Illustration - Filter .. 17

Figure 7: Convolution Illustration - Input ... 17

Figure 8: Convolution Illustration - Step 1 ... 18

Figure 9: Convolution Illustration - Step 2 ... 19

Figure 10: Convolution Illustration - Output from Steps 1-6 ... 19

Figure 11: Convolution Illustration - Output .. 20

Figure 12: Pooling Illustration - Input .. 21

Figure 13: Pooling Illustration - Step 1... 22

Figure 14: Pooling Illustration - Step 2... 22

Figure 15: Pooling Illustration - Steps 3-5 .. 23

Figure 16: Pooling Illustration - Output.. 23

Figure 17: Continuous Bag-of-Words model vs Continuous Skip Gram model (Mikolov, et al.,

2013) ... 26

Figure 18: Model Underfitting/Overfitting (edited) (Bhande, 2018) .. 35

Figure 19: Artificial Neural Network's Feature Extraction Component 36

Figure 20: Artificial Neural Network's Classification Component .. 37

Figure 21: Stochastic Gradient Descent Pseudocode (Renals, 2016) ... 39

Figure 22: Version 1.0 Artificial Neural Network Structure .. 45

Figure 23: Version 2.0 Artificial Neural Network Structure .. 45

Figure 24: Version 3.0 Artificial Neural Network Structure .. 46

Figure 25: : Version 4.0 Artificial Neural Network Structure .. 46

Figure 26: Version 5.0 Artificial Neural Network Structure .. 47

Figure 27: Version 6.0 Artificial Neural Network Structure .. 47

Figure 28: Dataset Preprocessing: Essays/Labels Extraction ... 48

Figure 29: Dataset Preprocessing: Dataset Grouping ... 49

viii

Figure 30: First Word2Vector - Dictionary creation ... 51

Figure 31: First Word2Vector - Essay to Bag-of-Words .. 51

Figure 32: First Word2Vector - for loops creating a list of the training and a list of testing essays

of the in Bag-of-Words form .. 52

Figure 33: First Word2Vector - padding .. 52

Figure 34: First Word2Vector - Lists to Numpy arrays conversion ... 53

Figure 35: Second Word2Vector - word2vec pre-trained import ... 53

Figure 36: Second Word2Vector - split_list_of_essays function ... 53

Figure 37: Second Word2Vector - list_of_essays_to_bow function .. 54

Figure 38: Second Word2Vector - padding function .. 54

Figure 39: Second Word2Vector - list_of_essays_to_bow function call and list to numpy array

conversions ... 54

Figure 40: Artificial Neural Network Model -Model function Definition 56

Figure 41: Artificial Neural Network Model - Input Layer .. 56

Figure 42: Artificial Neural Network Model – First Convolutional Layer 56

Figure 43: Artificial Neural Network Model – First Pooling Layer ... 57

Figure 44: Artificial Neural Network Model – Second Convolutional Layer 57

Figure 45: Artificial Neural Network Model – Second Pooling Layer .. 57

Figure 46: Artificial Neural Network Model – Flatenning Layer ... 57

Figure 47: Artificial Neural Network Model – First Fully Connected Layer 57

Figure 48: Artificial Neural Network Model – Second Fully Connected / Logits Layer 58

Figure 49: Artificial Neural Network Modes: Training Mode ... 58

Figure 50: Artificial Neural Network Modes: Evaluation Mode .. 59

Figure 51: Artificial Neural Network Modes: Prediction Mode ... 59

Figure 52: Artificial Neural Network Main Function– Training/Testing Essays/Grades Import . 60

Figure 53: Artificial Neural Network Main Function – Estimator Creation 60

Figure 54: Artificial Neural Network Main Function: Training Mode Activation 60

Figure 55: Artificial Neural Network Main Function - Evaluation Mode Activation 61

Figure 56: Artificial Neural Network Main Function - Prediction Mode Activation 62

Figure 57: Artificial Neural Network Main Function - Confusion Matrix Implementation......... 62

Figure 58: Results and Evaluation - Version 1.0 - Loss to Global Steps Graph........................... 68

ix

Figure 59: Results and Evaluation - Version 2.0 - Loss to Global Steps Graph........................... 70

Figure 60: Results and Evaluation - Version 3.0 - Loss to Global Steps Graph........................... 72

Figure 61: Results and Evaluation - Version 4.0 - Loss to Global Steps Graph........................... 74

Figure 62: Results and Evaluation - Version 5.0 - Loss to Global Steps Graph........................... 76

Figure 63: Results and Evaluation - Version 6.0 - Loss to Global Steps Graph........................... 78

1

1. INTRODUCTION

 The aim of this project is to thoroughly investigate the application of Machine Learning in

Automated Essay Marking. The reason Automated Essay Marking is a very important and

interesting subject to investigate under the light of Machine Learning is because it gives us the

chance to philosophically but also scientifically question whether a machine is able to capture

patterns so obscure and complex such the patterns of essays in relation to their grades.

The combination of Machine Learning and Natural Language Processing in Automated Essay

Marking will hopefully give us these answers. A human essay marker does not only assess an

essay grammatically and/or syntactically, but also assesses the arguments made, and even more

importantly, the support of the arguments made. So, this project will investigate whether a

Machine Learning model can extract those features and classify the essays using them.

The dataset used originates from Kaggle and its purpose was “The Hewlett Foundation:

Automated Essay Scoring” competition (Kaggle, 2012). It’s a set of 1750 essays together with a

grade from 2 to 12. All essays were written by students ranging from grade 7 to grade 10. Each

essay was marked by two raters, who then agreed to an average, which is the mark that will be

used for the classification.

This report includes 6 of the main Artificial Neural Network approaches, which were

implemented and trained to 6 main versions. Through these different approaches/versions, I

investigated the effect of three different factors of essay classification. First, the effect of the

different representation of words as the essays are inserted into the Artificial Neural Network,

implementing two completely opposite approaches and evaluating their performance. Second,

the effect of the essay representation as the essays are inserted into the Artificial Neural

Network, implementing 1-dimensional and 2-dimensional essay representation. Third, the effect

of the depth or size of the Artificial Neural Network, by experimenting with various different

model depths. Last but not least, I also investigated the dependency between those three factors

by combining them in different ways.

The results were more than satisfactory. Four out of six models classified the essays with high

accuracy showing signs of capturing the order of the grades and the natural structure of the data.

2

Most importantly, the three factors were fully examined and resulted to very important outcomes

that will be vital in the next step of the project.

Both word representations, and thus the project, are based on the assumption that the order of the

words in the essay is insignificant and that specific words will lead to a class regardless their

position in the text.

The intended audience of this project is the research community. Although the results show that

the produced models can be used as supplementary marking guides, if not as sole marking

systems, the outcomes of this projects regarding the three factors effect in the classification can

result to a highly accurate Automated Essay Marking in the very near future.

The approach used to carry out was a modified Agile methodology (Beck, et al., 2001). The first

step of the methodology is to decide the approach. The initial model approach must be as simple

as possible, in order to avoid building a model unnecessarily big or even worse overfitted on the

training set which will be unable to successful predict new (or testing) examples. More

information about model overfit will be provided later. The second step of the approach is to

implement the approach and then the third step is to test it. The fourth and final step is to

evaluate the results of the model. Using the results and the evaluation of the results from the

fourth step, the first step is repeated by reconsidering or extending the approach. Since the

intended audience is the research community, the version created by every cycle is stored and

referenced to justify the new approach.

Figure 1: Software Development Cycle

3

2. BACKGROUND

2.1. MACHINE LEARNING

2.1.1. INTRODUCTION TO MACHINE LEARNING

Machine Learning is the notion of a machine progressively changing its structure, program, or

data (based on its inputs or in response to external information) in such a manner that its

expected future performance improves (Nilson, 1998). In other words, a Machine learns when it

adapts to the new data and information.

Machine Learning tasks can be divided into two broad categories; Supervised and Unsupervised

Learning, which differentiate based on their inputs and outputs. In Supervised Learning, for each

observation there is an associated response measurement/class (James, et al., 2013). The most

common Supervised Learning method is Classification, where the model is trained by the

instance-class pairs of already classified examples (the training set) and can be then used to map

other instances to the already existing classes. Taking for example the insurance industry, an

example of a classification task could be to classify a number of instances of people with specific

income, age, industry of employment, marital status and expected retirement age to two classes,

one for insurance offer and one for insurance rejection. The inputs of the classification model

will be the instances’ information (specific income, age, industry of employment, marital status

and expected retirement), whereas the output would be whether that person should or should not

be offered an insurance plan. The model will be first trained by examined offer or rejection cases

and can be then used to examine new cases. On the other hand, in Unsupervised Learning, the

model is used to draw conclusions about a set of instances without an associated response/label

(James, et al., 2013). The most common Unsupervised Learning method is Clustering, where the

model is used to find possible grouping patterns of similar instances. Taking for example an

online e-shop, Clustering could be used to find groups/clusters of similar products, so that after a

costumer has viewed a specific product, the e-shop can recommend other products from the same

cluster. The inputs of the Clustering model could be the products’ information, such as price,

sales, buyers’ id, buyers’ location and product category, whereas there are no set output options.

There are also subcategories/special cases of Supervised Learning, which are Semi-Supervised

Learning, Active Learning and Reinforcement Learning. The field of Machine Learning and the

4

general notion of a machine “learning” by progressively improving its performance in a specific

task (Mitra, et al., 2018) is one of the most trending fields of computer science at the moment. In

the last decade, scientists and engineers have tested its applications in various problems such as

Medicine, Gaming, Insurance, Marketing, Fraud Detection and many other. So far, Machine

Learning has achieved great results and is used more and more every day.

2.2. ARTIFICIAL NEURAL NETWORKS

2.2.1. INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks is a Machine Learning approach inspired by the biological neural

networks which can be found in the human brain (Schalkoff, 1997). The human brain is able to

capture complex information as patterns and then compare any new instance to the previously

stored patterns in order to understand and classify it. For example, after a human has seen an

elephant at least once, he is able to identify any new elephants as “elephant” by comparing it to

the pattern of the previously seen elephant(s). Although Artificial Neural Networks are

groundbreaking in Science’s attempt to digitize the human brain, it is questionable whether the

research community is any close to achieving that. The very mechanism of the human brain is a

mystery (and an ongoing research) let alone the way to digitize this mechanism.

2.2.2. ARTIFICIAL NEURAL NETWORK vs OTHER MACHINE LEARNING

APPROACHES

In comparison to some of the other Machine Learning approaches, such as regression models,

Artificial Neural Networks can be used to capture very complex non-linear relationships. If we

wanted to find the relationship between word count and the grade of the essay we could construct

a simple regression model. However, the relationship between (the context of) an essay and the

grade of the essay, which is the aim of this project, is far too complex to be described by a

regression model. Thus, what an Artificial Neural Network is doing is divide a complex task, like

the one investigated in this project, into several (maybe in the hundreds or thousands) smaller

tasks and solve each one of those subtasks independently. In a classification task, for example,

the task is to find a function f , which will satisfy ()f x y , so that this function f is able to

map an instance x to its class y. Artificial Neural Networks instead of attempting to find the

5

function f , are attempting to find a family of functions F , where 1 2 3, , ,..., nf f f f F and

1 3 2 1(f (...(((())))...)) ()n nf f f f x f x y , thus achieving the same goal (Goodfellow, et al., 2016).

Those function 1 2 3, , ,..., nf f f f are connected in a chain in order to achieve the task of f . This can

be seen from the structure of Artificial Neural Networks.

2.2.3. BASIC STRUCTURE OF AN ARTIFICIAL NEURAL NETWORK

As said, Artificial Neural Networks are inspired by the Human Neural Network and so is their

basic structure. Neural Networks are organized in layers. The layers of an Artificial Neural

Network compose the Artificial Neural Network in the exact same way that 1 2 3, , ,..., nf f f f

compose f . Each layer takes a value from the previous layer as an input, modifies it and then

passes on the output to the next layer. As the task undertaken by the Artificial Neural Network

gets more complex and demanding, more functions are required in order to divide the task. The

number of layers in an Artificial Neural Network are also referred to as the depth of the Network.

The Artificial Neural Network’s layers, in turn, consist of a number of interconnected (connected

to the nodes of the previous and following layer) nodes called neurons (D.T. Pham, 1995). In

summary, the neuron’s function is to take an input from one or more neurons in the previous

layer which are connected to it and pass on an output to the neuron or neurons in the next layer

which the neuron is connected to. The actual function of the neuron depends on some parameters

which are set by the Artificial Neural Network’s architect. A weight is multiplied to the value of

each connected neuron from the previous layer.

The first parameter is the “way” in which the inputs of the neuron from the previous neurons are

combined. The simplest way is a weighted sum of their values, or in other words a sum of the

neuron’s input values iv (output values of the neurons in the previous layer connected to this

neuron) each of them calculated with a weight iw .

0
i i

i

w v

Equation 1: Artificial Neuron: Weighted Sum of Input values

6

where N is the number of neurons from the previous layer connected to the neuron.

The second parameter is set for the second phase of the neuron’s function which is to input this

sum in an Activation function f . This Activation function can be chosen from a number of

different ones such as sigmoid, tanh, Rectified Linear Unit or ReLU to name some of the most

important one. The purpose of the Activation function is to map the sum of weighted values to a

value whose range corresponds to the range of the Activation function in order to normalize it. A

table summarizing the properties of the main Activation function options is provided below.

Name Equation Range

Identity Function (x)f x ()

Binary Step 0 0
1 0(x) { for x

for xf

{0,1}

Rectified Linear Unit (ReLU) 0 0
0(x) { for x

x for xf

[0,

Sigmoid 1
()

1 x
f x

e

(0,1)

Arctan (Inverse Tangent) 1() tanf x x ,
2 2

Tanh (Hyperbolic Tangent)

2

2
() tanh(x) 1

1 x
f x

e

(1,1)

Gaussian Distribution 2

() xf x e
(0,1]

Table 1: Artificial Neuron: Activation Functions

7

Thus, the aggregate function of a neuron can be expressed by the following equation:

0

()i i
i

f w v

Equation 2: Artificial Neuron: Aggregate Function

where f is the Activation function

An importance notice to be made is that there are N neurons in the previous layer connected to

the neuron, but there are N+1 values starting from 0 to N. The zeroth value 0v is usually +1 and

when calculated with its weight 0w will give the bias input 0 0 0 0 +1b w v w since v is .

The weights and the bias are very important concepts in Artificial Neural Networks and the

concept of a machine “learning” and will be explained in depth later. To summarize, a neuron

connected to N neurons from the previous layer will receive a sum of N+1 values, each

multiplied by a weight out of a total of N+1 weights. The neuron will then apply an activation

function to that sum and pass on the output to the next neurons to which it is connected to.

The mathematical model of the Artificial Neuron, described above, also known as the

McCulloch-Pitts neuron was proposed by Warren McCullock and Walter Pitts in 1943

(Mcculloch & Pitts, 1943) and it is based on the theoretical point of view of creating a complex

model out of very basic components, like the neuron. Much progress has been done in the field

of Artificial Neural Networks but this model still remains the fundamental model of the Artificial

Neuron. However, other models of the Artificial Neuron have also been introduced such as the

Fourier-like IN/OUT function (Silvescu, 2000).

8

The following figure summarizes the function of the Artificial Neuron.

The most basic Artificial Neural Network consists of an input layer, an output layer and

(between the input and output) one hidden layer. However, most Artificial Neural Networks

consist of more than one hidden layer and depending on their task and the type/size of input

could have hundreds of hidden layers. Figure 2 graphically represents the structure of the basic

Artificial Neural Network, which was just described.

Figure 3: Basic Artificial Neural Network Structure (Fauske, 2006)

Figure 2: The Artificial Neuron

9

The Artificial Neural Network in figure 1 is an example of an Artificial Neural Network that

could be used for a regression task. An example of this regression task could be predicting the

GDP (Gross Domestic Product) of a country based on its population, percentage of population

between 18 and 65, literacy rate and number of hospitals per citizen. So, the Artificial Neural

Network would take in as input those four properties and produce an estimation for the GDP.

The number of neurons in the input layer depends on the number of parameters/inputs needed to

produce the estimation, in this case four. The number of neurons in the output layer depends on

the type of output. In regression, the number of neurons in the output layer would be one as there

can be only on dependent variable, whereas in classification (like in this project), the number of

neurons in the output layer would equal to the number of possible classes.

Let’s say for example that we want to classify a number of short 10-word movie or book reviews

as positive or negative using an Artificial Neural Network. Each word is considered a parameter

input, so there would be 10 neurons in the input layer, whereas there would be 2 neurons in the

output layer, one for each of the different classes (positive or negative).

Then the basic structure necessary to perform this task would be the following:

Figure 4: Basic Artificial Neural Network Structure for Text Classification

10

This is an oversimplified illustration as the input would not be a list of words but a list of vectors

representing the words. The reason is that Artificial Neural Networks cannot process words.

More information about Word Embedding in general and the Word Embeddings used in this

project is provided later. Another reason the illustration above is a simplification of the Artificial

Neural Network is that an Artificial Neural Network of this size (only one hidden layer) is

unlikely to successfully carry out a task like this with adequate results. Instead, there should be

some hidden layers before the hidden layer in the illustration that are responsible for extracting

the features necessary for the classification.

2.2.4. TYPES OF ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks can be categorized based on various properties. Probably, the most

unclear categorization is between (“Non-Deep”) Neural Networks and Deep Neural Networks,

where Neural Networks are classified based on the number of their hidden layers. The minimum

number of hidden layers required for a Neural Network to be characterized as “Deep” is

controversial topic. Part of the scientific community states that more than one hidden layers

constitute a Deep Neural Network, whereas the other states that there needs to be a considerable

number of hidden layers.

Another very important ground of classification is the type of connection between the neurons.

In feed-forward neural networks, each neuron is only connected to other neurons in the next

layers. On the contrary, in recurrent neural networks, there are connections called feedback

which connect a neuron to itself and the output of the neuron is fed back to the neuron as a

feedback.

2.2.5. ARTIFICIAL NEURAL NETWORKS OPTIMIZATION

As already mentioned, Machine Learning is achieved when the system’s behavior is

progressively improved in a certain task until it reaches a point where it can effectively and

successfully perform this task. The measure, which is used to assess the performance of the

Artificial Neural Network is called loss or cost. Thus, the objective of an Artificial Neural

Network is to minimize the loss measure.

11

An Artificial Neural Network takes in the input in batches (e.g. the default batch size is 128

inputs, in our case, essays). Initially, the Neural Network assigns random values of weights w

and biases b. After a batch has gone through the Artificial Neural Network, the loss is calculated

by comparing the prediction calculated by the Artificial Neural Network to the actual label which

was input. After the Artificial Neural Network calculates the loss, it reassigns the values of

weight w and bias b of the neurons, modifying their output, so that loss is minimized. This

procedure is repeated thousands of times.

LOSS CALCULATION

In order to develop a basic Artificial Neural Network, it may be deemed enough to know that the

smaller the loss the better. However, in order to really understand how the Artificial Neural

Network works it is vital to understand how the loss is calculated.

There are various loss calculation functions depending on the task. Cross-Entropy loss is one of

the most popular and is highly recommended in multiclass classification tasks (classification

tasks where there are more than 2 classes) such as this task. Cross-entropy loss, also called log

entropy (because of the presence of the natural log in the formula) is calculated for each instance

(prediction-label pair) and the sum of the Cross-Entropy loss for all instances gives us the total

Cross-Entropy loss of the model. Cross-Entropy for multiclass classification is calculated for

each instance using the following formula:

, ,
1

1
log(P)

M

ins ins cl ins cl
cl

L y
M

Equation 3: Cross Entropy Loss (Deep Learning Course Wiki, n.d.)

where - M is the total number of classes,

- ins is the index of the instance,

- cl is the index of the class,

- ,ins cly is a binary indicator (range = {0,1}) indicating whether an instance belongs to a

class, e.g. if instance 3ins belongs to the class 2cl then 3,2 1y and -

3,1 3,3 3,4 0y y y ,

- ,(P)ins cl is the probability given from the classifier that instance ins belongs to class cl

12

Suppose a batch of 4 training examples have gone through the Artificial Neural Network, which

classifies the examples to 3 different classes, and calculates the following prediction probabilities

[[0.9, 0.05, 0.05], [0.6, 0.4, 0.0], [0.51, 0.39, 0.1], [0.3, 0.2, 0.5]]. The labels of the training

examples will first be converted to one-hot encoding. In one-hot encoding, each label is

converted to a format which can be more easily compared with the prediction probabilities. If the

labels of the 4 training examples are [1,2,2,3], then the one-hot encoding of those labels will be

[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]].

Calculating for the 1st instance:

first instance prediction probabilities = [0.9, 0.05, 0.05]

first instance one-hot encoding of label = [1.0, 0.0, 0.0]

1 , ,
1

1,1 1,1 1,2 1,2 1,3 1,3

1
log(P)

1
(log(P) log(P) log(P))

1
(1 log(0.9) 0 log(0.05) 0 log(0.05)

3
0.0351

M

ins cl ins cl
cl

L y
M

y y y
M

The correct labels was predicted with an accuracy of 0.9 or 90%, as a result the loss calculated is

very low.

Calculating total loss:

1 2 3 4

0.0351 0.3054 0.3139 0.2311

0.8855

totalL L L L L

13

LOSS MINIMIZATION (OPTIMIZATION)

As stated before, each neuron receives an input from the previous N neurons connected to it and

applies weights to the values resulting to a sum in the form of
0

i i
i

w v

 . It then applies an

activation function, such as sigmoid, and passes this value to the next neuron(s) connected to it.

The recalibration of the Artificial Neural Network in order to minimize the loss is achieved by

changing the weights w and so the biases b . As stated before, the aim of the Artificial Neural

Network is to find the function f which will satisfy ()f x y . This is achieved by finding the

functions 1 2, , , nf f f F which will satisfy 2 1..nf f f x y and thus compose the function

f . Thus, the task of the Artificial Neural Network layer n is to find the respective function nf .

Suppose a neuron with the identity function f x y is connected to one neuron from the

previous layer with output value x . A weight 1w is multiplied with this value and bias 1b is also

added, resulting to the value 1 1 y w x b . The plot of the value y for every x will be a straight

line of gradient 1w intercepting the y-axis at 10,b and the x-axis at 1

1

,0
b

w

.

By changing the weight and bias, thus changing the gradient and intercepts of the function, the

Artificial Neural Network can form an infinite number of linear functions until it finds the

function that satisfies the aforementioned conditions and each input x is mapped to a correct.

The effect of different weights w and biases b can be seen in the plot of 5 different

 1 1 1f x w x b functions with different weight 1w and bias 1b provided bellow.

14

Figure 5: Effect of Weight and Bias using the Identity function as Activation function

When the correct weight 1w and bias 1b are found so that every x is mapped to the correct y , the

loss will be minimum. So the loss can be thought as a function (,)L w b which reaches a global

minimum for a weight w and bias b . At the global minimum (as well as all local minimums), as

we know from calculus, the derivative of the loss function '(,)L w b at that particular point will

be 0.

The weights w and biases b that will minimize the loss are calculated by optimization

algorithms. Feed forward networks, like Convolutional Neural Networks which are used in this

project, use an optimization algorithm called Backpropagation, short for “backwards propagation

of errors”. During training, the input will start from the input layer and propagating through the

hidden layers will reach the output layer and the Artificial Neural Network will produce an

output. This is called a forward propagation as the information flows from the start to the end of

the network. Using this output to calculate the loss, the network will then start from the end of

the network and using the loss calculated, will compute the gradient of the loss '(,)L w b .The

information of loss flows backwards from the end of the network to the start to compute the

gradient. Thus, the name back-propagation (in contrast to forward propagation). The Back-

propagation algorithm was introduced by Rumelhart et al. at their paper “Learning representation

15

by back-propagating errors” (Rumelhart, et al., 1986). This is done by applying very small

increments to weights w and biases b .

It is important to notice that Back-propagation is only responsible of finding the gradient of the

loss function and not the recalibrating the weights and biases to minimize it. Most Artificial

Neural Networks use a gradient descent algorithm to calculate the new weight. As we said, the

Loss function (,)L w b is minimum at the point where '(,) 0L w b . Applying the back-

propagation algorithm and getting the gradient of (,)L w b at a particular point, the gradient

descent algorithm then changes weights towards the negative gradient or gradient descent in

order to minimize the loss function (,)L w b until it reaches a global or local minimum where

'(,) 0L w b .

The optimization algorithm that was used in this project is called Stochastic Gradient Descent

and will be explained in depth in the “Approach” section.

2.2.6. SAMPLES REPRESENTATION IN ARTIFICIAL NEURAL NETWORKS

The samples that are inserted in an Artificial Neural Network have a very specific representation

dictated by their type.

Starting from images, the representation of an image depends on its color model. A 9x9 image

for example (height=9, width=9) would be of the form 9x9x3 if it was in rgb color model (red,

green, yellow) or 9x9x1 if it was in greyscale model. This third value after height and width, in

Artificial Neural Networks, is called channels. It can be confusing that although it is a 2-

dimensional sample, an image, it is composed by three different values. However, considering

how computers conceive images it is absolutely understandable. In greyscale, there is only one

channel, where each of the 9x9=81 pixels is a value from 0 to 1 (including 0 and 1) representing

the intensity of black. A white pixel would have the value 0, a black pixel would have the value

1 and a grey pixel would have a value somewhere in between 0 and 1. In RGB, however, there

are three different and independent channels, each consisting of 81 pixels that describe the

intensity of the channel’s color. There is one channel for each of the three colors (Red, Green,

Blue).

Text samples are not that different. A 25-word sample can be either inserted in the Artificial

Neural Network in the form 25x3 or it can be inserted in the form 5x5x3. Both forms have been

16

investigated in this project. The channels, however, in this case do not represent the intensity of a

color, but a specific characteristic of the word. It can be either practical, such as the frequency of

the word in the essay (or sentence etc.) or the index in a word dictionary, or it be a semantic

characteristic of the word, such as whether this word has a political meaning or a scientific

meaning. For example, the value of the word “Democracy” would have a high value in the

political meaning channel and a low value in the scientific meaning channel, whereas “Cross-

Entropy” would the opposite.

2.3. CONVOLUTIONAL NEURAL NETWORKS

The neural network I am using is a Convolutional Neural Network. Although the main use of

Convolutional Neural Networks is Image and Video (objects’) recognition, it has also been

applied to Natural Language Processing tasks, such as Text Classification and Prediction, and

has shown great results. One of the most popular examples of Text Classification with CNNs is

“Convolutional Neural Networks for Sentence Classification” (Kim, 2014). Other examples are:

- “A Convolutional Neural Network for Modelling Sentences” (Kalchbrenner, et al., 2014),

- “A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for

Sentence Classification” (Zhang & Wallace, 2015) and

- “Multichannel Variable-Size Convolution for Sentence Classification” (Yin & Schütze, 2016)

The reason Artificial Neural Networks with Convolutional (and Pooling) Layers are successful in

text classification is because they are able to detect strong local word/indicators that will lead to

a class without taking into consideration their position in the input text (Goldberg, 2016).

Suppose an Artificial Neural Network with Convolutional Layers has been trained to classify and

mark 100 essays with the topic “The Applications of Machine Learning in Business

Management”. Words and phrases like “decision-making” or “perfect information” which would

be good arguments will probably be strong indicators that will point out to a good grade.

17

2.3.1. BASIC STRUCTURE OF A CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Network is a type of feed-forward network. Its name is attributed to the

presence of at least one Convolutional Layer (followed by one or more down-sampling layers) in

it. The first layer of a Convolutional Neural Network is always a Convolutional Layer.

2.3.2. CONVOLUTIONAL LAYER

Convolution can be summarized as a number of filters containing weights “sliding” over an input

sample. However, the actual function of a Convolutional Layer is a lot more complicated. In

Convolution, a 1-dimensional or 2-dimensional filter, consisting of a number of weights goes

over its input performing a series of calculations similar to the ones we described in the Artificial

Neural Network.

The function of the Convolutional Layer is determined by a number of parameters, such as

kernel size, stride, number of filters and activation function.

The exact function of a Convolutional Layer can be better described using an example and such

is provided below. In the Samples Representation section, we analyzed the different Samples

representation and the importance of channels. Let a text sample of the form 8x3. This would be

an 8-word sample where each word is described by 3 different features.

 CONVOLUTION INPUT FILTER(S)

Figure 6: Convolution Illustration - Filter

Figure 7: Convolution Illustration - Input

18

The parameters of the above convolution are kernel size = 3, filters = 15, activation function=

sigmoid and stride=1. The first two parameters can be identified in the above figure 4 since each

of the kernels (or filter) is consisted of 3 values and there is a total of 15 filters. The other two

parameters are explained during the demonstration of the example.

When we introduced the Artificial Neuron, we mentioned the weights that are multiplied to the

neuron. The filters that “slide” over the input sample are nothing more and nothing less than a

“group” of weights. So the above Convolutional Layer is consisted of (3(each filter) times

15(number of filters)) 45 weights.

STEP NUMBER 1

In the first step of convolution in the above example, the first filter will be “applied” on the

input. Since the filter size is 3, the filter will be applied on the first 3 values (values 1 to 3) of the

input. The sum of the three values will then be inserted to the activation function (in this case

sigmoid,
1

()
1 x

f x
e

) and will give the first value.

0.078 0.132 0.038 0.248

0.248

1
0.561(0.248

1
) 7f

e

Figure 8: Convolution Illustration - Step 1

19

STEP NUMBER 2

The stride parameter mentioned before determines the next step of the convolution. In this case

(stride=1), the filter will “slide” one position below (values 2 to 4) and will perform the same

operation again.

0.033 0.076 0.188 0.295

0.295

1
0.573(0.295

1
) 2f

e

STEPS NUMBER 3-6

The procedure described in steps 1 and 2 is repeated for 3, 4, 5 and 6. Every time the filter

“slides” one position below. In Step 6, the filter performs the operation on values 6 to 8, so the

filter has sled over the entire first channel of the input channels. The output is shown in figure 8:

Figure 10: Convolution Illustration - Output from Steps 1-6

Figure 9: Convolution Illustration - Step 2

20

STEPS NUMBER 7-18

After the first filter has “sled” over the entire first channel of the input sample, then the second

filter will do the same with the second channel and the third filter will do the same with the third

and final channel of the input sample, each adding one more channel to the output.

STEPS NUMBER 18-90

After the three input channels have been convoluted by the first three filters, then the same

procedure will be repeated between the three input channels and the second three filters. So, the

first input layer will be convoluted by the fourth filter, the second with the fifth etc. Thus, in the

end the three input channels will be convoluted by all the filters in the same way. So, the output,

also called the feature map, will have the size of the output in Step 6 and the number of channels

of the output will be determined by the number of filters (15 filters), resulting in a 6x15 output.

Figure 11: Convolution Illustration - Output

21

2.3.3. POOLING LAYER

Several successive Convolutional Layers may result in an output, the size of which makes the

training of the model (especially in the fully connected layers) inefficient. In the previous

example, the Convolutional Layer’s input is a 8x3 sample, thus consisting of (8x3=)24 values,

whereas the Convolutional Layer’s output is a 6x15 sample, thus consisting of (6x15=)90 values.

This may be deemed as an insignificant difference which will not affect the efficiency of the

model. However, it causes a very significant chain affect, especially if there are several

successive Convolutional Layers. The bigger the samples, the bigger the layers in order to

process the samples and the bigger the layers, the more the weights and biases, which will have

to be optimized by the optimization function in order to minimize the loss function. For that

reason, it is very common for Convolutional Layers to be succeeded by Pooling Layers which

aim to the down-sampling of the sample.

There are various types of Pooling Layers such as Max-Pooling, Min-Pooling and Average-

Pooling etc. Suppose that we wanted to down-sample the output of the Convolutional layer

which was used as an example in the previous section (shown in figure 11). We could use a

Max-Pooling layer using pooling filters of size 2 and stride 1.

Figure 12: Pooling Illustration - Input

22

STEP NUMBER 1

Since we are using pooling filters of size 2, the first two values of the first channel will be

combined by keeping the maximum of the two. So the first value of the output will be

max(0.5617,0.5732)=0.5732.

Figure 13: Pooling Illustration - Step 1

STEP NUMBER 2

Since the stride is one, the pooling filter will slide one position and thus the second and the third

values will be combined by keeping the maximum of the two. So the second value of the output

will be max(0.5732,0.6238)=0.6238.

Figure 14: Pooling Illustration - Step 2

23

STEPS NUMBER 3-5

The above procedure will be continued for the third and fourth, the fourth and fifth, the fifth and

sixth values respectively and combine the values of the first channel by keeping the maximum of

the two. The result of the Pooling Layer on the first channel of its input and thus the first channel

of the output is the following.

Figure 15: Pooling Illustration - Steps 3-5

STEPS NUMBER 6-75

Steps 1-5 will be repeated for the second, the third, the fourth and so on channels until it is

repeated for the fifteenth and last channel. The output of the Pooling Layer is the following.

Figure 16: Pooling Illustration - Output

24

The output of the Pooling Layer does not look a lot different from the input and it is not. The

parameters (filter size and stride) used were the minimum which resulted in a very slight down-

sampling. The Pooling Layer’s input was of size 6 and 15 channels, for a total of 90 values,

whereas the Pooling Layer’s output was of size 5 with 15 channels for a total of 75 values.

2.3.4. CONVOLUTIONAL AND POOLING LAYER PARAMETERS EFFECT

Designing a basic Artificial Neural Network is not very difficult. However, when designing an

Artificial Neural Network, it is essential to understand the exact effect of the parameters, which

is very challenging. Going back to the Pooling Layer illustration, if we were to use the same

input (6, 15 channels, total 90 values) but increase the Pooling Layer’s filter size from 2 to 3 and

the stride from 1 to 3, then the output of the Pooling Layer would be of size 2 with 15 channels

for a total of 30 values. So, a slight change of the filter size and stride resulted to an output less

than half the initial.

For both Convolutional and Pooling layers, a bigger stride parameter will result to a smaller

output. The same is true for the filters’ size as a bigger filter parameter will result to a smaller

output. Last but not least, the number of filters used by the Convolutional layer will not affect the

size of the output, but its channels, as the output has the same number of channels as the number

of filters used by the Convolutional layer.

2.4. WORD-TO-VECTOR REPRESENTATION

One of the many challenges when undertaking a Machine Learning project where the input is in

Natural Language is that there needs to be a conversion of the text to a machine-understandable

form. This is usually in the form of vectors. However, the methods of converting a word to a

vector are various.

2.4.1. BAG-OF-WORDS (B-O-W) MODEL

The standard representation of a document is called Bag-of-Words. In Bag-of-Words, each word

is represented by a vector of identifiers. These identifiers can be a dictionary index, the

frequency of the word in the text or others. The Bag-of-Words model is based on the assumption

that the order of the words in the text is unimportant and thus the text can be represented as a bag

of words (Manning, et al., 2009). An alternation of the Bag-of-Words model is the n-gram model

25

where instead of splitting the text to single words and each word being represented by a vector,

the text is split in groups of n words, where each word is converted to a vector with the n next

words (in order) in the text. The difference between the models can be better illustrated with the

following example.

Let the sentence be: “I am Angelos and I am studying Computer Science”. The Bag-of-Words

model would disregard the order of the words and the sentence could be split in the following

way, [“angelos”, “computer”, “science”, “i”, “studying”, “am”, “and”]. The exact order of the

words depend on the identifiers and could be, for example, in ascending dictionary index. On the

contrary, the split of the sentence in the 3-gram representation of the sentence could be

[“I am studying”, “studying Computer Science”, “and I am”, “am Angelos and” ...]. Thus, n-

gram in comparison to bag-of-words achieved some preservation of the words’ order in the

sentence, which may be very useful, but may also be utterly useless depending on the task in

question.

2.4.2. CONTINUOUS BAG-OF-WORDS (B-O-W) vs CONTINUOUS SKIP-GRAM

MODEL

In 2013, a researching team led by Tomas Mikolov introduced word2vec (Mikolov, et al., 2013)

and revolutionized word-to-vector representation. They introduced two different model

architectures for computing the vector representation called Continuous Bag-of-Words model (or

C-B-o-W) and continuous Skip-gram model. Both models were tested in word similarity tasks

and demonstrated greater accuracy than previous techniques.

The difference between the two models lies on their inputs and outputs. In Continuous Bag-of-

Words, the input of the model is the context of the word and the output is the word. Let the word

be tw , then its context would be the words before it, 2tw and 1tw and the words after it 1tw and

2tw . So, the input of the model would be 2tw , 1tw , 1tw , 2tw and the output would be tw .

Hence, the continuous bag-of-words model can be thought as predicting the meaning (thus its

vector representation) of a word based on its context.

In Continuous Skip-gram, the procedure is exactly the opposite. The input of the model is the

word and the output is the context of the word. So, considering the example for bag-of-words,

26

the input of the model would be tw and the output would be 2tw , 1tw , 1tw , 2tw . Hence, the

Skip-gram model can be though as predicting the context of a word based on the word.

In both models, the size of the context of the word (either that is the output or the input of the

model) is set as its window size. In the example above, the window size is 2 (two words before

and two words after).

2.5. RELATED WORD: MACHINE LEARNING IN EDUCATION AND

AUTOMATED ESSAY MARKING

As mentioned, Machine Learning is one of the important and interesting field which has not been

adequately investigated is Automated Essay Marking in order to produce a trustworthy system.

There have been a few attempts, which however have not been widely put to work in the

Education System. The first research made on Automated Essay Scoring dates back to 1967

when Ellis Batten Page, known as the father of Automated Essay Scoring, published his research

with the title “"Statistical and linguistic strategies in the computer grading of essays” (Page,

1967) and later the same year he, also, published "The imminence of grading essays by

computer". He, then, went on to publish “The analysis of essays by computer” and “The Use of

the Computer in Analyzing Student Essays”. Although his work was revolutionary, it was not

developed until the 1990s, because of the high cost and low performance of (even high-

Figure 17: Continuous Bag-of-Words model vs Continuous Skip Gram model
(Mikolov, et al., 2013)

27

performance) computers at that time. His work was purchased by Measurement Incorporated in

2002.

Measurement Incorporated’s current Project Essay Grade ((PEG), n.d.) is one of the market’s

most popular solutions and the only one that is used as a sole scoring system by one state in the

US. It is on the other hand, only used by one state in the US. PEG has been also introduced by

three other but only as a counseling assessment tool and essays are also marked by human raters,

in comparison to be used as the sole assessment tool. In 2011, more than 7000 students were

incorrectly graded by Measurement Incorporated’s PEF on the standardized test required for

admission to most New York City private schools (Nir, 2011). Thus, it is obvious that the status

quo is far from a widely-used sole assessment solution to Automated Essay Marking.

Other attempts which are used by the general public are eRater (eRater, n.d.), Intellimetric

(Intellimetric, n.d.) and PaperRater (PaperRater, n.d.). For obvious, copyright and intellectual

property, reasons, all four are quite vague or not willing to disclose their exact methods of

assessment. However, they mention some of the features they use such as “fluency, diction,

grammar and construction” ((PEG), n.d.) or “content analysis based on vocabulary measures,

lexical complexity/diction, proportion of grammar errors, proportion of usage errors, proportion

of mechanics errors, proportion of style comments, organization and development scores,

features rewarding idiomatic phraseology” (eRater, n.d.). However, the most interesting

disclaimer is the one from PaperRater which was obtained when I attempted to mark part of this

section, “Grade: 92 A. The grade above is NOT complete! We do not actually use a crystal ball

to generate your grade. Instead, this grafde takes into account spelling, grammar, word choice,

style, vocabulary, and more; but it does NOT examine the meaning of your words, how your

ideas are structured, or how well your arguments are supported. We should also mention that our

automated grader does not always get things right. So, please consider this grade to be one facet

of your paper's overall grade.” It can be deduced from the above disclaimers that all commonly

used Automated Essay Marking software solutions limit their function to classifying essays

based on features that are, in my opinion, secondary. An essay, in any school grade, is assessed

primarily based on the arguments made and their support, and secondarily based on their

grammatical and syntactical performance. As a result, the existing solutions to Automated Essay

Marking are inadequate and do not effectively address the problem.

28

What differentiates this project to other related attempts is that it does not specify the exact

features to be investigated (such as word count, large-words count, technical words count,

grammatical and syntactical mistakes). It is using small to medium-sized neural networks with

some parameter tuning and attempts to classify the essays using local indicators that will map an

essay to a class/grade membership.

29

3. APPROACH

As already mentioned in the “Introduction”, the aim of the project is to investigate whether a

Machine Learning approach and more specifically an Artificial Neural Network is able to

classify a set of essays after being trained by a subset of them. In this section, I will be discussing

the design of the Convolutional Neural Network, as well as the design of the preparation of data

and the word-to-vector conversion before it is inserted to the network.

3.1. BUSINESS MODEL OF THE SOFTWARE

Before deciding the approach to take, it is vital to think about the aims of the project. In the first

place, this project has been developed for the purposes of Scientific Research. It is not destined

for commercial use or profit, so a user-friendly graphic user interface (GUI) was not a priority.

For the same reason, the project consists of different software versions, whose differences

together with their performance evaluation will be vital in evaluating the project and determining

the project’s next step or future work. The short time frame and other “adverse conditions”,

which will be discussed in the “Conclusions”, make the primary aim of this project to conduct an

investigation and a satisfactory starting point rather than a complete and successful software.

Although it has not been developed for commercial use, it has been developed so that a user with

minimum developing knowledge can train it and evaluate it.

3.2. GENERAL STRUCTURE OF THE SYSTEM-DATA FLOW

Although, we can summarize the software as a Convolutional Neural Network that performs text

classification, it consists of various components and subcomponents out of which only one is the

Convolutional Neural Network. The data flows through the components from the 1st to the 2nd

until it reaches the 3rd and final component and is outputted to the user. The aggregate input of

the system is a tsv file containing the essays and the labels in a very simple form whereas the

aggregate output of the system is the set of probabilities that each instance belongs to each class

together with some evaluation metrics of the training such as Accuracy.

30

Even the Convolutional Neural Network component of the system can be thought of as a

component which consists of two smaller subcomponents. A list of the general structure of the

software is provided below:

- 1st Component: Training/Evaluation Set Preprocessing

- 2nd Component: Word To Word Embedding (Word Vectors) Conversion

- 3rd Component: Convolutional Neural Network

- 1st Sub-Component: Feature Extraction (Convolutional and Pooling Layers)

- 2nd Sub-Component: Classification (Fully Connected Layers)

3.2.1. 1st COMPONENT: DATASET PREPROCESSING

This first component is responsible for preprocessing the dataset. It is a program coded in

Python. The input of the program is the tsv file containing the full dataset and the output of the

program is three python lists containing the essays (one for the training, one for the testing set

and one for both training and testing) and two python lists containing the labels/grades of each

essay (one for the training and one for the testing set). After running the training set on a various

different Convolutional Neural Networks of different depths, I came to the realization that

regardless the depth of the Network, the classifier was mapping/classifying all essays of the

testing set to grade 8. After investigating the dataset in depth, I realized that the training set was

consisted of a very high number of essays graded/labeled as 8. Although it is expected for the

grades to follow a normal distribution, the frequency of essays classified as 8 were clearly

distorting the grades distribution. More specifically, about 39% of the essays in the training set

were classified as 8 as can be seen in the tables below. As a measure of comparison, the second

most frequent grade/label was 10 with 18%.

FULL DATASET

GRADE NUMBER OF
INSTANCES

FREQUENCY

2 9 0.514%

3 1 0.057%

4 17 0.971%

5 15 0.857%

6 110 6.286%

7 133 7.600%

TRAINING SET

GRADE NUMBER OF
INSTANCES

FREQUENCY

2 5 0.571%

3 1 0.114%

4 7 0.800%

5 9 1.029%

6 60 6.857%

7 73 8.343%

31

8 675 38.571%

9 329 18.800%

10 308 17.600%

11 108 6.171%

12 45 2.571%

8 338 38.629%

9 149 17.029%

10 156 17.829%

11 52 5.943%

12 25 2.857%

Initially, I decided to implement a threshold (maximum number of instances with each grade at

the training set) mechanism so that the training set would consist of roughly the same number of

instances for each grade/label. However, in order for grade 8 to have a comparable number of

instances with grade 2 or 3, the threshold should be as low as 70 instances. Thus, similarly to

economics and maximum prices, this would lead to training set “shortage” as the training set

would no longer be large enough to train the model.

So, I decided to modify the grading system of the dataset, group instances with close grades

increasing their aggregate number of instances and then apply a threshold, resulting to the dataset

below.

FULL DATASET

GRADE NUMBER OF
INSTANCES

FREQUENCY

2,3,4,5 42 2.40%

6,7 243 13.89%

8 675 38.57%

9 329 18.80%

10 308 17.60%

11,12 153 8.74%

TRAINING SET

GRADE NUMBER OF
INSTANCES

FREQUENCY

2,3,4,5 35 4.90%

6,7 150 20.98%

8 150 20.98%

9 150 20.98%

10 150 20.98%

11,12 80 11.19%

The results of the above dataset modification were more than satisfactory and will be analyzed

thoroughly in “Results and Evaluation”.

3.2.2. 2nd COMPONENT: WORD TO WORD EMBEDDING (WORD VECTORS)

CONVERSION

This second component is responsible for converting the lists of essays “transferred” from the

first component to a list of vectors. The input of this component is the five Python lists from the

first component file containing the essays and the labels/grades. The output of this file is the

32

word embeddings (word vectors). Although, the input is the same for all versions of the software,

the output is different as two different word-to-vector representations have been implemented.

More information about the two different word-to-vector representations are provided in the

“Word-To-Vector” section which follows.

3.2.3. 3rd COMPONENT: CONVOLUTIONAL NEURAL NETWORK

The third and final component of the software is the Convolutional Neural Network. It is Python

file but it also imports Tensorflow among others. More information about Tensorflow is

provided in the “Implementation” section. The input of this component is two numpys arrays of

the word embeddings (one numpy array containing the training set and one numpy array

containing the test set) and two numpy arrays containing the grades/labels (one numpy array

containing the grades/labels of the training set and one numpy array containing the grades/labels

of the test set). This component is also different between the versions, since different

Convolutional Neural Networks were constructed, trained and tested in order to evaluate their

performance.

Although this component is one file and can be considered as one Artificial Neural Network, for

the purposes of this components’ analysis, it is wiser to further divide this component into two

smaller subcomponents.

1st SUBCOMPONENT: FEATURE EXTRACTION

Feature Extraction is achieved by a series of Convolutional and Pooling Layers, whose

purpose is to extract the necessary features for the classification. So, the subcomponent’s

input is the NumPy arrays and the output is a modified tensor, whose size and

modification varies depending on the version.

2nd SUBCOMPONENT: CLASSIFICATION

Classification is achieved by two fully connected layers. So, the subcomponent’s input is

the tensor from the first subcomponent and the output is a tensor containing the

probabilities of the training or testing example being in each of the classes. This

subcomponent is the same in all versions.

33

3.3. WORD-TO-VECTOR

The aim of word-to-vector is to take as input the set of 1750 essays and convert them to

something that can then be inserted to the neural network. In other words, we are trying to

achieve Semantic Parsing, which is “the task of mapping natural language sentences to formal

representations of their underlying meaning” (Grefenstette, et al., 2014).

We are going to do so by splitting the essays to words and then converting the words to vectors.

The vectors will then be padded to have the same size. The vector representation can be done in

many different ways depending on the objective of the neural network. The elements that

compose the vector represent features of the word. When the essay is inserted in the Artificial

Neural Network either as a training or testing example, the elements of the vectors (or features of

the words) are the channels which were described in the “Samples Representation” section in the

“Background”.

In this project, I have implemented two different vector representations, the results of which are

going to be analyzed in the “Results and Evaluation” section.

3.3.1. FIRST WORD-TO-VECTOR REPRESENTATION

The first representation describes each word by two features/indicators and so converts each

word into a two-dimensional vector. After collecting all distinct words from all essays with

frequency more than 2, a dictionary of the words is constructed. The reason there is a minimum

frequency of 2 required is that a word which exists only once in one essay has no use as it cannot

be used as a class indicator (as it cannot be used as a similarity instance of two essays). So, the

first dimension of the vector is the index of the word in the dictionary. The second dimension of

the vector is the frequency of the word in the essay. If the vector representation of the word

“network” is [7,3], this indicates that the index of the word “network” in the word dictionary is 7

(in other words, the word “network” is the 7th word in the dictionary) and that the word

“network” is repeated 3 times in the essay. The exact implementation will be analyzed in the

section “Implementation”.

34

3.3.2. SECOND WORD-TO-VECTOR REPRESENTATION

The second representation describes each word by 300 features/indicators and so converts each

word into a 300-dimensional vector. For this representation, I used the pre-trained Google News

corpus, which can be download from GitHub (Miháltz, 2016). It is word-to-vector model which

consists of 3 billion words and phrases was trained on a vast Google News training dataset using

the Continuous Bag-of-Words which was described in the “Word-To-Vector Representation”

section in the “Background”.

3.3.3. COMPARISON OF THE TWO WORD-TO-VECTOR REPRESENTATIONS

Those two different vector representations allow us to investigate two extreme solutions of the

same problem. In the first representation, the input of the Convolutional Neural Network is the

simplest representation possible. A major drawback of the first representation is that it does not

consider the similarity of the words or their meaning, as the dictionary is sorted alphabetically

and two similar or even synonym words may have entirely different dictionary indexes. On the

second representation, the input of the Convolutional Neural Network is a lot more complex. The

300 features for each word may not be enough to completely capture the meaning of the word.

However, they capture the meaning of the words a lot more effectively than the two features in

the first representation. Another difference between the two word-to-vector representations is

that since the second word-to-vector captures the correlation between two non-equal words, it

doesn’t use a minimum frequency of words as two similar words, but not equal, can be used as

class indicators. So, in the second word-to-vector representation, the bag-of-words representation

of the essays is larger. It is, thus, obvious that they allow us to see the effect of the vector

representation of the words to the classification by comparing their performance results.

3.4. ARTIFICIAL NEURAL NETWORK APPROACH

Different tasks require different Convolutional Neural Network structures. However, the required

structure is only discovered after the Convolutional Neural Network has been implemented and

trained. Other than the task, the amount of data available for training is also a factor that affects

the required structure. A demanding task will require a large number of training data, but also an

35

Convolutional Neural Network deep enough in order to adequately describe the patterns in the

training data.

The following figure graphically illustrates three different models for describing the same time-

series (a plot of a value against time).

Figure 18: Model Underfitting/Overfitting (edited) (Bhande, 2018)

Starting from left to right, in the first case, the model is not deep enough in order to adequately

represent the training data and capture the underlying pattern of the data. In the second case, the

model is too deep for the size of the training data, which results to the model being too closely

correlated with it. In the third case, the model is deep enough to adequately represent the patterns

of the data but not too deep to fit the data too closely. It is important to notice that model

overfitting may seem “harmless” but an overfitted model will fail to predict the testing data even

if it obeys the pattern. The objective of any Machine Learning approach is to achieve the third fit

by attaining a balance between model overfitting and underfitting.

3.4.1. ARTIFICIAL NEURAL NETWORKS STRUCTURE

Although the exact Convolutional Neural Network structure differentiates between the versions,

the general layers’ structure is constant. As already mentioned, the Artificial Neural Network

implemented can be divided to two different, independent, chain-connected components; the

feature extraction component and the classification component. Their layers’ structures are

provided bellow.

36

3.4.1.1. FEATURE EXTRACTION COMPONENT

Figure 19: Artificial Neural Network's Feature Extraction Component

The Feature Extraction component succeeds the Input layer and precedes the Classification

component. The Feature Extraction component is consisted of two Convolutional layers, each

succeeded by a Pooling layer. The Convolutional and Pooling layers’ function was described in

the “Convolutional Neural Network” in the “Background”. Each training sample is first

convoluted by the first Convolutional layer, then down-sampled by the first Pooling layer, then

convoluted by the second Convolutional layer and finally down-sampled by the second Pooling

layer. Depending on the version, the Convolutional layer may use 1-dimensional or 2-

dimensional filters and so will the Pooling layer. The samples are in 1-dimensional or 2-

dimensional form, but since there are multiple channels, they can be considered 2-dimensional or

37

3-dimensional respectively. However, the Classification component can only process and

classify 1-dimensional samples. Thus, before the sample is transferred to the Classification

component, it is modified by a flattening “layer”, which flattens the sample, by converting it

from 2-dimensional or 3-dimensional form to 1-dimensional, by adding up their dimensions and

channels. For example, a 3-dimensional sample of 10 6x6 channels will be converted to 1-

dimensional with 1 (10x6x6) 360 values channel. However, this is not an actual Artificial Neural

Network layer and thus has not been included in the above graph.

3.4.1.2. CLASSIFICATION COMPONENT

Figure 20: Artificial Neural Network's Classification Component

The Classification component’s structure is identical in all Versions of the software. However,

the number of neurons in each layer vary. After the necessary features have been extracted by the

Feature Extraction component, they are transferred to the Classification component which will

use them to classify the sample. Fully Connected layers are simple Artificial Neural Network

layers, whose name is due to the fact that all neurons of the previous layer are connected to each

neuron of the Fully Connected layer. The first Fully Connected layer is consisted of 1024 or

2048 neurons, each of which is connected to the 6 neurons of the second Fully Connected layer.

So, after the Feature Extraction component has extracted the necessary features, those features

38

will then be weighted and accumulated to 1024 or 2048 neurons of the first Fully Connected

layer, which will in turn be accumulated to 6 neurons of the Fully Connected layer. The number

of neurons in the first Fully Connected layers are adjustable and subject to judgment. However,

the number of neurons in the second Fully Connect layers are unmodifiable and must be equal to

the number of classes (thus, 6). The second Fully Connected layer contains an unnormalized set

of probabilities of the instance to be in each class. The reason there is a layer afterwards, the

output layer, is that the set of probabilities must be normalized using an activation function

(predominantly the SoftMax function) in order to map the unnormalized set of probabilities with

range from minus infinite to infinite to a normalized set of probabilities with range from 0 to 1.

3.4.2. ARTIFICIAL NEURAL NETWORKS LOSS-OPTIMIZATION

As stated in the “Artificial Neural Network Optimization” section in the “Background”, the

Artificial Neural Network calculates a loss after training or evaluating a batch of examples. The

Artificial Neural Network’s optimization function will then recalculate the weights and biases in

order to recalibrate the model and minimize the loss. The exact loss and optimization functions

to be used depend on various parameters, the most important of which is the classification task.

The loss function used is called Cross-Entropy Loss or Log Loss and was fully explained in the

“Artificial Neural Network Optimization” section in the “Background”. The main motivation of

using it is that the classification task of this project is a multiclass classification, as there is a total

of 6 grades from A to F, and Cross-Entropy is the typical loss function for multiclass

classifications.

The optimization function used is called Stochastic Gradient Descent (or SGD). Stochastic

Gradient Descent is a stochastic approximation of the batch Gradient Descent algorithm of the

Gradient Descent algorithms family which we described in the “Artificial Neural Networks

Optimization” section in the “Background”. Batch Gradient Descent sums the gradients '(,)L w b

of the Loss function (,)L w b for the entire batch of training examples and then makes an update

to optimize the loss. On the contrary, Stochastic Gradient Descent uses the gradient '(,)L w b of

the Loss function (,)L w b for one training example and updates the weights. As a result,

Stochastic Gradient Descent is a lot faster and requires less memory as it does not store the entire

39

gradients for the entire batch (Renals, 2016). The Stochastic Gradient Descent’s efficiency

advantage was the main motivation of using it as the memory capabilities were limited. The

pseudocode of the Stochastic Gradient Descent or SGD is provided below.

Figure 21: Stochastic Gradient Descent Pseudocode (Renals, 2016)

The Stochastic Gradient Descent algorithm will first assign random small numbers for weights

w (and thus biases b , since (1)k kb w). Then it will slowly change the weights until loss

converges to zero. The rate of change of the weights is called the learning rate and is the variable

 of the above pseudocode. The higher the learning rate the bigger the change of the weights w

after each iteration. The learning rate used was 0.001.

3.5. VERSION-SPECIFIC APPROACH

Artificial Neural Networks are generally easy to develop. However, their parameter tuning is

very challenging. Given a version and its results, only (calculated) speculations can be made to

deduce what went wrong or what went right. The only way to be absolutely sure that a version

can be improved in one way or another is to implement and test both ways. For the purposes of

this project, more than one hundred models were implemented. However, many of the models

implemented were not trained as the GPU capacity of both the Linux lab machines and the

insista@cs.cf.ac.uk server machines were inadequate. The following 6 versions are some of the

most important models implemented, trained and evaluated. Some of them had great results,

while the results of other were discouraging. However, all of them were instrumental in the

general approach as they gave invaluable feedback about the next step. The “Version-Specific

40

Results”, which have been used and referred to at this section can be found at the “Results and

Evaluation” section. Figures depicting the exact Artificial Neural Network structure as well as

the input and output of each layer used in each version can be found in the “Version-Specific

Artificial Neural Network Structure Figures”, which follows.

3.5.1. VERSION 1.0

As word to word embeddings method, Version 1.0 used the first word-to-vector representation in

which each word is represented by a 2-dimensional vector, where the first dimension is the

dictionary index of the word and the second dimension is the frequency of the word in the essay.

The essays are inserted into the network and then converted to a 2-dimensional representation.

More specifically, each 363-word essay (all essays have the same size as a result of the padding)

is converted to a 33x11 tensor (matrix). The reason is that, since Convolutional Neural Networks

are mostly used for image classification which are 2-dimensional, it will allow us to see how the

Convolutional Neural Network will perform treating the essays as images.

The feature extraction component of the Artificial Neural Network is consisted by two 2-

dimensional convolutional layers. The first convolutional layer uses 64 3x3 filters, whereas the

second uses 128 3x3 filters. Both convolutional layers are using sigmoid as the activation

function and padding in order the output of the convolutional layers to have the same size as the

input. Stride has not been manually set, thus it has been automatically set to the default value 1.

The two 2-dimensional convolutional layers are each followed by a 2-dimensional pooling layer.

Both pooling layer use 2x2 filters with stride 2. The output of the second pooling layer with size

8x2 and 128 channels is flattened by a flattening “layer” to a (8x2x128=) 1-dimensional tensor of

size 2048.

The classification component is consisted by two fully connected layers. The first layer is

consisted by 1024 nodes and is using sigmoid as activation function. The second and last layer is

consisted by 6 nodes, as it is dictated by the number of classes.

41

3.5.2. VERSION 2.0

The results of version 1.0 were more than encouraging. As a result, I decided to use the first

word-to-vector representation again. However, this time, the essays will not be converted to 2-

dimensional representation. In order to effectively compare the two essay representations, we are

going to use similar parameters in feature extraction, whereas classification will be identical.

The feature extraction component of the Artificial Neural Network is consisted by two 1-

dimensional convolutional layers. Both convolutional layers are using filters of size 9 (again 64

and 128 filters respectively), sigmoid as the activation function and stride 1. Again, the two 1-

dimensional convolutional layers are each followed by a 1-dimensional pooling layer. The first

pooling layer uses filters of size 12 with stride 4 and the second pooling layer used filters of size

12 with stride 5. The output of the second pooling layer with size 16 and 128 channels is

flattened by a flattening “layer” to a (16x128=) 1-dimensional tensor of size 2048. Thus, the

feature extraction component in Version 1.0 and Version 2.0 both outputs a 1-dimensional tensor

of size 2048.

As mentioned, the classification component was the same as Version 1.0.

3.5.3. VERSION 3.0

Both Version 1.0 and 2.0 has great results but it is doubtful that the first word-to-vector

representation where each word is represented by a 2-dimensional vector can perform even

better. As a result, Version 3.0 is using the second word-to-vector representation where each

word is represented by a 300-dimensional vector. Although Version 2.0 had only slightly better

results than 1.0, the 1-dimensional representation of word has been used like in Version 2.0.

As mentioned in the comparison of the two word-to-vector representations in the “Comparison

of the two word-to-vector representations” section, since the second word-to-vector considers the

correlation of words, it doesn’t use minimum word frequency. As a result, the maximum size and

as a result of the padding, all essays’ size in the second word-to-vector representation is 676

(about twice the size of the essays in the first word-to-vector).

42

Like in Version 2.0, the feature extraction component of the Artificial Neural Network is

consisted by two 1-dimensional convolutional layers, each followed by a pooling layer.

However, as a result of the essays’ size (about twice the size) and the word-vectors’ dimensions

(300 instead of 2), both convolutional and pooling layers need to be a lot “bigger”. Both

convolutional layers are using 300 filters of size 16, sigmoid as the activation function and stride

1. The first pooling layer uses filters of size 12 with stride 6 and the second pooling layer used

filters of size 18 with stride 9. The output of the second pooling layer with size 11 and 300

channels is flattened by a flattening “layer” to a (11x300=) 3300-sized 1-dimensional tensor.

Thus, the feature extraction component in Version 3.0 outputs a 3300-sized, compared to the

2048-sized 1-dimensional tensor output from the feature extraction component in Version 1.0

and Version 2.0.

The classification component is the same as in Version 1.0 and 2.0.

3.5.4. VERSION 4.0

On the one hand, the results from Version 3.0 were disappointing. On the other, it provided

invaluable feedback for the next step, as it showed that the model was not big enough to

successfully manipulate the input. This is clear by comparing Versions 1.0 and 2.0 to Version

3.0. In Version 1.0 and 2.0, the input of the feature extraction component is 363 2-dimensional

vectors and the output is a 2048 1-dimensional tensor. In Version 3.0, the input of the feature

extraction is 676 300-dimensional vectors and the output is a 3300 1-dimensional tensor. So,

during this “compression” in the feature extraction, many features are mistreated and the

classification component is unable to classify the essays effectively. Version 3.0 was designed on

the false assumption that the 300 filters in the convolutional layers are enough and that the

significant down-sampling by the pooling layers will not affect important features. As a result,

Version 4.0 used the second word-to-vector representation, but also applied a combination of

considerably bigger convolutional layers and considerably smaller pooling layers in the feature

extraction part.

Like in Versions 2.0 and 3.0, the feature extraction component of the Artificial Neural Network

is consisted by two 1-dimensional convolutional layers, each followed by a pooling layer. The

43

first convolutional layer is using 300 filters of size 3, sigmoid as the activation function and

stride 1. The second convolutional layer is using 600 filters of size 3. Both pooling layers are

using filter of size 5 and stride 2. The output of the second pooling layer with size 166 and 600

channels is flattened by a flattening “layer” to a (166x600=) 99600-sized 1-dimensional tensor.

Thus, the feature extraction component in Version 4.0 outputs a 99600-sized, compared to the

3300-sized 1-dimensional tensor output from the feature extraction component in Version 3.0.

The classification component is the same as in Versions 1.0 to 3.0.

3.5.5. VERSION 5.0

The justification for the unsatisfactory results of Version 3.0 and thus the hypothesis for

improvement in Version 4.0 proved valid. As a result, I decided to even more increase the size of

the feature extraction part. Many attempts were made to increase the convolutional layers’ size

and also add a third one without, however, adding a third pooling layer which would reduce the

size of the inputs (but not the channels). However, the GPU memory capacity of the Linux labs

computers and the insista@cs.cf.ac.uk server provided by my supervisor was not enough to

undertake a task like this. Thus, adding a third pooling layer but also increasing the existing

pooling layers was the only way to add a third convolutional layer and see the effect of it.

Thus, the feature extraction part in Version 5.0 is consisted by three convolutional layers each

followed by a pooling layer. The first convolutional layer is using 300 filters of size 3, sigmoid

as the activation function and stride 1. The second convolutional layer is using 600 filters of size

3 and the third convolutional layer is using 1200 filters of size 3. The first pooling layer is using

a filter of size 8 with stride 2, the second pooling layer is using a filter of size 12 with stride 2

and the third pooling layer is using a filter of size 16 with stride 4. The output of the third

pooling layer with size 37 and 1200 channels is flattened by a flattening “layer” to a (37x1200=)

44400-sized 1-dimensional tensor. As expected, because of the third convolutional layer, the

output has double the channels, but because of the addition third pooling layer and the increase

of the other two, the output has significantly smaller size.

The classification component is the same as in Version 1.0 to 4.0.

44

3.5.6. VERSION 6.0

The results of Version 5.0 were disappointing but expected, as in order to increase the

dimension/channels of the features the size of the features was decreased to a point that feature

extraction became unsuccessful. As a result, I decided to reuse the feature extraction part of

Version 4.0 which proved successful, but this time increasing the classification part instead of

the feature extraction part. In Version 4.0, the output of the feature extraction part is of size

99600. This output is then propagated to the first fully connected layer which consists of 1024

neurons. It is possible than during this condensation, many important features are condensed

excessively. Thus, I have increased the first fully connected layer from 1024 neuron to 2048.

3.5.7. VERSION 7.0

The improvement of Version 6.0 compared to Version 5.0 was triggered by making the first fully

connected layer (classification part) bigger. Each of the neuron in the fully connected layer is

connected to all the neurons of the last feature extraction layer consisting of 99600 neurons. As a

result, adding 1024 neurons in the first fully connected weights results to (1024*99600=) more

than 100 million extra weights to be optimized. However, 2048 neurons may still not be enough.

Doubling the neurons to 4096 would still not solve the problem as the condensation from the first

fully connected layer (consisting of 4096 neurons) to the second fully connected layer

(consisting of 6 neurons) would make a successful classification impossible. The only way to

successfully classify the 99600 features extracted from the feature extraction part (which seems

to be successful) is to add a third fully connected layer. Adding a third fully connected layer

would make the condensation of the 99600 features from the feature extraction more stable by

dividing the condensation in two layers. The first fully connected layer would consist of 4092

neurons, the second fully connected layer would consist of 512 and the third and final fully

connected layer would consist of 6. Version 7.0 has been implemented but could not be trained

as the significant memory requirements of the model could not be satisfied by the limited

memory capabilities available.

45

3.6. VERSION-SPECIFIC ARTIFICIAL NEURAL NETWORK

STRUCTURE FIGURES

VERSION 1.0 VERSION 2.0

Figure 22: Version 1.0 Artificial Neural Network Structure Figure 23: Version 2.0 Artificial Neural Network Structure

46

VERSION 3.0 VERSION 4.0

Figure 24: Version 3.0 Artificial Neural Network Structure Figure 25: : Version 4.0 Artificial Neural Network Structure

47

VERSION 5.0 VERSION 6.0

Figure 26: Version 5.0 Artificial Neural Network Structure

Figure 27: Version 6.0 Artificial Neural Network Structure

48

4. IMPLEMENTATION

Most of the models’ implementation as well as the models’ training and evaluation were

performed on my laptop (main specifications using DirectX Diagnostic Tool: System

Manufacturer: Dell Inc., System Model: Inspiron 7548, Processor: Intel(R) Core(TM) i7-5500U

CPU @ 2.40GHz (4 CPUs), ~2.4GHz, Memory: 16384MB RAM, Card name: AMD Radeon R7

M270, Dedicated Memory: 4075 MB, full specifications attached in the Appendix). I also used

the Linux Lab machines and the insista@cf.cs.ac.uk server.

4.1. GENERAL IMPLEMENTATION

4.1.1. 1st COMPONENT: DATASET PREPROCESSING

The first component was implemented in Python, also importing the csv and itertools modules.

Although, the csv module is mostly used for csv (comma-separate variable) files, it can be also

used for tsv (tab-separated variable) files such as the dataset used. One of the challenged faced

was to extract the necessary elements of the dataset which are the essays and their grades. The

dataset consists of a line containing the columns (elements of each essay) and the rest of the

essays occupy one line each. The itertools module was used in order to separate the various parts

of the dataset and create lists containing the necessary elements without any unnecessary

symbols such as quotation marks (“”) or slashes (/) attached to the elements that would be a

burden and cause problems over the next steps. An example of these problems would be the

same word having two different dictionary indexes as a result of an unnecessary symbol attached

to one of them.

Figure 28: Dataset Preprocessing: Essays/Labels Extraction

49

Figure 28 displays the essays/labels extraction from the dataset. After the text is divided to its
columns and essays parts, a for loop goes through the essays part and stores each essay in a list.
A second for loop removes all the unnecessary elements of the essays (grade given by each rater,
essay set, essay number etc.) and only the essay text (index 2) and the grade agreed between the
raters (index 6) are kept. A third for loop then makes two different lists, one for the essays and
one for the grades.

The dataset grouping, which was mentioned in the “1st Component: Training Set Preprocessing”
section in the Approach was implemented using the code in figure 29.

The “groups” list contains all the necessary information/configurations of the grouping. For each
group, the first element is a list of the grades to be grouped together, the second element is the
threshold of the group’s training data and the third is the new group grade. The “groups” list
minimized the hardcoding as it is limited to the list and no hardcoding was required in the rest of
dataset grouping implementation.

4.1.2. 2nd COMPONENT: WORD TO WORD EMBEDDING (WORD VECTORS)

CONVERSION

The second component was also implemented in python, also importing NumPy, corpora from

gensim or just gensim (depending on the version), defaultdic from collections and the python file

Figure 29: Dataset Preprocessing: Dataset Grouping

50

from the 1st component. NumPy is “the fundamental package for scientific computing with

python” (NumPy, 2018). The reason NumPy was imported is that it includes NumPy array,

which is the default array input for Tensorflow which was used for the construction of the

Convolutional Neural Network and is explained later. According to its website, “gensim is […]

the most robust, efficient and hassle-free piece of software to realize unsupervised semantic

modelling from plain text” (Řehůřek, 2009). Gensim is one of the most popular free Python

libraries specialized in vector space modelling (Řehůřek, 2009), which is an algebraic model for

representing texts documents as vector of identifiers, such as index terms. Gensim can be used

both for training vector space models, as well as using already trained ones. As said in the

Approach section, the aim of this Component is exactly that; to convert the essays to their vector

representation using their identifiers. Since this project implements two different word-to-vector

representations as was explained in the “Word-To-Vector” section in the approach, it was

considered more suitable to fully describe their implementation in the versions they were used,

since they use different features and modules of gensim. Last but not least, defaultdic

(defaultdict, 2018) from collection was used to calculate the frequency of each word in the essay,

by creating a dictionary-like object containing word-frequency pairs. A comparison of the two

word-to-vector representations is provided in the “Results and Evaluation” section.

4.1.2.1. FIRST WORD-TO-VECTOR REPRESENTATION

The implementation of this component was coded in Python importing Gensim using the

“Corpora and Vector Spaces” (Řehůřek, 2009) tutorial. The second component imports five

python libraries from the first component. It imports a list containing the training essays, a list

containing the testing essays, but also a list containing both training and testing essays. The

reason it imports both lies on the fact that the dictionary which will later be used to generate the

indexes is consisted by both the training and testing examples. The python method

“wordlist_to_vectorlist” in figure 30 takes as input the list of both training and testing examples

and returns the dictionary of words with frequency more than 1, which will be later used for the

index generation.

51

The python method “new_wordlist_to_vectorlist” in figure 31 will then take the dictionary and

each essay from the training data and the testing data and convert it to vector representation.

Figure 31: First Word2Vector - Essay to Bag-of-Words

Previous versions of the second component were only using the first method

“wordlist_to_vectorlist” shown in figure 30 and created a dictionary and corpus containing the

vector representation of both training and testing essays. The corpus was then divided to training

and testing essays in word-to-vector . However, after implementing the dataset grouping, this

division was made on the first component. If we were to use the same method and put in the list

of training and testing essays separately, the vector representations would use two different

dictionaries. As a result, the index of a word in an essay in the training set and the index of the

same word in the testing set would be different making the word index completely useless. Thus,

there was a need for a second method which would take as input an essay and produce its bag-of-

words representation using an existing dictionary consisting of both training and testing essays.

Figure 30: First Word2Vector - Dictionary creation

52

After the definition of the methods, there is a for loop, which iterates through the training set,

converts each essay to its Bag-of-Words representation and saves the Bag-of-Words list in a list

of lists containing all the essays of the training set. A second for loop follows, which performs

the exact same procedure for the testing essays. The two for loops can be seen in figure 4.

Figure 32: First Word2Vector - for loops creating a list of the training and a list of testing essays of the in Bag-of-Words form

Artificial Neural Networks require all training and testing examples to have the same size. As a

result, there needs to be a padding which will pad all essays to have the same size. This padding

is achieved by the for loops in figure 33.

Figure 33: First Word2Vector - padding

A for loop first iterates through the training essays in order to calculate the maximum essay size

and a second for loop then iterates through the training essays and pads them, so that all essays

have the same length. Two more for loops performs the exact same procedure for the testing

essays.

Last but not least, as already mentioned, numpy was imported in order to convert the lists to

numpy arrays which are the default arrays input for Tensorflow. The conversion can be shown in

figure 6.

53

Figure 34: First Word2Vector - Lists to Numpy arrays conversion

The default datatype for training and testing examples is float32 bit (single precision float: sign

bit, 8 bits exponent, 23 bits mantissa), whereas the default datatype for training and testing

labels/classes is int32 (an integer from -2147483648 to 2147483647)) (NumPy, 2018).

4.1.2.2. SECOND WORD-TO-VECTOR REPRESENTATION

The second representation converts each word into a 300-dimensional vector. For this

representation, I used the word2vec model pre-trained on the Google News corpus using the

Continuous Bag of Words model, which was described in the “Background”. It is word-to-vector

model which consists of 3 billion words and phrases in word-to-vector form. This component is

coded in Python using Gensim and its Keyed Vectors module.

Figure 35: Second Word2Vector - word2vec pre-trained import

The word2vec pre-trained model is first imported using the Keyed Vectors gensim module.

Figure 36: Second Word2Vector - split_list_of_essays function

The split_list_of_essays function takes as an input a list of essays (either training or evaluation)

and, using a for loop, iterates through the list of essays and splits the essays into words creating a

new list of essays (where each essay is a list of words).

54

Figure 37: Second Word2Vector - list_of_essays_to_bow function

The function list_of_essays_to_bow takes in as input a list of essays and converts it to bag-of-

words format (explained in the “Word-to-Vector” section of the “Background”). This is done by

a series of nested for loops which call the split_list_of_essays, scan through the words of the new

list and “remove” any punctuation marks that got “attached” to the words during splitting. Then,

it checks if the scanned word is in the 3 billion words and phrases of the pre-trained model and if

it is it adds the word to the new list containing the essays in bag-of-words format. Last but not

least, they call the padding function.

Figure 38: Second Word2Vector - padding function

The padding function calculates the size of the biggest (in word count) essay in bag of words

format and then pads all the essays (adding vectors of 300 0s) in order all of them to have the

same size. If they don’t have the same size they cannot be converted to a NumPy array which is

the required type of input in Tensorflow.

Figure 39: Second Word2Vector - list_of_essays_to_bow function call and list to numpy array conversions

55

The lists of essays are first converted to lists of “bags of words” by calling the

list_of_essays_to_bow and then converted to NumPy arrays like in the first word-to-vector

representation.

4.1.3. 3rd COMPONENT: ARTIFICIAL NEURAL NETWORK

The implementation of this component was coded in Python importing Tensorflow using the

tutorial on handwriting classification using the MNIST dataset (TensorFlow, 2018). A distinction

between the two subcomponents of the 3rd components has not been made here, in contrast to the

Approach section. The reason this distinction is unnecessary lies on the fact that the general

implementation is the same between the versions in both components, but differentiates on the

exact Artificial Neural Network process which will be analyzed at the respective versions.

All Artificial Neural Networks were implemented in Python using Tensorflow (TensorFlow,

2015). Tensorflow is an open-source Python framework, which can be used for various Machine

Learning approaches. Its name, Tensorflow, is due to the multidimensional arrays used for the

Artificial Neural Network operations called Tensors. Some of the advantages of Tensorflow is a

fairly adequate documentation and Tensorboard, which can be used for model debugging and

evaluation, such as the Cross-Entropy Loss to Global Steps graph which was used in the “Results

& Evaluation”. Some of the most popular current uses of Tensorflow are Deep Neural Networks

used for Speech and Image Recognition and Classification by organizations such as Google,

Mozilla, Snapchat, eBay, DeepMind and many more.

The 3rd component programs are consisted by three parts. The first is the model, both Feature

Extraction and Classification components, the second is the modes and the last is the main

function which sets some basic parameters and the inputs. Although the model is the most

important part of the Tensorflow and the part which is mostly modified from version to version,

the model cannot stand alone, which makes the other parts of the program equally important. It is

understandably too confusing for someone with minimum Tensorflow or generally Machine

Learning experience to understand those different parts, thus they will be explained thoroughly.

As said, each of the different versions implemented and tested uses a different Convolutional

Neural Network. However, the general implementation remains the same. Version 1.0 of the

software has been used for the purposes of the general implementation analysis. Some lines of

code have been repeated in order to avoid large figures as well as referring to other figures.

56

PART 1: The Model

The Artificial Neural Network model is the part of the Artificial Neural Network implementation

which is subject to the most changes from version to version as it incorporates the most

parameters and thus effects the classification more than the rest of the parts. The model part of

the Artificial Neural Network implementation is a model function which is then called by the

main function (Part 3) to create the Tensorflow estimator object. The model function definition is

displayed in Figure 16.

Figure 40: Artificial Neural Network Model -Model function Definition

The first layer of the model is the input layer.

Figure 41: Artificial Neural Network Model - Input Layer

 The input layer’s function is to reshape the input to a desirable form. In the above input layer

(Version 1.0), the input essays (features[“x”]) of size/word count 363 and 2-dimensional vectors

for each word are converted to 2-dimensional representation with height 33, width 11 and 2

channels (1 for each word representation). The -1 before the dimensions is the batch size. It can

be either set to be the actual bath size or it can be -1 and the batch size is set in the Main function

(Part 3).

Figure 42: Artificial Neural Network Model – First Convolutional Layer

As mentioned in the “Background”, the first layer of a Convolutional Neural Network is always

a Convolutional layer. The first Convolutional layer takes as input the output of the input layer

and then performs convolution using 64 filters of size 3x3. It uses sigmoid as the activation

function and pads the output of the convolutional layer (by adding 0s) in order for it to have the

same size as the input. Stride is not set, so it is automatically set to 1 which is the default value.

57

Figure 43: Artificial Neural Network Model – First Pooling Layer

The first pooling layer takes the output of the Convolutional layer as input and performs

pooling/down-sampling using filter of size 2x2 with stride 2.

The implementation of the second Convolutional layer and the second Pooling layer are the

same.

Figure 44: Artificial Neural Network Model – Second Convolutional Layer

Figure 45: Artificial Neural Network Model – Second Pooling Layer

The second Convolutional layer takes in as input the output of the first Pooling layer and

performs convolution but this time with 128 filters. The second Pooling layer takes in as input

the output of the second Convolutional layer and performs exactly the same operation as the first

Pooling layer.

Figure 46: Artificial Neural Network Model – Flatenning Layer

The second Pooling layer is followed by a flattening “layer” which uses the reshape function

(like the input layer) and flattens the output of the second Pooling layer of size 8x2 and 128

channels and outputs a 1-dimensional tensor with size (8x2x128=) 2048.

Figure 47: Artificial Neural Network Model – First Fully Connected Layer

The flattened output of the feature extraction part is then propagated to the first fully connected

layer with sigmoid as the activation function and consisted by 1024 neurons.

58

Figure 48: Artificial Neural Network Model – Second Fully Connected / Logits Layer

The output of the first fully connected layer is then transferred to the second and last fully

connected layer consisted of 6 neurons (same as the number of classes). After the example has

been propagated from the input layer through the hidden layers (Convolutional-Pooling-

Convolutional-Pooling-Dense) each neuron in the logits layer will output a probability that the

example is in the respective class. However, it is important to notice that those probabilities will

range from minus infinity to plus infinity. Thus the predictions in the logits layer will have to

inputted into a SoftMax (Bishop, 2006) function in order to get the probabilities with range from

0 to 1.

PART 2: The Modes

The Modes part of the Artificial Neural Network is the part where the specific modes and their

operations are set. There are three Artificial Neural Network modes; the training, the evaluation

and the prediction mode.

Figure 49: Artificial Neural Network Modes: Training Mode

Figure 49 displays the training mode setting. The loss has been calculated using the logits layer

(after applying a SoftMax function), containing the model prediction probabilities, from the

Artificial Neural Network model and the labels input in one hot label representation. The training

mode setting sets the optimizer to be the stochastic gradient descent algorithm with learning rate

equal to 0.001 and then sets the optimizer to minimize the loss function. When the Artificial

Neural Network finishes training, it will return the final loss and global steps.

59

Figure 50: Artificial Neural Network Modes: Evaluation Mode

Figure 50 displays the evaluation mode setting. After the model has been trained using the

training set, it is evaluated using the testing set. After each testing example has been input into

the network and propagated through the hidden (feature extraction and classification) layers it

reaches the output layer where it produces a predicted class. This class is compared to the actual

label of the testing example in order to calculate the accuracy of the estimator model (total

matches over total number of instances). It is important to notice that the Accuracy is comparing

prediction class to label, whereas Loss was comparing prediction probabilities to label (in one

hot format). When the Artificial Neural Network finishes evaluating, it will return the Loss and

the evaluation metrics (in this case Accuracy).

Figure 51: Artificial Neural Network Modes: Prediction Mode

Figure 51 displays the prediction mode setting. After the model has been trained by training

examples’ instance-class pairs and evaluated by testing examples’ instance-class pairs to assess

its performance, it can be used to classify unlabeled/unclassified examples. When in prediction

mode, the model will return the predictions dictionary containing the probabilities of each

instance to be in each class.

60

PART 3: The Main Function

The main function starts by importing the training/evaluation essays and labels.

Figure 52: Artificial Neural Network Main Function– Training/Testing Essays/Grades Import

The name change is only used for convenience and separating the output of the Word

Embeddings (2nd) component to the input of the Artificial Neural Network (3rd) component

(although they are the same).

Figure 53: Artificial Neural Network Main Function – Estimator Creation

 The main function then creates an estimator using the model created by Part 1 and Part 2 and a

directory to save the model’s checkpoints and other data.

Figure 54: Artificial Neural Network Main Function: Training Mode Activation

The main function then activates the training mode from Part 2. This is done in two steps. First it

sets the input of the estimator’s training mode to be the training essays and labels and also sets

some parameters to define the way that the training set is manipulated. The number of epochs is

the number of times that the entire dataset will go through the network. It is set to none, since the

training examples will be divided and go through the network in batches. When the number of

batches is not explicitly set, like in this case, it is automatically set by Tensorflow to the default

value which is 128. Shuffle is set to true as shuffling the training set will make sure that there

aren’t any batches consisted mainly by essays of the same grade. Ideally, we want each batch to

61

accurately represent the entire training set. A batch consisted by essays of the same grade would

distract the loss function and the optimization algorithm.

The actual activation of the training mode is achieved on the second step (seen in figure 54)

using “project_classifier.train”. The input of this function is the input parameters set by the

previous step, the number of global steps and the logging hook. The number of global steps is the

number of times a batch will go through the network and is set to 20000, which means that the

model will predict, calculate the loss and optimize until 20000 batches of 128 training examples

have been through the network. The logging hook is a method of returning results such as loss

and predictions while the network is training and its parameters were set but are not explained as

the logging hook is optional and insignificant.

After the model has been trained using the training set, it is time to be evaluated using the testing

set. The evaluation mode activation is very similar to the training mode activation and is again

done in two steps. First it sets the input of the estimator’s evaluation mode to be the evaluation

essays and labels. The evaluation set goes through the network in batches, too (again number of

batches is set to default value). However, in contract to the training mode, in evaluation mode,

the number of epoch is set to 1, as we want evaluation to stop as soon as the entire evaluation set

is through the network and predicted, but only once. Last but not least, shuffle is set to false, as

there is no need to shuffle the evaluations set as the network is no longer optimizing and thus, the

loss function is not affected.

Figure 55: Artificial Neural Network Main Function - Evaluation Mode Activation

62

Figure 56: Artificial Neural Network Main Function - Prediction Mode Activation

After the model has been trained, evaluated and assessed that it performs adequately, it can be

used to predict unlabeled instances. The prediction mode activation, similarly to training and

evaluation mode activation, is done in two steps. First it sets the input of the estimator’s

prediction mode to be the prediction essays. Obviously, there are no prediction input labels as the

prediction examples are unlabeled. The prediction input was set to be the evaluation examples in

order to get the confusion matrix. However, replacing eval_data by the prediction data will

produce the predictions for the prediction data.

Figure 57: Artificial Neural Network Main Function - Confusion Matrix Implementation

Figure 51 displays the method used to obtain the confusion matrix. The confusion matrix can be

also outputted as an evaluation metric (like Accuracy) but Tensorflow does not provide

confusion matrix as an evaluation metric for multiclass classifications. Thus, this was overridden

by predicting the class of the evaluation data and then comparing it to the labels of the evaluation

data.

63

5. RESULTS AND EVALUATION

5.1. ANALYSIS OF THE EVALUATION METRICS AND METHODS

USED

There is a vast number of different metrics that are being used to evaluate the Artificial Neural

Networks and other Machine Learning approaches. However, without underestimating the

significance of the rest, the six evaluation metrics that were used to evaluate the performance of

the Artificial Neural Network are enough to fully assess them.

The first evaluation metric that was used is Accuracy. Accuracy is calculated as the number of

matches between labels (actual grades) and predictions (predicted grades output from the

Artificial Neural Network) over the total number of instances. In simpler words, Accuracy is the

percentage of the essays that were correctly classified by the Artificial Neural Network.

The second evaluation metric that was used is the Confusion matrix. The Confusion matrix is an

xn n matrix where n is the number of possible classes. It is a comparison between the predicted

class and actual class of the evaluation examples. The table below is an example of a Confusion

Matrix as a result of the evaluation of a model classifying a number of images of animals as

Mammal, Fish, Bird and Reptile.

PREDICTED CLASS

A
C

T
U

A
L

 C
L

A
SS

 MAMMAL FISH BIRD REPTILE

MAMMAL 103 2 5 7

FISH 6 89 2 8

BIRD 9 3 29 6

REPTILE 11 2 12 33

64

The total number of classes is 4 and as a result the Confusion Matrix is a 4x4 matrix. Interpreting

the Confusion Matrix is very easy. Each cell of the Confusion Matrix contains the number of

instances with a specific predicted class and actual class. For each cell the predicted class is its

column and the actual class is its row. For example, looking at the Confusion Matrix above, one

can understand that 12 images were classified as Bird although they contain Reptiles. The cells

on the diagonal of the Confusion Matrix is the number of instances for each class that were

classified correctly since in each of them the Predicted and the Actual class match. As a result, in

a perfect model, all cells other than the cells on the diagonal would be zero.

It is important to notice that the Accuracy can also be calculated from the Confusion Matrix by

dividing the sum of the cells in the diagonal by the sum of all cells, in other words dividing the

correctly classified instances by the total number of instances. However, having Accuracy as a

separate evaluation metric is recommended for convenience.

The table below is an example of a second Confusion Matrix as a result of the evaluation of

classifying a number of costumer reviews as very satisfied, satisfied, unsatisfied and very

unsatisfied.

PREDICTED CLASS

A
C

T
U

A
L

 C
L

A
SS

very

satisfied
satisfied unsatisfied

very

unsatisfied

very

satisfied
103 2 5 7

satisfied 6 89 2 8

unsatisfied 9 3 29 6

very

unsatisfied
11 2 12 33

65

When studying the Confusion Matrix, it is important to consider the type of the classes. The

classification of the second Confusion Matrix is very similar to the classification of this project.

Not only because they both classify text, but more importantly because they have the same type

of classes. Comparing the classes from the first Confusion Matrix (Mammal, Fish, Bird and

Reptile) and the classes from the second Confusion Matrix (very satisfied, satisfied, unsatisfied

and very unsatisfied), it is important to notice that the first set of classes is unordered (or

categorical) data, whereas the second set of classes is ordered (or ordinal) data. The difference

between the two class sets, is that the animal types do not have an implicit or natural order,

whereas the satisfaction index classes do. The “mistake” of the classifier when classifying a Bird

as a Reptile compared to a Bird as a Mammal is exactly the same. However, the “mistake” of the

classifier if it classifies a review with (actual) class “very unsatisfied” to have a (predicted) class

“very satisfied” is a lot bigger than if it classifies the same review as “unsatisfied” (although it

still did not predict the class correctly). As said, the type of classes in this investigation are

ordinal, since there is an order of the data from grades A to F.

As a result, the two Confusion Matrix should be studied differently. Thus, we are also going to

use a fourth evaluation metric, which will be called Accuracy±1 and will calculate the number

of instances where the predicted and the actual grade are considered matched if they are the same

or they have a deviation of 1 class/grade. Since the grades are ordinal classes and they follow a

natural order, this evaluation metric will be vital in assessing the extend of which the model is

able not only to capture the characteristics of each class but also the ordinal nature of the classes.

The metric can be calculated from the Confusion Matrix if we sum the instances on the diagonal

but also add to that sum the instances next to the diagonal and then divide by the total number of

instances.

The fifth evaluation metric that was used for the purposes of Results and Evaluation is a table

showing the Accuracy and Accuracy±1 per class and then the average of those values. Before

the data grouping, the Accuracy of the model was 38.17% which was exactly the percentage of

essays with grades 8 in the evaluation set. The “congestion” of essays with grades 8 caused the

model to over-focus on grade 8 and thus classified all essays of the evaluation set as grade 8. A

model with a 30% Accuracy which classifies the essays in all classes is more preferable than a

66

model with 40% Accuracy which classifies all essays in all class. Thus, it is also important to see

how the Accuracy and the Accuracy±1 fluctuates from one class to another.

The sixth evaluation metric that was used is Loss. The function and importance of the Loss

function (or Cost function) in Artificial Neural Networks was fully explained in the “Artificial

Neural Networks Optimization” in the “Background”. Tensorboard allows us to visualize the

function of the Stochastic Gradient Descent optimizer which was used to minimize loss, by

plotting a graph of “Loss vs Global Steps”. After a Global Step has been completed, the

optimizer calculates weights and biases again to minimize Loss. As a result, Loss is expected to

decrease as Global Steps increase. However, as the Loss is decreasing, it is more difficult for the

optimizer to decrease it even more. So, it is also expected to decrease in a decreasing manner.

ACCURACY vs LOSS

In a first glance, it is understandable to confuse the function of the loss and the accuracy

measure. They both describe the performance of the Artificial Neural Network and thus they are

inversely proportional. As the Artificial Neural Network improves, its loss decreases reaching a

minimum at 0 and its accuracy increases reaching a maximum at 1. However, those two metrics

are completely different regarding their calculation and meaning. The basic difference is that loss

is using the probabilities of the predicted instances to be in each class and contrasts them to the

labels, whereas accuracy is using the predicted classes and contrast them to the labels. This

means that there can be a loss even if the classifier classifies an instance correctly. Let, for

example, that an Artificial Neural Network is evaluated by classifying a test set of 10 instances

and it performs brilliantly classifying all of the 10 instances correctly. So comparing predicted

classes to the labels will give us an accuracy of 1, whereas comparing probabilities of the

predicted instances to be in each class to the labels will give us a low loss but most likely not 0.

The only case an Artificial Neural Network will have loss equal to 0 is if it achieves not only to

correctly classify all instances but to assign a probability of 1 to all instances to belong to the

correct class and thus a probability of 0 to all instances to belong to the rest of the classes.

67

5.2. VERSION-SPECIFIC RESULTS

5.2.1. VERSION 1.0

Version 1.0 was trained on the training examples and then classified the evaluation examples

with a 0.5004831 or 50.05% Accuracy and the Confusion matrix following.

988
0.9546

1035
1Accuracy

So the Accuracy±1 of the model in version 1.0, is 0.9546 or 95.46%.

ACCURACY AND ACCURACY±1 FOR EACH CLASS OF VERSION 1.0

Actual Grade/Label Accuracy Accuracy±1
F 85.7 100.0
E 76.3 98.9
D 45.9 95.8
C 44.1 94.9
B 54.4 91.8
A 47.9 95.9

Average of Classes 59.05 96.22

PREDICTED GRADE/LABEL

A
C

T
U

A
L

 G
R

A
D

E
/L

A
B

E
L

 F E D C B A

F 6 1 0 0 0 0

E 0 71 21 1 0 0

D 0 125 241 137 22 0

C 0 4 46 79 46 4

B 0 0 13 44 86 15

A 0 0 0 3 35 35

68

LOSS TO GLOBAL STEPS GRAPH OF VERSION 1.0

ANALYSIS OF THE RESULTS OF VERSION 1.0
The Accuracy of the model in classifying the evaluation set is, without a doubt, admirable,

considering the simplicity of the Word-To-Vector representation. Both the Accuracy±1 value

and the Confusion Matrix show that the model not only classifies half of the examples correctly

but also successfully captures the ordinal structure of the data. All essays with grade A are not

classified with a lower grade than C, all essays with grade F are not classified with a higher

grade than E and all essays with grade D are classified between grade E and B. The loss can be

seen declining and reaching a minimum of 1 at around 18000 steps. Loss of 1 is considered a

very low value for this task. The important, though, is that the loss is steadily declining and is not

at any point increasing. This means that during training, the model is improving as more batches

are used for training. To summarize, the model in Version 1.0 is successfully capturing the

ordinal structure of the data classifying the essays with an Accuracy of 50.05% and a

Accuracy±1 of 95.46%.

ACCUMULATED RESULTS OF VERSION 1

Metric Value
Accuracy 50.05
Accuracy±1 95.46
Average Accuracy of Classes 59.05
Average Accuracy±1 of Classes 96.22

Figure 58: Results and Evaluation - Version 1.0 - Loss to Global Steps Graph

69

5.2.2. VERSION 2.0

Version 2.0 was trained on the training examples and then classified the evaluation examples

with a 0.50821257 or 50.82% Accuracy and the Confusion matrix following.

994
0.9603

1035
1Accuracy

So the Accuracy±1 of the model in version 2.0, is 0.9603 or 96.03%.

ACCURACY AND ACCURACY±1 FOR EACH CLASS OF VERSION 2.0

Actual Grade/Label Accuracy Accuracy±1
F 85.7 100.0
E 74.2 98.9
D 47.2 95.8
C 53.6 94.9
B 45.6 91.8
A 48.0 95.9

Average of Classes 59.05 96.22

PREDICTED GRADE/LABEL
A

C
T

U
A

L
 G

R
A

D
E

/L
A

B
E

L
 F E D C B A

F 6 1 0 0 0 0

E 0 69 22 1 0 0

D 0 117 248 145 15 0

C 0 5 43 96 31 4

B 0 0 12 59 72 15

A 0 0 0 4 34 35

70

LOSS TO GLOBAL STEPS GRAPH OF VERSION 2.0

Figure 59: Results and Evaluation - Version 2.0 - Loss to Global Steps Graph

ANALYSIS OF THE RESULTS OF VERSION 2.0

The results of Version 2.0 are very similar to those of Version 1.0. Both versions classify the

testing examples with a similar Accuracy of 50.82 % (compared to 50.05%) and Accuracy±1 of

96.03 (compared to 96.22%). Comparing their Average Accuracies, both versions have the exact

same values. Comparing their loss graphs, Version 2.0 seems to reach a lower value of loss of

about 0.97 at around 16000 steps but then stops declining and stabilizes at around 1.

So to summarize, Version 2.0, like Version 1.0, achieves not only to classify half of the essays

correctly but also to capture the ordinal structure of the essays and classifies all of the essays

with a very small divergence from the real class. The loss graph of both models seems to reach a

satisfactory low, but then stabilize and the model seems unable to reach a lower loss. This is

caused by the simplistic word to vector representation. No matter how good the models are, it is

impossible to extract features and then use them to classify the examples if the features are not

there in the first place.

ACCUMULATED RESULTS OF VERSION 2.0

Metric Value
Accuracy 50.82
Accuracy±1 96.03
Average Accuracy of Classes 59.05
Average Accuracy±1 of Classes 96.22

71

5.2.3. VERSION 3.0

Version 3.0 was trained on the training examples after they were converted to bag-of-words

using the second word to vector representation and then classified the evaluation examples with a

0.2415 or 24.15% Accuracy and the Confusion matrix following.

936
0.904347

1035
1Accuracy

So the Accuracy±1 of the model in version 3.0, is 0.904347826 or 90.43%.

ACCURACY AND ACCURACY±1 FOR EACH CLASS OF VERSION 3.0

Actual Grade/Label Accuracy Accuracy±1
F 0 100
E 90.32 90.32
D 0 100
C 92.75 92.74
B 0 97.47
A 0 0

Average of Classes 30.51 80.09

PREDICTED GRADE/LABEL

A
C

T
U

A
L

 G
R

A
D

E
/L

A
B

E
L

 F E D C B A

F 0 7 0 0 0 0

E 0 84 0 9 0 0

D 0 186 0 339 0 0

C 0 13 0 166 0 0

B 0 4 0 154 0 0

A 0 0 0 73 0 0

72

LOSS TO GLOBAL STEPS GRAPH OF VERSION 3.0

Figure 60: Results and Evaluation - Version 3.0 - Loss to Global Steps Graph

ANALYSIS OF THE RESULTS OF VERSION 3.0
The results of Version 3.0 are disappointing. The Accuracy of the model is less than half the

Accuracy achieved by the models in Version 1.0 and 2.0. Although, the Accuracy±1 is not very

declined, the Confusion Matrix is a very clear indicator of the model’s failure. As can be seen

from the Confusion Matrix and the Accuracy for each class table, none of the essays were

classified as A, B, D or F (0% Accuracy in those classes) although the actual class of 763 classes

of the testing set (73.7% of the testing set) is A, B, D or F. Another indicator of the model’s

failure is its loss graph, as the loss doesn’t seem to follow a downward trajectory. On the first

2000 steps it reaches a local minimum of about 1.7 and then fluctuates around this value

reaching a minimum of around 1.65 at around 19000 steps, which comparing to the minimum of

the loss function in Version 1.0 and 2.0 (less than 1) is very high. As said in the Approach, the

reason of these results is the insufficient feature extraction part which is not big enough to

manipulate the input and provide the necessary features for the classification.

ACCUMULATED RESULTS OF VERSION 3.0

Metric Value
Accuracy 24.15
Accuracy±1 90.43
Average Accuracy of Classes 30.51
Average Accuracy±1 of Classes 80.09

73

5.2.4. VERSION 4.0

Version 4.0 was trained on the training examples and then classified the evaluation examples

with a 0.5342995 or 53.43% Accuracy and the Confusion matrix following.

So the Accuracy±1 of the model in version 4.0, is 0.852173913 or 85.22%.

ACCURACY AND ACCURACY±1 FOR EACH CLASS OF VERSION 4.0

Actual Grade/Label Accuracy Accuracy±1
F 0 100
E 60.22 100
D 74.1 82.48
C 0 98.88
B 68.35 68.35
A 0 87.67

Average of Classes 33.78 89.56

PREDICTED GRADE/LABEL
A

C
T

U
A

L
 G

R
A

D
E

/L
A

B
E

L
 F E D C B A

F 0 7 0 0 0 0

E 0 56 37 0 0 0

D 0 44 389 0 92 0

C 0 0 95 0 82 0

B 0 0 50 0 108 0

A 0 0 9 0 64 0

74

LOSS TO GLOBAL STEPS GRAPH OF VERSION 4.0

Figure 61: Results and Evaluation - Version 4.0 - Loss to Global Steps Graph

ANALYSIS OF THE RESULTS OF VERSION 4.0

The results of Version 4.0 are clearly improved compared to Version 3.0, as the Accuracy is

more than doubled (53.43% to 24.14%). This improvement can be also seen by The Loss to

Global Steps graph, where the loss seems to be steadily declining and reaching a minimum of

about 1.47 at around 20000 steps (compared to 1.65 in Version 3.0). If Version 4.0 was to be

trained for more steps, the loss could be even less. However, there are still significant deficits.

Similarly, to Version 3.0, none of the testing examples were classified to classes A, B and F,

whereas only 1 essay was classified to class E. This can be seen by both the Confusion Matrix

and the Accuracy for each class, where the average Accuracy is 33.78%. However, it is unclear

whether the feature extraction should be even bigger or it is already to big for the classification,

thus there should be more or bigger (or both more and bigger) layers in the classification part.

ACCUMULATED RESULTS OF VERSION 4.0

Metric Value
Accuracy 53.43
Accuracy±1 85.22
Average Accuracy of Classes 33.78
Average Accuracy±1 of Classes 89.56

75

5.2.5. VERSION 5.0

Version 5.0 was trained on the training examples and then classified the evaluation examples

with a 0.297584541 or 29.76% Accuracy and the Confusion matrix following.

So the Accuracy±1 of the model in version 5.0, is 0.896618357 or 89.66%.

ACCURACY AND ACCURACY±1 FOR EACH CLASS OF VERSION 5.0

Actual Grade/Label Accuracy Accuracy±1
F 0 14.29
E 0 75.27
D 26.67 100
C 93.85 100
B 0 96.84
A 0 0

Average of Classes 20.09 64.40

PREDICTED GRADE/LABEL
A

C
T

U
A

L
 G

R
A

D
E

/L
A

B
E

L
 F E D C B A

F 0 1 2 4 0 0

E 0 0 70 23 0 0

D 0 0 140 385 0 0

C 0 0 11 168 0 0

B 0 0 5 153 0 0

A 0 0 0 73 0 0

76

LOSS TO GLOBAL STEPS GRAPH OF VERSION 5.0

Figure 62: Results and Evaluation - Version 5.0 - Loss to Global Steps Graph

ANALYSIS OF THE RESULTS OF VERSION 5.0

The results of Version 5.0 are very disappointing. Starting from the Accuracy, only 29.76% of

the testing examples were classified correctly. Accuracy±1 is reasonably high but it does not

reflect the Confusion Matrix, where all of the essays but one were predicted to be either C or D

and since most of the essays in the testing set are either C or D, the Accuracy and Accuracy±1

are lifted and do not reflect the actual model’s performance. This can shown by the Average

Accuracy and Average Accuracy±1, which compared to Accuracy and Accuracy±1, are both

reduced. The Loss to Global Steps graph also confirms that the estimator is unable to classify the

essays as the cross-entropy loss is fluctuating over and under around 1.71 without showing any

decline.

ACCUMULATED RESULTS OF VERSION 5.0

Metric Value
Accuracy 29.76
Accuracy±1 89.66
Average Accuracy of Classes 20.09
Average Accuracy±1 of Classes 64.40

77

5.2.6. VERSION 6.0

Version 6.0 was trained on the training examples and then classified the evaluation examples

with a 0.48019323 or 48.02% Accuracy and the Confusion matrix following.

So the Accuracy±1 of the model in version 5.0, is 0.870531401 or 87.05%.

ACCURACY AND ACCURACY±1 FOR EACH CLASS OF VERSION 6.0

Actual Grade/Label Accuracy Accuracy±1
F 71.43 100
E 69.89 96.77
D 52.38 81.14
C 17.88 97.21
B 68.35 87.34
A 16.44 90.41

Average of Classes 49.4 92.15

PREDICTED GRADE/LABEL
A

C
T

U
A

L
 G

R
A

D
E

/L
A

B
E

L
 F E D C B A

F 5 2 0 0 0 0

E 1 65 24 3 0 0

D 1 77 275 74 98 0

C 0 5 47 32 95 0

B 0 1 19 21 108 9

A 0 0 1 6 54 12

78

LOSS TO GLOBAL STEPS GRAPH OF VERSION 6.0

Figure 63: Results and Evaluation - Version 6.0 - Loss to Global Steps Graph

ANALYSIS OF THE RESULTS OF VERSION 6.0

The results of Version 6.0 are very encouraging. Starting from the Accuracy, more than 48% of

the testing examples were classified correctly. Taking into consideration, the Confusion Matrix

and the Average Accuracies per class, the model seems to capture both the general pattern as

well as the pattern of essays of the same grade. In comparison to the previous versions using the

second word-to-vector representation (Versions 3.0 to 5.0), the model classifies essays in all

grade classes as can be seen from the Confusion Matrix. This can be also seen from the Average

Accuracies per class table, where both the Accuracy and Accuracy±1 in all classes does not have

a significant difference from the Average Accuracy and Accuracy±1 per class respectively. Last

but not least, the Loss to Global Steps graph also reflects the success of the model. Loss seems to

steadily decline and at specific points even reaching below 1 (unsmoothed curve).

ACCUMULATED RESULTS OF VERSION 6.0

Metric Value
Accuracy 48.02
Accuracy±1 87.05
Average Accuracy of Classes 49.40
Average Accuracy±1 of Classes 92.15

79

5.3. ACCUMULATED RESULTS OF ALL VERSIONS

VERSION ACCU ACCU±1 AVG ACCU AVG ACCU±1

1.0 50.05 95.46 59.05 96.22

2.0 50.82 96.03 59.05 96.22

3.0 24.15 90.43 30.51 80.09

4.0 53.43 85.22 33.78 89.56

5.0 29.76 89.66 20.09 64.40

6.0 48.02 87.05 49.40 92.15

5.4. EVALUATION OF THE DIFFERENT FACTORS CONSIDERED

The investigation emphasized in three important factors of the classification. The first factor was

the word-to-vector representation as the essays are inserted into the Convolutional Neural

Network. The second factor was the essay representation as the essays are inserted into the

Convolutional Neural Network and the third factor was the depth or size of the Convolutional

Neural Network.

5.4.1. WORD TO VECTOR REPRESENTATION

Versions 1.0 and 2.0 implemented the first word-to-vector representation where each word is

represented by a 2-dimensional vector where the first dimension is the words’ dictionary index

and the second dimension is the frequency of the word in the example. Versions 3.0 to 6.0

implemented the second word-to-vector representation where each word is represented by a 300-

dimensional vector extracted from the pre-trained Google model using the Continuous-Bag-of-

Words word2vec model architecture. The versions which implemented the first representation

prevailed those the versions which implemented the second representation in all evaluation

metrics. However, this certainly does not reflect that the first word-to-vector representation itself

is more suitable as the word-to-vector representation for Automated Essay Marking or text

classification is general. On the contrary, the model implemented for the first word-to-vector

representation may be smaller, but taking into consideration the size of the input in the first and

second word-to-vector representation, they are relatively larger. Unfortunately, this assumption

80

cannot be validated by a model (such as Version 7.0) as the memory capabilities at my disposal

during the project did not allow training a model of this size.

5.4.2. ESSAY REPRESENTATION

Version 1.0 and 2.0 both implemented the first word-to-vector representation. As a result, their

inputs were exactly the same and their parameters were set in order their extraction feature part

to produce the same output. Their classification part structure was, again, exactly the same and

taking into consideration that the examples are flattened to 1-dimensional representation before

entering the classification part, their classification as a whole was exactly the same. Their only

difference is that Version 1.0 converted the 363-vectors essay/input to a 2-dimensional form of

height 33 and width 11, whereas Version 2.0 kept the input in 1-dimensional form with size 363.

Both models were structured this way in order to compare their performance in a “ceteris

paribus1” environment. Their results were very much alike with Version 2.0 results being slightly

better and thus the conclusion of this comparison is that the essay representation, does not affect

the feature extraction and thus the classification.

5.4.3. ARTIFICIAL NEURAL NETWORK DEPTH

There is no correct answer for the Artificial Neural Network’s depth to construct an accurate

Automated Essay Marking system. The reason is that it depends on the size of the input. The

same deep Artificial Neural Network is very likely to be overfitted if it is trained on a simple

word-to-vector training set and at the same time it is very likely to be inadequate and underfitted

if it is trained on a complex word-to-vector training set.

1 Other things equal

81

6. FUTURE WORK

The project was completed with success. However, there are is variety of improvements that can

be and have been planned to be made in the future.

6.1. VERSION 7.0

The “Version-Specific Approach” section described the approaches taken in each version and the

reason for taking them. The approach in Version 7.0 described an Artificial Neural Network

structure, which could result to a high accuracy classification using the second word-to-vector

representation. Although Version 7.0 was implemented, the limited computing power in disposal

made its training impossible. Training Version 7.0 could produce very important outcomes since,

compared to the rest of the versions using the second word-to-vector (Versions 3.0 to 6.0), it is

the only Artificial Neural Network, which is deep enough in order to extract the features from

the high dimensional input vectors of the second word-to-vector representation and deep enough

to then classify the essays using them. Training Version 7.0 could take weeks, but it is the first

priority of the future work.

6.2. LINGUISTIC ANALYSIS

Text classification of this kind requires a highly qualified team of researchers from various

disciplines such as linguistics. Linguistics could be very helpful in determining words that should

be dropped before the essays are converted into word vectors and they are inserted into the

Artificial Neural Network. Words like “a”, “the”, “of”, “that” are most likely to appear in all

essays, regardless their class/grade. Such words and other that do not or should not affect the

classification of an essay is better to be removed from the essays. Removing unnecessary words

will also reduce the size of the essays keeping only important local indicators that can lead to a

class membership.

6.3. RECURRENT NEURAL NETWORKS

Recurrent Neural Networks have also been used to perform complex text classifications. The

assumption we made and led us to using Convolutional Neural Networks is that the order of the

82

words in the essay is insignificant and that local indicators will lead to the correct class

regardless of their position in the text. The assumption of Recurrent Neural Networks is exactly

the opposite. Recurrent Neural Networks have been proven to outperform Convolutional Neural

Networks when the order of the words in the text affects their class membership, whereas

Convolutional Neural Networks have been proven to outperform Convolutional Neural Networks

when it does not (Yin, et al., 2017). Although, there are no indicators that our hypothesis is

invalid, there is no proof that it is not until using Recurrent Neural Networks and comparing their

performance to the existing models.

6.4. ARTIFICIAL NEURAL NETWORK OPTIMIZATION

As mentioned before, the choice of Stochastic Gradient Descent was mainly because of its

computational efficiency since it changes the weights after each training example in comparison

to Batch Gradient Descent or Minibatch Gradient Descent, which change the weights after an

entire batch or part of the batch respectively. Stochastic Gradient Descent was forced by the

limited memory capabilities of the machines used (or available to be used). However, Stochastic

Gradient Descent is normally used with very large datasets (unlike the dataset used). A larger

dataset would need a larger batch size so that each batch can adequately represent the dataset. So,

since the Batch Gradient Descent’s run time increases exponentially in relation to the batch size,

the Stochastic Gradient Descent is used instead. Since the dataset used for the text classification

is limited, it is very likely that a Batch Gradient Descent will perform better, given that we have

the memory capabilities to utilize it. Decreasing the learning rate and increasing the global steps,

so that the model learns more slowly for a larger number of steps, was tried repeatedly but in

vain for the same reason. Another option for the optimization algorithm is to use a cyclical

learning rate, starting from a high learning rate and monotonically decreasing. The cyclical

learning rate has been implemented in various classification models with great results (Smith,

2017).

83

7. CONCLUSIONS

After completing an investigation, it is vital to evaluate the general outcomes. The aim of this

report was to investigate the application of Machine Learning in Automated Essay Marking.

Although there were many obstacles, this aim was completed with success. Automated Essay

Marking is long from being widely implemented in the Education System. However, the results

of this project proved that an accurate Automated Essay Marking system is not only possible but

“inevitable” if the existing software is improved by implementing the future work described. The

existing software may not be a solution to the problem but it is a significant attempt towards a

solution. However, the most important accomplishment of this project is that the report in

combination with the source code is a thorough guide to someone that wants to get involved with

Automated Essay Marking with Artificial Neural Networks, or even Artificial Neural Networks

in general.

The models designed, implemented, trained, tested and evaluated, produced a number of very

important outcomes in regard to the significance of the Artificial Neural Network architecture,

the essay 1-dimensional and 2-dimensional representation and the word-to-vector representation.

In summary, after investigation, the outcome was reached that the essay representation is

unimportant, in comparison to the word-to-vector representation, where a complex word-to-

vector representation can produce better results as long as the model’s depth can support its size.

If the model’s depth cannot support the size of the complex word-to-vector representation, then a

simple word-to-vector representation will produce far better results and perform a more accurate

classification.

The biggest challenge about Artificial Neural Networks is that the evaluation metrics help

assessing the performance about the Artificial Neural Networks, but they provide limited

information about what went wrong and what the next step should be. No matter how

experienced one is with Artificial Neural Network, the only thing you can do is speculate and

test. On the other hand, there is a limited number of speculations I could make taking into

consideration the short time frame and limited memory capabilities. The development of a fine-

tuned Deep Neural Network that can carry out demanding tasks such as text classification require

a combination of time and computing power of which I had none.

84

Probably the major drawback of the software developed for the purposes of this project is that it

must be both trained and evaluated on a set of essays with the same topic. Thus, it is unlikely that

it will be able to successfully work and predict a grade with some success and accuracy for a

different set of essays with a different topic. The reason lies on the way the models work, which

is finding the local indicators/word that are able to point to a specific class membership.

Considering, however, the task for which the software was made makes this drawback absolutely

normal and was expected from the beginning.

The investigation of the underlying technology required for an Automated Essay Marking system

also gave me a lot of food for thought. When I started this project, I was puzzled by the fact that

education and automated essay marking systems have not been affected by the technological

improvement. However, after carefully studying the field of Machine Learning and Artificial

Neural Networks, I reconsidered. Undoubtedly, a successful Automated Essay Marking system

could save both time and resources by automating the marking process. Essays could be

converted to bag of words and inserted into a model, which could classify the essays based on

local indicator. But are essays just bag of words? Are local indicators enough to classify an

essay? Are we willing to sacrifice creativity to achieve efficiency? The objective of this project

was to investigate whether Machine Learning and Artificial Neural Networks could be used to

make an Automated Essay Marking which can classify essays with high accuracy. This objective

has been, in my opinion, completed. The software developed with some modifications and

improvement which were described in the “Future Work” section could and probably will lead to

an Automated Essay Marking with great accuracy, which can be used in schools. But should it?

85

8. REFLECTION ON LEARNING

The final year dissertation is without a doubt a lot different to any of the other projects

undertaken. It requires a lot of commitment and dedication to conduct a successful investigation

and a thorough report. Thus, the learning outcomes are also different to the learning outcomes of

any other project.

First of all, I chose this dissertation topic because I am intrigued by Machine Learning and

planning to continue my studies in that field. When I started the project, my knowledge in

Machine Learning was limited and I had no idea what Artificial Neural Networks are. Less than

four months later, I achieved studying and understanding Machine Learning and Artificial

Neural Networks down to the detail, becoming very familiar with two different libraries, Gensim

and Tensorflow which are used for Machine Learning applications, constructing close to 100

models using the libraries, training many of them, evaluating and changing them, and finally

constructing a thorough report of the entire investigation. Thus, I acquired technical knowledge

that I hope to use in my later career.

The dissertation is the first project without a safety net. In contrast to the rest of the projects,

which are made to be doable, the investigation is very likely to fail. Until the approach and

implementation part of the project is over and the results are evaluated, there are no indications

about the success of the project. In that respect, the dissertation is very similar to the real

professional projects that we will undertake in our future careers and thus provide us with

important learning outcomes and prepare us for our professional career.

The design of a successful Artificial Neural Network requires tremendous patience and

concentration. In the projects I undertook before the dissertation I was able to make mistakes

without a “cost”. I was able to see my mistakes and run the program again. The time required to

train an Artificial Neural Network, which can be days or an entire week, multiplies the “cost” of

every mistake. So, working on a Machine Learning project requires cautiousness and diligence,

which I have gained after this project.

Last but not least, this was the first project, which other than time management also required

resources management. The limited memory capabilities of my laptop and the machines of the

Linux labs forced me to look for alternatives, such as the insista@cs.cf.ac.uk server provided by

86

my supervisor. Due to my lack of experience in working on a remote server, I faced a lot of

difficulties working with the ssh protocol necessary. After a lot of struggle, I overcame them,

which helped me perform the trainings faster, but also helped acquire useful technical knowledge

in working on remote servers. However, even the remote server had limited capabilities. So the

models designed and implemented had to be big enough to perform the required task but at the

same time relatively small to be trained by the server. This added an extra constraint to the

developing process, which made the process more difficult, but also provided me with important

learning outcomes for my later career.

87

REFERENCES

(PEG), P. E. G., n.d. Measurement Incorporated. [Online]

Available at: http://www.measurementinc.com/products-services/automated-essay-scoring

Beck, K., Beedle, M., Bennekum, A. v. & al, e., 2001. Manifesto for Agile Software

Development, s.l.: s.n.

Bhande, A., 2018. Medium. [Online]

Available at: https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-

learning-and-how-to-deal-with-it-6803a989c76

Bishop, C. M., 2006. Pattern Recognition and Machine Learning. s.l.:Springer.

D.T. Pham, X. L., 1995. Neural Networks for Identification, Prediction and Control.,Springer.

Deep Learning Course Wiki, n.d. Log Loss. [Online]

Available at: http://wiki.fast.ai/index.php/Log_Loss

defaultdict, 2018. Python: defaultdict from collections. [Online]

Available at: https://docs.python.org/3.6/library/collections.html#collections.defaultdict

eRater, n.d. eRater. [Online]

Available at: https://www.ets.org/erater/about

Fauske, K. M., 2006. Neural Network,

Goldberg, Y., 2016. A Primer on Neural Network Models,

Goodfellow, I., Bengio, Y. & Courville, A., 2016. Deep Learning. s.l.:Massachusetts Institute of

Technology.

Graupe, D., 2013. Principles of Artificial Neural Networks. 3rd ed. s.l.:World Scientific.

Grefenstette, E., Blunsom, P., Freitas, N. d. & Hermann, K. M., 2014. A Deep Architecture for

Semantic Parsing, s.l.: Department of Computer Science, University of Oxford.

Intellimetric, n.d. Intellimetric. [Online]

Available at: http://www.intellimetric.com/direct/

88

James, G., Witten, D., Hastie, T. & Tibshirani, R., 2013. An Introduction to Statistical Learning.

8th (2017) ed. s.l.:Springer.

Kaggle, 2012. Kaggle: The Hewlett Foundation: Automated Essay Scoring. [Online]

Available at: https://www.kaggle.com/c/asap-aes

Kalchbrenner, N., Grefenstette, E. & Blunsom, P., 2014. A Convolutional Neural Network for

Modelling Sentences,

Kim, Y., 2014. Convolutional Neural Networks for Sentence Classification,

Manning, C. D., Raghavan, P. & Schütze, H., 2009. An Introduction to Information Retrieval.

Online Edition ed. s.l.:Cambridge University Press.

Mcculloch, W. S. & Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity

Miháltz, M., 2016. Github. [Online]

Available at: https://github.com/mmihaltz/word2vec-GoogleNews-vectors

Mikolov, T., Chen, K., Corrado, G. & Dean, J., 2013. Efficient Estimation of Word

Representations in Vector Space

Mitchell, T. M., 1997. Machine Learning. s.l.:McGraw-Hill International Editions.

Mitra, N. et al., 2018. Machine Learning Introduction, s.l.: s.n.

Nigrin, A., 1993. Neural Networks for Pattern Recognition. s.l.:Massachusetts Institute of

Technology.

Nilson, N. J., 1998. Introduction To Machine Learning. s.l.:Stanford University, Department of

Computer Science.

Nir, S. M., 2011. 7000 Private School Applicants Got Incorrect Scores, Company Says. The New

York Times, 11 4.

NumPy, 2018. NumPy: Datatypes. [Online]

Available at: https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html

NumPy, 2018. NumPy: General. [Online]

Available at: http://www.numpy.org/

89

Page, E. B., 1967. Statistical and linguistic strategies in the computer grading of essays.

PaperRater, n.d. PaperRater. [Online]

Available at: https://www.paperrater.com/

Řehůřek, R., 2009. Gensim: About. [Online]

Available at: https://radimrehurek.com/gensim/about.html#

Řehůřek, R., 2009. Gensim: Corpora and Vector Spaces. [Online]

Available at: https://radimrehurek.com/gensim/tut1.html#from-strings-to-vectors

Renals, S., 2016. Stochastic Gradient Descent; Classification

Rumelhart, D. E., Hinton, G. E. & Williams, R. J., 1986. Learning Representations by back-

propagating errors

Schalkoff, R. J., 1997. Artificial Neural Networks. s.l.:McGraw-Hill.

Silvescu, A., 2000. Fourier Neural Networks

Smith, L. N., 2017. Cyclical Learning Rates for Training Neural Networks

TensorFlow, 2015. TensorFlow: Homepage. [Online]

Available at: https://www.tensorflow.org/

TensorFlow, 2018. TensorFlow: A Guide to TF Layers. [Online]

Available at: https://www.tensorflow.org/tutorials/layers

Yin, W., Kann, K., Yu, M. & Schütze, H., 2017. Comparative Study of CNN and RNN for

Natural Language Processing, s.l.: s.n.

Yin, W. & Schütze, H., 2016. Multichannel Variable-Size Convolution for Sentence

Classification, s.l.: s.n.

Zhang, Y. & Wallace, B., 2015. A Sensitivity Analysis of (and Practitioners' Guide to)

Convolutional Neural Networks for Sentence Classification, s.l.: s.n.

