
 1

Final Report

 Game With A Purpose

 Author: Bernice Thomas
 Project supervisor: Irena Spasic
 Project Moderator: Wendy K Ivins

CM3203
One Semester Individual Project

40 credits

 2

Abstract
A	game	with	a	purpose	is	a	method	used	to	encourage	humans	to	do	a	task	that	is	difficult	for	a	computer	to	accomplish	by	
presenting	it	as	a	game.		This	report	will	discuss	the	planning,	implementation,	evaluation	and	conclusion	of	a	game	with	a	
purpose	involving	synonyms,	antonyms	and	hypernyms	of	words.		The	project	itself	will	focus	on	producing	both	an	
enticing,	addictive	game	which	encourages	users	to	play	and	a	useful	database	of	words	collected	for	the	client.	

 3

Acknowledgements
I	would	like	to	thank	my	supervisor,	Irena	Spasic	for	her	advice	and	support	during	this	project.	

 4

Table of Contents
1	 INTRODUCTION	 7	

2	 BACKGROUND	 8	

2.1	 HISTORY	OF	GAMES	WITH	A	PURPOSE	 8	
2.1.1	 ESP	GAME	 8	
2.1.2	 OTHER	GAMES	WITH	PURPOSES	 9	
2.2	 WORDNET	 9	

3	 SPECIFICATION	&	DESIGN	 10	

3.1	 SPECIFICATION	 10	
3.1.1	 REQUIREMENTS	 10	
3.1.2	 TEST	CASES	 11	
3.1.3	 USE	CASE	 12	
3.2	 DESIGN	 13	
3.2.1	 USER	INTERFACE	DESIGN	 13	
3.2.2	 WIREFRAME	DESIGNS	 14	
3.2.3	 BACKEND	DESIGN	 21	
3.2.4	 DATABASE	DESIGN	 25	

4	 IMPLEMENTATION	 28	

4.1	 FRONTEND	 28	
4.2	 BACKEND	 28	
4.2.1	 CHALLENGES	FACED	&	POINTS	OF	INTEREST	 29	
4.2.2	 DATABASE	 33	
4.3	 UTILISING	THE	WORDNET	DATABASE	 34	
4.4	 HOSTING	 35	

5	 RESULTS	AND	EVALUATION	 36	

5.1	 TESTING	 37	
5.1.1	 FUNCTIONALITY	TESTING	 37	
5.1.2	 ETHICAL	APPROVAL	 39	
5.1.3	 USABILITY	TESTING	 40	
5.1.4	 DATA	ANALYSIS	 45	

6	 REFLECTION	&	FUTURE	WORK	 47	

6.1	 REFLECTION	 47	
6.2	 FUTURE	WORK	 47	
6.2.1	 GAME	PLAY	 47	
6.2.2		 DESIGN	 48	
6.2.3	 PERFORMANCE	 48	
6.2.4	 ADDITIONAL	FEATURES	 48	

7	 CONCLUSIONS	 49	

8	 REFLECTION	ON	LEARNING	 50	

TABLE	OF	ABBREVIATIONS	 51	

 5

APPENDICES	 52	

REFERENCES	 54	

 6

Table of Figures
FIGURE 1 SCREENSHOT OF ESP GAME [5] .. 8	
FIGURE 2 SCREENSHOT FROM LOUIS VON AHN TECHTALK .. 8	
FIGURE 3: WATERFALL MODEL [17] .. 10	
FIGURE 4 USE CASE DIAGRAM, MADE ON CREATELY ... 13	
FIGURE 5 PUG EXAMPLE ... 14	
FIGURE 6: HTML/HANDLEBARS EXAMPLE .. 14	
FIGURE 7 FIRST PAGE CREATED ON MOQUPS ... 16	
FIGURE 8 LOG IN PAGE CREATED ON MOQUPS ... 16	
FIGURE 9 SIGN UP PAGE CREATED ON MOQUPS .. 16	
FIGURE 10 NOT LOGGED IN LEADER BOARD PAGE CREATED ON MOQUPS .. 17	
FIGURE 11 RULES PAGE CREATED ON MOQUPS .. 17	
FIGURE 12 LOGGED IN PAGE CREATED ON MOQUPS ... 17	
FIGURE 13 SELECTED DROPDOWN LIST PAGE CREATED ON MOQUPS .. 18	
FIGURE 14 CLASSIC SELECTED PAGE CREATED ON MOQUPS .. 18	
FIGURE 15 LOGGED IN LEADER BOARD PAGE CREATED ON MOQUPS .. 18	
FIGURE 16 SEARCHING FOR PLAYERS PAGE CREATED ON MOQUPS .. 19	
FIGURE 17 COUNTDOWN PAGE CREATED ON MOQUPS '1...' .. 19	
FIGURE 18 COUNTDOWN PAGE CREATED ON MOQUPS '2...' .. 19	
FIGURE 19 COUNTDOWN PAGE CREATED ON MOQUPS '3...' .. 19	
FIGURE 20 SYNONYM GAME PAGE CREATED ON MOQUPS .. 20	
FIGURE 21 HYPERNYM PAGE SHOWING PLAYER HAS ANSWERED CREATED ON MOQUPS 20	
FIGURE 22 ANTONYM GAME PAGE CREATED ON MOQUPS .. 20	
FIGURE 23 MATCHED WORD GAME PAGE CREATED ON MOQUPS .. 21	
FIGURE 24 END GAME PAGE CREATED ON MOQUPS .. 21	
FIGURE 25 COMPARISON BETWEEN PYTHON AND NODEJS .. 22	
FIGURE 26 THE WORDNET DATABASE FROM THE VISTA POINT OF VERB ‘BE’ AND MAXIMUM PATH LENGTH OF 2.

[37] ... 24	
FIGURE 27 ENTITY RELATIONSHIP DIAGRAM FOR WORDIFY ... 27	
FIGURE 28 TABLE DISPLAYING THE PACKAGE VERSIONS USED IN THE SYSTEM .. 33	
FIGURE 29 SCROLLABLE MATCHED WORDS TABLE SHOW TO PLAYERS AT THE END OF THEIR GAME 36	
FIGURE 30 WORDIFY INFORMATION TEXT BEFORE IMPROVEMENT……………………………………………….36
FIGURE 31 WORDIFY INFORMATION TEXT AFTER IMPROVEMENT ... 36	
FIGURE 32 COMPATIBILITY TESTING RESULTS ... 37	
FIGURE 33 FUNCTIONAL REQUIREMENTS TESTING RESULTS .. 39	
FIGURE 34 DATA COLLECTION SHEET ... 41	
FIGURE 35 THE TIME IT TOOK PARTICIPANTS TO SIGN UP ON WORDIFY ... 41	
FIGURE 36 ANSWER VALIDATION EXAMPLE .. 42	
FIGURE 37 GRAPH SHOWING THE RELATIONSHIP BETWEEN NUMBER OF TESTING PARTICIPANTS AND THE NUMBER

OF PROBLEMS FOUND [57] ... 43	
FIGURE 38 QUESTIONNAIRE RESULTS FROM SECTION 1 ... 44	
FIGURE 39 QUESTIONNAIRE RESULTS FROM SECTION 2 ... 44	
FIGURE 40 QUESTIONNAIRE RESULTS FROM SECTION 3 ... 45	
FIGURE 41 TABLE OF MATCHED WORDS COLLECTED DURING TESTING .. 46	
FIGURE 42 NON-FUNCTIONAL REQUIREMENTS TESTING RESULTS .. 46	

 7

1 Introduction
As	the	world	continuously	turns	to	a	more	online	world,	the	task	putting	all	the	data	from	the	real	world	online	is	becoming	
increasingly	important.		Obtaining	data	from	humans	is	a	strenuous	and	time	consuming	chore.	One	of	the	most	
challenging	aspects	of	gathering	data	is	finding	people	willing	to	spend	their	time	giving	it.	To	solve	this	issue,	for	this	
project	I	will	produce	a	Game	With	a	Purpose(GWAP)	which	will	automate	data	collection.	The	idea	behind	the	game	is	to	
use	the	computational	power	of	humans	to	perform	a	task	that	computers	cannot	do	(originally,	image	recognition)	by	
packaging	the	task	as	a	game.	[1]	
	
People	spend	billions	of	hours	a	year	playing	online	computer	games	[2],	to	utilise	this	time	my	game	will	collect	data	from	
game	players.		The	game	I	will	be	creating	chooses	random	adjectives	or	nouns	and	asks	users	to	provide	synonyms,	
antonyms	or	hypernyms	for	the	word.	Players	will	be	randomly	matched	with	other	players	online	and	will	compete	
against	one	another.	Once	both	players	guess	the	same	word,	the	game	moves	on	to	the	next	word.	There	will	also	be	a	
single	player	version,	using	WordNet	as	a	knowledgebase	allowing	users	to	test	their	own	knowledge	of	the	English	
language.	
	
	To	ensure	the	system	is	a	success,	there	are	two	main	outputs	of	the	project	that	will	be	considered;	the	game	and	the	
data.	The	game	itself	should	be	fun	and	interactive,	different	game	elements	will	be	added	to	ensure	this.	The	user	should	
be	able	to	create	an	account	and	login,	allowing	them	to	keep	their	high	score.	Another	element	that	I	will	add	to	the	game	
is	a	leader	board.	By	adding	a	leader	board	the	game	it	will	become	more	competitive,	encouraging	people	to	play	for	
longer,	thus	giving	more	data.	By	making	the	game	as	accessible	as	possible,	more	players	can	play	the	game	meaning	
more	data	will	be	collected.	Therefore,	it	is	important	to	ensure	that	the	website	is	responsive	when	accessing	it	on	a	
mobile	or	tablet	device.	The	other	aspect	of	the	system	that	must	be	considered	is	the	data	collection.	The	data	should	be	
stored	in	a	meaningful	way	to	ensure	it	is	useful.	Due	to	the	high	volumes	of	data	being	stored,	it	is	important	to	store	it	as	
efficiently	as	possible,	this	would	help	to	reduce	hardware	costs	for	the	final	system.		

 8

2 Background
I	will	now	be	discussing	the	background	of	the	project	including	different	games	GWAP	that	have	previously	been	developed.		
I	will	 also	be	discussing	other	methods	 that	have	been	employed	 instead	of	GWAP	and	 the	 reasoning	behind	 them.	 	By	
researching	this	area,	I	will	have	a	better	understanding	of	what	makes	a	more	successful	system.	

2.1 History of games with a purpose
A	GWAP	is	a	human-based	computation	method	of	outsourcing	tasks	that	may	be	difficult	for	computers	to	solve	but	much	
easier	for	humans	by	employing	gamification.		Gamification	utilises	game	elements	in	a	task,	making	them	seem	more	
enjoyable	and	entertaining.		This	section	of	the	report	will	discuss	different	types	of	GWAP	that	have	already	been	
developed.		I	will	also	inform	the	reader	of	the	benefits	of	each	system	and	the	issues	that	arose	during	their	development.	

2.1.1 ESP Game

ESP	game	was	developed	by	Luis	Von	Ahn	in	the	year	2003	[3]	and	was	the	first	known	GWAP.		The	game	was	very	similar	to	
the	system	I	will	be	developing,	it	featured	images	that	the	user	had	to	describe	without	using	the	given	taboo	words.		Players	
were	matched	with	one	another	and	played	together	to	try	a	both	guess	the	same	word.	 	The	game	made	searching	for	
images	using	words	much	easier	as	it	produced	an	extensive	database	of	words	correlating	to	images	[4].		This	was	especially	
useful	in	the	early	2000’s	when	image	recognition	was	far	less	advanced	as	it	is	now,	meaning	the	tasks	were	far	more	difficult	
for	a	computer	to	solve,	compared	to	a	person.		Below	is	a	screenshot	of	the	game	in	2006.	

	
Figure 1 Screenshot of ESP Game [5]

During	a	Google	TechTalk	in	July	26,	2006	[6]	,	Luis	Von	Ahn	discussed	the	issues	that	arose	during	the	introduction	of	the	
game.		Some	of	these	issues	could	possibly	occur	with	my	proposed	system.		One	issue	was	with	people	cheating	by	guessing	
the	same,	irrelevant	words	for	each	image	they	were	shown.		To	avoid	this,	Luis	incorporated	test	images	into	the	game.		If	
the	user	played	well	with	the	test	images,	they	assumed	their	data	for	the	proceeding	images	was	‘good’.		Another	method	
used	to	clamp	down	on	cheaters	was	to	only	input	a	word	into	the	database	once	it	had	been	matched	by	‘n’	pairs.	Louis	
gave	the	equation	during	his	lecture	which	can	be	seen	below.		The	equation	shows	that	as	we	increase	‘n’,	the	probability	
of	the	label	not	being	corrupt	is	exponential	to	x.			

	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 2 Screenshot from Louis Von Ahn techtalk

 9

This	method	of	cheating	could	occur	in	my	game.		I	will	avoid	this	by	implementing	WordNet	to	check	if	a	match	is	valid	by	
and	adding	in	limits	to	words	so	they	must	be	guessed	a	certain	number	of	times	before	they	are	declared	a	valid	match.			
This	will	help	to	reduce	the	chances	of	any	irrelevant	words	being	included	in	the	database.			
	
Increasing	 the	 number	 of	 games	 users	 play	 is	 vital	 to	 ensure	 enough	 data	 is	 collected	 to	 have	 a	 sufficient	 database.				
According	to	Luis	Von	Ahn	during	his	TechTalk,	when	players	were	told	that	their	partner	has	entered	a	guess,	they	played	
for	4%	longer.		This	will	be	an	important	aspect	to	consider	when	producing	on	my	GWAP	as	I	should	be	taking	every	measure	
possible	to	increase	playing	time	of	players.			
	
The	ESP	game	became	so	popular	that	during	its	peak,	there	were	over	75	thousand	players,	with	15	million	agreements.		
One	of	the	drawback	of	the	system	according	to	Louis	Von	Ahn	during	his	TechTalk	is	that	the	players	playing	the	ESP	game	
were	bias	as	only	 ‘certain’	people	would	play	 the	game,	 rather	 than	 the	general	population.	 	This	may	skew	the	 results	
collected	by	the	game,	compared	to	results	if	you	were	to	ask	the	general	population.		Although	this	may	be	an	issue,	there	
is	no	real	way	to	fix	it.	
	
Google	relaunched	a	version	of	ESP	game	in	2011,	however	it	wasn't	a	game,	it	was	simply	an	image	labelling	website	called	
crowdsource	[7].		Thanks	to	the	advancing	capabilities	of	artificial	intelligence,	GWAP	are	less	vital	as	they	were	in	the	2000’s.		
For	 instance,	Google	photos	uses	 image	 recognition	 to	enable	you	 to	 search	 for	photos	by	 the	elements	 that	are	 in	 the	
picture.	 	 This	method	 is	much	 faster	 than	using	people	 to	manually	describe	each	picture	 and	 far	 less	 time	 consuming.		
Although	 this	 is	 the	 case,	 it	may	 not	 always	 be	 correct	 and	 to	 create	 the	 technology	 in	 the	 first	 place,	 Google	 used	 a	
combination	 of	 both	 human	 data	 and	 Artificial	 intelligence.	 This	 may	 be	 the	 more	 future	 proof	 method,	 making	 both	
technologies	work	together	rather	than	just	picking	one	or	another.		This	method	is	utilized	by	Google	as	data	collected	by	
its	image	labelling	website	is	used	to	help	train	their	AI	to	recognize	the	images	[8].	
	

2.1.2 Other games with purposes

Along	with	the	ESP	game	there	are	many	other	types	of	games	with	a	purpose	that	accomplish	different	tasks.		Another	type	
of	GWAP	is	‘Smorball’	and	‘Beanstalk’,	these	games,	both	produced	by	the	same	developers	asks	players	to	type	words	they	
see	 from	 images	which	are	 scanned	pages	 in	 the	Biodiversity	Heritage	Library	 [9].	 	 This	 results	 in	historical	books	being	
transcribed	online.				Due	to	the	various	fonts	used	in	historical	literature,	it	is	very	difficult	for	image	recognition	to	reliably	
read	the	text,	therefore	it	is	helped	by	the	players	of	the	games.		One	of	the	elements	I	particularly	appreciate	from	both	
examples	is	the	graphics	utilized	in	the	games	which	help	it	feel	more	‘game	like’.	
Nanocrafter	is	a	game	developed	by	the	University	of	Washington	[10].		This	game	uses	humans	to	help	to	decipher	DNA	
which	is	difficult	for	computers	to	do.		Puzzles	are	shown	to	players	featuring	different	DNA	structures	[11],	the	better	the	
players	are,	the	higher	the	levels	they	can	progress	to,	giving	them	more	complex	DNA	structures.		The	game	utilizes	the	
player’s	creativity	 to	build	 systems,	allowing	computers	 to	 focus	more	on	 the	areas	highlighted	by	humans	 [12].	 	This	 is	
another	prime	example	of	combining	the	efforts	of	both	humans	and	machines.	

2.2 WordNet
WordNet	is	a	large	lexical	database	of	English	[13]	that	was	produced	by	Princetown	university	in	mid-1980s	[14]	.		
WordNet	is	open	source	[15]	meaning	it	is	available	to	use	for	my	project	without	having	to	ask	for	permissions.		I	will	be	
using	WordNet	as	the	base	for	my	database,	it	will	be	used	to	make	guesses	when	playing	against	a	computer	and	it	will	
also	be	used	to	help	validate	if	a	match	is	correct.		One	of	the	major	benefits	of	implementing	WordNet	is	that	they	have	
many	easy	to	use	APIs	available	online,	making	the	system	simpler	to	implement.		In	the	future,	the	system	will	not	need	
WordNet	to	function	as	it	will	have	more	data	than	WordNet	in	the	databases.		However,	it	is	vital	to	employ	WordNet	
whilst	the	database	for	the	word	game	is	being	produced	by	the	players.		
	

 10

3 Specification & Design
This	section	of	the	report	will	give	sensible	design	solutions	to	the	problems	I	have	been	given.		I	will	state	what	functions	I	
hope	the	system	will	have	at	the	end	of	the	project,	along	with	the	mechanisms	of	how	they	will	work.		For	each	design	
decision	I	make,	I	will	justify	them	using	data	I	have	found	from	reliable	sources.			When	developing	my	project,	I	have	
decided	to	utilise	the	waterfall	model	software	development	process	which	was	First	introduced	by	Dr	Winston	W.	Royce	
in	a	paper	published	in	1970	[16].		I	have	chosen	this	method	due	to	its	clearly	defined	stages,	compared	to	the	agile	
development	method	which	can	become	long	and	complicated.		As	my	project	has	a	limited	timeframe,	I	think	it	is	more	
suitable	to	follow	the	waterfall	methodology,	the	structure	of	which	can	be	seen	below.	
	

Figure 3: Waterfall Model [17]

	
	

3.1 Specification
The	specification	section	of	this	report	will	discuss	the	outcomes	I	hope	to	produce	from	the	system.		Not	only	will	they	act	
as	an	aid	during	the	implementation	phase,	but	they	will	also	help	me	cipher	weather	or	not	this	project	has	been	a	
success	during	the	testing	of	the	game.	

3.1.1 Requirements

I	have	divided	my	requirements	into	two	sections;	Functional	and	non-functional.		Functional	requirements	are	specific	
behaviours	that	the	system	should	have	whereas	Non-functional	requirements	are	more	design	focussed	and	judge	the	
operation	of	a	system.	
	

Functional	requirements	
1. Players	must	be	able	to	create	an	account		
2. Players	must	be	able	to	play	against	other	players	online	
3. Players	must	be	able	to	play	against	the	computer		
4. Players	must	be	able	to	pass	on	a	word	if	they	are	stuck	
5. There	must	be	a	time	limit	on	each	game	
6. The	game	must	be	playable	on	at	least	the	top	4	most	used	browsers	according	to	NetMarketShare	[18]	
7. The	game	must	be	playable	on	mobile	phone	and	tablet	devices	
8. Players	should	be	able	to	view	a	leader	board		
9. Players	could	be	able	to	change	the	difficulty	when	playing	against	a	computer		
10. Players	could	be	able	to	play	as	a	guest	

 11

	
Non-functional	requirements	

1. There	must	be	an	appropriate	colour	scheme	to	allow	for	colour	blindness,	therefore	colours	red	and	green	and	
the	colours	blue	and	yellow	cannot	be	layered	on	top	of	one	another	

2. The	game	must	take	no	longer	than	4	seconds	to	load	
3. The	game	should	be	reliable,	it	should	work	99%	of	the	time	
4. The	text	of	the	game	should	be	big	enough	to	read,	all	font	on	the	game	must	be	over	15pt	
5. It	should	take	no	longer	than	90	seconds	for	an	average	player	to	sign	up	to	the	game	
6. Over	50%	of	players	should	want	to	play	the	game	again	after	playing	once	

3.1.2 Test Cases

Below	are	a	series	of	 test	cases	that	 I	have	produced	which	will	help	me	deem	weather	the	project	has	been	a	success.		
Another	benefit	of	producing	test	cases	was	that	it	made	me	realise	areas	of	the	system	that	I	had	not	yet	properly	realised	
such	as	the	fact	that	along	with	logging	in,	I	will	have	to	create	a	mechanism	for	users	to	actually	create	an	account.	
	
Test	Case	ID:	1	 Test	Purpose:	Sign	Up	

Environment:	OS	X	Google	Chrome	
Precondition:	
Test	Case	Steps:	3	
Step	No	 Procedure	 Response	 Pass/Fail	
1	 Player	goes	to	the	website	 The	first	page	is	loaded	 	
2	 Player	clicks	sign	up	 The	sign	up	page	is	loaded	 	
3.i	 Player	enters	an	email	address	that	is	already	

being	used		
Comment	next	to	the	email	address	comes	up	
informing	the	user	that	the	email	address	is	
already	in	use.	

	

3.ii	 Player	enters	username	that	is	already	being	
used.	

Comment	next	to	the	username	informs	the	
user	that	the	username	is	already	taken.	

	

3.iii	 Passwords	enters	are	not	the	same	 Comment	next	to	the	password	appears	
informing	the	user	that	the	two	passwords	
entered	do	not	match.	

	

3.iiii	 All	fields	entered	by	the	user	are	valid.	 Sign	Up	is	complete	and	the	user	is	logged	in	to	
the	game	with	their	new	account	

	

Comments:	

Test	Case	ID:	2	 Test	Purpose:	Log	In	

Environment:	OS	X	Google	Chrome	
Precondition:	Player	has	already	signed	up	
Test	Case	Steps:	3		
Step	
No	

Procedure	 Response	 Pass/Fail	

1	 Player	goes	to	the	website.	 The	first	page	is	loaded	 	
2	 Player	clicks	Log	In.	 The	Log	in	page	is	loaded	 	
3.i	 Player	enters	incorrect	username	and	correct	

password	and	clicks	sign	in.	
Message	box	appears	informing	the	user	that	
the	username	is	not	recognised.	

	

3.ii	 Player	enters	incorrect	username	and	
incorrect	password	and	clicks	sign	in.	

Message	box	appears	informing	the	user	that	
the	username	is	not	recognised.	

	

3.iii	 Player	enters	correct	email	address	and	
incorrect	password	and	clicks	sign	in.	

Message	box	appears	informing	the	user	that	
the	password	is	incorrect.	

	

3.iiii	 Player	enters	correct	email	address	and	
correct	password	and	clicks	sign	in.	

Player	is	taken	to	the	logged	in	page.	 	

Comments:	

 12

Test	Case	ID:	3	 Test	Purpose:	Play	Game	against	person	

Environment:	OS	X	Google	Chrome	
Precondition:	Player	is	logged	in	
Test	Case	Steps:	
Step	No	 Procedure	 Response	 Pass/Fail	
1	 Select	Classic	on	the	drop	down	mode	list.	 Classic	is	selected	 	
2	 Click	P	v	P	 The	system	will	take	the	player	to	the	loading	

room	and	will	wait	until	a	player	is	found	to	
play	with.		The	system	will	then	count	down	3	
seconds	until	the	game	starts.	

	

3	 Enter	a	word	in	the	text	box	that	is	
corresponding	to	the	word	given	and	press	
enter.	

If	the	two	players	match	a	correct	word,	the	
game	will	move	on	to	the	next	word,	otherwise	
the	player	will	be	prompted	to	continue	
entering	words	

	

4	 Player	continues	to	play	the	game	for	90	
seconds	

	 	

5	 After	90	seconds	the	game	will	end	 The	system	will	inform	the	player	of	their	score	
and	the	player	will	be	asked	if	they	want	to	
play	again.	

	

Comments:	

Test	Case	ID:	4	 Test	Purpose:	View	High	Scores	

Environment:	OS	X	Google	Chrome	
Precondition:	Player	is	not	logged	in	

Test	Case	Steps:	
Step	No	 Procedure	 Response	 Pass/Fail	
1	 Player	goes	to	the	website.	 The	first	page	is	loaded	 	
2	 Player	selects	view	leader	board	 The	leader	board	page	is	loaded,	the	player	can	

scroll	down	through	the	high	scores.	
	

Comments:	

3.1.3 Use case

Below	is	the	use	case	for	the	system	I	will	be	producing.		The	use	case	shows	all	the	functions	that	should	be	available	to	the	
different	types	of	users.		I	created	the	use	case	using	Creately	which	is	an	online	tool.		I	used	this	software	instead	of	simply	
using	Microsoft	Words	SmartArt	features	due	to	its	increased	design	flexibility.		Creately	offers	a	much	larger	database	of	
shapes	and	allows	you	to	freely	position	them	wherever	you	like	on	the	page.			Creately	also	offers	easy	access	to	the	designs	
online	allowing	me	to	make	changes	to	the	designs	on	any	device,	without	having	to	install	a	software	by	simply	clicking	on	
a	link:	https://tinyurl.com/wordifyusecase	

 13

	
Figure 4 Use Case diagram, made on Creately

3.2 Design
I	will	now	discuss	the	design	of	my	system.		My	GWAP	will	follow	the	client-server	model,	meaning	that	all	communication	
is	between	the	client	and	my	server.		By	doing	this	the	security	of	the	game	is	easier	to	control	compared	to	the	Peer-to-peer	
model	which	makes	cheating	very	hard	to	prevent	as	there	is	no	central	server.		One	of	the	drawbacks	of	the	client-server	
model	is	that	the	system	will	rely	heavily	on	the	stability	of	the	server.		Therefore,	I	will	have	to	ensure	that	the	server	used	
for	my	system	is	as	reliable	as	possible	and	can	handle	large	amounts	of	requests.	

3.2.1 User Interface design

As	my	game	will	be	online,	I	will	be	utilising	three	main	languages	for	the	front	end;	CSS,	JavaScript	and	Pug	(formerly	
known	as	Jade).		When	choosing	the	code	to	use	for	developing	the	front	end,	I	researched	many	different	options.		My	
initial	idea	was	to	code	the	front	end	in	pure	HTML,	however	it	is	not	a	dynamic	language,	making	the	website	much	more	
difficult	to	be	responsive.		HTML	does	not	support	the	use	of	templates	which	makes	it	more	time	consuming	to	develop	
the	website.		I	therefore	decided	to	use	a	templating	language,	I	decided	upon	implementing	Pug,	a	template	engine	for	
JavaScript	that	acts	as	a	middle	man	between	the	front	and	back	end,	making	injecting	data	into	the	HTML	easy	by	using	
simple	commands.	A	similar	alternative	to	Pug	is	Handlebars	which	I	also	have	considered.			The	main	aspect	of	Handlebars	
that	I	particularly	appreciated	is	how	it	clearly	separates	the	code	from	the	HTML.		Although	I	did	like	the	clarity,	I	found	
much	more	documentation	online	for	Pug.	I	also	much	preferred	the	clarity	of	the	syntax	used	in	Pug.		Pug	is	much	easier	
to	read	and	maintain	than	pure	HTML	as	it	forces	you	to	indent.		It	is	also	much	more	succinct,	it	doesn’t	need	you	to	
constantly	open	and	close	elements,	simple	indentation	is	enough.		Below	is	a	comparison	between	a	simple	
HTML/handlebars	webpage	and	it	being	coded	in	Pug.			

 14

	

	
JavaScript	will	be	used	for	much	of	the	backend	of	the	system,	however	it	will	also	be	utilised	on	the	front	end,	making	
elements	in	the	webpage	more	responsive.		I	chose	to	use	JavaScript	as	I	have	previous	experience	with	utilising,	therefore	
I	was	aware	of	the	various	functions	that	it	offers	which	would	require	for	my	system.		
I	will	use	JQuery,	a	cross-platform	library	with	JavaScript,	to	make	the	webpages	more	reactive.	I	will	use	it	when	validating	
data	before	submitting	forms.		The	checks	will	ensure	that	the	password	and	confirm	passwords	match,	by	keeping	the	this	
on	the	client	side	requests	aren’t	being	wasted	by	the	servers	checking	this.		
	
I	want	to	ensure	that	the	website	is	playable	on	mobile	devices	along	with	computers.	 	One	of	the	methods	I	will	use	to	
ensure	this	will	be	within	the	CSS.		I	will	keep	any	sizes	in	percentages,	so	that	they	adapt	with	the	screen	size,	whilst	keeping	
the	overall	appearance	of	 the	game	consistent	which	 is	 important	as	people	can	easily	 transfer	 from	playing	 from	PC	to	
mobile	and	still	feel	familiar	with	the	game.		I	will	use	Bootstrap	as	the	CSS	which	is	a	free	to	use	front	end	framework	[19].		
It	is	responsive	and	professional	looking	which	is	highly	beneficial	as	I	have	a	limited	amount	of	time	to	programme,	it	will	
help	to	speed	up	the	process	as	it	helps	with	the	design.	
		 	

3.2.2 Wireframe designs

Below	are	the	designs	I	have	produced	for	the	front	end	of	my	system	using	Moqups.	My	interactive	designs	can	be	viewed	
by	visiting:	https://tinyurl.com/moqupsdesigns .	I	am	using	bootstrap	for	the	base	of	the	CSS	in	my	website	and	Moqups	
offers	an	array	of	bootstrap	elements	making	it	look	as	accurate	to	the	finished	product	as	possible.		This	feature	is	not	
available	in	Balsamiq	which	is	the	other	website	that	I	considered	when	producing	my	products	wireframes	as	I	had	
previous	experience	using	it.		It	is	important	to	use	bright	colours	to	keep	people	engaged	and	excited,	therefore	I	used	
orange	shades	as	the	main	colour.			I	have	decided	to	name	the	game	‘Wordify’.		I	have	chosen	this	name	as	it	is	simple	and	
helps	to	describe	to	the	users	what	the	game	does.			Wordifys	font	that	I	have	chosen	is	‘Luckiest	Guy’	which	is	not	a	
default	HTML	standard	font,	therefore	I	will	import	it	from	google	fonts.		Although	this	was	an	initial	concern,	it	turned	out	
much	more	reliable	than	I	had	initially	anticipated,	the	fronts	compatibility	can	be	seen	below.		Google	Fonts	are	released	
under	open	source	licenses	[20].	This	means	that	they	can	be	used	in	any	non-commercial	or	commercial	project	meaning	I	
do	not	have	to	ask	for	permissions	to	use	them.	
	

Google	Fonts	Compatibility	[21]		
The	Google	Fonts	API	is	compatible	with	the	following	browsers:	

• Google	Chrome:	version	4.249.4+	
• Mozilla	Firefox:	version:	3.5+	
• Apple	Safari:	version	3.1+	
• Opera:	version	10.5+	
• Microsoft	Internet	Explorer:	version	6+	

HTML/Handlebars
<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Jade vs HTML</title>
 <script type="text/javascript">
 function someFunction(){
 alert("hello");
 }
 </script>
 </head>
 <body>
 <h1>Which is better Jade or Handlebars?</h1>
 <div id="div_tag_id" class="div_tag_class">
 <p>Testing the two template engines</p>
 <p>
 Jade uses indentation and code minimal,
 Handlebars looks like normal HTML along with
 its curly brackets for expressions {{}}
 </p>
 </div>
 </body>
</html>

Pug
doctype html
html(lang='en')
 head
 title Jade vs HTML
 script(type='text/javascript').
 function someFunction(){
 alert("hello");
 }
 body
 h1 Which is better Jade or Handlebars?
 #div_tag_id.div_tag_class
 p Testing the two template engines
 p
 | Jade uses indentation and keeps code minimal,
 | Handlebars looks like normal HTML along with
 | its curly brackets for expressions {{}}

Figure 6: HTML/Handlebars example Figure 5 Pug Example

 15

The	Google	Fonts	API	works	reliably	on	the	vast	majority	of	modern	mobile	operating	systems,	including	Android	2.2+	and	
iOS	4.2+	(iPhone,	iPad,	iPod).		Support	for	earlier	iOS	versions	is	limited.	

 16

	 First	Page	
This	is	the	page	that	the	user	is	shown	
when	they	first	visit	the	website.		The	
font	size	on	all	the	buttons	on	this	page	
is	22pt	and	the	font	is	luckiest	guy.		This	
font	will	be	used	throughout	the	entire	
game.		I	chose	this	font	because	it	is	a	
fun	friendly	looking	font	which	makes	
the	game	seem	more	exciting.			

	 Log	In		
When	the	user	clicks	login	they	are	
taken	to	the	log	in	page.		All	the	font	on	
this	page	is	22pt.		When	the	user	clicks	
login	they	are	taken	to	the	logged	in	
page	and	if	they	click	back	they	are	
taken	to	the	First	Page.	
	

	 Sign	Up	Page	
When	the	user	clicks	signup	from	the	
first	page	they	are	taken	here	where	
they	enter	their	credentials,	and	click	
sign	up.		Once	the	user	clicks	sign	up	
they	are	logged	in	and	taken	to	the	
logged	in	page.			

Figure 7 First Page created on Moqups

Figure 8 Log In page created on Moqups

Figure 9 Sign Up page created on Moqups

 17

	 Not	logged	in	leader	
board	
When	the	user	goes	to	the	leader	board	
from	the	first	page	they	are	shown	this	
page.		The	font	size	in	the	table	is	22pt	
and	the	font	size	on	the	button	is	25pt.	

	
Figure 11 Rules Page created on Moqups

	

Rules	
Clicking	on	the	question	mark	in	the	
corner	of	the	webpage	shows	the	rules	
of	how	to	play	the	game.		

	
Figure 12 Logged in page created on Moqups

Logged	in	
Once	the	user	has	logged	in	or	clicked	
play	as	guest,	they	are	taken	here.		This	
is	where	the	user	can	choose	what	type	
of	game	they	play.		They	can	either	play	
against	another	player	or	against	the	
computer.		They	can	they	choose	the	
mode	of	the	game	by	using	the	
dropdown	list.			

Figure 10 Not logged in leader board page created on Moqups

 18

	
Figure 13 Selected dropdown list page created on Moqups

	

Selected	dropdown	list	
The	options	the	user	can	choose	from	
on	the	dropdown	list	is	either	classic,	
same	meanings,	generic	terms	or	
opposites.		I	have	used	these	words	
instead	of	synonyms	antonyms	and	
hypernyms	because	they	are	easier	to	
understand,	this	is	especially	important	
for	people	who	are	trying	to	learn	a	new	
language	as	they	may	not	be	familiar	
with	those	lesser	common	words.	

	
Figure 14 Classic selected page created on Moqups

	

Classic	selected		
The	classic	game	mode	is	a	combination	
of	all	the	modes;	synonyms,	antonyms	
and	hypernyms.	

	 Logged	in	leader	board	
Once	logged	in,	the	user	can	go	to	the	
leader	board	and	see	what	position	they	
are	in	on	it.		This	element	is	exciting	for	
the	user	as	they	can	see	their	position	
go	up	as	they	increase	their	high	score.	

Figure 15 Logged in leader board page created on Moqups

 19

	 Searching	for	players	
If	the	user	selects	p	v	p	they	are	taken	
to	this	page	where	players	are	matched	
with	other	players	that	are	waiting	for	
games.		If	they	are	waiting	for	too	long	
the	user	can	click	on	the	back	button	
and	they	are	taken	back	to	the	logged	in	
page.			

	 Countdown	
If	the	player	selects	the	p	v	c	mode	or	
once	they	have	found	a	partner	on	p	v	p	
page	they	are	taken	to	the	countdown	
which	gives	the	user	3	seconds	to	
prepare	before	the	game	starts.		This	
important	as	the	players	must	be	ready	
before	the	game	starts.	

Figure 16 Searching for players page created on Moqups

Figure 17 Countdown page created on Moqups '3...'

Figure 18 Countdown page created on Moqups '2...'

Figure 19 Countdown page created on Moqups '1...'

 20

	
Figure 18 Synonym game page created on Moqups

Synonym	game	
When	the	user	is	asked	to	give	a	
synonym	they	are	asked	to	give	
‘Another	word	that	means…’.		If	they	fill	
the	green	bar	below	which	takes	14	
questions,	they	get	1000	bonus	points.			
	
By	clicking	pass,	players	can	move	on	to	
the	next	word.		The	taboo	words	are	
shown	are	words	that	players	are	not	
allowed	to	use.		When	a	user	enters	a	
word	it	appears	in	the	‘Your	Words’	list.			

	
Figure 19 Hypernym page showing player has answered created on Moqups

	

Hypernyms	
When	the	user	is	asked	to	give	a	
hypernym,	the	game	asks	for	a	‘more	
generic	term	for’	the	word.			Another	
element	in	this	page	is	the	message	box	
informing	the	player	that	their	
teammate	has	entered	an	answer	
already.		This	element	was	used	in	Von	
Ahns	game	with	a	purpose	and	resulted	
in	a	4%	increase	in	game	play	[6].			

	
Figure 20 Antonym game page created on Moqups

	

Antonyms	
When	the	user	is	asked	to	give	an	
antonym,	they	are	asked	to	give	the	
‘opposite	of’	the	given	word.			

 21

	
Figure 21 matched word game page created on Moqups

	

Matched	Answer	
This	is	what	will	be	shown	when	the	pair	
make	a	match.		The	message	box	will	
appear	for	1	second	and	then	the	game	
will	move	on	to	the	next	word.	

	
Figure 22 End game page created on Moqups

	

End	of	Game	
At	the	end	of	the	game,	the	user	will	be	
shows	their	high	score	and	will	be	given	
the	options	to	either	play	again,	return	
to	home	which	is	the	logged	in	page	or	
view	the	high	scores.			

	
	

3.2.3 Backend design

I	explored	a	variety	of	options	when	considering	what	language	to	use	for	the	back	end	of	my	project.		One	of	my	initial	ideas	
was	to	code	the	backend	in	Python	as	I	am	familiar	with	Python	and	packages	built	for	WordNet	were	supported	in	Python	
[22].				The	other	option	I	considered	was	to	implement	the	backend	in	JavaScript.		JavaScript	is	a	great	language	for	web	
based	projects	because	 it	 can	be	efficient	 to	code	 the	 front-end	and	back-end	 in	 the	same	 language,	as	well	as	 it	being	
lightweight	and	supportive	for	data-intensive	applications.			Below	is	a	comparison	between	Python	and	NodeJS.		I	used	this	
table	to	help	visualise	the	benefits	of	both	languages	and	come	to	a	decision	over	which	code	to	utilise	for	my	project.	
	
	
	
	
	
	
	
	

 22

Language	 Speed	 Functionality	 Code	
Using	the	testing	from	Yan	Cui,	Principal	
Engineer	at	DAZN,	I	can	compare	the	speeds	of	
both	languages	from	a	variety	of	tests.	[23]	

Python	 Okay	 Good	-	Python	offered	a	suitable	
package	for	WordNet	that	
offered	all	the	functionality	
needed.			

Great	–		
Python	is		renowned	for	
its	codes	clarity	and	
simplicity	[24],	its	syntax	
forces	you	to	keep	it	neat	
and	tidy.		

NodeJS	 Great	 Great	–	Along	with	a	suitable	
WordNet	package,	packages	
could	be	used	for	API	routing	
and	socket	connections.	

Okay-		
There	is	no	strict	clean	
coding	rules	when	using	
NodeJS.	

Figure 23 Comparison between Python and NodeJS

	
After	 researching	 the	 two	 languages,	 I	 have	decided	 that	 the	 best	 option	 for	 this	 project	 is	NodeJS.	 Another	 benefit	 of	
implementing	JavaScript	is	its	popularity.		JavaScript	is	one	of	the	most	popular	languages	used	[25]	on	the	internet	today.	
NodeJS	is	a	‘a	server-side	platform	built	on	Google	Chrome's	JavaScript	Engine	(V8	Engine).’	[26]	This	means	that	there	should	
be	plenty	of	online	documentation	to	aid	me	during	the	development	of	the	system.	
	
I	will	be	using	Express,	a	NodeJS	web	application	framework	used	for	designing	and	building	web	APIs.		Express	allows	me	
to	receive	HTTP	requests	at	certain	paths	and	process	these	requests	to	perform	different	actions	and	respond	with	
different	content.	Request	parameters	and	session	cookies	can	be	sent	to	my	server	which	Express	can	process,	allowing	
for	tailored	responses	unique	to	different	users.	Middleware	in	Express	can	be	used	to	authorize	requests	before	
processing	them,	for	example	checking	if	the	user	is	authenticated	before	allowing	access	to	a	particular	API.	Express	
allows	for	different	formatted	responses,	for	example,	plain-text,	JSON	and	HTML	-	this	allows	me	to	create	powerful	APIs	
for	my	web	application.	
	
Navigation	
When	the	user	navigates	through	the	website,	I	want	to	keep	the	address	bar	the	same	as	in	my	opinion	it	looks	more	‘game	
like’	,	I	also	wanted	to	stop	the	page	from	completely	reloading	every	time	the	user	does	an	action.		In	order	to	do	this,	I	will	
utilise	Ajax	requests	which	will	allow	me	to	send	and	receive	data	 from	the	server	asynchronously	and	update	the	page	
without	inferring	with	the	display.			When	navigating,	an	Ajax	request	will	be	made	to	receive	a	formatted	version	of	the	
page	that	is	customised	based	on	the	session	information	retrieved	from	that	user.	I	will	directly	render	pages	dynamically	
using	Express	with	my	Pug	templates.		This	method	offers	allot	of	flexibility	that	you	wouldn’t	have	get	with	static	HTML.		
This	is	vital	for	a	system	like	mine	where	the	game	requires	a	lot	of	different	changing	varying	data.	
	

Sockets	
I	will	be	 implementing	sockets	 into	my	game	to	speed	up	the	communication	between	the	client	and	the	server.	 	 I	have	
decided	to	use	sockets	as	the	speed	at	which	messages	can	be	sent	between	client	and	server	are	significantly	faster	than	
ajax	requests	[27].		This	was	vital	for	game	play	as	every	second	counts	when	the	user	sends	a	guess	to	the	server	as	the	
player	has	a	finite	amount	of	time	when	playing	a	game.	When	deciding	upon	what	library	to	use,	I	considered	two	options;	
SockJS	and	Socket.io.	 	Although	SockJS	 is	an	attractive	 library	which	works	on	all	modern	browsers	and	 in	environments	
which	don't	support	the	WebSocket	protocol	[28]			it	is	relatively	young	compared	to	socket.io	and	has	far	less	documentation	
online.		As	this	is	my	first	time	implementing	sockets,	I	have	decided	to	utilise	socket.io	due	to	its	extensive	documentation	
and	online	community.		I	will	use	Socket.IO	which	is	a	JavaScript	library	for	real	time	web	applications	sockets	into	the	game.		
By	applying	Socket.IO,	implementing	sockets	into	my	game	is	sped	up.		This	is	vital	for	a	project	like	this	where	timings	are	
limited.		When	a	user	logs	in	to	the	game,	a	socket	connection	will	be	made.	According	to	its	website	socket.io	is	“One	of	the	
most	powerful	JavaScript	frameworks	on	GitHub,	and	most	depended-upon	npm	module.”	[29] .	
	

	
Coding	designs	
Below	are	basic	designs	of	some	of	the	most	prominent	functions	that	will	be	utilised	in	my	GWAP.		By	creating	the	basic	
structure	of	the	functions,	implementing	the	system	should	be	much	faster.			
	
	

 23

Sign	Up/Log	in:	
When	the	user	logs	in	or	signs	up	I	wanted	to	ensure	it	is	as	secure	as	possible.		I	will	be	implementing	it	with	PassportJS	
which	is	an	easy	to	use,	flexible	authentication	middleware	for	NodeJS.	I	also	researched	express-authentication	which	is	an	
‘Un-opinionated	authentication	for	express;	an	alternative	to	passport.’	[30].	 	Although	I	 liked	this	package,	there	is	 little	
documentation	online	about	implementing	the	library	which	may	make	debugging	issues	much	more	difficult.		I	was	also	
aware	that	it	hadn’t	been	updated	very	recently	which	means	it	may	not	be	compatible	on	the	latest	version	of	NodeJS	which	
I	will	be	using,	or	it	may	contain	bugs	I	may	find	when	implementing	it.		There	is	an	abundance	of	documentation	online	for	
passportJS	[31]	which	is	one	of	the	reasons	why	I	have	chosen	to	implement	this	library	[32].		One	of	the	benefits	of	using	
passport	is	that	it	supports	a	wide	range	of	authentication	platforms,	it	supports	local	authentication	and	it	is	also	compatible	
with	Google	and	Facebook,	which	I	could	incorporate	into	the	game	at	a	later	date.		This	save	time	for	users	when	they	sign	
up	or	log	in	as	they	would	simply	have	to	click	log	in	with	Facebook,	meaning	we	may	have	more	people	doing	it	as	it	is	much	
less	hassle.	This	also	means	I	could	potentially	incorporate	a	‘friends’	system	into	the	game,	or	use	their	data	in	other	ways.	
I	have	utilised	the	passport	‘local-login’	feature	which	allows	a	customisable	authentication	system	suitable	for	Wordify	that	
allows	users	to	sign	up	and	authenticate	with	a	username	and	password.	[33]	
		
When	signing	up,	various	checks	will	be	made	before	the	new	account	will	 is	created.	 	On	the	client	side,	JavaScript	and	
JQuery	will	be	used	to	check	that	the	password	and	confirm	passwords	match	they	will	also	check	that	all	other	fields	have	
been	filled	in.		Its	beneficial	to	do	this	on	the	client	side	as	it	saves	the	server	having	to	do	this	which	takes	up	more	time	and	
puts	needless	strain	on	the	server.		On	the	server	side,	the	server	will	check	to	see	if	the	username	or	email	address	already	
exists,	if	it	doesn’t	then	it	will	create	a	new	user	and	hash	the	password	using	bcrypt.	It	is	important	that	the	password	is	
never	stored	as	plaintext	on	the	server	and	a	very	secure	hash	function,	such	as	bcrypt,	is	used	so	that	if	the	database	is	ever	
compromised	 the	 credentials	 of	 the	 users	 are	 never	 fully	 revealed.	 	 I	 have	 chosen	 to	 use	 bcrypt	 because	 it	 is	 a	 highly-
recommended	hashing	function	used	by	major	websites,	such	as	Twitter.		If	the	username	does	already	exist	the	user	will	
not	successfully	sign	up	and	will	be	informed	using	an	information	window.		
	

Matchmaking	
When	a	player	clicks	on	the	P	vs	P	button	the	system	will	begin	matchmaking	them	with	an	opponent.		To	match	the	players	
together	the	‘findRoom’	function	is	called.		The	function	checks	to	see	if	there	are	any	rooms	of	the	same	game	mode	that	
they	have	selected	with	only	one	player	in	them.		If	there	are,	they	will	join	the	available	room	and	the	server	will	tell	their	
opponent	that	another	player	has	joined.		Once	two	players	are	in	the	same	room,	they	will	both	save	each	others	userIDs	
which	will	be	used	to	send	messages	to	one	another	using	the	socket.io	emit	functions.	The	countdown	to	the	game	will	then	
begin.		If	there	are	no	available	rooms,	the	server	will	create	a	new	document	in	the	room	schema	with	the	clients	ID	and	
will	send	the	client	to	the	waiting	room	where	they	will	wait	until	an	opponent	has	joined	the	game.		When	two	players	join	
a	room,	they	have	60	seconds	to	play	as	many	games	as	possible.		Each	game	consists	of	a	keyword	and	taboo	words	if	there	
are	any.		Once	two	players	match	on	a	correct	word,	they	move	on	to	another	game.	
	
Function joingame(gametype){
 If(availableroom(gametype)){
 Join(room)
 Start(game)
 }else{
 createnewroom(gametype)
 }
}
	
	

Room	Countdown	
There	are	two	countdowns	that	will	be	used	for	each	room.		The	first	countdown	will	be	to	countdown	6	seconds	until	the	
first	game	begins	and	the	second	timer	will	countdown	60	seconds	from	when	the	first	game	begins.		Both	timers	will	use	
the	same	countdown	function	which	will	use	JavaScript.			
The	countdown	will	use	a	JavaScript	function	‘setInterval’	which	calls	a	function	at	specified	intervals	until	certain	conditions	
are	met.		The	function	will	minus	one	from	the	‘timer’	every	second	and	will	display	the	seconds	left	in	the	specified	element	
ID.		Once	the	current	date	is	greater	than	the	timerdate,	either	the	‘clearinterval’	and	‘endGame	’	or	‘startRoom’		functions	
are	called,	depending	upon	what	countdown	is	being	shown.	
	

Create	Game	
There	will	be	a	function	called	getRandomWordFromKeywordsSchema()	which	will	be	used	to	generate	a	new	game	and	
select	a	random	word	for	it.		This	function	will	be	called	after	two	players	match	on	a	correct	word,	if	a	player	passes	on	a	
word	or	just	at	the	beginning	when	the	whole	game	starts.		The	function	will	return	the	new	keyword,	its	taboo	words	which	
are	word	that	cannot	be	used	to	create	a	match	and	will	also	update	the	current	score.		
	
	

 24

Check	guesses	
The	check	Guess	function	will	go	through	several	checks	each	time	a	user	submits	a	guess.		The	checks	will	be	done	as	shown	
below	in	the	specific	order.		It’s	important	to	make	the	checking	as	efficient	as	possible	as	this	function	will	be	called	each	
time	a	player	makes	a	guess.		Along	with	checking	if	the	two	words	entered	by	payers	actually	match,	we	also	have	to	check	
for	 incorrect	matched	to	prevent	cheating	 in	 the	game.	 	One	of	 the	steps	 I	have	taken	to	ensure	 the	 function	 is	as	 light	
possible	for	the	server	is	that	I	have	left	utilising	WordNet	to	the	last	step.		This	is	because	searching	WordNet	is	expensive	
as	 it	 is	 such	an	extensive	database	of	words.	 	As	of	December	2017,	 there	are	147,278	words	 inside	 the	database	 [34].			
Therefore,	it	will	be	used	as	a	last	option	when	checking	if	the	word	match	is	correct.		
	

1. Add	the	guess	to	the	games	guesses	field.	
2. Has	the	opponent	already	guessed	this	word?	

a. Yes:	Move	on	to	number	3	
b. End	check	

3. 	Is	the	match	a	taboo	word?	
a. Yes:	End	check	
b. No:	Move	on	to	number	4	

4. 	Have	the	words	matched	over	the	correct	match	level	
a. Yes:	It’s	a	Correct	match!	
b. No:	Move	on	to	number	5	

5. 	Is	the	match	correct	with	WordNet?	
a. Yes:	Its	correct	Match!	
b. No:	End	Check		

WordNet	
WordNet	is	a	free	to	use	[35]	large	lexical	database	of	English.		Nouns,	verbs,	adjectives	and	adverbs	are	grouped	into	sets	
of	cognitive	synonyms	(synsets),	each	expressing	a	distinct	concept	[36].		One	of	the	most	notable	aspects	of	WordNet	is	its	
extensive	knowledge	structure	of	relational	words.		Below	is	a	visualisation	of	the	WordNet	structure,	produced	by	Dr	Jaap	
Kamps.		
	

Figure 24 The WordNet database from the vista point of verb ‘be’ and Maximum Path Length of 2. [37]

	
I	will	be	using	an	API	to	search	WordNets	database,	this	will	help	save	a	lot	of	time	during	the	implementation	of	my	system,	
which	is	needed	for	this	project	with	such	a	tight	time	schedule.		The	package	that	I	have	chosen	is	‘WordNet-Magic’	[38]	.		

 25

This	can	be	implemented	directly	into	my	project	by	installing	it	as	a	Node	package.	WordNet-Magic	can	be	easily	utilised	in	
node.js,	which	is	one	of	the	many	reasons	why	I	have	chosen	this	language.			

3.2.4 Database design

When	designing	my	databases	structure,	I	looked	at	all	the	possible	routes	and	came	to	a	decision	based	upon	the	pros	and	
cons	of	each	option.		I	initially	expected	that	I	would	use	MySQL	for	my	databases	because	it	is	generally	the	default	database	
for	web-based	applications	[39].	 	However,	upon	further	research	I	discovered	the	benefits	of	 implementing	a	MongoDB	
system.		It	is	schema	free,	giving	my	system	the	freedom	to	adapt	over	time	[40].			For	example,	if	I	want	to	add	a	new	game	
mode	to	the	game	it	would	be	easier	to	implement	it	in	MongoDB	over	MySQL	by	defining	new	models	rather	than	creating	
a	new	table.		I	also	chose	MongoDB	as	it	is	very	compatible	with	node.js	which	is	the	language	I	am	using	for	the	backend	of	
my	system.		This	is	thanks	to	mongoose	which	is	a	MongoDB	object	modelling	tool.		Another	benefit	of	MongoDB	over	MySQL	
is	speed.		Speed	is	vital	in	a	game	like	Wordify	where	there	is	a	timer,	meaning	every	second	counts	when	evaluating	the	
players	guesses.		According	to	MongoDB,	their	customers	see	performances	improve	by	up	to	6X	when	moving	from	MySQL	
to	MongoDB	[41]	[42].				
Below	 are	 the	 designs	 I	 have	 created	 for	 my	 databases.	 	 It	 is	 important	 to	 design	 the	 databases	 thoroughly	 before	
implementing	them	as	it	speeds	up	the	making	process	and	ensures	that	there	are	no	unexpected	issues	that	may	arise	in	
the	future.		The	game	I	am	making	is	very	memory	exhaustive	as	all	the	matches	made	need	to	be	recorded.		Therefore,	it	
was	essential	that	I	made	the	system	as	efficient	as	possible.			I	needed	to	ensure	that	all	the	data	that	is	stored	was	really	
needed	and	that	there	was	not	any	unessential	data	being	sorted	which	uses	up	precious	memory.	
	
	

Users	schema	
This	schema	will	store	all	the	users	basic	information	including	email	address,	username,	password	(hashed	using	bcrypt)	
and	their	high	score.	
Username	 Password	 Email	 High	Score	
Text,	maxlength=20	 Text,	maxlength=32	 Text,	maxlength=34	 Number,	min=0	

	
Below	is	a	basic	structure	of	my	users	model,	in	NodeJS	using	mongoose	
	
const userSchema = mongoose.Schema({
 username : { type: String, maxlength: 20 },
 password : { type: String, maxlength: 32 },
 email : { type: String, maxlength: 34 },
 highscore : { type: Number, min: 0 },
});

	
Room	schema	
This	schema	will	store	all	the	rooms	that	are	created	for	the	games.		A	room	is	created	when	a	player	searches	for	a	room	
and	cannot	find	one	with	only	1	client	in	it	that	hasn’t	started	yet.	
Clients	 Mode	 CreatedAt	 StartedAt	 EndedAt	

User	Reference	Array	 String	 Timestamp	 Timestamp	 Timestamp	
	
Below	is	a	basic	structure	of	my	model,	in	NodeJS	using	mongoose	
const roomSchema = mongoose.Schema({
 clients : [{ type: mongoose.Schema.Types.ObjectId, ref: 'User' }],
 gamemode : { type: String },
 createdAt : { type: Date },
 startedAt : { type: Date },
 endedAt : { type: Date },
});

 26

Game	schema	
This	schema	will	store	all	the	individual	games.		A	game	is	a	round	within	a	room.		Each	game	document	will	store	the	
keyword	and	the	guesses	that	have	been	entered	by	the	clients	in	the	corresponding	room.	
Room	 Keyword	 Relation	 Guesses-	Array		

Player	 Guess	
Room	Reference	 String	 String	 User	Reference	 String	

	
Below	is	a	basic	structure	of	my	keywords	model,	in	NodeJS	using	mongoose	
	
const gameSchema = mongoose.Schema({
 room : { type: mongoose.Schema.Types.ObjectId, ref: 'Room' },
 keyword : { type: String },
 relation : { type: String },
 guesses : [{
 player: { type: mongoose.Schema.Types.ObjectId, ref: 'User' },
 guess: { type: String },
 }]
});

	
Matched	words	schema	
This	schema	will	store	the	keywords	with	their	matched	words,	their	relation	(synonym,	antonym	or	hypernym)	and	the	
number	of	times	they	have	matched.			
Keyword	 Matched	Word	 Relation	 Number	of	matches	
Text,	maxlength=20	 Text,	maxlength=20	 Text,	maxlength=1	 Number,	min=0	

	
const matchedWordsSchema = mongoose.Schema({
 keyword : { type: String, maxlength: 20 },
 matchedWord : { type: String, maxlength: 20 },
 relation : { type: String, maxlength: 1 },
 numberOfMatches : { type: number, min: 0 },
});
	

	
Entity	Relationship	Diagram	
I	have	created	the	entity	relationship	designs	using	Creately	which	is	a	free	software	that	can	be	used	online,	making	it	easy	
to	make	edits	to	the	diagram.		By	creating	the	diagram,	I	have	been	able	to	visualise	the	system	and	make	sure	there	are	no	
areas	that	 I	have	missed	out	on	before	moving	on	to	the	 implementation	of	the	system.	 	The	diagram	should	also	make	
producing	the	actual	system	much	easier	as	when	checking	for	errors	as	I	can	clearly	see	the	structure	of	the	Databases.	

 27

	
Figure 25 Entity Relationship Diagram for Wordify

 28

4 Implementation
I	am	now	on	the	third	stage	of	the	waterfall	model,	the	implementation	of	the	system.		To	ensure	a	successful	system,	I	will	attempt	
to	follow	the	designs	I	have	as	closely	as	possible.	 I	will	now	discuss	the	stages	of	the	implementation	of	my	game,	examining	the	
different	 issues	and	decisions	 I	 faced.	 	 I	will	also	 inform	the	 reader	of	how	 I	overcame	them,	 justifying	my	decisions	with	 reliable	
sources.	
	
One	of	the	first	decisions	I	had	to	make	when	implementing	the	system	was	what	text	editor	to	use.		When	considering	what	text	
editor	to	use	for	the	project	I	assumed	I	would	use	sublime	text	editor	as	it	is	my	usual	go	to	editor.		I	like	its	simplicity	and	its	extensive	
library	of	importable	packages.			However,	for	this	larger	project,	I	decided	to	research	alternatives	and	discovered	Visual	Studio	Code.		
I	hadn’t	used	Visual	Studio	Code	before,	but	from	my	researched	it	seemed	most	suitable	for	my	requirements.		One	benefit	the	text	
editor	offers	is	its	Git	integration	[43]	which	would	save	me	much	time	when	making	changes	to	the	system	as	I	simply	had	to	click	a	
button	and	my	project	would	be	committed	to	GitHub.		I	also	liked	the	in-editor	debugger	[44]	which	made	debugging	much	simpler.	
	
I	utilised	GitHub	in	many	ways	throughout	this	project,	its	main	benefit	was	the	fact	that	you	can	track	the	changes	made	in	files	[45],	
meaning	if	there	was	an	error,	you	can	find	where	you	added	it	and	revert	to	the	original	code.		Another	way	I	benefitted	GitHub	was	
backing	up	any	of	my	work.		This	was	vital	as	if	any	of	the	files	on	my	computer	were	lost	or	corrupted	I	always	knew	I	had	a	backup	
on	my	GitHub	respiratory,	giving	me	peace	of	mind.		Another	notable	benefit	that	GitHub	will	give	me	during	the	project	is	accessibility	
to	my	code,	wherever	I	was	I	could	always	access	it,	this	proved	useful	over	Easter	when	I	am	away	from	home	as	I	can	still	access	my	
project.		
	
When	developing	the	website,	I	used	my	local	server	to	host	the	site.		This	made	making	changes	easy	as	I	only	needed	to	compile	and	
run	it	straight	from	my	local	machine.	 	 I	decided	to	do	this	rather	than	using	a	3rd	party	host	such	as	Heroku	because	it	was	much	
quicker	to	compile	and	host	when	running	and	editing	code.		I	could	see	the	results	much	quicker.		It	was	also	much	easier	as	I	could	
use	debugging	tools	and	view	compilation	messages	and	debugging	outputs.	
	

4.1 Frontend
The	first	stage	of	the	implementation	was	to	produce	the	front	end.		I	found	developing	the	web	pages	in	pug	very	easy	and	hassle	
free	thanks	to	its	simple	syntax.		I	initially	produced	a	container	which	is	the	base	of	all	the	other	pages	which	can	be	seen	below.			
html
 head
 title Wordify
 header
 h1(class='text-center', style="font-family: Luckiest Guy; color:#ffa834; font-size:500%")
Wordify

 include includes/css/core.pug

 body(style="font-family: Luckiest Guy")
 div.container(style='background: #ffd783; max-width:550px; border: 3px solid #000000;
height:500px;' id='container')
 block container

 include includes/js/core.pug
	
Due	to	the	limited	time	I	had	for	the	project,	I	decided	to	keep	the	game	consistent	regardless	of	the	devices	used.		Instead	of	making	
the	website	completely	responsive,	 I	used	percentages	 instead	of	sizes,	to	that	the	game	fitted	each	screen	size	whilst	keeping	 its	
original	proportions.	
	

4.2 Backend
I	will	now	discuss	the	implementation	of	the	backend	of	my	system.		To	help	understand	the	structure	of	the	system	I	have	produced	
descriptions	of	each	file	in	my	project	which	can	be	seen	below.	

 29

GWAP/	:		
	 /app	:	
	 	 /models	:	
	 	 	 /game.js	:	The	game	schema	for	MongoDB	
	 	 	 /index.js	:	This	is	the	entry	file	that	initialises	all	models	
	 	 	 /Keywords.js	:	The	Keywords	schema	for	MongoDB	
	 	 	 /matchedWords.js	:	The	matched	words	schema	for	MongoDB	

	 	 	 /room.js	:		The	room	schema	for	MongoDB	
	 	 	 /user.js	:	The	user	schema	for	MongoDB	

	 	 /public	:	All	the	files	publicly	available	
	 	 	 /js	:		
	 	 	 	 /main.js	:	This	is	the	main	JavaScript	file	used	by	the	front-end	client		
	 	 /routes	:	
	 	 	 /index.js	:	This	file	contains	all	the	routing	for	the	application	and	handles	all	server	requests	
	 	 /sockets	:		
	 	 	 /index.js	:	This	file	handles	all	socket	connections	and	socket	requests	made	by	the	client	
	 	 /views	:	Stores	all	of	the	templates	used	as	the	views	of	the	game	
	 	 	 /includes	:			

/css	:		
	 /core.pug	:	A	core	pug	file	which	initialises	all	css	files	for	the	application	
/js	:		
	 /core.pug	:	A	core	pug	file	which	initialises	all	JavaScript	files	for	the	application		
/blank.pug	:		This	is	the	basic	structure	of	the	website,	every	other	page	is	contained	by	

blank.pug	
	 	 	 	 /countdown.pug	:	The	countdown	page	before	a	game	starts	
	 	 	 	 /endgame.pug	:	The	view	shown	once	a	game	has	ended	
	 	 	 	 /game.pug	:	The	view	shown	during	a	game	
	 	 	 	 /home.pug	:	The	page	shown	when	you	click	back	if	you	click	log	in	or	sign	up	or	view	high	
scores,			It	is	the	same	as	/index.pug	apart	from	it	not	extending	blank.pug	(otherwise	you	have	two	blank.pug	views	inside	one	
another	.).			
	 	 	 	 /index.pug	:	The	page	shown	when	you	visit	the	game,	not	logged	in.	
	 	 	 	 /leaderboard.pug	:	The	page	that	displays	the	high	scores	
	 	 	 	 /loggedIn.pug	:	The	homepage,	shown	when	the	user	logs	in	
	 	 	 	 /login.pug	:	The	log	in	page	
	 	 	 	 /rules.pug	:	This	page	shows	the	rules	for	playing	the	game	
	 	 	 	 /searching.pug	:	This	is	the	page	that	is	shown	to	the	players	when	they	are	searching	for	
an	available	room	
	 	 	 	 /signUp.pug	:	The	sign	up	page	

	 /config	:		
	 	 /database.js	:		This	file	contains	the	MongoDB	connection	configuration	information	

	 	 /passport.js	:	This	file	contains	the	PassportJS	functions	which	handle	authentication	and	registration	
	 /index.js	:	This	is	the	main	entry	point	for	the	application	which	starts	the	server,	it	also	initialises	the	database,	socket	
handler,	routing	and	other	requirements	for	the	server	to	run.		

	

4.2.1 Challenges faced & points of interest

For	most	of	the	back-end	implementation	I	followed	my	initial	designs	closely.	However,	there	were	some	adaptations	that	I	made	to	
the	project	for	various	reasons.		I	will	now	discuss	notable	challenges	I	faced	whilst	working	on	the	backend	of	the	system,	along	with	
the	solutions	I	devised	and	the	reasoning’s	behind	them.	

 30

	

Sockets	
Below	are	some	examples	of	how	I	implemented	sockets	into	Wordify	using	the	JavaScript	library	Socket.IO.		I	found	implementing	
socket.io	into	the	project	simple	thanks	to	the	libraries	easy	to	use	functions.		

Client	Side	examples	
function createSocket() {

 socket = io();
 socket.on('tabooWords', function(taboowords){});

 socket.emit('pass',{ game: gameId, room: roomId }

	
Server	Side	Examples	
module.exports = function(io) {
 io.on('connection', function (socket) {
 console.log("Connected");

 if(socket.request.session.passport.user) {
 socket.userId = socket.request.session.passport.user;
 console.log("userid: "+ socket.userId);

 socket.on('findGame', function (data, t) {});
 socket.opponent = clientId;
 client.opponent = socket.id;
 client.emit('joined', t, room.id);
//tells the players we have joined and also sends t, the start time for the game.
 socket.emit('joined', t, room.id);
	
	

Viewing	the	High	Scores	
To	view	high	scores,	 I	utilised	Express	to	create	a	 ‘highscores’	API	route,	when	requested	it	returns	an	array	of	the	top	highscores	
retrieved	from	my	database.		The	client	side	code	then	loops	through	the	high	scores,	adding	a	new	row	to	the	high	scores	table.	

	
Client	side:	
$.ajax({
 url: '/highscores',
 type: 'GET',
 success: function(data){
 top10scores=data.highscores;
 for(var i = 0; i < top10scores.length; i++){
 var table = document.getElementById("highScoreTable");
 var row = table.insertRow(i+1);
 var position = row.insertCell(0);
 var username = row.insertCell(1);
 var tableplayerscore=row.insertCell(2);
 // Add some text to the new cells:
 position.innerHTML = i+1;
 username.innerHTML = top10scores[i].username;
 tableplayerscore.innerHTML=top10scores[i].highscore;
 }
 }
 });
}

Server	side:	
 router.get('/highscores', function(req, res){
 Users.find({}).sort({highscore: -1}).select('username highscore -_id').limit(10).exec(
 function(err, topUsers) {
 return res.json({highscores:topUsers});
 }
);

 });

 31

P	vs	P	
P	vs	P	involves	playing	a	game	of	Wordify	against	another	human	player	online.		I	will	now	discuss	any	functions	that	I	had	not	planned	
during	the	design	section	or	ones	that	I	have	changed	due	to	unforeseeable	reasons.	

	
Game	Selection		
Once	 a	 game	 has	 started,	 a	 word	 must	 be	 chosen	 by	 the	 server	 and	 sent	 out	 to	 the	 players.	 	 This	 is	 what	 the	
getRandomWordFromKeywordsSchema()	function	does.		It	checks	to	see	if	the	mode	is	random	or	not.		If	it	is,	the	server	selects	a	
random	mode	and	then	continues.		The	system	then	selects	a	word	from	the	database	with	the	same	relation	as	the	mode	and	sends	
it	to	the	clients	via	the	socket	connection.		Along	with	this,	the	function	completed	many	other	tasks	that	I	had	initially	not	considered,	
including	updating	the	score,	collecting	the	taboo	words,	and	sending	the	information	to	the	user	about	the	previous	game,	if	there	
was	one,	such	has	their	opponent	passed	or	what	word	they	had	matched	on.			
By	including	taboo	words	in	the	game	gives	an	added	challenge	to	the	player.			It	also	helps	to	flesh	out	the	data	collected	by	the	game	
as	it	forces	players	to	think	of	the	less	obvious	answers	rather	than	the	already	well	documented	answers	in	the	system.		When	a	new	
game	is	started.		The	list	of	taboo	words	is	produced	by	the	server.		It	comprises	of	any	matched	words	to	the	current	keyword	that	
have	been	matched	over	20	times.	(This	number	can	be	changed	as	the	game	scales	up).				
	
function getRandomWordFromKeywordsSchema(mode, roomId, roomEndedAt, score, previousgametype ,guess){
 console.log("Game mode: "+ mode);
//if the mode is random, choose a random mode
 if(mode=="R"){
 var modes = ['S', 'A', 'H'];
 mode=modes[Math.floor(Math.random() * 3)];
 }
 Keywords.count({mode:mode}).exec(function (err, count) {
 // get the number of keywords and get a random number between 0 and the count
 var random = Math.floor(Math.random() * count)
 // query all keywords, fetch the ‘random’th keyword
 Keywords.findOne({mode:mode}).skip(random).exec(
 function (err, keyword) {
 var newgame = new Game({room:roomId, keyword:keyword.keyword, relation:mode});
 newgame.save(function (err) {
 if (err) return console.error(err);
 });

 var gameWord = keyword.keyword.toLowerCase();
 var client = io.sockets.connected[socket.opponent];
 console.log(previousgametype);
 if(previousgametype=="newgame"){
 var firstWord= true;
 }else{
 var firstWord=false;
 }
 socket.emit('newword', newgame.keyword, newgame.relation, newgame.id, roomEndedAt, firstWord);
 client.emit('newword', newgame.keyword, newgame.relation, newgame.id, roomEndedAt, firstWord);
//tells the players that there is a new word, what the word is and its mode.
 console.log("Create Game: " + newgame.keyword);
 socket.emit('scoreUpdate', score);
 client.emit('scoreUpdate', score);
 MatchedWords.find(
 { keyword:keyword.keyword, relation:mode, numberOfMatches:{ $gt: taboowordlimit } }).exec(function(err,
matchedwords) {
 if(matchedwords){
 var taboowords=[];
 if(matchedwords.length>0){
 for(var i = 0; i < matchedwords.length; i++){
 amatchedworddocument=matchedwords[i]
 taboowords.push(amatchedworddocument.matchedWord)
 }
 socket.emit('tabooWords', taboowords);
 client.emit('tabooWords', taboowords);
 }else{ console.log("there are no taboo words!")}
 }else{ console.log("there are no taboo words!")}
 });
 //if players passed on the previous word, tell them
 if(previousgametype=="pass"){
 socket.emit('youPassed');
 client.emit('opponentPassed');
//tells the players if there has been a match on the previous word, and the word the match was on
 }else if(previousgametype=="guess"){
 socket.emit('match', guess);
 client.emit('match', guess);
 }
 }
);
 });
}
	
	
	

 32

Quitting	a	game	
It	was	important	to	give	the	players	a	means	of	quitting	their	game	whilst	in	play.		This	is	because	if	they	were	paying	against	another	
person	online	who	wasn’t	playing	properly,	they	won’t	want	to	waste	their	time	playing	a	pointless	game.			When	the	user	quits	the	
game,	they	leave	the	game	and	their	opponent	is	notified	that	their	opponent	has	left	the	game.		They	are	then	also	subsequently	also	
pulled	out	the	game.		To	do	this	I	simply	call	the	endgame	function	early	and	send	both	players	to	the	logged	in	page.			

Passing	on	a	word	
If	players	are	stuck	on	a	word	they	can	pass	on	it	by	clicking	the	pass	button	which	simply	tells	the	server	to	get	a	new	keyword	and	
take	away	50	points	from	the	players.				When	a	player	Clicks	on	the	pass	button,	they	emit	“pass”	via	the	socket	connection	with	the	
server	which	calls	the	following	function:	
socket.on("pass", function(data){
 var gameId=data.game;
 var roomId=data.room;
 Room.findById(roomId, function(err, room) {
 var roommode=room.gamemode;
 var currentScore=room.score;
 var newScore=currentScore-50;
 room.score=newScore
 var opponent=room.opponent;
 room.save(function (err) {
 if (err) return console.error(err);
 });
 if(opponent.toString()=="5ac6638f0501800014622195"){
 console.log("the player passed against computer")
 getRandomWordFromKeywordsSchemaVSComputer(roommode, roomId, room.endedAt, newScore,
"pass")
 }else{
 var client = io.sockets.connected[socket.opponent];
 getRandomWordFromKeywordsSchema(roommode, roomId, room.endedAt, newScore, "pass");
 }
 });
});

	
P	vs	C	
Users	also	have	the	choice	to	play	against	their	computer	instead	of	another	player	online.		My	allowing	players	to	play	against	a	bot,	
even	if	there	is	no	one	searching	for	a	game	at	a	given	time,	a	player	can	still	play	a	game.		This	is	one	of	the	steps	I	have	taken	to	
ensure	that	the	game	is	as	accessible	as	possible.		I	have	created	a	basic	model	which	in	the	future	can	be	tweaked	to	make	it	play	
more	realistic.		The	computer	should	also	become	more	realistic	as	more	data	is	gathered	by	players.	
During	the	planning	phase	of	the	project.		I	hadn’t	put	much	thought	into	how	I	would	construct	the	bot	player.		The	solution	I	realised	
was	to	have	a	‘bot’	account,	the	same	as	if	you	were	to	create	a	normal	user	account.		By	doing	this	it	made	implementing	the	P	vs	C	
much	quicker	as	much	of	the	P	vs	P	functions	only	had	to	be	slightly	adapted	to	accommodate	for	the	new	game	mode.		

	
Starting	a	game	
Starting	a	P	VS	C	game	is	a	much	simpler	version	of	creating	a	P	VS	P	game.	 	 It	creates	a	game	with	the	player	and	the	computer	
account,	and	sets	the	start	time	and	end	time	for	the	game.		Once	room	is	created,	the	client	is	sent	the	room	id	and	the	time	that	the	
game	starts.		The	server	waits	7.7	seconds	until	it	calls	the	‘getRandomWordFromKeywordsSchemaVSComputer()’	function	which	gets	
the	first	keyword	of	the	game.		
socket.on('computerGame', function (data, t) {
 gameMode=data.mode;
 var t = new Date();
 var startTime=new Date();
 var endTime=new Date();
 var compID=mongoose.Types.ObjectId("5ac6638f0501800014622195");
 var endTime=endTime.setSeconds(startTime.getSeconds()+69);
 t.setSeconds(t.getSeconds() + 7);
 var noDate = new Date(0);
 var newroom = new Room({ gamemode: data.mode, opponent : compID, host : socket.userId, createdAt:
startTime, startedAt: t, endedAt: endTime, score: 0 });
 newroom.save(function (err) {
 if (err) return console.error(err);
 });
 socket.emit('joined', t, newroom.id);
 setTimeout(function(){getRandomWordFromKeywordsSchemaVSComputer(data.mode, newroom.id,
newroom.endedAt, newroom.score, "newgame")},7700);
});
	

 33

	
Computer	guesses	
Every	2.5	seconds	there	is	a	60%	chance	that	the	computer	will	make	a	guess.		I	initially	set	the	frequency	to	4	seconds,	however	the	
games	were	very	slow.		By	adjusting	the	intervals	to	2.5	the	guesses	were	being	made	at	a	more	human	like	rate.		A	guess	is	called	by	
utilising	the	‘setinterval’	function	with	an	interval	of	2500	milliseconds	between	each	recall.		As	more	people	play	the	game,	I	plan	to	
adjust	the	figures	to	try	get	the	best	computer	player	which	plays	as	similar	to	a	normal	human	player	as	possible.	
Guesses	made	by	the	computer	are	chosen	by	searching	for	the	matched	words	in	the	matched	words	database	and	selecting	one	at	
a	random	that	has	the	same	keyword	and	relation	as	the	current	word.		If	there	are	no	words	that	have	been	matched	with	the	given	
keyword,	the	computer	will	pass.		Every	time	a	guess	is	made,	the	same	‘checkGuess’	function	is	called	as	if	it	was	a	normal	human	
player	to	verify	if	there	is	a	match	and	if	the	match	was	valid.	

	
	Software	versions	
Below	is	a	table	of	all	the	packages	that	are	used	in	my	system,	along	with	the	versions,	and	their	purpose	for	being	implemented	
into	the	system.			
Package	type	 Version	 Where	it	was	used	
bcrypt-nodejs	
	

0.0.3	 Used	for	encrypting	users’	passwords	before	storing	them	in	the	database.	

body-parser	
	

^1.18.2	 Parses	all	the	requests	made	to	the	server	used	with	express.	

connect	 ^3.6.6	
	

A	HTTP	framework	for	NodeJS	to	handle	requests,	sessions	and	cookies.			

connect-flash	
	

^0.1.1	 Used	with	passport	to	send	messages	to	the	client	such	as	log	in	failed.	

connect-mongo	
	

^2.0.1	 Used	to	make	the	connection	to	the	MongoDB	server.	

cookie	
	

^0.3.1	 Used	by	passport	to	check	if	a	user	is	already	logged	in	by	checking	their	cookies.	

express	
	

^4.16.2	 A	web	application	framework	for	NodeJS	used	for	routing.		

express-session	
	

^1.15.6	 Used	to	create	and	handle	web	sessions	when	using	Express.	

express-ws	
	

^3.0.0	 A	web	socket	endpoint	for	Express	applications	used	for	routing	of	sockets.	

http	
	

0.0.0	 Used	to	create	a	HTTP	server	for	the	NodeJS	application.	

mongoose	
	

^5.0.3	 Used	to	bridge	the	MongoDB	database	and	NodeJS.	

passport	 ^0.4.0	 An	authentication	library	for	NodeJS.		

passport-local	
	

^1.0.0	 Allows	local	authentication	and	registration	within	the	application.	

pug	
	

^2.0.0-rc.4	 A	template	engine	for	NodeJS	used	to	create	web	templates	for	the	front-end.	

session.io	
	

^1.0.0	 Used	for	socket	authentication	and	session	information	between	socket	
connections.	

socket.io		
	

^2.1.0	 A	socket	handling	module	for	NodeJS	used	for	socket	connections	and	messaging.	

wordnetjs	
	

^0.3.0	 Used	for	searching	WordNet	database	when	verifying	if	a	match	is	correct.	

Figure 26 Table displaying the package versions used in the system

4.2.2 Database

 34

I	used	mongo	as	my	database	program	which	gives	me	more	freedom	with	changes	and	functions	as	its	schema	free.		This	allowed	me	
to	make	changes	to	the	structure	of	the	databases	without	having	to	completely	restart	the	databases.		This	was	crucial	this	project	as	
I	was	constantly	making	changes	thought	the	project	due	to	new	issues	that	I	had	not	thought	about	during	the	design	stage.			
When	 working	 on	 the	 backed,	 there	 were	 some	 aspects	 of	 the	 database	 that	 I	 hadn’t	 considered.	 	 One	 aspect	 was	 with	 the	
roomSchema.		I	decided	that	it	was	easier	to	have	a	host	and	an	opponent,	instead	of	a	list	of	the	users	in	the	room.		The	host	is	the	
userID	of	the	player	that	originally	created	the	room	and	the	opponent	is	the	userID	of	the	player	that	joined	the	room.		By	doing	this	
it	was	easier	to	check	if	there	was	an	issue	during	the	matchmaking	process	as	I	clearly	know	which	user	was	the	original	member	of	
the	room	and	which	user	was	the	joining	member.		I	also	had	realised	that	in	the	database	design	I	had	not	recorded	the	rooms	score	
which	was	essential	to	keep	saved	during	the	game	therefore,	I	added	a	score	element	to	the	schema.			
const roomSchema = mongoose.Schema({
 //this is the room schema like the database
 host : { type: mongoose.Schema.Types.ObjectId, ref: 'User' },
 opponent : { type: mongoose.Schema.Types.ObjectId, ref: 'User' },
 gamemode : { type: String },
 createdAt : { type: Date },
 startedAt : { type: Date },
 endedAt : { type: Date },
 score : { type: Number},
});
	
I	also	created	another	database	which	I	hadn’t	originally	planned	to	make.		This	database	stored	all	the	possible	keywords	that	can	be	
used	in	the	game,	along	with	the	game	modes	that	they	were	suitable	for.	
const keywordsSchema = mongoose.Schema({
 //this is the keywords schema like the database
 keyword : { type: String, maxlength: 20 },
 mode : {type:String}
});
	
According	to	the	Data	Protection	Act	1998,	data	must	be	‘kept	safe	and	secure’	[46].		If	someone	could	access	the	data,	Wordifys	
reputation	could	be	severely	damaged.		The	school	has	its	own	mongo	servers	which	are	members	of	ISF.		This	is	important	as	the	
database	will	be	storing	some	sensitive	information	such	as	users	passwords	(although	encrypted	using	bcrypt)	and	their	email	
addresses.		Not	only	is	it	important	to	keep	the	users	data	safe	but	It	is	also	important	to	keep	the	word	data	collected	secure	as	this	
is	the	most	valuable	part	of	the	game.			
	

4.3 Utilising the WordNet database
During	the	planning	process	of	the	project,	I	intended	to	use	the	package	‘WordNetMagic’	to	search	the	WordNet	database.	I	initially	
implemented	 ‘WordNetMagic’	 which	 is	 a	 node.js	 module	 for	 working	 with	 Princeton's	WordNet	 lexical	 database	 for	 the	 English	
language.			However,	the	package	was	far	too	slow	when	running	it	in	the	game,	meaning	it	took	far	too	long	to	see	if	a	matched	word	
pair	was	actually	correct.		I	then	researched	alternative	WordNet	APIs	to	find	a	more	suitable	library	for	my	project.	Not	only	did	I	
struggle	with	finding	a	system	which	is	fast	enough	but	I	also	struggled	with	finding	a	system	that	can	retrieve	the	antonyms	of	words.			
The	package	I	found	was	called	‘wordnet’	[47].		‘wordnet’	was	much	faster	at	gathering	data	for	words	during	the	game,	however	it	
did	not	have	the	capabilities	to	retrieve	antonyms	from	the	database.	I	finally	found	a	package	called	‘wordnetjs’	which	is	a	build	of	
WordNet	in	JSON	[48].		It	was	fast	and	effective	at	finding	synonyms	and	hypernyms.		The	package	can	also	quickly	find	antonyms,	but	
it	rarely	has	more	than	3	or	4	antonyms	for	a	word.		In	the	future,	I	may	decide	to	change	the	package	I	have	implemented	to	one	
which	is	more	effective	at	retrieving	suitable	antonyms.	
Finding	the	synonyms,	antonyms	and	hypernyms	for	each	word	using	‘wordnetjs’	was	very	simple	thanks	to	the	functions	the	library	
offers.			
When	searching	for	synonyms,	you	can	find	both	close	words	which	are	closely	related	and	far	words	which	are	less	closely	related	to	
the	given	word.		

Finding	Synonyms	
var synonyms = wn.synonyms(gameWord);
 for(var i=0; i<synonyms.length; i++){
 var closeSynonyms = synonyms[i].close;
 var farSynonyms = synonyms[i].far;

 for(var j=0; j<closeSynonyms.length; j++){
 allSynonyms.add(closeSynonyms[j]);
 }
 for(var j=0; j<farSynonyms.length; j++){
 allSynonyms.add(farSynonyms[j]);
 }
 }
	

 35

Finding	Antonyms	
When	searching	for	antonyms	for	a	word,	the	function	first	searches	for	the	synonyms	and	then	proceeds	to	find	antonyms	for	both	
the	 gameWord	 and	 its	 close	 synonyms.	 	 By	 using	 this	method,	more	 antonyms	 can	be	 found,	making	 the	WordNet	 search	more	
effective.	
var antonyms = wn.antonyms(gameWord);
 for(var i=0; i<antonyms.length; i++){
 var words = antonyms[i].words;

 for(var j=0; j<allSynonyms.length; j++){
 var closeSynonym = allSynonyms[j];
 var closeAntonyms = wn.antonyms(closeSynonym.toLowerCase());
 for(var k=0; k<closeAntonyms.length; k++){
 var closeWords = closeAntonyms[k].words;

 for(var l=0; l<closeWords.length; l++){
 allAntonyms.add(closeWords[l]);
 }
 }
 }
 for(var j=0; j<words.length; j++){
 allAntonyms.add(words[j]);
	

Finding	Hypernyms	
Hypernyms	are	found	by	simply	searching	the	word	and	looking	up	the	categories	it	belongs	to.	If	the	category	is	of	type	“noun”	it	
also	finds	all	words	relating	to	it	and	adds	them	to	a	list.	By	using	this	method	hypernyms	can	be	found	for	different	words.		
var hypernyms=wn.lookup(gameWord);
 for(var i=0; i<hypernyms.length; i++){
 var category = hypernyms[i].syntactic_category;
 if(category == "Noun"){
 var relations = hypernyms[i].relationships.type_of;
 for(var j=0; j<relations.length; j++){
 var relationId = relations[j];
 var relationWord = wn.lookup(relationId);
 for(var k=0; k<relationWord.length; k++){
 var hypernymWords = relationWord[k].words;
 for(var l=0; l<hypernymWords.length; l++){
 allHypernyms.add(hypernymWords[l]);
 }
 }
 }
 }
 }

4.4 Hosting
I	decided	to	use	Heroku	to	host	my	game	as	it	was	a	free	hosting	service	which	will	make	my	game	available	to	the	public.		This	will	
make	testing	much	easier	than	if	I	used	the	school’s	server	to	host	as	each	tester	would	need	Cardiff	University	credentials	to	access	
the	website.		One	benefit	of	Heroku	is	its	servers’	reliability,	in	the	last	60	days	(as	of	15th	April	2018)	its	uptime	is	99.999408%	[49].		In	
order	to	use	Heroku	I	needed	to	create	a	 'package.json’	file	which	 included	all	of	the	npm	packages	that	 I	used	for	my	website.	 	 I	
created	this	by	typing	into	the	terminal	where	my	index	file	was	‘npm	install’.		After	pushing	the	final	version	of	my	game	to	my	GitHub	
repository	I	linked	the	repository	to	my	Heroku	account.		Another	benefit	of	Heroku	is	that	as	it	is	linked	to	my	GitHub,	any	changes	
that	I	push	through	to	the	master	will	automatically	update	to	the	website.		I	created	a	file	called	‘procfile’	which	is	used	by	Heroku	to	
know	what	commands	should	be	first	called	when	starting	the	application	[50].		Below	is	the	contents	of	the	file	
	
web: node index.js
	
I	have	planned	to	use	the	school’s	version	of	MongoDB	for	my	database,	however	 it	can	only	be	accessed	on	campus.	 	Therefore,	
during	the	construction	of	my	system,	I	utilised	mLab	which	is	a	free	to	use	cloud-hosted	MongoDB	service.		Another	benefit	of	mLab	
is	that	Heroku	offer	it	as	an	add	on	[51]	meaning	the	databases	can	be	easily	viewed	when	logged	into	Heroku	via	an	easy	access	link.	
To	connect	to	the	database,	I	simply	used	the	following	command	in	my	server	side	index	file:	
	
mongoose.connect('mongodb://admin:wowow1234@ds119449.mlab.com:19449/heroku_xfw6k262');
	

 36

5 Results and Evaluation
I	am	now	on	the	final	stage	of	the	waterfall	methodology	during	this	project.		I	will	be	examining	the	results	of	my	project	
and	evaluating	its	success.		Once	I	finished	the	initial	implementation	of	my	system,	I	showed	it	to	my	supervisor	and	she	
suggested	a	few	improvements	which	I	acted	upon.		The	first	improvement	I	was	given	was	to	make	it	clearer	to	players	
when	they	match	on	a	word	and	what	word	they’ve	match	on.			I	added	a	new	element	to	the	game	schema	which	was	the	
‘correctMatch’	which	records	what	word	the	players	matched	on.		If	the	player	passed,	it	is	saved	as	false.			Then,	at	the	end	
of	the	game	the	players	are	shown	a	scrollable	table	featuring	all	the	words	they	had	in	the	game,	along	with	what	they	
matched	on.			Below	is	the	newly	adapted	game	schema	along	with	the	matched	words	table.	
	
const mongoose = require('mongoose');//requires the module mongoose

// game model
const gameSchema = mongoose.Schema({
 room : { type: mongoose.Schema.Types.ObjectId, ref: 'Room' },
 keyword : { type: String },
 relation : { type: String },
 correctMatch : { type: String, default: false},
 guesses : [{
 player: { type: mongoose.Schema.Types.ObjectId, ref: 'User' },
 guess: { type: String },
 }]
});
	
	

	
Figure 27 Scrollable matched words table show to players at the end of their game

	
I	 also	made	 the	 information	 text	 that	appears	when	players	match	clearer	by	over	doubling	 the	 size	of	 the	 text	 and	by	
increasing	the	time	it	is	shown	by	200	milliseconds;	the	improvements	can	be	seen	below.	
	

	
Figure 28 Wordify information Text before improvement Figure 29 Wordify information text after improvement

 37

5.1 Testing
I	will	now	conduct	various	tests	on	my	completed	game	which	will	help	me	deem	whether	my	project	has	been	a	success.		
The	testing	will	also	help	me	to	discover	any	last-minute	bugs	that	could	be	corrected	before	presenting	my	GWAP	to	the	
client.		I	would	also	like	to	see	if	there	are	any	areas	that	the	test	participants	think	could	be	improved	in	future	versions	of	
the	game.	 	There	are	two	types	of	testing	that	 I	will	be	conducting;	Usability	and	functionality	testing.	 I	have	decided	to	
conduct	these	two	testing	methods	because	together	they	cover	all	of	the	areas	of	my	system	that	need	to	be	evaluated.	
Functionality	testing	involves	verifying	that	the	game	complies	with	the	functional	requirements	that	I	developed	during	the	
design	process	of	the	report.		Unlike	functionality	testing,	usability	testing	takes	the	design	principles	into	concern,	it	will	
examine	the	games	appearance,	accessibility	and	overall	flow.		My	usability	testing	will	focus	on	how	well	the	customer	can	
use	the	product	to	complete	the	given	tasks.		I	will	be	conducting	functionality	testing	before	usability	as	testing	on	a	website	
that	has	 functionality	 issues	will	 only	uncover	 functional	 problems.	 	 This	may	also	 cause	participants	 to	be	 frustrated	 if	
struggling	with	bugs	when	trying	to	complete	a	task	which	may	undermine	my	usability	results.	
	

5.1.1 Functionality Testing

I	will	 now	begin	my	 functionality	 testing	 to	 deem	whether	my	 game	delivered	 upon	my	 functional	 requirements	 that	 I	
produced	in	the	planning	stage	of	the	project.		I	will	be	conducting	multiple	tests	to	prove	that	I	have	complied	with	all	my	
functional	requirements.		One	type	of	functionality	testing	that	I	will	be	conducting	is	compatibility	testing.	Compatibility	
testing	involves	testing	the	system	on	different	types	of	hardware,	operating	systems	and	applications.		As	my	requirements	
specify	that	‘The	game	must	be	playable	on	at	least	the	top	4	most	used	browsers	according	to	NetMarketShare	[12]’	and	
‘the	game	must	be	playable	on	mobile	phone	and	tablet	devices’,	I	considered	this	test	an	important	one	to	conduct.		I	will	
also	be	completing	my	test	cases	that	I	produced	at	the	start	of	the	project	to	see	if	the	game	features	the	functions	that	I	
had	originally	planned	it	to	have.		My	test	cases	should	help	me	to	the	deduce	results	of	requirements	1,	2	5	and	8.	
	
	

Compatibility	testing	
As	I	want	my	game	to	be	playable	by	as	many	people	as	possible	it	 is	 important	to	ensure	that	the	website	functions	on	
various	devices.		In	requirement	number	6,	I	stated	that	my	game	must	function	on	at	least	the	top	4	browsers	on	market	
share	(as	of	4th	April	1017):	Chrome,	Internet	Explorer,	Firefox,	Edge.		I	also	stated	in	requirement	number	7	that	the	game	
must	be	playable	on	mobile	and	tablet	devices.			
By	having	a	more	accessible	game,	more	people	can	play	which	means	more	data	can	be	gathered.		Below	are	the	results	of	
my	computer	browsers	compatibility	testing.		Not	only	should	the	games	all	function	on	each	browser	but	they	should	also	
be	consistent	with	appearance	where	possible.		This	is	important	as	you	want	the	users	to	be	as	familiar	with	the	game	as	
possible	when	accessing	it	on	different	platforms.			
Browser:	Device	 Testing	results	 Comments	
Chrome:	Mac	 Pass	 Game	worked	as	expected,	no	issues.	
Internet	Explorer:	Windows	PC	 Pass	 Game	worked	as	expected,	no	issues.	
Firefox:	Windows	PC	 Pass	 Game	worked	as	expected,	no	issues.	
Edge:	Windows	PC	 Pass	 Game	worked	as	expected,	no	issues.	
Safari:	Mac	 Pass	 Game	worked	as	expected,	no	issues.		However,	the	dropdown	box	

looked	different	compared	to	the	other	browsers.		There	are	ways	
to	overcome	this	by	overriding	the	style.	

Safari:	Mobile	 Pass	 The	game	worked	as	expected,	however	the	game	was	a	little	more	
awkward	to	play,	it	wasn’t	responsive	and	it	was	awkward	as	they	
keyboard	took	up	much	of	the	limited	screen	space	on	the	mobile	
device.	

Figure 30 Compatibility testing results

As	all	the	compatibility	testing	passed,	I	can	assume	that	I	have	passed	requirements	number	6	and	7,	however	there	are	still	
improvements	that	could	be	made,	especially	with	regards	to	mobile	and	tablet	devices	compatibility.		I	will	discuss	these	
improvements	in	chapter	6	of	the	report.	
	

Test	Cases	
During	the	planning	phase	of	this	project	I	produced	a	series	of	test	cases	which	described	how	the	system	should	function.	
I	will	now	check	each	test	case	and	decide	whether	they	have	passed.			
	

 38

Results	
Test	Case	ID:	1	 Test	Purpose:	Sign	Up	

Environment:	OS	X	Google	Chrome	
Precondition:	
Test	Case	Steps:	3	
Step	No	 Procedure	 Response	 Pass/Fail	
1	 Player	goes	to	the	website	 The	first	page	is	loaded	 Pass	
2	 Player	clicks	sign	up	 The	sign	up	page	is	loaded	 Pass	
3.i	 Player	enters	an	email	address	that	is	already	

being	used		
Comment	next	to	the	email	address	comes	up	
informing	 the	 user	 that	 the	 email	 address	 is	
already	in	use.	

Pass	

3.ii	 Player	enters	username	 that	 is	already	being	
used.	

Comment	 next	 to	 the	 username	 informs	 the	
user	that	the	username	is	already	taken.	

Pass	

3.iii	 Passwords	enters	are	not	the	same	 Comment	 next	 to	 the	 password	 appears	
informing	 the	 user	 that	 the	 two	 passwords	
entered	do	not	match.	

Pass	

3.iiii	 All	fields	entered	by	the	user	are	valid.	 Sign	Up	is	complete	and	the	user	is	logged	in	to	
the	game	with	their	new	account	

Pass	

Comments:	

Test	Case	ID:	2	 Test	Purpose:	Log	In	

Environment:	OS	X	Google	Chrome	
Precondition:	Player	has	already	signed	up	
Test	Case	Steps:	3		
Step	No	 Procedure	 Response	 Pass/Fail	
1	 Player	goes	to	the	website.	 The	first	page	is	loaded	 Pass	
2	 Player	clicks	Log	In.	 The	Log	in	page	is	loaded	 Pass	
3.i	 Player	enters	incorrect	username	and	correct	

password	and	clicks	sign	in.	
Message	 box	 appears	 informing	 the	 user	 that	
the	username	is	not	recognised.	

Pass	

3.ii	 Player	 enters	 incorrect	 username	 and	
incorrect	password	and	clicks	sign	in.	

Message	 box	 appears	 informing	 the	 user	 that	
the	username	is	not	recognised.	

Pass	

3.iii	 Player	 enters	 correct	 email	 address	 and	
incorrect	password	and	clicks	sign	in.	

Message	 box	 appears	 informing	 the	 user	 that	
the	password	is	incorrect.	

Pass	

3.iiii	 Player	 enters	 correct	 email	 address	 and	
correct	password	and	clicks	sign	in.	

Player	is	taken	to	the	logged	in	page.	 Pass	

Comments:	

Test	Case	ID:	3	 Test	Purpose:	Play	Game	against	person	

Environment:	OS	X	Google	Chrome	
Precondition:	Player	is	logged	in	
Test	Case	Steps:	
Step	No	 Procedure	 Response	 Pass/Fail	
1	 Select	Classic	on	the	drop	down	mode	list.	 Classic	is	selected	 Pass	
2	 Click	P	v	P	 The	system	will	 take	 the	player	 to	 the	 loading	

room	and	will	wait	until	a	player	is	found	to	play	
with.	 	 The	 system	 will	 then	 count	 down	 3	
seconds	until	the	game	starts.	

Pass	

3	 Enter	 a	 word	 in	 the	 text	 box	 that	 is	
corresponding	 to	 the	 word	 given	 and	 press	
enter.	

If	 the	 two	 players	 match	 a	 correct	 word,	 the	
game	will	move	on	to	the	next	word,	otherwise	
the	 player	 will	 be	 prompted	 to	 continue	
entering	words	

Pass	

4	 Player	 continues	 to	 play	 the	 game	 for	 90	
seconds	

The	game	lasts	60	seconds	 Fail	

 39

5	 After	90	seconds	the	game	will	end	 The	system	will	inform	the	player	of	their	score	
and	the	player	will	be	asked	if	they	want	to	play	
again.	

Pass	

Comments:	The	game	worked	as	described,	the	only	difference	was	that	I	had	changed	the	length	of	the	game	form	90	
seconds	to	60	seconds.	

Test	Case	ID:	4	 Test	Purpose:	View	High	Scores	

Environment:	OS	X	Google	Chrome	
Precondition:	Player	is	not	logged	in	

Test	Case	Steps:	
Step	No	 Procedure	 Response	 Pass/Fail	
1	 Player	goes	to	the	website.	 The	first	page	is	loaded	 Pass	
2	 Player	selects	view	leader	board	 The	leader	board	page	is	loaded,	the	player	can	

scroll	down	through	the	high	scores.	
Pass	

Comments:	
	
In	my	opinion,	the	test	case	results	prove	that	the	system	delivers	upon	what	I	had	planned.		Although	it	does	mostly	
function	as	I	had	planned,	there	ae	some	minor	changes	that	have	caused	some	fails	within	the	tests.		For	example,	in	test	
case	3	Steps	number	4	and	5	failed	because	the	game	lasts	60	seconds	instead	of	the	original	90	that	I	had	planned.		This	
was	changed	because	upon	reflection	I	thought	that	90	seconds	was	too	long.		Therefore,	although	it	was	marked	down	as	
a	failure,	it	should	be	seen	as	an	improvement	to	the	system.			

	
Functional	Requirements	testing	
I	will	now	check	each	of	my	functional	requirements	I	stated	during	the	implementation	stage	of	the	project	to	see	if	I	have	
fulfilled	them.				I	will	use	a	combination	of	my	functionality	testing	results	to	cipher	weather	each	requirement	has	passed.			
Requirement	No	 Pass/Fail	 Comments	
1	 Pass	 When	visiting	the	website,	players	can	click	sign	up	and	can	create	an	account.		

Test	case	No	1	
2	 Pass	 In	P	Vs	P	mode	players	play	against	other	players	online.		

Test	Case	No	3	
3	 Pass	 In	P	Vs	c	mode	players	play	against	a	bot	online.		
4	 Pass	 Players	can	pass	on	a	word	if	they	are	stuck	during	a	game	
5	 Pass	 Each	game	lasts	60	seconds,		Test	Case	No	3	
6	 Pass	 You	can	play	on	any	of	the	top	browsers:	Compatibility	Testing	
7	 Pass	 You	can	play	a	game	on	mobile	and	tablet	devices:	Compatibility	Testing	

8	 Pass	 Players	can	view	the	leader	board	on	the	homepage,	after	a	game	and	before	they	
sign	in.	Test	Case	No	4	

9	 Fail	 Players	 cannot	 change	 the	 computers	 difficulty,	 but	 this	 could	 be	 easily	
incorporated	in	the	future	

10	 Fail	 Players	cannot	play	as	guest,	but	this	could	be	easily	incorporated	in	the	future	
Figure 31 Functional requirements testing results

As	you	can	see,	my	system	passed	8	out	of	the	10	functional	requirements.		I	am	pleased	with	this	result	as	the	final	2	
requirements	were	‘could’	requirements	which	I	could	not	comply	with	due	to	time	constraints.			

5.1.2 Ethical Approval

I	applied	for	ethical	approval	as	my	usability	testing	that	I	will	be	conducting	involves	human	participation	and	collecting	
data.		The	approval	certificate	can	be	found	under	Appendix	A.	I	produced	a	briefing	information	sheet	which	informed	the	
participant	of	what	they	will	be	asked	to	do	during	the	testing,	this	can	be	found	under	Appendix	B.		This	helped	me	to	plan	
my	tests	and	overall	sped	up	the	process	as	it	forced	me	to	be	organised.	

 40

5.1.3 Usability Testing

I	will	be	conducting	usability	testing	to	evaluate	the	user’s	opinion	of	my	product.		By	conducting	a	variation	of	tests,	I	hope	
to	 get	 a	more	 rounded	 idea	of	 how	 successful	my	 system	 is.	 	When	deciding	upon	what	 testing	methods	 to	 conduct,	 I	
considered	the	benefits	and	drawbacks	of	each.		One	of	the	testing	methods	that	I	have	researched	is	A/B	testing	[52].		A/B	
testing	involves	showing	test	participants	two	versions	of	a	product	and	seeing	which	version	they	prefer.		This	method	could	
be	done	to	see	what	designs	of	the	game	were	best	preferred.		Although	I	did	like	the	idea	behind	this	method,	I	decided	
against	it	as	I	have	a	very	limited	amount	of	time	and	so	can’t	produce	many	different	design	versions	of	my	game.			
	
One	testing	method	I	will	be	using	to	collect	usability	data	is	by	using	a	questionnaire.	I	have	chosen	this	method	as	it	will	
give	me	the	freedom	to	find	out	whatever	I	want	to	know	from	testing	participants	as	I	can	design	the	questionnaire.		One	
of	the	key	benefits	of	using	a	questionnaire	to	gather	the	results	is	that	the	actual	users	or	customers	of	the	product	will	be	
giving	the	feedback	compared	to	traditional	testing	methods	that	may	be	managed	by	the	developer	of	the	system.		This	
therefore	removes	any	bias	by	collecting	feedback	direct	from	actual	users.		I	have	decided	to	split	my	questionnaire	up	into	
multiple	sections	to	help	it	flow	better	for	the	participant.		I	have	decided	to	conduct	System	Usability	Scale	(SUS)	questions	
in	one	of	the	sections	of	my	questionnaire.		SUS	is	a	reliable	tool	for	measuring	the	usability	of	a	product	[53].		One	of	the	
main	 benefits	 of	 using	 this	 tool	 is	 how	widely	 used	 it	 is,	 allowing	me	 to	 compare	my	 results	 against	 others	 who	 have	
completed	it.		I	adapted	the	questions	to	suit	my	game	and	ensure	that	it	was	clear	as	to	what	the	questions	were	asking.	
	
Another	method	of	usability	testing	that	I	will	be	conducting	is	data	analysis.		This	testing	method	will	be	used	to	ensure	that	
the	data	is	actually	being	collected	and	to	decide	if	the	data	that	the	game	produces	is	sufficient	for	the	client.	 	 I	will	be	
conducting	this	method	of	testing	after	the	questionnaire	so	that	there	is	some	data	in	the	system	to	examine.	
	

Questionnaire	
I	will	now	discuss	the	steps	taken	to	conduct	the	questionnaire	testing.			
	

Preparations		
During	the	usability	testing,	there	will	be	30	Keywords	in	the	database	that	will	be	randomly	selected.		In	the	future,	there	
would	be	many	more	words	but	for	the	purposes	of	this	test	I	deemed	30	as	a	sufficient	number	as	it	is	not	too	few	for	there	
to	be	continuous	repetition	of	words	in	a	game	but	also	not	too	many	so	that	players	will	never	see	the	same	word	more	
than	once.		
Before	testing,	I	must	acquire	‘base	data’	for	my	game.		I	need	base	data	so	that	some	of	the	most	obvious	words	that	are	
not	on	WordNet	are	considered	correct.		Therefore,	I	found	6	volunteers	who	agreed	to	play	the	game	for	5	minutes	against	
one	another.		I	created	sheets	which	I	handed	out	to	each	participant	informing	them	of	what	I	would	like	them	to	do	(figure	
34).		These	games	gave	Wordify	enough	data	to	consider	some	words	correct	that	previously	weren’t.		For	instance,	when	
using	the	word	knife,	the	hypernym	cutlery	is	not	considered	correct	by	WordNet.		After	data	collecting	it	was	considered	
correct	as	it	had	been	matched	over	10	times.		The	base	data	also	gave	Wordify	some	‘Taboo’	words,	making	the	game	more	
challenging	for	players.		Before	the	participants	began	playing	Wordify,	I	timed	them	to	see	how	long	it	took	them	to	create	
an	account	on	the	game.		This	was	important	to	find	this	out	as	one	of	my	requirements	was	that	‘it	should	take	no	longer	
than	90	seconds	to	sign	up’.		I	didn’t	want	to	make	it	too	obvious	to	the	participants	that	I	was	testing	them	so	I	made	sure	I	
was	discrete	as	I	didn’t	want	to	artificially	effect	their	timings.	

 41

	
	

	
	

Results	
The	first	results	(below)	show	how	long	it	took	each	participant	to	sign	up.		It	was	important	that	it	didn’t	take	too	long	for	
users	to	sign	up	as	they	may	not	bother	if	it	is	a	big	inconvenience.		On	average	it	took	players	33	seconds	to	sign	up.		This	
therefore	means	that	we	have	passed	Non-functional	requirement	number	5	which	states	that	it	must	take	users	not	longer	
than	90	seconds	to	sign	up.			

Participant	 Sign	Up	time	
(Seconds)	

1	 28	
2	 40	
3	 34	
4	 30	
5	 33	
Average	 33	

Figure 32 The time it took participants to sign up on Wordify

	
	
Once	I	had	finished	collecting	base	data	I	produced	a	test	plan	to	ensure	my	usability	testing	was	organised.		It	was	especially	
important	for	my	project	as	I	needed	the	participants	to	be	playing	against	each	other	at	the	same	time.		This	test	plan	was	
submitted	to	the	school’s	ethical	board	to	get	ethical	approval.	
	
When	designing	the	questionnaire,	I	followed	Question	and	Questionnaire	Design	‘Conventional	Wisdom’	which	describes	
methods	that	should	be	adopted	for	a	successful	survey	design	[54].		By	following	the	handbook,	I	hope	to	get	more	accurate	
results	from	my	usability	tests.		
	
The	handbook	points	out	that	‘Questions	on	the	same	topic	should	be	grouped	together’,	therefore	I	broke	up	the	questions	
into	3	sections.		Not	only	does	this	make	it	much	easier	for	myself	when	planning	what	questions	to	ask,	but	it	also	makes	it	
much	easier	for	the	participants	when	filling	in	the	questionnaire	as	it	makes	it	as	clear	as	possible	what	I	am	asking	them	
about.			Section	1	will	discuss	the	game	play	itself,	this	will	help	me	to	determine	if	I	have	met	some	of	the	non-functional	

GWAP	data	collection	
Hello,	thank	you	for	agreeing	to	take	part	in	my	Game	With	a	Purpose	data	collection	
stage	of	my	testing.		For	my	game	to	be	successful	I	need	some	data	to	be	gathered.		
Please	follow	the	following	instructions,	if	you	have	any	issues,	simple	ask	myself,	Bernice	
Thomas	any	questions.	

1. 	Create	an	account:	
a. Please	Create	a	Wordify	account,	use	a	fake	email	address,	username	and	

password	which	I	will	give	to	you	on	a	slip	and	click	‘Sign	Up’.	
2. 	Now	click	P	vs	P	and	wait	until	you	get	matched	with	another	player.		

a. 	If	you	have	any	issues,	let	me	know.	
3. Enter	as	many	guesses	and	possible	for	what	word.	

a. 	if	after	10	seconds	you	get	no	matches,	click	pass	and	you	will	move	on	to	
the	next	word.	

4. Please	play	5	games	
5. Thankyou	the	data	collection	is	over!	

a. 	Any	questions?	Email	me	:	bernicethomas@icloud.com		

Figure 34 Data Collection Sheet

 42

requirements.		Section	2	will	be	SUS	testing	and	finally,	section	3	will	ask	the	participant	of	any	issues	or	improvements	they	
had	for	the	system.		

For	question	number	3	in	section	3	of	the	survey	I	used	filter	questions	which	is	one	of	the	elements	that	are	required	in	the	
‘Conventional	Wisdom’.			I	asked	the	participants	if	they	had	any	issues	with	the	game	before	asking	them	to	describe	the	
issues	they	faced	during	the	game.		This	is	important	as	users	may	get	annoyed	if	they	are	being	asked	questions	that	are	
not	relevant	to	them.		
	
When	creating	my	questionnaire,	although	I	wanted	to	collect	as	much	data	as	possible	I	was	aware	that	people	are	giving	
their	 time	voluntarily.	Therefore,	 I	ensured	 that	every	question	 I	asked	was	as	valuable	as	possible.	 	 I	mostly	used	scale	
questions	where	the	participants	were	asked	how	much	they	agree	or	disagree	with	a	statement	on	a	scale	of	1	to	5.		I	chose	
a	5-point	scale	because	according	 to	 the	Question	and	Questionnaire	Design	 ‘Conventional	Wisdom’	scales	of	5	had	the	
highest	ease	of	use	and	I	wanted	to	make	my	scales	as	easy	to	use	as	possible	[55].		By	using	scale	questions,	the	results	will	
be	much	easier	to	evaluate	for	myself	whilst	also	being	quicker	and	easier	for	participants	to	complete.	

	I	used	Google	forms	to	produce	the	questionnaires	because	it	was	quick	and	easy	compared	to	manually	creating	a	survey	
using	Microsoft	word.		Another	drawback	of	using	a	word	document	as	the	survey	is	that	I	would	have	to	physically	collect	
the	data	whereas	google	presents	the	results	of	the	survey	as	a	spreadsheet	which	makes	analysing	the	results	much	quicker.		
Using	 Google	 forms	 also	 makes	 distributing	 the	 questionnaire	 out	 much	 simpler	 as	 I	 only	 have	 to	 send	 a	 link	 to	 the	
participants.		Another	tool	I	especially	liked	was	its	error	handing	and	answer	validation	which	help	to	reduce	the	number	of	
human	errors	when	filling	in	the	questionnaire.		For	example,	in	the	image	below,	the	answer	validation	ensures	that	the	
participant	can	only	select	one	option.		If	they	do	not	it	will	inform	them	that	they	are	only	required	to	choose	one	option	
from	the	list.				You	can	also	indicate	if	a	question	is	required	to	be	answered	or	not,	this	proved	useful	for	my	filter	questions	
as	sometimes	an	answer	was	required	and	other	times	it	wasn’t.	
	

	
Figure 33 Answer validation example

		
	
I	recruited	5	volunteers	to	take	part	in	my	questionnaire,	all	of	which	had	never	seen	my	Wordify	game	before.		I	chose	to	
use	5	participants	as	It	is	argued	that	5	participants	would	reveal	80%	of	usability	problems,	this	can	be	proved	in	the	graph	

 43

below	from	Jakob	Nielsen	and	Thomas	K.	Landauers	research	in	1993	[56].				Having	5	participants	worked	out	well	
logistically	as	I	could	have	two	P	vs	P	games	and	one	P	vs	C	game	running	at	the	same	time.		

	
Figure 34 Graph showing the relationship between number of testing participants and the number of problems found [57]

You	can	view	my	completed	questionnaire	using	the	following	link:	https://tinyurl.com/WordifyQuestionnaire		
	

Questionnaire	Testing	
During	testing,	players	were	asked	to	play	Wordify	for	5	minutes,	playing	a	mixture	of	P	vs	P	games	and	P	vs	C	games.			The	
participants	used	a	variety	of	browsers	which	helps	to	provide	a	more	accurate	reflection	of	the	real-world	users.		Along	with	
the	participants	not	being	allowed	to	have	seen	the	game	before,	other	eligibility	factors	for	my	testing	were	that	they	had	
to	be	over	the	age	of	16	and	finally	had	to	have	basic	computer	skills.			
During	testing,	I	oversaw	the	operations	and	ensured	that	people	were	not	having	any	difficulties	with	matchmaking	when	
searching	for	opponents.		I	wanted	to	make	sure	that	the	participants	were	aware	that	they	could	ask	any	questions	if	needs	
be	throughout	the	process	so	I	constantly	reminded	them	in	all	the	documentation	they	were	given	throughout	the	process.		
After	completing	the	testing,	the	participants	were	asked	to	fill	in	the	questionnaire	that	I	had	created	using	google	forms	(
https://tinyurl.com/WordifyQuestionnaire).	 	 None	 of	 my	 testing	 participants	 had	 any	 questions	 after	 the	 testing	 was	
completed	which	was	a	positive	indication	for	the	results	to	come.	
	
I	will	now	discuss	the	results	of	each	section	of	my	questionnaire	from	my	usability	survey.	 	 	 	Google	forms	generated	a	
spreadsheet	of	the	results,	saving	me	valuable	time	collecting	the	data.	For	each	question,	I	have	calculated	a	mean	score	
from	all	the	participants	results.		A	score	above	3.5	indicates	that	the	participants	tended	to	agree	with	the	given	statement.		
Any	 scores	 below	 2.5	 indicated	 that	 participants	 tended	 to	 disagree	 with	 the	 statements	 and	 any	 scores	 in-between	 I	
regarded	as	neutral.	
	

Section	1:	The	Game:		
The	game	section	of	the	questionnaire	focusses	on	the	design	and	functionality	of	Wordify.		The	design	of	the	game	was	
important	as	it	helps	to	keep	players	engaged.		This	section	of	my	questionnaire	will	help	me	to	establish	if	the	system	has	
met	some	of	the	requirements	that	I	produced	at	the	start	of	the	project.		Question	4	will	help	me	to	confirm	requirement	
“The	text	of	the	game	should	be	big	enough	to	read”.		
	
I	wanted	to	see	If	they	found	it	exciting	to	play	and	if	they	would	want	to	play	it	again.		It	is	important	for	the	game	to	score	
big	on	them	wanting	to	play	again	as	the	more	games	that	are	played	means	more	data	that	is	collected,	thus	improving	the	
database	of	words.	
	
	

 44

The	table	below	shows	the	results	from	section	1	of	my	questionnaire.	
	

I	liked	the	overall	design	of	the	website	 3	 4	 5	 4	 4	
Average(mean)	

4.2	

Navigating	through	the	website	is	easy	 3	 4	 4	 5	 5	 4.2	

I	like	the	games	colour	scheme	 4	 5	 4	 3	 3	 3.8	

The	font	was	clear	to	read	throughout	the	website	 4	 5	 5	 5	 5	 4.8	

Playing	the	game	was	exciting	 4	 5	 4	 4	 4	 4.2	

I	would	play	Wordify	again		 5	 5	 5	 5	 4	 4.8	

I	think	the	length	of	a	game	(60	seconds)	is	too	short	 4	 2	 3	 3	 4	 3.2	

Figure 35 Questionnaire results from section 1

	
Overall	I	am	pleased	with	the	results	of	this	section,	on	average	people	agreed	with	a	score	of	4.2	that	they	found	the	game	
exciting	and	4.8	to	that	they	would	play	the	game	again.		These	two	aspects	of	the	game	are	vital	to	have	as	many	people	
playing	the	game	as	possible	to	collect	as	much	data	as	possible.	The	games	colour	scheme	and	design	scored	slightly	lower	
with	the	participants	with	an	overall	score	of	3.8	and	4	respectively.	 	However,	my	client	wasn’t	too	concerned	with	the	
actual	design	of	the	website,	and	in	the	future,	they	can	be	easily	improved.		Although	this	is	the	case,	I	still	regard	these	
scores	as	a	pass	as	they	are	above	3.5,	confirming	the	non-functional	requirement	1.		I	found	the	results	regarding	the	length	
of	the	game	interesting	as	it	scored	3.2	which	Is	pretty	much	on	the	fence,	in	the	future	I	would	like	to	test	the	game	with	
different	time	lengths	and	see	which	is	the	most	favourable	with	the	participants.			
	

Section	2:	SUS	Testing:	
Section	2	of	the	questionnaire	was	used	for	the	SUS	testing.	 	This	was	one	of	the	most	 important	sections	of	the	testing	
process	as	it	gives	a	broad	overview	of	the	success	of	the	project.			Below	are	the	results,	along	with	the	mean	scores	from	
each	question.	
	

	
To	calculate	my	websites	SUS	score	I	conducted	the	following	calculations	to	the	mean	scores	from	all	the	participants:		

Figure 36 Questionnaire results from section 2

I	think	that	I	would	like	to	play	Wordify	frequently		

		
		

5	 5	 3	 3	 4	
Average(mean)	

4	

I	found	Wordify	unnecessarily	complex		 3	 1	 3	 1	 1	 1.8	

Wordify	was	easy	to	play	 4	 4	 3	 5	 5	 4.2	

I	would	need	the	support	of	a	technical	person	to	play	the	
game	 1	 1	 1	 1	 1	 1	

The	various	functions	in	the	game	were	well	integrated	 4	 4	 4	 5	 4	 4.2	

There	was	too	much	inconsistency	in	the	game		 2	 2	 1	 1	 1	 1.4	

Most	people	would	learn	to	use	the	game	very	quickly	 4	 4	 4	 5	 5	 4.4	

I	found	the	game	very	awkward	to	use	 2	 2	 3	 1	 1	 1.8	

I	felt	very	confident	playing	Wordify	 4	 5	 3	 5	 4	 4.2	

I	needed	to	learn	allot	of	things	before	I	could	get	going	
with	playing	Wordify	 1	 1	 2	 1	 2	 1.4	

 45

• For	each	of	the	odd	numbered	questions,	subtract	1	from	the	score.	
• For	each	of	the	even	numbered	questions,	subtract	their	value	from	5.	
• Take	these	new	values	which	you	have	found,	and	add	up	the	total	score.	Then	multiply	this	by	2.5.	

The	average	SUS	score	 is	around	68	 [58],	anything	above	 this	 score	would	be	deemed	an	acceptable	 score.	 	My	 testing	
achieved	a	score	of	84.		A	score	above	80.3	is	deemed	an	A	grade,	therefore	I	am	very	pleased	with	the	outcome	of	the	SUS	
testing.	When	examining	the	results	there	are	no	obvious	outliers	that	indicate	there	were	issues	in	their	fields.	
	

Section	3:	Issues/	Improvements	
The	final	section	of	my	questionnaire	enabled	me	to	catch	any	final	bugs	that	may	have	been	present	in	the	game.		Users	
were	prompted	to	give	any	issues	they	faced	during	testing	along	with	any	future	improvements	that	could	be	made	to	the	
game.	
	

I’d	rather	not	
have	to	log	in	to	
play	the	game	

Did	you	come	across	
any	issues/bugs	
during	testing?	 If	so,	please	explain...	

Are	there	any	improvements	that	you	think	could	be	made	
to	the	game?	

Any	Further	
comments	

5	

Yes	 Log	out	not	visible	at	all	times.	

Help	button	in	context.	Not	having	to	chose	an	option	before	
matching	another	player.	Perhaps,	the	players	could	be	
matched	and	then	decide	the	mode	they	would	like	to	play	in.	 	

2	

Yes	

Changing	the	play	type	and	
playing	against	computer	
displays	a	score	of	0	right	away	
instead	of	showing	the	game.	 Bigger	screen	size	 	

4	 No	 	 notification/alert	with	information	about	the	game/tutorial	 	

5	

No	 	 Not	really	

Seemed	like	a	
pretty	solid	
program	

2	
No	 	

You	shouldn’t	have	to	click	the	text	box	to	type	an	answer	
each	game	 	

3.6	 40%	 	 	 	
Figure 37 Questionnaire results from section 3

	
After	conducting	the	tests,	 I	could	fix	some	of	the	errors	people	faced	when	testing.	 	For	example,	I	enabled	the	textbox	
without	having	to	click	it	by	simply	inserting	the	following	code	in	the	input	element:	
	
 onFocus="this.select()"autofocus="autofocus"
	
	I	was	unable	to	replicate	the	error	mentioned	by	tester	number	2,	 this	highlighted	a	 flaw	 in	my	testing	method.	 	 In	the	
future,	I	would	have	liked	to	have	acquired	all	participants	contact	details	so	that	I	was	able	to	further	discuss	any	issues	they	
faced	during	testing.			
	
I	also	wanted	to	see	if	people	would	have	preferred	to	not	have	to	log	in	to	play	the	game.		It	may	be	needless	hassle	or	it	
could	be	a	way	to	show	off	to	your	friend	your	high	score.		The	results	indicated	that	people	would	rather	not	have	to	log	in.		
If	I	had	more	time	I	would	have	liked	to	have	added	the	play	as	guest	option	to	the	game,	however	due	to	time	restrictions	I	
was	not	able	to.	
	

5.1.4 Data Analysis

 46

I	will	now	analyse	the	data	collected	during	the	testing	and	base	data	stages.		Not	only	will	I	be	able	to	verify	that	the	game	
is	working	properly,	I	may	also	be	able	to	see	what	the	most	popular	antonyms	for	certain	words	are.	From	testing	and	base	
data,	my	system	gathered	72	different	matched	words	and	a	total	of	219	matches	were	recorded.		As	you	can	see	in	the	
table	below,	there	are	stronger	correlations	with	some	matches	and	weaker	correlations	with	others	by	how	many	matches	
were	made.		In	my	opinion,	these	results	can	help	indicate	that	the	system	is	a	success	and	the	games	potential	if	there	were	
more	players	in	the	future.	

	

Non-functional	Requirements		
I	will	now	be	verifying	if	my	system	complies	with	the	non-functional	requirements	that	I	produced	during	the	planning	
process	of	the	system.		The	results	of	my	testing	can	be	seen	below.	
	
Requirement	No	 Pass/Fail	 Comments	
1	 Pass	 From	 my	 questionnaire	 the	 colour	 scheme	 scored	 3.8,	 this	 indicates	 that	 people	

tended	to	agree	that	they	liked	it.		Also,	there	are	no	red	and	green	or	blue	and	yellow	
colours	overlapping.	

2	 Pass	 A	game	takes	less	than	1	second	to	load.	
3	 Pass	 None	of	 the	 test	participants	during	usability	 testing	had	an	 issue	with	 loading	 the	

game.	
4	 Pass	 All	the	fonts	are	over	15pt	and	from	my	testing		people	strongly	agreed	(4.8/5)	that	

the	font	was	clear	to	read	throughout	the	website.	
5	 Pass	 We	timed	our	participates	when	they	signed	up	to	the	game	during	testing	and	it	took	

on	average	33	seconds	to	sign	up	
6	 Pass	 From	 our	 questionnaire	 I	 discovered	 that	 people	 strongly	 agreed	 (4.8/5)	 that	 they	

would	play	Wordify	again.	
Figure 38 Non-functional requirements testing results

I	am	really	happy	with	the	results	from	the	non-functional	requirements	testing.		My	system	has	passed	all	the	requirements	
that	I	stated	during	planning.		I	was	particularly	happy	with	the	results	from	requirement	number	5	as	it	took	participants	
over	half	the	amount	of	time	to	sign	up	than	I	had	expected.			Although	this	is	a	positive,	it	may	indicate	that	my	requirements	
were	too	easy	and	I	was	setting	my	targets	too	low.	

Figure 41 Table of Matched words collected during testing

 47

6 Reflection & Future Work
As	the	project	comes	to	an	end,	I	will	now	reflect	upon	my	results	and	discuss	any	future	work	I	would	like	to	add	to	the	
system	at	a	later	date.			

6.1 Reflection
I	will	now	reflect	upon	the	results	of	my	testing	and	discuss	the	effectiveness	and	validity	of	the	techniques	I	adopted.		Overall	
I	am	pleased	with	the	outcome	of	the	testing.		I	researched	multiple	techniques	before	choosing	the	methods	I	adopted	and	
I	believe	I	have	completed	enough	tests	to	get	a	rounded	view	of	the	system	I	have	produced	
		
If	I	was	to	conduct	testing	again,	I	would	have	liked	to	have	asked	participants	what	device	and	browser	they	were	using	to	
test	Wordify	on.		This	would	have	made	interpreting	the	results	much	easier	as	some	issues	may	only	exist	or	may	become	
more	prominent	on	certain	platforms.		This	would	have	proved	particularly	useful	during	section	3	of	my	questionnaire	where	
participant	number	2	had	an	issue	with	the	game	which	I	could	not	replicate.		Another	solution	to	this	may	have	been	to	
collect	contact	information	from	each	participant	as	I	would	be	able	to	ask	them	further	questions	about	their	issue	after	
the	testing.		However,	this	would	reduce	the	anonymity	of	the	testing	with	thus	may	affect	some	of	the	participant’s	honesty	
during	the	questionnaire.	
	
Another	improvement	that	could	have	been	made	to	my	usability	testing	is	to	increase	the	number	of	participants.		Although	
Jakob	Nielsen	and	Thomas	K.	Landauers	theory	stated	that	5	participants	revealed	80%	of	a	systems	faults	[57].		By	increasing	
the	number	of	participants	to	10	you	would	further	increase	the	figure	to	around	90%	which	can	be	seen	on	figure	37.			By	
increasing	the	number	of	test	participants,	the	integrity	of	my	usability	testing	would	be	strengthened.	
	
One	aspect	of	my	testing	that	I	am	particularly	proud	of	is	the	use	of	google	forms	during	my	usability	testing.		I	was	able	to	
split	the	questionnaire	into	sections,	add	instructions	before	each	section	and	even	validate	each	participant’s	answers	to	
ensure	there	were	no	human	errors.		In	future	projects,	I	will	definitely	be	utilising	this	tool	once	again.	
	

6.2 Future Work
Due	to	the	projects	time	constraints,	it	was	obvious	that	I	wouldn’t	be	able	to	create	the	prefect	system.		Although	I	am	
proud	of	the	outcome,	there	are	some	aspects	that	I	would	like	to	add	to	or	improve	in	the	future.	

6.2.1 Game Play

One	improvement	to	the	game	play	that	I	wold	like	to	add	in	the	future	is	even	more	game	modes.		One	mode	in	particular	
that	 I	would	 like	 to	add	 is	words	 that	 rhyme	with	other	words.	 	By	adding	more	game	modes	 into	 the	 system,	Wordify	
becomes	more	exciting	and	challenging,	hopefully	bringing	in	more	players	to	the	game.			
	
When	playing	P	vs	C	games,	there	are	many	improvements	that	could	be	made	to	make	it	more	realistic	and	exciting.			One	
improvement	that	could	be	made	is	with	the	way	the	computer	chooses	what	guesses	it	will	make.		The	Luis	Von	Ahn’s	ESP	
computer	player	uses	pre-recorded	games	[6]	so	that	people	are	actually	playing	against	other	people,	just	at	different	times	
(not	 live).	 	Although	this	method	would	make	 it	more	realistic	 for	the	opponent,	there	may	be	a	more	beneficial	way	of	
choosing	the	guesses	that	would	help	to	further	improve	the	database,	for	example	choosing	lesser	matches	words.	
		
Changing	 the	games	difficulty	 is	another	 feature	 I	would	 like	 to	add	 into	 the	game	 in	 the	 future.	 	This	could	be	done	 in	
numerous	ways.		One	method	that	could	be	used	is	increasing	the	number	of	taboo	words.		If	there	are	more	taboo	words,	
the	game	is	more	challenging	as	players	must	think	of	new	words.			Another	method	that	could	be	adopted	is	to	increase	the	
number	of	matches	that	a	word	must	be	regarded	as	a	correct	match	if	it	isn’t	in	the	WordNet	database.		By	doing	this	only	
the	most	closely	related	words	would	be	regarded	as	a	match,	thus	increasing	the	games	difficulty.	
	
One	notable	issue	with	the	game	that	I	have	not	yet	discussed	is	that	currently,	if	a	player	quits,	it	pulls	the	opponent	out	of	
the	game.		The	ESP	game	by	Louis	Von	Ahn	switched	to	a	computer	player	automatically	if	a	player	quits	[6].		This	could	be	
a	beneficial	addition	to	the	game	in	the	future	as	it	would	stop	players	from	getting	frustrated	if	they	are	playing	well	and	
then	their	opponent	quits	the	game.	

 48

		
During	the	usability	testing,	participants	commented	upon	the	number	of	duplicate	words	that	featured	in	a	game.		I	would	
like	to	stop	duplicate	words	in	games,	although	in	the	future	when	there	are	more	words	on	the	system	it	will	become	less	
often.		A	simple	check	could	be	implemented	into	the	game	when	creating	a	new	word	that	verifies	that	the	word	has	not	
already	appeared	in	the	current	game	the	player	is	playing	in.		This	would	help	to	make	the	game	more	exciting	for	players.	
	
One	final	game	play	improvement	that	I	will	discuss	involves	improving	the	matchmaking	process.		The	suggestion	was	made	
by	one	of	the	testing	participants	to	not	have	to	choose	a	game	mode	straight	away	when	searching	for	an	opponent,	instead	
choosing	after	the	player’s	match.		This	would	be	a	helpful	addition	to	the	game,	especially	during	the	early	stages	of	the	
game	as	there	will	be	lower	levels	of	traffic	on	the	game,	helping	to	make	matchmaking	much	faster.		Although	this	could	
help	matchmaking,	I	am	unsure	as	to	how	the	two	players	would	be	able	to	come	to	an	agreement	over	what	mode	of	game	
they	play.	

6.2.2 Design

The	overall	design	of	the	game	was	not	a	priority	for	my	client.		Therefore,	I	didn’t	want	to	spend	too	much	time	designing	
the	system.		If	I	had	more	time	I	would	like	to	improve	the	appearance	of	the	game	as	it	is	one	of	the	most	important	aspects	
when	attempting	to	draw	more	players	into	the	game.		If	the	game	doesn’t	look	exciting	and	innovative,	less	people	would	
want	to	play	the	game.			
	
Another	design	feature	that	I	would	like	to	put	more	work	into	is	to	make	the	website	more	mobile	and	tablet	friendly.		I	had	
initially	hoped	to	have	a	fully	responsive	website	that	adjusts	to	the	device,	however	due	to	time	restrictions	I	simply	ensured	
that	the	game	fitted	all	devices	screen	sizes.	 	According	to	statcounter,	mobile	and	tablet	devices	account	for	48.25%	of	
internet	market	share	in	the	UK	from	April	2017	till	April	2018	[59].	 	This	highlights	the	importance	of	mobile	and	tablet	
compatibility.	
	

6.2.3 Performance

Currently,	although	I	have	taken	some	steps	to	ensure	my	system	is	efficient,	the	performance	of	the	game	was	not	a	massive	
issue	 as	 there	 is	 very	 little	 traffic	 on	 the	 website.	 	 In	 the	 future,	 I	 would	 take	 some	 additional	 steps	 to	 improve	 the	
performance	 of	my	 game.	 	One	 improvement	 I	may	make	would	 be	 to	 upgrade	my	 hosting	 plan	with	Heroku	which	 is	
currently	on	the	free	service.		By	doing	so,	Heroku	offers	better	scalability,	storage	and	memory;	this	allows	the	website	to	
handle	a	greater	number	of	users	and	improves	performance	for	the	game.	Another	performance	enhancing	technique	that	
I	could	adopt	is	to	provide	a	greater	number	of	servers	to	support	more	users	connecting	from	different	locations	and	offer	
a	greater	experience	when	playing	the	game.	
	

6.2.4 Additional Features

An	additional	feature	that	would	have	to	be	added	to	the	website	at	a	later	date	is	a	forgotten	password	option	when	logging	
in.		When	a	player	clicks	the	forgotten	password	button	on	the	login	page,	they	should	be	prompted	to	give	their	username	
or	email	address.		The	system	should	then	send	an	automated	email	to	the	corresponding	email	address	with	instructions	
upon	how	to	change	their	accounts	password.	
	
One	of	the	comments	made	during	the	testing	was	to	include	the	log	out	button	on	every	page	of	the	website.		This	would	
be	a	simple	addition	programmatically	and	would	help	to	improve	the	usability	of	the	website.	
	
My	project	demonstrates	the	capabilities	of	GWAP	when	applying	them	to	words,	but	Wordifys	game	structure	could	be	
easily	adapted	for	many	other	GWAP.		One	example	could	be	producing	family	trees	of	famous	people	or	historical	figures.		
Players	could	be	prompted	to	give	the	names	of	well-known	figures	mothers,	fathers,	brothers	or	sisters,	producing	a	family	
tree	which	could	be	utilised	by	informative	websites	such	as	Wikipedia.	

 49

7 Conclusions
	
From	my	research	into	the	utilisation	of	GWAP	I	have	discovered	their	 importance	even	in	today’s	society.	 	 In	the	age	of	
improving	AI	there	are	still	tasks	that	machines	simply	cannot	conduct	as	effectively	as	humans	due	to	our	abundance	of	
creativity	–	and	machines	lack	of	it.				
	
I	will	now	conclude	my	findings	and	highlight	the	importance	of	my	project.		The	aim	of	my	project	was	to	implement	a	GWAP	
similar	 to	 the	ESP	game,	but	 instead	of	 images	players	would	 focus	on	words	and	be	asked	 to	provide	 their	 synonyms,	
antonyms	and	hypernyms.		Although	there	is	still	room	for	improvement,	I	believe	I	have	met	the	goals	of	my	project.			
My	testing	has	proved	that	I	able	to	produce	a	functional	GWAP	that	efficiently	stores	the	data	which	can	be	used	for	various	
purposes	online.		Not	only	this	but	I	have	also	produced	an	exciting	game	which	users	enjoyed	playing	and	said	that	they	
would	continue	to	play	in	the	future.		
	
	

 50

8 Reflection on Learning
Not	only	am	I	proud	of	the	results	of	the	project	I	have	produced	but	I	am	also	proud	of	the	progress	and	development	I	have	
personally	made	throughout	this	project.			By	completing	a	project	entirely	by	myself	I	have	learned	to	develop	many	new	
skills	that	I	had	previously	not	used.		I	will	now	reflect	upon	what	I	have	learned	during	this	project	and	discuss	what	aspects	
I	believe	I	could	further	improve	upon.		
	
I	was	keen	to	incorporate	many	new	languages	and	frameworks	into	my	system	that	I	had	not	used	before	to	expand	my	
plethora	of	knowledge	and	improve	my	coding	skills.		Although	it	meant	that	it	initially	took	a	little	longer	as	I	had	to	learn	
the	new	languages,	the	new	languages	I	did	learn	helped	to	speed	up	production.		For	example,	I	had	never	used	a	template	
engine	 like	pug	before,	 but	by	 learning	 this	 language	 I	 have	been	able	 to	produce	a	dynamic	website.	 	 	 	 I	 used	 various	
documentation	online	to	 learn	to	code	with	pug	and	to	debug	errors	 I	 faced.	 	Another	software	I	have	learnt	during	this	
project	is	sockets.		I	was	keen	to	implement	sockets	into	my	game	as	I	was	aware	of	the	performance	benefits	they	offered.		
Although	this	was	the	case,	learning	how	to	apply	them	was	not	as	simple	as	it	initially	seemed.		I	was	glad	that	I	chose	the	
package	with	the	most	online	documentation,	as	without	this	I	would	have	struggled	to	utilise	the	technologies.	
	
I	am	proud	of	my	time	management	skills	during	this	project.		I	made	sure	that	I	stuck	to	my	Gantt	Chart	as	closely	as	possible,	
which	is	not	something	that	I	have	done	during	previous	projects	I	have	worked	on.			In	the	future	projects,	I	would	focus	on	
creating	a	comprehensive,	well	thought	Gantt	Chart	because	this	project	has	made	me	realise	how	useful	they	can	be	if	you	
properly	follow	them.	If	this	is	not	done	it	can	lead	to	a	last-minute	rush	to	complete	tasks,	reducing	the	quality	of	the	work	
produced	and	can	also	cause	unnecessary	stress
	
My	frontend	development	skills	could	still	be	improved,	as	my	supervisor	wasn’t	too	concerned	by	the	overall	look	of	the	
front	end,	I	didn’t	spend	much	time	researching	the	best	ways	to	improve	the	usability	of	a	website.		If	I	was	to	work	on	this	
project	again	I	would	spend	more	time	on	this	try	to	improve	my	web	design	skills	and	include	graphical	objects	into	the	
game.	
	

 51

Table of abbreviations
GWAP - Game With a Purpose
ISF - Information Security Forum
API - Application programming interface
AI -Artificial Intelligence

 52

Appendices
Appendix	A:	Ethical	Approval	Document		

School of Computer Science & Informatics

Ethical Approval Request Form
Form valid until 21st March 2018

Instructions

Do not use this form if your research is with the NHS or NHS-linked: please refer
instead to the NHS Local Research Ethics Committee.

Do not use this form if your research involves adults who do not have the capacity
to consent. Such projects have to be submitted to the National Research Ethics Service
(NRES) system: http://nres.nhs.uk/

Please carefully review:

• School Research Ethics documentation

• Data management, collecting personal data, data protection act requirements

• Information Security Framework

• Research Integrity and Governance

• Research Ethics

Please complete the Research Integrity Online Training Programme (Staff link, Student
link) prior to submitting this form.

Please complete this form at least 2 weeks before starting your data collection/human
involvement activities and send to comsc-ethics@cardiff.ac.uk along with all the relevant
attachments:

• Full Project plan/proposal

• Participant Information Form, either:

– hard copy, e.g briefing and debriefing (if appropriate)
– online equivalent

• Consent Form or online equivalent (or justification as to why this is not possible)

• Certificate(s) of completion of the Research Integrity Online Training Programme
(RIOTP) for all staff associated with a project (and students if applicable).

• (If applicable) Details concerning external funding

• (If an extension is requested) Provide a list of motivations and list of amendments to
any previous approvals

Submissions will be reviewed at the next COMSC Research Ethics Group meeting held
approximately fortnightly.

Page 1 of 11

APPROVED

Approval ID: COMSC/Ethics/2018/013

Page 1 of 26

 53

Appendix	B		Briefing	Sheet
Game	with	a	purpose	Information	Sheet	

Introduction	
	
You	are	being	invited	to	take	part	in	a	research	study.	Before	you	decide	it	is	important	for	you	to	
understand	why	the	research	is	being	done	and	what	it	will	involve.	Please	take	the	time	to	read	the	
following	information	carefully	and	discuss	it	with	others	if	you	wish.	Ask	if	there	is	anything	that	is	
not	clear	or	if	you	would	like	more	information.	Take	time	to	decide	whether	or	not	you	wish	to	take	
part.	Thank	you	for	reading	this.	

	
What	is	the	purpose	of	the	study?	
	
The	purpose	of	this	study	is	to	get	a	collection	of	words	that	people	believe	are	synonyms,	antonyms	
or	hypernyms	of	other	words	through	the	means	of	a	game.	It	is	also	to	find	out	how	easy	the	game	
was	to	play.	

	
How	is	the	study	structured?	
	
Once	you	have	agreed	to	take	part	in	the	study	and	unless	you	choose	to	withdraw	at	any	point,	you	
will	be	asked	to	meet	up	with	myself,	Bernice	Thomas	to	conduct	the	research.	
In	the	briefing	session,	the	purpose	and	workings	of	this	study	will	be	explained	to	you.	You	will	also	
be	provided	with	the	opportunity	to	ask	questions	regarding	this	study.	
	
During	the	experiment,	you	will	be	asked	to	play	the	game	on	your	own	computer	or	one	provided	
(whatever	your	preference)	for	10	minutes.	I	will	then	ask	you	to	fill	in	a	questionnaire	about	how	
user	friendly	you	found	the	game	to	be.	You	can	ask	me	any	questions	you	have	about	the	study	
throughout	the	session.	
	
During	the	debriefing	session,	you	will	be	able	to	ask	any	questions	you	have	about	the	research	
study	you	have	taken	part	in,	and	inform	me	of	any	issues	you	had	with	the	study.	

	
Who	is	organising	and	funding	the	research?	
	
The	study	is	organised	by	researchers	from	Cardiff	University,	Bernice	Thomas.	

	
Why	have	I	been	chosen?	
	
As	a	volunteer,	you	have	responded	to	our	request	for	participants	to	take	part	via	word	of	mouth.	

	
Do	I	have	to	take	part?	
	
It	is	up	to	you	to	decide	whether	or	not	you	want	to	take	part	in	the	study.	If	you	do	decide	to	take	
part	you	will	be	given	this	information	sheet	to	keep	and	be	asked	to	sign	a	consent	form.	If	you	
decide	to	take	part	you	are	still	free	to	withdraw	at	any	time	and	without	giving	a	reason.	
	
How	will	the	data	be	collected	and	stored?	
All	information	that	is	collected	about	you	during	this	research	will	be	kept	strictly	confidential.	The	
information	will	be	collected	by	the	game	will	be	sent	across	a	secure	connection	to	the	database.	
The	database	will	be	kept	secure	and	will	be	accessible	by	myself	and	my	supervisor.	
We	may	share	the	data	we	collect	with	researchers	at	other	institutions,	but	any	information	that	
leaves	Cardiff	University	will	have	your	personal	details	removed.	In	any	sort	of	output	we	might	
publish,	we	will	not	include	information	that	will	make	it	possible	for	other	people	to	know	your	
name	or	identify	you	in	any	way.	
	 	

 54

 55

References
	
[1] Wikipedia, “ESP game,” [Online]. Available:

https://en.wikipedia.org/wiki/ESP_game.
[2] J. McGonigal, “We spend 3 billion hours a week as a planet playing videogames. Is it

worth it? How could it be MORE worth it?,” 15 February 2011. [Online]. Available:
https://www.ted.com/conversations/44/we_spend_3_billion_hours_a_wee.html.
[Accessed 8 May 2018].

[3] A. Saini, “Solving the web's image problem,” BBC, 14 May 2008. [Online]. Available:
http://news.bbc.co.uk/1/hi/technology/7395751.stm. [Accessed 23 February 2018].

[4] T. O'Reilly, “Google Image Labeler, the ESP Game, and Human-Computer
Symbiosis,” 3 september 2006. [Online]. Available:
http://radar.oreilly.com/2006/09/google-image-labeler-the-esp-g.html. [Accessed 14
March 2018].

[5] Dondona, “ESP Game,” [Online]. Available:
https://dodona.ugent.be/en/exercises/1678755178/. [Accessed 24 February 2018].

[6] L. v. Ahn, “YouTube,” 26 July 2006. [Online]. Available:
https://www.youtube.com/watch?v=tx082gDwGcM. [Accessed 9 February 2018].

[7] Google, “Crowdsource home,” [Online]. Available:
https://crowdsource.google.com/home. [Accessed 2 March 2018].

[8] “Image Labeler Help,” [Online]. Available:
https://support.google.com/imagelabeler/answer/7085943?hl=en&ref_topic=7085456.
[Accessed 18 February 2018].

[9] T. ROSE-SANDLER, “Smorball and Beanstalk: Games that aren’t just fun to play but
help science too,” 28 August 2015. [Online]. Available:
https://blog.biodiversitylibrary.org/2015/08/smorball-and-beanstalk-games-that-arent-
just-fun-to-play-but-help-science-too.html. [Accessed 1 March 2018].

[10] “About,” NANO Crafter , [Online]. Available: http://nanocrafter.org/about. [Accessed
4 March 2018].

[11] Nanocrafter, “About,” [Online]. Available: http://nanocrafter.org/about. [Accessed 21
March 2018].

[12] NanoCrafter, “Science,” [Online]. Available: http://nanocrafter.org/science. [Accessed
3 March 2018].

[13] WordNet, “WordNet,” [Online]. Available: https://wordnet.princeton.edu/wordnet/.
[Accessed 18 February 2018].

[14] WordNet, “News,” 2012. [Online]. Available: https://wordnet.princeton.edu/news-0.
[Accessed 29 March 2018].

[15] [Online]. Available: (https://wordnet.princeton.edu/wordnet/license/ .
[16] A. Powell-Morse, “Waterfall Model: What Is It and When Should You Use It?,” 8

December 2016. [Online]. Available: https://airbrake.io/blog/sdlc/waterfall-model.
[Accessed 19 February 2018].

[17] Tutorials Point, “SDLC - Waterfall Model,” [Online]. Available:
https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm. [Accessed 26 February
2018].

 56

[18] NetMarketShare, “Browser Market Share,” 2018. [Online]. Available:
https://netmarketshare.com/browser-market-
share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22
deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D
%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%2
2%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A
%7B%22share%22%3A-
1%7D%2C%22id%22%3A%22browsersDesktop%22%2C%22dateInterval%22%3A
%22Monthly%22%2C%22dateStart%22%3A%222017-
02%22%2C%22dateEnd%22%3A%222018-01%22%2C%22segments%22%3A%22-
1000%22%7D. [Accessed 3 February 2018].

[19] Bootstrap, “Introduction,” [Online]. Available:
https://getbootstrap.com/docs/4.0/getting-started/introduction/. [Accessed 3 March
2018].

[20] Google, “Google Fonts,” [Online]. Available: https://developers.google.com/fonts/.
[Accessed 13 April 2018].

[21] “Google Fonts FAQ,” Google, 9 April 2018. [Online]. Available:
https://developers.google.com/fonts/faq . [Accessed 13 April 2018].

[22] NLTK, “WordNet Interface,” [Online]. Available:
http://www.nltk.org/howto/wordnet.html. [Accessed 13 March 2018].

[23] Y. Cui, “Comparing AWS Lambda performance when using Node.js, Java, C# or
Python,” 2 April 2017. [Online]. Available: https://read.acloud.guru/comparing-aws-
lambda-performance-when-using-node-js-java-c-or-python-281bef2c740f. [Accessed 3
May 2018].

[24] N. Tollervey, “5 reasons why Python is a popular teaching language,” 10 April 2015.
[Online]. Available: http://radar.oreilly.com/2015/04/five-reasons-why-python-is-a-
popular-teaching-language.html. [Accessed 28 March 2018].

[25] “TIOBE Index for April 2018,” April 2018. [Online]. Available:
https://www.tiobe.com/tiobe-index/. [Accessed 14 April 2018].

[26] “tutorials point,” [Online]. Available:
https://www.tutorialspoint.com/nodejs/nodejs_introduction.htm. [Accessed 12 April
2018].

[27] CUBRID community, “A Node.js speed dilemma: AJAX or Socket.IO?,” 14 July
2017. [Online]. Available: https://www.cubrid.org/blog/nodejs-speed-dilemma-ajax-
or-socket-io. [Accessed 23 March 2018].

[28] SockJS , “SockJS,” 2 May 2018. [Online]. Available: https://github.com/sockjs/sockjs-
client. [Accessed 6 May 2018].

[29] Socket.IO, “Socket.IO,” 2018. [Online]. Available: https://socket.io/ . [Accessed 2
May 2018].

[30] express-authentication , “express-authentication,” 2016. [Online]. Available:
https://www.npmjs.com/package/express-authentication. [Accessed 29 March 2018].

[31] PassportJS, “Documentation,” [Online]. Available: http://www.passportjs.org/docs/.
[Accessed 18 March 2018].

[32] PassportJS, “Documentation,” [Online]. Available: http://www.passportjs.org/docs/.
[Accessed 9 May 2018].

[33] PassportJS, “Log In,” [Online]. Available: http://www.passportjs.org/docs/login/ .
[Accessed 22 April 2018].

 57

[34] Wordnet, “Stats,” [Online]. Available:
https://web.archive.org/web/20171216124924/https://wordnet.princeton.edu/wordnet/
man/wnstats.7WN.html. [Accessed 16 December 2017].

[35] WordNet, “Licence and Commercial Use,” [Online]. Available:
https://wordnet.princeton.edu/license-and-commercial-use. [Accessed 11 03 2018].

[36] WordNet, “What is Wordnet,” [Online]. Available: https://wordnet.princeton.edu/.
[Accessed 11 03 2018].

[37] J. Kamps, “Visualizing WordNet Structure,” 1 October 2014. [Online]. Available:
https://www.researchgate.net/publication/228729013_Visualizing_WordNet_structure.
[Accessed 17 March 2018].

[38] “Wordnet-magic,” 2015. [Online]. Available:
https://www.npmjs.com/package/wordnet-magic. [Accessed 17 May 2018].

[39] Oracle, “Top 10 reasons to choose MySQL for Web-based Applications,” August
2011. [Online]. Available: http://www.oracle.com/us/products/mysql/mysql-wp-top10-
webbased-apps-461054.pdf. [Accessed May 1 2018].

[40] MongoDB, “MongoDB Architecture,” 2018. [Online]. Available:
https://www.mongodb.com/mongodb-architecture. [Accessed 1 May 2018].

[41] MongoDB, “MongoDB and MySQL Compared,” 2018. [Online]. Available:
https://www.mongodb.com/compare/mongodb-mysql. [Accessed 27 April 2018].

[42] “70 MongoDB Interview Questions and Answers,” 3 May 2016. [Online]. Available:
https://www.datasciencecentral.com/profiles/blogs/70-mongodb-interview-questions-
and-answers. [Accessed 27 April 2018].

[43] Microsoft, “Using Version Control in VS Code,” 3 May 2018. [Online]. Available:
https://code.visualstudio.com/docs/editor/versioncontrol. [Accessed 6 May 2018].

[44] Microsoft, “Debugging,” 5 May 2018. [Online]. Available:
https://code.visualstudio.com/docs/editor/debugging. [Accessed 6 May 2018].

[45] GitHub, “Tracing Changes in a file,” [Online]. Available:
https://help.github.com/articles/tracing-changes-in-a-file/. [Accessed 8 April 2018].

[46] “Data Protection,” [Online]. Available: https://www.gov.uk/data-protection. [Accessed
28 April 2018].

[47] wordnet, “wordnet,” 2014. [Online]. Available:
https://www.npmjs.com/package/wordnet. [Accessed 1 May 2018].

[48] spencermountain, “wordnetjs,” npm, 2016. [Online]. Available:
https://www.npmjs.com/package/wordnetjs. [Accessed 12 April 2018].

[49] Heroku, “Heroku status,” Heroku, 15 April 2018. [Online]. Available:
https://status.heroku.com/. [Accessed 15 April 2018].

[50] Heroku, “Process Types and the Procfile,” 15 March 2018. [Online]. Available:
https://devcenter.heroku.com/articles/procfile. [Accessed 2 April 2018].

[51] Heroku, “mLab MongoDB,” [Online]. Available:
https://elements.heroku.com/addons/mongolab. [Accessed 28 March 2018].

[52] VWO, “A/B Testing,” [Online]. Available: https://vwo.com/ab-testing/. [Accessed
2018 April 9].

[53] usability.gov, “System Usability Scale (SUS),” Usability.gov, [Online]. Available:
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html.
[Accessed 20 April 2018].

 58

[54] J. A. Krosnick and S. Presser, “Question and Questionnaire Design,” 15 February
2009. [Online]. Available:
https://web.stanford.edu/dept/communication/faculty/krosnick/docs/2009/2009_handb
ook_krosnick.pdf. [Accessed 5 April 2017].

[55] C. C. Preston and A. M. Colman, “Optimal number of response categories in rating
scales: reliability, validity, discriminating power, and respondent preferences,” 14 09
1999. [Online]. Available:
https://www2.le.ac.uk/departments/npb/people/amc/articles-pdfs/optinumb.pdf.
[Accessed 14 04 2018].

[56] J. Nielsen and T. K. Landauer, “A Mathematical Model of the Finding of Usability
Problems,” 24-29 April 1993. [Online]. Available:
http://peres.rihmlab.org/Classes/PSYC6419seminar/p206-
Five%20Users%20nielsen.pdf. [Accessed 5 April 2017].

[57] N. Jakob and K. L. Thomas, 24-29 April 1993. [Online]. Available:
http://peres.rihmlab.org/Classes/PSYC6419seminar/p206-
Five%20Users%20nielsen.pdf. [Accessed 23 April 2018].

[58] J. Sauro, “Measuring Usability With The System Usability Scale (SUS),” measuringu,
2 February 2011. [Online]. Available: https://measuringu.com/sus/. [Accessed 28 April
2018].

[59] statcounter, “Desktop vs Mobile vs Tablet Market Share United Kingdom,” 30 April
2018. [Online]. Available: http://gs.statcounter.com/platform-market-share/desktop-
mobile-tablet/united-kingdom. [Accessed 9 May 2018].

[60] MongoDB, “MongoDB and MySQL Compared,” [Online]. Available:
https://www.mongodb.com/compare/mongodb-mysql. [Accessed 31 January 2018].

[61] SPOJ, “ESP game (series 07),” 2015. [Online]. Available:
http://www.spoj.com/GUGC2015/problems/PROG0233/. [Accessed 7 February 2018].

	
	

