
Cardiff School of Computer Science &
Informatics

IoT Device for Home Monitoring

Author:

Georgi Pramatarov

Supervised by:

Dr Philipp Reinecke

Moderator:

Dr Jing Wu

May 11, 2018

Acknowledgement

I would like to thank my supervisor Dr Philipp Reinecke for his the

incredible advice and guidance during this project. And also another

thank you to Laurence Semmens, who helped my with his impeccable

soldering skills

Contents

Page

1 Introduction 4

2 Background 5

3 Requirements 9
3.1 Non-Functional . 9
3.2 Functional . 10

4 System Design 12
4.1 Data and Control Flow . 12
4.2 System Structure . 13
4.3 Edge Devices . 19

4.3.1 Addition of new Edge Device . 20
4.4 Central Hub . 21
4.5 Smartphone Client . 24

5 Implementation 25
5.1 Hardware components . 25
5.2 Software tools . 26
5.3 DoorLock . 26
5.4 Hub . 29
5.5 Android Client . 32

5.5.1 Design and User Interface . 32

6 Product Evaluation 42
6.1 DoorLock Evaluation . 42
6.2 Android Client Evaluation . 43

7 Conclusion and Future Work 45

8 Self-Reflection 46

9 Appendix 47

Bibliography 60

1

List of Figures

4.1 DataStack . 13
4.2 DataStackCom . 15
4.3 SystemDesign . 16
4.4 SystemDesign . 19
4.5 New Edge Device Setup . 20
4.6 ID Configuration . 21
4.7 MQTT Broker Design . 22
4.8 Central Hub Design . 23

5.1 Door Lock Design . 27
5.2 Home Screen . 33
5.3 Fingerprint Screen . 34
5.4 Fingerprint Screen Help Message . 35
5.5 Fingerprint Screen Successful Authentication . 36
5.6 Camera Viwer Screen . 37
5.7 Preference Menu . 38
5.8 Time Picker Dialog . 39
5.9 Weekday Picker Dialog . 40
5.10 Add New Device Dialog . 41

9.1 Android Client Design . 48

2

List of Tables

9.1 Test Case 1 . 49
9.2 Test Case 2 . 50
9.3 Test Case 3 . 51
9.4 Test Case 4 . 52
9.5 Test Case 5 . 53
9.6 Test Case 6 . 54
9.7 Test Case 7 . 55
9.8 Test Case 8 . 56
9.9 Test Case 9 . 57
9.10 Test Case 10 . 58

3

1. Introduction

The aim of this project is to explore the possibilities of developing a fully modular IoT device
with a smaller price tag. The focus of this project will primarily gravitate around achieving
the modular design, which will provide more flexibility for its users. This project will also aim
to follow the currently ongoing standards applied by companies involved it the development of
similar devices. In addition, a supporting application will be developed, to provide the user
with a full control over the device. The secondary focus will be achieving a smaller price tag,
without compromising functionality. In most cases functionality is sacrificed in the name of a
smaller price tag. This project will try to alleviate that by providing the user with the freedom
of choosing the components that they want, rather than being forced to buy pre-build kits.
Focus will also be placed on the dependability and security of the system. The project will also
provide a view of the current state of the IoT market and analysis of competing devices.

The structure of the report follows the project development in a chronological order and each
section acts as a stepping stone for the next one. Starting with the Background chapter, which
includes more information about the motivation behind this project as well as a marketing
research on similar devices that compete directly with this one. Also, included in this section
is a quick analysis of the current market state of smart home monitoring devices. The System
Design chapter acknowledges some of the problems that this project needs to solve, as well as the
steps taken to solve them. It also shows the justifications behind each decision and what other
alternatives were considered, but disbanded from the final design. The System Design chapter is
structured from the highest levels of abstraction moving to the lowest. The focus of the System
Design is to describe the design decisions that were made without going into too much technical
details. Located directly after the System Design is the Implementation chapter, which depicts
the technical decisions that were taken in order to comply with the framework introduced in
the system design. The Implementation chapter only focuses on the most important aspects
of the system and thus does not include all of the code that will be provided for this project.
The rest of the code is provided in a separate zip file. After the Implementation section is the
Product Evaluation chapter, which will focus on testing the different segments implemented in
the system. The evaluation will be recorded in the form of test cases, which will deliver an
insight on the success of the project. The Conclusion and Future Work chapter will provide
a brief analysis of the finished project, focusing on the distinct qualities of the system. In
addition, the conclusion and future work section will include a discussion on the possible future
development as well as the features which were only partially finished or completely left out,
due to the time constraints. The Self-Reflection chapter provides an overview of the knowledge
that was gained from this project and a reflection on the decisions that ware taken.

4

2. Background

Undoubtedly during the past few years one certain technology has established it’s importance
and that is the Internet of Things. The idea behind The Internet of Things is to connect all
smart sensors to the Internet. This technology has already proved its importance in the
industrial and agricultural sector and now it’s settling its way into people’s homes. There is
no denying that the Internet of Things has had a positive impact on the way in which
organisations operate and manage their business. This is proven by the amount of resources
that companies pour in development of this vastly expanding sector. In addition, the IoT
sector also serves as the birthplace for a growing empire of new companies who devote
themselves to building the new IoT infrastructure. This makes the amount of new IoT devices
rapidly climbing, which according to Statista [17] will surpass 75 billion IoT devices by the
year 2025. Although these numbers are just predictions and the actual number can vary in
both directions, the popularity of IoT devices continues to climb and the historical data
confirms that. Between 2015 and 2017 nearly 5 billion more IoT devices were connected to
the Internet. In 2018 nearly 3 billion more IoT devices are expected to join the IoT world.

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
0

20

40

60

80

100

15.41 17.68 20.35 23.14 26.66
30.73

35.82
42.62

51.11

62.12

75.44

Years

B
il
li
on

s

Investment in this sector is also predicted to rise from $2.99 trillion in 2014 to the whopping
$8.9 trillion in 2020, which results in an compound annual growth rate of 19.92% [8]. So far
these analysis regarded the IoT global market as a whole, however this sector is split into a few
categories. The category that this project falls under is the consumer market, which is just a
part of the global market pie. Delving deeper revealed that the share taken by the consumer
market is the biggest, which in 2014 occupied 38% of the whole IoT market. The predictions
for the expansion of the consumer share are also in its favour, showing an incredible increase.
This increase according to Statista is going to reach 93% by 2020 and take 25% of the global

5

IoT market. In addition, the consumer share is predicted to hold its position as the biggest
slice of the global IoT pie all the way to 2020.

2014 2020
0

0.2

0.4

0.6

0.8

1
·104

Years

B
il
li
on

s

Industrial/Manufacturing
Construction/Infrastructure
Retail
Energy&Utilities
Healthcare&Life Scientist
Automotive
Consumer Market

Despite being just predictions, these analysis paint a really promising picture for the future of
the IoT sector. This also shows a huge promise for newer companies, who want to enter the
consumer IoT market. However, this increasing growth also posses a lot of challenges for newer
companies that want to take part in this highly competitive field. For these companies it is
really important to research the current trends and determine what are the users expecting in
an IoT device. That is what this segment of the project aims to accomplish. As this project
is going to focus on developing a system that can monitor the users home, its important to
know whether the consumer will be interested in such a device. For the research of the users
current trends the use of the Google Trends tool was employed. Google Trends is a tool that
shows what are people searching and most interested in. And according to google trends [19]
in the past 12 months peoples interest in the smart home security devices has peaked. The
number one most searched type of smart home security device is the IP Camera. In that sense
the Internet of Things has the power to revolutionise the way in which people monitor their
homes. It can provide users with the ability to remotely monitor their homes for any abnormal
events. These events can include a wide variety of different scenarios and being able to detect
them really gives the users of this technology a piece of mind. This huge interest in the IoT
sector, has disrupted the market of smart sensors in a very positive way. Now not only are
sensors getting smarter and smaller in size, but they are also getting cheaper, which means that
vendors can develop cheaper devices for the consumer market. However that is not always the
case, as some vendors provide their devices as a part of a contract, which can tie the user for
upwards of 2 years. Here it should be mentioned that those types of devices will usually offer
more security and support, however at a higher price.

Another part of this project was to venture in this highly competitive market and explore the
competitors offerings. It is pointless to develop a device that does not offer anything special
when compared to its competitors in the segment. Analysis of the segment revealed that ABUS

6

[1], YALE [20] and ERA [11] have devices that shared some resemblance between each other
and this project. All of them have the ability to add extra modules in order to expand the user’s
network, allowed the user to add alert triggers as well as provide the user with a smartphone
application for easy control of the smart network. ERA even went one step further and provided
their users with the capability of pairing Lighthouse smart products to their HomeGuard Smart
Alarm device. ERA also has a RFID reader for authenticating the user. Disregarding these
extra features that ERA provides to their users, all of the fore-mentioned devices are very
similar. The main feature that this project is interested in is the modular design of these
devices. And ERA scores top marks in this section, allowing the users to connect up to 110
components to their modular device. ABUS Smart Vest ranks second with support for up
to 32 components and YALE allows connecting up to 20 components to their Smart Home
device. Ideally the device developed in this project would either match or surpass the amount
of connected components that the competitors rate their devices for. In addition the second
point of this project is to develop a similar device at a lower price.

Abus
SmartVest

ERA
HomeGuard

YALE Smart
Home

GuerillaGuard
Home

Smart Hub

Easy Device
Setup

Alarm
Scheduling

Supporting
Application

Android and
IOS

Android and
IOS

Android and
IOS

Android

Extendability Support for
up to 32
components

Support
for up to
50 sensors,
50 RFID
tags and 10
remotes

Support for
up to 20
components

Support for
up to 30
components

Novelty
Features

Compatible
with
Lightwave
smart
products

Biometric
authentication

So far this chapter provided a brief overview of the importance and growth of IoT devices.
It also included the main competition in the consumer market as well as a direct comparison
against the devices produced by competitors. The next part of this chapter is devoted to the
motivation behind the development of this project. As mentioned previously a lot of smart
home monitoring devices on the market, are still very expensive and most of them are sold as

7

pre-build kits. This locks the user into potentially spending more money for components that he
might not need. In addition, not every device sold on the market allows the user to expand and
potentially upgrade it, without having to buy a whole new kit and scrap the old one. This is the
motivation behind the modular design, which is the main focus of this project. Technology is
aways going to pave the way ahead and technology developed today will be obsolete tomorrow
as it makes way for newer and more advanced one. A great example is the smartphone market,
not a long time ago, the typical user would replace their device every 2 years. However, now
it seems that users tend to switch their devices every year or in some cases 6 months. The
reason for this trend is clear, the market is overflowing with newer devices, and vendors are in a
constant state of war with each other, each trying to release newer and better products as fast
as they can and in an ever increasing rate. The same could be said about the IoT sector, which
although fairly new to the general consumer is rising in popularity. For that reason vendors
are constantly pushing new and more advanced products to the market and if the user wants
that new fancy device, they have to scrap their old system, because of incompatibility issues.
That is why this projects sets out to develop a system in which the various elements can be
replaced with newer ones and thus give the user the flexibility to personalise. Developing a
modular system, will allow the user to expand it whenever they decide, rather than being forced
to buy pre-build kits, this will also allow the user to choose the components they most need. A
modular system will also give the user future upgradability, if a certain module gets older or it
does not satisfy the user any more, they can simply swap it for a newer version. This type of
design will also lower the price of the device, because it allows freedom when choosing between
the different components. However in order to be able to achieve all that, there must be some
framework that all devices adhere to. In order to be able to promise future upgradability to the
user, the system must be designed in a way that is future proof. This is the main constraint of
this approach, trying to design a system in a way such that it is compatible with module devices
that are not developed yet. In order to combat that, the software that drives the system also
has to be designed with modularity taken into consideration. The idea is that an older block of
the system can be replaced with a newer one. This however does not solve the whole problem,
because the newer software block should be able to work with older module devices. However,
breaking the system into modules and software blocks, will allow the user to personalise it
however they want. It also means that the system can be expanded in the future and extra
functionality can be added later on. This extra functionality can be replacing older algorithms
with newer ones, adding support for specialised components and etc. This approach introduces
a lot of issues and providing a solution to them will be the focus of the next chapter.

8

3. Requirements

The point of this project is to not only create a competing device for the IoT market but also
to develop a framework. This framework would make the development of new devices much
easier. Thats why the point of this chapter is twofold, firstly to establish the requirements that
must be satisfied by such a framework and secondly focus on the requirements that need to be
satisfied by the IoT device developed in this project.

3.1 Non-Functional

System Structure

• The system must be devided into separate hardware and software modules

• The system must provide a well defined structured framework, which will allow others to
develop IoT devices

• The framework must define a clear data and control flow

• The framework must establish precedence and relationships between the different
components

•

Ease of Use

• The framework must be intuitive and easy to use

• The supporting smartphone application must provide ease of use

• The supporting smartphone application must be organised

• The supporting smartphone application should display help messages to notify the user
of the current state

Interactive

• The supporting smartphone application could provide statistical analysis

• The supporting smartphone application could provide support for multiple languages

Dependability

• The system should be able to recover from connection drops

• The system must be able to work comfortably within a slower network

• The system must be able to handle a large amount of data throughput

9

Security

• The system must support current security standards

• The system must provide access only to the authenticated users

• The system must provide secure communication channels between the Central Hub and
the supporting smartphone application

3.2 Functional

Requirement:

The smartphone application must allow the user to add new edge devices.

Acceptance Criteria:

• The smartphone application opens a dialog in which the user can choose the name of the
new edge device and add it to the network.

Requirement:

The smartphone application must allow the user to adjust the Alert trigger.

Acceptance Criteria:

• The smartphone application opens a dialog in which the user can adjust the timeframe
for the alert trigger.

Requirement:

The smartphone application must allow the user to authenticate with the biometric scanners.
Acceptance Criteria:

• The smartphone application must allow the user to scan their fingerprint and authenticate.

Requirement:

The smartphone application must allow the user to control the camera stream.

Acceptance Criteria:

• The smartphone application must allow the user to start the camera stream.

• The smartphone application must allow the user to stop the stream.

10

Requirement:

The smartphone application could show the live data flow from the sensors.

Acceptance Criteria:

• The smartphone application could display cards with information from the sensors.

Requirement:

The smartphone application could allow the user to change the camera streaming quality.

Acceptance Criteria:

• The smartphone application could display a dialog for choosing the stream quality

Requirement:

The smartphone application could display the currently connected edge devices.

Acceptance Criteria:

• The smartphone application displays a field with all of the currently active devices

Requirement:

The Door Lock must allow the user to reset it whenever they wish to.

Acceptance Criteria:

• The Door Lock provides a hardware button for manually reseting it

Requirement:

The Door Lock must provide an alternative way of unlocking the door.

Acceptance Criteria:

• The Door Lock must provide the user with the ability to unlock the door with a key if
the sensor fails.

11

4. System Design

Before starting with the system design I had to step back and look at the big picture and
establish exactly what requirements must be satisfied. As mentioned in the Background
chapter focus should be placed on the modularity of the system. The benefit of developing a
modular system is the ability to interchange the different blocks of that system, be that
software or hardware. The goal, then is to develop a modular system that can accommodate a
big sensor network and is also capable of future expansion. My approach was to begin with
understanding the main purpose of IoT devices. In general IoT devices are used for collecting
data from the surrounding environment, deriving information from that data and presenting
it to the user. Another really important point here is the seamless work of the device, IoT
devices consist of multiple components that need to work in unison to provide the user with
an enjoyable experience. This is particularly important in the case of this project, because of
its modular nature. There needs to be an established framework that will ensure the seamless
communication between the different software and hardware components of the system.
Therefore this chapter will focus on establishing such a framework. This framework will
include identifying the separate stages of the data lifecycle and defining what each of those
stages will be responsible for. The framework will also define a mechanism for communication
as well as the structure of the data exchanged between the different stages of the data
lifecycle. In addition to the abstract model design of the system, this chapter will also focus
on the design of the separate components. Emphasis will be placed on their importance and
uses within the framework.

4.1 Data and Control Flow

Starting with the abstract model design of the device, which is comprised of 3 stages (Data
Collection, Data Processing and Data Presentation), starting from low to high level of
integration. These stages can also be interpreted as a stack, the low level contains the raw
and unprocessed data, while the higher level presents the already processed data into a more
user friendly format. Every stage in the data stack has its own responsibility and each stage
requires different hardware and software to achieve that. This stack effectively represents the
data flow starting from the first stage(Data Collection) of this system, which is responsible for
extracting machine readable data from the surrounding environment and passing it to the
next stage of the process stack. This is achieved with the use of sensors/actuators and
micro-controllers, which can be summarised as Edge Devices. The job of the sensors are to
collect readings from the environment and turn them into machine readable data. Actuators
on the other hand are used to change physical conditions based on the generated data. In this
case micro-controllers supply the sensors and actuators with a wireless connection, which
provides a rather convenient way of communication. The second stage(Data Processing) is the
brain of the stack, taking the raw data collected from the first stage, extracting additional
information from it and sending it to the next stage. This is achieved by using a central hub,
which keeps track of all the sensors in the network, records their data and performs machine

12

learning algorithms on that data. The third stage(Data Presentation) is where the data is
presented in a more user friendly format, such as graphs and tables. This is achieved by using
a smartphone application, that takes the processed data from the second stage and displays it
in a nicer fashion. With the data flow established the system needs to have some mechanism
for the highest level to interact with the lowest. Since the user’s only interaction will be with
the Data Presentation stage, there needs to be a well established control flow, allowing the
user to easily control the lowest levels of the stack. Compared to the data flow, the control
flow takes the opposite direction and it moves from the highest to the lowest levels of the data
stack. Thus allowing the user to interact with the edge devices, such as smart based locks,
thermostats, light switches and etc. The data and control flow complete the data lifecycle.

Figure 4.1: DataStack

4.2 System Structure

After the data and control flow were established, the next step was to choose a mechanism for
communication between the different levels of the data stack. Since the components of IoT
devices are usually not that powerful and they always try to be as efficient as possible and are
usually deployed in places where the internet connection is not that fast. Which meant that
the communication protocol had to be lightweight so it can run on the chosen hardware and
also have a small network footprint. As it turns out there is a plethora of internet
communication protocols that fitted this description, however the one that caught my
attention was the Message Queuing Telemetry Transport (MQTT) protocol [15]. MQTT was
specifically designed to be light-weight publish/subscribe messaging transport protocol . It is
very useful for communication over networks where network bandwidth is a premium as well
as for communication where a small code footprint is required and it is well supported by the
components chosen for this project. In addition, MQTT is well documented and even though
it was developed in the 1990s, it is very popular amongst IoT devices and it is still widely
supported. After choosing the mechanism for communication between the different levels of
the data stack, the next step was to determine the channels for communication. In order to
create a more efficient design, the different levels of the data stack should be treated
differently. The initial plan for communication between the stack levels was to have a separate

13

communication channel for each device that connects to the Hub. However that proved to be
inefficient when adding large number of devices, each of which had to reserve a separate
channel which would strain the system. Rather than creating a separate communication
channel for each device, this framework defines just six communication channels for the entire
system. These communication channels are split between the different levels of the data stack.
Focusing on the communication between the lower two stages of the data stack, the
framework defines three communication channels. These are the data, control and
configuration channels, each playing a different role. Starting with the data channel, which is
responsible for carrying data from the edge devices to the Hub. The control channel operates
in the opposite direction to the data channel and carries control commands from the Hub to
the edge devices. The configuration channel is used for transmission of configuration details
when a new device connects to the Hub. In addition, the configuration channel is bidirectional
and establishes a two way communication between the edge device and the Hub. Where as
the data and control channels are omnidirectional, like a one way street, they can send data in
one direction only. Communication channels between the highest levels of the data stack use a
similar methodology. Again the android data and control channels are the main
communication channels, with the difference of the naming scheme. This naming scheme was
introduced to remove the confusion between the naming of the channels. In addition to that
there is the media channel, which is responsible for carrying the camera streaming data from
the Hub to the Android Client. More detailed information about the camera functionality will
be included later on. In addition, because this system is modular, extra communication
channels can be added in future development if needed. My motivation behind designing the
communication channels in such a way was to make the system more simplistic and efficient.
This way the system is more organised and can be easily confined within a framework that is
intuitive and easy to understand. Applying these changes to the data stack, so now it will
reflect the communication channels, resulted in the following schematic.

14

Figure 4.2: DataStackCom

The data stack graph represents the abstract model of the system. It describes its main
blocks, while the system design graph below shows the real world application of the abstract
design. Taking into account all of the design choices taken so far produces the following
schematic. The Data collection is represented by the edge devices located on the left in the
graph, the Data Processing block is represented by the Hub and finally the final block the
Data Representation is represented by the smartphone. Both of the graphs represent the
same system, however the extended data graph shows the abstract representation of the
system. While the second graph shows the real scenario for this system.

15

Figure 4.3: SystemDesign

In addition to the communication channels, my design also categorises all of the edge
devices into three types. The three edge device types are as follows: sensors, actuators and
sensor&actuators. In IoT devices such as this one sensors and actuators are a given, however
sometimes a combination of both can also be used in some instances, such as the smart door
lock. Depending on the type of edge device a different communication channel is used, either
the data channel or the control channel. The sensors make use of the data channel while the
actuators use the control channel. In the case of the sensor&actuator both the data and
control channels can be utilised to achieve the required bidirectional communication with the
Hub. This distinction between the edge devices made the system even more organised and
made it much easier to develop new edge devices, once this framework is adhered to.
Developing a new edge device now comes to choosing what type of device the developer is
building and that would immediately suggest the communication channel they need to use.
The Android Client can also be considered as a type of an edge of device, since it is located at
the edge of the network. However, the Android Client makes use of different communicational
channels and it should not be confused with the edge devices that belong to the Data
Collection stage. To disperse any confusion and bring more clarity, the table below shows
what channels each device connected to the Hub should support. Again as previously
mentioned, when developing a new device, picking the type of device would immediately
suggest the use of the correct communication channels.

16

Sensor Actuator Sensor&Actuator Android
Client

Data Channel - -

Controll
Channel

- -

Configuration
Channel

-

Android Data
Channel

- - -

Android
Control
Channel

- - -

Media
Streaming
Channel

- - -

This narrowing of the channels introduced earlier, creates another problem and that is the
distinction between the different edge devices of the same type. Edge devices already have
three categories that they can fall under, however devices from the same type will be able to
share the communication channels. This can create confusion between the devices. To alleviate
this problem there needs to be an established identification between the edge devices. This
can be solved by introducing a unique identifier that uses information about the edge device
and converts that into an Identification number. The mechanism behind the generation of the
unique identifiers will be explored further in the Implementation section. For now lets assume
that each edge device has a unique identifier or ID number. The framework so far has defined
the data and control flow as well as the communication channels between the data stack levels.
However, communication can not be established yet due to the absence of a clear messaging
structure. This messaging structure will ensure that no conflict is raised between the edge
devices. It will also preserve the consistency and integrity of the transmitted data. However,
because the structure of the system design consist of more than one communication channel
and each of them performs a different task. Therefore each communication channel will make
use of a slightly different messaging structure, which is shown in the table below.

17

Message Structure Data Type

Data Channel [SensorID/Payload] or
[SensorID/Payload/UserID]

Encoded Byte Stream

Control Channel [SensorID/Command] Encoded Byte Stream

Configuration Channel [SensorName/SensorType]
and [SensorID]

Encoded Byte Stream

Android Data Channel [SensorID/Payload] Encoded Byte Stream

Android Control Channel [ClientID?=Feature?=Command]Encoded Byte Stream

The first three entries in the table show the message structure of the communication channels
between the first and second levels of the data stack. Starting with the Data Channel, which
can have two different message structures, depending on the type of edge device. The first
message structure ([SensorID/Payload]) should be implemented and used by the sensors.
However, as pointed out earlier there could be a scenario where a combination of sensor and
actuator can be used. In this case the messaging structure can be different. For example the
DoorLock which is a Sensor&Actuator type of edge device, where knowing the user who
accessed the door is important. That is the purpose of the second messaging structure, it
allows the system to monitor who triggered the Sensor&Actuator device. The Control
channel’s messaging structure uses two parameters namely the sensor identification number
and the command. The identification number of the sensor is used to preserve the data
integrity, because as mentioned previously devices of the same type can access the same
communication channels. The Configuration channel is bidirectional and requires a different
approach to the messaging structure. The structure from the edge device to the Hub requires
two parameters and they are the name of the sensor and its type. While the structure in the
other direction, from the Hub to the edge device requires only one parameter which is the
newly generated Identification number.

As mentioned previously there is a third communication channel between the second and
third stage of the data stack. This channel is specifically reserved for the camera streaming
functionality. The design of the camera streaming functionality is simple. The camera module
is directly connected to the Hub and communicates with the Hub via a ribbon cable. As
defined by the raspberry pi foundation, there are two main data buses for communication
between the camera module and the Hub. These are the I2C bus which is a relatively low
bandwidth and it is used to carry commands and configuration information from the Hub to
the camera module. The second connection is the CSI bus which operates at a much higher
bandwidth and it carries pixel data from the camera module to the Hub. In this iteration of
the project the camera is directly connected to the Hub, which can be improved in future
generations. This introduces the final change to the System Design. The complete system
now looks like.

18

Figure 4.4: SystemDesign

This concludes the system design and structure. The main points here are the data stack, which
defines the data lifecycle as well as establishing the data and control flow. In addition to the
data stack, establishing the communication channels, provided the vital connections between
the stages of the data stack. Furthermore, introducing a predefined message structure made
communication trough the channels less ambiguous. Categorisation of the edge devices also
delivered a much needed structure to the edge device network. It also added some composure
in the development of new edge devices. The next sections will layout the design of the software
that is housed in the main hardware components included in the project.

4.3 Edge Devices

Starting with the first level of the data stack, which is occupied by the Edge Devices. They
act as the eyes and ears of the whole system, constantly sensing and registering changes in the
surrounding environment as well as providing a translation between the virtual and physical
environment. These changes then need to be transmitted to the next data stack level. It is
vital for these devices to be accurate and dependable, since all of the data that accumulates
within the system is generated by them. Incorporating these devices into the previously defined
system design, does not require much work from the developer. The fore-mentioned framework
makes the development of new edge devices straightforward and easy. This system is modular
so there are no limits, when it comes to developing new devices. However, this modular design
also creates another problem and that is the connection of new edge devices to the existing
network. The focus of the next section will be the design of the mechanism for adding new
edge devices to the network.

19

4.3.1 Addition of new Edge Device

Ideally the procedure for adding new edge devices should be easy, intuitive and would not
require the user to remember tedious details like usernames and passwords. Ideally the user
would just press one button and that would conclude the addition of new devices. However,
providing some personalisation should also be taken into consideration. For example allowing
the user to chose the name of the device they wish to add is a nice touch. The final design
combined both simplicity and personalisation by allowing the user to chose a name for the
new device and to add it to the network with the press of one button. The name for the
sensor is a required field and it is used for the ID generation process. After naming the new
device the Android Client will send the required configuration information to the Edge Device.
The transmission of the configuration data between the Android Client and the Edge Device
should not be confused with the configuration channel defined previously. This communication
channel between the Android Client and the new Edge Device is different from the one defined
earlier. Only when the Edge device receives the required information can the second stage of
the configuration process begin. The second stage of this process is to connect the Edge Device
to the Central Hub.

Figure 4.5: New Edge Device Setup

On its first connection to the Hub, the edge device will connect using a default ID number and
will send its name and type trough the configuration channel that was defined earlier. This
step is really important and each new Edge Device needs to use the configuration channel on its
first setup. The messaging structure is also of great importance, because the Hub will expect
the device to send its name and type in this exact order. Once the connection is established
and the configuration details received by the Hub, can the next stage begin. This stage is
responsible for generating the unique ID number and sending it back to the edge device. Then
the Edge device has to reconnect back to the Hub with its new Identification number.

20

Figure 4.6: ID Configuration

This concludes the setup process for the new edge device and the device can now enter its
normal state. If any issues occur during the setup of the device the standard procedure is to
restart the device via the RST button and start the setup process again. It should be noted
that the distance between the edge device and the Hub will affect the time it takes for the edge
device to connect. In addition, depending on that distance the normal operating state of the
edge device might also be affected.

4.4 Central Hub

As mentioned before the Central Hub is the brain of this IoT device and its main task is to
process the raw data from the edge devices. In addition to data processing, the Hub also
provides a connection between the lowest and highest data stack levels. Since the system is
modular the Central Hub is also split into separate block, this will allow the addition or
removal of sections if that is needed in future updates. In its current state the Central Hub
consists of three main block. These are the MQTT Broker, Database and Media server block.
The aim of this section is to explain the design of each of those blocks as well as establishing a
relationship between them.

The first block is the MQTT Broker, which is split into three segments. First of which is the
data receiver segment, which is responsible for handling messages sent on the communication
channels.Once the messages are received they are handed to the next segment of the system.
This position is fulfilled by the data processing segment. This segment is responsible for
extracting additional information from the raw data captured by the edge devices. After
processing the data, the next step is to send the extracted information to the smartphone
client, which is fulfilled by the departure segment. The combination of these three parts
completes the communication between the data stack stages. These three blocks of the
system are essential, because they are the glue that holds the system together. Without them

21

the edge devices wont be able to communicate with the smartphone client. The graph below
shows the design of the Hub, with the incorporation of these blocks. The combination of these
three blocks creates the MQTT Broker.

Figure 4.7: MQTT Broker Design

The Hub also needs a mechanism to store information that passes trough it. This information
can be accessed later on by other blocks of the system. That can be achieved with the use of
database. Choosing a database comes down to whether a structured approach is needed,
which can be satisfied by an SQL Database. The other path is choosing a NoSQL approach,
which in this case was unnecessary, as the information is not going to be stored across
multiple devices. The nature of this project, if extended, can make use of a NoSQL approach,
however for the time being a more structured approach was needed. The best solution in this
case was to use a MySQL database, which would provide a structure for the stored data. The
database is accessed every time information passes trough the MQTT Broker’s receiver
segment. The job of the database is not only for data collection, but also storing the users
authentication information. In its final design the database includes three tables, the
SensorMap, the DataCollection and the Users table. Starting with the SensorMap, which is
used to store the mapping between the edge device IDs, names and types. The
DataCollection table is used for collecting any information sent from the edge devices as well
as the smartphone client. Finally the Users table holds all of the current system users that
are authenticated to use the device.

The Hub also houses the media server, which is responsible for handling the streaming
functionalities of the system. Complying with the modular design of the system, the
streaming server should also be treated as a separate block, much like the Database and

22

MQTT Broker. The media server plays the role of reading and encoding the pixel data sent
from the camera module. Once the data is encoded the media server has to transmit that
data to the smartphone client. This is the final block of the Central Hub’s design. The final
design of the Central Hub is represented by the graph shown below.

Figure 4.8: Central Hub Design

The design consists of three main blocks as mentioned previously. The sections above focus on
the individual design of the different blocks that build up the Central Hub. This section will
focus on the relationship between these blocks. The first relationship is between the receiver
segment and the Database block, this relationship is vital and provides the receiver segment with
the capability to save every piece of data that passed trough it. The second really important
relationship is between the data processing segment and the Media stream server, the idea here
is to allow the data processing block to control the media server. Whenever the user starts the
stream the data block check if the user is authenticated to do so and it that is the case, then the
media server can be started. That is why the other vital relationship is between the Database
and data processing block. This connection allows the data processing block to access the
database when it needs to. This action can be performed to authenticate a user or get access
to historical data that the user might request.

23

4.5 Smartphone Client

Nowadays everyone has a smartphone in their pocket and this allows us to connect to the rest
of the world. A big part of the Home monitoring device is the ability to be controlled
remotely when ever the user wishes to. Here the smartphone comes into its own, providing
that flexibility to the user. The development of a supporting application for controlling this
IoT device is crucial. The design of this application in this project is a proof of concept. The
smartphone client can be created in any way as long as it abides to the fore-mentioned
framework. The full design and implementation of the supporting smartphone application will
be further discussed in the Implementation chapter.

To recap, this chapter defines the data stack, which lays the foundations of the abstract
design of the system. The data and control flow show how the system should behave and the
precedence of each stage in the data lifecycle. In addition, this framework also establishes
communication channels between the different levels of the data stack and a mechanism for
using these communication channels. One more important thing here is the structure of the
messages that are transmitted over the communication channels. This structure should be
followed, otherwise the Hub wont be able to save and process the data. Also discussed in this
section is the design of the edge devices, the Hub and the Android Client. Starting with the
Edge devices, my main goal was to make it easy for the developers, and so with this design
the developers have a lot of freedom, the only constraint that they need to abide by is the
framework that defines the communication channels and the messaging structure. The design
of the Hub was focus on modularity as well, so that the software can be broken into separate
blocks and can be upgraded in the future. These upgrades can either add extra functionality
or they can replace older blocks with newer, more advanced ones. The next section will focus
on Implementing the system design in a real world scenario.

24

5. Implementation

This chapter will focus on the techniques used to implement the system design. The chapter is
broken into five sections, starting with a brief overview of the hardware components used for the
implementation. Followed by the Software tools section, which primarily provides justification
for the tools that were used to help with the implementation process. The following three
chapter describe the steps taken to develop each component of the system. Starting with the
Door Lock implementation and moving towards the Central Hub implementation and the final
section is the implementation of the smartphone application. This chapter will depict only the
main functionalities of the system, therefore most of the code that was used will not be present.
The full code that was implemented will be provided in a separate zip file.

5.1 Hardware components

Since the project is based around the idea of cheap hardware, the parts list provided below shows
the devices used in the development of this project. Just as a disclaimer, all of the following
parts were purchased from amazon.co.uk at retail prices. Some of the parts can be found for
less on eBay or directly from the manufacturer’s websites. However, since almost all sensor
manufacturers are based in China, it takes longer for the parts to be delivered(approximately
one month, according to estimates provided by the couriers). Also some manufacturers do not
always agree on sending just one sensor. Considering the time frame in which this project had
to completed, I have opted to purchase the parts listed below from amazon, so that I can take
advantage of the one day prime delivery. Furthermore if this project is upscaled, the parts can
be ordered directly from the manufacturer in bigger quantities and that can reduce the price
per sensor. In addition, some of the parts used in this project can be substituted with other
alternatives. Below I have listed the parts that I have used to develop the project and my
dependability evaluation is based on these parts.

Raspberry Pi 3 [4]
The Raspberry pi is a great addition to this project, thanks to its smaller price tag and incredible
versatility. The 3’rd edition of the Raspberry pi also adds WiFi and Bluetooth, which makes
it ideal for this project. This part can be substituted with any linux device that has a WiFi
anthena and similar specification to the Raspberry Pi 3.

MakerHawk NodeMCU ESP32 [2]
The ESP32 is a low-cost WiFi chip with a full TCP/IP stack and can provide WiFi to any
micro controller. That combined with the NodeMCU architecture delivers a very powerful
micro-controller in a small form factor. In addition, the ESP32 micro-controller adds a dual-
core to the NodeMCU architecture, which provides much more versatility. This part can be
substituted with the NodeMCU ESP8266 board.

MakerHawk v1.3 Raspberry Pi 3 Camera Module [3]

25

The SmartHawk camera module was chosen for this project, because it was cheaper than the
official camera module, produced by the raspberry foundation. In addition, the camera module
has the capability to capture video at 1080p, despite its smaller resolution of 5mp. It was also
build to be compatible with the Raspberry Pi, thus it is well supported and documented.

XCSOURCE PN532 NFC RFID reader/writer [5]
This sensor was chosen, because of its flexibility when it comes to I/O communication, it
provides SPI/I2C/HSU connections. Furthermore it was well documented, cheap and vastly
supported amongst the community. Since most libraries for it are community based.

Smartphone with a fingerprint scanner running Android OS
The decision behind this choice were the very expensive fingerprint scanners and the limited
libraries for implementing them with the nodeMCU ESP32 micro-controller. The most cheap
alternative was to use the fingerprint of a smartphone and most phones today have fingerprint
scanners. In addition, Android provides libraries for implementing this functionality.

5.2 Software tools

This project included the use of multiple software tools for achieving the development of the final
product. Starting with the micro-controller programming which was done trough the Arduino
IDE [6] [androiddoc]. This particular IDE provided the most support for the micro-controllers
that were chosen for this project. In addition, the Arduino IDE provided a wide range of
libraries, which made the whole development process much easier. For the programming of the
Hub the main software tool that was used was the Atom IDE [7]. It is similar to Sublime Text
and provides an overall nicer development environment. The rest of the Hub implementation
was done trough the terminal with the help of the nano text editor. The Android application
was developed in Android Studio [12], which is the official software tool for Android application
development provided by Google. Although other environments such as Eclipse are available,
the Android Studio provides the best support for Android application development in multiple
versions of the Android operating system. In addition, the provided gradle build tools made it
easy to add any external libraries, which made development easy and efficient.

5.3 DoorLock

The smart door lock is not a new idea and there are quite a few smart door locks out there,
the difference is that this design uses the biometric scanner of the user’s smartphone. This
approach was inspired from the smartphone contactless payment, which takes advantage of the
user’s fingerprint scanner and NFC anthena to authenticate the transaction. The design of the
DoorLock follows this exact same principle. Simply put, the DoorLock is a micro-controller
connected to a NFC sensor and a door solenoid actuator. In this project the DoorLock can be
regarded as a proof of concept, since the door solenoid is not present. To mitigate the absence
of the actuator, an LED light will be used instead. This light will simulate the door solenoid
open and close states. Communication between the two components is achieved trough a SPI
interface. Other interfaces like I2C were also considered, however in the end the SPI interface
was preferred. The full duplex of the SPI interface, the ability to transfer more data at once
and the synchronous mode of operation were the perfect fit for this project. The SPI interface
uses a master-slave design principle. The master device has full control over the slave device
over a four wire serial bus. This four wire serial bus consists of the SCK: Serial Clock, MOSI:
Master Output Slave Input, MISO: Master Input Slave Output, SS: Slave Select. The SCK,

26

MOSI and SS wires are the output from the master to the slave, while the MISO wire outputs
from the slave to the master. In addition to these four serial bus wires, there are two more
connections going from the micro-controller to the NFC sensor and they are the Power and
Ground wires. As mentioned earlier the inclusion of a LED will simulate the absence of an
actuator. This LED is directly soldered to the micro-controller, which provides the power and
control. The scheme below shows the design of the DoorLock.

Figure 5.1: Door Lock Design

With the design of the DoorLock taken care of, the first step was to implement the connection
between the NFC sensor and the micro-controller. This was achieved with the help of a few
community based libraries, mainly the PN532, PN532 SPI and PN532 Interface [10]. To
program the micro-controller the Arduino IDE defines two main functions, the first one is the
setup and the second is the loop. All of the initialisation code goes into the setup function.
This includes all of the constructer methods from the PN532 libraries, the initialisation of the
server and access point, which are going to be discussed later on. In addition, the setup
function also binds the two micro-controller cores to their respective tasks, which are going to
be executed later on in the loop functions. Because this is a dual core board, there are two
loop functions and each of them is bound to a separate core. One of those cores is used for
the PN532 listener function and it is executed every few seconds. When the NFC sensor is
triggered the application protocol data unit(APDU) [16] is checked. The APDU defines a
communication structure between a smart card reader and a smart card in this case the
smartphone.

27

However to be able to completely authenticate the user, the Door Lock needs to be connected
to the Hub. So far the PN532 libraries have only acted as a bridge between the smartphone
and the NFC scanner, this is only part of the authentication process. The next step is to
crosscheck the information received by the NFC reader with the one that is stored on the
Hub. This was introduced to prevent valuable information from being stored on the Door
Lock itself. However in order to accomplish that we have to implement the mechanism for
pairing Edge Devices to the Hub. But before that can be achieved, there should be a defined
way of transmitting configurational data from the smartphone to the Door Lock. This was
achieved by implementing a server and switching the ESP32 onboard WiFi card into access
point mode. The idea behind that is to connect the smartphone to the Door Lock via WiFi
and transmit the necessary configuration data with a HTTP Post request.

1 WiFi . softAP (ss idOfSensor , passOfSensor) ; // can remove pass argument to s e t up an
open ac c e s s po int

2 // ge t s the IP adre s s o f the a c c e s s po int
3 IPAddress myIp = WiFi . softAPIP () ;
4 // p r i n t s the IP to the s e r i a l monitor
5 S e r i a l . p r i n t l n (myIp) ;
6 // s t a r t s the s e r v e r
7 s e r v e r . on (”/” , handleRoot) ;
8 s e r v e r . begin () ;

This process can also be implemented by substituting the WiFi connectivity with Bluetooth
which is up to the person developing the edge device. The WiFi was chosen, because it provides
backward compatibility with older micro-controllers. The transmitted data will be encoded in a
JSON format. Then it is just a matter of parsing the JSON object and extracting the necessary
setup information.

1 // Check i f the HTTP header has pre sent arguments
2 i f (s e r v e r . a rgs () > 0) {
3 // unpacs the s e r v e r arguments
4 f o r (u i n t 8 t i = 0 ; i < s e r v e r . a rgs () ; i++) {
5 i f (s e r v e r . argName(i) == ”PostData”) {
6 S e r i a l . p r i n t l n (” Input r e c e i v ed was : ”) ;
7 S e r i a l . p r i n t l n (s e r v e r . arg (i)) ;
8 Sta t i cJ sonBuf f e r <300> JSONBuffer ;
9 JsonObject& parsed = JSONBuffer . parseObject (s e r v e r . arg (i)) ;

10 NetworkSSID = parsed [”NetworkSSID”] ;
11 NetworkPassword = parsed [”NetworkPassword”] ;
12 mqttServer = (const char ∗) parsed [”mqttServer ”] ;
13 s e r v e r . stop () ;
14 WiFi . so f tAPdisconnect () ;
15 }
16 }
17 }

This setup information is then used to connect to the Hub. Connection is established in the
following fashion, first with the Hub and then with the MQTT Broker. It is vital that the setup
is followed in this fashion, or the device would not be able to finish the setup process.

1 WiFi .mode(WIFI STA) ;
2 WiFi . begin (NetworkSSID , NetworkPassword) ;
3

4 whi le (WiFi . s t a tu s () != WLCONNECTED) {
5 delay (500) ;
6 S e r i a l . p r i n t (”Connecting . . . to ”) ;
7 S e r i a l . p r i n t l n (NetworkSSID) ;
8 }
9

10 S e r i a l . p r i n t l n (”Connected to ”) ;

28

11 S e r i a l . p r i n t l n (NetworkSSID) ;
12

13 c l i e n t . s e tS e rv e r (mqttServer . c s t r () , mqttPort) ;
14 c l i e n t . s e tCa l lback (ca l l ba ck) ;
15

16 whi le (! c l i e n t . connected ()) {
17 S e r i a l . p r i n t l n (”Connecting to MQTT. . . ”) ;
18

19 i f (c l i e n t . connect (”ESP32Client” , mqttUser . c s t r () , mqttPass . c s t r ())) {
20 S e r i a l . p r i n t l n (” connected ”) ;
21 } e l s e {
22

23 S e r i a l . p r i n t (” f a i l e d ”) ;
24 S e r i a l . p r i n t (c l i e n t . s t a t e ()) ;
25 delay (2000) ;
26 }
27 }
28

Before connecting to the MQTT Broker, the Door Lock needs to implement the
communicational channels introduced by the software design framework. Following the system
design makes this process easy and straight forward. The first step is to determine what type
of device the Door Lock is. Analysing the design of the Door Lock, we have a sensor which is
represented by the NFC anthena. There is also an actuator which is simulated by a LED.
Taking these into consideration defines the Door Lock as a sensor&actuator. Going back to
the system design, each sensor&actuator must implement three communication channels,
which are the data, control and configuration channels. After choosing the channels we also
need to select the message structure for the communication. The system design also provides
this by showing the messaging structure that each channel must use. With the communication
channels taken care of, the next step is to implement the mechanism for pairing the Door
Lock with the MQTT Broker. Initially the device will connect to the Broker with a default
Identification number, which will be changed later on. After the initial connection to the
MQTT Broker the device will send its configuration details on to the configuration channel
and will wait for the Broker to assign it with a new Identification number. After the new
Identification number is assigned to the edge device, it will disconnect from the Broker, thus
destroying the default Identification number that was provided by the initial setup process. If
the disconnection is successful the edge device will now attempt to reconnect with the new
Identification number that was generated by the MQTT Broker. If a problem occurs during
the reconnection process the user will be notified and the recommended procedure in this case
would be to restart the edge device and restart the setup process. This can be done by
pressing the reset button on the device, which will destroy all previous data and start a fresh
setup process. Upon a successful setup process the device will start its normal operation and
the user will be notified of that action. In addition, the device will disable the AP mode and
will enter into its STA (station) mode. The initial implementation featured a single core
micro-controller which was causing issues, regarding the task scheduling. Even though
concurrency can still be accomplished with software interrupts and task scheduling, the
decision was to move to a micro-controller with two cores. This made the DoorLock more
robust and responsive and completely eliminated the need for software scheduling.

5.4 Hub

The Hub that is used in this project is a Raspberry Pi 3, but any device running Linux will be
sufficient as long as that device has a similar or better hardware. As mentioned in the system

29

design the Hub is responsible for keeping track of all edge devices connected to it, in addition it
must be capable of handling the data throughput. The system design also split the Central Hub
into segments and the implementation will follow this. Starting with the implementation of the
MQTT Broker which is the main segment that is responsible for controlling the other segments.
The implementation of the MQTT Broker is developed using the Python 3.6 environment with
the help of the paho.mqtt library [14] and a mosquito server [9]. The paho library defines two
functions which are the on connect and the on message. On connect function is the callback
when the server receives a CONNACK response. The CONNACK response marks a successful
connection to the Hub. The On message callback function is triggered when a PUBLISH
message is received from the client. In addition, the Hub is also responsible for storing all
of the collected data from the edge devices as well as the user’s authentication information.
That is why the database logic was merged with the MQTT Broker, and every time the Broker
receives information the database controller will record it. The Hub is also responsible for the
generation of unique identification number for each newly connected device. This was achieved
by taking the name of the sensor and appending a number at the end of it. This number is
created by taking the count of all the edge devices that are currently connected and adding one
to it. For example if there are 2 edge devices currently active the generation of the Identification
number for the new device will be the ”device name” + 2(number of the currently connected
devices) + 1. The listing below shows how this was achieved.

1 de f generate ID (sensorName , numberOfSensors) :
2

3 i f (not i s i n s t a n c e (sensorName , s t r)) :
4 r a i s e TypeError (”sensorName must be o f type s t r ”)
5 e l i f (not i s i n s t a n c e (numberOfSensors , i n t)) :
6 r a i s e TypeError (”numberOfSensors must be o f type i n t ”)
7

8 senosorID = sensorName + s t r (numberOfSensors + 1)
9

10 re turn senosorID

Another distinct feature is the Alert Trigger functionality, which allows the user to set a time
during which they wont be home. This is set trough the smartphone application and sent to
the Hub via the communication channels defined by the framework. More on the smartphone
implementation will be discussed in the following section. The only thing that we need to know
right now is that the smartphone application will use the control channel to send the set Alert
Trigger timeframe. Thus the first step of the implementation was to save the timeframe to a
configuration file. The configuration file houses two entries, one entry is used just for the time
in hours and minutes while the other entry is used for saving the weekdays. Only the days in
which the trigger will be active are saved.

1 de f t r i g g e r p r o c e s s i n g () :
2 #pu l l data from DB
3 t ime t r i g g e r = datet ime . s t rpt ime (datet ime . now() . s t r f t ime (’%Y−%m−%d %H:%M:%S ’

) , ’%Y−%m−%d %H:%M:%S ’)
4 dt1 = datet ime . s t rpt ime ((c on f i g . get (’ TimeTrigger ’ , ’ t imeStart ’) + ” :00 ”) , ’%

H:%M:%S ’) . time ()
5 dt2 = datet ime . s t rpt ime ((c on f i g . get (’ TimeTrigger ’ , ’ t imeStop ’) + ” :00 ”) , ’%H

:%M:%S ’) . time ()
6

7 today = datet ime . today () . weekday ()
8 timeToday = datet ime . s t rpt ime (datet ime . now() . time () . s t r f t ime (”%H:%M:%S”) , ’%

H:%M:%S ’) . time ()
9

10 i f s t r (today) in c on f i g . get (’ weekdayTrigger ’ , ’ weekdayList ’) :
11 i f (dt1 < timeToday and timeToday < dt2) :
12 re turn True

30

13 e l s e :
14 re turn Fal se

Once the trigger information is saved the next step was to provide a function for checking if
the user authenticates in the correct time or not.The precedence in which the authentication
is carried out is the following. Firstly check if the user is authenticated if they are then check
whether they are authenticated in or outside the set hours. Depending on that the system
will respond differently and will send a different response to the smartphone application. The
rest is left to the smartphone application to notify the user. Another function implemented
is the camera control, which is straight forward. The user is checked for access rights to use
the camera stream, if access to the camera stream is granted the system checks whether the
smartphone application sent a message with flag ”1” or ”0”. If it is ”1” the system starts the
camera if it is ”0” the camera is stopped.

1 cur so r . execute (ch e c k u s e r a c c e s s)
2 f o r i , j in cur so r :
3 i f (userID == i and message == j) :
4 cur so r . execute (i n s e r t d a t a d a t a c o l l e c t i o n , (sensorID ,

userID , message , datet ime . now() . s t r f t ime (’%Y−%m−%d %H:%M:%S ’)))
5 i f (t r i g g e r p r o c e s s i n g ()) :
6 c l i e n t . pub l i sh (androidDataChannel , sensorID + ” : anomaly”

)
7 e l s e :
8 c l i e n t . pub l i sh (androidDataChannel , sensorID + ” : normal”)
9 pr in t (” granted ”)

10 c l i e n t . pub l i sh (controlChannel , ”1”)
11 e l s e :
12 #unothor i sed a c t i v i t y , send n o t i f i c a t i o n
13 c l i e n t . pub l i sh (androidDataChannel , sensorID + ” : unauthor i sed

”)
14 c l i e n t . pub l i sh (controlChannel , ”0”)
15 pr in t (” denied ”)
16 cnx . commit ()

The next important functionality is the control of the media server, which is a matter of starting
the uv4l server with the help of the python subprocess library. This library allows the python
server to execute terminal commands. Stopping the server is handled the same was as starting
it.

1 i f (temp [0] == checkUserID and temp [1] == ”cameraControl ” and temp [2] == ”1”) :
2 f r . media Stream (”uv4l −−auto−v ideo nr −−d r i v e r raspicam −−encoding

mjpeg” , True)
3 pr in t (”Stream s ta r t ed ”)
4 e l i f (temp [0] == checkUserID and temp [1] == ”cameraControl ” and temp [2]

== ”0”) :
5 f r . media Stream (” p k i l l uv4l ” , Fa l se)
6 pr in t (”Stream stopped”)

These three functionalities are the main features if the Hub design. There other functions are
defined by the paho library and are used to handle the connection with the edge devices as well
as receiving messages from them. To initialise the MQTT Broker, paho defines the following
functions:

This concludes the implementation of the Hub, the next section will focus on the design and
development of the smartphone application. As mentioned previously this application was
developed in the Android system environment.

31

5.5 Android Client

The system design explored the benefits of a smartphone application and how it can improve
the IoT device by providing the ability to access it remotely. This section is devoted to the
development of a smartphone application, namely in the android environment. The android
environment was preferred as it is a free platform and was the only one available for this project.
The development of the application will be mainly focused on the design and user interface the
code will be provided in the appendix and in the whole implementation will be included in a
separate zip file.

5.5.1 Design and User Interface

The main goal with the design of the user interface was to make it as simple as possible and to
constantly keep the user aware of the state in which the application is, by displaying useful help
messages. The design of the application was developed following the android design guidelines
for simplicity and optimal functionality. Launching the application, the user is greeted by the
application’s home screen, which is encapsulated between the navigation bar at the bottom
of the application screen and the action bar, located at the top. Following android’s design
guidelines, the title of the current state in which the user is located, is displayed on the left
side of the action bar. To the right side of the action bar is the icon for the preferences settings
fragment, which can be accessed from any of the three main states of the application. Switching
between the three main states of the application can be done by taping on the icon of the state
to which the user wants to switch. The icons that represent this functionality are located in
the navigation bar located at the bottom of the application screen. The default screen in which
the application greats the user is the home screen.

32

Figure 5.2: Home Screen

Located in the middle of the bottom bar navigation is the button for the fingerprint reader [18]
[13]screen. Here the system also displays help messages, when the user misuses the fingerprint
scanner. In addition it provides guidance for the door unlocking process. The messages are
displayed on the bottom of the Fingerprint screen, which complies with Android guidelines for
usability.

33

Figure 5.3: Fingerprint Screen

Located in the middle of the bottom bar navigation is the button for the fingerprint reader
screen. Here the system also displays help messages, when the user misuses the fingerprint
scanner. In addition it provides guidance for the door unlocking process. The messages are
displayed on the bottom of the Fingerprint screen, which complies with Android guidelines for
usability.

34

Figure 5.4: Fingerprint Screen Help Message

This message is displayed whenever the user does not completely cover the fingerprint scanner
or when they removed their fingers from the scanner during the authentication process.

35

Figure 5.5: Fingerprint Screen Successful Authentication

Next to the fingerprint screen is the camera stream viewer. The control buttons for the camera
stream are located just above the bottom bar navigation. Pressing the Play button will start
the camera stream, to stop the camera stream the Stop button must be pressed.

36

Figure 5.6: Camera Viwer Screen

Moving the user’s attention to the right side of the action bar is the Preference button, which
leads the user to the Preference window. The Preference window allows the user to change the
settings of the system. The structure that I decided to use for the preference tab is to group
all of the functionalities in a separate sections. The sections are arranged from most frequently
used by the user to the least. The categories are as follows Alert Trigger and Edge Device
Control.

37

Figure 5.7: Preference Menu

Focusing on the Alert Trigger, which allows the user to set a preferred time when they are not
going to be home. Time selection was implemented using the time picker clock, which gives
the user a separate dialog for choosing the time. In addition, this implementation separated
the time picker in two different sections. The first one is the time picker dial and the second
one is the weekday checklist, this separation gives the system more functionality.

38

Figure 5.8: Time Picker Dialog

From this menu the user can chose in which weekdays they want the alert trigger to be active.
The Implementation uses a multi-selection list.

39

Figure 5.9: Weekday Picker Dialog

The second important functionality of the Preference Menu is the add new edge device field,
which when selected opens a new dialog window in which the user can enter the name for the
new device. When the user has entered the name hitting OK will send all of the configuration
data to the Edge Device. However before that the user must be connected to the Edge Device
WiFi server.

40

Figure 5.10: Add New Device Dialog

This section explained the Implementation decisions taken to comply with the system design.
The next section will focus on the evaluation of the product that was developed in this project.

41

6. Product Evaluation

An important part of the development of any new device is the evaluation of the finished project.
Evaluation of the functionalities of the any product can show how many of the requirements
are satisfied. It can also show potential bugs and issues that can be fixed either before launch
or afterwards with an update. This section focuses on the evaluation of the implementation of
the software that was developed in this project. The evaluation was conducted and recorder in
the form of test cases. The test cases are separated in three categories, each of which will focus
on a different section of the product. The focus of this chapter is to establish the dependability
of each component and how well they cooperate. The test cases will include the name of
the module that is being tested as well as the priority of this module. In addition, a brief
description of the task that is executed by that module will be included. The test cases will
also be accompanied by a brief explanation, which will outline the reason for conducting the
particular test.

6.1 DoorLock Evaluation

Starting with the evaluation of the DoorLock implementation. Analysed more abstractly the
DoorLock should react when the user activates the sensor. However there are some scenarios
where the unauthenticated personal may try to bypass the DoorLock, in which cases the system
should respond by alerting the user. In addition, the DoorLoc should respond differently
according to the alert trigger times set by the user. Thus, there are a few use cases that
need to be considered and the DoorLock should respond accordingly. The proper behaviour of
the DoorLock should provide the user with the appropriate alert notification, so that the user
can react in time. The cases that this evaluation takes into consideration are the following.
Starting with the user authentication, which can result in a few different system behaviours.
These are the authentication with normal behaviour, authentication with abnormal behaviour
and unauthorised access. The system authenticates the user with a normal behaviour when the
user accesses the door outside the set Alert Trigger times. Alert notification in this case is still
send to the user notifying that the door has been opened. The other case is when the system
authenticates the user with abnormal behaviour. Here the correct user is still authenticated,
however the system will notify them that the door has been accessed during the set Alert
Trigger time. The last scenario is when an unauthorised personnel tries to open the door
without having the access rights to do so. In this case the system responds by sending an alert
notification to the user, letting them know that someone has accessed the DoorLock. The table
below shows the location of all the test cases that were created for this section. The test cases
are located in the appendix and they provide more detailed and structured information about
the evaluation that was carried out.

42

Test Case Name Test Case ID Test Case Page
Referance

Test Case 1 Door Lock
authenticate with
normal behaviour

DL-001 [49]

Test Case 2 Door Lock
authenticate
with abnormal
behaviour

DL-002 [50]

Test Case 3 Door Lock
unauthorised
access

DL-003 [51]

6.2 Android Client Evaluation

This section includes the evaluation of the complete set of functionalities that were
implemented in the Android Client. The Android Client consists of a few functionalities and
to make the evaluation more accurate they are split into segments. These include the
Fingerprint Authentication, Camera Stream Viewer and the Preference tab. Starting the
evaluation with the Fingerprint authentication, where the user can be authenticated either
successfully or unsuccessfully. The successful authentication is pretty straight forward, the
user places their finger tip on the fingerprint scanner and if the fingerprint matches, the
authentication is successful. However there are a few different states with which the system
reacts when it comes to the unsuccessful authentication. An unsuccessful attempt would be if
the user uses a fingerprint that is not recognised by the system. Another possibility here is if
the user does not cover scanner completely as well as leave enough time for the scanner to
read their fingerprint. Every fingerprint scanner is different and each requires a different time
to read the fingerprint correctly and the system takes that into consideration. If the wrong
fingerprint is used the system will display a failed message. The next functionality is the
Camera Stream Viewer, here two evaluation tests were conducted and they were the start and
stop stream cases. To start the stream the user needs to press the Play button, the system
has to react by starting the stream. When the user presses the stop button the system has to
react by stopping the stream. Next part of the system is the Preference tab, which has more
moving parts than the other states of the system. As mentioned in the implementation
section the Preference tab is segregated into three different segments, the alert trigger, add
new device and the stream quality. Starting with the alert trigger, the user has to press the
Time Trigger field and the system has to respond by displaying the time preference wheel.
After choosing the time the user can adjust the Repeat period. The system has to react to
the user pressing the Repeat field, by displaying a multi select list dialog. When the user is
finished choosing the repeat period, they need to press the ok button which sets the repeat
periods. Pressing the cancel button will disband any previous changes made. This section
also provides more technical information in a the form of test cases, which are going to be
placed in the appendix of the report. The table below provides the name of the test cases and
a link to the place of the actual test case.

43

Test Case Name Test Case ID Test Case Page
Referance

Test Case 1 Set Alert Trigger
time

AC-001 [52]

Test Case 2 Addition of new
edge device

AC-002 [53]

Test Case 3 Fingerprint
Authentication
with success

AC-003 [54]

Test Case 4 Fingerprint
Authentication
with failure

AC-004 [55]

Test Case 5 Play the camera
stream

AC-005 [56]

Test Case 6 Verify if the
camera is not
available

AC-006 [57]

Test Case 7 Stop the Camera
Steam

AC-007 [58]

This concludes the product evaluation section, which focused on evaluating the different sections
of the implementation. The section was delivered in the the form of test cases and explanation
was provided for each of the possible scenarios with which the system reacts in the different
situations. The next chapter will focus on the outcome of this project as well as the future
improvements that could be added to the system.

44

7. Conclusion and Future Work

This project set out to explore the possibilities of developing a fully modular device at a
smaller price. The journey this project took was to analyse the current market and establish
the popularity of these devices amongst users. The report also ventured into analysing the
current competition and their solutions to the problems introduced by this project. In
addition, the project developed and encapsulated the modular design principles into a
framework that can be used and extended by others interested in this concept. The main part
of this project is the software development chapter which introduced a way of making IoT
devices modular. The Implementation chapter provided the proving grounds for this
framework. Wile the software design chapter introduced the abstract model of the data stack
with its data and control flow, the Implementation section provided a translation between this
model and the real world. After the Implementation of the software design the next focus of
the report was the product evaluation. While the Implementation section served as a proof of
how easy to use the framework is, the evaluation was the proof of the success of this design
model. However, there are still some improvements to be made to the design and
implementation. This project laid the foundation of the modular design principles and if
extended can become really useful not only in the consumer market. For the whole of this
project the main target for this device was the consumer market, however further into the
development process this project showed a hidden potential. Given the right hardware and
proper Implementation this design model can be extended and upscaled to accommodate
bigger networks. Regarding the Implementation of the software design that this project
introduced there is still some room for improvements.Throughout this project the main
spotlight was taken by the development and implementation of the modular system design.
This left little time for pampering the android application experience, which should be further
improved to bring more functionality and ease of use. A big hole was also left by the camera
streaming functionality, which had more be desired from, regarding the quality and the
decoding standards. The future improvement of the camera streaming will bring support for
the h.264 standard, which is widely adopted by most other devices from the same caliber.
Right now the system is limited to handling just mjpeg streams which provides worse quality
and less frames per second than the h.264 standard. Another future improvements will be the
introduction of machine learning algorithms to help with the automation of certain areas of
the system. One area that will benefit from this is the alert trigger, which in the current state
of the system depends on user input. However, with the introduction of machine learning this
can be greatly improved and would automate the process and require less input from the user.
Security improvements will also need to be carried out to keep the system up to date with the
security standards and provide more resistance to attacks.

45

8. Self-Reflection

Coming to the end of this project I spent some time reflecting on the skills that I have
acquired from this project. During the development of this project I have experimented with
the development of low level programming fo the development of the micro-controllers. In
addition, I have also had the opportunity to develop an application for the Android OS
platform, which proved to be more challenging. Even though I spent 3 months working with
those environments I still fell I need more time to completely understand them. This project
also created the opportunity to experience working on my own big project and this allowed
me to immerse myself into the Software Development process. This process taught me a lot of
important skills, which I am going to use and improve in the future.

During the development of this project there were a lot of ups and downs and that sometimes
made progress really slow and tedious. However, a big part of the learning process is to
identify you weaknesses by learning from your failures. Every time I started to develop a new
part of the system I would get so concentrated on it, that I would forged about the rest. This
costed me some precious time that could be used in the development of other more important
blocks of the system. And most of the time the part that I would get so focused on, was not
even as important. Even though I was warned by my supervisor about this pitfall I still did
not notice falling into it. Most of the time when that happened and the achieved end result
did not satisfy my and I had to drop it and start from scratch. But the one thing that threw
me off-guard was when I decided to take a completely different approach for the development
of the system design. This required my to start completely from scratch and change a lot of
the other blocks that I had already finished. I realise now that I started this project from the
wrong angle, by developing the edge devices and the smartphone app first, instead of focusing
my attention on the system design.

Furthermore the wrong approach to the development of this project, tilted the balance of my
work plan. This setback meant that I had lost nearly two months trying to develop something
that in the end was completely useless. To my relief I managed to create and document the
new system design in a few days and I still had some time left for the Implementation,
however little it was. Despite that I still feel that I could not achieve the final version of the
device, that I wanted to. However, this experience taught me a lot of lessons and it also gave
me the opportunity to acquire new skills. For the future to come I will try to improve these
skills and will continue to develop and expand my knowledge in relation to Software Design
principles. In general I had fun working on this project and I am happy I had the opportunity
to discover my strengths and weaknesses.

46

9. Appendix

47

F
ig

u
re

9.
1:

A
n
d
ro

id
C

li
en

t
D

es
ig

n

48

Table 9.1: Test Case 1

Project Name: IoT Device for Home Monitoring

Test Case

Test Case ID: DL-001 Test Designed by: Georgi Pramatarov

Test Priority (Low/Medium/High):
High

Test Designed date:

Module Name: DoorLock
authentication

Test Executed by: Georgi Pramatarov

Test Title: User authenticated with
normal behaviour

Test Execution date:

Description: Verify if the user is
authenticated outside the designated
hours

Pre-conditions: User is authenticated in the Android Client application

Test Data
Username:User1

User Authentication code:48656c6c6f9000

Step Step
Details

Expected
Results

Actual
Results

Status
(Pass/Fail)

Notes

1 User
places the
smartphone
on the
DoorLock
NFC Sensor

User is
authenticated

As expected Pass

2 System
alerts
the users
that the
door was
unlocked

System
sends a
normal
behaviour
alert

as expected Pass

Post-conditions: User is validated with the database and the door is unlocked.

49

Table 9.2: Test Case 2

Project Name: IoT Device for Home Monitoring

Test Case

Test Case ID: DL-002 Test Designed by: Georgi Pramatarov

Test Priority (Low/Medium/High):
High

Test Designed date:

Module Name: DoorLock
authentication

Test Executed by: Georgi Pramatarov

Test Title: User authenticated with
abnormal behaviour

Test Execution date:

Description: Verify if the user is
authenticated inside the designated hours

Pre-conditions: User is authenticated in the Android Client application

Test Data
Username:User1

User Authentication code:48656c6c6f9000

Step Step
Details

Expected
Results

Actual
Results

Status
(Pass/Fail)

Notes

1 User
places the
smartphone
on the
DoorLock
NFC Sensor

User is
authenticated

As expected Pass

2 System
alerts
the users
that the
door was
unlocked

System
sends an
abnormal
behaviour
alert

as expected Pass

Post-conditions: User is validated with the database, the door is unlocked and
the system send an abnormal behaviour alert.

50

Table 9.3: Test Case 3

Project Name: IoT Device for Home Monitoring

Test Case

Test Case ID: DL-003 Test Designed by: Georgi Pramatarov

Test Priority (Low/Medium/High):
High

Test Designed date:

Module Name: DoorLock
authentication

Test Executed by: Georgi Pramatarov

Test Title: Unauthenticated user Test Execution date:

Description: Verify if the user is an
authenticated, regardless the designated
hours

Pre-conditions: User does not have access rights for the Door Lock

Test Data
Username:User1

User Authentication code:48656c6c6f9000

Step Step
Details

Expected
Results

Actual
Results

Status
(Pass/Fail)

Notes

1 User
places the
smartphone
on the
DoorLock
NFC Sensor

User is not
authenticated

As expected Pass

2 System
alerts the
authenticated
users that
the door
was
unlocked

System
sends an
unauthorised
access alert

as expected Pass

Post-conditions: The user is not authenticated and the system sends an unauthorised access alert

51

Table 9.4: Test Case 4

Project Name: IoT Device for Home Monitoring

Test Case

Test Case ID: AC-001 Test Designed by: Georgi Pramatarov

Test Priority (Low/Medium/High):
High

Test Designed date:

Module Name: Android Client Test Executed by: Georgi Pramatarov

Test Title: User adjusts time scope Test Execution date:

Description: Verify if the user has
adjusted the time scope

Pre-conditions: User is located in the settings preference screen

Step Step
Details

Expected
Results

Actual
Results

Status
(Pass/Fail)

Notes

1 User presses
the time
scope field

System
opens the
time picker
dialog

As expected Pass

2 User
picks the
beginning
of the time
scope

System
opens the
second
time picker
dialog

As expected Pass

3 User picks
the end of
the time
scope

System
closes the
dialog

As expected Pass

Post-conditions: The system updates the summary of the time scope field to
reflect the newly chosen values.

52

Table 9.5: Test Case 5

Project Name: IoT Device for Home Monitoring

Test Case

Test Case ID: AC-002 Test Designed by: Georgi Pramatarov

Test Priority (Low/Medium/High):
High

Test Designed date:

Module Name: Android Client Test Executed by: Georgi Pramatarov

Test Title: User adds a new edge device Test Execution date:

Description: Verify if the user has
added a new device

Pre-conditions: User is located in the System Preferences screen

Step Step
Details

Expected
Results

Actual
Results

Status
(Pass/Fail)

Notes

1 User
pressed
the Edge
Device
Setup field

System
opens the
add new
device
dialog

As expected Pass

2 User
pressed the
name input
field

The system
displays the
keyboard

As expected Pass

3 User enters
the name of
the device
and presses
OK

The system
closes the
dialog

As expected Pass

Post-conditions: User is notified for the successful addition of the new edge device

53

Table 9.6: Test Case 6

Project Name: IoT Device for Home Monitoring

Test Case

Test Case ID: AC-003 Test Designed by: Georgi Pramatarov

Test Priority (Low/Medium/High):
High

Test Designed date:

Module Name: Android Client Test Executed by: Georgi Pramatarov

Test Title: Fingerprint authentication Test Execution date:

Description: Verify if the user is
successfully authenticated

Pre-conditions: User is located in the FingerUnlock screen

Step Step
Details

Expected
Results

Actual
Results

Status
(Pass/Fail)

Notes

1 User places
their finger
on the
fingerprint
scanner

System
displays a
message to
inform the
user of the
successful
authentication

As expected Pass

Post-conditions: User is successfully authenticated and a guidance message is
displayed

54

Table 9.7: Test Case 7

Project Name: IoT Device for Home Monitoring

Test Case

Test Case ID: AC-004 Test Designed by: Georgi Pramatarov

Test Priority (Low/Medium/High):
High

Test Designed date:

Module Name: Android Client Test Executed by: Georgi Pramatarov

Test Title: Fingerprint authentication Test Execution date:

Description: Verify if the user is not
authenticated

Pre-conditions: User is located in the FingerUnlock screen

Step Step
Details

Expected
Results

Actual
Results

Status
(Pass/Fail)

Notes

1 User places
their finger
on the
fingerprint
scanner

System
displays a
message to
inform the
user of the
unsuccessful
authentication

As expected Pass

Post-conditions: User is not authenticated

55

Table 9.8: Test Case 8

Project Name: IoT Device for Home Monitoring

Test Case

Test Case ID: AC-005 Test Designed by: Georgi Pramatarov

Test Priority (Low/Medium/High):
High

Test Designed date:

Module Name: Android Client Test Executed by: Georgi Pramatarov

Test Title: Camera control Test Execution date:

Description: Verify if the camera is
available

Pre-conditions: User is located in the Camera Viewer screen

Step Step
Details

Expected
Results

Actual
Results

Status
(Pass/Fail)

Notes

1 User presses
the play
button

System
displays
the camera
output in
the viewer

As expected Pass

Post-conditions: User is able to view the output camera stream.

56

Table 9.9: Test Case 9

Project Name: IoT Device for Home Monitoring

Test Case

Test Case ID: AC-006 Test Designed by: Georgi Pramatarov

Test Priority (Low/Medium/High):
High

Test Designed date:

Module Name: Android Client Test Executed by: Georgi Pramatarov

Test Title: Camera control Test Execution date:

Description: Verify if the camera is not
available

Pre-conditions: User is located in the Camera Viewer screen

Step Step
Details

Expected
Results

Actual
Results

Status
(Pass/Fail)

Notes

1 User presses
the play
button

System
displays an
error dialog

As expected Pass

Post-conditions: User is notified that the camera is currently unavailable

57

Table 9.10: Test Case 10

Project Name: IoT Device for Home Monitoring

Test Case

Test Case ID: AC-007 Test Designed by: Georgi Pramatarov

Test Priority (Low/Medium/High):
High

Test Designed date:

Module Name: Android Client Test Executed by: Georgi Pramatarov

Test Title: Camera control Test Execution date:

Description: Stop the camera stream

Pre-conditions: User is located in the Camera Viewer screen

Step Step
Details

Expected
Results

Actual
Results

Status
(Pass/Fail)

Notes

1 User presses
the stop
button

System
stops the
camera
stream and
closes the
viewer

As expected Pass

Post-conditions: User is notified that the camera stream is stopped

58

Bibliography

[1] ABUS Smartvest - Wireless SmartPhone Alarm. url: https://www.safe.co.uk/

products/abus-smartvest-wireless-smartphone-alarm.html.

[2] Amazon. MakerHawk ESP32 Development Board WiFi Bluetooth Dual Cores Ultra Low
Power Consumption ESP-32 Board. url: https://www.amazon.co.uk/MakerHawk-
Development-Bluetooth-Consumption-ESP-32/dp/B072JVQVND/ref=sr_1_2?ie=

UTF8&qid=1525989728&sr=8-2&keywords=esp32+makerhawk.

[3] Amazon. MakerHawk Raspberry Pi Camera for Raspberry Pi Model A/B/B+, Pi 2 and
Raspberry Pi 3 and Adapter Cable for Zero/Zero W Camera and Camera Stand. url:
https://www.amazon.co.uk/MakerHawk-Raspberry-Camera-Model-Adapter/dp/

B07516S8PG/ref=sr_1_25?s=computers&ie=UTF8&qid=1525989817&sr=1- 25&

keywords=raspberry+pi+camera.

[4] Amazon. Raspberry Pi 3 Model B Quad Core CPU 1.2 GHz 1 GB RAM Motherboard.
url: https://www.amazon.co.uk/Raspberry-Pi-Model-Quad-Motherboard/dp/
B01CD5VC92/ref=sr_1_4?ie=UTF8&qid=1525989658&sr=8-4&keywords=raspberry+

pi+3.

[5] Amazon. XCSOURCE R© NXP PN532 NFC RFID Module V3 Kits Reader Writer For
Arduino Android Phone TE314. url: https://www.amazon.co.uk/XCSOURCE%EF%BF%
BD%EF%BF%BD-Module-Arduino-Android-TE314/dp/B014QZRF2U/ref=sr_1_fkmr0_1?

s=computers&ie=UTF8&qid=1525989899&sr=1-1-fkmr0&keywords=XCSOURCE+PN532+

NFC.

[6] Arduino IDE Mac OS. Feb. 2018. url: https://www.arduino.cc/en/Main/Software.

[7] Atom. A hackable text editor for the 21st Century. url: https://atom.io.

[8] Louis Columbus. 2017 Roundup Of Internet Of Things Forecasts. url: https://www.
forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-

things-forecasts/#5ff8be7d1480.

[9] Eclipse. Eclipse MosquittoTM An open source MQTT broker. url: https://mosquitto.
org.

[10] Elechouse. NFC library for Arduino using PN532. url:
https://github.com/elechouse/PN532.

[11] ERA HomeGuard Smart Alarm Pro - Starter Kit. url: https://www.safe.co.uk/
products/era-homeguard-smart-alarm-pro-starter-kit.html.

[12] Everything you need to build on Android. Feb. 2018. url: https://developer.android.
com/studio/features.html.

[13] Sharif Khaleel. Android How to Add Fingerprint Authentication. url: https://www.
androidhive.info/2016/11/android-add-fingerprint-authentication/.

[14] Roger Light. paho-mqtt 1.3.1. url: https://pypi.org/project/paho-mqtt/.

59

https://www.safe.co.uk/products/abus-smartvest-wireless-smartphone-alarm.html
https://www.safe.co.uk/products/abus-smartvest-wireless-smartphone-alarm.html
https://www.amazon.co.uk/MakerHawk-Development-Bluetooth-Consumption-ESP-32/dp/B072JVQVND/ref=sr_1_2?ie=UTF8&qid=1525989728&sr=8-2&keywords=esp32+makerhawk
https://www.amazon.co.uk/MakerHawk-Development-Bluetooth-Consumption-ESP-32/dp/B072JVQVND/ref=sr_1_2?ie=UTF8&qid=1525989728&sr=8-2&keywords=esp32+makerhawk
https://www.amazon.co.uk/MakerHawk-Development-Bluetooth-Consumption-ESP-32/dp/B072JVQVND/ref=sr_1_2?ie=UTF8&qid=1525989728&sr=8-2&keywords=esp32+makerhawk
https://www.amazon.co.uk/MakerHawk-Raspberry-Camera-Model-Adapter/dp/B07516S8PG/ref=sr_1_25?s=computers&ie=UTF8&qid=1525989817&sr=1-25&keywords=raspberry+pi+camera
https://www.amazon.co.uk/MakerHawk-Raspberry-Camera-Model-Adapter/dp/B07516S8PG/ref=sr_1_25?s=computers&ie=UTF8&qid=1525989817&sr=1-25&keywords=raspberry+pi+camera
https://www.amazon.co.uk/MakerHawk-Raspberry-Camera-Model-Adapter/dp/B07516S8PG/ref=sr_1_25?s=computers&ie=UTF8&qid=1525989817&sr=1-25&keywords=raspberry+pi+camera
https://www.amazon.co.uk/Raspberry-Pi-Model-Quad-Motherboard/dp/B01CD5VC92/ref=sr_1_4?ie=UTF8&qid=1525989658&sr=8-4&keywords=raspberry+pi+3
https://www.amazon.co.uk/Raspberry-Pi-Model-Quad-Motherboard/dp/B01CD5VC92/ref=sr_1_4?ie=UTF8&qid=1525989658&sr=8-4&keywords=raspberry+pi+3
https://www.amazon.co.uk/Raspberry-Pi-Model-Quad-Motherboard/dp/B01CD5VC92/ref=sr_1_4?ie=UTF8&qid=1525989658&sr=8-4&keywords=raspberry+pi+3
https://www.amazon.co.uk/XCSOURCE%EF%BF%BD%EF%BF%BD-Module-Arduino-Android-TE314/dp/B014QZRF2U/ref=sr_1_fkmr0_1?s=computers&ie=UTF8&qid=1525989899&sr=1-1-fkmr0&keywords=XCSOURCE+PN532+NFC
https://www.amazon.co.uk/XCSOURCE%EF%BF%BD%EF%BF%BD-Module-Arduino-Android-TE314/dp/B014QZRF2U/ref=sr_1_fkmr0_1?s=computers&ie=UTF8&qid=1525989899&sr=1-1-fkmr0&keywords=XCSOURCE+PN532+NFC
https://www.amazon.co.uk/XCSOURCE%EF%BF%BD%EF%BF%BD-Module-Arduino-Android-TE314/dp/B014QZRF2U/ref=sr_1_fkmr0_1?s=computers&ie=UTF8&qid=1525989899&sr=1-1-fkmr0&keywords=XCSOURCE+PN532+NFC
https://www.amazon.co.uk/XCSOURCE%EF%BF%BD%EF%BF%BD-Module-Arduino-Android-TE314/dp/B014QZRF2U/ref=sr_1_fkmr0_1?s=computers&ie=UTF8&qid=1525989899&sr=1-1-fkmr0&keywords=XCSOURCE+PN532+NFC
https://www.arduino.cc/en/Main/Software
https://atom.io
https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/#5ff8be7d1480
https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/#5ff8be7d1480
https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/#5ff8be7d1480
https://mosquitto.org
https://mosquitto.org
https://github.com/elechouse/PN532
https://www.safe.co.uk/products/era-homeguard-smart-alarm-pro-starter-kit.html
https://www.safe.co.uk/products/era-homeguard-smart-alarm-pro-starter-kit.html
https://developer.android.com/studio/features.html
https://developer.android.com/studio/features.html
https://www.androidhive.info/2016/11/android-add-fingerprint-authentication/
https://www.androidhive.info/2016/11/android-add-fingerprint-authentication/
https://pypi.org/project/paho-mqtt/

[15] MQ Telemetry Transport(MQTT). Feb. 2018. url: http://mqtt.org/faq.

[16] C. Enrique Ortiz. An Introduction to Java Card Technology. url: http://www.oracle.
com/technetwork/java/javacard/javacard1-139251.html.

[17] Statista. Internet of Things (IoT) connected devices installed base worldwide from 2015
to 2025 (in billions). url: https://www.statista.com/statistics/471264/iot-
number-of-connected-devices-worldwide/.

[18] Jessica Thornsby. android authority fingerprint. url: https://www.androidauthority.
com/how-to-add-fingerprint-authentication-to-your-android-app-747304/.

[19] Google Trends. Smart Home Security. url: https://trends.google.co.uk/trends/
explore?date=2016-01-01%202018-02-19&q=smart%20home%20security.

[20] Yale SR-320 Smart Home Alarm Kit. url: https://www.safe.co.uk/products/yale-
smart-home-alarm-kit-SR-320.html.

60

http://mqtt.org/faq
http://www.oracle.com/technetwork/java/javacard/javacard1-139251.html
http://www.oracle.com/technetwork/java/javacard/javacard1-139251.html
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.androidauthority.com/how-to-add-fingerprint-authentication-to-your-android-app-747304/
https://www.androidauthority.com/how-to-add-fingerprint-authentication-to-your-android-app-747304/
https://trends.google.co.uk/trends/explore?date=2016-01-01%202018-02-19&q=smart%20home%20security
https://trends.google.co.uk/trends/explore?date=2016-01-01%202018-02-19&q=smart%20home%20security
https://www.safe.co.uk/products/yale-smart-home-alarm-kit-SR-320.html
https://www.safe.co.uk/products/yale-smart-home-alarm-kit-SR-320.html

	Introduction
	Background
	Requirements
	Non-Functional
	Functional

	System Design
	Data and Control Flow
	System Structure
	Edge Devices
	Addition of new Edge Device

	Central Hub
	Smartphone Client

	Implementation
	Hardware components
	Software tools
	DoorLock
	Hub
	Android Client
	Design and User Interface

	Product Evaluation
	DoorLock Evaluation
	Android Client Evaluation

	Conclusion and Future Work
	Self-Reflection
	Appendix
	Bibliography

