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Abstract

Audio synthesisers are capable of producing a wide variety of sounds,
stemming from their numerous amount of parameters that are used to af-
fect the ouput sound. An issue in the area of audio engineering is that
significant time is needed with each model of synthesiser in order to gain a
core understanding of how the underlying components affect the sound that
is produced at the end of the chain.

This project presents a robust methodology for analysing a synthesiser’s
sonic capabilities, and a framework for using Deep Learning methods in
order to ’reverse engineer’ how a synthesiser can make a given sound.
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Chapter 1

Introduction

Audio Synthesisers[1] can produce an incredible array of different sounds
depending on the control parameters offered to the player. Some synthe-
sisers such as the Roland TB303[2] are able to be easily programmed by
ear as they have a relatively simple synthesis circuit and a small number
of parameters. Conversely, synthesisers such as the Yamaha DX7[3] are in-
credibly challenging to program by amateur musicians due to the amount of
knowledge and experience required to fully understand FM synthesis[4] and
it’s large amount of parameters.
For the most part musicians with some experience with audio synthesisers
can intuitively program a synthesiser to approximate a given sound. Using
this concept an assumption is made that it is possible to train a Neural
Network model to recognise the effect that each parameter on a synthesiser
has on a it’s output sound. Provided that the model has a good level of
accuracy, it can then be used to approximate parameter settings for a target
sound, for example, the output from a different synthesiser.
This project consists of research into the feasibility of using Deep Learning[5]
techniques to create a synthesiser programming toolkit that is able to re-
produce a close approximation of a given sound almost instantaneously. A
system that provides a quick result and doesn’t interrupt ”the flow” is crucial
in order to be included in a musician’s creative process. Using a pre-trained
neural network model is perfectly suited for this application as predictions
on new input data are computed in almost real time.

2



Aim

The aim of this project is to develop a deep neural network architecture that
can predict synthesiser configurations for a given target sound, and to prove
that the system works by performing tests on a real freely available audio
synthesiser.

Project Outcomes

This project presents an efficient Convolutional Neural Network architecture
for reliably learning a close approximation of synthesiser parameters, and a
comparison of common data representions including a novel representation
suited for this task.
Included is a library for performing common preprocessing tasks for this
project, including setting neural network architecture parameters, generat-
ing sample data, and converting data such that it is suitable for the neural
network to use.
There is a focus on proving the system’s capability with a simple synthesiser,
however, given enough resources and time the system could work effectively
with a much more complex synthesiser such as the DX7.
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Chapter 2

Background

2.1 Context

This chapter contains a basic overview on a number of topics that are re-
quired to be understood for the context of the rest of the report.

Audio Synthesisers

Audio Synthesisers can be thought of as a black-box function that takes a
list of parameter settings as an input, and produces a sound based on these
input parameters.

Audio Synthesisers come in a range of different forms, operating on dif-
ferent sound synthesis principles and different control types. Fortunately
for the scope of this project, there is an abundance of both hardware and
software synthesisers, with software synthesisers becoming increasingly more
sophisticated in recent years. Software Synthesisers are now so capable that
a large majority of musicians almost exclusively use Software equivalents in
favour of expensive hardware synthesisers. This is good for the applications
of this software as it results in more potential users of the system.
The design of this project can be implemented with either hardware or soft-
ware synthesisers, however due to the timescale for development, software
synthesisers have a significant advantage. This is due to a couple of reasons:
in the best case scenario, a hardware synthesiser can be computer controlled
via MIDI & SYSEX MIDI[7], but the audio used as sample data needs to
be recorded in real time. While this can be automated, it would take a sig-
nificant amount of time and space to collect a sufficient amount of training
data to train a Neural Network on. As this project is focussing on building
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a foundational framework, fast iteration times in development are essential.
A key advantage that software synthesisers have over hardware synthesisers
is their ability to render audio samples offline. As the audio synthesis engine
is essentially a pipeline of mathematical functions, and the resulting audio
is represented as an array, there is no need to perform online (real-time)
synthesis.

This results in a significant speedup for generating sample data. For
example, given a 3 second long snippet of sample data, online synthesis
requires at least the 3 seconds plus the time to transmit program change via
midi, which is roughly 200ms. This results in roughly 0.4 Samples generated
per second. Using offline synthesis the same sample can be generated in
160ms, resulting in 6.2 samples generated per second.

Virtual Studio Technology

There are many different formats that a software synthesiser can be imple-
mented in, but fundamentally they are all implemented in a low level or
real time programming langauge such as C/C++ or MATLAB. Software
Synthesisers however need to be distributed in a conventional manner that
is trivial for non-programmers to use. There are a few platform specific
formats such as Apple’s Audio Units, however, Steinberg’s Virtual Studio
Technology (VST)[8] is by far the most prolific. This is probably due to VST
being the first successful standard for audio plugins, which came as standard
with Steinberg’s Digital Audio Workstation (DAW), Cubase. VST plugins
can come in two forms - audio processors, or instruments (VSTi). Audio
processors take an audio stream as input, and produce an audio stream with
some processing applied to it as output. VSTi’s however take performance
data (via MIDI) as input, and generate an audio stream as output.

In order for a VSTi to generate audio, it needs to be initialised in an
environment known as a VST Host. Fortunately Steinberg’s VST SDK[9] is
freely available to any developer, and as such there exists a host of alterna-
tive VST hosts that are feasible for use in this project. A VST host does
not provide any recording utility; it simply instantiates a VST plugin and
provides an interface for setting parameters and rendering audio based off
an audio input or performance data provided by MIDI.

Using a VSTi with a bare-essentials VST host in this project is ideal, as
there is minimal overhead for generating sample data which allows the focus
of the application to be on generating useful patch settings.
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The Fourier Transform

The Fourier Transform[10] breaks a temporally varying signal into it’s funda-
mental frequency components, which can then be manipulated or presented
for spectral analysis. In the context of audio processing, the FT is analogous
to a graphical equaliser, where the frequency bands can be changed to affect
the amplitude of different frequency bands of the signal.

In the context of this project, the Fourier Transform is essential in order
to efficiently and effectively process audio information. This is because it is
possible to visualise the result of the Fourier Transform as a Spectrogram
using the Short Term Fourier Transform, which is essentially a plot of the
relationship between frequency power against time.

Short-Term Fourier Transform

The Short Term Fourier Transform (STFT) is a way of applying the Fourier
Transform to an audio signal. A sliding window function is used in order to
apply the 1D fourier transform over the frequency bins for each time section
in an audio signal.
The STFT is used in this project as a baseline method to develop the neural
network. It is a lossless function meaning that there have been no modifi-
cations made to the representation. This is useful for determining baseline
performance of the neural network and for debugging any potential issues
during development.

Constant-Q Transform

The Constant-Q Transform[11] is a form of the STFT with the unique prop-
erty of having a filter bank with geometrically spaced center frequecies that
ensure that a constant Q factor is retained over all frequencies. The Q fac-
tor is a measure used to decide the size of each filter in the FT’s filterbank,
where: Q = center frequency

bandwidth .
The motivation behind the Constant Q Transform is to have a spectral rep-
resentation that is tuned for musical analysis. As the transform maintains
a constant Q factor that follows the equal-tempered scale of western music,
it is a much more useful representation to use when analysing the output
from a musical instrument. Where the STFT would squash together the
lower frequencies due to it’s scaling factor, the Constant Q transform en-
sures that each lower frequency is well defined. This is useful for the analysis
of synthesiser audio as synthesisers produce complex waveforms that range
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from both ends of the scale. By using this representation the fine detail in
extreme frequency bands is represented equally.

Cepstrum Analysis

The Cepstrum[12] of a signal is calculated by computing the Inverse Fourier
Transform of the logarithm of the spectrum of a signal. A Cepstrum is in-
formation about the rate of change in different spectrum bands, and is com-
monly used in speech and musical analysis as features of an audio dataset.

The Discrete Cosine Transform

The Discrete Cosine Transform[13] is a lossy transform that transforms a
2D matrix into a set of basis functions that are used to represent the most
frequent components in the matrix. By taking a subset (i.e. the first 20)
bases of a DCT, a good idea of most important aspects of the original data
can be collected, discarding information that may be less useful.

Mel-Frequency Cepstrum Coefficients

The Mel scale is a scale that is tuned to the perceptual hearing of hu-
mans, and consists of a bank of filters that accomplish this scaling. MFCCs
are essentially calculated by computing the STFT and applying the Mel-
Filterbank to it. The DCT is then applied to the Cepstrums that have been
extracted from the Mel-scaled STFT. The first n DCT coefficients (typically
the first 20) are kept and presented as the MFCCs[14] as audio features.

MFCCs are commonly used as features in speech recognition and musi-
cal analysis applications due to it’s use of combining cepstral features with
the DFT. The most important part of the signal is kept and used as a fea-
ture which can significantly reduce computation time as the amount of data
processed is reduced.

The MFCC data representation is being used as an alternative bench-
mark as it is a lossy representation, and to judge the feasability of using
Cepstrum Coefficients as features for the Neural Network Model.

Machine Learning

Machine Learning is a blanket term given to a plethora of algorithms that
all function upon the same principle: using example data to uncover hid-
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den relationships in a dataset, and then use this gained knowledge to make
accurate predictions about the relationships in new data. Supervised Ma-
chine Learning relies on labels that match with training data in order for the
algorithm to evaluate it’s performance. There are two main forms of pre-
dictions a supervised machine learning algorithm can make: classification,
and regression. The formulation of this project’s problem is as a multivari-
ate regression problem, which means that the ML algorithm predicts the
numerical value of multiple variables.

Neural Networks

Neural Networks (NNs) are a class of ML algorithms that are inspired by
how the human brain functions. They can be represented as a graph of
nodes, and data is propogated across the graph as it is processed. Each
node mimics the behaviour of a neuron: a value is passed through each
node that is based off the value that is passed in, which is defined by an
activation function.

NNs ’learn’ information about a dataset by adjusting the weighting of
the effect of each node in the graph. These weights are adjusted at a rate of
change known as the learning rate. The idea is that the weights are going
to change dramatically at the start of a training session, but are going to
be updated at very small increments towards the end of the training period.
Training is completed over a series of epochs: where the same dataset is pro-
pogated over the network a set number of times, with the network updating
the node weights with each iteration.

The NN uses a cost function as a way of getting feedback on the weight
modifications that are made, with the goal of reducing the cost as much as
possible. However loss is not an accurate metric on it’s own, so it is often
accompanied by an accuracy function which evaluates the rate at which
the the NN is correctly classifying or processing the input data. A good
accuracy metric reflects the problem domain by setting a threshold for what
is an acceptable prediction in relation to the target data.

Deep Neural Networks

Deep Neural Networks (DNNs)have been broadly used with generally good
performance since Hinton’s classic ImageNet paper 2012, and have proven
to be an efficient way of learning relationships in all forms of data. The main
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concept is to stack layers of hidden layers in between an input and output
layer. The neural network shifts it’s weights of each node to compensate for
activations in order to produce a reliable prediction. Typically the training
phase takes a long time, however, once a model has been trained and has
been proved to perform effectively, then the model can be used evaluate
predictions in real time.

Convolutional Neural Networks

Convolutional Neural Networks are often seen as the de facto standard for
Deep Neural Networks. They are made up of a combination of Convolutional
layers, usually followed by Max Pooling Layers, in order to break down an
input image into it’s most important components. The final layer of the
network then uses the strength of each of these components in order to
output a prediction about the input data.

9



2.2 Previous Work and Alternative Approaches

CUROP Research

This work builds upon previously completed research for the same problem.
The CUROP work approached the problem using MATLAB 2017a’s audio
toolbox, with a Command Line based VST host, and a 2D Convolutional
Neural Network. MATLAB 2017a provides a comprehensive toolbox for
audio analysis, which includes a suite of functions to analyse VST audio
plugins. A few functions proved to be useful including the parameter re-
sponse mapping *, and functionality polling function which is able to return
the parameters a VST offers including the properties of such parameters -
a function was implementated that is able to determine the cutoff points
for parameters that aren’t continuously variable, such as a waveform se-
lector. In conjunction with MATLAB, which was used to generate a list
of patch settings,a Command-Line based VST hostmrswatson was used to
render audio samples offline and store them to disk. This method provides a
great insight into how the VSTi functions, and laid the groundwork for this
project, however, it ultimately proved to be too cumbersome and time/space
inefficient for the task.

Genetic Algorithm Approach

An alternative approach to solving this project’s problem is to use stochastic
search algorithms in order to automatically program a synthesiser to sound
like a target sound, as outlined in synthbot[15]. This method relies on using
a genetic algorithm to perform gradient decent while trying to reduce the
Standard Error between the target sound and generated sound. This method
works with reasonable effectiveness, however, it takes roughly 3 minutes to
compute a predicted patch, and there is no guarantee that the patch that
is predicted will be 100% accurate. This is not essential as making music is
a creative process, and as a creative tool SynthBot is a fantastic concept,
achieving parameter settings that sometimes the user would not think to
try.
However, the system does not learn a representation of the synthesiser’s
capabilities, and as such there is no way of understanding the system’s ’rea-
soning’ behind picking a certain setting. The potential with DNNs how-
ever is that by examining node activations it may be possible to gain an
understanding of the features that a NN is learning to reverse engineer a
synthesiser sound.
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2.3 Tools & Software Used

IPython with Jupyter

Python was the programming language of choice due to it’s flexibility when
researching different aspects of the project. As there was a lot of experiment-
ing and evaluating novel libraries to achieve the goals of the research ques-
tion, the reduced development and iteration time that Python allowed was
invaluable, especially with the short time scale of the project. Jupyter[16]
was used to easily share results as well as it’s seamless integration of visu-
alising data.

RenderMan

RenderMan can be thought of as a VST host API for Python. It provides
bindings for low level C++ interaction with a hosted VST synthesisers, and
as a result it is very fast compared to other programmer-oriented VST hosts,
and is very flexible due to the ability to interact directly with VST instru-
ments using Python scripts.
While RenderMan does not provide as much in terms of audio analysis as
the MATLAB Audio Toolbox, there are other libraries that can be used in
conjunction to provide the same functionality. As RenderMan provides a 1:1
mapping to the C++ code running the VST host, it is possible to generate
audio samples offline and store them directly to a list. This removes the
bottleneck of having to write and load samples to disk, and ultimately mak-
ing massive improvements to runtime while reducing space requirements.
RenderMan essentially provides a way to generate samples on-the-fly. The
only downside to this method is that it is not as easy to analyse VST instru-
ments during development, meaning that initial analysis and preprocessing
took a little longer, however when it comes to runtime the benefits far out-
weigh this negative.

Librosa

LibRosa[18] is the most well featured audio analysis library currently avail-
able for Python, and it’s tools have been invaluable. It is the main library
used in this project for computing spectral representations of the audio sam-
ple data.
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Keras

Keras[19] is a high level library for Deep Learning in Python. It is being
used with the TensorFlow backend as the state of TensorFlow seems to be
the most future proof.
Keras allows for quick learning and implementation of Deep Learning con-
cepts with fast results. Using Keras greatly reduced development time for
this project as the ideal Convolutional Neural Network was constructed us-
ing mostly predefined Keras layers.
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2.4 Practical Technological Applications

The framework that has been developed is a platform for future work in the
area, however an envisioned completed product would be invaluable for the
following uses:

A Creative Tool for Musicians

There has been significantly more interest in synthesisers that make un-
conventional sounds, which has been expressed by the rising popularity of
modular synthesisers and unique software synthesisers such as the Spectra-
sonics Omnisphere. This software could perhaps be used to generate patches
that closely approximate a sample, which can be used in the creative process
as an inspiration for new music. Musicians are constantly pushing the limits
of their instruments, and this software would enable this even more.

Reverse Engineering VSTi’s

This work could be used to benchmark VST performance or to help model
the sonic capabilities of existing VST instruments, or to even be used as
a way of unlocking the hidden potential of synthesisers that are incredibly
complex. As the ideal system would operate in real time, an example could
be to enable any synthesiser to perform a vocoder-esque sound by calculating
a patch or a sequence of patches to be changed in quick succession that could
mimic a recording of a person’s voice.
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2.5 Summary

Research Question

In order to demonstrate the achievement of the stated aim, this project eval-
uates real-world performance of a software system that is able to reliably
generate accurate patches for a simple VSTi synthesiser. A sufficiently large
dataset of 1000 unique patches is used to evaluate the performance, with
experimental results outlined in the Results chapter.
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Chapter 3

Method

3.1 Overview

This project is attempting to prove the feasibility of using Deep Learning
to answer the proposed research question. As such, there is an initial focus
on showing that the solution has potential, followed by research into how
the solution may be improved to achieve higher performance. In order to
achieve the aim of this project, a development framework has been designed
as a test bed to compare and experiment with different approaches to solv-
ing the problem within the scope of Deep Learning. The framework utilises
a library of functions that has been designed to abstract away all of the
nonessential details from the development framework.

This project has a strict focus on outlining a solid foundation for auto-
matically programming any synthesiser, and thus explores different combi-
nations of tools in order to best achieve this task, and evaluates the cost
/ benefit of every approach. The project can be broken down into two
distinct parts in order to solve the research question. Firstly, Data Collec-
tion outlines Data Discovery, Data Generation and Data Representation.
Network Architecture includes Neural Network Design and Performance
Metrics. A general development framework was designed and implemented
to support quick development and iteration of both these parts, outlined in
Implementation Overview.
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Project Structure

The agile development workflow model was used during development to
quickly answer questions about the solution and to guide the research focus.
As such the components featured in this project have gone through many
iterations, as the most suitable method was development. The main ad-
vantage of this meant that the simplest solvable version of the problem was
answered relatively quickly, and lessons learned from that stage influenced
the design and implementation for the rest of the project. The rough outline
of development was as follows:

1. Problem Domain Research: Data Representations, Sample Data col-
lection methods, Neural Network Architectures.

2. Exploratory Data Analysis: Manual analysis of sample data, tuning
of sample data collection parameters, including calculation of train /
test set parameters.

3. Framework Development: Build a platform for quick testing of synthe-
siser programming pipelines - Includes accounting for time and space
constraints.

4. Experimentation: Evaluating performance of neural network archite-
cures combined with different data representations.

5. Optimisation: Improving best performing architecture by experiment-
ing with hyperparameter changes and network layers.

6. Evaluation: Analysis of overall results.

Steps 3 to 5 were iterated several times until the solution was optimised to
a satisfactory level.

3.2 Data Collection

This problem has the unique chararacteristic of being able to generate new
data for a Neural Network on demand, rather than having to base the solu-
tion on a given dataset. Therefore careful consideration has been made in
regards to designing a dataset that will give a good tradeoff between model
accuracy and compute time. Too small of a dataset and the network will
not learn an accurate representation of the capabilities of the synthesiser,
and too large a dataset is unfeasible by the amount of time taken to render
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and process.
Synthesisers are programmed by setting each of the parameters available to
a certain value in the range of 1 and 128. In order to recall a certain config-
uration of parameter settings, they are stored in a data structure known as
a Patch. Patches are unique for each synthesiser model. Different patches
yeild different sounds from a synthesiser, and can be thought of as the tim-
bral encoding of a particular sound.
In order for the DNN to learn a useful representation of what sounds a syn-
thesiser can make, a sufficiently large dataset of samples need to be rendered
that accurately capture the sonic capability of the synthesiser. Usually ran-
dom sampling would be sufficient to capture the essence of the data source,
however, a lot of parameters in synthesisers have a non-linear response which
results in a large change in the rendered audio during a small change, or can
result in almost no discernable difference in audio at all over a large sweep.
If this was constrained to one parameter or had predictable behaviour, then
a sampling method could be devised that accounts for this. However, as pa-
rameters react to the change of other parameters it is not possible to predict
a parameter’s response. This effectively means that each parameter has a
variable response in relation to every other parameter’s setting in a patch.
Therefore the most effective method of representing the sonic capabilities of
a synthesiser is to create a map of every possible patch, and take equally
spaced samples of patch settings to render. As an example, assume a syn-
thesiser s has two parameters, x and y. It is a computationally trivial task
to represent the sonic capability of s. Assuming that the synthesiser is ad-
hering to the MIDI specification, there are 128 possible positions for x and
y independently. The full capability of s is therefore represented by a bank
of patches of size:

128(number of parameters) = 1282 = 16, 384

This method is acceptable for a synthesiser like s, as there are only two
independent parameters. In reality it is not practical to use a two parameter
synthesiser as the sonic capabilities will be severely limited.

To carry on with the example, assume that the full sonic capability
of a simple single osciallator synthesiser such as the Roland TB303 is to be
captured. There are 5 parameters that effect the timbre of the output sound
that are continuously variable, and one parameter that is a discrete 2 way
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switch. Assuming the MIDI specification is used, the bank of patches that
describes every possible sound that the synthesiser can make has a size of:

2 ∗ 1285 = 68, 719, 476, 736

Assuming that the render of each patch is 3 seconds long, with offline
processing it would take roughly 120 milliseconds to render each patch. To
render the entire bank of patches it would take

120 ∗ 68, 719, 476, 736 = 8, 246, 337, 208, 320ms

This is equivalent to roughly 261 years. This obviously means that even
for a very basic synthesiser it is not feasible to sample every possible sound.

The solution used for this project is to take the space of every possible
patch that a synthesiser can make, and subsample patches at an evenly
spaced rate. This results in a bank of patches that provides a reasonable
representation of the sonic capabilities of the synthesiser, while being able
to render in reasonable time. The parameter sample ratio is part of the
experiment configuration, and can express a range of detail in the patch
bank, which can be tweaked as required.
A proposal for a more sophisticated patch selection algorithm is outlined in
’Further Work’.

Exploratory Data Analysis

Before designing and constructing neural network architectures, and even
data preprocessing methods, it is almost always essential for every machine
learning problem to perform an initial analysis on the dataset that is going
to be used to train the network. The dataset for this problem is generated by
performing a form of sampling on the VST instrument. To help understand
the data source better, the VST standard defines an interface for polling
the VSTi for it’s parameters, along with current patch information. This
functionality is implemented in RenderMan and is used to help decide on
render settings such as Note-On time, and Render time, and is also used
to verify that a VST is working, and responds to paramater changes as
expected which is useful for sanity checks.

Sample Data Representation

The audio that the VST synthesiser makes needs to be represented in some
format that the Neural Network will be able to process. The simplest way
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of doing this is to sample the amplitude of the waveform at regularly spaced
intervals, at a rate that is at least twice the highest frequency of the wave-
form. The VST specification accounts for this in order to represent audio in
a computer. A typical sample rate is 44100Hz, which is roughly CD-quality.
Any higher results in a lot data being represented without any increase in
perceptual quality. Audio data being represented in this way is referred to
as an array of audio frames.

Audio frames are the purest way of representing the patch samples from
the synthesiser, however it requires a lot of computing power to represent
important underlying concepts using this. Fortunately there is a way of
representing audio data in a way that can emphasise aspects of the signal,
while drastically reducing required processing power. This aspect of the
project offered an opportunity to experiment with different ways of repre-
senting the input data and to evaluate which representation offers the best
performance. Experiments were designed to evaluate the performance of
three distinct time-frequency representations:

• The Short Term Fourier Transform as a lossless baseline

• Constant Q Transform as an optimised representation

• Mel Frequency Cepstral Coefficients as a lossy, distilled representation

Due to good performance demonstrated in similar tasks, the MFCC is
included as an alternative approach to representing the data. The compu-
tation time is less than both CQT and STFT, however it results in a lossy
representation of the data. This is not a bad thing as it means that the
network is only computing relevant information, however, as the Mel scale
is tuned for perceptable human hearing representations, it means that some
of the sonic character of more complex synthesisers will not be represented.

3.3 Network Architecture

The problem is classified as a Multivariate Regression problem, with an
output space equal to the amount of learnable parameters on the synthesiser
model. This problem style makes it difficult to accurately evaluate the
network’s confidence in each parameter, as the output space is simply the
predictions for the whole patch. This can be solved by designing a network
that provides classification confidence measures for each parameter in the
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patch, however this is outside the scope of this project, and could be explored
in future work.
The input shape for the network is the dimensions of the input data: the
height being the amount of frequency bins in the spectral representation,
and the width being the amount of time that the spectral representation is
for. These parameters vary for the different spectral representations, so this
input shape value needs to be variable.

Convolutional Neural Networks

Due to the success enjoyed by convolutional neural networks in image classi-
fication tasks and sound recognition[20], a well defined CNN is employed as a
tradeoff between training time and parameter accuracy. The CNN used fol-
lows a relatively conventional architecture, with modifications made to suit
the task. For example, there are no dropout layers used which introduce
generality into the NN model. This is because each Neural Network model
(i.e. the collection of weights combined with the architecture) is unique to
each synthesiser model. There needs to be generality in the architecture,
not in each individual model. Because of this, a desirable trait of the net-
work is to overtrain the model on the data given more than usual networks.
Typically a prediction is a close approximation of an input sound, meaning
that the user simply needs to tweak one or two parameters in order to fully
reach the desired sound.
Previous work in this problem domain used a 2D convolutional network in
order to find spatial features - interesting components in the spectrogram’s
signal, with mixed results. Learning from this, the NN employed in this
project uses 1D convolutions which are designed to detect features in the
temporal range. The filter moves from start to finish with a window the
same size as the frequency bin, similar to how a spectrogram is generated.
This representation suits spectral analysis perfectly as the importance of
each frequency bin per time step is effectively represented in the network.

Performance Metrics

In order for the Supervised Deep Neural Network to learn the correct pa-
rameters for a given input sound, it needs to have accurate feedback on it’s
performance. For this problem, Mean Squared Error is used as it is a well
defined benchmark to rely on for the output data type.

In order to gauge how well the network performs while training, a cus-
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tomised accuracy measure has been designed that takes into account the
specific experiment’s setup. This accuracy metric defines the threshold for
success as a predicted parameter being within the resolution at which a
dataset is generated at.

The general MIDI specification only allows parameters to take an integer
value between 1 and 128, which significantly reduces the search space for a
parameter. This has been taken into consideration and a soft quantisation
function has been designed that squashes the NNs output to be closer to
one of the 128 steps.
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Chapter 4

Implementation

4.1 Overview

In order to satisfy the research question, a small library has been developed
that includes commonly used methods when rendering a list of synthesiser
patches as well as some data preprocessing and result analysis tools. This
library was then used to implement code used in the neural network ex-
periments. A general framework has been designed that streamlines the
benchmarking process.
The target systems for this framework are Linux and MacOS. A Linux-based
system with a CUDA-capable graphics card was used during development
to quickly debug and test deep neural network models. The resulting code
can be run on both Linux and MacOS systems, however, as MacOS systems
typically do not utilise an Nvidia graphics card, training of the NN models
will take more time. It is desirable to use a MacOS based system for this
project, as the majority of popular VST instruments are only compatible
with Mac. With this constraint in mind, an ideal feature of the implemented
solution was to have an architecture that was able to be trained in reason-
able time.
The Nekobi1 VSTi was chosen as the synth to reverse engineer for this
project. It is a monophonic single oscillator synthesiser based off the Roland
TB303, with 6 parameters that affect the output sound’s timbre: Waveform,
Filter Cutoff, Filter Resonance, Envelope Modulation, Decay, and Accent.

1https://github.com/DISTRHO/Nekobi

22



Nekobi was chosen as it is a simple synthesiser, meaning that it was easy
to debug any issues that arose during development, but still could produce
a relatively wide range of sounds in order to present the capability of the
automatic programming system.

4.2 Experimental Process

A broad overview of how the system functions is as follows:

• Generate Patch List based on sample resolution

• Shuffle the patch list

• separate patch list into batches of size 128, with a 0.8 split for test
train

• Iterate through 5-7 for each batch of samples:

• Render the 128 patches of the batch

• Train network on 128 patches while CPU computes data representation
of the audio

• Store the latest weights to disk

Notable implementation details are described in this chapter.

EDA and Parameter Configuration

RenderMan was used to host a VST instrument for the duration of the
experiment. Exploratory Data Analysis consisted of polling the VST for it’s
parameters, and evaluating which parameters are within the scope of this
project to be learning, and which parameters should remain fixed. For the
Nekobi Synth, ”Bypass”, ”Volume” and ”Tuning” were fixed, as they are
parameters which do not affect the timbral quality of the output sound. A
few patch settings were auditioned to determine the render settings. This
consisted of finding a suitable cutoff point for noteon and render length.
300ms was found to be a good length that meant that each patch was able
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to express its own unique sound. 300ms also proved to be a good tradeoff for
render time and prediction accuracy - tests where the note was allowed to
fully decay (1500ms) took almost twice as long to train with notably poorer
performance.

Patch List Generation

A function has been implemented that generates a list of patches to be
used to generate sample data for the neural network to train on. Random
generation of training samples has not been used for this project as it is
unreliable to trust that a sufficiently large enough bank of random patches
will cover all of the key sonic characteristics that a synthesiser has. A
tradeoff for this project is to use a subsampling function which defines a
”step” for each parameter based off a given resolution value:

step =
1

2(resolution)

The minimum resolution value is 1, which produces a stepsize of 0.5,
resulting in the steps 0, 0.5, and 1 being used for that particular parameter.
In order to achieve full sampling of a parameter, the resolution should be 7;
( 1
27

= 1
128). This enables a quick way of producing datasets that are small

enough to test that a network is functioning, while allowing a facility to
perform up to full sampling if required.

In conjunction to this, Python’s Itertools package has been used to im-
plement a function that returns a list of patches in suitable format for the
VST host. It works by calculating the list of potential steps for an iterable
parameter, and then computing the cartesean product of that list multiplied
by itself for the number of iterable parameters. This is the basis for the al-
gorithm, however some preprocessing and postprocessing steps are required:

1. Initialise empty patch, a list of tuples for each parameter, where t[0]
= parameter id, t[1] = parameter value

2. Remove each index of excluded parameters via their index from the
empty patch

3. Perform calculation of patch list settings, with a repeat value = num-
ber of iterable paramters

4. Reconstruct each patch by appending the fixed parameters to the tem-
plate patch and sorting by parameter id
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5. Return patch list ready for generating sample data

Patch List Preprocessing

Two additional functions have been created that convert patch information
into a label that is suitable for a network to use when trianing. This is es-
sential as training predictions are output as an n-dimensional NumPy array,
and the network expects a corresponding size array to be used as a label.
For the structure of the network, only parameters that contribute to the
timbre of the output signal are included - fixed paramters that are defined
in the EDA stage are not to be predicted by the NN model. The functions
label to patch and patch to label both take two arguments: the list to be
converted, and the fixed parameters.

Patch to label works by first converting the list of tuples into a list of
floats, which represent the parameter value, then removing the floats in the
list that fixed parameters defines as being values to be excluded from train-
ing. The returned array is then ready to be used as a training label for the
network as a list.

When validating results after the network is trained, it is essential to
sanity check sometimes and to also evaluate the performance on unseen
data. For this reason, label to patch has been implemented which works
by initialising a patch full of the fixed parameters and iterating through it,
inserting a parameter from the label when an index is missing. These sim-
ple conversion functions can be thought of as encoders and decoders for the
network’s patch predictions.

4.3 Data Representation

Using the patch list generated by the functions outlined in Patch Selection,
a list of patches is used to generate sample audio as raw waveforms. In pro-
gramming terms, the VST host which provides an API for the VST returns
a 1D array containing a list of amplitudes as a floating point data repre-
sentation. This array is the waveform for the output signal. As previously
mentioned, the waveform needs to be transformed into a time-frequency rep-
resentation before being given to the network as sample data. The Librosa
is used to accomplish this using the STFT, CQT, and MFCC functions.
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Short Term Fourier Transform

The Short Term Fourier Transform implementation that LibRosa uses has
a good set of default settings, and is representative of a good benchmark. If
the network can learn parameter settings using this standard representation,
then a modified representation should yeild significant performance boosts.

Constant-Q Tranform

Librosa’s implementation of the Constant-Q Transform allows a range of
parameters to be manipulated, however the most relevant parameters that
were modified were the number of frequency bins, and the bins per octave.
The number of bins was increased to 176 from 88 in order to provide more
resolution between the frequency bins. 88 frequency bins maps to each note
on a standard grand piano, and as the synthesiser’s output has a harmoni-
cally rich signal, the bin sizes have been doubled to 176 in order to capture
as much sonic information as possible while still giving equal representation
to all bins in the frequency scale.

Mel-Frequency Cepstral Coefficients

20 MFCCs are used per time step to represent the audio. This is a good
amount in order to represent just the important information about the sig-
nal. Librosa’s implementation of the MFCC calculation could be passed a
melspectrogram as input, which is a mel-scaled STFT, however there was
little benefit to tweaking these parameters as the MFCC representation is
so different to the other two data representations in this test.

4.4 Deep Neural Network Architecture

The following table describes the architecture of the Convolutional Neural
Network used for solving the research question:

Training Parameters

Mean Squared Error is used as initially the experiments are trying to reduce
overall error when predicting the patch, and this is a good metric for this.
Adam optimiser is used with a learning rate of 0.001 to ensure that the
network reliably builds up knowledge slowly. Early experiments showed
that 50 epochs per batch were enough to reach peak performance without
stagnating, so this value was kept for the final experiments.
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Table 4.1: SynthNet V1.0 CNN Architecture
Layer (Type) Parameters

Input Input Shape = Spectrogram Dimensions
1D Convolutional Filters = 256, Kernel Size = 5, Activation = ReLU
Max Pooling 1D Pool Size = 2
1D Convolutional Filters = 256, Kernel Size = 5, Activation = ReLU, Padding = Causal
Max Pooling 1D Pool Size = 2
1D Convolutional Filters = 256, Kernel Size = 5, Activation = ReLU, Padding = Causal
Max Pooling 1D Pool Size = 2
1D Convolutional Filters = 84, Kernel Size = 5, Activation = ReLU, Padding = Causal
Max Pooling 1D Pool Size = 2
1D Convolutional Filters = 84, Kernel Size = 5, Activation = ReLU, Padding = Causal
Max Pooling 1D Pool Size = 2
Flatten
Dense Units = 84
Dense Units = (number of parameters), Activation = Soft Quantisation(Step Size)

Soft-Quantisation Layer

As the general MIDI implementation relys on steps of 1128, it makes sense
to encode this limitation into the network. The parameter settings that the
network are given are bound to this scale, so by encoding this fact into the
network, it takes less work to reach a reliable prediction. While it is not
possible to implement a hard quantisation layer that snaps predictions to
steps of 1128, a soft-quantisation method has been used to transform tensor
values closer to the 1/128 ”snap” point.

Accuracy Metric

It is useful during training and model evaluation to see the real-life accuracy
of the training predictions to see realistically how good the model is learning
relationships in the data.

A custom accuracy function has been implemented with a modifiable
threshold. For example, if the resolution of the generated steps is ”2”,
then a step of 1/4 is produced - values in the range [0,14, 12, 34, 1] are
used. As these are the only values possible for this resolution, the accuracy
metric returns ”true” if the predicted value is within 0.25 of the actual value.
This gives a good way of objectively classifying the performance of different
architectures and data representations.
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4.5 Neural Network Training Framework

1. Parameter Configuration

EDA needs to be performed on the data source (the VSTi) in order to
define experiment parameters. This is because every synthesiser has unique
characteristics that cannot be easily discovered automatically. The following
variables must be defined before NN training can commence:

• VST Path

• Parameter Subsampling Resolution

• Note Pitch

• Note Velocity

• Note-On Time

• Render Window Length

• Data Representation Type

Some of these values such as VST Path and Velocity do not need to be
changed throughout the experiment, however, different results can be acheived
by changing each parameter. Additionally, the fixed parameters for the
synth must also be defined, along with their settings. This is represented as
a list of tuples. The fixed parameters are typically those that do not change
the timbre of the output sound.

2. Patch List Generation and Preparation

Sample Data is being rendered on the fly for each iteration of training the
neural network, however, the instructions to generate the sounds need to
be defined beforehand. The gen patch list function uses 2 parameters in
addition to the VST path to generate a patch list that samples the sonic
capabilities of the defined VST at the resolution defined.
When training, neural networks can tend to find patterns in consecutive
data. This negatively affects the performance of the network’s accuracy, so
in order to offset this, the patch list is shuffled using numpy’s random shuffle
function.
Finally, the patch list is partitioned into individual patch banks of size 128.
This is so that the sample data can be rendered and stored in memory. For
example, the Nekobi synthesiser had a patch list of 4,096 when generated
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with a resolution of 2. It is unfeasible to store all of this data in RAM to
be used to train the network, therefore training the network on batches of
data is the most efficient solution.

3. Neural Network Parameter Setting

The neural network architecture is dependent on two variables for each syn-
thesiser and data representation combination. The input shape for the net-
work is the same dimensions as the data representation. The output shape
is the amount of parameters that the network needs to predict in a patch.
This is equal to the amount of parameters on a synth minus the fixed param-
eters. Additionally the accuracy threshold metric may be set in accordance
with the resolution of the generated samples and expected performance of
the network when paired with a certain data representation.

4. Batch Training

For each batch of patches, the batch is split into test and train partitions,
and the VST Host is used to render the raw audio according to the patch
and configuration options. Once the raw audio has been rendered into the
test and train arrays respectively, Keras is initialised to start training the
model that was defined earlier. The NN model is treated as an object with
Keras, so consecutive calls to fit the model on the data are appended, rather
than reinitialising the model with the defined architecture.
As the experiment platform is Linux with a CUDA-capable GPU, the net-
work is trained on the GPU. In order to efficiently use both CPU and GPU
at the same time, Keras’ fit generator function is used. A Python gen-
erator has been implemented that converts raw audio samples into their
corresponding spectrogram representations using LibRosa. This function is
run on the CPU and shortens training time by reducing bottlenecks on the
system.

5. Logging, Results, and Model Evaluation

During training, a few logging features were used to ensure that the system
is functioning as expected. Firstly, TQDM* is used to monitor the progress
of the overall batch training. The time between iterations is used to give an
estimate of the amount of time it will take to fully train the network, and is
also used to monitor the amount of time it takes to render the audio using
the VST host. Keras’ CSVLogger is used to log loss and accuracy over time
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with each epoch. This is useful for identifying areas where the network’s ac-
curacy and loss reaches optimal levels, and to demonstrate the effectiveness
of training, as some configurations reach peak performance much earlier in
training than others.
After training, the model configuration is exported as a JSON file, and the
weights of each layer are exported as a H5 archive. This allows the trained
model to be reinitialised without having to wait for the network to train.
Each model was evaluated after training by predicting the patch settings for
a fixed set of 1000 randomly generated patches for the Nekobi synth. The
dataset for evaluation was kept constant in order to keep a fair comparison
between the model’s performance.

4.6 Unforeseen Development Issues

Unfortunately not every idea that was envisioned during the development
process was implemented either due to time or knowledge constraints:

Encoder - Decoder Style Network

WaveNet* is a generative Autoencoder style network that is able to oper-
ate on pure waveforms of an input signal and reproduce a representation.
WaveNet has impressive results, but also has significant hardware restric-
tions.

The core ideas of WaveNet inspired a network architecture design for
this project. Utilising the AutoEncoder style design, a ’decoder’ would be
used to represent the network’s patch predictions as time-frequency. The
most optimal CNN architecture would be used to encode the values, and
then in order to compute a more accurate loss function, the model would
try and match the output to the input.

In theory this would have significant performance gains as it address
the aspect of synthesisers that there is not always a direct 1:1 mapping of
changing parameter settings to change in audio - there are sometimes black
spots where the changing of a parameter has no effect. There is no way of
encoding this aspect to the neural network using a simple CNN model. The
encoder-decoder style would learn these ’blackspots’ and therefore wouldnt
apply penalisations to the encoder section for getting the wrong paramter
setting.
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This model would take significantly more processing power and time, but
would ultimately produce a better model. Unfortunately, the author’s expe-
rience with writing Keras / Tensorflow code was not enough to implement
this during the project time period. The core idea is to embed the VST
host code into a layer in the computational graph that takes predictions as
input, and produces a spectrogram as an output. Attempted work involved
the use of Keras Lambda functions and TensorFlow’s py func to embed the
code, however an incomprehensible error was returned.
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Chapter 5

Results

To reasonably compare the spectral representations, the custom accuracy
metric that was implemented had a threshold that took into account the
resolution at which the patch parameters were sampled at. Therefore for
these experiments, at a patch sample rate of 1

4 , if the network’s prediction
is within 1

4 of the target setting, then it is classified as being correct. While
there could still be some variance in the actual output sound, there is often
not much modifying to the target patch required in order to fully achieve
the target sound.
All experiments were conducted using the Convolutional Neural Network
outlined in Implementation, with each batch of samples having 50 epochs
to train the model on. Results were gathered using the Jupyter Notebook
environment on a computer running Linux Mint 18 with a CUDA-capable
NVidia GTX1050ti graphics card.
Performance is evaluated in a number of ways. Firstly the training history
is taken into account, as some configurations reach peak performance long
before other configurations. Next, real-world performance is evaluated. A
dataset of 1000 randomly generated patches has been created to fairly com-
pare each representation against each other. The restriction of a quarter
turn has been lifted, and each parameter can take an integer value in the
range 1-128. This is to make the test more realistic for the trained models,
and to evaluate how well they perform.
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5.1 Short Term Fourier Transform

Training The Network

The STFT representation took 1hr32mins to fully train on the data that was
provided. As shown in the training loss and accuracy graphs, the perfor-
mance drops at the start of each batch, but quickly recovers and improves
at the end of each stage in training. The final loss of 0.035 is the MSE
between the predicted patch and the patch given for training, and the accu-
racy shown of 53.6% is the rate at which the predicted patch is within the
defined threshold of each predicted parameter being no further than 0.25
away from the target parameter.
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Performance

There are two ways to evaluate the real-world performance of the trained
NN model, Patch Settings and Audio Output. The neural network used
has been trained with the goal of trying to reduce the distance between
a target patch setting and a predicted patch setting. By evaluating both
of these factors, a clearer picture of practical application of the model is
achieved.
The difference between each predicted patch and target patch has been
calculated, and NumPy’s linalg.norm* feature has been used to represent
each predicted patch as a measure of total distance from the target patch.
A distribution of these norms is shown in fig x.

The same idea has been applied to the target sound and predicted sound.
Each predicted patch has been rendered, and the difference calculated for
the corressponding target sound. For each difference, the norm is then
calculated and used as a measure of the predictive performance in terms of
real-world audio. The Worst, Best, and Median performance is presented
below.
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As shown, there is not much difference between the target and predicted
sounds even for the worst case scenario. The model has a good representa-
tion of what sounds the synthesiser can make, and can predict fairly reliably
the patches needed.

The Short Term Fourier Transform provides insight into the baseline
performance of the system for this problem. Even though a relatively small
subset of the sounds that the target synthesiser can make is used, it is shown
that with an untuned data representation, the neural network architecture
is able to predict target patch settings to a reasonable degree of accuracy.
Given the worst case scenario shown here, it only requires a small modifi-
cation of one parameter to achieve a sound that is almost identical to the
target sound.
Given the random chance probability for this problem, the STFT gives rea-
sonable performance and is enough to prove that the designed system is
feasible to be used to reliably predict patch parameters.
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5.2 Constant Q Transform

Training The Network

The CQT representation took 1hr12mins to fully train on the data that was
provided. Again, the performance drops at the start of each batch which is
to be expected, however high performance is reached much faster than the
STFT representation. A final accuracy of 93% is very good, and probably
can be attributed to the fact that the Nekobi synth has a lot of low frequency
information that the CQT helps to represent.
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Performance

Patch Settings

Audio Output
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Again the worst performing patch still has reasonable accuracy which
means a target sound can be reached with some small adjustments from
the user. This is more practical when a more complex sound is trying to
be achieved, but for the purposes of this project, it shows that the system
works reliably.

5.3 Mel Frequency Cepstral Coefficients

Training The Network

The MFCC representation took 53 mins to fully train on the data that
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was provided, probably due to the lossy representation of the data that is
used. The MFCC reaches 100% Accuracy within 400 epochs during training,
which is much higher performance than both the STFT-based spectrograms.
Additionally, a very low loss is achieved at around 400 epochs, ending on
0.00002 MSE loss. This is exceptional performance, and would have to have
been reduced by including dropouts in the network architecture if we weren’t
trying to overfit the data.

Performance

Patch Settings

Audio Output
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Again, even the worst performing audio render is still very accurate.

5.4 Summary

As expected the Short Term Fourier Transform was the worst performing
representaiton out of the test group, but it still was able to predict correct
patches with a higher accuracy than random chance, which indicated that
the solution was viable. The Constant Q performed better, with a higher ac-
curacy rate which is to be expected as a lot of frequency information for this
particular bass synthesiser is detailed in the lower bands which the STFT
tended to bunch together.
An unexpected outcome of this experiment is that the Mel-Frequency Cep-
stral Coefficients representation of the data performed significantly better
during training than both the Constant Q representation and the Short
Term Fourier Transform representation, reaching an accuracy of 100% very
early on in training. This was not anticipated, however it is not unusual
due to the success enjoyed by using MFCCs as the data representation in
other Deep Learning applications such a voice recognition, or other musical
analysis.

5.5 Further Developments

More research and development has been completed in an attempt to in-
crease network performance for more complex synthesisers. The MFCC
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data representation has been used to develop further as it’s performance in
the previous experiment was overall better than both the STFT and CQT
representations.
A shortcoming of the MFCC as a data representation in this task is that
complex audio synthesisers produce frequencies that are equally important
to the overall sound across the audio spectrum. The Mel-Frequency scale
does not accommodate this as it is designed to represent perceptual pitch
to the human ear. In typical musical or speech analysis tasks this is not
an issue, however, as the system is trying to predict patches that are as
accurate to the source sound as possible, using the Mel-Frequency scale is
potentially an issue, especially when complex low end frequncies need to be
considered.
In order to address this issue whilst maintaining performance of the neural
network, a fairly novel data representation known as Constant-Q Cepstral
Coefficients has been used to represent rendered synthesiser audio to the
neural network model.

Constant-Q Cepstral Coefficients

As outlined in Computer Identification of Musical Instruments using Pat-
tern Recognition with Cepstral Coefficients as features, Constant-Q Cepstral
Coefficients are an effective way of representing musical data that addresses
the shortcomings of the MFCC for this application.
They are produced in essentially the same way as Mel-Frequency Cepstral
Coefficients, except that a constant Q power spectrum is used rather than a
Mel-Frequency scaled power spectrum to calculate the DCT from. A Python
adaptation of Delgado[22]’s MATLAB implentation for calculating CQCCs
has been used to represent rendered sample data for the CNN.
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5.6 Constant-Q Cepstral Coefficients Results

Training The Network

The CQCC representation took 55 mins to fully train. This extra time taken
can possibly be attributed to the extra computation required to calculate
the CQCC. The MFCC essentially takes the DCT of the Mel-Scaled Spec-
trogram, whereas the CQCC needs to be resampled before calculating the
DCT. This is because the DCT requires an orthoganal frequency basis in
order to work correctly, however, the Constant-Q Transform results in a ge-
ometric frequency basis due to it’s nature. Peak accuracy is reached a little
later on in training, at around epoch 600, with peak loss being reached at
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around epoch 400, the same time as the MFCC.

Performance

Patch Settings

Audio Output
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5.7 Evaluation

The results have shown that all 4 data representations are viable for the
network used, as even the worst case of the worst performing data represen-
tation still has reasonable real-world accuracy. All of the predicted patches
are a very close approximation of the target patch. It was anticipated that
the CQCC representation would provide a significant performance boost over
the other data representations, however it appears that the neural network
used had the largest effect on the accuracy. Early prototypes of networks
were barely able to reach 0.5 MSE loss at full training, so the CNN archi-
tecture used for this task is appropriate.
Overall these results prove that the designed system solves the research
question with reasonable accuracy, and in reasonable time.

5.8 Critical Appraisal

While this project has shown that it is possible to estimate a synthesisers
parameters to a very close degree, it is clear that some modifications need to
be made going forward in order to produce a more reliable system for more
complicated synthesisers. The author’s knowledge of DSP is not sufficient
enough to reliably evaluate the accuracy of the Constant-Q Cepstral Coef-
ficent algorithm that has been implemented, so it is possible that a more
suited implementation of the algorithm would have more performance over
the well-proven MFCC algorithm implemented by LibRosa.
It is also clear from the results presented that the data representation does
not have as much of an effect on the accuracy of the predicted sound as other
aspects of the system do, such as neural network layers and patch sampling
resolution.
The current system gets most of the way there in terms of accuracy of
predicting patches, however the fine tunable details are often missed out.
Utilisation of a more low level framework such as using TensorFlow directly
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would result in being able to implement more complex neural network ar-
chitectures that serve the problem domain better in order to perfect the fine
details of the patch.
These experiments have resulted in a reliable way of automatically pro-
gramming the Nekobi synthesiser to reproduce a given sound with reason-
able accuracy. However there are a couple of shortcomings that need to be
addressed:

1. These experiments only considered timbre variance, not pitch variance.

2. The Nekobi synthesiser is not as harmonically rich as other synthesisers
that are commonly available.

A critical aspect of this project was the choice of VSTi. All models and
data representations have very good performance in predicting the sounds
that the Nekobi synth can make, however, it is possible that the tools em-
ployed are overkill for such a simple synthesiser. A much more complex
synthesiser should be tested with the network archtecture to truly find the
strengths and weaknesses of each data representation. The most notable
difference between the network models is the amount of time taken to reach
a good level of accuracy. This should change if the parameter space were
to be dramatically increased from 6 to 50 for example, and as should the
spread of performance in patch prediction.
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Chapter 6

Conclusion

The project’s inital aims were to evaluate the feasiblity of using Deep Learn-
ing to reverse engineer an audio synthesiser’s sounds. This project has shown
that this is possible, and has explored some methods that improve the per-
formance of a system that is developed to complete this.
The mean time for a model to train was roughly 1 hour, and every exper-
iment ended up reaching peak accuracy early on. This suggests that with
performance tweaks and more careful choice of sample patch data, the NN
could potentially be trained in less time or on less powerful hardware in the
same amout of time.
The rendertools library takes a few already existing concepts and combines
them all to provide a good abstraction for preprocessing for this project.
The general framework that has been designed is fairly flexible and was de-
signed with modularity in mind for the sake of future work.
It was not expected that a relatively off-the-shelf Convolutional Neural Net-
work would have such good performance in this task. It is promising that
a simple architecture is able to predict patches in such a manner, as future
work with more complex problems have a lot of scope to build off.

Perhaps a more useful approach to this project should have been to focus
more on developing a more purpose built network such as the Encoder De-
coder Architecture outlined in Further Work, however, this required trans-
ferring all Keras code over to it’s equivalent TensorFlow code and imple-
menting a significant amount of custom functions. While this was possible
within the scope of the project, TensorFlow has a significant learning curve
from Keras, and there is little to no documentation on how to approach
implementing the ideas outlined. Ultimately however it has proven useful
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to show that there is negligable difference between the data representations
used when the network model is trained on a relatively simple synthesiser.

Overall this project has been a good learning experience, with unex-
pected problem domains in a range of different areas, and has been com-
pleted with plenty of scope left for promising future work.

6.1 Further Work

Future work should first focus on testing the current neural network model
on more complex VSTis to evaluate a more realistic performance level of the
system. Some more suggestions are outlined below:

Optimize processing pipeline

There are currently a couple of bottlenecks in the system. As such it was only
feasible to let the network train for a certain amount of time. This constraint
could be lifted if the bottlenecks were reduced. A potential solution is to
reduce the amount of time it takes to render the audio data used in training,
as currently almost half the time that the network is training for, the GPU
is idle and is not training the model. This could be solved in two ways:

• Parallelize Patch Rendering As the VST host and VSTi are both
written in C++, it is feasible to use CUDA in order to speedup the
patch rendering section of the training session.

• Asynchronous Patch Rendering When the CPU has finished pro-
cessing the sample data into time-frequency representations of the
data, it could be feasible to start rendering the next batch of audio
sample data whilst the 50 epochs of training are still being processed.
This asynchronous model should be trivial to implement, but may
provide significant performance gains and lead to optimal hardware
usage.

Encoder Decoder Network Architecture

Unfortunately it proved non-trivial to attempt to implement this archi-
tecture using pure Keras, however, using a more flexible deep learning li-
brary such as TensorFlow or PyTorch, it may be possible to implement a
WaveNet[23]-inspired autoencoder style network. The core idea is to use the
CNN architecture described in Implementation as the Encoder to produce
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the patch settings, and then instead of having the network calculate loss
based on Mean Squared Error of patch settings, have the netwrok calculate
loss based on the rendered audio of the patch settings it prediceted in the
encoder half of the model. This requires making a decoder layer that takes
patch settings as input and outputs a spectrogram as an output, and then
compiling the whole model as an autoencoder style network. A suitable loss
function should be binary cross entropy as the network will be attempting
to match the output with the input. In practice this network may take
significantly more resources and time to run, as each individual prediction
needs to be rendered within the network, however it may ultimately result
in a more accurate model of a given synthesiser. The encoder part of the
model can then be used as the neural network used in production to make
very accurate predictions of patch settings based off input audio.

Parameter Resolution Feedback Loop

As outlined in chapter 3, a problem with this topic is the question of how
often to sample each individual parameter as each parameter has a variable
non-linear response. One way to resolve this is to employ an algorithm that
explores the sound space that a synthesiser can make, and uses a feedback
loop to note the spaces in a parameter that have the most effect on a given
sound. More thought is required to elegantly solve this problem.
Another potential way to solve this is to let the neural network decide what
needs to be focussed on: during training, keep a running total of the indi-
vidual error / loss of each parameter in the patch. After a batch of training
is completed, evaluate the loss of each parameter and assign a higher res-
olution to the parameters which have a mean loss that is larger than the
mean overall loss. This way the network provides a sort of feedback that is
able to essentially interactively explore the sound space of the synthesiser.
A problem with this approach however is that some parameters on some
synthesisers can be switched off by other parameters - this would need to
be taken into account, as a parameter that is switched off would have much
higher loss than the other parameters in the patch, and focussing on this
parameter would lead to wasted resources and even lower accuracy than
expected.

Parameter Confidence included in NN predictions

Currently the neural network model is only able to output 1 value for each
parameter. This doesn’t leave any room for error, and doesn’t accommodate
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for situations where the network is ’undecided’ about a few settings. The
idea for this is to extend the current output space such that each parameter
has 128 possible options. A percentage distribution can then be used to
accurately display a range of predicted values.

Reverse Engineering Polyphonic Patches

A limitation of the VST host that was used is that only one note can be
rendered at a time - this is known as being monophonic. Polyphony is
where more than one note is played at once. There are a lot of polyphonic
synthesisers available, and they often produce very harmonically rich sounds.
An extension of this work would be to develop a system that can produce
a high quality dataset with polyphonic representations, and a network that
would be able to discern the patch settings to reproduce the timbre that
is created by using these notes. A potential way of separating timbral and
pitch information is to use a metadata style network, where note information
is given to the network as a separate vector and applied in a network merge.
This would essentially ensure that the network can focus on reproducing
appropriate timbre for both monophonic and polyphonic performance data.

Transfer Learning for Synthesiser Patch Extraction

It is very rare to find isolated samples of synthesiser sounds in order to be
used as training data for this network. One direction that further work
could take would be to apply the principles of this project to a network
that is able to pick out an instrument in a scene and replicate the timbral
features for a given synthesiser that matches the instrument in that scene.
An ideal system would be able to accommodate for other instruments in
the audio, and would be able to hone in on one instrument in the mix and
provide patch settings to emulate the sound that the instrument makes, or
potentially sounds for every instrument in the mix, provided the synthesiser
is sufficiently capable.
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Chapter 7

Reflection

This project has been a fantastic learning experience in all sorts of do-
mains. A considerable amount of this project has been spent researching
the project’s problem domains including DSP, Deep Learning, HPC, and a
lot of failed attempts at putting ideas together in order to solve the individ-
ual problems that were presented at each stage of development.
Upon completion of this project I feel I have gained a good amount of prac-
tical understanding and experience in the field of deep learning that can be
taken forward and applied to different problems without much of a transi-
tion. I also contributed to the development of Fedden’s RenderMan VST
Host library during the completion of this project, and as a result I have
a more in depth knowledge of python-c++ interoperability, as well as how
Steinberg’s VST SDK works.
As a result of the work done in this project, I can comfortably say that I
have developed a good work ethic for researching and learning about topics
that are out of my depth. A few fairly niche concepts were required to be
understood in order to have a good understanding of how to solve a partic-
ular problem encountered during the project.

I have also grown to appreciate the complexities of audio synthesisers
and synthesis methods, and have strived to use them more as a fine tuned
instrument in my music rather than as a tool to fill in the background.

Ultimately I am glad to have pursued this research area, and I am excited
to see where the results of future work will lead to.
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