
INITIAL PLAN
REVERSE ENGINEERING AUDIO
SYNTHESISER SOUNDS
CM3203 One Semester Individual Project - 40 Credits

AUTHOR
Harrison Taylor
TaylorH23@cardiff.ac.uk

SUPERVISOR
Prof. David Marshall
MarshallAD@cardiff.ac.uk

PROJECT DESCRIPTION
 Traditional instruments such as a concert grand piano or an acoustic guitar have a
fixed property called the timbre which allows the listener to instantly distinguish which
note is coming from which instrument. Audio synthesisers are a class of instrument that
produce sound by manipulating the output of an audio source through a series of effects,
which are controlled via a set of parameters. The type of manipulation available to the
instrument player differs based on the model of synthesiser, and the timbral information
for the instrument can be described by a configuration of these parameters.
 A configuration of synthesiser parameters is referred to as a patch, and is desirable
to record as it is often difficult to recall the exact configuration of parameters for a certain
sound. Collections of patches are often sold by sound designers who have spent a lot of
time learning the characteristics of a certain model, and know how to reproduce a given
sound.

 The goal of this project is to use machine learning techniques to reverse engineer
the effect that each parameter has a synthesiser's output sound. The hypothesis is that if a
well designed ANN (Artificial Neural Network) is sufficiently trained on a set of patches
with corresponding sample sounds, the network can then predict a patch that results in a
reasonably close reproduction of some arbitrary input sound. The accuracy of a predicted
patch relies on the capability of the audio synthesiser to produce the sound, and the
quality of the ANN model.
 A series of experiments will be conducted to determine the best type of data
representation and neural network configuration as a general architecture for solving this
problem. Although many types of synthesis methods exist, Subtractive and FM based
synthesisers will be the main focus of this project.

 Virtual Studio Technology is a standard interface for audio plugins and software
instruments, often used with Digital Audio Workstations for producing music. For this
project, synthesisers in the form of VST Instruments (VSTi) will be used in experiments for
convenience due to fast offline processing and easy manipulation via the VSTi API.

ETHICS
This project does not require any ethical approval as any data that is assessed is
synthesised for the experiments.

!2

AIMS & OBJECTIVES
PRIMARY OBJECTIVES
• VSTi patch rendering  

Produce or find an interface for a VST host that will return an audio clip in WAV format
given a set of parameters and note information.

• Neural Network Development - Stage 1 
Develop a neural network architecture that can reliably predict, with a good degree of
accuracy, an unseen audio clip from a simple VSTi that it has been trained on.  

• Neural Network Development - Stage 2 
Improve upon initial neural network architecture by developing a general architecture
that is able to produce models that reliably predict patches for a small range of different
VSTi’s. This stage is important to ensure that the network architecture performs well
generally, rather than for just one type of VSTi.

• Neural Network Development - Stage 3 
Improve upon the developed neural network architecture to accommodate changes in
note pitch. Synthesiser sounds are rarely identical in timbre across their possible range,
so experiments need to be developed to ensure that the network can predict an
accurate patch for a given pitch.

• Neural Network Architecture Comparison Experiments 
Perform experiments for a range of audio data representations and neural network
architectures in order to determine the most effective configuration for the general task
of reverse engineering audio synthesiser sounds 

SECONDARY OBJECTIVES
• Reliable selection of patches for timbral features of a VSTi 

Each VSTi can produce a limited set of sounds based on it's parameters. In order for a
neural network to identify the best patch for a given patch, a good representation of the
effect that a parameter makes on the output sound is essential. There is often a "sweet
spot" in which small parameter changes in a certain patch produce a wide array of
sounds. Ideally there should be more testing patches around these “sweet spot”
parameter configurations, and less testing patches around areas that contribute a
smaller amount of change in the output sound.  

!3

• Investigation into temporal changes of parameters 
It is very rare in musical performance that a patch remains unmodified for the entirety of
a song - often the patch is seen as a starting point followed by a change in parameters
as the instrument is played. Taking these performance characteristics into account,
investigation into developing a network architecture that can recognise these temporal
changes would be an appropriate area of consideration.  

• Patch Preview application 
Using a trained model for a given VSTi, produce a small application that takes as input
an audio file to predict an appropriate patch for reproducing the audio file's sound
using a selected neural network model. Upon processing, launch a visual version of the
VSTi that accepts MIDI messages for a user to preview the patch.

• Investigation into appropriate fitness functions  
An investigation into what the most appropriate fitness function for classifying sounds
may yield better performance in predicting patches. For example, a potential fitness
function may select a predicted patch that is on average 60% correct for the duration of
the sound over a predicted patch that is 90% correct for the majority for the sound but
with a large amount of error for the remaining 10%. An investigation into different
fitness functions may prove beneficial to the overall performance of an architecture.

WORK PLAN
All deliverables for the final project are due 11/5/17, giving me 15 weeks to fully
complete the outlined objectives. The main implementation should ideally be completed
by Easter Break, allowing for writing of the report and final experiments to be conducted
in the final weeks of term.

A quick breakdown of scheduled objectives is defined below:

Week 1 - 29 Jan
• Research of previous work and familiarisation with VST tools

Week 2 - 5 Feb
• Research and learn about potential neural network architectures & data

representations
• Start initial implementation of basic neural network architecture
• Investigation into patch selection for VST instruments

Week 3 - 12 Feb
• Further learning of neural network architectures & data representations
• Initial experiments and refinements of basic neural network architecture
• Development of framework for visualising patch differences using t-SNE

!4

Week 4 - 19 Feb
Milestone 1: Successful patch prediction for simple synthesiser

• Investigation into generalising simple neural network for other synthesiser models
• Finalisation of planned experiments for architecture configurations
• Research fitness functions and construct experiments for ideal fitness functions

Week 5 - 26 Feb
• Initial experiments for different architecture configurations
• Refinement of architecture configurations
• Development of fitness function for optimal prediction

Week 6 - 5 Mar
• Continued experiments for comparisons of different architecture configurations
• Development of automatic selection of patches for VST instruments

Week 7 - 12 Mar
Milestone 2: Successful overall improvements in patch prediction

• Continued experiments for comparisons of different architecture configurations
• Begin considerations of temporal features and changes in played note for

performanceWeek 8 - 19 Mar
• Investigate comparisons between network performance for different types of

synthesisers - does one type of architecture perform better with a certain type of
synth for example?

• Continued experiments and improvements to network layers & architectures

Week 9 - 26 Mar
Milestone 3: Main implementation Successfully completed

• Begin compilation of data and analysis of network performances
• Begin write up of final report
• Investigate strongest models for solving general problem for main focus

Week 10 - 2 April
• Begin experiments with sounds not generated by target synthesisers - how well

can synthesisers emulate sounds of other instruments & synthesisers with help
from the developed neural network?

• Continue write up of final report

Week 11 - 9 April
Milestone 4: Final implementation

• Perform tuning for better efficiency and performance of the network
• Continue write up of final report
• Repeat experiments as necessary

Week 12 - 16 April
• Final report writeup

!5

Week 13 - 23 April
Milestone 5: Final Report Draft

• Deliver final report for review

Week 14 - 30 April
• Improve final report
• Repeat experiments if necessary
• Develop VST Host Preview application

Week 15 - 7 May
• Deliver Final Report draft for review
• Deliver Project code
• Submit Final Report & Project Code

!6

