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Abstract

Today, the most successful spam filters are built upon the statistical theories

of Machine Learning algorithms, since they are easy to construct, train and

have shown great performance in the field of spam filtering. However, security

issues arise from the Machine Learning model’s adaptability in the presence

of an adversary that can subvert the Machine Learning model and manipulate

the testing samples during the model test time, which poses potential security

issues. The purpose of this project is to investigate the performances of spam

filters built upon Machine Learning in the presence of an adversary and examine

the possibility of identifying a Black Box model underlying algorithm using

adversarial examples designed for other models. A software system has been

implemented to model the combat between spam filters that are based on the

most popular Machine Learning Classification algorithms and possible adversarial

attacks using Python programming language. Spam filters built upon Machine

learning algorithms were found to be vulnerable to adversarial attacks. In

addition, identifying the underlying algorithm of a Black Box model was found to

be possible. Thus, adversarial attacks on applications based on Machine Learning

raise major security issues that need to be considered.
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Chapter 1
Introduction

1.1 Preface

Nowadays, emails became a major part of individuals daily life as a vital communication

tool. Every second, billions of emails are sent around including spam emails, where spam

emails are irrelevant or unsolicited emails that contain links that might look familiar to the

user but leads to phishing web sites or malware hosted sites and contain malwares as scripts

or executable file attachments that may harm the user. According to IBM Security, spam

emails are considered as a primary tool in each attacker’s toolkit [8]. In addition, research

done by IBM security showed that the number of spam emails is increasing rapidly, and the

volume increased by 4x (Fourfold) in 2016 [8]. Therefore, to protect the users from the threat

of spam emails, email spam filters and detectors are used and provided by email services

and several software’s to keep the spam emails out of the user’s inbox. These filters, use

statistical Machine Learning Classification techniques and algorithms to produce intelligent

decisions on the Classification of the data in the emails to decide whether an email is spam

or not [2]. These statistical algorithms are implemented into a Machine Learning model

that adapt the application to the changes in data by learning and training constantly on

given datasets, which then produces a set of patterns and rules that will be followed to

classify future data [15]. However, security issues arise from the Machine Learning model’s

adaptability in the presence of an adversary that can fool the Machine Learning model by

manipulating the input data during the test time of the model [15].
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Chapter 1. Introduction 2

1.2 Project Aims and Scope

The main aims of this project are to investigate the performances of spam filters built upon

different Machine Learning algorithms in the presence of an adversary and examine the

possibility of identifying a Black Box model underlying algorithm using adversarial examples

designed for other models.

The project scope focuses on implementing a software system that allows the users to examine

the performances of different Machine Learning Classification algorithms acting as spam

filters against several adversarial attacks.

1.3 Intended Audience

The intended audience and beneficiaries from this project are the individuals who are

interested or doing research in the field of security of applications built on Machine Learning

algorithms and more specifically the case of spam filtering.

1.4 Report Structure

This paper is organised in the following way, Chapter 2 presents an initial background of

Machine Learning, Machine Learning approach to Spam Filtering, measures for evaluating

Machine Learning classifiers and Adversarial Machine Learning, Chapter 3 discusses the

requirements and design of the software system, Chapter 4 focuses on the implementation

of the software system down to the code level, Chapter 5 presents the test cases that

were undertaken to test the software system, Chapter 6 focuses on the results that were

obtained from the developed software system, Chapter 7 focuses on the potential future

work that could be undertaken to improve the project, Chapter 8 concludes the project

and summarises the main findings and Chapter 9 reflects on the learning obtained from

undertaking this project.



Chapter 2
Background Research

2.1 Machine Learning

Nowadays, Machine Learning has become a popular tool in any task that requires extrac-

tion of information from large datasets. The term Machine Learning means the acquisition

of structural patterns from examples for future prediction, explanation and understanding

purposes [20]. It provides the technical basis of Data mining, which is the extraction

of implicit, previously unknown, and potentially useful information from data [20]. Some

applications that utilises Machine Learning are, credit card fraud detection, spam filters and

digital cameras face detectors [7]. These applications are based on the theory of statistical

algorithms in building learning models to make interference from a sample. In addition, Ma-

chine Learning approaches provide an automated, adaptive approach that extracts knowledge

from supplied training datasets using a Machine Learning algorithm such as Classification,

to utilise the information obtained in the categorisation of previously unseen data as seen

in Figure 2.1 [6], where Classification is a form of data analysis that extracts models cate-

gorising significant data classes. These models are referred to as Classifiers, which predict

categorical (unordered, discrete) class labels for given data [7]. For example, having a table

of data that has different individuals information that includes their name, age, income and

a categorical class loan decision as seen in Figure 2.2, a classifier will be able to predict the

categorical class loan decision for an unseen individual after extracting some rules using a

classification algorithm from the data in the table. Several classification techniques have

been used by researchers in the fields of Machine Learning, statistics and pattern recognition

for applications including fraud detection, medical diagnosis, performance prediction and

3



Chapter 2. Background Research 4

target marketing [7].

Figure 2.1: Machine Learning Flow

Figure 2.2: Machine Learning using Classification

In addition, classification process consists of two main steps, learning step (training phase),

where a classifier is built using a classification algorithm by analysing and learning from an

available training set and their class labels and classification step, where previously unseen
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data are classified and categorised as seen in Figure 2.2 [7]. Several Machine Learning

classifiers exist, some of the most popular used Machine Learning classifiers will be discussed

in the upcoming sections.

2.1.1 Supervised VS Unsupervised Machine Learning

There exists several types of Machine Learning, Supervised and Unsupervised Machine

Learning are mostly used [10]. Supervised Machine Learning is learning in presence of

training dataset that is already labelled, for example, a set of emails that have already been

labelled as either spam or ham (ham represents legitimate and good emails) [17]. Therefore,

the obtained expertise and knowledge from the given training dataset is used to predict the

label of unseen data, which is illustrated in Figure 2.3. Therefore, Classification is a typical

example of Supervised Machine Learning [1].

Figure 2.3: Supervised Machine Learning

In Unsupervised Machine Learning, a training dataset is provided but lacks from labels, for

example, a set of emails that are not labelled if they are either spam or ham. Thus, there

exists no distinction between training and unseen test data and the machine will have to

extract and understand patterns from the given data as shown in Figure 2.4 [17]. An example

of Unsupervised Machine Learning is Clustering, which divides the data in a dataset into

subsets of similar objects [17]. For the purposes of this project Supervised Machine Learning
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will be utilised using Classification methods.

Figure 2.4: Unsupervised Machine Learning

2.2 Machine Learning Approach to E-mail Spam filtering

Email spam filtering is considered as a binary classification task, where spam emails are

treated as positive (+) instances, and ham emails (legitimate) as negative (-) instances

[2]. Therefore, Machine Learning techniques and statistical approaches are used to build

classifiers that will filter spam emails from a user mail stream. As suggested by Bhowmick

& Hazrika, some of the most popular Machine Learning classifiers that are used for spam

filtering are Naïve Bayes, Support Vector Machines and Decision Trees [2]. Each one of the

classifiers mentioned above is further discussed in the following sections.

2.2.1 Naïve Bayes

In Machine Learning, Naïve Bayes classifier is one of the most popular statistical spam

filters [2] and it is based on Bayes’ theorem with an assumption of independency among

the input features (document words) [14]. Thus, it assumes that the occurrence of a certain

feature in a class is unrelated to the occurrence of other features. In the spam filter scenario,

each email is represented as a vector ~x =< xi, ...., xn > with n features (each feature

represents a word that appear in the corpus) and the email could be categorised into two

different classes, either spam or ham {Cs, Ch}, where Cs represents the spam class and Ch
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represents the ham class [14]. Using the Bayes’ theorem, the probability of an email with

vector ~x =< xi, ...., xn > to have a class Ci that is ∈ {Cs, Ch} can be calculated as follows,

P (Ci|~x)Ci∈{Cs,Ch} =
P (Ci).P (~x|Ci)

P (~x)
,

where P (Ci) is the probability of observing the class Ci in the training set, P (~x|Ci) is the

probability of having a message classified as Ci is represented by ~x and P (~x) is the probability

of observing the message ~x [2]. Since Naïve Bayes assumes independence among the features

of ~x, then P (~x|Ci) could be changed into the following form [1],

P (~x|Ci) =
n∏
i=1

P (xi|Ci)

Therefore, the probability of an email with vector ~x =< xi, ...., xn > to have a class that is

∈ {Cs, Ch} can now be calculated as follows,

P (Ci|~x)Ci∈{Cs,Ch} =
P (Ci)

∏n
i=1 P (xi|Ci)
P (~x)

,

the Naïve Bayes optimal classifier that will be used to classify unseen emails can be then

interpreted as [9],

Ĉi = argmax
Ci∈{Cs,Ch}

P (Ci)
n∏
i=1

P (xi|Ci),

where Ĉi represents the class label of the unseen email that has the highest probability value

and P (xi|Ci) calculation depends on the type or form of Naïve Bayes classifier. Thus, Naïve

Bayes represents each class with a probabilistic summary and classifies each email with the

most likely class it finds [5].

2.2.2 Decision Trees

A Decision Tree is a hierarchical model used in Supervised Machine Learning, since it

yields to a sequence of intermediate decisions, which lead to a final decision and has been

seen to give good results and being efficient for classification tasks [10]. A Decision Tree
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is represented as a flowchart-like tree structure that consists of nodes, branches and leaf

nodes [7]. Each node represents a test on a feature, each branch represents an outcome of a

test at a feature node and the leaf nodes represent classes. Therefore, Decision Trees can

be easily interpreted as classification rules [7]. To construct a Decision tree, Decision Tree

induction algorithms are used. One of the most popular algorithms is known as ID3 with an

extended version called C4.5. These algorithms are intended for classification tasks, they

construct a decision tree from a set of given data by choosing the set of features that are

mostly useful to a certain classification task and represents them as the nodes to partition

the data into different classes [7]. Therefore, the features that do not appear are considered

irrelevant [7]. A simple Decision Tree represent the spam filtering scenario is presented in

Figure 2.5. The root node as it can be seen, checks the occurrence frequency of the feature

"Free", if it occurred in the email more than two times, then it moves to the next internal

node, otherwise the email is classified as ham. Next, it checks the occurrence frequency of

the feature "Money", if it is more than two, the email is therefore classified as spam and

ham otherwise.

Figure 2.5: Simple Decision Tree

2.2.3 Support Vector Machines

A Support Vector Machine is a Supervised learning method that has been extensively

used for classification tasks yielding a great success rate [2]. For the two-class (e.g spam

and ham) separable training set scenario, the main task of a Support Vector Machine is to
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find and create an optimal hyperplane (boundary) that divides the data into two different

classes (spam and ham) by maximising the distance called margin between the separating

hyperplane and the closest data points [10]. The reason behind choosing the hyperplane

with the largest margin is because it makes the classification correct for testing data that

are near, but not identical to the training data [10]. A simple example is shown in Figure

2.6, where the samples belong either to class spam represented by (+) or ham represented

by (-). The separating line (hyperplane) defines a boundary on the right side of which all

emails are spam, and to the left of which all emails are ham. Any new unseen email falling

to the right will be classified as spam and otherwise it will be classified as ham if it falls to

the left of the line.

Figure 2.6: Support Vector Machine

2.3 Evaluating what has been learned

Evaluation is the key to success in Machine Learning and Data Mining [20]. To determine

which classification algorithm is suitable for a particular classification problem or evaluate

how well different algorithms work and compare one with another, systematic evaluation

methods are used on the test set [20]. The reason why evaluation is done on a test set that is

different than the training set is to avoid model Overfitting. If no data splitting was done,

same data will be used for training and testing, which will result in the model repeating the

labels of the samples that were previously seen while training in the testing phase, which

will result in having a perfect accuracy score for predicting the testing set but will fail in

predicting unseen data [20]. In the two-class case with classes spam or ham, yes or no, and



Chapter 2. Background Research 10

so on, each prediction can have four different outcomes, True Positive (TP), True Negative

(TN), False Positive (FP) and False Negative (FN) where these outcomes are defined as

follows,

• TP: correct classification of a positive class

• TN: correct classification of a negative class

• FP: incorrect classification of a positive class that is actually negative

• FN: incorrect classification of a negative class that is actually positive

Furthermore, the total result of the outcomes is usually presented in a Confusion matrix of

two dimensions as seen in Figure 2.7, where each class (Positive and Negative) is represented

by a single row for the actual class and a single column for the predicted class.

Figure 2.7: Confusion Matrix

Each matrix element then represents the total number of the test instances for which is the

actual class is the row and the predicted class is the column [20]. Thus, a good performance

indicator from the Confusion matrix would be having large numbers in the diagonal elements

and small numbers, ideally zero in the off-diagonal elements. In addition, these outcomes

that are presented in the Confusion matrix are used by multiple evaluation metrics such as,

Accuracy, Recall and Precision to evaluate a classifier’s performance. Each evaluation metric
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simply summarises the confusion matrix differently as seen in the following list [20],

• Accuracy: Accuracy is the overall success rate that is calculated by dividing the number

of correct classifications (TP and FP) by the total number of the classifications, the

best value is 1 and the worst is 0 [20].

• Recall: Recall is the ability of the classifier to find all the positive instances and

is calculated by dividing the number of correct positive classifications (TP) by the

(TP+FN), the best value is 1 and the worst is 0 [20].

• Precision: Precision is the ability of the classifier to not label a negative class instance

as positive and is calculated by dividing the number of correct positive classifications

(TP) by the (TP+FP), the best value is 1 and the worst is 0 [20].

2.4 Adversarial Machine Learning

Adversarial Machine Learning is the study of the vulnerabilities of Machine Learning

algorithms in a presence of an adversary (opponent) that targets a Machine Learning

model during the testing phase when making predictions or the training phase of the model

parameters [4]. In the testing phase scenario, the adversary uses crafted malicious inputs

(adversarial examples) that are designed to be miss-classified by the Machine Learning

model [4]. It has been seen that several Machine Learning models are often vulnerable to

adversarial changes in their input, which causes incorrect classification [12]. In Addition, it

has been seen that adversarial examples designed for a specific model have a transferability

property (able to be miss-classified by an another Machine Learning model without having

the knowledge of the underlying model), where one adversarial example that has been

designed to be miss-classified by a model denoted as "Model1" is also often miss-classified

by another unknown model denoted by "Model2" [12]. This allows the attackers to mount

the adversaries on Black box models. Therefore, Adversarial examples pose major security

risks for applications based on Machine Learning.
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2.5 Python Machine Learning libraries

Since python programming language will be used in this project for implementation purposes,

research on libraries supporting Machine Learning had to be taken. Python provides several

open source Machine Learning libraries, such as, Scikit-learn library, Theano and Keras.

Scikit-learn library consists of concise and consistent interface to the common Machine

Learning algorithms, which makes it easier to achieve Machine Learning in production

systems [16]. The library contains a good documentation and quality code and combines the

ease of use and high performance. Theano is a python package that is similar to NumPy

library (A library that provides useful features and operations that can be used on n-arrays

and matrices in python) as it defines multi-dimensional arrays and provides math operations

and expressions using NumPy syntax [18]. In addition, the library also optimises the use

of GPU and CPU, making the performance of data-intensive computation even faster [18].

Keras is an open source library that is dedicated more for a subfield of Machine Learning

called Deep Learning [11]. For the purposes of this project, Scikit-learn will be used over

Theano and Keras since the data that will be analysed is not large and because Scikit-learn

provides interfaces for the Machine Learning algorithms, which will help in developing the

software system faster by reusing them.

2.6 Existing Solutions

An existing solution that is relevant to the area of this project is Adversarial Machine Learning

Library 1 (adlib) that is developed by the Adversarial Machine Learning Group within the

Vanderbilt Computational Economics Research Lab led by Dr. Yevgeniy Vorobeychik. This

solution provides a library that is written in Python programming language that models

the combats between spam email attackers and robust spam filters, using the adversarial

machine learning methods. This library includes a data processing unit, several attacks and

a simple learner wrap up as a spam filter and several robust learning algorithms. One of

the differences between this solution and the solution to be developed is that the developed

1Available from https://github.com/vu-aml/adlib/
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solution will be implemented as a command line interface that allows user interactions. In

addition, the interface will allow users to choose between the most popular classifiers (Naïve

Bayes, Decision Tree and Support Vector Machine) when adlib supports only Support Vector

Machine. Another difference is that the developed solution will have the option to view a

summary of all classifiers performances evaluation before and after mounting the attacks.

Finally, the developed solution will allow creating a Black Box model that can be attacked

using existing adversarial examples designed for other models.

2.7 Research Questions

Aims

The main aims of this project are to investigate the performances of spam filters built upon

different Machine Learning algorithms in the presence of an adversary and examine the

possibility of identifying a Black Box model underlying algorithm using adversarial examples

designed for other models.

Research questions

In order to demonstrate the achievement of the stated aims, this project will implement the

most popular Machine Learning Classification algorithms and a Black Box model, identify a

range of adversarial attacks, implement the adversarial attacks, implement suitable evaluation

metrics to evaluate the classifiers and then combine all the partial implementations into one

usable software system.



Chapter 3
Specification and Design

In order for the project to be successful, it is important that sufficient time is spent on

the specification and design of the software system. Therefore, This chapter of the report

presents a clear picture of the software system to be developed. It discusses the software

system requirements and initial design. In addition, it mentions the development strategy

that is followed to produce the software.

3.1 Software Requirement Specification

As with any software system a Software Requirement Specification is produced from the

client requirements. The Software Requirement Specification for this project includes several

functional and nonfunctional requirements concerning the technical implementation of the

software system. These requirements are useful as they allow the evaluation of the success of

the final product.

3.1.1 Functional Requirements

The most crucial functional requirements are defined in the following list,

• The system shall take data from the user input as raw email files and their labels for

training and testing classifiers.

– Raw email files will be needed for training and testing the classifiers. Therefore,

the system will get the data from the user input by specifying the directory that

includes the data.

14
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• The system shall pre-process the given raw emails.

– Once the raw emails are provided by the user, the system will pre-process them

by using Natural Language Processing functions (Tokenisation, Stemming and

removal of stop words) to improve the accuracy and simplify extracting the feature

vector.

• The system shall provide different classification algorithms to create a Machine Learning

model (Classifier).

– The system will have three different classification algorithms to create a classifier,

Naïve Bayes, Support Vector Machines and Decision trees. This is because

classification algorithms differ in the following criteria which leads to different

results,

∗ Predictive Accuracy: this refers to the ability of the model to correctly predict

the class label of new or previously unseen data

∗ Speed: this refers to the computation costs involved in generating and using

the model

∗ Robustness: this is the ability of the model to make correct predictions given

noisy data or data with missing values

∗ Scalability: this refers to the ability to construct the model efficiently given

large amount of data.

• The system shall provide an option to create a Black Box model with unknown

underlying algorithm.

– This model will be used to examine the possibility of identifying the underlying

algorithm of Black Box models.

• The system shall train the chosen classification algorithm (including the Black Box

model) using provided training emails to create a classifier

– Upon receiving pre-processed training emails, the system will train the chosen

classification algorithm to create the classifier.
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• The system shall allow the user to attack the created classifier (including the Black

Box model) using different attacks.

– The system will give the user an option to choose an attack to attack the created

classifier during the testing phase.

• The system shall allow the user to save an adversarial set that is resulted from attacking

their chosen classifier.

– Existing adversarial sets are needed for attacking Black Box model and also to

make it easier to use the same attack again.

• The system shall allow the user to attack trained classifiers using existing saved

adversarial sets that were designed for other models.

– The system will give the user an option load an adversarial set and attack their

chosen classifier using it.

• The system must be able to allow a classifier to predict the class/label of previously

unseen emails.

– Given unseen emails that includes no label, the system will allow a trained classifier

to predict the label of the unseen emails.

• The system shall allow validating and evaluating trained classifiers before and after

attacks.

– Having a trained classifier, the system will present the results from calculating the

Accuracy, Precision and Recall scores of the Classifier before and after attacks.

The optional and desirable functional requirements are defined in the following list,

• The system could allow saving a trained classifier.

• The system could allow loading a trained classifier.

• The system could provide an option that shows a summary of evaluation for all the

classifiers.
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• The system could provide an option that shows a summary of evaluation for all the

classifiers against all possible attacks.

3.1.2 Non-Functional Requirements

The non-functional requirements are defined in the following list,

• Reliability

– The system will have no errors and will be available to use all the time.

• Usability

– The system will be implemented as simple command line software that will be

easy to use and adjust to.

• Speed

– Pre-processing the datasets, creating the classifiers, testing and validating and

evaluating the classifiers should be fast.

• Size

– The size of the system will not exceed 1000 megabytes and will have small impact

on computer memory.

• Re-usability

– The implementation of the system will be broken into sub packages with multiple

modules that can be reusable in other projects or systems.
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3.2 System Architecture

The system will be implemented as a main package called ADML (Adversarial Machine

Learning) that will include three sub packages, DataReader, Classifiers and Attacks as seen

in Figure 3.1. This utilisation of dividing the system into packages allows easier modification

and future additions to the system. DataReader sub package is considered as the most

crucial to the functionality of the software system. It will be responsible of preparing and

pre-processing the raw emails in order to create feature vectors that will be used by the

classifiers and the attacks. Classifiers sub package will be responsible of implementing Naïve

Bayes, Decision Tree and Support Vector Machine classifiers. Finally Attacks sub package

will include the implementation of the adversarial attacks.

Figure 3.1: Package Diagram

3.3 Design

To better understand the software system to be developed, Unified Modelling Language

(UML) has been utilised. UML helps to visualise a software system as it is intended to be

and gives a template that guides the developer in constructing the software system. Thus,

two different diagrams provided from UML have been created and presented below.
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Figure 3.2: Class Diagram
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Figure 3.3: Use Case Diagram
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Class Diagram

Figure 3.2, shows the internal structure of the software system and the interaction of different

classes. The soft copy of the figure is attached as an external file in the submission to provide

better vision. The most important classes are described briefly in the following list,

• classifier: This class represents an abstract class for all classifiers. This class is useful

because it defines the necessary operations for any classification model and will allow

the addition of classifiers with ease at any time during the project.

• EmailDataset: This class represents a dataset, which loads data from raw email files

and labels and then pre-processes the data to create feature vectors. This class is

important because it allows loading the data into the system and provides the suitable

data represented by feature vectors to be used in the software system by other classes.

• attack: This class represents an abstract class for all attacks. This class is useful

because it defines the necessary operations for any attack and will allow the addition

of attacks with ease at any time during the project.

The classes svmClassifier, decisionTreeClassifier and multiNomialNaiveBayesClassifier have

been created to represent the chosen algorithms (Support Vector Machine, Decision Tree

and Naïve Bayes) and each class implements the abstract class "classifier". In addition, the

classes GoodWordAttack, RestrainedAttack, FreeRangeAttack and FeatureDeletionAttack

represents adversarial attacks and each class implements the abstract class "attack".

Use Case Diagram

The use case diagram presented in 3.3 consists of a set of possible sequences of interactions

between systems and users in the software system. It contains all the system activities

that have significance to the users within the software system. In addition, it holds all the

functional requirements and represents them in a format that is easy to read and track.
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3.4 Development Strategy

Due to the limited time frame in which the software system had to be developed and

tested in, a development strategy also called methodology had to be followed to manage the

development and testing of the software system and ensure delivering a functioning prototype

at the end of the project. Therefore, In this project, Agile software development methodology

has been chosen to be the suitable method and was utilised during the implementation and

testing phase. Agile development method breaks the project into small incremental builds

called iterations. At the end of each iteration, a working product is displayed to the client.

Here are some reasons why Agile was chosen over other methods. Firstly, the requirements

for this project are at a moderate to high risk of changing. In Agile, any changes to the

requirements can be incorporated at any point of the process even in late development

processes without the risk of losing the whole work. Secondly, a working software will be

delivered much more quickly and successive iterations can be delivered frequently and viewed

by the client at a consistent pace. Thirdly, the client will be satisfied by the rapid and

continuous delivery of useful software. In addition, feedback will be received from the client

after each iteration, which will provide the opportunity to improve the software in the next

iterations. Over the course of the project, four iterations has been utilised, each with its

own objectives and deliverables and are presented in the following list.

• Iteration One: The first iteration focused on implementing loading, parsing and

processing the raw data needed. The deliverable from this iteration was pre-processed

dataset that can be used in classification operations.

• Iteration Two: The second iteration focused on creating three classifiers from three

different algorithms and allow them to be trained and tested using the dataset resulted

from the first iteration. The deliverable from this iteration was the three classifiers

being able to be trained and tested.

• Iteration Three: The third iteration focused on creating a range of different attacks

that can be used to attack the created classifiers in second iteration. The deliverable

from this iteration was four different attacks that can be run during the testing time
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of the classifiers.

• Iteration Four: The last iteration focused on the creation of the user interface of the

software. the deliverable from this iteration was the user interface that combines the

usage of the three previous iterations to provide user interaction with the software.



Chapter 4
Implementation

This section of the report will discuss the implementation of the software system down to the

code level. The key parts of the code implemented will be detailed with the related services

and tools that were utilised.

4.1 Project Structure

In order to produce a readable, reliable and maintainable software, python modular program-

ming was used to structure the project by splitting the source code into separate small parts

[19]. These parts are represented by a python module, which is simply a python file that

consists of classes, functions and variable definitions that can be grouped after to produce a

complete software system. Hence, the usage of modules facilitates the re-usability of the code

and makes it easier to access the code for specific functionality. In addition, similar modules

were grouped and categorised into different packages. These packages act as a directory that

holds the modules that have similar functionality [19]. The following list demonstrates the

final implemented project structure that consists of different packages and modules,

• DataReader: This package is responsible for loading, processing, parsing and prepar-

ing the raw emails and labels for classification and attacking operations. The main

module in this package is EmailDataset.py. This module contains a class called Email-

Dataset, which is constructed by loading either raw emails and labels or a serialised

object of the class saved in external file (.pkl 1). If the data is raw, then creating

1.pkl is a file format of a file that is created by a python module called Pickle, this file contains a serialised
object that can be deserialised in run-time

24
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an EmailDataset object will load, process, parse and prepare the data and make it

available for access in the software. In addition, all the data saved in the software

system are stored in a directory called "Data" that is held in DataReader package.

• Classifiers: This package provides an abstract classifier class defined with the neces-

sary operations for using a classifier for email classification problem and three main

implementations of the following classifiers, Naïve Bayes, Support Vector Machines

and Decision Tree. The list below presents the modules included in classifiers package.

– Classifier.py : Abstract class for the classifiers.

– multiNomialNaiveBayesClassifier.py : classifier representing learning model based

on Naïve Bayes classification algorithm.

– SupportVectorMachineClassifier.py : classifier representing learning model based

on Support Vector Machines classification algorithm.

– DecisionTreeClassifier.py : classifier representing learning model based on Decision

Tree classification algorithm.

• attacks: This package provides an abstract class for implementing an attack and is

defined in attack.py module and several attack modules that uses the abstract class.

Each attack module implemented is presented in the list below and will be discussed

in detail in the Attacks section of this chapter.

– GoodwordAttack.py : Contains First N Words and Best N words Attacks.

– FreeRangeAttack.py : Free Range Attack implementation

– RestrainedAttack.py : Restrained Attack implementation

– FeatureDeletionAttack.py : Feature Deletion Attack implementation

• interface: This is the main file that uses all the defined modules in data, classifiers and

attacks packages to run the software. It is also responsible of creating the command

line GUI (Graphical User interface) and specifying the software interactions with the

user actions such as, reading user input and presenting results.
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4.2 Data Preparation and Processing

4.2.1 Loading the Data

The first step towards the machine learning approaches and methods is loading the necessary

data, which consists of raw emails in .eml format2 and their labels in a file with .label

format provided from CSDMC2010 SPAM corpus3. Therefore, to load the emails and

convert them to strings for further pre-processing and preparing, the function load_emails()

has been created as seen in Figure 4.1.

Figure 4.1: load_emails() function

This function takes the directory path that holds the raw emails and uses python built-in

function os.listdir(), which returns a list of the file names in the directory and open() to open

each file for reading in text mode with the following parameters, mode ="r" for reading,

errors ="ignore" to specify that encoding/decoding errors should be ignored and encoding

="utf-8" as it is the most popular encoding for HTML/Text files and the emails might

include HTML/Text parts, so it will ensure that each character is decoded correctly. After

that, each email file is converted to a string using read() function and a list of converted

emails is returned. A similar approach has been taken to load the labels of the emails and is

implemented in load_labels().

2This file format has the email contents as plain text in MIME format, containing the email header and
body

3one of the datasets for the data mining competition associated with ICONIP 2010 (International Conference
on Neural Information Processing) available from http://csmining.org/index.php/spam-email-datasets-.html.
It is composed of a selection of mail messages, suitable for use in testing spam filtering systems.
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4.2.2 Email Body Extraction

Next, python email package4 is utilised to parse the emails and extract the body part

(also referred to as payload), since it contains the HTML/plain text message, which is the

only needed part for our classification problem. Therefore, each email string is converted

to a message object structure of the class type EmailMessage, which is the base class in

email package for an email object model and allows the functionality of accessing email

bodies using email.message_from_string() function as seen in the implemented function

get_emails_bodies() in Figure 4.2.

Figure 4.2: get_emails_bodies() function

Accessing the email bodies then is achieved by checking first if the email has multiple body

parts using is_multipart() function. This function returns True if the email has a structured

sequence of sub-messages with multiple bodies and False if it is a simple text message. Then,

get_payload() function is used to return the body of the email (payload), which will be a

list that is looped over to create a single body when is_multipart() returns True and single

4a library for managing email messages available from https://docs.python.org/3/library/email.html
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body string otherwise as seen in Figure 4.2. In addition, HTML tags are removed from the

bodies using re.sub() function from python re module5 to substitute the pattern "<.*?>"

with an empty string where "<" and ">" matches HTML tag opening and closing brackets

and ".*?" matches zero or more characters.

4.2.3 Feature Extraction

In all cases of training, testing and attacking the classifiers, operations cannot be performed

on the emails body in its raw format. Most Machine Learning algorithms do not expect

raw text documents with variable length, but instead numerical fixed size feature vectors,

where each individual word (token) in an email body occurrence frequency represents a

feature and a feature vector of dimension n represents a single email, where n=number of

features (also called feature space) [16]. Therefore, to solve this problem, Vectorisation can

be used to turn the raw email bodies into numerical feature vectors using Bag of words

representation, which performs the following steps,

1. Tokinising all the strings and giving numerical ID for each possible token (word) [16].

2. Counting the occurrences of the tokens in each document (email) [16].

3. Normalising and calculating the weight of the tokens and diminishing importance

tokens which appear in the majority of the documents/samples (emails) [16].

Thus, a corpus of emails will be represented by a matrix with one column per token occurring

in the corpus and one row per email.

For this purpose, TfidfVectorizer class from Scikit-learn has been selected to tokinse,

remove stop words that are very present and convert the collection of raw email bodies to

a matrix of Tf-idf features using Tf-idf term weighting, where Tf and idf are defined as

follows,

• The number of times a term (word) occurs in a given document as Tf.

• Inverse document frequency calculated by idf(t) = log 1+nd
1+df (d,t)

+ 1 as idf, where nd is

5This is a python module that provides regular expression matching operations
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the number of the documents and df (d, t) is the number of the documents that has

the term t [16].

Therefore, each feature weight will be calculated as Tf(t, d)× idf(t). Moreover, Tf-idf term

weighting gives higher values to the words that are important and have a significant part

in the meaning of the document and minimises of frequently occurring terms such as stop

words, which would diminish the frequencies of other terms that are rare but more important

to the context if contained in the feature vectors [16]. Therefore, get_feature_vectors()

function was created as seen in Figure 4.3.

Figure 4.3: get_feature_vectors() function

This function starts by creating an object of class TfidfVectorizer with the following parame-

ters, analyzer=’word’ to specify that the features should be made of words, strip_accents=

None to specifiy that no accents need to be removed during pre-processing, ngram_range=(1,

1), max_features=self.max_features to specify the max number of features to be extracted,

stop_words=’english’ to remove english stop words and norm=None so no normalisation

is applied. Then, the created vectoriser is trained on the raw email bodies to learn the

vocabulary and idf using fit() and turn the raw email bodies into document-term matrix using

transform() function. The returned document-term matrix is represented by a compressed

sparse row matrix data structure, where each row is a feature vector for a single email and
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each column is a word. The reason why compressed sparse row matrix is used is because it

does not require so much space in the memory and algebraic operations can be performed

faster on it. An additional feature that can be seen in Figure 4.3 is using Scikit-learn

Binarizer class. This class has been used to transform the feature vectors into binary

feature vectors, where the occurrence of a word in a document is set to 1 if its present and

to 0 otherwise. This has been added as some implemented attacks require having binary

feature vectors.

4.2.4 Splitting the Dataset

After vectorising the raw emails, the feature vectors are split into two separate subsets,

training set and testing set with having 70 % for training and 30 % for testing. The

training set will be used to train the models alongside with their labels and the testing set

will be used to test the predictions of the models. This has been done to avoid Overfitting

the models as discussed in the Chapter 2. Thus, split_data() function has been implemented

to handle splitting the data and is presented in Figure 4.4.

Figure 4.4: split_data() function

This function uses the helper function train_test_split() provided from Scikit-learn library,

which takes the feature vectors and their labels and returns two subsets with two lists

that holds their labels after shuffling them and splitting them according to the parameter

test_size, which specifies the percentage sizes of the subsets as seen in Figure 4.4.

4.2.5 Saving and Loading EmailDataset

Pickle python library is used to save (serialise) and load (deserialise) previously created

EmailDataset object as it provides simple and fast performance. For saving the EmailDataset

object, pickle converts the object into a byte stream in order to store it in an external
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file using pickle.dump() function. For loading, it reads the byte stream and recreates the

original object hierarchy and populates it with the data using instructions included in the

byte stream that aids in recreating the same object using pickle.load().

4.3 Classifiers

Three types of classifiers have been created for this software, these classifiers have been

constructed as classes that implement the abstract class classifier provided in Classifier.py

and each classifier implements a suitable class of its algorithm learning model from Scikit-

learn classifiers. Therefore, for Naïve Bayes classifier, Scikit-learnMultinomialNB has been

chosen to represent the model, for Support Vector Machines classifier, SVC has been chosen

to represent the model and finally for Decision Tree classifier, DecisionTreeClassifier has

been chosen.

4.3.1 Training and Testing the Classifiers

For training and testing the classifiers, fit() and predict() functions has been used and are

provided by Scikit-learn. The function fit() is used on a classifier to train it and fit it to

the training set. Therefore, it requires passing the training set instances and the labels.

After fitting the model, the function predict() is used on the classifier to classify incoming

data points from a testing set or other previously unseen data. Figure 4.5 shows how these

functions are used.

Figure 4.5: fit() and predict() functions



Chapter 4. Implementation 32

4.3.2 Evaluating the Classifiers

For evaluating the classifiers as discussed in the background chapter, Scikit-learn Confusion

Matrix, Accuracy, Precision, and Recall classification metric functions has been used. Each

of these functions require passing the true (correct) labels with the corresponding predicted

labels. The list below shows the evaluation metric with the function used from Scikit-learn

and Figure 4.6 shows how they called in the code,

• Confusion Matrix: confusion_matrix()

• Accuracy: accuracy_score()

• Precision: precision_score()

• Recall: recall_score()

Figure 4.6: Evaluation Metrics code

4.4 Attacks

4.4.1 Free Range Attack & Restrained Attack [21]

Free Range and Restrained attacks are implemented using the Adversarial Support Vector

Machine Learning proposed algorithms by Yan Zhou, Murat Kantarcioglu, Bhavani Thurais-

ingham and Bowei Xi and Adversarial Machine Learning Library (Ad-lib). These attacks

goal is to move the spam instances features by a specific distance, this distance is measured

as the harshness of the attack. In Free Range attack, features can be moved anywhere in the

feature space, while it is more conservative in Restrained attack [21].
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Free Range Attack [21]

Free Range attack aims to move the feature values in the spam instances anywhere in the

feature space. It requires finding a valid range of the minimum and maximum values of

each feature in the feature space of all the testing set instances [21]. Therefore, this has

been implemented in min_feature_val() and max_feature_val() functions. These functions

simply iterate over each feature in the feature space for each single instance and tries to find

the maximum and minimum value a feature could have in the testing set instances. After

finding the valid ranges of maximum and minimum values of each feature, the following

formula is applied in the function transform_feature_vector() (Figure 4.7) to find δij , which

is the displacement value for a data point xij ,

Cf (x
min
ij − xij) ≤ δij ≤ Cf (xmaxij − xij), ∀j ∈ [1, d],

where Cf ∈ [0, 1] controls the aggressiveness of attacks. Cf = 0 means no attacks, while

Cf = 1 corresponds to the most aggressive attacks involving the widest range of permitted

data movement and xminij and xmaxij are the smallest and the largest values that the jth

feature of an instance (xi) can take [21]. After finding the displacement value δij , it is added

to the original value of xij as seen in Figure 4.7.

Figure 4.7: transform_feature_vector() function
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Therefore, as seen in Figure 4.7, the function starts by looping through each possible feature

in the feature space and sets its original value in the variable xij (xij in the formula). Then,

it finds the lower and upper bounds of the feature by multiplying the attribute attack_power

(Cf in the formula and has default value= 1) by the minimum value the feature has and the

maximum value. After that, the displacement value δij presented by the variable delta_ij

is found using python built-in function random.uniform() with the range (lower_bound,

upper_bound), which returns a random value between the specified range. This value is then

added to the variable xij and is set in the feature vector. This is repeated for each feature in

each spam instance using the attack() function.

Restrained Attack [21]

Restrained attack aims to move the feature values in the spam instances close to a chosen

target ham instance. Therefore, to initiate this attack, a ham instance must be set as a target

instance that the feature values will be pushed to [21]. According to Zhou, this can be chosen

randomly or can be an estimate centroid of innocuous data (ham instances), a point sampled

from the observed innocuous data, or an artificial data point generated from the estimated

innocuous data distribution [21]. Thus, the function find_centroid() presented in Figure 4.8

creates an artificial ham instance by constructing a Compressed Sparse Row matrix data

structure with dimension n = feature space. Therefore, csr_matrix data structure provided

by scipy python package has been used to create the artificial ham instance. csr_matrix

requires three parameters to be created, each parameter is provided in the list below with

an explanation of how it was obtained,

• data: This is a list that contains the value of each feature in the feature space and for

our artificial ham instance, each feature value equals the average of its feature values

in all ham instances in the testing set. Therefore, the variable sum has been created

and it is incremented in each ham instance by the value of the feature in a specific

index. The sum is then divided for each feature by the feature space to get the average

and is appended to the list data.

• indices: This list contains the indices of the features in the same order as they appear



Chapter 4. Implementation 35

in the data list. Therefore, while looping through the feature space, each index has

been appended to this list.

• indptr: This specifies where the row starts in the data and in the indices lists and is

implemented as a pointer array with the range (0 and the length of indices.

Figure 4.8: find_centroid() function

This artificial ham instance is then classified by the classifier in set_innocuous_target()

function, if the result is spam then this artificial instance is not used and a random ham

instance is selected from the training set and set to be the target instance. Next, each spam

instance is transformed by changing each feature value by adding a displacement value to it

specified in the variable delta_ij (δij). This displacement value δij is any value between the

following range,

0 ≤ δij ≤ Cξ

(
1− Cδ

| xtij − xij |
| xij | + | xtij |

)
,

where Cξ ∈ [0, 1] is a constant that represents the data movement factor (Cξ = 1 leads to high

amount of data movement while Cξ = 0 leads to narrower limit on data movement), Cδ ∈ [0, 1]

is a constant that models the loss of malicious utility as a result of the movement (δij) (Cδ = 1

leads to less aggressive attacks while Cδ = 0 leads to more aggressive attacks) and xtij is the
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jth feature value in the artificial ham instance [21]. Therefore, in transform_feature_vector()

function (Figure 4.9), a random value is selected between 0 and the variable bound, which

is calculated as Cξ
(
1 − Cδ

|xtij−xij |
|xij |+|xtij |

)
by having data_movement_factor = 1 (Cξ) and

attack_power = 0 (Cδ) for each feature and is added to the original value variable xij as in

the Free Range Attack and again it is repeated for each spam instance using the attack()

function to create the adversarial set.

Figure 4.9: transform_feature_vector() function

4.4.2 Feature Deletion Attack [3]

Based on Nightmare at Test Time: Robust Learning by Feature Deletion by Amir Globerson

and Sam Roweis and Adversarial Machine Learning Library (Ad-lib), this attack aims to

find a list of features of length n, which might be the most harmful to a certain given

classifier and sets their value in the spam instances to 0, which denotes a deleted feature

[3]. These features could be the features with least weights or highest weights assigned by

the classifier or even randomly selected [3]. In this implementation, features with the least

weights are selected and deleted from the spam instances. Since we have different classifiers,

accessing the weights assigned to the features differ and had to be taken in consideration of

the implementation. Therefore, this attack implementation starts with calling the function

get_del_features_index() (Figure 4.10), which checks the name of the classifier if its either

MultinomialNB , SVM or DT for Decision tree and then uses the correct attribute that

gets the weights assigned to the feature by that classifier, which is coef_ attribute for both
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Naive Bayes and SVM but differ in their internal construction and feature_importances_

for Decision tree as seen in Figure 4.10.

Figure 4.10: get_del_features_indices() function

The features are then sorted in ascending order and the indices of these features are returned

using np.argsort() and then using python slicing method [:del_num] a list with length

del_num (Number of features to be deleted has default value = 1000) of indices will be

returned. The next step is to set the values of the selected features to 0 in the testing spam

instances. Therefore, the function del_features() (Figure 4.11) takes the list of the feature

indices to be deleted and a single spam instance feature vector and loops through all possible

features and check if the feature index is in the list of the feature indices to be deleted and

sets its value to 0 if its included and then returns the new copy of the feature vector. This

step is then repeated for each spam instance feature vector and an adversarial set is created

with all the forged spam instances and the ham instances using attack() function.

Figure 4.11: del_features() function
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4.4.3 Good Word Attacks [13]

This attack implementation is adopted from Good Word Attacks on Statistical Spam Filters

by Daniel Lowd and Christopher Meek [13]. The general idea behind this attack is to modify

spam emails by appending words that mostly appear in ham emails [13]. Therefore, the

attack requires finding a list of words that are considered to be strongly ham to a certain

classifier. Two types of the attack have been implemented, First-N Words and Best-N

Words. Both types of the attacks require finding a pair of spam/ham emails that differ by

one word only [13]. This is performed by eliminating words that are not present in the spam

email words from the ham email and then adding the ones from spam email words to it until

it is classified as spam. For this purpose, the algorithm in Figure 4.12 was adopted in the

implementation of find_witness() function.

Figure 4.12: Find witness algorithm, originally from [13]

In detail, find_witness() function starts by setting the values of current_message, which

represents Mcurr in the algorithm as the ham email feature vector and the spam_message,

which represents M_spam as the spam email feature vector. Then, it extracts the word

indices from current_message and spam_message using get_spam_ham_words() function

(Figure 4.13) and returns them as two sets, one represents the ham words curr_words and

the other represents the spam words spam_words. Next, a while loop is initiated. This while

loop checks if curr_message is classified as spam by the classifier that is attacked each time

after adding a word from spam_words set and after removing all the words from curr_words

that do not appear in spam_words. In each iteration in the loop, prev_message is set to a
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copy of current_message, this is because if a spam word was added to current_message and

it was classified as spam, then we want to know the message which differs from it by one

word, which is defined in prev_message. After finding curr_message that is classified as

spam, the loop terminates and the pair of curr_message and prev_message are returned.

After implementing find_witness(), Both First_N words and Best_N words algorithms have

been implemented in first_n_words() and best_n_words() functions.

Figure 4.13: get_spam_ham_words() function

The first algorithm First-N words (Figure 4.14) finds a fixed length list of good words by

testing the classification of the spam message after the addition of each single word from

the word space. If the classification of the message is ham then the word is considered as a

good word. This is implemented in function first_n_words(), which starts by creating an

empty set to hold the good words that will be found and by calling find_witness() to set the

spam and ham messages that differ by one word. Then, it loops through each feature in

our feature space and checks if the word is present in the spam message. If the word is not

present, then it is added to the spam message and the spam message is then classified using

the classifier. If the classification of the spam message after the addition of the word is ham,

then the word is added to the list of good words. This is repeated until all the words are

tested or until the length of the good words list equals the attribute num_good_words which

is set to 500 in default. After that, a list of good word is returned and is used in the attack()

function. Finally, the attack() function is called to create an adversarial set by using all the
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good words found by First_N words algorithm and appending them to the spam instances

in the testing set. As in the First-N Words attack, the Best N Words (Figure 4.15) attack

Figure 4.14: First-N Words algorithm, originally from [13]
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builds a list of ham words by adding each feature in the feature space to the ham message

and then classify it by the classifier. However, it also builds a list of spam words. The list of

the spam words is constructed from adding each word in our feature space to the ham email

and then classifying it by the classifier. If it is classified as spam, then the word is added to

the list of spam words. Each word in the spam words then partitions the list of ham words

into two sets, one with the ham words that have more importance than the spam word ,

and one with the ham words that have less importance than the spam word. This is done

by adding each single spam word in the ham message and adding each word from the ham

words in each turn for that spam word, then it is classified by the classifier, if the result is

spam , then it means that the added ham word has more importance than the added spam

word and its added to the list with small weights, otherwise, if it is classified as ham then

the ham word has less effect or importance and is added to the list of large weights. This is

done for each spam word in spam words each turn with testing all the ham words. Since

the goal is to find the best n words, the algorithm then reduces the set of negative words

under consideration. If the set of greater magnitude words is larger than n, then it never

needs to consider any of the lesser magnitude words. On the other hand, if the set of greater

magnitude words is smaller than n, then this entire set is a subset of the best n words, so

the algorithm focuses future iterations on the less-negative set.The algorithm halts when it

has found the n best words, or when 10 positive words in a row yield no progress. In the

latter case, its list of n words is a combination of the best words found and random negative

words still under consideration.
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Figure 4.15: Best-N Words algorithm, originally from [13]

4.5 Interface

The interface of the software as discussed in the specification and design chapter has been

implemented as command line GUI. Therefore, the interface consists of printed text using

python print() function, and taking user input using python input() function to interact

with the users and allow the ability of choosing different functions. To make the experience

more interesting and attractive, two packages has been used as seen below,

• Colorama: This package allows using colours for the printed text on the command line

interface, this is helpful because it allows the user to differentiate between a command

and another. This package has been used by importing two functions, init and Fore.

init() is used to initiate using the colours and Fore is used to set the foreground colour

of the text. Figure 4.16 shows how the instructions of the software are printed using
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the colour light green and red. Figure 4.17 shows a screen from the software system

that utilises Colorama.

• Tqdm: This package has been used to show a progress bar (loading) in the interface

when a function is using a loop that might take long time. Using it is simple, it is

wrapped around and iterable that is in a while or for loop. This approach is good, as

some functions take long time, and we want the user to know what is going on.

Figure 4.16: Usage of Colorama

Figure 4.17: Usage of Colorama 2



Chapter 5
Software System Testing

To demonstrate that the software system developed works as intended and meets the system

requirements, test cases have been created and carried out on the most crucial functions in

the software system. Each test case has been carried out on a Windows 10 operating system

device using Windows Command Prompt to run the software and is presented below.

Test Cases

Table 5.1: TC-1 Loading raw emails, labels and creating a pre-proccessed dataset

44
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Table 5.2: TC-2 Loading an existing pre-processed dataset

Table 5.3: TC-3 Saving a dataset
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Table 5.4: TC-4 Creating, training and testing all classifiers (Showing a summary of the
testing results from all classifiers)

Table 5.5: TC-5 Creating, training and testing all classifiers in presence of each possible
attack (Showing a summary of the testing results from all classifiers after each possible
attack)
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Table 5.6: TC-6 Creating and training Naïve Bayes classifier

Table 5.7: TC-7 Creating and training Decision Tree classifier
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Table 5.8: TC-8 Creating and training Support Vector Machine classifier

Table 5.9: TC-9 Creating and training a Black Box classifier
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Table 5.10: TC-10 Saving a trained classifier
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Table 5.11: TC-11 Test a trained Classifier

Table 5.12: TC-12 Predict the labels of unseen emails using a trained classifier
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Table 5.13: TC-13 Load an existing classifier
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Table 5.14: TC-14 Attack a classifier using Good Word Attack
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Table 5.15: TC-15 Attack a classifier using Feature Deletion Attack
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Table 5.16: TC-16 Attack a classifier using Free Range Attack
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Table 5.17: TC-17 Attack a classifier using Restrained Attack

Table 5.18: TC-18 Save an adversarial set after attacking
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Table 5.19: TC-19 Load and attack using existing adversarial set

It can be seen from the test cases, that all of them passed with no errors present during

the testing, which means that all the requirements were satisfied and met. Therefore, it

indicates that the approaches taken to solve the main problem of the project and implement

the software system have been a good choice and resulted in delivering a successful software

system.



Chapter 6
Results

After testing the implementation of the software system, and founding out that all tests have

passed and the system requirements were met successfully, it is possible now to evaluate the

classifiers using the software system to analyse their performance in presence of an adversary.

6.1 Classifiers Performance before Attacks

First, it is important to the identify performances of each classifier when acting as a spam

filter having the dataset from CSDMC2010 SPAM corpus. This is necessary because it will

indicate the classifier that works well on this dataset as a spam filter. In addition, the results

can be used to compare the performances of the classifiers before and after the presence of

an adversary. Therefore, each classifier has been created, trained and tested multiple times

using different random states of training and testing sets. the evaluation metrics that were

focused on are Accuracy and Recall and are discussed below.

6.1.1 Accuracy

Figure 6.1 has been created with the accuracy scores that were obtained from testing the

classifiers in six different tries. It can be clearly seen that Support Vector Machine Classifier

(SVM) outperforms both Naïve Bayes (NB) and Decision Tree Classifier (DT) in regards to

the accuracy scores. Unlike DT and NB who maintain an accuracy score between 0.939 and

0.956, SVM maintains an accuracy score between 0.956 and 0.968, which is considered as the

highest among the classifiers. In addition, it can be noticed that all the classifiers perform

57
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Figure 6.1: Classifiers Accuracy Scores

really well as spam filters on the selected dataset.

6.1.2 Recall

Figure 6.2 shows the Recall scores of each Classifier that were obtained from testing them.

Again, it can be seen that SVM Classifier outperforms both NB and DT Classifiers even in

predicting the positive instances correctly. NB Classifier seems to have the lowest Recall

score among the classifiers. Therefore, as a spam filter, one would prefer to choose the

classifier that can find the positive instances (spam emails) well, and has a high accuracy,

which in this case is SVM Classifier.
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Figure 6.2: Classifiers Recall Scores

6.2 Classifiers Performance in the Presence of an Adversary

Now that each Classifier performance has been evaluated, we can evaluate their performances

in the presence of an adversary. Each attack that is implemented in the software system will

be mounted on each Classifiers and is presented below.

6.2.1 Feature Deletion Attack

To evaluate the robustness of the classifiers to Feature Deletion attack, all three classifiers

have been created and trained on the training set and then tested using the test set that has

N features with least weights deleted each time. The values of N were (0, 25, 50, 100, 250,

500, 1000, 1250, 1500). Figure 6.3 presents the performance of each classifier for different

values of N features deleted.
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Figure 6.3: Feature Deletion Attack (Least Weights)

It can be seen that all the classifiers seem to perform really good with a high Recall score,

even if the number of deleted features increase. Each classifier has an explanation behind

these results. Starting with Naïve Bayes classifier, the recall score maintained a high score

between 0.87 and 0.90 even though the features with the least weights that were deleted

increased each time. This is because the weights given to the features by Naïve Bayes are

the probabilities of having them occur in spam emails, therefore, the features with least

weights are the ones that have the lowest probabilities and do not affect the decision of

classifying an email as spam or not, deleting them then will not change the fact that the

emails are spam. Moving on to Decision Tree classifier, which also maintained a high recall

score no matter how much features with least weights are deleted. The reason behind this

is that Decision tree feature weights are considered as feature importances, the features

with the least weights have less importance to make a decision using the Decision tree and

are considered irrelevant and do not appear in the representation of tree when constructed.

Therefore, deleting them does not change the path followed in the Decision Tree to classify

the spam emails. Finally, Support Vector Machine classifier, which has a little different

case than Naïve Bayes and Decision Tree classifiers. It can be seen that the recall score is
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increasing significantly whenever the number of features with least weights deleted increase.

This is because the weights given to the features by Support Vector Machine classifier are

divided into two types, negative weights with negative values for the features that occur in

ham emails mostly and positive weights with positive values for the features that occur in

spam emails. Therefore, when the features that have the least weights are deleted, some data

points (spam emails) that were miss-classified as ham because they contain negative weight

features will be pushed across the boundary that separates the spam emails from the ham to

the spam side, which is the reason behind the recall increase. Overall, it has been seen that

all the classifiers are resistant to this attack as no spam emails were miss-classified as ham.

The results from Figure 6.3 raised an interest in investigating Feature Deletion Attack with

deleting the features having the highest weights. The same method as deleting the features

having the least weight was taken and Figure 6.4 has been created from the results.

Figure 6.4: Feature Deletion Attack (Highest Weights)

The results in Figure 6.4 clearly support the reasoning behind the results from Figure 6.3 in

interpreting the weights of the features in each classifier. It can be seen that both Naïve

Bayes and Support Vector Machine Classifiers are suffering from significant loss in their

recall score whenever the number of the features having the highest weights are deleted,
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since these features have high probabilities of appearing in spam emails for Naïve Bayes

Classifier and have high positive weights for Support Vector Machine Classifier and deleting

them from the spam emails results in miss-classifying them as ham emails. In the case of

Decision Tree Classifier, Figure 6.4 shows that when 25 features having highest weights were

deleted, the recall score decreased from 0.9 to 0.7. This is because the features that are most

important to classifier’s decision has been deleted. So, this case of Feature Deletion attack

seems to pose security issues for the classifiers.

6.2.2 Free Range and Restrained Attacks

Free Range attack

To evaluate the robustness of the classifiers against Free Range Attack, each classifier is

tested after mounting the attack with having the value of the attack severeness increased

each time Cf . Table 6.1 lists the recall scores of the classifiers with the Free Range Attack.

Cf = 0 Cf = 0.3 Cf = 0.7 Cf = 1.0

NB 0.87 0.07 0.03 0.04
DT 0.91 0.07 0.02 0
SVM 0.83 0 0 0

Table 6.1: Classifiers Recall scores in presence of Free Range attack

Clearly, whenever Cf increases, all classifiers suffer more from miss-classifying the spam

emails as ham emails. This indicates that these machine learning classification algorithms

are vulnerable to attacks that changes the values of input data.

Restrained attack

Looking now at the Restrained attack, a similar approach to Free range attack has been

taken to investigate the robustness of the classifiers against it. Each possible combination

of the attack severeness value Cδ ∈ {0.0, 0.3, 0.7, 1.0} with the data movement factor value

Cξ ∈ {0.0, 0.3, 0.7, 1.0} have been tested. Tables 6.2, 6.3 and 6.4 list the recall scores for

Naïve Bayes, Decision Tree and Support Vector Machine Classifiers respectively.
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NB Cδ = 0 Cδ = 0.3 Cδ = 0.7 Cδ = 1.0

Cξ = 1.0 0.54 0.59 0.72 0.87
Cξ = 0.7 0.58 0.65 0.76 0.87
Cξ = 0.3 0.71 0.77 0.83 0.87
Cξ = 0 0.87 0.87 0.87 0.87

Table 6.2: Naïve Bayes Classifier Recall scores in presence of Restrained Attack

DT Cδ = 0 Cδ = 0.3 Cδ = 0.7 Cδ = 1.0

Cξ = 1.0 0.11 0.19 0.36 0.92
Cξ = 0.7 0.18 0.24 0.76 0.87
Cξ = 0.3 0.37 0.45 0.9 0.92
Cξ = 0 0.91 0.90 0.92 0.92

Table 6.3: Decision Tree Classifier Recall scores in presence of Restrained Attack

Since we are interested in the scenario were both attack aggressiveness increases (Cδ < 1.0)

and a greater amount of data movement is given (Cξ > 0), we can focus on the recall scores

that are lined along the diagonal. It can be seen that whenever the attack aggressiveness

and the data movement factor increase, all the three classifiers recall score tend to decrease

significantly. But, Naïve Bayes classifier seems to be more robust than Decision Tree and

Support Vector Machine classifiers by having 46% of the spam emails miss-classified when

Decision Tree classifier miss-classified 89% of the spam emails and Support Vector Machine

miss-classified 60% of the spam emails in the worst case (Cδ = 0 & Cξ = 1). So again, we can

see that all these machine learning classifications are vulnerable to the attacks that change

their input data values. In the case of Naïve Bayes Classifier, changing the values of the

input data changes their probabilities, which leads to miss-classifying them. Moreover, in

Decision Tree Classifier changing the values leads to following a different path for classifying

the spam emails in the constructed Decision Tree. Finally, in Support Vector Machine

Classifier changing the values in the spam emails leads to moving the hyperplane (boundary)

that separates the classes.
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SVM Cδ = 0 Cδ = 0.3 Cδ = 0.7 Cδ = 1.0

Cξ = 1.0 0.4 0.46 0.63 0.83
Cξ = 0.7 0.46 0.53 0.76 0.83
Cξ = 0.3 0.62 0.68 0.76 0.83
Cξ = 0 0.83 0.83 0.83 0.83

Table 6.4: Support Vector Machine Classifier Recall scores in presence of Restrained Attack

6.2.3 Good Words Attacks

To determine the effectiveness of Good Words attacks against the classifiers, each classifier

has been created, trained and then tested in presence of both Good Word Attacks, First N

Words and Best N Words. The recall scores of the classifier are presented in Figure 6.5.

Figure 6.5: Good Word Attacks

Unlike Naïve Bayes and Decision tree Classifiers that are seen to be vulnerable to these type

of attacks, Support Vector Machine Classifier is seen to be resistant. While Naïve Bayes

miss-classified 100% of the spam emails as ham in both types of the attack, Support Vector

Machine classifier miss-classified 8% when attacked using First N Words and 17% when

attacked with Best N Words. According to Lowd and Meek, a Classifier is more susceptible

to Good Word Attacks if it has features with very negative weights, since they disguise

spam more efficiently [13]. Therefore, this means that both Naïve Bayes and Decision Tree

classifiers have features with very high negative weights who represent the features that

always occur in ham emails (good words), and adding these features to the spam emails



Chapter 6. Results 65

leads to miss-classifying them. But, in Support Vector Machines, features appearing in ham

emails seem to have low negative weights. So, adding these words do not change the fact the

emails are spam, since they have little or no effect against the positive weight features.

6.3 Black Box Model Identification

Another important aspect that this project aims to prove, is the possibility of identifying the

underlying model or classifier of a Black Box model using adversarial examples that were

created previously for White Box models. Therefore, two Black Box models were created

and trained with an unknown underlying classifier and then attacked with two different

attacks, Good Word First N Words attack and Feature Deletion Attack that were created for

three existing models, Naïve Bayes , Decision tree and Support Vector Machine classifiers.

The reason why these attacks were chosen, is because they depend heavily on the underlying

model to find the best way to fool the classifiers and therefore, the resulting adversarial

example will differ for each classifier. After attacking the Black box models, each model has

been tested. The evaluation metric that has been focused on is the Recall score, since the

goal of the adversaries is to make the model miss-classify the spam emails. Each Black Box

recall scores are presented in two separate tables, table 6.5 and 6.6 that are presented below.

Adversarial example designed for Good Word Attack Feature Deletion Attack

NB 0 0.57
DT 0.84 0.86
SVM 0.8 0.62

Table 6.5: Black Box 1 Recall scores

Adversarial example designed for Good Word Attack Feature Deletion Attack

NB 0 0.91
DT 0.88 0.96
SVM 0.83 0.28

Table 6.6: Black Box 2 Recall scores

From table 6.5, it can be clearly seen that the attacks that were designed for Naïve Bayes

classifier decreased the recall score of the Black Box significantly and the attacks that were

designed for Support Vector machine and Decision tree classifier do not seem like they are
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affecting the recall score of the Black Box. Thus, the underlying model of the first Black box

could be Naïve Bayes. After checking the ground truth value for the underlying algorithm

for Black Box 1, it was Naïve Bayes. For the other Black Box, table 6.6 shows that both

attacks designed for Naïve Bayes and Support Vector machine Classifiers affect the Black

Box. But, only the Good Word Attack from Naïve Bayes seems to be able to fool the Black

box and the Feature Deletion Attack seems to have no effect on it. So we can exclude it and

look at the Support Vector Machine Classifier attacks. While Good Word Attack seems to

have no effect on the Black Box, Feature Deletion attack reduced the Recall significantly.

Since we already know that Support Vector Machine Classifier tends to be resistant from

Good Word attacks that are designed for it and Feature Deletion attacks can easily fool

it, we can say that the second Black Box underlying model is a Support Vector Machine

Classifier. After checking the ground truth value of the underlying algorithm for Black Box

2, it turned out to be Support Vector Machine.

So, these results made it clear that it is possible to identify the underlying models of Black

Boxes using adversarial examples designed for other classifiers. Another interesting point

from the results is the transferability of adversarial examples. We saw that even though

the second Black Box underlying model was Support Vector Machines it got affected by

the Good Word adversarial example created for Naïve Bayes. This proves that adversarial

examples have a transeferability property that was discussed in Chapter 2.



Chapter 7
Future Work

"Everything takes longer than you think, even when you take into account Hofs-

tadter’s Law"

(Douglas Hofstadter)

Due to the limited time allowed for this project, there are several aspects of the soft-

ware system that could potentially be improved in the future. The first aspect would be

the addition of classifiers such as, Neural Networks, Random Forest and Nearest Neighbour

algorithms and the addition of more attacks such as, Binary and Coordinate Greedy attacks

and Cost Sensitive Attack. This would help in further investigating and examining the

security of machine learning classifiers in the presence of an adversary. Moreover, another

aspect that could be improved would be allowing the users to change the parameters of

the attacks such as, the number of deleted features from the interface instead of changing

them from the code itself and then running the whole software again. Another desirable

improvement is enhancing the user interface of the software system. This could be done

using web technologies such as, HTML, CSS combined with Java script to create a graphical

user interface that will make the software usable even by beginners. The graphical interface

could allow presenting graphs from the results of testing or attacking the classifiers and allow

choosing parameters for the classifiers and attacks.
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Chapter 8
Conclusion

This project was set out to investigate the security of spam filters that are built upon Machine

Learning Classification algorithms against adversarial attacks and examine the possibility

of identifying the underlying algorithm of a Black Box model using existing adversarial

examples designed for other models. In order to achieve this, a software system has been

developed to allow modelling the combat between classifiers representing spam filters and

adversarial attacks during the test time of the classifiers. The main findings of this project

suggest that spam filters built using machine learning are not safe enough against adversaries

that can change the data values of their input during testing. In addition, Black Boxes

underlying model could be easily identified by creating adversarial examples for other known

models and using them to attack the Black box models. This means that spam filters should

not be built using machine learning classification algorithms since they can be defeated

easily.
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Chapter 9
Reflection on Learning

The greatest lesson that was learnt from doing this project was the importance of writing

the report as you go along. The approach that I took was different, when it came to the

implementation phase I implemented the whole software system in three weeks and then

wrote the report. This made me struggle with writing the report, because the ideas were not

fresh anymore, and I had to go back over things I already did 3 weeks ago, which wasted

so much time. Another lesson that was learnt is to always use LATEX for writing academic

reports. I have studied LATEX a few years ago and had a little experience with it and never

thought of using it for my reports, but in this report, things have changed after trying to

write the report using Microsoft Word and saw how it requires too much effort to produce an

organised report with figures and mathematical equations. Thus, utilising LATEX for writing

the report made the report look more organised and professional with great ease. Therefore,

LATEX has been an invaluable took and will be taken in considerations for future reports. On

the other side, a great knowledge was gained about Machine Learning, which I had minimal

knowledge about and Adversarial Machine learning, which I clearly did not know that this

field exists while doing the background research. This knowledge gave me a great insight

into how Machine learning works and used for spam filters and how to evaluate their security.

This gave me the interest to explore the security aspect in the field of machine learning more

deeply not only in the case of spam filters. Finally, I learnt that when creating a software, it

is always a good approach to break the code into parts, which consists of classes and modules

instead of coding everything in one file. This made the code more organised, reusable and

easier to debug. Overall, despite the fact that this project lasted only for few months, I

believe that the knowledge and skills I gained will be beneficial in my future life.
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