
Initial Plan - Crowdsourced prediction of Cardiff bus delays (IOS)
Author - Surdu-Bob Ioana - 1545977
Supervisor - Martin Caminada
Moderator - Natasha Edwards
CM3203 - 40 credits

Project Description

Delays are one of the main disadvantages when using public transport. However, where
applications (like Google Traffic) are available to keep track of delays for motorists, relatively
little help is available for public transport users, especially for predicting the likelihood of any
major delays.
The problem is that if the service in unreliable, one might not arrive to the destination because
they missed a connection. For instance, for longer transit, someone might need a bus to arrive
to the train station or airport, but if the bus is late, they might miss the trip, which is unfortunate
especially if the connection is non-refundable. Therefore, someone will either leave in advance
or arrive late.
However, if one would have a smartphone app that displays the delays deducted from real use
case scenarios, they would save time. The app would crowdsource actual departure times, and
then process the delays for every bus stop in order to predict future delays.

The overall architecture of such a system would consist of three parts:

● An iPhone app that registers when user got into the bus (the name of the bus stop, bus
line, terminal and time). This should be one of the main challenges. The aim is to
automatically detect this information using the GPS of the phone, which is used to
determine the proximity at a bus stop. Once the speed of the phone exceeds walking
distance, the user is most likely to be inside the bus.

● A back-end server that receives, processes and stores the information. Delays should be
linked to expected arrival times.

● The same iPhone app should allow users to view expected times and expected delays
for a certain bus stop and line, using the interface. Ideally, the user should get options of
what to query. He should be able to query nearest bus stations to a given location or
current location, and view timetables (using existing APIs) along with expected delays.

Project Aims and Objectives

After 9 to 10 weeks of implementation, we expect having a working MVP, where the user is able
to view timetables and delays for a certain bus station. On the back-end side, we should be able
to receive crowdsourced data, and estimate delays.

Functional Requirements1

Crowdsourced data - Every device which has the application installed should feed data to the
server. Every time an user takes the bus (determined by the proximity to the bus station and the
speed), the application will record the expected and actual departure time of the bus, the
direction (terminal) and bus line. Whenever convenient, the information will be sent to the
server. The more users take the bus, the more data we have, resulting in a more accurate
prediction of future delays.
Anonymity - The only user information available should be an unique identifier linked to their
device.
Server Availability - Database should always be online, accessible on an IP address.
Delay Estimation - If one took a bus at similar times of the day/week and it was recorded by the
application, the back-end should process historical data and calculate the estimated delay for a
future route. If there is no relevant data available, no delay should be suggested.
Nearby Bus Stops - When receiving a location, either by using the current location of the
phone, or by input (postcode, address), the application should retrieve the closest bus stops to
the particular location, using existing APIs (transport API).
Bus station timetable - When receiving a bus station, a time and a date, the application should
retrieve a bus timetable for the particular station, starting at the date given, along with estimated
delays (covered earlier).

Non-Functional Requirements2

Usability - User should navigate through pages seamlessly, without knowing about the
crowdsourced functionality of the application. The user will be able to access timetables with
expected delays within a few clicks.
Reliability - Timetable information should be displayed even if there is no delay data available
for a certain date/time. In the beginning, the route coverage will be low, therefore there will be a
high chance of not having historical data.
Performance - Users should retrieve responses to any request in less than a second. Only
most relevant results should be shown, so that it takes less time to process.

Work Plan

For my project, I will take a more agile approach. Since I am not experienced with all the
technologies I am using, I know I will not estimate everything correctly, so I will try to prioritize.
In my plan, I have mandatory tasks, which should be finished for the MVP, secondary tasks,
which I will omit if I am not on schedule, and optional tasks, which I will start only if I finished
everything else.
For my project, I will need to use a mobile programming language, another language for
back-end processing, an API for retrieving transit information, and a database system. I will

develop the mobile application in Swift3, because, in my opinion, a native application is always
better than a cross platform one. From my past experience, I saw that native performed better in
terms of user experience (some gestures are not available) and processing. I have created two
small identical applications, one in Swift and one in React Native, and the React Native one
drained the phone battery (the phone would get hot after minutes), while the Swift one would
run seamlessly.
PostgresQL4 is my database choice, because it is a widely used performant SQL server5, which
can be scaled.
For back-end processing, I will use Ruby, with its framework, Ruby on Rails6. From my past
experience, Ruby is much quicker to code in than other programming languages. Since I will
use so many technologies, getting the quickest result is the smartest choice. Moreover, Ruby on
Rails 5 provides a features that transforms a web application into an API, which I might need for
this project.
The transit information will be retrieved using Transport API. When researching the best API to
use, I considered what contains data about bus stations in Cardiff (Google Maps and Transport
API) and what contains timetable information. From all the options available, Transport API is
the most extensive one7, as it contains all the data about transit I need. The alternative is using
multiple APIs, which increases complexity.
In my opinion, the best approach is to start with the back-end processing. In the first few weeks,
I plan retrieving the data I want to send to the server. For every bus stop the user is in the bus, I
will record relevant information, which I will save in phone storage (cache). Afterwards, I will
create a database model, host it on the cloud, and send the cached data to the server. I expect
the application to be at this stage by week 5.
At this moment, even if the application does not display anything, I can distribute it and start
receiving data. This part of the project will require ethics approval. It should be easy to obtain,
as I don’t plan to save any sensitive data. The only link to the user will be the phone UUID,
which cannot be traced back to the user by the general public. However, if my application is
rejected, I will generate dummy data.
The next tasks will be to display a timetable for a particular query, and create the interface. I will
use Ruby on Rails to retrieve information from the API and the database, resulting in timetables.
To display the data, there are two options which I need to research further. On one hand, I could
retrieve the queried data in Swift and display it natively, or I could create the pages on the web
and use Turbolinks IOS to display them on mobile. I expect to be done with the MVP by week 9.
In week 10 I should refactor and do optional tasks if I have any time left. In week 11 and 12 I will
fully focus on writing the final report.
For this module, we are expected to put in about 400 hours of work. That would average to 30
hours a week. I tried to estimate the amount of hours tasks will take, but I know there is a high
chance something will go wrong. Therefore, I allocated 10% of my time on unexpected
problems. Below are the tasks I need to do, the week I estimate they should be done in, and the
number of hours they should take. Tasks marked with “*” are secondary, and with “**” optional.

Task Week No hours

Familiarize with swift and transport api 1 10

Project plan report 1 20

Complete ethics approval form 1 2

Create empty application and deploy it to phone 2 5

Retrieve phone location, speed and direction 2 6

Retrieve departure times for every station the user is in 2 7

Calculate if user is waiting in a bus station (using location) 2 7

Calculate if user is in bus if user was in a bus station (using
speed)

2 7

Calculate if user left the bus (back to walking distance) 3 5

Set up cache (phone memory) 3 3

Research best metrics to calculate movement (by bus/walking) 3 5

Generate list of bus stops retrieved with their delays 4 10

Use cache to add newly generated lists 4 2

Create database model 4 8

Research cloud storage for database 4 8

Familiarize with Ruby and Ruby on Rails (rails 5) 5 10

Create mock up pages (UX/UI) 5 8

Create blank rails app connected to the database 5 4

Send cached Swift data to the database 5 4

Get nearest bus stations to current location (api) (1)* 6 4

Get nearest bus stations to a given postcode/address* 6 8

Get timetable for a given bus station (api, clicked from (1) in UI)* 6 5

Get timetable for a given bus station (searched by name) 6 6

Research best method to calculate delay 6 4

Get average delays for the time/bus/direction queried 7 6

Research between native UI or turbolinks 7 6

Familiarize with storyboard/ learn turbolinks 7 6

Create rails api swift can request/ display web page in swift
using turbolinks ios

7 12

Create mobile pages/ create web pages + add navigation to
them in swift

8 15

Find people to install the application** 8 10

Put the application on other phones** 9 6

Analyze data** 9 10

Make application run in the background* 9 10

Preferred/saved bus stations (phone storage) ** 10 20

Notification system** 10 30

Get name of available wifi networks** 10 10

Calculate if user is in bus (if cardiff wifi is available)** 3 7

Calculate if user left the bus (wifi)** 10 4

Predict delays on public holidays/events** 10 15

Refactor, clean code* 10 10

Unexpected problems 4h/week 44

Supervisor meetings 1h/week 12

Dissertation/final report 2h/week
2-10
30h/ week
11-12

80

These are the tasks, but I might change the order I do them in. My goal is to have the
application done by week 10, which gives me time to review it and write the final report. I will
consider this project a success even if I won’t have time to finish any optional tasks, as the
timeframe is quite short, and showing the prototype demonstrates the potential result if more
time was allocated.

References

1. https://en.wikipedia.org/wiki/Functional_requirement
2. https://en.wikipedia.org/wiki/Non-functional_requirement
3. https://developer.apple.com/swift/
4. https://en.wikipedia.org/wiki/PostgreSQL
5. http://www.craigkerstiens.com/2017/04/30/why-postgres-five-years-later/
6. http://rubyonrails.org/
7. https://www.transportapi.com/showcase/

https://en.wikipedia.org/wiki/Functional_requirement
https://en.wikipedia.org/wiki/Non-functional_requirement
https://developer.apple.com/swift/
https://en.wikipedia.org/wiki/PostgreSQL
http://www.craigkerstiens.com/2017/04/30/why-postgres-five-years-later/
http://rubyonrails.org/
https://www.transportapi.com/showcase/

